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PREFACE

Throughout the decade of the 1990’s, I taught a one-year course of a specialized nature to

students who entered Yale College with excellent preparation in Mathematics and the

Physical Sciences, and who expressed an interest in Physics or a closely related field.  The

level of the course was that typified by the Feynman Lectures on Physics.  My one-year

course was necessarily more restricted in content than the two-year Feynman Lectures.

The depth of treatment of each topic was limited by the fact that the course consisted of a

total of fifty-two lectures, each lasting one-and-a-quarter hours.  The key role played by

invariants in the Physical Universe was constantly emphasized .  The material that I

covered each Fall is presented, almost verbatim, in this book.

The first chapter contains key mathematical ideas, including some invariants of

geometry and algebra, generalized coordinates, and the algebra and geometry of vectors.

The importance of linear operators and their matrix representations is stressed in the early

lectures.  These mathematical concepts are required in the presentation of a unified

treatment of both Classical and Special Relativity.  Students are encouraged to develop a

“relativistic outlook” at an early stage .  The fundamental Lorentz transformation is

developed using arguments based on symmetrizing the classical Galilean transformation.

Key 4-vectors, such as the 4-velocity and 4-momentum, and their invariant norms, are

shown to evolve in a natural way from their classical forms..  A basic change in the subject

matter occurs at this point in the book.  It is necessary to introduce the Newtonian

concepts of mass, momentum, and energy, and to discuss the conservation laws of linear

and angular momentum, and mechanical energy, and their associated invariants.  The
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discovery of these laws, and their applications to everyday problems, represents the high

point in the scientific endeavor of the 17th and 18th centuries.  An introduction to the

general dynamical methods of Lagrange and Hamilton is delayed until Chapter 9, where

they are included in a discussion of the Calculus of Variations.  The key subject of

Einsteinian dynamics is treated at a level not usually met at the introductory level.  The

4-momentum invariant and its uses in relativistic collisions, both elastic and inelastic, is

discussed in detail in Chapter 6.  Further developments in the use of relativistic invariants

are given in the discussion of the Mandelstam variables, and their application to the study

of high-energy collisions.  Following an overview of Newtonian Gravitation, the general

problem of central orbits is discussed using the powerful method of [p, r] coordinates.

Einstein’s General Theory of Relativity is introduced using the Principle of Equivalence and

the notion of “extended inertial frames” that include those frames in free fall in a

gravitational field of small size in which there is no measurable field gradient.  A heuristic

argument is given to deduce the Schwarzschild line element in the “weak field

approximation”;  it is used as a basis for a discussion of the refractive index of space-time in

the presence of matter.  Einstein’s famous predicted value for the bending of a beam of

light grazing the surface of the Sun is calculated.  The Calculus of Variations is an

important topic in Physics and Mathematics; it is introduced in Chapter 9, where it is

shown to lead to the ideas of the Lagrange and Hamilton functions.  These functions are

used to illustrate in a general way the conservation laws of momentum and angular

momentum, and the relation of these laws to the homogeneity and isotropy of space.  The

subject of chaos is introduced by considering the motion of a damped, driven pendulum.
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A method for solving the non-linear equation of motion of the pendulum is outlined.  Wave

motion is treated from the point-of-view of invariance principles.  The form of the general

wave equation is derived, and the Lorentz invariance of the phase of a wave is discussed in

Chapter 12.  The final chapter deals with the problem of orthogonal functions in general,

and Fourier series, in particular.  At this stage in their training, students are often under-

prepared in the subject of Differential Equations.  Some useful methods of solving ordinary

differential equations are therefore given in an appendix.

The students taking my course were generally required to take a parallel one-year

course in the Mathematics Department that covered Vector and Matrix Algebra and

Analysis at a level suitable for potential majors in Mathematics.

Here, I have presented my version of a first-semester course in Physics — a version

that deals with the essentials in a no-frills way.  Over the years, I demonstrated that the

contents of this compact book could be successfully taught in one semester.  Textbooks

are concerned with taking many known facts and presenting them in clear and concise

ways; my understanding of the facts is largely based on the writings of a relatively small

number of celebrated authors whose work I am pleased to acknowledge in the

bibliography.

Guilford, Connecticut

February, 2000

I am grateful to several readers for pointing out errors and unclear statements in my first
version of this book.  The comments of Dr Andre Mirabelli were particularly useful, and
were taken to heart.                                                              March, 2003
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1

MATHEMATICAL PRELIMINARIES

1.1  Invariants  

It is a remarkable fact that very few fundamental laws are required to describe the

enormous range of physical phenomena that take place throughout the universe.  The

study of these fundamental laws is at the heart of Physics.  The laws are found to have a

mathematical structure; the interplay between Physics and Mathematics is therefore

emphasized throughout this book.  For example, Galileo found by observation, and

Newton developed within a mathematical framework, the Principle of Relativity:

the laws governing the motions of objects have the same mathematical 

form in all inertial frames of reference.

Inertial frames move at constant speed in straight lines with respect to each other – they

are mutually non-accelerating.  We say that Newton’s laws of motion are invariant under

the Galilean transformation (see later discussion).  The discovery of key invariants of

Nature has been essential for the development of the subject.

Einstein extended the Newtonian Principle of Relativity to include the motions of

beams of light and of objects that move at speeds close to the speed of light.  This

extended principle forms the basis of Special Relativity.  Later, Einstein generalized the

principle to include accelerating frames of reference.  The general principle is known as

the Principle of Covariance; it forms the basis of the General Theory of Relativity ( a theory

of Gravitation).
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A review of the elementary properties of geometrical invariants, generalized

coordinates, linear vector spaces, and matrix operators, is given at a level suitable for a

sound treatment of Classical and Special Relativity.  Other mathematical methods,

including contra- and covariant 4-vectors, variational principles, orthogonal functions, and

ordinary differential equations are introduced, as required.

1.2  Some geometrical invariants

In his book The Ascent of Man, Bronowski discusses the lasting importance of the

discoveries of the Greek geometers.  He gives a proof of the most famous theorem of

Euclidean Geometry, namely Pythagoras’ theorem, that is based on the invariance of

length and angle ( and therefore of area) under translations and rotations in space. Let a

right-angled triangle with sides a, b, and c, be translated and rotated into the following

four positions to form a square of side c:

                                                                      c

                                                                          1

                                                                                                           c

                                                        2                                         4

                                                 c
                                                                                    b
                                                                 a             3
                                                                                         c

                                                               |←    (b – a)    →|

The total area of the square = c2 = area of four triangles + area of shaded square.

If the right-angled triangle is translated and rotated to form the rectangle:
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                                                                 a                  a

                                                              1                      4

                                                    b                                           b

                                                                     2        3

then the area of four triangles = 2ab.

The area of the shaded  square area is (b – a)2  = b2 – 2ab + a2  

We have postulated the invariance of length and angle under translations and rotations and

therefore

c2 = 2ab + (b – a)2

   = a2 + b2 .                                                                                                    (1.1)

We shall see that this key result characterizes the locally flat space in which we live.  It is

the only form that is consistent with the invariance of lengths and angles under

translations and rotations .

The scalar product is an important invariant in Mathematics and Physics.  Its invariance

properties can best be seen by developing Pythagoras’ theorem in a three-dimensional

coordinate form.  Consider the square of the distance between the points P[x1 , y1 , z1] and

Q[x2 , y2 , z2] in Cartesian coordinates:
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                                 z    

                                                                                      y
                                                                                                              Q[x2 ,y2 ,z2]
                                               P[x1 ,y1 ,z1]

                                                         α

                                  O
                                                     x1

                                                                               x2

                                                                                                     x
We have

(PQ)2 = (x2 – x1)
2 + (y2 – y1)

2 + (z2 – z1)
2

         = x2
2 – 2x1x2 + x1

2 + y2
2 – 2y1y2 + y1

2 + z2
2 – 2z1z2 + z1

2   

         = (x1
2 + y1

2 + z1
2) + (x2

2 + y2
2 + z2

2 ) – 2(x1x2 + y1y2 + z1z2)

         =         (OP)2       +         (OQ)2          – 2(x1x2 + y1y2 + z1z2) (1.2)

The lengths PQ, OP, OQ, and their squares, are invariants under rotations and therefore

the entire right-hand side of this equation is an invariant.  The admixture of the

coordinates  (x1x2 + y1y2 + z1z2) is therefore an invariant under rotations.  This term has a

geometric interpretation: in the triangle OPQ, we have the generalized Pythagorean

theorem

(PQ)2 = (OP)2 + (OQ)2 – 2OP.OQ cosα,

therefore

OP.OQ cosα = x1x2 +y1y2 + z1z2 ≡ the scalar product. (1.3)

Invariants in space-time with scalar-product-like forms, such as the interval

between events (see 3.3), are of fundamental importance in the Theory of Relativity.
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Although rotations in space are part of our everyday experience, the idea of rotations in

space-time is counter-intuitive.  In Chapter 3, this idea is discussed in terms of the relative

motion of inertial observers.

1.3  Elements of differential geometry

Nature does not prescibe a particular coordinate system or mesh.  We are free to

select the system that is most appropriate for the problem at hand.  In the familiar

Cartesian system in which the mesh lines are orthogonal, equidistant, straight lines in the

plane, the key advantage stems from our ability to calculate distances given the

coordinates – we can apply Pythagoras’ theorem, directly.  Consider an arbitrary mesh:

 v – direction                                                                                                             P[3u, 4v]

                4v

                                                                                                          ds, a length

                  3v                                                             dv                    
                                                                                                         α
                                                                                           du

  

                      2v

                         1v

                          

                Origin  O                          1u                          2u             3u                 u – direction

Given the point P[3u , 4v], we cannot use Pythagoras’ theorem to calculate the distance

OP.
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In the infinitesimal parallelogram shown, we might think it appropriate to write

ds2 = du2 + dv2 + 2dudvcosα .   (ds2 = (ds)2 , a squared “length” )

This we cannot do!  The differentials du and dv are not lengths – they are simply

differences between two numbers that label the mesh.  We must therefore multiply each

differential by a quantity that converts each one into a length.  Introducing dimensioned

coefficients, we have

     ds2 = g 11du2 + 2g12dudv + g22dv2 (1.4)

where √g11 du and √g22 dv are now lengths.

The problem is therefore one of finding general expressions for the coefficients;

it was solved by Gauss, the pre-eminent mathematician of his age.  We shall restrict our

discussion to the case of two variables.  Before treating this problem, it will be useful to

recall the idea of a total differential associated with a function of more than one variable.  

Let u = f(x, y) be a function of two variables, x and y. As x and y vary, the corresponding

values of u describe a surface.  For example, if u = x2 + y2, the surface is a paraboloid of

revolution.  The partial derivatives of u are defined by

∂f(x, y)/∂x = limit as h →0 {(f(x + h, y) – f(x, y))/h} (treat y as a constant), (1.5)

and

∂f(x, y)/∂y = limit as k →0 {(f(x, y + k) – f(x, y))/k} (treat x as a constant). (1.6)

For example, if u = f(x, y) = 3x2 + 2y3 then

∂f/∂x = 6x, ∂2f/∂x2 = 6, ∂3f/∂x3 = 0

and
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∂f/∂y = 6y2, ∂2f/∂y2 = 12y, ∂3f/∂y3 = 12, and ∂4f/∂y4 = 0.

If u = f(x, y) then the total differential of the function is

du = (∂f/∂x)dx + (∂f/∂y)dy

corresponding to the changes: x → x + dx and y → y + dy.

(Note that du is a function of x, y, dx,  and dy of the independent variables x and y)

1.4  Gaussian coordinates and the invariant line element

Consider the infinitesimal separation between two points P and Q that are

described in either Cartesian or Gaussian coordinates:

                                                                                        

         y + dy                                     Q                    v + dv                              Q

                                    ds                                                          ds                      

                y   P                                                     v   P                                            
                        x                        x + dx                       u                                u + du  
                              Cartesian                                                  Gaussian

In the Gaussian system, du and dv do not represent distances.

Let

x = f(u, v) and y = F(u, v)           (1.7 a,b)

then, in the infinitesimal limit

dx = (∂x/∂u)du + (∂x/∂v)dv and dy = (∂y/∂u)du + (∂y/∂v)dv.

In the Cartesian system, there is a direct correspondence between the mesh-numbers and

distances so that
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     ds2 = dx2 + dy2 . (1.8)

But

     dx2 = (∂x/∂u)2du2 + 2(∂x/∂u)(∂x/∂v)dudv + (∂x/∂v)2dv2

and

     dy2 = (∂y/∂u)2du2 + 2(∂y/∂u)(∂y/∂v)dudv + (∂y/∂v)2dv2.

We therefore obtain

ds2 =   {(∂x/∂u)2 + (∂y/∂u)2}du2 + 2{(∂x/∂u)(∂x/∂v) + (∂y/∂u)(∂y/∂v)}dudv

                   + {(∂x/∂v)2 + (∂y/∂v)2}dv2  

                 =  g11 du2 + 2g12dudv + g22dv2  . (1.9)

If we put u = u1 and v = u2, then

ds2 = ∑ ∑ g ij dui duj     where i,j = 1,2. (1.10)
                      i    j  

(This is a general form for an n-dimensional space: i, j = 1, 2, 3, ...n).

Two important points connected with this invariant differential line element are:

1. Interpretation of the coefficients gij.  

Consider a Euclidean mesh of equispaced parallelograms:
                                                  v

                                                                    R

                                                 ds
                                       α                   dv

                                                                                                 u
                          P          du         Q
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In PQR

     ds2 = 1.du2 + 1.dv2 + 2cosαdudv

          = g11du2 + g 22dv2 + 2g12dudv (1.11)

therefore,    g11 = g 22 = 1 (the mesh-lines are equispaced)

and

     g12 = cosα  where α is the angle between the u-v axes.

We see that if the mesh-lines are locally orthogonal then g12 = 0.

2. Dependence of the gij’s on the coordinate system and the local values of u, v.

A specific example will illustrate the main points of this topic: consider a point P

described in three coordinate systems – Cartesian P[x, y], Polar P[r, φ], and Gaussian    

P[u, v] – and the square ds2 of the line element in each system.  

The transformation [x, y] → [r, φ] is

       x = rcosφ and y = rsinφ.         (1.12 a,b)

The transformation [r, φ] → [u, v] is direct, namely

        r = u and φ = v.

Now,

∂x/∂r = cosφ,  ∂y/∂r = sinφ,  ∂x/∂φ = – rsinφ,  ∂y/∂φ = rcosφ

therefore,

∂x/∂u = cosv,  ∂y/∂u = sinv,   ∂x/∂v  =  – usinv,    ∂y/∂v = ucosv.

The coefficients are therefore

     g11 = cos2v + sin2v = 1,          (1.13 a-c)
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     g22 = (–usinv)2 +(ucosv)2 = u2,

and

     g12 = cos(–usinv) + sinv(ucosv) = 0 (an orthogonal mesh).

We therefore have

     ds2 = dx2 + dy2          (1.14 a-c)

          = du2 + u2dv2

          = dr2 + r2dφ2.

In this example, the coefficient g22 = f(u).

The essential point of Gaussian coordinate systems is that the coefficients, gij ,

completely characterize the surface – they are intrinsic features.  We can, in principle,

determine the nature of a surface by measuring the local values of the coefficients as we

move over the surface.  We do not need to leave a surface to study its form.

1.5  Geometry and groups

Felix Klein (1849 – 1925), introduced his influential Erlanger Program in 1872.  In

this program, Geometry is developed from the viewpoint of the invariants associated with

groups of transformations.  In Euclidean Geometry, the fundamental objects are taken to

be rigid bodies that remain fixed in size and shape as they are moved from place to place.

The notion of a rigid body is an idealization.

Klein considered transformations of the entire plane – mappings of the set of all

points in the plane onto itself.  The proper set of rigid motions in the plane consists of

translations and rotations.  A reflection is an improper rigid motion in the plane; it is a

physical impossibility in the plane itself.  The set of all rigid motions – both proper and
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improper – forms a group that has the proper rigid motions as a subgroup.  A group G is a

set of distinct elements {gi} for which a law of composition “ o ” is given such that the

composition of any two elements of the set satisfies:

   Closure: if g i, g j belong to G then gk = g i o g j belongs to G for all elements gi, g j ,

and

   Associativity: for all g i, g j, gk in G, g i o (gj o gk) = (gi o g j) o gk. .

Furthermore, the set contains

   A unique identity, e, such that g i o e = e o g i = g i for all g i in G,

and

   A unique inverse, g i
–1, for every element gi in G,

               such that gi o g i
–1 = g i

–1 o g i = e.

A group that contains a finite number n of distinct elements gn is said to be a finite group

of order n.

The set of integers Z is a subset of the reals R; both sets form infinite groups under

the composition of addition.  Z is a “subgroup“of R.

Permutations of a set X form a group Sx under composition of functions; if a: X → X

and b: X → X are permutations, the composite function ab: X → X given by ab(x) =

a(b(x)) is a permutation.  If the set X contains the first n positive numbers, the  n!

permutations form a group, the symmetric group, Sn.  For example, the arrangements of

the three numbers 123 form the group

S3 = { 123, 312, 231, 132, 321, 213 }.
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If the vertices of an equilateral triangle are labelled 123, the six possible symmetry

arrangements of the triangle are obtained by three successive rotations through 120o

about its center of gravity, and by the three reflections in the planes I, II, III:

                                                                               I

                                                                        1           

                                                    2                                               3

                                          II                                                                 III

This group of “isometries“of the equilateral triangle (called the dihedral group, D3) has the

same structure as the group of permutations of three objects.  The groups S3 and D3 are

said to be isomorphic.

According to Klein,  plane Euclidean Geometry is the study of those properties of

plane rigid figures that are unchanged by the group of isometries. (The basic invariants are

length and angle).  In his development of the subject, Klein considered Similarity

Geometry that involves isometries with a change of scale, (the basic invariant is angle),

Affine Geometry, in which figures can be distorted under transformations of the form

x´ = ax + by + c         (1.15 a,b)

y´ = dx + ey + f ,

where [x, y] are Cartesian coordinates, and a, b, c, d, e, f, are real coefficients, and

Projective Geometry, in which all conic sections: circles, ellipses, parabolas, and hyperbolas

can be transformed into one another by a projective transformation.
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It will be shown that the Lorentz transformations – the fundamental transformations of

events in space and time, as described by different inertial observers –  form a group.

1.6  Vectors

The idea that a line with a definite length and a definite direction — a vector — can

be used to represent a physical quantity that possesses magnitude and direction is an

ancient one.  The combined action of two vectors A and B is obtained  by means of the

parallelogram law, illustrated in the following diagram

                                                                                                                                      
                                                                                                                                      
                                                                                                                                      

                                                                                           A + B                                  
                                            B                                                                                         
                                                                                                                                      

                                                                      A                                                               

The diagonal of the parallelogram formed by A and B gives the magnitude and direction of

the resultant vector C.  Symbollically, we write

                                                  C = A + B (1.16)

in which the “=” sign has a meaning that is clearly different from its meaning in ordinary

arithmetic.  Galileo used this empirically-based law to obtain the resultant force acting on

a body.  Although a geometric approach to the study of vectors has an intuitive appeal, it

will often be advantageous to use the algebraic method – particularly in the study of

Einstein’s Special Relativity and Maxwell’s Electromagnetism.

1.7  Quaternions

In the decade 1830 - 1840, the renowned Hamilton introduced new kinds of
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numbers that contain four components, and that do not obey the commutative property of

multiplication.  He called the new numbers quaternions.  A quaternion has the form

                                                 u + xi + yj + zk (1.17)

in which the quantities i, j, k are akin to the quantity i = √–1 in complex numbers,         

x + iy.  The component u forms the scalar part, and the three components xi + yj + zk

form the vector part of the quaternion.  The coefficients x, y, z can be considered to be

the Cartesian components of a point P in space.  The quantities i, j, k are qualitative units

that are directed along the coordinate axes.  Two quaternions are equal if their scalar parts

are equal, and if their coefficients x, y, z of i, j, k are respectively equal.  The sum of two

quaternions is a quaternion.  In operations that involve quaternions, the usual rules of

multiplication hold except in those terms in which products of i, j, k occur — in these

terms, the commutative law does not hold.  For example

j k = i,  k j = – i,  k i = j,  i k = – j,  i j = k,  j i = – k, (1.18)

(these products obey a right-hand rule),

and

i2 = j2 = k2 = –1.  (Note the relation to i2 = –1). (1.19)

The product of two quaternions does not commute.  For example, if

p = 1 + 2i + 3j + 4k, and q = 2 + 3i + 4j + 5k

then

pq = – 36 + 6i + 12j + 12k

whereas
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qp = – 36 + 23i – 2j + 9k.

Multiplication is associative.

Quaternions can be used as operators to rotate and scale a given vector into a new

vector:

(a + bi + cj + dk)(xi + yj + zk) = (x´i + y´j + z´k)

If the law of composition is quaternionic multiplication then the set

Q = {±1, ±i, ±j, ±k}

is found to be a group of order 8.  It is a non-commutative group.

Hamilton developed the Calculus of Quaternions.  He considered, for example, the

properties of the differential operator:

∇ = i(∂/∂x) + j(∂/∂y) + k(∂/∂z). (1.20)

(He called this operator “nabla”).

If f(x, y, z) is a scalar point function (single-valued) then

∇f = i(∂f/∂x) + j(∂f/∂y) + k(∂f/∂z) , a vector.

If

v = v1i + v2j + v3k

is a continuous vector point function, where the vi’s are functions of x, y, and z, Hamilton

introduced the operation

∇v = (i∂/∂x + j∂/∂y + k∂/∂z)(v1i + v2j + v3k) (1.21)

      = – (∂v1/∂x + ∂v2/∂y + ∂v3/∂z)

                      + (∂v3/∂y – ∂v2/∂z)i + (∂v1/∂z – ∂v3/∂x)j + (∂v2/∂x – ∂v1/∂y)k
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                  = a quaternion.

The scalar part is the negative of the “divergence of v” (a term due to Clifford), and the

vector part is the “curl of v” (a term due to Maxwell).  Maxwell used the repeated operator

∇2, which he called the Laplacian.  

1.8  3 – vector analysis

Gibbs, in his notes for Yale students, written in the period 1881 - 1884, and Heaviside, in

articles published in the Electrician in the 1880’s, independently developed 3-dimensional

Vector Analysis as a subject in its own right — detached from quaternions.  

In the Sciences, and in parts of Mathematics (most notably in Analytical and Differential

Geometry), their methods are widely used.  Two kinds of vector multiplication were

introduced: scalar multiplication and vector multiplication.  Consider two vectors v and v´

where

v = v1e1 + v2e2 + v3e3

and

v´ = v1´e1 + v2´e2 + v3´e3 .

The quantities e1, e2, and e3 are vectors of unit length pointing along mutually orthogonal

axes, labelled 1, 2, and 3.

i) The scalar multiplication of v and v´ is defined as

v ⋅ v´ = v1v1´ + v2v2´ + v3v3´, (1.22)

where the unit vectors have the properties

e1 ⋅ e1 = e2 ⋅ e2 = e3 ⋅ e3 = 1, (1.23)
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and

e1 ⋅ e2 = e2 ⋅ e1 = e1 ⋅ e3 = e3 ⋅ e1 = e2 ⋅ e3 = e3 ⋅ e2 = 0. (1.24)

The most important property of the scalar product of two vectors is its invariance

under rotations and translations of the coordinates.  (See Chapter 1).

ii) The vector product of two vectors v and v´ is defined as

                                            e1    e2    e3     

v × v´ =     v1    v2    v3         ( where |.  .  . |is the determinant) (1.25)

                                            v1´  v2´  v3´    

                                    =    (v2 v3´ – v3v2´)e1 + (v3v1´ – v1v3´)e2 + (v1v2´ – v2v1´)e3 .

The unit vectors have the properties

e1 × e1 = e2 × e2 = e3 × e3 = 0          (1.26 a,b)

(note that these properties differ from the quaternionic products of the i, j, k’s),

and

     e1 × e2 = e3 , e2 × e1 = – e3 , e2 × e3 = e1 , e3 × e2 = – e1 , e3 × e1 = e2 , e1 × e3 = – e2

These non-commuting vectors, or “cross products” obey the standard right-hand-rule.

The vector product of two parallel vectors is zero even when neither vector is zero.

The non-associative property of a vector product is illustrated in the following

example

e1 × e2 × e2  = (e1 × e2) × e2 = e3 × e2 = – e1

                                 = e1 × (e2 × e2) = 0.
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Important operations in Vector Analysis that follow directly from those introduced

in the theory of quaternions are:

1) the gradient of a scalar function f(x1, x2, x3)

∇f = (∂f/∂x1)e1 + (∂f/∂x2)e2 + (∂f/∂x3)e3 , (1.27)

2) the divergence of a vector function v

∇ ⋅ v = ∂v1/∂x1 + ∂v2/∂x2 + ∂v3/∂x3 (1.28)

where v has components v1, v2, v3 that are functions of x1, x2, x3 , and

3) the curl of a vector function v

                                             e1        e2       e3          

∇ × v =    ∂/∂x1   ∂/∂x2   ∂/∂x3   . (1.29)

                                             v1        v2        v3         

The physical significance of these operations is discussed later.

1.9  Linear algebra and n-vectors

A major part of Linear Algebra is concerned with the extension of the algebraic

properties of vectors in the plane (2-vectors), and in space (3-vectors), to vectors in higher

dimensions (n-vectors).  This area of study has its origin in the work of Grassmann (1809 -

77), who generalized the quaternions (4-component hyper-complex numbers), introduced

by Hamilton.

An n-dimensional vector is defined as an ordered column of numbers

                                                                     x1                
                                                                     x2                
                                                         xn =      .      (1.30)
                                                                      .                
                                                                     xn               
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It will be convenient to write this as an ordered row in square brackets

                                     xn = [x1, x2, ... xn] . (1.31)

The transpose of the column vector is the row vector

                                    xn
T = (x1, x2, ...xn). (1.32)

The numbers x1, x2, ...xn are called the components of x, and the integer n is the

dimension of x.  The order of the components is important, for example

    [1, 2, 3] ≠ [2, 3, 1].

The two vectors x = [x1, x2, ...xn] and y = [y1, y2, ...yn] are equal if

  xi = y i  (i = 1 to n).

The laws of Vector Algebra are

1.  x + y = y + x  . (1.33 a-e)

2.  [x + y] + z = x + [y + z]  .

3.  a[x + y] = ax + ay where a is a scalar  .

4.  (a + b)x = ax + by where a,b are scalars  .

5. (ab)x = a(bx) where a,b are scalars  .

If  a = 1 and b = –1 then

x + [–x] = 0,

where  0 = [0, 0, ...0] is the zero vector.

The vectors x = [x1, x2, ...xn] and y = [y1, y2 ...yn] can be added to give their sum or

resultant:
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x + y = [x1 + y1, x2 + y2, ...,xn + yn]. (1.34)

The set of vectors that obeys the above rules is called the space of all n-vectors or

the vector space of dimension n.

In general, a vector v = ax + by  lies in the plane of x and y.  The vector v is said

to depend linearly on x and y — it is a linear combination of x and y.

A k-vector v is said to depend linearly on the vectors u1, u2, ...uk if there are scalars

ai such that

v = a1u1 +a2u2 + ...akuk . (1.35)

For example

[3, 5, 7] = [3, 6, 6] + [0, –1, 1] = 3[1, 2, 2] + 1[0, –1, 1], a linear combination of

the vectors [1, 2, 2] and [0, –1, 1].

A set of vectors u1, u2, ...uk is called linearly dependent if one of these vectors

depends linearly on the rest.  For example, if

u1 = a2u2 + a3u3 + ...+ akuk., (1.36)

the set u1, ...uk is linearly dependent.

If none of the vectors u1, u2, ...uk can be written linearly in terms of the remaining

ones we say that the vectors are linearly independent.

Alternatively, the vectors u1, u2, ...uk are linearly dependent if and only if there is

an equation of the form

c1u1 + c2u2 + ...ckuk = 0 , (1.37)

in which the scalars ci are not all zero.



M A T H E M A T I C A L  P R E L I M I N A R I E S 21

Consider the vectors ei obtained by putting the ith-component equal to 1, and all

the other components equal to zero:

e1 = [1, 0, 0, ...0]

e2 = [0, 1, 0, ...0]

...

then every vector of dimension n depends linearly on e1, e2, ...en , thus

x = [x1, x2, ...xn]

  = x1e1 + x2e2 + ...xnen. (1.38)

The ei’s are said to span the space of all n-vectors; they form a basis.  Every basis of an  n-

space has exactly n elements.  The connection between a vector x and a definite

coordinate system is made by choosing a set of basis vectors ei.

1.10  The geometry of vectors

The laws of vector algebra can be interpreted geometrically for vectors of

dimension 2 and 3.  Let the zero vector represent the origin of a coordinate system, and

let  the 2-vectors, x and y, correspond to points in the plane: P[x1, x2] and Q[y1, y2].  The

vector sum x + y is represented by the point R, as shown

                                                                                                         R[x1+y1, x2+y2]     
                      2nd  component                                                                                    
                                                                                                                                   

                                           x2       P[x 1, x2]                                                                   
                                                                                                                                   

                                           y2                                             Q[y1, y2]                             
                                                                                                                                   
                                                                                                                                   

                                    O[0, 0]                                                                                      
                                                                x1                    y1   1st component                  
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R is in the plane OPQ, even if x and y are 3-vectors.

Every vector point on the line OR represents the sum of the two corresponding vector

points on the lines OP and OQ.  We therefore introduce the concept of the directed vector

lines OP, OQ, and OR, related by the vector equation

OP + OQ = OR . (1.39)

A vector V can be represented as a line of length OP pointing in the direction of the unit

vector v, thus

                                                                                                                
                                                                  P                                             
                                                                                                                

                                                               V  = v.OP                                  
                                        v                                                                       
                               O                                                                               
                                                                                                                

A vector V is unchanged by a pure displacement:

                                                                                                                 
                                                                                                                 

                                                            =          V2                                      
                              V1                                                                                 
                                                                                                                 
                                                                                                                 

where the “=” sign means equality in magnitude and direction.

Two classes of vectors will be met in future discussions; they are

1.  Polar vectors: the vector is drawn in the direction of the physical quantity being

represented, for example a velocity,

and

2.  Axial vectors: the vector is drawn parallel to the axis about which the physical quantity

acts, for example an angular velocity.
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The associative property of the sum of vectors can be readily demonstrated,

geometrically

                                                                                                                             
                                                                                                                             
                                                                                                                             

                                                                                                   C                         
                                                         V                                                                   
                                                                                                                             
                                                                                                                             

                                                                                                       B                     
                                                                                                                             
                                                                                                                             

                                                               A                                                             

We see that

V = A + B + C = (A + B) + C = A + (B + C) = (A + C) + B . (1.40)

The process of vector addition can be reversed; a vector V can be decomposed into the

sum of n vectors of which (n – 1) are arbitrary, and the nth vector closes the polygon.  The

vectors need not be in the same plane.  A special case of this process is the decomposition

of a 3-vector into its Cartesian components.

      A general case                                                      A special case                         
                          V                                                                                                    
                                                   V5                                             V                             
                                                                                                                       Vz       
                                        V4                                                                                     
            V1                                 V3                                                                             
                                                                                        Vx                                      
                                                                                                               Vy              
                                           V2                                                                                 
                                                                                                                               

     V1, V2, V3, V4 : arbitrary                                             Vz closes the polygon
     V5 closes the polygon
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The vector product of A and B is an axial vector, perpendicular to the plane containing A

and B.

                                                     z                                                                       
                                                                                                                             
                                                                                                                             
                                                                                                                             

                                               ^               B                      y                                  
                           A × B                                                                                         
                                                                      α                                                      
                    a unit vector , + n                                           A                                 
 perpendicular to the A, B plane                                                                    
                                                                                                                              

                                                                                               x                               

                                          A × B = AB sinα n = – B × A (1.41)

1.11  Linear Operators and Matrices

Transformations from a coordinate system [x, y] to another system [x´, y´],

without shift of the origin, or from a point P[x, y] to another point P´[x´, y´], in the same

system, that have the form

      x´ = ax + by

      y´ = cx + dy

where a, b, c, d are real coefficients, can be written in matrix notation, as follows

                           x´          a     b       x         
                                   =                         , (1.41)  
                           y´          c     d       y         

Symbolically,

                              x´ = Mx, (1.42)

where
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        x = [x, y], and x´ = [x´, y´], both column 2-vectors,

and

                                         a     b         
                               M =               ,  
                                         c     d        

a 2 × 2 matrix operator that “changes” [x, y] into [x´, y´].

In general, M transforms a unit square into a parallelogram:

                        y               y´                                   [a+b,c+d]
                                [b,d]     

                   [0,1]               [1,1]
                                                                                           x´
                                                              [a,c]
                   [0,0]         [1,0]                                                            x

This transformation plays a key rôle in Einstein’s Special Theory of Relativity (see

later discussion).

1.12  Rotation operators

Consider the rotation of an x, y coordinate system about the origin through an angle φ:

                    y´               y

                                                                          P[x, y] or P´[x´, y´]
                                      y

                             y´

                                                                           φ
                                                                                                                 x´

                                                                                  x´
                                                                +φ
                                 O,O´                               x                                            x
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From the diagram, we see that

       x´ =   xcosφ + ysinφ

and

       y´ = – xsinφ + ycosφ

or

                  x´          cosφ   sinφ        x        
                                    =                                    .

                  y´       – sinφ   cosφ       y        

Symbolically,

      P´ = c(φ)P (1.43)

where

                  cosφ      sinφ     
                        c(φ) =                             is the rotation operator.

                 –sinφ     cosφ       

The subscript c denotes a rotation of the coordinates through an angle +φ    .

The inverse operator, c
–1(φ), is obtained by reversing the angle of rotation: +φ → –φ.

We see that matrix product

           c
–1(φ) c(φ) = c

T(φ) c(φ) = I (1.44)

where the superscript T indicates the transpose (rows ⇔ columns), and

                                         1     0        
                                 I =                   is the identity operator. (1.45)
                                         0     1        

Eq.(1.44) is the defining property of an orthogonal matrix.

If we leave the axes fixed and rotate the point P[x, y] to P´[x´, y´], then
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we have
                                  y

                                   y´                                         P´[x´, y´]

                                   y                                                      P[x, y]  
                                                            φ

                                    O                                    x´           x                     x
From the diagram, we see that

       x´ = xcosφ – ysinφ, and y´ = xsinφ + ycosφ

or

       P´ = v(φ)P (1.46)

where
                                            cosφ    –sinφ      
                         v(φ) =                             , the operator that rotates a vector through +φ.

                                sinφ      cosφ  

1.13  Components of a vector under coordinate rotations

Consider a vector V [vx, vy], and the same vector V´ with components [vx’,vy’], in a

coordinate system (primed), rotated through an angle +φ.
                        y´           y        

                                      vy                                        

                            vy´

                                                       V    =  V´

                                                                                                           x´
                                                                             vx´         φ                   
                               O, O´                               vx                                 x
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We have met the transformation [x, y] → [x´, y´] under the operation c(φ);

here, we have the same transformation but now it operates on the components of the

vector, vx and vy,

       [vx´, vy´] = c(φ)[vx, vy]. (1.47)

PROBLEMS

1-1  i) If u = 3x/y show that ∂u/∂x = (3x/yln3)/y and ∂u/∂y = (–3x/yxln3)/y2.

      ii) If u = ln{(x3 + y)/x2} show that ∂u/∂x = (x3 – 2y)/(x(x3 +y)) and ∂u/∂y = 1/(x3 + y).

1-2  Calculate the second partial derivatives of

             f(x, y) = (1/√y)exp{–(x – a)2/4y}, a = constant.

1-3  Check the answers obtained in problem 1-2 by showing that the function f(x, y) in

       1-2 is a solution of the partial differential equation ∂2f/∂x2 – ∂f/∂y = 0.

1-4  If f(x, y, z) = 1/(x2 + y2 + z2)1/2 = 1/r, show that f(x, y, z) = 1/r is a solution of Laplace’s

       equation

             ∂2f/∂x2 + ∂2f/∂y2 + ∂2f/∂z2 = 0.

       This important equation occurs in many branches of Physics.

1-5  At a given instant, the radius of a cylinder is r(t) = 4cm and its height is h(t) = 10cm.

       If r(t) and h(t) are both changing at a rate of 2 cm.s–1, show that the instantaneous

       increase in the volume of the cylinder is 192π cm3.s–1.

1-6  The transformation between Cartesian coordinates [x, y, z] and spherical polar

       coordinates [r, θ, φ] is
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        x = rsinθcosφ, y = rsinθsinφ, z = rcosθ.

       Show, by calculating all necessary partial derivatives, that the square of the line

       element is

                 ds2 = dr2 + r2sin2θdφ2 + r2dθ2.

      Obtain this result using geometrical arguments.  This form of the square of the line

element will be used on several occasions in the future.

1-7  Prove that the inverse of each element of a group is unique.

1-8  Prove that the set of positive rational numbers does not form a group under division.

1-9  A finite group of order n has n2 products that may be written in an n×n array, called

the group multiplication table.  For example, the 4th-roots of unity {e, a, b, c} = {±1, ±i},

where i = √–1, forms a group under multiplication (1i = i, i(–i) = 1, i2 = –1, (–i)2 = –1,

etc.  ) with a multiplication table

e = 1  a = i  b = –1  c = –i

    e         1          i        –1        –i       

    a          i        –1       –i           1      

    b       –1        –i         1           i    

    c        –i          1          i        –1     

In this case, the table is symmetric about the main diagonal; this is a characteristic feature

of a group in which all products commute (ab = ba) — it is an Abelian group.

If G is the dihedral group D3, discussed in the text, where G = {e, a, a2, b, c, d},

where e is the identity, obtain the group multiplication table. Is it an Abelian group?.
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Notice that the three elements {e, a, a2} form a subgroup of G, whereas the three

elements {b, c, d} do not; there is no identity in this subset.

The group D3 has the same multiplication table as the group of permutations of

three objects.  This is the condition that signifies group isomorphism.

1-10  Are the sets

i)  {[0, 1, 1], [1, 0, 1], [1, 1, 0]}

and

ii)  {[1, 3, 5, 7], [4, –3, 2, 1], [2, 1, 4, 5]}

linearly dependent?  Explain.

1-11  i)  Prove that the vectors [0, 1, 1], [1, 0, 1], [1, 1, 0] form a basis for Euclidean space  

           R3.

      ii)  Do the vectors [1, i] and [i, –1], (i = √–1), form a basis for the complex space C2?

1-12  Interpret the linear independence of two 3-vectors geometrically.

1-13  i)  If X = [1, 2, 3] and Y = [3, 2, 1], prove that their cross product is orthogonal to

the X-Y plane.

      ii)  If X and Y are 3-vectors, prove that X×Y = 0 iff X and Y are linearly dependent.

1-14  If
         a11    a12    a13   

         T =      a21    a22    a23       
          0      0     1      

      represents a linear transformation of the plane under which distance is an invariant,

      show that the following relations must hold :

         a11
2 + a21

2 = a12
2 + a22

2 = 1, and a11a12 + a21a22 = 0.
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KINEMATICS: THE GEOMETRY OF MOTION

2.1  Velocity and acceleration

The most important concepts in Kinematics — a subject in which the properties of

the forces responsible for the motion are ignored — can be introduced by studying the

simplest of all motions, namely that of a point P moving in a straight line.

Let a point P[t, x] be at a distance x from a fixed point O at a time t, and let it be at

a point P´[t´, x´] = P´[t + ∆t, x + ∆x] at a time ∆t later.  The average speed of P in the

interval ∆t is

<vp> = ∆x/∆t. (2.1)

If the ratio ∆x/∆t is not constant in time, we define the instantaneous speed  of P at time
t as the limiting value of the ratio as ∆t → 0:
                                                                                                 •

      vp = vp(t) = limit as ∆t → 0 of ∆x/∆t = dx/dt = x = vx  .

The instantaneous speed is the magnitude of a vector called the instantaneous

velocity of P:

       v = dx/dt , a quantity that has both magnitude and direction. (2.2)

A space-time curve is obtained by plotting the positions of P as a function of t:

                                 x                                       vp´

                                                  vp                  P´

                                                      P

                                 O                                                                            t
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The tangent of the angle made by the tangent to the curve at any point gives the value of

the instantaneous speed at the point.

     The instantaneous acceleration, a , of the point P is given by the time rate-of-change
of the velocity
                                                                               ••

        a = dv/dt = d(dx/dt)/dt = d2x/dt2 = x . (2.3)

A change of variable from t to x gives

        a = dv/dt = dv(dx/dt)/dx = v(dv/dx). (2.4)

This is a useful relation when dealing with problems in which the velocity is given as a

function of the position.  For example

                                 v                                   vP

                                                                      P

                                                v

                                                                        α

                                    O                         N                      Q                  x

 The gradient is dv/dx and tanα = dv/dx, therefore

NQ, the subnormal, = v(dv/dx) = ap, the acceleration of P. (2.5)

The area under a curve of the speed as a function of time between the times t1

and t2 is

          [A] [t1,t2] = ∫ [t1,t2] v(t)dt = ∫ [t1,t2] (dx/dt)dt = ∫ [x1,x2] dx = (x2 – x1)

                     = distance travelled in the time t2 – t1. (2.6)
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The solution of a kinematical problem is sometimes simplified by using a graphical

method, for example:

A point A moves along an x-axis with a constant speed vA.  Let it be at the origin O

(x = 0) at time t = 0.  It continues for a distance xA, at which point it decelerates at a

constant rate, finally stopping at a distance X from O at time T.

A second point B moves away from O in the +x-direction with constant

acceleration.  Let it begin its motion at t = 0.  It continues to accelerate until it reaches a

maximum speed vB
max at a time tB

max when at xB
max from O.  At xB

max, it begins to decelerate

at a constant rate, finally stopping at X at time T:  To prove that the maximum speed of B

during its motion is

    vB
max = vA{1 – (xA/2X)}–1, a value that is independent of the time at which

the maximum speed is reached.

The velocity-time curves of the points are

            v      

       A possible path for B
        vB

max

           vA         B
 A

           O
  t = 0                                   tA               tB

max      T         t
  x = 0                                   xA              xB

max      X

The areas under the curves give X = vAtA + vA(T – tA)/2 = vB
maxT/2, so that

vB
max = vA(1 + (tA/T)), but vAT = 2X – xA, therefore vB

max = vA{1 – (xA/2X)}–1 ≠ f(tB
max).
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2.2  Differential equations of kinematics

If the acceleration is a known function of time then the differential equation

   a(t) = dv/dt (2.7)

can be solved by performing the integrations (either analytically or numerically)

         ∫a(t)dt = ∫dv (2.8)

If a(t) is constant then the result is simply

          at + C = v,  where C is a constant that is given by the initial conditions.

Let v = u when t = 0 then C = u and we have

          at + u = v. (2.9)

This is the standard result for motion under constant acceleration.

We can continue this approach by writing:

      v = dx/dt = u + at.

Separating the variables,

    dx = udt + atdt.

Integrating gives

      x = ut + (1/2)at2 + C´    (for constant a).

If x = 0 when t = 0 then C´ = 0, and

  x(t) = ut + (1/2)at2. (2.10)

Multiplying this equation throughout by 2a gives

  2ax = 2aut + (at)2

        = 2aut + (v – u)2
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and therefore, rearranging, we obtain

     v2 = 2ax – 2aut + 2vu  – u2

                     = 2ax + 2u(v – at) – u2

                     = 2ax + u2. (2.11)

In general, the acceleration is a given function of time or distance or velocity:

1)  If a = f(t) then

      a = dv/dt =f(t), (2.12)

                dv = f(t)dt,

therefore

      v = ∫f(t)dt + C(a constant).

This equation can be written

      v = dx/dt = F(t) + C,

therefore

                dx = F(t)dt + Cdt.

Integrating gives

  x(t) = ∫F(t)dt + Ct + C´. (2.13)

The constants of integration can be determined if the velocity and the position are known

at a given time.

2)  If a = g(x) = v(dv/dx) then (2.14)

    vdv = g(x)dx.

Integrating gives
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     v2 = 2∫g(x)dx + D,

therefore

     v2 = G(x) + D

so that

      v = (dx/dt) = ±√(G(x) + D). (2.15)

Integrating this equation leads to

±∫dx/{√(G(x) + D)} = t + D´. (2.16)

Alternatively, if

      a = d2x/dt2 = g(x)

then, multiplying throughout by 2(dx/dt)gives

         2(dx/dt)(d2x/dt2) = 2(dx/dt)g(x).

Integrating then gives

          (dx/dt)  2  = 2∫g(x)dx + D  etc.

As an example of this method, consider the equation of simple harmonic motion (see later

discussion)

                         d2x/dt2 = –ω2x. (2.17)

Multiply throughout by 2(dx/dt), then

            2(dx/dt)d2x/dt2 = –2ω2x(dx/dt).

This can be integrated to give

            (dx/dt)2 = –ω2x2 + D.

If dx/dt = 0 when x = A then D = ω2A2, therefore
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             (dx/dt)2 = ω2(A2 – x2) = v2,

so that

                 dx/dt = ±ω√(A2 – x2).

Separating the variables, we obtain

          – dx/{√(A2 – x 2)} = ωdt.    (The minus sign is chosen because dx and dt have

opposite signs).

Integrating, gives

           cos–1(x/A) = ωt + D´.

But x = A when t = 0, therefore D´ = 0, so that

                    x(t) = Acos(ωt), where A is the amplitude. (2.18)

3)  If a = h(v), then (2.19)

                 dv/dt = h(v)

therefore

                          dv/h(v) = dt,

and

                        ∫dv/h(v) = t + B. (2.20)

Some of the techniques used to solve ordinary differential equations are discussed

in Appendix A.

2.3  Velocity in Cartesian and polar coordinates

The transformation from Cartesian to Polar Coordinates is represented by the

linear equations
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           x = rcosφ  and y = rsinφ,     (2.21 a,b)

or

          x = f(r, φ)  and y = g(r, φ).

The differentials are

                    dx = (∂f/∂r)dr + (∂f/∂φ)dφ  and  dy = (∂g/∂r)dr + (∂g/∂φ)dφ.

We are interested in the transformation of the components of the velocity vector under

[x, y] → [r, φ].  The velocity components involve the rates of change of dx and dy with

respect to time:

 dx/dt = (∂f/∂r)dr/dt + (∂f/∂φ)dφ/dt  and  dy/dt = (∂g/∂r)dr/dt + (∂g/∂φ)dφ/dt

or
                                   •                •                  •          •                 •                   •

                       x = (∂f/∂r)r + (∂f/∂φ)φ  and  y = (∂g/∂r)r + (∂g/∂φ)φ.      (2.22)

But,

                ∂f/∂r = cosφ, ∂f/∂φ = –rsinφ, ∂g/∂r = sinφ, and ∂g/∂φ = rcosφ,

therefore, the velocity transformations are
                                   •              •               •

                       x = cosφ r – sinφ(r φ) = vx (2.23)
and
                                   •             •                 •

                       y = sinφ r + cosφ(r φ) = vy. (2.24)

These equations can be written

                        vx           cosφ    –sinφ      dr/dt      
                                       =                                             .    

                    vy           sinφ      cosφ      rdφ/dt    

Changing φ → –φ, gives the inverse equations
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                 dr/dt              cosφ    sinφ        vx        
                                         =                                        
                           rdφ/dt            –sinφ    cosφ        vy        

or

                  vr                        vx

                                    =  c(φ)           . (2.25)
                  vφ                       vy

The velocity components in [r, φ] coordinates are therefore

                                                          V                              
                             •                                                   •
             |vφ| = r φ = rdφ/dt                       |vr| = r =dr/dt

                                                        P[r, φ]                     
                                       r          +φ , anticlockwise                                                     

                                O                                                 x

The quantity dφ/dt is called the angular velocity of P about the origin O.

2.4  Acceleration in Cartesian and polar coordinates

We have found that the velocity components transform from [x, y] to [r, φ]
coordinates as follows
                                                 •               •       •

                     vx = cosφ r – sinφ(r φ) = x

and
                                                •                 •       •        

                     vy = sinφ r + cosφ(r φ) = y.

The acceleration components are given by

                     ax = dvx/dt  and  ay = dvy/dt

We therefore have
                                                            •               •  

                     ax = (d/dt){cosφ r – sinφ(r φ)} (2.26)
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                                                ••       •                 •  •       ••
                        = cosφ(r – r φ2) – sinφ(2r φ + r φ)

and
                                                           •              •  •

                     ay = (d/dt){sinφ r + cosφ(r φ)}                                                 (2.27)
                                                   •  •        ••             ••      •  
                                    = cosφ(2r φ + r φ) + sinφ(r – r φ2).

These equations can be written

                            ar            cosφ     sinφ      ax      
                                   =                                     . (2.28)

                aφ          –sinφ    cosφ      ay         

The acceleration components in [r, φ] coordinates are therefore

                                                        A                                    
                              •  •        ••
               |aφ| = 2r φ + r φ                            ••       •
                                                             |ar| = r – r φ2           
                                                     P[r, φ]
                                 r               φ

                           O                                                   x            

These expressions for the components of acceleration will be of key importance in

discussions of Newton’s Theory of Gravitation.

We note that, if r is constant, and the angular velocity ω is constant then
                                            ••       •

                     aφ  = r φ = rω = 0, (2.29)
                                                •                      

                      ar  = – r φ2 = – rω2 = – r(vφ/r)
2 = – vφ

2/r, (2.30)

and                                       •
                      vφ = r φ = rω. (2.31)

These equations are true for circular motion.
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PROBLEMS

2-1  A point moves with constant acceleration, a, along the x-axis.  If it moves distances ∆x1

      and ∆x2 in successive intervals of time ∆t1 and ∆t2, prove that the acceleration is

         a = 2(v2 – v1)/T

       where v1 = ∆x1/∆t1, v2 = ∆x2/∆t2, and T = ∆t1 + ∆t2.

2-2  A point moves along the x-axis with an instantaneous deceleration (negative   

       acceleration):

     a(t) ∝ –vn+1(t)

       where v(t) is the instantaneous speed at time t, and n is a positive integer.  If the

       initial speed of the point is u (at t = 0), show that

        knt = {(un – vn)/(uv)n}/n, where kn is a constant of proportionality,

      and that the distance travelled, x(t), by the point from its initial position is

    knx(t) = {(un–1 – vn–1)/(uv)n–1}/(n – 1).

2-3  A point moves along the x-axis with an instantaneous deceleration kv3(t), where v(t) is

       the speed and k is a constant.  Show that

      v(t) = u/(1 + kux(t))

       where x(t) is the distance travelled, and u is the initial speed of the point.

2-4  A point moves along the x-axis with an instantaneous acceleration

d2x/dt2 = – ω2/x2

       where ω is a constant.  If the point starts from rest at x = a, show that the speed of
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       the particle  is

  dx/dt = – ω{2(a – x)/(ax)}1/2.

       Why is the negative square root chosen?

2-5  A point P moves with constant speed v along the x-axis of a Cartesian system, and a

      point Q moves with constant speed u along the y-axis.  At time t = 0, P is at x = 0, and

      Q, moving towards the origin, is at y = D.  Show that the minimum distance, dmin,

      between P and Q during their motion is

    dmin = D{1/(1 + (u/v)2)}1/2.

      Solve this problem in two ways:1) by direct minimization of a function, and 2) by a

      geometrical method that depends on the choice of a more suitable frame of reference

      (for example, the rest frame of P).

2-6  Two ships are sailing with constant velocities u and v on straight courses that are

       inclined at an angle θ.  If, at a given instant, their distances from the point of

       intersection of their courses are a and b, find their minimum distance apart.

2-7  A point moves along the x-axis with an acceleration a(t) = kt2, where t is the time the

       point has been in motion, and k is a constant. If the initial speed of the point is u,

      show that the distance travelled in time t is

   x(t) = ut + (1/12)kt4.

2-8  A point, moving along the x-axis, travels a distance x(t) given by the equation

x(t) = aexp{kt} + bexp{–kt}

       where a, b, and k are constants.  Prove that the acceleration of the point is  
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       proportional to the distance travelled.

2-9  A point moves in the plane with the equations of motion

d2x/dt2          –2       1        x      
                                     =                               .

d2y/dt2            1     –2        y    

      Let the following coordinate transformation be made

u = (x + y)/2 and v = (x – y)/2.

      Show that in the u-v frame, the equations of motion have a simple form, and that the

      time-dependence of the coordinates is given by

u = Acost + Bsint,

      and

v = Ccos√3 t + Dsin√3 t, where A, B, C, D are constants.

      This coordinate transformation has “diagonalized” the original matrix:

–2      1               –1     0      
      →                       .

  1    –2                0    –3       

       The matrix with zeros everywhere, except along the main diagonal, has the   

       interesting property that it does not rotate the vectors on which it acts.

       The diagonal elements are called the eigenvalues of the diagonal matrix, and the

       renormalized vectors are called eigenvectors.  A small industry exists that is devoted

       to finding optimum ways of diagonalizing large matrices.  Illustrate the motion of the

       system in the x-y frame and in the u-v frame.



3

CLASSICAL AND SPECIAL RELATIVITY

3.1  The Galilean transformation

Events belong to the physical world — they are not abstractions.  We shall,

nonetheless, introduce the idea of an ideal event that has neither extension nor duration.

Ideal events may be represented as points in a space-time geometry.  An event is

described by a four-vector E[t, x, y, z] where t is the time, and x, y, z are the spatial

coordinates, referred to arbitrarily chosen origins.

Let an event E[t, x], recorded by an observer O at the origin of an x-axis, be

recorded as the event E´[t´, x´] by a second observer O´, moving at constant speed V

along the x-axis.  We suppose that their clocks are synchronized at t = t´ = 0 when they

coincide at a common origin, x = x´ = 0.

At time t, we write the plausible equations

                                 t´ = t

and

                                 x´ = x – Vt,

where Vt is the distance travelled by O´ in a time t.  These equations can be written

                               E´  = GE (3.1)

where

                                              1    0      
                                G  =                  .
                                            –V    1       
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G is the operator of the Galilean transformation.

The inverse equations are

                                  t  = t´

and

                                 x  = x´ + Vt´

or

                                E  = G–1E´ (3.2)

where G–1 is the inverse Galilean operator.  (It undoes the effect of G).

If we multiply t and t´ by the constants k and k´, respectively, where k and

k´have dimensions of velocity then all terms have dimensions of length.

In space-space, we have the Pythagorean form x2 + y 2 = r 2 (an invariant under

rotations).  We are therefore led to ask the question: is (kt)2 + x2 an invariant under G in

space-time?  Direct calculation gives

                     (kt)2 + x2  = (k´t´)2 + x´2 + 2Vx´t´ + V2t´2

                                      = (k´t´)2 + x´2  only if V = 0 !

We see, therefore, that Galilean space-time does not leave the sum of squares invariant.

We note, however, the key rôle played by acceleration in Galilean-Newtonian physics:

The velocities of the events according to O and O´ are obtained by differentiating

                                 x´ = –Vt + x with respect to time, giving

                                  v´= –V + v, (3.3)
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a result that agrees with everyday observations.

Differentiating v´ with respect to time gives

                         dv´/dt´= a´ = dv/dt = a (3.4)

where a and a´are the accelerations in the two frames of reference. The classical

acceleration is an invariant under the Galilean transformation.  If the relationship         

v´= v – V is used to describe the motion of a pulse of light, moving in empty space at      

v = c ≅ 3 x 108 m/s, it does not fit the facts.  For example, if V is 0.5c, we expect to obtain

v´ = 0.5c, whereas, it is found that v´ = c.  Indeed, in all cases studied, v´ = c for all

values of V.

3.2  Einstein’s space-time symmetry: the Lorentz transformation

It was Einstein, above all others , who advanced our understanding of the nature of

space-time and relative motion.  He made use of a symmetry argument to find the changes

that must be made to the Galilean transformation if it is to account for the relative motion

of rapidly moving objects and of beams of light.  Einstein recognized an inconsistency in

the Galilean-Newtonian equations, based as they are, on everyday experience. The

discussion will be limited to non-accelerating, or so called inertial, frames

We have seen that the classical equations relating the events E and E´ are         

E´ = GE, and the inverse E = G–1E´ where

                                              1    0                            1    0       
                                 G  =                   and  G–1  =                  .  

                    –V    1                            V    1       

These equations are connected by the substitution V ↔ –V; this is an algebraic statement

of the Newtonian principle of relativity.  Einstein incorporated this principle in his theory.
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He also retained the linearity of the classical equations in the absence of any evidence to

the contrary.  (Equispaced intervals of time and distance in one inertial frame remain

equispaced in any other inertial frame).  He symmetrized the space-time equations as

follows:

                              t´            1   –V      t             
                                      =                          . (3.5)
                              x´          –V     1      x              

Note, however, the inconsistency in the dimensions of the time-equation that has now

been introduced:

                     t´ =  t – Vx.

The term Vx has dimensions of [L]2/[T], and not [T].  This can be corrected by introducing

the invariant speed of light, c — a postulate in Einstein's theory that is consistent with the

result of the Michelson-Morley experiment:

                               ct´ = ct – Vx/c

so that all terms now have dimensions of length.

Einstein went further, and introduced a dimensionless quantity γ instead of the

scaling factor of unity that appears in the Galilean equations of space-time.  This factor

must be consistent with all observations.  The equations then become

                                 ct´=       γct –  βγx

                                 x´ = –βγct +    γx , where β=V/c.

These can be written

                               E´  = LE, (3.6)
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where

                                                γ   –βγ        
                                   L =                      ,

                   –βγ       γ         

and                             E = [ct, x] .

L is the operator of the Lorentz transformation.

The inverse equation is

                                 E  =  L–1E´ (3.7)

where

                                              γ    βγ           
                                 L–1 =                   .
                                            βγ      γ           

This is the inverse Lorentz transformation, obtained from L by changing β → –β            

(V →  –V); it has the effect of undoing the transformation L.  We can therefore write

                              LL–1 = I (3.8)

Carrying out the matrix multiplications, and equating elements gives

                      γ2 – β2γ2 = 1

therefore,

                                  γ = 1/√(1 – β2) (taking the positive root). (3.9)

As V → 0, β → 0 and therefore γ → 1; this represents the classical limit in which the

Galilean transformation is, for all practical purposes, valid.  In particular, time and space

intervals have the same measured values in all Galilean frames of reference, and

acceleration is the single fundamental invariant.
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3.3  The invariant interval: contravariant and covariant vectors

Previously, it was shown that the space-time of Galileo and Newton is not

Pythagorean under G.  We now ask the question: is Einsteinian space-time Pythagorean

under L ?  Direct calculation leads to

                       (ct)2 + x2 = γ2(1 + β2)(ct´)2 + 4βγ2x´ct´

                                       +γ2(1 + β2)x´2

                                       ≠ (ct´)2 + x´2 if β > 0.

Note, however, that the difference of squares is an invariant:

                        (ct)2 – x2 = (ct´)2 – x´2 (3.10)

because

                      γ2(1 – β2) = 1.

Space-time is said to be pseudo-Euclidean.  The negative sign that characterizes Lorentz

invariance can be included in the theory in a general way as follows.

We introduce two kinds of 4-vectors

                                  xµ = [x0, x1, x2, x3], a contravariant vector, (3.11)

and

                                  xµ = [x0, x1,  x2, x3], a covariant vector, where

                                  xµ = [x0, –x1, –x2, –x3]. (3.12)

The scalar (or inner) product of the vectors is defined as

                             xµTxµ =(x0, x1, x2, x3)[x0, –x1, –x2, –x3], to conform to matrix multiplication
                                                 ↑                   ↑      
                                                row             column
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                                      =(x0)2 – ((x1)2 + (x2)2 + (x3)2) . (3.13)

The superscript T is usually omitted in writing the invariant; it is implied in the form xµxµ.

The event 4-vector is

                                 Eµ = [ct, x, y, z] and the covariant form is

                                 Eµ = [ct, –x, –y, –z]

so that the invariant scalar product is

                              EµEµ = (ct)2 – (x2 + y2 + z2). (3.14)

A general Lorentz 4-vector xµ transforms as follows:

                                x'µ = Lxµ (3.15)

where

                                                 γ   –βγ     0      0           
                                  L =    –βγ        γ     0      0        
                                                 0       0      1      0        
                                                 0       0      0      1           

This is the operator of the Lorentz transformation if the motion of O´ is along the x-axis of

O's frame of reference, and the initial times are synchronized (t = t´ = 0 at x = x´ = 0).

Two important consequences of the Lorentz transformation, discussed in 3.5, are

that intervals of time measured in two different inertial frames are not the same; they are

related by the equation

                  ∆t´ = γ∆t (3.16)

where ∆t is an interval measured on a clock at rest in O's frame, and distances are given by

                   ∆l´ = ∆l/γ (3.17)
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where ∆l is a length measured on a ruler at rest in O's frame.

3.4  The group structure of Lorentz transformations

The square of the invariant interval s,  between the origin [0, 0, 0, 0] and an

arbitrary event xµ = [x0, x1, x2, x3] is, in index notation

                      s2 = xµxµ = x´µx´µ , (sum over µ = 0, 1, 2, 3). (3.18)

The lower indices can be raised using the metric tensor ηµν = diag(1, –1, –1, –1), so that

                      s2 = ηµνxµxν = ηµνx´µx´v , (sum over µ and ν). (3.19)

The vectors now have contravariant forms.

In matrix notation, the invariant is

                      s2 = xT x = x´T x´ . (3.20)

(The transpose must be written explicitly).

The primed and unprimed column matrices (contravariant vectors) are related by the

Lorentz matrix operator, L

                     x´ = Lx .

We therefore have

                 xT x = (Lx)T (Lx)

                          = xTLT Lx .

The x’s are arbitrary, therefore

                 LT L = . (3.21)

This is the defining property of the Lorentz transformations.
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The set of all Lorentz transformations is the set L of all 4 x 4 matrices that satisfies

the defining property

                      L = {L: LT L = ; L all 4 x 4 real matrices;  = diag(1, –1, –1, –1}.

(Note that each L has 16 (independent) real matrix elements, and therefore belongs to

the 16-dimensional space, R16).

Consider the result of two successive Lorentz transformations L1 and L2 that

transform a 4-vector x as follows

                      x → x´ → x´´

where

          x´ = L1x ,

and

        x´  ́ = L2x´.

The resultant vector x´´ is given by

         x´  ́= L2(L1x)

                 = L2L1x

                = Lcx

where

            Lc = L2L1 (L1 followed by L2). (3.22)

If the combined operation Lc is always a Lorentz transformation then it must satisfy

               Lc
T Lc =  .

We must therefore have
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   (L2L1)
T (L2L1) = 

or

      L1
T(L2

T L2)L1 = 

so that

                L1
T L1 = ,    (L1, L2 ∈ L)

therefore

           Lc = L2L1 ∈ L . (3.23)

Any number of successive Lorentz transformations may be carried out to give a resultant

that is itself a Lorentz transformation.

If we take the determinant of the defining equation of L,

         det(LT L) = det

we obtain

   (detL)2 = 1  (detL = detLT)

so that

       detL = ±1. (3.24)

 Since the determinant of L is not zero, an inverse transformation L–1 exists, and the

equation L–1L = I, the identity, is always valid.

Consider the inverse of the defining equation

            (LT L)–1 = –1 ,

or

       L–1 –1(LT)–1 = –1 .



C L A S S I C A L  A N D  S P E C I A L  R E L A T I V I T Y 54

Using  = –1, and rearranging, gives

         L–1 (L–1)T =  . (3.25)

This result shows that the inverse L–1 is always a member of the set L.

The Lorentz transformations L are matrices, and therefore they obey the

associative property under matrix multiplication.

We therefore see that

1. If L1 and L2 ∈ L , then L2 L1 ∈ L

2. If L ∈ L , then L–1 ∈ L

3. The identity I = diag(1, 1, 1, 1) ∈ L

and

4. The matrix operators L obey associativity.

The set of all Lorentz transformations therefore forms a group.

3.5  The rotation group

Spatial rotations in two and three dimensions are Lorentz transformations in which

the time-component remains unchanged.  In Chapter 1, the geometrical properties of the

rotation operators are discussed.  In this section, we shall consider the algebraic structure

of the operators.

Let  be a real 3×3 matrix that is part of a Lorentz transformation with a constant

time-component,
                                             1  0  0  0       
                                             0                                                                                    (3.26)
                                 L  =     0               .
                                             0                   
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In this case, the defining property of the Lorentz transformations leads to

            1  0  0  0          1  0  0  0          1  0  0  0               1  0  0  0            
            0                      0 -1  0  0          0                           0 -1  0  0            
            0     T            0  0 -1  0          0              =      0  0 -1  0                             (3.27)
            0                      0  0  0 -1          0                           0  0  0 -1            
                                                                                                             

so that

T  = I , the identity matrix, diag(1,1,1).

This is the defining property of a three-dimensional orthogonal matrix.  (The related two -

dimensional case is treated in Chapter 1).

If x = [x1, x2, x3] is a three-vector that is transformed under  to give x´ then

x´Tx´ = xT T x = xTx = x1
2 + x2

2 + x3
2 = invariant under .        (3.28)

The action of  on any three-vector preserves length.  The set of all 3×3 orthogonal

matrices is denoted by O(3),

O(3) = { : T  = I, rij  ∈ Reals}.

The elements of this set satisfy the four group axioms.

3.6  The relativity of simultaneity: time dilation and length contraction

In order to record the time and place of a sequence of events in a particular

inertial reference frame, it is necessary to introduce an infinite set of adjacent “observers”,

located throughout the entire space.  Each observer, at a known, fixed position in the

reference frame, carries a clock to record the time and the characteristic property of every
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event in his immediate neighborhood.  The observers are not concerned with non-local

events.  The clocks carried by the observers are synchronized — they all read the same

time throughout the reference frame.  The process of synchronization is discussed later.  It

is the job of the chief observer to collect the information concerning the time, place, and

characteristic feature of the events recorded by all observers, and to construct the world

line (a path in space-time), associated with a particular characteristic feature (the type of

particle, for example).  

Consider two sources of light, 1 and 2, and a point M midway between them.  Let

E1 denote the event “flash of light leaves 1”, and E2 denote the event “flash of light leaves

2”.  The events E1 and E2 are simultaneous if the flashes of light from 1 and 2 reach M at

the same time.  The fact that the speed of light in free space is independent of the speed

of the source means that simultaneity is relative.  

The clocks of all the observers in a reference frame are synchronized  by correcting

them for the speed of light as follows:

Consider a set of clocks located at x0, x1, x2, x3, ... along the x-axis of a reference

frame.  Let x0 be the chief’s clock, and let a flash of light be sent from the clock at x0 when

it is reading t0 (12 noon, say).  At the instant that the light signal reaches the clock at x1, it

is set to read t0 + (x1/c), at the instant that the light signal reaches the clock at x2, it is set

to read t0 + (x2/c) , and so on for every clock along the x-axis.  All clocks in the reference

frame then “read the same time” — they are synchronized.  From the viewpoint of all other

inertial observers, in their own reference frames, the set of clocks, sychronized using the

above procedure, appears to be unsychronized.  It is the lack of symmetry in the
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sychronization of clocks in different reference frames that leads to two non-intuitive results

namely,  length contraction and time dilation.  

Length contraction: an application of the Lorentz transformation.

Consider a rigid rod at rest on the x-axis of an inertial reference frame S´.  Because it is at

rest, it does not matter when its end-points x 1´ and x2´ are measured to give the rest-, or

proper-length of the rod, L0´ = x2´ – x1´.

Consider the same rod observed in an inertial reference frame S that is moving with

constant velocity –V  with its x-axis parallel to the x´-axis.  We wish to determine the

length of the moving rod;  we require the length L = x2 – x1 according to the observers in

S.  This means that the observers in S must measure x1 and x2 at the same time in their

reference frame.  The events in the two reference frames S, and S´ are related by the

spatial part of the Lorentz transformation:

         x´ = –βγct + γx

and therefore

           x2´ – x1´ = –βγc(t2 – t1) + γ(x2 – x1).

where

                       β = V/c and γ = 1/√(1 – β2).

Since we require the length (x2 – x1) in S to be measured at the same time in S, we must

have t2 – t1 = 0, and therefore

        L0´ = x2´ – x1´ = γ(x2 – x1) ,

or
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        L0´(at rest) = γL (moving). (3.29)

The length of a moving rod, L, is therefore less than the length of the same rod measured

at rest, L0 because γ > 1.

Time dilation

Consider a clock at rest at the origin of an inertial frame S´, and a set of

synchronized clocks at x0, x1, x2, ... on the x-axis of another inertial frame S.  Let S´ move at

constant speed V relative to S, along the common x -, x´- axis.  Let the clocks at xo, and xo´

be sychronized to read t0 , and t0´ at the instant that they coincide in space.  A proper time

interval is defined to be the time between two events measured in an inertial frame in

which the two events occur at the same place.  The time part of the Lorentz

transformation can be used to relate an interval of time measured on the single clock in

the S´ frame, and the same interval of time measured on the set of synchronized clocks at

rest in the S frame.  We have

          ct = γct´ + βγx´

or

            c(t2 – t1) = γc(t2´ – t1´) + βγ(x2´ – x1´).

There is no separation between a single clock and itself, therefore x2´ – x1´ = 0, so that

c(t2 – t1)(moving) = γc(t2´ – t1´)(at rest)    (γ > 1). (3.30)

A moving clock runs more slowly than a clock at rest.

In Chapter 1, it was shown that the general 2 ×2 matrix operator transforms rectangular

coordinates into oblique coordinates.  The Lorentz transformation is a special case of the  
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2 × 2 matrices, and therefore its effect is to transform rectangular space-time coordinates

into oblique space-time coordinates:

                                      x               x´                                                                      
                                                                                                                              

                                            tan–1β                                                                          
                                                                                                                                

                                                                    E[ct, x] or E´[ct´, x´]                           
                                                                                                                                

                                                                                                   ct´                        
                                                                                                                               

                                                                               tan–1β                                    
                                                                                                                               

                                                                                                 ct                           

                              The geometrical form of the Lorentz transformation

The symmetry of space-time means that the transformed axes rotate through equal

angles, tan–1β.  The relativity of simultaneity is clearly exhibited on this diagram: two

events that occur at the same time in the ct, x -frame necessarily occur at different times in

the oblique ct´, x´-frame.

3.7  The 4-velocity

A differential time interval, dt, cannot be used in a Lorentz-invariant way in

kinematics.  We must use the proper time differential interval, dτ, defined by

                    (cdt)2 – dx2 = (cdt´)2 – dx´2 ≡ (cdτ)2. (3.31)

The Newtonian 3-velocity is

                                   vN = [dx/dt, dy/dt, dz/dt],
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and this must be replaced by the 4-velocity

                                   Vµ = [d(ct)/dτ, dx/dτ, dy/dτ, dz/dτ]

                                       = [d(ct)/dt, dx/dt, dy/dt, dz/dt](dt/dτ)

                                       = [γc, γvN] . (3.32)

The scalar product is then

                               VµVµ = (γc)2 – (γvN)2   (the transpose is understood)

                                       = (γc)2(1 – (vN/c)2)

                                       = c2. (3.33)

The magnitude of the 4-velocity is therefore Vµ = c, the invariant speed of light.

PROBLEMS

3-1  Two points, A and B, move in the plane with constant velocities |vA| = √2 m.s–1 and

|vB| = 2√2 m.s–1.  They move from their initial (t = 0) positions, A(0)[1, 1] and B(0)[6, 2]

as shown:

          y, m    
  6

  5

  4
  vB

  3

  2                                                             B(0)
               vA    
  1    A(0)                      R(0)

  0
     0       1       2        3        4        5       6        7        8    x, m
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Show that the closest distance between the points is |R|min = 2.529882..meters,

       and that it occurs 1.40...seconds after they leave their initial positions. (Remember  

       that all inertial frames are equivalent, therefore choose the most appropriate for

       dealing with this problem).

3-2  Show that the set of all standard (motion along the common x-axis) Galilean

       transformations forms a group.

3-3  A flash of light is sent out from a point x1 on the x-axis of an inertial frame S, and it is

       received at a point x2 = x1 + l.  Consider another inertial frame, S´, moving with

       constant speed V = βc along the x-axis; show that, in S´:

      i) the separation between the point of emission and the point of reception of the light

      is                      l´ = l{(1 – β)/(1 + β)}1/2   

      ii) the time interval between the emission and reception of the light is

    ∆t´ = (l/c){(1 – β)/(1 + β)}1/2.

3-4  The distance between two photons of light that travel along the x-axis of an inertial  

       frame, S, is always l.  Show that, in a second inertial frame, S´, moving at constant

       speed V = βc along the x-axis, the separation between the two photons is

    ∆x´ = l{(1 + β)/(1 – β)}1/2.

3-5  An event [ct, x] in an inertial frame, S, is transformed under a standard Lorentz

       transformation to [ct´, x´] in a standard primed frame, S´, that has a constant speed V
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      along the x-axis, show that the velocity components of the point x, x´ are related by

      the equation

       vx = (vx´ + V)/(1 + (vx´V/c2)).

3-6  An object called a K0-meson decays when at rest into two objects called π-mesons

      (π±), each with a speed of 0.8c.  If the K0-meson has a measured speed of 0.9c when it

     decays, show that the greatest speed of one of the π-mesons is (85/86)c and that its

      least speed is (5/14)c.



4

NEWTONIAN DYNAMICS

Although our discussion of the geometry of motion has led to major advances in our

understanding of measurements of space and time in different inertial systems, we have

yet to come to the crux of the matter, namely — a discussion of the effects of forces on the

motion of two or more interacting particles.  This key branch of Physics is called

Dynamics.  It was founded by Galileo and Newton and perfected by their followers, most

notably Lagrange and Hamilton.  We shall see that the Newtonian concepts of momentum

and kinetic energy require fundamental revisions in the light of the Einstein’s Special

Theory of Relativity.  The revised concepts come about as a result of Einstein's recognition

of the crucial rôle of the Principle of Relativity in unifying the dynamics of all mechanical

and optical phenomena.  In spite of the conceptual difficulties inherent in the classical

concepts, (difficulties that will be discussed later), the subject of Newtonian dynamics

represents one of the great triumphs of Natural Philosophy.  The successes of the classical

theory range from accurate descriptions of the dynamics of everyday objects to a detailed

understanding of the motions of galaxies.

4.1  The law of inertia

Galileo (1544-1642) was the first to develop a quantitative approach to the study of

motion.  He addressed the question — what property of motion is related to force?  Is it

the position of the moving object?  Is it the velocity of the moving object?  Is it the rate of

change of its velocity? ...The answer to the question can be obtained only from
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observations; this is a basic feature of Physics that sets it apart from Philosophy proper.

Galileo observed that force influences the changes in velocity (accelerations) of an object

and that, in the absence of external forces (e.g: friction), no force is needed to keep an

object in motion that is travelling in a straight line with constant speed.  This

observationally based law is called the Law of Inertia.  It is, perhaps, difficult for us to

appreciate the impact of Galileo's new ideas concerning motion. The fact that an object

resting on a horizontal surface remains at rest unless something we call force is applied to

change its state of rest was, of course, well-known before Galileo's time.  However, the

fact that the object continues to move after the force ceases to be applied caused

considerable conceptual difficulties for the early Philosophers (see Feynman The

Character of Physical Law).  The observation that, in practice, an object comes to rest

due to frictional forces and air resistance was recognized by Galileo to be a side effect, and

not germane to the fundamental question of motion.  Aristotle, for example, believed that

the true or natural state of motion is one of rest.  It is instructive to consider Aristotle's

conjecture from the viewpoint of the Principle of Relativity —- is a natural state of rest

consistent with this general Principle?  According to the general Principle of Relativity, the

laws of motion have the same form in all frames of reference that move with constant

speed in straight lines with respect to each other. An observer in a reference frame moving

with constant speed in a straight line with respect to the reference frame in which the

object is at rest would conclude that the natural state or motion of the object is one of

constant speed in a straight line, and not one of rest. All inertial observers, in an infinite
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number of frames of reference, would come to the same conclusion.  We see, therefore,

that Aristotle's conjecture is not consistent with this fundamental Principle.

4.2  Newton’s laws of motion

During his early twenties, Newton postulated three Laws of Motion that form the

basis of Classical Dynamics.  He used them to solve a wide variety of problems including

the dynamics of the planets. The Laws of Motion, first published in the Principia in 1687,

play a fundamental rôle in Newton’s Theory of Gravitation (Chapter 7); they are:

1.  In the absence of an applied force, an object will remain at rest or in its present state of

constant speed in a straight line (Galileo's Law of Inertia)

2.  In the presence of an applied force, an object will be accelerated in the direction of the

applied force and the product of its mass multiplied by its acceleration is equal to the

force.

and,

3.  If a body A exerts a force of magnitude |FAB| on a body B, then B exerts a force of

equal magnitude |FBA| on A..  The forces act in opposite directions so that

FAB = –FBA .

In law number 2, the acceleration lasts only while the applied force lasts.  The applied

force need not, however, be constant in time — the law is true at all times during the

motion.  Law number 3 applies to “contact” interactions.  If the bodies are separated, and

the interaction takes a finite time to propagate between the bodies, the law must be
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modified to include the properties of the “field “ between the bodies.  This important

point is discussed in Chapter 7.  

4.3  Systems of many interacting particles: conservation of linear and angular

        momentum

Studies of the dynamics of two or more interacting particles form the basis of a key

part of Physics.  We shall deduce two fundamental principles from the Laws of Motion; they

are:

1)  The Conservation of Linear Momentum which states that, if there is a direction in

which the sum of the components of the external forces acting on a system is zero, then

the linear momentum of the system in that direction is constant.

and,

2)  The Conservation of Angular Momentum which states that, if the sum of the moments

of the external forces about any fixed axis (or origin) is zero, then the angular momentum

about that axis (or origin) is constant.

The new terms that appear in these statements will be defined later.

The first of these principles will be deduced by considering the dynamics of two

interacting particles of masses ml and m2  wiith instantaneous coordinates [xl, y1 ] and [x2,

y2], respectively.  In Chapter 12, these principles will be deduced by considering the

invariance of the Laws of Motion under translations and rotations of the coordinate

systems.

Let the external forces acting on the particles be F1 and F2 , and let the mutual

interactions be F21´ and F12´.  The system is as shown
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                                y                                                                                            
                                                                                                                             

                                                       F1                              F2                                   
                                                                             m2                                             
                                                                        F12´                                        
                                                 m1          F21´                                                           
                                                                                                                              
                                                                                                                               
                                                                                                                               

                                O                                                                                                 
                                                                                                x                               

Resolving the forces into their x- and y-components gives

                               y                                                                                             
                                                                                 Fy2                                        
                                                 Fy1                                                                       
                                                                       Fx12´                          Fx2                       
                                              Fy21´                             m2                                             
                                                                   Fx1             Fy12´                                         
                                                    m1         Fx21´                                                          
                                                                                                                                 
                                                                                                                                  

                                O                                                                                                    
                                                                                                x                                    
a) The equations of motion

The equations of motion for each particle are

1) Resolving in the x-direction

         Fx1 + Fx21´ = m1 (d2x1/dt2) (4.1)

and

          Fx2 – Fx12´ = m2(d2x2/dt2). (4.2)

Adding these equations gives

Fx1 + Fx2 + (Fx21´ – Fx12´) = m1(d2x1/dt2) + m2(d2x2/dt2). (4.3)

2) Resolving in the y-direction gives a similar equation, namely
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Fy1 + Fy2 + (Fy12´ – Fy12´) = m1(d2y1/dt2) + m2(d2y2/dt2). (4.4)

b)  The rôle of Newton’s 3rd Law

For instantaneous mutual interactions, Newton’s 3rd Law gives |F21´| = |F12´|

so that the x- and y-components of the internal forces are themselves equal and opposite,

therefore the total equations of motion are

Fx1 + Fx2 = m1(d2x1/dt2) + m2(d2x2/dt2), (4.5)

and

Fy1 + Fy2 = m1(d2y1/dt2) + m2(d2y2/dt2). (4.6)

c)  The conservation of linear momentum

          If the sum of the external forces acting on the masses in the x-direction is zero, then

Fx1 + Fx2 = 0 , (4.7)

in which case,

0 = m1(d2x1/dt2) + m2(d2x2/dt2)

or

0 = (d/dt)(m1vx1) + (d/dt)(m2vx2),

which, on integration gives

constant = m1vx1 + m2vx2 . (4.8)

The product (mass × velocity) is the linear momentum.  We therefore see that if there is

no resultant external force in the x-direction, the linear momentum of the two particles in

the x-direction is conserved.  The above argument can be generalized so that we can state:

the linear momentum of the two particles is constant in any direction in which there is no

resultant external force.
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4.3.1  Interaction of n-particles

The analysis given in 4.3 can be carried out for an arbitrary number of particles, n,

with masses m1, m2, ...mn and with instantaneous coordinates [x1, y1], [x2, y2] ..[xn, yn].  The

mutual interactions cancel in pairs so that the equations of motion of the n-particles are, in

the x-direction
                                          ••              ••                     ••  
       Fx1 + Fx2 + ... Fxn = m1x1 + m2x2 + ... mnxn = sum of the x-components of           (4.9)

      the external forces acting on the masses,

and, in the y-direction
                                           ••              ••                   ••
        Fy1 + Fy2 + ... Fyn = m1y1 + m1y2 + ...mnyn = sum of the y-components of           (4.10)

      the external forces acting on the masses.

In this case, we see that if the sum of the components of the external forces acting

on the system in a particular direction is zero, then the linear momentum of the system in

that direction is constant.  If, for example, the direction is the x-axis then

m1vx1 + m2vx2 + ... mnvxn = constant. (4.11)

4.3.2  Rotation of two interacting particles about a fixed point

We begin the discussion of the second fundamental conservation law by cosidering

the motion of two interacting particles that move under the influence of external forces F1

and F2, and mutual interactions (internal forces) F21´ and F12´.  We are interested in the

motion of the two masses about a fixed point O that is chosen to be the origin of Cartesian

coordinates.  The system is illustrated in the following figure
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                                y                                                               F2                         
                                                                 F1                                                         
                                                                             F12´      m2                                

                                                        m1           F21´                                               
                                                                                          ^                             
                                                                                              +  Moment           
                                                                                                                          

                              R´                                                                                            
                                  O                                                                                       
                                      R2      R1                                              x                         
                                                                                                                             
                                                                                                                            

a)  The moment of forces about a fixed origin

The total moment Γ1,2 of the forces about the origin O is defined as

    Γ1,2 = R1F1 + R2F2 + (R´F12´ – R´F21´) (4.12)
                           ---------------        ------------------------
                                  ↑                        ↑  
                          moment of          moment of      
                      external forces       internal forces      

A positive moment acts in a counter-clockwise sense.

Newton’s 3rd Law gives

          |F21´| = |F12´| ,

therefore the moment of the internal forces obout O is zero.  (Their lines of action are the

same).

The total effective moment about O is therefore due to the external forces, alone.  Writing

the moment in terms of the x- and y-components of F1 and F2, we obtain

               Γ1,2 = x1Fy1 + x2Fy2 – y1Fx1 – y2Fx2 (4.13)

b)  The conservation of angular momentum
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If the moment of the external forces about the origin O is zero then, by

integration, we have

                       constant = x1py1 + x2py2 – y1px1 – y2px2.

where px1 is the x-component of the momentum of mass 1, etc..

Rearranging, gives

                       constant = (x1py1 – y1px1) + (x2py2 – y2px2). (4.14)

The right-hand side of this equation is called the angular momentum of the two particles

about the fixed origin, O.

Alternatively, we can discuss the conservation of angular momentum using vector

analysis.  Consider a non-relativistic particle of mass m and momentum p, moving in the

plane under the influence of an external force F about a fixed origin, O:

                                     y                                                                                 
                                                                                F                                     
                                                                                                                      
                                                                                                                      

                                                                           p                                          
                                                                         m                                           
                                                  r                φ                                                 
                                      O                                                                               
                                                                                            x                         

The angular momentum, L, of m about O can be written in vector form

                                     L = r × p. (4.15)

The torque, Γ, associated with the external force F acting about O is

                                     = r × F. (4.16)

The rate of change of the angular momentum with time is
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                               dL/dt = r × (dp/dt) + p × (dr/dt) (4.17)

                                       =  r × m(dv/dt) + mv × v

                                       =  r × F (because v × v = 0)

                                       = .

If there is no external torque,  = 0.  We have, therefore

 = dL/dt = 0, (4.18)

so that L is a constant of the motion.

4.3.3  Rotation of n-interacting particles about a fixed point

The analysis given in 4.3.2 can be extended to a system of n-interacting particles.

The moments of the mutual interactions about the origin O cancel in pairs (Newton’s 3rd

Law) so that we are left with the moment of the external forces about O.  The equation for

the total moment is therefore

              Γ1, 2, ....n = ∑[i=1, n] (xid(mivyi)/dt – yid(mivxi)/dt).

If the moment of the external forces about the fixed origin is zero then the total

angular momentum of the system about O is a constant.  This result follows directly by

integrating the expression for Γ1, 2, ...n = 0. (4.19)

If the origin moves with constant velocity, the angular momentum of the system,

relative to the new coordinate system, is constant if the external torque is zero.

4.4  Work and energy in Newtonian dynamics

4.4.1  The principle of work: kinetic energy and the work done by forces

Consider a mass m moving along a path in the [x, y]-plane under the influence of a
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resultant force F that is not necessarily constant.  Let the components of the force be Fx

and Fy when the mass is at the point P[x, y].  We wish to study the motion of m in moving

from a point A[xA, yA] where the force is FA to a point B[xB, yB] where the force is FB.  The

equations of motion are

         m(d2x/dt2) = Fx (4.20)

and

         m(d2y/dt2) = Fy (4.21)

Multiplying these equations by dx/dt and dy/dt, respectively, and adding, we obtain

m(dx/dt)(d2x/dt2) + m(dy/dt)(d2y/dt2) = Fx(dx/dt) + Fy(dy/dt).

This equation now can be integrated with respect to t, so that

m((dx/dt)2 + (dy/dt)2)/2 = ∫(F xdx + Fydy) .

or

    mv2/2 = ∫(F xdx + Fydy), (4.22)

where v = ((dx/dt)2 + (dy/dt)2)1/2 is the speed of the particle at the point [x, y].  The term

mv2/2 is called the classical kinetic energy of the mass m.  It is important to note that the

kinetic energy is a scalar.

If the resultant forces acting on m are FA at A[xA, yA] at time tA, and FB at B[xB, yB] at

time tB, then we have

mvB
2/2 – mvA

2/2 = ∫ [xA, xB]Fxdx + ∫ [yA, yB]Fydy . (4.23)

The terms on the right-hand side of this equation represent the work done by the

resultant forces acting on the particle in moving it from A to B.  The equation is the

mathematical form of the general Principle of Work: the change in the kinetic energy of a
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system in any interval of time is equal to the work done by the resultant forces acting on

the system during that interval.

4.5  Potential energy

4.5.1  General features

Newtonian dynamics involves vector quantities — force, momentum, angular

momentum, etc..  There is, however, another form of dynamics that involves scalar

quantities; a form that originated in the works of Huygens and Leibniz, in the 17th

century.  The scalar form relies upon the concept of energy, in its broadest sense.  We

have met the concept of kinetic energy in the previous section.  We now meet a more

abstract quantity called potential energy.  

The work done, W, by a force, F, in moving a mass m from a position sA to a

position sB along a path s is, from section 4.3,

         W = ∫ [sA, sB] F⋅ds  = the change in the kinetic energy during the motion,

            = ∫ [sA, sB] Fdscosα, where α is the angle between F and ds.  (4.24)

If the force is constant, we can write

        W = F(sB – sA),

where sB – sA is the arc length.

If the motion is along the x-axis, and F = Fx is constant then

       W = Fx(xB – xA), the force multiplied by the distance moved. (4.25)

This equation can be rearranged, as follows

            mvxB
2/2 – F xxB = mvxA

2/2 – F xxA . (4.26)
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This is a surprising result; the kinetic energy of the mass is not conserved during the

motion whereas the quantity (mvx
2/2 – Fxx) is conserved during the motion.  This means

that the change in the kinetic energy is exactly balanced by the change in the quantity Fxx.

Since the quantity mv2/2 has dimensions of energy, the quantity Fxx must have dimensions

of energy if the equation is to be dimensionally correct.  The quantity –Fxx is called the

potential energy of the mass m, when at the position x, due to the influence of the force

Fx.  We shall denote the potential energy by  V.  The negative sign that appears in the

definition of the potential energy will be discussed later when explicit reference is made

to the nature of the force (for example, gravitational or electromagnetic).

The energy equation can therefore be written

TB + VB = TA + VA . (4.27)

This is found to be a general result that holds in all cases in which a potential

energy function can be found that depends only on the position of the object (or objects).

4.5.2  Conservative forces

Let Fx and Fy be the Cartesian components of the forces acting on a moving particle

with coordinates [x, y].  The work done W1→2 by the forces while the particle moves from

the position P1[x1, y1] to another position P2[x2, y2] is

W1→2 = ∫ [x1, x2] Fxdx + ∫ [y1, y2] Fydy (4.28)

                                = ∫ [P1, P2] (Fxdx + Fydy) .

If the quantity Fxdx + Fydy is a perfect differential then a function U = f(x, y) exists

such that
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    Fx = ∂U/∂x and Fy = ∂U/∂y . (4.29)

Now, the  total differential of the function U is

   dU = (∂U/∂x)dx + (∂U/∂y)dy (4.30)

     = Fxdx + Fydy.

In this case, we can write

∫dU = ∫(F xdx + Fydy) = U = f(x, y).

The definite integral evaluated between P1[x1, y1] and P2[x2, y2] is

∫ [P1, P2] (Fxdx + Fydy) =f(x2, y2) – f(x1, y1) = U2 – U1 . (4.31)

We see that in evaluating the work done by the forces during the motion, no mention is

made of the actual path taken by the particle.  If the forces are such that the function   

U(x, y) exists, then they are said to be conservative.  The function U(x, y) is called the

force function.  

The above method of analysis can be applied to a system of many particles, n.  The

total work done by the resultant forces acting on the system in moving the particles from

their initial configuration, i, to their final configuration, f, is

Wi→f = ∑[k=1, n] ∫ [Pk1, Pk2] (Fkxdxk + Fkydyk), (4.32)

       = Uf – U i,

a scalar quantity that is independent of the paths taken by the individual particles.    

Pk1[xk1, yk1] and Pk2[xk2, yk2] are the initial and final coordinates of the kth-particle.  

The potential energy, V, of the system moving under the influence of conservative

forces is defined in terms of the function U:  V ≡ – U .
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Examples of interactions that take place via conservative forces are:

1) gravitational interactions

2) electromagnetic interactions

and

3) interactions between particles of a system that, for every pair of particles, act

along the line joining their centers, and that depend in some way on their distance apart.

These are the so-called central interactions.  

Frictional forces are examples of non-conservative forces.

There are two other major methods of solving dynamical problems that differ in

fundamental ways from the method of Newtonian dynamics; they are Lagrangian dynamics

and Hamiltonian dynamics.  We shall delay a discussion of these more general methods

until our study of the Calculus of Variations in Chapter 9.

4.6  Particle interactions

4.6.1  Elastic collisions

Studies of the collisions bewteen objects, first made in the 17th-century, led to the

discovery of two basic laws of Nature: the conservation of linear momentum, and the

conservation of kinetic energy associated with a special class of collisions called elastic

collisions.  

The conservation of linear momentum in an isolated system forms the basis for a

quantitative discussion of all problems that involve the interactions between particles.

The present discussion will be limited to an analysis of the elastic collision between two

particles.  A typical two-body collision, in which an object of mass m1 and momentum p1
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makes a grazing collision with another object of mass m2 and momentum p2 (p2 < p1), is

shown in the following diagram.  (The coordinates are chosen so that the vectors p1 and p2

have the same directions).  After the collision, the two objects move in directions

characterized by the angles θ and φ with momenta p1´ and p2´.

                                Before                                       After
                                                                                     m1           p1´                                 
                                                                                                                                          
                                                                                                                                          

                                                                                 θ                                                       
           m1                  p1              m2                                                                                      
                                                                    p2     φ                                                           
                                                                                                                                         

                                                                                  m2                  p2´                              
                                                                                                                                          

If there are no external forces acting on the particles so that the changes in their

states of motion come about as a result of their mutual interactions alone, the total linear

momentum of the system is conserved.  We therefore have

 p1 + p2 = p1´ + p2´ (4.33)

or, rearranging to give the momentum transfer,

           p1 – p1´ = p2´ – p2 .

The kinetic energy of a particle, T is related to the square of its momentum

(T = p2/2m); we therefore form the scalar product of the vector equation for the

momentum transfer, to obtain

p1
2 – 2p1⋅p1´ + p1´

2 = p2´
2 – 2p2´⋅p2 + p2

2 . (4.34)

Introducing the scattering angles θ and φ, we have
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    p1
2 – 2p1p1´cosθ + p1´

2 = p2
2 – 2p2p2´cosφ + p2´

2 .

This equation can be written

      p1´
2 (x2 – 2xcosθ + 1) = p2´

2(y2 – 2ycosφ + 1) (4.35)

where

           x = p1/p1´  and y = p2/p2´ .

If we choose a frame in which p2 = 0 then y = 0 and we have

x2 – 2xcosθ + 1 = (p2´/p1´)2 . (4.36)

If the collision is elastic, the kinetic energy of the system is conserved, so that

   T1 + 0 = T1´ + T2´ (T2 = 0 because p2 = 0) . (4.37)

Substituting Ti = pi
2/2mi , and rearranging, gives

          (p2´/p1´)2 = (m2/m1)(x2 – 1) .

We therefore obtain a quadratic equation in x:

x2 + 2x(m1/(m2 – m1))cosθ – [(m2 + m1)/(m2 – m1)] = 0 .

The valid solution of this equation is

 x = (T1/T1´)1/2 = – (m1/(m2 – m1))cosθ

                             + {(m1/(m2 – m1))2cos2θ + [(m2 + m1)/(m2 – m1)]}1/2. (4.38)

If m1 = m2, the solution is x = 1/cosθ, in which case

       T1´= T1cos2θ . (4.39)

In the frame in which p2 = 0, a geometrical analysis of the two-body collision is

useful.  We have

   p1 + (–p1´) = p2´, (4.40)
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leading to                                                                                                            
                                                                                   p1´                                  
                                              p1                                        θ                               
                                                                                                                         

                                        φ        θ                                                                     
                          p2´                              –p1´                                                     
                                                                                                                          

If the masses are equal then

       p1´ = p1cosθ .

In this case, the two particles always emerge from the elastic collision at right angles to

each other (θ + φ = 90o).  

In the early 1930’s, the measured angle between two outgoing high-speed nuclear

particles of equal mass was shown to differ from 90o.  Such experiments clearly

demonstrated the breakdown of Newtonian dynamics in these interactions.

4.6.2  Inelastic collisions

Collisions between everyday objects are never perfectly elastic.  An object that has

an internal structure can undergo inelastic collisions involving changes in its structure.

Inelastic collisions are found to obey two laws; they are

1)  the conservation of linear momentum

and

2)  an empirical law, due to Newton, that states that the relative velocity of the 

colliding objects, measured along their line of centers immediately after impact, is 

–e times their relative velocity before impact.  
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The quantity e is called the coefficient of restitution.  Its value depends on the nature of

the materials of the colliding objects.  For very hard substances such as steel, e is close to

unity, whereas for very soft materials such as putty, e approaches zero.  

Consider , in the simplest case, the impact of two deformable spheres with masses

m1 and m2.  Let their velocities be v1 and v2, and v1´ and v2´ (along their line of centers)

before and after impact, respectively.  The linear momentum is conserved, therefore

      m1v1 + m2v2 = m1v1´ + m2v2´

and, using Newton’s empirical law,

           v1´ – v2´ = – e(v1 – v2) . (4.41)

Rearranging these equations , we can obtain the values v1´ and v2´ after impact , in terms

of their valus before impact:

        v1´ = [m1v1 + m2v2 – em2(v1 – v2)]/(m1 + m2), (4.42)

and

        v2´ = [m1v1 + m2v2 + em1(v1 – v2)]/(m1 + m2) . (4.43)

If the two spheres initially move in directions that are not colinear, the above

method of analysis is still valid because the momenta can be resolved into components

along and perpendicular to a chosen axis.  The perpendicular components remain

unchanged by the impact.

We shall find that the classical approach to a quantitative study of inelastic collisions

must be radically altered when we treat the subject within the framework of Special

Relativity.  It will be shown that the combined mass (m1 + m2) of the colliding objects is

not conserved in an inelastic collision.  
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4.7  The motion of rigid bodies

Newton’s Laws of Motion apply to every point-like mass in an object of finite size.

The smallest objects of practical size contain very large numbers of microscopic particles —

Avogadro’s number is about 6 × 1023 atoms per gram-atom.  The motions of the individual

microscopic particles in an extended object can be analyzed in terms of the motion of their

equivalent total mass, located at the center of mass of the object.

4.7.1  The center of mass

For a system of discrete masses, mi, located at the vector positions, ri, the position,

rCM, of  the center of mass is defined as

rCM ≡ ∑i miri / ∑i mi = ∑i miri / M, where M is the total mass. (4.44)

The center of mass (CM) of an (idealized) continuous distribution of mass with a

density ρ (mass/volume), can be obtained by considering an element of volume dV with an

elemental mass dm.  We then have

dm = ρdV. (4.45)

The position of the CM is therefore

rCM = (1/M)∫ rdm = (1/M)∫ rρdV. (4.46)

The Cartesian components of rCM are  

xiCM = (1/M)∫x iρdV. (4.47)

In non-uniform materials, the density is a function of r.

4.7.2  Kinetic energy of a rigid body in general motion
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Consider a rigid body that has both translational and rotational motion in a plane.

Let the angular velocity, ω, be constant.  At an arbitrary time ,t, we have

y y´
          y            y´              v´ = r´ω, the velocity of m

                    r´   φ´                relative to G
                    O´,G
                                       x ´              x ´       ω = constant

      ←  Total mass, M = ∑m

                                    O x
                                       x

Let the coordinates of an element of mass m of the body be [x, y] in the fixed frame (origin

O) and [x´, y´] in the frame moving with the center of mass, G (origin O´), and let u and

v be the components of velocity of G, in the fixed frame.  For constant angular velocity ω,

the instantaneous velocity of the element of mass m, relative to G has a direction

perpendicular to the radius vector r´, and a magnitude

       v´ = r´ ω. (4.48)

The components of the instantaneous velocity of G, relative to the fixed frame, are

         u in the x-direction, and

         v in the y-direction.

The velocity components of m in the [x, y]-frame are therefore

           u – r´ωsinφ´ = u – y´ω in the x-direction,

and

          v + r´ωcosφ´ = v + x´ω in the y-direction.
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The kinetic energy of the body, EK, of mass M is therefore

       EK = (1/2)∑m{(u – y´ω)2 + (v + x´ω)2} (4.49)

           = (1/2)M(u2 + v2) + (1/2)ω2∑m(x´2 + y´2)

   – uω∑my´ + vω∑mx´.

Therefore

        EK = (1/2)MvG
2 + (1/2)IGω2, (4.50)

where

       vG = (u2 + v2)1/2  the speed of G, relative to the fixed frame,

  ∑my´ = ∑mx´ = 0, by definition of the center of mass,

and

         IG = ∑m(x´2 + y´2) = ∑mr´2 , is called the moment of imertia of M

about an axis through G, perpendicular to the plane.

We see that the total kinetic energy of the moving object of mass M is made up of two

parts,

1)  the kinetic energy of translation of the whole mass moving with the velocity of

                 the center of mass ,

and

2)  the kinetic energy of rotation of the whole mass about its center of mass.

4.8   Angular velocity and the instantaneous center of rotation

The angular velocity of a body is defined as the rate of increase of the angle

between any line AB, fixed in the body, and any line fixed in the plane of the motion.  If φ
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is the instantaneous angle between AB and an axis Oy, in the plane, then the angular

velocity is dφ/dt.

Consider a circular disc of radius a, that rolls without sliding in contact with a line

Ox, and let φ be the instantaneous angle that the fixed line AB in the disc makes with the

y-axis.  At t = 0, the rolling begins with the point B touching the origin, O:

     y
 a

           vy               A           
    y       B           ← φ        
                  vx

     O   x           P (corresponds to φ = 0)                      x

At time t, after the rolling begins, the coordinates of B[x, y] are

         x = OP – asinφ = BP – asinφ = aφ – asinφ = a(φ – sinφ),

and

         y = AP – acosφ = a(1 – cosφ).

The components of the velocity of B are therefore

        vx = dx/dt = a(dφ/dt)(1 – cosφ), (4.51)

and

        vy = dy/dt = a(dφ/dt)sinφ. (4.52)

The components of the acceleration of B are

        ax = dvx/dt = (d/dt)(a(dφ/dt)(1 – cosφ)) (4.53)

            = a(dφ/dt)2sinφ + a(1 – cosφ)(d2φ/dt2),

and
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        ay = dvy/dt = (d/dt)(a(dφ/dt)sinφ) (4.54)

            = a(dφ/dt)2cosφ + asinφ(d2φ/dt2).

If φ = 0,

   dx/dt = 0 and dy/dt = 0, which means that the point P has  no

instantaneous velocity.  The point B is therefore instantaneously rotating about P with a

velocity equal to 2asin(φ/2)(dφ/dt); P is a “center of rotation”.

Also,

d2x/dt2 = 0 and d2y/dt2 = a(dφ/dt)2, the point of contact only has an

acceleration towards the center.  

4.9  An application of the Newtonian method

The following example illustrates the use of some basic principles of classical

dynamics, such as the conservation of linear momentum, the conservation of energy, and

instantaneous rotation about a moving point:

Consider a perfectly smooth, straight horizontal rod with a ring of mass M that can

slide along the rod.  Attached to the ring is a straight, hinged rod of length L and of

negligible mass; it has a mass m at its end.  At time t = 0, the system is held in a horizontal

position in the constant gravitational field of the Earth.

At t = 0:

g ⇓

          m                         L                         M  
     x = 0 at t = 0

At t = 0, the mass m is released and falls under gravity.  At time t, we have
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g ⇓
    vx

                                                                   φ
                                                                                       x            x = 0                       
                                                                         L   

    vx                   Lsinφ(dφ/dt)
Lcosφ(dφ/dt)   L(dφ/dt) = instantaneous velocity of m

        about M

There are no external forces acting on the system in the x-direction and therefore the

horizontal momentum remains zero:

M(dx/dt) + m((dx/dt) – Lsinφ(dφ/dt)) = 0. (4.56)

Integrating, we have

 Mx + mx + mLcosφ = constant. (4.57)

If x = 0 and φ = 0 at t = 0, then

                mL = constant, (4.58)

therefore

   (M + m)x + mL(cosφ – 1) = 0,

so that

                   x = mL(1 – cosφ)/(M + m). (4.59)

We see that the instantaneous position x(t) is obtained by integrating the momentum

equation.

The equation of conservation of energy can now be used; it is
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(M/2)vx
2 + (m/2)(vx – Lsinφ(dφ/dt))2 + (m/2)(Lcosφ(dφ/dt))2 = mgLsinφ.

(The change in kinetic energy is equal to the change in the potential energy).

Rearranging, gives

(M + m)vx
2 – 2mLsinφvx(dφ/dt) + (mL2(dφ/dt)2 – 2mgLsinφ) = 0. (4.40)

This is a quadratic in vx with a solution

(M + m)vx = mLsinφ(dφ/dt)[1 ± {1 – [(M + m)(mL2(dφ/dt)2 –

2mLgsinφ)]/[m2L2(dφ/dt)2sin2φ]}1/2].

The left-hand side of this equation is also given by the momentum equation:

     (M + m)vx = mLsinφ(dφ/dt).

We therefore obtain, after substitution and rearrangement,

 dφ/dt = {[2(M + m)gsinφ]/[L(M + mcos2φ)]}1/2, (4.41)

the angular velocity of the rod of length L at time t.

PROBLEMS

4-1  A straight uniform rod of mass m and length 2l is held at an angle θ0 to the vertical.

      Its lower end rests on a perfectly smooth horizontal surface.  The rod is released and

      falls under gravity.  At time t after the motion begins, we have

     g⇓    θ0       

     Initial position

       θ

      m                                Mass m, length 2l
 mg
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      If the moment of inertia of the rod about an axis through its center of mass,

      perpendicular to the plane of the motion, is ml2/3, prove that the angular velocity of

      the rod when it makes an angle θ with the vertical, is

dθ/dt = {6g(cosθ0 – cosθ)/l(1 + 3sin2θ)}1/2.

4-2  Show that the center of mass of a uniform solid hemisphere of radius R is 3R/8 above

      the center of its plane surface.

4-3  Show that the moment of inertia of a uniform solid sphere of radius R and mass M

      about a diameter is 2MR2/5.

4-4  A uniform solid sphere of radius r can roll, under gravity, on the inner surface of a

       perfectly rough spherical surface of radius R.  The motion is in a vertical plane.

      At time t during the motion, we have:

  g ⇓

   ω                            
 θ     
        R

              •
      mg

        rolling sphere, radius r       

      Show that

d2θ/dt2 + [5g/(7(R – r))]sinθ = 0.

      As a preliminary result, show that rω = (R – r)(dθ/dt) for rolling motion without
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      slipping.

4-5  A particle of mass m hangs on an inextensible string of length l and negligible

      mass.  The string is attached to a fixed point O.  The mass oscillates in a vertical plane

      under gravity.  At time t, we have
      O

       l         θ                     ω = dθ/dt

    Tension, T
       m

    mg

      Show that

      1)  d2θ/dt2 + (g/l)sinθ = 0.

      2)  ω2 = (2g/l)[cosθ – cosθ0], where θ0 is the initial angle of the string with respect

          to the vertical, so that ω = 0 when θ = θ0.  This equation gives the angular velocity

          in any position.

4-6  Let l0 be the natural length of an elastic string fixed at the point O.  The string has a

      negligible mass.  Let a mass m be attached to the string, and let it stretch the string

      until the equilibrium position is reached.  The tension in the string is given by Hooke’s

      law:

      Tension, T = λ(extension)/original length, where λ is a constant for a given material.

      The mass is displaced vertically from its equilibrium position, and oscillates under
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      gravity.  We have

     O         Equilibrium               General position

        g ⇓

  l0                       yE   

    y(t)
      TE

      mg
        T

        mg  

      Show that the mass oscillates about the equilibrium position with simple harmonic  

     motion, and that

 y(t) = l0 + (mgl0/λ){1 – cos[t √λ/ml0]} (starts with zero velocity at y(0) = l0)

4-7  A dynamical system is in stable equilibrium if the system tends to return to its original

      state if slightly displaced.  A system is in a position of equilibrium when the height of

      its center of gravity is a maximum or a minimum.  Consider a rod of mass m with one

      end resting on a perfectly smooth vertical wall OA and the other end on a perfectly

      smooth inclined plane, OB.  Show that, in the position of equilibrium

   cotθ = 2tanφ, where the angles are given in the diagram:



N E W T O N I A N  D Y N A M I C S 92

   g  ⇓
          A     Center of gravity

                                      •    
                           θ                           B
    y(θ)                             

 φ (fixed angle)
O

      Find y = f(θ), and show, by considering derivatives, that this is a state of unstable

      equilibrium.

4-8  A particle A of mass mA = 1 unit, scatters elastically from a stationary particle B of mass

      mB = 2 units.  If A scatters through an angle θ, show that the ratio of the kinetic

      energies of A, before (TA) and after (TA´) scattering is

       (TA/TA´) = (–cosθ + √3 + cos2θ)2.

      Sketch the form of the variation of this ratio with angle in the range 0 ≤ θ ≤ π.

      (This problem is met in practice in low-energy neutron-deuteron scattering).



5

INVARIANCE PRINCIPLES AND CONSERVATION LAWS

5.1  Invariance of the potential under translations and the conservation of

        linear momentum

The equation of motion of a Newtonian particle of mass m moving along the x-axis

under the influence of a force Fx is

md2x/dt2 = Fx . (5.1)

If Fx can be represented by a potential V(x) then

md2x/dt2 = – dV(x)/dx . (5.2)

In the special case in which the potential is not a function of x, the equation of motion

becomes

md2x/dt2 = 0,

or

md(vx)/dt = 0. (5.3)

Integrating this equation gives

mvx = constant. (5.4)

We see that the linear momentum of the particle is constant if the potential is

independent of the position of the particle.

5.2  Invariance of the potential under rotations and the conservation of angular

        momentum
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Let a Newtonian particle of mass m move in the plane about a fixed origin, O,

under the influence of a force F.  The equations of motion, in the x-and y-directions, are

            md2x/dt2 = Fx and md2y/dt2 = Fy.           (5.5 a,b)

If the force can be represented by a potential V(x, y) then we can write

            md2x/dt2 = –∂V/∂x and md2y/dt2 = –∂V/∂y .           (5.6 a,b)

The total differential of the potential is

         dV = (∂V/∂x)dx + (∂V/∂y)dy.

Let a transformation from Cartesian to polar coordinates be made using the standard linear

equations

           x = rcosφ and y = rsinφ .

The partial derivatives are

∂x/∂φ = –rsinφ = –y, ∂x/∂r = cosφ, ∂y/∂φ = rcosφ= x, and ∂y/∂r = sinφ .

We therefore have

             ∂V/∂φ = (∂V/∂x)(∂x/∂φ) + (∂V/∂y)(∂y/∂φ) (5.7)

             = (∂V/∂x)(–y) + (∂V/∂y)(x)

             = yFx + x(–Fy)

             = m(yax – xay)  (ax and ay are the components of acceleration)

             = m(d/dt)(yvx – xvy)  (vx and vy are the components of velocity).

If the potential is independent of the angle φ then

 ∂V/∂φ = 0, (5.8)

in which case
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 m(d/dt)(yvx – xvy) = 0

and therefore

     m(yvx – xvy) = a constant. (5.9)

The quantity on the left-hand side of this equation is the angular momentum (ypx – xpy) of

the mass about the fixed origin.  We therefore see that if the potential is invariant under

rotations obout the origin (independent of the angle φ), the angular momentum of the

mass  about the origin is conserved.

In Chapter 9, we shall treat the subject of invariance principles and conservation

laws in a more general way, using arguments that involve the Lagrangians and

Hamiltonians of dynamical systems.



6

 EINSTEINIAN DYNAMICS

6.1  4-momentum and the energy-momentum invariant

     In Classical Mechanics, the concept of momentum is important because of its rôle as an

invariant in an isolated system.  We therefore introduce the concept of 4-momentum in

Relativistic Mechanics in order to find possible Lorentz invariants involving this new

quantity.  The contravariant 4-momentum is defined as:

          Pµ = mVµ (6.1)

where m is the mass of the particle. (It is a Lorentz scalar — the mass measured in the rest

frame of the particle).

     The scalar product is

      PµPµ = (mc)2. (6.2)

Now,

         Pµ = [mγc, mγvN] (6.3)

therefore,

     PµPµ = (mγc)2 – (mγvN)2.

Writing

          M = γm, the relativistic mass, we obtain

      PµPµ = (Mc)2 – (MvN)2 = (mc)2. (6.4)

Multiplying throughout by c2 gives

              M2c4 – M2vN
2c2 = m2c4. (6.5)
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The quantity Mc2 has dimensions of energy; we therefore write

         E = Mc2, (6.6)

the total energy of a freely moving particle.

This leads to the fundamental invariant of dynamics

              c2PµPµ = E2 – (pc)2 = Eo2 (6.7)

where

           Eo = mc2 is the rest energy of the particle, and p is its relativistic 3-momentum.

     The total energy can be written:

          E = γEo = Eo + T, (6.8)

where

         T = Eo(γ - 1), (6.9)

the relativistic kinetic energy.

     The magnitude of the 4-momentum is a Lorentz invariant

  |Pµ| = mc. (6.10)

The 4- momentum transforms as follows:

     P´µ = LPµ. (6.11)

6.2  The relativistic Doppler shift

For relative motion along the x-axis, the equation P´µ = LPµ is equivalent to the equations

      E´ =   γE – βγcpx (6.12)

and,

  cp´x = –βγE +  γcpx. (6.13)
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     Using the Planck-Einstein equations E = hν and E = pxc for photons, the energy

equation becomes

         ν´ = γν – βγν

               = γν(1 – β)

               =  ν(1 – β)/(1 – β2)1/2

               =  ν{(1 – β)/(1 + β)}1/2. (6.14)

This is the relativistic Doppler shift for photons of the frequency ν´, measured in an

inertial frame (primed) in terms of the frequency ν measured in another inertial frame.

6.3  Relativistic collisions and the conservation of 4-momentum

Consider the interaction between two particles, 1 and 2, to form two particles, 3

and 4.  (3 and 4 are not necessarily the same as 1 and 2).  The contravariant 4-momenta

are P i
µ :

                           Before                                   After                                    
                                                                        3          P3

µ                            
                     P1

µ                    P2
µ                                 θ                               

                                                                                                                    
                     1                                                                                                
                                                 2                                  φ                               
                                                                        4                                              
                                                                                       P4

µ                          

                                              1 + 2    →     3 + 4   

All experiments are consistent with the fact that the 4-momentum of the system is

conserved.  We have, for the contravariant 4-momentum vectors of the interacting

particles,
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       P1
µ + P2

µ     =     P3
µ + P4

µ (6.15)
                  ______              ______
                        ↑                         ↑        
          initial “free” state    final “free” state

and a similar equation for the covariant 4-momentum vectors,

      P1µ + P2µ      =     P3µ + P4µ . (6.16)

If we are interested in the change P1
µ → P3

µ , then we require

P1
µ – P3

µ = P4
µ – P2

µ (6.17)

and

P1µ – P3µ = P4µ – P2µ . (6.18)

Forming the invariant scalar products, and using PiµPi
µ = (Ei

0/c)2, we obtain

(E1
0/c)2 – 2(E1E3/c

2 – p1⋅p3) + (E3
0/c)2

       =  (E4
0/c)2 – 2(E2E4/c

2 – p2⋅p4) + (E2
0/c)2 . (6.19)

Introducing the scattering angles, θ and φ, this equation becomes

E1
0 2 – 2(E1E3 – c2p1p3cosθ) + E3

0 2 = E2
0 2 – 2(E2E4 – c2p2p4cosφ) + E4

0 2 .

If we choose a reference frame in which particle 2 is at rest (the LAB frame), then

p2 = 0 and E2 = E2
0 , so that

E1
0 2 – 2(E1E3 – c2p1p3cosθ) + E3

0 2 = E2
0 2 – 2E2

0E4 + E4
0 2 . (6.20)

The total energy of the system is conserved, therefore

E1 + E2 = E3 + E4 = E1 + E2
0  (6.21)

or

        E4 = E1 + E2
0 – E3



E I N S T E I N I A N  D Y N A M I C S 100

Eliminating E4 from the above “scalar product’ equation gives

E1
0 2 – 2(E1E3 – c2p1p3cosθ) + E3

0 2 = E4
0 2 – E2

0 2 – 2E2
0(E1 – E3) . (6.22)

This is the basic equation for all interactions in which two relativistic entities in the initial

state interact to give two relativistic entities in the final state.  It applies equally well to

interactions that involve massive and massless entities.  

6.3.1  The Compton effect

The general method discussed in the previous section can be used to provide an

exact analysis of Compton’s famous experiment in which the scattering of a photon by a

stationary, free electron was studied.  In this example, we have

E1 = Eph (the incident photon energy), E2 = Ee
0 (the rest energy of the stationary

electron, the “target”), E3 = Eph´ (the energy of the scattered photon), and E4 = Ee´ (the

energy of the recoilling electron).  The “rest energy” of the photon is zero:

                                                                        Eph´                                      
                                                                                          θ                         
                        Eph = pphc               Ee

0                                                           
                                        >                                                                            
                                                                                                                      
                                                                                                                     

                                                                             Ee´                                    

The general equation (6.22), is now

0 – 2(EphEph´ – EphEph´cosθ) = Ee
0 2 – 2Ee

0(Eph + Ee
0 – Eph´) + Ee

0 2 (6.23)

or

  –2EphEph´(1 – cosθ) = –2Ee
0(Eph - Eph´)

so that
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       Eph – Eph´ = EphEph´(1 – cosθ)/Ee
0 . (6.24)

Compton measured the energy-loss of the photon on scattering and its cosθ-dependence.

6.4  Relativistic inelastic collisions

We shall consider an inelastic collision between a particle 1 and a particle 2

(initially at rest) to form a composite particle 3.  In such a collision, the 4-momentum is

conserved (as it is in an elastic collision) however, the kinetic energy is not conserved.

Part of the kinetic energy of particle 1 is transformed into excitation energy of the

composite particle 3.  This excitation energy can take many forms — heat energy,

rotational energy, and the excitation of quantum states at the microscopic level.  

The inelastic collision is as shown:

                                           Before                     After                                   
                                                                                                                   

                                   1                  2                   3                                      
                                                                                                                    
                                                                                                                     

                                       p1         p2 = 0                    p3                                  
                                                                                                                    

Rest energy:     E1
0            E2

0                  E3
0

Total energy:   E1             E2 = E2
0          E3

3-momentum:  p1            p2 = 0            p3

Kinetic energy: T1           T2 = 0            T3   

In this problem, we shall use the energy-momentum invariants associated with each

particle, directly:

i)    E1
2 – (p1c)2 = E1

0 2 (6.25)

ii)   E2
2              = E2

0 2 (6.26)

iii)  E3
2 – (p3c)2 = E3

0 2. (6.27)
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The total energy is conserved, therefore

     E1 + E2 = E3 = E1 + E2
0 . (6.28)

Introducing the kinetic energies of the particles, we have

(T1 + E1
0) + E2

0 = T3 + E3
0 . (6.29)

The 3-momentum is conserved, therefore

 p1 + 0 = p3 . (6.30)

Using

      E3
0 2 = E3

2 – (p3c)2, (6.31)

we obtain

     E3
0 2 = (E1 + E2

0)2 – (p3c)2

=  E1
2 + 2E1E2

0 + E2
0 2 – (p1c)2

= E1
0 2 + 2E1E2

0 + E2
0 2

= E1
0 2 + E2

0 2 + 2(T1 + E1
0)E2

0 (6.32)

or

   E3
0 2 = (E1

0 + E2
0)2 + 2T1E2

0    (E3
0 > E1

0 + E2
0). (6.33)

Using T1 = γ1E1
0 – E1

0, where γ1 = (1 – β1
2)–1/2 and β1 = v1/c, we have

   E3
0 2 = E1

0 2 + E2
0 2 + 2γ1E1

0E2
0 . (6.34)

If two identical particles make a completely inelastic collision then

   E3
0 2 = 2(γ1 + 1)E1

0 2. (6.35)

6.5  The Mandelstam variables

In discussions of relativistic interactions it is often useful to introduce additional

Lorentz invariants that are known as Mandelstam variables.  They are, for the special case
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 of two particles in the initial and final states (1 + 2 → 3 + 4):

          s = (P1
µ + P2

µ)[P1µ + P2µ], the total 4-momentum invariant

            = ((E1 + E2)/c, (p1 + p2))[(E1 + E2)/c, –(p1 + p2)]

            = (E1 + E2)
2/c2 – (p1 + p2)

2 (6.36)

            → Lorentz invariant,

         t = (P1
µ – P3

µ)[P1µ – P3µ], the 4-momentum transfer (1→3) invariant

            = (E1 – E3)
2/c2 – (p1 – p3)

2 (6.37)

          → Lorentz invariant,

and

`        u = (P1
µ – P4

µ)[P1µ – P4µ], the 4-momentum transfer (1→4) invariant

            = (E1 – E4)
2/c2 – (p1 – p4)

2 (6.38)

          → Lorentz invariant.

Now,

       sc2 = E1
2 + 2E1E2 + E2

2 – (p1
2 + 2p1⋅p2 + p2

2)c2

              = E1
0 2 + E2

0 2 + 2E1E2 – 2p1⋅p2c
2

             = E1
0 2 + E2

0 2 + 2(E1, p1c)[E2, –p2c]. (6.39)
            _____________

                                                                         ↑    
              Lorentz invariant    

The Mandelstam variable sc2 has the same value in all inertial frames.  We therefore

evaluate it in the LAB frame, defined by the vectors

[E1
L, p1

Lc] and [E2
L = E2

0, –p2
Lc = 0], (6.40)
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so that

     2(E1
LE2

L – p1
L⋅p2

Lc2) = 2E1
LE2

0, (6.41)

and

        sc2 = E1
0 2 + E2

0 2 + 2E1
LE2

0. (6.42)

We can evaluate sc2 in the center-of -mass (CM) frame, defined by the condition

      p1
CM + p2

CM = 0 (the total 3-momentum is zero):

        sc2 = (E1
CM + E2

CM)2. (6.43)     

This is the square of the total CM energy of the system.

6.5.1  The total CM energy and the production of new particles

The quantity c√s is the energy available for the production of new particles, or for

exciting the internal structure of particles.  We can now obtain the relation between the

total CM energy and the LAB energy of the incident particle (1) and the target (2), as

follows:

         sc2 = E1
0 2 + E2

0 2 + 2E1
LE2

0 = (E1
CM + E2

CM)2 = W2, say. (6.44)

Here, we have evaluated the left-hand side in the LAB frame, and the right-hand side in

the CM frame!

At very high energies, c√s >> E1
0 and E2

0, the rest energies of the particles in the

initial state, in which case,

        W 2 = sc2 ≈ 2E2
LE2

0. (6.45)

The total CM energy, W, available for the production of new particles therefore depends

on the square root of the incident laboratory energy.  This result led to the development

of colliding, or intersecting, beams of particles (such as protons and anti-protons) in order
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to produce sufficient energy to generate particles with rest masses typically 100 times the

rest mass of the proton (~ 109 eV).

6.6  Positron-electron annihilation-in-flight

A discussion of the annihilation-in-flight of a relativistic positron and a stationary

electron provides a topical example of the use of relativistic conservation laws.  This

process, in which two photons are spontaneously generated, has been used as a source of

nearly monoenergetic high-energy photons for the study of nuclear photo-disintegration

since 1960.  The general result for a 1 + 2 → 3 + 4 interaction, given in section 6. 3,

provides the basis for an exact calculation of this process; we have

E1 = Epos (the incident positron energy), E2 = Ee
0 (the rest energy of the stationary

electron), E3 = Eph1 (the energy of the forward-going photon), and E4 = Eph2 (the energy of

the backward-going photon).  The rest energies of the positron and the electron are

equal.  The general equation (6.22), now reads

Ee
02 – 2{EposEph1 – cpposEph1(cosθ)} + 0 = 0 – Ee

02 –2Ee
0(Epos – Eph1) (6.46)

therefore

Eph1{Epos + Ee
0 –[Epos

2 – Ee
02]1/2 cosθ} = (Epos + Ee

0)Ee
0,

giving

      Eph1 = Ee
0/(1 – kcosθ) (6.47)

where

          k = [(Epos – Ee
0)/(Epos + Ee

0)]1/2.
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The maximum energy of the photon, Eph1
max occurs when θ = 0, corresponding to

motion in the forward direction; its energy is

   Eph1
max = Eoe/(1 – k). (6.48)

If, for example, the incident total positron energy is 30 MeV, and Ee
0 = 0.511MeV

then

  Eph1
max = 0.511/[1 – (29.489/30.511)1/2] MeV

            = 30.25 MeV.

The forward-going photon has an energy equal to the kinetic energy of the incident

positron (T1 = 30 – 0.511 MeV) plus about three-quarters of the total rest energy of the

positron-electron pair (2Ee
0 = 1.02 MeV).  Using the conservation of the total energy of

the system, we see that the energy of the backward-going photon is about 0.25 MeV.

The method of positron-electron annihilation-in-flight provides one of the very few ways of

generating nearly monoenergetic photons at high energies.

PROBLEMS

6-1  A particle of rest energy E0 has a relativistic 3-momentum p and a relativistic kinetic

      energy T.  Show that

      1) |p| = (1/c)(2TE0)1/2{1 + (T/2E0)}1/2,

      and

      2) |v| = c{1 + [E02/T(T + 2E0)]}–1/2, where v is the 3-velocity.

6-2  Two similar relativistic particles, A and B, each with rest energy E0, move towards

      each other in a straight line.  The constant speed of each particle , measured in the
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      LAB frame is V = βc.  Show that their total energy, measured in the rest frame of A, is

E0(1 + β2)/(1 – β2).

6-3  An atom of rest energy EA
0 is initially at rest.  It completely absorbs a photon of energy

      Eph, and the excited atom of rest energy EA
0* recoils freely.  If the excitation energy of

      the atom is given by

     Eex = EA
0* – EA

0, show that

     Eex = –EA
0 + EA

0{1 + (2Eph/EA
0)}1/2, exactly.

If, as is often the case, Eph « EA
0, show that the recoil energy of the atom is

 Erecoil ≈ Eph
2/2EA

0.

Explain how this approximation can be deduced using a Newtonian-like analysis.

6-4  A completely inelastic collision occurs between particle 1 and particle 2 (initially at

      rest ) to form a composite particle, 3.  Show that the speed of 3 is

v3 = v1/{1 + (E2
0/E1)},

      where v1 and E1 are the speed and the total energy of 1, and E2
0 is the rest energy of 2.

6-5  Show that the minimum energy that a γ-ray must have to just break up a deuteron

      into a neutron and a proton is γmin ≈ 2.23 MeV, given

Eneut
0 = 939.5656 MeV,

Eprot
0 = 938.2723 MeV, and

Edeut
0 = 1875.6134 MeV.

6-6  In a general relativistic collision:

1 + 2 → n-particles
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         → (3 + 4 + ...m) + (m+1, m+2. + ...n)

      where the particles 3 → m are “observed”, and the particles m+ 1 → n are

      “unobserved”.  We have

E1 + E2 = (E3 + E4 + ...Em) + (Em+1 + Em+2 + ...En), the total energy,
            = Eobs + Eunobs

      and

           p1 + p2 = pobs + punobs.

      If Wunobs/c2 is the unobserved (missing) mass of the particles m+1 to n, show that, in

      the LAB frame

          (Wunobs)2 = (E1
L + E2

0 – ∑[i = 3,m] Ei
L)2 – (p1

Lc – c∑[i = 3,m] pi
L)2.

      This is the missing (energy)2 in terms of the observed quantities.  This is the principle

      behind the so-called “missing-mass spectrometers” used in Nuclear and Particle

      Physics.

6.7  If the contravariant 4-force is defined as

       Fµ = dPµ/dτ = [f0, f] where τ is the proper time, and Pµ is the

      contravariant 4-momentum, show that

                FµVµ = 0, where Vµ is the covariant 4-velocity.

      (The 4- force and the 4-velocity are orthogonal).

      Obtain dE/dt in terms of γ, v, and f.



7

NEWTONIAN GRAVITATION

We come now to one of the highlights in the history of intellectual endeavor,

namely Newton’s Theory of Gravitation.  This spectacular work ranks with a handful of

masterpieces in Natural Philosophy — the Galileo-Newton Theory of Motion, the Carnot-

Clausius-Kelvin Theory of Heat and Thermodynamics, Maxwell’s Theory of

Electromagnetism, the Maxwell-Boltzmann-Gibbs Theory of Statistical Mechanics,

Einstein’s Theories of Special and General Relativity, Planck’ s Quantum Theory of

Radiation, and the Bohr-deBroglie-Schrödinger-Heisenberg Quantum Theory of Matter.

Newton’s most significant ideas on Gravitation were developed in his early

twenties at a time when the University of Cambridge closed down because of the Great

Plague.  He returned to his home, a farm at Woolsthorpe-by-Colsterworth, in Lincolnshire.

It is a part of England dominated by vast, changing skies; a region buffeted by the winds

from the North Sea.  The thoughts of the young Newton naturally turned skyward — there

was little on the ground to stir his imagination except, perhaps, the proverbial apple tree

and the falling apple.

Newton’s work set us on a new course.

Before discussing the details of the theory, it will be useful to give an overview

using the simplest model, consistent with logical accuracy.  In this way, we can appreciate

Newton’s radical ideas, and his development of the now standard “Scientific Method “ in

which a crucial interplay exists between the results of observations and mathematical
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models that best account for the observations.  The great theories are often based upon

relatively small numbers of observations.  The uncovering of the Laws of Nature requires

deep and imaginative thoughts that go far beyond the demonstration of mathematical

prowess.

Newton’s development of Differential Calculus in the late 1660’s was strongly

influenced by his attempts to understand, analytically, the empirical ideas concerning

motion that had been put forward by Galileo.  In particular, he investigated the analytical

properties of motion in curved paths.  These properties are required in his Theory of

Gravitation.  We shall consider motion in 2-dimensions.

7.1  Properties of motion along curved paths in the plane

The velocity of a point in the plane is a vector, drawn at the point, such that its

component in any direction is given by the rate of change of the displacement, in that

direction.  Consider the following diagram

                              y                                                   B                                       
                                                                                                                          
                                                                                                                          

                     y + ∆y                                           Q                                              
                                                                PQ                                                       
                              y                          P                        ∆y                                    
                                        A                           ∆x                                                  
                                                                                                                          

                               O                                                           x                             
                                                            x            x + ∆x                                     
                                                            t             t + ∆t                                    

P and Q are the positions of a point moving along the curved path AB.  The coordinates are

P[x, y] at time t and Q[x + ∆x, y + ∆y] at time t + ∆t.  The components of the velocity of

the point are
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        lim(∆t→0) ∆x/∆t = dx/dt = vx,

and

        lim(∆t→0) ∆y/∆t = dy/dt =vy.

 ∆x and ∆y are the components of the vector PQ.  The velocity is therefore

 lim(∆t→0) chordPQ/∆t .

We have

  lim(Q→P) chord PQ/∆s = 1,

where s is the length of the curve AP and ∆s is the length of the arc PQ.

The velocity can be written

 lim(∆t→0) (chordPQ/∆s)(∆s/∆t) = ds/dt. (7.1)

The directionof the instantaneous velocity at P is along the tangent to the path at P.

The x- and y-components of the acceleration of P are

 lim(∆t→0) ∆vx/∆t = dvx/dt = d2x/dt2 ,

and

lim(∆t→0) ∆vy/∆t = dvy/dt = d2y/dt2.

The resultant acceleration is not directed along the tangent at P.

Consider the motion of P along the curve APQB:

                               y                                             B                                      
                                                                                  v + ∆v                     
                                                                          Q•                                   
                                                                                ∆ψ                                   
                                                                                                                

                                                     P  •    v                                                    
                                      A                                                                            
                               O                                                          x                         
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The change ∆v in the vector v is shown in the diagram:

       v + ∆v          ∆ψ       ∆v

                                                           v

The vector ∆v can be written in terms of two components, a, perpendicular to the

direction of v, and b, along the direction of v + ∆v:  The acceleration is

lim(∆t→0) ∆v/∆t,

The component along a is

        lim(∆t→0) ∆a/∆t = lim(∆t→0) v∆ψ/∆t = lim(∆t→0) (v∆ψ/∆s)(∆s/∆t)

             = v2(dψ/ds) = v2/ρ (7.2)

where

         ρ = ds/dψ, is the radius of curvature at P. (7.3)

The direction of this component of the acceleration is along the inward normal at P.

If the particle moves in a circle of radius R then its acceleration towards the center is v2/R,

a result first given by Newton.

The component of acceleration along the tangent at P is dv/dt = v(dv/ds) = d2s/dt2.

7.2  An overview of Newtonian gravitation

Newton considered the fundamental properties of motion, embodied in his three

Laws, to be universal in character — the natural laws apply to all motions of all particles

throughout all space, at all times.  Such considerations form the basis of a Natural

Philosophy.  In the Principia, Newton wrote ..”I began to think of gravity as extending to
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the orb of the Moon...”  He reasoned that the Moon, in its steady orbit around the Earth, is

always accelerating towards the Earth!  He estimated the acceleration as follows:

If the orbit of the Moon is circular (a reasonable assumption), the dynamical problem is

                                                                                                                            
                                                                                                                             

                                                                        v                                                    
                                                          aR       •  Moon                                            
                                    Earth              R                   The acceleration of the Moon   
                                                                                towards the Earth is                 
                                                                                              |aR|= v2/R                 
                                                                                                                               
                                                                                                                                
                                                                                                                                
                                                                                                                                 

Newton calculated v = 2πR/T, where R =240,000 miles, and T = 27.4 days, the period,

so that

                                 aR = 4π 2R/T2 ≈ 0.007 ft/sec2. (7.4)

He knew that all objects, close to the surface of the Earth, accelerate towards the Earth

with a value determined by Galileo, namely g ≈ 32ft/sec2.  He was therefore faced with

the problem of explaining the origin of the very large difference between the value of the

acceleration aR, nearly a quarter of a million miles away from Earth, and the local value, g.

He had previously formulated his 2nd Law that relates force to acceleration, and

therefore he reasoned that the difference between the accelerations, aR and g, must be

associated with a property of the force acting between the Earth and the Moon —  the

force must decrease in some unknown way.

Newton then introduced his conviction that the force of gravity between objects is

a universal force; each planet in the solar system interacts with the Sun via the same basic
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force, and therefore undergoes a characteristic acceleration towards the Sun.  He

concluded that the answer to the problem of the nature of the gravitational force must be

contained in the three empirical Laws of Planetary Motion announced by Kepler, a few

decades before.  The three Laws are

1)  The planets describe ellipses about the Sun as focus,

2)  The line joining the planet to the Sun sweeps out equal areas in equal intervals

                 of time,

and

3)  The period of a planet is proportional to the length of the semi-major axis of

                 the orbit, raised to the power of 3/2.

These remarkable Laws were deduced after an exhaustive study of the motion of

the planets, made over a period of about 50 years by Tycho Brahe and Kepler.  

The 3rd Law was of particular interest to Newton because it relates the square of

the period to the cube of the radius for a circular orbit:

        T2  ∝ R3  (7.5)

or

        T2 = CR3,

where C is a constant.  He replaced the specific value of (R/T2) that occurs in the

expression for the acceleration of the Moon towards the Earth with the value obtained

from Kepler’s 3rd Law and obtained a value for the acceleration aR:

       aR = v2/R = 4π 2R/T2 (Newton) (7.6)
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but

    R/T2 = 1/CR2 (Kepler) (7.7)

therefore

      aR = 4π 2(R/T2)

          = (4π 2/C)(1/R2) (Newton). (7.8)

The acceleration of the Moon towards the Earth varies as the inverse square  of the

distance between them.

Newton was now prepared to develop a general theory of gravitation.  If the acceleration

of a planet towards the Sun depends on the inverse square of their separation, then the

force between them can be written, using the 2nd Law of Motion, as follows

F = Mplanet aplanet = Mplanet(4π 2/C)(1/R2). (7.9)

At this point, Newton introduced the first symmetry argument in Physics: if the

planet experiences a force from the Sun then the Sun must experience the same force

from the planet (the 3rd Law of Motion!).  He therefore argued that the expression for the

force between the planet and the Sun must contain, explicitly, the masses of the planet

and the Sun.  The gravitational force FG between them therefore has the form

FG = GMSunMplanet/R
2, (7.10)

where G is a constant.

Newton saw no reason to limit this form to the Sun-planet system, and therefore

he announced that for any two spherical masses, M1 and M2, the gravitational force

between them is given by
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         FG = GM1M2/R
2, (7.11)

where G is a universal constant of Nature.

All evidence points to the fact that the gravitational force between two masses is

always attractive.

Returning to the Earth-Moon system, the force on the Moon (mass MM) in orbit is

         FR = GMEMM/R2 = MMaR (7.12)

so that

         aR = GME/R2, which is independent of MM.  (The cancellation of the

mass MM in the expressions for FR involves an important point that is discussed later in the

section 8.1).

At the surface of the Earth, the acceleration, g, of a mass M is essentially constant.  It does

not depend on the value of the mass, M, thus

          g = GME/RE
2 , where RE is the radius of the Earth. (7.13)

(It took Newton many years to prove that the entire mass of the Earth, ME, is equivalent to

a point mass, ME, located at the center of the Earth when calculating the Earth’s

gravitational interaction with a mass on its suface.  This result depends on the exact 1/R2-

nature of the force).

The ratio of the accelerations, aR/g, is therefore

      aR/g = (GME/R2)/(GME/RE
2) = (RE/R)2. (7.14)

Newton knew from observations that the ratio of the radius of the Earth to the radius of

the Moon’s orbit is about 1/60, and therefore he obtained
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     aR/g ≈ (1/60)2 = 1/3600.

so that

        aR = g/3600 = (32/3600)ft/sec2 = 0.007...ft/sec2.

In one of the great understatements of analysis, Newton said, in comparing this result with

the value for aR that he had deduced using aR = v2/R, ..”that it agreed pretty nearly”..The

discrepancy came largely from the errors in the observed ratio of the radii.

7.3  Gravitation: an example of a central force

Central forces, in which a particle moves under the influence of a force that acts on

the particle in such a way that it is always directed towards a single point — the center of

force — form an important class of problems .  Let the center of force be chosen as the

origin of coordinates:

                                                                                       v                                    
                                                                                                   m                         
                                                                                                  • P[r, φ]             
                                                                                                  F                         
                                                                    r                                                       
                                                                                                                            

    Center of Force                                   φ                                                          
                                                                                                                            

                           O  •                                                                    x                    
                                                                                                                            

The description of particle motion in terms of polar coordinates (Chapter 2), is well-suited

to the analysis of the central force problem.  For general motion, the acceleration of a

point P[r, φ] moving in the plane has the following components in the r- and “φ”-

directions

         ar = ur(d2r/dt2 – r(dφ/dt)2), (7.15)
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and

         aφ = uφ(r(d
2φ/dt2) + 2(dr/dt)(dφ/dt)), (7.16)

where ur and uφ are unit vectors in the r- and φ-directions.

In the central force problem, the force F is always directed towards O, and

therefore the component aφ, perpendicular to r, is always zero:

         aφ = uφ(r(d
2φ/dt2) + 2(dr/dt)(dφ/dt) = 0, (7.17)

and therefore

                      r(d2φ/dt2) + 2(dr/dt)(dφ/dt) = 0. (7.18)

This is the equation of motion of a particle moving under the influence of a central force,

centered at O.

If we take the Sun as the (fixed) center of force, the motion of a planet moving

about the Sun is given by this equation.  The differential equation can be solved by making

the substitution

        ω = dφ/dt, (7.19)

giving

     rdω/dt + 2ω(dr/dt) = 0, (7.20)

or

                 rdω = –2ωdr.

Separating the variables, we obtain

             dω/ω = –2dr/r.

Integrating, gives
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               logeω = –2loger + C (constant),

therefore

          loge(ωr2) = C.

Taking antilogs gives

       r2ω = r2(dφ/dt) = eC = k, a constant. (7.21)

7.4  Motion under a central force and the conservation of angular momentum

The above solution of the equation of motion of a particle of mass m, moving under

the influence of a central force at the origin, O, can be multiplied throughout by the mass

m to give

      mr2(dφ/dt) = mk (7.22)

or

   mr(r(dφ/dt)) = K, a constant for a given mass, (7.23)

We note that r(dφ/dt) = vφ, the component of velocity perpendicular to r, therefore

angular momentum of m about O = r(mvφ) = K, a constant of the motion for a 

        central force.

7.5  Kepler’s 2nd law explained

The equation r2(dφ/dt) = constant, K, can be interpreted in terms of an element

of area swept out by the radius vector, r, as follows                                                                              
                                                                                                                  

                                    ∆A                     r∆φ                               (r + ∆r)∆φ
                                                                                                                    

                                            r + ∆r                                                            
                                     ∆φ                              r                                              
                                                                       φ                                          
                              O                                                               x              
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From the diagram, we see that the following inequality holds

r2∆φ/2 < ∆A < (r + ∆r)2∆φ/2

or

     r2/2 < ∆A/∆φ < (r + ∆r)2/2.

When ∆φ → 0, r + ∆r → r, so that, in the limit,

dA/dφ = r2/2.

The element of area is therefore

     dA = r2dφ/2.

Twice the time rate of change of this element is therefore

          2dA/dt = r2(dφ/dt). (7.24)

We recognize that this expression is  equal to k, the constant that occurs in the solution of

the differential equation of motion for a central path.  The radius vector r therefore

sweeps out area at a constant rate.  This is Kepler’s 2nd Law of Planetary Motion; it is seen

to be a direct consequence of the fact that the gravitational attraction between the Sun

and a planet is a central force problem.

7.6  Central orbits

A central orbit must be a plane curve (there is no force out of the plane), and the

moment of the velocity r2(dφ/dt), about the center of force, must be a constant of the

motion.  The moment can be written in three equivalent ways:

                              rdφ/dt          v                                        v      y                   dy/dy          v
                                                     dr/dt                                                                    
                             r            Fc                                      Fc                                         Fc    dx/dt
               O                  φ          x        O                      p           x    O                                x



N E W T O N I A N  G R A V I T A T I O N 121

The moment of the velocity about O is then

r(r(dφ/dt)                  =               pv                  =      x(dy/dt) – y(dx/dt)

        = a constant, h, say. (7.25)

The result r2(dφ/dt) = constant for a central force can be derived in the following

alternative way:

The time derivative of r2(dφ/dt) is

        (d/dt)(r2(dφ/dt)) = r2(d2φ/dt2) + (dφ/dt)2r(dr/dt) (7.26)

If this equation is divided throughout by r then

 (1/r)(d/dt)(r2(dφ/dt)) = r(d2φ/dt2) + 2(dr/dt)(dφ/dt) (7.27)

                        = the transverse acceleration

            = 0 for a central force. (7.28)

Integrating then gives

        r2(dφ/dt) = constant for a central force. (7.29)

7.6.1  The law of force in [p, r] coordinates

There are advantages to be gained in using a new set of coordinates — [p, r]

coordinates — in which a point P in the plane is defined in terms of the radial distance r

from the origin, and the perpendicular distance p from the origin onto the tangent to the

path at P.  (See following diagram).

Let a particle of unit mass move along a path under the influence of a central force

directed towards a fixed point, O.  Let ac be the central acceleration of the unit mass at P,
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let the perpendicular distance from O to the tangent at P be p, and let the instantaneous

radius of curvature of the path at the point P be ρ:

                                                                           Central orbit                                     
                                                                             v                                                      
                                                                                                                                    

                     Component of acceleration                  •    P[r, p]                                  
                     along inward normal at P, a⊥                                                                   
                                                                                   α                                             
                                                             ρ                 ac                                               
                                                                       r                                                           
                                                                                     p                                             
                                                                                                                                  

                                Center of Force →  O                                                                
                                                                                                                                    

The component of the central acceleration along the inward normal at P is

        a⊥ = acsinα = v2/ρ = ac(p/r). (7.30)

The  instantaneous radius of curvature is given by

        ρ = r(dr/dp). (Show this!) (7.31)

For all central forces,

       pv = constant = h, (7.32)

therefore

       a⊥ = v2/ρ = (h2/p2)(1/r)(dp/dr) = ac(p/r), (7.33)

so that

        ac = (h2/p3)(dp/dr). (7.34)

This differential equation is the law of force per unit mass given the orbit in [p, r]

coordinates.
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(It is left as a problem to show that given the orbit in polar coordinates, the law of force

per unit mass  is

                                ac = h2u2{u + d2u/dφ2}, where u = 1/r ).                            (7.35)

In order to find the law of force per unit mass (acceleration), given the [p, r]

equation of the orbit, it is necessary to calculate dp/dr.  For example, if the orbit is

parabolic, the [p, r] equation can be obtained as follows

                                                  y               P •                                                    
                     Tangent at P                                                                                 
                                                 Q •                                                                   
                                                          p       r                                                      
                                                                                                                         

                                       Apex , A         •                                       x                 
                                                             F , the Focus                                         
                                                                                                                         
                                                                                                                         
                                                                                                                        

The triangles FAQ and FQP are similar, therefore

       p/a = r/p, where AF = a, (7.36)

giving

      1/p2 = 1/ar, the p-r equation of a parabola. (7.37)

Differentiating this equation, we obtain

       (1/p3)dp/dr = 1/2ar2. (7.38)

The law of acceleration for the parabolic central orbit is therefore

          ac = (h2/p3)dp/dr = (h2/2a)(1/r2) = constant/r2. (7.39)

The instantaneous speed of P is given by the equation v = h/p; we therefore find
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          v = h/√ar. (7.40)

This approach can be taken in discussing central orbits with elliptic and hyperbolic forms.  

Consider the ellipse
                                                      Q                     y                                                          
                                                                                            P                                         
                                                                                                        R                              
                           b                           p1       r1                    r2                                             
                                                                                                   p2                                   
                                                                      O                                                   x             
                                                   F1                                         F2                                       
                                                                                                                                       
                                                                                                                                      
                                                                                                                                        

                                                                                            a                                           

The foci are F1 and F2, the semi-major axis is a, the semi-minor axis is b, the radius vectors

to the point P[r, φ] are r1 and r2 , and the perpendiculars from F1 and F2 onto the tangent

at P are p1 and p2.  

Using standard results from analytic geometry, we have for the ellipse

1)  r1 + r2 = 2a,         (7.41 a-c)

2)      p1p2 = b2, and

3)  angle QPF1 = angle RPF2.

The triangles F1QP and F2RP are similar, and therefore

                 p1/r1 = p2/r2 (7.42)

or

      (p1p2/r1r2)
1/2 = b/{r1(2a – r1)}1/2 = p1/r1

so that

                b2/p1
2 = 2a/r1 – 1. (7.43)



N E W T O N I A N  G R A V I T A T I O N 125

This is the [p, r] equation of an ellipse.

The [p, r] equation for the hyperbola can be obtained using a similar analysis.  The

standard results from analytical geometry that apply in this case are

  1)     p 1p2 = b2,        (7.44 a-c)

  2)  r2 – r1 = 2a, and

  3)  the tangent at P bisects the angle between the focal distances.

(b2 = a2(e2 – 1) where e is the eccentricity (e2 > 1), and 2b2/a is the latus rectum).

We therefore obtain

              b1
2/p1

2 = 2a/r1 + 1. (7.45)

This is the [p, r] equation of an hyperbola.

7.7  Bound and unbound orbits

For a central force, we have the equation for the acceleration in [p, r] form

     (h2/p3)dp/dr = ac. (7.46)

If the acceleration varies as 1/r2, then the form of the orbit is given by separating the

variables, and integrating, thus

         h2 ∫dp/p 3 = k∫dr/r 2, (7.47)

so that

            –h2/2p2 = –k/r, where k is a constant, or

    h2/p2 = 2k/r + C, where the value of C depends on the form of the orbit.

Comparing this form with the general form of the [p, r] equations of conic sections, we see

that the orbit is an ellipse, parabola, or hyperbola depending on the value of C.  If
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C is negative, the orbit is an ellipse,

C is zero, the orbit is a parabola,

and if

C is positive, the orbit is an hyperbola.

The speed  of the particle in a central orbit is given by v = h/p.  If, therefore, the

particle is projected from the origin, O (corresponding to r = r0) with a speed v0, then

     h2/p2 = v0
2 = 2k/r0 + C, (7.48)

so that the orbit is

1)  an ellipse if v0
2 < 2k/r0,        (7.49 a-c)

2)  a parabola if v0
2 = 2k/r0 ,

or

3) an hyperbola if v0
2 > 2k/r0.

The escape velocity, the initial velocity required for the particle to go into an

unbound orbit is therefore given by

   v2
escape = 2k/r0  = 2GME/RE, for a particle launched from the surface of the

Earth.  This condition is, in fact, an energy equation

            (1/2)(m = 1)v2
escape = GME(m = 1)/RE . (7.50)

                                                                                       
                        kinetic energy            potential energy
7. 8  The concept of the gravitational field

Newton was well-aware of the great difficulties that arise in any theory of the

gravitational interaction between two masses not in direct contact with each other.  In the

Principia, he assumes, in the absence of any experimental knowledge of the speed of
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propagation of the gravitational interaction, that the interaction takes place

instantaneously.  However, in letters to other luminaries of his day, he postulated an

intervening agent bewteen two approaching masses — an agent that requires a finite time

to react.  In the early 17th century, the problem of understanding the interaction between

spatially separated objets appeared in a new guise, this time in discussions of the

electromagnetic interaction between charged objects.  Faraday introduced the idea of a

field of force with dynamical properties.  In the Faraday model, an accelerating electric

charge acts as the source of a dynamical electromagnetic field that travels at a finite speed

through space-time, and interacts with a distant charge.  Energy and momentum are

thereby transferred from one charged object to another distant charged object.  

Maxwell developed Faraday’s idea into a mathematical theory — the electromagnetic

theory of light — in which the speed of propagation of light appears as a fundamental

constant of Nature.  His theory involves the differential equations of motion of the electric

and magnetic field vectors; the equations are not invariant under the Galilean

transformation but they are invariant under the Lorentz transformation.  (The discovery of

the transformation that leaves Maxwell’s equations invariant for all inertial observers was

made by Lorentz in 1897).  We have previously discussed the development of the Special

Theory of Relativity by Einstein, a theory in which there is but one universal constant, c,

for the speed of propagation of a dynamical field in a vacuum.  This means that c is not

only the speed of light in free space but also the speed of the gravitational field in the void

between interacting masses.  
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We can gain some insight into the dynamical properties associated with the

interaction between distant masses by investigating the effect of a finite speed of

propagation, c, of the gravitational interaction on Newton’s Laws of Motion.  Consider a

non-orbiting mass M, at a distance R from a mass mass MS, simply falling from rest with an

acceleration a(R) towards MS.  According to Newton’s Theory of Gravitation, the

magnitude of the force on the mass M is

|F(R)| = GMSM/R2 = Ma(R), (7.51)

We therefore have

                 a(R) = GMS/R
2. (7.52)

Let ∆t be the time that it takes for the gravitational interaction to travel the distance R at

the universal speed c, so that

       ∆t = R/c. (7.53)

In the time interval ∆t, the mass M moves a distance, ∆R, towards the mass MS;

                  ∆R = a∆T2/2

           = (GMS/R
2)∆t2/2

           = (GMS/R
2)(R/c)2/2. (7.54)

Consider the situation in which the mass M is in a circular orbit of radius R about

the mass, MS.  Let v(t) be the velocity of the mass M at time t, and v(t + ∆t) its velocity at

t + ∆t, where ∆t is chosen to be the interaction travel time.  Let us consider the motion of

M if there were no mass MS present, and therefore no interaction; the mass M then would

continue its motion with constant velocity v(t) in a straight line.  We are interested in the
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difference in the positions of M at time t + ∆t, with and without the mass MS in place.  We

have, to a good approximation:

                                       M   v(t)                                                                    
                                       •                         • ← “extrapolated position”  (no mass MS)
                                         F(R)       M   •   ∆R                                                    
                                                                   v(t + ∆t)                                      
                                 R              R                                                                       
                                                                                                                      
                                                                                                                       

                                      ⊗  MS                                                                         

The magnitude of the gravitational force, FEX, at the extrapolated position, with MS in

place, is

      FEX = GMSM/(R + ∆R)2 (7.55)

           = (GMSM/R2)(1 + ∆R/R)–2

           ≈ (GMSM/R2)(1 – 2∆R/R), for ∆R << R. (7.56)

Substituting the value of ∆R obtained above, we find

     FEX ≈ GMSM/R2 – (GMSM/Rc2)(GMS/R
2). (7.57)

Nerwton’s 3rd Law states that

  FMS, M = – FM, MS (7.58)

This Law is true, however, for contact interactions only.  For all interactions that take

place between separated objects, there is a mis-match between the action and the

reaction.  It takes time for one particle to respond to the presence of the other!  

In the present example, we obtain a good estimate of the mismatch by taking the

difference between FEX(R + ∆R) and F(R), namely

FEX(R + ∆R) – F(R) ≈ (GMSM/Rc2)(GMS/R
2). (7.59)
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On the right-hand side of this equation, we note that the term (GMS/R
2) has dimensions of

“acceleration”, and therefore the term (GMSM/Rc2) must have dimensions of “mass”.  We

see that this term is an estimate of the “mass” associated with the interaction, itself.  The

space between the interacting masses must be endowed with this effective mass if

Newton’s 3rd Law is to include non-contact interactions.  The appearance of the term c2 in

the denominator of this effective mass term has a special significance.  If we invoke

Einstein’s famous relation E = Mc2, then ∆E = ∆Mc2 so that the effective mass of the

gravitational interaction can be written as an effective energy:

  ∆EGRAV = GMSM/R. (7.60)

This is the “energy stored in the gravitational field” between the two interacting masses.

Note that it has a 1/R-dependence — the correct form for the potential energy associated

with a 1/R2 gravitational force.  We see that the notion of a dynamical field of force is a

necessary consequence of the finite propagation time of the interaction.  

7.9  The gravitational potential

The concept of a gravitational potential has its origins in the work of Leibniz.  The

potential energy, V(x), asssociated with n interacting particles, of masses m1, m2, ...mn,

situated at x1, x2, ...xn, is related to the gravitational force on a mass M at x, due to the n

particles, by the equation

      F(x) = –∇V(x). (7.61)

The exact forms of F(x) and V(x) are

       F(x) = –GM∑[i = 1, n] mi(x – xi)/|x – xi|
3, (7.62)
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and

     V(x) = –GM∑[i = 1, n] mi/|x – xi| .

In upper-index notation, the components of the force are

    Fk(x) = – ∂V/∂xk, k = 1, 2, 3. (7.63)

The gravitational field, g(x), is the force per unit mass:

     g(x) = F(x)/M, (7.64)

and the gravitational potential is defined as

   Φ(x) = V(x)/M = –∑[i = 1, n] Gmi/|x – xi|. (7.65)

The sign of the potential is chosen to be negative because the gravitational force is always

attractive.  (This convention agrees with that used in Electrostatics).

If the mass consists of a continuous distribution that can be described by a mass

density ρ(x), then the potential is

    Φ(x) = – ∫(G ρ(x´)/|x – x´|) d3x´. (7.66)

It is left as an exercise to show that this form of Φ means that the potential obeys

Poisson’s equation

    ∇2Φ(x) – 4πGρ(x) = 0.

We should note that the gravitational potential of a mass M has the form

      V(r) = –GM/r (7.67)

only around a mass distribution with spherical symmetry.  For an arbitrary mass

distribution, the potential can be written as a series of multipoles.
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The potential of a circular disc at a point on its axis can be found as follows

                                                                                P      

                                                          R                     p

                                                                                           dr

                                                       Q             r       O

Let the disc be divided into concentric circles.  The potential at P, on the axis, due to the

elemental ring of radius r and width dr is 2πrdrGσ/PQ, where σ is the mass per unit area

of the disc.  The potential at P of the entire disc is therefore

         VP = ∫ [0, a] 2πGσrdr/PQ, (7.68)

where a is the radius of the disc.  Therefore,

         VP = 2πGσ∫[ 0, a] rdr/(r2 + p2)1/2  

 = 2πGσ[(r2 + p2)1/2][0, a]

 = 2πGσ(R – p), (7.69)

where R is the distance of P from any point on the circumference.

PROBLEMS

7-1  Show that the gravitational potential of a thin spherical shell of radius R and mass M at

      a point P is

      1) GM/d where d is the distance from P to the center of the shell if d >R, and

      2) GM/R if P is inside or on the shell.  
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7-2  If d is the distance from the center of a solid sphere (radius R and density ρ) to a point

      P inside the sphere, show that the gravitational potential at P is

     ΦP = 2πGρ(R2 – d2/3).

7-3  Show that the gravitational attraction of a circular disc of radius R and mass per unit

      area σ, at a point P distant p from the center of the disc, and on the axis, is

     2πGσ{[p/(p2 + R2)1/2] – 1}.

7-4  A particle moves in an ellipse about a center of force at a focus.  Prove that the

      instantaneous velocity v of the particle at any point in its orbit can be resolved into

      two components, each of constant magnitude: 1) of magnitude ah/b2, perpendicular to

      the radius vector r at the point, and 2) of magnitude ahe/b2 perpendicular to the major

      axis of the ellipse.  Here, a and b are the semi-major and semi-minor axes, e is the

      eccentricity, and h = pv = constant for a central orbit.

7.5  A particle moves in an orbit under a central acceleration a = k/r2 where k = constant.  

      If the particle is projected with an initial velocity v0 in a direction at right angles to

      the radius vecttor r when at a distance r0 from the center of force (the origin ), prove

(dr/dt)2 = {(2k/r0) – vo
2(1 + (r0/r))}{(r0/r) – 1}.

      This problem involves the energy and momentum equations in r,φ coordinates.

7-6  A particle moves in a cardioidal orbit, r = a(1 + cosφ), under the influence of a

      central force v
    a                                    P[r, φ]

   p                   F
   r

           φ
      O                                    2a
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      1) show that the p-r equation of the cardioid is p2 = r3/2a, and

      2) show that the central acceleration is 3ah2/r4, where h = pv = constant.

7-7  A planet moves in a circular orbit of radius r about the Sun as focus at the center.

      If the gravitational “constant” G changes slowly with time — G(t), then show that the

     angular velocity, ω, of the planet and the radius of the orbit change in time according    

     to the equations

(1/ω)(dω/dt) = (2/G)(dG/dt) and (1/r)(dr/dt) = (–1/G)(dG/dt).

(This is a central force problem!).

7-8  A particle moves under a central acceleration a = k(1/r3) where k is a constant.  

      If k = h2, where h = r2(dφ/dt) = pv, then show that the path is

1/r = Aφ + B, a “reciprocal spiral”, where A and B are constants.



8

EINSTEINIAN GRAVITATION:

                    AN INTRODUCTION TO GENERAL RELATIVITY

8.1  The principle of equivalence

The term “mass” that appears in Newton’s equation for the gravitational force

between two interacting masses refers to “gravitational mass” — that property of matter

that responds to the gravitational force.  Newton’s Law should indicate this property of

matter:

        FG = GMGmG /r2, where MG and mG are the gravitational masses of the

interacting objects, separated by a distance r.

The term “mass” that appears in Newton’s equation of motion, F = ma, refers to

the “inertial mass” — that property of matter that resists changes in its state of motion.

Newton’s equation of motion should indicate this property of matter:

     F(r) = mIa(r), where mI is the inertial mass of the particle moving with

an acceleration a(r) in the gravitational field of the masss MG.

Newton showed by experiment that the inertial mass of an object is equal to its

gravitational mass, mI = mG to an accuracy of 1 part in 103.  Recent experiments have

shown this equality to be true to an accuracy of 1 part in 1012.  Newton therefore took the

equations

      F(r) = GMGmG/r2 = mIa(r), (8.1)

and used the condition mG = mI to obtain
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      a(r) = GMG/r2. (8.2)

Galileo had, of course, previously shown that objects made from different materials

fall with the same acceleration in the gravitational field at the surface of the Earth, a result

that implies mG ∝ mI.  This is the Newtonian Principle of Equivalence.  

Einstein used this Principle as a basis for a new Theory of Gravitation!  He extended the

axioms of Special Relativity, that apply to field-free frames, to frames of reference in “free

fall”.  A freely falling frame must be in a state of unpowered motion in a uniform

gravitational field .  The field region must be sufficiently small for there to be no

measurable variation in the field throughout the region.  If a field gradient does exist in

the region then so called “tidal effects” are present, and these can, in principle, be

determined (by distorting a liquid drop, for example).  The results of all experiments

carried out in ideal freely falling frames are therefore fully consistent with Special

Relativity.  All freely-falling observers measure the speed of light to be c, its constant free-

space value.  It is not possible to carry out experiments in ideal freely-falling frames that

permit a distinction to be made between the acceleration of local, freely-falling objects,

and their motion in an equivalent external gravitational field.  As an immediate

consequence of the extended Principle of Equivalence, Einstein showed that a beam of

light would be observed to be deflected from its straight path in a close encounter with a

sufficiently massive object.  The observers would, themselves, be far removed from the

gravitational field of the massive object causing the deflection.  Einstein’s original

calculation of the deflection of light from a distant star, grazing the Sun, as observed here

on the Earth, included only those changes in time intervals that he had  predicted would
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occur in the near field of the Sun.  His result turned out to be in error by exactly a factor of

two.  He later obtained the “correct” value for the deflection by including in the

calculation the changes in spatial intervals caused by the gravitational field.  A plausible

argument is given in the section 8.6 for introducing a non-intuitive concept, the refractive

index of spacetime due to a gravitational field.  This concept is, perhaps, the characteristic

physical feature of Einstein’s revolutionary General Theory of Relativity.

8.2  Time and length changes in a gravitational field

We have previously discussed the changes that occur in the measurement of length

and time intervals in different inertial frames.  These changes have their origin in the

invariant speed of light and the necessary synchronization of clocks in a given inertial

frame.  Einstein showed that measurements of length and time intervals in a given

gravitational potential are changed relative to the measurements made in a different

gravitational potential.  These field-dependent changes are not to be confused with the

Special-Relativistic changes discussed in 3.5.  Although an exact treatment of this topic

requires the solution of the full Einstein gravitational field equations, we can obtain some

of the key results of the theory by making approximations that are valid in the case of our

solar system.  These approximations are treated in the following sections.

8.3  The Schwarzschild line element

An observer in an ideal freely-falling frame measures an invariant infinitesimal

interval of the standard Special Relativistic form

ds2 = (cdt)2 – (dx2 + dy2 + dz2). (8.3)
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It is advantageous to transform this form to spherical polar coordinates, using the linear

equations

          x = rsinθcosφ, y = rsinθsinφ, and z = rcosθ.

We then have

      z  dr                      dl, the diagonal of the cube
   dφ

      z                                              rdθ

       θ        r                                       y

  dθ                   rsinθ

      x                      φ

                       x

The square of the length of the diagonal of the infinitesimal cube is seen to be

       dl2 = dr2 + (rdθ)2 + (rsinθdφ)2. (8.4)

The invariant interval can therefore be written

       ds2 = (cdt)2 – dr2 – r2(dθ2 + sin2θdφ2). (8.5)

The key question that now faces us is this: how do we introduce gravitation into the

problem?  We can solve the problem by introducing an energy equation into the

argument.  

Consider two observers O and O´, passing by one another in a state of free fall in a

gravitational field due to a mass M, fixed at the origin of coordinates.  Both observers

measure a standard interval of spacetime, ds according to O, and ds´ according to O´, so

that
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       ds2 = ds´2 = (cdt´)2 – dr´2 – r´2(dθ´2 + sin2θ´dφ´2) (8.6)

The situation is as shown

  z

vO(r)             
            O                              

   O´
        r            vO´(r) ≈ 0     y
 θ

    Mass, M
   (the source of the field)

 φ

       x

Let the observer O´ just begin free fall towards M at the radial distance r, and let the

observer O, close to O´, be freely falling away from the mass M.  The observer O is in a

state of unpowered motion with just the right amount of kinetic energy to “escape to

infinity”.  Since both observers are in states of free fall, we can, according to Einstein, treat

them as if they were ‘inertial observers”.  This means that they can relate their local space-

time measurements by a Lorentz transformation.  In particular, they can relate their

measurements of the squared intervals, ds2 and ds´2, in the standard way.  Since their

relative motion is along the radial direction, r, time intervals and radial distances will be

measured to be changed:

        ∆t = γ∆t´ and γ∆r = ∆r´,      (8.7 a,b)

where

          γ = 1/{1 – (v/c) 2}1/2 , in which v = vO(r) because vO’(r) ≈ 0.
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If O has just enough kinetic energy to escape to infinity, then we can equate the

kinetic energy to the potential energy, so that

vO
2(r)/2 = 1⋅Φ(r) if the observer O has unit mass. (8.8)

Φ(r) is the gravitational potential at r due to the presence of the mass, M, at the origin.  

This procedure enables us to introduce the gravitational potential into the value of γ in

the Lorentz transformation.  We have vO
2 = 2Φ(r) = v2, and therefore

        ∆t = ∆t´/{1 – 2Φ(r)/c2}1/2, (8.9)

and

        ∆r = ∆r´{1 – 2Φ(r)/c2}1/2. (8.10)

Only lengths parallel to r change, therefore

r2(dθ2 + sin2θdφ2) = r´2(dθ´2 + sinθ´dφ´2), (8.11)

and therefore we obtain

ds2 = ds´2 = c2(1 – 2Φ(r)/c2)dt2 – dr2/(1 – 2Φ(r)/c2) – r2(dθ2 + sin2θdφ2).  (8.12)

If the potential is due to a mass M at the origin then

    Φ(r) = GM/r,  (r > R, the radius of the mass, M)

therefore,

                    ds2 = c2(1 – 2GM/rc2)dt2 – (1 – 2GM/rc2)–1dr2 – r2(dθ2 + sin2θdφ2).
          (8.13)

This is the famous Schwarzschild line element, originally obtained as an exact solution of

the Einstein field equations.  The present approach fortuitously gives the exact result!

8.4  The metric in the presence of matter
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In the absence of matter, the invariant interval of space-time is

       ds2 = ηµνdxµdxν  (µ, ν = 0, 1, 2, 3), (8.14)

where

      ηµν = diag(1, –1, –1, –1) (8.15)

is the metric of Special Relativity; it “lowers the indices”  

      dxµ = ηµνdxν. (8.16)

The form of the Schwarzschild line element, ds2
sch , shows that the metric gµν in the

presence of matter differs from ηµν.  We have

    ds2
sch  = gµνdxµdxν, (8.17)

where

      dx0 = cdt, dx1 = dr, dx2 = rdθ, and dx3 = rsinθdφ,

and

     gµν = diag((1 – χ), –(1 – χ)–1, –(1 – χ)–1, –(1 – χ)–1)

in which

       χ = 2GM/rc2.

The Schwarzschild metric lowers the indices

    dxµ = gµνdxν, (8.18)

so that

  ds2
sch  = dxµdxµ. (8.19)

8.5  The weak field approximation
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If χ = 2GM/rc2 << 1, the coefficient, (1 – χ)–1, of dr2 in the Schwarzschild line

element can be replaced by the leading term of its binomial expansion, (1 + χ ...) to give

the “weak field” line element:

      ds2
W = (1 – χ)(cdt)2 – (1 + χ)dr2 – r2(dθ2 + sin2θdφ2). (8.20)

At the surface of the Sun, the value of χ is 4.2 x 8–6, so that the weak field

approximation is valid in all gravitational phenomena in our solar system.

Consider a beam of light travelling radially in the weak field of a mass M, then

      ds2
W = 0 (a light-like interval) , and dθ2 + sin2θdφ2 = 0, (8.21)

giving

          0 = (1 – χ)(cdt)2 – (1 + χ)dr2. (8.22)

The “velocity” of the light vL = dr/dt, as determined by observers far from the gravitational

influence of M, is therefore

        vL = c{(1 – χ)/(1 + χ)}1/2 ≠  c if χ ≠ 0 !. (8.23)

(Observers in free fall near M always measure the speed of light to be c).

Expanding the term {(1 – χ)/(1 + χ)}1/2 to first order in χ, we obtain

 vL(r)/c ≈ (1 – χ/2  ...)(1 – χ/2  ...)

           = (1 – χ...). (8.24)

Therefore

    vL(r) ≈ c(1 – 2GM/rc2...), (8.25)

so that vL(r) < c in the presence of a mass M according to observers far removed from M.

8.6  The refractive index of space-time in the presence of mass
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In Geometrical Optics, the refractive index, n, of a material is defined as

          n ≡ c/vmedium (8.26)

where vmedium is the speed of light in the medium.  We introduce the concept of the

refractive index of space-time, nG(r), at a point r in the gravitational field of a mass, M:

        nG ≡ c/vL(r)

            ≈ 1/(1 – χ)

            = 1 + χ  to first-order in χ.

            = 1 + 2GM/rc2. (8.27)

The value of nG increases as r decreases .  This effect can be interpreted as an increase in

the “density” of space-time as M is approached.  

8.7  The deflection of light grazing the sun

As a plane wave of light approaches a spherical mass, those parts of the wave front

nearest the mass are slowed down more than those parts farthest from the mass.  The

speed of the wave front is no longer constant along its surface, and therefore the normal to

the surface must be deflected:

     vL ≈ c                                         vL ≈ c

Deflection angle
Normal to
wavefront

    vL < c
       Mass, M, the source of the field
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The deflection of a plane wave of light by a spherical mass, M, as it travels through space-

time can be calculated in the weak field approximation.  We choose coordinates as shown

                                                                          y       

        dx´ = v´dt

            x                           dy
     Plane wave

                               of light              dx = vdt

   y           r

    y = 0                                                                 x

   Mass, M (this includes the mass of 
      its field)

         R

We have shown that the speed of light (moving radially) in a gravitational field, measured

by an observer far from the source of the field, depends on the distance, r, from the source

      v(r) = c(1 – 2GM/rc2) (8.28)

where c is the invariant speed of light as r → ∞.

We wish to compare dx with dx´, the distances travelled in the x-direction by the

wavefront at y and y + dy, in the interval dt.

We have

          r2 = (y + R)2 + x2 (8.29)
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therefore v(r) → v(x, y) so that

         2r(∂r/∂y) = 2(y + R),

and

               ∂r/∂y = (y + R )/r . (8.30)

Very close to the surface of the mass M (radius R), the gradient is

        ∂r/∂y|y →0 → R/r. (8.31)

Now,

           ∂v(r)/∂y = (∂/∂r)(c(1 – 2GM/rc2))(∂r/∂y)

             = (2GM/r2c)(∂r/∂y). (8.32)

We therefore obtain

    ∂v(r)/∂y|y→0 = (2GM/r2c)(R/r) = 2GMR/r3c. (8.33)

Let the speed of the wavefront be v´ at y + dy and v at y.  The distances moved in the

interval dt are therefore

      dx´ = v´dt and dx = vdt.       (8.34 a,b)

The first-order Taylor expansion of v´ is

        v´ = v + (∂v/∂y)dy,

and therefore

          dx´ – dx = (v + (∂v/∂y)dy)dt – vdt = (∂v/∂y)dydt. (8.35)

Let the corresponding angle of deflection of the normal to the wavefront be dα, then

       dα = (dx´ – dx)/dy

 = (∂v/∂y)dt = (∂v/∂y)(dx/v). (8.36)
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The total deflection of the normal to the plane wavefront is therefore

      ∆α = ∫ [–∞,∞](∂v/∂y)(dx/v) (8.37)

            ≈ (1/c)∫ [–∞,∞] (∂v/∂y)dx .

(v ≅ c over most of the range of the integral).

The portion of the wavefront that grazes the surface of the mass M (y → 0) therefore

undergoes a total deflection

       ∆α ≈ (1/c)∫ [–∞,∞](2GMR/r3c)dx (8.38)

 = 2GMR/c2∫ [–∞,∞]dx/(R2 +x2)3/2

 = 2GMR/c2[x/(R2(R2 + x2)1/2)]–∞
∞

 = 2(GMR/c2)(2/R2).

so that

       ∆α = 4GM/Rc2.

This is Einstein’s famous prediction; putting in the known values for G, M, R, and c, gives

       ∆α = 1.75 arcseconds. (8.39)

Measurements of this very small effect, made during total eclipses of the Sun at various

times and places since 1919, are fully consistent with Einstein’s prediction.

PROBLEMS

8-1  If a particle A is launched with a velocity v0A from a point P on the surface of the

      Earth at the same instant that a particle B is dropped from a point Q, use the Principle

      of Equivalence to show that if A and B are to collide then v0A must be directed along

     the line PQ.  



E I N S T E I N I A N  G R A V I T A T I O N 147

              Q        g ⇓

       B

  ⊗    

     A
   v0A

   P

8-2  A satellite is in a circular orbit above the Earth.  It carries a clock that is similar to a

      clock on the Earth.  There are two effects that must be taken into account in  

      comparing the rates of the two clocks.  1) the time shift due to their relative speeds

      (Special Relativity), and 2) the time shift due to their different gravitational potentials

      (General Relativity).  Calculate the SR shift to second-order in (v/c), where v is the

      orbital speed , and the GR shift to the same order.  In calculating the difference in the

      potentials , integrate from the surface of the Earth to the orbit radius.  The two

      effects differ in sign.  Show that the total relative change in the frequency of the

      satellite clock compared with the Earth clock is

(∆ν/νE) ≈ (gRE/c2){1 – (3RE/2rS)}, where rS is the radius of the

      satellite orbit (measured from the center of the Earth).  We see that if the altitude of

      the satellite is > RE/2 (~ 3200 km) ∆ν is positive since the gravitational effect then

      predominates, whereas at altitudes less than ~3200 km, the Special Relativity effect

      predominates.  At an altitude ~ 3200 km, the clocks remain in synchronism.
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AN INTRODUCTION TO THE CALCULUS OF VARIATIONS

9.1  The Euler equation

A frequent problem in Differential Calculus is to find the stationary values (maxima

and minima) of a function y(x).  The necessary condition for a stationary value at x = a is

dy/dx|x = a   = 0.

For a minimum,

d2y/dx2|x = a  > 0,

and for a maximum,

d2y/dx2|x = a  < 0.

The Calculus of Variations is concerned with a related problem, namely that of

finding a function y(x) such that a definite integral taken over a function of this function

shall be a maximum or a minimum.  This is clearly a more complicated problem than that

of simply finding the stationary values of a function, y(x).  

Explicitly, we wish to find that function y(x) that will cause the definite integral

∫ [x1, x2] F(x, y, dy(x)/dx)dx (9.1)

to have a stationary value.

The integrand F is a function of y(x) as well as of x and dy(x)/dx.  The limits x1 and x2 are

assumed to be fixed , as are the values y(x1) and y(x2).  The integral has different values

along different “paths” that connect (x1, y1) and  (x2, y2).  Let a path be Y(x), and let this be
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one of a set of paths that are adjacent to y(x). We take Y(x) – y(x) to be an infinitesimal for

every value of x in the range of integration.

Let the difference be defined as

        Y(x) – y(x) ≡ δy(x) (a “first-order change”), (9.2)

and

F(x, Y(x), dY(x)/dx) – F(x, y(x), dy(x)/dx) ≡ δF. (9.3)

The symbol δ is called a variation; it represents the change in the quantity to

which it is applied as we go from y(x) to Y(x) at the same value of x.  Note δx = 0, and

            δ(dy/dx) = dY(x)/dx – dy(x)/dx = (d/dx)(Y(x) – y(x)) = (d/dx)(δy(x)).

The symbols δ and (d/dx) commute:

         δ(d/dx) – (d/dx)δ = 0. (9.4)

Graphically, we have

y Y(x), the varied path
y2

  δy                                               

y1                                                                   y(x), the “true” path

  O              x1                                    x2               x   

Using the definition of δF, we find

       δF = F(x, y + δy, dy/dx + δ(dy/dx)) – F(x, y, dy/dx) (9.5)
               ↑                 ↑
             Y(x)          (d/dx)Y(x)
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             = (∂F/∂y)δy + (∂F/∂y´)δy´  for fixed x.  (Here, dy/dx = y´).

The integral

∫ [x1, x2] F(x, y, y´)dx, (9.6)

is stationary if its value along the path y is the same as its value along the varied path,       

y + δy = Y.  We therefore require

∫ [x1, x2] δF(x, y, y´)dx = 0. (9.7)

This integral can be written

∫ [x1, x2] {(∂F/∂y)δy + (∂F/∂y´)δy´}dx = 0. (9.8)

The second term in this integral can be evaluated by parts, giving

[(∂F/∂y´)δy]x1 
x2 – ∫ [x1, x2] (d/dx)(∂F/∂y´)δydx. (9.9)

But δy1 = δy2 = 0 at the end-points x1 and x2, therefore the term [   ]x1
x2 = 0, so that the

stationary condition becomes

∫ [x1, x2] {∂F/∂y – (d/dx)∂F/∂y´}δydx = 0. (9.10)

The infinitesimal quantity δy is positive and arbitrary, therefore, the integrand is zero:

∂F/∂y – (d/dx)∂F/∂y´ = 0. (9.11)

This is known as Euler’s equation.

9.2  The Lagrange equations

Lagrange, one of the greatest mathematicians of the 18th century, developed

Euler’s equation in order to treat the problem of particle dynamics within the framework

of generalized coordinates.  He made the transformation

F(x, y, dy/dx) → L(t, u, du/dt) (9.12)
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where u is a generalized coordinate and du/dt is a generalized velocity.

The Euler equation then becomes the Lagrange equation-of-motion:
                                                        •                                  •

∂L/∂u – (d/dt)(∂L/∂u) = 0, where u is the generalized velocity. (9.13)
                                    •
The Lagrangian L(t; u, u) is defined in terms of the kinetic and potential energy of a

particle, or system of particles:
          L ≡ T – V. (9.14)

It is instructive to consider the Newtonian problem of the motion of a mass m,

moving in the plane, under the influence of an inverse-square-law force of attraction using

Lagrange’s equations-of-motion.  Let the center of force be at the origin of polar

coordinates.  The kinetic energy of m at [r, φ] is

          T = m((dr/dt)2 + r2(dφ/dt)2 )/2, (9.15)

and its potential energy is

           V = – k/r, where k is a constant. (9.16)

The Lagrangian is therefore

           L = T – V = m((dr/dt)2 + r2(dφ/dt)2)/2 + k/r. (9.17)

Put r = u, and φ = v, the generalized coordinates.  We have, for the “u-equation”
                                 •                                      •

   (d/dt)(∂L/∂u) = (d/dt)(∂L/∂r) = (d/dt)(m(dr/dt)) = md2r/dt2, (9.18)

and

   ∂L/∂u = ∂L/∂r = mr(dφ/dt)2 – k/r2 (9.19)

Using Lagrange’s equation-of-motion for the u-coordinate, we have

       m(d2r/dt2) – mr(dφ/dt)2 + k/r2 = 0 (9.20)
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or

                     m(d2r/dt2 – r(dφ/dt)2) = –k/r2. (9.21)

This is, as it should be, the Newtonian equation

 mass × acceleration in the r-direction = force in the r-direction.

Introducing a second generalized coordinate, we have, for the “v-equation”
                                                        •                                     •                                    •  

             (d/dt)(∂L/∂v) = (d/dt)(∂L/∂φ) = (d/dt)(mr2 φ) (9.22)
                                                                      ••       •      •

           = m(r2 φ + φ 2r r),

and

         ∂L/∂v = ∂L/∂φ = 0, (9.23)

therefore
                                         ••         •   •  

          m(r2 φ + 2r r φ) = 0

so that
                                                       •

  (d/dt)(mr2  φ) = 0. (9.24)

Integrating , we obtain
                                                        •

 mr2  φ = constant, (9.25)

showing, again, that the angular momentum is conserved.

The advantages of using the Lagrangian method to solve dynamical problems stem

from the fact that L is a scalar function of generalized coordinates.  

9.3  The Hamilton equations

The Lagrangian L is a function of the generalized coordinates and velocities, and

the time:
                                                          •    •  

L = L(u, v, ...;u, v, ...;t). (9.26)
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If the discussion is limited to two coordinates, u and v, the total differential of L is

                                                                                               •      •                      •     •
           dL = (∂L/∂u)du + (∂L/∂v)dv + (∂L/∂u)du + (∂L/∂v)dv + (∂L/∂t)dt.

Consider the simplest case of a mass m moving along the x-axis in a potential, so that u = x
       •        •
and u = x = vx, then

 L = T – V = mvx
2/2 – V (9.27)

and

    ∂L/∂vx = mvx = px, the linear momentum. (9.28)
                                                                               •                        •
In general, it is found that terms of the form ∂L/∂u and ∂L/∂v are “momentum” terms;

they are called generalized momenta, and are written
                                    •                            •

    ∂L/∂u = pu, ∂L/∂v = pv, ..etc. (9.29)

Such forms are not limited to “linear” momenta.

The Lagrange equation
                                               •

    (d/dt)(∂L/∂u) – ∂L/∂u = 0 (9.30)

can be transformed, therefore, into an equation that involves the generalized momenta:

           (d/dt)(pu) – ∂L/∂u = 0, or
                                                                      •

       ∂L/∂u = pu. (9.31)

The total differential of L is therefore
                                         •                •                       •                •

        dL = pudu + pvdv + pudu + pvdv + (∂L/∂t)dt. (9.32)

We now introduce an important function, the Hamiltonian function, H, defined by
                                             •             •

          H ≡ puu + pvv – L, (9.33)
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therefore
                                                 •       •                       •         •

        dH = {pudu +udpu + pvdv + vdpv} – dL . (9.34)

It is not by chance that H is defined in the way given above.  The definition permits the
                                                                        •          •
cancellation of the terms in dH that involve du and dv, so that dH depends only on du, dv,

dpu, and dpv (and perhaps, t).  We can therefore write

          H = f(u, v, pu, pv; t) (limiting the discussion to the two coordinates 

u and v). (9.35)

The total differential of H is therefore

         dH = (∂H/∂u)du + (∂H/∂v)dv + (∂H/∂pu)dpu + (∂H/∂pv)dpv + (∂H/∂t)dt.  (9.36)

Comparing the two equations for dH, we obtain Hamilton’s equations-of-motion:
                                            •                                  •

  ∂H/∂u = –pu,  ∂H/∂v = –pv, (9.37)
                                          •                                  •

 ∂H/∂pu = u,    ∂H/∂pv = v, (9.38)

and

   ∂H/∂t = –∂L/∂t. (9.39)

We see that
                                              •             •

           H = puu + pvv – (T – V). (9.40)

If we consider a mass m moving in the (x, y)-plane then

           H = (mvx)vx + (mvy)vy – T + V (9.41)

  = 2(mvx
2/2 + mvy

2/2 ) – T + V

  = T + V, the total energy. (9.42)

In advanced treatments of Analytical Dynamics, this form of the Hamiltonian is shown to

have general validity.
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PROBLEMS

9-1  Studies of geodesics — the shortest distance between two points on a surface —

         form a natural part of the Calculus of Variations.  Show that the straight line

         between two points in a plane is the shortest distance between them.

9-2  The surface generated by revolving the y-coordinate about the x-axis has an area

        2π∫yds where ds = {dx2 + dy2}1/2.  Use Euler’s variational method to show that

        the surface of revolution is a minimum if

            (dy/dx) = {(y2/a2) – 1}1/2 where a = constant.

        Hence show that the equation of the minimum surface is

          y = acosh{(x/a) + b} where b = constant, and y ≠ 0.

9-3  The Principle of Least Time pre-dates the Calculus of Variations.  The propagation of

        a ray of light in adjoining media that have different indices of refraction is found to

        be governed by this principle.  A ray of light moves at constant speed v1 in a medium

       (1) from a point A to a point B0 on the x-axis.  At B0, its speed changes to

        a new constant value v2 on entering medium (2).  The ray continues until it reaches a

        point C in (2).  If the true path A → B0 → C is such that the total travel time of the

        light in going from A to C is a minimum, show that

(v1/v2) = x0{[yc
2 + (d – x0)

2]/[yA
2 + x0

2]}1/2/(d – x0), (Snell’s law)

        where the symbols are defined in the following diagram:
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    y Medium 1, speed v1       
  A

              yA

       0        B0               B                   x
            x0

             yC

x
 C

d
Medium 2, speed v2      

        The path A → B → C is an arbitrarily varied path.

9-4  Hamilton’s Principle states that when a system is moving under conservative forces

        the time integral of the Lagrange function is stationary.  (It is possible to show that

        this Principle holds for non-conservative forces).  Apply Hamilton’s Principle to the

       case of a projectile of mass m moving in a constant gravitational field, in the plane.  

       Let the projectile be launched from the origin of Cartesian coordinates at time t = 0.  

       The Lagrangian is

               L = m((dx/dt)2 + (dy/dt)2)/2 – mgy

        Calculate δ∫ [0, t1] Ldt, and obtain Newton’s equations of motion

        d2y/dt2 + g = 0 and d2x/dt2 = 0.

9-5  Reconsider the example discussed in section 9.2 from the point of view of the

Hamiltonian of the system.  Obtain H(r, φ, pr, pφ), and solve Hamilton’s equations of

motion to obtain the results given in Eqs.9.21 and 9.25.
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CONSERVATION LAWS, AGAIN

10.1  The conservation of mechanical energy

If the Hamiltonian of a system does not depend explicitly on the time, we have

        H = H(u, v, ...;pu, pv, ...). (10.1)

In this case, the total differential dH is (for two generalized coordinates, u and v)

      dH = (∂H/∂u)du + (∂H/∂v)dv + (∂H/∂pu)dpu + (∂H/∂pv)dpv.  (10.2)

If the positions and the momenta of the particles in the system change with time under

their mutual interactions, then H also changes with time, so that

dH/dt = (∂H/∂u)du/dt + (∂H/∂v)dv/dt + (∂H/∂pu)dpu/dt + (∂H/∂pv)dpv/dt
                              •  •           • •        • •          • •

          = (–puu) + (–pvv) + (upu) + (vpv) (10.3)

          = 0, using Hamilton’s equations-of-motion. (10.4)

Integration then gives

                    H = constant. (10.5)

In any system moving under the influence of conservative forces, a potential V exists.  In

such systems, the total mechanical energy is H = T + V, and we see that it is a constant of

the motion.

10.2  The conservation of linear and angular momentum

If the Hamiltonian, H, does not depend explicitly on a given generalized

coordinate then the generalized momentum associated with that coordinate is conserved.
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For example, if H contains no explicit reference to an angular coordinate then the

angular momentum associated with that angle is conserved.  Formally, we have

  dpj/dt = –∂H/∂qj , where p j and qj are the generalized momenta and 

       coordinates. (10.6)

Let an infinitesimal change in the jth-coordinate qj be made, so that

        qj → qj + δqj, (10.7)

then we have

       δH = (∂H/∂qj)δqj. (10.8)

If the Hamiltonian is invariant under the infinitesimal displacement δqj, then the

generalized momentum pj is a constant of the motion.  The conservation of linear

momentum is therefore a consequence of  the homogeneity of space, and the

conservation of angular momentum is a consequence of the isotropy of space.  

The observed conservation laws therefore imply that the choice of a point in space for the

origin of coordinates, and the choice of an axis of orientation play no part in the

formulation of the physical laws; the Laws of Nature do not depend on an “absolute space”.



11

CHAOS

The behavior of many non-linear dynamical systems as a function of time is found to

be chaotic.  The characteristic feature of chaos is that the system never repeats its past

behavior.  Chaotic systems nonetheless obey classical laws of motion which means that the

equations of motion are deterministic.

Poincaré was the first to study the effects of small changes in the initial conditions

on the evolution of chaotic systems that obey non-linear equations of motion.  In a chaotic

system, the erratic behavior is due to the internal, or intrinsic, dynamics of the system.  

     Let a dynamical system be described by a set of first-order differential equations:

                           dx1/dt = f1(x1,x2,x3,...xn) (11.1)

                            dx2/dt= f2(x1,x2,x3,...xn)

                        .       .

                        .       .

                            dxn/dt= fn(x1,x2,x3,...xn)

where the functions fn are functions of n-variables.

The necessary conditions for chaotic motion of the system are

1) the equations of motion must contain a non-linear term that couples several of the

variables.

A typical non-linear equation, in which two of the variables are coupled, is therefore
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                       dx1/dt= ax1 + bx2 + cx1x2 + ... rxn,  (a, d, c, ...r are constants) (11.2)

and

2) the number of independent variables, n, must be at least three.

The second condition is discussed later.

The non-linearity often makes the solution of the equations unstable for particular choices

of the parameters.  Numerical methods of solution must be adopted in all but a few

standard cases.

11.1  The general motion of a damped, driven pendulum

     The equation of a damped, driven pendulum is

     ml(d2θ/dt2) + kml(dθ/dt) + mgsinθ = Acos(ωDt) (11.3)

or

           (d2θ/dt2) + k(dθ/dt) + (g/l)sinθ = (A/ml)cos(ωDt), (11.4)

where θ is the angular displacement of the pendulum, l is its length, m is its mass, the

resistance is proportional to the velocity (constant of proportionality, k), A is the amplitude

and ωD is the angular frequency of the driving force.

Baker and Gollub in Chaotic Dynamics  (Cambridge, 1990) write this equation in the form

            (d2θ/dt2) + (1/q)(dθ/dt) + sinθ = Ccos(ωDt), (11.5)

where q is the damping factor.  The low-amplitude natural angular frequency of the

pendulum is unity, and time is dimensionless.  We can therefore write

the equation in terms of three first-order differential equations

                         dω/dt = –(1/q)ω – sinθ + Ccos(φ)  where φ is the phase, (11.6)
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                          dθ/dt = ω, (11.7)

and

                          dφ/dt = ωD . (11.8)

The three variables are (ω, θ, φ).

The onset of chaotic motion of the pendulum depends on the choice of the parameters q,

C, and ωD.

     The phase space of the oscillations is three-dimensional:

                                 ω

                                                                          θ

                                                                                       A spiral with a pitch of 2π

                                                                                                                             φ

The θ - ω trajectories are projections of the spiral onto the θ - ω plane.

     The motion is sensitive to ωD  since the non-linear terms generate many new

resonances that occur when ωD/ωnatural  is a rational number.  (Here, ωnatural is the angular

frequency of the undamped linear oscillator).  For particular values of q and ωD, the

forcing term produces a damped motion that is no longer periodic — the motion becomes
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chaotic.  Periodic motion is characterized by closed orbits  in the (θ - ω) plane.  If the

damping is reduced considerably, the motion can become highly chaotic.

The system is sensitive to small changes in the initial conditions.  The trajectories

in phase space diverge from each other with exponential time-dependence.  For chaotic

motion, the projection of the trajectory in (θ, ω, φ) - space onto the (θ - ω) plane

generates trajectories that intersect.  However, in the full 3 - space, a spiralling line along

the φ-axis never intersects itself.  We therefore see that chaotic motion can exist only

when the system has at least a 3 - dimensional phase space.  The path then converges

towards the attractor without self-crossing.

Small changes in the initial conditions of a chaotic system may produce very

different trajectories in phase space.  These trajectories diverge, and their divergence

increases exponentially with time.  If the difference between trajectories as a function of

time is d(t) then  it is found that logd(t) ~ λt or

                                                d(t) ~ eλt  (11.9)

where λ > 0 - a positive quantity called the Lyapunov exponent.  In a weakly chaotic

system λ << 0.1 whereas, in a strongly chaotic system, λ >> 0.1.

11.2  The numerical solution of differential equations

     A numerical method of solving linear differential equations that is suitable in the

present case is known as the Runge-Kutta method.  The algorithm for solving two

equations that are functions of several variables is:

     Let
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                     dy/dx = f(x, y, z) and dz/dx = g(x, y, z). (11.10)

If y = y0 and z = z0 when x = x0 then, for increments  h in x0 , k in y0, and l in z0  

 the Runge-Kutta equations are

     k1 = hf(x0, y0, z0)                                             l1 = hg(x0, y0, z0)

     k2 = hf(x0 + h/2, y0 + k1/2, z0 + l1/2)             l2 = hg(x0 + h/2, y0 + k1/2, z0 + l1/2)

     k3 = hf(x0 + h/2, y0 + k2/2, z0 + l2/2)            l3 = hg(x0 + h/2, y0 + k2/2, z0 + l2/2)

     k4 = hf(x0 + h, y0 + k3, z0 + l3)                       l4 = hg(x0 + h, y0 + k3, z0 + l3)

     k  = (k1 + 2k2 + 2k3 + k4)/6

and

     l  = (l1 + 2l2 + 2l3 + l4)/6. (11.11)

The initial values are incremented, and successive values of the x, y, and z are generated

by iterations.  It is often advantageous to use varying values of h to optimize the

procedure.

     In the present case,

f(x, y, z) → f(t, θ, ω) and g(x, y, z) → g(ω).

As a problem, develop an algorithm to solve the non-linear equation 11.5 using the

Runge-Kutta method for three equations (11.6, 11.7, and 11.8).  Write a program to

calculate the necessary iterations.  Choose increments in time that are small enough to

reveal the details in the θ-ω plane.  Examples of non-chaotic and chaotic behavior are

shown in the following two diagrams.
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Points in the θ-ω  plane for a non-chaotic system
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The parameters used to obtain this plot in the θ-ω plane are :

damping factor (1/q) = 1/5,
amplitude (C) = 2,
drive frequency (ωD) = 0.7, and
time increment, ∆t = 0.05.
All the initial values are zero.
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Points in the θ-ω  plane for a chaotic system
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The parameters used to obtain this plot in the θ-ω plane are:

damping factor (1/q) = 1/2,
amplitude (C) = 1.15,
drive frequency (ωD) = 0.597, and
time increment, ∆t = 1.
The intial value of the time is 100.



 12

WAVE MOTION

12.1  The basic form of a wave

Wave motion in a medium is a collective phenomenon that involves local

interactions among the particles of the medium.  Waves are characterized by:

1)  a disturbance in space and time.

2)  a transfer of energy from one place to another,

and

3)  a non-transfer of material of the medium.

(In a water wave, for example, the molecules move perpendicularly to the velocity

vector of the wave).

Consider a kink in a rope that propagates with a velocity V along the +x-axis, as

shown

            y

               Displacement
       V , the velocity of the waveform

     x
x at time t

Assume that the shape of the kink does not change in moving a small distance ∆x in a short

interval of time ∆t.  The speed of the kink is defined to be V = ∆x/∆t.  The displacement

in the y-direction is a function of x and t,
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          y = f(x, t).

We wish to answer the question: what basic principles determine the form of the argument

of the function, f ?  For water waves, acoustical waves, waves along flexible strings, etc. the

wave velocities are much less than c.  Since y is a function of x and t, we see that all points

on the waveform move in such a way that the Galilean transformation holds for all inertial

observers of the waveform.  Consider two inertial observers, observer #1 at rest on the x-

axis, watching the wave move along the x-axis with constant speed, V, and a second

observer #2, moving with the wave.  If the observers synchronize their clocks so that      

t1 = t2 = t0 = 0 at x1 = x2 = 0, then

         x2 = x1 – Vt.

We therefore see that the functional form of the wave is determined by the form of the

Galilean transformation, so that

  y(x, t) = f(x – Vt), (12.1)

where V is the wave velocity in the particular medium.  No other functional form is

possible!  For example,

 y(x, t) = Asink(x – Vt) is permitted, whereas

 y(x, t) = A(x2 + V2t) is not.

If the wave moves to the left (in the –x direction) then

 y(x, t) = f(x + Vt). (12.2)

We shall consider waves that superimpose linearly.  If, for example, two waves

move along a rope in opposite directions, we observe that they “pass through each other”.
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If the wave is harmonic, the displacement measured as a function of time at the origin,     

x = 0, is also harmonic:

 y0(0, t) = Acos(ωt)

where A is the maximum amplitude, and ω = 2πν is the angular frequency.

The general form of y(x, t), consistent with the Galilean transformation, is

  y(x, t) = Acos{k(x – Vt)}

where k is introduced to make the argument dimensionless (k has dimensions of

1/[length]).  We then have

y0(0, t) = Acos(kVt) = Acos(ωt).

Therefore,

        ω = kV, the angular frequency, (12.3)

or

    2πν = kV,

so that,

          k = 2πν/V = 2π/VT where T = 1/ν, is the period. (12.4)

The general form is then

   y(x, t) = Acos{(2π/VT)(x – Vt)}

             = Acos{(2π/λ)(x – Vt)}, where λ = VT is the wavelength,

 = Acos{(2πx/λ – 2πt/T)},

 = Acos(kx – 2πt/T), where k = 2π/λ, the “wavenumber”,

 = Acos(kx – ωt),
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 = A cos(ωt – kx), because cos(–θ) = cos(θ). (12.5)

For a wave moving in three dimensions, the diplacement at a point x, y, z at time t has the

form

        ψ(x, y, z, t) = Acos(ωt – k⋅r), (12.6)

where |k| = 2π/λ and r = [x, y, z].

12.2  The general wave equation

An arbitrary waveform in one space dimension can be written as the superposition

of two waves, one travelling to the right (+x) and the other to the left (–x) of the origin.

The displacement is then

             y(x, t) = f(x – Vt) + g(x + Vt). (12.7)

Put

        u = f(x – Vt) = f(p), and v = g(x + Vt) = g(q),

then

        y = u + v .

Now,

            ∂y/∂x = ∂u/∂x + ∂v/∂x = (du/dp)(∂p/∂x) + (dv/dq)(∂q/∂x)

          = f´(p)(∂p/∂x) + g´(q)(∂q/∂x).

Also,

        ∂2y/∂x2 = (∂/∂x){(du/dp)(∂p/∂x) + (dv/dq)(∂q /∂x)}

        = f´(p)(∂2p/∂x2) + f´´(p)(∂p/∂x)2 + g´(q)(∂2q/∂x2) + g´´(q)(∂q/∂x)2.

We can obtain the second derivative of y with respect to time using a similar method:
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        ∂2 y/∂t2 = f´(p)(∂2p/∂t2) + f´´(p)(∂p/∂t)2 + g´(q)(∂2q/∂t2) + g´´(q)(∂q/∂t)2.

Now, ∂p/∂x = 1, ∂q/∂x = 1, ∂p/∂t = –V, and ∂q/∂t = V, and all second derivatives are

zero (V is a constant).  We therefore obtain

          ∂2y/∂x2 = f’´´(p) + g´´(q),

and

          ∂2y/∂t2 = f’́ ´(p)V2 + g´´(q)V2.

Therefore,

          ∂2y/∂t2 = V2(∂2y/∂x2).

or

         ∂2y/∂x2 – (1/V2)(∂2y/∂t2) = 0. (12.8)

This is the wave equation in one-dimensional space.  For a wave propagating in three-

dimensional space, we have

           ∇2ψ – (1/V2)(∂2ψ/∂t2) = 0, (12.9)

the general form of the wave equation, in which ψ(x, y, z, t) is the general amplitude

function.

12.3  The Lorentz invariant phase of a wave and the relativistic Doppler shift

A wave propagating through space and time has a “wave function”

     ψ(x, y, z, t) = Acos(ωt – k⋅r)

where the symbols have the meanings given in 12.2 .

The argument of this function can be written as follows

                    ψ = Acos{(ω/c)(ct) – k⋅r). (12.10)
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It was not until deBroglie developed his revolutionary idea of particle-wave duality in

1923-24 that the Lorentz invariance of the argument of this function was fully appreciated!

We have

        ψ = Acos{[ω/c, k]T[ct, –r]}

           = Acos{KµEµ} = Acosφ, where φ is the “phase”. (12.11)

deBroglie recognized that the phase φ is a Lorentz invariant formed from the 4-vectors

      Kµ = [ω/c, k], the “frequency-wavelength” 4-vector, (12.12)

and

      Eµ = [ct, –r], the covariant “event” 4-vector.

deBroglie’s discovery turned out to be of great importance in the development of

Quantum Physics.  It also provides us with the basic equations for an exact derivation of the

relativistic Doppler shift.  The frequency-wavelength vector is a Lorentz 4-vector, which

means that it transforms between inertial observers in the standard way:

   Kµ´ = LKµ, (12.13)

or

  ω´/c               γ   –βγ      0       0       ω/c         
    k x´            –βγ       γ       0       0         kx          
    k y´      =       0        0       1       0         ky           
    k z´                0        0       0       1         kz          

The transformation of the first element therefore gives

     ω´/c = γ(ω/c) – βγkx, (12.14)

so that
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    2πν´ = γ2πν – βγc(2π/λ)

or

       ν´ = γν – Vγ(ν/c), (where ω = 2πν, V/c = β, and c = νλ)

therefore

      ν´ = γν(1 – β)

or       ν´ = (ν/(1 – β2)1/2)(1 – β)

giving

      ν´ = ν{(1 – β)/(1 + β)}1/2. (12.15)

This is the relativistic Doppler shift for the special case of photons  − we have Lorentz

invariance in action.  This result was derived in section 6.2 using the Lorentz invariance of

the energy-momentum 4-vector, and the Planck-Einstein result E = hν for the relation

between the energy E and the frequency ν of a photon.  The present derivation of the

relativistic Doppler shift is independent of the Planck-Einstein result, and therefore

provides an independent verification of their fundamental equation E = hν for a photon.

12.4  Plane harmonic waves

The one-dimensional wave equation (12.8) has the solution

y(t, x) = Acos(kx – ωt),

where ω = kV and A is independent of both x and t.

This  form is readily shown to be a solution of (12.8) by direct calculation of its 2nd partial

derivatives, and their substitution in the wave equation.

The three-dimensional wave equation (12.9) has the solution
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     ψ(t, x, y, z) = ψ0cos{(kxx + kyy + kzz) – ωt},

where ω = |k|V, and k = [kx, ky, kz], the wave vector.

The solution ψ(t, x, y, z) is called a plane harmonic wave because constant values of the

argument (kxx + kyy + kzz) – ωt define a set of planes in space — surfaces of constant

phase:

          z       k, normal to the wave surface

  Equiphase surfaces of a plane wave
   y

         O

     x    

It is often useful to represent a plane harmonic wave as the real part of the remarkable

Cotes-Euler equation

       eiθ = cosθ + isinθ, i = √–1,

so that

        ψ0cos((k⋅r) – ωt) = R.P. ψ0e
i(k⋅r – ωt).

The complex form is readily shown to be a solution of the three-dimensional wave

equation.

12.5  Spherical waves

For given values of the radial coordinate, r, and the time, t, the functions
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cos(kr – ωt) and ei(kr – ωt) have constant values on a sphere of radius r.  In order for the

wave functions to represent expanding spherical waves , we must modify their forms as

follows:

(1/r)cos(kr – ωt) and (1/r)ei(kr – ωt)  (k along r). (12.16)

These changes are needed to ensure that the wave functions are solutions of the wave

equation.  To demonstrate that the spherical wave (1/r)cos(kr – ωt) is a solution of (12.9),

we must transform the Laplacian operator from Cartesian to polar coordinates,

∇2(x, y, z) → ∇2(r, θ, φ).

The transformation is

∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 → (1/r2)[(∂/∂r)(r2(∂/∂r)) + (1/sinθ)(∂/∂θ)(sinθ(∂/∂θ)) 

      + (1/sin2θ)(∂2/∂φ2)]. (12.17)

This transformation is set as a problem.

If there is spherical symmetry, there is no angular-dependence, in which case,

∇2(r) = (1/r2)(∂/∂r)(r2(∂/∂r))

         = ∂2/∂r2 + (2/r)(∂/∂r). (12.18)

We can check that

       ψ = ψ0(1/r)cos(kr – ωt)

is a solution of the radial form of (12.9),

Differentiating twice, we find

          ∂2ψ/∂r2 = ψ0[(–k2/r)cosu + (2k/r2)sinu + (2/r3)cosu], where u = kr – ωt,

and
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          ∂2 ψ/∂t2 = –ψ0(ω2/r)cosu, ω = kV,

from which we obtain

          (1/V2)∂2ψ/∂t2 – [∂2ψ/∂r2 + (2/r)∂ψ/∂r] = 0. (12.19)

12.6  The superposition of harmonic waves

Consider two harmonic waves with the same amplitudes, ψ0, travelling in the same

direction, the x-axis.  Let their angular frequencies be slightly different —  ω ± δω with

corresponding wavenumbers k ± δk.  Their resultant, Ψ, is given by

       Ψ = ψ0e
i{(k + δk)x – (ω + δω)t}

            + ψ0e
i{(k – δk)x – (ω – δω)t}

            = ψ0e
i(kx – ωt)[ei(δkx – δωt) + e–i(δkx – δωt)]

            = ψ0e
i(kx – ωt)[2cos(δkx – δωt)]

            = Acosφ, (12.20)

where

         A = 2ψ0e
i(kx – ωt), the resultant amplitude,

and

        φ = δkx – δωt, the phase of the modulation envelope .

The individual waves travel at a speed

    ω/k = vφ, the phase velocity, (12.21)

and the modulation envelope travels at a speed

δω/δk = vG, the group velocity. (12.22)
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In the limit of a very large number of waves, each differing slightly in frequency from that

of a neighbor, dk → 0, in which case

dω/dk = vG.

For electromagnetic waves travelling through a vacuum, vG = vφ = c, the speed of light.

We shall not, at this stage, deal with the problem of the superposition of an arbitrary

number of harmonic waves.

12.7  Standing waves

The superposition of two waves of the same amplitudes and frequencies but

travelling in opposite directions has the form

       Ψ = ψ1 + ψ2 = Acos(kx – ωt) + Acos(kx + ωt)

            = 2Acos(kx)cos(ωt). (12.23)

This form describes a standing wave that pulsates with angular frequency ω, associated

with the time-dependent term cosωt.

In a travelling wave, the amplitudes of the waves of all particles in the medium are the

same and their phases depend on position.  In a standing wave, the amplitudes depend on

position and the phases are the same.

For standing waves, the amplitudes are a maximum when kx = 0, π, 2π, 3π, ...

and they are a minimum when kx = π/2, 3π/2, 5π/2, ...(the nodes).

PROBLEMS

The main treatment of wave motion, including interference and diffraction effects,

takes place in the second semester (Part 2) in discussing Electromagnetism and Optics.
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12-1  Ripples on the surface of water with wavelengths of about one centimeter are found

         to have a phase velocity vφ = √(αk) where k is the wave number and α is a

         constant characteristic of water.  Show that their group velocity is vG = (3/2)vφ.

12-2  Show that

 y(x, t) = exp{x – vt}

        represents a travelling wave but not a periodic wave.

12-3  Two plane waves have the same frequency and they oscillate in the z-direction; they

         have the forms

ψ(x, t) = 4sin{20t + (πx/3) + π}, and

ψ(y, t) = 2sin{20t + (πy/4) + π}.

         Show that their superposition at x = 5 and y = 2 is given by

ψ(t) = 2.48sin{20t – (π/5)}.

12-4  Express the standing wave y = Asin(ax)sin(bt), where a and b are constants as a

         combination of travelling waves.

12-5  Perhaps the most important application of the relativistic Doppler shift has been, and

        continues to be, the measurement of the velocities of recession of distant galaxies

        relative to the Earth.  The electromagnetic radiation associated with ionized calcium

       atoms that escape from a galaxy in Hydra has a measured wavlength of 4750 × 10–10m,

       and this is to be compared with a wavelength of 3940 × 10–10m for the same process

       measured for a stationary source on Earth.  Show that the measured wavelengths

       indicate that the galaxy in Hydra is receding from the Earth with a speed v = 0.187c.



13

 ORTHOGONAL FUNCTIONS AND FOURIER SERIES

13.1  Definitions

Two n-vectors

         An = [a1, a2, ...an] and Bn = [b1, b2, ...bn]

are said to be orthogonal if

      ∑[i = 1, n] aibi = 0. (13.1)

(Their scalar product is zero).

Two functions A(x) and B(x) are orthogonal in the range x = a to x = b if

∫ [a, b] A(x)B(x)dx = 0. (13.2)

The limits must be given in order to specify the range in which the functions A(x) and B(x)

are defined.

The set of real, continuous functions {φ1(x), φ2(x), ...} is orthogonal in [a, b] if

       ∫ [a, b] φm(x)φn(x)dx = 0 for m ≠ n. (13.3)

If, in addition,

    ∫ [a, b] φn
2(x)dx = 1 for all n, (13.4)

the set is normal, and therefore it is said to be orthonormal.

The infinite set

{cos0x, cos1x, cos2x, ... sin0x, sin1x, sin2x, ...} (13.5)

in the range [–π, π] of x is an example of an orthogonal set.  For example,

∫ [–π, π] cosx⋅cos2xdx = 0 etc., (13.6)
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and

 ∫ [–π, π] cos2xdx ≠ 0 = π, etc.

This set, which is orthogonal in any interval of x of length 2π, is of interest in

Mathematics because a large class of functions of x can be expressed as linear combinations

of the members of the set in the interval 2π.  For example we can often write

    φ(x) =  c1φ1 + c2φ2 +     where the c’s are constants

            =  a0cos0x + a1cos1x + a2cos2x + ...

             + b0sin0x + b1sin1x + b2sin2x + ... (13.7)

A large class of periodic functions ,of period 2π, can be expressed in this way.  When a

function can be expressed as a linear combination of the orthogonal set

{1, cos1x, cos2x, ...0, sin1x, sin2x, ...} ,

it is said to be expanded in its Fourier series.    

13.2  Some trigonometric identities and their Fourier series

Some of the familiar trigonometric identities involve Fourier series.  For example,

    cos2x = 1 – 2sin2x (13.8)

can be written

      sin2x = (1/2) – (1/2)cos2x

and this can be written

      sin2x = {(1/2)cos0x + 0cos1x – (1/2)cos2x + 0cos3x + ...

                 + 0{sin0x + sin1x + sin2x + ...} (13.9)

             → the Fourier series of sin2x.
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The Fourier series of cos2x is

     cos2x = (1/2) + (1/2)cos2x. (13.10)

More complicated trigonometric identies also can be expanded in their Fourier series. For

example, the identity

     sin3x = 3sinx – 4sin3x

can be written

     sin3x = (3/4)sinx – (1/4)sin3x, (13.11)

and this is the Fourier series of sin3x.

The terms in the series represent the “harmonics“of the function sin3x.  They are shown in

the following diagram

The Fourier components of sin3x

-1

1

1

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

Degrees

In a similar fashion, we find that the identity

   cos3x = 4cos3x – 3cosx
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can be rearranged to give the Fourier series of cos3x

    cos3x = (3/4) + (1/4)cos3x. (13.12)

In general, a combination of deMoivre’s theorem and the binomial theorem can be

used to write cos(nx) and sin(nx) (for n a positive integer) in terms of powers of sinx and

cosx.  We have

cos(nx) + isin(nx) = (cosx + isinx)n  (i = √–1)  (deMoivre) (13.13)

and

               (a + b)n = an + nan–1b + (n(n–1)/2!) an–2b2 ...+bn . (13.14)

For example, if n = 4, we obtain

     cos4x = (1/8)cos4x + (1/2)cos2x + (3/8), (13.15)

and

     sin4x = (1/8)cos4x – (1/2)cos2x + (3/8). (13.16)

13.3  Determination of the Fourier coefficients of a function

If, in the interval [a, b], the function f(x) can be expanded in terms of the set

{φ1(x), φ2(x), ...}, which means that

       f(x) = ∑[i=1, ∞] ciφi(x), (13.17)

where {φ1(x), φ2(x), ...} is orthogonal in [a, b], then the coefficients can be evaluated as

follows:

to determine the kth-coefficient, ck, multiply f(x) by φk(x), and integrate over the

interval [a, b]:

∫ [a, b] f(x)φk(x)dx = ∫ [a, b] c1φ1φkdx +          ...∫ [a, b] ckφk
2dx + ... (13.18)
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   =          0        +        0       +      ≠ 0          +      0  ...

The integrals of the products φmφn in the range [–π, π] are all zero except for the case

that involves φk
2.  We therefore obtain the kth-coefficient

            ck = ∫ [a, b] f(x)φk(x)dx / ∫ [a, b] φk
2(x)dx       k = 1, 2, 3, ... (13.19)

13.4  The Fourier series of a periodic saw-tooth waveform

In standard works on Fourier analysis it is proved that every periodic continuous

function f(x) of period 2π can be expanded in terms of {1, cosx, cos2x, ...0, sinx, sin2x, ...};

this orthogonal set is said to be complete with respect to the set of periodic continuous

functions f(x) in [a, b].

Let f(x) be a periodic saw-tooth waveform with an amplitude of ± 1:

      f(x)
        +1

                 –2π                      –π                     0                     π                     2π       x

         -1

The function has the following forms in the three intervals

       f(x) = (–2/π)(x + π)    for –π ≤ x ≤ –π/2,

             = 2x/π                    for –π/2 ≤ x ≤ π/2,

and

             = (–2/π)(x – π)     for π/2 ≤ x ≤ π.
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The periodicity means that f(x + 2π) = f(x).

The function f(x) can be represented as a linear combination of the series {1, cosx,

cos2x, ...sinx, sin2x, ...}:

        f(x) = a0cos0x + a1cos1x + a2cos2x + ...akcoskx + ...

                 + b0sin0x + b1sin1x + b2sin2x + ...bksinkx + ... (13.20)

The coefficients are given by

ak = ∫ [–π, π] coskx f(x)dx / ∫ [–π, π] cos2kxdx = 0, (f(x) is odd, coskx is even, and         

         [–π, π] is symmetric about 0), (13.21)

and

  bk = ∫ [–π, π] sinkx f(x)dx / ∫ [–π, π] sin2kxdx ≠ 0,

      = (1/π){∫ [–π,  –π/2] (–2/π)(x + π)sinkxdx + ∫ [–π/2, π/2] (2x/π)sinkxdx

        + ∫ [π/2, π] (–2/π)(x – π)sinkxdx }

      = {8/(πk)2}sin(kπ/2). (13.22)

The Fourier series of f(x) is therefore

f(x) = (8/π 2){sinx – (1/32)sin3x + (1/52)sin5x  – (1/72)sin7x + ...}.

Sum of Four Fourier Components of a Saw-Tooth Waveform
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The above procedure can be generalized to include functions that are not periodic.

The sum of discrete Fourier components then becomes an integral of the amplitude of the

component of angular frequency ω = 2πν with respect to ω.  This is a subject covered in

the more advanced treatments of Physics.

PROBLEMS

13-1  Use deMoivre’s theorem and the binomial theorem to obtain the Fourier expansions:

1) cos4x = 3/8 + (1/2)cos2x + (1/8)cos4x,

and

2) sin4x = 3/8 – (1/2)cos2x + (1/8)cos4x.

Plot these components (harmonics) and their sums for –π ≤ 0 ≤ π.

13-2  Use the method of integration of orthogonal functions to obtain the Fourier series of

         problem 13-1; you should obtain the same results as above!

13-3  Show that 1) if f(x) = – f(–x), only sine functions occur in the Fourier series for f(x),

         and

 2) if f(x) = f(–x), only cosine functions occur in the Fourier series for f(x).

13-4  The Fourier series of a function f(t) that is a periodic repetition outside (–T, T), of

the shape inside,  with period 2π is often written in the form

         f(t) = (a0/2) + ∑[n = 1, ∞] {ancos(nπt/T) + bnsin(nπt/T)},

        where

an = (1/T)∫ [–T, T] f(t)cos(nπt/T)dt,

and
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bn = (1/T)∫ [–T, T] f(t)sin(nπt/T)dt.

        If f(t) is a periodic square-wave:

        f(t) = 3 for 0 < t < 5µs

              = 0 for 5 < t < 10µs, with period 2T = 10µs

    f(t)             

      3                         

      0                          
              –10                –5                 0                  5                10                    t

obtain the Fourier series :

f(t) = (3/2) +(3/π)∑ [n = 1, ∞] [(1 – cosnπ)/n]sin(nπt/5)).

Compute this series for n = 1 to 5 and –5 < t < 5, and compare the truncated

            series with the exact waveform.

13-5  It is interesting to note that the series in 13-4 converges to the exact value f(t) = 3

        at the value t = 5/2 µs, so that

3 = (3/2) + (3/π)∑ [n=1, ∞][(1 – cosnπ)/n]sin(nπ/2).

        Use this result to obtain the important Gregory-Leibniz infinite series :

(π/4) = 1 – (1/3) + (1/5) – (1/7) + ...



Appendix A

Solving ordinary differential equations

Typical dynamical equations of Physics are

1)  Force in the x-direction = mass × acceleration in the x-direction with the 

mathematical form

Fx = max = md2x/dt2,

and

2)  The amplitude y(x, t) of a wave at (x, t), travelling at constant speed V along

the x-axis with the mathematical form

(1/V2)∂2y/∂t2 – ∂2y/∂x2 = 0.

Such equations, that involve differential coefficients, are called differential equations.

An equation of the form

f(x, y(x), dy(x)/dx; ar) = 0 (A.1)

that contains

i)  a variable y that depends on a single, independent variable x,

ii)  a first derivative dy(x)/dx,

and

iii) constants, ar,
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is called an ordinary (a single independent variable) differential equation of the first order

(a first derivative, only).

An equation of the form

f(x1, x2, ...xn, y(x1, x2, ...xn), ∂y/∂x1, ∂y/∂x2, ...∂y/∂xn; ∂2y∂x1
2, ∂2y/∂x2

2,

...∂2y/∂xn
2; ∂ny/∂x1

n, ∂ny/∂x2
n, ...∂ny/∂xn

n; a1, a2, ...a r) = 0 (A.2)

that contains

i)  a variable y that depends on n-independent variables x1, x2, ...xn,

ii)  the 1st-, 2nd-, ...nth-order partial derivatives:

     ∂y/∂x1, ...∂2y/∂x1
2, ...∂ny/∂x1

n, ...,

and

iii)  r constants, a1, a2, ...a r,

is called a partial differential equation of the nth-order.

Some of the techniques for solving ordinary linear differential equations are given in this

appendix.

An ordinary differential equation is formed from a particular functional relation,  

f(x, y; a1, a2, ...an) that involves n arbitrary constants.  Successive differentiations of f with

respect to x, yield n relationships involving x, y, and the first n derivatives of y with respect

to x, and some (or possibly all) of the n constants.  There are (n + 1) relationships from

which the n constants can be eliminated.  The result will involve dny/dxn, differential

coefficients of lower orders, together with x, and y, and no arbitrary constants.

Consider, for example, the standard equation of a parabola:
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         y2 – 4ax. = 0, where a is a constant.

Differentiating, gives

         2y(dy/dx) – 4a = 0

so that

   y – 2x(dy/dx) = 0, a differential equation that does not contain the constant a.

As another example, consider the equation

f(x, y, a, b, c) = 0 = x2 + y2 + ax + by + c = 0.

Differentiating three times successively, with respect to x, gives

1)   2x + 2y(dy/dx) + a + b(dy/dx) = 0,

2)   2 + 2{y(d2y/dx2) + (dy/dx)2} + b(d2y/dx2) = 0,

and

3)   2{y(d3y/dx3) + (d2y/dx2)(dy/dx)} + 4(dy/dx)(d2y/dx2) + b(d3y/dx3) = 0.

Eliminating b from 2) and 3),

(d3y/dx3){1 + (dy/dx)2} = (dy/dx)(d2y/dx2)2.

The most general solution of an ordinary differential equation  of the nth-order

contains n arbitrary constants.  The solution that contains all the arbitrary constants is

called the complete primative.  If a solution is obtained from the complete primative by

giving definite values to the constants then the (non-unique) solution is called a

particular integral.

Equations of the 1st-order and degree.

The equation
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M(x, y)(dy/dx) + N(x, y) = 0 (A.3)

is separable if M/N can be reduced to the form f 1(y)/f2(x), where f1 does not involve x, and f2

does not involve y.  Specific cases that are met are:

i)  y absent in M and N, so that M and N are functions of x only; Eq. (A.3) then can be

written

          (dy/dx) = –(M/N) = F(x)

therefore

       y = ∫F(x)dx + C, where C is a constant of integration.

ii)  x absent in M and N.

Eq. (A.3) then becomes

(M/N)(dy/dx) = – 1,

so that

    F(y)(dy/dx) = –1, (M/N = F(y))

therefore

        x = –∫F(y)dy + C.

iii)  x and y present in M and N, but the variables are separable.

Put M/N = f(y)/g(x), then Eq. (A.3) becomes

     f(y)(dy/dx) + g(x) = 0.

Integrating over x,

     ∫f(y)(dy/dx)dx + ∫g(x)dx = 0.

or
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               ∫f(y))dy + ∫g(x)dx = 0.

For example, consider the differential equation

        x(dy/dx) + coty = 0.

This can be written

       (siny/cosy)(dy/dx) + 1/x = 0.

Integrating, and putting the constant of integration C = lnD,

    ∫(siny/cosy)dy + ∫(1/x)dx = lnD,

so that

         –ln(cosy) + lnx = lnD,

or

      ln(x/cosy) = lnD.

The solution is therefore

        y = cos–1(x/D).

Exact equations   

The equation

       ydx + xdy = 0 is said to be exact because it can be written as

  d(xy)  = 0, or

        xy = constant.

Consider the non-exact equation

     (tany)dx + (tanx)dy = 0.

We see that it can be made exact by multiplying throughout by cosxcosy, giving
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       sinycosxdx + sinxcosydy = 0 (exact)

so that

    d(sinysinx) = 0,

or

         sinysinx = constant.

The term cosxcosy is called an integrating factor.

Homogeneous differential equations.

A homogeneous equation of the nth degree in x and y is such that the powers of x

and y in every term of the equation is n.  For example, x2y + 2xy2 + 3y3 is a homogeneous

equation of the third degree.  If, in the differential equation M(dy/dx) + N = 0 the terms

M and N are homogeneous functions of x and y, of the same degree, then we have a

homogeneous differential equation of the 1st order and degree.  The differential equation

then reduces to

           dy/dx = –(N/M) = F(y/x)

To find whether or not a function F(x, y) can be written F(y/x), put

      y = vx.

If the result is F(v) (all x’s cancel) then F is homogeneous.  For example

           dy/dx = (x2 + y2)/2x2 → dy/dx = (1 + v2)/2 = F(v), therefore the

equation is homogeneous.

Since dy/dx → F(v) by putting y = vx on the right-hand side of the equation, we make the

same substitution on the left-hand side to obtain
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 v + x(dv/dx) = (1 + v2)/2

therefore

             2xdv = (1 + v2 – 2v)dx.

Separating the variables

  2dv/(v – 1)2 = dx/x., and this can be integrated.

Linear Equations

The equation

           dy/dx + M(x)y = N(x)

is said to be linear and of the 1st order.  An example of such an equation is

           dy/dx + (1/x)y = x2.

This equation can be solved by introducing the integrating factor, x, so that

  x(dy/dx) + y = x3,

therefore

      (d/dx)(xy) = x3,

giving

      xy = x4/4 + constant.

In general, let R be an integrating factor, then

        R(dy/dx) + RMy = RN,

in which case, the left-hand side is the differential coefficient of some product with a first

term R(dy/dx).  The product must be Ry!  Put, therefore

        R(dy/dx) + RMy = (d/dx)(Ry) = R(dy/dx) + y(dR/dx).
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Now,

  RMy = y(dR/dx),

which leads to

       ∫M(x)dx = ∫dR/R = lnR,

or

      R = exp{∫M(x)dx}.

We therefore have the following procedure: to solve the differential equation

       (dy/dx) + M(x)y = N(x),

multiply each side by the integrating factor exp{∫M(x)dx}, and integrate.  For example, let

       (dy/dx) + (1/x)y = x2,

so that  ∫M(x)dx = ∫(1/x)dx = lnx and the integrating factor is exp{lnx} = x:.  We

therefore obtain the equation

     x(dy/dx) + (1/x)y = x3,

 deduced previously on intuitive grounds.

Linear Equations with Constant Coefficients.

Consider the 1st order linear differential equation

        p0(dy/dx) + p1y = 0,  where p0, p1 are constants.

Writing this as

          p0(dy/y) + p1 dx = 0,

we can integrate term-by-term, so that

   p0lny + p1x = constant,
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therefore

     lny = (–p1/p0)x + constant

                       = (–p1/p0)x + lnA, say

therefore

         y = Aexp{(–p1/p0)x}.

Linear differential equations with constant coefficients of the 2nd order occur often in

Physics.  They are typified by the forms

 p0(d2y/dx2) + p1(dy/dx) + p2y = 0.

The solution of an equation of this form is obtained by following the insight gained in

solving the 1st order equation!.  We try a solution of the type

        y = Aexp{mx},

so that the equation is

 Aexp{mx}(p0m
2 + p1m + p2) = 0.

If m is a root of

        p0m
2 + p1m + p2 = 0

then y = Aexp{mx} is a solution of the original equation for all values of A.

Let the roots be α and β.  If α ≠ β there are two solutions

  y = Aexp{αx }and y = Bexp{βx.}.

If we put

        y = Aexp{αx} + Bexp{βx}

in the original equation then
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Aexp{αx}(p0α2 + p1α + p2) + Bexp{βx}(p0β2 + p1β + p2) = 0,

which is true as α and β are the roots of

       p0m
2 + p1m + p2 = 0, (called the auxilliary equation)

The original equation is linear, therefore the sum of the two solutions is, itself, a (third)

solution.  The third solution contains two arbitrary constants (the order of the equation),

and it is therefore the general solution.

As an example of the method, consider solving the equation

    2(d2y/dx2) + 5(dy/dx) + 2y = 0.

Put y = Aexp{mx }as a trial solution, then

     Aexp{mx}(2m2 + 5m + 2) = 0, so that

        m = –2 or –1/2, therefore the general solution is

         y = Aexp{–2x} + Bexp{(–1/2)x}.

If the roots of the auxilliary equation are complex, then

         y = Aexp{p + iq}x + Bexp{p – iq}x,

where the roots are p ± iq ( p, q ∈ R).

In practice, we write

         y = exp{px}[Ecosqx + Fsinqx]

where E and F are arbitrary constants.

For example, consider the solution of the equation

d2y/dx2 – 6(dy/dx) + 13y = 0,

therefore
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          m2 – 6m + 13 = 0,

so that

                 m = 3 ± i2.

We therefore have

                  y = Aexp{(3 + i2)x} + Bexp{3 – i2)x}

                     = exp{3x}(Ecos2x + Fsin2x).

The general solution of a linear differential equation with constant coefficients is the sum

of a particular integral and the complementary function (obtained by putting zero for

the function of x that appears in the original equation).
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