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Summary

A specific drophammer test apparatus for measuring the maximum
absolute acoustic level was designed and installed. In this contribution we
report the results of the testing of six different explosives. All
used substances, which are silver azide, lead azide, cyanuric triazide,
1,3,5-trinitro-2,4,6-triazidobenzene (TNTA), 1,3-dinitro-2,4,6-triazido-
benzene (DNTA) and 1,3,5-trinitro-2-monoazidobenzene (TNMA),
contained at least one azide group.

1. Introduction

Due to the use and preparation of explosive materials in
our group, especially azides"” and nitro compounds''?, it was
useful to build a drophammer test apparatus to investigate the
impact sensitivity of the compounds with the possibility of
measuring the acoustic levels of explosions. Various drop-
hammers are in use by different institutions and companies in
order to investigate the safety characteristics of commercial
and military explosives®. Variables are the drop mass and its
altitude. In our case the drophammer had always the same
height, but it was possible to choose between two different
weights (5 kg and 250 g).

2. Drophammer Test Apparatus

A schematic diagram of the drophammer is shown in
Figure 1. The apparatus is based on a 600kg concrete
block, on top of which a replaceable polished steel plate
(T 316 SS) for the samples was fixed. A 60 cm height metal
frame contains the drophammer release mechanism, the light
barrier and a sledge with roller bearings for the drophammer.
A small box beside the block contains the electronic devices
like the light barrier control and trigger delay. The distance
between the microphone (from “Beyerdynamic”, model
M101 N(C)) and the impact area was fixed to 140 cm and
the drop height was 52 cm (see Figure 1). For all experiments,
the Hewlett-Packard HP VEE software, version 4.01 (1997)
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was used. Two programs have been developed based on this
program, one for recording the measurements and the other
for the interpretation of the data.

The acoustic level operating the drophammer without
explosion was 119 dB (zero value) which was significantly
lower than the obtained values of 140—150dB with test
substances (logarithmic scale, cf. Eq. (1)).

3. Sample Preparation

All substances used, such as silver azide(3), lead
azide(4), cyanuric triazide(s), 1,3,5-trinitro-2,4,6-triazidoben-
zene (TNTA)©, 1,3-dinitro-2,4,6-triazidobenzene (DNTA)"?
and  1,3,5-trinitro-2-monoazidobenzene (TNMA)”  were
synthesized by literature methods. The samples for the impact
test were dried at 50°C in an oven over night and placed
between two sheets of sandpaper (180 grit).

4. Experiments

The samples (10—40mg, see Table 1) were loaded
between two sheets of sandpaper (180 grit, covered area ca.
0.25 cm?) which were placed directly onto the steel plate
(polished stainless steel, T 316 SS) in the impact area. The
drophammer impact surface (cylinder with flat round surface,
d = 15mm) also consisted of polished stainless steel (T 316
SS). For data collection the following parameters were used
(for software see above): scan rate: 200 000; no. of scans:
65536; range of voltage: +1.25V. The drophammer was
finally released from a safe place outside the room with a
remote control.

5. Results
5.1 Physical Background

To interpret the measured data it was nessessary to adjust
the specific data of the microphone used by applying the

following physical equations™®:
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Figure 1. Drophammer test apparatus.
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Figure 2. Results (max. abs. acoustic pressure level) of the drop-

hammer tests for AgN; and Pb(N3),.
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Figure 3. Results (max. abs. acoustic pressure level) of the drop-

hammer tests for cyanuric triazide.

acoustic intensity, I: acoustic energy, which hits one

square metre per second; unit [W /m?].

acoustic level, L’:

L'=10-1lg <i>, unit [dB|
Iy

Iy = 1072 W/m?

absolute acoustic pressure level, L:

L=20l <ﬁ>, unit [dB]
Do

Po=2-10"°Pa

specific data of the used microphone:

1.0 mV £ 0.769 Pa

—~
—_—
~—

3)

The Egs. (1)—(3) were implemented into the interpretation
program to analyze the maximum values of voltage, pressure
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Figure 4. Results (max. abs. acoustic pressure level) of the drop-
hammer tests for 1,3,5-trinitro-2-monoazidobenzene.

level and absolute acoustic level for each measured explo-

sion.

5.2 Experimental Results

Table 1 shows the experimental results. For each substance
and each amount 5 to 40 drophammer tests were carried out.
The average values (©) of the above defined acoustic levels

are shown.
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Figure 5. Results (max. abs. acoustic pressure level) of the drop-
hammer tests for 1,3-dinitro-2,4,6-triazidobenzene.

Figure 2 shows the max. abs. acoustic pressure level
diagrams of silver and lead azide. The average value for
silver azide is higher than the one for lead azide, although the
amount is lower. This indicates that AgN; is a more
powerful substance under the test conditions applied in
this study than is Pb(N3), which is in accord with the
literature®.

Cyanuric triazide, (N3CN);, seems to be a much more
powerful explosive than silver or lead azide. An explosion of
20mg (N3;CN); has nearly the same acoustic level as
generated from 40 mg of Pb(N3), or 35 mg of AgNj.

The higher variation of the acoustic pressure level at an
amount of 10 mg is normal, because of the higher absolute
weight deviation, which is more dramatic in small amounts
than in higher ones. The results of the explosion tests for
cyanuric triazide in the amounts 10, 20 and 30 mg are shown
in Figure 3.

Beside the more inorganic compounds described above we
also tested some organic nitroazide compounds. But even the
weakest of these organic explosives has a higher acoustic
level than AgN5 or Pb(N3),. The order of the acoustic level is
TNMA < DNTA < TNTA, but the values for DNTA and
TNTA are very similar. Figure 4 shows the results for
1,3,5-trinitro-2-monoazide, Figure 5 for 1,3-dinitro-2,4,6-
triazidobenzene and Figure 6 a comparison for TNMA,
DNTA and TNTA for 10 mg substance.
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Figure 6. Results and comparison (max. abs. acoustic pressure level)
of the drophammer tests for TNMA, DNTA and TNTA for 10mg
substance.

6. Conclusions

The designed drophammer apparatus has been claimed to
be a very useful tool for research purpose and the handling
sensitivity. The values of the measured max. abs. acoustic
levels provide a valuable quantitative scale for the explosives
to generate acoustic pressure levels under the drophammer
stimuli. Even the weakest of the investigated organic explo-
sives (TNMA) shows a higher acoustic level than AgN; or
Pb(N3),. However, it is not clear whether the acoustic level
can be directly correlated to the detonation power. None-
theless, as already mentioned in the literature'”, the drop-
hammer impact test is easy to carry out, but the results from
different research laboratories are sometimes not easily com-
parable. However, the method provides a relatively easy and
straight-forward technique to qualitatively screen the reaction
power of different explosives under this investigation.
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