

Hacking Google® Maps
and Google® Earth

Martin C. Brown

01_790095 ffirs.qxp 6/12/06 1:27 PM Page iii

Hacking Google® Maps
and Google® Earth

01_790095 ffirs.qxp 6/12/06 1:27 PM Page i

01_790095 ffirs.qxp 6/12/06 1:27 PM Page ii

Hacking Google® Maps
and Google® Earth

Martin C. Brown

01_790095 ffirs.qxp 6/12/06 1:27 PM Page iii

For general information on our other products and services or to obtain technical support, please contact our Customer Care Department
within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Cataloging-in-Publication Data
Brown, Martin C.
Hacking Google Maps and Google Earth / Martin C. Brown.

p. cm.
Includes index.
ISBN-13: 978-0-471-79009-9 (paper/website)
ISBN-10: 0-471-79009-5 (paper/website)
1. Geographic information systems. 2. Google Maps. 3. Google Earth. I. Title.
G70.212.B765 2006
910.285--dc22

2006013971

Trademarks: Wiley, the Wiley logo, and related trade dress are trademarks or registered trademarks of John Wiley & Son, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. ExtremeTech and the ExtremeTech
logo are trademarks of Ziff Davis Publishing Holdings, Inc. Used under license. All rights reserved. Google is a registered trademark of
Google, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Hacking Google® Maps and Google® Earth

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-471-79009-9
ISBN-10: 0-471-79009-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1B/QV/QX/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy
fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN
46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR
EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN
MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE
PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON
SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES
ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE
AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK
WAS WRITTEN AND WHEN IT IS READ.

01_790095 ffirs.qxp 6/12/06 1:27 PM Page iv

www.wiley.com

To Darcy and Leon, the cats that understand everything and nothing, respectively.

01_790095 ffirs.qxp 6/12/06 1:27 PM Page v

About the Author
A professional writer for more than six years, Martin C. Brown (MC) is the author of both the
Perl and Python Annotated Archives and Complete Reference books (all four Osborne/McGraw-
Hill), Microsoft IIS 6 Delta Guide (Sams Publishing), and 14 other published computing titles.
His expertise spans myriad development languages and platforms—Perl, Python, Java,
JavaScript, Basic, Pascal, Modula-2, C, C++, Rebol, Gawk, Shellscript, Windows, Solaris,
Linux, BeOS, Microsoft WP, Mac OS, and more—as well as web programming, systems
management, and integration. MC is a regular contributor to ServerWatch.com and IBM
developerWorks.

He is also a regular writer of white papers and how-to guides for Microsoft on subjects such as
migrating Solaris/Unix/Linux development and systems administration to Windows 2000 and
2003 Server product lines. He draws on a rich and varied background as a founding member of
a leading U.K. ISP, systems manager and IT consultant for an advertising agency and Internet
solutions group, technical specialist for an intercontinental ISP network, and database designer
and programmer—and as a self-confessed compulsive consumer of computing hardware and
software. In his formative pre-writing life, he spent 10 years designing and managing mixed
platform environments. As a result he has developed a rare talent of being able to convey the
benefits and intricacies of his subject with equal measures of enthusiasm, professionalism, in-
depth knowledge, and insight. MC is currently a member of the MySQL Documentation
Team.

01_790095 ffirs.qxp 6/12/06 1:27 PM Page vi

Credits
Executive Editor
Chris Webb

Development Editors
Kelly Talbot
Suzanna R. Thompson

Technical Editor
Ben Hammersley

Production Editor
Pamela Hanley

Copy Editor
Kim Cofer

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive Group
Publisher

Richard Swadley

Vice President and Executive Publisher
Joseph B. Wikert

Project Coordinator
Ryan Steffen

Graphics and Production Specialists
Jennifer Click
Denny Hager
Stephanie Jumper

Quality Control Technician
John Greenough

Proofreading and Indexing
Techbooks

Cover Design
Anthony Bunyan

01_790095 ffirs.qxp 6/12/06 1:27 PM Page vii

01_790095 ffirs.qxp 6/12/06 1:27 PM Page viii

Contents at a Glance
Acknowledgments . xix
Introduction . xxi

Part I: Basics . 1
Chapter 1: Using Geographical Information . 3
Chapter 2: The Google Local Interface . 13
Chapter 3: The Google Maps API. 35
Chapter 4: The Google Web API . 53
Chapter 5: Storing and Sharing Information . 65

Part II: Instant Gratification . 93
Chapter 6: Working with Existing Address Information 95
Chapter 7: Extending the Google API Examples . 103
Chapter 8: Discovering Overlays and Mash-ups . 133

Part III: Google Maps Hacks . 143
Chapter 9: Using Overlays . 145
Chapter 10: Overlaying Statistical Data . 181
Chapter 11: Building a Community Site . 207
Chapter 12: The Realtors and Archaeologists Toolkit 227
Chapter 13: I Need to Get To.... 251
Chapter 14: Merging with Flickr Photos . 279

Part IV: Google Earth Hacks. 291
Chapter 15: Introducing Google Earth . 293
Chapter 16: Generating Google Earth Feeds . 309
Chapter 17: History and Planning with Google Earth 327
Appendix: Resources . 345

Index . 351

02_790095 ftoc.qxp 6/12/06 1:27 PM Page ix

02_790095 ftoc.qxp 6/12/06 1:27 PM Page x

Contents
Acknowledgments . xix

Introduction . xxi

Part I: Basics 1

Chapter 1: Using Geographical Information 3
Understanding Your Location . 3

Mapping a Location . 3
Defining a Location . 4
Moving to Another Location . 6

Thinking in Terms of Geographical Location . 6
To Find Places . 6
To Identify Photo Subjects . 7
To Understand Statistical Data. 9
To Generate Data from Maps . 10

Wrapping Up . 11

Chapter 2: The Google Local Interface 13
System Requirements . 13
Examining the Main Interface. 14
Interacting with the Map . 15

Moving the Map . 15
Zooming In and Out . 15
Changing the View Types. 25

Conducting Searches . 28
Understanding Markers . 30

Markers . 31
Pop-ups . 31
Links . 32
Overlays . 32

Wrapping Up . 33

Chapter 3: The Google Maps API . 35
Using the API Key. 35

Browser Compatibility . 37
Basic Components of a Google Maps Application 37

XHTML (Extensible HTML) . 37
VML (Vector Markup Language) . 38
Styles and Elements. 39

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xi

XML (Extensible Markup Language) . 39
JavaScript . 40

Understanding API Terminology . 40
Overlays . 41
Events . 41
Information Windows . 41
Controls . 42

The Google Maps Classes . 42
GMap . 42
GMarker . 46
GPolyline . 47
GIcon . 48
GEvent . 49
GXmlHttp . 50
GXml . 50
GXslt . 51
GPoint . 51
GSize . 51
GBounds . 52

Wrapping Up . 52

Chapter 4: The Google Web API . 53
Downloading the Google Web API . 53
Using the Google Web API . 54

Conducting Searches . 55
Comparing Language Samples . 60

Wrapping Up . 64

Chapter 5: Storing and Sharing Information. 65
Format Types and Uses . 65

Using Flat-Text Files . 66
Using XML . 66
Using an RDBMS . 67

Parsing and Generating Text Files. 67
Reading Delimited Files . 68
Writing Delimited Files. 69
Reading Fixed-Width Files . 70
Writing Fixed-Width Files . 72
Updating Text Files . 72

Generating and Parsing XML . 73
Generating XML . 74
Parsing XML with Perl . 77
Parsing XML with JavaScript . 79

Working with SQL . 82
Creating a Database Structure . 83
Interfacing to the Database . 84
Populating the Database . 87
Extracting Data from the Database . 89

Wrapping Up . 92

xii Contents

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xii

Part II: Instant Gratification 93

Chapter 6: Working with Existing Address Information 95
Looking Up Geocode Information . 95
Looking Up U.S. Information . 96
Looking Up Global Information . 97
Wrapping Up . 102

Chapter 7: Extending the Google API Examples 103
Installing a Simple Example . 103
Adding Controls to the Map . 106
Moving about a Map . 109
Adding Overlays . 111

Adding a Single Marker . 111
Adding Multiple Markers . 112
Adding Lines . 115

Opening an Info Window . 120
Event Listeners . 123

Monitoring Movement . 123
Adding Markers to Multiple Maps . 125
Monitoring Location . 128

Wrapping Up . 131

Chapter 8: Discovering Overlays and Mash-ups 133
Traffic Solutions . 133

Toronto Transit Commission (TTC) Map 133
Toronto Traffic Cameras. 135
U.K. Speed Cameras . 136

Trackers and Locators . 137
Hurricanes . 137
Satellites . 139
Blackbirds . 139

Wrapping Up . 142

Part III: Google Maps Hacks 143

Chapter 9: Using Overlays . 145
Building in Multiple Points . 145

Extending the Source HTML. 145
Making the Generation Dynamic with a Script 148

Pulling the Data from a Database . 157
Creating a Suitable Database Structure . 157
Generating XML from that Information 159

Extending the Information Pane . 161
Formatting Information Panes. 161
Creating More Detailed Windows from XML and XSLT 163

xiiiContents

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xiii

Making Your Example Truly Dynamic. 167
Dividing the Application into Components 168
The JavaScript Component . 169
Generating the XML on the Backend. 174
Using the New Map . 176
Extending the Content . 177

Wrapping Up . 179

Chapter 10: Overlaying Statistical Data 181
Generating/Obtaining Statistical Information . 181

The U.S. Census Data . 182
Converting the Source Data to XML . 182

Using Polylines . 184
Basic Point Map . 184
Building an Internal Data Representation. 188
Adding a Bar Graph . 189
Adding a Circle . 192
Plotting Multiple Data Sets . 194

Using Custom Icons . 197
Building Your Own Icon . 197
Putting the Icon on a Map . 202
Using Icon Size to Represent Data . 203

Wrapping Up . 205

Chapter 11: Building a Community Site 207
Displaying Highlighted Points . 207
Adding More Data to the Output . 208

Storing and Creating the Data . 209
Backend Database Interface . 211

Using Custom Icons to Highlight Different Attractions 213
Filtering Data through Layers of Information . 215

HTML Preamble . 215
Global Objects . 215
Entity Object . 216
Initial Function . 216
Loading a List of Types . 217
Moving the Map. 217
Removing Existing Markers . 218
Adding Markers . 218
Loading Markers for a Type . 219
Recentering the Map . 220
Closing HTML . 221
Final Application . 222

Wrapping Up . 225

xiv Contents

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xiv

Chapter 12: The Realtors and Archaeologists Toolkit 227
Alternative Markers . 227

The TLabel Extension. 228
Building a TLabel Application . 232

Overlaying Images and Drawings . 239
The TPhoto Extension . 239
Using TPhoto Overlays . 240

Identifying Elements from Click Locations . 244
Creating a Unique Map Object . 244
Registering the Objects on the Map. 245
Identifying the Click Location . 246
Resetting the Map Location. 246
Resetting the Object Opacity . 247
Final Overlay Application . 247

Wrapping Up . 248

Chapter 13: I Need to Get To... 251
Front-End Interface . 251

HTML Wrapper . 252
Global Variables . 254
Enabling the Route Recording Process . 254
Disabling the Route Recording Process . 255
Clearing the Last Point . 256
Clearing the Current Route . 256
Initializing a New Route. 256
Deleting a Route . 257
Saving a Route . 258
Loading a List of Routes . 259
Loading a Single Route . 261
Adding Markers . 264
Initializing the Application . 264
Recentering and Zooming the Map . 265

Backend Database Interface . 265
Database Structure. 266
Basic Wrapper . 266
Message Response . 267
Listing Existing Routes . 267
Saving a Route . 268
Deleting an Existing Route . 269
Obtaining a Single Route . 270
Calculating Distance. 271

Using the Application . 272
Wrapping Up . 277

xvContents

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xv

Chapter 14: Merging with Flickr Photos 279
Flickr and the Flickr API . 279

The Flickr API . 279
Getting a Flickr API Key . 280
Adding Geographic Data to Your Flickr Photos 280

Adding Flickr Photos to a Google Map . 281
A Flickr Proxy . 281
Searching Flickr for Photos . 282
Getting Individual Photo Data . 284

Wrapping Up . 290

Part IV: Google Earth Hacks 291

Chapter 15: Introducing Google Earth 293
Google Earth Overview . 293

Obtaining the Application. 294
Google Earth Features . 294

Extending Google Earth Information . 304
Exporting Your Tags . 305
Basic KML Principles . 306

Wrapping Up . 308

Chapter 16: Generating Google Earth Feeds. 309
Showing Points . 309

Generating KML from Existing Data. 310
Generating KML Dynamically . 315

Adding Icons . 321
Wrapping Up . 325

Chapter 17: History and Planning with Google Earth 327
Location Photos . 327

Using a Photo for a Placemark . 327
Scaling the Icon . 329
Setting a View . 330
Adding Detail to a Placemark . 331
Final KML. 331
Generating the Information in Google Earth 334

Generating a KMZ File . 336
Revisiting the Realtor’s Toolkit. 337

Using an Overlay . 337
Creating a 3D Structure . 339

Wrapping Up . 343

xvi Contents

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xvi

Appendix: Resources . 345
Google Resources. 345

Google Maps API . 346
Google Maps API Documentation . 346
Google Maps API Help . 346
Google Web API . 346
Google Maps Groups . 346

Information Sources . 347
Google Maps Mania . 347
Maplandia.com . 347
Google Maps on Wikipedia . 347
Google Sightseeing . 347

Geocoders . 347
MGeocoder . 348
Geocode America . 348
Geocoder. 348

Google Maps Tools . 348
gMap it! . 348
Mobile GMaps . 348
MapBuilder . 348
MapKi . 349

Competitors and Alternatives . 349
MapQuest . 349
Virtual Earth. 349
Yahoo! Maps . 349
A9 Maps . 349
Multimap.com . 350
Map24 . 350

Index . 351

xviiContents

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xvii

02_790095 ftoc.qxp 6/12/06 1:27 PM Page xviii

Acknowledgments

I’d like to thank Chris Webb for giving me the opportunity to write this book, and Suzy
Thompson and Kelly Talbot, who kept me on the straight and narrow while writing the

chapters. The unseen members of Wiley’s development team for the book also had a serious
role to play in the process. I shouldn’t forget the vital roles played by my agent, Lynn Haller,
and the rest of the team at StudioB.

Helping me ensure the correct content and testing some of the applications were Chris
Herborth and the technical editor, Ben Hammersley. It should go without saying that the users
and developers of Google Maps applications and the rest of the Google Maps community have
served as an inspiration for some of the examples in this book.

Most importantly, I must thank my wife who survives not only my good days, but also my bad.

03_790095 flast.qxp 6/12/06 1:28 PM Page xix

03_790095 flast.qxp 6/12/06 1:28 PM Page xx

Introduction

Do you know where you are?

Do you know where you are going?

Could you find the nearest restaurant to your current location?

When you looked at your latest holiday photos, could you remember where you were?

It is just these sorts of questions that drove me to write this book. I’m interested in the answers
to all of these questions, and particularly in ways in which I can represent information about
my world, and the world we live in, in a way that relates that data to its location.

During the course of writing this book I visited New York (U.S.), Edinburgh (Scotland), and
Sorrento (Italy), in addition to many different places within a few miles of my home. In each
case, Google Maps and Google Earth could be used to record information about where I had
been, to look up information about where I was going, or simply to help me understand the
area I was visiting. All of these situations, and more, are documented and described within this
book.

Who This Book Is For
This book is aimed at both amateur and professional programmers who want to make use of
either Google Maps or Google Earth in their own applications. To get the best out of this
book, you should have some basic programming experience and ideally be familiar with
HTML and JavaScript. It would also be beneficial to have experience with scripting languages
(particularly Perl) and SQL databases, such as MySQL.

Managers and other interested parties might also find sections of the book useful, because it
can help them understand how the applications work and also provide background knowledge
on what Google Maps and Google Earth are capable of.

How This Book Is Organized
The book is divided into four basic parts:

Part I covers the basics of the Google Maps interface, the fundamentals of the Google Maps
API, and how to organize and translate existing information into a format that can successfully
be used within Google Maps and Google Earth applications. The section should get you up to
speed on the core techniques and abilities you need to work with the rest of the book.

03_790095 flast.qxp 6/12/06 1:28 PM Page xxi

Part II shows you what the Google Maps system is capable of doing. In this section you’ll find
information on some excellent sample applications and how to create your own Google Maps
applications by extending the functionality of the core Google examples.

Part III is crammed full of examples of Google Maps applications, starting with basic markers
and overlays, moving through dynamically driven examples and on to methods of highlighting
key points and elements for archaeologists and Realtors. The section finishes up with an exam-
ple of a route description application. All of the examples demonstrated can be viewed online.

Part IV covers the Google Earth application. Google Earth is a standalone application, rather
than a web site solution like Google Maps, and offers a completely new set of methods for
describing information.

Conventions Used in This Book
In this book, you’ll find several notification icons—Note, Caution, and Tip—that point out
important information. Here’s what the three types of icons look like:

Notes provide you with additional information or resources.

A caution indicates that you should use extreme care to avoid a potential disaster.

A tip is advice that can save you time and energy.

Code lines are often longer than what will fit across a page. The symbol ; indicates that the
following code line is actually a continuation of the current line. For example,

var newlat = latpoints[0] + ((latpoints[latpoints.length-1] - ;
latpoints[0])/2);

is really one line of code when you type it into your editor.

Code, functions, URLs, and so forth within the text of this book appear in a monospace
font, while content you will type appears either bold or monospaced.

xxii Introduction

03_790095 flast.qxp 6/12/06 1:28 PM Page xxii

What You Need to Use This Book
For the Google Maps examples in this book, you need access to a publicly available web site
where you can add and update pages, because the Google Maps API must be able to verify
your pages during use. Hosting these pages on your own machine is unlikely to work. Full
details of requirements, including those for accessing the Google Maps API are provided in
Chapter 3.

Google Maps applications are written using JavaScript and HTML, so you should be familiar
with these to be able to understand and adapt the examples. Many of the examples use a Perl
script for providing data, and although these operations could also be written in PHP or
Python, examples of these are not provided. Finally, some examples use a MySQL database to
store information. A similar database solution, such as MySQL, Derby, PostgreSQL, or others
will be required to duplicate some of the samples. All of the examples should work within the
major platforms (Windows, Linux/Unix, and Mac OS X).

All of the examples in this book make use of the version 1 sequence of the Google Maps API.
The API is under constant development and new versions might be released after the publica-
tion of this book that supersede the version used in the examples. The availability of the new
version will not affect the operation of the examples, which are designed to work with the v1
sequence.

The Google Earth application is available for computers running Windows and Mac OS X.
However, new versions and editions for existing and new platforms could be released at any
time.

What’s on the Companion Web Site
A companion site for the book is available at http://maps.mcslp.com.

The site includes the following:

� Full source code for all the examples in the book.

� Working examples of all the applications featured in the book.

� Errata and corrections.

� Regular follow-up articles and information on Google Maps, Google Earth, and the
book contents.

The web site also includes a Weblog. Details of how to subscribe to the articles and comments
posted to the blog are available on the site.

As usual, all of the code and errata for the book are also available at http://www.wiley
.com/go/extremetech.

xxiiiIntroduction

03_790095 flast.qxp 6/12/06 1:28 PM Page xxiii

03_790095 flast.qxp 6/12/06 1:28 PM Page xxiv

Basics

Chapter 1
Using Geographical
Information

Chapter 2
The Google Local Interface

Chapter 3
The Google Maps API

Chapter 4
The Google Web API

Chapter 5
Storing and Sharing
Information

part

in this part

04_790095 pt01.qxp 6/12/06 1:28 PM Page 1

04_790095 pt01.qxp 6/12/06 1:28 PM Page 2

Using Geographical
Information

Are you going somewhere in the next few days?

Have you thought about how you are going to get there?

Have you thought about what might be there when you arrive?

Geographical information systems like Google Maps and Google Earth can
answer these questions and, with a little work on your part, many more.
They enable your computer to think about information in terms of a physi-
cal, real-world location and then associate data with that location.

Understanding Your Location
When you think about your current location — whether you’re at home, at
work, or even at the beach — do you realize how often you think about what
is around you? If you were able to monitor your every thought, you’d proba-
bly be surprised at how often you consciously and subconsciously think
about your environment.

Mapping a Location
Humans, on the whole, are very spatial creatures. We frequently think about
and mentally map the information, places, and items around us — from the
smaller things, such as curbs and sidewalks, to the larger components, such
as the locations of mountains, buildings, and even entire towns and cities.
But many humans take for granted the ability to locate and produce a men-
tal map of where we are and where we want to go. (Some of us are better at
this than others, mind you!)

Typically, the human brain collects information while simply walking or
driving about. Subconsciously, and sometimes consciously, it’s fairly com-
mon to think about the following:

˛ Find out the ways
location can be
defined

˛ Learn how to think
in terms of location

chapter

in this chapter

05_790095 ch01.qxp 6/12/06 1:30 PM Page 3

4 Part I — Basics

� Locations of restrooms, police stations, information booths, and other useful places.

� Locations and names of restaurants or coffee bars.

� Interesting-looking buildings or places (such as castles, ruins, or statues).

� Routes to and from locations, including identifying whether a pathway meets up with a
past location (somewhere you have been before).

You don’t always, however, want to investigate an area and make a mental map of all this infor-
mation. Suppose, for example, that you want to find a restaurant within a few blocks of your
current location. Determining this information by walking about and collecting the data could
take hours, by which time you would be much hungrier than when you started — and you still
may not have found what you were looking for.

This is why Google Maps and Google Earth are so useful. At their core, they provide mapping
(Google Maps) and aerial photography (Google Earth) of many areas of the planet. In addi-
tion, Google Maps connects the location information with data about businesses and other
sites in the local area, allowing you to find all the restaurants or copy shops or any other type of
business within a given area.

As a further expansion of the technology, Google Maps enables you to create applications that
combine the mapping or earth information with your own set of data so that you can build cus-
tomized views of information, all mapped to the geographical location of the items.

This technology can be used for a number of purposes, including (but not limited to) obtaining
the following information:

� Localized data: You can find all of the restaurants (or any other type of business you
choose) within a few miles of exactly where you are now.

� Maps and routes: You can find out where you are now and then how to get to other
places.

� Topographical views: You can get an idea of exactly where you are in relation to other
components, such as hills or ruins.

� Relation of locations to photographs: You can work out where you were standing and
in which direction you were pointing the camera when you took a particular photograph.

� Statistical data: You can describe statistical data (such as population levels) by showing
it graphically on a map, rather than by providing a basic list.

To make the best of this functionality, however, you need to change the way you think about
your environment.

Defining a Location
You can describe your current location in several ways, usually depending on the level of civi-
lization in your vicinity.

05_790095 ch01.qxp 6/12/06 1:30 PM Page 4

5Chapter 1 — Using Geographical Information

With an Address
Suppose you are interested in the National Maritime Museum in Greenwich, London. To
write to the museum, you would use this simple address, along with the postal code SE10 9NF.
(Postal codes are known by the post office and indicate a more specific location than just the
town or city.)

But if you are on the ground and need to actually locate the building for a visit, you need some-
thing more specific; Greenwich is too large a district to have to search on foot. You need a
street name (in this case, Park Row) in order to locate the museum’s precise position. Having
this information will help you find the correct street sign (if you already happen to be in the
vicinity) or look up the street on a map.

Both of these address options — using just the postal code and using the full street address —
have meaning only because the city of Greenwich has well-defined locations, identified in a
format that humans can easily understand. They are useful only if you know where a location is
in terms of other places (for example, the street name “Park Row” is useful only if you know it
is the Park Row in Greenwich, London) and if you have a well-indexed map that shows you
that location.

Without an Address
But what about areas that are neither subject to human habitation nor blanketed by roads, such
as the Lake District in England or Yellowstone National Park in the United States?

In these situations, assigning an address is basically impossible. A much better solution is to use
a map grid reference. Grid references give you a two-dimensional reference (horizontal and
vertical) for a given location and are unique to the map you are using. Within the confines of a
single local map, a reference like A6 or TQ 387 776 GB Grid (the Ordinance Survey grid ref-
erence for the museum) works quite well.

In a global environment, the grid reference is the combination of longitude and latitude.
Longitude is the number of degrees, minutes, and seconds east or west of the prime meridian
line. Latitude is the number of degrees, minutes, and seconds north or south of the equator.
The combination of the two gives you a precise east/west and north/south location on the
earth. Each half of the earth has 180 degrees.

The National Maritime Museum is on the prime meridian point, which is the home of
Greenwich Mean Time and the reference point for longitude references and time differences
between countries. Its longitude is, therefore, 0° 0’ 0”. Because the museum isn’t on the equator,
its latitude is 51° 28’ 38”.

Normally, however, you quote only degrees and minutes (not seconds) in the longitude and lat-
itude references. Thus, the location of Greenwich is 51.28N 0E. For Washington, D.C., use
47.30N 120.30W; for Beijing, 39.55N 116.20E; and for Jakarta, 06.09S 106.49E.

Each of the references discussed in this section is useful in its own way, and you’ll use all of them
as a method for identifying information. Remember to consider them when you look at different
data types and think about how you can map them to geographical locations. Also make sure to
take into account the direction in which you are facing when you orient yourself on a map.
Because your orientation affects what you can see, it becomes important when you build appli-
cations that can use this information.

05_790095 ch01.qxp 6/12/06 1:30 PM Page 5

6 Part I — Basics

Moving to Another Location
Once you know current location and the location of your destination, you need to work out the
best route between them. Movement between locations is generally either direct (commonly
referred to as “as the crow flies”) or via roads. Once again, the environment will likely deter-
mine the route you choose.

If you are on foot or in the car and within a city, you will probably follow the road to your des-
tination. The likelihood of being able to walk directly through a building (let alone drive
through it!) is not great.

Within the countryside, especially if you are on foot, a more direct route (as opposed to travel-
ing by road) will save you a lot of time. When traveling by plane, you’ll probably use the direct
route, as well.

Knowing how you are going to move between different locations is important when using geo-
graphical systems. You need this information not only to move between the areas, but also to
gain information about your environment (for example, the distance between two points or the
total area).

Thinking in Terms of Geographical Location
The first step in making use of geographical information is to change the way you think about
the word “information” in general. You need to think about information in terms of how it
relates to its geographical location, rather than as the simple data it may describe. To do this
you must change the key you use to identify the information.

To Find Places
Imagine that you are stranded on the main street of a typical town, such as my hometown of
Grantham. Although you know where you are, you are clueless about your surroundings. You
do, however, have access to a computer.

The first rule of survival is to find something to eat, so you do a search on one of the various
business directories on the Internet and find a list of restaurants easily enough. Table 1-1 shows
a list of some of Grantham’s restaurants and their addresses.

The list treats the information you’ve gained as simply a list of restaurants and their addresses.
To make use of information in this format, you either need to know Grantham and its streets
really well or you need a map in order to make heads or tails of the addresses. You would then
need to use both the list and the map to work out in which direction you need to begin walking
and when and where you need to turn left or right.

If you aren’t familiar with Grantham, reordering the list by location — the most important
piece of information — and combining that list with your map of Grantham would be much
more useful, especially if you can show the location of the restaurants relative to your own.

05_790095 ch01.qxp 6/12/06 1:30 PM Page 6

7Chapter 1 — Using Geographical Information

Table 1-1: Restaurants in Grantham

Restaurant Location

Manthorpe Road Fish & Chip Shop 25 Manthorpe Road

The Market Cross Fish Bar 9 Market Place

Sorrento’s 11 Market Place

Catlins 11 High Street

Nicklebys Restaurant 41 The George Shopping Centre

China Inn 4 Avenue Road

Knightingales Guildhall Court Guildhall Street

Hop Sing Tudor House, 21 Westgate

Relax Fish Bar 71 Westgate

One on Wharf 1 Wharf Road

To Identify Photo Subjects
During a recent trip to New York City, my wife and I were amazed by how Manhattan doesn’t
feel like an island when you are on the ground. That perception has a number of effects, one of
which is that you can walk for miles around the island, visiting different places, without ever
getting a really good perspective on where you are in relation to other places you’ve visited.

The same can be true of photos: People tend to define the photographs they take in terms of
the subject of the photo or the name of the site, and not by the relationship between that loca-
tion and another one.

To illustrate the difference, I photographed the Brooklyn Bridge from two different locations.
Figure 1-1 shows a photo I took of the bridge while standing on Manhattan Island.

If you aren’t familiar with Grantham, reordering the list by location — the most important
piece of information — and combining that list with your map of Grantham would be much
more useful, especially if you can show the location of the restaurants relative to your own.

Figure 1-2 shows another photo I took of the bridge, this time from the Staten Island Ferry.

Both photos show the same object, and I could describe them as merely that: pictures of the
Brooklyn Bridge. The problem is that, although both photos show something interesting, nei-
ther the generic description nor the photos themselves give you an idea of the relationship
between the photos.

05_790095 ch01.qxp 6/12/06 1:30 PM Page 7

8 Part I — Basics

FIGURE 1-1: The Brooklyn Bridge from its base.

05_790095 ch01.qxp 6/12/06 1:30 PM Page 8

9Chapter 1 — Using Geographical Information

FIGURE 1-2: The Brooklyn Bridge from the Staten Island Ferry.

The same can be said of any set of photos that show the same subject. For example, photos of a
property don’t always give you an accurate impression of a house or building because you don’t
necessarily know from where the photo was taken, which direction the photographer was facing,
or what the content of the photo is in relation to other photos that might be in the same file.

If you treat the photos as merely a record of your visit and describe them with meaningless
terms (that is, a description of what the photo is, rather than where it is), you lose some of the
most valuable information about the photo.

By thinking about photos in geographical terms (where they were taken, the direction you were
facing) and combining this information with a map of the location (in this example,
Manhattan), a vacation photo can become more than just a shot of a famous landmark.

To Understand Statistical Data
My wife and I arrived in New York City the weekend that Hurricane Katrina hit the Gulf Coast
of the United States. The results of the hurricane were devastating. But hearing the results, or
even seeing the interviews and reports “on the ground” about the effects of the hurricane on
New Orleans and the surrounding areas, wasn’t anywhere near as informative as the satellite
images of New Orleans, taken before and after the hurricane hit. Through the Google Maps
and Earth service, Google provided the images that showed these differences (see Figure 1-3).

05_790095 ch01.qxp 6/12/06 1:30 PM Page 9

10 Part I — Basics

FIGURE 1-3: New Orleans before and after Hurricane Katrina.

Equally instructive were the maps showing the predicted route and, later, the actual route that
the hurricane took. As successive hurricanes hit the Gulf Coast of the United States that fall,
these maps became a vital method for individuals, companies, and government, emergency, and
weather organizations to work out the probable location of landfall.

With a visual representation of the actual or predicted location of the storm, individuals could
easily identify, at a glance, where the storm would be at a later time. This made the other infor-
mation (number of miles off the coast, the towns and cities being affected, and so on) easier to
understand.

A picture is worth a thousand words, which is why graphs and geographical data are combined
in a variety of situations. Votes in elections, population data, plant and animal areas, even the
migration routes and quantities of birds can all be described by marrying map data with the
statistical information.

To Generate Data from Maps
While my wife and I were in New York City, we did a lot of walking — using the subway
would have robbed us of the ability to view our surroundings and enjoy the city’s architecture.
On one particular day, we walked to Soho, from there to the Brooklyn Bridge, then around the
bottom of Manhattan, across to the Staten Island Ferry, back again, and then back up to our
hotel.

05_790095 ch01.qxp 6/12/06 1:30 PM Page 10

11Chapter 1 — Using Geographical Information

In the past, determining how far we’d walked would have been difficult without using a map,
retracing our route, and then possibly using a piece of string and some quick math based on the
map’s scale to determine the distance. Using a Google Maps application, though, I was able to
quickly determine exactly how far we had walked. I generated that data using information I’d
gained from the map.

In this case, the translation of information into geographical representations is not what proved
to be the most useful — the map data itself, in combination with some data points (the streets
and places we visited), provided me with the information I needed.

Wrapping Up
Now you know several ways in which a location can be defined, as well as how important it is
to think about information in relation to its geographical worth. To learn how to produce
applications that convert information and portray it in geographical terms, read on!

05_790095 ch01.qxp 6/12/06 1:30 PM Page 11

05_790095 ch01.qxp 6/12/06 1:30 PM Page 12

The Google Local
Interface

Before looking at specific examples of how to customize the Google
Maps system, it’s a good idea to become familiar with what informa-
tion and facilities are available to you when viewing a Google Maps

page.

Google Local is the name of the web site provided by Google that uses the
Google Maps Application Programmer Interface (API) to describe infor-
mation, locations, and routes within a map. By examining how to use
Google Local, you can obtain a good idea of what the Google Maps API is
capable of achieving. This chapter examines the Google Local interface and
its components and what you can do within the confines of the Google
Maps system when developing applications.

System Requirements
Google Maps uses a combination of HTML, JavaScript, maps, and interac-
tive elements. As with any new product, keep in mind that bugs and minor
problems may affect your interaction with the application.

At the time of this writing, Google Maps was known to work with the fol-
lowing web browsers (minimum supported version numbers are shown):

➤ Internet Explorer 6.0+

➤ Firefox 0.8+

➤ Safari 1.2.4+

➤ Netscape 7.1+

➤ Mozilla 1.4+

➤ Opera 8.02+

You should be aware, however, that the list of supported browsers, version
numbers, and, sometimes, platforms may change.

˛ Find out how to
interact with
Google Maps

˛ Learn about the
three types of maps

˛ Understand the
importance of
various markers

chapter

in this chapter

06_790095 ch02.qxp 6/12/06 1:32 PM Page 13

14 Part I — Basics

If you are having problems, ensure that you have enabled JavaScript in your browser (some users
disable it for security reasons). If that doesn’t work, check the help section of the Google Maps
web site (http://local.google.com/support).

Examining the Main Interface
The main, basic interface of Google Local (and the Google Maps API) is incredibly intuitive
and straightforward. You can select a map, move it around, and zoom in and out to find the
area you want to see. Figure 2-1 shows a typical Google Maps screen.

When developing your own mapping application, you have the ability to alter the look and feel
of the page, including any surrounding text and graphics.

At the top of the page is a search field that you can use to search the Google Local database for
locations, businesses, and points of interest that you want to be shown on a map.

FIGURE 2-1: The standard Google Local interface.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 14

15Chapter 2 — The Google Local Interface

The main content of the window is the map panel that shows the current map view. In the top-
left corner of the map are the navigation and zoom controls; in the top-right corner are the
view controls (which allow you to switch between map, satellite, and hybrid views). The
bottom-left corner shows scale information, and the bottom-right corner shows the copyright
data (which Google requires to be shown).

You can obtain a link to a specific page using the “Link to this page” link at the top right
(above the map), and you can e-mail a copy of the map or print out the map using the corre-
sponding links in the same area.

Interacting with the Map
The current view location can be adjusted through a series of controls and methods. The first is
simply the ability to move around the map, changing the current view in terms of location. The
zoom level — effectively the amount of information shown on the map — can also be changed.
The closer you zoom, the less ground you see, but more detail is discernible.

Moving the Map
You can easily move the map in four ways:

� Use the search field to find (and, if necessary, select) a location.

� Use the arrow buttons in the top-left corner of the map to move the map in the corre-
sponding direction. The button in the center will move the map to the last known refer-
ence point (for example, to an item you selected or a location you searched for).

� Click the map and drag your mouse north, south, east, or west. The map will “drag”
beneath the pointer, as though you were holding your head still and moving the map.

� Double-click a spot on the map to center the map on that location.

Zooming In and Out
The zoom slider (on the left side of the map) allows you to adjust your view of the map. The
plus sign button at the top of the slider zooms in (for more detail), and the minus sign button
at the bottom zooms out (for a more generalized view). You can also select or drag the slider to
a specific zoom level within the current map.

The level of the zoom is best described by the scale, or the number of miles to a given marker
distance. (This is generally, but not always, constant between zoom levels.) The actual area of
map shown at each level depends entirely on the size of the window you are using.

The current scale is shown in the bottom-left corner of the map. It shows measurements and a
marker length in both metric and imperial (U.S.) measurements. Because the two lengths are
not equal, the map marker may show differently sized markers for the 200-meter and 1,000-
foot distances.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 15

16 Part I — Basics

The zoom levels, starting from the bottom of the slider (and through increasing levels of
zoom), are as follows:

5,000 miles/10,000 kilometers

2,000 miles/5,000 kilometers

2,000 miles/2,000 kilometers

1,000 miles/1,000 kilometers

500 miles/500 kilometers

200 miles/200 kilometers

100 miles/200 kilometers

50 miles/100 kilometers

20 miles/50 kilometers

10 miles/20 kilometers

5 miles/10 kilometers

2 miles/5 kilometers

2 miles/2 kilometers

1 mile/1 kilometer

2,000 feet/500 meters

1,000 feet/200 meters

500 feet/200 meters

200 feet/100 meters

To compare the differences between different zoom levels, check out some maps with progres-
sively closer views of the National Maritime Museum in London:

� At 5,000 miles, the lowest zoom level (Figure 2-2), you see the entire world map many
times over. The red icon marks the site of the museum.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 16

17Chapter 2 — The Google Local Interface

FIGURE 2-2: A map of the world.

� At 50 miles (Figure 2-3), you start to see the detail of the City of London and much of
the rest of the country.

� At 1 mile (Figure 2-4), you can see most of the major roads within London and get a
rough idea of how to reach your destination.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 17

18 Part I — Basics

FIGURE 2-3: A map of the south of the U.K.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 18

19Chapter 2 — The Google Local Interface

FIGURE 2-4: Greenwich and greater London.

� At 200 feet (Figure 2-5), you can almost imagine yourself walking along the street the
museum is on. You can see individual roads and even the railway line running to the
north.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 19

20 Part I — Basics

FIGURE 2-5: Greenwich map at the highest resolution.

In comparison, look at the satellite images (taken at the same resolutions) of the same location:

� Again, at the lowest zoom level (Figure 2-6), you see the entire world as a satellite
image.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 20

21Chapter 2 — The Google Local Interface

FIGURE 2-6: The whole world as a satellite image.

� At 50 miles (Figure 2-7), you can see virtually the whole of the south of the U.K. and
parts of France and the Netherlands. The patches with a slightly different coloring show
areas on the map that are available in a higher resolution.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 21

22 Part I — Basics

FIGURE 2-7: Greenwich at 50-mile resolution.

� At 1 mile (Figure 2-8), you can see the shape of the river (and you may recognize the
shape and image used for the BBC television program Eastenders). You can no longer see
detail, but you do get a good idea of the main areas of parkland, roads, and buildings.
When you are viewing the screen in color, you can note the difference in color; it shows
the different ambient weather conditions.

Colored patches

06_790095 ch02.qxp 6/12/06 1:32 PM Page 22

23Chapter 2 — The Google Local Interface

FIGURE 2-8: Greenwich and Greater London at 1-mile resolution.

� At the closest zoom level (Figure 2-9), you can see the layout of the museum buildings.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 23

24 Part I — Basics

FIGURE 2-9: Closest zoom on the National Maritime Museum.

Just as Google Maps and Google Earth images are not always available at all zoom levels
(within maps, sparsely populated areas are rarely shown below 500 feet, and sometimes 1,000
feet), satellite information is not always available, either. Much of the United States has been
photographed at a resolution of 1 meter, making 200-foot images readily available but, as with
map information, some sparsely populated areas or extremities are not available at such a high
resolution. But a lot of the United Kingdom is unavailable for satellite imagery below the
2,000-foot zoom level, although heavily populated areas such as London, Birmingham, and
Manchester are available at the highest zoom level. Other parts of the world are similarly split
into different levels of higher and lower resolution according to their population density or the
amount of interest in the location. Satellite imagery is constantly being updated and improved,
and this process is likely to increase as more people begin to use the information.

Resolution quality has no defined boundaries, and it is possible to find a location on the map
that shows satellite for only a portion of the area viewed. At certain zoom levels, you can deter-
mine where the higher-resolution images are available; for example, these areas of unavailability
showed up in Figure 2-9 as differently shaded patches on a map of the United Kingdom.

You, therefore, need to take care to ensure that when you display a map or satellite image, you
choose a zoom level appropriate to the area you are viewing.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 24

25Chapter 2 — The Google Local Interface

Occasionally, satellite information is obscured by cloud cover (see Figure 2-10). This (and the
shadows the clouds cast on the ground) is an unfortunate side effect of taking images from
space or from a high-altitude vehicle, and is obviously not Google’s fault. You may also see other
images, such as boats on the water, planes at airports, and any other structure large enough to
be picked up by the camera. These images, despite what you may have heard, are not live. You
cannot watch yourself — or anybody else, for that matter — using Google.

FIGURE 2-10: Clouds and shadows on a satellite image.

Changing the View Types
By now, you know that the Google Local service provides maps and satellite images. What you
may not know is that it, in fact, provides three different views, between which you can switch at
any time by using the links at the top-right corner of the map view:

� Maps: These are street-level maps — correct in location, length, and shape — that
include the names of roads, open spaces (when named), lakes, rivers, seas, oceans, and
other identifiable items. These maps can be used to provide location information and
routes for points of interest, such as the Brooklyn Bridge (see Figure 2-11). For roads,
the color defines the relative capacity of the road (in addition to the size representation),
and as you can see in Figure 2-11, information on the direction of traffic (for one-way
streets) is shown where known.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 25

26 Part I — Basics

FIGURE 2-11: A map of lower Manhattan and Brooklyn.

� Google Maps also shows country, state, and county boundaries when available; regions
and locations; country names (if you’re zoomed out far enough); known ferry routes,
train lines; and a whole host of other information.

� Satellite imagery: This consists of photographs of the surface of the earth as taken from
satellite (see Figure 2-12). The information is presented at different resolutions (see the
earlier discussion on zoom levels) and is regularly updated with new pictures of the
earth. Satellite imagery is most useful when combined with photo, historical, or other
information; because you cannot see street names or points of interest, it is less useful for
routes or location information.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 26

27Chapter 2 — The Google Local Interface

FIGURE 2-12: A satellite image of lower Manhattan and Brooklyn.

� Hybrid maps: This type of map overlays the road information, including the road name,
size, color, and travel direction, onto the satellite imagery. The hybrid view is most useful
when you want to provide location and route information with the context of the loca-
tion. In particular, the hybrid view can be useful when you want to include a large natural
structure (such as a lake, the coast, or mountains), while still showing the street location.
Figure 2-13 shows the Brooklyn Bridge street map overlaid with a satellite image of the
same area.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 27

28 Part I — Basics

FIGURE 2-13: A hybrid map of lower Manhattan.

Conducting Searches
Searches within Google Local return two types of results. If the information you enter into the
search box is an address, postal code, or other fully identifiable address, Google Maps or
Google Earth will center the map on the address or location you entered. For example, if I
enter SE10 9NF into the search field, Google takes me to the location of the National
Maritime Museum, and an information window pops up (see Figure 2-14). Google Maps will
use whatever the active format is at the time you perform the search; this particular screenshot
shows the results in the hybrid format.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 28

29Chapter 2 — The Google Local Interface

FIGURE 2-14: Address information for the National Maritime Museum.

If the information you enter is not an exact location, Google will do a search on the informa-
tion to find localized objects or business. For example, if you type “Plumbers, New York” in the
search field, Google will find a list of plumbers in New York and mark their physical locations
on the map with an icon (see Figure 2-15), which is discussed in the next section.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 29

30 Part I — Basics

FIGURE 2-15: Plumbers in New York.

If Google cannot discern from the string you have entered whether it should be displaying a
specific location or businesses and objects within a locality, it will return an error and ask for a
more explicit description of what you want.

You must be careful when supplying information because Google cannot always determine
what you mean — even if the information you provide seems quite explicit. For example, I can-
not find the street I live on by entering the full address, although I can find it by using the
postal code or by ignoring the village in which I live. And without a postal code, I cannot find
my parents’ street at all, despite the fact that the road has been there for some 30 years and is
clearly shown on the map.

Understanding Markers
Markers highlight specific points of interest. In the previous section, for example, the location
of different plumbers within New York was highlighted through a number of icons called
markers. Markers can also provide information windows (pop-ups), and there are other ways of
highlighting data using lines and overlays. All of these solutions (and more) are available when
developing a Google Maps application, so understanding what is available in Google Local will
help you determine the functionality you can use in your own applications.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 30

31Chapter 2 — The Google Local Interface

Markers
Markers are simple little icons that show the precise position of a business or address on your
map. If you have performed a search and obtained a list of items, a number of icons (each with
its own letter) will appear on the map, along with the corresponding locations highlighted in
the list of available addresses or businesses on the left side of the screen (as you already saw in
Figure 2-15).

If you are custom-creating a map, you can similarly highlight and mark points on the map and
provide information about specific points. Google provides a number of standard icons, includ-
ing map pins and tags of varying sizes, but you can customize the icons to be used on your map.

Pop-ups
Clicking an icon or its associated description will present you with an icon pop-up (or content
bubble). The exact content of the bubble depends on the information that is available. Within a
standard Google Maps search, the pop-up will often contain the full address and phone infor-
mation for the business in question, as you can see in Figure 2-16.

FIGURE 2-16: Business information in Google Maps.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 31

32 Part I — Basics

The information content of a pop-up is completely customizable. Because the base of the con-
tent is HTML, you can include styles, images, and other content. When developing a Google
Maps application, what you use this pop-up for is entirely up to you.

Links
In the case of the standard Google Maps interface you also obtain two “Directions” links (“To
here” and “From here”) that provide an interface to the Google route-finding service, which
calculates, highlights, and describes a route between two points. Figure 2-17 shows a route
from a railway station to a restaurant.

FIGURE 2-17: A route in Google Maps.

Overlays
The Google Maps API enables you to overlay lines and polygonal objects onto a map. You can
use this information to provide additional detail about the location you are looking at. The
overlay lines are specified in terms of their location within the Google Maps environment, so
the lines will scroll and move when you move the map around. A good example of overlays in
action is the route highlighted by Google when determining how to get from one location to
another.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 32

33Chapter 2 — The Google Local Interface

With some further programming tricks within the browser, you can build in additional overlays
using JavaScript and images that can be overlaid on top of the Google Maps display.

These custom overlay images will not move like the built-in overlay lines do when you scroll or
move the map, or when you change the zoom level.

Wrapping Up
The basics of the Google Maps API interface — the ability to zoom; move about the map; and
overlay information such as map points, information windows, and routes on top of a Google
Map — are all functions that you can add to your own map when you develop applications
using the Google Maps API.

In short, Google Local is a superb example of the capabilities of the Google Maps API when
you start to combine information from multiple sources into your application. Creating these
elements is not as complicated as it seems; you can start by understanding the classes and func-
tions supported by the Google Maps API.

06_790095 ch02.qxp 6/12/06 1:32 PM Page 33

06_790095 ch02.qxp 6/12/06 1:32 PM Page 34

The Google
Maps API

The Google Maps API is based on a very simple suite of classes that
you use, within a JavaScript container, directly within an HTML
page. All of the functionality of a Google Map is based on this simple

premise of an embedded JavaScript object built into a web page.

The interface to the API is surprisingly straightforward, but the simplicity
hides some powerful classes, objects, and interfaces that enable you to manip-
ulate the Google Map. By combining this interface with the data that you
want to display, you can support interactive elements on the web page without
having to reload the page or redisplay portions of the map: The entire process
is handled within the JavaScript and Google Maps application.

Using the API Key
Before you start using the API, you must register with Google and obtain a
Web API key. You cannot use the Google Maps API without a key; Google
will return an error and display nothing if you do not use a key or if you use
the wrong key when you try to use the Google Maps API. For this reason,
the Google Maps API key needs to be referenced in every Google Maps
application you create.

To obtain a Google Maps API key, you must already have an account on
the Google system. If you do not already have an account with Google, you
will need to register with Google first. You will be asked to supply an e-mail
address (which will be used to supply you with your API key).

Once you have you have registered with Google, go to the Google Maps
API web site (http://www.google.com/apis/maps/) and request a
key. The key only works when Google can verify the web site on which your
applications will work. This means that the web site on which you build
your applications must be publicly available on the Internet. Unfortunately,
this also means that you cannot develop applications locally within a net-
work that is not shared directly with the Internet. This includes most
servers in organizations behind firewalls and servers at small businesses and
homes connected to the Internet through a standard xDSL connection such
as ADSL.

˛ Learn how to use
the API key

˛ Basic components

˛ Become familiar
with the API’s main
elements

˛ Learn about the
Google Maps
classes

chapter

in this chapter

07_790095 ch03.qxp 6/12/06 1:32 PM Page 35

36 Part I — Basics

If you don’t already have a publicly accessible web site service, you will need to sign up to a
server provided by a hosting company, where many different solutions are available. All the
examples shown in this book, for example, are hosted on a service provided by Dreamhost
(www.dreamhost.com).

The Google Maps API is, in fact, more specific than simply the web site hostname. The API
key will only work within a specific directory. So, if you register with a URL of
http://maps.mcslp.com/examples, Google Maps applications will only work when
loaded from this precise URL. Other directories above or below this URL will not work.

Thus, http://maps.mcslp.com/examples/simple.html would be valid for the key
registered with the preceding URL. But http://maps.mcslp.com/simple.html would
be invalid. So would the same example placed into a subdirectory:
http://maps.mcslp.com/examples/simple/simple.html.

These limits mean that you cannot register an entire domain for hosting Google Maps applica-
tions unless all the applications are placed into the same directory. The restrictions are designed
to protect both Google and your own applications from being stolen and abused because the
correct key must be used.

Once you have a web site URL for your Google Maps applications, you can register for a key
by going to the “Sign up for an API key” page, entering the URL for your web site, and click-
ing Submit. Your Google Maps API key will be e-mailed to you. Make sure you keep the
e-mail message as well as a separate note of the key in a secure location. Although you can
request keys again, and even request multiple keys for multiple web sites, keeping the key safe
is a good idea.

Limits and Usage

As mentioned, your Google Maps API key is unique to your web site. You cannot copy the code
that you have developed (or that anybody else has developed, for that matter) and use it on a
different web site without separately registering for an additional key and modifying the key
information.

Once you have an API key, you can create, use, and support as many Google Maps applications
as you like. But you need to be sensible about the information and services that you provide. For
example, you cannot claim that the Google Map and the information that it contains is solely
your copyright. Nor can you claim that there is any official affiliation between yourself and
Google just because you are using its mapping service.

The Google Maps API web site contains a full guide to the terms of usage that you agree to
when you request an API key. I strongly recommend that you read these notes before signing
up for a key and developing applications to ensure that you are aware of the issues and limita-
tions of using the service.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 36

37Chapter 3 — The Google Maps API

Browser Compatibility
Google Maps is compatible with the same browsers and environments as Google Local (see
Chapter 2). This covers the vast majority of the web browsing environments available. Other
browsers might or might not support the Google Maps API. The Google Maps API is con-
stantly changing as it is improved and updated. It is inevitable that some occasional problems
will manifest themselves. Any significant difficulties should be reported to Google.

In your HTML page you can check whether the current browser is compatible with the Google
Maps system through the GBrowserIsCompatible function in the Google Maps API.
Ideally you should check the return value of this and report any known incompatibility to the
user.

Basic Components of a Google Maps Application
The key to the Google Maps API is the JavaScript component that is loaded from Google
each time you open a Google Maps web page. This JavaScript component provides the inter-
face to the Google Maps service and generates the map onscreen by loading the necessary
image components and tiling them onto the display.

Further customization and extension of these components is what makes a custom Google
Maps application.

XHTML (Extensible HTML)
Google Maps will work in any standard HTML page, but Google recommends that you create
pages that are compliant with the XHTML standard. This will ensure not only that the
HTML is compatible with the standard to which most browsers are now also made compati-
ble, but also the reliable rendering of your web page on as wide a range of web sites as possible.

For this reason, you should make sure that your XHTML pages are correctly marked up as
XHTML. Listing 3-1 shows a simple XHTML-compatible page template.

Listing 3-1: XHTML Page Template

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<title>XHTML Page</title>
</head>
<body>
</body>
</html>

07_790095 ch03.qxp 6/12/06 1:32 PM Page 37

38 Part I — Basics

You can check the markup content for your web page by using the W3C validator at
http://validator.w3.org. Here, you can supply the URL of a web page on the Internet
or cut and paste the page content into the web form for validation. Errors and warnings will be
reported for pages that are faulty.

Figure 3-1 shows the result after running the code in Listing 3-1 through the validation service.

FIGURE 3-1: Validated XHTML report.

VML (Vector Markup Language)
If you are using polylines (that is, any type of line-based markup, such as routes or bounding
boxes) on top of your Google Maps applications as an overlay, and you have clients using
Internet Explorer, you should include the Microsoft VML namespace within your XHTML
definition. Without this option, your polylines will not work.

You can ignore this requirement if you are not using polylines of any kind.

Listing 3-2 shows the suggested XHTML header to use for VML and Internet Explorer.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 38

39Chapter 3 — The Google Maps API

Listing 3-2: XHTML for VML/Polylines in Internet Explorer

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” xmlns:v=”urn:;
schemas-microsoft-com:vml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>Your Page Title Here</title>
<style type=”text/css”>
v\:* {
behavior:url(#default#VML);

}
</style>
<script src=”http://maps.google.com/maps?file=api&v=1&key=abcdefg”

type=”text/javascript”>
</script>

</head>

Styles and Elements
You are completely free to develop and design your own styles, stylesheet, and layout according
to the needs of your web site. Google Maps does not place any limitation or restriction on how
you lay out or style your web site when it includes a Google Map.

However, the map will tend to dominate most pages, and you should take this into account
when designing the layout and other content for your pages.

XML (Extensible Markup Language)
The XML standard is a way of representing data in a structured format that is architecture
neutral. Although XML is not a required element in Google Maps applications, it is common
to provide large volumes of data (map points, information windows, and so on) by specifying
the information in XML, loading the XML through the Google Maps API, and then display-
ing that information using the functionality of the API. The API also supports XSL
Transformations, a method of converting an XML document into HTML using a stylesheet.

Generating, parsing, and using XML is covered in more detail in Chapter 5.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 39

40 Part I — Basics

JavaScript
The Google Maps API is based on the JavaScript language. JavaScript (soon to be referred to
as ECMAScript as an official standard) is built into most browsers and provides a rich suite of
functionality for developing dynamic elements.

Teaching you how to program in JavaScript is beyond the scope of this book. However, Google
Maps does rely on JavaScript, so numerous examples of JavaScript applications are included
throughout this book. JavaScript is easy to use and learn, and any programmer that is already
familiar with the basic mechanics of programming should be able to adapt her skills to
JavaScript.

The majority of JavaScript programming is designed to interface directly into the Google Maps
API, which itself is based on an object-oriented interface to a suite of Google Maps–specific
classes.

Understanding API Terminology
The Google Maps API is essentially a suite of JavaScript classes that you use to build applica-
tions within the confines of a web page. Understanding the API relies on knowing the termi-
nology used to define sections of the Google Maps API and interface. Once you understand
the terminology, a closer look at the Google Maps API classes will provide the detail required
to build Google Maps applications.

All Google Maps applications start off with a simple map. To this map, you can add a number
of different elements designed to provide the application functionality. All maps support four
main elements:

� Overlays: Points of interest on the map or lines denoting areas, routes, or other informa-
tion about the location being displayed.

� Events: Occurrences of an operation, such as the user clicking on a point of interest.

� Information: Extended data about the map, a map marker, or map region that is dis-
played as part of the map application.

� Controls: Basic interface controls that enable the user to zoom in and out of the map
and move about the map effectively.

A fifth element doesn’t have a unique role in the API, but it does support the operations: The
ability to load data dynamically is key to providing the interactive elements of a typical Google
Maps application. Generally, the information is extracted from an XML file that is loaded from
the web server, either as a static file or — for true dynamism — through a dynamic component
on the web server, such as CGI script, PHP script, or Java application.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 40

41Chapter 3 — The Google Maps API

By combining all of these elements, you can create quite complex applications, even though the
core of the application code is still based on the comparatively simple JavaScript language.

Overlays
Overlays consist of information that is displayed on top of a map of a particular location. There
are two basic types:

� Markers or points: These are generated within the application through the GMarker
class. They are based on an icon and a shadow (at a 45-degree angle) and can be used to
denote any information you want. In general, an icon is used to highlight a specific item
and is, therefore, usually a pointer, arrow, or other construct that gives a specific reference
point. For example, you would use a marker to indicate the location of a business on a
map so as to give a precise location. To show more detailed information about a specific
location, you use an information window.

� Polylines: These are used when you want to provide a route across a map, or when you
want to draw a specific shape on the map. For example, you might use a polyline to
denote the boundaries of a property on a map.

Events
Events are used to communicate specific occurrences of an operation. For example, an event is
raised when the user clicks a marker, moves the map, zooms in on the map, and so on.

To provide interactivity in your application, you can assign functions to be executed when an
event occurs. A common example is when the user clicks a marker: Most maps center the map
on that marker and provide an information window showing more information or detail about
that particular point. In the Google Local system, for example, searching for a business on a
map and then clicking one of the available markers provides you with the address, phone num-
ber, and, if available, other information for the business denoted by the marker.

Information Windows
Additional information is usually displayed in an info window, which is a sort of speech bubble
that is overlayed on the map. The info window usually appears in response to the user selecting
a marker, either by clicking the marker in the map or by clicking a separate list of markers that
is also displayed on the page.

Information windows can be as simple or complex as you like. They can contain simple text or
full-blown HTML, incorporating images and other elements. As already noted, info windows
appear in Google Local when the user clicks a business marker.

The Google Maps API includes a suite of functions for triggering, displaying, and formatting
the content within an info window.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 41

42 Part I — Basics

Controls
The Google Maps API provides a number of standard controls for allowing the user to interact
at a basic level with the map. These controls are normally displayed in the top left-hand and
top right-hand corners of the map display and include the buttons for moving around the map,
zooming in and out, and selecting the map type (map, satellite imagery, or hybrid).

At the time of this writing, the available control types are as follows:

� GLargeMapControl: A large pan/zoom control (with slider).

� GSmallMapControl: A smaller pan/zoom control (without slider).

� GSmallZoomControl: A small zoom control (no slider or panning controls).

� GMapTypeControl: Lets the visitor toggle among map types (map, satellite imagery,
and hybrid).

Generally, you choose the type of controls to add to the map according to the needs of the
application, but you can also let users select which controls appear.

The Google Maps Classes
All of the functionality of the Google Maps API is provided through a suite of classes designed
to build and define the elements of a Google Map. You start with the GMap class and, through
the additional classes, define map markers and information windows, and create controls and
events that allow the user to interact with the application.

GMap
The main GMap class creates a new Google Map within an HTML container (typically a div
element within the HTML). The format for creating a new object using the class is as follows:

GMap(container, mapTypes?, width?, height?)

Optional arguments to a function are denoted by a question mark after the argument.

The optional mapTypes argument enables you to specify which map types are available in the
application. The default is the three current solutions: G_MAP_TYPE, G_HYBRID_TYPE, and
G_SATELLITE_TYPE.

The default size of the map is the same as the container in which the map is created.
Alternatively, you can specify the width and/or height (in pixels) when creating the map.

Once the map is created, you can set a number of options, as outlined in Table 3-1. Each of the
items in this table is a method to the map object created by GMap.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 42

43Chapter 3 — The Google Maps API

Table 3-1: Configuration Map Options

Method Description

enableDragging() Enables dynamic dragging (enabled by default).

disableDragging() Disables dynamic dragging.

draggingEnabled() Returns true if dynamic dragging is enabled.

enableInfoWindow() Enables the info window on this map (enabled by default).

disableInfoWindow() Disables the info window on this map.

infoWindowEnabled() Returns true if the info window is enabled on this map.

To add or remove one of the control types on a map, use the methods in Table 3-2. The con-
trol argument uses one of the constants specified in the “Controls” section, earlier in this
chapter.

Table 3-2: Adding and Removing Controls on a Map

Method Description

addControl(control) Adds a map control to the map.

removeControl(control) Removes a map control from the map.

You can get status information about the map, such as the current location, zoom level, and
area shown using the methods in Table 3-3. This table also shows the methods that allow you
to modify these settings.

Table 3-3: Methods for Getting and Setting Status Information

Method Description

getCenterLatLng() Returns the center point of the map in latitude/longitude
coordinates.

getBoundsLatLng() Returns the latitude/longitude bounds of the map viewport.

getSpanLatLng() Returns the width and height of the map viewport in
latitude/longitude ticks.

getZoomLevel() Returns the integer zoom level of the map.

centerAtLatLng(latLng) Centers the map at the given point.

Continued

07_790095 ch03.qxp 6/12/06 1:32 PM Page 43

44 Part I — Basics

Table 3-3 (continued)

Method Description

recenterOrPanTo Centers the map at the given point, doing a fluid pan to the
LatLng(latLng) point if it is within the current map viewport.

zoomTo(zoomLevel) Zooms to the given integer zoom level, ignoring the request if
the given zoom level is outside the bounds of the current map
type.

centerAndZoom(latLng, Atomically centers and zooms the map. Useful to initialize the
zoomLevel) map with an initial center and zoom level.

getMapTypes() Returns an array of map types supported by this map
(currently G_MAP_TYPE, G_HYBRID_TYPE, and
G_SATELLITE_TYPE).

getCurrentMapType() Returns the map type currently in use (G_MAP_TYPE,
G_HYBRID_TYPE, or G_SATELLITE_TYPE).

setMapType(mapType) Switches this map to the given map type (G_MAP_TYPE,
G_HYBRID_TYPE, or G_SATELLITE_TYPE).

To add an overlay to the map, you must first create the overlay (using GMarker or
GPolyline) and then use the addOverlay method from Table 3-4 to draw the overlay onto
the map. You can also delete an overlay (providing you have the object definition) or remove all
overlays.

Table 3-4: Methods for Adding/Removing Overlays to a Map

Method Description

addOverlay(overlay) Adds the given overlay object to the map.

removeOverlay(overlay) Removes the given overlay object from the map.

clearOverlays() Removes all of the overlays from the map.

To add an information window to a map, use the methods in Table 3-5. Note that the methods
in this table are primarily aimed at adding information windows to areas of the map that do
not have a specific marker; there is a separate method for adding information windows to
markers that is part of the definition for the GMarker object.

You configure events for a map object, marker, or other element by using one of the event types
specified in Table 3-6. These events are common to all places where you can specify an event.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 44

45Chapter 3 — The Google Maps API

Table 3-5: Methods for Adding Info Windows to Your Map

Method Description

openInfoWindow(latLng, Displays the info window with the given HTML
htmlElem, pixelOffset?, content at the given point. htmlElem should be an
onOpenFn?, onCloseFn?) HTML DOM element. If pixelOffset (GSize) is

given, you offset the info window by that number of
pixels, which lets users place info windows above
markers and other overlays. If onOpenFn is given,
you call that function when the window is displayed.
If onCloseFn is given, you call that function when
the window is closed.

openInfoWindowHtml(marker, Like openInfoWindow, but takes an HTML string
htmlStr, pixelOffset?, rather than an HTML DOM element.
onOpenFn?, onCloseFn?)

openInfoWindowXslt(marker, Like openInfoWindow, but takes an XML element
xmlElem, xsltUri, pixelOffset?, and the URI of an XSLT document to produce the
onOpenFn?, onCloseFn?) content of the info window. The first time a URI is

given, the file at that URI is downloaded with
GXmlHttp and subsequently cached.

showMapBlowup(point, Shows a blowup of the map at the given GPoint.
zoomLevel?, mapType?, If the zoomLevel and mapType parameters are not
pixelOffset?, onOpenFn?, given, you default to a zoom level of 1 and the
onCloseFn?)) current map type.

closeInfoWindow() Closes the info window if it is open.

Table 3-6: Event Types Supported by the Google Maps API

Event Arguments Description

Click overlay, point Triggered when the user clicks the map or
an overlay on the map. If the click was on
an overlay, you pass the overlay as an
argument to the event handler. Otherwise,
you pass the latitude/longitude point that
was clicked on the map.

Move none Triggered when the map is moving. This
event is triggered continuously as the map is
dragged.

Continued

07_790095 ch03.qxp 6/12/06 1:32 PM Page 45

46 Part I — Basics

Table 3-6 (continued)

Event Arguments Description

Movestart none Triggered at the beginning of a continuous
pan/drag movement. This event is not
triggered when the map moves discretely.

Moveend none Triggered at the end of a discrete or
continuous map movement. This event is
triggered once at the end of a continuous
pan.

Zoom oldZoomLevel, Triggered after the map zoom level
newZoomLevel changes.

maptypechanged none Triggered after the map type (map, hybrid,
or satellite) changes.

infowindowopen none Triggered after the info window is displayed.

infowindowclose none Triggered after the info window is closed.

addoverlay overlay Triggered after an overlay is added to the
map.

removeoverlay overlay Triggered after an overlay is removed
from the map. Not triggered if
clearOverlays is called — see the
clearoverlays event.

clearoverlays None Triggered after all overlays are cleared from
the map.

Don’t worry if the information presented here seems daunting. Chapter 4 provides more
specific examples of how you use the API and the classes, methods, and objects.

GMarker
This class creates a new GMarker object based on the supplied GPoint reference. GMarkers
are used to highlight points on a map. All GMarkers are displayed using an icon, either the
default icon supplied by Google Maps or a special icon (previously defined through a GIcon
object) specified as the optional argument to the function:

GMarker(point, icon)

07_790095 ch03.qxp 6/12/06 1:32 PM Page 46

47Chapter 3 — The Google Maps API

The created marker supports a number of methods for adding information windows based on
an HTML reference, HTML string, or XSLT transformation of XML data. You can also con-
figure a GMarker object to force a zoomed version of the map for that point. Table 3-7 shows
the full list of supported methods.

Table 3-7: Methods for the GMarker Object

Method Description

openInfoWindow(htmlElem) Opens an info window with the given HTML content
over this marker. htmlElem should be an HTML
DOM element.

openInfoWindowHtml(htmlStr) Like openInfoWindow, but takes an HTML string
rather than an HTML DOM element.

openInfoWindowXslt(xmlElem, Like openInfoWindow, but takes an XML element
xsltUri) and the URI of an XSLT document to produce the

content of the info window. The first time a URI is
given, the file at that URI is downloaded with
GXmlHttp and subsequently cached.

showMapBlowup(zoomLevel?, Shows a blowup of the map over this marker. You use
mapType?) a default zoom level of 1 and the current map type if

the zoomLevel and mapType parameters are not
given.

All GMarkers also support the following triggers when the specified event occurs:

� click: Triggered when the user clicks the marker.

� infowindowopen: Triggered when the info window is opened.

� infowindowclose: Triggered when the info window is closed.

GPolyline
This class creates a line made up of two (or more) GPoints for display on a map. The format
of the function is as follows:

GPolyline(points,color,weight,opacity)

The points argument should be an array of GPoint objects.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 47

48 Part I — Basics

Lines are drawn from one point to the next in the order they are supplied. Ensure that your
array of points has the correct order before creating the GPolyline object.

The remainder of the arguments are completely optional:

� color: The color of the line (specified using HTML style colors, such as #ff4787).

� weight: The width of the line in pixels.

� opacity: The opacity specified as a float between 0 (invisible) and 1 (fully opaque).

GIcon
This class creates a new GIcon object, which is the graphic used to highlight points on a
Google Map. GIcons can be based on any suitable graphic image. If you create your own
GIcon, you must specify at least the following properties before using it in a map:

� image

� shadowImage

� iconSize

� shadowSize

Table 3-8 gives a full list of properties and their descriptions.

Table 3-8: Properties for the GIcon Object

Property Description

Image The foreground image URL of the icon.

Shadow The shadow image URL of the icon.

iconSize The pixel size of the foreground image of the icon.

shadowSize The pixel size of the shadow image.

iconAnchor The pixel coordinate relative to the top left-hand corner of the
icon image at which you should anchor this icon to the map.

infoWindowAnchor The pixel coordinate relative to the top left-hand corner of the
icon image at which you should anchor the info window to this
icon.

printImage The URL of the foreground icon image you should use for
printed maps. It should be the same size as the main icon image.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 48

49Chapter 3 — The Google Maps API

Property Description

mozPrintImage The URL of the foreground icon image you should use for
printed maps in Firefox/Mozilla. It should be the same size as
the main icon image.

printShadow The URL of the shadow image you should use for printed maps.
It should be a GIF image because most browsers cannot print
PNG images.

Transparent The URL of a virtually transparent version of the foreground icon
image used to capture IE click events. This image should be a
24-bit PNG version of the main icon image with 1% opacity, but
the same shape and size as the main icon.

imageMap An array of integers representing the x/y coordinates of the
image map you should use to specify the clickable part of the
icon image in non-IE browsers.

To create a new GIcon, use this:

GIcon()

You can also optionally specify the name of an existing icon from which the properties will be
copied. This is useful if you are creating a suite of icons that are the same dimensions (and can
use the same shadow), but which have different main images.

GEvent
This class creates a new GEvent object for building event objects for your Google Maps. Table
3-9 provides a list of the available methods for this object.

Table 3-9: Methods for GEvent Objects

Method Description

addListener(source, Calls the listener function (listenerFn) when the event is
eventName, listenerFn) triggered on the source instance. An opaque listener token that

can be used with removeListener is returned.

removeListener Removes the given listener, which should be a listener token
(listener) returned by addListener.

clearListeners(source, Removes all listeners for the given event on the given source.
eventName)

Continued

07_790095 ch03.qxp 6/12/06 1:32 PM Page 49

50 Part I — Basics

Table 3-9 (continued)

Method Description

trigger(source, Triggers the given event on the given source with the given list
eventName, args...) of arguments.

bind(source, Binds the given method of the given object to the given source
eventName, object, event. When the given event is triggered, the given method is
method) called for the specified object.

GEvent methods are static, so you should always create the object before calling the method
(for example, new GEvent(); GEvent.bind()) rather than creating and calling the
method in one line (for example, new GEvent().bind()).

GXmlHttp
This class creates a browser-independent instance of XmlHttpRequest that enables you to
access remote content (XML, HTML, or XML-RPC). In short, the object provides a method
for dynamically loading information that can then be used to build components and items on
your map.

The precise operation of this function is covered in more detail in Chapter 5.

GXml
This class creates a new XML object that can be used to parse and access information con-
tained within an XML string. You must create the GXml object first, and then supply a string
to be parsed. For example:

var xmlparser = new GXml();

Once you create the object, you can parse XML by calling the parse method:

parser(xmlstring)

Or you can access a value from the parsed XML using value:

value(xmlnode)

Because you parse and then access data after you create the object, you can reuse the object to
parse other XML documents without re-creating a new object each time.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 50

51Chapter 3 — The Google Maps API

Because GXml creates a persistent object that you then use to parse and access XML data, you
should take care to ensure that you are using the correct object when accessing a value.
Although in some situations it is tempting to reuse the same object to parse an XML document,
it may return an odd value if you use the wrong object or forget to reparse the XML you wanted.

GXslt
When providing additional information on a Google Map (for example, within an info win-
dow when the user clicks a map point), you can use XSLT to convert a supplied XML docu-
ment into the HTML to be displayed.

The GXslt function creates a new object that supports a browser-independent method for trans-
lating XML data into HTML through the supplied XSLT transformation definition. The con-
version tries to use the native XSLT transformation library built into the browser if it is available
(it automatically picks a solution based on the browser). If no built-in XSLT engine is available, it
defaults to the XSLT transformation engine available within the JavaScript definition.

To create a new object by supplying the URI of an XSLT document, use the following:

GXSlt(xsltURI)

To perform a transformation, use the transformToHtml method:

transformToHtml(xmlDoc, htmlContainer)

The preceding transforms the supplied XML document directly into the HTML DOM ele-
ment in a web page identified by the htmlContainer argument. It does not return the
HTML.

GPoint
This class creates a new GPoint object representing a two-dimensional coordinate (horizon-
tal/vertical):

GPoint(x,y)

If you use GPoint to create a point on the map, x represents the longitude and y represents
the latitude.

A common mistake with GPoint is that it takes longitude (east-west) and then latitude (north-
south) as arguments, in that order, even though you commonly refer to a point on a map the
other way around. It is very easy to mistakenly swap the values and end up referring to a point
thousands of miles from your intended location.

GSize
This class creates a new GSize object designed to represent a two-dimensional size measure-
ment (such as width and height). The format of the function is as follows:

GSize(width, height)

07_790095 ch03.qxp 6/12/06 1:32 PM Page 51

52 Part I — Basics

Here, width and height are the appropriate spans. These can be any floating-point value,
but are usually used to hold latitude/longitude values.

GBounds
This class creates a new object that represents a two-dimensional bounding box. You would
normally use GBounds to determine whether a given GPoint was within a specified range. To
create a new GBounds object, use this:

GBounds(minX,minY,maxX,maxY)

Here, the arguments are usually the latitude and longitude of the box, although they can hold
any floating-point values.

Wrapping Up
Probably the hardest part of the process in developing a Google Map is understanding the rela-
tionship between the HTML used for the web page and the JavaScript used to integrate with
the Google Maps service. Although, in practice, you are embedding the JavaScript for the
application into an HTML page, the two should really be considered as separate elements that
are merely contained within the same file.

Once you understand that little piece of the puzzle (that is, using the class interface to the
Google Maps system and largely ignoring the HTML that acts as a wrapper around it), it
becomes easy to start developing Google Maps applications. The Google Maps class interface
is simple but effective, and throughout the rest of the book you will see that this simplicity
makes it easy to develop complex sites with rich functionality — without getting bogged down
in complicated interfaces.

Converting Degrees to Decimal

If you know the longitude and latitude of a given point in the degrees, minutes, and seconds
format (for example, 52° 54’ 40” N 0° 38’ 21” W), you can convert each value into its decimal
equivalent using the following formula:

decimal = degrees + (minutes/60) + (seconds/3600)

Taking the preceding example map reference:

Longitude = 0 + (38/60) + (21/3600) = 0.6391666

Latitude = 52 + (54/60) + (40/3600) = 52.911111

These values can now be inserted directly into your Google Maps pages, databases, and data
stores when you create maps.

07_790095 ch03.qxp 6/12/06 1:32 PM Page 52

The Google
Web API

The Google database contains a massive range of information. Some of
it is, of course, based on the web pages that make up the World Wide
Web. In addition, Google has worked hard to add other information

to the database, such as names, contact details, and classifications for busi-
nesses and organizations. As you use the Google Maps API, you will proba-
bly want to combine your Google Maps information with data extracted
from these other sources.

To do this, you must interface to the Google system through the Google
Web API, which provides access to the Google web index of web sites to
users working in Java, .NET, Perl, and other environments.

This chapter tells you how to acquire the Google Web API, examines the
basics of this API, and shows how you can use it to incorporate additional
information to help support the data you will be presenting in your Google
Maps applications.

Downloading the Google Web API
To use the API, you first need to download the Google Web developer’s kit
(from http://www.google.com/apis/), which includes the following
components:

➤ A Web Services Description Language (WSDL) file that defines
the interface to the Google Web Service. The information contained
in the WSDL file can be used by any compatible web services client
environment using the Simple Object Access Protocol (SOAP).

➤ A Java library that provides a wrapper around the interface to the
Google Web system. The Java wrapper makes it very easy to build
Java-based applications that access the information in the Google
database.

➤ An example .NET project that invokes the Google Web API.

➤ Full documentation for using the Google Web API.

˛ Download the
Google Web API

˛ Learn about API
parameters, data
returns, and
limitations

˛ View search
examples using Perl
and Java

chapter

in this chapter

08_790095 ch04.qxp 6/12/06 2:06 PM Page 53

54 Part I — Basics

The API kit is supplied as a Zip file, which you will need to extract using one of the following:

� PKZip, the built-in Zip extractor in Windows XP.

� The unzip tool in Unix/Linux.

� The built-in or StuffIt Expander applications in Mac OS X.

The Google Web developer’s kit contains the following files and directories:

� APIs_Reference.html: Contains the Google Web API documentation and can be
read with any web browser.

� GoogleAPIDemo.java: A sample Java class that you can adapt.

� GoogleSearch.wsdl: Contains the WSDL for the entire Google Web API.

� LICENSE.txt: The license for using the kit.

� README.txt: A quick guide to the contents.

� dotnet/: Contains samples for the Windows .NET environment.

� googleapi.jar: The Java class for accessing the Google API.

� javadoc/: Contains Java documentation for the Java class in googleapi.jar.

� licenses/: Contains licenses for using different components.

� soap-samples/: Contains SOAP XML samples.

As with the Google Maps interface, accessing the Google Web system requires a unique key.
You cannot use the Google Web API without the unique key, and this key must be included in
every application that needs to access or use the Google Web API.

To obtain a key, just visit the Google Web API site (www.google.com/apis) and choose
Create Key. If you already have a Google account, the key will be sent to you automatically. If
you do not already have a Google account, you will need to create one.

If you forget your key, you can ask for another one simply by visiting the Google Web API site
and making a request. Google will then e-mail your key to you.

Using the Google Web API
You must agree to numerous terms and conditions before using the Google Web API. The pri-
mary points to remember are as follows:

08_790095 ch04.qxp 6/12/06 2:06 PM Page 54

55Chapter 4 — The Google Web API

� You cannot use the Google Web API to build a site for commercial purposes without
prior agreement with Google.

� You are limited to a maximum of 1,000 queries a day. This averages to one query every
86 seconds, so it pays to be careful with your queries; limit, cache, or count your queries
to ensure that you can still get the information when you need it. If you rely on the
Google Web API for supporting functionality in your web site, and your web site
becomes popular, hitting the 1,000 query limit in a typical day is inevitable.

� Google will return a maximum of 10 results per query, even though your query may actu-
ally be made up of many more results than this. Because of this, large searches may
require multiple queries, increasing your daily query count on each occasion.

If you have any questions, check the terms and conditions and the FAQ section on the Google
Web API site.

Remember to take note of the limits and usage on your key, which is tied to your Google
account. In theory, you could create multiple accounts, obtaining multiple keys to increase the
number of queries you can make per day. Over the long term, however, you run the risk of
Google revoking or restricting your access and your ability to use the service and to obtain addi-
tional keys.

Conducting Searches
Once you have your access key, you can start submitting queries to the system. This relies on
using web services with a number of parameters to specify the information you are searching
for. You also need to understand the format of the results, how the information can be used,
and what the limitations of the data that you extract are.

Parameters
Regardless of what language you are using, the Simple Object Access Protocol (SOAP) inter-
face to the Google web service works in the same way: You supply the parameters for the
search and Google returns a structure with the search results.

Table 4-1 shows the parameters to the remote function.

Table 4-1: Google Web Search API Arguments

Parameter Description

Key The access key provided by Google.

Query string The query string that defines what you are searching for.

Start index The index of the first result to be returned within the query.

Max results The maximum number of results to return. Note that you can never
obtain more than 10 results.

Continued

08_790095 ch04.qxp 6/12/06 2:06 PM Page 55

56 Part I — Basics

Table 4-1 (continued)

Parameter Description

Filter Activates filtering to remove similar results or results from the
same host.

Restrict Adds a restriction to the search database. Restrictions can be made
on a country-by-country basis or to specific topics. Check the API
documentation for a full list.

SafeSearch Enables SafeSearch, which filters adult content.

Language Restrict Restricts the search to return only matches within a specified source
language.

Input Encoding Now deprecated. Used to specify the input encoding; all requests
should be made in UTF-8.

Output Encoding Now deprecated. Used to specify the output encoding; all results
are now returned in UTF-8.

Some of these parameters have specific settings and formats that will alter the information that
is returned during a search. For example, the query string parameter supports the query
specification available to you when you perform a search on the Google web site. That is, plac-
ing a plus sign before a word will require the word to be in the page; placing a minus sign
before a word will require that it be ignored; and enclosing a group of words in quotation
marks will allow you to specify a certain phrase to search for.

The easiest way to identify the right query string is to perform your search on the Google web
site itself. This way, you are not limited by the number of queries and can perfect the string that
you want to use before running the query through your application. Once you have the right
string, place this into your code or application.

Other parameters filter the results in terms of the information returned, such as removing adult
content, restricting to specific topics, and even restricting to specific locations and languages.
Check the API documentation for a complete guide of the available options.

Results
The call to the Google Web API returns a large structure of information composed of base
data (information about the search, such as the total number of results and indices), as well as
an array of results. How you access the information that has been returned depends on your
implementation and the language you are using (for example, Perl makes the data available in
the form of a nested hash structure). The base data returned is detailed in Table 4-2.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 56

57Chapter 4 — The Google Web API

Table 4-2: Base Data from a Search Request

Element Description

documentFiltering A boolean value that indicates whether filtering was
performed on the results. The value is only true if you
have requested filtering and filtering has been
performed. If you have not requested filtering, the
value will always be false.

searchComments Any message the API deems suitable to return about
the search, such as filtered content or words removed
from the query string.

estimatedTotalResultsCount The approximate total number of matches for the
given search criteria. The value given may not equal
the exact number of matches; you can determine this
by looking at the estimateIsExact value. Results
are estimates when results might be removed due to
duplications.

estimateIsExact A Boolean that if true states that the estimate value is
the real value.

resultElements An array of results. See Table 4-3 for the format of
each result item.

searchQuery The original value of the search query text.

startIndex Indicates the index (of the first result in the list of
results) within the total number of results.

endIndex Indicates the index (of the last result in the list of
results) within the total number of results.

searchTips A text string for search tips, such as alternate searches
or misspellings.

directoryCategories An array of directory categories (from the Google
directory) that would match the search.

searchTime A floating-point value indicating the amount of time
taken to perform the search.

The array of results is actually a list of individual structures, and each structure includes the
information about the result, including its URL, the snippet of text extracted from the page,
and other information. You can see the individual fields in a given item in Table 4-3.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 57

58 Part I — Basics

Table 4-3: Data Return for Each Item

Element Description

Summary If the search result has a listing in the Google Open Directory Project
(ODP), the summary text for the entry appears here.

URL The URL of the result.

Snippet A snippet that shows the query text in the context of the page that is
being returned. The matching query text is highlighted in bold, with the
entire snippet encoded as HTML. In some environments, this will be
encoded HTML, where tag elements have been converted to their text
equivalents suitable for displaying in a web browser. See the Perl
example (later in this chapter) for more information.

Title The title of the search result, returned as HTML. In some environments
this will be encoded HTML, where tag elements have been converted
to their text equivalents suitable for displaying in a web browser. See
the Perl example (later in this chapter) for more information.

cachedSize The size of the page in the database. The result is a string, not an
integer, including the integer size and quantifier (k for kilobytes).

relatedInformation A boolean value indicating that you can perform a related search on
Present this URL to get pages that reference this URL.

hostName If results are filtered to remove hostname duplicates, only two results
from each host are returned. In that instance, the second result in the
result list has this value set to indicate that it is the second of the two
de-duped results.

directoryCategory The category of the URL if the URL also exists within the Google ODP.

directoryTitle The title of the URL as it is referenced within the Google ODP, if the
result URL exists in the ODP.

Again, extracting and using the information contained within the individual results is reliant on
the language and environment that you are using. Later in this chapter, you’ll see examples in
Perl and Java.

Limitations
The search parameters and results have some limitations (see Table 4-4). Some of them I have
already described and are imposed as part of the license limitations; others are simply technical
limitations. I suggest checking the documentation to confirm the details in Table 4-4, as they
are subject to change.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 58

59Chapter 4 — The Google Web API

Table 4-4: Search Limitations

Item Limit

Maximum query string length 2,048 bytes

Maximum number of words in the query 10

Maximum number of “site:” terms 1

Maximum number of results per query 10

Maximum value of start index and result size 1,000

If your search obtains more than 1,000 results, you can obtain only the first 1,000 — and your
query string is probably not specific enough to return the information you are looking for any-
way. Narrow down your search and try again with a different query string.

As you can see in Table 4-4, you can see only 10 results at a time from Google. The initial
search, if you don’t specify otherwise, will return the first 10 results. To see subsequent results,
you must specify an alternative starting index with multiple requests. This is called paging.

For example, imagine that you search for plumbers in Stamford. Your first query returns the
first 10 items. From this first search, you can extract the number of the expected results by
looking at the value of the estimatedTotalResultsCount element of the base data. If the
value of this is 87 and you want to obtain the remainder of the results, you must also perform
the following searches:

� Plumbers in Stamford starting at index 11.

� Plumbers in Stamford starting at index 21.

� Plumbers in Stamford starting at index 31.

� Plumbers in Stamford starting at index 41.

� Plumbers in Stamford starting at index 51.

� Plumbers in Stamford starting at index 61.

� Plumbers in Stamford starting at index 71.

� Plumbers in Stamford starting at index 81.

With these eight requests, you’ve finally got all of the information you need. Well, you’ve got
information, anyway; to determine whether it is what you wanted, you must examine the
results in more detail.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 59

60 Part I — Basics

Each individual query counts as 1 toward your 1,000-per-day limit. The limit is by query, not by
unique query string. In this case, you had to perform nine queries to get all of the results for just
one query string.

Comparing Language Samples
Google Maps examples consist of JavaScript and the HTML that makes up the page. But the
backend information that you might store or compose will probably be sourced through an
alternative language.

The Google Web API uses the Simple Object Access Protocol (SOAP), which means that it is
accessible from just about any language. This section concentrates on Perl and Java for backend
solutions, because they are two of the more common languages in use.

Perl
With Perl, you first need to download and install the SOAP::Lite package and all the other
modules on which the SOAP::Lite module relies (including the XML::Parser and others).

If you are familiar with CPAN, this should be a simple task. Just use the following command
(under Unix/Linux): perl -MCPAN -e ‘CPAN::Shell->install(“SOAP::Lite”)’.

Without CPAN, you’ll need to manually download the main SOAP::Lite package and the
modules on which it relies. When using the ActivePerl distribution in Windows, use the Perl
Package Manager (PPM) or Visual Package Manager (VPM).

Once you install the SOAP::Lite module, submitting the query to the Google search service
is relatively simple. Listing 4-1 shows a simple search (without any processing or printing of
the results).

Beyond Searches

The primary reason for using the Google Web API is to get a list of web sites that match a par-
ticular query and, thus, might be useful to you when building your Google Maps. You can, how-
ever, access two other Google systems through the Google Web API: the spelling system and
the cache system.

The spelling system provides alternate spellings for words or phrases that you supply. The same
system uses the information in the Google database to suggest sensible alternatives when you
submit a search (for example, if you searched for “Bratney Spires,” it would suggest an alter-
nate — and correct — spelling: “Britney Spears”).

The cache system returns the cached document content for a given URL. The text returned is
the raw HTML for the URL, assuming that it exists in the Google database, as it was stored from
the last Google web crawl.

Both these systems are described further in the Google Web API documentation but are not
generally useful for Google Maps applications.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 60

61Chapter 4 — The Google Web API

Listing 4-1: Simple Perl Example

#!/usr/bin/perl

use SOAP::Lite;

my $key=’*****’;

my $googleSearch = SOAP::Lite->service(“file:GoogleSearch.wsdl”);

my $result = $googleSearch->doGoogleSearch($key,
‘MCslp’,
0,
10,
“false”,
“”,
“false”,
“”,
“latin1”,
“latin1”);

print <<EOF;
Query: $result->{searchQuery}

Showing results $result->{startIndex} to $result-
>{endIndex} of $result->{estimatedTotalResultsCount}

Search time: $result->{searchTime}

EOF

foreach my $item (@{$result->{resultElements}})
{

$item->{title} = reformat($item->{title});
$item->{snippet} = reformat($item->{snippet});

print <<EOF;
{URL}”>$item->{title}

<p>$item->{snippet}</p>
<hr/>
EOF
}

sub reformat
{

my ($text) = @_;
$text =~ s/</</g;
$text =~ s/>/>/g;
return $text;

}

08_790095 ch04.qxp 6/12/06 2:06 PM Page 61

62 Part I — Basics

The resulting output for the Perl example is actually HTML. Listing 4-2 outlines the main
components of the returned structure (which contains the data that we know is returned) by
showing a dump of the hash structure returned by the call to the remote procedure. I’ve short-
ened it and re-formatted the structure to make easier to read.

Listing 4-2: A Dump of the Google Web API Remote Procedure Call

$VAR1 = bless({
‘searchTime’ => ‘0.087767’,
‘endIndex’ => ‘10’,
‘searchComments’ => ‘’,
‘documentFiltering’ => 0,
‘searchTips’ => ‘’,
‘estimatedTotalResultsCount’ => ‘997’,
‘searchQuery’ => ‘MCslp’,
‘startIndex’ => ‘1’,
‘resultElements’ => [
bless({
‘relatedInformationPresent’ => 1,
‘hostName’ => ‘’,
‘URL’ => ‘http://mcslp.com/’,
‘snippet’ => ‘All of them are under the

MCslp banner and all of them will,
... As with this
 site, and indeed
all MCslp sites, all of the new blogs are free
to use and ...’,

‘directoryCategory’ => bless({
‘fullViewableName’ => ‘’,
‘specialEncoding’ => ‘’
}, ‘DirectoryCategory’),

‘summary’ => ‘’,
‘cachedSize’ => ‘44k’,
‘title’ => ‘MCslp’,
‘directoryTitle’ => ‘’
}, ‘ResultElement’),

...
],
‘directoryCategories’ => [],
‘estimateIsExact’ => 0

}, ‘GoogleSearchResult’);

The primary keys of the hash contain the information about the search, in other words, the
base data, as described in Table 4-2. The resultElements value is an array of individual
hashes. Each hash is an individual result, and the structure of each result matches the descrip-
tions given in Table 4-3.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 62

63Chapter 4 — The Google Web API

Printing out the information is, therefore, quite straightforward: You just dump out the infor-
mation in the hash, and then progress through each item in the array and print out the individ-
ual result fields to get the information you want.

You can also see here that the title and snippet fields of each result are in encoded HTML. For
example, the angle brackets (<>) that normally identify a tag are instead included in HTML-
encoded format. The reformat function in Listing 4-1 uses a regular expression to convert these
back into angle brackets so that they are correctly displayed as HTML.

Java
With Java, the easiest method is to use the Java class supplied with the Google API (see
Listing 4-3).

Listing 4-3: A Java Code Example

import com.google.soap.search.*;
import java.io.*;

public class GMapsAPISearch {
public static void main(String[] args) {

String Key = “XXX”;

GoogleSearch s = new GoogleSearch();
s.setKey(Key);

try {
s.setQueryString(args[0]);
GoogleSearchResult r = s.doSearch();
System.out.println(“ Results:”);
System.out.println(r.toString());

} catch (GoogleSearchFault f) {
System.out.println(“Search failed:”);
System.out.println(f.toString());

}
}

}

The class is quite straightforward to use. You must first change the API key to the one pro-
vided to you in e-mail. Then, from the command line, specify the string you want to search for,
for example:

$ java GMapsAPISearch Grantham

The results are dumped out, including the structure of the information returned, which
includes data such as the URL, title, snippet, and size information.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 63

64 Part I — Basics

Wrapping Up
In this chapter you have seen how to extract data from the Google search database that could
be used and combined with geographical information to extend the data that you provide
within your Google Maps applications.

Although a lot of the information added to a Google Maps application will probably come
from other personal sources, such as census data or photos that you have taken, you may also
want to integrate some of the data contained in the rest of the Google Web database.

Understandably, usage of the Google Web API has its limitations. You can only obtain 1,000
items each day, and retrieving all 1,000 from a single set of criteria requires a number of web
accesses. But if you are willing to work within these limits, you can glean an amazing amount
of information to use in your own applications.

Combining Offline and Online Information

The Google database allows you to extract information about businesses or locations that may
be relevant to the Google Map you are creating.

However, you will likely want to combine information from your Google search with “offline”
data. For example, you might want to combine a list of businesses you’ve already composed
with the search information related to those businesses you’ve gleaned from the Google
database.

Although how you merge this information is implementation- and data-specific (see the exam-
ples throughout the rest of this book), the best way to merge online and offline information is
to relate data directly through an identifiable key such as the name, URL, or address.

For example, if you have a list of companies and their URLs, you can use the URL data you have
on file (offline) with the Google search results and use the URL as the key between the online
and offline source.

Another alternative is to incorporate the search string for a given business into the offline data,
and then use this as the basis for a related search through the Google engine.

Be aware, though, that there is a limit to what you can sensibly merge together without the
availability of a specific piece of key data. For example, having an offline list of plumbers for a
particular city and combining it with an online search will not work if you have no way to merge
the data together.

08_790095 ch04.qxp 6/12/06 2:06 PM Page 64

Storing and Sharing
Information

Google Maps–based applications are rarely completely standalone.
Sure, you can use them to merely embed information into the pages
of your web site, but the power of Google Maps is found in the

additional information and interfaces to the system that you can introduce
by using dynamic components and data.

Most Google Maps applications are made up of a combination of some
basic data embedded into the web page and data that is stored and supplied
through an external interface. A good example of this is the basic Google
Maps interface, which uses information from the Google database to over-
lay information on a Google Map.

The primary focus of this chapter is how to convert, store, and provide the
information that you will ultimately be providing through your Google
Maps applications.

Format Types and Uses
There are many different formats and methods of storing information.
Using the right one for the Google Maps application you are building is
critical to achieving the flexibility and ease of use that are key to the appli-
cation’s functionality.

For some applications, you want as simple a solution as possible to avoid
the complexity of having to read and write files in various formats and keep
them updated. For example, if all you are producing is a simple map of your
organization, producing a static data file that contains the information you
need will probably be more than sufficient.

However, if you want to create and work with more dynamic information
(for example, if you want to create a map of properties for a realtor), you will
probably already be dealing with data extracted from or directly available
within a database. You’ll need to convert and translate this information into
XML for it to be effectively used within your Google Maps application.

˛ Storage formats and
uses

˛ Parse and use text
files

˛ Parse XML with Perl

˛ Parse XML with
JavaScript

˛ Interface to an
RDBMS

˛ Generate XML from
an RDBMS

chapter

in this chapter

09_790095 ch05.qxp 6/12/06 1:33 PM Page 65

66 Part I — Basics

Before the XML is generated, you need to store and retrieve information from your own
databases for use with your applications. Choosing the right format for storing the data is,
therefore, critical. The three potential solutions are flat-text files; Extensible Markup Language
(XML); and database systems such as a Structured Query Language (SQL) Relational
Database Management System (RDBMS) like MySQL, PostgreSQL, or SQL Server.

Using Flat-Text Files
A flat-text file is just a text file with some very basic formatting or organizational information.
For example, the common format output by database or spreadsheet software is the comma-
separated values (CSV) file, in which a carriage return separates individual records and a
comma separates individual fields in each record. Another variation is the tab-delimited file
(TDF), which uses tabs to separate field data. You can also use other formats and separators
according to your needs and requirements.

Reading and extracting information from a flat-text file is easy, especially with the modern
scripting languages often used within web development. You can use a scripting language to
convert your original source flat-file text into XML, the format you need for Google Maps.
You can also use flat-text as a method for extracting or transferring information from other
sources (for example, an Excel spreadsheet) into a database for use or processing.

However, although adding information to the end of a text file is also relatively easy, deleting
or editing the information in the file is difficult. The only way to delete or edit is to read the
file up the point where you want to add or change the data, add the updated or new informa-
tion, and then continue writing the remainder of the original data.

Of course, you may ask yourself, “If I have to use XML for Google Maps, why not just use
XML to store the data in the first place, rather than converting the stored data to XML from
another format?”

Using XML
Storing information in XML has its advantages from the perspective that, in its native format,
you can use XML data with the Google Maps API to update and display information. Storing
the data for your application in XML can, therefore, simplify the entire process.

However, XML is not a format that is easy to write by hand. Although converting most types
of information from the source format to XML through a simple program or script is generally
quite straightforward, the layout and format of XML information does not lend itself to easy
manipulation. Even with efficient tools like XPath, which enables you to reference specific
areas of a given XML file by working through the XML tags, updating the information still
relies on the same basic methods as updating bare text files: You seek to the location you want
to change, you modify the text, and then you write out the new version.

But although XML is not an ideal storage mechanism for the information on the server
end, XML is the data format you’ll use to exchange information with Google Maps. For this
reason, you must examine more closely how to produce and parse XML documents with your
application.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 66

67Chapter 5 — Storing and Sharing Information

Using an RDBMS
The problem with both XML and text files is that you are limited to editing the files one at a
time. Using these files in a Google Maps application is a not a problem if you are the only per-
son editing and dealing with the data. If you want to offer interactivity or provide the facility
for multiple people to store and edit the information you are using, however, you need to either
consider using some sort of locking mechanism (to prevent multiple applications trying to
update the same file) or take a look at a proper database solution that handles the locking and
storage of the data.

An RDBMS provides the ability for multiple clients to update and access the information in
the database at the same time. For this reason using an RDBMS makes it much easier to sup-
port a large Google Maps application with multiple users.

Most RDBMS solutions use SQL as the method for querying and updating information.
Examples of SQL databases include commercial solutions such as Microsoft’s SQL Server,
Oracle, and free software solutions like MySQL, PostgreSQL, and Derby. All are capable
examples of database software that you can use for storing vast quantities of information in a
format that also makes it easy to retrieve the data when you want it.

If you support a SQL interface within your application, you can connect and interact with
existing databases that you may have access to. For example, you might want to expose sales
or customer information through your Google Maps application, and that will require combin-
ing location data with the information from the RDBMS that you already use to store this
information.

Parsing and Generating Text Files
When you are developing Google Maps applications, you may be forced to work with existing
text files that have been exported by other applications and environments, or you may want to
use a flat-text file as an interface for exchanging information between applications.

Storing structured data in a standard text file means applying some simple rules about the for-
mat of the information. These are rules that you will need to know in order to be able to read
the information back. Once you know the format, generating the file or parsing the content is
comparatively easy. The two basic formats are as follows:

� Fixed-width files, in which the record and its content is of a fixed size.

� Delimited files, in which a special character is used to separate individual fields and
records.

I don’t recommend text files of either type for storing information, but you may often need to
exchange data between other applications (like Excel) that use fixed-width files. For that rea-
son, here’s a quick look at how to read and write both delimited and fixed-width files.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 67

68 Part I — Basics

Reading Delimited Files
Getting information out of a delimited file is generally straightforward, although there are a
few oddities that can complicate matters. If the file is tab-delimited or uses some other delimit-
ing character (colons, semicolons, and tildes [~] are common), fields are delimited by tabs and
records are delimited by a carriage return and/or a linefeed character. To read the data, you read
each line and split the line up by tabs to extract the individual fields.

Listing 5-1 shows an example of this technique in action with a Perl script. Most languages
have some form of tokenizer (a function that converts lines according to a separation character
or expression) that will split up the string on a given character; here, I use the split function to
extract each field from the record.

Listing 5-1: Reading a Delimited File

open(DATA,$ARGV[0]) or die “Cannot open file: $!”;

while(<DATA>)
{

chomp;
my ($id,$ref,$fname,$lname,$country) = split /\t/,$record;
print “ID: $id\nRef: $ref\nFirst: $fname\nLast: $lname\nCountry:

$country\n”;
}

close(DATA);

For comma-separated value (CSV) files, the process is slightly more complicated because a
value in a CSV file is normally additionally qualified with double quotes to ensure that any
data that may include a comma is not misunderstood during parsing. Although you could
develop such a solution yourself, it’s easier to use an existing module. In this case, I use the
Text::CSV_XS module to do the parsing. Listing 5-2 shows an example of an application in
action.

Listing 5-2: Reading a Comma-Separated Value File

use Text::CSV_XS;

open(DATA,$ARGV[0]) or die “Couldn’t open file: $!”;

my $csv = Text::CSV_XS->new();

while(<DATA>)
{

09_790095 ch05.qxp 6/12/06 1:33 PM Page 68

69Chapter 5 — Storing and Sharing Information

chomp;
$csv->parse($_);
my ($id,$ref,$fname,$lname,$country) = $csv->fields;
print “ID: $id\nRef: $ref\nFirst: $fname\nLast: $lname\nCountry:

$country\n”;
}

close(DATA);

Writing Delimited Files
Writing delimited files is also easy. You only have to separate each field of data with the delim-
iting character and each record with a carriage return. In Perl, doing is this is as easy as com-
bining a print statement with join to merge fields together with your delimiter. You can see
a sample of writing to a tab-delimited file (TDF) in Listing 5-3.

Listing 5-3: Writing to a Tab-Delimited File

print(join(“\t”,145,1385674,’Martin’,’Brown’,’United Kingdom’),”\n”);

When you are writing a CSV file, you should also quote each field of data in double quotes.
Even though you may not need to quote the data in this way (it is only a requirement for fields
that contain a comma), it won’t do any harm if you do it anyway. Listing 5-4 shows an example
of writing to a CSV file, again in Perl. In this example, I run a list of values through the map
function to quote them, and then use join to merge the fields, separated by commas, together
into the record.

Listing 5-4: Writing to a Comma-Separated Value File

use Text::CSV_XS;

open(DATA,$ARGV[0]) or die “Couldn’t open file: $!”;

my $csv = Text::CSV_XS->new();

while(<DATA>)
{

chomp;
$csv->parse($_);
my ($id,$ref,$fname,$lname,$country) = $csv->fields;

Continued

09_790095 ch05.qxp 6/12/06 1:33 PM Page 69

70 Part I — Basics

Listing 5-4 (continued)

print “ID: $id\nRef: $ref\nFirst: $fname\nLast: $lname\nCountry:
$country\n”;
}

close(DATA);

Reading Fixed-Width Files
To extract the information from a fixed-width file, you must read an entire record (say 80
bytes) and then extract individual fields by reading that number of bytes from the file. For
example, you could extract three fields of 20 bytes each and two of 10 bytes each. For the sys-
tem to work, you have to “pad out” the fields with additional bytes to fill up the space (and
remove them when you read them back). For example, you might pad out “Martin” with an
additional 14 bytes to make up the 20 characters for the field width.

The basic operation is to read the number of bytes from the file according to the size of the
record you are reading. In this case, I’ve calculated the record size by adding the width of each
individual field. The unpack() function accepts a string that specifies how to “unpack” a
string from its original format into a sequence of fields. For a fixed-width system, you specify
the width of each field and the character type (in this case ASCII). Listing 5-5 shows a sample
method for reading fixed-width records.

Listing 5-5: Reading Fixed-Width Files in Perl with Unpack

open(DATA,$ARGV[0]) or die “Cannot open file: $!”;

my $reclength = 10+10+20+20+20;
my $record;

while(read(DATA,$record,$reclength))
{

my ($id,$ref,$fname,$lname,$country) = unpack(‘a10a10a20a20a20’,$record);
print “ID: $id\nRef: $ref\nFirst: $fname\nLast: $lname\nCountry:

$country\n”;
}

close(DATA);

The unpack() function in Perl is a great way of extracting the information, but Listing 5-6
shows how you can achieve the same result by using regular expressions.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 70

71Chapter 5 — Storing and Sharing Information

Listing 5-6: Reading Fixed-Width Files in Perl with Regular Expressions

open(DATA,$ARGV[0]) or die “Cannot open file: $!”;

my $reclength = 10+10+20+20+20;
my $record;

while(read(DATA,$record,$reclength))
{

my ($id,$ref,$fname,$lname,$country)
= ($record =~ m/(.{10})(.{10})(.{20})(.{20})(.{20})/);

print “ID: $id\nRef: $ref\nFirst: $fname\nLast: $lname\nCountry:
$country\n”;
}

close(DATA);

Either way of reading fixed-width files is equally effective, although with very large files you
may find that the unpack() method is more efficient.

Note that in both examples the fields contain all the data — I haven’t removed the padding
zeros or spaces. You can fix that by using the int() function to convert the numbers into an
integer; the function will automatically remove initial zeros for you because they do not add
anything to the number. For the text fields, you can use a simple regular expression (embedded
into a function for ease of use). Listing 5-7 shows the full script for this example.

Listing 5-7: Removing Padding Data

open(DATA,$ARGV[0]) or die “Cannot open file: $!”;

my $reclength = 10+10+20+20+20;

my $record;

while(read(DATA,$record,$reclength))
{

my ($id,$ref,$fname,$lname,$country) = unpack(‘a10a10a20a20a20’,$record);

$id = int($id);
$ref = int($ref);
$fname = despace($fname);
$lname = despace($lname);
$country = despace($country);

print “ID: $id\nRef: $ref\nFirst: $fname\nLast: $lname\nCountry:
$country\n”;

Continued

09_790095 ch05.qxp 6/12/06 1:33 PM Page 71

72 Part I — Basics

Listing 5-7 (continued)

}

close(DATA);

sub despace
{

my ($text) = @_;
$text =~ s/ *$//g;
return $text;

}

Writing Fixed-Width Files
Writing a fixed-width file, like writing a delimited file, is very straightforward. Once you
know the format of the file, your only real problem is choosing a padding character to use.
An obvious solution in most situations is to use a zero for numerical values and a space for text
values.

If your chosen language supports the printf() or sprintf() functions (both part of the
standard C library), you can use the formatter to align the data for you. For example, you can
output a record with two 10-character fixed-width numbers and three 20-character-wide
fixed-width text fields with the line in Listing 5-8.

Listing 5-8: Writing a Fixed-Width Record

printf(‘%010d%010d%-20s%-20s%-20s’,145,1385674,’Martin’,’Brown’,’United
Kingdom’);

The code in Listing 5-8 will work in Perl and C (with the necessary headers and wrappers
added).

Updating Text Files
As mentioned earlier in the chapter, updating a text file is a matter of either copying informa-
tion up to the point where you want to update, or of inserting information before that point,
writing the new information, and then copying the rest of the file. Once you get to this stage,
however, it really is more effective to use an alternative method to store the information.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 72

73Chapter 5 — Storing and Sharing Information

Generating and Parsing XML
Programmers familiar with HTML will understand the basic concept behind XML. Both are
technically identical to the structure of Standard Generalized Markup Language (SGML). All
three rely on the same basic structure.

When supplying information for use with Google Maps, you need to generate comparatively
simple XML documents, with perhaps only a couple of nested levels of information. Generally,
the key is to generate information that can easily be parsed by JavaScript to display information
and provide a list of map points or additional data.

Before seeing the processes for creating and parsing XML, it is worth looking at the main
points and key terms of the XML format. XML is a superset of the Standard General Markup
Language (SGML), which is also the source for the HTML standard used for web pages.
XML enables you to structure data in a neutral format that can be generated and understood
by many different platforms and environments.

The basic component of XML is the tag. This is a single word enclosed in angle brackets. For
example, you could create a tag for restaurant information using this:

<restaurant>

Tags are actually defined in pairs: the opening tag and the closing tag, which has the same text,
but a leading forward slash:

</restaurant>

Within a tag is the tag data. This could be actual information, for example:

<restaurant>One on Wharf</restaurant>

Or it can be further tags:

<restaurant>
<name>One on Whard</name>
<city>Grantham</city>

</restaurant>

Finally, tags can also contain attributes (additional pieces of information that help to define
further information about a tag or its contents). For example, you could rewrite the preceding
code as

<restaurant name=”One on Wharf” city=”Grantham”>A nice restaurant.</restaurant>

Because XML files are basic text, generating the files is quite straightforward, although care
must be taken to ensure that the structure of the XML is correct. Parsing an XML document
is more difficult, because you have to take into account the different parts of the structures.
Fortunately there are techniques and extensions for both operations that make it easy to gener-
ate and parse the contents of an XML file.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 73

74 Part I — Basics

Generating XML
You can generate XML very easily just by embedding data into suitable tags when you write
out the information. Listing 5-9 shows an adaptation of the fixed record length parsing code
that outputs the information from a fixed-width record file into XML.

Listing 5-9: Generating XML from Fixed Data

open(DATA,$ARGV[0]) or die “Cannot open file: $!”;

my $reclength = 10+10+20+20+20;

my $record;

print ‘<staff>’;

while(read(DATA,$record,$reclength))
{

my ($id,$ref,$fname,$lname,$country) = unpack(‘a10a10a20a20a20’,$record);

$id = int($id);
$ref = int($ref);

$fname = despace($fname);
$lname = despace($lname);
$country = despace($country);

print <<EOF;
<staffmember>
<td>$id</id>
<ref>$ref</ref>
<firstname>$fname</firstname>
<lastname>$lname</lastname>
<country>$country</country>
</staffmember>
EOF

}

close(DATA);

print ‘</staff>’;

sub despace
{

my ($text) = @_;

$text =~ s/ *$//g;

return $text;
}

09_790095 ch05.qxp 6/12/06 1:33 PM Page 74

75Chapter 5 — Storing and Sharing Information

You can see the resulting XML generated from this file in Listing 5-10.

Listing 5-10: An XML File Generated from Fixed-Width File Data

<staff><staffmember>
<td>145</id>
<ref>1385674</ref>
<firstname>Martin</firstname>
<lastname>Brown</lastname>
<country>United Kingdom</country>
</staffmember>
<staffmember>
<td>383</id>
<ref>4897947</ref>
<firstname>Mickey</firstname>
<lastname>Mouse</lastname>
<country>United States</country>
</staffmember>
<staffmember>
<td>384</id>
<ref>2349875</ref>
<firstname>Donald</firstname>
<lastname>Duck</lastname>
<country>United States</country>
</staffmember>
</staff>

In Listing 5-10, all of the data is stored within a <staff> tag, individual records are con-
tained within a <staffmember> tag, and individual fields are contained by appropriate
individual tags.

For a more flexible programmable interface for building XML files in Perl, you can use the
XML::Generator module. The module provides a very flexible method for creating XML
and even nested XML. You can see a sample of this in Listing 5-11.

Listing 5-11: Generating XML with XML::Generator

use XML::Generator;

my $gen = XML::Generator->new(‘escape’ => ‘always’,
‘pretty’ => 2);

my $restaurants = {‘One on Wharf’ => {longitude => -0.64,
latitude => 52.909444},

Continued

09_790095 ch05.qxp 6/12/06 1:33 PM Page 75

76 Part I — Basics

Listing 5-11 (continued)

‘China Inn’ => {longitude => -0.6391666,
latitude => 52.911111},

};

foreach my $name (sort keys %{$restaurants})
{

my $xml
= $gen->restaurant($gen->name($name),

$gen->points(
{“longitude” => $restaurants

->{$name}
->{longitude},

latitude => $restaurants
->{$name}

->{latitude}
}));

print $xml,”\n”;
}

As you can see, to the XML::Generator object, function names become the tag name and
the argument becomes tag data (or subtags). Attributes for a given tag can be inserted by sup-
plying a hash reference; keys are used as the attribute name and the values are the attribute val-
ues. Listing 5-12 shows the generated output.

Listing 5-12: XML Generated through the XML::Generator Module

<restaurant>
<name>China Inn</name>
<points longitude=”-0.6391666” latitude=”52.911111” />

</restaurant>
<restaurant>
<name>One on Wharf</name>
<points longitude=”-0.64” latitude=”52.909444” />

</restaurant>

You won’t always, however, be generating the information directly from other sources like the
fixed-width record file or a database, as demonstrated here. Sometimes the information will be
in XML format already (for example, as an export from another application), and that data will
need to be parsed, extracted, and reformatted, either for importing into a database or an alter-
native XML format.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 76

77Chapter 5 — Storing and Sharing Information

Parsing XML with Perl
You can deal with XML data within Perl in many ways. There are primarily two solutions
within Perl that are useful when thinking about Google Maps applications: the XML::Simple
module and the Document Object Model (DOM). The two systems have similar principles;
understanding the DOM method within Perl will help you to understand the DOM method
used within JavaScript.

The XML::Simple module parses an XML document and converts it into a Perl structure
using hashes or arrays as appropriate. You can then access the XML data by using the name of
each tag. For example, Listing 5-13 shows a simple XML::Simple parser script that dumps
out the structure of the XML document it has just parsed.

Listing 5-13: Using XML::Simple for Parsing XML Documents

use XML::Simple;
use Data::Dumper;

my $xml = XMLin($ARGV[0]);
print Dumper($xml);

The result when parsing the restaurants XML document is shown in Listing 5-14.

Listing 5-14: The Perl Structure of an XML Document

$VAR1 = {
‘restaurant’ => {

‘One on Wharf’ => {
‘points’ => {

‘longitude’ => ‘-0.64’,
‘latitude’ => ‘52.909444’
}

},
‘China Inn’ => {

‘points’ => {
‘longitude’ => ‘-0.6391666’,
‘latitude’ => ‘52.911111’

}
}

},
‘restaurants’ => {}

};

09_790095 ch05.qxp 6/12/06 1:33 PM Page 77

78 Part I — Basics

Using this structure you can extract a list of restaurants by obtaining a list of the top-level tags
with the key ‘restaurant’. For example, the following line would print this list:

print keys %{$xml->{‘restaurant’};

The DOM method follows similar principles — you access the tags by name. The difference
is that when you access a particular tag, the return value is another XML object. The DOM
model therefore lets you walk through the document accessing different tags and different
levels of information through the document.

A number of different functions within the DOM method enable you to obtain a list of XML
tags with a particular name (for example, all of the <restaurant> tags) and also to extract
the information contained within the tags or their attributes.

For example, when parsing the document from Listing 5-12, the longitude and latitude of each
restaurant can be extracted using this method:

1. Get a list of restaurants (effectively, each restaurant is a subset of the tags in each
<restaurant> tag).

2. Get the <points> tag from each restaurant.

3. Extract the longitude and latitude attributes from this <points> tag.

Alternatively, the same information could be extracted from the XML document using this
method:

1. Get a list of the <points> tags.

2. Extract the longitude and latitude attributes from each <points> tag.

Both solutions work, but the latter is possible only because there is only one <points> tag
within each restaurant definition.

All Perl modules can be downloaded from CPAN (http://cpan.org) or through the CPAN
module. For Windows users using the ActiveState Perl distribution, use the Perl Package Manager
(PPM) or Visual Package Manager (VPM) if you have a commercial license.

The XML::DOM module for Perl provides an interface to the DOM methods for extracting
information from XML documents in this way. Listing 5-15 shows a sample script that
extracts the information using the second method described earlier.

Listing 5-15: Extracting Information from an XML Document Using
DOM in Perl

use XML::DOM;

my $parser = new XML::DOM::Parser;

09_790095 ch05.qxp 6/12/06 1:33 PM Page 78

79Chapter 5 — Storing and Sharing Information

First, parse the supplied file into an XML object
my $doc = $parser->parsefile ($ARGV[0]) or die “Couldn’t parse $ARGV[0]”;

Extract a list of XML fragments enclosed by the <points> tag
my $nodes = $doc->getElementsByTagName (“points”);
Get the number of objects returned
my $n = $nodes->getLength;

Now process through the list of <points> tags and extract the data
for (my $i = 0; $i < $n; $i++)
{
Get a single <points> tag structure from the XML document

my $node = $nodes->item ($i);
Extract the value from <longitude>XXX</longitude>

my $long = $node->getAttributeNode(“longitude”)->getValue();
Extract the value from <latitude>XXX</latitude>

my $lat = $node->getAttributeNode(“latitude”)->getValue();
print “Longitude: $long, Latitude: $lat\n”;

}
Free up the structure
$doc->dispose;

These are the key elements in the script:

1. The XML document is loaded and parsed into a DOM object.

2. A list of points elements is extracted from the main document using the
getElementsByTagName() function.

3. A loop is used to iterate through the list of points elements.

4. Each points element is extracted.

5. The values of the longitude and latitude attributes are obtained using the
getAttributeNode() function on the points element object.

Parsing XML with JavaScript
Once you go beyond the statically created Google Maps examples and start working with more
complicated sets of data, you must use XML as a method for exchanging information between
your web server application and the Google Maps client-side application. All of this is
achieved through JavaScript.

JavaScript, in its base form, is a fairly limited language designed with some strict rules and
goals in mind. Although it doesn’t contain a specific interface for working with XML docu-
ments, JavaScript can use the Document Object Model (DOM) to work with XML (and
HTML) documents. Technically, the DOM is not part of JavaScript, but JavaScript does

09_790095 ch05.qxp 6/12/06 1:33 PM Page 79

80 Part I — Basics

contain an interface to the DOM system. You may be familiar with the DOM interface,
because the DOM enables you to access elements of an HTML document by name (for exam-
ple, you can obtain the value of a form field by using the DOM to access the value by name).

Listing 5-16 shows an HTML fragment from which you can extract the information in each
field by using the code in Listing 5-17.

Listing 5-16: A Simple HTML Form

<form name=”personal” action=”index.cgi”>
<input type=text size=20 name=name>
<input type=text size=20 name=longitude>
<input type=text size=20 name=latitude>
</form>

Listing 5-17: Accessing the Form Data by Name Using DOM/JavaScript

document.personal.name
document.personal.longitude
document.personal.latitude

The term document refers to the entire HTML document (when used within JavaScript,
it typically means the current HTML document). The term personal relates to the form
(which was given the name personal), and name, longitude, and latitude refer to the
field names within that form.

When working with XML, the basic rules for parsing the content through DOM are identical
to the structures you saw earlier when processing documents in this format through Perl.

The key way in which you use XML and the DOM system within Google Maps is to expose
data in XML format and use this data within your Google Maps application to create map
points, vectors, and other information.

Google Maps provides an XML HTTP interface (GXmlHttp) that can load XML documents
from a server. The resulting information is then accessible using the DOM interface, enabling
you to extract the relevant data from the XML and use it within the JavaScript application and,
ultimately, Google Maps.

Listing 5-18 shows the JavaScript model (and associated Google Maps commands) to add map
points to a map when provided with the XML file generated in Listing 5-12.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 80

81Chapter 5 — Storing and Sharing Information

Listing 5-18: Processing XML in JavaScript

var request = GXmlHttp.create();
request.open(“GET”, “/examples/xmlbasic2.xml”, true);
request.onreadystatechange = function()
{

if (request.readyState == 4)
{
var xmlDoc = request.responseXML;
var points = xmlDoc.getElementsByTagName(“points”);
for (var i = 0; i < points.length; i++)
{
var xmlpoint = new

GPoint(parseFloat(points[i].getAttribute(“longitude”)),

parseFloat(points[i].getAttribute(“latitude”)));
var xmlmarker = new GMarker(xmlpoint);
map.addOverlay(xmlmarker);

}
}

}
request.send(null);

This is just a fragment of the full HTML document that generates the map, but it demon-
strates the DOM access methods built into JavaScript for processing XML documents.

The script works as follows:

1. A new GXmlHttp object is created.

2. The XML file is downloaded.

3. Once the file has been loaded (when the GXmlHttp object reaches readyState 4), the
rest of the processing can begin.

4. The list of points elements from the document is extracted. The xmlDoc is the
name of the object that contains the XML data. The getElements ByTagName()
method to this object returns a list of XML objects that contain the data in each
<points>...</points> tag.

5. A new GPoint object is created based on the attribute value of the longitude and
latitude attributes for each points element. Attributes are extracted from a given
tag (in this case one of the <points> tag objects) using the getAttribute()
method.

6. The GPoint is used to create a new marker.

7. The marker is added to the Google Map.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 81

82 Part I — Basics

Aside from the additional steps required to add the points to the map and the more complex
process of loading the XML through an HTTP request to the web server, the basic structure of
accessing the information contained in the XML file through DOM is the same within
JavaScript as in the earlier Perl example.

This type of processing — loading XML, parsing the contents, and then displaying the
information — is an example of AJAX (Asynchronous JavaScript and XML) in action. The entire
process from loading to display is handled entirely within JavaScript and, therefore, happens
without having to specifically reload the page. AJAX provides a dynamic interface within the
scope of what is normally a static web page. See Chapter 9 for more information and examples
on using AJAX with Google Maps.

More of this kind of XML processing is used throughout the rest of this book.

Working with SQL
Storing and retrieving information from SQL databases relies on creating a connection
between your script or application and the SQL database. The exact method you use depends
on the language and environment you are using with your web environment to extract informa-
tion from the database.

The most likely scenario for using a SQL database is when storing information that you want
to have displayed on the map. The information needs to be extracted from the SQL database
and converted into an XML document that can be used by the Google Maps application. By
using a SQL database, you can pick out the specific elements from the database that you want
very easily. For example, you might want to extract all the restaurants, or maybe even all the
restaurants within a particular town. To support this, you create a script that dynamically gen-
erates the XML from the SQL data and that is called directly through the GXmlHttp function
supported by the Google Maps API.

Using SQL in this way adds these additional overheads to your application:

� You will need to create a suitable structure for the database.

� You will need to create a method for updating the information in the database (through
the web or a desktop application).

� You will need to build the script that extracts the information and produces the XML.

If you are using MySQL (one of the more popular open source database solutions), the docu-
mentation available on the web site (http://dev.mysql.com/doc) provides one of the
best all-around guides to both the SQL language and the MySQL extensions.

The structure, format, and scripts used to support these operations are application specific, but
the basics are included here to enable you to get started.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 82

83Chapter 5 — Storing and Sharing Information

Creating a Database Structure
Using a professional RDBMS for storage means that structured data can easily be created and
stored. Through queries (using SQL), precise sets of data can be returned and then formatted
into the XML required by a Google Maps application.

Obviously, the precise format of the database created will be entirely dependent on the infor-
mation being stored, but you should be aware of the following tips and hints as you develop
your application:

� Longitude and latitude are best represented as floating-point values. Both should be
stored as floating-point values (the FLOAT or REAL type in most databases). It is best
to store these two values in individual float fields in your database. Even though the
RDBMS may support limited-precision floating-point values, you should not limit the
precision of the values you want to store; the higher the precision, the more exact you
can be about point placement.

� Store other data in appropriate individual fields. Don’t embed the data and the XML
tags in the field data; just store the data and have the application create the surrounding
tags. This also allows the application to change the tags and formatting if necessary to
suit the needs of the Google Maps application.

� Use a unique ID against individual records. This makes it easier to join information
together and also to identify the correct row to update or delete.

� Structure data according to the information being stored. For example, a list of restau-
rants may be provided in one table with a list of the meals they provide in a separate
table, linked to the original. Don’t create multiple fields to store duplicate information
(that is, meal_type_a, meal_type_b, and so on). Use the relational functionality of
the database to relate the data and create an appropriate XML structure from the com-
pound data.

Although most RDBMSs use SQL — a standard for creating database tables — differences in
the underlying RDBMS can affect the exact statement used to create the table. Listing 5-19
shows the SQL statement to create a table for storing the restaurant data used in earlier exam-
ples in this chapter.

Open Source Databases

Numerous open source databases are available that you can use while developing and deploy-
ing your Google Maps application. Many web host services provide access to a MySQL
database, so it is probably a better solution while developing your application because it will
present the least problems when you deploy.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 83

84 Part I — Basics

Listing 5-19: Creating a SQL Table

create table restaurants (id int auto_increment not null primary key,
lng float,
lat float,
name varchar(80));

The example in Listing 5-19 shows the creation of a table with an ID field with an auto_
increment option. Each time a record is inserted into the database, the ID field will
automatically be populated with the next ID in the sequence, providing a unique reference
for that row in the database.

To create this table, add data to it, or retrieve previously stored data requires using a database
interface.

Interfacing to the Database
Whether you are creating an interface for building the database or writing the script that
extracts the information from the database in XML format for Google Maps to process, you
will need to interface to the underlying RDBMS.

Depending on the language you are using, a number of different interfaces are available; gener-
ally, it is best to use the one with which you are most familiar or, if this is your first time, the
one most widely supported, because this increases the available resources and support.

SQL Quick Guide

SQL statements for manipulating data can be divided into three types, SELECT, INSERT, and
UPDATE:

■ SELECT retrieves data from the database (selecting it). You must specify the fields you want
to retrieve, the tables you want to retrieve the information from, an optional criteria state-
ment (that is, specify the precise rows from the table you want), and the rules for matching
data between tables (joins).

■ INSERT adds rows to the table. You must specify the table and either a list of values to be
inserted (according to the order of the fields in the database) or a list of the fields and their
values.

■ UPDATE modifies one or more rows in a table. You must specify the table, the updated
fields and their values, and the criteria to use when selecting which existing rows should be
updated.

With one or two exceptions, 99 percent of the interaction with an RDBMS will be through one
of these three statements.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 84

85Chapter 5 — Storing and Sharing Information

Connecting to a Database Using DBI and Perl
The DBI module in Perl provides access to database engines through a number of individual
Database Drivers (DBDs). Although you need different DBDs for connecting to different
databases, the basic interface to submitting queries and obtaining results remains the same. The
approach means that you can develop your Google Maps application locally using MySQL but
deploy it using PostgreSQL or Oracle without making any changes to the queries and inter-
faces in the application.

Use CPAN, PPM, or VPM to install DBI and the DBD you need to use for your database environ-
ment. If you are using MySQL, you will need to install DBI and the DBD::mysql module.

To connect to a database through DBI, a data source name (DSN) must be assembled based on
the information required by the DBD driver. For example, to connect to a MySQL database,
you must specify the name of the database and the host on which the database can be found.
To connect to the google_maps database on the host mysql.mcslp.pri, the DSN would
be DBI:mysql:database=google_maps;host=mysql.mcslp.pri.

The DSN is supplied as an argument to the connect method, along with the username and
password if required, to create a new database handle. All queries to the database then use this
database handle as a way of communicating between your application and the MySQL database.

The entire process can be seen more clearly in the stub shown in Listing 5-20.

Listing 5-20: Connecting to a MySQL Database with Perl

#!/usr/bin/perl

use DBI;

my $dbh = DBI-
>connect(“DBI:mysql:database=google_maps;host=mysql.mcslp.pri”,’maps’,’maps’);

if ($dbh)
{

print “Connected to database\n”;
}
else
{

print “Couldn’t connect\n”;
}

#Do your stuff

$dbh->disconnect();

09_790095 ch05.qxp 6/12/06 1:33 PM Page 85

86 Part I — Basics

The object created in the example, $dbh, now becomes the method for communicating with the
MySQL database. For example, to execute an arbitrary statement, you’d use the do() method.
Some examples of this are demonstrated later in this chapter.

Connecting to a Database with PHP
PHP provides built-in support for communicating with a number of different databases,
depending on how the application is compiled. MySQL support is usually included by default.
Older versions of PHP used a suite of built-in methods for communicating with a MySQL
database that were MySQL-specific. The interface has been improved since version 5.1, when
an object-based solution similar to the DBI solution in Perl was introduced.

For the older version, connecting to a database is a question of calling the mysql_connect()
function with the name of the host, username, and password. Once connected, you must select
the database to use before submitting any queries.

The old PHP method more or less mirrors the structure of connecting to a MySQL database by
hand through the command-line mysql tool and may make more sense to users familiar with
that tool.

An example of the typical connection sequence is shown in Listing 5-21.

Listing 5-21: Connecting to a Database through PHP (Traditional)

<?php

mysql_connect(localhost,’maps’,’maps’);
@mysql_select_db(‘google_maps’);

//Do your stuff

mysql_close();

?>

To execute a query through this interface, use the mysql_query() function.

PHP 5.1 supports an alternative method for communicating with a MySQL database or,
indeed, any database using the PHP Data Object (PDO) interface. The approach is similar in
style to the DBI approach used by Perl and is, therefore, more portable. However, it may take
some time for your hosting service to update to PHP 5.1. Check what version is supported
before choosing an interface type.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 86

87Chapter 5 — Storing and Sharing Information

With PDO, you create a new object that provides connectivity to the RDBMS you are using,
rather than the implied database connectivity supported through the older interface. You must,
therefore, specifically create a new database connection object, as shown in Listing 5-22.

Listing 5-22: Connecting to a Database through PHP Data Objects
(PDO)

<?php

try {
$dbh = new PDO(‘mysql:host=localhost;dbname=google_maps’,’maps’,’maps’);

} catch (PDOException $e) {
print “Error!: “ . $e->getMessage() . “
”;
die();

}

//Do your stuff

$dbh = null;

?>

Executing a query through the PDO method uses the exec() method to the database handle
that was created (that is, $dbh->exec()).

Populating the Database
Populating an RDBMS with SQL relies on composing a suitable INSERT statement and then
using the database interface to execute that statement in the database. To insert data into a
table according to order of fields as they are created, you use a statement like the one shown in
Listing 5-23.

Listing 5-23: Inserting the Data

insert into restaurants(0,-0.6391666,52.911111,”China Inn”);

The zero for the ID is used to indicate that a new unique ID, automatically generated by the
database (according to the table definition), should be used for this value.

To execute the SQL statement with a Perl/DBI interface, use the code in Listing 5-24; for
traditional PHP, use Listing 5-25; and for PHP/PDO, use Listing 5-26.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 87

88 Part I — Basics

Listing 5-24: Inserting Data with Perl

#!/usr/bin/perl

use DBI;

my $dbh = DBI-
>connect(“DBI:mysql:database=google_maps;host=mysql.mcslp.pri”,’maps’,’maps’);

if ($dbh)
{

print “Connected to database\n”;
}
else
{

print “Couldn’t connect\n”;
}

$dbh->do(“insert into restaurants values(0,-0.6391666,52.911111,’China Inn’);”);

$dbh->disconnect();

Text being inserted into a database must be quoted using single or double quotation marks.
Which you use depends on what kind of quotation marks you have used to build the rest of the
query. The DBD interface also provides the quote() method to the database handle, which will
appropriately quote a given string of text, even if it already contains quotation marks.

Listing 5-25: Inserting Data with PHP (Traditional)

<?php

mysql_connect(localhost,’maps’,’maps’);

@mysql_select_db(‘google_maps’);

mysql_query(“insert into restaurants values(0,-0.6391666,52.911111,’China
Inn’)”);

mysql_close();

?>

09_790095 ch05.qxp 6/12/06 1:33 PM Page 88

89Chapter 5 — Storing and Sharing Information

Listing 5-26: Inserting Data with PHP (PDO)

<?php

try {
$dbh = new PDO(‘mysql:host=localhost;dbname=google_maps’,’maps’,’maps’);

} catch (PDOException $e) {
print “Error!: “ . $e->getMessage() . “
”;
die();

}

$dbh->exec(“insert into restaurants values(0,-0.6391666,52.911111,’China
Inn’)”);

$dbh = null;

?>

Although more detailed examples of inserting and updating the database are beyond the scope
of this book, examples are provided as part of the applications presented in the remainder of
the book.

Extracting Data from the Database
When extracting data from the database, the typical procedure is to execute the SELECT state-
ment and then iterate over the returned rows to extract the information required. The best way
to achieve this is through the use of a prepared statement. This provides the most flexible
method for extracting information from the database on a row-by-row basis.

An example of this through the Perl/DBD interface is shown in Listing 5-27.

Listing 5-27: Extracting Data on a Row-by-Row Basis

#!/usr/bin/perl

use DBI;
use Data::Dumper;

my $dbh = DBI-
>connect(“DBI:mysql:database=google_maps;host=mysql.mcslp.pri”,’maps’,’maps’);

if ($dbh)
{

Continued

09_790095 ch05.qxp 6/12/06 1:33 PM Page 89

90 Part I — Basics

Listing 5-27 (continued)

print “Connected to database\n”;
}
else
{

print “Couldn’t connect\n”;
}

my $sth = $dbh->prepare(“select * from restaurants”);

$sth->execute();

while(my $row = $sth->fetchrow_hashref())
{

print Dumper($row),”\n”;
}

$dbh->disconnect();

In Listing 5-27, a hash reference containing the row data is returned for each row in the table.
The hash in each case contains the field names (in the keys) and the corresponding value (in
the value). The Data::Dumper module is used to output a dump of the hash; the output
generated after inserting a single row is shown in Listing 5-28.

Listing 5-28: Dumped Data from the Database with Perl

Connected to database
$VAR1 = {

‘lat’ => ‘52.9111’,
‘name’ => ‘China Inn’,
‘id’ => ‘1’,
‘lng’ => ‘-0.639167’

};

Because the Google Maps API requires the information to be in XML format, Listing 5-29
shows an example of the same script returning an XML representation of each restaurant.
Listing 5-30 contains the generated XML for reference.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 90

91Chapter 5 — Storing and Sharing Information

Listing 5-29: Generating XML from Your SQL Database

#!/usr/bin/perl

use DBI;
use XML::Generator;

my $dbh = DBI-
>connect(“DBI:mysql:database=google_maps;host=mysql.mcslp.pri”,’maps’,’maps’);

if ($dbh)
{

print “Connected to database\n”;
}
else
{

print “Couldn’t connect\n”;
}

my $sth = $dbh->prepare(“select * from restaurants”);

$sth->execute();

my $gen = XML::Generator->new(‘escape’ => ‘always’,
‘pretty’ => 2);

while(my $row = $sth->fetchrow_hashref())
{

my $xml
= $gen->restaurant($gen->name($row->{name}),

$gen->points({“longitude” => $row->{lng},
latitude => $row->{lat}

}));
print $xml,”\n”;

}

$dbh->disconnect();

Listing 5-30: XML Generated from Your SQL Database

<restaurant>
<name>China Inn</name>
<points longitude=”-0.639167” latitude=”52.9111” />

</restaurant>

09_790095 ch05.qxp 6/12/06 1:33 PM Page 91

92 Part I — Basics

Similar results can be achieved with PHP. In a real-world situation, the script would work as a
CGI script and generate the information on the fly for the GXmlHttp object in the Google
Maps API.

As with other basic examples earlier in this chapter, I will produce and develop more detailed
applications and samples, starting with Chapter 9.

Wrapping Up
Without additional information, a Google Map is just that: a map of a location. The additional
data supplied with the map is what turns the map into a useful application that provides spe-
cific, customized information on locations, photographs, statistical data, routes, and other
interesting data points.

How you store and use that information is up to you and your application. As shown in this
chapter, standard text files have their limitations, whereas an RDBMS supporting SQL pro-
vides the most flexibility. Both, however, need to be converted into XML to be compatible with
the Google Maps API. And you can both generate and parse XML documents with ease by
using the right tools. In the next chapter, you’ll see some examples of how to determine loca-
tion information for addresses and business that can then be used with a Google Map to create
a Google Maps application.

09_790095 ch05.qxp 6/12/06 1:33 PM Page 92

Instant Gratification

Chapter 6
Working with Existing
Address Information

Chapter 7
Extending the Google
API Examples

Chapter 8
Discovering Overlays and
Mash-Ups

part

in this part

10_790095 pt02.qxp 6/12/06 1:34 PM Page 93

10_790095 pt02.qxp 6/12/06 1:34 PM Page 94

Working with
Existing Address
Information

Often the information you want to use in your examples is based on
your own knowledge and discovery of suitable latitude/longitude
points for the information that you want to display. There are

times, however, when you already have address information and want to
take that address and convert it into the latitude and longitude data required
by Google Maps for creating points and polylines. For this, the method you
require is called geocoding. This chapter examines the role of geocoding, how
to use geocoder services, and how to update your existing databases with
location information so that you can use the data in your Google Maps
applications.

Looking Up Geocode Information
Geocoding is the process of matching up an address, Zip/postal code,
or city with the coordinates required to locate that place on a map. The
geocoding system required depends on the information you require and the
location of the original address. Within Google Maps you are looking for
latitude and longitude information, and this is the most prolific of the ser-
vices available.

Data about U.S. addresses is the easiest to look up, because more services
provide the U.S.-based information than information for other countries.
The situation is changing rapidly, and the services available for looking
up information in a range of different countries and through a variety of
methods are constantly expanding.

The basic methods of looking up information remain fairly constant. You
must connect to a specific service, supply the information about the address
that you have, and hope to get a response back. Different geocoding services
expose their services in different ways. Some use web services, some use
simple URL-based interfaces, and some are even available “offline” as part
of a separate downloadable package.

˛ Use a geocoder

˛ Look up U.S.
information

˛ Look up global
information

chapter

in this chapter

11_790095 ch06.qxp 6/12/06 1:35 PM Page 95

96 Part II — Instant Gratification

If geocoding is not available for your country or needs, other solutions exist that can determine
the information you need, such as the Google scraping method covered later in this chapter.

Looking Up U.S. Information
The easiest way to resolve U.S. geocoding is to use the service provided by the geocoder.us
web site. The web site provides a number of different interfaces, including SOAP, XML-RPC,
and a basic URL interface. The information returned can be in either object, XML, or CSV
format, making it suitable for use within a wide range of applications and environments.

For example, to use the XML-RPC version of the service, use a script like the one shown in
Listing 6-1.

Listing 6-1: Using XML-RPC with geocoder.us to Look Up Address
Information

use XMLRPC::Lite;
use Data::Dumper;

my $address = XMLRPC::Lite->proxy(‘http://geocoder.us/service/xmlrpc’)
->geocode(join(‘ ‘,@ARGV))
->result;

print Dumper($address),”\n”;

Geocoding Priorities

Some readers will be surprised to see a detailed analysis of geocoding quite so late in this book.
The simple reason for this is that the importance of geocoding depends entirely on the map you
are generating.

As you will see in forthcoming chapters, the latitude and longitude information is critical to the
way you use Google Maps. However, it is also clear that if you already have the latitude and
longitude information or are using the Google Maps to locate and identify specific locations (as
used in the community and photographic examples in earlier chapters), the requirement to look
up information by address is actually a much lower priority.

Two of the more practical times to use geocoding are when converting your existing database
to include the latitude and longitude data or when looking up the information dynamically while
generating XML data for a given application.

11_790095 ch06.qxp 6/12/06 1:35 PM Page 96

97Chapter 6 — Working with Existing Address Information

The preceding script contacts the geocoder.us server and then dumps out the information
returned. For example, with this script you can supply the address information on the com-
mand line:

$ geocoderus.pl Madison at 45th, New York, NY
$VAR1 = [

{
‘type1’ => ‘Ave’,
‘type2’ => ‘St’,
‘lat’ => ‘40.754951’,
‘street1’ => ‘Madison’,
‘suffix1’ => ‘’,
‘prefix2’ => ‘E’,
‘suffix2’ => ‘’,
‘state’ => ‘NY’,
‘zip’ => ‘10017’,
‘city’ => ‘New York’,
‘prefix1’ => ‘’,
‘long’ => ‘-73.978088’,
‘street2’ => ‘45th’

}
];

You can see from the output that the latitude and longitude are in the ‘lat’ and ‘long’
keys of the returned hash. You can also see that the rest of the address information is returned
as well, including the Zip code and the full street names of the intersection of 45th Street and
Madison Avenue in New York (the location of the Roosevelt Hotel). If the returned informa-
tion has not been populated with the latitude and longitude and Zip code information, the
supplied string probably could not be understood.

The same basic principles can be used to geocode any U.S. address information. You could use
a modified format of the preceding code to update your address database or the database used
to hold specific information about map data.

The service provided by geocoder.us is free, but if you expect to use the site in a commercial
environment with large numbers of requests, you should consider signing up for an account that
enables you to bulk-purchase lookups. The money you pay goes toward supporting the service.

The geocoder.us service is probably the most practical solution for large-volume lookups.
Although you can use it live, I’ve generally found the geocoding and interface to be more useful
when you are encoding a lot of addresses, such as when updating an existing database.

Looking Up Global Information
If you are trying to look up information outside the larger and more popular territories of the
United States and the U.K., you have a number of different options.

11_790095 ch06.qxp 6/12/06 1:35 PM Page 97

98 Part II — Instant Gratification

Within some limitations Google can be tricked to do the geocoding for you right across the
world using the database that Google Local uses to look up and generate information. The way
you do this is to send a request to the Google service that would normally look up the informa-
tion for you within a web page. You then “scrape” the web page for the information you were
looking for.

For example, if you visit Google Local and enter New York, you get the web page shown in
Figure 6-1.

FIGURE 6-1: New York within Google Local.

If you examine the raw HTML from the page that was generated, the geocode information can
be extracted from the JavaScript component of the page. Scraping for the data works because
the page itself contains a map, and that includes the JavaScript that centers the map on the
address entered. The relevant fragment from the page can be seen in Listing 6-2. The element
you are looking for is the GLatLng() function call.

Listing 6-2: Scraping Information from Google

<html><head><title>Google Local - New York</title><script>
...
</style><script src=”/maps?file=api&v=2&async=1&hl=en” ;

11_790095 ch06.qxp 6/12/06 1:35 PM Page 98

99Chapter 6 — Working with Existing Address Information

type=”text/javascript”></script><script type=”text/javascript”><!--
if (GBrowserIsCompatible()) {document.write(‘<div id=”map” ;
style=”width:600px;height:400px”></div>’);
document.write(‘<style type=”text/css”>.staticmap{display:none}</style>’);
window.loadMap = function() {
var zoom = 14;
var points= [];
var container = document.getElementById(“map”);
container.style.display = ‘’;
var map = new GMap(container);
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl(true));
map.setCenter(new GLatLng(40.714167, -74.006389), zoom);
for (var i = 0; i < points.length; i++) {var
icon = new GIcon(G_DEFAULT_ICON);
var image = ‘/mapfiles/marker’ + points[i][2] + ‘.png’;icon.image = ;
image;map.addOverlay(new GMarker(new GLatLng(points[i][0], ;
points[i][1]),icon));}}}
//--></script><table cellpadding=0 cellspacing=0 border=0 ;
class=”staticmap”><tr><td><script type=”text/javascript”><!--
if (!window.loadMap) {document.write(‘<img src=”http://maps.google.com/;
mapdata?latitude_e6=40714167&longitude_e6=4220960907&zm=9600&w=600&h=;
400&cc=us&min_priority=2” style=”border: 1px solid black; ;
position:relative” border=1 width=”600” height=”400”>’);}
//--></script><noscript><img src=”http://maps.google.com/;
mapdata?latitude_e6=40714167&longitude_e6=4220960907&zm=9600&w=600&h=;
400&cc=us&min_priority=2” style=”border: 1px solid black; ;
position:relative” border=1 width=”600” height=”400”></noscript>
...

To extract the information you can use Perl (or any other language) to send the query and
then use a suitable regular expression on the returned data to extract the latitude and longitude
information required. The key you are looking for in this case is the GLatLng fragment in the
response:

map.setCenter(new GLatLng(40.714167, -74.006389), zoom);

Extracting that information with a regular expression is comparatively straightforward.

A simple script (using Perl) to perform the necessary steps is shown in Listing 6-3.

Listing 6-3: Using Google to Geocode Information

#!/usr/bin/perl

use strict;
use LWP::UserAgent;

Continued

11_790095 ch06.qxp 6/12/06 1:35 PM Page 99

100 Part II — Instant Gratification

Listing 6-3 (continued)

use URI::Escape;

my $ua = LWP::UserAgent->new(
agent => “Mozilla/5.0 ;

(X11; U; Linux i686; en-US; rv:1.0.2) Gecko/20021120 Netscape/7.01”,
);

Send the query
my $response = $ua->get;
(‘http://maps.google.com/maps?q=’ . uri_escape($ARGV[0]));

Extract the content
my $var = $response->{_content};

Extract the latitude and longitude
my ($lat,$lng) = ($var =~ m/GLatLng\(([-\d.]+).*?([-\d.]+)\)/ms);
print “Lat: $lat - Lng: $lng\n”;

if (!defined($lat)) # Show alternates if we can’t find lat/lng
{

First remove any irrelevant data from the raw text
$var =~ s/.*Did you mean:(.*)/$1/gmi;

Extract the query values
my (@alternatives) = ($var =~ m/q=(.*?)[&”]/gm);
print “Alternatives:\n”;

Dedupe results
my $alternates = {};
foreach my $alt (@alternatives)
{

$alt =~ s/\+/ /g;
$alternates->{$alt} = 1;

}

foreach my $alt (keys %{$alternates})
{

print “$alt\n”;
}

}

The script works by supplying a suitable query to the Google system. You then parse the out-
put, first extracting the latitude and longitude (if you can find it). If the correct latitude and
longitude cannot be found, you parse the raw HTML sent back to look for the alternatives
suggested by the Google Maps system. To do this, the script effectively does the opposite of

11_790095 ch06.qxp 6/12/06 1:35 PM Page 100

101Chapter 6 — Working with Existing Address Information

building a query — it looks for the query values, removes the + signs (which are spaces) and
prints the results, removing duplicate results in the process.

The script is very basic. To use it, just supply the address and/or city and country that you want
to look up. The more specific the information you provide the better; also, remember to use
suitable conventions (such as “ave” in place of “avenue”) where appropriate.

For example, to find Fifth Avenue in New York you might use the following:

$ find.pl “fifth avenue, New York, NY”
Lat: - Lng:
Alternatives:
Grand Army Plz, New York, NY 10021
5th Ave, New York, NY

Here Google Maps is suggesting the use of the numeric form of the avenue name and the
shorter form of avenue:

$ find.pl “5th Ave, New York, NY”
Lat: 40.765520 - Lng: -73.972100

Google is case sensitive when using this interface. Searching for “5th ave” returns only a list of
alternatives, but “5th Ave” returns the latitude and longitude.

You can also locate U.K. addresses:

$ find.pl “Sheep Street, Bicester, UK”
Lat: 51.898116 - Lng: -1.151409

Find U.S. Zip codes:

$ find.pl “90210”
Lat: 34.090107 - Lng: -118.406477

Find U.K. Postcodes:

$ find.pl “OX9 2ED”
Lat: 51.745956 - Lng: -0.979953

Finally, Google will also return most major towns and cities across the world:

$ find.pl “Ronda, Spain”
Lat: 36.740001 - Lng: -5.159999
$ find.pl “tokyo”
Lat: 35.669998 - Lng: 139.770004

The Google solution, unlike the geocoder.us solution, is not really designed for large-
volume situations, but it can be an excellent way to look up information for a smaller map.

The only issue with “scraping” for information in this way is that the format of the data that is
extracted is not guaranteed. It is quite possible that the text extraction and regular expression
matching process fails to find the information that you want after such a change, and that
could render your software and application unworkable without redevelopment.

11_790095 ch06.qxp 6/12/06 1:35 PM Page 101

102 Part II — Instant Gratification

You should therefore use a geocoding service if it is available because these provide a more
reliable interface to the information. Geocoding, rather than scraping, is also more suitable in
large-volume situations, for example, when adding geocoding data to a very large customer
database.

Wrapping Up
Geocoding your existing address data makes it significantly easier to use your existing location
database with Google Maps. The techniques demonstrated in this chapter could be adapted to
update an entire address database with latitude/longitude information, for example. The same
techniques could also be used to introduce an additional step into a data update process that auto-
matically looks up the information when an address is added to the system. How you use the
information you have obtained is up to you and the needs of your application. Numerous exam-
ples throughout the book show how the information can be portrayed within a Google Map.

11_790095 ch06.qxp 6/12/06 1:35 PM Page 102

Extending the
Google API
Examples

The Google API documentation comes with a number of standard
examples that show some of the basics of how the API can be used to
build interactive maps. This chapter takes a closer look at the basic

principles of the Google Maps system and environment in some basic
examples showing the key functionality areas of the API.

Installing a Simple Example
The simplest map example is just to display a map centered on a particular
location. All Google Maps are made up of the HTML of the page that
contains the map and the embedded JavaScript component (supplied by
Google Maps) that actually displays the map on the page.

Listing 7-1 shows a basic Google Maps sample, here centered on Grantham
in Lincolnshire in the U.K.

˛ Add controls to
your map

˛ Provide tools to
help the user move
about your map

˛ Add overlays
and information
windows to
your map

˛ Use event listeners
to add functionality
to your map

chapter

in this chapter

12_790095 ch07.qxp 6/12/06 1:35 PM Page 103

104 Part II — Instant Gratification

Listing 7-1: Basic Map Example

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>Mcslp Maps Chapter 7, Ex 1</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>
//<![CDATA[

function onLoad() {
if (GBrowserIsCompatible()) {
var map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);
}

}

//]]>
</script>
</head>
<body onload=”onLoad()”>

<div id=”map” style=”width: 800px; height: 600px”></div>
</body>

</html>

The code is split into a number of different parts and it is important to note, even at this
stage, that the majority of the information here is HTML; the actual portion of the code that
relates to the Google Maps API is comparatively small. This is generally true of most Google
Maps–based applications: A lot of the interesting code is actually in the background or simply
never seen at all.

Google advises that you use either XHTML (as in this example) or DHTML to ensure compatibil-
ity and portability.

The key component of the example is the installation of the Google Maps API JavaScript in
this portion:

12_790095 ch07.qxp 6/12/06 1:35 PM Page 104

105Chapter 7 — Extending the Google API Examples

<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”
type=”text/javascript”>

</script>

This section loads the Google Maps API. You must specify the Google Maps API key and the
version of the API that you are using in this line to load the correct interface.

Once the Google Maps API is loaded, you can then call the API functions that introduce the
map components into your web page. As shown in this example, you do this by creating a new
local function, onLoad(), which is called when the page is loaded. The onLoad() function
does three things:

� Checks that the browser is compatible and capable of running the Google Maps API.

� Creates a new map object. Within your XHTML, you’ve defined a <div> element with
an id of ‘map’ and given it a size. When you create the new map object, you specify
this element, which is where the map will appear within your site.

� Centers the map on a new GPoint. In this case, it points to my favorite local restaurant,
One on Wharf.

You now have a simple map on a web page (see Figure 7-1). You can extend this to add some
other functionality to the page.

FIGURE 7-1: A simple Google Maps example.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 105

106 Part II — Instant Gratification

Remember, all examples from the book can be tried online by using the chapter and listing refer-
ence. For example, you can view the map created by Listing 7-1 by visiting http://maps
.mcslp.com/examples/ch07-01.html.

Adding Controls to the Map
Although you may at times want to limit how people interact with their maps, more often than
not you will want to allow them to move and zoom freely through your map application.

The most effective way to do this is to add the standard Google Maps controls to your map
application. You accomplish this by using the addControl() method to the map object. For
example, you can add the map type control (for switching between Map, Earth, and combined
modes) by using the following line:

Map.addControl(new GMapTypeControl());

Adding the controls when you first build the map, though, is not always useful. Sometimes the
information your users really want to look at is actually hidden behind the controls.

Of course, in order to get around this, the display area of the map can be moved, but that’s not
any fun. Instead, you can extend the functionality by building in a simple clickable button or
link that will switch the display of the controls on and off. Controls are actually objects, so
when you add a control to a map you are in fact adding an object. Conveniently, the API
provides methods on the map object to both add and remove control objects.

To achieve this, you must keep a record of the control objects you are creating before you add
them to the map. That way, you can also remove them because you have a record of the object.

For convenience, you can also create a new <div> area on your page into which you can put an
appropriate link that either enables or disables the controls, like this:

<div id=”controller”></div>

Listing 7-2 shows the JavaScript code for this.

Listing 7-2: Adding Controls to a Google Map

<script type=”text/javascript”>
//<![CDATA[

var map;
var maptypecontrol = new GMapTypeControl();
var largemapcontrol = new GLargeMapControl();
var controller;
function onLoad() {

if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));

12_790095 ch07.qxp 6/12/06 1:35 PM Page 106

107Chapter 7 — Extending the Google API Examples

map.centerAndZoom(new GPoint(-0.64,52.909444), 4);
}

controller = document.getElementById(‘controller’);

addcontrols();
}

function addcontrols() {
map.addControl(maptypecontrol);
map.addControl(largemapcontrol);
controller.innerHTML = ‘;

Hide Controls’;
}

function hidecontrols() {
map.removeControl(maptypecontrol);
map.removeControl(largemapcontrol);
controller.innerHTML = ‘;

Add Controls’;
}

//]]>
</script>

The following are the key areas of this example:

� The creation of the control objects at the start of the JavaScript section.

� The movement of the map object definition from the onLoad() function to the global
area of the JavaScript (which means you can access the map object from other functions).

� The identification of the area where the add/remove controls button will be placed.

� The main addcontrols() and hidecontrols() functions.

The addcontrols() function calls the addControl() method on the map object to add
the control objects that were created at the head of the script. Note that pre-existing instances
of the objects are being added. This is important because the same principle will provide the
ability to later remove them.

Once the controls have been added, you add HTML to the controller section of the document
to provide a link for hiding them (by calling hidecontrols()). The hidecontrols()
function does the opposite; it removes the controls and then sets the HTML to add controls to
the map by calling the addcontrols() function.

Figure 7-2 shows the map in its initial state, with the controls displayed and the link for
hiding the controls at the bottom of the screen. Figure 7-3 shows the result when you click the
hidecontrols() link: The controls are gone and the link has changed to show a link for
adding the controls. Click that link to return to the state in Figure 7-2.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 107

108 Part II — Instant Gratification

FIGURE 7-2: Adding controls and providing a hide link.

FIGURE 7-3: Hiding controls and providing a show link.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 108

109Chapter 7 — Extending the Google API Examples

Moving about a Map
Often you’ll let people move around the map at will, but more than likely you will want to pro-
vide some quick methods for taking your users to particular places on the map. Three methods
are useful in this situation:

� The first, which you have already used, is centerAndZoom(). It centers the map on a
supplied GPoint and zooms to a specific level on the map. The move is instantaneous
and is best used when initializing the map for the first time and centering (and zooming)
on a specific area. For example:

map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

� The second method is centerAtLatLng(), which centers the map on the supplied
GPoint. The movement is instantaneous, but does not change the zoom level. For
example:

map.centerAtLatLng(new GPoint(-122.1419, 37.4419));

� For a smoother sequence, use the third method: recenterOrPanToLatLng(). This
smoothly moves the map to the new point, if the map data is available to do a smooth
pan to the new point. This is most effective in maps in which you are redirecting users
to different points within a reasonable locale (such as places within the same borough
or city).

For example, Listing 7-3 shows some sample code that provides quick links to four of my
favorite restaurants. In this case, I’m using recenterOrPanToLatLng(). For the first two
restaurants that are both in Grantham, you should get a smooth movement when clicking the
two links. But click to the restaurants in Seattle, or even Ambleside, and the distance is so great
that a smooth pan to the new location is out of the question.

Listing 7-3: Moving Users about a Map

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 7, Ex 3</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>

Continued

12_790095 ch07.qxp 6/12/06 1:35 PM Page 109

110 Part II — Instant Gratification

Listing 7-3 (continued)

//<![CDATA[

var map;

function onLoad() {
if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
}

}

function movemap(x,y) {
map.recenterOrPanToLatLng(new GPoint(parseFloat(x),parseFloat(y)));

}

//]]>
</script>
</head>
<body onload=”onLoad()”>

<div id=”map” style=”width: 800px; height: 600px”></div>

China Inn, Grantham
One on Wharf, ;
Grantham
Glass House, ;
Ambleside
Dragonfish ;
Asian Cafe, Seattle

</body>

</html>

The movemap() function does all the work, accepting two arguments that are used to gener-
ate a GPoint and move the map by calling recentOrPanToLatLng() on the map object.

Straightforward links, which call the function, are then added as HTML to the end of the
page. Clicking a link recenters the map to that location. Figure 7-4 shows the initial display.
To best understand how this works, I highly recommend that you try this application for
yourself.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 110

111Chapter 7 — Extending the Google API Examples

FIGURE 7-4: Providing links for moving around a map.

Adding Overlays
In the previous example, the ability to move the user about the map was added to the map.
However, although the map has moved to show a different location, the exact point you are
highlighting is not clear. For example, although the map may move to One on Wharf, the
restaurant’s exact location is not really clear from just looking at the map.

There are two types of overlays: the marker and the polyline. The former is an icon or map
point that can be used to identify a specific point (for example, a restaurant). The latter is just
a line with start and end points (based on latitude/longitude) and a width specification.

Adding a Single Marker
The GMarker() object creates a simple icon based on a given GPoint and can be used to
highlight a specific location, like a restaurant. To add a GMarker to the map, add an overlay
(using addOverlay()) to place the marker object on the map.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 111

112 Part II — Instant Gratification

In short, to add a marker:

1. Create a GPoint().

2. Create a new GMarker using the GPoint.

3. Add the GMarker to the map using addOverlay().

The movemap() function from the previous example can be adjusted so that it adds a marker
to the map when a restaurant is clicked. Listing 7-4 shows an updated movemap() function
with the added steps, and Figure 7-5 shows the results.

Listing 7-4: Adding a Marker to the Map Movement Function

var marker;

function movemap(x,y) {
if (marker)
{

map.removeOverlay(marker);
}
var point = new GPoint(parseFloat(x),parseFloat(y));
map.recenterOrPanToLatLng(point);
marker = new GMarker(point);
map.addOverlay(marker);

}

For convenience, the marker object is created globally, and the existing marker is removed before
moving the map and creating the new marker for the selected restaurant. This latter operation is
handled by checking whether the marker variable has already been configured. If it has, you can
remove it from the map by calling the removeOverlay() method. Because the object holding
the marker is created globally, you can easily call it from the method to remove it.

Adding Multiple Markers
Highlighting one location, as in the previous example, is useful, but it’s not really very handy if
you want to show users all of the potential restaurants or locations that are available on a map.
In the restaurant example, what would be really useful is to show the location of a number of
potential restaurants that the user might be interested in.

If you don’t actually want to keep or update the markers, the movemap() can be further sim-
plified to create a marker each time the user clicks a restaurant. Listing 7-5 shows an altered
movemap().

12_790095 ch07.qxp 6/12/06 1:35 PM Page 112

113Chapter 7 — Extending the Google API Examples

FIGURE 7-5: Adding a simple marker.

Listing 7-5: Adding Markers from Points

function movemap(x,y) {
var point = new GPoint(parseFloat(x),parseFloat(y));
map.recenterOrPanToLatLng(point);
map.addOverlay(new GMarker(point));

}

In this case, each time the user clicks the restaurant link, an appropriate marker will be added.
Existing markers are not removed. Figure 7-6 shows the application after the user has clicked
two links.

Another alternative is to change the onLoad() code and create multiple markers when the
web page is first loaded, as shown in Listing 7-6.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 113

114 Part II — Instant Gratification

FIGURE 7-6: Adding multiple markers.

Listing 7-6: Creating Markers during Startup

<script type=”text/javascript”>
//<![CDATA[

var map;

function onLoad() {
// The basics.
//
// Creates a map and centers it on Palo Alto.
if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 3);
addmarker(-0.6394,52.9114);
addmarker(-0.64,52.909444);
addmarker(-0.6376,52.9073);
}

}

function addmarker(x,y) {

12_790095 ch07.qxp 6/12/06 1:35 PM Page 114

115Chapter 7 — Extending the Google API Examples

var point = new GPoint(parseFloat(x),parseFloat(y));
map.addOverlay(new GMarker(point));

}

//]]>
</script>

This time, the code defines a new function, addmarker(). This function creates a new point
and marker and then adds this to the active map. Calls to the function are then added at the
end of the onLoad() function to create the markers when the web page is loaded.

The result is shown in Figure 7-7.

FIGURE 7-7: Adding multiple markers during startup.

Adding Lines
Individual map markers are a great way of highlighting a particular point on a map, but some-
times you want to indicate an area or locale, rather than a specific point. You could create an
icon that highlights this information, but a more effective approach is to use the built-in line
drawing system provided by the Google Maps API to draw a polyline.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 115

116 Part II — Instant Gratification

Using a single polyline, you can map a distance or length, or show the relationship between two
points. With multiple polylines, you can draw a variety of different shapes, routes, and paths.

The GPolyline class creates a line or series of lines from a supplied list of GPoints.
Obviously, you need a minimum of two points (the start and end points), and lines are drawn
in the order of the points stored in the array. If you supply three points, a line is drawn from
Point 1 to Point 2, and then from Point 2 to Point 3. It follows that you will get one line less
than the number of points provided. So to draw a box, you need to supply five points: the top
left, top right, bottom right, bottom left, and the top left again to complete the box.

Adding a Bounding Box
Listing 7-7 shows how to use polylines to add a bounding box to your display. The goal is to
show the key areas that are covered by the map of Grantham restaurants. To achieve this, you
need to add five points to an array and then supply this array to create a new GPolyline
object and add this as an overlay to the map.

Listing 7-7: Adding a Bounding Box to the Map

<script type=”text/javascript”>
//<![CDATA[

var map;

function onLoad() {
if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
addmarker(-0.6394,52.9114);
addmarker(-0.64,52.909444);
addmarker(-0.6376,52.9073);
boundingbox(-0.6488,52.9157,-0.6292,52.9027);
}

}

function boundingbox(tlx,tly,brx,bry) {
var box = [];
box.push(new GPoint(tlx,tly));
box.push(new GPoint(brx,tly));
box.push(new GPoint(brx,bry));
box.push(new GPoint(tlx,bry));
box.push(new GPoint(tlx,tly));
map.addOverlay(new GPolyline(box));

}

function addmarker(x,y) {
var point = new GPoint(parseFloat(x),parseFloat(y));

12_790095 ch07.qxp 6/12/06 1:35 PM Page 116

117Chapter 7 — Extending the Google API Examples

map.addOverlay(new GMarker(point));
}

//]]>
</script>

As you can see, the core of the process is a function, boundingbox(), which takes the loca-
tion of the top-left and bottom-right points of the box. With this information, you can deter-
mine the location of all four corners and build an array with the five points (the four corners
and the first corner again to complete the line).

Although it is tempting to use the size and zoom level of a map to show the precise area you are
concentrating on, this also limits the utility of your map. In an example like the restaurant map,
if you display a wider map area but highlight a smaller focus area, it gives your users context and
the ability to identify how they might reach or approach a location, while still indicating the core
of your map content.

Figure 7-8 shows the results of the code in Listing 7-7: a nice box surrounds the town center of
Grantham and shows the basic limits of your guide.

FIGURE 7-8: Adding a bounding box to a map.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 117

118 Part II — Instant Gratification

Adding a Route
Adding a route is much the same as adding a bounding box: You build an array into which you
place list of points and then get the GPolyline function to plot those points and add them as
an overlay to your map. Unlike with a bounding box or other shape, you don’t try to complete
the circuit.

Listing 7-8 shows an example of how to add a route to a map by hard-coding a series of points.
In this case, I’m demonstrating a route, by road, for getting from one of the larger parking lots
in Grantham to Siam Garden.

Listing 7-8: Adding a Route

<script type=”text/javascript”>
//<![CDATA[

var map;

function onLoad() {
if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
addmarker(-0.6394,52.9114);
addmarker(-0.64,52.909444);
addmarker(-0.6376,52.9073);

var route = [];

route.push(new GPoint(-0.6467342376708984, 52.91519081031524));
route.push(new GPoint(-0.6466054916381836, 52.915527220441405));
route.push(new GPoint(-0.6440305709838867, 52.916122401186186));
route.push(new GPoint(-0.6434726715087891, 52.91578599568332));
route.push(new GPoint(-0.6442880630493164, 52.915294321401625));
route.push(new GPoint(-0.6411123275756836, 52.9104807941625));
route.push(new GPoint(-0.6398248672485352, 52.90952320075754));
route.push(new GPoint(-0.638279914855957, 52.90778912639283));
route.push(new GPoint(-0.6376361846923828, 52.90716794854011));
map.addOverlay(new GPolyline(route));
}

}

function addmarker(x,y) {
var point = new GPoint(parseFloat(x),parseFloat(y));
map.addOverlay(new GMarker(point));

}

//]]>
</script>

12_790095 ch07.qxp 6/12/06 1:35 PM Page 118

119Chapter 7 — Extending the Google API Examples

Obviously, this is a less-than-efficient method of adding a route to the map, but it does
demonstrate the basic principle. As with the bounding box, the sequence is to add points to an
array and then construct the polyline and overlay it on your map.

Remember that polylines are plotted according to the sequence of points. If you want to draw
two shapes, you must create two arrays and two polylines; otherwise, you will have a line con-
necting the two shapes.

Note that the GPolyline class creates a new object, so just as with the markers you created
earlier, the polyline route could be recorded in a variable and added, modified, or hidden on the
map at will.

The resulting route is shown in Figure 7-9.

FIGURE 7-9: Adding a route to a map.

Polylines can have different colors, sizes, and opacities (or transparencies, depending on your
preferred start position!). However, specification of these colors is made at the time the
GPolyline object is instantiated, which means that to create a box with sides of different col-
ors or opacities actually requires the creation of different polylines.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 119

120 Part II — Instant Gratification

Opening an Info Window
When you added markers to the map to indicate the location of different restaurants, you actu-
ally lost the ability to identify which marker relates to which restaurant.

To resolve this issue, you can add an information window that is displayed when the marker is
clicked. The window can contain any amount of HTML and can incorporate pictures, text for-
matting, or whatever you need to display the information you want.

Listing 7-9 is a modification of Listing 7-5; it displays the three markers and adds a small title
to the information window, based on a new argument to the addmarker() function.

Listing 7-9: Adding Information Windows

<script type=”text/javascript”>
//<![CDATA[

var map;

function onLoad() {
// The basics.
//
// Creates a map and centers it on Palo Alto.
if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
addmarker(-0.6394,52.9114,’China Inn’);
addmarker(-0.64,52.909444,’One on Wharf’);
addmarker(-0.6376,52.9073,’Siam Garden’);
}

}

function addmarker(x,y,title) {
var point = new GPoint(parseFloat(x),parseFloat(y));
var marker = new GMarker(point);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowHtml(‘’ + title + ‘’);
}

);
map.addOverlay(marker);

}

//]]>
</script>

12_790095 ch07.qxp 6/12/06 1:35 PM Page 120

121Chapter 7 — Extending the Google API Examples

The key to the example is the use of GEvent. This function makes the Google Maps applica-
tion respond to a specific event. The next section of this chapter covers events in a bit more
detail, but the principle is similar to adding a response to a mouse click or key press within any
other type of application.

In Listing 7-9, you are configuring a new type of event on the marker that is triggered when
you click the marker. The result of the click is the inline function that you have designed. It
calls the openInfoWindowHtml method on the marker to display the HTML supplied as an
argument, with the title embedded into a set of bold tags.

Once the marker has been configured, it can be added as an overlay object to the map. Figure
7-10 shows the map in its initial state: just showing the configured markers. Figure 7-11 shows
the result when the marker for One on Wharf is clicked: a small information window with the
name of the restaurant.

FIGURE 7-10: A map with markers configured for info windows.

You cannot have more than one info window open at a time. If you click a different marker, the
existing info window is closed before the new one is opened.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 121

122 Part II — Instant Gratification

FIGURE 7-11: An info window after a user has clicked a marker.

Because the information in the info window is HTML, you could easily add the address, a link
to the restaurant web site, and even a picture of the restaurant. There is no limit to what can
be displayed in this info window, although there are some obvious limitations to the size and
quantity of information that be effectively displayed in such a small window.

The method option (which automatically attaches the info window to the marker and the point
that triggers it) has been used in the example, but you can also create info windows separately
by using openInfoWindowHtml() and supplying the point and HTML to be displayed. As an
alternative to displaying HTML embedded into the call to openInfoWindowHtml(), you can
also use openInfoWindow(), which takes an HTML DOM reference of the information to
display, and openInfoWindowXslt(), which translates the supplied XSLT reference and
XML into HTML for display.

The entire map also has an info window that can be used to display information about the map
in general.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 122

123Chapter 7 — Extending the Google API Examples

Event Listeners
Events can be used to add interesting effects to a map. There are a number of events, such
as when

� The user clicks on the map.

� The user moves the map (there are separate event types for when the user moves the
map, one before the redraw and one after the move has been completed).

� The map zooms for any reason.

� An info window is displayed or closed.

� An overlay is added to or removed from the map.

Monitoring Movement
One of the simplest events you can monitor is the movement of your map. If a user moves a
map and either moves off the limits of your mapping area, or moves to a point where different
overlays and information should be displayed, you will want to know about the movement.

For a very simple demonstration of this movement in operation, look at Listing 7-10. Here you
create two maps: One is a typical map, the other the satellite view. The two maps are the same
size and dimension, and you initialize them with the same zoom level and location.

Listing 7-10: Synchronizing Two Maps

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 7, Ex 10</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>
//<![CDATA[

var map;
var earth;

function onLoad() {
if (GBrowserIsCompatible()) {

Continued

12_790095 ch07.qxp 6/12/06 1:35 PM Page 123

124 Part II — Instant Gratification

Listing 7-10 (continued)

map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 4);
earth = new GMap(document.getElementById(“earth”));
earth.centerAndZoom(new GPoint(-0.64,52.909444), 4);
earth.setMapType(G_SATELLITE_TYPE);
GEvent.addListener(map,’moveend’,function() {

var center = map.getCenterLatLng();
earth.recenterOrPanToLatLng(center);

});
GEvent.addListener(earth,’moveend’,function() {

var center = earth.getCenterLatLng();
map.recenterOrPanToLatLng(center);

});
}

}

//]]>
</script>
</head>
<body onload=”onLoad()”>

<table cellspacing=”0” cellpadding=”0” border=”0”>
<tr>
<td><div id=”map” style=”width: 400px; height: 600px”></div></td>
<td><div id=”earth” style=”width: 400px; height: 600px”></div></td>
</tr>
</table>
</body>
</html>

Two events are configured, one for each map. On the default map, a listener is added that
responds to the movement event. When the map is moved, you also move the satellite map to
be at the same position. The other listener does the opposite when the satellite map moves
(that is, it moves the map to the same location). You can see a screenshot of the two maps in
action in Figure 7-12, although this is definitely an example where you need to try out the map
for yourself to see it in action.

Remember, all examples from the book can be tried online by using the chapter and listing refer-
ence. For example, you can view the map created in Listing 7-10 by visiting http://maps
.mcslp.com/examples/ch07-10.html.

The effect of the two listeners is to keep the two maps in synch with each other. Move one
map, and the other moves to the same location. Although you can view the map and satellite
image using the hybrid map type, sometimes the separate layout is useful.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 124

125Chapter 7 — Extending the Google API Examples

FIGURE 7-12: Synchronizing map display using listeners and events.

The example also shows two other key elements:

1. You can determine the current center point of your map by using the
getCenterLatLng() method on the map object. You can also determine the map
size, the span of the map (the span of the latitude and longitude being displayed), and
the bounds (edges) of the displayed map.

2. The example demonstrates how to adjust your map display type. Remember that you can
choose between three types (map, satellite, and hybrid) and that you can change the map
type at any time. You can also, by adding movement controls to your map, allow users to
choose the type of map that is displayed.

Adding Markers to Multiple Maps
Of course, if you have two maps like those shown in Listing 7-10, you might also want to
display the same overlays and markers. This is where the use of objects to store your overlay
items is useful. To add a marker to both maps, all you have to do is call the addOverlay()
method on each displayed map object. Listing 7-11 gives you an example of this by merging
the code from Listing 7-9 and Listing 7-10 to provide two maps with marker and information
windows.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 125

126 Part II — Instant Gratification

Listing 7-11: Adding Overlays to Multiple Maps

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 7, Ex 11</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>
//<![CDATA[

var map;
var earth;

function onLoad() {
if (GBrowserIsCompatible()) {

map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 4);
earth = new GMap(document.getElementById(“earth”));
earth.centerAndZoom(new GPoint(-0.64,52.909444), 4);
earth.setMapType(G_SATELLITE_TYPE);
GEvent.addListener(map,’moveend’,function() {

var center = map.getCenterLatLng();
earth.recenterOrPanToLatLng(center);

});
GEvent.addListener(earth,’moveend’,function() {

var center = earth.getCenterLatLng();
map.recenterOrPanToLatLng(center);

});
addmarker(-0.6394,52.9114,’China Inn’);
addmarker(-0.64,52.909444,’One on Wharf’);
addmarker(-0.6376,52.9073,’Siam Garden’);
}

}

function addmarker(x,y,title) {
var point = new GPoint(parseFloat(x),parseFloat(y));
var marker = new GMarker(point);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowHtml(‘’ + title + ‘’);
}

);
map.addOverlay(marker);
earth.addOverlay(marker);

12_790095 ch07.qxp 6/12/06 1:35 PM Page 126

127Chapter 7 — Extending the Google API Examples

}

//]]>
</script>
</head>
<body onload=”onLoad()”>

<table cellspacing=”0” cellpadding=”0” border=”0”>
<tr>
<td><div id=”map” style=”width: 400px; height: 600px”></div></td>
<td><div id=”earth” style=”width: 400px; height: 600px”></div></td>
</tr>
</table>
</body>
</html>

The difference between the two scripts (aside from the code for adding the markers in the first
place) is this line:

earth.addOverlay(marker);

This line simply adds the marker to the Earth map, as well as to the Maps map. An example of
the application is shown in Figure 7-13.

FIGURE 7-13: Adding markers to multiple maps.

12_790095 ch07.qxp 6/12/06 1:35 PM Page 127

128 Part II — Instant Gratification

Clicking either marker will bring up an info window. However, the listener for opening the
window is displayed only in the latter map.

Monitoring Location
The last script in this quick overview of extending the basic examples given by Google Maps
demonstrates what is probably the most useful map in the map developer’s arsenal.

One of the problems with developing maps is that, as you build data and add markers, poly-
lines, and other information, you need to be able to find out your exact location on the map.
You must know this information in order add the latitude and longitude information to your
own applications. Listing 7-12 shows the code for this application.

Listing 7-12: Finding Your Location

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 7, Ex 12</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>
//<![CDATA[

var map;

function onLoad() {
if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));

GEvent.addListener(map, ‘click’, function(overlay,point) {
var latLngStr = ‘(‘ + point.x + ‘, ‘ + point.y + ‘)
’;
var message = document.getElementById(“message”);
message.innerHTML = latLngStr;
});

map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
}

}

//]]>

12_790095 ch07.qxp 6/12/06 1:35 PM Page 128

129Chapter 7 — Extending the Google API Examples

</script>
</head>
<body onload=”onLoad()”>

<div id=”map” style=”width: 800px; height: 600px”></div>
<div id=”message”></div>

</body>
</html>

The application works by adding a listener to the map. Each time the user clicks on the map,
the latitude and longitude will be displayed in the message area of the display (identified by the
<div> tag immediately after the map). The embedded function that is called each time the
map is clicked just updates the HTML content of the message area.

Now you can click on the map and get a precise value to locate your position when creating
markers. See Figure 7-14 for an example.

FIGURE 7-14: Finding your latitude and longitude in a map.

12_790095 ch07.qxp 6/12/06 1:36 PM Page 129

130 Part II — Instant Gratification

This application is incredibly useful. In fact, it was invaluable to me when preparing this chapter
because it provided the information needed for the examples.

As an extension of that principle, a minor change to the function called by the listener shows
each point clicked, and also draws the polyline that would be created with each click. Listing
7-13 shows the updated code for the application. This system is also useful for building routes,
boxes, and other shapes.

Listing 7-13: Dynamically Building Polylines while Getting Location Data

var map;
var points = [];
var route;

function onLoad() {
if (GBrowserIsCompatible()) {
map = new GMap(document.getElementById(“map”));

GEvent.addListener(map, ‘click’, function(overlay,point) {
var latLngStr = ‘(‘ + point.x + ‘, ‘ + point.y + ‘)
’;
var message = document.getElementById(“message”);
message.innerHTML = message.innerHTML + latLngStr;
if (route) {

map.removeOverlay(route);
}
points.push(point);
if (points.length > 1) {

route = new GPolyline(points);
map.addOverlay(route);

}
});

map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
}

}

The application works by creating a global array to hold each point, and a variable to hold the
polyline that is generated each time.

Each time the user clicks on the map, the application adds a point to the array. If the length of
the array of points is greater than one, there is enough information to build a polyline. If the
polyline is created, it is recorded and the overlay is deleted and redrawn with each click. So that
a record of each point clicked is included, the message displayed at the bottom of the map is
also updated with each point.

12_790095 ch07.qxp 6/12/06 1:36 PM Page 130

131Chapter 7 — Extending the Google API Examples

You can see a screenshot of the application in action in Figure 7-15, although — again — this is
an application that you need to try out in order to really appreciate how it works.

FIGURE 7-15: Collecting points and mapping polylines dynamically.

Wrapping Up
The examples in this chapter give you some quick ideas as to how you can modify the basic
map environment to turn a basic map display into a more useful interactive map system that
shows detail and information about a specific topic.

All Google Maps applications are based on the principles covered in this chapter. You provide a
map, zoom to the locality, overlay data and information that extends the utility of the map, and
allow the user to interact with that information. The next step is to make the information and
data that is displayed more dynamic, rather than using the statically created markers, routes,
and information that you used in this chapter. Before you look at specifics, the next chapter
covers some examples of Google Maps–enabled sites that other people have developed.

12_790095 ch07.qxp 6/12/06 1:36 PM Page 131

12_790095 ch07.qxp 6/12/06 1:36 PM Page 132

Discovering
Overlays and
Mash-ups

Two common techniques for increasing functionality in Google Maps
applications are overlays and mash-ups. In an overlay, information is
placed on top of a “hot” map, which is an interactive and controllable

map of a particular area. For instance, you can layer restaurant location data
on top of a Google street map. In a mash-up, a variety of information is
combined to create an entire application. For example, you can overlay tran-
sit maps onto a Google street map and then provide additional information
and functionality, such as route guides.

This chapter presents some excellent examples of existing applications that
use overlays and/or mash-ups to enhance the usefulness of a particular web
site. Not only are these web sites convenient, practical, and fun to navigate,
but you can also use them as inspiration when you begin to create your own
applications.

Traffic Solutions
For maps that include road data, providing interactive information on the
traffic situation or better ways of finding your way around are excellent ways
to extend the utility of the map beyond a basic overview of the surrounding
environment.

Toronto Transit Commission (TTC) Map
Toronto has an excellent public transit system, but some elements of the
underground system are less than clear. There are, of course, plenty of maps
and guides to how to get around, but they are not always easy to use. For
starters, working out the precise location of the station compared to the
street on which it is located is difficult. The maps of the subway are either
named explicitly or stylized to the point that street names are not a critical
part of the identification. Even if you are looking at a combined street map
and transit map, the detail may be so small that what you are looking for is
difficult to identify.

˛ Toronto Transit
Commission

˛ U.K. speed cameras

˛ Hurricane maps

˛ International Space
Station and Hubble
Telescope Tracker

˛ Remaining Blackbird
Spotter

chapter

in this chapter

13_790095 ch08.qxp 6/12/06 1:36 PM Page 133

134 Part II — Instant Gratification

Integrating the original street map with an overlay of the transit map can make understanding
the information much easier. Figure 8-1 shows an example of a Google Map overlaid with
the TTC subway map. You can find this example online at http://crazedmonkey.com/
ttcgooglemap/. It provides route and station information for the whole of the Toronto
subway system.

FIGURE 8-1: A Google Map overlaid by the TTC subway map.

The map is split into two parts. On the left is a map, which is (obviously) the Google Maps
component. You can see the markers showing the individual stations and their locations on the
map. You can also see the route of the transit line, in an appropriate color, behind the stations.
On the right is the list of stations, colored according to the color of the line on the official
TTC map.

Because the map is interactive, you can zoom right in to the location of the station to find out
exactly where the station is located, and you can find out the precise details by clicking on one
of the stations, as shown in Figure 8-2.

FIGURE 8-2: Viewing station information.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 134

135Chapter 8 — Discovering Overlays and Mash-ups

You can also jump directly to a station by clicking its name in the list on the right. A simple,
straightforward Google Map displays a single set of information in a format that makes it easy
to find information that is already otherwise available on a static map.

Toronto Traffic Cameras
The city of Toronto has traffic cameras set up at various points around town. These cameras
take pictures periodically, allowing viewers to evaluate the state of traffic and road conditions
year-round.

The Toronto Star helpfully provides a Google Map–enabled page for viewing traffic camera
information at http://www.thestar.com/static/googlemaps/gtatraffic
.html?xml=trafficcams.xml. Each of the markers on this map of Toronto (see
Figure 8-3) is an individual traffic camera.

FIGURE 8-3: Toronto Star traffic camera locations.

To see a traffic-camera view of a particular site, click that site’s marker (see Figure 8-4).

FIGURE 8-4: Toronto Star traffic camera view.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 135

136 Part II — Instant Gratification

U.K. Speed Cameras
Speed cameras are seen as something of a menace in the U.K. Although the majority of drivers
understand the need to control the speed of some individuals, the placement of the some of the
cameras can be considered somewhat suspect. There are rules and regulations about the loca-
tions of cameras, but some seem placed purely to generate revenue rather than to prevent
accidents.

For a long time, many cameras seemed to be deliberately hidden in order to catch the unaware
driver; there are rules against that now, but it is still possible to be unaware of the location of
a camera and get caught. Even worse, some cameras are placed in a zone where there is no
indication of the speed limit, which makes it even more likely that you will be caught
speeding.

As such, U.K. citizens have begun something of a grass-roots campaign to make the cameras
more visible, make the speed limit for that region more visible, and for the locations of the
cameras to be made public.

You can buy books with this information, and many of the car-based route finders and GPS
navigation systems now come with information about speed cameras and traps. Even better,
though, is the publication of camera locations on a Google Map mash-up.

The speed camera location map (at http://spod.cx/speedcameras.html) is shown in
Figure 8-5. The map is simple but functional, showing the location of each camera on a stan-
dard driving map.

FIGURE 8-5: U.K. speed cameras.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 136

137Chapter 8 — Discovering Overlays and Mash-ups

Trackers and Locators
Maps can be used to provide both active information about an event (for example, live feeds of
hurricane and weather activity) and also a historical view of that information. You only have to
watch the TV weather reports to see how this information can be used. Sometimes, using the
information extracted from the map can be just as useful. The photos taken and used for the
Google Maps satellite imagery are real photos, and occasionally that means that objects are
photographed and incorporated into the data. Some users are using this information to watch
and study different objects. Some are examining the details of well-known landmarks, such as
Area 51, while others look out for “capture” objects, like the photos of planes in flight or similar
events. Where that information is missing, the markers and icons in Google Maps can be used
to add the information to the map.

This section looks at two examples, one providing live and historical information about hurri-
canes, and the other showing photos and the locations of one of the most famous aircraft
ever made.

Hurricanes
As I noted in Chapter 1, my wife and I were in New York the weekend Hurricane Katrina hit
the Gulf Coast of the United States. Predicting, and then tracking, the path of the hurricane
went a long way to help individuals, organizations, and companies determine where the hurri-
cane was likely to hit and what sort of effects it could have on them.

At the time, numerous sites providing the hurricane’s path and the forecast route popped up,
both from official sources and from individuals who had built Google Maps applications to
show the information.

One of the most extensive hurricane-tracking applications available is the Hurricane Path
Tracking & Storm Status Information page for the Atlantic Ocean (at http://compooter
.org/sandbox/code/google/hurricane/atlantic/). This tool provides historical
hurricane data for more than 150 years for the Atlantic region. Similar applications are avail-
able for the East and West Pacific.

The starting interface for this application combines a simple layout with an advanced applica-
tion that enables you to load hurricane information in a hurry. From the pop-up in the upper-
right corner, you can select one of the years to view. I’ve selected 2005 so that the page shows
the path of Hurricane Katrina (see Figure 8-6).

The application then provides you with a list of hurricanes for the year, sorted by name. Click-
ing a hurricane name loads up all the data for that hurricane, including the path it took and
data points for the storm’s severity and classification. You can see the route and a sample infor-
mation window in Figure 8-7.

You can even combine multiple hurricanes to compare the paths and severity at different
points, as you can see in Figure 8-8 (which shows hurricanes Katrina and Wilma). Katrina is
the S-shaped route from just above Cuba that snakes up through Louisiana and on land up
toward New York State. Wilma starts south of Cuba and snakes up across the tip of Florida
and heads out to sea, following the coastline of the eastern seaboard.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 137

138 Part II — Instant Gratification

FIGURE 8-6: Choosing a hurricane.

FIGURE 8-7: Viewing the hurricane path and data points.

What impresses most about the map is the combination of the quality of the interface and the
level of detail and information provided in the map. The comprehensive data goes back to
1851. Although this tool may not be an officially recognized source for information, it is by far
one of the best looking.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 138

139Chapter 8 — Discovering Overlays and Mash-ups

FIGURE 8-8: Viewing multiple hurricanes.

Satellites
If you’ve ever looked up at the sky to view the stars and the constellations, you may be surprised
to know that one of those stars may have been the International Space Station (ISS). With a
large enough telescope — or even one of the hobby scopes — you can actually see the ISS from
the ground.

But how do you know where to look?

The Space Station Tracker (located at http://gmaps.tommangan.us/spacecraft_
tracking.html) shows the location in the sky of the International Space Station and the
Hubble Space Telescope as they pass over different part of the world (see Figure 8-9).

The site shows a very simple overlay of information on top of a Google Earth Map. If you
leave the site open, the application will actually create a trail of the path taken by the satellites,
as you might be able to see more clearly in Figure 8-10.

Blackbirds
Blackbird is the nickname given to the Lockheed SR-71, a spy plane that first took flight in
the 1960s. Thirty-two were built, and 12 of these were lost in flying accidents (remarkably, no
SR-71 has ever been shot down). Some of the remaining planes now reside in museums, and
others are technically still in service and can be found at airfields across the U.S.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 139

140 Part II — Instant Gratification

FIGURE 8-9: ISS and Hubble Tracker.

ISS Hubble

The Lockheed SR-71

When I was a kid, I had posters on my wall of the Lockheed SR-71 reconnaissance aircraft, oth-
erwise known as the Blackbird. The design of the airplane had a number of purposes, not least
of which was to allow the plane to fly very, very fast. The cruising speed of the SR-71 was Mach
3.3 (that’s 3.3 times the speed of sound), and it still holds the record for the fastest production
aircraft (2,193.167 miles per hour). The plane flew not only fast, but also at very high altitudes:
The original design reached 80,000 feet, with a record altitude just short of 85,069 feet (which
was later broken by the Russian MiG-25).

To put those speeds into perspective, the Blackbird holds the U.S. coast-to-coast speed record of
just 68 minutes, and the New York-to-London speed record of just under 1 hour and 54 min-
utes. As though you needed any further proof of the speed, in case of missile attack, the stan-
dard operating procedure was to simply accelerate and outrun it.

The Blackbird was also one of the first aircraft to be designed not to show up on radar — an
astonishing feat for a plane that is more than 107 feet in length and more than 55 feet wide.
The effect was to create a plane that appeared, on radar, to be about the size of a barn door
rather than the size of a barn.

With all of this in mind, it is easy to see why the Blackbird has garnered such a cult following.
The plane and its fictional derivatives have even appeared in numerous films, although not
always in a factual or believable environment.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 140

141Chapter 8 — Discovering Overlays and Mash-ups

FIGURE 8-10: ISS and Hubble paths.

To find the locations of all remaining Blackbirds and the crash points of those lost in service,
you can visit the Blackbird-spotting Google Map (see Figure 8-11).

FIGURE 8-11: Blackbird spotter.

ISS Hubble

13_790095 ch08.qxp 6/12/06 1:36 PM Page 141

142 Part II — Instant Gratification

If you click on the list of available Blackbirds or one of the icon points, you get detailed infor-
mation about the plane. The map will hone right in on the Google Earth photo of the plane so
that you can see its precise location. Figure 8-12 shows the Blackbird on the USS Intrepid.

FIGURE 8-12: Spotting the SR-71 on the USS Intrepid.

Wrapping Up
Google Maps can be used to create a variety of different applications, from the most basic
icon-based highlights right up to complex, interactive sites where information from a variety of
sources is merged into a format that does more than simply overlay information onto a map. In
this chapter, you’ve seen some examples of a wide range of map-based applications. Next you
look at a simple way of building an information-driven application that is browser-driven
rather than web site–driven.

With the information in this chapter, you should have some ideas and inspiration for your own
maps, as well as a good idea of what the Google Maps system is capable of doing. Often, as
demonstrated by the examples in this chapter, it is not just the map that helps to provide infor-
mation. Outside data and alternative representations of information in combination with the
Google Maps API demonstrate the power and flexibility for providing information.

13_790095 ch08.qxp 6/12/06 1:36 PM Page 142

Google Maps Hacks

Chapter 9
Using Overlays

Chapter 10
Overlaying Statistical Data

Chapter 11
Building a Community Site

Chapter 12
The Realtors and
Archaeologists Toolkit

Chapter 13
I Need to Get To...

Chapter 14
Merging with Flickr Photos

part

in this part

14_790095 pt03.qxp 6/12/06 1:36 PM Page 143

14_790095 pt03.qxp 6/12/06 1:36 PM Page 144

Using Overlays

The overlay is the most basic piece of additional layout information
that you can add to a Google Map, but it is also very powerful. By
creating multiple Google Maps markers, you provide an effective way

of highlighting different points on your map. With the addition of more
detailed data about the point using an info window, you can provide a fully
interactive experience.

This chapter shows how you can extend and improve upon the basic marker
through a combination of the information that is displayed, how the marker
is shown, and how additional information about the marker is displayed.

Building in Multiple Points
Chapter 7 covered the basic processes behind extending the basic Google
Maps examples into your own custom maps, highlighting the points you
wanted. It is the JavaScript within an HTML page that actually creates the
points on the map, so any system that adds multiple points must be part of
the JavaScript process.

How you add the additional points that you want to a map will largely
depend on the complexity of the information, how dynamic you want the
map to be, and the capabilities of your environment. For very simple maps
and layouts, for example, you may simply want to extend the information in
the HTML file for your map. In a more dynamic environment, you may
want to generate the HTML dynamically. Both solutions are covered here,
before more complex, completely dynamic solutions are covered later in this
chapter.

Extending the Source HTML
The simplest method of adding more points to your map is to embed them
into the HTML for your map. You cannot display a Google Map without
some form of HTML component to encapsulate the JavaScript that defines
the map parameters and properties.

Adding points in this way is therefore a case of adding the necessary
JavaScript statements to the HTML. To extend the basic functionality a bit
further than simply adding points, you’ll also add a list of the points and
create a small function that will move to a particular point when the high-
lighted point is clicked.

˛ Build in multiple
points

˛ Make the
generation dynamic

˛ Extract information
from a database

˛ Extend the
information pane

chapter

in this chapter

15_790095 ch09.qxp 6/12/06 1:37 PM Page 145

146 Part III — Google Map Hacks

Listing 9-1 shows the entire HTML for an example demonstrating this process. The map
shows a list of restaurants in Grantham in the U.K., and the remainder of the chapter demon-
strates how to extend and improve on this original goal.

You can view this example, and all the examples from all of the chapters, online by using the
chapter number and listing number. For example, to view the map generated by Listing 9-1, use
the URL http://maps.mcslp.com/examples/ch09-01.html.

Listing 9-1: A More Complex Multiple Marker HTML Example

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 9, Ex 1</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>

var map;

var points = [];
var index = 0;

var infopanel;

function onLoad() {
if (GBrowserIsCompatible()) {

infopanel = document.getElementById(“infopanel”);
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
addmarker(-0.6394,52.9114,’China Inn’);
addmarker(-0.64,52.909444,’One on Wharf’);
addmarker(-0.64454,52.91066,’Hop Sing’);
addmarker(-0.642743,52.9123959,’Nicklebys’);
addmarker(-0.6376,52.9073,’Siam Garden’);

}
}

function addmarker(x,y,title) {
var point = new GPoint(parseFloat(x),parseFloat(y));
points.push(point);
var marker = new GMarker(point);
map.addOverlay(marker);

15_790095 ch09.qxp 6/12/06 1:37 PM Page 146

147Chapter 9 — Using Overlays

infopanel.innerHTML = infopanel.innerHTML +
‘’ +
title +
‘
’;

index++;
}

function movemap(index) {
map.recenterOrPanToLatLng(points[index]);

}

</script>
</head>
<body onload=”onLoad()”>
<table cellspacing=”15” cellpadding=”0” border=”0”>
<tr valign=”top”>
<td><div id=”map” style=”width: 800px; height: 600px”></div></td>
<td><h1>Restaurants</h1><div id=”infopanel”></div></td>
</tr>
</table>
</body>
</html>

The key to the example is the addmarker() function. The function performs two operations:

� It creates the marker, based on the supplied longitude (x) and latitude (y) and title. The
marker-creation process is three steps: create the point, create the marker, add the marker
to the overlay.

� It creates an HTML link that runs the movemap() function each time the name of the
marker is clicked. To achieve this, the document reference for the information window is
generated during the onLoad() function. HTML is then appended to the doc refer-
ence by updating the content of the innerHTML property.

Each time a new point is created you add it to the global points array and then explicitly refer-
ence the index of that point into the HTML that is generated for each restaurant. That way,
when each restaurant is clicked, it loads the previously created point from the array and recen-
ters the map. The reason for using this method is that it reduces the amount of complex infor-
mation that is referenced in different areas of the system. By standardizing where the
information is kept, the application can also standardize how the information is referenced,
which will have more relevance as the complexity of the examples increases.

The example can be seen in action in Figure 9-1. The info window can be seen on the right.
Clicking the restaurant name recenters the map on the given marker. Clicking a marker does
nothing, for the moment.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 147

148 Part III — Google Map Hacks

FIGURE 9-1: A basic multi-point HTML-only example.

Remember that coordinates are generally referenced using latitude and longitude in that order,
although many of the built-in functions within the Google Maps API use the terms X and Y (or hor-
izontal and vertical). Latitude is the vertical (Y) measure; longitude is the horizontal (X) measure.

Making the Generation Dynamic with a Script
The previous example used a static HTML file to generate the map. The static method has
some limitations, including the most obvious one, that changing or editing the content means
making modifications directly to the HTML.

Technically there is no problem with this approach, but you do not always want users to be able
to edit the HTML on a live web server. It is better to use a method that dynamically generates
the HTML and JavaScript required for the map based on a source of data separate from the
map points and information on the screen.

The simplest way to dynamically create a Google Map is to change from using the static
HTML method to a script-based method that generates the necessary HTML and JavaScript
to build the map. The system is dynamic in that the script can be updated and the source for
the information can be any reliable data source, such as static files or a database.

Listing 9-2 demonstrates the generation of a set of HTML identical to that generated in
Listing 9-1. The difference is that this listing is a Perl script designed to run as a CGI. The

15_790095 ch09.qxp 6/12/06 1:37 PM Page 148

149Chapter 9 — Using Overlays

information source is an embedded hash structure containing the X, Y, and title information
for each restaurant. The script generates the necessary text when the script is called.

Listing 9-2: Generating a Google Map HTML File from a Script

#!/usr/bin/perl

use CGI qw/:standard/;

print header(-type => ‘text/html’);

my $points = [
{x => -0.6394,
y => 52.9114,
title => ‘China Inn’},
{x => -0.64,
y => 52.909444,
title => ‘One on Wharf’},
{x => -0.64454,
y => 52.91066,
title => ‘Hop Sing’},
{x => -0.642743,
y => 52.9123959,
title => ‘Nicklebys’},
{x => -0.6376,
y => 52.9073,
title => ‘Siam Garden’},
];

page_header();
js_addmarker();
js_movemap();
js_onLoad();
page_footer();

sub page_header
{

print <<EOF;
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 9, Ex 2</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>

Continued

15_790095 ch09.qxp 6/12/06 1:37 PM Page 149

150 Part III — Google Map Hacks

Listing 9-2 (continued)

var map;
var points = [];
var index = 0;
var infopanel;

EOF
}

sub js_onLoad
{

my @markers;

foreach my $point (@{$points})
{

push @markers,sprintf(“addmarker(%f,%f,’%s’);”,
$point->{x},
$point->{y},
$point->{title});

}

my $template = <<EOF;
function onLoad() {
if (GBrowserIsCompatible()) {

infopanel = document.getElementById(“infopanel”);
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);
%s

}
}

EOF

printf($template,join(“\n”,@markers));

}

sub js_addmarker
{

print <<EOF;
function addmarker(x,y,title) {

var point = new GPoint(parseFloat(x),parseFloat(y));
points.push(point);
var marker = new GMarker(point);
map.addOverlay(marker);
infopanel.innerHTML = infopanel.innerHTML +

‘’ +
title +
‘
’;

index++;
}

15_790095 ch09.qxp 6/12/06 1:37 PM Page 150

151Chapter 9 — Using Overlays

EOF

}

sub js_movemap
{

print <<EOF;
function movemap(index) {

map.recenterOrPanToLatLng(points[index]);
}

EOF

}

sub page_footer
{

print <<EOF;
</script>
</head>
<body onload=”onLoad()”>
<table cellspacing=”15” cellpadding=”0” border=”0”>
<tr valign=”top”>
<td><div id=”map” style=”width: 800px; height: 600px”></div></td>
<td><h1>Restaurants</h1><div id=”infopanel”></div></td>
</tr>
</table>
</body>
</html>

EOF

}

Although Listing 9-2 is dynamic, it is only dynamic in that the information is being generated
on the fly. It generates a static HTML page that works identically to the first example. The
map itself and the information it portrays are not dynamic; the content and highlights on the
map will be modified when the page is reloaded. This is essentially the same behavior as seen in
the previous example. In short, though it technically is dynamically generating the information,
it really isn’t a dynamic map.

Using AJAX
For a dynamic map you need to use Asynchronous JavaScript and XML, or AJAX for short.
AJAX is a methodology for loading information dynamically within a web page using
JavaScript. With AJAX, the HTML page that is used to load the map and other information is
static, but the JavaScript that is embedded within that page is capable of loading its own data
and information, which it can then use to alter the information and operations on the map or
the data displayed within the HTML.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 151

152 Part III — Google Map Hacks

For example, in the previous examples in this chapter the information generated when the page
is loaded essentially creates a blank page. It is only when the JavaScript embedded into the
page is loaded that the content of the page is altered, first by loading the Google Maps API
and displaying the map, and second through the JavaScript generating HTML to be updated
within an element of the HTML body.

AJAX works on the same basic principle. When the HTML of a page is loaded, it starts the
JavaScript that loads additional information to be displayed. Alternatively, the trigger for load-
ing additional information and then displaying that information on the screen can be a link or
form embedded within the HTML.

The JavaScript function triggered then loads the data in XML format from the server, parses
the XML content, and extracts the components it wants before updating the page. This entire
process occurs without the page having to reload (because the user hasn’t accessed a different
page; the JavaScript is accessing data in the background).

In some ways this is similar to the way an image is loaded into a web page — the information is
displayed inline within the realms of the page that you originally accessed; it is the browser that
extracts the reference to the image and displays it onscreen. The difference with AJAX is that
the information can be loaded from a variety of sources and the information and how it is
shown is highly configurable.

Using AJAX relies on two elements:

� An HTML page with JavaScript that is capable of loading and parsing XML informa-
tion to extract the data that it contains. Most browser implementations of JavaScript
include the ability to load XML using a given URL and to then parse the content. For
convenience, and to cope with different browser implementations, the Google Maps API
includes a wrapper interface that will automatically use either the browser implementa-
tion or its own to handle the loading and parsing of content.

� An XML source that contains the information that you want to parse and display. The
XML that is loaded can come from either a static file or a CGI script.

Before describing the methods for loading and parsing the XML, take a brief look at how the
XML to be loaded can be generated.

Generating a Static XML File
Generating XML is not difficult, but there are some tricks to generating XML that is easily
parsed and usable within JavaScript and Google Maps. For the majority of metadata about a
particular map point, it is generally easier to extract information from attributes in a tag than it
is to extract the data constrained by a tag. Using this method you can create a number of XML
tags, and then within the JavaScript obtain a list of tags and extract the appropriate attributes
from the tag, and generate the information.

For example, you might specify the latitude, longitude, and title data used in the earlier exam-
ples into a single XML tag:

<marker lat=”52.9114” lng=”-0.6394” title=”China Inn”/>

A script to generate XML information based on the information previously stored within a hash
in an earlier example can be adjusted to generate suitable XML, as shown here in Listing 9-3.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 152

153Chapter 9 — Using Overlays

Listing 9-3: An XML Version of the Data

#!/usr/bin/perl

my $points = [
{x => -0.6394,
y => 52.9114,
title => ‘China Inn’},
{x => -0.64,
y => 52.909444,
title => ‘One on Wharf’},
{x => -0.64454,
y => 52.91066,
title => ‘Hop Sing’},
{x => -0.642743,
y => 52.9123959,
title => ‘Nicklebys’},
{x => -0.6376,
y => 52.9073,
title => ‘Siam Garden’},
];

print ‘<marker>’;

foreach my $point (@{$points})
{

printf(‘<marker lat=”%f” lng=”%f” title=”%s”/>’,
$point->{y},
$point->{x},
$point->{title});

}

print ‘</marker>’;

Running this script will generate an XML document to the standard output, which you can
redirect into a suitable file.

You might want to use an XML library to generate the XML that is used in your Google Maps
applications. Although generating the XML by hand is an acceptable way to generate the data,
it can lead to problems because of a simple typographical error. That said, some XML generation
libraries can make the process more complicated and in some cases may simply be unable to cre-
ate the complexity of document that you want if you are generating information from a
database or non-linear data source.

Loading and parsing the file is a multi-stage process, starting with creating a suitable
GXmlHttp object — a class exposed by the Google Maps API for loading remote HTTP:

var request = GXmlHttp.create();

15_790095 ch09.qxp 6/12/06 1:37 PM Page 153

154 Part III — Google Map Hacks

To download an item you send a request for the specified file, in this case ch09-04.xml:

request.open(‘GET’,’ch09-04.xml’, true);

Rather than blocking the execution of the rest of the JavaScript within the HTML until the
load has been completed (which could be a long delay), instead you define a function that will
be called when the status of the download object changes. You can do this inline; state 4 indi-
cates a successful retrieval, so you can then start parsing the document:

request.onreadystatechange = function() {
if (request.readyState == 4) {

var xmlsource = request.responseXML;

The responseXML field of the request contains a DOM representation of the XML data,
which in turn means that you can use the same functions and methods that you use to manipu-
late HTML in the document. Thus you can use a list of the XML tags with a specific name
using getElementsByTagName:

var markerlist = xmlsource.documentElement.getElementsByTagName(“marker”);

This generates an array of the individual tag elements. You can extract the information embed-
ded into the attributes of a tag within each element by using the getAttribute() method
on that element, specifying the attribute name. For example:

markerlist[i].getAttribute(“lng”)

You can repeat the same process on the same tag multiple times to get information out of mul-
tiple attributes.

Putting this together, and replacing the earlier addmarker() elements in the previous
HTML-only examples with a model that dynamically loads the XML and then generates the
markers, is shown in Listing 9-4.

Listing 9-4: Parsing Your XML File into Information

function onLoad() {
if (GBrowserIsCompatible()) {

infopanel = document.getElementById(“infopanel”);
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);

var request = GXmlHttp.create();
request.open(‘GET’,’ch09-04.xml’, true);
request.onreadystatechange = function() {

if (request.readyState == 4) {
var xmlsource = request.responseXML;
var markerlist = ;

xmlsource.documentElement.getElementsByTagName(“marker”);
for (var i=0;i < markerlist.length;i++) {

addmarker(parseFloat(markerlist[i].getAttribute(“lng”)),
parseFloat(markerlist[i].getAttribute(“lat”)),
markerlist[i].getAttribute(“title”));

15_790095 ch09.qxp 6/12/06 1:37 PM Page 154

155Chapter 9 — Using Overlays

}
}

}
request.send(null);

}
}

The basic process is as listed earlier — the page is loaded, and during the onLoad() function
the JavaScript requests the XML, loads it, parses the contents, and then generates the markers.
The addmarker() function does not change; it doesn’t need to.

You can see the results in Figure 9-2. The basic operation of the map has not changed; no
additional information is being shown and, in reality, there is no interactivity built into the
map, but the information that is generated is now more dynamic. Changing the XML (rather
than the HTML) would change the information shown on the map.

FIGURE 9-2: Generating a map by dynamically loading XML.

Always make sure that any numerical information that you load into JavaScript for use with your
map, particularly when specifying latitude or longitude, is first parsed with the parseFloat()
function (or parseInt()) to ensure that the string is correctly identified as a number.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 155

156 Part III — Google Map Hacks

Generating an XML File Dynamically
In the previous example a static XML file was generated by adapting an earlier script.
Ultimately, though, the map interface was loading static XML. Loading XML that is gener-
ated on the fly is the next phase toward building a truly dynamic interface. Listing 9-5 shows
an adaptation of the earlier XML generating example that runs as a CGI and returns the XML
based on the earlier requirements.

Listing 9-5: Generating the XML File with Perl on the Fly

#!/usr/bin/perl

use CGI qw/:standard/;

print header(-type => ‘text/xml’);

my $points = [
{x => -0.6394,
y => 52.9114,
title => ‘China Inn’},
{x => -0.64,
y => 52.909444,
title => ‘One on Wharf’},
{x => -0.64454,
y => 52.91066,
title => ‘Hop Sing’},
{x => -0.642743,
y => 52.9123959,
title => ‘Nicklebys’},
{x => -0.6376,
y => 52.9073,
title => ‘Siam Garden’},
];

print ‘<marker>’;

foreach my $point (@{$points})
{

printf(‘<marker lat=”%f” lng=”%f” title=”%s”/>’,
$point->{y},
$point->{x},
$point->{title});

}

print ‘</marker>’;

The script uses the CGI module, a standard module within the Perl distribution, to generate
the information.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 156

157Chapter 9 — Using Overlays

The most important line in this script is the one that outputs the HTTP header. When supplying
XML you must specify the correct header for the returned data to ensure that it is correctly
identified as XML and not HTML.

You also need to update the URL of the XML file you want to load to reference the new CGI
script. However, in all other respects the main HTML interface developed for the earlier
example is still entirely valid. Updating the URL is a simple case of changing the appropriate
line to the request object:

request.open(‘GET’,’/examples/ch09-05.cgi’, true);

The map output will be the same, but the way the map gets the information to be displayed has
changed. You could replace the static information within the script with a system that gener-
ates the same XML structure, but from a different source, such as directly from a database.

Pulling the Data from a Database
The previous examples have concentrated on the production of information that is largely
static. Even when the XML content was generated dynamically, the source for that XML data
was actually just a hash within a Perl script that generated the information.

Although it would be trivial to update the information within the script, it still lacks the flexi-
bility of updating a database of information that in turn generates the necessary XML.

Creating a Suitable Database Structure
To load the information from a database, there must be a suitable database structure in place
that can be accessed through a CGI script, which can then reformat the information from the
database to the XML format required by Google Maps.

The examples here are in Perl, which can access a database using the DBI module through a
number of different databases, including local files, MySQL, PostgreSQL, and Oracle. Other
environments, such as PHP, Java, or Ruby, have similar interfaces and systems. Depending on
the database system in use, you will also probably need to create a database to hold the table
being used for your information.

Whichever system you use, the first step should be to create a suitable table structure to hold the
information. To replicate the same structure for the restaurants used in earlier examples, only three
fields are required: the latitude, longitude, and restaurant name. With most systems, tables are cre-
ated by using a suitable SQL statement. The following statement would create a suitable table:

create table ch09_simple (lat float,lng float,title varchar(80))

Remember latitude and longitude can be represented in a number of different ways, but the
method used internally by the Google Maps system is a floating-point value, so you will need to
use floating-point fields in your database.

Listing 9-6 demonstrates a simple script that connects to the database and creates the table.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 157

158 Part III — Google Map Hacks

Listing 9-6: Creating the Table Structure

#!/usr/bin/perl

use DBI;

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (defined($dbh))
{

$dbh->do(‘create table ch09_simple ;
(lat float,lng float,title varchar(80))’);
}
else
{

die “Couldn’t open connection to database\n”;
}

Converting existing data and inserting that information into the database is a common task.
Listing 9-7 is a script that translates a colon-separated version of the restaurant information
(in title, longitude, latitude order) into the database and table that you created in Listing 9-6.

Listing 9-7: Populating the Database with Information

#!/usr/bin/perl

use DBI;

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

open(DATA,$ARGV[0]) or die “Couldn’t open file; did you forget it?”;

my $counter = 0;

while(<DATA>)
{

chomp;

15_790095 ch09.qxp 6/12/06 1:37 PM Page 158

159Chapter 9 — Using Overlays

my ($title,$lng,$lat) = split /:/;

$dbh->do(sprintf(‘insert into ch09_simple values(%s,%s,%s)’,
$dbh->quote($lat),
$dbh->quote($lng),
$dbh->quote($title),
));

$counter++;
}
close(DATA);

print “$counter records inserted\n”;

With the information correctly inserted the table, the rows in the table can be used to generate
the XML information that is required by the HTML interface to load the data.

Generating XML from that Information
With a slight modification to an earlier script, a script that loads the information from the
database table and generates the information as XML is shown in Listing 9-8. Instead of
inserting data, a SELECT statement is used to extract the data from the database, and then the
script reformats the data into XML ready for a Google Maps application.

Listing 9-8: Generating XML from Database Source Data

#!/usr/bin/perl

use DBI;
use strict;

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

my @lines;

my $sth = $dbh->prepare(‘select title,lat,lng from ch09_simple’);
$sth->execute();

while (my $row = $sth->fetchrow_hashref())

{

Continued

15_790095 ch09.qxp 6/12/06 1:37 PM Page 159

160 Part III — Google Map Hacks

Listing 9-8 (continued)

push(@lines,
sprintf(‘<marker lat=”%f” lng=”%f” title=”%s”/>’,

$row->{lat},
$row->{lng},
$row->{title}));

}
$sth->finish();

if (scalar @lines > 0)
{

print(“<marker>\n”,
join(“\n”,@lines),
“</marker>\n”);

}

The script in Listing 9-8 can also be adapted into Listing 9-9 so that the information is gener-
ated dynamically, through a CGI, into the XML required by the HTML interface. The only
difference is the addition of the correct HTTP header type.

Listing 9-9: Generating the XML from a Database through CGI

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

print header(-type => ‘text/xml’);

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

print(“<marker>\n”);

my $sth = $dbh->prepare(‘select title,lat,lng from ch09_simple’);
$sth->execute();

while (my $row = $sth->fetchrow_hashref())
{

15_790095 ch09.qxp 6/12/06 1:37 PM Page 160

161Chapter 9 — Using Overlays

printf(‘<marker lat=”%f” lng=”%f” title=”%s”/>’,
$row->{lat},
$row->{lng},
$row->{title});

}
$sth->finish();

print(“</marker>\n”);

Now that the information is located within a database, further restaurants can be added to the
map by adding rows to the database. There could be a potentially unlimited number of restau-
rants in the database, and the method in which the database is updated (from another web
interface or desktop application, or even a feed from another database or application) becomes
immaterial. The source does not matter.

What does matter is that the basic script and HTML page that was developed to display a
map of restaurants in a particular location has not changed. Only the source of information
driving the data displayed on the map has changed.

A sample of the map using information loaded from a database through the script in Listing 9-9
is available online at http://maps.mcslp.com/examples/ch09-09.html.

Extending the Information Pane
Back in Chapter 7, a logical extension of the basic map marker was to add an information win-
dow to the marker when the user clicks the marker. The idea of the information pane is to
show relevant information for a map point.

There are many ways of populating the pane with information, but the most practical, because
the map is now being built up using an XML source, is to continue using XML to generate the
content. This will require changes to the database to store more information such as the
address and phone number of the restaurant.

The HTML that generates the map will also need to be adapted so that the map marker and
information window are displayed when the user clicks the marker.

Formatting Information Panes
As shown in Chapter 7, an information pane is added to a marker by adding an event listener
to the marker that triggers one of the openInfoWindow*() functions to create an informa-
tion window. The addmarker() function within the JavaScript in the HTML can be modi-
fied so that it adds the necessary event listener at the time when the marker is generated.

Listing 9-10 contains such a modification. Obviously, how the information is loaded that gen-
erates this information has not changed; the same principles can be used with either the static
or dynamic samples. For the moment, it is the information window trigger that is interesting.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 161

162 Part III — Google Map Hacks

Listing 9-10: Adjusting the JavaScript to Create an Information Window

function addmarker(x,y,title) {
var point = new GPoint(parseFloat(x),parseFloat(y));
points.push(point);
var marker = new GMarker(point);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowHtml(‘’ + title + ‘’);
}

);
map.addOverlay(marker);
infopanel.innerHTML = infopanel.innerHTML +

‘’ +
title +
‘
’;

index++;
}

The limitation of the preceding solution is that you have to format the HTML that is contained
within the panel by hand, although as you can see from Figure 9-3, the result is quite effective.

FIGURE 9-3: A basic information window.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 162

163Chapter 9 — Using Overlays

Creating More Detailed Windows from XML and XSLT
The Extensible Stylesheet Language (XSL) provides a method for converting XML data into
different formats through an XSL Transformation (XSLT). Google Maps includes a routine
for formatting XML data through an XSL file into the HTML that is displayed within an info
window. The HTML layout and format can be changed by altering the XSL without making
any changes to the JavaScript. In addition, because the HTML is generated from the XML
generated, the information that is displayed can be extended by adding information to the gen-
erated XML.

The first step toward that process is to generate the XML. For XSL, you normally generate the
XML information where the data is contained within appropriate XML tags. For example, you
might add phone information to the XML with this fragment:

<phone>0123456789</phone>

In addition, for your JavaScript-based parser, for ease of extraction you should put the entire
block of XML data into an enclosing tag; for example, infowindow.

Listing 9-11 shows the generation (as a CGI script directly to XML) of suitable data from an
adjusted database table based on the table created earlier in this chapter (Listing 9-7).

Listing 9-11: Creating the XML

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

print header(-type => ‘text/xml’);

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

print(“<marker>\n”);

my $sth = $dbh->prepare(‘select * from ch09_cplx’);
$sth->execute();

while (my $row = $sth->fetchrow_hashref())

Continued

15_790095 ch09.qxp 6/12/06 1:37 PM Page 163

164 Part III — Google Map Hacks

Listing 9-11 (continued)

{
printf(‘<marker lat=”%f” lng=”%f” title=”%s”><infowindow> ;

<title>%s</title><address>%s</address><city>%s</c\ity> ;
<postcode>%s</postcode><phone>%s</phone></infowindow></marker>’,

$row->{lat},
$row->{lng},
$row->{title},
$row->{title},
$row->{street},
$row->{city},
$row->{postcode},
$row->{phone},
);

}
$sth->finish();

print(“</marker>\n”);

The result is an XML file where each restaurant is defined through XML containing the lati-
tude, longitude, and full address information:

<marker lat=”52.911400” lng=”-0.639400” title=”China Inn”>
<infowindow>
<title>China Inn</title>
<address>4 Avenue Road</address>
<city>Grantham</city>
<postcode>NG31 6TA</postcode>
<phone>01476 570033</phone>
</infowindow>
</marker>

To translate the embedded XML file, an XSL file is required. Describing the specifics of XSL
is obviously beyond the scope of this book, but you should be able to identify the basic struc-
ture of the document. Basically, the XSL in Listing 9-12 defines a structure that will convert
the embedded XML information into an HTML table.

A good source for more information on XSL is XSL Essentials by Michael Fitzgerald (Wiley, ISBN
0-471-41620-7).

15_790095 ch09.qxp 6/12/06 1:37 PM Page 164

165Chapter 9 — Using Overlays

Listing 9-12: The XSL

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<xsl:stylesheet version=”1.0” ;

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>
<xsl:template match=”/”>

<xsl:apply-templates select=”info” />
</xsl:template>
<xsl:template match=”infowindow”>

<table width=”215” cellspacing=”15”>
<tr>
<td style=”font-size:14pt;text-align:Left;” colspan=”2”>

<xsl:value-of select=”title” />
</td>
</tr>
<tr valign=”top”>
<td style=”font-size:12pt;font-weight:bold;text-align:Left;”>

Address
</td>
<td style=”font-size:12pt;text-align:Left;”>

<xsl:value-of select=”address” />

<xsl:value-of select=”city” />

<xsl:value-of select=”postcode” />

</td>
</tr>
<tr>
<td style=”font-size:12pt;font-weight:bold;text-align:Left;”>

Phone
</td>
<td style=”font-size:12pt;text-align:Left;”>

<xsl:value-of select=”phone” />
</td>
</tr>

</table>
</xsl:template>
</xsl:stylesheet>

Listing 9-13 shows the necessary changes to the JavaScript to create the information window.

Listing 9-13: Creating an Info Window from XML and XSLT

function onLoad() {
if (GBrowserIsCompatible()) {

infopanel = document.getElementById(“infopanel”);
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);

var request = GXmlHttp.create();

Continued

15_790095 ch09.qxp 6/12/06 1:37 PM Page 165

166 Part III — Google Map Hacks

Listing 9-13 (continued)

request.open(‘GET’,’/examples/ch09-11.cgi’, true);
request.onreadystatechange = function() {

if (request.readyState == 4) {
var xmlsource = request.responseXML;
var markerlist = ;

xmlsource.documentElement.getElementsByTagName(“marker”);
var infowindow = ;

xmlsource.documentElement.getElementsByTagName(“infowindow”);
for (var i=0;i < markerlist.length;i++) {

addmarker(parseFloat(markerlist[i].getAttribute(“lng”)),
parseFloat(markerlist[i].getAttribute(“lat”)),
markerlist[i].getAttribute(“title”),
infowindow[i]);

}
}

}
request.send(null);

}
}

function addmarker(x,y,title,info) {
var point = new GPoint(parseFloat(x),parseFloat(y));
points.push(point);
var marker = new GMarker(point);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowXslt(info,”/examples/ch09-12.xsl”);
}

);
map.addOverlay(marker);
infopanel.innerHTML = infopanel.innerHTML +

‘’ +
title +
‘
’;

index++;
}

When parsing the XML, the onLoad() function extracts the data contained within the XML
tag infowindow and places each occurrence into an array, in exactly the same way as the orig-
inal marker tags were extracted.

A further argument is then added to the addmarker() function that incorporates the XML con-
tained within the infowindow tag, which in turn is used with the openInfoWindowXslt()
method on each marker. This method takes the XML (or an object containing the XML) and
URL of the XSL stylesheet (see Listing 9-12). The remainder of the code is identical to the other
examples.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 166

167Chapter 9 — Using Overlays

You can see the resulting information window in Figure 9-4. The information displayed is
much more extensive, and you could add and extend that information even further simply by
updating the database with more data, the XML with that data, and the XSL with a suitable
transformation to turn it into the structure you want.

FIGURE 9-4: Creating information windows using XML and XSLT.

Everything is now in place to extend the example and make the map truly interactive and
dynamic.

Making Your Example Truly Dynamic
The examples in this chapter have made use of static, dynamic, and ultimately XML genera-
tion techniques to allow the information within a map to be controlled through the data stored
within a database. However, the map is still static, from the perspective that although markers
and points are being generated dynamically from XML, they are being generated when the
page loads, rather than in true response to user requirements. To make the system truly
dynamic, the interface to the database needs to be adjusted so that you load specific informa-
tion based on the user requirements.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 167

168 Part III — Google Map Hacks

Dividing the Application into Components
Before the specific scripts and elements are described, take a closer look at the elements that
make up a dynamic map.

Previous examples have been dynamic when loading the XML, but the XML that was gener-
ated, although generated on the fly, was based on a static SQL statement pulling out every
record from the table.

For your dynamic example, the HTML file (and the JavaScript that supports it) will be the
only component that you load. Everything else about the page will be based entirely on
JavaScript loading XML and making modifications to the HTML and the Google Map.

To start with, the database will be extended to show data about restaurants in towns and cities
other than Grantham. Instead of initially showing Grantham on the map, the whole of the
U.K. will be displayed instead, and a list of all the unique cities in the database will be listed in
the information window on the right. That list of cities will need to be requested from the
database.

Once the database has returned a list of cities, the application will provide this list in a method
that in turn triggers the JavaScript to list the restaurants from that specific city and display
them in the same manner as before. In addition to the information window being triggered
when the user clicks an information marker, you will also trigger the information window when
the user clicks the restaurant name in the list (as opposed to moving the map to that marker).

Finally, the user will be able to return to a list of the available cities.

The entire process, and the interaction between the main HTML page and the server that pro-
vides the data to be used on the page, can be seen in Figure 9-5.

FIGURE 9-5: The interactive map operations in action.

Map

Server

Map with list of
supported cities

Map showing markers
and list of restaurants

Map with list of
supported cities

Request list of cities

Return list of cities (as XML)

User requests list of
restaurants in specific city

Return list of
restaurants (as XML)

Request list of cities

Return list of cities (as XML)

Request list of cities

Return list of cities (as XML)

User requests list of
restaurants in specific city

Return list of
restaurants (as XML)

Request list of cities

Return list of cities (as XML)

15_790095 ch09.qxp 6/12/06 1:37 PM Page 168

169Chapter 9 — Using Overlays

The final system relies on three components:

� An HTML file with embedded JavaScript that provides the methods for loading and
formatting data in a suitable structure.

� A CGI script that can return information about the available cities and restaurants
within a specific city in XML format.

� An XSL file to format the information window for a restaurant and marker.

The JavaScript is the main component.

The JavaScript Component
The bulk of the HTML for a page does not change, but the JavaScript that loads the city,
hotel, and other information in response to different triggers needs to be heavily updated.

Setting Up the Environment
The JavaScript will rely on the global variables in Listing 9-14 to hold the information that is
required throughout the rest of the script.

Most languages frown on the heavy use of global variables, but in JavaScript the active, and
inactive, elements make it difficult to communicate and share information across the different
components without using global variables.

Listing 9-14: Global Variables

var map;
var points = [];
var index = 0;
var cities = [];
var markers = [];
var markerinfo = []
var infopanel;
var message;

The arrays are used to hold information about the main components of the application —
points on the map, cities, markers, and the contents of information windows. These variables
will need to be populated as different information is loaded by the JavaScript so that you can
select other information to be displayed onscreen.

Loading a City List
Loading a list of cities to be displayed on the default page for the map is based on the same
principles as loading a list of restaurants, except that a different XML document is parsed. To
get the different XML document, you supply some arguments to the GET request through the

15_790095 ch09.qxp 6/12/06 1:37 PM Page 169

170 Part III — Google Map Hacks

script that provides an interface to the database. The CGI script is asked for a list of cities,
which it collects from the database and returns as XML, placing the name of each city into a
suitable attribute in an appropriate tag.

Listing 9-15 shows the showcitylist() function. This function is responsible for connect-
ing to the CGI script, requesting a list of cities, and formatting that list of cities as a list of
clickable links that will in turn trigger the loading of restaurants in a city.

Listing 9-15: Showing a List of Cities

function showcitylist() {
map.clearOverlays();
index = 0;
points = [];
markers = [];
markerinfo = [];
cities = []; message.innerHTML = ‘Select a City’;
infopanel.innerHTML = ‘’;
var request = GXmlHttp.create();
request.open(‘GET’,’/examples/ch09-16.cgi?m=citylist’, true);
request.onreadystatechange = function() {

if (request.readyState == 4) {
var xmlsource = request.responseXML;
var citylist = ;

xmlsource.documentElement.getElementsByTagName(“city”);
for (var i=0;i < citylist.length;i++) {

cities.push(citylist[i].getAttribute(“cityname”));
infopanel.innerHTML = infopanel.innerHTML +

‘<a href=”#” onClick=”loadcity(‘ +
i +
‘);”>’ +
citylist[i].getAttribute(“cityname”) +
‘
’;

}
}

}
request.send(null);

}

Although when the script is initially executed all of the global variables will effectively be empty,
the showcitylist() function can also be called once a list of restaurants in a given city have
been listed, effectively resetting the application. The first step therefore is to reset the contents of
all the variables. You then format the HTML information window with a list of available cities by
loading the data from the CGI script as XML and creating a list of suitable links.

When the user clicks an individual city, the loadcity() function is triggered (see Listing
9-16). On the whole, this function is almost identical to the previous examples in this chapter;
it asks the CGI script for a list of restaurants in a given city.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 170

171Chapter 9 — Using Overlays

Listing 9-16: Loading Markers for a City

function loadcity(index) {
map.clearOverlays();
message.innerHTML = ‘Restaurants in ‘ + cities[index];
infopanel.innerHTML = ‘’;
var latpoints = [];
var lngpoints = [];
var request = GXmlHttp.create();
request.open(‘GET’,’/examples/ch09-16.cgi?m=getmarkers&city=’+ ;

cities[index], true);
request.onreadystatechange = function() {

if (request.readyState == 4) {
var xmlsource = request.responseXML;
var markerlist = ;

xmlsource.documentElement.getElementsByTagName(“marker”);
var infowindow = ;

xmlsource.documentElement.getElementsByTagName(“infowindow”);
for (var i=0;i < markerlist.length;i++) {

addmarker(parseFloat(markerlist[i].getAttribute(“lng”)),
parseFloat(markerlist[i].getAttribute(“lat”)),
markerlist[i].getAttribute(“title”),
infowindow[i],
i);

latpoints.push(parseFloat(markerlist[i].getAttribute(“lat”)));
lngpoints.push(parseFloat(markerlist[i].getAttribute(“lng”)));

}
var newcenter = calccenter(latpoints,lngpoints);
map.centerAndZoom(newcenter,2);
infopanel.innerHTML = infopanel.innerHTML +

‘
’ +
‘Back to ;

city list
’;
}

}
request.send(null);

}

The main differences are the rebuilding of the information window, a modified call to the CGI
script, and some additional steps to be executed when the markers have been added to the map.

The URL used to load the XML from the CGI script now builds a suitable request that
includes the name of the city. This will provide the CGI script with the information it requires
to return a list of restaurants in the specified city.

As each marker is added to the map, an array of the latitude and longitude points is updated.
You will use this information to relocate the map over the center point of the all of the restau-
rants for the city.

As a final step, you add a link to the city loading function so that the user can go back and
select a city again.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 171

172 Part III — Google Map Hacks

Moving the Map and Adding Information
When the user clicks a restaurant in the information window, the map recenters on the marker
and then shows the information window. For convenience, the information window XML was
placed into a global array, and each element of the array should have the same index as the
points for the restaurant. You can open the window by calling the openInfoWindowXslt()
method on the appropriate marker with the same window information that is triggered by the
click event for the marker. The two lines of the movemap() function are shown in Listing 9-17.

Listing 9-17: Moving the Map and Displaying the Info Window

function movemap(index) {
map.recenterOrPanToLatLng(points[index]);
markers[index].openInfoWindowXslt(markerinfo[index], ;

“/examples/ch09-12.xsl”);
}

The markers, points, and markerinfo arrays are built each time the addmarker()
function is called.

Adding a Marker to Your Map
Listing 9-18 is a small modification to the addmarker() function that updates the arrays
necessary for movemap(), in addition to configuring the point, marker, and event and the
information window.

Listing 9-18: Creating a New Marker

function addmarker(x,y,title,info,index) {
var point = new GPoint(parseFloat(x),parseFloat(y));
points.push(point);
var marker = new GMarker(point);
markers.push(marker);
markerinfo.push(info);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowXslt(info,”/examples/ch09-12.xsl”);
}

);
map.addOverlay(marker);
infopanel.innerHTML = infopanel.innerHTML +

‘’ +
title +
‘
’;

index++;
}

15_790095 ch09.qxp 6/12/06 1:37 PM Page 172

173Chapter 9 — Using Overlays

Calculating Where to Center the Map
The final stage of moving the map to the location of the city that is being displayed is to deter-
mine a suitable point that can be used as the new center point for the map.

You could choose to display one of the restaurants as the new center point, but a much more
effective method is to calculate the middle point between the extremes of latitude and longi-
tude for the displayed markers. Essentially what you are after is the average, or more specifi-
cally the median, of the range of points.

There is no simple way of achieving this, although you could potentially ask the database to
determine the information. Because this would imply further processing of data that you
already have, it is just as easy to calculate it from that data. You can find the midpoint by deter-
mining the difference between the highest and lowest value and adding half the difference to
the lower value. To determine the lowest and highest values, use the following logic: If the lati-
tude and longitude points for each marker are added to an array and the array is sorted, the
minimum and maximum values will be the first and last values in the array, respectively.

Listing 9-19 performs these operations, returning a new GPoint() to the caller that can be
used to recenter the map.

Listing 9-19: Determining a New Center Point

function calccenter(latpoints,lngpoints) {
latpoints.sort();
lngpoints.sort();
var newlat = latpoints[0] + ;

((latpoints[latpoints.length-1] - latpoints[0])/2);
var newlng = lngpoints[0] + ;

((lngpoints[lngpoints.length-1] - lngpoints[0])/2);
var newpoint = new GPoint(parseFloat(newlng),parseFloat(newlat));
return newpoint;

}

The last stage to the process is initializing the entire system so that the application is in a state
ready to start accepting user clicks.

Initializing the Map
In previous examples, the onLoad() function has been quite complex. For this example,
the main part of the initialization in terms of providing interactivity now resides in the
showcitylist() function. The main role of the onLoad() function, shown in Listing
9-20, is to initialize the map and obtain the location of the HTML elements that will be used
to show information about the application, such as the message and information window.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 173

174 Part III — Google Map Hacks

Listing 9-20: Updating the onLoad() Function

function onLoad() {
if (GBrowserIsCompatible()) {

infopanel = document.getElementById(“infopanel”);
message = document.getElementById(“message”);
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-2.944336,53.644638), 10);
map.addControl(new GSmallZoomControl());
showcitylist();

}
}

That completes the JavaScript functionality. The next part of the application is the CGI script
that generates the XML used by this application.

Generating the XML on the Backend
Listing 9-21 is an adaptation of the earlier XML generation scripts. Remember that the script
now needs to return two different pieces of information: a list of cities and a list of restaurants
within a given city. Both operations are triggered through certain CGI parameters specified by
the URL reference in the JavaScript component that wants to load the XML.

Listing 9-21: Generating the Necessary XML

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

print header(-type => ‘text/xml’);

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

if (param(‘m’) eq ‘citylist’)
{

citylist();

15_790095 ch09.qxp 6/12/06 1:37 PM Page 174

175Chapter 9 — Using Overlays

}
elsif(param(‘m’) eq ‘getmarkers’)
{

getmarkers(param(‘city’));
}

sub citylist
{

my $sth = $dbh->prepare(‘select distinct(city) from ch09_cplx’);
$sth->execute();

print “<cities>”;
while (my $row = $sth->fetchrow_hashref())
{

printf(‘<city cityname=”%s”/>>’,$row->{city});
}
print “</cities>”;

}

sub getmarkers
{

my ($city) = @_;

print(“<markers>\n”);

my $sth = $dbh->prepare(sprintf(‘select * from ch09_cplx where city = %s’,
$dbh->quote($city)));

$sth->execute();

while (my $row = $sth->fetchrow_hashref())
{

printf(‘<marker lat=”%f” lng=”%f” title=”%s”> ;
<infowindow><title>%s</title><address>%s</address><city>%\
s</city><postcode>%s</postcode><phone>%s</phone></infowindow></marker>’,

$row->{lat},
$row->{lng},
$row->{title},
$row->{title},
$row->{street},
$row->{city},
$row->{postcode},
$row->{phone},
);

}
$sth->finish();

print(“</markers>\n”);
}

15_790095 ch09.qxp 6/12/06 1:37 PM Page 175

176 Part III — Google Map Hacks

There are two elements here, both in separate functions. The citylist() function uses
a SQL statement to select a list of distinct cities from the database. The other function,
getmarkers(), returns the list of restaurants. This function is based on the earlier example,
only the SQL statement that selects the list of cities now requests only restaurants that are
located within a specific city.

Using the New Map
You can see the new map, in its initial state, in Figure 9-6. You can see here that the initial
mode is for the window to show a list of available cities. The database has been updated to also
include the restaurants for a town in the Lake District in the U.K., Ambleside, so the default
city list now includes both options.

The final application is available online at http://maps.mcslp.com/examples/ch09-
14.html.

FIGURE 9-6: A dynamic application in its initial state.

If you click a city, the JavaScript loads the XML for the specific city by asking the CGI script
to supply it with new XML. The XML is loaded, the markers are added to the map, and the
map is recentered in the middle of all the markers. You can see a representation of restaurants
in Ambleside in Figure 9-7.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 176

177Chapter 9 — Using Overlays

FIGURE 9-7: Restaurants in Ambleside.

Finally, clicking a marker or restaurant name shows the information window, as shown in
Figure 9-8.

Clicking “Back to city list” would show the list of cities again (see Figure 9-9). The entire pro-
cess has taken place without having to load any different pages, and all of the information is
loaded from a database.

Extending the Content
The real power of the preceding solution is that you can easily extend the information and data
provided on the map — even the list of supported cities — just by updating the database back-
end. By entering more restaurant titles, address information, map points, and other data into
the database, you can add cities, restaurants, and contact information to the map without ever
making any changes to either the HTML or the JavaScript demonstrated in this section.

It is possible, for example, to extend the basic interface so that the user could select entity types
(restaurants, pubs, doctors, shops, and so on) from within the interface in addition to being able
to choose a city to display. It is also not hard to imagine how you might extend this further to
display an array of different information on the same map just by loading different selections of
information. After all, it is the database query that loads the information that is to be dis-
played; a different query could load and display different information.

It is the combination of database-driven content, the CGI script that provides this information in
XML format, the AJAX components that load this data, and the Google Maps API that enable
you to lay all of this information out onscreen that provides you with power and flexibility.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 177

178 Part III — Google Map Hacks

FIGURE 9-8: Sheila’s Cottage in Ambleside.

FIGURE 9-9: Going back to a list of cities.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 178

179Chapter 9 — Using Overlays

Wrapping Up
As you have seen in this chapter it is the combination of the JavaScript, dynamic data, and the
ability to parse and lay out this information in a dynamic environment that makes using
Google Maps so much fun. Although the code is comparatively complex if you are not familiar
with JavaScript, many of the basic principles should be straightforward.

Thanks to what you’ve learned in this chapter, you should now be able to build your own
dynamic marker-based Google Maps. Populating a database with the information and then
highlighting the right points onto the map is comparatively straightforward when you break
down the system into manageable steps. With the basic techniques here, you could also show
different businesses or cities and even build a worldwide map of highlighted points using the
same basic structure that is shown in this chapter.

Now that the basics of a dynamically driven mapping environment are in place, it is time to
extend the functionality. The next chapter covers the display and portrayal of statistical infor-
mation and introduces new techniques that include polylines and different display icons.

15_790095 ch09.qxp 6/12/06 1:37 PM Page 179

15_790095 ch09.qxp 6/12/06 1:37 PM Page 180

Overlaying
Statistical Data

With a map and some appropriate geographical information, you
can plot statistical information (that is, information that has
some sort of quantity across a range of different points) onto a

Google Map. For example, you could plot the number of accidents at differ-
ent intersections in a city, or highlight the number of sporting events in dif-
ferent cities across an entire country.

Viewing statistical information in a graphical form often makes the infor-
mation significantly easier to understand. For example, in this chapter the
population data of cities in the U.S. is used, and although a tabular form of
the information is helpful, the graphical representations shown in this chap-
ter make it much easier to understand the relationship and relative size of
the different cities across the U.S.

Fortunately, as you’ll see in this chapter, there are many ways in which sta-
tistical information can be overlaid on top of a Google Map. Polylines (the
lines that Google Maps uses to show maps and routes) are one way, and you
can alter their behavior slightly to give some other alternatives. A better
solution, though, may be to use a custom icon.

Generating/Obtaining Statistical
Information
There is a wealth of statistical information available if you start looking.
The key element for displaying the information on a Google Map is that it
has some kind of geographical relevance. Secondary to this consideration is
how you want to represent that information.

For example, throughout this chapter the U.S. Census data on population is
used (using the data from http://www.census.gov/). The information
is available on a year-by-year basis. It is also available on a city-by-city (and
state-by-state) basis. With these two combinations of information it is pos-
sible to show the population data both according to its location and to its
year, and, by combining the two, the population growth over time can also
be demonstrated.

First, the raw data.

˛ Use polylines to
represent statistical
information

˛ Draw bar graphs

˛ Draw variable-size
circles

˛ Overlay multiple
data

˛ Use custom icons

˛ Control icon size
according to data

chapter

in this chapter

16_790095 ch10.qxp 6/12/06 1:38 PM Page 181

182 Part III — Google Map Hacks

The U.S. Census Data
For the examples in this chapter the population of different cities in the U.S. is used to provide
the statistical information that is displayed on the map. The information used comes from the
U.S. Census data and is based on questionnaires completed by the public. Looking at a table of
that information (Table 10-1) is not a clear way to view the data. The table has been deliber-
ately sorted alphabetically so there isn’t any order to the population statistics.

Table 10-1 U.S. Census City Population Data

City 2004 2000 1990

Chicago, Ill. 2,862,244 2,896,016 2,783,726

Columbus, Ohio 730,008 711,470 632,910

Dallas, Tex. 1,210,393 1,188,580 1,006,877

Detroit, Mich. 900,198 951,270 1,027,974

Houston, Tex. 2,012,626 1,953,631 1,630,553

Indianapolis, Ind. 784,242 781,870 741,952

Jacksonville, Fla. 777,704 735,617 635,230

Los Angeles, Calif. 3,845,541 3,694,820 3,485,398

New York, N.Y. 8,104,079 8,008,278 7,322,564

Philadelphia, Pa. 1,470,151 1,517,550 1,585,577

Phoenix, Ariz. 1,418,041 1,321,045 983,403

San Antonio, Tex. 1,236,249 1,144,646 935,933

San Diego, Calif. 1,263,756 1,223,400 1,110,549

San Francisco, Calif. 744,230 776,733 723,959

San Jose, Calif. 904,522 894,943 782,248

With a little work it is possible to pull out key points, such as the number of people living in
New York is obviously quite high, but making comparisons can be quite difficult.

Two columns were added to the table: the latitude and longitude of each city shown.
Otherwise, the data used is exactly as shown here.

Converting the Source Data to XML
The preceding table was saved as a tab-delimited text file and then processed through the
following simple script. The script is designed to handle as many years (identified by extracting
the years from the “header” row in the text file), even though the data used throughout this
chapter consists of just the three years shown, 1990, 2000, and 2004.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 182

183Chapter 10 — Overlaying Statistical Data

#!/usr/bin/perl -w

use strict;

open(DATA,$ARGV[0]) or die “Couldn’t open file; did you forget it?”;

my $counter = 0;

print “<citypop>”;

my @popyears;

while(<DATA>)
{

next unless (m/[a-z]/i);
$_ =~ s/\”//g;
$counter++;
if ($counter == 1)
{

my ($city,$lat,$lng);
($city,$lat,$lng,@popyears) = split /\t/;
$counter++;
next;

}
chomp;

my ($city,$lat,$lng,@pop) = split /\t/;

printf(‘<city title=”%s” lat=”%f” lng=”%f”>’,$city,$lat,$lng);
print(“\n”);
for(my $i=0;$i < scalar(@pop);$i++)
{

$pop[$i] =~ s/,//g;
next unless (defined($pop[$i]));
printf(‘<pop year=”%s” value=”%d”></pop>’,$popyears[$i],$pop[$i]);
print(“\n”);

}

print(“</city>\n”);
}
close(DATA);

print “</citypop>”;

The script is comparatively straightforward. The data is extracted and a little cleaning up is
performed (you remove double quotes from all lines and commas from population numbers)
before generating a suitable XML file. Following is a sample of the generated file:

<citypop>
<city title=”New York, N.Y.” lat=”40.714170” lng=”-74.006390”>
<pop year=”2004” value=”8104079”></pop>
<pop year=”2000” value=”8008278”></pop>
<pop year=”1990” value=”7322564”></pop>
</city>

16_790095 ch10.qxp 6/12/06 1:38 PM Page 183

184 Part III — Google Map Hacks

<city title=”Los Angeles, Calif.” lat=”34.052220” lng=”-118.242780”>
<pop year=”2004” value=”3845541”></pop>
<pop year=”2000” value=”3694820”></pop>
<pop year=”1990” value=”3485398”></pop>
...
<city title=”San Francisco, Calif.” lat=”37.775000” lng=”-122.418300”>
<pop year=”2004” value=”744230”></pop>
<pop year=”2000” value=”776733”></pop>
<pop year=”1990” value=”723959”></pop>
</city>
<city title=”Columbus, Ohio” lat=”39.961100” lng=”-82.998900”>
<pop year=”2004” value=”730008”></pop>
<pop year=”2000” value=”711470”></pop>
<pop year=”1990” value=”632910”></pop>
</city>
</citypop>

The XML file is used in all of the examples in this chapter to demonstrate the different styles
of statistical data representation available within a Google Map. The information could just as
easily have been inserted into a database and then loaded dynamically; however, with static data
like this (the population of New York in 2004 is unlikely to change now!) a static file is a suit-
able format for the information.

Using Polylines
In earlier chapters, the Google Maps polyline was used to show and highlight information on
the map. The polyline is a simple line-drawing tool provided by the Google Maps software
that draws a line between two points (or between pairs of points if there are more than two).
However, because the definition of the polyline is so flexible, you can use that flexibility to your
advantage and adapt it for other uses. Following is the definition for a new GPolyline object
(question marks indicate optional arguments):

GPolyline(points, color?, weight?, opacity?)

The first argument is the array of points, the second the color (as specified using the HTML
#ff0000 format), the third the weight (that is, the width in pixels of the line) and the opacity
of the line drawn (as a float between 0 and 1).

By adjusting the argument values and the array of points you can achieve a number of different
techniques for highlighting data.

Basic Point Map
Using XML it is possible to create a very simple map with a marker showing each of the cities.
Because this is a basic process (first covered in Chapter 8), I won’t provide too much detail on
the process, but the base code used and described here will be modified and expanded to work
as the base for plotting the information onto a Google Map.

As with other examples, the trigger for the code is the onLoad() function, which is called
when the page loads. As you can see in the following code for that function, you can parse the

16_790095 ch10.qxp 6/12/06 1:38 PM Page 184

185Chapter 10 — Overlaying Statistical Data

XML document, picking out the city information, latitude and longitude of each city, and then
use this when generating a marker for the city on the map:

function onLoad() {
if (GBrowserIsCompatible()) {

infopanel = document.getElementById(“infopanel”);
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(0,0), 2);

var request = GXmlHttp.create();
request.open(‘GET’,’ch10-01.xml’, true);
request.onreadystatechange = function() {

if (request.readyState == 4) {
var xmlsource = request.responseXML;
var markerlist = ;

xmlsource.documentElement.getElementsByTagName(“city”);
for (var i=0;i < markerlist.length;i++) {

addmarker(parseFloat(markerlist[i].getAttribute(“lng”)),
parseFloat(markerlist[i].getAttribute(“lat”)),
markerlist[i].getAttribute(“title”));

}
}
recenterandzoom(points);

}
request.send(null);

}
}

Two other functions in that function are required for it to work, addmarker() and
recenterandzoom().

Adding Markers
The addmarker() function is identical to examples shown in Chapter 7. It just accepts the
latitude and longitude of a point, generates the GPoint() variable, pushing each value onto a
stack for later use, and then creates a GMarker and updates the global information panel with
the supplied title. The purpose of the panel is to provide a simple method of centering the map
on each of the markers.

function addmarker(x,y,title) {
var point = new GPoint(parseFloat(x),parseFloat(y));
points.push(point);
var marker = new GMarker(point);
map.addOverlay(marker);
infopanel.innerHTML = infopanel.innerHTML +

‘’ +
title +
‘
’;

index++;
}

The movemap() function referenced here performs a pan to the point’s longitude and latitude
when the city name is clicked.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 185

186 Part III — Google Map Hacks

Centering and Deciding on a Zoom Level
One of the problems with any map is ensuring that the view the user gets (initially, at least) con-
tains all of the information you are trying to portray. Chapter 9 showed centerAndZoom(), a
simple function that calculates the center point of all of the points being displayed. The limitation
of this function is that it relies on using a generic zoom level, which may or may not be suitable
for the points and markers being displayed on the map.

The recenterandzoom() function performs the same centering process, but this time it
accepts a single argument, an array of points. To determine the midpoint, the latitude and lon-
gitude of each point are extracted and then added to their own array, which is then sorted, and
the same calculation as before determines the center-point of all the supplied points for center-
ing the map.

By comparing the span of the points (the difference between the maximum and minimum val-
ues), the function can determine an ideal zoom level by trying out zoom levels until a level that
encompasses the span of the points is found. To do this, it iterates from the highest zoom level
to the lowest and uses the getSpanLatLng() method to compare the point span with the
span displayed on the active map. If the displayed span is smaller than the required span, the
map zooms out by one level and the values are re-checked until a zoom level and span combi-
nation are determined.

To ensure that the span incorporates a small buffer (so points don’t appear on the edges of the
map), the actual span required is increased by 25 percent before the determination is made:

function recenterandzoom(points) {
var latpoints = [];
var lngpoints = [];

var idealzoom = 1;
// Do nothing if no points supplied

if (points.length == 0) {
return;

}
// Zoom right in if just one point is supplied

if (points.length == 1) {
map.centerAndZoom(points[0],idealzoom);
return;

}

for(var i=0;i<points.length;i++) {
latpoints.push(points[i].y);
lngpoints.push(points[i].x);

}
// Sort, enforcing a numerical comparison

latpoints.sort(function(x,y) { return x-y });
lngpoints.sort(function(x,y) { return x-y });

var newlat = latpoints[0] + ((latpoints[latpoints.length-1] - ;
latpoints[0])/2);

16_790095 ch10.qxp 6/12/06 1:38 PM Page 186

187Chapter 10 — Overlaying Statistical Data

var newlng = lngpoints[0] + ((lngpoints[lngpoints.length-1] - ;
lngpoints[0])/2);

var newpoint = new GPoint(parseFloat(newlng),parseFloat(newlat));

var idealspan = new GSize ;
(parseFloat((Math.abs(lngpoints[lngpoints.length-1]-

lngpoints[0]))*1.25),
parseFloat ;

((Math.abs(latpoints[latpoints.length-1]-
latpoints[0]))*1.25));

map.zoomTo(idealzoom);

for(var i=1;i<16;i++) {
var currentsize = map.getSpanLatLng();

if ((currentsize.width < idealspan.width) ||
(currentsize.height < idealspan.height)) {
map.zoomTo(i);
idealzoom = i;

}
else {

break;
}

}

map.centerAndZoom(newpoint,idealzoom);
}

JavaScript treats more or less all values as text, even if the values are numerical. This can happen
even in some logical and comparison operations and calculations. To force a numerical compari-
son (as in the sort() on the array of points) you have to trick JavaScript into performing a
numerical comparison by explicitly defining the sort comparison function (x-y). See the Mozilla
JavaScript guide (http://developer.mozilla.org/en/docs/Core_JavaScript_
1.5_Reference) for more information.

Most JavaScript and Google Maps implementations even perform the span and zoom calcula-
tion without redisplaying the intervening zoom levels, making the process feel instantaneous.
Using it in this application ensures that all the markers for each city on the map are displayed
simultaneously.

The Basic Non-Statistical Map
You can see the result of the basic marker map and the recentering of the map onto the array of
points in Figure 10-1.

You can see the basic map is exactly that, a basic representation of the list of cities. Now the
map can be extended to incorporate the statistical data of the individual city population.

The basic example is available at http://maps.mcslp.com/examples/ch10-01.html.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 187

188 Part III — Google Map Hacks

FIGURE 10-1: A simple city marker map.

Building an Internal Data Representation
Before the statistical data is plotted onto the map, the application must account for the differ-
ent years for which the data is available. The information about the population data is stored in
a single XML file, but the file does not need to be parsed multiple times to extract the infor-
mation that is required.

The associative array in JavaScript enables data to be stored by text reference, instead of
numerical reference. By combining a textual reference (the year of the data) with an array of
population data (with the same numerical index as each city and associated map point and
marker) it is possible to select and display the population information.

To achieve this, change the code for parsing the XML file to extract the data and build the
necessary file. The core of processing remains the same:

if (request.readyState == 4) {
var xmlsource = request.responseXML;
var markerlist = xmlsource.documentElement.getElementsByTagName(“city”);
for (var i=0;i < markerlist.length;i++) {

addmarker(parseFloat(markerlist[i].getAttribute(“lng”)),
parseFloat(markerlist[i].getAttribute(“lat”)),
markerlist[i].getAttribute(“title”));

Then, create an associative array at the same index for your map pointer/marker:

popdata[i] = new Array();

16_790095 ch10.qxp 6/12/06 1:38 PM Page 188

189Chapter 10 — Overlaying Statistical Data

Now the population data can be extracted from the XML. A separate associative array is also
populated with a list of the years. Because the year is used as the text reference (instead of a
numerical reference), you should end up with a unique list of the available years.

var poplist = markerlist[i].getElementsByTagName(“pop”);
for (var j=0;j<poplist.length;j++) {

popdata[i][poplist[j].getAttribute(“year”)]
= parseInt(poplist[j].getAttribute(“value”));

years[poplist[j].getAttribute(“year”)] = 0;
}

}

Finally, for convenience, you create a list of the available years (using the year associative array)
as links so that the user can pick the year of population data to be displayed:

for (var i in years) {
yearpanel.innerHTML = yearpanel.innerHTML +

‘’ + i + ‘<br/’;
}
recenterandzoom(points);

}

The preceding will create a structure like the following one:

popdata[0][‘2004’] = 8104079
popdata[0][‘2000’] = 8008278
popdata[0][‘1990’] = 7322564
...
popdata[14][‘2004’] = 730008
popdata[14][‘2000’] = 711470
popdata[14][‘1990’] = 632910

To select the population data for a city, you need only know the city reference (as embedded
into the list of cities shown in the information panel on the right). To pick out the population
for a specific year, you need the city reference and year string. To show the population data for
all cities for a given year, you need to iterate through the list and then extract the population for
a given year from a particular index. An example of this is the creation of a bar graph of that
information on the map.

Adding a Bar Graph
To draw a bar graph of the population against each city, a starting point for the base of each
graph must be determined. The location of the city is a good starting point. Then the height of
the bar graph should also be determined. The height should be consistent across different val-
ues. For example, if New York had a population of 500,000 and Los Angeles a population of
250,000, the height of the bar for L.A. should be half that of New York.

With a Google Map there is no flexibility to draw arbitrary lines. The line must be drawn
based on the longitude and latitude of the start and end points. To draw a vertical bar, the lon-
gitude remains the same; only the latitude changes according to a value. To calculate that value,
obtain the height of the map in latitude and then use a factor of that for each increment of the
bar. The value will be consistent irrespective of the size of the actual map.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 189

190 Part III — Google Map Hacks

To keep the height of each bar consistent, you need a baseline to work from. Using a percent-
age value, rather than the real value, keeps the height of the bars consistent across different data
values. You can use the combination of the current map view and the percentage value of the
data point to keep the bar height consistent within the available view. Because that value is a
percentage, the size of the map can be divided by 100 and then by a further value (to ensure the
graph is displayed within the map) to determine the latitude increment to use when drawing
each bar.

The code for this is called when a user clicks a specific year in the list of available years. The
code performs a number of steps to achieve the goal. The first is to calculate the increment to
be used for drawing each tick on the bar graph:

function addgraph(year) {
var currentsize = map.getSpanLatLng();
var increment = (parseFloat(currentsize.height)/2.0)/100;
var maxsize = 0;
var graphdata = [];

The existing data and overlays are cleared from the map, and the information panel is also
emptied because the data in the panel will be regenerated to include the population data:

map.clearOverlays();
polylines = [];
markers = [];
infopanel.innerHTML = ‘’;

Now the graphdata for the selected year is extracted into a single array, and the maximum
size of the data is determined. A marker for each city is generated (using a modified
addmarker() function) that also embeds the city name and population value into an
InfoWindow for each marker:

for(var i=0;i<popdata.length;i++) {
graphdata.push(popdata[i][year]);
if (popdata[i][year] > maxsize) {

maxsize = popdata[i][year];
}
addmarker(points[i].x,points[i].y,titles[i] + ‘; Pop: ‘ +

popdata[i][year] + ‘ in ‘ + year);
}

Finally, each bar is created by creating an array of points, with just two elements. The starting
point is the location of each city, which is held in the global points array. The second point is
the longitude of the city (which does not change). The latitude value is used to create the
height of the bar. That value can be calculated, first, by multiplying the percentage of the data
point by the increment calculated for the map. If you then add that value to the latitude of the
city, you get a new latitude that represents bar size. The resulting two-point array is used to cre-
ate a polyline, where the color is explicitly specified along with a wider than normal point
width so that the bar shows up clearly on the map:

for(var i=0;i<graphdata.length;i++) {
var pointpair = [];
pointpair.push(points[i]);
var secondlatinc = ((parseFloat(graphdata[i])*100)/maxsize)*increment;
var secondlat = (parseFloat(points[i].y)*1)+secondlatinc;

16_790095 ch10.qxp 6/12/06 1:38 PM Page 190

191Chapter 10 — Overlaying Statistical Data

pointpair.push(new GPoint(points[i].x,
secondlat));

var line = new GPolyline(pointpair,”#ff0000”,20);
map.addOverlay(line);
polylines.push(line);

}
}

The bar graph example is available at http://maps.mcslp.com/examples/ch10-02
.html.

The resulting display is shown in Figure 10-2. You can see the polylines for each city overlay-
ing each city location, with standard markers highlighting the precise location. It is also clearer
from this display that the population of New York is large compared to the others.

FIGURE 10-2: Bar graphs of population data.

Conveniently, polylines are also transparent, so you can see the information from multiple cities
even when the data overlaps. Also, as polylines, the information remains displayed on the map
even when the map is zoomed or moved, as shown in Figure 10-3.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 191

192 Part III — Google Map Hacks

FIGURE 10-3: A close up of California population data for 2000.

Adding a Circle
Polylines, by their very definition, must have at least two, non-equal points in order for them to
be drawn on the map. By calculating the difference between the original data point and a desti-
nation data point, you can almost create a circle (although in reality it is probably closer to an
oval or a rectangle with rounded edges).

To achieve this, a cue about the size of the circle that is to be created can be taken from the
current longitude and latitude span of the map. In fact, you can use the same basic calculation
you use when determining the bar graph interval size.

Instead of modifying only the latitude, you adjust both the latitude and longitude. To show the
population values, the width of the line is adjusted according to the same rules as before. The
code is almost identical, aside from the second point in the array for the polyline and the vol-
ume specification:

function addgraph(year) {
var currentsize = map.getSpanLatLng();
var increment = (parseFloat(currentsize.height)/10.0)/100;
var maxsize = 0;
var graphdata = [];

map.clearOverlays();

polylines = [];
markers = [];
infopanel.innerHTML = ‘’;

for(var i=0;i<popdata.length;i++) {
graphdata.push(popdata[i][year]);
if (popdata[i][year] > maxsize) {

maxsize = popdata[i][year];

16_790095 ch10.qxp 6/12/06 1:38 PM Page 192

193Chapter 10 — Overlaying Statistical Data

}
addmarker(points[i].x,points[i].y,titles[i] + ‘: ‘ + popdata[i][year]);

}

for(var i=0;i<graphdata.length;i++) {
var pointpair = [];
pointpair.push(points[i]);
var volume = parseInt((parseFloat(graphdata[i])*100)/maxsize);
pointpair.push(new GPoint(points[i].x+increment,

points[i].y+increment));
var line = new GPolyline(pointpair,”#ff0000”,volume);
map.addOverlay(line);
polylines.push(line);

}
}

The circle example is available at http://maps.mcslp.com/examples/ch10-03.html.

The same population data shown in Figure 10-2 is shown here in Figure 10-4 as circles of
varying sizes. Again, you can see from the transparency of the graph data that it doesn’t matter
if multiple population data is overlaid on different parts of the map. Figure 10-5 shows
California again where the transparency of the overlaid data may be clearer.

FIGURE 10-4: Using circles to demonstrate statistical data.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 193

194 Part III — Google Map Hacks

FIGURE 10-5: California’s population data.

Plotting Multiple Data Sets
An alternative to plotting all the data for one year across multiple cities is to show the popula-
tion data for a single city but across multiple years. This can be achieved with the circle trick in
the previous section by overlaying the data for different years in different circles (which should
be represented by different sizes, as the data changes).

For plotting that information there are a few things to consider. First, the data for different
years must be represented in different colors for it to be distinguishable. Also, although by
default polylines are transparent, the transparency will need to be adjusted slightly to ensure the
information is properly visible.

It also worth considering the visibility of the information for those with disabilities, espe-
cially those with color blindness. Using contrasting colors that color blind users cannot see will
completely hide or even confuse the information you are trying to portray. Use the color charts
available at the Colors for the Color Blind web site (http://www.toledo-bend.com/
colorblind), which even includes guides for Web colors and combinations that are safe
to use.

The color issue can be fixed by defining an array of colors as the HTML string used by the
Google Maps API to color a polyline. You know there are only three values in your dataset, so
you can specify that number of colors. For clarity, each color is one of the primary colors:

var colors = [‘#ff0000’,’#00ff00’,’#0000ff’];
var colorsindex = 0;

16_790095 ch10.qxp 6/12/06 1:38 PM Page 194

195Chapter 10 — Overlaying Statistical Data

When parsing the list of years, instead of providing a link to select the dataset to be loaded, the
list will become a key for the colors used to highlight the population data. Meanwhile, the list
of cities will be the method for triggering the population data to be displayed. Generating the
key is a simple case of modifying the year panel information:

for (var i in years) {
yearpanel.innerHTML = yearpanel.innerHTML +

‘’ + i + ‘
’;
years[i] = colorindex++;

}

Meanwhile, the addgraph() function, now triggered by the movemap() function that is
called when a user clicks the city name in the info panel, is modified to draw multiple circles,
one for each population data point:

function addgraph(city) {
var currentsize = map.getSpanLatLng();
var increment = (parseFloat(currentsize.height)/4.0)/100;
var maxsize = 0;
var graphdata = [];

map.clearOverlays();

for(var i in popdata[city]) {
graphdata.push(popdata[city][i]);
if (popdata[city][i] > maxsize) {

maxsize = popdata[city][i];
}

}

for(var i=0;i<graphdata.length;i++) {
var pointpair = [];
pointpair.push(points[city]);
var volume = parseInt((parseFloat(graphdata[i])*100)/maxsize);
pointpair.push(new GPoint(points[city].x+increment,

points[city].y+increment));

var line = new GPolyline(pointpair,colors[i],volume,0.25);
map.addOverlay(line);
polylines.push(line);

}
}

The important line is the one that constructs the GPolyline() for each population set:

var line = new GPolyline(pointpair,colors[i],volume,0.25);

The last argument specifies the opacity of the line drawn, which is lowered to 25 percent. This
amount will make the information on the map visible while making multiple overlays of the
information recognizable.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 195

196 Part III — Google Map Hacks

The result can be seen in Figure 10-6. You can see how the information is overlaid, one circle
on top of the other to show the population growth. Of course, the dramatic contrast of shade
and color can be better seen on the book’s web site (http://maps.mcslp.com).

FIGURE 10-6: Showing the multiple population data using a polyline to simulate circles.

The circle example is available at http://maps.mcslp.com/examples/ch10-03.html.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 196

197Chapter 10 — Overlaying Statistical Data

Using Custom Icons
Polylines are an efficient way of representing information, but they are limited in that the
amount of information they can represent is small in comparison to the amount of the work
that is required to build the information displayed. With work, you could draw a 3D bar or use
alternative methods to draw different diagrams to highlight the content, but the more lines you
have to draw, the more work is required. That probably isn’t an efficient way of representing the
information.

Another alternative is to use custom icons to show the information onscreen. An icon is used
when a marker is placed on the map, and it is possible to change the icon to almost any image
that you like. By changing the image or altering its size, the marker icon can be used to show
the volume and value of statistical information in the same way the polylines were employed
earlier in this chapter.

Before choosing and setting an image, you should consider how that image is specified and
defined.

Building Your Own Icon
Good icons consist of two elements: the icon and its shadow, although the shadow is techni-
cally an optional element. You can either build your own icon or copy an image from another
location and turn it into an icon. The key issue is to ensure that your icon makes sense as an
icon and can be easily placed onto a map.

Choosing an Icon Style
The most important aspect of your icon is that it should have an anchor point that can be
associated with the precise point on your Google Map. You can see from the sample markers
used in Google Maps applications that they generally have a pushpin or tack feel that pro-
vides a pinpoint that can be attached to the latitude and longitude of the point you are
highlighting.

Tips for creating or choosing good Google Maps icons include the following:

� It should have an identifiable anchor point, which is usually exactly that: a point, pin, or
other element that points to the location on the map you want.

� It should be relatively small. The icon is designed to highlight a point on the map, not
dominate it.

� It ideally should not be used to provide information, short of marking the point on the
map. Use an InfoWindow or other display element to show the information.

That doesn’t mean you can’t use other images, but it does mean that you should give some con-
sideration to the icon you choose.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 197

198 Part III — Google Map Hacks

Creating the Icon
There is only one required element for a Google Maps icon: the icon itself. However, for clarity
(and style) icons normally also include a shadow. Both elements should have the following
attributes:

� They should be in the PNG format. Most graphics applications (including Adobe
PhotoShop and GIMP) support PNG. PNG is used because it provides 24-bit color
support and transparency. Transparency enables the icon to appear on the map as the
icon, effectively hiding the square image that you generate.

� They should have the same height, although they can have different widths.

� The left edge of images should be identical. It is the combination of the height and the
left-hand edge that allows the icon image to be overlaid on the shadow image.

� They must be placed on a transparent background.

� Ideally the width of the icon should be an odd number so that the middle pixel is pre-
cisely in the center.

� The basic size of the icon should be appropriate to the map size. Designing an icon with
an image size of 400x400 pixels is not efficient when the image will probably be only
40x40 pixels on the final map. The exception is when adjusting the icon for larger sizes
(as in the statistics example) where better resolution will make a better icon when it is
scaled up.

The height and left edge requirements are important because Google Maps aligns images from
the top left. If the icon and shadow were different heights or had different left edge orienta-
tions, the bottom and left edges would never line up.

Putting the process in practice, you can build a simple icon and shadow to use on your map.
Figure 10-7 shows the basic layout of the icon and its shadow and why the left-hand edge and
height are so important.

FIGURE 10-7: Understanding the icon/shadow overlay.

Height X Height X

'Point' is at the same height
and distance from left edge

16_790095 ch10.qxp 6/12/06 1:38 PM Page 198

199Chapter 10 — Overlaying Statistical Data

Building the Original Image
Building the original image is really about choosing (or creating) an image and then saving the
file in the PNG format with a transparent background. For the icon in the example, you can
build an icon similar to the pushpin provided by Google Maps.

Figure 10-8 shows the basic components used to build the pushpin. I used OmniGraffle on
Mac OS X, but just about any image or drawing program can be used to build the icon. If the
elements shown are combined into a single graphic, the topmost element is the one on the left,
the bottommost is on the right, with a little spatial adjustment you can build a very good icon.
Some elements were also adjusted for line width to make them more visible.

FIGURE 10-8: Building an icon.

The final icon can be seen in Figure 10-9.

FIGURE 10-9: The final icon.

Once the basic icon is complete, save it as a PNG with a transparent background, or copy the
icon to Photoshop or a similar graphics program and do the same. The transparent background
is vital to ensure that the pushpin appears as a pushpin, not a square graphic on the map.

Adding a shadow makes the icon look better onscreen and the gives the pushpin the feeling
that it has, literally, just been pushed into the map.

Building a Shadow
Building a shadow is more complicated. For the item to look like a shadow, it needs to be
skewed and the color altered (to black). You also need to be careful and ensure that you do not
adjust the left-hand edge and distance of the point, because it is the point distance and height
that allow the icon and shadow to be overlaid on one another to generate the final icon.

Center Circle
leader

PointCircle
Mask

Main
Circle

16_790095 ch10.qxp 6/12/06 1:38 PM Page 199

200 Part III — Google Map Hacks

In Photoshop, first copy the original icon into a new document.

Figure 10-10 shows the canvas size adjustment screen. Double the width of the icon, but make
sure that the expansion is on the right-hand side, so that the size and placement of the graphic
on the left is not altered.

Now change the icon to solid black, and then use the Free Transform option to halve the
height and skew the image. As with adjusting the image size, make sure you select the bottom
of the image as the anchor. Then set the height to 50 percent and the horizontal skew to 135
degrees. You can see the settings and the effects in the final image in Figure 10-11.

FIGURE 10-10: Setting the shadow size.

FIGURE 10-11: The final shadow.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 200

201Chapter 10 — Overlaying Statistical Data

Finally, change the opacity of the shadow to between 35 percent and 50 percent to ensure that
the shadow looks like a shadow and not an image in its own right.

You now have an icon and shadow to display on your map.

Creating a Google Map Icon
Actually creating the icon within the Google Map is straightforward, provided the rules for the
icon are understood. The GIcon() class is used to specify the icon detail and you should, at a
minimum, specify the following:

� The URL of the icon image.

� The URL of the shadow image.

� The icon size width, then height (in pixels).

� The shadow size width, then height (in pixels).

� The anchor point (the point in the image that will be placed directly over the latitude
and longitude for the marker).

� The anchor point for the info window.

� The anchor point for the info window shadow.

The different values are explained in Figure 10-12.

FIGURE 10-12: Understanding icon parameters.

Shadow Width

Icon Width

Icon/Shadow
Height

AnchorPoint

16_790095 ch10.qxp 6/12/06 1:38 PM Page 201

202 Part III — Google Map Hacks

Remember that image sizes are specified in pixels, not latitude and longitude. Also remember
that you should scale your icon and shadow by the same value to retain the correct aspect ratio.
For example, if your icon image is 210 pixels high but you want it to be just 22 pixels high on the
map, you should also divide the width of the image by the same factor to get the icon widths.

To create the icon within Google Maps, specify each of these parameters for a new GIcon
object. For example:

baseIcon = new GIcon();
baseIcon.image = “/examples/Pushpin.png”;
baseIcon.shadow = “/examples/PushpinShadow.png”;
baseIcon.iconSize = new GSize(31,33);
baseIcon.shadowSize = new GSize(57,33);
baseIcon.iconAnchor = new GPoint(16,33);
baseIcon.infoWindowAnchor = new GPoint(31,38);
baseIcon.infoShadowAnchor = new GPoint(31,38);

The shadow image specification is not required, although Google has suggested in the past that
it might become a compulsory element. You can actually omit either the shadow or the original
icon, which can lead to some interesting effects, without any error being raised. If you want an
icon without a shadow but the shadow becomes compulsory, just use a completely transparent
image for the shadow.

Putting the Icon on a Map
Putting the icon onto a statistical map is relatively easy. The first stage is to modify the
addmarker() function to accept an icon object as an argument. Then you use this icon when
a marker is added to the map:

function addmarker(x,y,title,icon) {
var point = new GPoint(parseFloat(x),parseFloat(y));
points.push(point);
var marker = new GMarker(point,icon);
map.addOverlay(marker);
markers.push(marker);
titles.push(title);
infopanel.innerHTML = infopanel.innerHTML +

‘’ +
title +
‘
’;

index++;
}

Specifying an icon to GMarker() places that icon on the map at the anchor point you defined
when the icon was created at the latitude and longitude defined by the marker.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 202

203Chapter 10 — Overlaying Statistical Data

Using Icon Size to Represent Data
To represent statistical information, you can duplicate the original icon and then alter its size to
represent the volume of the statistic that is being displayed. The map demonstrating this is an
adaptation of the third example, displaying the population for all of the cities when a year is
selected. The modifications to the map application take place in addgraph(), where instead
of drawing a line or circle, the icon is drawn instead. The introductory portion of the functions
remains consistent, although because the icons are measured in pixels, not longitude/latitude,
you no longer have to calculate an increment:

function addgraph(year) {
var maxsize = 0;
var graphdata = [];

map.clearOverlays();

polylines = [];
markers = [];
infopanel.innerHTML = ‘’;

for(var i=0;i<popdata.length;i++) {
graphdata.push(popdata[i][year]);
if (popdata[i][year] > maxsize) {

maxsize = popdata[i][year];
}

}

But the core portion that plots the statistical data is changed. Note how the icon is created. If
you specify an existing icon when creating a new icon object, the new icon inherits all of the
settings of the original. Those values can then be adjusted to create the new icon you want. You
need to do this for each statistical value so that an icon of a different size is created for each
data point.

Any icon parameter can be changed. If you want to use different icons for different elements and
all the icons have the same size, you can just adjust the icon URL. In some cases, even the
shadow can remain consistent.

To achieve this in the application, the icon is copied and then the height and width of the icon
and its shadow are adjusted by multiplying the original value by a multiple of the percentage
that has been calculated. The +1 at the end ensures that all the icons are at least the size of the
original markers:

for(var i=0;i<graphdata.length;i++) {
var volume = (parseFloat(parseFloat(graphdata[i])/maxsize)*2)+1;
var thisIcon = new GIcon(baseIcon);

16_790095 ch10.qxp 6/12/06 1:38 PM Page 203

204 Part III — Google Map Hacks

thisIcon.iconSize = new GSize(thisIcon.iconSize.width*volume,
thisIcon.iconSize.height*volume);

thisIcon.shadowSize = new GSize(thisIcon.shadowSize.width*volume,
thisIcon.shadowSize.height*volume);

thisIcon.iconAnchor = new GPoint((thisIcon.iconAnchor.x*volume),
thisIcon.iconAnchor.y*volume);

addmarker(points[i].x,points[i].y,titles[i] + ‘: ‘ + ;
popdata[i][year],thisIcon);

}
}

The final map, showing the custom icons highlighting the population in 1994, is shown in
Figure 10-13. A close up of an icon and its shadow is shown in Figure 10-14. Of course, the
dramatic contrast of shade and color can be better seen on the web site
(http://maps.mcslp.com).

FIGURE 10-13: The final custom icon statistical map.

The basic example is available at http://maps.mcslp.com/examples/ch10-01.html.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 204

205Chapter 10 — Overlaying Statistical Data

FIGURE 10-14: A close up of the icon and shadow.

Wrapping Up
In this chapter you have seen some examples of how statistical information can be displayed on
the map. Lots of options are available, and which one you choose depends largely on the type
of information you want to display and how best that information can be represented.

You could use simple pushpins to highlight the spread of different elements, or, as shown in
this chapter, use polylines to show values for specific points. With some interesting adapta-
tions, polylines can be used to simulate other elements. For complete control, though, the cus-
tom icon provides the best solution for laying out information.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 205

206 Part III — Google Map Hacks

With all these different options in mind, it is worth remembering that plenty of other solutions
are available for adding further detail to the information. In the examples, you updated the text,
but you could just as easily extend the content of the InfoWindow on a marker to hold more
data, or you could build a separate panel into the application to give more detail. The Google
Maps interface is a way of connecting statistical information to a map, but it is not the only
method available. The Google Map can be part of a larger application and display that high-
lights the data in a geographical way, with other solutions available for providing more detail
and information.

16_790095 ch10.qxp 6/12/06 1:38 PM Page 206

Building a
Community Site

Community sites show information about a community and the
facilities that it offers. The intention is to provide a resource that
might form part of a newspaper, tourist information center, or

other site where the local information is useful to both the community
and visitors.

You can do this in a variety of ways through the Google Maps interface,
but effectively relaying the information in a map means making some
changes to the way information is overlaid on the map, how those over-
lays are controlled, and how the information is sourced and recorded on
the map.

In this chapter, techniques from Chapters 9 and 10 are combined to pro-
vide a more extensive overview of the facilities. The chapter describes how
the information is sourced, how the data is recovered from the database,
and how to build a flexible interface to the information within a Google
Map. In short, you will create your own example of a mash-up.

Displaying Highlighted Points
Displaying simple markers has been described in a number of previous
chapters, but the markers displayed have always related to a specific type of
information. From a simple representation standpoint, this makes the sig-
nificance of the markers onscreen obvious.

For example, the final application in Chapter 9 displayed restaurants avail-
able in different cities, according to the information stored in a database.
The application enabled the user to select a town or city and then display a
list of markers showing the various restaurants. You can see a sample of the
application in Figure 11-1.

˛ Use alternative
marker technology

˛ Embed photos and
icons as highlights

˛ Overlay images and
drawings

˛ Identify locations
from clicks

chapter

in this chapter

17_790095 ch11.qxp 6/12/06 1:39 PM Page 207

208 Part III — Google Map Hacks

FIGURE 11-1: Restaurants in Ambleside.

The problem with the display is that the user only knows the markers represent restaurants
because the text description tells them so. If you want to show the locations of different types
of information, this can quickly become confusing. The output needs to be updated, first by
supporting more types of businesses or items highlighted on the map, and then you need a way
of highlighting the different types. For the latter, the custom icon techniques in the previous
chapter are used.

Adding More Data to the Output
In Chapter 9, only restaurants were included in the output, and the information for each
restaurant was hand-coded into the database that was used to extract the information. To get
the large volume of information that would need to be inserted into a community database, you
need a more automated solution.

To achieve this, you can use a modified version of the Google Maps script that was covered in
Chapter 6 and is shown in the following code. The script works on the same basic premise, but
searches for a list of entities, extracts the information returned by the Google Local service, and

17_790095 ch11.qxp 6/12/06 1:39 PM Page 208

209Chapter 11 — Building a Community Site

then obtains the latitude and longitude for each item by looking up the postal code, town, and
country fragment extracted from the output. The assembled information can be inserted
directly into the database that is used to generate the map.

The information generated by Google Local is not easy to dissect, but you can see the informa-
tion for a single restaurant in this raw HTML fragment:

a href=”/maps?q=restaurant,+grantham&output=html&hl=en& ;
latlng=52915423,-640277,10098272919349949403”> ;
The Market Cross Fish Bar & Restaurant ;

<nobr>01476 563782</nobr></td> ;
<td valign=top class=lad>9 Market Place ;

Grantham, NG31 6LJ, United Kingdom ;

0.2 mi SW

The latitude and longitude in this output is not useful when dealing with multiple restaurants
because it refers to the middle point of all the results, not the single result shown here. The rest
of the information is easy to identify — you can spot the title, telephone number, and address
information. The second fragment of address information includes the town, postal code, and
country; this can be used, with another request, to find the precise latitude and longitude for
each item.

Storing and Creating the Data
To store the information, you create a database according to the following SQL statement.
Here, a single table is being created that includes a unique ID, the latitude, longitude, entity
type, title, telephone number, and address information:

create table ch11 (entityid int auto_increment not null primary key,
lat float,
lng float,
type varchar(80),
title varchar(80),
tel varchar(80),
adda varchar(80),
addb varchar(80))

Each record in the database contains all of the information extracted, along with the entity
type (restaurant, bank, and so on).

The script that extracts all of the information from the Google Local search and inserts it into
the database is as follows:

#!/usr/bin/perl

use strict;
use LWP::UserAgent;
use URI::Escape;
use Data::Dumper;

17_790095 ch11.qxp 6/12/06 1:39 PM Page 209

210 Part III — Google Map Hacks

use DBI;

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

my $ua = LWP::UserAgent->new(
agent => “Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.2) ;

Gecko/20021120 Netscape/7.01”,
);

my $response = $ua->get(‘http://maps.google.com/maps?q=’ .
uri_escape(sprintf(‘%s, %s’,$ARGV[0],$ARGV[1])));

my $var = $response->{_content};

my @matches = ($var =~ m/<a href=”\/maps(.*?)\ \;\-\ \;/g);

my $finds = [];

foreach my $entity (@matches)
{

my ($lat,$lng,$title,$tel,$adda,$addb) = ($entity =~ ;
m/latlng=(.*?),(.*?),.*?>(.*?)<.*<nobr>(.*?)<\/nobr>.*(.*?)<\/font.*-1>(.*?)<\/font>/);

($lat,$lng) = getlatlng($addb);

$dbh->do(sprintf(‘insert into ch11 values(0,%s,%s,%s,%s,%s,%s,%s)’,
$dbh->quote($lat),
$dbh->quote($lng),
$dbh->quote($ARGV[0]),
$dbh->quote($title),
$dbh->quote($tel),
$dbh->quote($adda),
$dbh->quote($addb),

));
}

sub getlatlng
{

my ($text) = @_;

my $response = $ua->get ;

17_790095 ch11.qxp 6/12/06 1:39 PM Page 210

211Chapter 11 — Building a Community Site

(‘http://maps.google.com/maps?q=’ . uri_escape($text));

my $var = $response->{_content};

my ($lat,$lng) = ($var =~ m/GLatLng\(([-\d.]+).*?([-\d.]+)\)/ms);

return ($lat,$lng);
}

The data is extracted from the HTML through a regular expression, and then the request is
repeated to find the real latitude/longitude.

With this script, you can populate the database with different business types by specifying the
type and town/city on the command line. For example, you could update the list of restaurants
in Grantham using the following:

$ ch11inserter.pl restaurant Grantham

You could update the list of banks using this:

$ ch11inserter.pl banks Grantham

The list of what could be inserted into the database using this technique is virtually limitless.

Backend Database Interface
To extract the information from the database (that was populated using the script in the earlier
section), another CGI script, similar to the one in Chapter 9, generates the information in suit-
able XML format when requested by the Google Maps applications. The basic script is identi-
cal, only the SQL required to extract the information and the XML format of the data that is
returned are different:

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

print header(-type => ‘text/xml’);

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

if (param(‘m’) eq ‘entitylist’)
{

17_790095 ch11.qxp 6/12/06 1:39 PM Page 211

212 Part III — Google Map Hacks

entitylist();
}
elsif(param(‘m’) eq ‘getmarkers’)
{

getmarkers(param(‘entity’));
}

The entitylist() function returns a list of unique entity types (restaurants, banks, and so
on) that were populated when the database was populated. For that, the SQL statement uses
DISTINCT to get a list of unique types and then formats XML for the Google Maps applica-
tion to extract:

sub entitylist
{

my $sth = $dbh->prepare(‘select distinct(type) from ch11’);
$sth->execute();

print “<types>”;
while (my $row = $sth->fetchrow_hashref())
{

printf(‘<type typename=”%s”/>’,ucfirst($row->{type}));
}
print “</types>”;

}

The getmarkers() function is just a minor alteration from the script in Chapter 9.

sub getmarkers
{

my ($entity) = @_;

print(“<markers>\n”);

my $sth = $dbh->prepare(sprintf(‘select * from ch11 where type = %s’,
$dbh->quote($entity)));

$sth->execute();

while (my $row = $sth->fetchrow_hashref())
{

printf(‘<marker lat=”%f” lng=”%f” title=”%s”> ;
<infowindow><title>%s</title><address>%s</address><city>%s</city> ;
<phone>%s</phone></infowindow></marker>’,

$row->{lat},
$row->{lng},
$row->{title},
$row->{title},
$row->{adda},
$row->{addb},
$row->{tel},
);

}

17_790095 ch11.qxp 6/12/06 1:39 PM Page 212

213Chapter 11 — Building a Community Site

$sth->finish();

print(“</markers>\n”);
}

Before the details of the Google Maps application are covered, the different icons that are used
to highlight the different entities are described in the following section.

Using Custom Icons to Highlight Different Attractions
Using the same marker for all of the different types of information on the map is obviously less
than optimal. Users will be unable to identify what the different points on the map refer to
without clicking them for more information. To avoid this, different icons can be used to high-
light different entities. The icons used in the application were sourced from the Open Clipart
project and include different icons for pharmacies, banks, restaurants, sports shops, and travel
agents. The icons used are shown in Table 11-1.

Table 11-1 Custom Icons

Icon Name

Pharmacies icon

Banks icon

Restaurant icon

Sports shops icon

Travel agent icon

The background of each icon is transparent to help the icons’ visibility, particularly when they
are placed close together or even on top of one another. Each icon is also the same size —
32x32 pixels. Finally, the shadow normally attached to an icon is not added, to further improve

17_790095 ch11.qxp 6/12/06 1:39 PM Page 213

214 Part III — Google Map Hacks

the visibility of stacked icons. You can see the effect in a sample of the map application show-
ing many different types in Figure 11-2; even though the map is quite busy with information,
you can still clearly see the different icon types on the map.

FIGURE 11-2: Busy, but clear, map information.

To match the icon with the entity type, you give each icon a name that is the lowercase version
of the entity type that was given when the data was inserted into the database table. That way,
when entities of a particular type are loaded from the database, the correct icon can be selected
by name.

You can generate the icon within the Google Maps application with a simple icon-building
sequence. Reference points are made for the bottom-left corner as the anchor point, and info
panels are offset from the top-right corner of each icon:

var baseIcon = new GIcon();
baseIcon.iconSize = new GSize(32,32);
baseIcon.iconAnchor = new GPoint(0,32);
baseIcon.infoWindowAnchor = new GPoint(32,0);
baseIcon.image = “http://maps.mcslp.com/examples/” + ;
types[index].toLowerCase() + “.png”;

17_790095 ch11.qxp 6/12/06 1:39 PM Page 214

215Chapter 11 — Building a Community Site

The references used here for the offsets are probably a little generous, but the spacing helps the
clarity on what could be a busy map.

Filtering Data through Layers of Information
The basic structure of the application is the same as in Chapter 9, except that the user selects
entities, not towns, as the first step. Each time the user selects an entity from the list, the mark-
ers, using the appropriate icons, are populated on the page. Multiple entity types can be dis-
played on the map at the same time.

You might want to read Chapter 9 if you have not already done so before continuing with the
rest of this section because many of the basic principles are the same.

The effect is to provide multiple layers of information that the user can select or hide as
required.

To achieve this, when entities are loaded they are created locally as objects within JavaScript. It
is the objects, rather than the markers and points, that are added to a global array. That means
that the markers on the map are identifiable by more than their marker object. Using this
method, you can display the map with different types (using different icons), remove markers
of different types, and perform other types of manipulation, because the marker information
overlaid on the map is derived from an object that defines all the information required.

HTML Preamble
Once again, the HTML preamble is familiar:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 11, Ex 01</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>

Global Objects
Much less information needs to be stored in global variables, because the bulk of the marker
information is stored as objects within a single array:

17_790095 ch11.qxp 6/12/06 1:39 PM Page 215

216 Part III — Google Map Hacks

var map;
var index = 0;
var markindex = 0;
var types = [];
var markers = [];
var infopanel;
var message;

There are really only two critical global variables, the array of marker objects and the array
of entity types. The other globals relate to the main Google Map, and the infopanel and
message objects relate to the HTML DOM in the body of the page.

Entity Object
The entitymarker object is used to hold information about an individual marker that will
be added to the map. For convenience, the object includes the latitude, longitude, title, type,
marker, and XML to be used in an info window:

function entitymarker(lat,lng,title,type,marker,info) {
this.lat = lat;
this.lng = lng;
this.title = title;
this.type = type;
this.marker = marker;
this.info = info;

}

All of the information is recorded as attributes to the original object. In Chapter 9 arrays and
indexes were used to store and recover the information; here, the information is instead written
into a suitable object. You see some examples of where the object is used later in this chapter.

Initial Function
When the application is first loaded, the map is initialized, the global objects are initialized,
and the map is zoomed to a map of the U.K.:

function onLoad() {
if (GBrowserIsCompatible()) {
infopanel = document.getElementById(“infopanel”);
message = document.getElementById(“message”);
map = new GMap(document.getElementById(“map”));
map.centerAndZoom(new GPoint(-2.944336,53.644638), 10);
map.addControl(new GSmallZoomControl());
showentitylist();
}

}

The final stage is to load the list of entity types by calling the showentitylist() function.

17_790095 ch11.qxp 6/12/06 1:39 PM Page 216

217Chapter 11 — Building a Community Site

Loading a List of Types
The showentitylist() function loads the XML from the backend CGI script. It also
builds a list of types that the user can click to load the markers for a given entity. An identical
link is provided to hide existing markers:

function showentitylist() {
index = 0;
types = [];
message.innerHTML = ‘Select a business type’;
infopanel.innerHTML = ‘’;
var request = GXmlHttp.create();
request.open(‘GET’,’/examples/ch11-03.cgi?m=entitylist’, true);
request.onreadystatechange = function() {
if (request.readyState == 4) {

var xmlsource = request.responseXML;
var typelist = xmlsource.documentElement.getElementsByTagName(“type”);
for (var i=0;i < typelist.length;i++) {
types.push(typelist[i].getAttribute(“typename”));
infopanel.innerHTML = infopanel.innerHTML +
‘<a href=”#” onClick=”loadentity(‘ +
i +
‘);”>’ +
typelist[i].getAttribute(“typename”) +
‘ | ’ +
‘<a href=”#” onClick=”clearmarkers(‘ +
“‘“ + typelist[i].getAttribute(“typename”) + “‘“ +
‘);”>Hide ‘ +
typelist[i].getAttribute(“typename”) +

‘
’;
}

}
}
request.send(null);

}

The process is the by now familiar case of getting a list of individual matching XML tags and
extracting the attribute information to build the links.

Moving the Map
The movemap() function centers the map (using the latitude and longitude in the entity
objects) on a marker when its name is clicked from the loaded list of markers:

function movemap(index) {
map.recenterOrPanToLatLng(new GPoint(markers[index].lng,

markers[index].lat));
markers[index].marker.openInfoWindowXslt ;
(markers[index].info,”/examples/ch08-12.xsl”);
}

17_790095 ch11.qxp 6/12/06 1:39 PM Page 217

218 Part III — Google Map Hacks

The function also triggers the info panel to open. The XML for the marker is loaded from the
XML placed into the attribute for the marker object. This is a change from Chapter 9, where
the XML was loaded using a unique index reference from a global array.

Removing Existing Markers
To remove existing markers from the map, you step through the list of marker objects, remov-
ing each marker overlay. You can do this by using the marker reference stored as an attribute in
the marker object:

function clearmarkers(type) {
var keeplist = [];
for (var i=0;i<markers.length;i++) {

if (markers[i].type == type) {
map.removeOverlay(markers[i].marker);

} else {
keeplist.push(markers[i]);

}
}
markers = [];
for (var i=0;i<keeplist.length;i++) {

markers.push(keeplist[i]);
}

}

Markers also need to be removed from the array of markers displayed on the map. There are
many ways to achieve this, but the most efficient and reliable that I have found is to push each
marker that is not being deleted onto a new array. Then empty the original array and repopu-
late it with the markers that have not been deleted.

Adding Markers
Adding a marker involves creating the point and marker objects and accepting the icon
information and type to populate an appropriate entity object. The marker is then created, and
the listener for opening the info window to each marker is added:

function addmarker(x,y,title,info,icon,type) {

var point = new GPoint(parseFloat(x),parseFloat(y));
var marker = new GMarker(point,icon);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowXslt(info,”/examples/ch08-12.xsl”);
}

);
map.addOverlay(marker);
markers.push(new entitymarker(y,x,title,type,marker,info));
infopanel.innerHTML = infopanel.innerHTML +

17_790095 ch11.qxp 6/12/06 1:39 PM Page 218

219Chapter 11 — Building a Community Site

‘’ +
title +
‘
’;

markindex++;
}

The entity is then created and added to the array of entities that were added to the map. Then
a list of entities is shown in the information panel.

Loading Markers for a Type
Loading an entity parses the XML generated from the database, generates the markers, and
recenters and zooms the map:

function loadentity(index) {

First, the entity type is determined, and the HTML message panel is populated to show the
entity name:

message.innerHTML = types[index];
var entitytype = types[index];

The icon for the entity type is generated. Entity types from the database are generally in title
case, so toLowerCase() is used on the type name to create a lowercase version of the image
URL that is used to build the icon:

var baseIcon = new GIcon();
baseIcon.iconSize = new GSize(32,32);
baseIcon.iconAnchor = new GPoint(0,32);
baseIcon.infoWindowAnchor = new GPoint(32,0);
baseIcon.image = “http://maps.mcslp.com/examples/” + ;

types[index].toLowerCase() + “.png”;

Now the XML is parsed to extract the relevant information. The basic XML format is the
same as before. In a nutshell, the markers are extracted by getting an array of all the XML tags
of type marker and then extracting the attributes. Info window contents are extracted as
XML using the same technique, and both pieces of data are used with the addmarker()
function:

infopanel.innerHTML = ‘’;
var points = [];
var request = GXmlHttp.create();
request.open(‘GET’,’/examples/ch11-03.cgi?m= ;

getmarkers&entity=’+types[index], true);
request.onreadystatechange = function() {
if (request.readyState == 4) {

var xmlsource = request.responseXML;
var markerlist = ;

xmlsource.documentElement.getElementsByTagName(“marker”);
var infowindow = ;

xmlsource.documentElement.getElementsByTagName(“infowindow”);

17_790095 ch11.qxp 6/12/06 1:39 PM Page 219

220 Part III — Google Map Hacks

Now, for each marker the addmarker() function is called to create the marker with the cus-
tom icon:

for (var i=0;i < markerlist.length;i++) {
addmarker(parseFloat(markerlist[i].getAttribute(“lng”)),

parseFloat(markerlist[i].getAttribute(“lat”)),
markerlist[i].getAttribute(“title”),
infowindow[i],
baseIcon,
entitytype);

}

Once all the markers have been created, the map is recentered. However, the application no
longer builds an array of points to be used:

recenterandzoom(markers);
infopanel.innerHTML = infopanel.innerHTML +

‘
’ +
‘ ;

Back to business types
’;
}
}
request.send(null);

}

Instead, you supply the array of markers that have been added, and a small modification is
made to the recenterandzoom() function to use the new object array for the source
information.

Recentering the Map
To recenter the map, you need to extract the data from the marker objects. To do this, you
make a small change to the function to extract the data straight from the objects, rather than
from the array of points from a global variable used in previous examples. The remainder of the
function is the same, though:

function recenterandzoom(markers) {
var latpoints = [];
var lngpoints = [];

for(var i=0;i<markers.length;i++) {
latpoints.push(markers[i].lat);
lngpoints.push(markers[i].lng);
}

latpoints.sort(function(x,y) { return x-y; });
lngpoints.sort(function(x,y) { return x-y; });
var newlat = latpoints[0] + ((latpoints[latpoints.length-1] - ;

latpoints[0])/2);

17_790095 ch11.qxp 6/12/06 1:39 PM Page 220

221Chapter 11 — Building a Community Site

var newlng = lngpoints[0] + ((lngpoints[lngpoints.length-1] - ;
lngpoints[0])/2);

var newpoint = new GPoint(parseFloat(newlng),parseFloat(newlat));

var idealspan = new GSize(parseFloat(Math.abs(lngpoints ;
[lngpoints.length-1]-lngpoints[0])),

parseFloat(Math.abs(latpoints ;
[latpoints.length-1]-latpoints[0])));

map.zoomTo(1);
var idealzoom = 1;

for(var i=1;i<16;i++) {
var currentsize = map.getSpanLatLng();

if ((currentsize.width < idealspan.width) ||
(currentsize.height < idealspan.height)) {

map.zoomTo(i);
idealzoom = i;

} else {
break;

}
}

map.centerAndZoom(newpoint,idealzoom);
}

One of the benefits of the using the global array of all the objects on the map is that the map is
recentered according to all of the entities displayed, not just the most recently added entities to
the map.

Closing HTML
The closing HTML provides the structure for the page, incorporating the same map-on-the-
right, info-panel-on-the-left structure used before:

//]]>
</script>
</head>
<body onload=”onLoad()”>
<table cellspacing=”15” cellpadding=”0” border=”0”>
<tr valign=”top”>
<td><div id=”map” style=”width: 800px; height: 600px”></div></td>
<td><h1><div id=”message”></div></h1><div id=”infopanel”></div></td>
</tr>
</table>
</body>
</html>

17_790095 ch11.qxp 6/12/06 1:39 PM Page 221

222 Part III — Google Map Hacks

Final Application
The final application provides a simple method for adding entities to the map for display. The
application starts off with a list of entity types, shown in Figure 11-3.

FIGURE 11-3: Initial application.

You can view the application featured in this chapter at http://maps.mcslp.com/
examples/ch11-01.html.

When you add an entity type to the map (for example, restaurants), you get a zoomed and
focused overlay (see Figure 11-4).

Adding more entities adds to the data, as shown in Figure 11-5.

Finally, you can hide a shown entity for clarity (see Figure 11-6).

And of course, info panels are available for all the points on the map (see Figure 11-7).

To extend the information shown on the map, you only have to run ch11insert.pl with
the appropriate entity type and location information and provide a suitable icon to display
the data.

17_790095 ch11.qxp 6/12/06 1:39 PM Page 222

223Chapter 11 — Building a Community Site

FIGURE 11-4: The zoomed-in application.

FIGURE 11-5: Adding more icons.

17_790095 ch11.qxp 6/12/06 1:39 PM Page 223

224 Part III — Google Map Hacks

FIGURE 11-6: Hiding existing icons.

FIGURE 11-7: Info panels are still available.

17_790095 ch11.qxp 6/12/06 1:39 PM Page 224

225Chapter 11 — Building a Community Site

Wrapping Up
Providing different layers of information is an effective way to stack your map with as much
data as possible, but you must have a strategy for portraying the information on your map that
will make the data as visible as possible. In this chapter, different icons were used to display the
different types of information, but there are other methods for displaying that information,
such as using overlays, numbered icons, or third-party extensions.

The application in this chapter also demonstrated the importance of objects for storing infor-
mation about markers on the map. By building some intelligence into the markers and objects,
manipulating and displaying the information onscreen becomes much easier.

The next chapter expands on the icon-based flexibility shown here by using a different method
for overlaying information on the map that is more practical when you want the marker to be
more flexible and explicit than a simple, predetermined icon.

17_790095 ch11.qxp 6/12/06 1:39 PM Page 225

17_790095 ch11.qxp 6/12/06 1:39 PM Page 226

The Realtors and
Archaeologists
Toolkit

Sometimes the maps you create are less about information, statistics, or
features that are on the map and more about the features that are not
on the map. A good example of this is maps for the typical Realtor or

property developer. Their needs are not necessarily centered on what ele-
ments are already on a map but instead on what can be achieved within a
particular space, such as planning a new building, redevelopment, or other
project. In this respect, the focus of the map they are using is how their
property integrates with other elements in the area. Archaeologists’ interest
lies at the other end of the scale. They are not interested in what might hap-
pen, but what has happened in the past and comparing that to the current
lay of the land.

Both change the way you interact with Google Maps. Instead of overlaying
routes, markers, and other elements, you need to embed or overlay informa-
tion on the map on a larger and much more visual scale. For example, with a
Realtor you might overlay the plans for a new set of buildings for an exist-
ing plot. For an archaeologist, you might want to provide an image of a dis-
covered object or an overlay of the dig on top of a map or satellite images to
provide a context for the specifics of the dig.

This chapter examines solutions for both these situations, and in the process
looks at alternative ways of representing information and different ways of
interacting with the Google Maps application.

Alternative Markers
Previous chapters used custom markers to represent different pieces of
information on a Google Map. You’ve even looked at generating your own
custom icons using different images. One of the issues with the Google
Maps marker system is that the markers themselves are not very flexible.

˛ Use alternative
marker technology

˛ Embed photos and
icons as highlights

˛ Overlay images and
drawings

˛ Identify locations
from clicks

chapter

in this chapter

18_790095 ch12.qxp 6/12/06 1:39 PM Page 227

228 Part III — Google Map Hacks

Although you can introduce any image as a marker, generating that image is not something
that can easily be handled on the fly. Adding text to a marker is only possible by providing an
info window that pops up when you click the marker, and there is very little control over the
opacity and appearance of the icon that is displayed.

The TLabel Extension
The answer to the problem is the TLabel v1 extension, written by Thomas C. Mangan and
available through his Google Maps web site (http://gmaps.tommangan.us/tlabel
.html). TLabel enables you to create a simple point on a map based on text or an image. It
is like creating a unique marker or info window, but without the hassle of creating the custom
icon first.

The result is best demonstrated with a simple text example, something which is not possible
with the standard Google Maps API. Figure 12-1 shows a basic TLabel object overlaid on
top of a Google Map.

FIGURE 12-1: The basic TLabel object.

You can see from the figure that the label is just that — a simple piece of text placed on top of
the map. The text in the label is completely dynamic; this is not an icon that I have previously
generated. The contents, layout, and opacity of the object are all controllable when the TLabel
object is generated.

18_790095 ch12.qxp 6/12/06 1:39 PM Page 228

229Chapter 12 — The Realtors and Archaeologists Toolkit

Basic TLabel Creation
To use TLabel, copy the TLabel javascript file from the web site mentioned in the pre-
ceding section. This ensures that the JavaScript for the label is always available in your applica-
tions. You can then import the JavaScript using a line like the following:

<script src=”tlabel.10.js” type=”text/javascript”></script>

To create a new TLabel, you just create a new object based on the TLabel class defined in
the preceding JavaScript file:

var tlabel = new TLabel();

Labels can be added and removed from the map using extensions to the Google Maps object.
For example, to add a TLabel to your Google Map, use the following:

map.addTLabel(tlabel);

And to remove a previously added label, use this:

map.removeTLabel(tlabel);

Finally, the TLabel class exposes two methods that control the location (setPosition())
and the opacity (setOpacity()) of the label on the map. Some examples of how to use these
are shown later in this chapter.

Anchor Points and Other Properties
The properties of the TLabel object control how it appears. The critical elements are the
anchorPoint and anchorLatLng properties, which specify the relative location on the
label that will be pinned to the specified location.

Table 12-1 lists the properties supported by the TLabel object.

Table 12-1 TLabel Properties

Property Required Description

id Yes The ID of the label. It is exposed through the
standard DOM interface, so you can edit and
control the content style by modifying the value
of the DOM element directly, rather than
updating the property value of the TLabel
object.

anchorLatLng Yes The GPoint object that refers to the latitude/
longitude where the label will be anchored.
This works in tandem with the anchorPoint
property to determine which point of the label is
attached to the lat/long on the map.

Continued

18_790095 ch12.qxp 6/12/06 1:39 PM Page 229

230 Part III — Google Map Hacks

Table 12-1 (continued)

Property Required Description

anchorPoint No The point on the label that will be used as the
reference point for pinning the label to the map.
Possible values are topLeft, topCenter,
topRight, midRight, bottomRight,
bottomCenter, bottomLeft, midLeft,
or center. The default value is topLeft,
meaning the top-left corner of the label will be
pinned to the lat/long on the map.

markerOffset No The offset (using a GSize object) of the label in
relation to a GMarker object, if you are using a
GMarker and TLabel object together.

content Yes The XHTML code that will be displayed within
the label.

percentOpacity No The starting opacity for the label, using a
number from 0 (completely transparent) to 100
(completely opaque). You can separately set this
value using the setOpacity() method to the
TLabel object.

For example, you can create a simple TLabel using the following code:

var label = new TLabel();
label.id = ‘label’;
label.anchorLatLng = lastpoint;
label.anchorPoint = ‘topRight’;
label.content = ‘<div>Content</div>’;
label.percentOpacity = 50;

It is generally a good idea to be specific about the style of the text (using standard XHTML
markup) that you use in the content property, particularly with respect to the background
color (which sets the color of the label) and the size of the font, which affects the appearance
of the label, especially when combined with an arrow pointer.

Adding an Arrow Pointer
By default, a TLabel is just a bare box with XHTML contents. You will probably want to add
an arrow that links the lat/lng point that you are using to the label itself. To do this, you need
to create the arrow and then use the XHTML to incorporate the image and offset the image
from the rest of the text as a background image. Figure 12-2 demonstrates this process in
more detail.

18_790095 ch12.qxp 6/12/06 1:39 PM Page 230

231Chapter 12 — The Realtors and Archaeologists Toolkit

From Figure 12-2 you can see that the anchor point remains as the point for the entire label
(according to the apex of the arrow). An offset then specifies the location of the arrow in rela-
tion to the content of the rest of the label. You achieve this in XHTML by specifying the
padding around the text label and using the arrow as the background image.

FIGURE 12-2: Adding an arrow to the label.

An outer XHTML block defines the entire label, and the inner XHTML block defines the
text portion of the label. The label demonstrated in Figure 12-1 can be created using the fol-
lowing XHTML:

<div style=”padding: 16px 24px 0px 0px; background: url(topright.png) ;
no-repeat top right;”>
<div style=”background-color: #ff0000; padding: 2px; font-size: 0.7em;”>
<nobr>Inner text</nobr>
</div>
</div>

The padding defines the offset size of the arrow being used, which is also used as the back-
ground image, appended to the top right of the displayed fragment. The effect is to offset the
arrow away from the actual label.

The only issue with this process is that you must separately define and create a suitable arrow
according to the anchor point you want to use for your label. In the preceding example, the
arrow is on the top right; separate arrows (and appropriate XHTML) would be required if
you wanted an anchor point on the bottom left, top middle, and so on.

There is one final trick with the TLabel extension — using it for embedding an arbitrary
image.

Embedding Pictures as Labels
You can adapt the TLabel object so that it shows an image, rather than text. Simply change
the XHTML so that the embedded component is an image, rather than some text. It really is
as simple as that.

Inner <div>

Outer <div>
Padding top

Padding right

18_790095 ch12.qxp 6/12/06 1:39 PM Page 231

232 Part III — Google Map Hacks

However, the effect is more dramatic. An embedded image in a TLabel works in the same
way as a text label, even using the same arrow structure. The effect is a simpler and cleaner way
of highlighting items on a map without going to the trouble of using the full GIcon object or
having to worry about developing an icon that has practical points for anchoring the image to
the map.

Returning to the original goals outlined at the beginning of this chapter, using a photo or
image in this way can be a useful way of highlighting an object. For example, you can use a
picture of the object found at a location and accentuate it by embedding some text. Both text
and images can be used in an archaeological application for highlighting different elements
on a map.

Building a TLabel Application
The sample application provides a very simple way for the user to highlight different items
on the map from an archaeological perspective. The interface is simple and straightforward —
the user clicks the map and then clicks a link to add an appropriate object, creating a TLabel
in the process. A number of different TLabels are available, including some basic user-
generated text labels and an image type that projects an image of a vase over a particular
location.

The whole system works through an event handler that records the position when the user
clicks the map. When the user then chooses to create a point, the recorded map point is used as
the basis for the anchor point.

In addition, you record all the points placed onto the map so that you can later hide and show
individual object groups. This will enable the user to control the interaction between different
objects placed onto the map.

The preamble is the same as usual:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 12, Ex 1</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>
<script src=”tlabel.10.js” type=”text/javascript”></script>
<script type=”text/javascript”>

For global variables, you need arrays to record the TLabels placed onto the map, the location
of the last clicked point, and the panels used to store and display information:

var map;
var index = 0;
var selpanel;

18_790095 ch12.qxp 6/12/06 1:39 PM Page 232

233Chapter 12 — The Realtors and Archaeologists Toolkit

var mapcontrols;
var lastpoint;
var objectfinds = [];
var trenchs = [];
var ruins = [];

Setting Up the Map
For the location you’ll use a bare field outside Oklahoma City. It happens to be clear and a
uniform size, although of course the map could be located anywhere. The mapping information
is irrelevant; you want to be able to compare the lay of the land with the archaeological finds.
The Google Satellite photos can actually show quite a lot of information. For example, some
buried elements are only visible from the sky and then only because the coloration of the land
changes or minor variations in height change the appearance of the land when photographed.
As far as I know, the field being used here has no archaeological features, although you can see
patterns on the ground, probably the result of small hills and/or the effects of farming.

Unfortunately, there is not yet enough of the U.K. viewable at high enough quality to examine
some of the sites I know well where the information is visible, so you’ll work with the fake
farmland dig using this field.

To start, you zoom right in to the field, switch the display type for the map using
setMapType(), and then create the event listener that will record map clicks. Each time
the map is clicked, the function is called, supplying the object overlay and the point where the
user clicked. It is the latter item that needs to be recorded, and this is placed into the global
variable:

function onLoad() {
if (GBrowserIsCompatible()) {

selpanel = document.getElementById(“selections”);
mapcontrols = document.getElementById(“mapcontrols”);
map = new GMap(document.getElementById(“map”));
map.setMapType(G_SATELLITE_TYPE);
map.centerAndZoom(new GPoint(-97.58790493011475, 35.28039711620333), 1);
map.addControl(new GLargeMapControl());
GEvent.addListener(map, ‘click’, function(overlay,point) {

lastpoint = point;
});

}
}

Adding a Label
The main function is addpoint(), which accepts a single argument, the type of point to
be added to the map. The type is referenced in the link that the user clicks to generate the
TLabel object. The different types adjust two elements: the background color of the label
that is created and, in the case of the vase, the inclusion of the vase image in place of the text
description.

18_790095 ch12.qxp 6/12/06 1:39 PM Page 233

234 Part III — Google Map Hacks

The function gets the reference to the text box that will be used to populate the label and sets a
default color for the label. The function also makes sure that the user has actually clicked the
map by checking the value of the global lastpoint variable:

function addpoint(pointtype) {
if (lastpoint) {

entityname = document.getElementById(“entityname”);
color = ‘#f2efe9’;

Next, the label object is created by setting the common TLabel properties for all the different
types of entities. The index reference used here is important, so a simple incrementing value
is used:

var label = new TLabel();
label.id = ‘label’ + index++;
label.anchorLatLng = lastpoint;
label.anchorPoint = ‘topRight’;
label.content = content;
label.percentOpacity = 50;

For each entity type, the color is configured using a local variable, and the object is pushed onto
the array for each object type. These arrays will be used when the user hides or shows object
groups on the map. Although the definition of the object is not complete at the time it is
pushed onto the array (the label content has not been set), the object ID is enough to identify
the object when showing/hiding the labels.

if (pointtype == ‘object’) {
objectfinds.push(label);
color = ‘#f20000’;

}

if (pointtype == ‘trench’) {
trenchs.push(label);
color = ‘#f2ef00’;

}

if (pointtype == ‘ruin’) {
ruins.push(label);
color = ‘#f2efe9’;

}

If the object being created is a vase, the label content is populated with the appropriate HTML
containing the reference to the image of the vase, rather than the text of the input box:

if (pointtype == ‘vase’) {
objectfinds.push(label);
color = ‘#f20000’;

label.content = ‘<div style=”padding: 16px 24px 0px 0px; ;
background: url(topright.png) no-repeat top right;”> ;

18_790095 ch12.qxp 6/12/06 1:39 PM Page 234

235Chapter 12 — The Realtors and Archaeologists Toolkit

<div style=”background-color: #f2efe9; padding: 2px;”> ;
</\div></div>’;

}

If the entity isn’t a vase, the content of the input box is checked and the content is then popu-
lated. If the input box is empty, a warning is raised and no label is created.

else {
if (entityname.value.length == 0) {

alert(‘You must give this point a name’);
return;

}

var content = ‘<div style=”padding: 16px 24px 0px 0px; ;
background: url(topright.png) no-repeat top right;”><div style= ;
“background-color: ‘ + color + ‘; padding: 2px; font-size: 0.7em;”> ;
<div style=”color: #0000ff; font-weight: bold”>’ + pointtype + ;
‘</div><nobr>’ + entityname.value + ‘</nobr></div></div>’;

label.content = content;
}

Finally, the label is added to the map:

map.addTLabel(label);
}

An alert is raised if the map has not been clicked and a point has not been created:

else {
alert(“No point has been set”);

}
}

Showing and Hiding Points
To show and hide the points, links on the main page call the showpoints() and
hidepoints() functions, which accept the name of an array and iterate through the objects,
showing or hiding them as appropriate:

function showpoints(pointtype) {
for(var i=0;i<pointtype.length;i++) {

map.addTLabel(pointtype[i]);
}

}

function hidepoints(pointtype) {
for(var i=0;i<pointtype.length;i++) {

map.removeTLabel(pointtype[i]);
}

}

18_790095 ch12.qxp 6/12/06 1:39 PM Page 235

236 Part III — Google Map Hacks

The HTML Interface
Finally, here is the HTML that contains the map, links, and input box for controlling and
overlaying information and entities on the map. The layout is similar to previous examples; the
map is on the left and the control interface is on the right:

</script>
</head>
<body onload=”onLoad()”>
<table cellspacing=”15” cellpadding=”0” border=”0”>
<tr valign=”top”>
<td><div id=”map” style=”width: 800px; height: 600px”></div></td>
<td><h1>Overlay Selection</h1><div id=”selections”></div>
<form action=”#”>Entity title: ;
<input type=”text” size=”20” id=”entityname”></form>

Add Vase | ;
Hide Vase ;
 | Show Vases

Add Object | ;
Hide Objects ;
 | Show Objects

Add Trench ;
 | ;
Hide Trenchs | ;
Show Trenchs

Add Ruin | ;
Hide Ruins | ;
Show Ruins

</td>
<td><h1>Map Control</h1><div id=”mapcontrols”></div></td>
</tr>
</table>
</body>
</html>

The Application in Use
The application starts out with a blank map, waiting for the user to click a point and create a
suitable label, as shown in Figure 12-3.

Clicking a point and then clicking the Add Vase link creates a vase label on the map. Two have
been generated in Figure 12-4.

Other elements can be added to the map accordingly. Figure 12-5 shows a variety of different
entities added to the map.

You can see that the labels are created and even overlap, but the opacity, set at 50 percent, helps
to make the elements on the map more readable. This is one of the reasons why the system also
includes the facility to hide groups of objects, as shown in Figure 12-6, where the vases have
been hidden from the map.

18_790095 ch12.qxp 6/12/06 1:39 PM Page 236

237Chapter 12 — The Realtors and Archaeologists Toolkit

FIGURE 12-3: The initial interface.

FIGURE 12-4: Vases highlighted on the map.

18_790095 ch12.qxp 6/12/06 1:40 PM Page 237

238 Part III — Google Map Hacks

FIGURE 12-5: Adding multiple entities.

FIGURE 12-6: Hidden entities.

18_790095 ch12.qxp 6/12/06 1:40 PM Page 238

239Chapter 12 — The Realtors and Archaeologists Toolkit

Obviously the information created here is not stored and retained, but there is no reason why
the same principles shown in other chapters couldn’t be used to either generate the labels or
store the user-created labels in the system for later use. The key is in the generation and inter-
action between the user, the map, and the TLabel extension.

Overlaying Images and Drawings
In the preceding part of this chapter, the TLabel extension was used to allow text or image-
based labels to be placed onto a Google Map. The TPhoto extension enables you to overlay a
photo on top of a Google Map, either to fully replace the information shown on the map or to
augment the detail in some way.

For example, you could overlay an infrared photograph on top of the map to show particular
highlights, or perhaps use an overlay to artificially create the existence of a particular structure,
building, or object onto the map.

The former case is a good example where a localized area photo, perhaps from an archaeologi-
cal survey, could be used to enhance the information displayed on the map. Imagine if the dig
highlighted in the previous section had an aerial infrared (or perhaps underground ultra-sonic)
survey that could be overlaid precisely onto a live map of the region.

In this section the same basic method is used to overlay a very simple map of a new office com-
plex onto the same field used in the previous section. The idea is to give a live impression of the
office buildings, their location, and potential relationships with other objects on the map.

The TPhoto Extension
The TPhoto extension is from the same developer as TLabel, but unlike TLabel it is
designed as a method for overlaying an image (usually a large one) on top of a Google Map,
rather than acting as a label for a particular point on the map.

As such, unlike TLabel, the reference point for an image to be overlaid on top of the map is
based on either matching a pixel of the image with a specific latitude/longitude or matching
the top left and bottom right of the image to specific latitudes/longitudes. In the case of the
former method, anchoring a single point gives you control over the zoom level of the overlaid
image. In the case of the latter method, the anchoring of top left and bottom right of the image
determines the zoom level (the image will be located between those points and zoomed
accordingly). For the office plan overlay example, the latter method is used.

As with TLabel, you should download the JavaScript that creates the TLabel (from http://
gmaps.tommangan.us/TPhoto.html) and place the script on your own server to ensure
that it is always available. After the script has been imported into your Google Maps page, you
can configure the image to be overlaid using the following code fragment:

photo = new TPhoto();
photo.id = ‘[id]’;
photo.src = ‘[src]’;
photo.percentOpacity = [percent];

18_790095 ch12.qxp 6/12/06 1:40 PM Page 239

240 Part III — Google Map Hacks

photo.anchorTopLeft = new GPoint(lng,lat);
photo.anchorBottomRight = new GPoint(lng,lat);
map.addTPhoto(photo);

The id property should be used and enabled in the same way as TLabel. The opacity controls
the visibility of the image when it is overlaid, and the anchors for the top-left and bottom-right
extremities of the image should be self-explanatory.

Using TPhoto Overlays
A simple overlay has been generated that maps out some simple office structures, shown in
Figure 12-7.

FIGURE 12-7: Office plan overlay.

To overlay the image, it is a simple case of initializing the map, creating a TPhoto object, and
adding it to the map. The preamble is familiar, this time importing the TPhoto JavaScript
extension during the process:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>

<title>MCslp Maps Chapter 12, Ex 2</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>

18_790095 ch12.qxp 6/12/06 1:40 PM Page 240

241Chapter 12 — The Realtors and Archaeologists Toolkit

</script>
<script src=”tphoto.16.js” type=”text/javascript”></script>
<script type=”text/javascript”>

var map;
var index = 0;
var message;
var mapcontrols;
var lastpoint;
var photo;
var opacity = 50;
var mapobjects = [];

The initialization function for the page also covers familiar ground. Initially the map is set to
show satellite images, and the map is centered on the same field outside Oklahoma City. A
larger map control is added to the map to enable the user to move around:

function onLoad() {
if (GBrowserIsCompatible()) {

message = document.getElementById(“message”);
mapcontrols = document.getElementById(“mapcontrols”);
map = new GMap(document.getElementById(“map”));
map.setMapType(G_SATELLITE_TYPE);
map.centerAndZoom(new GPoint(-97.58790493011475, 35.28039711620333), 1);
map.addControl(new GLargeMapControl());

The basic overlay can then be constructed and added to the map. An earlier script was used
to determine the top left and bottom right of the field so that the overlay could be added to
the map:

photo = new TPhoto();
photo.id = ‘overlay’;
photo.src = ‘ch12-overlay.png’;
photo.percentOpacity = 50;
photo.anchorTopLeft = new GPoint(-97.59286165237427, 35.28367266426725);
photo.anchorBottomRight = new GPoint(-97.58256196975708, ;

35.27654336061367);
map.addTPhoto(photo);

}
}

To help view the overlay and the map in relation to the live elements on the map (roads, other
buildings, rivers, hills, and other natural structures), a control is added to change the opacity
of the overlay. The opacity value is stored locally (rather than querying the object), and it is
updated higher or lower (according to the supplied value). Attempts to modify the opacity
value beyond the available limits are ignored.

function changeopacity(changevalue) {
var newopacity = opacity + changevalue;

if (newopacity < 0) {

18_790095 ch12.qxp 6/12/06 1:40 PM Page 241

242 Part III — Google Map Hacks

return;
}
if (newopacity > 100) {

return;
}
photo.setOpacity(newopacity);
opacity = newopacity;

}

Finally, the HTML for the application interface provides a very simple way of changing the
map type and the opacity of the overlay:

</script>
</head>
<body onload=”onLoad()”>
<table cellspacing=”15” cellpadding=”0” border=”0”>
<tr valign=”top”>
<td><div id=”map” style=”width: 800px; height: 600px”></div></td>
<td><h1>New Office Grand Plan</h1><div id=”message”> ;
Click Map for Info</div>

<h1>Overlay Control</h1> ;
Reduce overlay | <a href=”#” onClick=”changeopacity(10);” ;
>Increase overlay

Show Map | ;
Show Satellite ;
 | ;
Show Hybrid</td>
</tr>
</table>
</body>
</html>

The initial application is shown in Figure 12-8.

The TPhoto extension handles the positioning and zooming of the overlay onto the map.
Because the overlay is linked to specific latitude/longitude points, zooming out or moving the
map will move the overlay accordingly. You can see the effects in Figure 12-9.

The overlay is also visible over any map type. For clarity, map type buttons have not been
added to the map itself. Instead a suite of external buttons controls the interface. Figure 12-10
shows the map and overlay, this time on the basic map instead of the satellite images.

There are some problems with this map from the perspective of information. There are allo-
cated blocks on the map, but there is no information on what they are. TLabels of GMarkers
could be used to highlight the different areas. Instead, a solution that involves the map provid-
ing you with information and parsing it, rather than the other way around, offers a little more
flexibility.

18_790095 ch12.qxp 6/12/06 1:40 PM Page 242

243Chapter 12 — The Realtors and Archaeologists Toolkit

FIGURE 12-8: The initial overlay example.

FIGURE 12-9: The overlay is locked.

18_790095 ch12.qxp 6/12/06 1:40 PM Page 243

244 Part III — Google Map Hacks

FIGURE 12-10: Reducing the overlay visibility.

Identifying Elements from Click Locations
Adding information to a map extends and enhances the data that the map can provide.
However, the map itself can help to provide information or trigger the display of information.
For example, when clicking on a map you might want to determine what is located in that
area without necessarily highlighting that information with a marker or overlay. This can be
achieved in many ways, but the most effective way is to create a new object type. Each object
will contain the confines of different areas on the map, a simple description of the area, and a
method that checks a supplied point against the object to determine if the click was within the
defined area.

The map application in the previous section can then be updated. First, the different areas on
the map are registered using the new object. A number of events are also added to the map so
that a click on the map will trigger a check of the registered objects, and movements and
changes to the map will trigger modifications to the overlay.

Creating a Unique Map Object
The first step is to create a new object class to hold the top-left and bottom-right areas on the
map for a given location. The information will be stored in properties for the object. Objects
within JavaScript use the special this value to reference and define entities of the object.

18_790095 ch12.qxp 6/12/06 1:40 PM Page 244

245Chapter 12 — The Realtors and Archaeologists Toolkit

Storing the properties is therefore a simple case of assigning the function’s supplied arguments
to the properties of the new object. Just in case the information provided is not in the obvious
top-left/bottom-right order, the input values are checked and the properties are set accordingly:

function MapObject (topleftx,toplefty,botrightx,botrighty,text) {
if (topleftx < botrightx) {

this.minX = topleftx;
this.maxX = botrightx;

} else {
this.minX = botrightx;
this.maxX = topleftx;

}

if (toplefty < botrighty) {
this.minY = toplefty;
this.maxY = botrighty;

} else {
this.minY = botrighty;
this.maxY = toplefty;

}
this.description = text;

To check a given point against the outline area for an object, you need a method to check a
given latitude/longitude against the registered bounds for the object. To define a method for an
object in JavaScript, you must first create a reference to the function as a property of the object
and then define the function itself.

The function definition is simple. It checks whether the arguments supplied to the method are
within the minimum and maximum values supplied when the object was created:

this.inbounds = inbounds;
function inbounds(x,y) {

if (((x > this.minX) && (x < this.maxX)) &&
((y > this.minY) && (y < this.maxY))) {
message.innerHTML = this.description;

}
}

}

Now the areas just have to be defined within your application.

Registering the Objects on the Map
Each area object is placed into an array, and the following code defines the bounds and descrip-
tion for each of the areas based on the overlay created in the previous section:

mapobjects.push(new MapObject(-97.58590936660767, 35.27654336061367,
-97.58260488510132, 35.28360260045482,
‘Car Park’));

mapobjects.push(new MapObject(-97.58904218673706, 35.282008632343754,

18_790095 ch12.qxp 6/12/06 1:40 PM Page 245

246 Part III — Google Map Hacks

-97.58638143539429, 35.278137436300966,
‘Sales Office’));

mapobjects.push(new MapObject(-97.59279727935791, 35.283585084492245,
-97.58638143539429, 35.282376473923584,
‘Packaging/Delivery Office’));

mapobjects.push(new MapObject(-97.59277582168579, 35.282008632343754,
-97.59017944335938, 35.278137436300966,
‘Admin Office’));

mapobjects.push(new MapObject(-97.59277582168579, 35.27776957546562,
-97.5864028930664, 35.27657839558136,
‘IT/Support Services’));

Now the map just has to trigger a check of each of these objects when the map is clicked.

Identifying the Click Location
By modifying the click event that was used in the previous example, a click on the map can
trigger checking the list of registered areas. This is achieved by iterating over the array of
objects and then calling the inbounds() method on each object. The following fragment
should be placed into the onLoad() function to be initialized with the rest of the application:

GEvent.addListener(map, ‘click’, function(overlay,point) {
message.innerHTML = ‘Empty’;
for(var i=0;i<mapobjects.length;i++) {

mapobjects[i].inbounds(point.x,point.y);
}

});

If it matches, the information will be placed into the information area of the application.

Resetting the Map Location
To prevent the user from getting distracted by other nearby entities on the map, a timeout can
be added to the window that automatically resets the map’s center point location after a given
interval. The method is actually a function of the JavaScript, not Google Maps, but it can be
used to trigger a Google Maps event, for example a reload of map data. The interval is speci-
fied in milliseconds, and a value of 60000 milliseconds (or 60 seconds) is used in the following
example.

This is actually a two-stage process. First, a function that recenters the map and resets the
timeout (so that it is continually active) must be defined:

function recenter() {
map.centerAndZoom(new GPoint(-97.58790493011475, 35.28039711620333), 1);
window.setTimeout(‘recenter()’,60000);

}

18_790095 ch12.qxp 6/12/06 1:40 PM Page 246

247Chapter 12 — The Realtors and Archaeologists Toolkit

Then you set the initial timeout, either by calling this function within onLoad() or by calling
the setTimeout() method on the window object within onLoad(); the effect is the same:

window.setTimeout(‘recenter()’,60000);

Resetting the Object Opacity
One final element of convenience is to ensure that the overlay is visible when the user changes
between map types. For example, when changing from satellite to map, it can be useful to get
reacquainted with the position of the new office block on the map. To achieve this, another lis-
tener is added to the map. This one is triggered each time the map type is changed, and it
explicitly resets the opacity of the overlay image:

GEvent.addListener(map, ‘maptypechanged’, function() {
photo.setOpacity(50);
opacity = 50;

});

Final Overlay Application
The final map application can be seen in Figure 12-11, showing the initial overlay highlighted
on the satellite image of the field, just as shown earlier in the chapter.

FIGURE 12-11: Overlay image.

18_790095 ch12.qxp 6/12/06 1:40 PM Page 247

248 Part III — Google Map Hacks

If the user clicks in a specific area within the map, the information panel updates with the title
of the area, as defined when you created the area object (see Figure 12-12).

FIGURE 12-12: Getting area detail.

A basic description is shown here, but it could just as easily incorporate more detailed informa-
tion on the office space, even a photo of the artist’s mock-up. Adding extra information to the
process is comparatively easy.

Wrapping Up
The first map example demonstrates some very simple methods of overlaying information that
makes the highlighted points more visible and useful through the use of the TLabel exten-
sion. The extension improves the quality of the information on the map without relying on the
two-stage interface that is available with the standard Google Map GMarker object. The label
works exactly as its name suggests. The simple label is more flexible and probably more useful
in areas where you want to dynamically highlight points to the user.

The second map (and the later extension) shows that a Google Map can provide more than
just mapping data. By using an overlay, you can extend the information provided far beyond the
built-in data in the map. In the extension, the overlay was also used as a basis for determining

18_790095 ch12.qxp 6/12/06 1:40 PM Page 248

249Chapter 12 — The Realtors and Archaeologists Toolkit

additional information. The same technique could have been played to an underground survey,
technical schema, or other data so that it was possible to match information you know with the
live map data that Google provides. With the right overlays and some basic mathematics, it is
possible to build a multi-layer view of a site, perhaps showing different floors, underground lev-
els, and even services such as electricity cables, water pipes, and sewage conduits.

As you can see in both examples, you can use the live Google Map data with other information
to give that information context. To an archaeologist, this means providing reference data that
relates the lay of the land as you know it now with historical information about the location of
objects, finds, buildings, and other elements.

For the Realtor, providing contextual information about a future development enables you to
check whether a site is suitable, whether it’s going to have the right services and connections,
and whether the plan for the site matches the plan in the client’s head. It wouldn’t be hard to
extend the information given, perhaps with photographs of potential views in different loca-
tions, and you could even use the TLabel extension to show the photos on the map.

18_790095 ch12.qxp 6/12/06 1:40 PM Page 249

18_790095 ch12.qxp 6/12/06 1:40 PM Page 250

I Need to Get To...

One of the most common roles that a map has to play is as a guide
from one place to another. Think about the last time you used a
map. Were you trying to find the location of something or to plan

a route from one location to another? Perhaps you were planning a walking
trip, a city tour, or just a way to avoid the latest bout of highway mainte-
nance on your route to work. These are simply examples. The point is that
people use maps to find and locate a route or distance between points.

This chapter examines an application that provides an interface for record-
ing, saving, and loading routes from a database. The user will be able to cre-
ate a new route, manually create the route’s sequence and point layout, and
save and name the route. The application can also obtain a list of the exist-
ing routes and their starting points and load an existing route. For an addi-
tional level of functionality, the application also allows the user to edit and
modify the route details, making a truly dynamic map route application.

The application is divided into two parts: the front end (the HTML and
the Google Maps interface) and the backend (the CGI script that provides
and stores information for the front-end application in a database). Each of
these parts is covered individually.

Front-End Interface
As usual, the front end of the application is a combination of some wrapper
HTML and the JavaScript that provides the interface to the Google Maps
API and provides the connectivity between the front-end application and
the backend CGI that provides the interface to the database that stores
information.

The application is large and is described here in individual sec-
tions according to the role or function that is being described.
The individual code fragments can be re-assembled into a final
application, or you can download the application from the book’s
web site (http://maps.mcslp.com).

˛ Create a database
structure

˛ Implement
JavaScript

˛ Add and update
information

˛ Calculate distance

˛ Returning XML

chapter

in this chapter

19_790095 ch13.qxp 6/12/06 1:40 PM Page 251

252 Part III — Google Map Hacks

HTML Wrapper
The HTML for the application obviously provides the visual interface to the main components
of the application, including the encapsulation of the main Google Maps window:

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml”>
<head>
<meta http-equiv=”content-type” content=”text/html; charset=UTF-8”/>
<title>MCslp Maps Chapter 13, Ex 1</title>
<script src=”http://maps.google.com/maps?file=api&v=1&key=XXX”

type=”text/javascript”>
</script>

<script type=”text/javascript”>
...
</script>
</head>
<body onload=”onLoad()”>

<div id=”map” style=”width: 800px; height: 600px”></div>
<table width=”100%” cellspacing=”5” cellpading=”0” border=”0”>
<tr valign=”top”>
<td width=”33%”><h3>Controls</h3>
New route

Start recording route

Stop recording route

Clear last point

Clear current route

List saved routes

Delete current route</td>

<td width=”33%”><h3><div id=”message”>Messages</div></h3>
<div id=”infopanel”></div></td>
<td width=”33%”><h3>Route information</h3>
<input type=”hidden” id=”routeid” value=”0” size=”10”>
Name
 <input type=text id=”routetitle” size=”40”/>

Description
 <textarea id=”routedesc” rows=10 ;
cols=40></textarea>

Save route</td>
</tr>
</table>
</body>
</html>

The HTML is used to create a four-panel layout. The main panel at the top is the one used to
hold the Google Map. The table at the bottom holds three columns of equal width. The first
holds the links that control the application, a space for a message, and the current route record-
ing status. The middle panel is a generic information window, used to hold items such as the
list of existing routes. The last panel holds a simple form used to hold route details for use
when saving and editing routes.

You can see a sample of the layout in Figure 13-1, showing the application in its initial state.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 252

253Chapter 13 — I Need to Get To...

FIGURE 13-1: Simple route recording application layout.

You can try out this application at the web site using the URL http://maps.mcslp.com/
examples/ch13-01.html.

The HTML also highlights the main operations supported by the application:

� Creating a new route.

� Enabling route recording.

� Disabling route recording.

� Clearing the last point.

� Clearing the current route.

� Obtaining a list of the current routes.

� Deleting the current route from the database.

� Saving a route into the database.

� Saving an existing route as a new route into the database.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 253

254 Part III — Google Map Hacks

By association there are also the following operations:

� Loading a saved route.

� Editing a saved route (by re-saving an existing route).

The information panel is used to list different routes and other data, the message window helps
instruct the user on using the system, and the recording status area displays the current state of
the recording mechanism.

Global Variables
A number of global variables are required to hold the information for the application. Many of
these variables are used to hold references to the HTML elements used to show messages and
other information during the execution of the application. Check the following code, which
includes annotations for each of the variables:

var map; // the main map object
var points = []; // the list of active points in the current route
var route; // the GPolyline of the current route
var routelistener; // the listener object for updating the current route
var rrecording; // the HTML reference for current recording mode
var routeidfield; // the HTML reference of the ID in the form
var routetitle; // the HTML reference of the title in the form
var routedescription; // the HTML reference of the description in the form
var message; // the document reference of the message panel
var infopanel; // the document reference of the info panel
var icontags = ‘ABCDEFGHIJKLMNOPQRSTUVWXYZ’;

The last item (which is not commented) is a simple string of the alphabet that you’ll use to
select the right icon for a marker when displaying a list of the available routes.

With these in place the rest of the application that uses these elements can be built.

Enabling the Route Recording Process
The main component of the application is the ability to record a route, which is accomplished
using the startRoute() function. The process has several stages. First, a listener must be
added to the map so that each time the user clicks the map, you record the location of the click
and push it onto an array of points. As a visual aid for the user, a marker is placed on the map
for the first click, and then the line is drawn for each point pair to show the route they are
recording onto the map.

Note, however, that the array of points is not emptied. This enables the user to start and stop
the recording process without affecting the list of existing points. This enables the user to load
an existing route and extend or modify it, changing the application from a basic route recording
system into a more useful route editing system.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 254

255Chapter 13 — I Need to Get To...

Here is the code for the startRoute() function:

function startRoute() {
routelistener = GEvent.addListener(map, ‘click’, function(overlay,point) {
if (route) {
map.removeOverlay(route);

}
if (points.length == 1) {
addmarker(point,’Start Point’);

}
points.push(point);
if (points.length > 1) {
route = new GPolyline(points);
map.addOverlay(route);

}
});
rrecording.innerHTML = ‘Enabled’;

}

The core of the function is the addition to the map of an event listener to record clicks. The
listener is an inline function. The function has to handle a number of different states, any of
which may be true at the time the event listener function is called, hence the use of individual
if statements, rather than an if/else structure. The function tracks and handles the states in
the following ways:

� If there is already a route overlay (stored in the route variable referring to the active
GPolyline) in place on the map (meaning that a route has been defined), it deletes the
route overlay. (It will be re-created when the new point is added.)

� If this is the first point, it also adds a marker to indicate the start of the route. There is
no reason to record this marker because it will never need to be referenced directly.

� If there is more than one point, it creates a polyline overlay to show the route on the
map. This is recorded in the route variable so that it can easily be removed if necessary.

Embedded in this process is the addition of the point (passed to the listener when the user
clicks the map) into the array of points for the current route. All of these operations take place
as part of the route listener.

The final part of the wrapper function that initiates the recording process is to update the indi-
cator showing the current status of the recording process.

Disabling the Route Recording Process
The most straightforward method of disabling the recording process is simply to remove the
listener that was added to the map. That stops the function triggered by the listener from being
executed:

function endRoute() {
GEvent.removeListener(routelistener);
rrecording.innerHTML = ‘Disabled’;

}

19_790095 ch13.qxp 6/12/06 1:40 PM Page 255

256 Part III — Google Map Hacks

Nothing else changes aside from the status message. By not zeroing the list of points or chang-
ing any other details, the application returns the route and retains the route display and,
because the enable process doesn’t modify anything either, the recording process can be
restarted.

Clearing the Last Point
So that users can edit an existing route (or a new route that they are recoding), the application
includes the ability to remove the last point added to a route. This is achieved by popping the
last point off of the array (which removes the point from the array). Then the existing overlay is
removed, the GPolyline object is re-created, and the overlay is added back:

function clearLastPoint() {
if (points.length > 0) {

points.pop();
}
if (points.length == 0) {

map.clearOverlays();
return;

}
map.removeOverlay(route);
route = new GPolyline(points);
map.addOverlay(route);

}

The application only pops a point off the array if the array has at least one item. If all of the
points in the array are removed from the display, the starting marker object is also removed.

Clearing the Current Route
If the user wants to clear the current route but not delete the route from the list of saved routes,
a convenient function is provided that clears all the overlays (including the starting marker and
any GPolyline overlays) and then empties the array of existing points:

function clearRoute() {
map.clearOverlays();
points = [];

}

Note that nothing else has changed. The application could still be in recording mode, and the
process would continue as normal.

Initializing a New Route
Different from clearing the route, creating a new route zeros not only the list of points, but also
all the other variables, before enabling the recording of the route by calling startRoute():

function newRoute() {
points = [];
routeidfield.value = 0;
routetitle.value = ‘’;

19_790095 ch13.qxp 6/12/06 1:40 PM Page 256

257Chapter 13 — I Need to Get To...

routedescription.value = ‘’;
infopanel.innerHTML = ‘’;
message.innerHTML = ‘Recording a new route’;
map.clearOverlays();
startRoute();

}

The route ID variable is set to zero, because this triggers the creation of a new route when the
route is saved to the backend CGI interface.

Deleting a Route
Deleting a route means removing the route not only from the current view within the browser,
but also from the database itself (if the route was one loaded from the database):

function delRoute() {
if (routeidfield.value != 0) {
routeidtext = ‘&routeid=’ + escape(routeidfield.value);
var request = GXmlHttp.create();
request.open(‘GET’,’/examples/ch13-backend.cgi?m=delroute’ ;

+ routeidtext,true);
request.onreadystatechange = function() {
if (request.readyState == 4) {
var xmlsource = request.responseXML;

var msg = xmlsource.documentElement.getElementsByTagName(“message”);
if (msg.length > 0) {
message.innerHTML = msg[0].getAttribute(‘text’);

}
else
{
message.innerHTML = ‘Error sending request’;

}
}

}
}
request.send(null);
map.clearOverlays();
routeidfield.value = 0;
routetitle.value = ‘’;
routedescription.value = ‘’;
infopanel.innerHTML = ‘’;

}

It is easy to identify a route that has previously been saved (as opposed to one currently being
recorded): A saved route has a non-zero route ID.

To actually delete the route, the application has to compose a request to the CGI backend that
connects to the database. The request consists of the command delroute and the route ID
number. The return value from the process should be a message, encoded in XML, that indi-
cates that the deletion was completed successfully. If the message could not be extracted prop-
erly (which probably means the return value was not XML), it reports there was an error
sending the request to the backend.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 257

258 Part III — Google Map Hacks

To finish off the process, you also zero all of the variables used for storing information about
the route (including the form fields) and then clear the overlays for the map, effectively putting
the application into the same position as when the application was first started.

Saving a Route
To save a route, the JavaScript must compose a suitable request string to the backend, consist-
ing of the title, the description, and a list of points. To ensure that the sequence of the points is
retained, the array element number of the points is also included in the list of points, so that for
each point there is a sequence, latitude, and longitude.

So that the application can save new routes, re-save new routes, and save an existing route as a
new route (perhaps with different points and description details), the saveRoute() function
checks the value of the route ID field (which is hidden) and the value of the supplied argument
(oldnew). The former enables the function to distinguish between saving new and existing
routes. If the route ID is zero, a new route is saved (because a zero value for the route ID trig-
gers a new sequence ID in the database). A non-zero value updates the existing route.

So that an existing route can be saved as a new route, the value of the oldnew argument is
used. If the route to be saved is a new route, a zero is supplied when the route is saved, and this
indicates to the backend (and the database) that a new route is being recorded. For conve-
nience, the value of the field/value pair that would be supplied as part of the request string is
set to a blank string, and only populated if the user specifically wants to create a new route:

function saveRoute(oldnew) {
pointstring = “”;
for(i=0;i<points.length;i++) {
pointstring = pointstring + i + ‘:’ + points[i].x + ‘:’ + points[i].y + ‘,’;

}
var request = GXmlHttp.create();
var routeidtext = ‘’;
if ((routeidfield.value != 0) &&

(oldnew == 1)) {
routeidtext = ‘&routeid=’ + escape(routeidfield.value);

}

The request string is necessarily large; it has to incorporate the title, the description, the list of
route points and, if necessary, the route ID information:

request.open(‘GET’,’/examples/ch13-backend.cgi?m=saveroute&title=’ +
escape(routetitle.value) + routeidtext +
‘&desc=’ + escape(routedescription.value) +
‘&points=’ + escape(pointstring), true);

request.onreadystatechange = function() {
if (request.readyState == 4) {

Once the request has been sent, the script must determine the status of the submission. The
response should be an XML document containing a message stating success and the ID of the
new route. If this information has been successfully extracted, it means the request was successful,
and the route is now loaded by supplying a suitable route ID and message to the loadRoute()
function. A failure to parse the returned XML indicates a failure, so a warning message is pro-
duced instead:

19_790095 ch13.qxp 6/12/06 1:40 PM Page 258

259Chapter 13 — I Need to Get To...

var xmlsource = request.responseXML;
var msg = xmlsource.documentElement.getElementsByTagName(“message”);
if (msg.length > 0) {
if (msg[0].getAttribute(‘routeid’) > 0) {
loadRoute(msg[0].getAttribute(‘routeid’),

msg[0].getAttribute(‘text’));
}

}
else
{
message.innerHTML = ‘Error sending request’;

}
}

}
request.send(null);

}

The loading of the just saved route serves as a good indication that the route has been saved
and also means that the route is displayed just as it would be if the route were loaded from the
list of available routes.

Loading a List of Routes
The user can obtain a list of the available routes by clicking the link, which in turn runs the
showRouteList() function. With some minor modifications, this is basically an adaptation
of the XML parser used in Chapter 9 to show a list of registered points on the map.

The backend CGI script sends back a list of route titles, the route ID, and the latitude and lon-
gitude of the start point for each route. The following code shows the creation of a marker for
each route start point.

The first stage is to empty all of the variables of any information and empty the map, because
the function is building a new inline display:

function showRouteList() {
map.clearOverlays();
points = [];
message.innerHTML = ‘Select a route’;
infopanel.innerHTML = ‘’;
routetitle.value = ‘’;
routedescription.value = ‘’;

Next, create an icon template that will be used to create custom icons (with a unique character
for identification). The icon will be one of the standard Google Maps icons, using a standard
shadow, so the same basic structure can be used as with other icon samples. The full details of
the base icon, including the image size, shadow size, and the anchor points have been specified
according to the Google Map standards:

var baseIcon = new GIcon();
baseIcon.shadow = “http://www.google.com/mapfiles/shadow50.png”;
baseIcon.iconSize = new GSize(20,34);
baseIcon.shadowSize = new GSize(37,34);
baseIcon.iconAnchor = new GPoint(9,34);
baseIcon.infoWindowAnchor = new GPoint(9,2);
baseIcon.infoWindowAnchor = new GPoint(18,25);

19_790095 ch13.qxp 6/12/06 1:40 PM Page 259

260 Part III — Google Map Hacks

Next, the function sends a suitable request through to the backend database interface. The
script only has to ask for the list of routes. There is no additional information to be supplied.
The response will be an XML document, looking similar to this:

<routes>
<route routeid=”3” title=”A1 to Station (North)” lat=”-0.652313” lng=”52.9164”/>
<route routeid=”13” title=”Barrowby to Nottingham” ;
lat=”-0.685959” lng=”52.9197”/>
<route routeid=”14” title=”Courthouse to Shell Garage” ;
lat=”-0.645833” lng=”52.9094”/>
<route routeid=”12” title=”Home to Asda” lat=”-0.683942” lng=”52.9164”/>
<route routeid=”15” title=”Home to Sainsburys” lat=”-0.683942” lng=”52.9164”/>
<route routeid=”11” title=”One on Wharf to St Wulframs” lat=”-0.639954”
lng=”52.9094”/>
</routes>

Note that the XML is already in alphabetical order. It is easy to do this when submitting the
query to the database and it saves having to perform any kind of ordering within the
JavaScript.

When the information is extracted, the script needs to build a list of markers to highlight the
starting point of each route (the embedded latitude and longitude), provide each marker with a
custom icon, and build a textual list of available routes:

var request = GXmlHttp.create();
request.open(‘GET’,’/examples/ch13-backend.cgi?m=listroutes’, true);
request.onreadystatechange = function() {
if (request.readyState == 4) {
var xmlsource = request.responseXML;
var routelist = xmlsource.documentElement.getElementsByTagName(“route”);
for (var i=0;i < routelist.length;i++) {

First the icon for the marker is determined. Because there is a count of the parsed items avail-
able, the current count is used to extract a single character from the icontags. This letter is
combined with a standard icon URL to produce the URL of one of the standard Google Maps
markers for use on the map. The information is placed into a new variable because it is used on
both the map and the textual list:

var iconloc = ‘http://www.google.com/mapfiles/marker’ +
icontags.charAt(i) + ‘.png’;

Next, the information panel, which contains a textual list of the routes, is composed. The list
consists of the lettered icon, the name of the route, and a link to the local loadRoute() func-
tion with the unique route ID number (as generated by the database). Clicking this link loads
the route into the application and shows the route, start point, and other information.

infopanel.innerHTML = infopanel.innerHTML +
‘’ +
‘<a href=”#” onClick=”loadRoute(‘ +
routelist[i].getAttribute(“routeid”) +
‘);”>’ + routelist[i].getAttribute(“title”) +
‘
’;

19_790095 ch13.qxp 6/12/06 1:40 PM Page 260

261Chapter 13 — I Need to Get To...

A new point is created and pushed onto an array of points. The array is to recenter the map so
that all of the available routes are highlighted and displayed on a single map:

var point = new GPoint(parseFloat(routelist[i].getAttribute(“lat”)),
parseFloat(routelist[i].getAttribute(“lng”)));

points.push(point);

The unique icon for this point is generated by calling GIcon(). By supplying the basic icon
generated at the start of the function, the new icon inherits all of the base icon properties. The
only property to add is the location of the unique icon for this marker:

var thisIcon = new GIcon(baseIcon);
thisIcon.image = iconloc

The addmarker() function is called to create a point and display a marker object on the map.
The function call includes the point reference and the HTML that is placed into the info win-
dow for the marker, plus, of course, the icon:

addmarker(point,
‘<a href=”#” onClick=”loadRoute(‘ +
routelist[i].getAttribute(“routeid”) +
‘);”>’ + routelist[i].getAttribute(“title”) +
‘’,
thisIcon);

}

Finally, the map is recentered and zoomed based on the list of points (and markers) being dis-
played on the map:

recenterandzoom(points);
}

}
request.send(null);

}

You can see a sample of the list of available routes and the map showing the highlighted routes
in Figure 13-2.

The most important element of this function is really the collection of the point references and
how this is used in combination with the recenterandzoom() function that is shown later.
The effect is to give an automatic (and correctly formatted) overview of all the available points.

Loading a Single Route
Loading a single route is much like loading a single marker from a list. Submitting the request
to the backend generates a simple XML file consisting of the basic route information (ID, title,
and description), then a series of point tags containing the latitude and longitude of each point,
and finally a calculated distance of the given route. Following is a sample of the XML
(trimmed for brevity):

<route>
<routeinfo routeid=”13” title=”Barrowby to Nottingham” description=””/>
<point lat=”-0.685959” lng=”52.919700”/>
<point lat=”-0.685959” lng=”52.919700”/>
<point lat=”-0.713425” lng=”52.929600”/>
...

19_790095 ch13.qxp 6/12/06 1:40 PM Page 261

262 Part III — Google Map Hacks

<point lat=”-1.139830” lng=”52.947000”/>
<point lat=”-1.139830” lng=”52.947000”/>
<distance km=”51.67” miles=”32.10”/>
</route>

When parsing the XML, each of the elements of the information is extracted and placed into
the corresponding structure within the application. For example, the title of the route is placed
into the title field on the web form. The reason for this is that by adding the information to the
form (rather than displaying it separately), the title can be updated and modified and re-saved
into the database.

Because of this simplicity, the bulk of the code is actually about extracting the relevant infor-
mation from the XML and populating the interface, rather than anything more exciting.

To begin with, any existing route, overlay, and other information is cleared:

function loadRoute(routeid,msgtext) {
map.clearOverlays();
index = 0;
points = [];
routes = [];
message.innerHTML = ‘Loading route’;
infopanel.innerHTML = ‘’;

Then the request is sent to the database interface. Note that the route ID is specified because
the link that enabled the user to select the route was embedded within the route ID extracted
from the list of available routes:

var request = GXmlHttp.create();
request.open(‘GET’,’/examples/ch13-backend.cgi?m=getroute&routeid=’ ;

+ routeid, true);
request.onreadystatechange = function() {
if (request.readyState == 4) {
var xmlsource = request.responseXML;

Before trying to parse the expected XML, the function tries to parse a standard XML message
instead. If the XML document returned includes a message string, it probably indicates an
error, which should be reported and the rest of the process should be terminated.

var msg = xmlsource.documentElement.getElementsByTagName(“message”);
if (msg.length > 0) {
message.innerHTML = msg[0].getAttribute(‘text’);
return;

}

If there wasn’t a message in the XML, it’s probably a genuine response, so the user is told that the
route has been correctly loaded. The function also accepts an alternative message, which is used
when a route has been saved into the system to show that the route has been saved (rather than
simply loaded from the database). If a custom message isn’t provided, use a standard one instead.

if (msgtext) {
message.innerHTML = msgtext;

}
else {
message.innerHTML = ‘Route Loaded’;

}

19_790095 ch13.qxp 6/12/06 1:40 PM Page 262

263Chapter 13 — I Need to Get To...

FIGURE 13-2: Showing a list of available routes and starting points.

Then the individual elements from the data are extracted. First, the base route information is
extracted. Although you extract all of the potential route elements, only one should be returned
at a time, so the information from the first element is used first:

var routeinfo = ;
xmlsource.documentElement.getElementsByTagName(“routeinfo”);

routeidfield.value = routeinfo[0].getAttribute(‘routeid’);
routetitle.value = routeinfo[0].getAttribute(‘title’);
routedescription.value = routeinfo[0].getAttribute(‘description’);

Then the distance information is extracted, which includes the distance in both kilometers and
miles:

var distanceinfo = ;
xmlsource.documentElement.getElementsByTagName(“distance”);

infopanel.innerHTML = ‘Distance: ‘ + distanceinfo[0].getAttribute(‘km’) +
‘ km, ‘ +

distanceinfo[0].getAttribute(‘miles’) + ‘ miles’;

After this the list of points is obtained, pushing each point onto an array. Because the points
are supplied in the correct sequence from the database backend, there is no requirement to sort
or order the points that are extracted. The order they are parsed from the document is the cor-
rect order for them to be generated onto the map.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 263

264 Part III — Google Map Hacks

var routepoints = xmlsource.documentElement.getElementsByTagName(“point”);
for (var i=0;i < routepoints.length;i++) {
var point = new GPoint(parseFloat(routepoints[i].getAttribute(“lat”)),

parseFloat(routepoints[i].getAttribute(“lng”)));
points.push(point);

}

Once there is an array of points, a GPolyline object can be created and added as an overlay
to the map. For convenience, start and end markers are also added to the map:

route = new GPolyline(points);
map.addOverlay(route);
addmarker(points[0],’Start here’);
addmarker(points[points.length-1],’Finish here’);
recenterandzoom(points);

}
}
request.send(null);

}

As when generating a list of routes, the map is also recentered. The difference is that the map
will now be recentered and zoomed according to all of the points in the route, rather than all
the start points of the available routes.

Adding Markers
A simple function adds a marker at a given point and includes the supplied info window text.
The function also accepts an icon so that custom icons can be used for the marker.
Conveniently, if the icon is undefined, Google Maps will use the standard icon. The function
doesn’t even need to take into account a missing icon reference.

function addmarker(point,message,icon)
{

var marker = new GMarker(point,icon);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowHtml(‘’ + message + ‘’);
}

);
map.addOverlay(marker);

}

The application is almost finished.

Initializing the Application
With all the other functions in place, the final stage is to initialize all of the different variables,
and particularly the document elements, that are required for the application to operate:

function onLoad() {
if (GBrowserIsCompatible()) {
infopanel = document.getElementById(“infopanel”);

19_790095 ch13.qxp 6/12/06 1:40 PM Page 264

265Chapter 13 — I Need to Get To...

message = document.getElementById(“message”);
rrecording = document.getElementById(“rrecording”);
routeidfield = document.getElementById(“routeid”);
routetitle = document.getElementById(“routetitle”);
routedescription = document.getElementById(“routedesc”);
routeidfield.value = 0;
routetitle.value = ‘’;
routedescription.value = ‘’;
map = new GMap(document.getElementById(“map”));
map.addControl(new GSmallZoomControl());
map.centerAndZoom(new GPoint(-0.64,52.909444), 2);

}
}

With the variables initialized, you create the map object, add a simple zoom control, and then
zoom to a suitable area on the map according to the application.

Recentering and Zooming the Map
The recenterandzoom() function is the same as that shown in previous chapters, starting
with Chapter 10. The function accepts an array of points, calculates the center point and span
of those points, and both centers and zooms the Google Map until all of the supplied points
are displayed on the map.

You can see that in this application the process works just as well on points used to generate
markers as it does to generate routes.

Backend Database Interface
The server side of the route recording system must respond to a number of requests from the
Google Maps application. There are four basic operations to be supported:

� Listing existing routes

� Saving a route

� Deleting a route

� Getting a route

Response is obviously through XML, but in addition to the standard responses for a given
operation, there is also a requirement to send back error messages in the event of some sort of
failure of the backend process.

In addition to the four main functions, a fifth function returns a standardized message (and,
optionally, a number of attributes) and is primarily used when a function needs to return an
error message. Using a single function in this way makes it easier for the format of the message
to be standardized regardless of the function generating the error.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 265

266 Part III — Google Map Hacks

Database Structure
The application stores routes, and for each route there are two distinct sets of information. The
first is the basic information about the route (the name and description). A route ID will be
added so that you have a unique identifier for the route.

That route table (called ch13_routesimple for the purposes of this example) will be linked
by the unique route ID to another table that contains the list of points. The table consists of
the route ID, the latitude and longitude of each point, and a unique sequence ID.

Basic Wrapper
The core of the CGI backend is the wrapper. The wrapper includes the interface to the
database. It also controls how communication between the JavaScript components and the
backend work to exchange information, such as route submissions, requests for lists of routes,
and individual route information.

For that there is a simple wrapper, as in previous examples, that initiates the connection to the
database and then extracts requests through the CGI interface and makes calls to the right
function to perform the desired option. The code for this follows:

#!/usr/bin/perl

use DBI;
use Math::Trig;
use strict;
use CGI qw/:standard/;

print header(-type => ‘text/xml’);

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

if (!defined($dbh))
{

die “Couldn’t open connection to database\n”;
}

if (param(‘m’) eq ‘saveroute’)
{

saveroute();
}
if (param(‘m’) eq ‘delroute’)
{

delroute(param(‘routeid’));
}
elsif(param(‘m’) eq ‘listroutes’)
{

listroutes();
}

19_790095 ch13.qxp 6/12/06 1:40 PM Page 266

267Chapter 13 — I Need to Get To...

elsif(param(‘m’) eq ‘getroute’)
{

getroute(param(‘routeid’));
}

This section is just a simple dispatcher; the code for individual request types is in the additional
functions.

Message Response
For each operation there should be an XML response to the Google application, even if it is a
basic message to indicate completion. The same system can also be used to return errors.
Depending on the application, the fact that the message is an error doesn’t even have to be
highlighted.

sub xmlmessage
{
my ($message,$attrib) = @_;

printf(‘<msg><message text=”%s” %s/></msg>’,
$message,
join(‘ ‘,map {sprintf(‘%s=”%s”’,$_,$attrib->{$_}) } keys %{$attrib}));

}

For convenience, the function accepts a second argument; a reference to a hash that contains an
additional list of attributes to return to the caller. This is used, for example, when saving a route
so that the mapping application knows the ID of the route. In this example application, the
JavaScript component uses the extracted ID to immediately load the route as if it had been
selected by the user, which in turn triggers both the start and end markers and the route
calculation.

Listing Existing Routes
All it takes to ask for a list of the existing routes is a suitable SQL query. When returning the
list, four pieces of information will be returned:

� Route ID (used to select a route to load)

� Route title

� Latitude of the first point in the route

� Longitude of the first point in the route

This requires a small join that looks for the first point from the database (identified from the
sequence ID). That point data is used by the application to show a marker at the start of each
route in the database.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 267

268 Part III — Google Map Hacks

The resulting list of rows is then returned as XML, using attributes to identify the individual
elements. Remember that you must embed the list of valid entries into an enclosing XML tag,
because of the way in which you extract that information from within the Google Maps XML
parser:

sub listroutes
{

my $sth = $dbh->prepare(‘select ch13_routesimple.routeid,title,lat,lng ‘ .
‘from ch13_routesimple,ch13_routepoints where ‘ .
‘ch13_routesimple.routeid = ‘ .
‘ch13_routepoints.routeid and seqid = 1 order ;

by title’);
$sth->execute();

print “<routes>”;
while (my $row = $sth->fetchrow_hashref())
{

printf(‘<route routeid=”%s” title=”%s” lat=”%s” lng=”%s”/>’,
$row->{routeid},
$row->{title},
$row->{lat},
$row->{lng}
);

}
print “</routes>”;

}

The function is probably the simplest and most straightforward of the functions in the backend
application because it is a simple database query and XML formatting task. Incidentally, if the
query finds no routes, it effectively returns an empty tag pair, displaying no routes in the appli-
cation. By effectively returning an empty list, the need to return an error message is negated;
instead a valid XML document is returned that contains no information.

Saving a Route
When saving a route, the backend needs to account for saving a new route (a route with an
existing ID of zero), which requires an insert into the database of the base route information,
and saving an existing route, which requires an update statement for the base route informa-
tion. For both situations, the rows for the actual route points need to be inserted. Rather than
updating the route points (which would be overly complicated because the application would
need to record the existing points and how they had changed), the existing points are simply
deleted and the new points are created in their place.

The information is supplied to the backend as standard CGI field/value pairs. The only com-
plexity is the extraction of the individual points, which are separated first by commas for the
individual points and then by colons for the sequence number, longitude, and latitude in each
point:

sub saveroute
{
my $title = param(‘title’);
my $description = param(‘desc’);
my $points = param(‘points’);

19_790095 ch13.qxp 6/12/06 1:40 PM Page 268

269Chapter 13 — I Need to Get To...

my @pointlist = split(/,/,$points);
my $routeid;

if (defined(param(‘routeid’)) && param(‘routeid’) != 0)
{
$routeid = param(‘routeid’);

$dbh->do(sprintf(‘update ch13_routesimple set title=%s, ‘ .
‘description=%s where routeid=%s’,
$dbh->quote($title),
$dbh->quote($description),
$routeid));

$dbh->do(sprintf(‘delete from ch13_routepoints where routeid=%s’,
$routeid));

}
else
{
$dbh->do(sprintf(‘insert into ch13_routesimple values(0,%s,%s)’,

$dbh->quote($title),
$dbh->quote($description)));

$routeid = $dbh->{mysql_insertid};
}

foreach my $point (@pointlist)
{
my ($seqid,$x,$y) = split(/:/,$point);
$dbh->do(sprintf(‘insert into ch13_routepoints values(%s,%s,%s,%s)’,

$dbh->quote($routeid),
$dbh->quote($x),
$dbh->quote($y),
$dbh->quote($seqid)));

}
xmlmessage(‘Route added’,{routeid => $routeid});

}

Once the route has been added or updated in the database, the function returns a simple mes-
sage and the route ID of the route that was added or updated.

Deleting an Existing Route
To delete an existing route you need only execute the delete statement for the supplied route
ID on each table:

sub delroute
{
my ($routeid) = @_;

$dbh->do(sprintf(‘delete from ch13_routesimple where routeid=%s’,
$routeid));

$dbh->do(sprintf(‘delete from ch13_routepoints where routeid=%s’,
$routeid));

xmlmessage(‘Route deleted’);
}

19_790095 ch13.qxp 6/12/06 1:40 PM Page 269

270 Part III — Google Map Hacks

Again, a simple message is returned to indicate the completion of the operation.

Obtaining a Single Route
To get a single route is a two-stage process. First, the base route information needs to be
extracted. Then the route points need to be extracted from the database in the correct order for
them to be represented on the map. The sequence is important. A sequence ID is added to
each route point when the route is saved; otherwise the individual points would skip around
the map, instead of following the proscribed route.

The function also has to take into account what might happen if the route had been deleted
after the list was generated, but before the chosen route had been requested. This error event is
handled by returning a suitable error message through the xmlmessage() function back to
the JavaScript component of the application:

sub getroute
{
my ($reqrouteid) = @_;

my $routedata =
$dbh->selectrow_hashref(‘select routeid,title,description ‘ .

‘from ch13_routesimple where routeid = ‘ .
$dbh->quote($reqrouteid));

if ($routedata->{routeid} != $reqrouteid)
{
xmlmessage(‘Error: route not found’);
return();

}

printf(‘<route><routeinfo routeid=”%s” title=”%s” description=”%s”/>’,
$routedata->{routeid},
$routedata->{title},
$routedata->{description});

With the basic route information in place you can proceed to return a list of points. Remember
that the points must be extracted in the right sequence, so a suitable order by clause is added
to the SQL statement:

my $sth =
$dbh->prepare(sprintf(‘select lat,lng from ch13_routepoints ‘ .

‘where routeid = %s order by seqid’,
$dbh->quote($routedata->{routeid})));

$sth->execute();

As the script works through the individual points of the table, it will also calculate the distance
between two points. To do this, the current set of points is recorded; once at least two points
are known (the recorded set and the current set) the calculation can take place. Thus if you
have a route with three points, A, B, and C, you can calculate the total distance by adding the
distance between A and B and B and C together. The process is examined in more detail in the
next section, “Calculating Distance.”

19_790095 ch13.qxp 6/12/06 1:40 PM Page 270

271Chapter 13 — I Need to Get To...

In addition to calculating the total distance, the XML for each point also needs to be gener-
ated. As with other elements, the information is embedded into attributes for a suitable named
XML tag:

my $distance = 0;
my $seq = 0;
my ($lastx,$lasty) = (undef,undef);

while (my $row = $sth->fetchrow_hashref())
{
$seq++;
printf(‘<point lat=”%f” lng=”%f”/>’,

$row->{lat},
$row->{lng},
);

if ($seq >= 2)
{
$distance += latlngdistance($lastx,

$lasty,
$row->{lat},
$row->{lng});

}
($lastx,$lasty) = ($row->{lat},$row->{lng});

}
$sth->finish();

The final part of the process is to return the final distance, and for convenience both metric
and imperial measures are provided:

printf(‘<distance km=”%.2f” miles=”%.2f”/>’,
$distance,
($distance/1.609344));

print(“</route>\n”);
}

The actual calculation of the distance is complicated and takes place in a separate function.

Calculating Distance
When returning a given route it is nice to be able to supply a distance from the start point to
the destination point. There is no easy way to determine this information; Google does not
supply a convenient method.

The only way to determine the information is to take the points given and calculate the dis-
tance. This is itself difficult because latitude and longitude are measures of degrees on the sur-
face of the earth. To calculate the distance between points, what you actually have to calculate
is the distance between two points on a sphere (effectively the portion of the circumference on
the surface of the earth).

Describing, in detail, the exact method required is beyond the scope of this book, but the equa-
tion is called the Haversine formula. To determine the distance between two points, you calcu-
late the arc on the surface of the earth, using the radius of the earth (in kilometers) as a base
reference. You may want to visit the Movable Type Scripts web site (http://www.movable-
type.co.uk/scripts/LatLong.html).

19_790095 ch13.qxp 6/12/06 1:40 PM Page 271

272 Part III — Google Map Hacks

Note that even with this formula, the exact distance may be different because the earth is not a
perfect sphere (it is slightly “flat” and therefore wider at the equator than at the poles), but the
difference for most small routes is so small that it is not noticeable.

Rather than performing the calculation within JavaScript on the host, the information is deter-
mined by the backend script as it returns the route point information. The function accepts
four arguments, the long/lat pairs for the start and end points. This is called for each pair dur-
ing the point extraction loop in the getroute() function. By adding each point pair distance
together, the distance for the entire route can be calculated:

sub latlngdistance
{
my ($xdeg1,$ydeg1,$xdeg2,$ydeg2) = @_;

my ($x1,$y1,$x2,$y2) = (deg2rad($xdeg1),
deg2rad($ydeg1),
deg2rad($xdeg2),
deg2rad($ydeg2));

my $radius = 6371;
my $latdistance = $x2 - $x1;
my $lngdistance = $y2 - $y1;

my $a = sin($latdistance/2) * sin($latdistance/2) +
cos($x1) * cos($x2) * sin($lngdistance/2) * sin($lngdistance/2);

my $c = 2 * atan2(sqrt($a), sqrt(1-$a));
my $d = $radius * $c;

return $d;
}

The same process could have been carried out within the browser, which would have also
enabled the application to show a live distance calculation as the route was being calculated,
but this information is easier and more straightforward to calculate within the backend func-
tion and also takes some load off of the browser.

Using the Application
The best way to get to know the application in use is, of course, to try it out. The basics of the
system (saving a route, listing available routes, and then loading a single route) can easily be
shown, at least in terms of how they look.

First, Figure 13-3 shows the application in its initial state, showing the map (centered, for a
change, on Grantham).

Click New Route to enable routing and select the first point for your route. Click further
points until you have a route displayed onscreen, as shown here in Figure 13-4. Note that the
route title and a description have also been given here.

In Figure 13-5 you can see the final route when saved, here showing its final distance and the
start and end markers.

Figure 13-6 shows the list of available routes, including the one just created.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 272

273Chapter 13 — I Need to Get To...

FIGURE 13-3: Initial application state.

FIGURE 13-4: A recorded route ready for saving to the database.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 273

274 Part III — Google Map Hacks

FIGURE 13-5: The saved route, now loaded from the database.

FIGURE 13-6: The list of available routes.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 274

275Chapter 13 — I Need to Get To...

Figure 13-7 shows an alternative route loaded into the application.

FIGURE 13-7: Another route already in the database.

Finally, Figure 13-8 shows the original route loaded and partly modified, and Figure 13-9
shows the modified route when saved (with an alternative description and title) into the
system.

Obviously there are some elements that cannot easily be shown. For example, demonstrating
deleting routes is difficult, but I encourage you to try different routes on the live map at the
web site.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 275

276 Part III — Google Map Hacks

FIGURE 13-8: Modifying the existing route.

FIGURE 13-9: A modified route saved into the database.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 276

277Chapter 13 — I Need to Get To...

Wrapping Up
As in many other examples, the application relies on two distinct components: the front-end
interface and the backend database connection and XML generator. Although there is some
additional intelligence in this solution, the bulk of the code is still relying on the basic process of
adding data to the database and requesting XML versions of the information already stored.
What is important is just how complex an application you can produce using that basic process.

The techniques shown in this chapter can be adapted for a wide range of different uses. For
example, the application could be adapted to work as a method for directing clients and cus-
tomers to your home or office from key intersections. The application could also be used as a
method to promote different walking routes in your city or town, highlighting different areas.
With a small amount of expansion (by adding key points to the database as well as the route
points that make up the route sequence), you could turn the system into a way of highlighting
important landmarks on an unguided tour of a city.

The current application also stores only a basic amount of information about each route. It
would be a fairly trivial process to add other features, such as photos, additional markers, or
other information. All of the functionality and potential has been demonstrated in this chapter
and in earlier chapters about how to add this information.

19_790095 ch13.qxp 6/12/06 1:40 PM Page 277

19_790095 ch13.qxp 6/12/06 1:40 PM Page 278

Merging with
Flickr Photos

Flickr has become something of a phenomenon. At its heart, Flickr is a
service for uploading and sharing your photos, but one of the key ele-
ments of Flickr is that photos can be shared with the public, specific

friends, or just kept secret.

The other aspect of Flickr photos is that individual photos can be “tagged”:
given a special keyword that can be used for searching and organizing your
photos. Because photos are shared among users, you can search for photos
with the same keywords as your own or simply browse Flickr photos for the
content you are looking for.

The tagging system can also be adapted so that you can tag your photos
with information about the latitude and longitude where the photo was
taken. By using this information and a Google Map, you can build a view of
Flickr photos according to their location. This chapter covers the basics of
the Flickr API, which lets you extract Flickr photos and information and
combine that with a Google Map.

Flickr and the Flickr API
There are three key elements to using Flickr and the Flickr API with
Google Maps. The first is that you must upload your photos to Flickr,
which requires a Flickr account. You also need a Flickr API key to access
the Flickr database, whether that is for your own photos or other people’s.

The third key element is the use of tags to identify the content of the pho-
tos. Tags are freeform and can be any valid text string. You have can have
multiple tags, and the tags become a method for searching and locating
photos (as well as using other well-known constructs such as albums). Tags
on Flickr photos can be used to extract photos with geographical tags and
then plot the locations of the photos onto a Google Map.

The Flickr API
The Flickr API provides access to Flickr photos. A variety of different
search and access methods exist to get the information stored in the Flickr
database according to the information you are looking for.

˛ Use the Flickr API

˛ Add geodata to
your Flickr photos

˛ Embed Flickr photos
into a Google Map

chapter

in this chapter

20_790095 ch14.qxp 6/12/06 1:40 PM Page 279

280 Part III — Google Map Hacks

The API has three methods of access:

� REST: This is the method used in earlier examples in this book, and by parts of the
Google Maps API, to submit requests. The request and any options or arguments are
supplied as part of the URL. The return value is an XML document with the informa-
tion you were looking for.

� XML-RPC: This is one of the web services interfaces. Information is returned as an
object (according to your request environment).

� SOAP: This is the other web service interface. Information is returned as an object.

The REST interface is the easiest to use from within JavaScript and a browser. The techniques
REST uses to parse and extract the XML returned are just the same as those that have been
demonstrated in earlier examples.

Whichever method you use, the array of available functions and operations remains constant.

Getting a Flickr API Key
To use the API you must have a unique API key. There are fewer restrictions on the Flickr
API key and its use compared to the Google Maps API key, but the Flickr system also only
provides access to publicly uploaded photos, rather than the copyrighted material used in
Google Maps and satellite images.

To obtain a key, you need to create an account with Flickr (where you will also need to upload
your photos). Once you have your account, go to the Flickr Services API page (http://www
.flickr.com/services/api/) to request your key.

The key you are given provides access to all of the Flickr photos. It also provides special infor-
mation for your own photos that might not generally available to the public.

Adding Geographic Data to Your Flickr Photos
Adding geographic data to a photo within Flickr is a simple case of adding suitable tags to the
photo. There are many ways in which you can do this, including an automatic system using the
GreaseMonkey script environment within the Firefox browser. However, because the basic pro-
cess of writing the tag to the Flickr photo is the same, it is safe to concentrate on the basic tag
structure.

Three tags are used to record geographical information:

� geotagged: This simply indicates that the photo is tagged with geographical informa-
tion. Generally the existence of the tag is designed to make searching for geotagged
photos easier.

� geo:lat=XXX: This is the latitude of where the photo was taken.

� geo:lon=XXX: This is the longitude of where the photo was taken.

20_790095 ch14.qxp 6/12/06 1:40 PM Page 280

281Chapter 14 — Merging with Flickr Photos

For the latitude/longitude values, you should supply a floating-point value, just as with any
other value used within Google Maps.

How you obtain the latitude/longitude of your photo is entirely up to you. Some users are
beginning to record photo locations with a simple GPS receiver when the photo is taken.
Others just use Google Maps to locate the position where the photo was taken. If you are
uploading a number of photos that were taken at similar locations, you can tag photos in
groups or during upload to specify the geotagged information in bulk.

Adding Flickr Photos to a Google Map
Adding Flickr photos to a Google Map based on their geographical tags is a two-phase pro-
cess. First, you need to search for the photos that you want to overlay on the map. The search
process will return the photo ID information (as demonstrated earlier). However, to obtain the
tags, and therefore the embedded geographical information, the info for each photo must be
individually obtained to determine where the photo should be placed on the map.

Before that, though, you need to get around a security issue built into most browsers.

A Flickr Proxy
Most browsers do not allow you to send XML HTTP requests like those used in Google Maps
applications to domains other than the source of the HTML file they are being loaded from.
There are ways to get around this issue on certain browsers, but none that are compatible across
a range of different browsers without writing complex JavaScript to change the security prefer-
ences. Even where it is possible, users will normally have to accept some security message that
may also reduce the security of their browser.

The easiest way to get around the issue is to provide a proxy service that passes on the request
from the Google Maps application through the server used to host the HTML and then on to
the destination service (in this case Flickr). The data can then be echoed back verbatim to the
script as if it had directly accessed the remote service.

A sample proxy service, here written in Perl, is as follows.

use strict;
use CGI qw/:standard/;
use LWP::UserAgent;

my $ua = LWP::UserAgent->new(env_proxy => 1,
keep_alive => 1,
timeout => 30,
agent => “Mozilla/5.0 (X11; U; Linux i686; ;

en-US; rv:1.0.2) Gecko/20021120 Netscape/7.\
01”,

);

20_790095 ch14.qxp 6/12/06 1:40 PM Page 281

282 Part III — Google Map Hacks

print header(-type => ‘text/xml’);

my @query;

foreach my $param (param())
{

push @query,sprintf(‘%s=%s’,$param,param($param));
}

my $query = ‘http://www.flickr.com/services/rest/?’ . join(‘&’,@query);

my $response = $ua->get($query);

print $response->{_content};

Now you can build a URL just as if you were directly building one for the Flickr service and
access the information returned by Flickr without hitting the browser security issue that pre-
vents you from doing this directly.

Searching Flickr for Photos
You can search for Flickr photos using a variety of criteria with the flickr.photos.search
method. You can request photos based on the following search criteria:

� User ID

� Tags (you can also specify whether to search for photos matching any tags or to search
for all of them)

� Text search (based on title, description, or tag)

� Upload date

� Taken date

� License

You can also specify the sort order of the returned list of photos, the number of photos to be
returned in a page (up to 500), and which page of the search requested to return photos. For
example, if you request 100 photos per page from page 3, photos start at number 301 in the
returned results.

Sending a Search Request
You can submit a search for a specific user’s photos (I’ll use my photos as an example) and look
for photos with specific tags. When you send the request with the REST interface, XML for the
photo information is returned. You can see a sample of the returned data in the following code:

<rsp stat=”ok”>
<photos page=”1” pages=”1” perpage=”100” total=”79”>
<photo id=”24910903” owner=”54256647@N00” secret=”ad24b49370” server=”23” ;
title=”IMG_0776” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”24910888” owner=”54256647@N00” secret=”1b92a07883” server=”23” ;
title=”IMG_0777” ispublic=”1” isfriend=”0” isfamily=”0”/>

20_790095 ch14.qxp 6/12/06 1:40 PM Page 282

283Chapter 14 — Merging with Flickr Photos

<photo id=”24910877” owner=”54256647@N00” secret=”8c15a21389” server=”23” ;
title=”STA_0724” ispublic=”1” isfriend=”0” isfamily=”0”/>
...
<photo id=”24865509” owner=”54256647@N00” secret=”53e7584368” server=”23” ;
title=”IMG_0713” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”24865497” owner=”54256647@N00” secret=”4c6f065c3d” server=”23” ;
title=”IMG_0729” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”24865488” owner=”54256647@N00” secret=”155fc590f0” server=”23” ;
title=”IMG_0709” ispublic=”1” isfriend=”0” isfamily=”0”/>
</photos>
</rsp>

The photo id is the unique identifier for each photo. The owner is the username of the user
that owns the photos. The secret and server values are provided to enable you to display
an image in a web page. You don’t need the secret and server values to provide a link to
the Flickr page for the image. However, you do need this information if you want to display
only the image in a web page. You also need this information when you want to select alterna-
tive sizes or formats for an image.

In these applications, the photos are being retrieved as part of a Google Map. As you know,
photos that have geographical information have a specific tag. To retrieve photos suitable for
display on the map, you need to search for photos with the tag geotagged.

Using the REST interface, you can search for geotagged photos using this URL:

http://maps.mcslp.com//examples/ch14-02flickrproxy.pl?method= ;
flickr.photos.search&api_key=XXX&user_id=54256647@N00&tags=geotagged

This returns the following XML:

<rsp stat=”ok”>
<photos page=”1” pages=”1” perpage=”100” total=”2”>
<photo id=”24910903” owner=”54256647@N00” secret=”ad24b49370” server=”23” ;
title=”IMG_0776” ispublic=”1” isfriend=”0” isfamily=”0”/>
<photo id=”24910877” owner=”54256647@N00” secret=”8c15a21389” server=”23” ;
title=”STA_0724” ispublic=”1” isfriend=”0” isfamily=”0”/>
</photos>
</rsp>

You can parse this information within JavaScript and your Google Map page using the built-in
DOM parser.

Parsing the Response in JavaScript
To parse the data you need to create a generic XMLHttpRequest() object to download the
XML and parse the contents. Following is the code for this:

function loadPhotos() {
photoids = [];
geopoints = [];
map.clearOverlays();

var request = new XMLHttpRequest();

request.open(‘GET’,

20_790095 ch14.qxp 6/12/06 1:40 PM Page 283

284 Part III — Google Map Hacks

‘/examples/ch14-02flickrproxy.pl?method= ;
flickr.photos.search&api_key=’ +

‘XXX’ + ‘&user_id=54256647@N00’ +
‘&tags=toronto,geotagged&tag_mode=all’,true);

request.onreadystatechange = function() {
if (request.readyState == 4) {

var xmlsource = request.responseXML;

var photos = ;
xmlsource.documentElement.getElementsByTagName(“photo”);

for(i=0;i<photos.length;i++) {
var img = document.createElement(‘img’);
photoids.push(photos[i].getAttribute(‘id’));

}
getphotoinfo(0);

}
}
request.send(null);

}

Only the ID of the photo is required. You have found the photos you are looking for. To deter-
mine the geographical information, you have to get the specific information for each photo
to extract the geotags and plot the photo location on the map. Unfortunately, this requires
sending one request per photo and then parsing another XML file for each photo to extract the
data required.

That operation of getting individual photo data is handled by the getphotoinfo() function.
Because you are sending multiple asynchronous HTTP transfers, you create a chain of requests,
starting with the first photo ID. Each getphotoinfo() call then calls the function again for
the next photo and so on. I’ve found this to be more reliable than calling getphotoinfo()
within a for loop.

Getting Individual Photo Data
The Flickr database stores a lot of information about each photo. The basic data returned
about a photo includes the photo ID and other data used for loading and locating the photo,
the photo dates, the tag information, and the URL of the photo’s page within the Flickr site.

You need to separately extract this information for each photo. From that, you can get the geo-
graphic data and then create a marker on the map where the photo was taken. You’ll also use an
XSL Transformation to convert the returned XML into an info window that displays the basic
photo data and a thumbnail of the photo without your map.

Getting Specific Photo Data
When you request the information for a single photo, you get a comparatively large XML doc-
ument returned that contains a wealth of information. The bulk of this will be converted by an
XSL Transformation into the InfoWindow for each marker, but the tag information will be
used to determine the location of where the photo was taken.

20_790095 ch14.qxp 6/12/06 1:40 PM Page 284

285Chapter 14 — Merging with Flickr Photos

Again, using the REST interface, a URL requests the XML document containing the infor-
mation about the photo:

http://maps.mcslp.com//examples/ch14-02flickrproxy.pl?method= ;
flickr.photos.getInfo&api_key=XXX&photo_id=24910903

The preceding returns a hefty XML document:

<rsp stat=”ok”>
<photo id=”24910903” secret=”ad24b49370” server=”23” ;
dateuploaded=”1121009689” isfavorite=”0” license=”0” rotation=”0” ;
originalformat=”jpg”>
<owner nsid=”54256647@N00” username=”mcslp” realname=”Martin Brown” ;
location=””/>
<title>IMG_0776</title>
<description/>
<visibility ispublic=”1” isfriend=”0” isfamily=”0”/>
<dates posted=”1121009689” taken=”2005-07-10 16:34:49” ;
takengranularity=”0” lastupdate=”1140791972”/>
<editability cancomment=”0” canaddmeta=”0”/>
<comments>0</comments>
<notes>
</notes>
<tags>
<tag id=”700506-24910903-449” author=”54256647@N00” raw=”toronto”>toronto</tag>
<tag id=”700506-24910903-2563662” author=”54256647@N00” ;
raw=”geo:lon=-79.38724994659424”>geolon7938724994659424</tag>
<tag id=”700506-24910903-1700” author=”54256647@N00” ;
raw=”geotagged”>geotagged</tag>
<tag id=”700506-24910903-2563668” author=”54256647@N00” ;
raw=”geo:lat=43.64178982199113”>geolat4364178982199113</tag>
</tags>
<urls>
<url type=”photopage”>http://www.flickr.com/photos/mcslp/24910903/</url>
</urls>
</photo>
</rsp>

There are two portions of this document that you are particularly interested in. The first is the
main photo information (within the <photo> tag) about the secret and server. You need
this information to enable you to embed a thumbnail of the photo within your info window.

The second is the <tags> portion, because that is where the geotagging information is stored.
Note the use of the raw attribute to a <tag>; this contains the real data required. The <tag>
value is a “flattened” version, used internally by Flickr, and is also the version you would use
when searching for a specific tag.

The bulk of the XML generated by Flickr in this process is going to be parsed by an XSL
Transformation.

20_790095 ch14.qxp 6/12/06 1:40 PM Page 285

286 Part III — Google Map Hacks

Building an XSL Layout
The XSL takes the XML format, extracts the photo title, description, and taken date. It also
builds a URL for the embedded thumbnail:

<?xml version=”1.0” encoding=”UTF-8”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”/”>
<xsl:apply-templates select=”rsp” />

</xsl:template>
<xsl:template match=”photo”>

<table width=”230” cellspacing=”15”>
<tr>

<td style=”font-size:10pt;font-weight:bold;text-align:Left;”>
Title

</td>
<td style=”font-size:10pt;text-align:Left;” colspan=”2”>

<xsl:value-of select=”title” />
</td>

</tr>
<tr>

<td style=”font-size:10pt;font-weight:bold;text-align:Left;”>
Description

</td>
<td style=”font-size:10pt;text-align:Left;” colspan=”2”>

<xsl:value-of select=”description” />
</td>

</tr>
<tr>

<td style=”font-size:10pt;font-weight:bold;text-align:Left;”>
Taken

</td>
<td style=”font-size:10pt;text-align:Left;” colspan=”2”>

<xsl:value-of select=”dates/@taken” />
</td>

</tr>
<tr valign=”top”>

<td style=”font-size:10pt;font-weight:bold;text-align:Left;”>
Image

</td>
<td style=”font-size:10pt;text-align:Left;”>

<a>
<xsl:attribute name=”href”>

<xsl:value-of select=”urls/url” />
</xsl:attribute>

<xsl:attribute name=”src”>http://static.flickr.com/ ;

<xsl:value-of select=”@server” />/<xsl:value-of select=”@id” />_ ;
<xsl:value-of select=”@secret” />_s.jpg</xsl:attribute>

20_790095 ch14.qxp 6/12/06 1:40 PM Page 286

287Chapter 14 — Merging with Flickr Photos

</td>
</tr>

</table>

</xsl:template>
</xsl:stylesheet>

It is probably difficult to determine from the preceding XSL, but to select a specific size and
format of image from the Flickr server, you have to construct a URL based on the photo ID,
server ID, secret key, and required format. For example, to pull out a tiny thumbnail, in the
shape and size of a 75x75 pixel square, you use the following image URL:

http://static.flickr.com/{server-id}/{id}_{secret}_s.jpg

The s at the end of the URL specifies the 75x75 pixel square. Other available sizes include a
100-pixel thumbnail (letter t), a small image (240 pixels on the longest side, letter m), a large
image (1024 pixels on the longest side, letter b), and a medium image (no letter).

Parsing Photo Data
To pick out the information required, the XML original must be parsed for the data you need.
From the perspective of the Google Maps application, only the tag data actually needs to be
extracted. The rest of the XML processing takes place as part of the XSL Transformation.
Extracting the tag data is made a little more complex by the textual nature of the latitude or
longitude being embedded into the tag string.

The process starts with a simple request and the extraction of a list of tags from the response
XML:

function getphotoinfo(index)
{

var request = new XMLHttpRequest();

request.open(‘GET’,
‘/examples/ch14-02flickrproxy.pl?method= ;

flickr.photos.getInfo&api_key=’ +
‘XXX’ + ‘&photo_id=’ + photoids[index], true);

request.onreadystatechange = function() {
if (request.readyState == 4) {

var xmlsource = request.responseXML;
var tags = xmlsource.documentElement.getElementsByTagName(“tag”);

The tags are then individually processed to identify the information. Each tag must be checked
to see if it contains the data required:

for(i=0;i<tags.length;i++) {
var lat;
var lng;

20_790095 ch14.qxp 6/12/06 1:40 PM Page 287

288 Part III — Google Map Hacks

Using JavaScript you can determine the location of a string within a string using the
indexOf() method on the string object. Because you are looking for a prefix of geo:lon,
the return value should be zero. If it is, you split the string on the = character, the right hand of
which should be a floating-point value for the longitude. The same process can be repeated for
the latitude.

if (tags[i].getAttribute(‘raw’).indexOf(‘geo:lon’) == 0) {
var elems = tags[i].getAttribute(‘raw’).split(‘=’);
lng = elems[1];

}
if (tags[i].getAttribute(‘raw’).indexOf(‘geo:lat’) == 0) {

var elems = tags[i].getAttribute(‘raw’).split(‘=’);
lat = elems[1];

}

If you have both the latitude and longitude, you can then create a point and a marker. You can
point to the XSL Transformation and the original XML returned by the HTTP request to
generate a suitable info window:

if (lat && lng) {
var point = new GPoint(parseFloat(lng),parseFloat(lat));
var marker = new GMarker(point);
map.addOverlay(marker);
GEvent.addListener(marker,

‘click’,
function() {

marker.openInfoWindowXslt ;
(xmlsource,”/examples/ch14-02.xsl”);

}
);

geopoints.push(point);
}

}

Finally, you request the photo from the list of available photos for the same process. If this was
the last request in the list, then recenter and zoom (using the function used in previous exam-
ples) to re-align the map on the selected photos:

index++;
if (index < photoids.length) {

getphotoinfo(index);
} else {

recenterandzoom(geopoints);
}

}
}

request.send(null);
}

You can see the basic result and the information window generated when the user clicks a
marker in Figures 14-1 and 14-2, respectively.

20_790095 ch14.qxp 6/12/06 1:40 PM Page 288

289Chapter 14 — Merging with Flickr Photos

FIGURE 14-1: The basic map display showing locations of photos.

FIGURE 14-2: An information window showing photo data and thumbnail.

20_790095 ch14.qxp 6/12/06 1:40 PM Page 289

290 Part III — Google Map Hacks

Wrapping Up
The Flickr web site does an excellent job of storing your photos and other images in a share-
able format. The API gives you a convenient method of getting the photos back out. Using
Google Maps to provide a geographical representation of that information is an excellent way
to make your photos accessible in an alternative way.

The methods used in this chapter for extracting the photos are basic, but the system could be
altered to allow you to search and show information from different users or for a variety of
additional tags. Care would need to be taken to ensure that multiple markers were not created
on the same latitude/longitude, but you could also combine those images into an album-like
display by comparing the values as the photos are processed.

20_790095 ch14.qxp 6/12/06 1:40 PM Page 290

Google Earth Hacks

Chapter 15
Introducing Google Earth

Chapter 16
Generating Google
Earth Feeds

Chapter 17
History and Planning with
Google Earth

part

in this part

21_790095 pt04.qxp 6/12/06 1:42 PM Page 291

21_790095 pt04.qxp 6/12/06 1:42 PM Page 292

Introducing
Google Earth

All of the preceding chapters focused on the Google Maps API. The
Google Maps system provides a browser-based interface to the data
in the Google database, both in terms of the map and the satellite

photos. The API provides the ultimate in flexibility for building and incor-
porating Google Maps data into web-based applications. That flexibility,
however, comes at the potential price of limiting the environment and
interface.

Even with the flexibility of the JavaScript language and the ability to create
and organize content in ways that suit the application, you can add addi-
tional layers of data to the map information already demonstrated. In par-
ticular, the web-based Google Maps interface is incapable of providing the
interaction and display of three-dimensional data. The limitations extend
not only to the base data, but also to the information that you can overlay
on the map.

Google Earth, on the other hand, has no restrictions on the interface and
how the user interacts with the Google Earth data. Google Earth is a desk-
top application available for Windows and Mac OS X that enables you to
browse Google Earth images in a more dynamic environment. Using
Google Earth you move about the earth in 3D, moving and manipulating
the Google Earth data in real time. This provides additional information
that would be difficult to represent within the Google Maps interface, such
as “tilting” the earth so that you can see the relative height of different areas
of land.

This chapter looks at ways in which you can use Google Earth and how to
create some basic data to be used within the application to extend the infor-
mation and functionality of the application.

Google Earth Overview
The most critical difference between Google Maps and Google Earth is the
environment. Google Earth is a standalone application that is available for a
limited number of platforms. It is designed as an earth browser for showing
satellite images of the earth’s surface in an interactive, 3D environment. The
satellite images and the backup data (such as local businesses) in Google
Earth are the same as those in Google Maps in satellite mode. The differ-
ence is in the way in which the information can be viewed and manipulated.

˛ Google Earth
overview

˛ Google Earth
overlays

˛ KML for extending
Google Earth

chapter

in this chapter

22_790095 ch15.qxp 6/12/06 1:42 PM Page 293

294 Part IV — Google Earth Hacks

Obtaining the Application
Google Earth can be downloaded from the Google Earth homepage (http://earth
.google.com). There are three versions of the Google Earth application:

� Google Earth is free for personal use and incorporates satellite images that cover the
entire surface of the earth. The free client also provides access to all of the different
Google Local–supported databases, including those that provide information about loca-
tions, local businesses, and route finding. Google Earth also incorporates the technology
for generating and representing information based on the Keyhole Markup Language
(KML). This is the version that is described throughout the rest of this chapter.

� Google Earth Plus is an optional (and low-cost) upgrade to the free client that extends
the functionality of Google Earth to include interfaces to GPS devices, higher resolution
for printed images (higher than onscreen), extended annotation and drawing tools, and a
data importer that will read files in CSV format. Google Earth Plus is supported only on
Windows (at the time of writing).

� Google Earth Pro is a professional product and is therefore significantly more expensive
than the Google Earth Plus upgrade. It incorporates much faster download times and
data streaming, extended layers and overlay support, and improvements to the annota-
tion system that enable you to develop much more detailed overlays directly within the
Google Earth application. Google Earth Pro is supported only on Windows (at the time
of writing). Google Earth Pro also supports a number of extension modules, including
those for making movies (by “flying” through the Google Earth data), a high-resolution
printing module, and data modules providing traffic and shopping data.

For all three applications, Google Earth is merely the desktop interface to the data on the
Google Earth servers. You must first download the client that enables you to view and interact
with the data. Then you can connect to the Internet to obtain and download the images that
are displayed onscreen.

There is a fourth Google Earth application, Google Earth Enterprise, which is designed to provide
Google Earth features in combination with heavily customized information within an enterprise
environment. Google Earth Enterprise is technically a range of applications that work together to
provide Google Earth data, combined with your own enterprise information, such as statistical
and customer data. For more information see the Google Earth Enterprise web site at http://
earth.google.com/earth_enterprise.html.

Google Earth Features
The Google Earth application provides an interface to the Google satellite imagery, and
because it is not limited by the interface available through a web browser and JavaScript, there
is a lot more flexibility and interactivity in the Google Earth application. Some of the key dif-
ferences are detailed shortly. First, examine Figure 15-1, which shows the basic interface of the
Google Earth application.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 294

295Chapter 15 — Introducing Google Earth

FIGURE 15-1: The basic interface.

The interface is divided into three panels. The panel on the left provides the data points, over-
lays, and search interface that enable you to add data and move around the map using town,
city, and other information point references. The panel at the bottom of the application win-
dow provides an interface for moving and working around the earth. The larger, main panel is
the window to the Google Earth satellite imagery.

Core Functionality
The fundamental difference between Google Maps and Google Earth is the way in which the
satellite imagery can be viewed and manipulated. The satellite images are the same as Google
Maps, but the way in which the data is displayed differs in that it is slightly more fluid than the
Google Maps interface.

For example, the default start position is high above the United States. With Google Earth,
you can tell exactly how high. The information immediately beneath the Google Earth image
provides, from left to right:

22_790095 ch15.qxp 6/12/06 1:42 PM Page 295

296 Part IV — Google Earth Hacks

� The longitude/latitude of the current center point of the map (called the Pointer).

� The elevation (height above sea level) of that point.

� The status of the information satellite images that are streamed to the application.

� The altitude of the current view; that is, the height (above sea level) from which you see
information.

You can see, from Figure 15-1, just how high up you would have to be to see the same infor-
mation. If you double-click one of the points on the left, say, the Google Campus, you will “fly”
to the Google Campus, with the satellite imagery flowing past, until the map centers on the
Google Campus. This is almost impossible to represent within a book, but Figures 15-2
through 15-4 show some interstitial images from the starting point in Figure 15-1 to give you
some idea.

FIGURE 15-2: Starting the flight.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 296

297Chapter 15 — Introducing Google Earth

FIGURE 15-3: Almost there.

FIGURE 15-4: The Google Campus.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 297

298 Part IV — Google Earth Hacks

At no time are areas of the map missing while Google Earth loads the satellite image data.
Instead Google Earth streams the necessary information from Google’s servers to gradually
load the image data as you zoom in through different levels.

This sequence is automatic and much more visual than even the panning option provided
within the Google Maps interface. To manually move around the map, a number of options are
available:

� Click and drag: The same basic method as available within Google Maps. Click any-
where on the map, drag the map in the direction you want, and then release the mouse.
You will move to the new location.

� Cursor keys: The standard cursor keys on your keyboard move the map in the direction
you choose.

� Joystick: There is a built in “joystick” in the center of the control panel on the map.
Clicking the different arrows on the joystick moves the map.

� Click and move: If you click the mouse and move the map quickly and then release, the
map will begin to scroll in the direction you moved the mouse. To stop the scrolling,
click the red button in the middle of the joystick or click once on the map with the
mouse.

By default, your map will always be oriented to face north. You can rotate the map using the
two buttons to the top left and right of the joystick, which rotate the map counterclockwise
and clockwise. You can always tell the current orientation by using the built-in compass shown
in the bottom left of the map panel. You can reset it using the “N” button on the bottom left.

Finally, you can zoom in and out of the map using the slider on the left, or, if your mouse has a
scroll wheel, using the scroll wheel to zoom out (roll forward) and in (roll back).

Simple Overlays
Numerous built-in overlays are provided with the application. To see them in action, move to
Seattle by typing Seattle into the search box and clicking the search button. You should get a
window like the one shown in Figure 15-5.

From the Layers panel on the left, select “Crime Stats” and then zoom out slightly and you’ll
see the crime statistics for 2000 for a number of counties across the Seattle region, as shown in
Figure 15-6.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 298

299Chapter 15 — Introducing Google Earth

FIGURE 15-5: Seattle.

FIGURE 15-6: Crime statistics in Seattle.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 299

300 Part IV — Google Earth Hacks

Each icon is an example of a data point, the equivalent of the GMarker object used in the
Google Maps to highlight a single point on the map.

Points of Interest
In addition to locating the key points on the map, you can also overlay and move to key points
of interest on the map. The Google headquarters was an example of this, and a huge number of
other examples exist throughout the Google Maps application. There is no point in listing
those examples here; they are far too numerous and constantly updating. Much of the content
is U.S.-centric at the moment, but more data is being added all the time.

You can add as many of these overlays to the map as you like. There is no limit, although the
application will slow down as you add more and more points and overlays to the map. The data
and overlay information can be extensive and interesting. For example, Figure 15-7 shows the
airports and train stations in Seattle.

FIGURE 15-7: Adding airport and train station data.

Routes and Paths
Searches for information and locations work just the same as they do within Google Maps. You
can move directly to an address and also find routes between two different points. If all you
want to see is an overlay of the roads, select the “roads” overlay from the Layers panel. This
provides a view similar to the Hybrid view in Google Maps, where roads are overlaid directly
on top of the satellite imagery. You can see this more clearly in Figure 15-8, where the roads
overlay has been added to the southern tip of Manhattan Island.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 300

301Chapter 15 — Introducing Google Earth

FIGURE 15-8: Roads in Google Earth.

Just as with Google Local, you can determine a route’s two points by searching for the first
point and using the pop-up panel to select the destination. Figure 15-9 shows a route between
Ambleside and Whitehaven in the Lake District in the U.K.

So far the routing shows nothing different from what you might expect within Google Maps.
There is, however, a slightly different view of the route available within Google Earth.

Terrain and Altitude
Google Earth includes altitude information for the whole of the earth. This means that you
can get a fairly accurate idea of the altitude of a particular point within Google Earth. Google
has, however, gone one stage further and provided the ability to display this information inter-
actively on the map. If you select the Terrain checkbox in the bottom left of the control panel,
the view of the map adjusts slightly, but probably imperceptibly.

But, change the attitude (or tilt) of your view, and the difference becomes obvious. To adjust
the tilt, use the slider on the right of the joystick in the control panel. Moving the slider down
tilts the map so that the top of the view rotates horizontally, moving your perspective closer to
the ground. Moving the slider up rotates the map up.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 301

302 Part IV — Google Earth Hacks

FIGURE 15-9: Ambleside to Whitehaven in Google Earth.

The result is dramatic. You can see the altitude of the different areas of the map and the route,
and Google Earth now shows the route winding through some of the lower-lying mountains in
the Lake District (see Figure 15-10).

For another dramatic representation, try going to Sorrento. I visited Sorrento for a conference
and was immediately struck by the nearby mountains, which seemed to dominate the skyline
more than Vesuvius, a much more well-known entity on the beautiful coastline of Naples. The
mountains to the right of Sorrento (as you look northeast) came as a complete surprise by the
time I arrived at the hotel. What I should have done, of course, is quickly check Google Earth
to see the lay of the land, as shown in Figure 15-11, which shows the mountains immediately
to the right and behind the hotel. Vesuvius cannot be seen in this shot, but is immediately to
the left of the view shown here.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 302

303Chapter 15 — Introducing Google Earth

FIGURE 15-10: Ambleside to Whitehaven with altitude.

FIGURE 15-11: Sorrento and mountains.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 303

304 Part IV — Google Earth Hacks

Buildings
The geological aspects of Google Earth are of course important, but man has had a significant
impact on how different locations around the world appear because of the buildings and struc-
tures that he has created. For completeness, Google Earth includes some man-made structures
in the Google Earth map. If you visit Seattle and click the Buildings checkbox, Google Earth
displays the various buildings in Seattle on the map (see Figure 15-12).

FIGURE 15-12: Buildings in Seattle in Google Earth.

The result shows one of the effects we experienced: the apparent lack of very tall skyscrapers,
which helps give the wonderful impression of space and open-air feel that we discovered in
Seattle compared to New York.

Extending Google Earth Information
Earlier in this chapter, you saw the information that can be built and overlaid within Google
Earth. Google Earth obviously comes with its own massive library of data, information points,
and highlights that can be overlaid on the map. All of this information is provided through a
series of data files that are in the Keyhole Markup Language (KML) standard. KML is a
specialized type of XML that enables you to build and organize points, routes, and other
information.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 304

305Chapter 15 — Introducing Google Earth

The format of the data is not very difficult to understand or generate. Many of the principles
that have been used through the rest of the book, such as specifying the latitude and longitude
of a point and adding icons and other data, should be familiar. Unlike Google Maps, where the
applications that build and overlay this information on the map had to be encoded, the exten-
sion method within Google Earth is provided entirely within the structure and format of the
KML files.

This section looks at some of the basics of the KML system.

Exporting Your Tags
The easiest way to generate and share points, routes, and other data within Google Earth is to
save the points you find and put them into your My Places folder (or another folder you cre-
ate). You can then save the folder contents into a KML or KMZ file (a Zipped version of a
KML file) that you can then share with other people by simply distributing the file. You can
see the result of the KML file generated during the earlier examples here:

<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Document>
<name>My Places.kml</name>
<Folder>
<name>My Places</name>
<open>1</open>
<Placemark>
<name>Seattle, WA, USA</name>
<address>Seattle, WA, USA</address>
<styleUrl>root://styleMaps#default+nicon=0x304+hicon=0x314</styleUrl>
<Point>
<coordinates>-122.330833,47.606389,0</coordinates>

</Point>
</Placemark>
<Placemark>
<name>New York, NY, USA</name>
<visibility>0</visibility>
<address>New York, NY, USA</address>
<styleUrl>root://styleMaps#default+nicon=0x304+hicon=0x314</styleUrl>
<Point>
<coordinates>-74.006389,40.714167,0</coordinates>

</Point>
</Placemark>
<Placemark>
<name>Ambleside, LA22, UK</name>
<visibility>0</visibility>
<address>Ambleside, LA22, UK</address>
<styleUrl>root://styleMaps#default+nicon=0x304+hicon=0x314</styleUrl>
<Point>
<coordinates>-2.9623,54.428376,0</coordinates>

</Point>
</Placemark>

22_790095 ch15.qxp 6/12/06 1:42 PM Page 305

306 Part IV — Google Earth Hacks

<Placemark>
<name>Ben Nevis, UK</name>
<visibility>0</visibility>
<address>Ben Nevis, UK</address>
<styleUrl>root://styleMaps#default+nicon=0x304+hicon=0x314</styleUrl>
<Point>
<coordinates>-5.003529,56.796859,0</coordinates>

</Point>
</Placemark>
<Placemark>
<name>sorrento</name>
<open>1</open>
<View>
<longitude>14.366667</longitude>
<latitude>40.616665</latitude>
<range>31855</range>
<tilt>0</tilt>
<heading>0</heading>

</View>
<styleUrl>root://styleMaps#default+nicon=0x304+hicon=0x314</styleUrl>
<Point>
<coordinates>14.366667,40.616665,0</coordinates>

</Point>
</Placemark>
<Placemark>
<name>Seattle, WA, USA</name>
<open>1</open>
<address>Seattle, WA, USA</address>
<styleUrl>root://styleMaps#default+nicon=0x304+hicon=0x314</styleUrl>
<Point>
<coordinates>-122.330833,47.606389,0</coordinates>

</Point>
</Placemark>

</Folder>
</Document>
</kml>

The structure and content of the file is, as you can see, very simple and doesn’t differ in many
respects from some of the XML documents that you used in examples earlier in this book.

Basic KML Principles
The KML standard is huge. Google’s own documentation on KML is almost 120 pages, and
the contents are not going to be reproduced here. Instead, look at the highlights and key
points, starting with the basic format of a KML file. The basis of the KML file structure is as
follows:

� The main KML XML root tag.

� The Document tag defines the content of the document (and contains global document
information and a number of folders).

� The Folder tag defines the contents of a single folder, with each folder containing the
details of one or more placemarks, routes, or other structures.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 306

307Chapter 15 — Introducing Google Earth

Within a folder, you add placemarks, and these are composed of further elements and defini-
tions that describe the placemark and its components.

Placemarks
The placemark is the primary method of highlighting information within a Google Earth
KML document. A placemark is a single entity within the Google Earth application and can
refer to a single point, a line, a route, a polygon, or any combination of these. For example, a
placemark could be your house, or it could be a re-creation of the stones at Stonehenge. Both
are single entities but are composed of one and many points and coordinates, respectively.

The points that you define as part of a placemark can consist not just of the latitude and longi-
tude, but also the altitude and even the relationship between the ground and your point on the
map. You can also add a custom icon to the placemark (just as with a GMarker in Google
Maps).

Finally, you can control the appearance of the placemark, from the display text and information
panel to the name, style, and color of the label. You can also set the camera “view,” that is, the
location, altitude, direction, and tilt of the map when the user selects the placemark.

Geometry
Google Earth provides the ability to draw single points, lines, and polygons onto the map. All
geometry types consist of the coordinates (latitude, longitude), altitude, enabling points, lines,
and polygons to appear either on the ground or in the air. Coordinates are specified using the
coordinates tag, specifying the longitude, latitude, and altitude in that order. Hence, you
can find Sorrento using the KML:

<coordinates>14.366667,40.616665,0</coordinates>

All coordinates can be given a color, and polygons can be transparent (only their lines are
drawn) or solid (enabling you to construct buildings and other elements).

All points, lines, and polygons can be extruded; their location can be linked to another location.
For example, you can tether a coordinate to the ground even though it is displayed in the air.

For absolute flexibility you can group points, lines, and polygons into a collection, which in
turn can be used to describe single elements. For example, when constructing a building, you
could group the polygons that make up the building into a collection.

Overlays
Images can be overlaid on the map. Two types are available: a ground overlay and a screen over-
lay. Ground overlays ping the image to specific areas on the ground of the map. Screen overlays
enable you to “float” information in the Google Earth display.

The overlay image can be a JPG, PNG, GIF, or TIFF. You can either make the image available
over the Internet (or other network) or embed the image into a KMZ file along with the KML
file that uses it.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 307

308 Part IV — Google Earth Hacks

Wrapping Up
The Google Earth application provides a different environment for viewing the Google satel-
lite images in a method that also adds additional layers of information, such as terrain and 3D
buildings. The information displayed is the same as Google Maps, but the methods that are
available to extend the Google Earth application are different and rely on an XML-based for-
mat called KML.

KML is limited to providing additional data points for overlaying on top of the Google Earth
data. There is little of the interactivity provided within Google Maps and the browser, but the
Google Earth application provides a richer environment for displaying some types of data.
Now that you know the basics of Google Earth and what the KML format is capable of, you
can examine some samples of overlays that use the data generated in the previous Google Maps
examples, but using the KML format in Google Earth.

22_790095 ch15.qxp 6/12/06 1:42 PM Page 308

Generating Google
Earth Feeds

With Google Maps, the JavaScript language and Google Maps
object environment were required to build the marker and then
overlay the marker onto the Google Map. Google Earth pro-

vides a much simpler method for adding points of interest to the map. With
Google Earth, the Google Earth application does all of the overlay legwork.
All you need to do is create a suitable KML file that provides the bare
structure and coordinates of the point you want to highlight.

Because there is no programming involved, the structure and content of the
KML file is critical. This chapter describes the basics of the KML file for-
mat required for a basic point, along with some extensions and examples of
dynamism that can be added to the system.

Showing Points
The basic KML point is the <Placemark> tag. There were some examples
of this in the previous chapter, but the structure is quite straightforward.
Only two components are required for a <Placemark> tag: the name and
the point (containing coordinates for latitude/longitude) to which the point
refers. You can also add further information, such as the <address> tag,
icons, and further descriptive data to the <Placemark> tag according to
your needs.

For example, here’s a small <Placemark> tag defining the location of the
Yorkshire Bank in Grantham:

<Placemark>
<name>Yorkshire Bank</name>
<address>10 High St,Grantham, NG31 6PU, United

Kingdom</address>
<Point>

<coordinates>-0.642539,52.913,0</coordinates>
</Point>

</Placemark>

The <coordinates> tag specifies the longitude, latitude, and altitude of
the point, in that order, separated by a comma.

˛ Create KML
placemarks

˛ Update KML
dynamically

˛ Link to networks

chapter

in this chapter

23_790095 ch16.qxp 6/12/06 1:43 PM Page 309

310 Part IV — Google Earth Hacks

Generating KML from Existing Data
To demonstrate how easy it is to create a KML document with appropriate information, you
can adapt the data that was generated for the database in Chapter 11 (local Grantham busi-
nesses) and instead generate a KML document.

To generate the information, you follow the same basic method as in Chapter 11 to generate
the XML that was previously parsed by JavaScript. Unlike the Google Maps example, where
the XML was loaded on a business type-by-type basis, you can dump the entire database and
organize the information automatically by type by using the Google Earth folder system. The
Google Earth application can handle the filtering and selection process.

The KML document defines one set of data and therefore has only one folder in it. To further
subdivide information you have to add subfolders. The result is a KML file structure that looks
like this:

� Grantham Business Folder

■ Banks

■ Pharmacies

■ Restaurant

■ Sports

■ Travel

The Perl script for generating the file is as follows:

#!/usr/bin/perl

use DBI;
use strict;

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

You start with the opening structure. The <open> tag defines that the folder is open and the
contents should be displayed when the file is first opened within Google Earth:

print<<EOF;
<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Folder>
<name>Grantham features</name>
<open>1</open>
EOF

The SQL statement picks all available options but orders the information by type so that the
individual folders can be created:

23_790095 ch16.qxp 6/12/06 1:43 PM Page 310

311Chapter 16 — Generating Google Earth Feeds

my $sth = $dbh->prepare(sprintf(‘select * from ch10 order by type’));

$sth->execute();

To generate the individual <Placemark> tags, you only have to generate a suitable XML
structure. The $currenttype variable is used to identify first the current type so that you can
determine whether to create a new folder. The $count variable is used to identify the count to
determine whether the closing tag needs to be created (for the first change of type, it doesn’t).
Note that for the subfolders, you don’t open the contents; this doesn’t affect whether the
enclosed points are displayed, only whether the list of points in the folder is displayed:

my ($currenttype,$count) = (‘’,0);

while (my $row = $sth->fetchrow_hashref())
{

if ($currenttype ne $row->{type})
{

if ($count > 0)
{

print “</Folder>”;
}
printf(“<Folder>\n<name>%s</name>\n<open>0</open>\n”,$row->{type});
$currenttype = $row->{type};

}

$count++;

Each individual placemark is composed of the name, coordinates, and address of each entity in
the database:

printf(“<Placemark>\n<name>%s</name>\n<address>%s,%s</address> ;
\n <Point>\n<coordinates>%s,%s,0</coordinates> ;
\n</\Point></Placemark>\n”,

$row->{title},
$row->{adda},
$row->{addb},
$row->{lng},
$row->{lat},
);

}
$sth->finish();

Finally, you close the last entity type folder, the global KML folder, and finally the KML docu-
ment itself:

print(“</Folder></Folder>\n</kml>\n”);

Using the information that is in the final version of the database created in Chapter 11, the
preceding script generates the following KML. The quantity of KML included here is shown
to provide an overview of the overall structure, as well as the individual points. Even so, the
document has been shortened for inclusion in the book.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 311

312 Part IV — Google Earth Hacks

The code for this chapter (and all chapters of the book) is available on the web site that accom-
panies the book, http://maps.mcslp.com.

<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>

<Folder>
<name>Grantham features</name>
<open>1</open>
<Folder>

<name>banks</name>
<open>0</open>
<Placemark>

<name>Yorkshire Bank</name>
<address>10 High St,Grantham, NG31 6PU, United Kingdom</address>
<Point>

<coordinates>-0.642539,52.913,0</coordinates>
</Point>

</Placemark>
<Placemark>

<name>Abbey</name>
<address>1 St. Peters Hill,Grantham, NG31 6QB, United ;

Kingdom</address>
<Point>

<coordinates>-0.64075,52.9112,0</coordinates>
</Point>

</Placemark>
<Placemark>

<name>HSBC Bank plc</name>
<address>88 Westgate,Grantham, NG31 6LF, United ;

Kingdom</address>
<Point>

<coordinates>-0.644091,52.9119,0</coordinates>
</Point>

</Placemark>
<Placemark>

<name>Lloyds TSB Bank plc</name>
<address>42 St. Peters Hill,Grantham, NG31 6QF, United ;

Kingdom</address>
<Point>

<coordinates>-0.641202,52.9101,0</coordinates>
</Point>

</Placemark>
<Placemark>

<name>Alliance & Leicester plc</name>
<address>34 St. Peters Hill,Grantham, NG31 6QF, United ;

Kingdom</address>
<Point>

<coordinates>-0.641202,52.9101,0</coordinates>

23_790095 ch16.qxp 6/12/06 1:43 PM Page 312

313Chapter 16 — Generating Google Earth Feeds

</Point>
</Placemark>

...
<Placemark>

<name>Travel Quest</name>
<address>8-9 Westgate,Grantham, NG31 6LT, United ;

Kingdom</address>
<Point>

<coordinates>-0.643614,52.9119,0</coordinates>
</Point>

</Placemark>
<Placemark>

<name>Voyager</name>
<address>99 Westgate,Grantham, NG31 6LE, United ;

Kingdom</address>
<Point>

<coordinates>-0.644091,52.9119,0</coordinates>
</Point>

</Placemark>
<Placemark>

<name>Quality Travel</name>
<address>50 East St,Grantham, NG31 6QJ, United Kingdom</address>
<Point>

<coordinates>-0.640053,52.9121,0</coordinates>
</Point>

</Placemark>
<Placemark>

<name>Global Flights</name>
<address>99 Westgate,Grantham, NG31 6LE, United ;

Kingdom</address>
<Point>

<coordinates>-0.644091,52.9119,0</coordinates>
</Point>

</Placemark>
</Folder>

</Folder>
</kml>

If you save the file (for example, using redirection) and then open the file within Google Earth
(by selecting File ➔ Open), you get a window similar to the one shown in Figure 16-1.

You can see that Google Earth has zoomed to a point that shows all the loaded <Placemark>
tags. You can also see, in the panel on the left, that the folders you created within the KML are
displayed. Unlike Google Maps, where individual business types had to be enabled and dis-
abled through a JavaScript function you created, Google Earth now handles the selection pro-
cess for you. Figure 16-2 shows just banks and restaurants displayed on the map.

Of course, generating a static file and distributing it is not particularly efficient, especially if the
data changes frequently.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 313

314 Part IV — Google Earth Hacks

FIGURE 16-1: Opening the Chapter 11 KML information.

FIGURE 16-2: Selecting folders for display.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 314

315Chapter 16 — Generating Google Earth Feeds

Generating KML Dynamically
The static KML file generation shown in the previous section is less than ideal when the data
changes regularly. For static elements, such as documenting the location of mountains or seas,
the information displayed is unlikely to change. For business details, the information is likely to
change at least monthly.

With some applications, you might want to update the information even more frequently than
that. For the moment, you’ll just handle the dynamic generation of information and how that
can be loaded into the Google Earth application.

Changing the Script
To generate the information dynamically, a similar change to that used when moving from the
static XML to dynamic XML system used in Chapters 9 and 10 for Google Maps applications
is required. The change comes down to a single line: The correct HTTP header and content
type must be output by the script.

Google Earth supports two file types: KML and KMZ. The former, the uncompressed version,
requires the following content type:

application/vnd.google-earth.kml+xml xml

For KMZ files use the following content type:

application/vnd.google-earth.kmz kmz

The script will be generating KML, so the change is very straightforward. The entire script is
included here for reference to show that there are no differences between this and the static
generation version:

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

print header(-type => ‘application/vnd.google-earth.kml+xml xml’);

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

print<<EOF;
<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Folder>
<name>Grantham features</name>
<open>1</open>
EOF

23_790095 ch16.qxp 6/12/06 1:43 PM Page 315

316 Part IV — Google Earth Hacks

my $sth = $dbh->prepare(sprintf(‘select * from ch10 order by type’));

$sth->execute();

my ($currenttype,$count) = (‘’,0);

while (my $row = $sth->fetchrow_hashref())
{

if ($currenttype ne $row->{type})
{

if ($count > 0)
{

print “</Folder>”;
}
printf(“<Folder>\n<name>%s</name>\n<open>0</open>\n”,ucfirst($row-> ;

{type}));
$currenttype = $row->{type};

}

$count++;

printf(“<Placemark>\n<name>%s</name>\n<address>%s,%s</address>\n<Point> ;
\n<coordinates>%s,%s,0</coordinates>\n</Point></Placemark>\n”,

$row->{title},
$row->{adda},
$row->{addb},
$row->{lng},
$row->{lat},
);

}
$sth->finish();

print(“</Folder></Folder>\n</kml>\n”);

Although not demonstrated in this script, error handling with dynamic KML files is very
strict, because Google Earth refuses to use the network link if the file is not valid. Therefore, all
dynamic KML generators should always return an HTTP response of 200. To show an error,
generate the appropriate KML, for example:

<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>

<Folder>
<name>Error loading file</name>
<open>1</open>

</Folder>
</kml>

Care should be taken to ensure you follow this approach.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 316

317Chapter 16 — Generating Google Earth Feeds

Subscribing to a Network Resource
The CGI method shown in the previous section generates the necessary KML with the correct
headers and structure. However, you need to load the file within Google Earth using a specific
option so that that the KML is requested from the URL, rather than loaded from a file.

To add a network resource to your Google Earth application, you choose Network Link from
the Add menu in Google Earth. You are presented with a window like the one shown in
Figure 16-3.

FIGURE 16-3: Opening Network resources in Google Earth.

Give the Network Link a name. In the Location field, provide the URL of the CGI script that
generates the KML. To use the previously detailed example script, use the URL http://
maps.mcslp.com/examples/ch16-02.cgi.

You should get a Google Earth display like the one in Figure 16-4.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 317

318 Part IV — Google Earth Hacks

FIGURE 16-4: Viewing the dynamic Grantham entities.

Here you can see that the resulting folder structure is more or less identical to that produced
using the static option. The difference is that the information is being loaded from KML that
has been generated dynamically. Now the database can be updated and the Google Earth
application can load the updates. The information is manually refreshed when you open the
application, when you re-select the Network Link, or when you specifically request a refresh by
right-clicking the Network Link and selecting Refresh.

Using the Auto-Update Function
The network source for KML can be further enhanced by enabling the auto-update function.
Using this option, the network KML source is regularly reloaded at an interval that you can
specify. To demonstrate this functionality in action, first change the Grantham network
resource to automatically reload at specific intervals. Right-click the link generated in the pre-
vious option and select Edit. You should see the window in Figure 16-5.

Click the checkbox for Refresh Parameters and then set the parameters. You can specify that
the refresh occurs at specified intervals or when the view changes (including setting a delay
after the view has changed).

Within the book, it’s difficult to demonstrate this in perfect action, but you can see some sim-
ple changes. First, see Figure 16-6, which shows Google Earth and the dynamic KML in its
initial state. Refresh has been set for every five minutes.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 318

319Chapter 16 — Generating Google Earth Feeds

FIGURE 16-5: Setting refresh options.

FIGURE 16-6: Dynamic KML.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 319

320 Part IV — Google Earth Hacks

Using the script in Chapter 11 that adds new entities to the database, Saddler’s, Shoe Shops,
and Stationers have been added to the database. Figure 16-7 shows the new changes after the
automatic reload.

FIGURE 16-7: Automatic reload of KML data.

In this example, the data is unlikely to be reloaded and regenerated so regularly, but the refresh
system can be used to help regenerate all sorts of information. For example, KML could be
generated to show the current location of an aircraft or a team on an expedition. Each reload
would update the position accordingly.

Creating a Self-Reloading KML File
Not only can this be controlled from within the Google Earth application, but you can set the
refresh parameters from within a KML file. You cannot set it in the file that you generate, but
you can instead generate a static KML file that refers to the dynamic KML file and includes
the refresh parameters.

Following is a sample of the KML file, designed to refresh the dynamic example:

23_790095 ch16.qxp 6/12/06 1:43 PM Page 320

321Chapter 16 — Generating Google Earth Feeds

<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Document>
<visiblity>1</visbility>
<NetworkLink>

<name>ExtremeTech Google Maps: Grantham Entities</name>
<Url>

<href>http://maps.mcslp.com/examples/ch16-03.cgi</href>
<refreshMode>onInterval</refreshMode>
<refreshInterval>300</refreshInterval>
<viewRefreshMode>onStop</viewRefreshMode>
<viewRefreshTime>7</viewRefreshTime>

</Url>
</NetworkLink>
</Document>
</kml>

Looking at the individual elements, you can pick out the main points. First, you define the
name of the network link:

<name>ExtremeTech Google Maps: Grantham Entities</name>

Then you specify the URL, the refresh mode, the interval (specified in seconds), and the view-
ing format. Open the KML file in Google Earth, and the dynamic KML will automatically be
loaded.

Adding Icons
You can stylize a <Placemark> tag with a custom icon by using the Style element. The
Style element enables you to set custom styles for a <Placemark> tag. The IconStyle
element defines the icon details. For example:

<Style>
<IconStyle>

<Icon>
<href>http://maps.mcslp.com/examples/bank.png</href>

</Icon>
</IconStyle>

</Style>

The <href> element defines the location of the icon graphic. In this case, the location speci-
fied is the same as that used for the Bank icon example demonstrated in Chapter 11. You can
use a single source file for the icon and extract the icon using the x/y reference of the left/bot-
tom edge and the height and width of the icon (using the <h> and <w> tags).

For the final example, you’ll use a simple icon, chosen using the type name to generate the
icon, just as used in Chapter 11. The resulting script is shown as follows:

23_790095 ch16.qxp 6/12/06 1:43 PM Page 321

322 Part IV — Google Earth Hacks

#!/usr/bin/perl

use DBI;
use strict;
use CGI qw/:standard/;

print header(-type => ‘application/vnd.google-earth.kml+xml xml’);

my $dbh = DBI->connect(‘dbi:mysql:database=mapsbookex;host=db.maps.mcslp.com’,
‘mapsbookex’,
‘examples’,
);

print<<EOF;
<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Folder>
<name>Grantham features</name>
<open>1</open>
EOF

my $sth = $dbh->prepare(sprintf(‘select * from ch10 order by type’));

$sth->execute();

my ($currenttype,$count) = (‘’,0);

while (my $row = $sth->fetchrow_hashref())
{

if ($currenttype ne $row->{type})
{

if ($count > 0)
{

print “</Folder>”;
}
printf(“<Folder>\n<name>%s</name>\n<open>0</open>\n”,ucfirst($row-> ;

{type}));
$currenttype = $row->{type};

}

$count++;

printf(“<Placemark>\n<name>%s</name>\n<address>%s,%s</address>\n”,
$row->{title},
$row->{adda},
$row->{addb},
);

23_790095 ch16.qxp 6/12/06 1:43 PM Page 322

323Chapter 16 — Generating Google Earth Feeds

printf(“<Style><IconStyle><Icon><href>http://maps.mcslp.com/;
examples/%s.png</href><Icon></IconStyle></Style>”,lc($row->{type}));

printf(“<Point>\n<extrude>1</extrude>\n<altitudeMode>relativeToGround ;
</altitudeMode>\n<coordinates>%s,%s,250</c\oordinates>\n</Point></Placemark>\n”,

$row->{lng},
$row->{lat},
);

}
$sth->finish();

print(“</Folder></Folder>\n</kml>\n”);

The preceding script also introduces another concept. You extrude the point from the ground.
This creates a line between the icon used to represent the entity and its actual location on the
ground. To do this, when defining the <Point> tag of the KML you add the extrude option:

<extrude>1</extrude>

You then need to set the altitude of the point, first by defining the relationship between the actual
point on the ground and the elevation at which you want to create the <Placemark> tag:

<altitudeMode>relativeToGround</altitudeMode>

The relativeToGround specification sets the system so that the height is relative to the
height of the ground where the marker is created. So, if you specify the altitude of the point as
250m, but the elevation of the location is already 68m, then the marker would display at 318m
above sea level.

Other options are clampedToGround (the altitude is ignored, this is the default mode) and
absolute, where the altitude is exactly as specified (250m would display at 250m above sea
level, even if the elevation of that point was more than that amount).

Figure 16-8 shows the resulting information in Google Earth. You can see how the markers
appear to float above the map, but a line is clearly connected from the marker to the real lati-
tude/longitude of the point.

Because the information is floating, rotating the map shows the icons constantly associated
with the right location (see Figure 16-9).

Although the view is quite confusing here, users have the ability to include and exclude the dif-
ferent businesses they want to view because businesses are grouped into appropriate folders.
The organization (providing the KML is generated appropriately) is automatic and is a lot eas-
ier to use than the system that had to be developed within Google Maps.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 323

324 Part IV — Google Earth Hacks

FIGURE 16-8: Using custom icons and extruding information.

FIGURE 16-9: Viewing icons with a tilted and rotated map.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 324

325Chapter 16 — Generating Google Earth Feeds

Wrapping Up
Google Earth handles a lot of the application logic that requires JavaScript and programming
in Google Maps. To create similar effects within Google Earth you need only generate the
appropriate KML.

This chapter covered the basics of generating markers and points within KML. The basic point
is easy to create. In most cases it requires only the latitude and longitude of the point. Markers
can then be further customized by adding icons and you can even help to improve the visibility
by extruding the icon above the map, making the marker more visible, particularly when the
map is rotated or tilted.

You also saw how to refresh KML data. The refresh system allows KML to be automatically
reloaded, and that provides an element of interactivity that enables sequences or time-based
interaction to be overlaid on top of the Google Earth satellite data.

23_790095 ch16.qxp 6/12/06 1:43 PM Page 325

23_790095 ch16.qxp 6/12/06 1:43 PM Page 326

History and Planning
with Google Earth

Location Photos

Iwas fortunate enough to go Pompeii during the writing of this book.
Pompeii is a fascinating place, because almost the entire town (or at least
that which has been uncovered) is intact — an amazing feat considering it

is almost 2,000 years old and was buried under many feet of volcanic ash
from the eruption of Mount Vesuvius in 87 A.D. As a Roman town it offers
a unique insight into Roman life.

While there I took hundreds of photos, but though I can show and describe
the contents of the photos, it is difficult to give a context in terms of the
layout of the town to someone who has never been there.

Using Google Earth, the photos taken at Pompeii can be shown in the con-
text of a satellite shot of the Pompeii site. The view can include the heading
and even the photo itself to help the viewer make sense of both the satellite
image and the photo.

Using a Photo for a Placemark
In Chapter 16, icons were used to highlight particular areas on the map that
related to specific businesses. Using a photo as an alternative mark is one
way of highlighting the places you visited while on vacation. It can also be
used with any photo to give the photos some context. For example, Realtors
could use photos of a property and a satellite image (or the view from the
windows of different rooms) to show what the real estate looks like from
different directions.

When using this method, be aware that the photos may overlap each other.
Some careful placing — using altitude and extrusion — to highlight the
points can help to make the individual items visible. Figure 17-1 shows an
example using icons in this way, and Figure 17-2 shows the same informa-
tion but with a slightly different camera angle, to show how the overlapping
of the icons can obscure, rather than help, the display of information.

To achieve this display, a number of different techniques were used.

˛ Create placemarks
from photos

˛ Create KMZ files

˛ Generate
3D models

chapter

in this chapter

24_790095 ch17.qxp 6/12/06 1:43 PM Page 327

328 Part IV — Google Earth Hacks

FIGURE 17-1: Using photos for icons.

FIGURE 17-2: An alternative photo-based icon view.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 328

329Chapter 17 — History and Planning with Google Earth

Scaling the Icon
By default, Google Earth creates a relatively small icon based on the image that is provided,
regardless of the size of the image. This is to prevent the image from dominating the map,
when it is only really referring to a placemark.

To alter this behavior, styles must be defined that specify the format of the icon and the label
used to highlight the placemark. The key element in the following code is the Icon reference,
which refers to the image that will be used for an icon, and the scale entity, which scales the
size of the icon in the placemark:

<Style id=”basestylea”>
<IconStyle id=”mainsquareicon”>

<scale>4</scale>
<Icon>

<href>images/DSC01155.JPG</href>
</Icon>

</IconStyle>
</Style>

Figure 17-3 shows the difference between a non-scaled and a scaled icon.

FIGURE 17-3: A non-scaled (small) and scaled (large) icon.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 329

330 Part IV — Google Earth Hacks

Setting a View
When dealing with photographs, the direction in which the camera was pointing when the
photograph was taken is a significant part of what makes the photo special. For example, a
photo of the Bay of Naples, where Pompeii is located, can show a number of different ele-
ments. If the photo was taken from Naples facing the southeast, you’d be taking a photo of
some mountains. To a visitor to the area, they are quite obviously the mountains to the east of
Sorrento, but they could easily be confused for a picture of Vesuvius. By adding a heading and
direction to a placemark, the direction of the camera lens is obvious.

To achieve this, a LookAt element must be included with each tag. When the user double-
clicks a tag, the information in the LookAt tag is used to determine the camera (or eye) view
point within Google Earth. There are six elements to the LookAt fragment:

� Longitude: The longitude of the point.

� Latitude: The latitude of the point.

� Altitude of the point: (Optional.) The altitude of the point.

� Range: The altitude of the camera or eye.

� Tilt: The angle of the camera.

� Heading: The compass heading of the camera.

Thus a view point equal to a bird’s-eye view of the main square in Pompeii can be created using
the following code:

<LookAt>
<longitude>14.4850001287074</longitude>
<latitude>40.74889804414286</latitude>
<altitude>0</altitude>
<range>254.0000000037327</range>
<tilt>67.63540763119519</tilt>
<heading>-17.02539065750064</heading>

</LookAt>

The LookAt element is placed immediately within the Placemark element:

<Placemark>
<name>Council Building</name>
<open>1</open>
<LookAt>

...
</LookAt>

</Placemark>

When the placemark is double-clicked, the camera moves to this location. When it is single
clicked, nothing happens.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 330

331Chapter 17 — History and Planning with Google Earth

Adding Detail to a Placemark
The info window in Google Maps is an effective way of providing more detailed information
for a placemark. Google Earth automatically creates these windows based on information
within the <description> tag within a placemark. For example, the Pompeii town square
placemark can be described using this:

<description>The Pompeii town square photo was taken here.</description>

The content in this section can be plain text, as shown here, but it can also be HTML. To
embed HTML it must be escaped. There is a longer solution for this that requires escaping the
HTML (particularly the angle brackets), like this:

<description>The main square of Pompeii, looking towards the ;
temple. </description>

A simpler method is to use the XML data embedding format. For example, you could include
the photo in the placemark window using the following:

<description><![CDATA[The main square of Pompeii, looking towards the ;
temple.]]></description>

Using this method, the points on the map could be returned to standard placemarks and the
placemark window used to display the photo.

Final KML
Putting everything in the previous sections together, you can build a single KML file that
describes a number of points, and the photos taken at those points, for the trip to Pompeii.
Only three points are detailed here, but an unlimited number could theoretically be introduced:

<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Document>

<name>Pompeii.kmz</name>
<Folder>

<name>Pompeii</name>
<open>1</open>
<Placemark>

<name>Council Building</name>
<description><![CDATA[This is one of the council buildings off ;

the main square.]]></description>
<open>1</open>
<LookAt>

<longitude>14.48469513913974</longitude>
<latitude>40.75006838268123</latitude>
<altitude>0</altitude>
<range>498.0008872980769</range>
<tilt>67.6354076394704</tilt>
<heading>105.3299769917819</heading>

</LookAt>

24_790095 ch17.qxp 6/12/06 1:43 PM Page 331

332 Part IV — Google Earth Hacks

<Point>
<extrude>1</extrude>
<altitudeMode>relativeToGround</altitudeMode>
<coordinates>14.48469513930003,40.75006838317384,0</coordinates>

</Point>
</Placemark>
<Placemark>

<name>Main Square from Temple</name>
<description><![CDATA[Looking back towards the main square, ;

this time from the temple and looking through the arch from one of the ;
streets leading off the square.]]></description>

<LookAt>
<longitude>14.48442827437565</longitude>
<latitude>40.75001642868543</latitude>
<altitude>0</altitude>
<range>254.000032893549</range>
<tilt>67.63460936190043</tilt>
<heading>160.5058044783431</heading>

</LookAt>
<Point>

<extrude>1</extrude>
<altitudeMode>relativeToGround</altitudeMode>
<coordinates>14.48442827406559,40.7500164285698,0</coordinates>

</Point>
</Placemark>
<Placemark>

<name>Pompeii Main Square</name>
<description><![CDATA[The main square of Pompeii, looking ;

towards the temple.]]></description>
<open>1</open>
<LookAt>

<longitude>14.4850001287074</longitude>
<latitude>40.74889804414286</latitude>
<altitude>0</altitude>
<range>254.0000000037327</range>
<tilt>67.63540763119519</tilt>
<heading>-17.02539065750064</heading>

</LookAt>
<Point>

<extrude>1</extrude>
<altitudeMode>relativeToGround</altitudeMode>
<coordinates>14.4850001287074,40.74889804414284,0</coordinates>

</Point>
</Placemark>

</Folder>
</Document>
</kml>

Figure 17-4 shows the main map, with Figures 17-5 and 17-6 showing two of the photos from
the available points. Note that in each case the placemark has been double-clicked to move the
map to the new viewpoint.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 332

333Chapter 17 — History and Planning with Google Earth

FIGURE 17-4: Basic placemark in Pompeii.

FIGURE 17-5: A council building in Pompeii.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 333

334 Part IV — Google Earth Hacks

FIGURE 17-6: Looking backwards toward the main square.

Generating the Information in Google Earth
Although it is tempting to produce all of the information completely manually (which is
certainly possible for typical addresses and locations that can be determined using techniques
shown earlier in this book), an easier alternative is to use the Google Earth application. To
create a new point, choose File ➔ Add ➔ New Placemark.

All of the options, including the camera view, description, elevation, and extrusion information
can be set entirely within the panel. Click the Advanced checkbox to set the additional options.
You can see the various settings across three different panels: Style (Figure 17-7), Location
(Figure 17-8), and View (Figure 17-9).

Once you have created the various placemarks that you want, you can save the placemarks into
a separate file and even generate a suitable folder structure. If you have included graphics for
icons into your placemarks, Google Earth will create a KMZ file rather than a KML file that
incorporates the KML and images into a single Zip file.

The same method can be used with your own creations.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 334

335Chapter 17 — History and Planning with Google Earth

FIGURE 17-7: Setting a placemark Style.

FIGURE 17-8: Setting a placemark Location, altitude, and extrusion.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 335

336 Part IV — Google Earth Hacks

FIGURE 17-9: Setting the View for a placemark.

Generating a KMZ File
Generating a plain KML file is fine when either the information or the icons and other data
are available freely on the Internet. However, there are times when you want to create a stan-
dalone file that incorporates the KML with the icons, images, and any other files that make
your Google Earth file.

The format is quite straightforward. It is simply a Zip file that contains the KML and images.
For clarity, you should use the following format:

� doc.kml: The main KML file.

� images/: A directory for icons and photos to be included in the file.

Within the KML, you can refer to files directly according to this structure. For example, a
photo could be included in the description for a placemark using this:

You can use any appropriate Zip-compatible software. From a Unix or Linux machine (includ-
ing Mac OS X) with a command-line client, you could use the following, for example:

$ zip -r Pompeii.kmz doc.kml images/

24_790095 ch17.qxp 6/12/06 1:43 PM Page 336

337Chapter 17 — History and Planning with Google Earth

Within Windows you can use WinZip to create a suitable file, but you need to rename the file
to have the .kmz extension.

Revisiting the Realtor’s Toolkit
In Chapter 12 examples of both archaeological- and realty-related tools in Google Maps were
examined. Both followed similar principles, the overlay of information that is known about a
location, either in the past or the potential in the future.

Within Google Earth the same principles can be used to display information, either in an
identical manner or in a far more interesting alternative.

Using an Overlay
A simple overlay was used in Chapter 12 to suggest a potential office plan and layout. The dis-
play was simplistic, partially because of limitations in Google Maps, but also because with just
a flat image to play with, there is very little that could be done to alter the view and representa-
tion of the office plan. With Google Earth you can follow the same principles to add an image
overlay to the map.

Figure 17-10 shows the overlay in an almost identical situation to the one used in Chapter 12.

FIGURE 17-10: Display of a simple overlay.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 337

338 Part IV — Google Earth Hacks

Because this is Google Earth, the overlay is of course attached to the map. If the view is
rotated or tilted, the overlay rotates and tilts with the map accordingly, as demonstrated in
Figure 17-11.

FIGURE 17-11: Rotated map and overlay.

The KML generated in the preceding process shows how the image is overlaid. Unlike Google
Maps, where the TPhoto extension was used, Google Earth supports the operation directly
within the application using KML to define the structure:

<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Document>

<name>New Office Layout.kmz</name>
<GroundOverlay>

<name>New Office Layout</name>
<color>77ffffff</color>
<Icon>

<href>images/ch11-overlay.png</href>
<viewBoundScale>0.75</viewBoundScale>

</Icon>
<LatLonBox>

<north>35.2838663590014</north>
<south>35.27641626890076</south>

24_790095 ch17.qxp 6/12/06 1:43 PM Page 338

339Chapter 17 — History and Planning with Google Earth

<east>-97.58248738034948</east>
<west>-97.59315654329896</west>

</LatLonBox>
</GroundOverlay>

</Document>
</kml>

The key element is how the location of the overlay is associated with the map. The north,
south, east, and west elements set the borders of the image as it will be associated on the
map. The other elements are as follows:

� Icon: Defines the overlay image.

� viewBoundScale: Specifies how much of the display real estate should be used to
show the overlay.

� Color: Specifies the color and opacity of the overlay. The color is specified as four two-
character hexadecimal values, between 0 and 255. The first value is the alpha (opacity)
channel. The value specified in this case is 77 (hex), or 119 decimal, or about 47 percent.

Although the information displayed is useful, with a 3D environment it would be much better
to give a proper 3D representation of the offices.

Creating a 3D Structure
To create a 3D structure, for example, the representation of an office, you combine latitude/
longitude references with extrusion and altitude to generate a “solid” 3D object on the map.

The key is the Polygon element, a base structure that defines a simple multi-point shape
made up of the lines that connect latitude/longitude points. Without extrusion, a Polygon
would draw a simple shape. With extrusion and altitude you solidify the polygon. The basic
structure for a polygon is as follows:

<Polygon id=”packagingstructure”>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>relativeToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing id=”packaging”>
<coordinates>

-97.59277582168579, 35.282008632343754,100
-97.59277582168579, 35.278137436300966,100
-97.59017944335938, 35.278137436300966,100
-97.59017944335938, 35.282008632343754,100
-97.59277582168579, 35.282008632343754,100

</coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

24_790095 ch17.qxp 6/12/06 1:43 PM Page 339

340 Part IV — Google Earth Hacks

The outerBoundary element defines the outer line of the polygon. Everything inside is con-
sidered part of the solid shape. The coordinates are specified, one per line, but really you need
only separate each coordinate by a space. Remember, just as with bounding boxes in Google
Maps, you must specify at least one more point for each side of the shape because you are
drawing lines from point to point to point. In this case, four sides require five points, each of
the four corners and the first corner again to complete the polygon.

You can also generate shapes based on multiple polygons by using the MultiGeometry
option, including each Polygon definition within the MultiGeometry element.

Using these techniques, the simple flat image overlay demonstrated earlier could be redevel-
oped into a 3D model of the office building using the following KML:

<?xml version=”1.0” encoding=”UTF-8”?>
<kml xmlns=”http://earth.google.com/kml/2.0”>
<Document>
<Style id=”myDefaultStyles”>
<LineStyle id=”defaultLineStyle”>
<color>ff000000</color>
<width>1</width>

</LineStyle>
<PolyStyle id=”defaultPolyStyle”>
<color>77777777</color>

</PolyStyle>
</Style>
<Placemark>
<name>Sales Building</name>
<description>The new sales building, showing a readical structure to ;

provide a view for
clients.</description>

<styleUrl>#myDefaultStyles</styleUrl>
<MultiGeometry>
<Polygon id=”lowerfloors”>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>relativeToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing id=”lowerfloor”>
<coordinates> -97.58590936660767, 35.27654336061367, ;

50 -97.58590936660767,
35.28360260045482, 50 -97.58260488510132, ;

35.28360260045482, 50 -97.58260488510132,
35.27654336061367, 50 -97.58590936660767, ;

35.27654336061367, 50 </coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>
<Polygon id=”middlefloors”>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>relativeToGround</altitudeMode>

24_790095 ch17.qxp 6/12/06 1:43 PM Page 340

341Chapter 17 — History and Planning with Google Earth

<outerBoundaryIs>
<LinearRing id=”middlefloor”>
<coordinates> -97.58590936660767, 35.279, ;

100 -97.58590936660767, 35.28360260045482,
100 -97.58260488510132, 35.28360260045482, ;

100 -97.58260488510132, 35.279, 100
-97.58590936660767, 35.279, 100 </coordinates>

</LinearRing>
</outerBoundaryIs>

</Polygon>
<Polygon id=”upperfloors”>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>relativeToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing id=”upperfloor”>
<coordinates> -97.58590936660767, 35.28, ;

250 -97.58590936660767, 35.28360260045482,
250 -97.58260488510132, 35.28360260045482, ;

250 -97.58590936660767, 35.28, 250
</coordinates>

</LinearRing>
</outerBoundaryIs>

</Polygon>
</MultiGeometry>

</Placemark>

<Placemark>
<name>Administration building</name>
<description>A straightforward office structure</description>
<styleUrl>#myDefaultStyles</styleUrl>
<Polygon id=”adminstructure”>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>relativeToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing id=”adminoffice”>
<coordinates> -97.58904218673706, ;

35.282008632343754,150 -97.58904218673706,
35.278137436300966,150 -97.58638143539429, ;

35.278137436300966,150 -97.58638143539429,
35.282008632343754,150 -97.58904218673706, ;

35.282008632343754,150 </coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

</Placemark>

<Placemark>
<name>Packaging/delivery warehouse</name>
<description>A lower structure, open plan internally.</description>

24_790095 ch17.qxp 6/12/06 1:43 PM Page 341

342 Part IV — Google Earth Hacks

<styleUrl>#myDefaultStyles</styleUrl>
<Polygon id=”packagingstructure”>
<extrude>1</extrude>
<tessellate>1</tessellate>
<altitudeMode>relativeToGround</altitudeMode>
<outerBoundaryIs>
<LinearRing id=”packaging”>
<coordinates> -97.59277582168579, ;

35.282008632343754,100 -97.59277582168579,
35.278137436300966,100 -97.59017944335938, ;

35.278137436300966,100 -97.59017944335938,
35.282008632343754,100 -97.59277582168579, ;

35.282008632343754,100 </coordinates>
</LinearRing>

</outerBoundaryIs>
</Polygon>

</Placemark>
</Document>

</kml>

The resulting 3D office plan can be seen in Figure 17-12, and, because it is a proper 3D struc-
ture, Figure 17-13 shows an alternative view.

FIGURE 17-12: A 3D office demonstration.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 342

343Chapter 17 — History and Planning with Google Earth

FIGURE 17-13: An alternative view.

Unfortunately, I am no 3D artist, but you can find numerous other examples of 3D structures
defined within the Google Earth application when you add the Buildings overlay to your map.

Wrapping Up
The facilities in Google Earth can turn the basic principles learned in Google Maps into a
much richer environment for showing information. Because the map can be rotated and
manipulated, unlike the flat model used by Google Maps, you can develop much more interest-
ing views of data and information, such as holiday photos. Because direction and orientation
are implied in the display, the photos are given much more context than simple pushpoints on
the map.

Using built-in 3D modeling, you can represent offices, buildings, and other elements in a way
that provides a much easier-to-understand representation of a structure. With some manipula-
tion of the camera, you could even give a representation of what a buyer could expect to see
through the windows of stores in the buildings.

24_790095 ch17.qxp 6/12/06 1:43 PM Page 343

24_790095 ch17.qxp 6/12/06 1:43 PM Page 344

˛ Useful resources
for Google.com

˛ Additional sources
of information

˛ Geocoder links

˛ Google Maps tools

˛ Other mapping
services

appendix

in this appendix

Resources

Google Maps has generated a significant following, and this has, in
turn, led to a stunning array of web sites that provide information,
examples, tutorials, and help for working with and developing

Google Maps applications. I’ve distilled the basics of these links into this
appendix.

Please note that the information in this appendix was correct at the time it
was written. For a more complete and up-to-date resource page, please visit
the MCslp Map Works web site (http://maps.mcslp.com).

Google Resources
As a web company, Google has done a lot to provide access to as much
information as possible on as many different sites as possible. The primary
considerations for this appendix, of course, are the main map sites that
Google uses to provide the information.

You can view any part of the world through the Google Maps interface.
Google also has specially allocated URLs that take you to specific countries
so that you don’t have to go to the generic U.S. site and search or scroll until
you find the area you want. Of course, you can go wherever you like when
developing your own Google Maps.

Table A-1 provides a list of the main sites, including Google Moon.

Table A-1: Google Map Services

Map URL

Google Maps USA http://maps.google.com

Google Maps UK http://maps.google.co.uk

Google Maps Japan http://maps.google.co.jp

Google Maps China http://bendi.google.com

Google Moon http://moon.google.com

Google Earth http://earth.google.com

25_790095 appa.qxp 6/12/06 1:44 PM Page 345

346 Part IV — Google Earth Hacks

The Google Moon site is unique in that it shows only the area (and the associated markers)
used for the moon landings. The site was released on July 20, 2005, to mark the 36th anniver-
sary of the Apollo 11 moon landing.

Google Maps API
www.google.com/apis/maps/

You can find more information, read the documentation, and view help pages on the main
Google Maps API site.

Google Maps API Documentation
www.google.com/apis/maps/documentation/

This is the main documentation page for the entire Google Maps service. The information
provided on this page is the current version of the Google Maps API documentation. You
should visit the site regularly to ensure that there have not been any important changes to the
documentation and API.

Google Maps API Help
www.google.com/apis/maps/faq.html

Here you can find the FAQ for working and using the Google Maps API.

Google Web API
www.google.com/apis/

The Google Web APIs provide an interface to the Google system for searching the Google
databases for information.

Google Maps Groups
There are two groups for Google Maps:

� The Google Maps group (http://groups-beta.google.com/group/Google-
Maps) provides basic information and discussion on the Google Maps service.

� The Google Maps API group (http://groups-beta.google.com/group/
Google-Maps-API) provides discussion of the Google Maps API and information on
how to construct web sites based on the Google Maps system.

25_790095 appa.qxp 6/12/06 1:44 PM Page 346

347Appendix A — Resources

Information Sources
To get the most out of the Google Maps service, you will almost certainly need to make use of
additional Google Maps resources and web sites. This section lists some of the key compo-
nents, including sites that themselves provide more information on and links to the Google
Maps service.

Google Maps Mania
http://googlemapsmania.blogspot.com/

This blog documents Google Maps services, changes to the documentation and service offer-
ings, and general information on the web-mapping world. Overall, it provides one of the
best ranges of resources, as well as links both to vital resources and to example Google Maps
services.

Maplandia.com
The Maplandia site provides links to Google Maps pages that take you straight to a specific
country, town, city, or other location through a series of geographical locations. Once you’ve
found the location you want, you can further search for locations within the specific area.

Google Maps on Wikipedia
http://en.wikipedia.org/wiki/Google_maps

The Google Maps entry on Wikipedia provides a range of additional links and information on
the Google Maps service and associated web sites.

Google Sightseeing
www.googlesightseeing.com/

This site shows images taken from Google Maps and Google Earth that show interesting
structures or images.

Geocoders
Google does not provide a geocoding mechanism (that is, a way of mapping a given address or
worldwide location into the latitude and longitude required to redirect Google Maps to a spe-
cific location). This section lists a number of solutions to this problem. You can use some of
them directly within a Google Maps browser application; others can be used from within a
server-side application to build a list of points for your main application.

25_790095 appa.qxp 6/12/06 1:44 PM Page 347

348 Part IV — Google Earth Hacks

MGeocoder
http://brainoff.com/gmaps/mgeocoder.html

MGeocoder provides a JavaScript overlay that enables you to search directly for a given
location.

Geocode America
www.geocodeamerica.com/

This is a web service–based interface to a Geocode database for America. You can supply any
U.S. address and obtain the Geocode information you require.

Geocoder
http://geocoder.us/

This is another web service–based interface for finding Geocodes from addresses. Primarily a
U.S. service, Geocoder also provides a Canadian and Argentinean service.

Google Maps Tools
A number of tools have been produced to make it easier to produce Google Maps and to
provide examples and extensions to the Google Maps functionality.

gMap it!
The gMap extension for Firefox allows you to find and search for information based on pub-
licly listed phone numbers, which can then be used to display the location and directions
within Google Maps.

Mobile GMaps
www.mgmaps.com/

Being able to use Google Maps on a mobile device is obviously a good combination, and
Mobile GMaps enables you to use Google Maps on mobile devices (phones, PDAs) that
support the J2ME (Java Mobile Environment) standard.

MapBuilder
www.mapbuilder.net/

MapBuilder provides a complete web environment for building Google Maps. You can specify
locations, add HTML (to be displayed in map points and pop-ups), and choose your point

25_790095 appa.qxp 6/12/06 1:44 PM Page 348

349Appendix A — Resources

icon. The result is a web page that you can download and use in your own applications once
you use your own Google Maps API key.

MapKi
http://mapki.com

A Wiki that provides information and resources on using mapping APIs, including Google
Maps.

Competitors and Alternatives
Although Google Maps and Google Earth are not the first search services available on the
Internet, they were the first to make a publicly available API to enable programmers and other
individuals to embed Google Map–based applications into their own web pages instead of
redirecting users to another site.

MapQuest
http://mapquest.com/

The MapQuest site provides street maps only of the U.S.; Canada; and much of western,
southern, and northern Europe. MapQuest is part of AOL.

Virtual Earth
Virtual Earth is part of the Microsoft Network (MSN) web site; it overlays satellite imagery
and aerial photography of the earth over a 3D map. As well as providing map-search functions,
Virtual Earth can also show maps according to specific addresses, towns, or cities, or via a busi-
ness name or type search.

Yahoo! Maps
http://maps.yahoo.com/

Yahoo! Maps provides mapping information for the U.S. and Canada.

A9 Maps
Amazon’s search engine, A9, has a mapping service that provides U.S. street maps and driving
directions. In an interesting twist to the basic street-mapping service, A9 Maps also provides
street-level photography that allows you to see what a street looks like in addition to viewing its
location on the map.

25_790095 appa.qxp 6/12/06 1:44 PM Page 349

350 Part IV — Google Earth Hacks

Multimap.com
www.multimap.com/

Multimap.com is a U.K.-based provider of mapping information. It is a full road-mapping ser-
vice (for the U.K., continental Europe, and the U.S.) combined with aerial photographs and
local information. Multimap was one of the early Internet-based mapping companies, and U.K.
companies often use the site to direct people to businesses.

Map24
http://map24.com

Map24 is an Internet mapping application that uses a Java-based interactive interface for
building the maps and providing the interactive elements of the Map interface. The site cur-
rently supports the U.S., Europe, Brazil, and the Middle East.

25_790095 appa.qxp 6/12/06 1:44 PM Page 350

Index

26_790095 bindex.qxp 6/12/06 1:44 PM Page 351

26_790095 bindex.qxp 6/12/06 1:44 PM Page 352

SYMBOLS AND NUMERICS
<> (angle brackets), 63
~ (tilde), 68
3D structures, realty-related tools, 339–343

A
ActivePerl distribution, 60
addControl() method, 43, 106–107
addgraph() method, 203
addListener() method, 49
addmarker() method, 115, 120, 147
addOverlay() method, 44, 46, 111, 125
addpoint() method, 233–234
addresses

adding to information windows, 122
defining locations with, 4–5
defining locations without, 5
geocoding

geocoder.us service, 97
global information, 97–101
latitude/longitude information, 96–97
overview, 95
U.S. information, 96–97

postal code
community sites, 209
discussed, 5
search results, 28

street
discussed, 5
routes by, 118

aerial photography, 4
airport data, Google Earth application, 300
AJAX (Asynchronous JavaScript and XML),

82, 151–152
alternate words, spelling system, 60
alternative routes, 275
altitude

Google Earth application, 301–302
LookAt element, 330

anchor points, TLabel class, 229–230
anchorLatLng property, 229
anchorPoint property, 230
angle brackets (<>), 63
A9 Maps mapping service, 349
API (Application Programming Interface)

browser compatibility, 37
elements and styles, 39
Google Maps

browser compatibility example, 105
documentation, 346
groups, 346
help options, 346
resources, 345–346
web site, 346

Google Web
downloading, 53–54
FAQ section, 55
Filter parameter, 56
help options, 346
Input Encoding parameter, 56
Key parameter, 55
language comparison samples, 60–63
Language Restrict parameter, 56
Max results parameter, 55
Output Encoding parameter, 56
Query string parameter, 55
remote procedure call, 61–62
Restrict parameter, 56
SafeSearch parameter, 56
searches, 55–59
Start index parameter, 55
web site, 54

Javascript language, 40
key registration, 36
limits and usage, 36
query limitations, 55
VML (Vector Markup Language), 38–39
XHTML (Extensible HTML), 37–38
XML (Extensible Markup Language), 39

Index

26_790095 bindex.qxp 6/12/06 1:44 PM Page 353

API Key, Flickr photos, 279–280
APIs_Reference.html file, 54
application initialization, front-end interface,

264–265
Application Programming Interface. See API
arrow buttons, map movement, 15
arrow pointers, 230–231
Asynchronous JavaScript and XML (AJAX),

82, 151–152
attributes, tag, 73
auto-update function, Google Earth application,

318

B
backend database interface

community sites, 211–213
database structure, 266
message response, 267
operations, 265
routes

alternative, 275
deleting, 269–270
distance calculation, 271–272
listing existing, 267–268
obtaining single, 270–271
saving, 268–269

simple wrapper example, 266–267
standardized message, 265

banks, custom created icons, 213
bar graphs, statistical data, 189–192
bind() method, 50
Blackbird spotter, trackers and locators,

139–140, 142
boolean values, searches, 57
bounding boxes

adding to maps, 116–117
GBound class, 52

boundingbox() method, 117
Brooklyn Bridge map view, 8–9, 26
browser compatibility

API (Application Programming Interface), 37
Google Maps example, 105

buildings, Google Earth application, 304
business, searches by, 29

C
cachedSize element, 58
camera views, traffic solutions, 135
car-based route finders, 136
case-sensitivity, searches, 101
center points, dynamic generated maps, 173
centerAndZoom() method, 44, 109, 186
centerAtLatLng() method, 43, 109
CGI scripts, XML generation through, 160–161
circles, statistical data demonstration, 192–193
city lists, loading, dynamic generated maps,

169–171
classes

GBounds, 52
GEvent

methods, 49–50
properties, 121

GIcon
properties, 48–49
uses for, 201

GMap
controls, adding and removing, 43
event configuration, 45–46
information windows, adding, 44–45
map option configuration, 43
new object creation, 42
overlays, adding and removing, 44
status information, 43–44

GMarker
event triggers, 47
icon creation, 202
information windows, adding, 47
points, highlighting, 46
properties, 111

GPoint, 51
GPolyline

points, 47–48
properties, 116

GSize, 51–52

354 Index ■ A–C

26_790095 bindex.qxp 6/12/06 1:44 PM Page 354

GXml, 50
GxmlHttp, 50
GXslt, 51
TLabel

addpoint() method, 233–234
anchor points, 229–230
anchorLatLng property, 229
anchorPoint property, 230
arrow pointers, 230–231
content property, 230
global variables, 232
HTML interface, 236
id property, 229
lastpoint variable, 234
markerOffset property, 230
percentOpacity property, 230
pictures, embedding as labels, 231–232
points, showing and hiding, 235
setMapType() method, 233
text example of, 228

TPhoto
overlays, 240–242
reference points, 239

clearListeners() method, 49
clearOverlays() method, 44, 46
click and drag method, moving within maps, 298
click events, 46, 123
click locations, element identification

area detail, 247–248
inbounds() method, 246
map location, resetting, 246–247
object opacity, resetting, 247
registering objects on map, 244–245
setTimeout() method, 247

closeInfoWindow() method, 45
closing tags, 73
cloud cover obstruction, satellite images, 25
code. See listings
comma-separated values (CSV), 66, 68–69
community sites

attractions, custom created icons for, 213–215
backend database interface, 211–213
country fragments, 209
data, creating and storing, 209–211

entities
global objects, 215–216
HTML example, 215
information windows, 222
markers, adding, 218–219
markers, loading, 219–220
markers, removing, 218
movemap() method, 217
showentitylist() method, 216
types, loading, 217

map, recentering, 220–221
markers, highlighted points, 207–208
page structure, 221
postal code addresses, 209
town fragments, 209

competitor resources, 349
connections, SQL databases

with Perl language, 85
with PHP language, 86–87

content property, 230
controls

addControl() method, 106–107
GLargeMapControl, 42
GMapTypeControl, 42
GSmallMapControl, 42
GSmallZoomControl, 42
hiding, 107
markers

adding from points, 113
adding to multiple maps, 125–128
addmarker() method, 115, 120, 147
alternatives to, 227–228
creating during startup, 114–115
highlighting, 31, 207–208
how to use, 30–32
lines, adding, 115–116
loading for city lists, 171
multiple, 112–115
pop-ups, 31–32
routes between two points, 32
single, 111–112
uses for, 41

removing, 43
copyright data, Google Local interface, 15

355Index ■ C

26_790095 bindex.qxp 6/12/06 1:44 PM Page 355

country fragments, community sites, 209
CPAN web site, 78
crime statistics, Google Earth application, 298
CSV (comma-separated values), 66, 68–69
current map view, Google Local interface, 15
current route, clearing, 256
cursor key method, moving within maps, 298
custom overlay images, 22

D
data set plots, statistical data, 194–196
data source name (DSN), 85
Database Drivers (DBDs), 85
database-driven content, dynamic generated

maps, 177
databases

backend interface
alternative routes, 275
database structure, 266
deleting routes, 269–270
distance calculation, routes, 271–272
existing routes, listing, 267–268
message response, 267
operations, 265
saving routes, 268–269
simple wrapper example, 266–267
single routes, 270–271
standardized message, 265

front-end interface
application initialization, 264–265
current routes, clearing, 256
deleting routes, 257–258
discussed, 251
four-panel layout, 252–253
global variables, 254
HTML wrapper, 252
last point, clearing, 256
list of routes, loading, 259–261
markers, adding, 264
new route initialization, 256–257
recentering and zooming map, 265
recording process, disabling, 255–256

recording process, enabling, 254–255
saving routes, 258–259
single routes, loading, 261–264

open source, 83
populating, 158–159
source data, generating XML from, 159–160
SQL

connections, 85–87
creating, 83–84
data extraction, 89–92
populating, 87–89

table structure creation, 157–159
Data::Dumper object, 90
date taken, Flickr photos, 286
DBDs (Database Drivers), 85
decimal, converting degrees to, 52
deleting routes

backend database interface, 269–270
front-end interface, 257–258

delimited files
reading, 68–69
writing, 69–70

delroute command, 257
developer kit, Google Web, 53–54
direct routes, 6
directoryCategories element, 57
directoryCategory element, 58
directoryTitle element, 58
disableDragging() method, 43
disableInfoWindow() method, 43
distance calculation, routes, 271–272
DISTINCT statement, 212
<div> tag, 105, 129
do() method, 86
Document tag, 306
documentation, Google Maps API, 346
documentFiltering element, 57
DOM (Document Object Model)

DOM method, 78
within Perl language, 77
XML documents, 79–80

dotnet/ directory, 54
double-clicking, map movement, 15

356 Index ■ C–D

26_790095 bindex.qxp 6/12/06 1:44 PM Page 356

downloading Google Web API, 53–54
dragging mouse, map movement, 15
draggingEnabled() method, 43
Dreamhost web site, 36
DSN (data source name), 85
dynamic generated maps

database-driven content, 177
entity types, 177
JavaScript language

center points, 173
city lists, loading, 169–171
global variables, 169
information window display, 171
initialization, 173–174
interactive operations, 168
markers, adding, 172

KML (Keyhole Markup Language), 315–316
properties, 148–150
restaurant additions, 176–177
XML generated, 174–176

E
east location element, 339
ECMAScript, JavaScript language, 40
element identification, click locations

area detail, 247–248
inbounds() method, 246
map location, resetting, 246–247
object opacity, resetting, 247
registering objects on map, 244–245
setTimeout() method, 247

elements and styles, API, 39
enableDragging() method, 43
enableInfoWindow() method, 43
endIndex element, 57
entities

community sites
global objects, 215–216
HTML example, 215
information windows, 222
markers, adding, 218–219

markers, removing, 218
movemap() method, 217

dynamic generated maps, 177
markers, loading, 219–220
showentitylist() method, 216

entitylist() method, 212
entitymarker object, 216
errors, in searches, 30
estimatedTotalResultsCount element, 57
estimateIsExact element, 57
events

click, 46, 123
configuring, 124
example of, 41
GEvent class

methods, 49–50
properties, 121

infowindowclosed, 46
infowindowopen, 46
map movement, monitoring, 123–125
maptypechanged, 46
Move, 45
Moveend, 46
Movestart, 46
removeoverlay, 46
uses for, 41
zoom, 46, 123

exec() method, 87
Extensible HTML (XHTML), 37–38
Extensible Markup Language. See XML
Extensible Stylesheet Language. See XSL
extension tools resources, 348–349
extraction, SQL database data, 89–92

F
FAQ section, Google Web API, 55
files

delimited
reading, 68–69
writing, 69–70

Continued

357Index ■ D–F

26_790095 bindex.qxp 6/12/06 1:44 PM Page 357

files (continued)
fixed-width files

reading, 70–72
writing, 72

flat-text, 66
Google Web developer kit, 54

Filter parameter, 56
Firefox web browsers, system requirements, 13
Fitzgerald, Michael (XSL Essentials), 164
fixed-width files

reading, 70–72
writing, 72

flat-text files, 66
Flickr photos

API key, 279–280
date taken, 286
descriptions, 286
geographic data additions, 280–281
getphotoinfo() method, 283
individual photo data, retrieving, 284–285
parsed data, 283–284, 287–288
proxy service, 281–282
searching, 282–284
titles, 286
XSL layout, 286–287

floating-point values, 83
Folder tag, 306
format types, stored information, 65
formatting information windows, 161–162
front-end database interface

application initialization, 264–265
discussed, 251
four-panel layout, 252–253
global variables, 254
HTML wrapper, 252
routes

current route, clearing, 256
deleting, 257–258
last point, clearing, 256
loading list of, 259–261
loading single, 261–264
markers, adding, 264
new route initialization, 256–257

recentering and zooming map, 265
recording process, disabling, 255–256
recording process, enabling, 254–255
saving, 258–259

functions. See methods

G
GBounds class, 52
GBrowserIsCompatible() method, 37
general information resources, 347
Geocode America web site, 348
Geocoder web site, 348
geocoding

address specific information, 101
geocoder.us service, 97
global information

discussed, 97
GLatLng element, 99–100
scrapping, 98–99

latitude/longitude information, 96–97
overview, 95
resources, 347–348
U.S. information, 96–97

geographic data, adding to Flickr photos,
280–281

geographical locations
defining with addresses, 4–5
defining without addresses, 5
direct routes, 6
east element, 339
finding, 128–129
mapping, 3–4
mental map concepts, 3–4
monitoring, 128–131
movement between, 6
north element, 339
south element, 339
statistical data as, 9–10
west element, 339

geometry types, Google Earth application, 307
GET request, 169
getAttribute() method, 154

358 Index ■ F–G

26_790095 bindex.qxp 6/12/06 1:44 PM Page 358

getAttributeNode() method, 79
getBoundsLatLng() method, 43
getCenterLatLng() method, 43
getCurrentMapType() method, 44
getElementsByTagName() method, 79
getMapTypes() method, 44
getphotoinfo() method, 284
getroute() method, 272
getSpanLatLng() method, 43
getZoomLevel() method, 43
GEvent class

methods, 49–50
properties, 121

GIcon class
properties, 48–49
uses for, 201

GLargeMapControl control type, 42
GLatLng element, 99–100
global information, geocoding

address specific information, 101
discussed, 97
GLatLng element, 99–100
scrapping, 98–99

global objects, community site entities,
215–216

global variables
dynamic generated maps, 169
front-end interface, 254
TLabel class, 232

GMap class
controls, adding and removing, 43
event configuration, 45–46
information windows, adding, 44–45
map option configuration, 43
new object creation, 42
overlays, adding and removing, 44
status information, 43–44

gMap it! tool, 348
GMapTypeControl control type, 42
GMarker class

discussed, 111
event triggers, 47
icon creation, 202

information windows, adding, 47
points, highlighting, 46

Google Earth application
airport data, 300
altitude, 301–302
auto-update function, 318
basic interface, 294–295
buildings, 304
crime statistics, 298
functionality, 295–296
geometry types, 307
Google Earth Enterprise application, 294
Google Earth Plus application, 294
Google Earth Pro application, 294
icons, 321–324
KML (Keyhole Markup Language)

data generation, 310–313
discussed, 294
Document tag, 306
documents, highlighting, 307
dynamic generated maps, 315–316
Folder tag, 306
network resources, 317–318
photos, 331–332
properties, 294, 304–305
self-reloading files, 320–321
structure of, 304–305
tags, exporting, 305–306
zipped version, 305, 336

open-air feel, 304
overlays, 298, 307
overview, 293
paths, 300–301
photos

as placemarks, 327
view, 330

points, creating, 334
points of interest, 300
realty-related tools

overlays, 337–339
3D structures, 339–343

refresh options, 318–320
Continued

359Index ■ G

26_790095 bindex.qxp 6/12/06 1:44 PM Page 359

Google Earth application (continued)
routes, 300–301
satellite images

core functionality, 295–296
interstitial images, 296
map, moving within, 298

scaled icons, 329
shared files, 305–306
terrain, 301–302
train station data, 300
web site, 345

Google Local interface
copyright data, 15
current map view, 15
hybrid views, 27
Link to this page option, 15
Maps view, 25–26
navigation and zoom controls, 15
satellite imagery, 26
scale information, 15
search field, 14
view controls, 15

Google Maps
API

browser compatibility example, 105
documentation, 346
groups, 346
help options, 346
resources, 345–346
web site, 346

installation example, 103–104
web site, 14

Google Maps China web site, 345
Google Maps Japan web site, 345
Google Maps Mania web site, 347
Google Maps UK web site, 345
Google Maps USA web site, 345
Google Moon web site, 345
Google Sightseeing web site, 347
Google Web API

downloading, 53–54
FAQ section, 55
Filter parameter, 56

help options, 346
Input Encoding parameter, 56
Key parameter, 55
language comparison samples, 60–63
Language Restrict parameter, 56
Max results parameter, 55
Output Encoding parameter, 56
Query string parameter, 55
remote procedure call, 61–62
Restrict parameter, 56
SafeSearch parameter, 56
searches

conducting, 55–56
limitations, 58–59
results, 56–58

Start index parameter, 55
web site, 54

Google Web developer kit, 53–54
GoogleAPIDemo.java file, 54
googleapi.jar file, 54
GoogleSearch.wsdl file, 54
GPoint class, 51
GPolyline class

points, 47–48
properties, 116

GPS navigation systems, traffic solutions, 136
Greenwich map view, 19–20, 22–23
grid references, 5
groups, Google Maps API, 346
GSize class, 51–52
GSmallMapControl control type, 42
GSmallZoomControl control type, 42
GXml class, 50
GxmlHttp class, 50
GXslt class, 51

H
heading, LookAt element, 330
help options

Google Maps API, 14, 346
Google Web API, 346

hide links, 107–108

360 Index ■ G–H

26_790095 bindex.qxp 6/12/06 1:44 PM Page 360

hidecontrol() method, 107
hidepoints() method, 235
highlighting

KML documents, 307
markers, 31, 207–208
points, 46

horizontal coordinates, GPoint class, 51
horizontal grid references, 5
hostName element, 58
hot maps, 133
<href> tag, 321
HTML components

additional points, adding, 145–146
entity example, 215
front-end interface, 252
map creation process, 148–151
TLabel class, 236

Hubble Space Telescope tracker, 139–141
Hurricane Katrina, 10
hurricanes, trackers and locators, 137–138
hybrid views, 27

I
iconAnchor property, GIcon class, 48
icons

for community sites, 213–215
Google Earth application, 321–324
non-scaled/scaled, 329
for statistical data

placing on map, 202
shadow overlays, 198–200
size, 201, 203–204
style selection, 197

iconSize property, GIcon class, 48
id property, 229
Image property, GIcon class, 48
imageMap property, GIcon class, 49
images

overlays, 240–242
reference points, 239

inbounds() method, 246
indexes, searches, 57

indexOf() method, 288
information windows

adding to map, 44–45, 47
addresses, adding, 122
basic window example, 162
community site entities, 222
dynamic generated maps, 171
formatting, 161–162
links, adding, 122
openInfoWindow() method, 122, 161
openInfoWindowHtml() methods, 122
openInfoWindowXslt() method, 122
opening, 120–122
size limitations, 122
titles in, 120
uses for, 41
XML created, 163–164
XSL files, 165
XSLT created, 165–167

infoWindowAnchor property, GIcon class, 48
infowindowclose event, 46
infoWindowEnabled() method, 43
infowindowopen event, 46
initialization, dynamic generated maps, 173–174
Input Encoding parameter, 56
INSERT statement, 84
int() method, 71
interactive operations, dynamic generated maps,

168
interface, Google Local

copyright data, 15
current map view, 15
hybrid views, 27
Link to this page option, 15
Maps view, 25–26
navigation and zoom controls, 15
satellite imagery, 26
scale information, 15
search field, 14
view controls, 15

International Space Station (ISS), 139–140
Internet Explorer web browser, 13
interstitial images, satellite images, 296

361Index ■ H–I

26_790095 bindex.qxp 6/12/06 1:44 PM Page 361

J
Java language

code example, 63
parsing XML with, 79–82

javadoc/ directory, 54
JavaScript language

dynamic generated maps
center points, 173
city lists, loading, 169–171
global variables, 169
information window display, 171
initialization, 173–174
markers, adding, 172

ECMAScript, 40
join statement, 69
joystick controls, moving within maps, 298

K
Key parameter, 55
key registration, API, 36
KML (Keyhole Markup Language)

data generation, 310–313
discussed, 294
Document tag, 306
documents, highlighting, 307
dynamic generated maps, 315–316
Folder tag, 306
network resources, 317–318
photos, 331–332
properties, 294, 304–305
self-reloading files, 320–321
structure of, 304–305
tags, exporting, 305–306
zipped version, 305, 336

L
labels

adding and removing labels, 229
addpoint() method, 233–234
anchor points, 229–230
anchorLatLng property, 229

anchorPoint property, 230
arrow pointers, adding, 230–231
content property, 230
global variables, 232
HTML interface, 236
id property, 229
lastpoint variable, 234
markerOffset property, 230
percentOpacity property, 230
pictures, embedding as labels, 231–232
points, showing and hiding, 235
setMapType() method, 233
text example of, 228

lack of information in searches, 30
language comparison samples

Java language, 63
Perl language

ActivePerl distribution, 60
PPM (Perl Package Manager), 60
remote procedure call, 62
simple Perl code example, 61

Language Restrict parameter, 56
lastpoint variable, 234
latitude

anchorLatLng property, 229
centerAtLatLng() method, 43, 109
decimal, converting degrees to, 52
floating-point values, 83
geocoding, 96–97
getBoundsLatLng() method, 43
getCenterLatLng() method, 43
getSpanLatLng() method, 43
grid references, 5
how to find, 129–130
location searches, 128
LookAt element, 330
recenterOrPanToLatLng() method,

44, 109
license limitations, searches, 58
licenses/ directory, 54
LICENSE.txt file, 54
limitations, Google Web API searches, 58–59
limits and usage, API, 36

362 Index ■ J–L

26_790095 bindex.qxp 6/12/06 1:44 PM Page 362

lines
color and width, polylines, 48
between points, 115–116

Link to this page option, Google Local
interface, 15

links, adding to information windows, 122
listings

backend database interface
message response, 267
routes, listing existing, 268
routes, obtaining single, 270–271
routes, saving, 268–269
simple wrapper example, 266–267

community sites
backend database interface, 211–213
creating and storing data, 209–211
restaurant information, 209

CSV (comma-separated values) file, 68–69
delimited files, 68
dynamic generated maps

center points, 173
city lists, 170
global variables, 169
marker creation, 172

fixed-width files
reading, 70–71
writing, 72

Flickr photos
individual photo data, retrieving, 285
parsed data, 283–284, 287–288
proxy service, 281–282
searching, 282–284
XSL layout, 286–287

geocoding
GLatLng element, 99–100
scraping information, 98–99
U.S. information, 96

Google Earth application
icons, adding, 322–323
placemarks, 309

Google Web API remote procedure call, 62
information windows

adding, 120
formatting, 162

XML created, 163–164
XSL files, 165
XSLT created, 165–166

Java language code example, 63
KML (Keyhole Markup Language)

data generation, 310–313
tags, exporting, 305–306

locations, finding, 128–129
maps

bounding boxes, adding, 116–117
controls, adding, 106–107
HTML file generation, 148–150
monitoring movement of, 123–124
moving within, 109–110
routes, 118–119

markers
adding for map movement, 112
adding from points, 113
creating during startup, 114–115
points, adding additional, 146–147

overlays, adding to multiple maps, 126–127
Perl language example, 61
SQL databases

connections, 85–87
extracting data from, 89–91
populating, 87–89
table creation, 84

static file generation, 153, 156
statistical data

bar graphs, 190–191
circles demonstrating, 192–193
data set plots, 195
internal data representation, 188–189
source data, converting to XML, 183–184

table structure creation, 158
text files, padded data, 71
3D structures, 339–343
VML (Vector Markup language), 39
XHTML (Extensible HTML), 37
XML

dynamic generated maps, 174–176
generating from database source data,

159–160
Continued

363Index ■ L

26_790095 bindex.qxp 6/12/06 1:44 PM Page 363

listings (continued)
generating through CGI scripts, 160–161
parsing, 77–79

loadcity() method, 170
loading

markers, 171
routes

list of, 259–261
single, 261–264

loadRoute() method, 258
localized objects, searches by, 29
locations

defining with addresses, 4–5
defining without addresses, 5
direct routes, 6
east element, 339
finding, 128–129
mapping, 3–4
mental map concepts, 3–4
monitoring, 128–131
movement between, 6
north element, 339
south element, 339
statistical data as, 9–10
west element, 339

locators and trackers
Blackbird spotter, 139–140, 142
Hubble Space Telescope tracker, 139–141
hurricanes, 137–138
ISS (International Space Station), 139–140
Space Station Tracker system, 139
well-known landmarks, 137

London map view, 19, 23
longitude

anchorLatLng property, 229
centerAtLatLng() method, 43, 109
decimal, converting degrees to, 52
floating-point values, 83
geocoding, 96–97
getBoundsLatLng() method, 43
getCenterLatLng() method, 43
getSpanLatLng() method, 43
grid references, 5

how to find, 129–130
location searches, 128
LookAt element, 330
recenterOrPanToLatLng() method,

44, 109
LookAt element, 330
lowest zoom level, 16–17

M
Manhattan map view, 26–28
MapBuilder web site, 348–349
Maplandia web site, 347
MapQuest web site, 349
maps

dynamic generated
center points, 173
city lists, loading, 169–171
database-driven content, 177
entity types, 177
global variables, 169
information window display, 171
initialization, 173–174
interactive operations, 168
KML (Keyhole Markup Language),

315–316
markers, adding, 172
properties, 148–150
restaurant additions, 176–177
XML generated, 174–176

generating data from, 10–11
GMap class

controls, adding and removing, 43
event configuration, 45–46
information windows, adding, 44–45
map option configuration, 43
new object creation, 42
overlays, adding and removing, 44
status information, 43–44

Google Maps installation example, 103–104
hot, 133
HTML components, 148–151
location of, resetting, 246–247

364 Index ■ L–M

26_790095 bindex.qxp 6/12/06 1:44 PM Page 364

moving within
click and drag method, 298
cursor key method, 298
Google Earth application, 298
joystick controls, 298
scrolling method, 298

recentering, 220–221
Maps view, Google Local interface, 25–26
Map24 web site, 350
maptypechanged event, 46
markerOffset property, 230
markers. See also points

adding
to multiple maps, 125–128
from points, 113
routes, 264

addmarker() method, 115, 120, 147
alternatives to, 227–228
creating during startup, 114–115
dynamic generated maps, 172
GMarker class

discussed, 111
event triggers, 47
icon creation, 202
information windows, adding, 47
points, highlighting, 46

highlighting, 31, 207–208
how to use, 30–32
lines, adding, 115–116
loading, 219–220
loading for city lists, 171
multiple, 112–115
points, adding additional, 145–147
pop-ups, 31–32
removing, 218
routes between two points, 32
single, 111–112
uses for, 41

mash-ups
defined, 133
speed camera locations, 136

Max results parameter, 55

message response, backend database interface,
267

methods
addControl(), 43, 106–107
addgraph(), 203
addListener(), 49
addmarker(), 115, 120, 147
addOverlay(), 44, 46, 111, 125
addpoint(), 233–234
boundingbox(), 117
centerAndZoom(), 44, 109, 186
centerAtLatLng(), 43, 109
clearListeners(), 49
clearOverlays(), 44, 46
closeInfoWindow(), 45
disableDragging(), 43
disableInfoWindow(), 43
do(), 86
draggingEnabled(), 43
enableDragging(), 43
enableInfoWindow(), 43
exec(), 87
GBrowserIsCompatible(), 37
getAttribute(), 154
getAttributeNode(), 79
getBoundsLatLng(), 43
getCenterLatLng(), 43
getCurrentMapType(), 44
getElementsByTagName(), 79
getMapTypes(), 44
getphotoinfo(), 283
getroute(), 272
getSpanLatLng(), 43
getZoomLevel(), 43
hidecontrol(), 107
hidepoints(), 235
inbounds(), 246
indexOf(), 288
int(), 71
loadcity(), 170
loadRoute(), 258

Continued

365Index ■ M

26_790095 bindex.qxp 6/12/06 1:44 PM Page 365

methods (continued)
movemap(), 110, 112, 217
mysql_connect(), 86
onLoad(), 105
openInfoWindow(), 45, 47, 122, 161
openInfoWindowHtml(), 45, 47, 122
openInfoWindowXslt(), 45, 47, 122
parseFloat(), 155
parseInt(), 155
printf(), 72
quote(), 88
recenterandzoom(), 186, 265
recenterOrPanToLatLng(), 44, 109
removeControl(), 43
removeListener(), 49
removeOverlay(), 44, 46
setMapType(), 44, 233
setOpacity(), 229
setPosition(), 229
setTimeout(), 247
showcityList(), 170
showMapBlowup(), 45, 47
showpoints(), 235
showRouteList(), 259
sort(), 187
sprintf(), 72
startRoute(), 254–256
trigger(), 50
upack(), 70–71
XMLHttpRequest(), 283
xmlmessage(), 270–271
zoomTo(), 44

MGeocoder web site, 348
minus sign button, zoom slider, 15
Mobile GMaps web site, 348
Move event, 45
Moveend event, 46
movemap() method, 110, 112, 217
movement between locations, 6
Movestart event, 46
moving within maps

click and drag method, 298
cursor key method, 298

discussed, 109–110
Google Earth application, 298
joystick controls, 298
scrolling method, 298

Mozilla web browser, system requirements, 13
mozPrintImage property, GIcon class, 49
MultiGeometry element, 340
Multimap web site, 350
multiple markers, 112–115
mysql_connect() method, 86

N
National Maritime Museum map view, 24, 29
navigation and zoom controls, Google Local

interface, 15
Netscape web browser, system requirements, 13
network resources, Google Earth application,

317–318
new object creation, GMap class, 42
New Orleans, Hurricane Katrina, 10
New York map view, 30
north location element, 339

O
object opacity, resetting, 247
offline and online information, combining, 64
one-way streets, 25–26
onLoad() method, 105
opacity settings

overlay visibility, 247
polylines, 48

open source databases, 83
open-air feel, Google Earth application, 304
openInfoWindow() method, 45, 47, 122, 161
openInfoWindowHtml() method, 45, 47, 122
openInfoWindowXslt() method, 45, 47, 122
opening information windows, 120–122
opening tags, 73
Opera web browser, system requirements, 13
outerBoundary element, 340
Output Encoding parameter, 56

366 Index ■ M–O

26_790095 bindex.qxp 6/12/06 1:44 PM Page 366

overlays
adding and removing, 44
addOverlay() method, 111, 125
bounding boxes, 116–117
custom images, 22
Google Earth application, 298, 307
hot maps, 133
how to use, 32
markers

adding from points, 113
addmarker() method, 115
creating during startup, 114–115
lines, adding, 115–116
multiple, 112–115
single, 111–112
uses for, 41

points, 41
realty-related tools, 337–339
routes, adding, 118–119
TPhoto class, 240–242

P
padded data in text files, removing, 71–72
parameters, Google Web API searches, 55–56
parsed data, Flickr photos, 283–284, 287–288
parseFloat() method, 155
parseInt() method, 155
parsing

text files, 67
XML, 73, 77–79

paths, Google Earth application, 300–301
PDO (PHP Data Object), 86
percentOpacity property, 230
Perl language

ActivePerl distribution, 60
DOM within, 77
parsing XML with, 77–79
populating SQL databases with, 88
PPM (Perl Package Manager), 60
remote procedure call, 62
simple Perl code example, 61
SQL database connections, 85

Perl Package Manager (PPM), 60
pharmacies, custom created icons, 213
photos

embedding as labels, 231–232
Flickr photos

API key, 279–280
date taken, 286
descriptions, 286
geographic data additions, 280–281
individual photo data, retrieving,

284–285
parsed data, 283–284, 287–288
searching, 282–284
titles, 286

KML (Keyhole Markup Language),
331–332

as placemarks, 327
relation of locations to, 4
subject identification, 7–9
TPhoto class

overlays, 240–242
reference points, 239

views, 330
PHP Data Object (PDO), 86
PHP language

populating SQL database with, 88–89
SQL database connections, 86–87

pictures. See photos
PKZip file, 54
placemarks

adding detail to, 331
discussed, 307, 309
photos as, 327

plus sign button, zoom slider, 15
pointers, arrow, 230–231
points. See also markers

adding additional, 145–147
adding markers from, 113
Google Earth application, 334
GPoint class, 51
hidepoints() method, 235
hiding, 235

Continued

367Index ■ O–P

26_790095 bindex.qxp 6/12/06 1:44 PM Page 367

points (continued)
highlighting, 46
last point, clearing, 256
lastpoint variable, 234
lines between, 115–116
showing and hiding, 235
showpoints() method, 235
statistical data, 184–187
uses for, 41

points of interest, Google Earth application, 300
polylines

discussed, 38
GPolyline class

points, 47–48
properties, 116

line color and width, 48
opacity setting, 48
routes, adding to maps, 118–119

populating
databases, 158–159
SQL databases

data, inserting, 87–88
with Perl language, 88
with PHP language, 88–89

population growth, statistical data, 181–182
pop-ups, markers, 31–32
postal code addresses

community sites, 209
discussed, 5
search results, 28

PPM (Perl Package Manager), 60
print statement, 69
printf() method, 72
printImage property, GIcon class, 48
printShadow property, GIcon class, 49
proxy service, Flickr photos, 281–282

Q
query number limitations, API, 55
query string length, search limitations, 59
Query string parameter, 55
quote() method, 88

R
range, LookAt element, 330
RDBMS (Relational Database Management

System), 66–67
reading

delimited files, 68–69
fixed-width files, 70–72

README.txt file, 54
realty-related tools

overlays, 337–339
3D structures, 339–343

recenterandzoom() method, 186, 265
recentering maps, 220–221
recenterOrPanToLatLng() method,

44, 109
reference points, TPhoto class, 239
refresh options, Google Earth application,

318–320
regular expressions, 63
relatedInformationPresent

element, 58
Relational Database Management System

(RDBMS), 66–67
remote procedure call, 62
removeControl() method, 43
removeListener() method, 49
removeOverlay() method, 44, 46
resolution quality, zoom levels and, 24
resources

competitors and alternatives, 349
extension tools, 348–349
general information, 347
geocoders, 347–348
Google Map services, 345–346

responseXML field, 154
restaurants

community sites, 209
custom created icons, 213
dynamic generated maps, 176–177
mapping locations, 4

Restrict parameter, 56
resultElements element, 57
results, Google Web API searches, 56–58

368 Index ■ P–R

26_790095 bindex.qxp 6/12/06 1:44 PM Page 368

routes
adding to maps, 118–119
alternative, 275
backend database interface

deleting, 269–270
distance calculation, 271–272
listing existing routes, 267–268
obtaining single, 270–271
saving, 268–269

car-based route finders, 136
enable routing stage, 272
front-end interface

current route, clearing, 256
deleting, 257–258
last point, clearing, 256
loading list of, 259–261
loading single, 261–264
markers, adding, 264
new route initialization, 256–257
recentering and zooming map, 265
recording process, disabling, 255–256
recording process, enabling, 254–255
saving, 258–259

getroute() method, 272
Google Earth application, 300–301
loadRoute() method, 258
mapping locations, 4
showRouteList() method, 259
startRoute() method, 254–256
by street address, 118
between two points, markers, 32

S
Safari web browser, system requirements, 13
SafeSearch parameter, 56
satellite images

cloud cover obstruction, 25
Google Earth application

core functionality, 295–296
interstitial images, 296
map, moving within, 298

shadows on, 25

Space Station Tracker system, 139
uses for, 26
world map, 21
zoom level comparison, 20

saving routes
backend database interface, 268–269
front-end database, 258–259

scale information, Google Local interface, 15
scaled icons, Google Earth application, 329
scrapping, geocoding, 98–99
scrolling method, moving within maps, 298
searchComments element, 57
searches

by address, 28
boolean values, 57
cachedSize element, 58
case-sensitivity, 101
directoryCategories element, 57–58
directoryTitle element, 58
documentFiltering element, 57
endIndex element, 57
errors in, 30
estimatedTotalResultsCount

element, 57
estimateIsExact element, 57
Flickr photos, 282–284
Google Web API

limitations, 58–59
parameters, 55–56
results, 56–58

hostName element, 58
lack of information in, 30
license limitations, 58
by localized objects or business, 29
by postal code, 28
relatedInformationPresent

element, 58
resultElements element, 57
search field

Google Local interface, 14
map movement, 15

searchComments element, 57
Continued

369Index ■ R–S

26_790095 bindex.qxp 6/12/06 1:44 PM Page 369

searches (continued)
searchQuery element, 57
searchTime element, 57
searchTips element, 57
Snippet element, 58
startIndex element, 57
Summary element, 58
text strings, 57
Title element, 58
URL element, 58

searchQuery element, 57
searchTime element, 57
searchTips element, 57
SELECT statement, 84
self-reloading KML files, 320–321
setMapType() method, 44, 233
setOpacity() method, 229
setPosition() method, 229
setTimeout() method, 247
SGML (Standard Generalized Markup

Language), 73
shadow overlays, custom icon creation,

198–200
Shadow property, GIcon class, 48
shadowSize property, GIcon class, 48
shared files, Google Earth application, 305–306
show links, 107–108
showcityList() method, 170
showMapBlowup() method, 45, 47
showpoints() method, 235
showRouteList() method, 259
Simple Object Access Protocol (SOAP), 53, 60
single markers, 111–112
sites. See web sites
size limitations, information windows, 122
size representation, Maps view, 25–26
Snippet element, 58
SOAP (Simple Object Access Protocol), 53, 60
soap-samples/ directory, 54
sort() method, 187
south location element, 339
Space Station Tracker system, 139
speed cameras, traffic solutions, 136

spelling system, alternate words, 60
sports shops, custom created icons, 213
sprintf() method, 72
SQL (Structured Query Language)

databases
connections, 85–87
creation, 83–84
data extraction, 89–92
populating, 87–89

discussed, 66
DISTINCT statement, 212
INSERT statement, 84
interfacing to database, 84
SELECT statement, 84
UPDATE statement, 84
uses for, 82

Standard Generalized Markup Language
(SGML), 73

standardized message, backend database
interface, 265

Start index parameter, 55
startIndex element, 57
startRoute() method, 254–256
static XML file generation, 152, 156
station information, subway maps, 134–135
statistical data

bar graphs, 189–192
basic non-statistical map, 187
circles demonstrating, 192–193
custom created icons

icon style, 197
placing on map, 202
shadow overlays, 198–200
size representation, 203–204

internal data representation, 188–189
as location point, 9–10
mapping locations, 4
multiple data sets, plotting, 194–196
point maps, 184–187
population growth, 181–182
source data, converting to XML, 182–184
U.S. Census data, 182

status information, GMap class, 43–44

370 Index ■ S

26_790095 bindex.qxp 6/12/06 1:44 PM Page 370

stored information
format types, 65
in RDBMS, 67
in XML, 66

street addresses
discussed, 5
routes by, 118

Structured Query Language (SQL)
databases

connections, 85–87
creation, 83–84
data extraction, 89–92
populating, 87–89

discussed, 66
DISTINCT statement, 212
INSERT statement, 84
interfacing to database, 84
SELECT statement, 84
UPDATE statement, 84
uses for, 82

StuffIt Expander application, 54
style, API, 39
subtags, 76
subway maps

station information, 134–135
traffic solutions, 133–134

Summary element, 58
system requirements, 13

T
tab-delimited file (TDF), 66, 69
tables, database structure creation, 157–159
tags

accessing by name, 78
attributes, 73
closing, 73
<div>, 105, 129
getElementsByTagName() method, 79
<href>, 321
opening, 73
subtags, 76
XML, 73

TDF (tab-delimited file), 66, 69
terrain, Google Earth application, 301–302
text files

CSV (comma-separated values), 66, 68
delimited files

reading, 68–69
writing, 69–70

fixed-width files
reading, 70–72
writing, 72

flat-text files, 66
generating, 67
padded data, removing, 71–72
parsing, 67
TDF (tab-delimited file), 66, 69
updating, 72

text strings, searches, 57
text, TLabel object, 228
3D structures, realty-related tools, 339–343
tilde (~), 68
tilt, LookAt element, 330
Title element, 58
titles

Flickr photos, 286
in information windows, 120

TLabel class
adding and removing labels, 229
addpoint() method, 233–234
anchor points, 229–230
anchorLatLng property, 229
anchorPoint property, 230
arrow pointers, adding, 230–231
content property, 230
global variables, 232
HTML interface, 236
id property, 229
lastpoint variable, 234
markerOffset property, 230
percentOpacity property, 230
pictures, embedding as labels, 231–232
points, showing and hiding, 235
setMapType() method, 233
text example of, 228

371Index ■ S–T

26_790095 bindex.qxp 6/12/06 1:44 PM Page 371

topographical views, 4
Toronto Transit Commission (TTC) map,

133–135
town fragments, community sites, 209
TPhoto class

overlays, 240–242
reference points, 239

trackers and locators
Blackbird spotter, 139–140, 142
Hubble Space Telescope tracker, 139–141
hurricanes, 137–138
ISS (International Space Station), 139–140
Space Station Tracker system, 139
well-known landmarks, 137

traffic direction, one-way streets, 25–26
traffic solutions

car-based route finders, 136
GPS navigation systems, 136
speed cameras, 136
subway maps, 133–134
traffic camera views, 135

train station data, Google Earth application,
300

transformations, GXslt class, 51
Transparent property, GIcon class, 49
travel agents, custom created icons, 213
trigger() method, 50
TTC (Toronto Transit Commission) map,

133–135

U
United Kingdom map view, 18
unzip tool, 54
upack() method, 70–71
UPDATE statement, 84
updates

auto-update function, 318
text files, 72

URL element, 58
U.S. Census data, statistical data, 182
U.S. information, geocoding, 96–97

V
validation, 38
Vector Markup Language (VML), 38–39
vertical coordinates, GPoint class, 51
vertical grid references, 5
views

controls, Google Local interface, 15
photographs, 330

Virtual Earth web site, 349
VML (Vector Markup Language), 38–39

W
weather conditions

trackers and locators, 137–138
zoom level examples, 22

web browsers, system requirements, 13
Web Services Description Language

(WSDL), 53
web sites

CPAN, 78
Dreamhost, 36
Geocode America, 348
Geocoder, 348
Google Earth, 345
Google Maps API, 346
Google Maps China, 345
Google Maps, help section, 14
Google Maps Japan, 345
Google Maps Mania, 347
Google Maps UK, 345
Google Maps USA, 345
Google Moon, 345
Google Sightseeing, 347
Google Web API, 54
MapBuilder, 348–349
Maplandia, 347
MapQuest, 349
Map24, 350
MGeocoder, 348
Mobile GMaps, 348
Multimap, 350

372 Index ■ T–W

26_790095 bindex.qxp 6/12/06 1:44 PM Page 372

publicity web site services, 36
Virtual Earth, 349
Wikipedia, Google Maps entry, 347
W3C validator, 38
Yahoo! Maps, 349

west location element, 339
world map

satellite images, 21
zoom level example, 16–17

writing
delimited files, 69–70
fixed-width files, 72

WSDL (Web Services Description
Language), 53

W3C validator web site, 38

X
XHTML (Extensible HTML), 37–38
XML (Extensible Markup Language)

discussed, 39, 66
DOM (Document Object Model), 79–80
dynamic generated maps, 174–176
generating

from database source data, 159–160
from a database through CGI scripts,

160–161
information window creation, 163–164
parsing

with Javascript language, 79–82
with Perl language, 77–79

responseXML field, 154
static file generation, 152, 156
statistical source data conversion, 182–184
stored information in, 66
tags, 73

XML::DOM object, 78

XML::Generator object, 76
XMLHttpRequest() method, 283
xmlmessage() method, 270–271
XSL Essentials (Fitzgerald), 164
XSL (Extensible Stylesheet Language)

discussed, 163
Flickr photos, 286–287
information window creation, 165

XSLT (XSL Transformation)
discussed, 163
information window creation, 165–167

Y
Yahoo! Maps web site, 349

Z
zip files

discussed, 54
zipped KML version, 305, 336

zooming
centerAndZoom() method, 44, 109, 186
centering zoom levels, 186
getZoomLevel() method, 43
GMapTypeControl control type, 42
high resolution example, 21–22, 24
levels, 15–17
lowest level example, 16–17, 20
recenterandzoom() method, 186, 265
resolution quality and, 24
satellite image comparison, 20
weather condition examples, 22
world map example, 16–17
zoom events, 46, 123
zoom slider options, 15
zoomTo() method, 44

373Index ■ W–Z

26_790095 bindex.qxp 6/12/06 1:44 PM Page 373

The best place on the Web to learn about new
technologies, find new gear, discover new

ways to build and modify your systems, and
meet fascinating techheads…just like you.

Visit www.extremetech.com.

27_790095 bob.qxp 6/12/06 1:45 PM Page 383

How to take it
to the Extreme.

Available wherever books are sold.
Wiley and the Wiley logo are trademarks of John Wiley & Sons, Inc. and/or its affiliates. The ExtremeTech logo is a trademark of Ziff
Davis Publishing Holdings, Inc. Used under license. All other trademarks are the property of their respective owners.

™

If you enjoyed this book,
there are many others like
it for you. From Podcasting
to Hacking Firefox,
ExtremeTech books can
fulfill your urge to hack,
tweak, and modify,
providing the tech tips and
tricks readers need to get
the most out of their
hi-tech lives.

27_790095 bob.qxp 6/12/06 1:45 PM Page 384

