

Using Metal Hydride to Store Hydrogen

L. Kit Heung Savannah River Technology Center

Fuel Cells 2003 - Third Annual BCC Conference Stamford, CT March 31 - April 1 2003

Outline

- Challenges of hydrogen storage & its importance to the fuel cycle
- Comparing present storage methods from energy point of view
- Challenges of using metal hydrides for hydrogen storage
- Metal hydride vessel design
- Demonstrated applications: city bus & utility vehicle
- Summary

Challenges of Hydrogen Storage

• Low energy content (by volume) compared to hydrocarbon fuel

	H_2	CH ₄	C_8H_{18}	$H_2: C_8H_{18}$
Heat of combustion MJ/kg	120	50	45	2.7:1
Heat of combustion MJ/liter at ambient	0.011	0.036	31.4	0.00035:1
Heat of combustion MJ/liter at liquid state	8.5 (-253 °C)	20.7 (-161 °C)	31.4	0.27:1
Density at ambient g/liter	0.09	0.072	703	1:10,000
Density at liquid kg/liter	0.071	0.415	0.703	0.1:1

Importance of Hydrogen storage

Efficiency =
$$\frac{\text{Energy In - Consumed}}{\text{Energy In}}$$
 (Must > 0)

Present Storage Options

- Compressed hydrogen (5,000; 10,000 psi)
- Liquid hydrogen (-253 °C)
- Adsorbed hydrogen (MH, others)

Energy to Compress H₂

Energy to Liquefy H₂

Theoretical:

Gas from 25 C to 20 K: 2.94 MJ/kg

Gas to liquid @ 20 K: 0.45 MJ/kg

Total: 3.4 MJ/Kg (MJ=1,055 Btu)

Actual:

Refrigeration efficiency: 7.2 %*

Energy for refrigeration: 0.45/7.2% = 47 MJ/kg

Vaporization & warm up: 3.4 MJ/Kg

Total: **50.4** MJ/kg (42% of LHV)

* Reversed Carnot cycle: T1/(T2-T1) = 20/(298-20) = 7.2%

Energy to Operate Metal Hydride

$$M + 1/2 H_2 \xrightarrow{T, P} MH + Energy$$

Compress H₂ to 20 atm: 12 MJ/kg

Heat of absorption = $\sim 7 \text{ kcal/mol } (14.6 \text{ MJ/kg})$

Refrigeration for 10 °C COP = 5

Cooling energy: 14.6/5 = 3 MJ/kg

Energy for desorption: 0 (use waste heat)

Total: 15 MJ/kg (12.5% LHV)

Comparing Storage Options

	Gas Hydrogen (340-atm)	Liquid Hydrogen	Metal Hydride
Energy Required MJ/kg	36	50	15
% LHV	30	42	13
Conditions	very high P	very low T	moderate P & T
Hydrogen density, kg/liter	0.03	0.07	~0.06
Hydrogen wt%	100	100	~1.5

Using MH to Store Hydrogen

- Advantages:
 - Low operation energy
 - High density without high pressure & low temp
- Disadvantages:
 - Heavy (low wt% hydrogen)
 - Sensitivity to impurities
- R&D Needed:
 - Lighter material (higher wt% hydrogen)
 - Resistance to impurities

Challenges of Using MH

- Fines confinement
- Expansion & Contraction
- Hydrogen density gravimetric & volumetric
- Heat transfer

Fines Confinement

• Filter of proper pore size and area must be used. (10 μ , 5 cm²/kg H₂)

mm size particle after 1 absorption

After 10 absorptions particles size ~10 micron

Expansion/Contraction Stress on Container Wall

Gravimetric and Volumetric Densities

Heat Transfer

Refueling rate function of coolant rate & hydrogen pressure 26 kg MH in 3.5 diameter bed with Al foams

Design of MH Storage Vessel

Metal hydride powder

Demonstration of Storage Vessel

City transit bus with hydrogen powered IC-generator hybrid (33-ft, 27 passenger)

Half of 15-kg hydrogen

• Ultra low emission

Metal Hydrides Demonstrated

Figure 4. Typical desorption isotherms of Lm_{1.06}Ni_{4.96}Al_{0.04} and Fe_{0.9}Mn_{0.1}Ti (data from producers)

H₂ Fuel Cell Utility Vehicle

Metal Hydride H₂ Fuel Cell Power System

Figure 2. The power system of Gator 2.

H₂ Fuel Cell System Demonstrated

Table 2. Specifications of Hydrogen Fuel Cell Gator™ Utility Vehicle

Vehicle chassis mfr./type	Deere & Co. / Gator™ Utility	
	Vehicle	
Fuel cell type	NG2000™ 60 cells	
Fuel cell operating pressure	150 kPa (122 to 308 kPa)	
Fuel cell operation temperature	60 °C	
Hydrogen / air flow rates	1.5x / 2.5x stoichiometric	
Fuel cell power @ 163 kPa	8.3 kW at 38 V	
Hydride material	$Fe_{0.9}Mn_{0.1}Ti$	
Storage system weight	244 kg	
Hydrogen storage capacity	2 kg	
Hydrogen discharge temp./ pressure @	50 °C / 756 kPa	
50% loading		
Refueling pressure / time	2170 kPa / 60 minutes	
Vehicle weight	$\sim 900 \text{ kg}$	
Operating range	7 hours, or 80 km @ 11.5 km/hr	
	avg.	
Maximum cruising speed	19 km/hr	

Summery

- Present hydrogen storage methods are feasible but not practical for a hydrogen economy
- Metal hydrides though heavy do have advantages and may find niche applications
- Lighter metal hydrides (solid absorbents) are needed
- SRTC metal hydride vessel technology is applicable to both stationary and mobile applications
- Hydrogen economy requires a better storage method that is to be discovered.