

HyGram Definition

yGram

H

A Notation for Specifying Regular and Context Free Languages

Randall Hyde

Version 3.0
Abstract

HyGram is a compact, easy to read, and easy to use notation for
specifying context free grammars and syntax directed deÞni-
tions. It does not require any special (non-ASCII) characters,
hence one may easily embed HyGram deÞnitions in programs
as comments. Unlike EBNF, Syntax Diagrams, and other nota-
tional systems, HyGram inherits and improves upon many of
the features from systems like AWK, Flex/Lex, and Yacc/Bison.
Therefore, it is more than just "theoretically complete;" it is a
practical tool useful for designing and specifying the syntax and
semantics of new programming language systems.

1.0 Introduction

There are three standard mechanisms people employ to specify the
syntax for a programming language or other system that uses a context-
free language: a set of productions using traditional notation, EBNF, and
syntax diagrams. Each of these methods has its own set of problems.
Either the result is difÞcult to read and understand (EBNF), the notation
requires special symbols that are unavailable in typical character sets (syn-
tax diagrams), or both (traditional CFGs). HyGram is a tool that lets one
specify syntax and semantics of a language system. It uses only characters
readily available in the ASCII character set. Nevertheless, it is far more
readable than standard EBNF notation.

Any student who successfully completes an automata theory course
can tell you that the set of regular languages are a proper subset of the
context free languages. For any string you generate using a regular
expression, there is a corresponding CFG that will also generate that
string. Consider the following examples:

Regular Expression:

Int_Const: [’0’-’9’] +

Context Free Grammar

Digit → ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ |
’7’ | ’8’ | ’9’

Int_Const → Digit | Digit Int_Const
March 6, 1997 Page 1

HyGram Definition

For those who are comfortable with the notation, the Regular Expression
(RE) above is simple and easy to understand; the Context Free Grammar
(CFG), on the other hand, takes a few seconds to decipher. Clearly, the RE
is more easily read than the CFG (by most people, at least).

EBNF is an example of a notation that lets you specify a CFG using a
standard character set (e.g., ASCII). Unfortunately, EBNF uses notation
similar to the CFG example above (substituting "::=" for "→" since the
arrow symbol isnÕt available in standard character sets).

EBNF uses the following conventions1:

¥ Terminal symbols are names or characters that do not contain EBNF
metacharacters.

¥ Nonterminal symbols are names enclosed within the "<" and ">" meta-
characters.

¥ A production takes the form:
<nonterminal> ::= right-hand-side

The right-hand-side is a string of grammar symbols (terminals,
non-terminals, and metacharacters).

¥ The "|" metacharacter allows for alternation. That is, it lets you com-
bine several productions into one by specifying the left hand side of a
production only once, e.g.,

<nt> ::= A C | A D

is equivalent to

<nt> ::= A C

<nt> ::= A D

¥ The "(" and ")" metasymbols allow convenient grouping. The example
above can be written using parentheses as:

<nt> ::= A (C | D)

¥ The brackets ("[" and "]") specify optional items. For example,

<nt> ::= A C | A

is equivalent to

<nt> ::= A [C]

¥ The braces ("{" and "}") indicate zero or more repetitions of the items
they enclose. The earlier example,

<Int_Const> ::= <Digit> | <Int_Const> <Digit>

could be rewritten as

<Int_Const> ::= <Digit> {<Digit>}

1. This particular variant is an adaption of the EBNF from "Programming
Languages, Structures and Models" by Dershem & Jipping. There are
many minor variants of EBNF.
March 6, 1997 Page 2

HyGram Definition

This is a little easier to read than the previous version. Nevertheless,
although EBNF is arguably easier to read than standard BNF or a standard
CFG, it still leaves a little to be desired. If you need convincing, just take a
look at the EBNF for a language like ÕCÕ or Pascal sometime.

The difÞculty with reading (and verifying) EBNF grammars for realis-
tic languages has driven many language designerÕs to adopt the syntax
diagrams introduced in the Pascal UserÕs Manual and Report. These syntax
diagrams (also known as railroad diagrams) are much more readable and
more compact than the corresponding EBNF for the same language.
Unfortunately, syntax diagrams use a graphical notation that is impossible
to represent with a standard character set. Although modern word pro-
cessing and page layout programs provide facilities to incorporate graphic
images within a document, such facilities are not widely available in text
editors so one could not, for example, embed grammar productions within
a programÕs comments2.

Another problem with syntax diagrams is the amount of space an indi-
vidual production requires. Overall, syntax diagrams are very compact.
However, they achieve this compactness by merging productions in a
grammar (the use of arrows in the diagrams eliminates many produc-
tions). Unfortunately, the representation of any single production gener-
ally takes far more space that an EBNF version of that same production.

One Þnal problem with all the methods mentioned above is that they
only specify syntax, there is no formal mechanism to specify semantics in
a system3. SpeciÞying semantics is crucial when formally deÞning a pro-
gramming language.

Before marching on and deÞning HyGram, it is worth pointing out that
a real-world partial solution already exists: the YACC (or Bison) program-
ming language. YACC is a "compiler" of context-free grammars4. It will
compile a CFG in ASCII notation to a push-down automata (PDA). The
resulting PDA, in the form of a C program, will recognize strings in that
context-free language. In addition, YACC productions let you associate
semantic rules with each production. The resulting PDA will execute these
semantic rules when the PDA reduces a right hand side of a production,
replacing it by the nonterminal on the left hand side.

Unfortunately, YACCÕs language is little more than a lexically modiÞed

2. Actually, the CodeWright text editor provides a limited facility for this,
but this capability is not general nor is it available in many editor sys-
tems.

3. Of course, semantics donÕt exist in a true context-free system, so this
complaint may seem unfair, nevertheless, most programming languages
are not context-free and, therefore, need semantics to handle the context
dependencies.

4. Actually, it is limited to the LALR subset of CFGs, but I will ignore that
minor point here.
March 6, 1997 Page 3

HyGram Definition

BNF. Although it allows the use of the "|" metacharacter, it does not sup-
port the braces, brackets, or parentheses found in EBNF. Most program-
mers who use YACC (or Bison) tend to use it in conjunction with the LEX
(or FLEX) language to process regular expressions separately. This allows
the YACC programmer to treat an "integer constant" as a terminal symbol
and not bother having to specify the productions to recognize this regular
expression. While this makes YACC programs quite a bit more readable
than standard EBNF grammars, it does move important components of
the grammar (i.e., all the supporting regular expressions) to a different
source Þle that a different language has to process.

Although HyGram must be different than existing methods in order to
achieve its goals, it is important that HyGram be sufÞciently close to exist-
ing notation so a new user will feel comfortable using it. For this reason,
HyGram uses many of the notational conventions found in LEX and
YACC.
March 6, 1997 Page 4

HyGram Definition

2.0 HyGram

HyGram is a notation that lets a user easily document a syntax directed
deÞnition. A syntax directed deÞnition is a grammar with a set of associ-
ated semantic rules (or actions, if you prefer). Formally, a HyGram gram-
mar takes the familiar form:

HG = (N, T, P, S)

Where N represents a set of non-terminal symbols, T represents a set of
terminal symbols, P represents a set of productions (with possible seman-
tic actions), and S ∈ N is a special starting production).

HyGram uses standard (programming language) identiÞers to denote
nonterminal symbols. The following regular expression provides the
exact form:

{’A’-’Z’, ’a’-’z’} {’A’-’Z’, ’a’-’z’, ’0’-’9’, ’_’}*

(Note: braces surround a character set.) That is, a nonterminal begins with
an alphabetic character and is followed by zero or more alphanumeric or
underscore characters. Note that HyGram does not attach special signiÞ-
cance to alphabetic case, so the nonterminal "NT" is equivalent to "nt".

Terminal symbols in HyGram are always strings of one or more char-
acters surrounded by quotes or apostrophes (strings surrounded by apos-
trophes are exact, those surrounded by quotes are case insensitive).
HyGram treats adjacent terminal symbols as a single string, so the follow-
ing two lines are identical as far as HyGram is concerned:

’a’ ’b’
’ab’

HyGram uses the backslash character to denote the usual C/C++ style
non-graphic symbols like "\n" and "\r". For example, the following string
of terminal symbols corresponds to the string "ab" at the end of a line:

’ab\n’

The starting symbol is a special non-terminal. It is the Þrst production
to use when doing a top-down derivation; conversely, it is the symbol you
must produce when doing a bottom-up derivation. The very Þrst state-
ment in a HyGram grammar (explained below) describes the starting sym-
bol(s) for a grammar.

Productions in HyGram take the following form:

nt (optional_parameters) = rhs
%
semantic_actions
%%

A production begins with a nonterminal symbol and ends with the
"%%" lexeme. An optional semantic action may follow the right hand
March 6, 1997 Page 5

HyGram Definition

side (RHS) of the production; if present, it begins with a "%" character.
The "%" will not be present if the optional semantic rule is not present.

The nt item above is an identiÞer that speciÞes the nonterminal this
production deÞnes (or extends, since a given nonterminal may appear on
the left hand side of many different productions). An optional parameter
list, containing a sequence of comma separated identiÞers, may follow the
non-terminal symbol. An equals sign separates the nonterminal (or the
parameter list, if present) from the right hand side.

2.1 HyGram Grammar Definitions

A HyGram grammar consists of three components: a single statement
that describes the starting symbol, an optional set of terminal symbol deÞ-
nitions, and a set of productions. The Þrst statement of a HyGram gram-
mar typically takes the form:

parse nt

where "nt" represents a non-terminal symbol that will be the starting sym-
bol for the grammar. The parse statement must be the Þrst statement in
the source Þle (i.e., excluding comments and blank lines).

HyGram provides a novel feature that allows you to compose gram-
mars. SpeciÞcally, you can specify that the output of one syntax-directed-
deÞnition be used as the input to another syntax-directed deÞnition. The
Þrst grammar would act as a "Þlter" for the second. To specify this, one
would use the following parse statement:

parse nt1 | nt2

This informs HyGram to use nt1 as the actual starting symbol. When the
syntax-directed deÞnition Þrst produces some output, that output is fed to
the grammar rooted by the starting symbol nt2. This forms a "pipeline" of
data with the nt1 grammar Þltering out data and feeding the result to the
nt2 grammar. A typical use for this technique is to generate a separate lex-
ical analyzer, parser, and code generator for a typical compiler. One might
use a HyGram parse statement like the following:

parse lexer | parser | codegen

The output of the lexical analyzer (a stream of tokens) becomes the
input to the parser. The output of the parser (a parse tree or a stream of
codes providing some intermediate representation) is fed to the code gen-
erator.

By default, HyGram assumes that the input characters to a grammar
(i.e., the set of terminal symbols) are ASCII characters or strings of ASCII
characters (emitted from one grammar as input to another). Sometimes,
however, it is nice to be able to give generic names to some terminal sym-
bols. You may create a set of names to use for this purpose using the
March 6, 1997 Page 6

HyGram Definition

HyGram terminals statement. The terminals statement is optional. How-
ever, if it is present it must follow the parse statement in the grammar.
The terminals statement takes the following form:

terminals = (name1, name2, name3, ..., lastname)

Names you deÞne with the terminals statement may appear on the RHS of
a production wherever a terminal symbol would normally be allowed.
You would use the semantic function OUTPUT (described a little later) to
insert one of these terminal symbols into a grammarÕs input stream.

The productions for the grammar(s) must follow the parse statement.
HyGram productions take the form mentioned earlier. There must be at
least one production for each of the starting symbols appearing in the
parse statement.

2.2 Set Definitions and Set Expressions

A very special form of a production is a set deÞnition that has the fol-
lowing syntax:

{ identifier } = { set_expression } %%

This production attaches a name to a character set. The right hand side
of this production must be a set deÞnition. A set_expression takes one of
the following forms:

¥ A single character surrounded by quotes or apostrohes is a legal set
item (quotes vs. apostrophes have the usual meaning).

¥ A string of characters surrounded by quotes or apostrophes is a legal
set item, with each character in the string being a member of the set
(quotes vs. apostrophes have the usual meaning).

¥ The at-sign ("@") is a legal set expression and denotes any legal charac-
ter.

¥ A range of items, consisting of a pair of single character constants sep-
arated by "->", is a legal set item. Note: both characters must have the
same delimiter (quote or apostrophe).

¥ An identiÞer, that appears on the left hand side of some other set deÞ-
nition is a legal set item and corresponds to characters in that set.

¥ If s and t are legal set expressions, then s, t is a legal set item and cor-
responds to the union of the two sets s and t.

¥ If s and t are legal set expressions, then s - t is a legal set item corre-
sponding to all characters in s that are not also in t (set difference).

¥ If s and t are legal set expressions, then s * t is a legal set item corre-
sponding to all character that are in both s and t (set intersection).

¥ If X is a legal set expression, then (X) is also a legal set item. It corre-
sponds to the set X.

¥ If s is a legal set expression, then ~s is a legal set corresponding to all
March 6, 1997 Page 7

HyGram Definition
characters that are not in s.

Note: set union has the lowest precedence followed by set difference,
set intersection, set complement, and the set range operator (which has
the highest precedence). Union, difference, and intersection are left asso-
ciative, set complement is right associative, the range operator is non-asso-
ciative. You may use parentheses to override the precedence.

This particular production form simply deÞnes a set identiÞer in the
HyGram grammar. Therefore, it does not "match" anything. For that rea-
son, you cannot associate a semantic action with this type of production.
However, you can easily use the set item in a standard HyGram produc-
tion and associate a semantic action with that production to achieve the
same result.

2.3 HyGram Grammar Components

The right hand side of a HyGram production differs greatly from the
standard CFG right hand side. HyGram treats context free grammars as
though they were "regular expressions with subroutine calls." Adopting
the convention many automata theory books use, the following para-
graphs deÞne the right hand side (RHS) recursively. This document will
refer to legal RHS components as grammar components or GCs. A legal
RHS is always a legal GC.

2.3.1 Terminal Symbols

A terminal symbol is the most basic grammar component. All other
grammar components, ultimately, are built from terminal symbols. On the
RHS of a production, a terminal symbols takes one of three forms: an
empty string, an identiÞer deÞned within the terminals statement, or a lit-
eral string constant. Therefore, the following are all legal grammar com-
ponents (GCs):

¥ The empty string is a legal GC. Note that a RHS always
ends with either the "%" or "%%" lexeme. White space is
insigniÞcant. Example of a production that contains an
empty string on the RHS:

Empty = %%

¥ If id is an identiÞer deÞned in the HyGram terminals state-
ment, then id represents a single terminal symbol and is a
legal GC. Note that terminal identiÞers are only legal in a
grammar if that grammar reads its input from the output of
some other HyGram grammar. The output function in the
semantic action is the only way to output a terminal symbol
March 6, 1997 Page 8

HyGram Definition
for use as input to another grammar.

¥ A string of zero or more characters surrounded by apostro-
phies or quotes is a terminal symbol. Strings surrounded by
quotes must match an input string exactly. Strings using the
quotes delimiters are case-insensitive.

2.3.2 Special Symbols

There are several special symbols that match certain characters, groups
of characters, or position on a line of text. Each of these symbols are legal
GCs.

¥ The following special symbols are all valid GCs:

^ Matches the beginning of a line.
$ Matches the end of the line.
@ Matches and consumes a single char.
! Matches the end of the file.

The "^", "$", and "!" are extra special because they do not
consume any characters (this is the difference between "$"
and "\n" -- the latter consumes the end of line character).

Special note: The "@" symbol matches any character except the end of
line character. If you want to match all characters, then use a simple char-
acter set containing the items @ and "\n".

These special symbols, of course, have special meaning only outside
quotes or apostrohpies. That is, "@" matches the at-sign, not an arbitrary
symbol.

2.3.3 Non-Terminal Grammar Components

¥ If n is a nonterminal symbol, then n is a legal GC and it
matches any string that n matches5. Note that n must not
require any inherited attributes (that case is handled next).

¥ If n is a legal non-terminal, then so is n[idlist], where idlist
is a comma separated list of identiÞers. This particular GC
matches the same strings as n (i.e., this GC is effectively
equivalent to the one above). It simply attaches a set of
names to this particular nonterminal symbol for use in the
semantic action section. In the semantic action section, each
id is equivalent to one of the synthesized or inherited
attributes of n. HyGram assumes that any particular
attribute can be synthesized, inherited, or both (i.e., parame-
ters are in/out parameters). HyGram supports L-attributed

5. "n" matches any string that a production with n on the left hand side
matches.
March 6, 1997 Page 9

HyGram Definition
grammars. This means that all inherited attributes you pass
to n must be synthesized attributes of grammar symbols to
the left of n in the production or inherited attributes of the
production containing n on the right hand side. I.e., if A =
B C n[i] D then i may be deÞned by A, B, or C, but not by D.

2.3.4 Composite Grammar Components

Composite grammar components are GCs that are made up by com-
bining other GCs together. The following describe each of the possible
composite GCs.

¥ If r is a legal terminal symbol, or a string of legal terminal
symbols, then r is a legal GC. This GC matches the speci-
Þced character string. If r is a string literal surrounded by
quotes (rather than apostrophes) then the comparison is case
insensitive.

¥ If r is a set item, then r is a legal GC that corresponds to a
single character from that set. Examples:

{’a’->’z’} Lower case chars.
{’A’->’Z’, ’a’->’z’} Alphabetics.
{"A"->"Z"} Alphabetics.
{ ’ ’, \n, \t } Whitespace.
{~ ’0’->’9’} Non-digit chars.
{thisSet} Named set item.

¥ If r and s are legal GCs, then r s (the concatenation of r
followed by s) is also a legal GC. This GC matches the pat-
tern matched by r followed by the pattern matched by s.

¥ If r and s are legal GCs, then r | s is also a legal GC. This
GC matches either the pattern matched by r or the pattern
matched by s.

¥ If r is a legal GC, then (r) is also a legal GC. This GC
matches the strings that r matches.

¥ If r and s are legal GCs, then r / s is also a legal GC. This
GC matches the same pattern as r s but it does not consume
the characters matched by s. This provides a lexical lookahead
feature.

¥ If r is a legal GC, then r? is a legal GC that optionally
matches the pattern that r matches (i.e., r? matches zero or
one occurrences of r).

¥ If r is a legal GC, then r* is a legal GC that matches zero or
more occurrences of r.

¥ If r is a legal GC, then r+ is a legal GC that matches one or
March 6, 1997 Page 10

HyGram Definition
more occurrences of r).

¥ If r is a legal GC, then r#n is also a legal GC. n represents a
literal decimal constant. This GC matches n, or more, cop-
ies of r.

¥ If r is a legal GC, then r#n->m is also a legal GC. n and m
represent literal decimal constants with n < m. This GC
matches n through m copies of r.

¥ If r is a legal GC, then < r > is also a legal GC. This GC
matches the shortest sequence that r will match. This can help
eliminate certain ambiguities in a grammar (especially when
dealing with regular expressions).

¥ If r is a legal GC, then r:id is also a legal GC. This associates
id with a set of attribute pairs for r. id.count is the number
of different strings that r matches (e.g., for the GC (r:id)* it
could turn out that r matches several different strings;
id.count tells you how many). id.lexemes[i] is a one-based
array6 of strings that stores each of the lexemes that r
matches; the id.count attributes speciÞes how many ele-
ments are present in this array. If there are attributes associ-
ated with r (e.g., (r[x,y]:id)*) then a set of arrays,
id.attrID1[i] .. id.attrIDk[i] (where k is the number of
attributes), exists with each array element containing the
speciÞed attribute. Example:

(a[x,y]:s)* has the following attributes:

s.count, s.lexemes[1..s.count], s.x[1..s.count], and
s.y[1..s.count].

Note that there is a major difference between (a:s)* and (a*):s.
In the Þrst case, s.count is the number of different strings
that a happens to match (as just described). In the second
example, s.count is always one and s.lexeme[1] is always
one the entire string that a matches (although it could be the
empty string). E.g.,

([ÕaÕ-ÕzÕ]:s)* matches ÕabcÕ and produces the following:

s.count = 3

s.lexemes[1] = ÕaÕ, s.lexemes[1] = ÕbÕ, and s.lexemes[1] = ÕcÕ.

On the other hand, ([ÕaÕ-ÕzÕ]*):s also matches ÕabcÕ but it pro-
duces:

s.count = 1 and s.lexemes[1] = ÕabcÕ.

6. Brackets attached to attributes have the usual HLL array subscript mean-
ing. Note that these brackets would never appear on the RHS; they
would always appear in the semantic action section, so there is no ambi-
guity.
March 6, 1997 Page 11

HyGram Definition
HyGram allows the abbreviated attribute "lexeme" to repre-
sent "lexemes[1]". For example,

s.lexeme

is identical to

s.lexemes[1].

2.4 Operator Precedence and Associativity

HyGram GCs include several operators, including concatenation, Õ+Õ,
Õ*Õ, Õ?Õ, Õ/Õ, Õ|Õ, Õ{}Õ, Õ()Õ, and Õ<>Õ. These have the following precedences and
associativities:

Table 1: Precedence and Associativity

Item Prec Assoc Desc

ntp[list] 6 left A non-terminal symbol with a parameter
list.

nt 6 left A non-terminal symbol.

t 6 left A terminal symbol.

{} 6 left DeÞnes a character set.

() 5 left Groups items inside () to override prece-
dence.

<> 5 left Groups items inside <> and selects the
short possible string to match.

[] 5 left DeÞnes a parameter list.

5 left ModiÞes GC immediately to its left to
match a speciÞed number of items (or a
minimum number of items).

* 5 left ModiÞes GC immediately to its left to
match zero or more copies of the GC.

+ 5 left ModiÞes GC immediately to its left to
match one or more copies of the GC.

? 5 left ModiÞes GC immediately to its left to
match zero or one copies of the GC.

: 4 None Separates an attribute name from a GC.

concat 3 left If two GCs are adjacent, the resulting GC is
the concatenation of them.
March 6, 1997 Page 12

HyGram Definition
The "/" symbol is non-associative. One would not normally expect to
have two of these adjacent to one another (the second one would be irrele-
vant). Likewise, the ":" symbol is non-associative, you may have only one
symbol attached to a GC and no higher precedence operator may appear
immediately to the right of the symbol.

2.5 HyGram Parameters

As pointed out earlier, the left hand side of a HyGram production may
contain an optional parameter list. This list contains one or more identiÞ-
ers separated by commas. Each identiÞer corresponds to an inherited
(input) or synthesized (output) attribute for the production.

A[x,y,z] =
B[x] C[y] D:DsVal

%
On exit, set y=x and z = DsVal.Lexemes[1].

%%

In this example, x (with respect to A) is an inherited attribute, y is both
an inherited and a synthesized attribute (since is it passed as input to C
and the semantic action above assigns a value to y), and z is a synthesized
attribute.

Parameters are typeless. Generally, they will be character strings.
However, as appropriate you can attach numeric or other values to a
parameter if your usage is consistent.

HyGram does not require that all productions for a given nonterminal
symbol have the same number of parameters. Indeed, while deriving (or
generating) a string using the productions, the parameters are almost irrel-
evant. The only time a HyGram derivation would use the parameter list is
to resolve ambiguity. If one could use two different productions and one
productionÕs parameter list matches the parameters associated with the
symbol to expand, ambiguity is resolved in favor of the exact match.

Other than the above case, HyGram ignores any extra parameters. If
some production refers to those parameter values (attributes), then

/ 2 None Matches and consumes GC to left of "/" if
the characters matched by the GC on the
right immediately follow.

| 1 left Matches the GC on the left or the right of
this operator.

Table 1: Precedence and Associativity

Item Prec Assoc Desc
March 6, 1997 Page 13

HyGram Definition
HyGram substitutes a NULL value. If the semantic action cannot handle
NULL values, then the parse should fail.

2.6 Semantic Rules

The semantic rules section is optional. If it is present, then a single per-
cent sign ("%") separates the right hand side of the production from the
semantic action. If the production does not have an associated semantic
rule, then the "%" is absent and the right hand side (as well as the entire
production) ends with the "%%" lexeme.

With three exceptions, HyGram does not deÞne the contents of the
semantic rule section. As far as HyGram is concerned, this is nothing
more than a comment. If one were to build a parser generator using
HyGram syntax, one would normally embed high level language state-
ments (or even assembly, if you really wanted) into this section. Presum-
ably, the PDA generated by the HyGram parser generator would execute
this code sequence whenever it reduces the right hand side of the produc-
tion to the left hand side.

There are three functions that a HyGram user can assume are available
in the semantic action section: Parse, Ouput, and Fail.

Parse(nt) will execute the speciÞc grammar speciÞed by the non-termi-
nal passed as a parameter to Parse ("nt" in this case). Parse returns true if
the speciÞed sub-grammar successfully matches data arriving at the input
stream, it returns false if it cannot match input data. Note that parse con-
sumes terminal symbols from the same input stream as the production
whose semantic action calls parse. Warning: note that parse is somewhat
dangerous. It allows you to code decidedly non-context free operations
into your grammar. I have not studied this feature enough to determine if
it will create some inconsistencies in the grammar notation.

Output emits a data output to an output stream. This output stream
becomes the input stream of some other grammar if you speciÞed a chain
of starting symbols in the original HyGram parse statement. Note that
each call to output emits a single terminal symbol for input to the next
grammar in the chain. SpeciÞcally, note that

output "Hello world"

emits the non-terminal object "Hello world" it does not emit the sequece of
characters "H", "e", "l", "l", "o", " ", "w", "o", "r", "l", "d" to the receiving
grammar. If you want to output a stream of characters to the grammar,
you must output them one at a time.

You may also emit terminal symbols (deÞned with the terminals state-
ment) to the output stream using the output function. Indeed, this is the
only way those terminal symbols would ever appear in the input stream.
March 6, 1997 Page 14

HyGram Definition
You may associate an attribute with a terminal symbol by using an output
statements like the following:

output IntTerm.Value = 123
output IntTerm.Lexeme = "123"

Fail will cause the associated production to reject the current input
string.

Note that, unlike YACC and Bison, HyGram does not let you embed
semantic rules directly into the middle of a production. There are sound
technical reasons why you shouldnÕt do this, although the primary reason
for not allowing it is because it makes the syntax directed deÞnitions
harder to read. This is not a restriction on the language, because you can
always do the following

X = A B ***** C D % Some Rule %%
***** = Some other Rule.

Transform this to:

X = A B Y C D % Some Rule %%
Y = % Some other Rule. %%

Since the Y production matches the empty string, it will always reduce,
executing "Some other Rule." at the intended spot.

Of course, what good would a programming language (or notational
system, for that matter?) be if you could not insert comments? HyGram
uses the semicolon (Õ;Õ) to mark the beginning of a comment. HyGram
ignores all characters from a semicolon to the end of the current line. The
only exception is within the semantic action where HyGram treats every-
thing as a comment. Of course, if youÕve got a HyGram parser generator,
then comments within the semantic rules section are dependent upon the
target parser language.

3.0 A HyGram Grammar for HyGram

Since HyGram is, itself, a context free language, it is possible to
develop a HyGram grammar for it. This section presents just such a gram-
mar as an example of the HyGram notation.

PARSE grammar

Grammar = ParseStmt
(Production | SetDefinition)+

%%
March 6, 1997 Page 15

HyGram Definition
; White space

ws =
[’ ’, \t, \n, \r]*

%%

w =
 (ws | <’;’ @* \n>)*

%%

; Definition of identifiers used by HyGram.

id[Name] =
([’A’-’Z’, ’a’-’z’]
[’A’-’Z’, ’a’-’z’, ’0’-’9’, ’_’]*):theID

%
Set Name equal to theID.Lexeme.

%%

; IdList- Handles one or more comma separated IDs.

IdList[List] =
id w (’,’ w id w)*:List

%
Returns the list of identifiers.

%%

; ParseStmt- Handles the initial statement in
; a HyGram Grammar.

ParseStmt =
"parse" w
FilteredID
([’ ’, \t] | (’;’ @*))* ’\n’ w %%

FilteredID = id (w "|" w id)* %%

; Match a terminal string.
March 6, 1997 Page 16

HyGram Definition
HexEsc = ’\\0x’ {’0’->’9’, "A"->"F"}#1->2 %%
Escape = HexEsc |

’\\n’|
’\\r’|
’\\b’|
’\\t’|
’\\f’|
’\\v’|
’\\a’|
’\\’|
’\"’

%%

SingleChar =
{@-’\’} | Escape

%%

char =
"’" SingleChar "’" w |
’"’ SingleChar ’"’ w

%%

string =
"’" ({@-"’"} | Escape)* "’" w |
"’" ({@-’"’} | Escape)* ’"’ w

%%

;---
; The following production defines a set definition.

SetDefinition=
w ’{’ w id ’}’ w ’=’ w SetExpression

%%

SetExpression = ’{’ w Union ’}’ w ’%%’
%%

Union = Union ’,’ w Diff | Diff %%
Diff = Diff ’-’ w Intersect | Intersect %%
Intersect = Intersect ’*’ Complm | Complm %%
Complm = ’~’ w Complm | Range %%
Range = Char ’->’ w Char | SetItem %%
SetItem =

’@’w |
March 6, 1997 Page 17

HyGram Definition
Char |
String|
id |
’(’ w Union ’)’ w

%%

;---
; The following production defines a HyGram
; production.

Production =
w id OptParm ’=’ GC0 OptRule ’%%’

%%

OptRule =
’%’ < @* / ’%%’ >

%%

; Handle the optional parameter section here:

OptParm =
(’[’ w IdList ’]’ w)?

%%

; Handle the empty production down here:

GC0 = GC1? &&

; Handle alternation here (lowest precedence).

GC1 =
(GC1 ’|’ w GC2) |
GC2

%%

; Handle lexical lookahead here (precedence level 2).

GC2 =
(GC3 ’/’ w GC3) |
GC3

%%
March 6, 1997 Page 18

HyGram Definition
; Handle concatenation of GCs here.

GC3 =
(GC3 GC4) |
GC4

%%

; Handle the ":" operator for attaching a label
; to a GC:

GC4 =
GC4 ’:’ w id

%%

; Handle the */+/?/{}/:/()/<> operators here.
; Also handles individual items.

GC5 =
GC5 ’*’ w |
GC5 ’+’ w |
GC5 ’?’ w |
GC5 Range |

SetExpression |

’(’ GC1 ’)’ w |
’<’ GC1 ’>’ w |

’^’ w |
’$’ w |
’@’ w |
’!’ w |
GC6

%%

; Handle terminals and non-terminals down here.

GC6 =
ntname |
March 6, 1997 Page 19

HyGram Definition
char |
string

%%

; Handle numeric ranges of GCs.

% IntConst =
{’0’-’9’}+ w

%%

Range =
’#’ w IntConst w

%%

Range =
’#’ w IntConst[low] ’->’ w

IntConst[high]
%

Fail if atoi(low) > atoi(high).
%%

; Match non-terminal symbols.

ntName = id[Name]
%

Name must be a name of a nonterminal
symbol in the grammar

%%

ntName = id[Name] ’[’ w IDList[IDs] ’]’
%

"Name" must be the name of a nonterminal
symbol in the HyGram grammar.
Each IDs.Lexeme[i] identifier should be
(otherwise) undefined symbols.

%%
March 6, 1997 Page 20

	1.0 Introduction
	2.0 HyGram
	2.1 HyGram Grammar Definitions
	2.2 Set Definitions and Set Expressions
	2.3 HyGram Grammar Components
	2.3.1 Terminal Symbols
	2.3.2 Special Symbols
	2.3.3 Non-Terminal Grammar Components
	2.3.4 Composite Grammar Components

	2.4 Operator Precedence and Associativity
	2.5 HyGram Parameters
	2.6 Semantic Rules
	3.0 A HyGram Grammar for HyGram

