Section 1 The Basic Tools of Quantum Mechanics

Chapter 1
Quantum Mechanics Describes Matter in Terms of Wavefunctions and Energy Levels.
Physical Measurements are Described in Terms of Operators Acting on Wavefunctions

|. Operators, Wavefunctions, and the Schrodinger Equation

Thetrendsin chemical and physical properties of the elements described beautifully
in the periodic table and the ability of early spectroscopiststo fit atomic line spectra by
simple mathematical formulas and to interpret atomic electronic statesin terms of empirical
guantum numbers provide compelling evidence that some relatively simple framework
must exist for understanding the electronic structures of all atoms. The great predictive
power of the concept of atomic valence further suggests that molecular € ectronic structure
should be understandable in terms of those of the constituent atoms.

Much of quantum chemistry attempts to make more quantitative these aspects of
chemists view of the periodic table and of atomic valence and structure. By starting from
first principles and treating atomic and molecular states as solutions of a so-called
Schrédinger equation, quantum chemistry seeks to determine what underlies the empirica
guantum numbers, orbitals, theaufbau principle and the concept of vaence used by
spectroscopists and chemists, in some cases, even prior to the advent of quantum
mechanics.

Quantum mechanicsis cast in alanguage that is not familiar to most students of
chemistry who are examining the subject for the first time. Its mathematical content and
how it relates to experimental measurements both require agreat deal of effort to master.
With these thoughts in mind, the authors have organized this introductory section in a
manner that first provides the student with a brief introduction to the two primary
constructs of quantum mechanics, operators and wavefunctions that obey a Schrodinger
equation, then demonstrates the application of these constructsto several chemically
relevant model problems, and finally returnsto examinein more detail the conceptual
structure of quantum mechanics.

By learning the solutions of the Schrodinger equation for afew model systems, the
student can better appreciate the treatment of the fundamental postulates of quantum
mechanics aswell as their relation to experimental measurement because the wavefunctions
of the known model problems can be used to illustrate.



A. Operators

Each physically measurable quantity has a corresponding operator. The eigenvalues
of the operator tell the values of the corresponding physical property that can be observed

In guantum mechanics, any experimentally measurable physical quantity F (e.g.,
energy, dipole moment, orbital angular momentum, spin angular momentum, linear
momentum, Kinetic energy) whose classical mechanical expression can be written in terms
of the cartesian positions{g;j} and momenta{p;} of the particles that comprise the system

of interest is assigned a corresponding quantum mechanical operator F. Given F in terms
of the{q} and {pi}, F isformed by replacing pj by -ik{/fg; and leaving ¢ untouched.
For example, if

F=Si=1N (p%/2m + V2 k(ai-a19? + L(q-q9)),
then

F=Si=1N (- B22my 12112 + V2 k(q-q9? + L(a-99))
is the corresponding quantum mechanical operator. Such an operator would occur when,
for example, one describes the sum of the kinetic energies of a collection of particles (the
Si=1.N (p&/2my ) term, plus the sum of "Hookes Law" parabolic potentials (the 1/2 Sj=1 N

k(gi-919)2), and (the last term in F) the interactions of the particles with an externally

applied field whose potential energy varies linearly as the particles move away from their
equilibrium positions { %} .
The sum of the z-components of angular momenta of a collection of N particles has

F=Sj=1N (XjPyj - YjPx)),
and the corresponding operator is
F=-ih Sj=1,n (X 1/1y; - y;1711%;).

The x-component of the dipole moment for a collection of N particles



has
F=Sj=1,n Zjex;j, and
F=Sj=1N Zj&X; ,

where Zje isthe charge on the jth particle.

The mapping from F to F is straightforward only in terms of cartesian coordinates.
To map aclassical function F, given in terms of curvilinear coordinates (even if they are
orthogonal), into its quantum operator isnot at al straightforward. Interested readers are
referred to Kemble's text on quantum mechanics which deals with this matter in detail. The
mapping can always be done in terms of cartesian coordinates after which a transformation
of the resulting coordinates and differential operatorsto a curvilinear system can be
performed. The corresponding transformation of the kinetic energy operator to spherical
coordinatesistreated in detail in Appendix A. Thetext by EWK also coversthistopicin
considerable detail.

The relationship of these quantum mechanical operators to experimental
measurement will be made clear later in this chapter. For now, sufficeit to say that these
operators define equations whose solutions determine the values of the corresponding
physical property that can be observed when ameasurement is carried out; only the values
so determined can be observed. This should suggest the origins of quantum mechanics
prediction that some measurements will produce discr ete or quantized values of certain
variables (e.g., energy, angular momentum, etc.).

B. Wavefunctions

The elgenfunctions of a quantum mechanical operator depend on the coordinates
upon which the operator acts; these functions are called wavefunctions

In addition to operators corresponding to each physically measurable quantity,
guantum mechanics describes the state of the system in terms of awavefunction Y thatisa
function of the coordinates { gj} and of timet. The function [Y (qj,t)|2= Y *Y givesthe
probability density for observing the coordinates at the values g; at timet. For amany-
particle system such as the HoO molecule, the wavefunction depends on many coordinates.
For the HoO example, it depends on the x, y, and z (or r,g, and f) coordinates of the ten



electrons and the x, y, and z (or r,q, and f) coordinates of the oxygen nucleus and of the
two protons; atotal of thirty-nine coordinates appear in'Y .

In classical mechanics, the coordinates gj and their corresponding momenta p;j are
functions of time. The state of the system is then described by specifying g;(t) and gi(t). In
quantum mechanics, the concept that g is known as afunction of time is replaced by the
concept of the probability density for finding ¢ at aparticular value at aparticular timet:

Y (gj,)[2. Knowledge of the corresponding momenta as functions of timeisalso
relinquished in quantum mechanics; again, only knowledge of the probability density for
finding p with any particular value a a particular time t remains.

C. The Schrodinger Equation

This equation is an eigenvalue equation for the energy or Hamiltonian operator; its
eigenvalues provide the energy levels of the system

1. The Time-Dependent Equation

If the Hamiltonian operator contains the time variable explicitly, one must solve the
time-dependent Schrodinger equation

How to extract from Y (gj,t) knowledge about momentais treated below in Sec. 111,
A, where the structure of quantum mechanics, the use of operators and wavefunctionsto
make predictions and interpretations about experimental measurements, and the origin of
‘uncertainty relations such as the well known Heisenberg uncertainty condition dealing
with measurements of coordinates and momenta are also treated.

Before moving deeper into understanding what quantum mechanics'means, itis
useful to learn how the wavefunctions Y are found by applying the basic equation of
guantum mechanics, the Schrodinger equation, to afew exactly soluble model problems.
Knowing the solutions to these 'easy’ yet chemically very relevant models will then
facilitate learning more of the details about the structure of quantum mechanics because
these model cases can be used as 'concrete examples.

The Schrodinger equation is a differential equation depending on time and on all of
the spatial coordinates necessary to describe the system at hand (thirty-nine for the H,O

example cited above). It isusualy written

HY =ih Y/t



where'Y (gj,t) is the unknown wavefunction and H isthe operator corresponding to the
total energy physical property of the system. This operator is called the Hamiltonian and is
formed, as stated above, by first writing down the classical mechanical expression for the
total energy (kinetic plus potential) in cartesian coordinates and momenta and then replacing
al classicd momenta p; by their quantum mechanical operators pj = - iR{/1g; .

For the H2O example used above, the classical mechanica energy of al thirteen
particlesis

E=Si{ piZ2me+ 12 Sj €2lrjj - SaZ£2ri 2}
+ Sa{pa/2ma+ 12 Sp ZaZne2lrap }
wheretheindicesi and j are used to label the ten electrons whose thirty cartesian
coordinates are {gj} and aand b label the three nuclel whose charges are denoted { Z3}, and
whose nine cartesian coordinates are { gg} . The electron and nuclear masses are denoted me
and {mg}, respectively.
The corresponding Hamiltonian operator is
H = S;i{ - (h2/2mg) 12/70i2 + /2 Sj €/ri j - SaZ£2lria}
+ Sa{ - (h%12my) T12/g2+ U2 Sp ZaZp2lrap } -
Noticethat H isasecond order differential operator in the space of the thirty-nine cartesian
coordinates that describe the positions of the ten el ectrons and three nuclei. It is a second
order operator becatise the momenta appear in the kinetic energy aspj2 and ps2, and the
quantum mechanical operator for each momentum p = -if §/9lq is of first order.
The Schrodinger equation for the HoO example at hand then reads
Si{ - (h&2mg) 1212 + U2 Sj €2lrij - SaZ£ria} Y
+ Sa{ - (h%2my) T12/ge2+ U2 Sp ZaZp2lrap} Y

=ihTY /Nt

2. The Time-Independent Equation



If the Hamiltonian operator does not contain the time variable explicitly, one can
solve the time-independent Schrodinger equation

In cases where the classical energy, and hence the quantum Hamiltonian, do not
contain terms that are explicitly time dependent (e.g., interactions with time varying
external electric or magnetic fields would add to the above classical energy expression time
dependent terms discussed later in this text), the separations of variables techniques can be
used to reduce the Schrédinger equation to a time-independent equation.

In such cases, H isnot explicitly time dependent, so one can assumethat Y (g;,t) is

of theform
Y (05,0 = Y (q) F(D).

Substituting this ‘ansatz' into the time-dependent Schrodinger equation gives
Y (g) ihFTt=H Y (q)) F() .

Dividing by Y (g;) F(t) then gives
FLiRTFM) =Y-1(H Y(q)).

Since F(t) isonly afunction of timet, and Y (q;) isonly afunction of the spatial
coordinates { g}, and because the | eft hand and right hand sides must be equal for all
values of t and of { g}, both the |eft and right hand sides must equal a constant. If this
constant iscalled E, thetwo equationsthat are embodied in this separated Schrodinger
equation read as follows:

H Y (q)=EY(q),
i h TR/t = ih dF(L)/dt = E ().

Thefirst of these equationsis called the time-independent Schrodinger equation; it
isaso-caled eigenvalue equation in which one is asked to find functions that yield a
constant multiple of themselves when acted on by the Hamiltonian operator. Such functions
are caled eigenfunctions of H and the corresponding constants are called eigenvalues of H.



For example, if H were of the form - h2/2M 12/1f 2 = H , then functions of the form exp(i
mf ) would be elgenfunctions because

{ - h2/2M 2/ 2} exp(i mf) ={ m2h2/2M } exp(i mf).

In this case, { m2 k2 /2M } isthe eigenvalue.

When the Schrédinger equation can be separated to generate a time-independent
equation describing the spatial coordinate dependence of the wavefunction, the eigenvalue
E must be returned to the equation determining F(t) to find the time dependent part of the
wavefunction. By solving

i dF(t)/dt = E F(t)
once E is known, one obtains
F(t) = exp( -i Et/ h),
and the full wavefunction can be written as
Y (g;,t) = Y (qj) exp (-i Et/ h).
For the above example, the time dependence is expressed by

F(t) =exp (-i t{ mh2/2M }/ h).

Having been introduced to the concepts of operators, wavefunctions, the
Hamiltonian and its Schrédinger equation, it isimportant to now consider several examples
of the applications of these concepts. The examples treated below were chosen to provide
the learner with valuable experience in solving the Schrodinger equation; they were also
chosen because the models they embody form the most e ementary chemical models of
electronic motions in conjugated molecules and in atoms, rotations of linear molecules, and
vibrations of chemical bonds.

I1. Examples of Solving the Schrédinger Equation

A. Free-Particle Motion in Two Dimensions



The number of dimensions depends on the number of particles and the number of
gpatial (and other) dimensions needed to characterize the position and motion of each

particle
1. The Schrédinger Equation

Consider an electron of mass m and charge e moving on atwo-dimensional surface
that defines the x,y plane (perhaps the electron is constrained to the surface of asolid by a
potential that bindsit tightly to anarrow region in the z-direction), and assume that the
electron experiences a constant potential Vg at al pointsin this plane (on any real atomic or
molecular surface, the electron would experience a potential that varies with positionin a
manner that reflects the periodic structure of the surface). The pertinent time independent
Schrédinger equation is:

- h2/2m (T2111x2 +92/y2)y (x.y) +V oy (x.y) = E Y (X,Y).
Because there are no termsin this equation that couplemotion in the x and y directions
(e.g., no terms of the form x&b or §/9x /1y or x1/1ly), separation of variables can be used

towritey asaproducty (x,y)=A(X)B(y). Substitution of this form into the Schrédinger
equation, followed by collecting together al x-dependent and all y-dependent terms, gives;

- R2/2m A-192A 1x2 - h2/2m B-192B/1ly2 =E- V.
Since the first term contains no y-dependence and the second contains no x-dependence,
both must actually be constant (these two constants are denoted Ex and Ey, respectively),
which allows two separate Schrodinger equations to be written:

- h2/2m A-192AMx2 =Ey, and

- h2/2m B-12B/1y2 =E.

The total energy E can then be expressed in terms of these separate energies Ex and Ey as
Ex + Ey =E-V(. Solutionsto the x- and y- Schrodinger equations are easily seen to be:

A(X) = exp(ix(2mEx/h2)V2) and exp(-ix(2mEx/h2)1/2) ,



B(y) = exp(iy(2mEy/h2)1/2) and exp(-iy(2mEy/h2)V/2).

Two independent solutions are obtained for each equation because the x- and y-space
Schrédinger equations are both second order differential equations.

2. Boundary Conditions

The boundary conditions, not the Schrédinger equation, determine whether the
eigenvalues will be discrete or continuous

If the electron is entirely unconstrained within the X,y plane, the energies Ex and Ey
can assume any value; this means that the experimenter can 'inject’ the electron onto the x,y
plane with any total energy E and any components Ex and Ey along the two axes aslong as
Ex + Ey = E. In such asituation, one speaks of the energies along both coordinates as
being 'in the continuum’ or 'not quantized'.

In contrast, if the electron is constrained to remain within afixed areain the X,y
plane (e.g., arectangular or circular region), then the situation is qualitatively different.
Constraining the electron to any such specified area gives rise to so-called boundary
conditions that impose additional requirements on the above A and B functions.

These constraints can arise, for example, if the potential Vo(X,y) becomes very large for
X,y values outside the region, in which case, the probability of finding the electron outside
the region is very small. Such a case might represent, for example, a situation in which the
molecular structure of the solid surface changes outside the enclosed region in away that is
highly repulsive to the electron.

For example, if motion is constrained to take place within arectangular region
defined by O£ X £ Ly; O£ y £ Ly, then the continuity property that all wavefunctions must
obey (because of their interpretation as probability densities, which must be continuous)
causes A(x) tovanish at O and at L. Likewise, B(y) must vanishatOand at Ly. To
implement these congtraints for A(x), one must linearly combine the above two solutions
exp(ix(2mEx/h2)1/2) and exp(-ix(2mEx/h?)L/2) to achieve a function that vanishes at x=0:

A(X) = exp(iX(2mEx/h2)12) - exp(-ix(2mEx/h2)1/2).

Oneisallowed to linearly combine solutions of the Schrédinger equation that have the same
energy (i.e., are degenerate) because Schrodinger equations are linear differential



equations. An analogous process must be applied to B(y) to achieve afunction that
vanishes at y=0:

B(y) = exp(iy(2mEy/h2)1/2) - exp(-iy(2mEyHh2)1/2).

Further requiring A(x) and B(y) to vanish, respectively, at x=Lx and y=Ly, gives
equations that can be obeyed only if Ex and E, assume particular values:

exp(iLx(2mEx/h2)V2) - exp(-iLx(2mEx/R2)12) = 0, and

exp(iLy(2mE,H2)2) - exp(-iLy(2mEy/Hh2)1/2) = 0.
These equations are equivalent to

sin(Lx(2mEx/A2)12) = sin(Ly(2mE,/H2)12) = 0.
Knowing that sin(q) vanishes at g=np, for n=1,2,3,..., (although the sin(np) function
vanishes for n=0, this function vanishesfor al x or y, and is therefore unacceptable
because it represents zero probability density at al pointsin space) one concludes that the
energies Ex and Ey can assume only values that obey:

Lx(2mEx/h2) Y2 =n,p,

Ly(2mEy/R2) 12 =nyp, or

Ex = Nx?p2 h2/(2mLy?), and

Ey = ny2p2 h%/(2mLy2), withny and ny =1,2,3, ...
It isimportant to stress that it is the imposition of boundary conditions, expressing the fact
that the electron is spatially constrained, that gives rise to quantized energies. In the absence
of spatial confinement, or with confinement only at x =0 or Ly or only
at'y =0 or Ly, quantized energies would not be realized.

In this example, confinement of the electron to afinite interval along both the x and

y coordinates yields energies that are quantized along both axes. If the electron were
confined along one coordinate (e.g., between 0 £ x £ Ly) but not along the other (i.e., B(y)



is either restricted to vanish at y=0 or at y=Ly or at neither point), then the total energy E
liesin the continuum,; its Ex component is quantized but Ey is not. Such cases arise, for
example, when alinear triatomic molecule has more than enough energy in one of its bonds
to rupture it but not much energy in the other bond; the first bond's energy liesin the
continuum, but the second bond's energy is quantized.

Perhaps more interesting is the case in which the bond with the higher dissociation
energy isexcited to alevel that is not enough to break it but that isin excess of the
dissociation energy of the weaker bond. In this case, one has two degenerate states- i. the
strong bond having high internal energy and the weak bond having low energy (y 1), and
ii. the strong bond having little energy and the weak bond having more than enough energy
to ruptureit (y 2). Although an experiment may prepare the moleculein a state that contains
only the former component (i.e., y = C1y 1 + Coy 2 with C1>>C>), coupling between the
two degenerate functions (induced by termsin the Hamiltonian H that have been ignored in
definingy 1 andy 2) usually causes the true wavefunction Y = exp(-itH/h) y to acquire a
component of the second function as time evolves. In such a case, one speaks of internal
vibrational energy flow giving rise to unimolecular decomposition of the molecule.

3. Energies and Wavefunctions for Bound States

For discrete energy levels, the energies are specified functions the depend on
guantum numbers, one for each degree of freedom that is quantized

Returning to the situation in which motion is constrained along both axes, the
resultant total energies and wavefunctions (obtained by inserting the quantum energy levels
into the expressions for
A(X) B(y) are asfollows:

Ex = Ny?p2 h2/(2mLy?), and

Ey = ny2p2 h2/(2mLy2),

E=Ex+Ey,

y (X,y) = (/2L x) V2 (1/2Ly) V2 exp(ingpx/Ly) -exp(-inypx/Lx)]

[exp(inypy/Ly) -exp(-inypy/Ly)], withny and ny =1,2,3, ... .



The two (1/2L)Y2 factors are included to guarantee that y is normalized:
oly (x,y)|2 dx dy = 1.

Normalization allows |y (x,y)|? to be properly identified as a probability density for finding
the electron at apoint X, y.

4. Quantized Action Can Also be Used to Derive Energy Levels

There is another approach that can be used to find energy levelsand is especially
straightforward to use for systems whose Schrédinger equations are separable. The so-
caled classical action (denoted S) of a particle moving with momentum p along a path
leading from initial coordinate g; at initia timet; to afina coordinate gs at timet; is defined

by:

astf
s= 8 p-dq .
di.t;

Here, the momentum vector p contains the momenta aong all coordinates of the system,
and the coordinate vector q likewise contains the coordinates along all such degrees of
freedom. For example, in the two-dimensional particle in abox problem considered above,
g = (X, y) hastwo components as does p = (Px, py),

and the action integral is:.

X,V b
S= 8 (px dx + pydy) .
Xi,Yisti

In computing such actions, it is essentia to keep in mind the sign of the momentum as the
particle moves fromitsinitia to itsfinal positions. An example will help clarify these
matters.

For systems such as the above particle in a box example for which the Hamiltonian
is separable, the action integral decomposed into a sum of such integrals, one for each
degree of freedom. In thistwo-dimensional example, the additivity of H:



H =Hyx + Hy =px2/2m + py22m + V(x) + V(y)
= - h2/2m 12/1x2 + V/(X) - h2/2m 12/y2 + V(y)

means that py and py can be independently solved for in terms of the potentials V(x) and
V(y) aswell asthe energies Ex and Ey associated with each separate degree of freedom:

Px = £ V2m(Ex - V(X))

Py == 2m(Ey - V(y)) ;

the signs on py and py must be chosen to properly reflect the motion that the particleis
actually undergoing. Substituting these expressions into the action integral yields:

S=S¢+Sy

Xtk Y1
= 8 #2mE-V(X)dx + 8 +/2mE - V() dy .
Xj i Yisti

The relationship between these classical action integrals and existence of quantized
energy levels has been show to involve equating the classical action for motion on a closed
path (i.e., apath that starts and ends at the same place after undergoing motion away from
the starting point but eventually returning to the starting coordinate at alater time) to an
integral multiple of Planck’s constant:

qr=qist
Sdosed= 8p-dg =nh. (n=1,23,4,..)
Qisti

Applied to each of the independent coordinates of the two-dimensional particle in abox
problem, this expression reads.

X:LX x=0

nch= 8 \2m(Ex - V(X)) dx + B -\/2m(Ex - V(X)) dx
x=0 X=Lx




y=Ly y=0
nyh= 8 \2m(E - V(y)) dy + 8 -\2m(E - V(y)) dy .
y=0 y=Ly

Notice that the sign of the momenta are positive in each of thefirst integrals appearing
above (because the particleis moving from x = 0 to X = Ly, and analogously for y-motion,
and thus has positive momentum) and negative in each of the second integrals (because the
motionisfrom x = Ly to x = 0 (and analogously for y-motion) and thus with negative
momentum). Within the region bounded by 0£ X £ Lx; O£ y £ Ly, the potential vanishes,
so V(x) = V(y) = 0. Using this fact, and reversing the upper and lower limits, and thus the
sign, in the second integrals above, one obtains:

X:LX

nch=2 8 \2mEg dx =2+2mEx Ly
x=0
y=Ly

nyh=2 8 \2mE, dy =2+2mg Ly,
y=0

Solving for Ex and Ey, one finds:

_ (nxh)?
8mLy2

X

Ey:(_nﬂ2 )

8mL2

These are the same quantized energy levels that arose when the wavefunction boundary
conditionswere matched at x =0, x =Ly andy = 0,y = Ly. Inthis case, one says that the

Bohr-Sommerfeld quantization condition:

af=qi;t
nh= 8p-dq
Qi;t



has been used to obtain the result.

B. Other Model Problems
1. Particlesin Boxes

The particle-in-a-box problem provides an important model for several relevant
chemical situations

The above 'particle in abox' model for motion in two dimensions can obviously be
extended to three dimensions or to one.

For two and three dimensions, it provides a crude but useful picture for electronic states on
surfaces or in crystals, respectively. Free motion within a spherical volume givesrise to
eigenfunctions that are used in nuclear physics to describe the motions of neutrons and
protonsin nuclei. In the so-called shell model of nuclel, the neutrons and protonsfill
separate s, p, d, etc orbitals with each type of nucleon forced to obey the Pauli principle.
These orbitals are not the samein their radial 'shapes asthe s, p, d, etc orbitals of atoms
because, in atoms, there is an additional radial potential V/(r) = -Ze2/r present. However,
their angular shapes are the same as in atomic structure because, in both cases, the potential
isindependent of g and f . This same spherical box model has been used to describe the
orbitals of valence el ectrons in clusters of mono-vaent metal atoms such as Cs,, Cup, Nap
and their positive and negative ions. Because of the metallic nature of these species, their
valence electrons are sufficiently delocalized to render this simple model rather effective
(seeT. P. Martin, T. Bergmann, H. Gohlich, and T. Lange, J. Phys. Chem. 95, 6421
(1991)).

One-dimensiond free particle motion provides a qualitatively correct picture for p-
electron motion along the py, orbitals of a delocalized polyene. The one cartesian dimension
then corresponds to motion along the delocalized chain. In such a model, the box length L
isrelated to the carbon-carbon bond length R and the number N of carbon centers involved
in the delocalized network L=(N-1)R. Below, such a conjugated network involving nine
centersis depicted. In this example, the box length would be eight times the C-C bond
length.



Conjugated p Network with 9 Centers Involved

The eigengtates y n(X) and their energies E, represent orbitals into which electrons are
placed. In the example casg, if nine p electrons are present (e.g., asin the 1,3,5,7-

nonatetraene radical), the ground el ectronic state would be represented by atotal
wavefunction consisting of a product in which the lowest four y 's are doubly occupied and
thefifthy issingly occupied:

Y =yjay 1by cay oby zay 3by say 4by sa.

A product wavefunction is appropriate because the total Hamiltonian involves the kinetic
plus potential energies of nine electrons. To the extent that this total energy can be
represented as the sum of nine separate energies, one for each electron, the Hamiltonian
allows a separation of variables

H @S; H(j)

in which each H(j) describes the kinetic and potential energy of an individual electron. This
(approximate) additivity of H impliesthat solutionsof HY =EY are products of solutions

toH () y(rj) =g y(rj.
The two lowest p-excited states would correspond to states of the form

*=yijayibyoayobyszaysbysaysbysa,and
Y* =yjayjibyraysbyzaysbysaysbyea,

where the spin-orbitals (orbitals multiplied by a or b) appearing in the above products
depend on the coordinates of the various electrons. For example,



yiayibyzayobyzaysbysaysbysa
denotes
yia(ry) yib (ro) yoa (ra) y2b (r4) ysa (rs) ysb (re) y4a (r7) ysb
(re) ysa (ro).
The electronic excitation energies within this model would be
DE* =p2h2/2m[ 52/L2 - 42/L.2] and

DE"™* = p2h2/2m [ 62/L2 - 52/L2], for the two excited-state functions described
above. It turns out that this simple model of p-electron energies provides a qualitatively
correct picture of such excitation energies.

This ssimple particle-in-a-box model does not yield orbital energiesthat relate to
ionization energies unless the potentia 'inside the box' is specified. Choosing the value of
this potential Vg such that Vg + p2 h2/2m [ 52/L2] is equal to minus the lowest ionization
energy of the 1,3,5,7-nonatetraene radical, gives energy levels (assE = Vg + p2h2/2m|[
n2/L.2]) which then are approximations to ionization energies.

Theindividua p-molecular orbitals

Y n = (2/L)Y2 sin(npx/L)

are depicted in the figure below for amodel of the 1,3,5 hexatriene p-orbital system for
which the 'box length' L isfive times the distance Rcc between neighboring pairs of
Carbon atoms.



2/L)"? sin(npx/L): L = 5 x Rge

In this figure, positive amplitude is denoted by the clear spheres and negative amplitude is
shown by the darkened spheres; the magnitude of the kth C-atom centered atomic orbital in
the nth p-molecular orbital is given by (2/L)Y2 sin(npkRcc/L).

Thissmple model allows one to estimate spin densities at each carbon center and
provides insight into which centers should be most amenable to electrophilic or nucleophilic
attack. For example, radica attack at the Cs carbon of the nine-atom system described
earlier would be morefacile for the ground state Y than for either Y * or Y '*. In the
former, the unpaired spin density resides in y 5, which has non-zero amplitude at the Cs
stex=L/2;inY* and Y *, the unpaired density isiny 4 and y g, respectively, both of
which have zero density at Cs. These densities reflect the values (2/L)Y2 sin(npkRcc/L) of
the amplitudes for this case in which L =8 x Rcc for n =5, 4, and 6, respectively.

2. One Electron Moving About a Nucleus



The Hydrogenic atom problem forms the basis of much of our thinking about
atomic structure. To solve the corresponding Schrodinger equation requires separation of
ther, g, andf variables

[Suggested Extra Reading- Appendix B: The Hydrogen Atom Orbital s

The Schrodinger equation for asingle particle of mass mmoving in a central
potential (one that depends only on the radia coordinate r) can be written as

9 2 2 2 . ..
hzad” 97 ﬂ—gy + VRIx2y2422 y = Ey.
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This equation is not separable in cartesian coordinates (X,y,z) because of the way x,y, and
Z appear together in the square root. However, it is separablein spherical coordinates
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Subtracting V(r)y from both sides of the equation and multiplying by - 2 then moving
h2
the derivatives with respect to r to the right-hand side, one obtains
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Notice that the right-hand side of this equation isafunction of r only; it containsno q or f
dependence. Let'scal the entire right hand side F(r) to emphasize this fact.

To further separate the g and f dependence, we multiply by Sin2g and subtract the
g derivative terms from both sidesto obtain
T2y . T Tye
2L = F(r)y SinZq - Sing — gsing —-2.
2 & fao
Now we have separated thef dependence from the g and r dependence. If we now
substitutey = F (f) Q(r,q) and divideby F Q, we obtain
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Now all of thef dependenceisisolated on the left hand side; the right hand side contains

only r and q dependence.
Whenever one has isolated the entire dependence on one variable as we have done

abovefor thef dependence, one can easily see that the left and right hand sides of the
eguation must equal aconstant. For the above example, the left hand side containsno r or

g dependence and the right hand side containsno f dependence. Because the two sides are

equal, they both must actually containnor, g, or f dependence; that is, they are constant.
For the above example, we therefore can set both sides equal to a so-called

separation constant that we call -m2 . It will become clear shortly why we have chosen to
express the constant in this form.
a. The F Equation
Theresulting F equation reads
F"+m2F =0
which has asits most genera solution
F =Admf + Bgimf
We must require the function F to be single-valued, which means that
Ff)=F(2p +f) or,
Aemf (1 - e2imp) + Beimf (1 - e2imp) =,
Thisis satisfied only when the separation constant is equal to aninteger m=0, £1, + 2, ...

. and provides another example of the rule that quantization comes from the boundary
conditions on the wavefunction. Here misrestricted to certain discrete values because the

wavefunction must be such that when you rotate through 2p about the z-axis, you must get
back what you started with.

b. The Q Equation

Now returning to the equation in which the f dependence wasisolated from ther
and g dependence.and rearranging the q termsto the left-hand side, we have

1 ag ﬂQomQ

: =F(r
Sing ‘Hqg qg Sing (NQ



In this equation we have separated q and r variations so we can further decompose the
wavefunction by introducing Q = Q(q) R(r) , which yields

1 1 ﬂa§l s m _F(MR _
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where a second separation constant, -l , has been introduced once the r and g dependent
terms have been separated onto the right and left hand sides, respectively.

We now can write the g equation as
1 T gy TQ0 m Q _
Sing 1q g fqg SinZg

where misthe integer introduced earlier. To solvethis equation for Q , we make the
substitutions z = Cosg and P(z) = Q(q) , so \/ 1-z2 = Sinq , and
T _9%z2% _ S 1

fa 919z {1z

Therange of valuesforqwasO£ q<p, sotherangefor zis
-1<z<1. Theequation for Q , when expressed in terms of P and z, becomes

d—zgl-Z) Eg-ﬁ +1P=0.

Now we can look for polynomial solutionsfor P, because z is restricted to be less than
unity in magnitude. If m =0, wefirst let

¥
P= dac,
k=0

and substitute into the differential equation to obtain

¥ ¥ ¥
A (k+2)(k+1) aks2 ZK - @ (k+1) k ak +1 §azk =0.
k=0 k=0 k=0

Equating like powers of z gives

_ a(k(k+1)-1)
K+2 = &) K+D)



Note that for large values of k

k2§+%‘g
&2 o -1,
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Since the coefficients do not decrease with k for large k, this serieswill divergeforz=+ 1
unless it truncates at finite order. This truncation only happensiif the separation constant |

obeys| =I(I+1), wherel isan integer. So, once again, we see that a boundary condition
(i.e., that the wavefunction be normalizable in this case) give rise to quantization. Inthis

case, thevalues of | arerestricted to I(I1+1); before, we saw that misrestrictedto 0, £1,

2, ...

Sincethis recursion relation links every other coefficient, we can choose to solve
for the even and odd functions separately. Choosing ag and then determining al of the
even g interms of this ag, followed by rescaling all of these & to make the function
normalized generates an even solution. Choosing a; and determining all of the odd & in
like manner, generates an odd solution.

For 1= 0, the series truncates after one term and resultsin Pg(z) = 1. For I= 1 the

same thing appliesand P1(z) = z. Forl=2,a=-6 8—20 = -3a, , SO one obtains Py = 372-1,

and so on. These polynomials are called L egendre polynomials.
For the more general casewherem® 0, one can proceed as above to generate a
polynomial solution for the Q function. Doing so, resultsin the following solutions:

- m o™ P (2)
P2 =(1-2) g

These functions are called Associated Legendre polynomials, and they constitute the

solutions to the Q problem for non-zero m values.

The above P and éMmf functions, when re-expressed in terms of g and f, yield the
full angular part of the wavefunction for any centrosymmetric potential. These solutions
1

areusualy writtenas Y| m(q.f) = Prln(Cosq) (2p)_5 exp(imf ), and are called spherical
harmonics. They provide the angular solution of ther,q, f Schrédinger equation for any
problem in which the potential depends only on the radial coordinate. Such situations

include all one-electron atoms and ions (e.g., H, He™, Li** , etc.), the rotational motion of
adiatomic molecule (where the potential depends only on bond length r), the motion of a
nucleon in a spherically symmetrical "box" (as occursin the shell model of nuclei), and the
scattering of two atoms (where the potential depends only on interatomic distance).

c. The R Equation



Let us now turn our attention to the radial equation, which isthe only place that the
explicit form of the potential appears. Using our derived results and specifying V(r) to be
the coulomb potential appropriate for an electron in the field of anucleus of charge +Ze,
yields:

1 d g4, dRy . @m 785 I(1 + 1)0
Soe Oy +éc;h—2§%+7g' > gR 0.

We can simplify things considerably if we choose rescaled length and energy units because

doing so removes the factors that depend on mh , and e. We introduce a new radial
coordinater and aquantity s asfollows:

1

%mzéé ,_ M2t
r = ‘e r, and s¢=- )
e h2 4 2Eh?2

Noticethat if E isnegative, asit will be for bound states (i.e., those states with energy

below that of afree eectron infinitely far from the nucleus and with zero kinetic energy), r
isreal. On the other hand, if E is poditive, asit will be for statesthat lie in the continuum,

r will beimaginary. Thesetwo caseswill giveriseto qualitatively different behavior in the
solutions of the radial equation devel oped below.

We now define afunction S such that S(r ) = R(r) and substitute Sfor R to obtain:

1d opdSy, el I+,
6?2 = —S 0.
r2dr e drz 4 2 r g

The differential operator terms can be recast in several ways using

10505, S 205 1 o

r2dré drg dr2 rdr rdr2
It isuseful to keep in mind these three embodiments of the derivatives that enter into the
radial kinetic energy; in various contextsit will be useful to employ various of these.
The strategy that we now follow is characteristic of solving second order

differential equations. We will examine the equation for Sat largeand small r values.

Having found solutions at these limits, we will use apower seriesinr to "interpolate”
between these two limits.

L et us begin by examining the solution of the above equation at small valuesof r to

see how theradial functions behave at small r. Asr® 0, the second term in the brackets
will dominate. Neglecting the other two terms in the brackets, we find that, for small

values of r (or r), the solution should behave liker L and because the function must be
normalizable, we must have L 3 0. Since L can be any non-negative integer, this suggests
the following more general form for S(r) :

S(r)y»rLed,



Thisform will insure that the functionisnormalizablesinceS(r) ® Oasr® ¥ foral L,

aslong asr isared quantity. If r isimaginary, such aform may not be normalized (see
below for further consequences).

Turning now to the behavior of Sfor larger , we make the substitution of S(r ) into

the above equation and keep only the terms with the largest power of r (e.g., first termin
brackets). Upon so doing, we obtain the equation

&rled :%r rleda |

which leads us to conclude that the exponent in the large-r behavior of Sisa= % :

Having found the small- and large-r behaviors of S(r ), we can take S to have the
following form to interpolate between large and small r -values:

r
S(r)=rle? P(r),
where the function L is expanded in an infinite power seriesinr asP(r) = é_ a rk. Agan
Substituting this expression for Sinto the above equation we obtain
P'r + P(2L+2-r) + P(s-L-I) =0,

and then substituting the power series expansion of P and solving for the ac's we arrive at:

_ (k-s+L+I) a
A+ = A D (kF2L+2) -

For large k, the ratio of expansion coefficients reaches the limit a;:l -1 , Which

has the same behavior as the power series expansion of €. Because the power series
expansion of P describes afunction that behaveslike € for larger , the resulting S(r )

r
function would not be normalizable becausethe e 2 factor would be overwhelmed by this
€ dependence. Hence, the series expansion of P must truncate in order to achieve a

normalizable Sfunction. Noticethat if r isimaginary, asit will beif E isin the continuum,
the argument that the series must truncate to avoid an exponentialy diverging function no

longer applies. Thus, we see akey difference between bound (with r real) and continuum

(withr imaginary) states. In the former case, the boundary condition of non-divergence
arises; in the latter, it does not.

To truncate at a polynomial of order n', we must haven'-s + L+1=0. This

impliesthat the quantity s introduced previoudly isrestrictedtos =n'+ L + 1, whichis
certainly an integer; let us call thisinteger n. If we label statesin order of increasing n =
1,2,3,... , we see that doing so is consistent with specifying a maximum order (n') in the



P(r ) polynomial n' = 0,1,2,... after which the [-value can run from | = O, in steps of unity
up toL = n-1.

Substituting the integer n for s , we find that the energy levels are quantized
becauses is quantized (equal to n):

2
E=- %t andr :A.
2h2n2 &N
. . @ ph20
Here, the length a, isthe so called Bohr radius ¢ap = Eﬁ it appears once the above E-
e o

expression is substituted into the equation for r . Using the recursion equation to solve for
the polynomial's coefficients a¢ for any choice of n and | quantum numbers generates a so-

called Laguerre polynomial; Pp- -1(r ). They contain powersof r from zero through n-I-1.
This energy quantization does not arise for states lying in the continuum because the

condition that the expansion of P(r ) terminate does not arise. The solutions of the radial
equation appropriate to these scattering states (which relate to the scattering motion of an
electron in the field of anucleus of charge Z) are treated on p. 90 of EWK.

In summary, separation of variables has been used to solve the full r,q,f
Schrédinger equation for one electron moving about a nucleus of chargeZ. Theq and f

solutions are the spherical harmonics Y| m (q,f). The bound-state radial solutions
r

Rl () =S(r)=rle2 P )

depend on the n and | quantum numbers and are given in terms of the Laguerre polynomials
(see EWK for tabulations of these polynomials).

d. Summary

To summarize, the quantum numbers | and m arise through boundary conditions
requiring that y (q) be normalizable (i.e., not diverge) andy (f) = y (f +2p). In the texts by
Atkins, EWK, and McQuarrie the differential equations obeyed by theq andf components
of Y| m are solved in more detail and properties of the solutions are discussed. This
differential equation involves the three-dimensional Schrodinger equation’s angular kinetic
energy operator. That is, the angular part of the above Hamiltonian is equal to h2L2/2mr2,
where L2 is the square of the total angular momentum for the electron.

Theradia equation, which isthe only place the potential energy enters, isfound to
possess both bound-states (i.e., states whose energies lie below the asymptote at which the
potentia vanishes and the kinetic energy is zero) and continuum states lying energetically
above this asymptote. The resulting hydrogenic wavefunctions (angular and radia) and



energies are summarized in Appendix B for principal quantum numbers n ranging from 1
to 3 and in Pauling and Wilson for n up to 5.

There are both bound and continuum solutions to the radial Schrédinger equation
for the attractive coulomb potential because, at energies below the asymptote the potential
confines the particle between r=0 and an outer turning point, whereas at energies above the
asymptote, the particleis no longer confined by an outer turning point (see the figure
below).
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The solutions of this one-electron problem form the qualitative basis for much of
atomic and molecular orbital theory. For this reason, the reader is encouraged to use
Appendix B to gain afirmer understanding of the nature of the radial and angular parts of
these wavefunctions. The orbitals that result are labeled by n, |, and m quantum numbers
for the bound states and by | and m quantum numbers and the energy E for the continuum
states. Much as the particle-in-a-box orbitals are used to qualitatively describe p- eectrons
in conjugated polyenes, these so-called hydrogen-like orbitals provide qualitative
descriptions of orbitals of atoms with more than a single el ectron. By introducing the
concept of screening as away to represent the repulsive interactions among the el ectrons of
an atom, an effective nuclear charge Zg can be used in place of Z inthey n | m and Ep | to
generate approximate atomic orbitals to be filled by electrons in a many-electron atom. For



example, in the crudest approximation of a carbon atom, the two 1s el ectrons experience
the full nuclear attraction so Zg=6 for them, whereas the 2s and 2p el ectrons are screened
by the two 1s electrons, so Zgt= 4 for them. Within this approximation, one then occupies
two 1s orbitals with Z=6, two 2s orbitals with Z=4 and two 2p orbitals with Z=4in
forming the full six-electron wavefunction of the lowest-energy state of carbon.

3. Rotational Motion For aRigid Diatomic Molecule
This Schrodinger equation relates to the rotation of diatomic and linear polyatomic
molecules. It also arises when treating the angular motions of electronsin any spherically

symmetric potential

A diatomic molecule with fixed bond length R rotating in the absence of any
external potential is described by the following Schrédinger equation:

h2/2m{ (R2sinq)-19/1q (sing 1Mq) + (R%sin2q) 1 12/9f2} y =Ey
or
L2y /2nR2=EYy.

Theanglesq and f describe the orientation of the diatomic moleculé's axisrelative to a
laboratory-fixed coordinate system, and mis the reduced mass of the diatomic molecule
memymy/(mMy+my). The differential operators can be seen to be exactly the same as those
that arose in the hydrogen-like-atom case, and, as discussed above, these g and f
differential operators are identical to the L2 angular momentum operator whose general
properties are analyzed in Appendix G. Therefore, the same spherical harmonics that
served as the angular parts of the wavefunction in the earlier case now serve asthe entire
wavefunction for the so-called rigid rotor: y =Y 3m(q,f). Asdetailed later in thistext, the
eigenvalues corresponding to each such eigenfunction are given as.

Ej=h2 J(J+1)/(2nR2) = B J(J+1)
and are independent of M. Thus each energy level islabeled by Jand is 23+1-fold

degenerate (because M ranges from -Jto J). The so-called rotational constant B (defined as
h2/2nR2) depends on the molecule's bond length and reduced mass. Spacings between



successive rotational levels (which are of spectroscopic relevance because angular
momentum selection rules often restrict DJ to 1,0, and -1) are given by

DE = B (J+1)(3+2) - B JJ+1) = 2B(J+1).

These energy spacings are of relevance to microwave spectroscopy which probesthe
rotational energy levels of molecules.

Therigid rotor provides the most commonly employed approximation to the
rotational energies and wavefunctions of linear molecules. As presented above, the model
restricts the bond length to be fixed. Vibrational motion of the molecule givesriseto
changesin R which are then reflected in changes in the rotational energy levels. The
coupling between rotational and vibrational motion givesriseto rotational B constants that
depend on vibrational state aswell as dynamical couplings,called centrifugal distortions,
that cause the total ro-vibrationa energy of the molecule to depend on rotational and
vibrational quantum numbers in a non-separable manner.

4. Harmonic Vibrational Motion
This Schrodinger equation forms the basis for our thinking about bond stretching and angle
bending vibrations as well as collective phonon motionsin solids

Theradia motion of adiatomic moleculeinitslowest (J=0) rotational level can be
described by the following Schrédinger equation:

- R22mr-20/r (r29Mr)y +V(r)y =Ey,

where mis the reduced mass m= mymy/(mg+my) of the two atoms.
By substituting y = F(r)/r into this equation, one obtains an equation for F(r) in which the
differential operators appear to be less complicated:

- R2/2md2F/dr2 + V(r) F=E F.

This equation is exactly the same as the equation seen above for the radia motion of the
electron in the hydrogen-like atoms except that the reduced mass mreplaces the electron

mass m and the potential V(r) is not the coulomb potential.



If the potential is approximated as a quadratic function of the bond displacement x =
r-re expanded about the point at which 'V is minimum:

V = 12 k(r-re)?,

the resulting harmonic-oscillator equation can be solved exactly. Because the potentia V

grows without bound as x approaches
¥ or -¥, only bound-state solutions exist for this model problem; that is, the motion is
confined by the nature of the potential, so no continuum states exist.
In solving theradial differential equation for this potential (see Chapter 5 of
McQuarrie), the large-r behavior isfirst examined. For large-r, the equation reads:
d2F/dx2 = 1/2 k x2 (2mk?) F,

where x = r-reisthe bond displacement away from equilibrium. Defining x= (k/h2)Y/4 x
asanew scaled radia coordinate allows the solution of the large-r equation to be written as:

Flager = exp(-x2/2).
The general solution to the radial equation is then taken to be of the form:

¥
F=exp(-x2/2) & xM Cp,
n=0

where the G, are coefficients to be determined. Substituting this expression into the full
radial equation generates a set of recursion equations for the C,, amplitudes. Asin the
solution of the hydrogen-like radial equation, the series described by these coefficientsis
divergent unless the energy E happens to equal specific values. It isthis requirement that
the wavefunction not diverge so it can be normalized that yields energy quantization. The
energies of the states that arise are given by:

En=h (km¥2 (n+1/2),

and the eigenfunctions are given in terms of the so-called Hermite polynomias Hp(y) as
follows:



yn(x) = (n! 2)-12 (a/p) 14 exp(-ax?/2) Hh(al/2 x),

wherea =(knh?)L/2, Within this harmonic approximation to the potential, the vibrational
energy levels are evenly spaced:

DE = En+1 - En=h (kkmV/2,

In experimental data such evenly spaced energy level patterns are seldom seen; most
commonly, one finds spacings En+1 - En that decrease as the quantum number n increases.
In such cases, one says that the progression of vibrational levels displays anharmonicity.

Because the H, are odd or even functions of x (depending on whether nisodd or
even), the wavefunctionsy n(x) are odd or even. This splitting of the solutions into two
distinct classes is an example of the effect of symmetry; in this case, the symmetry is
caused by the symmetry of the harmonic potential with respect to reflection through the
origin along the x-axis. Throughout this text, many symmetries will arise; in each case,
symmetry properties of the potentia will cause the solutions of the Schrodinger equation to
be decomposed into various symmetry groupings. Such symmetry decompositions are of
great use because they provide additional quantum numbers (i.e., symmetry labels) by
which the wavefunctions and energies can be labeled.

The harmonic oscillator energies and wavefunctions comprise the simplest
reasonable model for vibrational motion. Vibrations of a polyatomic molecule are often
characterized in terms of individual bond-stretching and angle-bending motions each of
whichis, in turn, approximated harmonically. Thisresultsin atotal vibrational
wavefunction that iswritten as a product of functions one for each of the vibrationa
coordinates.

Two of the most severe limitations of the harmonic oscillator model, the lack of
anharmonicity (i.e., non-uniform energy level spacings) and lack of bond dissociation,
result from the quadratic nature of its potential. By introducing model potentials that allow
for proper bond dissociation (i.e., that do not increase without bound as x=>¥ ), the major
shortcomings of the harmonic oscillator picture can be overcome. The so-called Morse
potential (see the figure below)

V(r) = De (1-exp(-a(r-1e)))2,

is often used in this regard.
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Here, Deisthe bond dissociation energy, reis the equilibrium bond length, and aisa
constant that characterizes the 'steepness of the potential and determines the vibrational
frequencies. The advantage of using the Morse potential to improve upon harmonic-
oscillator-level predictionsisthat its energy levels and wavefunctions are aso known
exactly. The energies are given in terms of the parameters of the potential asfollows:

En = A(k/MY2 { (n+1/2) - (n+1/2)2 h(k/MY2/4De },

where the force constant k is k=2De &. The Morse potential supports both bound states
(those lying below the dissociation threshold for which vibration is confined by an outer
turning point) and continuum states lying above the dissociation threshold. Its degree of
anharmonicity is governed by the ratio of the harmonic energy h(k/m)Y/2 to the dissociation
energy De

[11. The Physical Relevance of Wavefunctions, Operators and Eigenvalues



Having gained experience on the application of the Schrodinger equation to several
of the more important model problems of chemistry, it istimeto return to the issue of how
the wavefunctions, operators, and energies relate to experimental reality.

In mastering the sections that follow the reader should keep in mind that :

i. Itisthe molecular system that possesses a set of characteristic wavefunctions and energy
levels, but

ii. Itisthe experimental measurement that determines the nature by which these energy
levels and wavefunctions are probed.

This separation between the 'system’ with itsintrinsic set of energy levels and
‘observation’ or ‘experiment’ with its characteristic interaction with the system forms an
important point of view used by quantum mechanics. It gives rise to apoint of view in
which the measurement itself can 'prepare’ the system in awavefunction Y that need not be
any single eigenstate but can still be represented as a combination of the complete set of
eigengtates. For the beginning student of quantum mechanics, these aspects of quantum
mechanics are among the more confusing. If it helps, one should rest assured that all of the
mathematical and 'rul€’ structure of this subject was created to permit the predictions of
guantum mechanicsto replicate what has been observed in laboratory experiments.

Note to the Reader :

Before moving on to the next section, it would be very useful to work some of the
Exercises and Problems. In particular, Exercises 3, 5, and 12 aswell as problems 6, 8, and
11 provide insight that would help when the material of the next section is studied. The
solution to Problem 11 is used throughout this section to help illustrate the concepts
introduced here.

A. The Basic Rules and Relation to Experimental Measurement

Quantum mechanics has a set of 'rules’ that link operators, wavefunctions, and
eigenvalues to physically measurable properties. These rules have been formulated not in
some arbitrary manner nor by derivation from some higher subject. Rather, the ruleswere
designed to allow quantum mechanics to mimic the experimentally observed facts as
revealed in mother nature's data. The extent to which these rules seem difficult to




understand usually reflects the presence of experimental observations that do not fit in with
our common experience base.

[Suggested Extra Reading- Appendix C: Quantum Mechanical Operators and Commutation]

The structure of quantum mechanics (QM) relates the wavefunction Y and
operators F to the 'real world' in which experimental measurements are performed through
aset of rules (Dirac'stext is an excellent source of reading concerning the historical
development of these fundamentals). Some of these rules have already been introduced
above. Here, they are presented in total asfollows:

1. Thetime evolution of the wavefunction Y is determined by solving the time-dependent
Schrédinger equation (see pp 23-25 of EWK for arationalization of how the Schrédinger
equation arises from the classical equation governing waves, Einstein's E=hn, and
deBrogli€'s postulate that | =h/p)

HRTY fit=HY,

where H isthe Hamiltonian operator corresponding to the total (kinetic plus potential)
energy of the system. For an isolated system (e.g., an atom or molecule not in contact with
any external fields), H consists of the kinetic and potential energies of the particles
comprising the system. To describe interactions with an external field (e.g., an
electromagnetic field, astatic electric field, or the 'crystal field' caused by surrounding
ligands), additional terms are added to H to properly account for the system-field
interactions.

If H contains no explicit time dependence, then separation of space and time
variables can be performed on the above Schrddinger equation Y =y exp(-itE/R) to give

Hy=Ey.

In such a case, the time dependence of the stateis carried in the phase factor exp(-itE/R); the
spatial dependence appearsiny (q;).

The so called time independent Schrodinger equation Hy =Ey must be solved to
determine the physically measurable energies Ex and wavefunctionsy i of the system. The
most general solution to the full Schrodinger equation iRYY /it = HY isthen given by
applying exp(-iH t/h) to the wavefunction at someinitia time (t=0) Y =Sk Cky k to obtain



Y (t)=Sk Cky k exp(-itEx/). The relative amplitudes Cy are determined by knowledge of
the state at the initial time; this depends on how the system has been prepared in an earlier
experiment. Just as Newton's laws of motion do not fully determine the time evolution of a
classical system (i.e., the coordinates and momenta must be known at someinitia time),
the Schrédinger equation must be accompanied by initial conditionsto fully determine

Y (qj,t).

Example:

Using the results of Problem 11 of this chapter to illustrate, the sudden ionization of N2 in
itsv=0 vibrational stateto generate No* produces a vibrational wavefunction

1
V4 ax2i2 = 353333A 2 o (244.83A2)(1-1.09760AY

Yo=§g

that was created by the fast ionization of N,. Subsequent to ionization, this N2 functionis
not an eigenfunction of the new vibrational Schrodinger equation appropriateto Not. Asa
result, this function will time evolve under the influence of the No* Hamiltonian.

The time evolved wavefunction, according to thisfirst rule, can be expressed in terms of
the vibrational functions{Y \} and energies {E,} of the No* ion as

Y (t) = SV C\/ Yy eXp(-I Ey t/h)

The amplitudes Cy, which reflect the manner in which the wavefunction is prepared (at
t=0), are determined by determining the component of each Y y in the function Y at t=0. To
do this, one uses

s

BY " Y (t=0)dt =Cy,

which is easily obtained by multiplying the above summation by Y *\ integrating, and
using the orthonormality of the{Y } functions.

For the case at hand, this results shows that by forming integrals involving
products of the N2 v=0 function Y (t=0)



1
V4 ax2i2 = 353333A 2 (244.83A2)(1-L.0760AY

Yo=§g

and various Not vibrational functionsY y,, one can determine how Y will evolve in time
and the amplitudes of all {Y } that it will contain. For example, the N, v=0 function, upon
ionization, contains the following amount of the No* v=0 function:

Co=8 Yg*(N2*) Yo(Np) dt

¥

= 83.47522 e-229.113(1-1.11642)23 53333e-244.83(r-1.09769)2r
-¥

As demonstrated in Problem 11, thisintegral reducesto 0.959. This means that the N> v=0
State, subsequent to sudden ionization, can be represented as containing [0.959|2 = 0.92
fraction of the v=0 state of the N>* ion.

This example relates to the well known Franck-Condon principal of spectroscopy in
which squares of ‘overlaps between the initial electronic state's vibrational wavefunction
and thefinal electronic state's vibrational wavefunctions allow one to estimate the
probabilities of populating various final-state vibrational levels.

In addition toinitial conditions, solutions to the Schrédinger equation must obey
certain other constraints in form. They must be continuous functions of all of their spatial
coordinates and must be single valued; these propertiesallow Y * Y to beinterpreted asa
probability density (i.e., the probability of finding a particle at some position can not be
multivalued nor can it be 'jerky’ or discontinuous). The derivative of the wavefunction
must a so be continuous except at points where the potential function undergoes an infinite
jump (e.g., at thewall of aninfinitely high and steep potential barrier). This condition
relates to the fact that the momentum must be continuous except at infinitely 'steep’
potential barriers where the momentum undergoes a 'sudden’ reversal.

2. An experimental measurement of any quantity (whose corresponding operator is F) must
result in one of the eigenvalues f; of the operator F. These eigenva ues are obtained by

solving



Ffj =fj fj,

where thef j are the eigenfunctions of F. Once the measurement of F is made, for that sub-
population of the experimental sample found to have the particular eigenvaluef;, the
wavefunction becomesf;.

The equation Hy k=Exy k isbut aspecia case; it isan especially important case
because much of the machinery of modern experimental chemistry is directed at placing the
system in aparticular energy quantum state by detecting its energy (e.g., by spectroscopic
means).

The reader is strongly urged to also study Appendix C to gain amore detailed and
illustrated treatment of this and subsequent rules of quantum mechanics.

3. The operators F corresponding to all physically measurable quantities are Hermitian; this
means that their matrix representations obey (see Appendix C for adescription of the 'bra
| > and 'ket' < | notation used below):

<Cj|[Flck> = <cklF[cj>*= <Fcjlck>

inany basis{cj} of functions appropriate for the action of F (i.e., functions of the
variables on which F operates). As expressed through equality of thefirst and third
elements above, Hermitian operators are often said to ‘obey the turn-over rul€'. This means
that F can be allowed to operate on the function to itsright or on the function to itsleft if F
is Hermitian.

Hermiticity assures that the eigenvaues {fj} areall red, that eigenfunctions{cj}
having different eigenvalues are orthogona and can be normalized <cjlck>=d; k, and that
eigenfunctions having the same eigenval ues can be made orthonormal (these statements are
proven in Appendix C).

4. Once aparticular vauef; is observed in ameasurement of F, this same value will be

observed in al subsequent measurements of F as long as the system remains undisturbed
by measurements of other properties or by interactions with external fields. In fact, once f;

has been observed, the state of the system becomes an eigenstate of F (if it dready was, it
remains unchanged):

FY =fY.



This means that the measurement process itself may interfere with the state of the system
and even determines what that state will be once the measurement has been made.

Example:

Again consider the v=0 Ny ionization treated in Problem 11 of this chapter. If,
subsequent to ionization, the N2>t ions produced wer e probed to determine their internal
vibrational state, a fraction of the sample equal to [<Y (N2; v=0) | Y (N2*; v=0)>|2 = 0.92
would be detected in the v=0 state of the No* ion. For this sub-sample, the vibrational
wavefunction becomes, and remains from then on,

Y (=Y (N2"; v=0) exp(-i t E*\=0/ h),

where Et\=q isthe energy of the No* ioninitsv=0 state. If, at some later time, this sub-
sampleisagain probed, all specieswill be found to be in the v=0 state.

5. The probability B of observing a particular value fx when F is measured, given that the
system wavefunctionis'Y prior to the measurement, is given by expanding Y in terms of
the complete set of normalized eigenstates of F

Y =S; rfj> <fj|Y>

and then computing Py =|<f k|Y >|2 . For the special casein whichY isalready one of the
eigenstates of F (i.e., Y =f), the probability of observing fj reducesto B =d; k. The set
of numbers C; = <f|Y > are called the expansion coefficients of Y in the basis of the {f j} .
These coefficients, when collected together in all possible products as

;i = Ci* Cj form the so-called density matrix Dj; of the wavefunction Y within the {f}
basis.

Example:

If F isthe operator for momentumin the x-direction and Y (x,t) is the wave

function for x as a function of time t, then the above expansion corresponds to a Fourier
transformof Y



Y (x,t) = 1/2p dexp(ikx) oexp(-ik<) Y (x',t) dx' dk.

Here (1/2p) Y2 exp(ikx) is the normalized eigenfunction of F =-ik{/fx corresponding to
momentum e genval ue hk. These momentum eigenfunctions are orthonormal:

1/2p dexp(-ikx) exp(ik'x) dx = d(k-k'),
and they form a complete set of functionsin x-space
1/2p oexp(-ikx) exp(ikx') dk = d(x-X")
because F isa Hermitian operator. The function 0exp(-ikx') Y (x',t) dx' is called the

momentum-space transform of Y (x,t) and is denoted Y (k,t); it gives, when used as
Y *(kt)Y (k,t), the probability density for observing momentum values bk at timet.

Another Example:
Taketheinitial y to be a superposition state of the form
y =a(2po+ 2p.1-2p1) + b (3po- 3p-1),

where the a and b ar amplitudes that describe the admixture of 2p and 3p functionsin this
wavefunction. Then:

a. If L2 were measured, the value 2h2 would be observed with probability 3 |a|2 + 2 |b|2 =
1, since all of thefunctionsiny are p-type orbitals. After said measurement, the
wavefunction would still be thissamey becausethisentirey isan eigenfunction of L 2.
b. If L, were measured for this

y =a(2po+ 2p-1-2p1) + b (3po - 3p-1),
the values Oh, 1k, and -1h would be observed (because these are the only functions with

non-zero Cn, coefficients for the L, operator) with respective probabilities| a2+ | b2, | -a
P,and| a2+ |-b|2.



c. After L, were measured, if the sub-population for which -1k had been detected were
subjected to measurement of L2 the value 2h2 would certainly be found because the new
wavefunction

y'={- a2p.1-b3p.g} (a2 + [b)12
istill an eigenfunction of L2 with this eigenvalue.

d. Again after L ; were measured, if the sub-population for which -1k
had been observed and for which the wavefunction is now

y'={- a2p.1- b3p.1} (|a]2+ b]2)-1/2

wer e subjected to measurement of the energy (through the Hamiltonian operator), two
values would be found. With probability

| -a|2 (ja]2 + |b|2) 1 the energy of the 2p.1 orbital would be observed; with probability | -b |2
(a2 + |b]2)-1, the energy of the 3p.1 orbital would be observed.

If Y isafunction of severa variables (e.g., whenY describes more than one
particlein acomposite system), and if F isaproperty that depends on a subset of these
variables (e.g., when F is a property of one of the particles in the composite system), then
the expansion Y =S; [f j> <f;|Y > isviewed asrelating only to Y 's dependence on the
subset of variablesrelated to F. In this case, the integrals <f k|Y > are carried out over only
these variables; thus the probabilities Pk =|<f k|Y >|2 depend parametrically on the remaining
variables.

Example:

Suppose that Y (r,q) describestheradial (r) and angular (q) motion of a diatomic
molecule constrained to move on a planar surface. If an experiment were performed to
measur e the component of the rotational angular momentum of the diatomic molecule
perpendicular to the surface (L = -ih 1/91q), only values equal to mh (m=0,1,-1,2,-2,3,-
3,...) could be observed, because these are the eigenvaluesof L ; :

L, fm=-ih 141G f m = mhf m, where

fm = (U2p)Y/2 exp(imq).



The quantization of L ; arises because the eigenfunctionsf j(q) must be periodicin g:
f(a+2p) =1(q).

Such quantization (i.e., constraints on the values that physical properties can realize) will
be seen to occur whenever the pertinent wavefunction is constrained to obey a so-called
boundary condition (in this case, the boundary condition isf (q+2p) = f (q)).

Expanding the g-dependence of Y in terms of thef 1y,

Y =Sm<fmlY>fm(q)

allows one to write the probability that mh is observed if the angular momentum Lz is
measured as follows:

Pm=[<fmlY>P=]d m*(a) Y (r,0) dq |2

If oneisinterested in the probability that mh be observed when L, is measured regardless
of what bond length r isinvolved, then it is appropriate to integrate this expression over the
r-variable about which one does not care. This, in effect, sums contributions fromall r-
values to obtain a result that isindependent of the r variable. As a result, the probability
reducesto:

Pm=o0f*(q") {0Y*(r,q") Y(r,q) rdr}f(q) dg’ da,

which is simply the above result integrated over r with a volume element r dr for the two-
dimensional motion treated here.

If, on the other hand, one were able to measure L, values when r is equal to some specified
bond length (thisis only a hypothetical example; there is no known way to perform such a
measurement), then the probability would equal:

Pmrdr=rdrof m*(q)Y*(r,g)Y (r,q)f m(q)dg' dg = |<f m|Y>]r dr.

6. Two or more properties F,G, Jwhose corresponding Hermitian operatorsF, G, J
commute



FG-GF=FJ-JF=GJ-JG=0

have complete sets of simultaneous eigenfunctions (the proof of thisistreated in
Appendix C). Thismeans that the set of functionsthat are eigenfunctions of one of the
operators can be formed into a set of functions that are aso eigenfunctions of the others:

Ffj=fjfj ==> Gfj=gjf; ==> Jf;=jjf;.

Example:

The px, py and p; orbitals are eigenfunctions of the L 2 angular momentum oper ator
with eigenvalues equal to L(L+1) h2 = 2h2. Snce L2 and L , commute and act on the same
(angle) coordinates, they possess a complete set of simultaneous eigenfunctions.

Although the px, py and p; orbitalsarenot eigenfunctions of L, , they can be
combined to formthree new orbitals: pg = pz,
p1= 2V2[p +ipy], and p.1= 2V2[p, - i py] that are still eigenfunctions of L2 but are
now eigenfunctions of L ; also (with eigenvalues ORh, 1k, and -14, respectively).

It should be mentioned that if two operators do not commute, they may still have
some eigenfunctions in common, but they will not have a complete set of simultaneous
eigenfunctions. For example, the Lz and Ly components of the angular momentum operator
do not commute; however, awavefunction with L=0 (i.e., an S-state) is an eigenfunction
of both operators.

The fact that two operators commute is of great importance. It means that once a
measurement of one of the propertiesis carried out, subsequent measurement of that
property or of any of the other properties corresponding to mutually commuting operators
can be made without altering the system’s value of the properties measured earlier. Only
subsequent measurement of another property whose operator does not commute with F,
G, or J will destroy precise knowledge of the values of the properties measured earlier.

Example:



Assume that an experiment has been carried out on an atomto measure its total
angular momentum L2. According to quantum mechanics, only values equal to L(L+1) h2
will be observed. Further assume, for the particular experimental sample subjected to
observation, that values of L2 equal to 2h2 and 0+ were detected in relative amounts of
64 % and 36 % , respectively. This means that the atom's original wavefunctiony could be
represented as.

y=08P+06S

where P and Srepresent the P-state and S-state components of y . The squares of the
amplitudes 0.8 and 0.6 give the 64 % and 36 % probabilities mentioned above.

Now assume that a subsequent measurement of the component of angular
momentum along the lab-fixed z-axisis to be measured for that sub-population of the
original sample found to bein the P-state. For that population, the wavefunction is now a
pure P-function:

y'=P.

However, at this stage we have no information about how much of thisy ' isof m= 1, 0,

or -1, nor do we know how much 2p, 3p, 4p, ... np components this state contains.
Because the property corresponding to the operator L, is about to be measured, we
expressthe abovey ' in terms of the eigenfunctions of L ,:

y'=P=Sm=10-1C'mPm.

When the measurement of L, is made, the values 1 h, 0 k, and -1 h will be observed with
probabilities given by |C'12, |C'ol2, and |C'-1J2, respectively. For that sub-population found
to have, for example, L, equal to-1H, the wavefunction then becomes

y" = P.1.

At this stage, we do not know how much of 2p_1, 3p-1, 4p-1, ... np-1 this wavefunction
contains. To probe this question another subsequent measurement of the energy

(corresponding to the H operator) could be made. Doing so would allow the amplitudesin
the expansion of the abovey "= P_1



y"=P1=SnC"nnPq

to be found.

The kind of experiment outlined above allows one to find the content of each
particular component of an initial sample's wavefunction. For example, the original
wavefunction has
0.64 |C"nJ2 |C'ml2 fractional content of the various nPyy, functions. It is analogous to the
other examples considered above because all of the operators whose propertiesare
measured commute.

Another Example:

Let us consider an experiment in which we begin with a sample (with wavefunction
y) that isfirst subjected to measurement of L, and then subjected to measurement of L2 and

then of the energy. In this order, one would first find specific values (integer multiples of
h) of Lz and one would expressy as

Y =SmDmym.

At this stage, the nature of each y i, is unknown (e.g., the y 1 function can contain npj,
n'dy, n''f1, etc. components); all that isknownisthaty ,, hasmh asitsL; value.

Taking that sub-population (|Dmf? fraction) with a particular mh value for L, and
subjecting it to subsequent measurement of L2 requires the current wavefunctiony m, to be
expressed as

Ym=SLDL,mYL,m

When L2 is measured the value L(L+1) h2 will be observed with probability |Dm, | [2, and
the wavefunction for that particular sub-population will become

y'=yLm
At this stage, we know the value of L and of m, but we do not know the energy of the

state. For example, we may know that the present sub-population has L=1, m=-1, but we
have no knowledge (yet) of how much 2p.1, 3p-1, ... np-1 the system contains.



To further probe the sample, the above sub-population with L=1 and m=-1 can be
subjected to measurement of the energy. In this case, the functiony 1 -1 must be expressed

as
Y1,-1=SnDn" nP_1.

When the energy measurement is made, the state nP_, will be found |Dp'"'|2 fraction of the
time.

Thefactthat L, , L2, and H al commute with one another (i.e., are mutually
commutative) makes the series of measurements described in the above examples more
straightforward than if these operators did not commute.

In the first experiment, the fact that they are mutually commutative allowed usto
expand the 64 % probable L 2 eigenstate with L=1 in terms of functions that were
eigenfunctions of the operator for which measurement was about to be made without
destroying our knowledge of the value of L2. That is, because L2 and L, can have
simultaneous eigenfunctions, the L = 1 function can be expanded in terms of functions that
are eigenfunctions of both L2 and L ,. Thisin turn, allowed us to find experimentally the
sub-population that had, for example -1 h asits value of L, while retaining knowledge that

the state remainsan eigenstate of L2 (the state at thistime had L = 1 and m = -1 and was
denoted P.1). Then, when this P-1 state was subjected to energy measurement, knowledge
of the energy of the sub-population could be gained without giving up knowledge of the L2
and L, information; upon carrying out said measurement, the state became nP-1.

We therefore conclude that the act of carrying out an experimental measurement
disturbs the system in that it causes the system's wavefunction to become an eigenfunction
of the operator whose property is measured. If two properties whose corresponding
operators commute are measured, the measurement of the second property does not destroy
knowledge of thefirst property's value gained in the first measurement.

On the other hand, as detailed further in Appendix C, if the two properties (F and
G) do not commute, the second measurement destroys knowledge of the first property's
value. After the first measurement, Y isan eigenfunction of F; after the second
measurement, it becomes an eigenfunction of G. If the two non-commuting operators
properties are measured in the opposite order, the wavefunction first is an eigenfunction of
G, and subsequently becomes an eigenfunction of F.

It isthus often said that 'measurements for operators that do not commute interfere
with one another'. The simultaneous measurement of the position and momentum aong the



same axis provides an example of two measurements that are incompatible. The fact that x
=x and px = -ih 1/9Ix do not commute is straightforward to demonstrate:

{XCRTMX) ¢ - (IR Tx )x ¢} =ihct 0.

Operators that commute with the Hamiltonian and with one another form a
particularly important class because each such operator permits each of the energy
eigenstates of the system to be labelled with a corresponding quantum number. These
operators are called symmetry operators. Aswill be seen later, they include angular
momenta (e.g., L2,L,, S2, S, for atoms) and point group symmetries (e.g., planes and
rotations about axes). Every operator that qualifies as a symmetry operator provides a
guantum number with which the energy levels of the system can be labeled.

7. If aproperty F ismeasured for alarge number of systemsall described by the same 'Y,
the average value <F> of F for such a set of measurements can be computed as

<F>= <Y F|Y >.

ExpandingY interms of the complete set of eigenstates of F allows <F> to be rewritten as
follows:

<F>=S;fj [<fjlY >]2,

which clearly expresses <F> as the product of the probability P, of obtaining the particular
value fj when the property F is measured and the value fj.of the property in such a
measurement. This same result can be expressed in terms of the density matrix D j of the
stateY defined above as:

<F>=§;jj <Y [fi> <fi[F[fj> <fjlY > = Sj; Ci* <fi[F[f;>C;

=Sjj Dj,i <filF(fj>=Tr (DF).
Here, DF represents the matrix product of the density matrix D;; and the matrix

representation F; j = <fi|F[f ;> of the F operator, both taken inthe {f;} basis, and Tr
represents the matrix trace operation.



As mentioned at the beginning of this Section, this set of rules and their
relationships to experimental measurements can be quite perplexing. The structure of
guantum mechanics embodied in the above rules was developed in light of new scientific
observations (e.g., the photoel ectric effect, diffraction of electrons) that could not be
interpreted within the conventional pictures of classical mechanics. Throughout its
development, these and other experimental observations placed severe constraints on the
structure of the equations of the new quantum mechanics as well as on their interpretations.
For example, the observation of discrete linesin the emission spectra of atoms gaveriseto
the idea that the atom's electrons could exist with only certain discrete energies and that
light of specific frequencies would be given off as transitions among these quantized
energy states took place.

Even with the assurance that quantum mechanics has firm underpinningsin
experimental observations, students learning this subject for the first time often encounter
difficulty. Therefore, it is useful to again examine some of the model problems for which
the Schrédinger equation can be exactly solved and to learn how the above rules apply to
such concrete examples.

The examples examined earlier in this Chapter and those given in the Exercises and
Problems serve as useful models for chemically important phenomena: electronic motion in
polyenes, in solids, and in atoms as well as vibrational and rotational motions. Their study
thus far has served two purposes; it alowed the reader to gain some familiarity with
applications of quantum mechanics and it introduced modelsthat play centra rolesin much
of chemistry. Their study now is designed to illustrate how the above seven rules of
guantum mechanics relate to experimental redlity.

B. An Example lllustrating Several of the Fundamental Rules

The physica significance of the time independent wavefunctions and energies
treated in Section |1 aswell as the meaning of the seven fundamental points given above
can be further illustrated by again considering the simple two-dimensional electronic motion
model.

If the electron were prepared in the eigenstate corresponding to ny =1, ny =2, its
total energy would be

E=p2hZ2m[ 12/Ly2 + 22/Ly2].



If the energy were experimentally measured, this and only this value would be observed,
and this same result would hold for all time aslong as the electron is undisturbed.

If an experiment were carried out to measure the momentum of the electron along
the y-axis, according to the second postulate above, only values equal to the eigenvalues of
-ihf/ly could be observed. The p, eigenfunctions (i.e., functions that obey py F =
-iRY/y F = cF) are of theform

(ULy)V2 expliky v),

where the momentum hky, can achieve any value; the (1/Ly) V2 factor is used to normalize
the eigenfunctions over therange O£ y £ Ly. It is useful to note that the y-dependence of y
as expressed above [exp(i2py/Ly) -exp(-iZpy/Ly)] is already written in terms of two such
eigenstates of -ih/1ly:

-y exp(iZpy/Ly) = 2h/Ly exp(i2py/Ly) , and
-ihT/Mly exp(-i2py/Ly) = -2h/Ly exp(-i2py/Ly) .

Thus, the expansion of y in terms of eigenstates of the property being measured dictated by
the fifth postul ate above is already accomplished. The only two termsin this expansion
correspond to momenta along the y-axis of 2h/Ly and -2h/Ly ; the probabilities of
observing these two momenta are given by the squares of the expansion coefficientsof y in
terms of the normalized eigenfunctions of -iRf/fly. The functions (1/ Ly)lf 2 exp(i2py/Ly)
and
(VLy) V2 exp(-i2py/ Ly) are such normalized eigenfunctions; the expansion coefficients of
these functionsiny are 21/2 and -2-1/2 | respectively. Thus the momentum 2h/Ly will be
observed with probability (2-1/2)2 = 1/2 and -2h/Ly will be observed with probability (-2-
12)2 = 1/2. If the momentum along the x-axis were experimentally measured, again only
two values 1h/Ly and -1h/Ly would be found, each with a probability of 1/2.

The average value of the momentum along the x-axis can be computed either as the
sum of the probabilities multiplied by the momentum values:

<py> = 1/2 [1/Ly -1h/Ly ] =0,

or as the so-called expectation value integral shown in the seventh postul ate:




<px>= 00y * (-ihfy /9x) dx dy.

Inserting the full expression for y (x,y) and integrating over x and y from0to Ly and Ly,

respectively, thisintegral is seen to vanish. This means that the result of alarge number of
measurements of py on electrons each described by the samey will yield zero net
momentum aong the x-axis.; half of the measurements will yield positive momenta and
half will yield negative momenta of the same magnitude.

The time evolution of the full wavefunction given above for the ny=1, ny=2 state is
easy to express because thisy isan energy eigenstate:

Y (X,y,t) =y (Xy) exp(-iIEtH).
If, on the other hand, the electron had been prepared in astate y (X,y) that is not a pure
eigendtate (i.e., cannot be expressed as a single energy eigenfunction), then the time
evolution is more complicated. For example, if at t=0y were of the form

y = (2/Lx)V2 (2/Ly)V2 [asin(2px/Ly) sin(1py/Ly)

+ b sin(1px/Lyx) sin(2py/Ly) 1,

with aand b both real numbers whose squares give the probabilities of finding the system
in the respective states, then the time evol ution operator exp(-iH t/h) applied toy would
yield the following time dependent function:

Y = (2Lx) V2 (2/Ly)V2 [aexp(-iEp 1 t/) sin(2px/Ly)

sin(1py/Ly) + b exp(-iE1 2 t/h) sin(1px/Lx) sin(2py/Ly) |,

where
Ex1=p2h22m[ 22/L,2 + 12/Ly2], and

E12 = p2h%2m|[ 12/L,2 + 22/Ly2].
The probability of finding Ep 1 if an experiment were carried out to measure energy would

be [aexp(-iEz 1 t/)]2 = [ap; the probability for finding E1 » would be |b|2. The spatial
probability distribution for finding the electron at points x,y will, in this case, be given by:



IY P =1aPly 21P + [bP Y 127 + 2 aby 21y 1,2 cos(DEA),
where DEisEp 1 - Ej 2,

y 2,1 =(2/Lx) V2 (2/Ly) V2 sin(2px/Ly) sSin(1py/Ly),
and

Y 12 =(2/Lx) V2 (2/Ly) V2 sin(1px/Ly) Sin(2py/Ly).

This spatial distribution is not stationary but evolvesin time. So in this case, one hasa
wavefunction that is not a pure elgenstate of the Hamiltonian (onesaysthat Y isa
superposition state or a non-stationary state) whose average energy remains constant
(E=Ez 1 |a? + E1 2 |bP) but whose spatial distribution changes with time.

Although it might seem that most spectroscopic measurements would be designed
to prepare the system in an eigenstate (e.g., by focusing on the sample light whose
frequency matches that of a particular transition), such need not be the case. For example,
if very short laser pulses are employed, the Heisenberg uncertainty broadening (DEDt 3 h)
causes the light impinging on the sample to be very non-monochromatic (e.g., apulse time
of 1 x10-12 sec corresponds to a frequency spread of approximately 5 cml). This, in turn,
removes any possibility of preparing the system in aparticular quantum state with a
resolution of better than 30 cmr1 because the system experiences time oscillating
electromagnetic fields whose frequencies range over at least 5 cmrl).

Essentially all of the model problems that have been introduced in this Chapter to
illustrate the application of quantum mechanics constitute widely used, highly successful
‘starting-point’ models for important chemical phenomena. As such, it isimportant that
students retain working knowl edge of the energy levels, wavefunctions, and symmetries
that pertain to these models.

Thusfar, exactly soluble model problems that represent one or more aspects of an
atom or molecul€e's quantum-state structure have been introduced and solved. For example,
electronic motion in polyenes was modeled by a particle-in-a-box. The harmonic oscillator
and rigid rotor were introduced to model vibrational and rotational motion of a diatomic
molecule.



As chemists, we are used to thinking of electronic, vibrational, rotational, and
trandational energy levels as being (at least approximately) separable. On the other hand,
we are aware that situations exist in which energy can flow from one such degree of
freedom to another (e.g., electronic-to-vibrational energy flow occursin radiationless
relaxation and vibration-rotation couplings are important in molecular spectroscopy). Itis
important to understand how the simplifications that allow us to focus on electronic or
vibrational or rotational motion arise, how they can be obtained from afirst-principles
derivation, and what their limitations and range of accuracy are.



Chapter 2
Approximation Methods Can be Used When Exact Solutions to the Schrédinger Equation
Can Not be Found.

In applying quantum mechanicsto 'real’ chemical problems, oneis usualy faced
with a Schrédinger differential equation for which, to date, no one has found an analytical
solution. Thisisequally true for electronic and nuclear-motion problems. It has therefore
proven essentia to develop and efficiently implement mathematical methods which can
provide approximate solutions to such eigenval ue equations. Two methods are widely used
in this context- the variational method and perturbation theory. These tools, whose use
permeates virtually all areas of theoretical chemistry, are briefly outlined here, and the
details of perturbation theory are amplified in Appendix D.

|. The Variationa Method

For the kind of potentialsthat arise in atomic and molecular structure, the
Hamiltonian H is a Hermitian operator that is bounded from below (i.e., it has alowest
eigenvalue). BecauseitisHermitian, it possesses a complete set of orthonormal
eigenfunctions{yj}. Any functionF that depends on the same spatial and spin variables
on which H operates and obeys the same boundary conditionsthat the{y j} obey can be
expanded in this complete set

F=5 Gyj.

The expectation value of the Hamiltonian for any such function can be expressed in
terms of its G coefficients and the exact energy levels Ej of H asfollows:

<FHIF>=S;jj GiC;j <yilHlyj> = SjIGF §;.

If the function F is normalized, the sum S;j |Gj2 is equal to unity. BecauseH is bounded
from below, all of the Ej must be greater than or equal to the lowest energy Eg. Combining
the latter two observations allows the energy expectation value of F to be used to produce a
very important inequality:

<FHFF>3 Eo.



The equality can hold only if F isequal toy g; if F contains components along any of the
othery, the energy of F will exceed Ep.

This upper-bound property forms the basis of the so-called variational method in
which 'trial wavefunctions F are constructed:

i. Toguaranteethat F obeysall of the boundary conditionsthat the exact y j do and
that F is of the proper spin and space symmetry and is afunction of the same spatial and
spin coordinates asthey j;

ii. With parameters embedded in F whose ‘optimal’ values are to be determined by
making <F |H|F > a minimum.

It is perfectly acceptable to vary any parametersin F to attain the lowest possible
value for <F |H|F > because the proof outlined above constrains this expectation value to be
above the true lowest eigenstate's energy Eg for any F. The philosophy then isthat the F
that gives the lowest <F |H|F > is the best because its expectation valueis closes to the exact
energy.

Quite often atria wavefunction is expanded as alinear combination of other
functions

F=S;CjF.,

In these cases, one saysthat a'linear variational’ calculation is being performed. The set of
functions {F 3} are usually constructed to obey all of the boundary conditions that the exact
stateY obeys, to be functions of the the same coordinatesas'Y , and to be of the same
gpatial and spin symmetry as'Y . Beyond these conditions, the {F 5} are nothing more than
members of a set of functions that are convenient to deal with (e.g., convenient to evaluate
Hamiltonian matrix elements <F ||H|F ;>) and that can, in principle, be made complete if
more and more such functions are included.

For such atrial wavefunction, the energy depends quadratically on the 'linear

variational' Cj coefficients:

<F|H|F>=S;3CCy<F, HIF 5.

Minimization of this energy with the constraint that F remain normalized (KF|F>=1=S);
C|Cj<F|F 5) givesrise to a so-called secular or eigenval ue-eigenvector problem:



Sj[<F|HF »>-E<F||F5>] C3=S3[H13- ESJCy=0.

If the functions {F 3} are orthonormal, then the overlap matrix S reducesto the unit

matrix and the above generalized eigenval ue problem reduces to the more familiar form:
SjH|3C3=EC,.

The secular problem, in either form, has as many eigenvalues E; and eigenvectors
{Cij} asthedimension of the H;ymatrix asF . It can also be shown that between
successive pairs of the eigenvalues obtained by solving the secular problem at least one
exact eigenvalue must occur (i.e., Ej+1 > Eexact > Ej, for al i). Thisobservationis
referred to as 'the bracketing theorem'.

Variationa methods, in particular the linear variational method, are the most widely
used approximation techniques in quantum chemistry. To implement such amethod one
needs to know the Hamiltonian H whose energy levels are sought and one needs to
construct atrial wavefunction in which some ‘'flexibility’ exists (e.g., asin the linear
variational method where the C; coefficients can be varied). In Section 6 thistool will be
used to develop several of the most commonly used and powerful molecular orbital
methods in chemistry.

I1. Perturbation Theory
[Suggested Extra Reading- Appendix D; Time Independent Perturbation Theory]

Perturbation theory is the second most widely used approximation method in
guantum chemistry. It allows one to estimate the splittings and shiftsin energy levels and
changes in wavefunctions that occur when an external field (e.g., an electric or magnetic
field or afield that is due to a surrounding set of 'ligands- a crystal field) or afield arising
when a previously-ignored term in the Hamiltonian is applied to a species whose
‘unperturbed' states are known. These 'perturbations’ in energies and wavefunctions are
expressed in terms of the (complete) set of unperturbed eigenstates.

Assuming that all of the wavefunctions F i and energies Ex° belonging to the
unperturbed Hamiltonian HO are known

HOF = EOFk,



and given that one wishes to find eigenstates (y k and Ex) of the perturbed Hamiltonian
H=HO+l V,

perturbation theory expressesy i and Ex as power seriesin the perturbation strength | :

¥

yk=a Inygm
n=0
¥

Ec=a | nEM.
n=0

The systematic development of the equations needed to determine the Ex(N and they k(M is
presented in Appendix D. Here, we simply quote the few lowest-order results.

The zeroth-order wavefunctions and energies are given in terms of the solutions of
the unperturbed problem asfollows:

y k(o) =Fg and Ek(o) = EkO_

This smply means that one must be willing to identify one of the unperturbed states asthe
'best’ approximation to the state being sought. This, of course, impliesthat one must
therefore strive to find an unperturbed model problem, characterized by HO that represents
the true system as accurately as possible, so that one of the F  will be as close as possible
toyk.

Thefirst-order energy correction is given in terms of the zeroth-order (i.e.,
unperturbed) wavefunction as:

EcD =<FylV |Fi>,
which isidentified as the average va ue of the perturbation taken with respect to the
unperturbed function F k. The so-calledfirst-order wavefunction y (1) expressed in terms
of the complete set of unperturbed functions{F 3} is:

y k@ = é <Fj|V | F>l[EO-EOQ] |Fj> .
jik



The second-order energy correction is expressed as follows:

E@= QI<Fj| V | FieRIL BO - EO]
jk

and the second-order correction to the wavefunction is expressed as
yk(z) = Sjl k| Eko - E]'O]'l S|1 k{<Fj| V|F> 'dj,l Ek(l)}
<FIIV|F>[EL-EOILIFj>.

An essential point about perturbation theory is that the energy corrections Ex (" and
wavefunction correctionsy k() are expressed in terms of integrals over the unperturbed
wavefunctionsF  involving the perturbation (i.e., <F;[V|F|>) and the unperturbed
energies Ej0. Perturbation theory is most useful when one has, in hand, the solutions to an
unperturbed Schrédinger equation that is reasonably 'close' to the full Schrédinger
equation whose solutions are being sought. In such acase, it islikely that low-order
corrections will be adequate to describe the energies and wavefunctions of the full problem.

It isimportant to stress that although the solutions to the full "perturbed’
Schrédinger equation are expressed, as above, in terms of sums over al states of the
unperturbed Schrodinger equation, it isimproper to speak of the perturbation as creating
excited-state species. For example, the polarization of the 1s orbital of the Hydrogen atom
caused by the application of a static external electric field of strength E along the z-axisis
described, in first-order perturbation theory, through the sum

Sn:2’¥ f npO <f npo | Eer CcoYg | 1s> [ E].S - Enpo ]_1

over all pz = po orbitaslabeled by principal quantum number n. The coefficient multiplying

each pp orbital depends on the energy gap corresponding to the 1s-to-np 'excitation’ as well
asthe eectric dipoleintegral <f npg | E ercosq | 1s> between the 1s orbital and the npg

orbital.

This sum describes the polarization of the 1s orbital in terms of functions that have
po symmetry; by combining an s orbital and pg orbitals, one can form a'hybrid-like' orbital
that is nothing but a distorted 1s orbital. The appearance of the excited npg orbitals has



nothing to do with forming excited states; these npg orbitals simply provide a set of

functions that can describe the response of the 1s orbital to the applied electric field.

The relative strengths and weaknesses of perturbation theory and the variational
method, as applied to studies of the electronic structure of atoms and molecules, are
discussed in Section 6.



Chapter 3

The Application of the Schrédinger Equation to the Motions of Electrons and Nuclei in a
Molecule Lead to the Chemists' Picture of Electronic Energy Surfaces on Which Vibration
and Rotation Occurs and Among Which Transitions Take Place.

|. The Born-Oppenheimer Separation of Electronic and Nuclear Motions

Many elements of chemists pictures of molecular structure hinge on the point of
view that separates the electronic motions from the vibrational/rotational motions and treats
couplings between these (approximately) separated motions as 'perturbations. It is
essential to understand the origins and limitations of this separated-motions picture.

To develop aframework in terms of which to understand when such separability is
valid, one thinks of an atom or molecule as consisting of a collection of N electrons and M
nuclei each of which possesses kinetic energy and among which coulombic potential
energies of interaction arise. To properly describe the motions of all these particles, one
needs to consider the full Schrodinger equation HY = EY , in which the Hamiltonian H
contains the sum (denoted Hg) of the kinetic energies of all N electrons and the coulomb
potentia energies among the N electrons and the M nuclei aswell asthe kinetic energy T of
the M nucle

T=Sa1m (-h2/2mg) N2,

H=He+T

He=Sj{ (- h%2me) Nj2- SaZ£2/ja} + Sj<k €21k
+ Sa<b ZaZp €Ryp.

Here, maisthe mass of the nucleus a, Zg2 isits charge, and N£ isthe Laplacian with
respect to the three cartesian coordinates of this nucleus (this operator N2 isgivenin
spherica polar coordinatesin Appendix A); 1j a isthe distance between the jth electron and
the &N nucleus, rj i is the distance between the jth and kih electrons, me is the electron’s
mass, and R, is the distance from nucleus ato nucleus b.

The full Hamiltonian H thus contains differential operators over the 3N electronic

coordinates (denoted r as a shorthand) and the 3M nuclear coordinates (denoted R as a
shorthand). In contrast, the electronic Hamiltonian He isaHermitian differential operator in



r-space but not in R-space. Although He isindeed afunction of the R-variables, it isnot a
differentia operator involving them.
Because He isaHermitian operator in r-space, its eigenfunctions Y i (r|R) obey
HeYi (rIR) =E (R) Yi (rR)

for any values of the R-variables, and form a complete set of functions of r for any values
of R. These eigenfunctions and their eigenvalues E;j (R) depend on R only because the
potentials appearing in He depend on R. The Y and E are the €l ectronic wavefunctions

and electronic energies whose evaluations are treated in the next three Chapters.

Thefact that the set of {Y i} is, in principle, complete in r-space allows the full
(electronic and nuclear) wavefunction Y to have its r-dependence expanded in terms of the
Yi.

Y (R =Si Y (rR) X (R) .

The X;(R) functions, carry the remaining R-dependence of Y and are determined by
insstingthat Y as expressed here obey the full Schrédinger equation:

(HetT-E)Si Y (rR) Xi (R) =0.

Projecting this equation against <Y j (r|R)| (integrating only over the electronic coordinates
becausethe Y j are orthonormal only when so integrated) gives:

[ER-BX (R +TX(R)]=-Si{<Yj|T[Yi>(R)Xi(R)
+ Sa=1m (- R2/my) <Y INalYi>R) - NaXi(R) },

wherethe (R) notationin<Y; | T|Y; > (R) and <Y |Na| Y >(R) has been used to
remind one that the integrals < ...> are carried out only over the r coordinates and, asa
result, still depend on the R coordinates.

IntheBorn-Oppenheimer (BO) approximation, one neglects the so-called non-
adiabatic or non-BO couplings on the right-hand side of the above equation. Doing so
yields the following equations for the Xj(R) functions:

[(B(R)-E)X°(R)+ T X;%R)] =0,



where the superscript in XjO(R) is used to indicate that these functions are solutions within
the BO approximation only.

These BO equations can be recognized as the equations for the trand ational
rotational, and vibrational motion of the nuclei on the 'potential energy surface' Ej (R).
That is, within the BO picture, the electronic energies Ej(R), considered as functions of the

nuclear positions R, provide the potentials on which the nuclei move. The el ectronic and
nuclear-motion aspects of the Schrodinger equation are thereby separated.

A. Time Scale Separation

The physical parametersthat determine under what circumstances the BO
approximation is accurate relate to the motional time scales of the electronic and
vibrational/rotational coordinates.

The range of accuracy of this separation can be understood by considering the
differencesin time scales that relate to electronic motions and nuclear motions under
ordinary circumstances. In most atoms and molecules, the electrons orbit the nuclel at
speeds much in excess of even the fastest nuclear motions (the vibrations). As aresult, the
electrons can adjust ‘quickly’ to the slow motions of the nuclei. Thismeansit should be
possible to develop amodel in which the electrons 'follow' smoothly as the nuclei vibrate
and rotate.

This pictureisthat described by the BO approximation. Of course, one should
expect large corrections to such amodel for electronic states in which 'loosely held'
electrons exist. For example, in molecular Rydberg states and in anions, where the outer
valence electrons are bound by afraction of an electron volt, the natural orbit frequencies of
these electrons are not much faster (if at all) than vibrational frequencies. In such cases,
significant breakdown of the BO picture isto be expected.

B. Vibration/Rotation States for Each Electronic Surface

The BO picture iswhat givesrise to the concept of a manifold of potential energy
surfaces on which vibrational/rotational motions occur.

Even within the BO approximation, motion of the nuclel on the various electronic
energy surfacesis different because the nature of the chemical bonding differs from surface
to surface. That is, the vibrational/rotational motion on the ground-state surfaceis certainly



not the same as on one of the excited-state surfaces. However, there are a complete set of
wavefunctions X9 m (R) and energy levels EQ i, for each surface Ej(R) because T + Ej(R)
isaHermitian operator in R-space for each surface (labelled j):

[T+E(R]X%m(R)=E%m XOGm.

The eigenvalues EGj m must be labelled by the electronic surface (j) on which the motion
occurs as well asto denote the particular state (m) on that surface.

Il. Rotation and Vibration of Diatomic Molecules

For a diatomic species, the vibration-rotation (V/R) kinetic energy operator can be
expressed as followsin terms of the bond length R and the anglesq and f that describe the

orientation of the bond axis relative to alaboratory-fixed coordinate system:
Tv/R = - R22m{ R2MR(R2 JMR) - R2h2L.2},

where the square of the rotational angular momentum of the diatomic speciesis
L2=h2{ (sing)1 1Mq ((sina) 1/a ) + (sina)-2 12/ 2} .

Because the potential Ej (R) depends on R but not onq or f, the V/R function X9 m can be

written as a product of an angular part and an R-dependent part; moreover, because L2
contains the full angle-dependence of Ty/r, Xoj,n can be written as

X% n=Yam (a.f) Fjav (R).

The general subscript n, which had represented the state in the full set of 3M-3 R-space
coordinates, is replaced by the three quantum numbers J,M, and v (i.e., once one focuses
on the three specific coordinates R,q, and f , atotal of three quantum numbers arisein

place of the symbol n).
Substituting this product form for X9; , into the V/R equation gives:

- B22m{ R2 MR R2 1MR) - R2h2J(3+1) } Fj 5y (R)



+ Ej(R) l:j,J,v (R) = on INAY; l:j,J,v

asthe equation for the vibrational (i.e., R-dependent) wavefunction within electronic state |
and with the species rotating with J(J+1) h2 as the square of the total angular momentum
and a projection along the laboratory-fixed Z-axis of Mh. The fact that the Fj 5 functions
do not depend on the M quantum number derives from the fact that the Ty/r kinetic energy
operator does not explicitly contain Jz; only 2 appearsin Ty/r.

The solutions for which J=0 correspond to vibrational statesin which the species
has no rotational energy; they obey

- R2/2m{ R2MR(R211R) } Fjov (R)
+Ej(R) Fjov (R) = Eoj,O,v Fov-

The differential-operator parts of this equation can be smplified somewhat by substituting
F= R-1c and thus obtaining the following equation for the new function c:
- h2/2m ﬂ/ﬂR ﬂ/ﬂR Cj,O,V (R) + EJ (R) Cj,O,V (R) = EOj,O,V Cj,O,V .

Solutions for which J* 0 require the vibrational wavefunction and energy to respond to the
presence of the 'centrifugal potential' given by b2 J(J+1)/(2nR?); these solutions obey the
full coupled V/R equations given above.

A. Separation of Vibration and Rotation

It is common, in developing the working equations of diatomic-molecule
rotational/vibrational spectroscopy, to treat the coupling between the two degrees of
freedom using perturbation theory as developed later in this chapter. In particular, one can
expand the centrifugal coupling h2J(3+1)/(2nmR2) around the equilibrium geometry Re
(which depends, of course, onj):

R2J(H1)/(2nR2) = h2Y(H+1)/(2n{R2 (1+DR)?))
= h2 JH1)/2nRA [1-2DR + ... ],

and treat the terms containing powers of the bond length displacement DRK as
perturbations. The zeroth-order equations read:



- 22m{ R2TMR(R21MR) } F9,3v (R) + E(R) Fav (R)
+h2 J(IH1)/(2nRA) FY 3v =EY v FY av

and have solutions whose energies separate
on Jv= h2 J(J+1)/(2nR) + Ejv

and whose wavefunctions are independent of J (because the coupling is not R-dependent in
zeroth order)

F90v (R) =Fjv (R).

Perturbation theory is then used to express the corrections to these zeroth order solutions as
indicated in Appendix D.

B. The Rigid Rotor and Harmonic Oscillator

Treatment of the rotational motion at the zeroth-order level described above
introduces the so-called 'rigid rotor' energy levels and wavefunctions. Ej = k2
J(FH1)/(2nRA) and Yy (q,f); these same quantities arise when the diatomic moleculeis
treated as arigid rod of length Re. The spacings between successive rotational levels within
this approximation are

DEj+1,0 = 2hcB(J+1),

where the so-called rotational constant B isgivenincmlas
B = h/(8p2 cnRe?) .

Therotationa level Jis (231)-fold degenerate because the energy E;j isindependent of the
M guantum number of which there are (2J+1) valuesfor each J. M= -J, -J+1, -JH+2, ... J-2,
J1,J

The explicit form of the zeroth-order vibrational wavefunctions and energy levels,
FO;,v and EY; v, depends on the description used for the electronic potential energy surface



Ej(R). In the crudest useful approximation, E;j(R) is taken to be a so-called harmonic
potential

E(R) » U2kj (R-R9?;
as a consequence, the wavefunctions and energy levels reduce to
EY v = Ej (R +h O/m( v +1/2), and
FOv (R) =[2V V! ]-Y2 (a/p)V4 exp(-a(R-R9?/2) Hy (22 (R-Ry)),

wherea = (K; mY2/h and Hy (y) denotes the Hermite polynomial defined by:
Hy (y) = (-1)V exp(y?) dv/dy exp(-y?).

The solution of the vibrational differential equation
- R22m{ R2IMR(R21MR) } Fjv (R) + Ei(R) Fjv (R)=Ejy Fjv

istreated in EWK, Atkins, and McQuarrie.

These harmonic-oscillator solutions predict evenly spaced energy levels (i.e., no
anharmonicity) that persist for al v. It is, of course, known that molecular vibrations
display anharmonicity (i.e., the energy levels move closer together as one moves to higher
v) and that quantized vibrational motion ceases once the bond dissociation energy is
reached.

C. The Morse Oscillator

The Morse oscillator model is often used to go beyond the harmonic oscillator
approximation. In this model, the potential Ej(R) is expressed in terms of the bond
dissociation energy De and a parameter arelated to the second derivative k of Ej(R) at Re
k = ( d2Ej/dR2) = 2a2De as follows:

Ei(R) - Ej(R)) = De{ 1- exp(-a(R-Re)) }2.

The Morse oscillator energy levels are given by



EQy = Ej(Re) + h Ckim(v+1/2) - h2/4 (KinDg) (v+1/2)2;

the corresponding eigenfunctions are a so known analytically in terms of hypergeometric
functions (see, for example, Handbook of Mathematical Functions, M. Abramowitz and 1.
A. Stegun, Dover, Inc. New York, N. Y. (1964)). Clearly, the Morse solutions display
anharmonicity as reflected in the negative term proportional to (v+1/2)2 .

D. Perturbative Treatment of Vibration-Rotation Coupling
I11. Rotation of Polyatomic Molecules

To describe the orientations of a diatomic or linear polyatomic molecule requires
only two angles (usually termed q andf ). For any non-linear molecule, three angles
(usually a, b, and g) are needed. Hence the rotational Schrodinger equation for a non-
linear moleculeis a differential equation in three-dimensions.

There are 3M-6 vibrations of anon-linear molecule containing M atoms; alinear
molecule has 3M-5 vibrations. The linear molecule requires two angular coordinates to
describe its orientation with respect to a laboratory-fixed axis system; a non-linear molecule
requires three angles.

A. Linear Molecules

The rotational motion of alinear polyatomic molecule can be treated as an extension
of the diatomic molecule case. One obtainsthe Y v (q.,f) as rotational wavefunctions and,
within the approximation in which the centrifugal potential is approximated at the
equilibrium geometry of the molecule (Re), the energy levels are:

E0; = J(J+1) h2/(2!) .

Here the total moment of inertial of the molecule takes the place of nR¢? in the diatomic
molecule case

| = Sama (Ra- RCofM)Z;



Mg is the mass of atom a whose distance from the center of mass of the moleculeis (Rj-
Rcofm). Therotational level with quantum number Jis (231)-fold degenerate again
because there are (23+1)

M- values.

B. Non-Linear Molecules

For anon-linear polyatomic molecule, again with the centrifugal couplingsto the
vibrations evaluated at the equilibrium geometry, the following terms form the rotational
part of the nuclear-motion kinetic energy:

Trot = Si=ab,c (Ji2/2|i)-
Here, | isthe eigenvalue of the moment of inertia tensor:

lxx = Sama[ (ReRcofm)? -(Xa - Xcofm )4

Ixy = Samal[ (Xa- XcofM) (Ya-Ycoim) |
expressed originally in terms of the cartesian coordinates of the nuclel () and of the center
of massin an arbitrary molecule-fixed coordinate system (and similarly for Iz, lyy , Ixz
and ly 7). The operator J corresponds to the component of the total rotational angular
momentum J aong the direction belonging to the ith eigenvector of the moment of inertia

tensor.
Moleculesfor which all three principal moments of inertia (the l;'s) are equal are

called 'spherical tops. For these species, the rotational Hamiltonian can be expressed in
terms of the square of the total rotational angular momentum J :

Trot = J2 /2l )
as a conseguence of which the rotational energies once again become

Ej=h2 J(J+1)/2l.



However, the Y 3 are not the corresponding eigenfunctions because the operator J now
contains contributions from rotations about three (no longer two) axes (i.e., the three
principal axes). The proper rotational eigenfunctions arethe Dy k (a,b,g) functions
known as 'rotation matrices (see Sections 3.5 and 3.6 of Zare's book on angular
momentum) these functions depend on three angles (the three Euler angles needed to
describe the orientation of the molecule in space) and three quantum numbers- J M, and K.
The quantum number M |abels the projection of the total angular momentum (as Mh) along
the laboratory-fixed z-axis; Kh is the projection along one of the internal principa axes (in
a spherical top molecule, al three axes are equivaent, so it does not matter which axisis
chosen).

The energy levels of spherical top molecules are (23+1)2 -fold degenerate. Both the
M and K quantum numbers run from -J, in steps of unity, to J; because the energy is
independent of M and of K, the degeneracy is (23+1)2.

Molecules for which two of the three principal moments of inertiaare equal are
called symmetric top molecules. Prolate symmetric tops have I13< I = I ¢ ; oblate symmetric
tops have I3 = Ip < I¢ (itisconvention to order the momentsof inertiaaslg£ Ip £ I¢).

The rotational Hamiltonian can now be written in terms of 2 and the component of J
along the unigue moment of inertia's axis as:

Trot = Jaz ( 1/2|a' 1/2|b ) + J2 /2|b
for prolate tops, and
Trot = JCZ ( 1/2'0 - 1/2|b) + J2/2|b

for oblate tops. Again, the Dy k (a,b,g) are the eigenfunctions, where the quantum
number K describes the component of the rotational angular momentum J along the unique
molecule-fixed axis (i.e., the axis of the unique moment of inertia). The energy levelsare
now given in terms of Jand K asfollows:

Ejk =h2J(IH1)/2lp +h2 K2 (1/25- 1/2lp)
for prolate tops, and

Ejk =h2)(3+1)/2lp +h2K2 (12l - 1/2lp)
for oblate tops.



Because the rotational energies now depend on K (aswell ason J), the
degeneracies are lower than for spherical tops. In particular, because the energies do not
depend on M and depend on the square of K, the degeneracies are (23+1) for states with
K=0and 2(2J+1) for states with |K| > O; the extrafactor of 2 arisesfor |K| > 0 states
because pairs of stateswith K = |[K| and K = |-K| are degenerate.

V. Summary

This Chapter has shown how the solution of the Schrédinger equation governing
the motions and interparticle potential energies of the nuclei and electrons of an atom or
molecule (or ion) can be decomposed into two distinct problems: (i) solution of the
electronic Schrédinger equation for the electronic wavefunctions and energies, both of
which depend on the nuclear geometry and (i) solution of the vibration/rotation
Schrédinger equation for the motion of the nuclel on any one of the electronic energy
surfaces. This decomposition into approximately separable electronic and nuclear-
motion problems remains an important point of view in chemistry. It formsthe basis of
many of our models of molecular structure and our interpretation of molecular
spectroscopy. It also establishes how we approach the computational simulation of the
energy levels of atoms and molecules; we first compute electronic energy levelsat a'grid'
of different positions of the nuclei, and we then solve for the motion of the nuclei on a
particular energy surface using this grid of data.

The treatment of electronic motion istreated in detail in Sections 2, 3, and 6
where molecular orbitals and configurations and their computer evaluation is covered. The
vibration/rotation motion of molecules on BO surfaces isintroduced above, but should be
treated in more detail in a subsequent course in molecular spectroscopy .

Section SUmmary

This Introductory Section was intended to provide the reader with an overview of
the structure of quantum mechanics and to illustrate its application to severa exactly
solvable model problems. The model problems analyzed play especialy important rolesin
chemistry because they form the basis upon which more sophisticated descriptions of the
electronic structure and rotational-vibrational motions of molecules are built. The variational
method and perturbation theory constitute the tools needed to make use of solutions of



simpler model problems as starting points in the treatment of Schrédinger equations that are
impossible to solve analyticaly.

In Sections 2, 3, and 6 of thistext, the electronic structures of polyatomic
molecules, linear molecules, and atoms are examined in some detail. Symmetry, angular
momentum methods, wavefunction antisymmetry, and other tools are introduced as needed
throughout the text. The application of modern computational chemistry methods to the
treatment of molecular eectronic structure isincluded. Given knowledge of the electronic
energy surfaces as functions of the internal geometrical coordinates of the molecule, it is
possible to treat vibrational-rotational motion on these surfaces. Exercises, problems, and
solutions are provided for each Chapter. Readers are strongly encouraged to work these
exercises and problems because new material that is used in other Chaptersis often
developed within this context.



Section 2 Simple Molecular Orbital Theory

In this section, the conceptual framework of molecular orbital theory is devel oped.
Applications are presented and problems are given and solved within qualitative and semi-
empirical models of electronic structure. Ab Initio approaches to these same matters, whose
solutions require the use of digital computers, are treated later in Section 6. Semi-
empirical methods, most of which aso require access to a computer, are treated in this
section and in Appendix F.

Unlike most texts on molecular orbital theory and quantum mechanics, thistext
treats polyatomic molecules before linear mol ecules before atoms. The finite point-group
symmetry (Appendix E provides an introduction to the use of point group symmetry) that
characterizes the orbitals and el ectronic states of non-linear polyatomicsis more
straightforward to deal with because fewer degeneracies arise. In turn, linear molecules,
which belong to an axial rotation group, possess fewer degeneracies (e.g., p orbitals or
states are no more degenerate than d, f, or gorbitals or states; al are doubly degenerate)

than atomic orbitals and states (e.g., p orbitals or states are 3-fold degenerate, d's are 5-
fold, etc.). Increased orbital degeneracy, in turn, givesrise to more states that can arise
from agiven orbital occupancy (e.g., the 2p2 configuration of the C atom yields fifteen
states, the p2 configuration of the NH molecule yields six, and the pp* configuration of
ethylene gives four states). For these reasons, it is more straightforward to treat low-
symmetry cases (i.e., non-linear polyatomic molecules) first and atoms | ast.

It is recommended that the reader become familiar with the point-group symmetry
tools developed in Appendix E before proceeding with this section. In particular, it is
important to know how to label atomic orbitals as well as the various hybrids that can be
formed from them according to the irreducible representations of the molecul€e's point
group and how to construct symmetry adapted combinations of atomic, hybrid, and
molecular orbitals using projection operator methods. If additional material on group theory
is needed, Cotton's book on this subject is very good and provides many excellent
chemical applications.

Chapter 4
Valence Atomic Orbitals on Neighboring Atoms Combine to Form Bonding, Non-Bonding
and Antibonding Molecular Orbitals

|. Atomic Orbitals



In Section 1 the Schrédinger equation for the motion of asingle electron moving
about a nucleus of charge Z was explicitly solved. The energies of these orbitals relative to
an electron infinitely far from the nucleus with zero kinetic energy were found to depend
strongly on Z and on the principa quantum number n, as were the radial "sizes' of these
hydrogenic orbitals. Closed analytical expressionsfor ther,q, and f dependence of these
orbitals are given in Appendix B. The reader is advised to also review this materia before
undertaking study of this section.

A. Shapes

Shapes of atomic orbitals play central roles in governing the types of directional
bonds an atom can form.

All atoms have sets of bound and continuum s,p,d,f,g, etc. orbitals. Some of these
orbitals may be unoccupied in the atom's low energy states, but they are till present and
able to accept electron density if some physical process (e.g., photon absorption, electron
attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen
atom has 1s, 2s, 2p, 3s, 3p, 3d, etc. orbitals. Its negative ion H- has states that involve
1s2s, 2p?, 3s2, 3p>2, etc. orbital occupancy. Moreover, when an H atom is placed in an
externa electronic field, its charge density polarizes in the direction of thefield. This
polarization can be described in terms of the orbitals of the isolated atom being combined to
yield distorted orbitals (e.g., the 1sand 2p orbitals can "mix" or combineto yield sp hybrid
orbitals, one directed toward increasing field and the other directed in the opposite
direction). Thusin many situationsit isimportant to keep in mind that each atom has afulll
set of orbitals available to it even if some of these orbitals are not occupied in the lowest-
energy state of the atom.

B. Directions

Atomic orhital directions also determine what directional bonds an atomwill form.

Each set of p orbitals has three distinct directions or three different angular
momentum m-quantum numbers as discussed in Appendix G. Each set of d orbitals has
five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they
are sphericaly symmetric, and have only m = 0. Note that the degeneracy of an orbital
(21+1), which isthe number of distinct spatial orientations or the number of m-values,



grows with the angular momentum quantum number | of the orbital without bound.

It is because of the energy degeneracy within a set of orbitals, that these distinct
directional orbitals (e.g., X, y, z for p orbitals) may be combined to give new orbitals
which no longer possess specific spatia directions but which have specified angular
momentum characteristics. The act of combining these degenerate orbitals does not change
their energies. For example, the 2-Y/2(py +ipy) and
2-12(p, -ipy) combinations no longer point along the x and y axes, but instead correspond

to specific angular momenta (+1h and -1h) about the z axis. The fact that they are angular
momentum eigenfunctions can be seen by noting that the x and y orbitals contain f
dependences of cos(f ) and sin(f ), respectively. Thus the above combinations contain
exp(if ) and exp(-if ), respectively. The sizes, shapes, and directionsof afew s, p, and d
orbitals are illustrated below (the light and dark areas represent positive and negative
values, respectively).

1s

p orbitals d orbitals

C. Sizesand Energies

Orbital energies and sizes go hand-in-hand; small 'tight' orbitals have large electron
binding energies (i.e., low energiesrelative to a detached electron). For orbitals on



neighboring atoms to have large (and hence favorable to bond formation) overlap, the two
orbitals should be of comparable size and hence of smilar eectron binding energy.

The size (e.g., average value or expectation value of the distance from the atomic
nucleusto the electron) of an atomic orbital is determined primarily by its principal quantum
number n and by the strength of the potential attracting an electron in this orbital to the
atomic center (which has some I-dependence too). The energy (with negative energies
corresponding to bound states in which the electron is attached to the atom with positive
binding energy and positive energies corresponding to unbound scattering states) is aso
determined by n and by the el ectrostatic potential produced by the nucleus and by the other
electrons. Each atom has an infinite set of orbitals of each | quantum number ranging from
those with low energy and small size to those with higher energy and larger size.

Atomic orbitals are solutions to an orbital-level Schrédinger equation in which an
electron movesin a potential energy field provided by the nucleus and all the other
electrons. Such one-electron Schrodinger equations are discussed, as they pertain to
qualitative and semi-empirical models of electronic structure in Appendix F. The spherical
symmetry of the one-electron potential appropriate to atoms and atomic ions iswhat makes
sets of the atomic orbitals degenerate. Such degeneracies arise in molecules too, but the
extent of degeneracy islower because the molecul€e's nuclear coulomb and el ectrostatic
potential energy has lower symmetry than in the atomic case. Aswill be seen, itisthe
symmetry of the potential experienced by an electron moving in the orbital that determines
the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the
potential and kinetic energies are not changed if one applies such an operator R to the
coordinates and momenta of all the electrons in the system. Because symmetry operations
involve reflections through planes, rotations about axes, or inversions through points, the
application of such an operation to a product such asHYy givesthe product of the operation
applied to each term in the original product. Hence, one can write:

R(Hy)=(RH) (Ry).

Now using the fact that H isinvariant to R, which meansthat (RH) = H, thisresult
reduces to:

R(HY)=H (Ry),



which saysthat R commutes with H:

[R,H] = 0.

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions
that are eigenstates of H can be labeled by the symmetry of the point group of the molecule
(i.e., those operators that leaveH invariant). It isfor this reason that one

constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.

[1. Molecular Orhitals

Molecular orbitals (mos) are formed by combining atomic orbitals (aos) of the
constituent atoms. This is one of the most important and widely used ideas in quantum
chemistry. Much of chemists' understanding of chemical bonding, structure, and reactivity
is founded on this point of view.

When aos are combined to form mos, core, bonding, nonbonding, antibonding,
and Rydberg molecular orbitals can result. Themosf i are usually expressed in terms of
the congtituent atomic orbitals ¢ 5 in the linear-combination-of-atomic-orbital-molecul ar-

orbital (LCAO-MO) manner:
f| = SaCiaCa.

The orbitals on one atom are orthogonal to one another because they are eigenfunctions of a
hermitian operator (the atomic one-electron Hamiltonian) having different eigenvalues.
However, those on one atom are not orthogonal to those on another atom because they are
eigenfunctions of different operators (the one-electron Hamiltonia of the different atoms).
Therefore, in practice, the primitive atomic orbitals must be orthogonalized to preserve
maximum identity of each primitive orbital in the resultant orthonormalized orbitals before
they can be used in the LCAO-MO process. Thisis both computationally expedient and
conceptually useful. Throughout this book, the atomic orbitals (aos) will be assumed to
consist of such orthonormalized primitive orbitals once the nuclei are brought into regions
where the "bare" aos interact.

Sets of orbitals that are not orthonormal can be combined to form new orthonormal
functionsin many ways. One technique that is especially attractive when the original
functions are orthonormal in the absence of "interactions' (e.g., at large interatomic



distancesin the case of atomic basis orbitals) is the so-called symmetric orthonormalization
(SO) method. In this method, one first forms the so-called overlap matrix

Sm = <Cnlch>

for al functions cmto be orthonormalized. In the atomic-orbital case, these functions
include those on the first atom, those on the second, etc.

Since the orbitals belonging to the individual atoms are themselves orthonormal, the
overlap matrix will contain, along its diagonal, blocks of unit matrices, one for each set of
individual atomic orbitals. For example, when a carbon and oxygen atom, with their core
1s and valence 2s and 2p orbitals are combined to form CO, the 10x10 Syyn matrix will
have two 5x5 unit matrices along its diagonal (representing the overlaps among the carbon
and among the oxygen atomic orbitals) and a 5x5 block in its upper right and lower left
quadrants. The latter block represents the overlaps <cC {c On> among carbon and oxygen
atomic orbitals.

After forming the overlap matrix, the new orthonormal functionsc' yare defined as
follows:

C'm=Sn(SY)men.

As shown in Appendix A, the matrix S-Y2 isformed by finding the eigenvalues{l i} and
eigenvectors{Vin} of the Smatrix and then constructing:

(SY2)ym = Si VimVin (1 i)V2.

The new functions{c'n} have the characteristic that they evolve into the original functions
asthe "coupling", as represented in the Syn matrix's off-diagonal blocks, disappears.
Valence orbitals on neighboring atoms are coupled by changes in the electrostatic
potential due to the other atoms (coulomb attraction to the other nuclel and repulsions from
electrons on the other atoms). These coupling potentials vanish when the atoms are far
apart and become significant only when the valence orbitals overlap one another. In the
most qualitative picture, such interactions are described in terms of off-diagonal
Hamiltonian matrix elements (hay; see below and in Appendix F) between pairs of atomic
orbitals which interact (the diagonal elements ha; represent the energies of the various
orbitals and are related via Koopmans' theorem (see Section 6, Chapter 18.VII.B) to the
ionization energy of the orbital). Such amatrix embodiment of the molecular orbital



problem arises, as developed below and in Appendix F, by using the above LCAO-MO
expansion in avariationa treatment of the one-electron Schrédinger equation appropriate to
themos{fi}.

In the ssimplest two-center, two-valence-orbital case (which could relate, for
example, to the Li> moleculestwo 2s orbitals), this givesrise to a 2x2 matrix eigenvalue
problem (hy1,h12,h22) with alow-energy mo (E=(hi1+hy2)/2-1/2[(hy1-hpo)2 +4h215]1/2)
and a higher energy mo (E=(hq1+h2)/2+1/2[(h11-h2o)2 +4h212]Y2) corresponding to
bonding and antibonding orbitals (because their energies lie below and above the lowest
and highest interacting atomic orbital energies, respectively). The mosthemselves are
expressedf j = S Cjz cawherethe LCAO-MO coefficients Cja are obtained from the
normalized eigenvectors of the hgp matrix. Note that the bonding-antibonding orbital energy
splitting depends on hgy? and on the energy difference (hazhpb); the best bonding (and
worst antibonding) occur when two orbitals couple strongly (have large hap) and are similar

in energy (Mea @hpp)-
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In both the homonuclear and heteronuclear cases depicted above, the energy
ordering of the resultant mos depends upon the energy ordering of the constituent aos as
well as the strength of the bonding-antibonding interactions among the aos. For example, if
the 2s-2p atomic orbital energy splitting islarge compared with the interaction matrix
elements coupling orbitals on neighboring atoms hys 25 and hop 2p , then the ordering
shown above will result. On the other hand, if the 2s-2p splitting is small, the two 2s and
two 2p orbitals can all participate in the formation of the four s mos. Inthiscaseg, it is
useful to think of the atomic 2s and 2p orbitals forming sp hybrid orbitals with each atom
having one hybrid directed toward the other atom and one hybrid directed away from the
other atom. The resultant pattern of four s mos will involve one bonding orbital (i.e., an
in-phase combination of two sp hybrids), two non-bonding orbitals (those directed away
from the other atom) and one antibonding orbital (an out-of-phase combination of two sp
hybrids). Their energies will be ordered as shown in the Figure below.

S*

2p Sn

2p

Sn
P

2s

S

Here s, is used to denote the non-bonding s-type orbitalsand s, s*, p, and p* areused to
denote bonding and antibonding s- and p-type orbitals.

Notice that the total number of s orbitals arising from the interaction of the 2s and
2p orhitalsis equal to the number of aosthat take part in their formation. Notice a so that
thisistrue regardless of whether one thinks of the interactions involving bare 2s and 2p



atomic orbitals or hybridized orbitals. The only advantage that the hybrids provide is that
they permit one to foresee the fact that two of the four mos must be non-bonding because
two of the four hybrids are directed away from all other valence orbitals and hence can not
form bonds. In all such qualitative mo analyses, the final results (i.e., how many mos there
are of any given symmetry) will not depend on whether one thinks of the interactions
involving atomic or hybrid orbitals. However, it is often easier to "guess' the bonding,
non-bonding, and antibonding nature of the resultant mos when thought of as formed from
hybrids because of the directional properties of the hybrid orbitals.

C. Rydberg Orbitals

It is essential to keep in mind that all atoms possess ‘excited' orbitals that may
become involved in bond formation if one or more electrons occupies these orbitals.
Whenever aos with principal quantum number one or more unit higher than that of the
conventional aos becomes involved in bond formation, Rydberg mos are formed.

Rydberg orbitals (i.e., very diffuse orbitals having principal quantum numbers
higher than the atoms' valence orbitals) can arise in molecules just asthey do in atoms.
They do not usually give rise to bonding and antibonding orbitals because the valence-
orbital interactions bring the atomic centers so close together that the Rydberg orbital's of
each atom subsume both atoms. Therefore as the atoms are brought together, the atomic
Rydberg orbitals usually pass through the internuclear distance region where they
experience (weak) bonding-antibonding interactions al the way to much shorter distances
at which they have essentially reached their united-atom limits. As aresult, molecular
Rydberg orbitals are molecule-centered and display little, if any, bonding or antibonding
character. They are usually labeled with principa quantum numbers beginning one higher
than the highest n value of the constituent atomic valence orbitals, although they are
sometimes labeled by the n quantum number to which they correlate in the united-atom
limit.

An example of the interaction of 3s Rydberg orbitals of a molecule whose 2s and 2p
orbitals are the valence orbitals and of the evolution of these orbitals into united-atom
orbitalsis given below.
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D. Multicenter Orbitals

If aos on one atom overlap aos on more than one neighboring atom, mos that
involve amplitudes on three or more atomic centers can be formed. Such mos are termed
delocalized or multicenter mos.

Situationsin which more than apair of orbitals interact can, of course, occur.
Three-center bonding occurs in Boron hydrides and in carbony! bridge bonding in
transition metal complexes aswell asin delocalized conjugated p orbitals commonin
unsaturated organic hydrocarbons. The three pp orbitals on the alyl radical (considered in
the absence of the underlying s orhitals) can be described qualitatively in terms of three pp
aos on the three carbon atoms. The couplings h12 and hy3 are equal (because the two CC
bond Iengths are the same) and h13 is approximated as 0 because orbitals 1 and 3 are too far
away to interact. Theresult isa 3x3 secular matrix (see below and in Appendix F):

h 11 h 12 0
h21h 22h 23
O h 32h 33

whose eigenvalues give the molecular orbital energies and whose eigenvectors give the
LCAO-MO coefficients Ci5 .

This 3x3 matrix givesrise to a bonding, a non-bonding and an antibonding orbital
(see the Figure below). Since al of the hggare equa and hy2 = hog, the resultant orbital
energiesare: hyq + 62 hia, hig, and hy1-C2 hy,, and the respective LCAO-MO coefficients
Ciaare (0.50, 0.707, 0.50), (0.707, 0.00, -0.707), and (0.50, -0.707, 0.50). Notice that
the sign (i.e., phase) relations of the bonding orbital are such that overlapping orbitals
interact constructively, whereas for the antibonding orbital they interact out of phase. For
the nonbonding orbital, there are no interactions because the central C orbital has zero
amplitude in this orbital and only h12 and hp3 are non-zero.
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E. Hybrid Orbitals

It is sometimes convenient to combine aos to form hybrid orbitals that have well
defined directional character and to then form mos by combining these hybrid orbitals. This
recombination of aosto form hybridsis never necessary and never provides any
information that could be achieved in its absence. However, forming hybrids often allows
one to focus on those interactions among directed orbitals on neighboring atomsthat are
most important.

When atoms combine to form molecules, the molecular orbitals can be thought of as
being constructed as linear combinations of the constituent atomic orbitals. Thisclearly is
the only reasonable picture when each atom contributes only one orbital to the particular
interactions being considered (e.g., as each Li atom doesin Li and as each C atom doesin
the p orbital aspect of the allyl system). However, when an atom uses more than one of its
valence orbitals within particular bonding, non-bonding, or antibonding interactions, it is
sometimes useful to combine the congtituent atomic orbitals into hybrids and to then use the
hybrid orbitals to describe the interactions. As stated above, the directional nature of hybrid
orbitals often makes it more straightforward to "guess' the bonding, non-bonding, and
antibonding nature of the resultant mos. It should be stressed, however, that exactly the
same quantitative results are obtained if one forms mos from primitive aos or from hybrid
orbitals; the hybrids span exactly the same space as the origina aos and can therefore
contain no additional information. This point isillustrated below when the HoO and N,
molecules are treated in both the primitive ao and hybrid orbital bases.



Chapter 5
Molecular Orbitals Possess Soecific Topology, Symmetry, and Energy-Level Patterns

In this chapter the symmetry properties of atomic, hybrid, and molecular orbitals
aretreated. It isimportant to keep in mind that both symmetry and characteristics of orbital
energetics and bonding "topology”, as embodied in the orbital energies themselves and the
interactions (i.e., hj k values) among the orbitals, are involved in determining the pattern of

molecular orbitals that arise in aparticular molecule.

|. Orbital Interaction Topology

The pattern of mo energies can often be 'guessed’ by using qualitative information
about the energies, overlaps, directions, and shapes of the aos that comprise the mos.

The orbital interactions determine how many and which moswill have low
(bonding), intermediate (non-bonding), and higher (antibonding) energies, with all
energies viewed relative to those of the constituent atomic orbitals. The gener al patterns
that are observed in most compounds can be summarized as follows:

i. If the energy splittings among a given atom's aos with the same principal quantum
number are small, hybridization can easily occur to produce hybrid orbitals that are directed
toward (and perhaps away from) the other atomsin the molecule. In the first-row elements
(Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In
contrast, for Ca, Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is
larger. Orbitals directed toward other atoms can form bonding and antibonding mos; those
directed toward no other atoms will form nonbonding mos.

ii. In attempting to gain a qualitative picture of the electronic structure of any given
molecule, it is advantageous to begin by hybridizing the aos of those atoms which contain
more than one ao in their valence shell. Only those aos that are not involved in p-orbital

interactions should be so hybridized.

iii. Atomic or hybrid orbitals that are not directed in a s-interaction manner toward other
aos or hybrids on neighboring atoms can be involved in p-interactions or in nonbonding
interactions.



iv. Pairs of aos or hybrid orbitals on neighboring atoms directed toward one another
interact to produce bonding and antibonding orbitals. The more the bonding orbital lies
below the lower-energy ao or hybrid orbital involved in its formation, the higher the
antibonding orbital lies above the higher-energy ao or hybrid orbital.

For example, in formaldehyde, H,CO, one forms sp2 hybrids on the C atom; on
the O atom, either sp hybrids (with one p orbital "reserved” for usein forming the p and p*
orbitals and another p orbital to be used as a non-bonding orbita lying in the plane of the
molecule) or sp? hybrids (with the remaining p orbital reserved for the p and p* orbitals)
can be used. The H atoms use their 1s orbitals since hybridization is not feasible for them.
The C atom clearly usesits sp? hybrids to form two CH and one CO s bonding-
antibonding orbital pairs.

The O atom uses one of its sp or sp2 hybrids to form the CO s bond and antibond.
When sp hybrids are used in conceptualizing the bonding, the other sp hybrid forms alone
pair orbital directed away from the CO bond axis; one of the atomic p orbitalsisinvolved in
the CO p and p* orbitals, while the other forms an in-plane non-bonding orbital.
Alternatively, when sp2 hybrids are used, the two sp? hybrids that do not interact with the
C-atom sp? orbital form the two non-bonding orbital's. Hence, the final picture of bonding,
non-bonding, and antibonding orbitals does not depend on which hybrids one uses as
intermediates.

As another example, the 2s and 2p orbitals on the two N atoms of N> can be
formed into pairs of sp hybrids on each N atom plus a pair of pp atomic orbitals on each N
atom. The sp hybrids directed
toward the other N atom give riseto bonding s and antibonding s* orbitals, and the sp
hybrids directed away from the other N atom yield nonbonding s orbitals. The p, orbitals,
which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis,
produce bonding p and antibonding p* orbitals.

v. In general, s interactionsfor agiven pair of atoms interacting are stronger than p
interactions (which, in turn, are stronger than d interactions, etc.) for any given sets (i.e.,
principal quantum number) of aos that interact. Hence, s bonding orbitals (originating from
agiven set of aos) lie below p bonding orbitals, and s* orbitals lie above p* orbitals that
arise from the same sets of aos. In the N2 example, the s bonding orbital formed from the
two sp hybrids lies below the p bonding orbital, but the p* orbital lies below the s*

orbital. In the H,CO example, the two CH and the one CO bonding orbitals have low
energy; the CO p bonding orbital has the next lowest energy; the two O-atom non-bonding



orbitals have intermediate energy; the CO p* orbital has somewhat higher energy; and the
two CH and one CO antibonding orbitals have the highest energies.

vi. If agiven ao or hybrid orbital interacts with or is coupled to orbitals on more than a
single neighboring atom, multicenter bonding can occur. For example, in the alyl radical
the central carbon atom's p, orbital is coupled to the p, orbitals on both neighboring atoms;
inlinear Liz, the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal

Li atoms; in triangular Cug, the 2s orbitals on each Cu atom couple to each of the other two
atoms' 4s orbitals.

vii. Multicenter bonding that involves "linear" chains containing N atoms (e.g., asin
conjugated polyenes or in chains of Cu or Na atoms for which the valence orbitals on one
atom interact with those of its neighbors on both sides) gives rise to mo energy patternsin
which there are N/2 (if N iseven) or N/2 -1 non-degenerate bonding orbitals and the same
number of antibonding orbitals (if N isodd, thereis also a single non-bonding orbital).

viii. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., asin cyclic
conjugated polyenes or in rings of Cu or Na atoms for which the valence orbitals on one
atom interact with those of its neighbors on both sides and the entire net forms a closed
cycle) givesriseto mo energy patterns in which there is alowest non-degenerate orbital and
then a progression of doubly degenerate orbitals. If N isodd, this progression includes (N-
1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate levels and afinal non-
degenerate highest orbital. These patterns and those that appear in linear multicenter
bonding are summarized in the Figures shown below.
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iX. In extended systems such as solids, atom-based orbitals combine as above to form so-
called 'bands of molecular orbitals. These bands are continuous rather than discrete asin
the above cases involving small polyenes. The energy 'spread’ within a band depends on
the overlap among the atom-based orbitals that form the band; large overlap givesriseto a
large band width, while small overlap produces a narrow band. As one moves from the
bottom (i.e., the lower energy part) of a band to the top, the number of nodesin the
corresponding band orbital increases, as aresult of which its bonding nature decreases. In
the figure shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is
illustrated. The d-orbital band is narrow because the 3d orbitals are small and hence do not
overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p orbitals
overlap to agreater extent. The d-band issplitinto s, p, and d components corresponding
to the nature of the overlap interactions among the constituent atomic d orbitals. Likewise,



the p-band issplitintos and p components. The widths of the s components of each band
are larger than those of the p components because the corresponding s overlap interactions
are stronger. The intensities of the bands at energy E measure the densities of states at that
E. Thetotal integrated intensity under agiven band is a measure of the total number of
atomic orbitals that form the band.
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[1. Orbital Symmetry

Symmetry provides additional quantum numbers or labelsto use in describing the
mos. Each such quantum number further sub-divides the collection of all mosinto sets that

have vanishing Hamiltonian matrix elements among member s belonging to different sets.



Orhital interaction "topology" as discussed above plays a most- important role in
determining the orbital energy level patterns of amolecule. Symmetry also comesinto play
but in a different manner. Symmetry can be used to characterize the core, bonding, non-
bonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this
can be carried out in a systematic manner. Once the various mos have been |abeled
according to symmetry, it may be possible to recognize additional degeneracies that may
not have been apparent on the basis of orbital-interaction considerations aone. Thus,
topology provides the basic energy ordering pattern and then symmetry enters to identify
additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitalsin NH3,
when symmetry adapted within the Cgy point group, cluster into & and e mos as shown in
the Figure below. The N-atom localized non-bonding lone pair orbital and the N-atom 1s
core orbital also belong to a symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and
antibond, and three O-atom non-bonding orbitals of the methoxy radical H3C-O a so cluster
into & and e orbitals as shown below. In these cases, point group symmetry allows one to
identify degeneraciesthat may not have been apparent from the structure of the orbital
interactions alone.
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The three resultant molecular orbital energies are, of course, identical to those
obtained without symmetry above. The three LCAO-MO coefficients, now expressing the
mos in terms of the symmetry adapted orbitals are Cjs = ( 0.707, 0.707, 0.0) for the
bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for
the antibonding orbital. These coefficients, when combined with the symmetry adaptation
coefficients Cs given earlier, express the three mosin terms of the three aos asf j= SgCis
CsCa; the sum Sg Cis Cs5 givesthe LCAO-MO coefficients Cijz which, for example, for
the bonding orbital, are ( 0.7072, 0.707, 0.7072), in agreement with what was found
earlier without using symmetry.

The low energy orbitals of the H>O molecule can be used to illustrate the use of
symmetry within the primitive ao basisaswell asin terms of hybrid orbitals. The 1s orbital
on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its
three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of
symmetry, these six valence orbitals would give rise to a 6x6 secular problem. By
combining the two Hydrogen 1s orbitals into 0.707(1s_ + 1sR) and 0.707(1s. - 1sR)
symmetry adapted orbitals (labeled a; and by within the Cp,, point group; see the Figure
below), and recognizing that the Oxygen 2s and 2p; orbitals belong to &g symmetry (the z
axisistaken as the C; rotation axis and the x axisis taken to be perpendicular to the plane
in which the three nuclei lie) while the 2py orbital is by and the 2p, orbital isby , allows the
6x6 problem to be decomposed into a 3x3 ( ap) secular problem, a2x2 ( by) secular
problem and a 1x1 ( by ) problem. These decompositions allow one to conclude that there
is one nonbonding by orbital (the Oxygen 2py orbital), bonding and antibonding by orbitals
( the O-H bond and antibond formed by the Oxygen 2py, orbital interacting with 0.707(1s.
- 1sR)), and, finaly, a set of bonding, nonbonding, and antibonding a; orbitals (the O-H
bond and antibond formed by the Oxygen 2s and 2p; orbitals interacting with 0.707(1s_. +
1sRr) and the nonbonding orbital formed by the Oxygen 2s and 2p; orbitals combining to
form the "lone pair" orbital directed along the z-axis away from the two Hydrogen atoms).
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Alternatively, to analyze the HoO molecule in terms of hybrid orbitals, onefirst
combines the Oxygen 2s, 2p;, 2px and 2py orbitals to form four sp3 hybrid orbitals. The
valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J.
Gillespie and R. S. Nyholm, Quart. Rev. 11, 339 (1957) and R. J. Gillespie, J. Chem.
Educ. 40, 295 (1963)) directs oneto involve al of the Oxygen valence orbitalsin the
hybridization because four s-bond or nonbonding e ectron pairs need to be accommodated
about the Oxygen center; no p orbital interactions are involved, of course. Having formed
the four sp3 hybrid orbitals, one proceeds as with the primitive aos; one forms symmetry



adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly as above
to form 0.707(1s_ + 1sg) and 0.707(1s_ - 1sR). The two sp3 hybridswhich liein the
plane of theH and O nuclei ( 1abel them L and R) are combined to give symmetry adapted
hybrids: 0.707(L+R) and 0.707(L-R), which are of a; and by symmetry, respectively ( see
the Figure below). Thetwo sp3 hybridsthat lie above and below the plane of the three
nuclei (label them T and B) are a'so symmetry adapted to form 0.707(T+ B) and 0.707(T-
B), which are of & and by symmetry, respectively. Once again, one has broken the 6x6
secular problem into a 3x3 & block, a 2x2 by block and a 1x1 by block. Although the
resulting bonding, nonbonding and antibonding a; orbitals, the bonding and antibonding
b, orbitals and the nonbonding b; orbital are now viewed as formed from symmetry
adapted Hydrogen orbitals and four Oxygen sp3 orbitals, they are, of course, exactly the
samemolecular orbitals as were obtained earlier in terms of the symmetry adapted primitive
aos. The formation of hybrid orbitals was an intermediate step which could not alter the
final outcome.
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&1 Pyt Symmetry Orbital
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That no degenerate molecular orbitals arose in the above examplesis aresult of the
fact that the Cop, point group to which H>O and the allyl system belong (and certainly the



Cs subgroup which was used above in the alyl case) has no degenerate representations.
Molecules with higher symmetry such as NH3 , CHg4, and benzene have energetically
degenerate orbitals because their molecular point groups have degenerate representations.

B. Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry isintermediate
in complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the
nuclei and the other electronsis described by either the Cyy or Dy group. The essential
difference between these symmetry groups and the finite point groups which characterize
the non-linear molecules liesin the fact that the el ectrostatic potential which an electron feels
isinvariant to rotations of any amount about the molecular axis (i.e., V(g+dg) =V(g), for
any angle increment dg). This means that the operator Cyg which generates arotation of the
electron’'s azimuthal angle g by an amount dg about the molecular axis commutes with the
Hamiltonian [h, Cqg ] =0. Cgg can be written in terms of the quantum mechanical operator
Lz = -ih Y/9lgdescribing the orbital angular momentum of the el ectron about the molecular
(2) axis:

Cdg = exp(idg L k).

Because Cyg commutes with the Hamiltonian and Cqgg can be writtenintermsof L, L,
must commute with the Hamiltonian. As aresult, the molecular orbitalsf of alinear
molecule must be eigenfunctions of the z-component of angular momentum L

- /Mgf =mhf.
The electrostatic potentia is not invariant under rotations of the electron about the x or y
axes (those perpendicular to the molecular axis), so Lx and Ly do not commute with the
Hamiltonian. Therefore, only Lz provides a"good quantum number" in the sense that the
operator Lz commutes with the Hamiltonian.

In summary, the molecular orbitals of alinear molecule can be labeled by their m
guantum number, which plays the same role as the point group labels did for non-linear
polyatomic molecules, and which gives the eigenvalue of the angular momentum of the
orbital about the molecule's symmetry axis. Because the kinetic energy part of the



Hamiltonian contains (h2/2me r2) 12/9¢? , whereas the potential energy part is independent
of g, the energies of the molecular orbitals depend on the square of the m quantum
number. Thus, pairs of orbitalswith m=+ 1 are energetically degenerate; pairs with m=+
2 are degenerate, and so on. The absolute value of m, which iswhat the energy depends
on, iscalled thel quantum number. Molecular orbitalswith| =0 arecalled s orbitals;
thosewith| =1 arep orbitals, and thosewith| =2 ared orbitals.

Just asin the non-linear polyatomic-molecule case, the atomic orbitals which
condtitute a given molecular orbital must have the same symmetry as that of the molecular
orbital. Thismeansthat s,p, and d molecular orbitals are formed, viaLCAO-MO, from
m=0, m= % 1, and m= + 2 atomic orbitals, respectively. In the diatomic N> molecule, for
example, the core orbitals are of s symmetry as are the molecular orbitals formed from the
2s and 2p, atomic orbitals (or their hybrids) on each Nitrogen atom. The molecular orbitals
formed from the atomic 2p.1 =(2px- i 2py) and the 2p.1 =(2px + i 2py ) orbitals are of p
symmetry and havem =-1and +1.



For homonuclear diatomic molecules and other linear molecules which have a center
of symmetry, the inversion operation (in which an electron's coordinates are inverted
through the center of symmetry of the molecule) is aso asymmetry operation. Each
resultant molecular orbital can then also be labeled by a quantum number denoting its parity
with respect to inversion. The symbols g (for gerade or even) and u (for ungerade or odd)
are used for thislabel. Again for N2, the core orbitals are of sg and s, symmetry, and the
bonding and antibonding s orbitals formed from the 2s and 2ps orbitals on the two
Nitrogen atoms are of sg and s, symmetry.
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The bonding p molecular orbital pair (with m = +1 and -1) is of py Symmetry whereas the
corresponding antibonding orbital is of pg symmetry. Examples of such molecular orbital
symmetries are shown above.

The use of hybrid orbitals can beillustrated in the linear-molecul e case by
considering the N2 molecule. Because two p bonding and antibonding molecular orbital
pairs are involved in N2 (one with m = +1, one with m = -1), VSEPR theory guides one to
form sp hybrid orbitals from each of the Nitrogen atom's 2s and 2p, (which is also the 2p
orbital with m = 0) orbitals. Ignoring the core orbitals, which are of sg and s, symmetry as
noted above, one then symmetry adapts the four sp hybrids (two from each atom) to build
one s orbital involving a bonding interaction between two sp hybrids pointed toward one
another, an antibonding s, orbital involving the same pair of sp orbitals but coupled with
opposite signs, a nonbonding s g orbital composed of two sp hybrids pointed away from
the interatomic region combined with like sign, and a nonbonding s, orbital made of the
latter two sp hybrids combined with opposite signs. The two 2pyy, orbitals (m= +1 and -1)
on each Nitrogen atom are then symmetry adapted to produce a pair of bonding py, orbitals
(withm = +1 and -1) and a pair of antibonding pg orbitals (with m = +1 and -1). This
hybridization and symmetry adaptation thereby reduces the 8x8 secular problem (which
would be 10x10 if the core orbitals were included) into a 2x2 s g problem (one bonding and
one nonbonding), a2x2 s, problem (one bonding and one nonbonding), an identical pair
of 1x1 py problems (bonding), and an identical pair of 1x1 pg problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points
of view is provided by the CO molecule. Using, for example, sp hybrid orbitals on C and
O, one obtains a picture in which there are: two core s orbitals corresponding to the O-atom
1sand C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding
orbitals arising from the four sp hybrids; apair of bonding and a pair of antibonding p
orbitals formed from the two p orbitals on O and the two p orbitals on C. Alternatively,
using sp2 hybrids on both C and O, one obtains: the two core s orbitals as above; aCO
bonding and antibonding orbital pair formed from the sp? hybrids that are directed along
the CO bond; and asingle p bonding and antibonding p* orbital set. The remaining two
sp2 orbitals on C and the two on O can then be symmetry adapted by forming +
combinations within each pair to yield: an & non-bonding orbital (from the + combination)
on each of C and O directed away from the CO bond axis; and a py orbital on each of C and
O that can subsequently overlap to form the second p bonding and p* antibonding orbital
pair.

It should be clear from the above examples, that no matter what particular hybrid



orbitals one chooses to utilize in conceptualizing a molecul€'s orbital interactions,
symmetry ultimately returns to force one to form proper symmetry adapted combinations
which, in turn, renders the various points of view equivalent. In the above examplesand in
several earlier examples, symmetry adaptation of, for example, sp? orbital pairs (e.g., sp. 2
+ spr2) generated orbitals of pure spatial symmetry. In fact, symmetry combining hybrid
orbitals in this manner amounts to forming other hybrid orbitals. For example, the above +
combinations of sp2 hybrids directed to the left (L) and right (R) of some bond axis
generate anew sp hybrid directed along the bond axis but opposite to the sp? hybrid used
to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the
CO example, these combinations of sp2 hybrids on O and C produce sp hybrids on O and
C and pp orbitalson O and C.

C. Atoms

Atoms belong to the full rotation symmetry group; this makes their symmetry
analysis the most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In
particular, the potential field experienced by an electron in an orbital becomes invariant to
rotations of arbitrary amounts about the x, y, and z axes; in the linear-molecule casg, it is
invariant only to rotations of the electron's position about the molecule's symmetry axis
(the z axis). These invariances are, of course, caused by the spherical symmetry of the
potentia of any atom. This additional symmetry of the potential causes the Hamiltonian to
commute with al three components of the electron’'s angular momentum: [Ly , H] =0, [Ly ,
H] =0, and [L z, H] =0. It is straightforward to show that H also commutes with the
operator L2=Ly2 + Ly2 + L2, defined as the sum of the squares of the three individual
components of the angular momentum. Because Ly, Ly, and L, do not commute with one
another, orbitals which are eigenfunctions of H cannot be simultaneous eigenfunctions of
all three angular momentum operators. Because Ly, Ly, and L, do commutewith L2,
orbitals can be found which are eigenfunctions of H, of L2 and of any one component of L ;
it is convention to select L, as the operator which, along with H and L2 , form amutually
commutative operator set of which the orbitals are smultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both | and m quantum numbers,
which play the role that point group labels did for non-linear moleculesand | did for linear
molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly
contains L2/2mg2 , (ii) the Hamiltonian does not contain additional L, , Ly, or Ly factors,



and (iii) the potential energy part of the Hamiltonian is spherically symmetric (and
commutes with L2 and L), the energies of atomic orbitals depend upon the | quantum
number and are independent of the m quantum number. Thisis the source of the 21+1- fold
degeneracy of atomic orbitals.

The angular part of the atomic orbitalsis described in terms of the spherical
harmonics Y| m ; that is, each atomic orbital f can be expressed as

fnlm=Yim(d ] ) Rny ().

The explicit solutions for the Y| m and for the radial wavefunctions R | are givenin
Appendix B. Thevariablesr,q,j givethe position of the electron in the orbital in
spherical coordinates. These angular functions are, as discussed earlier, related to the
cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the
orbitals with [=2 and m=2,1,0,-1,-2 can be expressed in terms of the dxy, dxz, dyz, dxx-yy
and d; orbitals. Either set of orbitalsis acceptable in the sense that each orbital isan
eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the
Hamiltonian- eigenfunction feature. The orbital set labeled with | and m quantum numbers
ismost useful when one is dealing with isolated atoms (which have spherical symmetry),
because m isthen avalid symmetry label, or with an atom in aloca environment whichis
axially symmetric (e.g., in alinear molecule) where the m quantum number remains a
useful symmetry label. The cartesian orbitals are preferred for describing an atom in alocal
environment which displays lower than axial symmetry (e.g., an atom interacting with a
diatomic molecule in Cpy Symmetry).

Theradia part of the orbital Ry | (r) aswell asthe orbital energy e, depend on |
because the Hamiltonian itsalf contains I(1+1)Yh2/2mgr2; they are independent of m because
the Hamiltonian has no m-dependence. For bound orbitals, R |(r) decays exponentially for
large r (as exp(-2rC2ey | )), and for unbound (scattering) orbitals, it is oscillatory at large r
with an oscillation period related to the deBroglie wavel ength of the electron. In R (1)
there are (n-1-1) radia nodes lying between r=0 and r=¥ . These nodes provide differential
stabilization of low-I orbitals over high-I orbitals of the same principal quantum number n.
That is, penetration of outer shellsis greater for low-| orbitals because they have more
radial nodes; as aresult, they have larger amplitude near the atomic nucleus and thus
experience enhanced attraction to the positive nuclear charge. The average size (e.g.,
average value of r; <r>=R?, r r2 dr) of an orbital depends strongly on n, weakly on |
and isindependent of m; it also depends strongly on the nuclear charge and on the potential
produced by the other electrons. This potential is often characterized qualitatively in terms



of an effective nuclear charge Zgf which isthe true nuclear charge of the atom Z minus a
screening component Zg: which describes the repulsive effect of the electron density lying

radially inside the electron under study. Because, for agiven n, low-| orbitals penetrate
closer to the nucleus than do high-I orbitals, they have higher Zg+ values (i.e., smaller Zg

values) and correspondingly smaller average sizes and larger binding energies.






Section 2 Simple Molecular Orbital Theory

In this section, the conceptual framework of molecular orbital theory is devel oped.
Applications are presented and problems are given and solved within qualitative and semi-
empirical models of electronic structure. Ab Initio approaches to these same matters, whose
solutions require the use of digital computers, are treated later in Section 6. Semi-
empirical methods, most of which aso require access to a computer, are treated in this
section and in Appendix F.

Unlike most texts on molecular orbital theory and quantum mechanics, thistext
treats polyatomic molecules before linear mol ecules before atoms. The finite point-group
symmetry (Appendix E provides an introduction to the use of point group symmetry) that
characterizes the orbitals and el ectronic states of non-linear polyatomicsis more
straightforward to deal with because fewer degeneracies arise. In turn, linear molecules,
which belong to an axial rotation group, possess fewer degeneracies (e.g., p orbitals or
states are no more degenerate than d, f, or gorbitals or states; al are doubly degenerate)

than atomic orbitals and states (e.g., p orbitals or states are 3-fold degenerate, d's are 5-
fold, etc.). Increased orbital degeneracy, in turn, givesrise to more states that can arise
from agiven orbital occupancy (e.g., the 2p2 configuration of the C atom yields fifteen
states, the p2 configuration of the NH molecule yields six, and the pp* configuration of
ethylene gives four states). For these reasons, it is more straightforward to treat low-
symmetry cases (i.e., non-linear polyatomic molecules) first and atoms | ast.

It is recommended that the reader become familiar with the point-group symmetry
tools developed in Appendix E before proceeding with this section. In particular, it is
important to know how to label atomic orbitals as well as the various hybrids that can be
formed from them according to the irreducible representations of the molecul€e's point
group and how to construct symmetry adapted combinations of atomic, hybrid, and
molecular orbitals using projection operator methods. If additional material on group theory
is needed, Cotton's book on this subject is very good and provides many excellent
chemical applications.

Chapter 4
Valence Atomic Orbitals on Neighboring Atoms Combine to Form Bonding, Non-Bonding
and Antibonding Molecular Orbitals

|. Atomic Orbitals



In Section 1 the Schrédinger equation for the motion of asingle electron moving
about a nucleus of charge Z was explicitly solved. The energies of these orbitals relative to
an electron infinitely far from the nucleus with zero kinetic energy were found to depend
strongly on Z and on the principa quantum number n, as were the radial "sizes' of these
hydrogenic orbitals. Closed analytical expressionsfor ther,q, and f dependence of these
orbitals are given in Appendix B. The reader is advised to also review this materia before
undertaking study of this section.

A. Shapes

Shapes of atomic orbitals play central roles in governing the types of directional
bonds an atom can form.

All atoms have sets of bound and continuum s,p,d,f,g, etc. orbitals. Some of these
orbitals may be unoccupied in the atom's low energy states, but they are till present and
able to accept electron density if some physical process (e.g., photon absorption, electron
attachment, or Lewis-base donation) causes such to occur. For example, the Hydrogen
atom has 1s, 2s, 2p, 3s, 3p, 3d, etc. orbitals. Its negative ion H- has states that involve
1s2s, 2p?, 3s2, 3p>2, etc. orbital occupancy. Moreover, when an H atom is placed in an
externa electronic field, its charge density polarizes in the direction of thefield. This
polarization can be described in terms of the orbitals of the isolated atom being combined to
yield distorted orbitals (e.g., the 1sand 2p orbitals can "mix" or combineto yield sp hybrid
orbitals, one directed toward increasing field and the other directed in the opposite
direction). Thusin many situationsit isimportant to keep in mind that each atom has afulll
set of orbitals available to it even if some of these orbitals are not occupied in the lowest-
energy state of the atom.

B. Directions

Atomic orhital directions also determine what directional bonds an atomwill form.

Each set of p orbitals has three distinct directions or three different angular
momentum m-quantum numbers as discussed in Appendix G. Each set of d orbitals has
five distinct directions or m-quantum numbers, etc; s orbitals are unidirectional in that they
are sphericaly symmetric, and have only m = 0. Note that the degeneracy of an orbital
(21+1), which isthe number of distinct spatial orientations or the number of m-values,



grows with the angular momentum quantum number | of the orbital without bound.

It is because of the energy degeneracy within a set of orbitals, that these distinct
directional orbitals (e.g., X, y, z for p orbitals) may be combined to give new orbitals
which no longer possess specific spatia directions but which have specified angular
momentum characteristics. The act of combining these degenerate orbitals does not change
their energies. For example, the 2-Y/2(py +ipy) and
2-12(p, -ipy) combinations no longer point along the x and y axes, but instead correspond

to specific angular momenta (+1h and -1h) about the z axis. The fact that they are angular
momentum eigenfunctions can be seen by noting that the x and y orbitals contain f
dependences of cos(f ) and sin(f ), respectively. Thus the above combinations contain
exp(if ) and exp(-if ), respectively. The sizes, shapes, and directionsof afew s, p, and d
orbitals are illustrated below (the light and dark areas represent positive and negative
values, respectively).

1s

p orbitals d orbitals

C. Sizesand Energies

Orbital energies and sizes go hand-in-hand; small 'tight' orbitals have large electron
binding energies (i.e., low energiesrelative to a detached electron). For orbitals on



neighboring atoms to have large (and hence favorable to bond formation) overlap, the two
orbitals should be of comparable size and hence of smilar eectron binding energy.

The size (e.g., average value or expectation value of the distance from the atomic
nucleusto the electron) of an atomic orbital is determined primarily by its principal quantum
number n and by the strength of the potential attracting an electron in this orbital to the
atomic center (which has some I-dependence too). The energy (with negative energies
corresponding to bound states in which the electron is attached to the atom with positive
binding energy and positive energies corresponding to unbound scattering states) is aso
determined by n and by the el ectrostatic potential produced by the nucleus and by the other
electrons. Each atom has an infinite set of orbitals of each | quantum number ranging from
those with low energy and small size to those with higher energy and larger size.

Atomic orbitals are solutions to an orbital-level Schrédinger equation in which an
electron movesin a potential energy field provided by the nucleus and all the other
electrons. Such one-electron Schrodinger equations are discussed, as they pertain to
qualitative and semi-empirical models of electronic structure in Appendix F. The spherical
symmetry of the one-electron potential appropriate to atoms and atomic ions iswhat makes
sets of the atomic orbitals degenerate. Such degeneracies arise in molecules too, but the
extent of degeneracy islower because the molecul€e's nuclear coulomb and el ectrostatic
potential energy has lower symmetry than in the atomic case. Aswill be seen, itisthe
symmetry of the potential experienced by an electron moving in the orbital that determines
the kind and degree of orbital degeneracy which arises.

Symmetry operators leave the electronic Hamiltonian H invariant because the
potential and kinetic energies are not changed if one applies such an operator R to the
coordinates and momenta of all the electrons in the system. Because symmetry operations
involve reflections through planes, rotations about axes, or inversions through points, the
application of such an operation to a product such asHYy givesthe product of the operation
applied to each term in the original product. Hence, one can write:

R(Hy)=(RH) (Ry).

Now using the fact that H isinvariant to R, which meansthat (RH) = H, thisresult
reduces to:

R(HY)=H (Ry),



which saysthat R commutes with H:

[R,H] = 0.

Because symmetry operators commute with the electronic Hamiltonian, the wavefunctions
that are eigenstates of H can be labeled by the symmetry of the point group of the molecule
(i.e., those operators that leaveH invariant). It isfor this reason that one

constructs symmetry-adapted atomic basis orbitals to use in forming molecular orbitals.

[1. Molecular Orhitals

Molecular orbitals (mos) are formed by combining atomic orbitals (aos) of the
constituent atoms. This is one of the most important and widely used ideas in quantum
chemistry. Much of chemists' understanding of chemical bonding, structure, and reactivity
is founded on this point of view.

When aos are combined to form mos, core, bonding, nonbonding, antibonding,
and Rydberg molecular orbitals can result. Themosf i are usually expressed in terms of
the congtituent atomic orbitals ¢ 5 in the linear-combination-of-atomic-orbital-molecul ar-

orbital (LCAO-MO) manner:
f| = SaCiaCa.

The orbitals on one atom are orthogonal to one another because they are eigenfunctions of a
hermitian operator (the atomic one-electron Hamiltonian) having different eigenvalues.
However, those on one atom are not orthogonal to those on another atom because they are
eigenfunctions of different operators (the one-electron Hamiltonia of the different atoms).
Therefore, in practice, the primitive atomic orbitals must be orthogonalized to preserve
maximum identity of each primitive orbital in the resultant orthonormalized orbitals before
they can be used in the LCAO-MO process. Thisis both computationally expedient and
conceptually useful. Throughout this book, the atomic orbitals (aos) will be assumed to
consist of such orthonormalized primitive orbitals once the nuclei are brought into regions
where the "bare" aos interact.

Sets of orbitals that are not orthonormal can be combined to form new orthonormal
functionsin many ways. One technique that is especially attractive when the original
functions are orthonormal in the absence of "interactions' (e.g., at large interatomic



distancesin the case of atomic basis orbitals) is the so-called symmetric orthonormalization
(SO) method. In this method, one first forms the so-called overlap matrix

Sm = <Cnlch>

for al functions cmto be orthonormalized. In the atomic-orbital case, these functions
include those on the first atom, those on the second, etc.

Since the orbitals belonging to the individual atoms are themselves orthonormal, the
overlap matrix will contain, along its diagonal, blocks of unit matrices, one for each set of
individual atomic orbitals. For example, when a carbon and oxygen atom, with their core
1s and valence 2s and 2p orbitals are combined to form CO, the 10x10 Syyn matrix will
have two 5x5 unit matrices along its diagonal (representing the overlaps among the carbon
and among the oxygen atomic orbitals) and a 5x5 block in its upper right and lower left
quadrants. The latter block represents the overlaps <cC {c On> among carbon and oxygen
atomic orbitals.

After forming the overlap matrix, the new orthonormal functionsc' yare defined as
follows:

C'm=Sn(SY)men.

As shown in Appendix A, the matrix S-Y2 isformed by finding the eigenvalues{l i} and
eigenvectors{Vin} of the Smatrix and then constructing:

(SY2)ym = Si VimVin (1 i)V2.

The new functions{c'n} have the characteristic that they evolve into the original functions
asthe "coupling", as represented in the Syn matrix's off-diagonal blocks, disappears.
Valence orbitals on neighboring atoms are coupled by changes in the electrostatic
potential due to the other atoms (coulomb attraction to the other nuclel and repulsions from
electrons on the other atoms). These coupling potentials vanish when the atoms are far
apart and become significant only when the valence orbitals overlap one another. In the
most qualitative picture, such interactions are described in terms of off-diagonal
Hamiltonian matrix elements (hay; see below and in Appendix F) between pairs of atomic
orbitals which interact (the diagonal elements ha; represent the energies of the various
orbitals and are related via Koopmans' theorem (see Section 6, Chapter 18.VII.B) to the
ionization energy of the orbital). Such amatrix embodiment of the molecular orbital



problem arises, as developed below and in Appendix F, by using the above LCAO-MO
expansion in avariationa treatment of the one-electron Schrédinger equation appropriate to
themos{fi}.

In the ssimplest two-center, two-valence-orbital case (which could relate, for
example, to the Li> moleculestwo 2s orbitals), this givesrise to a 2x2 matrix eigenvalue
problem (hy1,h12,h22) with alow-energy mo (E=(hi1+hy2)/2-1/2[(hy1-hpo)2 +4h215]1/2)
and a higher energy mo (E=(hq1+h2)/2+1/2[(h11-h2o)2 +4h212]Y2) corresponding to
bonding and antibonding orbitals (because their energies lie below and above the lowest
and highest interacting atomic orbital energies, respectively). The mosthemselves are
expressedf j = S Cjz cawherethe LCAO-MO coefficients Cja are obtained from the
normalized eigenvectors of the hgp matrix. Note that the bonding-antibonding orbital energy
splitting depends on hgy? and on the energy difference (hazhpb); the best bonding (and
worst antibonding) occur when two orbitals couple strongly (have large hap) and are similar

in energy (Mea @hpp)-



2p 2p

2s 2s

Homonuclear Bonding With 2s and 2p Orbitals

p*
2p
P
2p
—
S*
2s
2s

Heteronuclear Bonding With 2s and 2p Orbitals



In both the homonuclear and heteronuclear cases depicted above, the energy
ordering of the resultant mos depends upon the energy ordering of the constituent aos as
well as the strength of the bonding-antibonding interactions among the aos. For example, if
the 2s-2p atomic orbital energy splitting islarge compared with the interaction matrix
elements coupling orbitals on neighboring atoms hys 25 and hop 2p , then the ordering
shown above will result. On the other hand, if the 2s-2p splitting is small, the two 2s and
two 2p orbitals can all participate in the formation of the four s mos. Inthiscaseg, it is
useful to think of the atomic 2s and 2p orbitals forming sp hybrid orbitals with each atom
having one hybrid directed toward the other atom and one hybrid directed away from the
other atom. The resultant pattern of four s mos will involve one bonding orbital (i.e., an
in-phase combination of two sp hybrids), two non-bonding orbitals (those directed away
from the other atom) and one antibonding orbital (an out-of-phase combination of two sp
hybrids). Their energies will be ordered as shown in the Figure below.
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2p Sn
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S

Here s, is used to denote the non-bonding s-type orbitalsand s, s*, p, and p* areused to
denote bonding and antibonding s- and p-type orbitals.

Notice that the total number of s orbitals arising from the interaction of the 2s and
2p orhitalsis equal to the number of aosthat take part in their formation. Notice a so that
thisistrue regardless of whether one thinks of the interactions involving bare 2s and 2p



atomic orbitals or hybridized orbitals. The only advantage that the hybrids provide is that
they permit one to foresee the fact that two of the four mos must be non-bonding because
two of the four hybrids are directed away from all other valence orbitals and hence can not
form bonds. In all such qualitative mo analyses, the final results (i.e., how many mos there
are of any given symmetry) will not depend on whether one thinks of the interactions
involving atomic or hybrid orbitals. However, it is often easier to "guess' the bonding,
non-bonding, and antibonding nature of the resultant mos when thought of as formed from
hybrids because of the directional properties of the hybrid orbitals.

C. Rydberg Orbitals

It is essential to keep in mind that all atoms possess ‘excited' orbitals that may
become involved in bond formation if one or more electrons occupies these orbitals.
Whenever aos with principal quantum number one or more unit higher than that of the
conventional aos becomes involved in bond formation, Rydberg mos are formed.

Rydberg orbitals (i.e., very diffuse orbitals having principal quantum numbers
higher than the atoms' valence orbitals) can arise in molecules just asthey do in atoms.
They do not usually give rise to bonding and antibonding orbitals because the valence-
orbital interactions bring the atomic centers so close together that the Rydberg orbital's of
each atom subsume both atoms. Therefore as the atoms are brought together, the atomic
Rydberg orbitals usually pass through the internuclear distance region where they
experience (weak) bonding-antibonding interactions al the way to much shorter distances
at which they have essentially reached their united-atom limits. As aresult, molecular
Rydberg orbitals are molecule-centered and display little, if any, bonding or antibonding
character. They are usually labeled with principa quantum numbers beginning one higher
than the highest n value of the constituent atomic valence orbitals, although they are
sometimes labeled by the n quantum number to which they correlate in the united-atom
limit.

An example of the interaction of 3s Rydberg orbitals of a molecule whose 2s and 2p
orbitals are the valence orbitals and of the evolution of these orbitals into united-atom
orbitalsis given below.
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D. Multicenter Orbitals

If aos on one atom overlap aos on more than one neighboring atom, mos that
involve amplitudes on three or more atomic centers can be formed. Such mos are termed
delocalized or multicenter mos.

Situationsin which more than apair of orbitals interact can, of course, occur.
Three-center bonding occurs in Boron hydrides and in carbony! bridge bonding in
transition metal complexes aswell asin delocalized conjugated p orbitals commonin
unsaturated organic hydrocarbons. The three pp orbitals on the alyl radical (considered in
the absence of the underlying s orhitals) can be described qualitatively in terms of three pp
aos on the three carbon atoms. The couplings h12 and hy3 are equal (because the two CC
bond Iengths are the same) and h13 is approximated as 0 because orbitals 1 and 3 are too far
away to interact. Theresult isa 3x3 secular matrix (see below and in Appendix F):

h 11 h 12 0
h21h 22h 23
O h 32h 33

whose eigenvalues give the molecular orbital energies and whose eigenvectors give the
LCAO-MO coefficients Ci5 .

This 3x3 matrix givesrise to a bonding, a non-bonding and an antibonding orbital
(see the Figure below). Since al of the hggare equa and hy2 = hog, the resultant orbital
energiesare: hyq + 62 hia, hig, and hy1-C2 hy,, and the respective LCAO-MO coefficients
Ciaare (0.50, 0.707, 0.50), (0.707, 0.00, -0.707), and (0.50, -0.707, 0.50). Notice that
the sign (i.e., phase) relations of the bonding orbital are such that overlapping orbitals
interact constructively, whereas for the antibonding orbital they interact out of phase. For
the nonbonding orbital, there are no interactions because the central C orbital has zero
amplitude in this orbital and only h12 and hp3 are non-zero.
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E. Hybrid Orbitals

It is sometimes convenient to combine aos to form hybrid orbitals that have well
defined directional character and to then form mos by combining these hybrid orbitals. This
recombination of aosto form hybridsis never necessary and never provides any
information that could be achieved in its absence. However, forming hybrids often allows
one to focus on those interactions among directed orbitals on neighboring atomsthat are
most important.

When atoms combine to form molecules, the molecular orbitals can be thought of as
being constructed as linear combinations of the constituent atomic orbitals. Thisclearly is
the only reasonable picture when each atom contributes only one orbital to the particular
interactions being considered (e.g., as each Li atom doesin Li and as each C atom doesin
the p orbital aspect of the allyl system). However, when an atom uses more than one of its
valence orbitals within particular bonding, non-bonding, or antibonding interactions, it is
sometimes useful to combine the congtituent atomic orbitals into hybrids and to then use the
hybrid orbitals to describe the interactions. As stated above, the directional nature of hybrid
orbitals often makes it more straightforward to "guess' the bonding, non-bonding, and
antibonding nature of the resultant mos. It should be stressed, however, that exactly the
same quantitative results are obtained if one forms mos from primitive aos or from hybrid
orbitals; the hybrids span exactly the same space as the origina aos and can therefore
contain no additional information. This point isillustrated below when the HoO and N,
molecules are treated in both the primitive ao and hybrid orbital bases.



Chapter 5
Molecular Orbitals Possess Soecific Topology, Symmetry, and Energy-Level Patterns

In this chapter the symmetry properties of atomic, hybrid, and molecular orbitals
aretreated. It isimportant to keep in mind that both symmetry and characteristics of orbital
energetics and bonding "topology”, as embodied in the orbital energies themselves and the
interactions (i.e., hj k values) among the orbitals, are involved in determining the pattern of

molecular orbitals that arise in aparticular molecule.

|. Orbital Interaction Topology

The pattern of mo energies can often be 'guessed’ by using qualitative information
about the energies, overlaps, directions, and shapes of the aos that comprise the mos.

The orbital interactions determine how many and which moswill have low
(bonding), intermediate (non-bonding), and higher (antibonding) energies, with all
energies viewed relative to those of the constituent atomic orbitals. The gener al patterns
that are observed in most compounds can be summarized as follows:

i. If the energy splittings among a given atom's aos with the same principal quantum
number are small, hybridization can easily occur to produce hybrid orbitals that are directed
toward (and perhaps away from) the other atomsin the molecule. In the first-row elements
(Li, Be, B, C, N, O, and F), the 2s-2p splitting is small, so hybridization is common. In
contrast, for Ca, Ga, Ge, As, and Br it is less common, because the 4s-4p splitting is
larger. Orbitals directed toward other atoms can form bonding and antibonding mos; those
directed toward no other atoms will form nonbonding mos.

ii. In attempting to gain a qualitative picture of the electronic structure of any given
molecule, it is advantageous to begin by hybridizing the aos of those atoms which contain
more than one ao in their valence shell. Only those aos that are not involved in p-orbital

interactions should be so hybridized.

iii. Atomic or hybrid orbitals that are not directed in a s-interaction manner toward other
aos or hybrids on neighboring atoms can be involved in p-interactions or in nonbonding
interactions.



iv. Pairs of aos or hybrid orbitals on neighboring atoms directed toward one another
interact to produce bonding and antibonding orbitals. The more the bonding orbital lies
below the lower-energy ao or hybrid orbital involved in its formation, the higher the
antibonding orbital lies above the higher-energy ao or hybrid orbital.

For example, in formaldehyde, H,CO, one forms sp2 hybrids on the C atom; on
the O atom, either sp hybrids (with one p orbital "reserved” for usein forming the p and p*
orbitals and another p orbital to be used as a non-bonding orbita lying in the plane of the
molecule) or sp? hybrids (with the remaining p orbital reserved for the p and p* orbitals)
can be used. The H atoms use their 1s orbitals since hybridization is not feasible for them.
The C atom clearly usesits sp? hybrids to form two CH and one CO s bonding-
antibonding orbital pairs.

The O atom uses one of its sp or sp2 hybrids to form the CO s bond and antibond.
When sp hybrids are used in conceptualizing the bonding, the other sp hybrid forms alone
pair orbital directed away from the CO bond axis; one of the atomic p orbitalsisinvolved in
the CO p and p* orbitals, while the other forms an in-plane non-bonding orbital.
Alternatively, when sp2 hybrids are used, the two sp? hybrids that do not interact with the
C-atom sp? orbital form the two non-bonding orbital's. Hence, the final picture of bonding,
non-bonding, and antibonding orbitals does not depend on which hybrids one uses as
intermediates.

As another example, the 2s and 2p orbitals on the two N atoms of N> can be
formed into pairs of sp hybrids on each N atom plus a pair of pp atomic orbitals on each N
atom. The sp hybrids directed
toward the other N atom give riseto bonding s and antibonding s* orbitals, and the sp
hybrids directed away from the other N atom yield nonbonding s orbitals. The p, orbitals,
which consist of 2p orbitals on the N atoms directed perpendicular to the N-N bond axis,
produce bonding p and antibonding p* orbitals.

v. In general, s interactionsfor agiven pair of atoms interacting are stronger than p
interactions (which, in turn, are stronger than d interactions, etc.) for any given sets (i.e.,
principal quantum number) of aos that interact. Hence, s bonding orbitals (originating from
agiven set of aos) lie below p bonding orbitals, and s* orbitals lie above p* orbitals that
arise from the same sets of aos. In the N2 example, the s bonding orbital formed from the
two sp hybrids lies below the p bonding orbital, but the p* orbital lies below the s*

orbital. In the H,CO example, the two CH and the one CO bonding orbitals have low
energy; the CO p bonding orbital has the next lowest energy; the two O-atom non-bonding



orbitals have intermediate energy; the CO p* orbital has somewhat higher energy; and the
two CH and one CO antibonding orbitals have the highest energies.

vi. If agiven ao or hybrid orbital interacts with or is coupled to orbitals on more than a
single neighboring atom, multicenter bonding can occur. For example, in the alyl radical
the central carbon atom's p, orbital is coupled to the p, orbitals on both neighboring atoms;
inlinear Liz, the central Li atom's 2s orbital interacts with the 2s orbitals on both terminal

Li atoms; in triangular Cug, the 2s orbitals on each Cu atom couple to each of the other two
atoms' 4s orbitals.

vii. Multicenter bonding that involves "linear" chains containing N atoms (e.g., asin
conjugated polyenes or in chains of Cu or Na atoms for which the valence orbitals on one
atom interact with those of its neighbors on both sides) gives rise to mo energy patternsin
which there are N/2 (if N iseven) or N/2 -1 non-degenerate bonding orbitals and the same
number of antibonding orbitals (if N isodd, thereis also a single non-bonding orbital).

viii. Multicenter bonding that involves "cyclic" chains of N atoms (e.g., asin cyclic
conjugated polyenes or in rings of Cu or Na atoms for which the valence orbitals on one
atom interact with those of its neighbors on both sides and the entire net forms a closed
cycle) givesriseto mo energy patterns in which there is alowest non-degenerate orbital and
then a progression of doubly degenerate orbitals. If N isodd, this progression includes (N-
1)/2 levels; if N is even, there are (N-2)/2 doubly degenerate levels and afinal non-
degenerate highest orbital. These patterns and those that appear in linear multicenter
bonding are summarized in the Figures shown below.
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iX. In extended systems such as solids, atom-based orbitals combine as above to form so-
called 'bands of molecular orbitals. These bands are continuous rather than discrete asin
the above cases involving small polyenes. The energy 'spread’ within a band depends on
the overlap among the atom-based orbitals that form the band; large overlap givesriseto a
large band width, while small overlap produces a narrow band. As one moves from the
bottom (i.e., the lower energy part) of a band to the top, the number of nodesin the
corresponding band orbital increases, as aresult of which its bonding nature decreases. In
the figure shown below, the bands of a metal such as Ni (with 3d, 4s, and 4p orbitals) is
illustrated. The d-orbital band is narrow because the 3d orbitals are small and hence do not
overlap appreciably; the 4s and 4p bands are wider because the larger 4s and 4p orbitals
overlap to agreater extent. The d-band issplitinto s, p, and d components corresponding
to the nature of the overlap interactions among the constituent atomic d orbitals. Likewise,



the p-band issplitintos and p components. The widths of the s components of each band
are larger than those of the p components because the corresponding s overlap interactions
are stronger. The intensities of the bands at energy E measure the densities of states at that
E. Thetotal integrated intensity under agiven band is a measure of the total number of
atomic orbitals that form the band.
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[1. Orbital Symmetry

Symmetry provides additional quantum numbers or labelsto use in describing the
mos. Each such quantum number further sub-divides the collection of all mosinto sets that

have vanishing Hamiltonian matrix elements among member s belonging to different sets.



Orhital interaction "topology" as discussed above plays a most- important role in
determining the orbital energy level patterns of amolecule. Symmetry also comesinto play
but in a different manner. Symmetry can be used to characterize the core, bonding, non-
bonding, and antibonding molecular orbitals. Much of this chapter is devoted to how this
can be carried out in a systematic manner. Once the various mos have been |abeled
according to symmetry, it may be possible to recognize additional degeneracies that may
not have been apparent on the basis of orbital-interaction considerations aone. Thus,
topology provides the basic energy ordering pattern and then symmetry enters to identify
additional degeneracies.

For example, the three NH bonding and three NH antibonding orbitalsin NH3,
when symmetry adapted within the Cgy point group, cluster into & and e mos as shown in
the Figure below. The N-atom localized non-bonding lone pair orbital and the N-atom 1s
core orbital also belong to a symmetry.

In a second example, the three CH bonds, three CH antibonds, CO bond and
antibond, and three O-atom non-bonding orbitals of the methoxy radical H3C-O a so cluster
into & and e orbitals as shown below. In these cases, point group symmetry allows one to
identify degeneraciesthat may not have been apparent from the structure of the orbital
interactions alone.
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The three resultant molecular orbital energies are, of course, identical to those
obtained without symmetry above. The three LCAO-MO coefficients, now expressing the
mos in terms of the symmetry adapted orbitals are Cjs = ( 0.707, 0.707, 0.0) for the
bonding orbital, (0.0, 0.0, 1.00) for the nonbonding orbital, and (0.707, -0.707, 0.0) for
the antibonding orbital. These coefficients, when combined with the symmetry adaptation
coefficients Cs given earlier, express the three mosin terms of the three aos asf j= SgCis
CsCa; the sum Sg Cis Cs5 givesthe LCAO-MO coefficients Cijz which, for example, for
the bonding orbital, are ( 0.7072, 0.707, 0.7072), in agreement with what was found
earlier without using symmetry.

The low energy orbitals of the H>O molecule can be used to illustrate the use of
symmetry within the primitive ao basisaswell asin terms of hybrid orbitals. The 1s orbital
on the Oxygen atom is clearly a nonbonding core orbital. The Oxygen 2s orbital and its
three 2p orbitals are of valence type, as are the two Hydrogen 1s orbitals. In the absence of
symmetry, these six valence orbitals would give rise to a 6x6 secular problem. By
combining the two Hydrogen 1s orbitals into 0.707(1s_ + 1sR) and 0.707(1s. - 1sR)
symmetry adapted orbitals (labeled a; and by within the Cp,, point group; see the Figure
below), and recognizing that the Oxygen 2s and 2p; orbitals belong to &g symmetry (the z
axisistaken as the C; rotation axis and the x axisis taken to be perpendicular to the plane
in which the three nuclei lie) while the 2py orbital is by and the 2p, orbital isby , allows the
6x6 problem to be decomposed into a 3x3 ( ap) secular problem, a2x2 ( by) secular
problem and a 1x1 ( by ) problem. These decompositions allow one to conclude that there
is one nonbonding by orbital (the Oxygen 2py orbital), bonding and antibonding by orbitals
( the O-H bond and antibond formed by the Oxygen 2py, orbital interacting with 0.707(1s.
- 1sR)), and, finaly, a set of bonding, nonbonding, and antibonding a; orbitals (the O-H
bond and antibond formed by the Oxygen 2s and 2p; orbitals interacting with 0.707(1s_. +
1sRr) and the nonbonding orbital formed by the Oxygen 2s and 2p; orbitals combining to
form the "lone pair" orbital directed along the z-axis away from the two Hydrogen atoms).
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Alternatively, to analyze the HoO molecule in terms of hybrid orbitals, onefirst
combines the Oxygen 2s, 2p;, 2px and 2py orbitals to form four sp3 hybrid orbitals. The
valence-shell electron-pair repulsion (VSEPR) model of chemical bonding (see R. J.
Gillespie and R. S. Nyholm, Quart. Rev. 11, 339 (1957) and R. J. Gillespie, J. Chem.
Educ. 40, 295 (1963)) directs oneto involve al of the Oxygen valence orbitalsin the
hybridization because four s-bond or nonbonding e ectron pairs need to be accommodated
about the Oxygen center; no p orbital interactions are involved, of course. Having formed
the four sp3 hybrid orbitals, one proceeds as with the primitive aos; one forms symmetry



adapted orbitals. In this case, the two Hydrogen 1s orbitals are combined exactly as above
to form 0.707(1s_ + 1sg) and 0.707(1s_ - 1sR). The two sp3 hybridswhich liein the
plane of theH and O nuclei ( 1abel them L and R) are combined to give symmetry adapted
hybrids: 0.707(L+R) and 0.707(L-R), which are of a; and by symmetry, respectively ( see
the Figure below). Thetwo sp3 hybridsthat lie above and below the plane of the three
nuclei (label them T and B) are a'so symmetry adapted to form 0.707(T+ B) and 0.707(T-
B), which are of & and by symmetry, respectively. Once again, one has broken the 6x6
secular problem into a 3x3 & block, a 2x2 by block and a 1x1 by block. Although the
resulting bonding, nonbonding and antibonding a; orbitals, the bonding and antibonding
b, orbitals and the nonbonding b; orbital are now viewed as formed from symmetry
adapted Hydrogen orbitals and four Oxygen sp3 orbitals, they are, of course, exactly the
samemolecular orbitals as were obtained earlier in terms of the symmetry adapted primitive
aos. The formation of hybrid orbitals was an intermediate step which could not alter the
final outcome.
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That no degenerate molecular orbitals arose in the above examplesis aresult of the
fact that the Cop, point group to which H>O and the allyl system belong (and certainly the



Cs subgroup which was used above in the alyl case) has no degenerate representations.
Molecules with higher symmetry such as NH3 , CHg4, and benzene have energetically
degenerate orbitals because their molecular point groups have degenerate representations.

B. Linear Molecules

Linear molecules belong to the axial rotation group. Their symmetry isintermediate
in complexity between nonlinear molecules and atoms.

For linear molecules, the symmetry of the electrostatic potential provided by the
nuclei and the other electronsis described by either the Cyy or Dy group. The essential
difference between these symmetry groups and the finite point groups which characterize
the non-linear molecules liesin the fact that the el ectrostatic potential which an electron feels
isinvariant to rotations of any amount about the molecular axis (i.e., V(g+dg) =V(g), for
any angle increment dg). This means that the operator Cyg which generates arotation of the
electron’'s azimuthal angle g by an amount dg about the molecular axis commutes with the
Hamiltonian [h, Cqg ] =0. Cgg can be written in terms of the quantum mechanical operator
Lz = -ih Y/9lgdescribing the orbital angular momentum of the el ectron about the molecular
(2) axis:

Cdg = exp(idg L k).

Because Cyg commutes with the Hamiltonian and Cqgg can be writtenintermsof L, L,
must commute with the Hamiltonian. As aresult, the molecular orbitalsf of alinear
molecule must be eigenfunctions of the z-component of angular momentum L

- /Mgf =mhf.
The electrostatic potentia is not invariant under rotations of the electron about the x or y
axes (those perpendicular to the molecular axis), so Lx and Ly do not commute with the
Hamiltonian. Therefore, only Lz provides a"good quantum number" in the sense that the
operator Lz commutes with the Hamiltonian.

In summary, the molecular orbitals of alinear molecule can be labeled by their m
guantum number, which plays the same role as the point group labels did for non-linear
polyatomic molecules, and which gives the eigenvalue of the angular momentum of the
orbital about the molecule's symmetry axis. Because the kinetic energy part of the



Hamiltonian contains (h2/2me r2) 12/9¢? , whereas the potential energy part is independent
of g, the energies of the molecular orbitals depend on the square of the m quantum
number. Thus, pairs of orbitalswith m=+ 1 are energetically degenerate; pairs with m=+
2 are degenerate, and so on. The absolute value of m, which iswhat the energy depends
on, iscalled thel quantum number. Molecular orbitalswith| =0 arecalled s orbitals;
thosewith| =1 arep orbitals, and thosewith| =2 ared orbitals.

Just asin the non-linear polyatomic-molecule case, the atomic orbitals which
condtitute a given molecular orbital must have the same symmetry as that of the molecular
orbital. Thismeansthat s,p, and d molecular orbitals are formed, viaLCAO-MO, from
m=0, m= % 1, and m= + 2 atomic orbitals, respectively. In the diatomic N> molecule, for
example, the core orbitals are of s symmetry as are the molecular orbitals formed from the
2s and 2p, atomic orbitals (or their hybrids) on each Nitrogen atom. The molecular orbitals
formed from the atomic 2p.1 =(2px- i 2py) and the 2p.1 =(2px + i 2py ) orbitals are of p
symmetry and havem =-1and +1.



For homonuclear diatomic molecules and other linear molecules which have a center
of symmetry, the inversion operation (in which an electron's coordinates are inverted
through the center of symmetry of the molecule) is aso asymmetry operation. Each
resultant molecular orbital can then also be labeled by a quantum number denoting its parity
with respect to inversion. The symbols g (for gerade or even) and u (for ungerade or odd)
are used for thislabel. Again for N2, the core orbitals are of sg and s, symmetry, and the
bonding and antibonding s orbitals formed from the 2s and 2ps orbitals on the two
Nitrogen atoms are of sg and s, symmetry.
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The bonding p molecular orbital pair (with m = +1 and -1) is of py Symmetry whereas the
corresponding antibonding orbital is of pg symmetry. Examples of such molecular orbital
symmetries are shown above.

The use of hybrid orbitals can beillustrated in the linear-molecul e case by
considering the N2 molecule. Because two p bonding and antibonding molecular orbital
pairs are involved in N2 (one with m = +1, one with m = -1), VSEPR theory guides one to
form sp hybrid orbitals from each of the Nitrogen atom's 2s and 2p, (which is also the 2p
orbital with m = 0) orbitals. Ignoring the core orbitals, which are of sg and s, symmetry as
noted above, one then symmetry adapts the four sp hybrids (two from each atom) to build
one s orbital involving a bonding interaction between two sp hybrids pointed toward one
another, an antibonding s, orbital involving the same pair of sp orbitals but coupled with
opposite signs, a nonbonding s g orbital composed of two sp hybrids pointed away from
the interatomic region combined with like sign, and a nonbonding s, orbital made of the
latter two sp hybrids combined with opposite signs. The two 2pyy, orbitals (m= +1 and -1)
on each Nitrogen atom are then symmetry adapted to produce a pair of bonding py, orbitals
(withm = +1 and -1) and a pair of antibonding pg orbitals (with m = +1 and -1). This
hybridization and symmetry adaptation thereby reduces the 8x8 secular problem (which
would be 10x10 if the core orbitals were included) into a 2x2 s g problem (one bonding and
one nonbonding), a2x2 s, problem (one bonding and one nonbonding), an identical pair
of 1x1 py problems (bonding), and an identical pair of 1x1 pg problems (antibonding).

Another example of the equivalence among various hybrid and atomic orbital points
of view is provided by the CO molecule. Using, for example, sp hybrid orbitals on C and
O, one obtains a picture in which there are: two core s orbitals corresponding to the O-atom
1sand C-atom 1s orbitals; one CO bonding, two non-bonding, and one CO antibonding
orbitals arising from the four sp hybrids; apair of bonding and a pair of antibonding p
orbitals formed from the two p orbitals on O and the two p orbitals on C. Alternatively,
using sp2 hybrids on both C and O, one obtains: the two core s orbitals as above; aCO
bonding and antibonding orbital pair formed from the sp? hybrids that are directed along
the CO bond; and asingle p bonding and antibonding p* orbital set. The remaining two
sp2 orbitals on C and the two on O can then be symmetry adapted by forming +
combinations within each pair to yield: an & non-bonding orbital (from the + combination)
on each of C and O directed away from the CO bond axis; and a py orbital on each of C and
O that can subsequently overlap to form the second p bonding and p* antibonding orbital
pair.

It should be clear from the above examples, that no matter what particular hybrid



orbitals one chooses to utilize in conceptualizing a molecul€'s orbital interactions,
symmetry ultimately returns to force one to form proper symmetry adapted combinations
which, in turn, renders the various points of view equivalent. In the above examplesand in
several earlier examples, symmetry adaptation of, for example, sp? orbital pairs (e.g., sp. 2
+ spr2) generated orbitals of pure spatial symmetry. In fact, symmetry combining hybrid
orbitals in this manner amounts to forming other hybrid orbitals. For example, the above +
combinations of sp2 hybrids directed to the left (L) and right (R) of some bond axis
generate anew sp hybrid directed along the bond axis but opposite to the sp? hybrid used
to form the bond and a non-hybridized p orbital directed along the L-to-R direction. In the
CO example, these combinations of sp2 hybrids on O and C produce sp hybrids on O and
C and pp orbitalson O and C.

C. Atoms

Atoms belong to the full rotation symmetry group; this makes their symmetry
analysis the most complex to treat.

In moving from linear molecules to atoms, additional symmetry elements arise. In
particular, the potential field experienced by an electron in an orbital becomes invariant to
rotations of arbitrary amounts about the x, y, and z axes; in the linear-molecule casg, it is
invariant only to rotations of the electron's position about the molecule's symmetry axis
(the z axis). These invariances are, of course, caused by the spherical symmetry of the
potentia of any atom. This additional symmetry of the potential causes the Hamiltonian to
commute with al three components of the electron’'s angular momentum: [Ly , H] =0, [Ly ,
H] =0, and [L z, H] =0. It is straightforward to show that H also commutes with the
operator L2=Ly2 + Ly2 + L2, defined as the sum of the squares of the three individual
components of the angular momentum. Because Ly, Ly, and L, do not commute with one
another, orbitals which are eigenfunctions of H cannot be simultaneous eigenfunctions of
all three angular momentum operators. Because Ly, Ly, and L, do commutewith L2,
orbitals can be found which are eigenfunctions of H, of L2 and of any one component of L ;
it is convention to select L, as the operator which, along with H and L2 , form amutually
commutative operator set of which the orbitals are smultaneous eigenfunctions.

So, for any atom, the orbitals can be labeled by both | and m quantum numbers,
which play the role that point group labels did for non-linear moleculesand | did for linear
molecules. Because (i) the kinetic energy operator in the electronic Hamiltonian explicitly
contains L2/2mg2 , (ii) the Hamiltonian does not contain additional L, , Ly, or Ly factors,



and (iii) the potential energy part of the Hamiltonian is spherically symmetric (and
commutes with L2 and L), the energies of atomic orbitals depend upon the | quantum
number and are independent of the m quantum number. Thisis the source of the 21+1- fold
degeneracy of atomic orbitals.

The angular part of the atomic orbitalsis described in terms of the spherical
harmonics Y| m ; that is, each atomic orbital f can be expressed as

fnlm=Yim(d ] ) Rny ().

The explicit solutions for the Y| m and for the radial wavefunctions R | are givenin
Appendix B. Thevariablesr,q,j givethe position of the electron in the orbital in
spherical coordinates. These angular functions are, as discussed earlier, related to the
cartesian (i.e., spatially oriented) orbitals by simple transformations; for example, the
orbitals with [=2 and m=2,1,0,-1,-2 can be expressed in terms of the dxy, dxz, dyz, dxx-yy
and d; orbitals. Either set of orbitalsis acceptable in the sense that each orbital isan
eigenfunction of H; transformations within a degenerate set of orbitals do not destroy the
Hamiltonian- eigenfunction feature. The orbital set labeled with | and m quantum numbers
ismost useful when one is dealing with isolated atoms (which have spherical symmetry),
because m isthen avalid symmetry label, or with an atom in aloca environment whichis
axially symmetric (e.g., in alinear molecule) where the m quantum number remains a
useful symmetry label. The cartesian orbitals are preferred for describing an atom in alocal
environment which displays lower than axial symmetry (e.g., an atom interacting with a
diatomic molecule in Cpy Symmetry).

Theradia part of the orbital Ry | (r) aswell asthe orbital energy e, depend on |
because the Hamiltonian itsalf contains I(1+1)Yh2/2mgr2; they are independent of m because
the Hamiltonian has no m-dependence. For bound orbitals, R |(r) decays exponentially for
large r (as exp(-2rC2ey | )), and for unbound (scattering) orbitals, it is oscillatory at large r
with an oscillation period related to the deBroglie wavel ength of the electron. In R (1)
there are (n-1-1) radia nodes lying between r=0 and r=¥ . These nodes provide differential
stabilization of low-I orbitals over high-I orbitals of the same principal quantum number n.
That is, penetration of outer shellsis greater for low-| orbitals because they have more
radial nodes; as aresult, they have larger amplitude near the atomic nucleus and thus
experience enhanced attraction to the positive nuclear charge. The average size (e.g.,
average value of r; <r>=R?, r r2 dr) of an orbital depends strongly on n, weakly on |
and isindependent of m; it also depends strongly on the nuclear charge and on the potential
produced by the other electrons. This potential is often characterized qualitatively in terms



of an effective nuclear charge Zgf which isthe true nuclear charge of the atom Z minus a
screening component Zg: which describes the repulsive effect of the electron density lying

radially inside the electron under study. Because, for agiven n, low-| orbitals penetrate
closer to the nucleus than do high-I orbitals, they have higher Zg+ values (i.e., smaller Zg

values) and correspondingly smaller average sizes and larger binding energies.






Chapter 6

Along "Reaction Paths’, Orbitals Can be Connected One-to-One According to Their
Symmetries and Energies. Thisisthe Origin of the Woodwar d-Hoffmann Rules

|. Reduction in Symmetry

As fragments are brought together to form a larger molecule, the symmetry of the
nuclear framework (recall the symmetry of the coulombic potential experienced by electrons
depends on the locations of the nuclel) changes. However, in some cases, certain
symmetry elements persist throughout the path connecting the fragments and the product
molecule. These preserved symmetry elements can be used to label the orbitals throughout
the 'reaction'.

The point-group, axial- and full-rotation group symmetries which arise in non-
linear molecules, linear molecules, and atoms, respectively, are seen to provide quantum
numbers or symmetry labels which can be used to characterize the orbitals appropriate for
each such species. In aphysical event such as interaction with an external electric or
magnetic field or a chemical process such as collision or reaction with another species, the
atom or molecule can experience a change in environment which causes the el ectrostatic
potentia which its orbitals experience to be of lower symmetry than that of the isolated
atom or molecule. For example, when an atom interacts with another atom to form a
diatomic molecule or smply to exchange energy during a collision, each atom's
environment changes from being spherically symmetric to being axialy symmetric. When
the formal dehyde mol ecul e undergoes unimol ecular decomposition to produce CO + Ha
along a path that preserves Cp, symmetry, the orbitals of the CO moiety evolve from Cp,
symmetry to axial symmetry.

It isimportant, therefore to be able to label the orbitals of atoms, linear, and non-
linear moleculesin terms of their full symmetries as well in terms of the groups appropriate
to lower-symmetry situations. This can be done by knowing how the representations of a
higher symmetry group decompose into representations of alower group. For example, the
Y| m functions appropriate for spherical symmetry, which belong to a2l+1 fold degenerate
set in this higher symmetry, decompose into doubly degenerate pairs of functions Y|, Y| -
I; Yil-1, Yi-1+1. €tc, plusasingle non-degenerate function Y| o , in axial symmetry.
Moreover, because L2 no longer commutes with the Hamiltonian whereas L, does, orbitals
with different |-values but the same m-values can be coupled. Asthe N> moleculeisformed
from two N atoms, the 2s and 2p, orbitals, both of which belong to the same (s) symmetry
in the axid rotation group but which are of different symmetry in the isolated-atom



spherical symmetry, can mix to form the sg bonding orbital, the s, antibonding, aswell as
thesg and s, nonbonding lone-pair orbitals. The fact that 2s and 2p have different |-values
no longer uncouples these orhitals asit did for the isolated atoms, because | isno longer a
"good" quantum number.

Another example of reduced symmetry is provided by the changes that occur as
H20 fragmentsinto OH and H. The s bonding orbitals (a; and by) and in-plane lone pair
(&) and thes™ antibonding (&, and by) of H2O become a orbitals (see the Figure below);
the out-of-plane by lone pair orbital becomes a” (in Appendix IV of Electronic Spectraand

Electronic Structureof Polyatomic Molecules, G. Herzberg, Van Nostrand Reinhold Co.,
New York, N.Y. (1966) tables are given which alow one to determine how particular
symmetries of ahigher group evolve into symmetries of alower group).

ShoX 4 -

a; s bonding a; s* antibonding
orbital orbital
b, s bonding b, s* antibonding
orbital orbital

To further illustrate these points dealing with orbital symmetry, consider the
insertion of CO into Hy along a path which preserves Cy, symmetry. Astheinsertion
occurs, the degenerate p bonding orbitals of CO become by and by orbitals. The
antibonding p* orbitals of CO also become by and by. The Sg bonding orbital of H>
becomes a; , and the s, antibonding Hy orbital becomes by. The orbitals of the reactant



H2CO are energy-ordered and |abeled according to Cp, symmetry in the Figure shown
below as are the orbitals of the product H, + CO.
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H,CO =—>H, + CO Orbital Correlation Diagram in C,,, Symmetry

When these orbitals are connected according to their symmetries as shown above,
one reactant orbital to one product orbita starting with the low-energy orbitals and working
to increasing energy, an orbital correlation diagram (OCD) is formed. These diagrams play
essential rolesin analyzing whether reactions will have symmetry-imposed energy barriers
on their potential energy surfaces along the reaction path considered in the symmetry
analysis. The essence of thisanalysis, which is covered in detail in Chapter 12, can be
understood by noticing that the sixteen electrons of ground-state HoCO do not occupy their
orbitals with the same occupancy pattern, symmetry-by-symmetry, as do the sixteen
electrons of ground-state Hy + CO. In particular, HoCO places a pair of electronsin the
second by orbital while H> + CO does not; on the other hand, Ho + CO places two
dectronsin the sixth a; orbital while HoCO does not. The mismatch of the orbitals near the
5ay, 6a;, and 2by orbitals is the source of the mismatch in the electronic configurations of
the ground-states of HoCO and Hy + CO. These mismatches give rise, as shown in



Chapter 12, to symmetry-caused energy barriers on the HoCO ==> Hj + CO reaction
potential energy surface.

[1. Orbital Correlation Diagrams

Connecting the energy-ordered orbitals of reactants to those of products according
to symmetry elements that are preserved throughout the reaction produces an orbital
correlation diagram.

In each of the examples cited above, symmetry reduction occurred as a molecule or
atom approached and interacted with another species. The "path” aong which this approach
was thought to occur was characterized by symmetry in the sense that it preserved certain
symmetry elements while destroying others. For example, the collision of two Nitrogen
atoms to produce N2 clearly occursin away which destroys spherical symmetry but
preserves axial symmetry. In the other example used above, the formal dehyde molecule
was postul ated to decompose along a path which preserves Cp, symmetry while destroying
the axial symmetries of CO and Ho. The actual decomposition of formal dehyde may occur
along some other path, but if it were to occur along the proposed path, then the symmetry
analysis presented above would be useful.

The symmetry reduction analysis outlined above alows one to see new orbital
interactions that arise (e.g., the 2s and 2p; interactionsin the N + N ==> N example) as
the interaction increases. It also alows one to construct orbital correlation diagrams
(OCD's) inwhich the orbitals of the "reactants’ and "products” are energy ordered and
labeled by the symmetries which are preserved throughout the "path”, and the orbitals are
then correlated by drawing lines connecting the orbitals of a given symmetry, one-by-one
in increasing energy, from the reactants side of the diagram to the products side. As noted
above, such orbital correlation diagrams play a central role in using symmetry to predict
whether photochemical and thermal chemical reactionswill experience activation barriers
along proposed reaction paths (this subject is treated in Chapter 12).

To again illustrate the construction of an OCD, consider the p orbitals of 1,3-
butadiene as the molecule undergoes disrotatory closing (notice that thisiswhere a
particular path is postulated; the actual reaction may or may not occur along such a path) to
form cyclobutene. Along this path, the plane of symmetry which bisectsand is
perpendicular to the Cp-C3 bond is preserved, so the orbitals of the reactant and product are
labeled as being even-e or odd-o under reflection through this plane. It is not proper to label
the orbitals with respect to their symmetry under the plane containing the four C atoms;



although this plane isindeed a symmetry operation for the reactants and products, it does
not remain avalid symmetry throughout the reaction path.
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The four p orbitals of 1,3-butadiene are of the following symmetries under the
preserved plane (see the orbitalsin the Figure above): p1 =€, p2 =0, p3 =€, pa4=0. Thep
andp® and's and s™ orbitals of cyclobutane which evolve from the four active orbitals of
the 1,3-butadiene are of the following symmetry and energy order:s = e, p=¢, p* =0, s”
= 0. Connecting these orbitals by symmetry, starting with the lowest energy orbital and
going through the highest energy orbital, gives the following OCD:

S
/
e
S

The fact that the lowest two orbitals of the reactants, which are those occupied by the four
p electrons of the reactant, do not correlate to the lowest two orbitals of the products,
which are the orbitals occupied by thetwo s and two p electrons of the products, will be
shown later in Chapter 12 to be the origin of the activation barrier for the thermal
disrotatory rearrangement (in which the four active e ectrons occupy these lowest two
orbitals) of 1,3-butadiene to produce cyclobutene.

If the reactants could be prepared, for example by photolysis, in an excited state
having orbital occupancy p12p2Lp3t, then reaction along the path considered would not
have any symmetry-imposed barrier because this singly excited configuration correlatesto a

singly-excited configuration s2plp* 1 of the products. The fact that the reactant and product
configurations are of equivalent excitation level causes there to be no symmetry constraints



on the photochemically induced reaction of 1,3-butadiene to produce cyclobutene. In
contrast, the thermal reaction considered first above has a symmetry-imposed barrier
because the orbital occupancy is forced to rearrange (by the occupancy of two electrons)
from the ground-state wavefunction of the reactant to smoothly evolveinto that of the
product.

It should be stressed that athough these symmetry considerations may allow one to
anticipate barriers on reaction potential energy surfaces, they have nothing to do with the
thermodynamic energy differences of such reactions. Symmetry says whether there will be
symmetry-imposed barriers above and beyond any thermodynamic energy differences. The
enthalpies of formation of reactants and products contain the information about the
reaction's overall energy balance.

As another example of an OCD, consider the N + N ==> N2 recombination reaction
mentioned above. The orbitals of the atoms must first be labeled according to the axial
rotation group (including the inversion operation because this is a homonuclear molecule).
The core 1s orbitals are symmetry adapted to produce 1sg and 1s, orbitals (the number 1is
used to indicate that these are the lowest energy orbitals of their respective symmetries); the
2s orhital's generate 2s g and 2s orbitals; the 2p orbitals combineto yield 3sg | apair of
1py orbitals, apair of 1pg orbitals, and the 3s, orbital, whose bonding, nonbonding, and
antibonding nature was detailed earlier. In the two separated Nitrogen atoms, the two
orbitals derived from the 2s atomic orbitals are degenerate, and the six orbitals derived from
the Nitrogen atoms 2p orbitals are degenerate. At the equilibrium geometry of the N2
molecule, these degeneracies are lifted, Only the degeneracies of the 1py and 1pg orbitals,
which are dictated by the degeneracy of +m and -m orbitals within the axial rotation group,
remain.

As one proceeds inward past the equilibrium bond length of N2, toward the united-
atom limit in which the two Nitrogen nuclei are fused to produce a Silicon nucleus, the
energy ordering of the orbitals changes. Labeling the orbitals of the Silicon atom according
to the axial rotation group, onefindsthe 1sissq, the 2sissg | the 2p orbitalsare s, and
Pu,the 3sorhita issg, the 3p orhitalsare s, and py, and the 3d orhitalsaresg, pg,
and dg. The following OCD is obtained when one connects the orbitals of the two separated
Nitrogen atoms (properly symmetry adapted) to those of the N, molecule and eventualy to
those of the Silicon atom.
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Thefact that the separated-atom and united-atom limits involve several crossingsin the
OCD can be used to explain barriersin the potential energy curves of such diatomic
molecules which occur at short internuclear distances. It should be noted that the Silicon

atom's 3p orbitals of py symmetry and its 3d orbitals of sg and dg symmetry correlate with

higher energy orbitals of N2 not with the valence orbitals of this molecule, and that the 3s,
antibonding orbital of N2 correlates with a higher energy orbital of Silicon (in particular, its
4p orbital).



Chapter 7
The Most Elementary Molecular Orbital Models Contain Symmetry, Nodal Pattern, and
Approximate Energy Information

I. The LCAO-MO Expansion and the Orbital-Level Schrodinger Equation

In the smplest picture of chemical bonding, the valence molecular orbitalsf; are
constructed as linear combinations of vaence atomic orbitals ¢ maccording to the LCAO-
MO formula

fi=SmCimCm

The core electrons are not explicitly included in such atreatment, although their effects are
felt through an el ectrostatic potential
V that has the following properties:

i. V contains contributions from all of the nuclei in the molecule exerting coulombic
attractions on the electron, as well as coulombic repulsions and exchange interactions
exerted by the other electrons on this electron;

ii. Asaresult of the (assumed) cancellation of attractions from distant nuclel and
repulsions from the electron clouds (i.e., the core, lone-pair, and valence orbitals) that
surround these distant nuclei, the effect of V on any particular mo fj depends primarily on
the atomic charges and local bond polarities of the atoms over which f; isdelocalized.

Asaresult of these assumptions, qualitative molecular orbital models can be
developed in which one assumes that each mo f | obeys a one-electron Schrodinger

equation
hfi=gfj.

Here the orbital-level hamiltonian h contains the kinetic energy of motion of the electron
and the potential V mentioned above:

[-h2/2mel<|2+V]fi:qfi.



Expanding the mo f j in the LCAO-MO manner, substituting this expansion into the above
Schrédinger equation, multiplying on the left by ¢*p, and integrating over the coordinates
of the electron generates the following orbital-level eigenvalue problem:

Sm<cnl-R22meN2 + Ve Cim= & Sm<cniCn Cim

If the constituent atomic orbitals{c} have been orthonormalized as discussed earlier in
this chapter, the overlap integrals <cn|c > reduce to dmn.

[1. Determining the Effective Potential V

In the most elementary models of orbital structure, the quantities that explicitly
define the potential V are not computed from first principles asthey arein so-called ab initio
methods (see Section 6). Rather, either experimental data or results of ab initio
calculations are used to determine the parameters in terms of which V is expressed. The
resulting empirical or semi-empirical methods discussed below differ in the sophistication
used to include electron-electron interactions as well asin the manner experimental data or
ab initio computational results are used to specify V.

If experimental datais used to parameterize a semi-empirical model, then the model
should not be extended beyond the level at which it has been parameterized. For example,
experimental bond energies, excitation energies, and ionization energies may be used to
determine molecular orbital energieswhich, in turn, are summed to compute total energies.
In such a parameterization it would be incorrect to subsequently use these mosto form a
wavefunction, asin Sections 3 and 6, that goes beyond the ssmple 'product of orbitals
description. To do so would be inconsistent because the more sophisticated wavefunction
would duplicate what using the experimental data (which already contains mother nature's
electronic correlations) to determine the parameters had accomplished.

Alternatively, if results of ab initio theory at the single-configuration orbital-product
wavefunction level are used to define the parameters of a semi-empirical mode, it would
then be proper to use the semi-empirical orbitalsin a subsequent higher-level treatment of
electronic structure asdone in Section 6.

A. The Hickd Parameterization of V

In the most smplified embodiment of the above orbital-level model, the following
additional approximations are introduced:



1. Thediagonal values <c - 2 /2me N2 + Vic >, which are usually denoted a
are taken to be equal to the energy of an electron in the atomic orbital cyand, as such, are
evauated in terms of atomic ionization energies (IP's) and electron affinities (EA'S):

<cnl-H2meN2+V L = -IP,
for atomic orbitals that are occupied in the atom, and
<cpl-F2meN2+V Enp = -EAm

for atomic orbitals that are not occupied in the atom.
These approximations assume that contributionsin V arising from coulombic
attraction to nuclei other than the one on which ¢y islocated, and repulsions from the core,

lone-pair, and valence electron clouds surrounding these other nuclel cancel to an extent

that
<cnlV | ¢y contains only potentials from the atom on which ¢y, Sits.

It should be noted that the IP's and EA's of valence-state orbitals are not identical
to the experimentally measured IP's and EA's of the corresponding atom, but can be
obtained from such information. For example, the 2p valence-state |P (V SIP) for a Carbon
atom isthe energy difference associated with the hypothetical process

C(1s22s2py2py2p;) ==> C*(1s2252px2py) .
If the energy differences for the "promotion” of C

C(1s22s22py2py) ==> C(152252py2py2p;) ; DEC
and for the promotion of C*

C*(1s22s22py) ==> C*(1s22s2px2py) ; DEC+
are known, the desired VSIP is given by:

IPap = IPc + DEc+ - DEC .



The EA of the 2p orbital is obtained from the
C(1s22s22py2py) ==> C~(1522522px2py2p;)

energy gap, which means that EAzpZ = EAC . Some common |P's of valence 2p orbitalsin
eV areasfollows: C (11.16), N (14.12), N* (28.71), O (17.70), O* (31.42), F* (37.28).

2. The off-diagona elements <c |- h22me N2 + V [c are
taken as zero if ¢y, and ¢, belong to the same atom because the atomic orbitals are

assumed to have been constructed to diagonalize the one-electron hamiltonian appropriate to
an electron moving in that atom. They are set equal to a parameter denoted b if cmand
Cn reside on neighboring atoms that are chemically bonded. If cand ¢y, reside on atoms

that are not bonded neighbors, then the off-diagonal matrix element is set equal to zero.

3. The geometry dependence of the by parameters is often approximated by
assuming that bmn is proportional to the overlap Sy between the corresponding atomic
orbitals:

bmn = bomn Smn .

Here b°myn isaconstant (having energy units) characteristic of the bonding interaction
betweency, and cp; itsvaueisusualy determined by forcing the molecular orbital
energies obtained from such a qualitative orbital treatment to yield experimentally correct
ionization potentials, bond dissociation energies, or e ectronic transition energies.

The particular approach described thus far forms the basis of the so-called Hiickel
model. Itsimplementation requires knowledge of the atomic amand b0y, values, which
are eventually expressed in terms of experimental data, as well as a means of calculating the
geometry dependence of thebmn 's (e.9., some method for computing overlap matrices

Smn )-
B. The Extended Hiickdl Method

It iswell known that bonding and antibonding orbitals are formed when a pair of
atomic orbitals from neighboring atoms interact. The energy splitting between the bonding



and antibonding orbitals depends on the overlap between the pair of atomic orbitals. Also,
the energy of the antibonding orbital lies higher above the arithmetic mean Ege= Ea + Ep
of the energies of the constituent atomic orbitals (Ea and Eg) than the bonding orbital lies
below Egyve . If overlap isignored, asin conventional Hiickel theory (except in
parameterizing the geometry dependence of bmn), the differential destabilization of
antibonding orbitals compared to stabilization of bonding orbitals can not be accounted for.

By parameterizing the off-diagonal Hamiltonian matrix elementsin the following
overlap-dependent manner:

hn'm: <Cn|‘h2/2rne NZ +V |Cn'P =05K (hmm+ hn’n) Smn ,

and explicitly treating the overlaps among the constituent atomic orbitals{cn} in solving
the orbital-level Schrodinger equation

Sm<cnl-H2/2meN2 + Vich> Cim= & Sm<cnCn™ Cim

Hoffmann introduced the so-called extended Hiickel method. He found that a value for K=
1.75 gave optimal results when using Slater-type orbitals as abasis (and for calculating the
Smn)- The diagonal hyymelements are given, asin the conventional Hiickel method, in

terms of valence-state IP's and EA's. Cusachs |ater proposed a variant of this
parameterization of the off-diagona €lements:

hn,m= 0.5 K (hmm+* hn,n) Smn (2-|Smn))-

For first- and second-row atoms, the 1sor (2s, 2p) or (3s,3p, 3d) valence-state ionization
energies (ams), the number of valence electrons (#Elec.) aswell asthe orbital exponents
(s, ep and &j) of Slater-type orbitals used to calculate the overlap matrix elements Syn
corresponding are given below.



Atom # Elec. 65=€p & agevV) apev) aqev)

H 1 13 -13.6

Li 1 0.650 -54 -35

Be 2 0.975 -10.0 -6.0

B 3 1.300 -15.2 -85

C 4 1.625 -21.4 -11.4

N 5 1.950 -26.0 -13.4

O 6 2.275 -32.3 -14.8

F 7 2.425 -40.0 -18.1

Na 1 0.733 -5.1 -3.0
Mg 2 0.950 -9.0 -4.5

Al 3 1.167 -12.3 -6.5

S 4 1.383 1.383 -17.3 -9.2 -6.0
P 5 1.600 1.400 -18.6 -14.0 -7.0
S 6 1.817 1.500 -20.0 -13.3 -8.0
cl 7 2.033 2.033 -30.0 -15.0 -9.0

In the Hiuckel or extended Hiickel methods no explicit reference is made to electron-
electron interactions although such contributions are absorbed into the V potential, and

henceinto the amand by parameters of Hiickel theory or the hmmand hyn parameters of
extended Hickel theory. As electron density flows from one atom to another (due to
electronegativity differences), the electron-electron repulsionsin various atomic orbitals
changes. To account for such charge-density-dependent coulombic energies, one must use
an approach that includes explicit reference to inter-orbital coulomb and exchange
interactions. There exists alarge family of semi-empirical methods that permit explicit
treatment of electronic interactions, some of the more commonly used approaches are

discussed in Appendix F.




Section 3 Electronic Configurations, Term Symbols, and
States

Introductory Remar ks- The Orbital, Configuration, and State Pictures of Electronic
Structure

One of the goals of quantum chemistry isto allow practicing chemists to use
knowl edge of the electronic states of fragments (atoms, radicals, ions, or molecules) to
predict and understand the behavior (i.e., electronic energy levels, geometries, and
reactivities) of larger molecules. In the preceding Section, orbital correlation diagrams were
introduced to connect the orbitals of the fragments along a 'reaction path’ leading to the
orbitals of the products. In this Section, analogous connections are made among the
fragment and product electronic states, again labeled by appropriate symmetries. To realize
such connections, one must first write down N-electron wavefunctions that possess the
appropriate symmetry; this task requires combining symmetries of the occupied orbitals to
obtain the symmetries of the resulting states.

Chapter 8

Electrons are Placed into Orbitals to Form Configurations, Each of Which Can be Labeled
by its Symmetry. The Configurations May "Interact” Strongly if They Have Smilar
Energies.

I. Orbitals Do Not Provide the Complete Picture; Their Occupancy By the N Electrons
Must Be Specified

Knowing the orbitals of a particular species provides one information about the
sizes, shapes, directions, symmetries, and energies of those regions of space that are
available to the electrons (i.e., the complete set of orbitals that are available). This
knowledge does not determine into which orbital s the electrons are placed. It is by
describing the electronic configurations (i.e., orbital occupancies such as 1s22s22p2 or
1s22522p13sl) appropriate to the energy range under study that one focuses on how the
electrons occupy the orbitals. Moreover, a given configuration may give rise to several
energy levels whose energies differ by chemically important amounts. for example, the
1s22s522p2 configuration of the Carbon atom produces nine degenerate 3P states, five
degenerate 1D states, and asingle 1S state. These three energy levels differ in energy by
1.5eV and 1.2 eV, respectively.



[1. Even N-Electron Configurations Are Not Mother Nature's True Energy States

Moreover, even single-configuration descriptions of atomic and molecular structure
(e.g., 1s22s22p? for the Oxygen atom) do not provide fully correct or highly accurate
representations of the respective el ectronic wavefunctions. Aswill be shown in this
Section and in more detail in Section 6, the picture of N electrons occupying orbitals to
form aconfiguration is based on a so-called "mean field" description of the coulomb
interactions among electrons. In such models, an electron at r is viewed as interacting with
an "averaged" charge density arising from the N-1 remaining electrons:

Vimean fied = 81 _4(r") €2/f-r'| dr’ .

Herer ') represents the probability density for finding electronsat r', and e2/[r-r'| is

n-1(
the mutual coulomb repulsion between electron density at r and r'. Analogous mean-field
models arise in many areas of chemistry and physics, including electrolyte theory (e.g., the
Debye-Huickel theory), statistical mechanics of dense gases (e.g., where the Mayer-Mayer
cluster expansion is used to improve the ideal-gas mean field model), and chemical
dynamics (e.g., the vibrationally averaged potential of interaction).

In each case, the mean-field model forms only a starting point from which one
attempts to build afully correct theory by effecting systematic corrections (e.g., using
perturbation theory) to the mean-field model. The ultimate value of any particular mean-
field model isrelated to its accuracy in describing experimental phenomena. If predictions
of the mean-field model are far from the experimental observations, then higher-order
corrections (which are usually difficult to implement) must be employed to improve its
predictions. In such a case, oneis motivated to search for a better model to use as a starting
point so that lower-order perturbative (or other) corrections can be used to achieve chemical
accuracy (e.g., = 1 kcal/mole).

In electronic structure theory, the single-configuration picture (e.g., the 1s22s22p#
description of the Oxygen atom) forms the mean-field starting point; the configuration
interaction (CI) or perturbation theory techniques are then used to systematically improve
thislevel of description.

The single-configuration mean-field theories of electronic structure neglect
correlations among the electrons. That is, in expressing the interaction of an electron at r



with the N-1 other electrons, they use a probability density r N_1(r ") that isindependent of

the fact that another electronresidesat r. In fact, the so-called conditional probability
density for finding one of N-1 electronsat r', given that an electronisat r certainly
dependsonr. Asaresult, the mean-field coulomb potential felt by a 2py orbital's electron
inthe 1522522px2py single-configuration description of the Carbon atomis:

Vimean fidd = 28 [1(r )R €/fr-r'| dr’
+2812(r )R e/f-r'| dr’

+82p,(r)P /r-r'| dr' .

In this example, the density r ") isthe sum of the charge densities of the orbitals

N-1("
occupied by the five other electrons
2|1s(r")2 + 2 25(r ") + [2py(r )2, and is not dependent on the fact that an electron

residesatr.

[Il. Mean-Field Models

The Mean-Field Modédl, Which Forms the Basis of Chemists' Pictures of Electronic
Sructure of Molecules, Is Not Very Accurate

The magnitude and "shape” of such amean-field potential is shown below for the
Beryllium atom. In thisfigure, the nucleusis at the origin, and one electron is placed at a
distance from the nucleus equal to the maximum of the 1s orbital's radial probability
density (near 0.13 A). Theradial coordinate of the second is plotted as the abscissa; this
second electron is arbitrarily constrained to lie on the line connecting the nucleus and the
first electron (along this direction, the inter-electronic interactions are largest). On the
ordinate, there are two quantities plotted: (i) the Self-Consistent Field (SCF) mean-field

potential é|1s(r')|2 e/r-r'| dr' , and (ii) the so-called Fluctuation potential (F), whichis
the true coulombic e2/[r-r' | interaction potential minus the SCF potential .
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Asafunction of the inter-electron distance, the fluctuation potential decaysto zero
more rapidly than does the SCF potential. For this reason, approachesin which F is treated
as a perturbation and corrections to the mean-field picture are computed perturbatively
might be expected to be rapidly convergent (whenever perturbations describing long-range

interactions arise, convergence of perturbation theory is expected to be slow or not

successful). However, the magnitude of F is quite large and remains so over an appreciable
range of inter-electron distances.
The resultant corrections to the SCF picture are therefore quite large when measured
in kcal/mole. For example, the differences DE between the true (state-of-the-art quantum
chemical calculation) energies of interaction among the four electronsin Be and the SCF
mean-field estimates of these interactions are given in the table shown below in eV (recall
that 1 eV = 23.06 kcal/mole).

Orb. Pair

1salsb

1sa?sa

1sa2sb

1sh2sa

1sb2sb

2sa2sb

DEineV

1.126

0.022

0.058

0.058

0.022

1.234

To provide further insight why the SCF mean-field model in electronic structure
theory is of limited accuracy, it can be noted that the average value of the kinetic energy
plus the attraction to the Be nucleus plus the SCF interaction potentia for one of the 2s
orbitals of Be with the three remaining electrons in the 1s22s2 configuration is:

< 29 -h22me N2 - 4€2/r + Vscop 25> = -15.4 €V;




the anal ogous quantity for the 2p orbital in the 1522s2p configuration is:
< 2p| -h212me N2 - 4€2ir + V'scF [2p> = -12.28 €V

the corresponding value for the 1s orbital is (negative and) of even larger magnitude. The
SCF average coulomb interaction between the two 2s orbitals of 1s22s? Beis:

BJ2s(r) |2s(r )R e2/r-r'| dr dr' =5.95¢eV.

This data clearly shows that corrections to the SCF model (see the above table)
represent significant fractions of the inter-electron interaction energies (e.g., 1.234 eV
compared to 5.95- 1.234 = 4.72 eV for the two 2s electrons of Be), and that the inter-
electron interaction energies, in turn, constitute significant fractions of the total energy of
each orbital (e.g., 5.95-1.234 eV = 4.72 €V out of -15.4 eV for a 2s orbital of Be).

Thetask of describing the electronic states of atoms and molecules from first
principles and in achemically accurate manner (£ 1 kcal/mole) is clearly quite formidable.
The orbital picture and its accompanying SCF potential take care of "most” of the
interactions among the N electrons (which interact vialong-range coulomb forces and
whose dynamics requires the application of quantum physics and permutational symmetry).
However, the residual fluctuation potential, although of shorter range than the bare
coulomb potential, islarge enough to cause significant corrections to the mean-field picture.
This, in turn, necessitates the use of more sophisticated and computationally taxing
techniques (e.g., high order perturbation theory or large variational expansion spaces) to
reach the desired chemical accuracy.

Mean-field models are obvioudly approximations whose accuracy must be
determined so scientists can know to what degree they can be "trusted". For electronic
structures of atoms and molecules, they require quite substantia corrections to bring them
into line with experimental fact. Electrons in atoms and molecules undergo dynamical
motions in which their coulomb repulsions cause them to "avoid” one another at every
instant of time, not only in the average-repulsion manner that the mean-field models
embody. The inclusion of instantaneous spatial correlations among electronsis necessary to
achieve amore accurate description of atomic and molecular electronic structure.

IV. Configuration Interaction (Cl) Describes the Correct Electronic States



The most commonly employed tool for introducing such spatia correlations into
electronic wavefunctions is called configuration interaction (Cl); this approach is described
briefly later in this Section and in considerable detail in Section 6.

Briefly, one employs the (in principle, complete as shown by P. O. Loéwdin, Rev.
Mod. Phys. 32, 328 (1960)) set of N-electron configurationsthat (i) can be formed by
placing the N electrons into orbitals of the atom or molecule under study, and that (ii)
possess the spatial, spin, and angular momentum symmetry of the electronic state of
interest. This set of functionsisthen used, in alinear variationa function, to achieve, via
the CI technique, a more accurate and dynamically correct description of the electronic
structure of that state. For example, to describe the ground 1S state of the Be atom, the
1s22s2 configuration (which yields the mean-field description) is augmented by including
other configurations such as 1s23s2 , 1s22p2, 1s23p2, 1522s3s, 352252, 2p22s? , etc., all
of which have overall 1S spin and angular momentum symmetry. The excited 1S states are
also combinations of all such configurations. Of course, the ground-state wavefunction is
dominated by the |1s22s?| and excited states contain dominant contributions from |1s?2s3s|,
etc. configurations. The resultant Cl wavefunctions are formed as shown in Section 6 as
linear combinations of all such configurations.

To clarify the physical significance of mixing such configurations, it is useful to
consider what are found to be the two most important such configurations for the ground
1S state of the Be atom:

Y @Cq [1s%25?] - Cy [|1522py?| +]1522py2?| +172pA ).
As proven in Chapter 13.111, this two-configuration description of Be's electronic structure

is equivalent to a description is which two electrons reside in the 1s orbital (with opposite,
a and b spins) while the other pair reside in 2s-2p hybrid orbitals (more correctly,

polarized orbitals) in amanner that instantaneously correlates their motions:

Y @L/6 Cy |1sX{[(2s-a2py)a (2s+a2px)b - (2s-a2px)b(2s+a2py)a]
+[(2s-a2py)a(2s+a2py)b - (2s-a2py)b(2s+a2py)a]

+[(2s-a2pz)a(2st+a2py)b - (2s-a2pz)b(2s+a2pz)al}],



where a=4/3C,/C; . The so-called polarized orbital pairs

(2s = a2pyy, or z) areformed by mixing into the 2s orbital an amount of the 2py v, or 2
orbital, with the mixing amplitude determined by theratio of C, to C1 . Aswill be detailed
in Section 6, thisratio is proportional to the magnitude of the coupling <|1s22s2
|H|1s22p2| > between the two configurations and inversely proportional to the energy
difference [<|1s22s2|H|1s22s2> - <|1s22p?|H|1s22p2|>] for these configurations. So, in
genera, configurations that have similar energies (Hamiltonian expectation values) and
couple strongly give rise to strongly mixed polarized orbital pairs. The result of forming
such polarized orbital pairs are described pictorially below.

/? 2s - a 2p,
: : : : \ 25+ 2 2p,
2s and 2p,

Polarized Orbital 2s and 2p , Pairs

In each of the three equivalent termsin this wavefunction, one of the valence
electrons movesin a 2s+a2p orhital polarized in one direction while the other valence
electron movesin the 2s-a2p orbital polarized in the opposite direction. For example, the
first term [(2s-a2py)a (2st+a2py)b - (2s-a2px)b(2s+a2py)a] describes one electron
occupying a2s-a2pyx polarized orbital while the other electron occupies the 2s+a2py
orbital. In this picture, the electrons reduce their mutual coulomb repulsion by occupying
different regions of space; in the SCF mean-field picture, both electrons reside in the same
2s region of space. In this particular example, the electrons undergo angular correlation to
"avoid" one another. The fact that equal amounts of X, y, and z orbital polarization appear
inY iswhat preserves the 1S symmetry of the wavefunction.

The fact that the CI wavefunction




Y @Cy [152257 - Cp [|1522px? [+[1522py?] +|1572p2 ]

mixes its two configurations with opposite signis of significance. Aswill be seen later in
Section 6, solution of the Schrodinger equation using the ClI method in which two
configurations (e.g., |1s?2s?| and |12p?|) are employed gives rise to two solutions. One
approximates the ground state wave function; the other approximates an excited state. The
former is the one that mixes the two configurations with opposite sign.

To understand why the latter is of higher energy, it suffices to analyze afunction of
the form

Y' @Cy [1229] + Cp [|1522py?| +|1522py?| +|1572p| ]
in amanner analogous to above. In this case, it can be shown that
Y' @1/6 Cy |14 [(2s-1a2py)a(2s+ia2py)b - (2s-ia2py)b(2s+ia2py)a]
+[(2s-ia2py)a (2s+ia2py)b - (2s-ia2py)b(2s+ia2py)a]
+[(2s-ia2pya(2stiazp,)b - (2s-ia2py)b(2stia2pz)all}.

Thereisafundamenta difference, however, between the polarized orbital pairsintroduced
earlier f 4 = (2s £ a2py y or z) and the corresponding functionsf ', = (2s + ia2py y or 2)

appearing here. The probability densities embodied in the former

[f 42 = [2s2 + &2 12px.y,or 2% + 2a(2s 2Px.y,or 2)

describe constructive (for the + case) and destructive (for the - case) superposition of the
probabilities of the 2s and 2p orbitals. The probability densitiesof f' . are

[ 42 = (25 % i82pyy,or 2)" (25 * i82Px.y,or 2)

=252 + &2 |20y, or 2.



These densities are identical to one another and do not describe polarized orbital densities.

Therefore, the Cl wavefunction which mixes the two configurations with like sign, when
analyzed in terms of orbital pairs, placesthe electronsinto orbitalsf' . =(2s + ia2py y or z)

whose densities do not permit the electrons to avoid one another. Rather, both orbitals have
the same spatial density [25]2 + &2
12Px.y,or 2|2 , which gives rise to higher coulombic interaction energy for this state.

V. Summary

In summary, the dynamical interactions among electrons give rise to instantaneous
gpatial correlations that must be handled to arrive at an accurate picture of atomic and
molecular structure. The simple, single-configuration picture provided by the mean-field
model isauseful starting point, but improvements are often needed.

In Section 6, methods for treating electron correlation will be discussed in greater detail.

For the remainder of this Section, the primary focus is placed on forming proper N-
electron wavefunctions by occupying the orbitals available to the system in a manner that
guarantees that the resultant N-electron function is an eigenfunction of those operators that
commute with the N-electron Hamiltonian.

For polyatomic molecules, these operators include point-group symmetry operators
(which act on al N electrons) and the spin angular momentum (S2 and S,) of al of the
electrons taken as awhole (thisis true in the absence of spin-orbit coupling which istreated
later as a perturbation). For linear molecules, the point group symmetry operations involve
rotations R, of al N electrons about the principal axis, as aresult of which the total angular
momentum L, of the N electrons (taken as awhole) about this axis commutes with the
Hamiltonian, H. Rotation of all N electrons about the x and y axes does not leave the total
coulombic potential energy unchanged, so Ly and Ly do not commute with H. Hence for a
linear molecule, L, , S2, and S, are the operators that commute with H. For atoms, the
corresponding operatorsare L2, L, S2, and S, (again, in the absence of spin-orbit
coupling) where each operator pertainsto the total orbital or spin angular momentum of the
N electrons.

To construct N-electron functions that are eigenfunctions of the spatial symmetry or
orbital angular momentum operators as well as the spin angular momentum operators, one
hasto "coupl€e" the symmetry or angular momentum properties of the individual spin-
orbitals used to construct the N-electrons functions. This coupling involves forming direct
product symmetries in the case of polyatomic molecules that belong to finite point groups,



it involves vector coupling orbital and spin angular momentain the case of atoms, and it
involves vector coupling spin angular momenta and axis coupling orbital angular momenta
when treating linear molecules. Much of this Section is devoted to developing the tools
needed to carry out these couplings.



Chapter 9
Electronic Wavefuntions Must be Constructed to Have Permutational Antisymmetry
Because the N Electrons are Indistinguishable Fermions

|. Electronic Configurations

Atoms, linear molecules, and non-linear molecules have orbitals which can be
labeled either according to the symmetry appropriate for that isolated species or for the
speciesin an environment which produces lower symmetry. These orbitals should be
viewed as regions of space in which electrons can move, with, of course, at most two
electrons (of opposite spin) in each orbital. Specification of a particular occupancy of the
set of orbitals available to the system gives an electronic configuration. For example,
1s22s22p# is an electronic configuration for the Oxygen atom (and for the F*1 ion and the
N-Lion); 1s22s22p33pl is another configuration for O, F*1, or N-1. These configurations
represent situations in which the electrons occupy low-energy orbitals of the system and, as
such, are likely to contribute strongly to the true ground and low-lying excited states and to
the low-energy states of molecules formed from these atoms or ions.

Specification of an electronic configuration does not, however, specify a particular
electronic state of the system. In the above 1s22s22p# example, there are many way's
(fifteen, to be precise) in which the 2p orbitals can be occupied by the four electrons. Asa
result, there are atotal of fifteen states which cluster into three energetically distinct levels
lying within this single configuration. The 1s22s22p33p! configuration contains thirty-six
states which group into six distinct energy levels (the word level is used to denote one or
more state with the same energy). Not all states which arise from agiven electronic
configuration have the same energy because various states occupy the degenerate (e.g., 2p
and 3p in the above examples) orbitals differently. That is, some states have orbital
occupancies of the form 2p212pp2pl.1 while others have 2p212p2p2p0.1; as aresult, the

states can have quite different coulombic repulsions among the electrons (the state with two
doubly occupied orbitals would lie higher in energy than that with two singly occupied
orbitals). Later in this Section and in Appendix G techniques for constructing
wavefunctions for each state contained within a particular configuration are given in detail.
Mastering these tools is an important aspect of learning the material in thistext.

In summary, an atom or molecule has many orbitals (core, bonding, non-bonding,
Rydberg, and antibonding) available to it; occupancy of these orbitalsin a particular manner
givesriseto aconfiguration. If some orbitals are partially occupied in this configuration,



more than one state will arise; these states can differ in energy due to differencesin how the
orbitals are occupied. In particular, if degenerate orbitals are partially occupied, many states
can arise and have energies which differ substantially because of differencesin electron
repulsions arising in these states. Systematic procedures for extracting all states from a
given configuration, for labeling the states according to the appropriate symmetry group,
for writing the wavefunctions corresponding to each state and for evaluating the energies
corresponding to these wavefunctions are needed. Much of Chapters 10 and 11 are
devoted to developing and illustrating these tools.

I1. Antisymmetric Wavefunctions
A. General Concepts
Thetotal electronic Hamiltonian
H =S (- h22me Ni2 -S3 Z4 €2/1i5) +Sisj €2/tij +Sash Za Zn€/ra,

wherei and j label electronsand aand b label the nuclel (whose charges are denoted Z),
commutes with the operators Pjj which permute the names of the electronsi and j. This, in
turn, requires eigenfunctions of H to be eigenfunctions of B;j. In fact, the set of such
permutation operators form agroup called the symmetric group (a good referenceto this
subject is contained in Chapter 7 of Group Theory , M. Hamermesh, Addison-Wesley,
Reading, Mass. (1962)). In the present text, we will not exploit the full group theoretical
nature of these operators; we will focus on the smple fact that all wavefunctions must be
eigenfunctions of the Pjj (additional materia on this subject is contained in Chapter X1V of
Kemble).

Because Rj obeys Pjj = Pjj = 1, the eigenval ues of the P} operators must be +1 or -
1. Electrons are Fermions (i.e., they have half-integral spin), and they have wavefunctions
which are odd under permutation of any pair: Pj Y =-Y . Bosons such as photons or
deuterium nuclei (i.e., species with integral spin quantum numbers) have wavefunctions
which obey Pj Y =+Y.

These permutational symmetries are not only characteristics of the exact
eigenfunctions of H belonging to any atom or molecule containing more than asingle
electron but they are also conditions which must be placed on any acceptable model or tria
wavefunction (e.g., in avariational sense) which one constructs.



In particular, within the orbital model of eectronic structure (which is developed
more systematically in Section 6), one can not construct trial wavefunctions which are
simple spin-orbital products (i.e., an orbital multiplied by ana or b spin function for each
electron) such as 1sa 1sbh2sa2sb2p;a2ppa. Such spin-orbital product functions must be
made permutationally antisymmetric if the N-electron trial function isto be properly
antisymmetric. This can be accomplished for any such product wavefunction by applying
the following antisymmetrizer operator:

A= (GUNDSpsp P,

where N is the number of electrons, P runs over all N! permutations, and spis+1or -1
depending on whether the permutation P contains an even or odd number of pairwise
permutations (e.g., 231 can be reached from 123 by two pairwise permutations-
123==>213==>231, so 231 would have s, =1). The permutation operator Pin A actson a
product wavefunction and permutes the ordering of the spin-orbitals. For example, A

f 1f of 3= (U/OB) [f 1f of 3 - 1f 3f o -f 3f of 1 -f of 1f 3 +f 3f 1 o +f of 3 1], where the
convention isthat electronic coordinatesr, ro, and r3 correspond to the orbitals as they
appear in the product (e.g., the term f 3f of 1 representst 3(rq)f 2(r2)f 1(r3)).

It turns out that the permutations P can be allowed either to act on the "names" or
labels of the electrons, keeping the order of the spin-orbitals fixed, or to act on the spin-
orbitals, keeping the order and identity of the electrons’ |abels fixed. The resultant
wavefunction, which contains N! terms, is exactly the same regardless of how one alows
the permutations to act. Because we wish to use the above convention in which the order of
the electronic labelsremainsfixed as 1, 2, 3, ... N, we choose to think of the permutations
acting on the names of the spin-orbitals.

It should be noted that the effect of A on any spin-orbital product isto produce a
function that isasum of N! terms. In each of these terms the same spin-orbitals appear, but
the order in which they appear differs from term to term. Thus antisymmetrization does not
alter the overall orbital occupancy; it simply "scrambles’ any knowledge of which electron
isin which spin-orbital.

The antisymmetrized orbital product A f 1f of 3 is represented by the short hand |
f 1f of 3 | and isreferred to as a Sater determinant. The origin of this notation can be made
clear by noting that (1/ON!) times the determinant of a matrix whose rows are labeled by
theindex i of the spin-orbital f; and whose columns are labeled by the index j of the
electron a rj isequal to the above function: A f 1f of 3= (/CBY) det(f ; (rj)). The general
structure of such Slater determinantsisillustrated below:




(W/ND)Y? detff (rib= (L/N)?

£ 2(N)F H(N)F o(N)..F i (N)..f (N)

The antisymmetry of many-electron spin-orbital products places constraints on any
acceptable model wavefunction, which give rise to important physical consequences. For
example, it is antisymmetry that makes afunction of theform | 1sa1sa | vanish (thereby
enforcing the Pauli exclusion principle) while | 1sa2sa | does not vanish, except at points
r1 and ro where 1s(r1) = 29(r»), and hence is acceptable. The Pauli principleis embodied
in the fact that if any two or more columns (or rows) of a determinant are identical, the
determinant vanishes. Antisymmetry also enforces indistinguishability of the electronsin
that |1salsb2sa2sb | =
- | 1sa1sb2sb2sa |. That is, two wavefunctions which differ smply by the ordering of
their spin-orbitals are equal to within asign (+/- 1); such an overall sign differencein a
wavefunction has no physical consequence because al physical properties depend on the
product Y * Y , which appears in any expectation value expression.

B. Physical Consequences of Antisymmetry

Once therules for evaluating energies of determinental wavefunctions and for
forming functions which have proper spin and spatial symmetries have been put forth (in
Chapter 11), it will be clear that antisymmetry and el ectron spin considerations, in addition
to orbital occupancies, play substantial roles in determining energies and that it is precisely
these aspects that are responsible for energy splittings among states arising from one
configuration. A single example may help illustrate this point. Consider the plp*1
configuration of ethylene (ignore the other orbitals and focus on the properties of these
two). Aswill be shown below when spin angular momentum istreated in full, the triplet
spin states of this configuration are:

|S=1, Ms=1> = |pap*a]|,

|IS=1, Mg=-1> = |pbp*Db|,



and
|S=1, Ms= 0> = 2-V2[ pap*b| + [pbp*al].

The singlet spin stateis:

S=0, Ms= 0> = 2-Y2[ |pap*b| - pbp*al].

To understand how the three triplet states have the same energy and why the singlet
state has a different energy, and an energy different than the Ms= 0 triplet even though
these two states are composed of the same two determinants, we proceed as follows:

1. We express the bonding p and antibonding p* orbitalsin terms of the atomic p-orbitals
from which they areformed: p=2-Y2[ L + R] andp* =2-V2[ L -R], whereRand L

denote the p-orbitals on the |eft and right carbon atoms, respectively.

2. We substitute these expressions into the Slater determinants that form the singlet and
triplet states and collect terms and throw out terms for which the determinants vanish.

3. Thisthen givesthe singlet and triplet states in terms of atomic-orbital occupancies where
it iseasier to see the energy equivalences and differences.

Let us begin with thetriplet states:
lpap*a|=21/2[ |LaLa|- |RaRa|+ |RalLal- |LaRa]]
=|Rala];
2-V2[ |pap*b| + [pbp*a[] =2Y2 1/2[ |LaLb]| - |RaRb| + |RaLb| -
|LaRb| + |LbLa|- |RbRa| + |RbLa|- |LbRa]|]
=2"V2[ |RaLb| + |RoLal];

Ipbp*b| = 1/2[ |LbLb| - |RbRb| + [RbLb| - |LbRb|]



= |RbLb].
The singlet state can be reduced in like fashion:
2-V2[ |pap*b| - pbp*al] = 2-Y21/2[ |LaLb| - [RaRb| + |RaLb] -
|LaRb|- |LbLa| + |RbRa|- |RbLa| + |LbRa]| ]
=2-V2[ |LaLb|- [RoRal].

Noticethat al threetriplet states involve atomic orbital occupancy in which one electronis
on one atom while the other is on the second carbon atom. In contrast, the singlet state
places both electrons on one carbon (it contains two terms; one with the two electrons on
the left carbon and the other with both electrons on the right carbon).

In a"valence bond" analysis of the physical content of the singlet and triplet plp*1
states, it is clear that the energy of the triplet states will lie below that of the singlet because
the singlet contains " zwitterion” components that can be denoted C*C- and C-C*, while the
three triplet states are purely "covalent”. This case provides an excellent example of how
the spin and permutational symmetries of a state "conspire” to qualitatively affect its energy
and even electronic character as represented in its atomic orbital occupancies.
Understanding this should provide ample motivation for learning how to form proper
antisymmetric spin (and orbital) angular momentum eigenfunctions for atoms and
molecul es.



Chapter 10
Electronic Wavefunctions Must Also Possess Proper Symmetry. These Include Angular
Momentum and Point Group Symmetries

I. Angular Momentum Symmetry and Strategies for Angular Momentum Coupling

Because the total Hamiltonian of a many-electron atom or molecule forms a
mutually commutative set of operatorswith 2, S, , and A = (C')]JN!)Sp Sp P, the exact
eigenfunctions of H must be eigenfunctions of these operators. Being an eigenfunction of
A forces the eigenstates to be odd under al Pjj. Any acceptable model or trial wavefunction
should be constrained to also be an eigenfunction of these symmetry operators.

If the atom or molecule has additional symmetries (e.g., full rotation symmetry for
atoms, axial rotation symmetry for linear molecules and point group symmetry for non-
linear polyatomics), the trial wavefunctions should also conform to these spatial
symmetries. This Chapter addresses those operators that commute with H, Pjj, S2, and S,
and among one another for atoms, linear, and non-linear molecul es.

Astreated in detail in Appendix G, the full non-relativistic N-electron Hamiltonian
of an atom or molecule

H = Sj(- h2/2m sz - SaZanIrj,a) + Sj<k e2/rj,k
commutes with the following operators:

i. Theinversion operator i and the three components of the total orbital angular momentum
Lz = SjLAj), Ly, Lx, aswell asthe components of the total spin angular momentum S, S,
and S, for atoms (but not the individual electrons’ L(j) , S(j), etc). Hence, L2, L, S2,
S; are the operators we need to form eigenfunctionsof, and L, M, S, and Mg arethe
"good" quantum numbers.

il. Lz = SjLj), aswell asthe N-electron Sy, Sy, and S; for linear molecules (asoi, if
the molecule has a center of symmetry). Hence, L, S2, and S; are the operators we need to
form eigenfunctions of, and M|, S, and Mg are the "good" quantum numbers; L no longer
is!

iii. S, Sy, and Sy aswell asal point group operationsfor non-linear polyatomic
molecules. Hence S2, S, and the point group operations are used to characterize the



functions we need to form. When we include spin-orbit coupling into H (this adds another
term to the potential that involves the spin and orbital angular momenta of the electrons),
L2, Lg S2, S, no longer commute with H. However, J,= S, + Ly and 2 = (L+S)2 now
do commute with H.

A. Electron Spin Angular Momentum

Individual electrons possessintrinsic spin characterized by angular momentum
guantum numbers s and mg ; for electrons, s = 1/2 and mg = 1/2, or -1/2. The mg=1/2 spin
state of the electron is represented by the symbol a and the mg = -1/2 state is represented by
b. These spin functionsobey: S2a = 1/2 (1/2 + 1)R? a,

S;a=12ha, 2b=1/2(1/2+ 1) kb, and S; b =-1/2hb. Thea and b spin functions
are connected vialowering S. and raising Sy operators, which are defined in terms of the x
and y components of S asfollows: Sy = S¢ +iSy, and S. = S« -iSy. In particular Sib =
ha, Sia =0, S.a =Hhb,

and S.b =0. These expressions are examples of the more general relations (these relations
are developed in detail in Appendix G) which al angular momentum operators and their
eigenstates obey:

Ffj,m>=j(+1)h? [j,m>,

Jz [i,m>=mh |j,m>,

I+ [j,m>=h {j(j+1)-m(m+1)}¥2 |j, m+1>, and
J.|j,m> =h {j({i+1)-m(m-1)} Y2 |j,m-1>.

In a many-electron system, one must combine the spin functions of the individual
electrons to generate eigenfunctions of the total S; =S; Sx(i) ( expressions for Sy =S; Sx(i)
and Sy =S; Sy(i) also follow from the fact that the total angular momentum of a collection
of particlesisthe sum of the angular momenta, component-by-component, of the individual
angular momenta) and total S? operators because only these operators commute with the
full Hamiltonian, H, and with the permutation operators P;j. No longer are the individual
S2(i) and S(i) good quantum numbers; these operators do not commute with B;j.

Spin states which are eigenfunctions of the total S? and S; can be formed by using
angular momentum coupling methods or the explicit construction methods detailed in



Appendix (G). In the latter approach, one forms, consistent with the given electronic
configuration, the spin state having maximum S; eigenvalue (which is easy to identify as
shown below and which corresponds to a state with S equa to this maximum S
eigenvalue) and then generating states of lower S; values and lower S values using the
angular momentum raising and lowering operators (S. =S; S. (i) and

S+ =Sj Si (i)).

Toillustrate, consider athree-electron example with the configuration 1s2s3s.
Starting with the determinant | 1sa2sa 3sa |, which has the maximum Mg =3/2 and hence
has S=3/2 (this function is denoted [3/2, 3/2>), apply S. in the additive form S. =S; S.(i) to
generate the following combination of three determinants:

h[| 1sb2sa3sa |+ | 1sa2sb3sa | + | 1sa2sa3sb ||,

which, according to the above identities, must equal

h32(372+1)-3/2(3/2-1) -| 3/2, 1/2>.

So the state |3/2, 1/2> with S=3/2 and Mg =1/2 can be solved for in terms of the three
determinantsto give

13/2, 1/2> = 1/QF[ | 1sh2sa3sa | + | 1sa2sb3sa |+ | 1sa2sa3sb |].

The states with S=3/2 and Mg = -1/2 and -3/2 can be obtained by further application of S.to
|3/2, 1/2> (actually, the Ms= -3/2 can be identified as the "spin flipped" image of the state
with Mg =3/2 and the one with Mg =-1/2 can be formed by interchanging all a'sand b'sin
the Mg = 1/2 state).

Of the eight total spin states (each electron can take on either a or b spin and there
are three electrons, so the number of statesis 23), the above process has identified proper
combinations which yield the four states with S= 3/2. Doing so consumed the determinants
with Mg =3/2 and -3/2, one combination of the three determinants with Mg =1/2, and one
combination of the three determinants with Mg =-1/2. There still remain two combinations
of the Mg =1/2 and two combinations of the Mg =-1/2 determinants to deal with. These
functions correspond to two sets of S= 1/2 eigenfunctions having
Ms = 1/2 and -1/2. Combinations of the determinants must be used in forming the S= 1/2
functionsto keep the S = 1/2 eigenfunctions orthogonal to the above S = 3/2 functions
(which is required because S is a hermitian operator whose eigenfunctions belonging to
different eigenvalues must be orthogonal). The two independent S = 1/2, Mg = 1/2 states



can be formed by simply constructing combinations of the above three determinants with
Ms =1/2 which are orthogonal to the S = 3/2 combination given above and orthogonal to

each other. For example,
| 1/2, 1/2> = 1/CP[ | 1sb2sa3sa |- | 1sa2sb3sa |+ 0x | 1sa2sa3sb |],

| 1/2, 1/2> = 1/Oo[ | 1sb2sa3sa |+ | 1sa2sb3sa | -2x | 1sa2sa3sb | ]

are acceptable (as is any combination of these two functions generated by a unitary
transformation ). A pair of independent orthonormal states with S=1/2 and Mg =-1/2 can
be generated by applying S. to each of these two functions ( or by constructing apair of
orthonormal functions which are combinations of the three determinants with Mg = -1/2 and
which are orthogonal to the S=3/2, Mg = -1/2 function obtained as detailed above).

The above treatment of a three-electron case shows how to generate quartet (spin
states are named in terms of their spin degeneracies 25+1) and doubl et states for a
configuration of the form
1s2s3s. Not al three-electron configurations have both quartet and doublet states; for
example, the 12 2s configuration only supports one doublet state. The methods used
aboveto generate S= 3/2 and
S=1/2 statesare valid for any three-electron situation; however, some of the determinental
functions vanish if doubly occupied orbitals occur asfor 1s22s. In particular, the |
lsalsa2sa | and
| 1sb1sb2sb |[Mg=3/2, -3/2 and | 1salsa2sb | and | 1db1sb2sa |[Mg=1/2, -1/2
determinants vanish because they violate the Pauli principle; only | 1salsb2sa | and |
1sa1sb?2sb | do not vanish. These two remaining determinants form the S = 1/2, Mg = 1/2,
-1/2 doublet spin functions which pertain to the 1s22s configuration. It should be noted that
all closed-shell components of a configuration (e.g., the 12 part of 122s or the 152252 2p6
part of 1s22s2 2p63s13pl ) must involve a and b spin functions for each doubly occupied
orbital and, as such, can contribute nothing to the total Mg value; only the open-shell
components need to be treated with the angular momentum operator toolsto arrive at proper
total-spin eigenstates.

In summary, proper spin eigenfunctions must be constructed from antisymmetric
(i.e., determinental) wavefunctions as demonstrated above because the totdl S2 and total S,
remain valid symmetry operators for many-electron systems. Doing so results in the spin-
adapted wavefunctions being expressed as combinations of determinants with coefficients
determined via spin angular momentum techniques as demonstrated above. In



configurations with closed-shell components, not all spin functions are possible because of
the antisymmetry of the wavefunction; in particular, any closed-shell parts must involve ab
spin pairings for each of the doubly occupied orbitals, and, as such, contribute zero to the
totd Ms.

B. Vector Coupling of Angular Momenta

Given two angular momenta (of any kind) L 1 and L 2, when one generates states
that are eigengtates of their vector sum L= L 1+L 5,
one can obtain L valuesof L1+Lo, L1+L2-1, ...|L1-L2|. Thiscan apply to two electrons for
which the total spin Scan be 1 or 0 asillustrated in detail above, or to ap and ad orbital for
which the total orbital angular momentum L can be 3, 2, or 1. Thus for a pld! eectronic
configuration, 3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding
wavefunctions) arise. Here the term symbols are specified as the spin degeneracy (25+1)
and the | etter that is associated with the L-value. If spin-orbit coupling is present, the 3F
level further splitsinto J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F».

This simple "vector coupling” method applies to any angular momenta. However, if
the angular momenta are "equivalent” in the sense that they involve indistinguishable
particles that occupy the same orbital shell (e.g., 2p3 involves 3 equivalent electrons;
2p13pl4pl involves 3 non-equivalent electrons; 2p23pl involves 2 equivalent eectrons and
one non-equivalent electron), the Pauli principle eliminates some of the expected term
symbols (i.e., when the corresponding wavefunctions are formed, some vanish because
their Slater determinants vanish). Later in this section, techniques for dealing with the
equivalent-angular momenta case are introduced. These techniques involve using the above
toolsto obtain alist of candidate term symbols after which Pauli-violating term symbols are
eliminated.

C. Non-Vector Coupling of Angular Momenta

For linear molecules, one does not vector couple the orbital angular momenta of the
individual electrons (because only L, not L2 commutes with H), but one does vector couple
the electrons spin angular momenta. Coupling of the electrons orbital angular momenta
involves simply considering the various L ; eigenvalues that can arise from adding the L,
values of the individual electrons. For example, coupling two p orbitals (each of which can
have m =+1) cangive M =1+1, 1-1, -1+1, and -1-1, or 2, 0, O, and -2. The level with
My = x2iscalled aD state (much like an orbital with m = +2 iscalled ad orbital), and the



two stateswith M = O arecalled S states. States with L, eigenvaluesof M|_ and - M_ are
degenerate because the total energy isindependent of which direction the electrons are
moving about the linear molecul€e's axis (just ap+1 and p-1 orbitals are degenerate).

Again, if the two electrons are non-equivalent, al possible couplings arise (e.g., a
plp'l configuration yields 3D, 3S, 3S, 1D, 1S, and 1S states). In contrast, if the two
electrons are equivalent, certain of the term symbols are Pauli forbidden. Again, techniques
for dealing with such cases are treated later in this Chapter.

D. Direct Products for Non-Linear Molecules

For non-linear polyatomic molecules, one vector couples the electrons spin angular
momenta but their orbital angular momenta are not even considered. Instead, their point
group symmetries must be combined, by forming direct products, to determine the
symmetries of the resultant spin-orbital product states. For example, the by byl
configuration in Cp, Ssymmetry gives rise to 3A, and 1A, term symbols. The ele'l
configuration in Cz, symmetry gives 3E, 3A,, 3A1, 1E, 1A,, and 1A; term symbols. For
two equivalent electrons such as in the €2 configuration, certain of the 3€, 3Ao, 3A1, 1E,
1A5, and 1A, term symbols are Pauli forbidden. Once again, the methods needed to
identify which term symbols arise in the equivalent-electron case are treated | ater.

One needsto learn how to tell which term symbolswill be Pauli excluded, and to
learn how to write the spin-orbit product wavefunctions corresponding to each term symbol
and to evaluate the corresponding term symbols' energies.

[1. Atomic Term Symbols and Wavefunctions
A. Non-Equivaent Orbital Term Symbols

When coupling non-equivalent angular momenta (e.g., a spin and an orbital angular
momenta or two orbital angular momenta of non-equivalent electrons), one vector couples
using the fact that the coupled angular momenta range from the sum of the two individua
angular momenta to the absolute value of their difference. For example, when coupling the
spins of two electrons, the total spin S can be 1 or 0; when coupling ap and ad orbital, the
total orbital angular momentum can be 3, 2, or 1. Thus for a pld? electronic configuration,
3F, 1F, 3D, 1D, 3P, and 1P energy levels (and corresponding wavefunctions) arise. The
energy differences among these levels has to do with the different el ectron-electron
repulsions that occur in these levels; that is, their wavefunctionsinvolve different



occupancy of the p and d orbitals and hence different repulsion energies. If spin-orbit
coupling is present, the L and S angular momenta are further vector coupled. For example,
the 3F level splitsinto J= 4, 3, and 2 levels which are denoted 3F4, 3F3, and 3F». The

energy differences among these Jlevels are caused by spin-orbit interactions.
B. Equivalent Orbital Term Symbols

If equivalent angular momenta are coupled (e.g., to couple the orbital angular
momenta of ap? or d3 configuration), one must use the "box" method to determine which
of the term symbols, that would be expected to arise if the angular momenta were non-
equivalent, violate the Pauli principle. To carry out this step, one forms all possible unique
(determinental) product states with non-negative M| and Mg values and arranges them into
groups according to their M| and Mg values. For example, the boxes appropriate to the p?
orbital occupancy are shown below:



Ms 1 Ip1apoa Ip1ap-1a|
0 lp1ap1b| Ip1apabl, [poapib|  [p1ap-1bl,

|p-1api1b,

|poa pob|

There is no need to form the corresponding states with negative M or negative Mg values
because they are ssimply "mirror images' of those listed above. For example, the state with
M_=-1and Mg = -1 is|p.1bpgb|, which can be obtained fromthe M| =1, Mg =1 state
lp1apoa| by replacing a by b and replacing p1 by p-1.

Given the box entries, one can identify those term symbols that arise by applying
the following procedure over and over until all entries have been accounted for:

1. Oneidentifiesthe highest Mg value (this gives avalue of the total spin quantum number
that arises, S) in the box. For the above example, the answer isS= 1.

2. For al product states of this Mg value, one identifies the highest M value (thisgivesa
value of the total orbital angular momentum, L, that can arisefor this S). For the above
example, the highest M| within the Mg =1 statesisM = 1 (not M = 2), hence L=1.

3. Knowing an S, L combination, one knows the first term symbol that arises from this
configuration. In the p2 example, thisis3P.

4. Because the level with thisL and S quantum numbers contains (2L+1)(2S+1) states with
ML and Ms quantum numbers running from -L to L and from -Sto S, respectively, one
must remove from the original box this number of product states. To do so, one simply
erases from the box one entry with each such M. and Mg value. Actually, since the box
need only show those entries with non-negative M| and Mg values, only these entries need
be explicitly deleted. In the 3P example, this amounts to deleting nine product states with
M., Msvaluesof 1,1; 1,0; 1,-1; 0,1; 0,0; 0,-1; -1,1; -1,0; -1,-1.

5. After deleting these entries, one returns to step 1 and carries out the process again. For
the p? example, the box after deleting the first nine product states looks as follows (those
that appear in italics should be viewed as already cancelled in counting all of the 3P states):



Ms 1 Ip1apoal Imap-1a|

0 lp1ap1b| Iprapobl, [poapib|  |pap-1bl,
Ip-1ap1bl,
Ipoa pob|

It should be emphasized that the process of deleting or crossing off entriesin various M,
Ms boxes involves only counting how many states there are; by no means do we identify
the particular L,S,M_,M s wavefunctions when we cross out any particular entry in a box.
For example, when the |p1a pob| product is deleted from the M = 1, Ms=0 box in
accounting for the statesin the 3P level, we do not claim that |p1a pgb| itself is amember of
the 3P level; the |pga p1b| product state could just as well been eliminated when accounting
for the 3P states. Aswill be shown later, the3P state with M= 1, Ms=0 will be a
combination of |piapob| and |poa p1b.

Returning to the p2 example at hand, after the 3P term symbol's states have been
accounted for, the highest Mg value is O (hence there is an S=0 state), and withinthisMg
value, the highest M|_ valueis 2 (hence thereis an L=2 state). This meansthereisalD
level with five states having M| = 2,1,0,-1,-2. Deleting five appropriate entries from the
above box (again denoting deletions by italics) leaves the following box:



Ms 1 Ip1a poa | Iprap-1al
0 Ip1apib| Iprapobl, [poapib|  |pap-1bl,
lp.1apibl,
Ipoa pob|

The only remaining entry, which thus has the highest Ms and M| values, has Ms = 0 and
Mg = 0. Thusthereisaso alSleve inthe p2 configuration.

Thus, unlike the non-equivalent 2pl3pl case, in which 3P, 1P, 3D, 1D, 3S, and 1S
levels arise, only the 3P, 1D, and 1S arise in the p? situation. This "box method" is
necessary to carry out whenever one is dealing with equivalent angular momenta.

If one has mixed equivalent and non-equivalent angular momenta, one can
determine all possible couplings of the equivalent angular momenta using this method and
then use the smpler vector coupling method to add the non-equivalent angular momentato
each of these coupled angular momenta. For example, the p2d! configuration can be
handled by vector coupling (using the straightforward non-equivalent procedure) L=2 (the
d orbital) and S=1/2 (the third electron's spin) to each of 3P, 1D, and 1S. The result is 4F,
4D, 4P, 2F, 2D, 2P, 2G, 2F, 2D, 2P, 2S, and 2D.

C. Atomic Configuration Wavefunctions

To express, in terms of Slater determinants, the wavefunctions corresponding to
each of the states in each of the levels, one proceeds as follows:

1. For each Mg, M. combination for which one can write down only one product function
(i.e., in the non-equivaent angular momentum situation, for each case where only one
product function sits at a given box row and column point), that product function itself is
one of the desired states. For the p2 example, the [p1apoa| and |p1ap-1a| (aswell astheir
four other M and Ms "mirror images') are members of the 3P level (since they have Mg =
+1) and [prap1b| and its M mirror image are members of the 1D level (since they have M
=+2).



2. After identifying as many such states as possible by inspection, oneuses L+ and St to

generate states that bel ong to the same term symbols as those aready identified but which
have higher or lower M. and/or Mg values.

3. If, after applying the above process, there are term symbols for which states have not yet
been formed, one may have to construct such states by forming linear combinations that are
orthogonal to al those states that have thus far been found.

Toillustrate the use of raising and lowering operators to find the states that can not
be identified by inspection, |et us again focus on the p2 case. Beginning with three of the
3P states that are easy to recognize, [p1apoa|, |p1ap-1al, and |p-.1apoal, we apply S. to
obtain the Ms=0 functions:

S.3P(ML=1, Ms=1) = [S(1) + S(2)] lprapoal

= h(1(2)-1(0)Y2 3p(M_=1, Ms=0)

= h(1/2(3/2)-1/2(-1/2))Y2 |p1bpoa | +h(1)1/2 |pra pobl,
S0,

3P(ML=1, Ms=0) = 2-Y2 [|n1bpoa| + [p1a pobl].
The same process applied to |p1ap-1a| and [p-1apoa | gives
1/C2[|lprap-1b| + |pibp-1a[] and 1/C2[|Ip.1a pob| + [p-1bpoall,
respectively.

The3P(M_=1, Ms=0) = 2-Y2[|p1bpoa| + [prapob| function can be acted on with
L. to generate 3P(M| =0, M g=0):

L. 3P(ML=1, Ms=0) =[L.(2) + L(2)] 2V [|p1bpoa| + [p1a pobl]

=h(1(2)-1(0)Y2 3p(M_ =0, M s=0)

=h(1(2)-1(0))V2 2-Y2 [|ngbpoa | + [poapobl]

+h (1(2)-0(-1))V2 2-V2 [|p;bp.1a| + |prap-1b|],

SO,
3P(M_=0, Ms=0) = 2-V2[|psbp.1a| + |map-1b[].



The 1D term symbol is handled in like fashion. Beginning with the M| = 2 state
lp1ap1b|, one appliesL. to generatethe M. = 1 state:

L. ID(ML=2, Ms=0) = [L(1) + L(2)] [p1ap1b|
=h(2(3)-2(1))V2 ID(M_=1, Ms=0)
= h(1(2)-1(0)Y2 [Ipoap1b] + Ipra pobll,
S0,
IDM_=1, Mg=0) = 2-Y2[|pgap1b| + [P pob].
Applying L. once more generates the 1D(M_=0, M s=0) state:
L. ID(ML=1, Ms=0) = [L(1) + L(2)] 2°Y2[|ppap1b]| + |pra pobl]
=h(2(3)-1(0)V2 ID(M_=0, Ms=0)
=h(1(2)-0(-1))V2 2 Y2 [|p.1apab| + |p1ap-1b]]
+R(1(2)-1(0)Y2 2-V2[|poa pob| + [poapobl],
S0,

1D(M(=0, M s=0) = 6-V2[ 2|ppapob| + [p.12p1b| + [p1ap-1b]].

Notice that the M =0, M g=0 states of 3P and of 1D are given in terms of the three
determinants that appear in the "center" of the p2 box diagram:

1D(M_=0, Ms=0) = 6-Y7[ 2Jpoapob| + [p-1a p1b] + [p1ap-1bl],
3P(ML=0, Ms=0) = 2-V2 [|p1bp.1a| + [map-1b[]
=2-12[ -|p.1apsb| + [p1ap-1bl.
The only state that has eluded us thus far isthe 1S state, which also has M =0 and Mg=0.

To construct this state, which must also be some combination of the three determinants
with M_=0 and Ms=0, we use the fact that the 1S wavefunction must be orthogonal to the



3P and 1D functions because 1S, 3P, and 1D are eigenfunctions of the hermitian operator L2
having different eigenvalues. The state that is normalized and is a combination of ppa pgb|,
|p-1ap1b|, and |p1ap-1b| isgiven asfollows:

1S=3-VY2[ |pgapob| - [p-1ap1b| - [prap-1b].

The procedure used here to form the 1S state il lustrates point 3 in the above prescription for
determining wavefunctions. Additional examplesfor constructing wavefunctions for atoms
are provided later in this chapter and in Appendix G.

D. Inversion Symmetry

One more quantum number, that relating to the inversion (i) symmetry operator can
be used in atomic cases because the total potential energy V is unchanged when all of the
electrons have their position vectors subjected to inversion (i r = -r). This quantum number
is straightforward to determine. Becauseeach L, S, M, M s, H state discussed above
consist of afew (or, in the case of configuration interaction several) symmetry adapted
combinations of Slater determinant functions, the effect of the inversion operator on such a
wavefunction Y can be determined by:

(i) applying i to each orbital occupiedin'Y thereby generating a+ 1 factor for each
orbital (+1for s, d, g, i, etc orbitals; -1 for p, f, h, j, etc orbitals),

(i) multiplying these £+ 1 factors to produce an overall sign for the character of Y
under i.

When thisoverall signispositive, thefunction Y istermed "even" and itsterm symbol is
appended with an "€" superscript (e.g., the 3P level of the O atom, which has

1s22s22p# occupancy is labeled 3P€); if the signisnegative Y iscalled "odd" and the term
symbol is so amended (e.g., the 3P level of 122s12pl B+ ionislabeled 3P0).

E. Review of Atomic Cases

The orbitals of an atom are labeled by | and m quantum numbers; the orbitals
belonging to a given energy and | value are 2|+1- fold degenerate. The many-electron
Hamiltonian, H, of an atom and the antisymmetrizer operator A = ((")]JN!)Sp sp P
commute with total Ly =S; Lz (i) , asin the linear-molecule case. The additional symmetry
present in the spherical atom reflectsitself in the fact that L, and Ly now also commute
with H and A . However, since L, does not commute with Ly or Ly, new quantum



numbers can not be introduced as symmetry labels for these other components of L. A new
symmetry label doesarisewhen L2 = L2 + Ly2 + Ly2 isintroduced; L2 commutes with H,
A, and L 2, so proper eigenstates (and trial wavefunctions) can be labeled with L, M|, S,
Ms, and H quantum numbers.

To identify the states which arise from a given atomic configuration and to construct
properly symmetry-adapted determinental wave functions corresponding to these
symmetries, one must employ L and M. and S and Mg angular momentum tools. Onefirst
identifies those determinants with maximum Mg (this then defines the maximum S value
that occurs); within that set of determinants, one then identifies the determinant(s) with
maximum M__ (thisidentifies the highest L value). This determinant has Sand L equal to its
Ms and My values (this can be verified, for example for L, by acting on this determinant
with L2 in the form

L2=L.L++LA+AhL,

and redlizing that L+ acting on the state must vanish); other members of thisL,S energy
level can be constructed by sequential applicationof S and L. = S; L.(i) . Having
exhausted a set of (2L+1)(2S+1) combinations of the determinants belonging to the given
configuration, one proceeds to apply the same procedure to the remaining determinants (or
combinations thereof). One identifies the maximum Mg and, within it, the maximum

ML which thereby specifies another S, L label and a new "maximum" state. The
determinental functions corresponding to these L,S (and various M, M) values can be
constructed by applying S. and L. to this "maximum” state. This processis continued until
all of the states and their determinental wave functions are obtained.

Asillustrated above, any p2 configuration gives rise to 3P€, 1D€, and 1S€levels
which contain nine, five, and one state respectively. The use of L and S angular momentum
algebratools alows one to identify the wavefunctions corresponding to these states. As
shown in detail in Appendix G, in the event that spin-orbit coupling causes the
Hamiltonian, H, not to commute with L or with S but only with their vector sumJ=L +
S, then these L2 S2 L, S; eigenfunctions must be coupled (i.e., recombined) to generate 2
J; eigenstates. The steps needed to effect this coupling are developed and illustrated for the
above p? configuration casein Appendix G.

In the case of a pair of non-equivalent p orbitals (e.g., in a 2p13p! configuration),
even more states would arise. They can aso be found using the tools provided above.
Their symmetry labels can be obtained by vector coupling (see Appendix G) the spin and
orbital angular momenta of the two subsystems. The orbital angular momentum coupling



withl =1andl=1givesL =2, 1, and 0 or D, P, and S states. The spin angular
momentum coupling with s=1/2 and s= 1/2 givesS=1 and O, or triplet and singlet states.
So, vector coupling leads to the prediction that 3D€, 1De€, 3Pe, 1pe 3Se and 1Se gtates can
be formed from a pair of non-equivalent p orbitals. It is seen that more states arise when
non-equivaent orbitals are involved; for equivalent orbitals, some determinants vanish,
thereby decreasing the total number of states that arise.

[11. Linear Molecule Term Symbols and Wavefunctions
A. Non-Equivaent Orbital Term Symbols

Equivalent angular momenta arising in linear molecules also require use of
specialized angular momentum coupling. Their spin angular momenta are coupled exactly
as in the atomic case because both for atoms and linear molecules, S2 and S, commute with
H. However, unlike atoms, linear molecules no longer permit L2 to be used as an operator
that commutes with H; L still does, but L2 does not. As aresult, when coupling non-
equivaent linear molecule angular momenta, one vector couples the el ectron spins as
before. However, in place of vector coupling the individual orbital angular momenta, one
adds theindividual L, valuesto obtain the L, values of the coupled system. For example,
theplp'1 configuration givesrise to S=1 and S=0 spin states. The individual m; values of
the two pi-orbitals can be added to give M| = 1+1, 1-1, -1+1, and -1-1, or 2, O, O, and -2.
The M| =2 and -2 cases are degenerate (just asthe m= 2 and -2 d orbitals are and the m|=
1 and -1 p orbitals are) and are denoted by the term symbol D; there are two distinct M =0
States that are denoted S. Hence, the p1p' 1 configuration yields 3D, 3S, 3S, 1D, 1S, and
1S term symbols.

B. Equivaent-Orbital Term Symbols

To treat the equivalent-orbital case p2, one forms abox diagram as in the atom case:

Ms 1 lp1ap-1a|

0 lp1apib| lp1ap-1b|,



Ip-12p1b|

The processisvery smilar to that used for atoms. One first identifies the highest
Ms value (and hence an S vaue that occurs) and withinthat Mg, the highest My .
However, the highest M does not specify an L-value, because L isno longer a"good
quantum number" because L2 no longer commutes with H. Instead, we simply take the
highest M value (and minus this value) as specifying aS, P, D, F, G etc. term symbol.
In the above example, the highest Mg valueisMg = 1, so thereisan S= 1 level. Within
Mg = 1, the highest M = 0; hence, thereisa3S level.

After deleting from the box diagram entries corresponding to Mg values ranging
from -Sto Sand M valuesof M| and - M, one has (again using italics to denote the
deleted entries):

ML 2 1 0
Ms 1 lp1ap-1a|
0 lp1apib| lp1ap-1b|,
Ip-1ap1b|

Among the remaining entries, the highest Mg valueisMgs = 0, and within this Mg the
highest M_ isM|_ = 2. Thus, thereis a 1D state. Deleting entrieswith Mg =0 and M| = 2
and -2, one has |eft the following box diagram:

ML 2 1 0
Ms 1 lp1ap-1a|
0 lp1apib| lp1ap-1bl,
Ip-1ap1b|

There till remains an entry with Ms = 0 and My = 0; hence, thereisaso alS level.
Recall that the non-equivalent p1p' ! caseyielded 3D, 3S, 3S, 1D, 1S, and 1S term
symbols. The equivalent p2 caseyieldsonly 3S, 1D, and 1S term symbols. Again,



whenever oneis faced with equivalent angular momentain alinear-molecule case, one must
use the box method to determine the allowed term symbols. If one has a mixture of
equivaent and non-equivalent angular momenta, it is possible to treat the equivalent angular
momenta using boxes and to then add in the non-equivalent angular momenta using the
more straightforward technique. For example, the p2d! configuration can be treated by
coupling the p2 as above to generate 3S, 1D, and 1S and then vector coupling the spin of
the third electron and additively coupling them; = 2 and -2 of the third orbital. The
resulting term symbols are 4D, 2D, 2G, 2S, 2S, and 2D (e.g., for the 1D intermediate state,
adding the d orbital's m| values givestotal M valuesof M| = 2+2, 2-2, -2+2, and
-2-2,0r 4,0,0, and -4).

C. Linear-Molecule Configuration Wavefunctions

Procedures analogous to those used for atoms can be applied to linear molecules.
However, in this case only S: can be used; L+ no longer applies because L isno longer a
good guantum number. One begins asin the atom case by identifying determinental
functions for which M_ and Mg are unique. In the p2 example considered above, these
statesinclude [piap-1a|, [p1ap1b|, and their mirror images. These states are members of
the3S and 1D levels, respectively, because the first has Ms=1 and because the latter has
ML = 2.

Applying S to this3S state with Ms=1 produces the 3S state with Mg = 0:

S.3S(ML=0, Ms=1) =[S.(1) + S.(2)] [p1ap-12|
=h(1(2)-1(0))V235(M__=0, Ms=0)

=h ()Y2[|p1bp-1a| + p1ap-1b[l,
SO,

35(ML=0, Ms=0) = 2-12[|p1bp.1a| + [p1ap-1b]].
The only other state that can have M =0 and Ms=0 is the 1S state, which must itself be a
combination of the two determinants, [p1bp-1a|and |p1ap-1b|, with M| =0 and Ms=0.
Because the 1S state hasto be orthogonal to the 3S state, the combination must be

1S = 2-12[|psbp-1a| - p1ap-1b[).



Aswith the atomic systems, additional examples are provided later in this chapter and in
Appendix G.

D. Inversion Symmetry and s, Reflection Symmetry

For homonuclear molecules (e.g., Oy, N2, etc.) the inversion operator i (where
inversion of al electrons now takes place through the center of mass of the nuclei rather
than through an individual nucleus asin the atomic case) isaso avalid symmetry, so
wavefunctionsY may also be labeled as even or odd. The former functions are referred to
as ger ade (g) and the latter asunger ade (u) (derived from the German words for even
and odd). The g or u character of aterm symbol is straightforward to determine. Again one

(i) appliesi to each orbital occupiedin'Y thereby generating a+ 1 factor for each
orbital (+1for s, p*, d, f*, etc orbitals; -1 for s*, p, d*, f, etc orbitals),

(i) multiplying these £+ 1 factorsto produce an overall sign for the character of Y
under i.

When thisoverall signispositive, thefunction Y isgerade and itsterm symbol is
appended with a"g" subscript (e.g., the 3S level of the O, molecule, which has
pu*pg*2 occupancy islabeled 3Sy); if the signisnegative, Y isungerade and the term
symbol is so amended (e.g., the 3P level of the 1s 4215225 gl1p,! configuration of the
Li»> moleculeislabeled 3P ).

Finaly, for linear moleculesin S states, the wavefunctions can be labeled by one
additional quantum number that relatesto their symmetry under reflection of all electrons
through as,, plane passing through the molecule's Cy axis. If Y iseven, a+ signis
appended as a superscript to the term symbol; if Y isodd, a- sign is added.

To determinethe sy symmetry of Y, onefirst appliess,, to each orbital in'Y .
Doing so replaces the azimutha anglef of the electron in that orbital by 2p-f ; because
orbitals of linear molecules depend onf as exp(imf ), this changes the orbital into exp(im(-
f)) exp(2pim) = exp(-imf ). In effect, sy applied to Y changesthe signs of al of them
values of the orbitalsin Y . One then determines whether the resultant s Y isequal to or
oppositein sign from the original Y by inspection. For example, the 3Sg ground state of
Oo, which has a Sater determinant function

IS=1, Ms=1> = |p*1ap* 14|

=212 p*y(ry)as p*-a(rz)az - p*a(rz)az p*-a(ri)as .



Recognizing that sy p*1 = p*.1 and sy p*.1= p*1, then gives
Sy |S=1, Ms=1> = |p*1ap*.1a|
=212 p* 4(r1)az p*a(r2)az - p*-a(r2)az p*a(ri)as]
=(-1) 2V2[ p*y(r1)a1 p*-a(ra)az - p*a(rz)az p*-a(ri)as ],
so thiswavefunction is odd under sy which iswritten as 3Sg'.

E. Review of Linear Molecule Cases

Moleculeswith axial symmetry have orbitalsof s, p, d, f, etc symmetry; these
orbitals carry angular momentum about the z-axisin amounts (in units of k) 0, +1 and -1,
+2 and -2, +3 and -3, etc. The axial point-group symmetries of configurations formed by
occupying such orbitals can be obtained by adding, in al possible ways, the angular
momenta contributed by each orbital to arrive at a set of possible total angular momenta.
The eigenvalue of total L, = Sj L(i) isavalid quantum number because total L, commutes
with the Hamiltonian and with P;j; one obtains the eigenvalues of total L by adding the
individual spin-orbitals' m eigenval ues because of the additive form of the L, operator. L2
no longer commutes with the Hamiltonian, so it is no longer appropriate to construct N-
electron functions that are eigenfunctions of L2. Spin symmetry istreated as usual viathe
spin angular momentum methods described in the preceding sections and in Appendix G.
For molecules with centers of symmetry (e.g., for homonuclear diatomics or ABA linear
triatomics), the many-electron spin-orbital product inversion symmetry, which isequal to
the product of the individual spin-orbital inversion symmetries, provides another quantum
number with which the states can be labeled. Finally the s, symmetry of S states can be
determined by changing the m values of al orbitalsin'Y and then determining whether the
resultant functionisequal toY orto-Y.

If, instead of ap2 configuration like that treated above, one had a d2 configuration,
the above anaysiswould yield 1G, 1S and 3S symmetries (because the two d orbitals m
values could be combinedas2 + 2,2- 2, -2 + 2, and -2 -2); the wavefunctions would be
identical to those given above with the p1 orbitals replaced by dy orbitals and p-; replaced
by d.o. Likewise, f 2 givesrisetoll, 1S, and 3S symmetries.



For aplp'l configuration in which two non-equivalent p orbitals (i.e., orbitals
which are of p symmetry but which are not both members of the same degenerate set; an
example would bethe p and p* orbitalsin the B, molecule) are occupied, the above
analysis must be expanded by including determinants of the form: [p1ap’ia|,

Ip-1ap'-1al, [p1bp’ 1b], |p-1bp' -1b]. Such determinants were excluded inthep 2 case
because they violated the Pauli principle (i.e., they vanish identically when p' = p).
Determinants of the form [p*1ap-1a|, [p"1@p1bl, [p'-1ap-1b], [p* 1bp- 1b], [p"12p- 10|, and
Ip' 1bp-1a| are now distinct and must be included as must the determinants [piap'-1a|,
Ip1ap’ 1bl, [p-1a2p’-1b|, [p1bp’- 10|, [paap’- 1b|, and [p1bp’-1a|, which are analogous to
those used above. The result is that there are more possible determinants in the case of non-
equivalent orbitals. However, the techniques for identifying space-spin symmetries and
creating proper determinental wavefunctions are the same as in the equivalent-orbital case.

For any p2 configuration, one finds1D, 1S, and 3S wavefunctions as detailed
earlier; for theplp'l case, onefinds 3D, 1D, 3S, 1S, 3S, and 1S wavefunctions by
starting with the determinants with the maximum Mg value, identifying states by their M| |
values, and using spin angular momentum algebra and orthogonality to generate states with
lower Mg and, subsequently, lower S values. Because L2 is not an operator of relevancein
such cases, raising and lowering operators relating to L are not used to generate states with
lower L values. States with specific L values are formed by occupying the orbitalsin al
possible manners and ssmply computing L as the absolute value of the sum of the
individual orbitals m-values.

If acenter of symmetry is present, all of the states arising from p2 are gerade;
however, the states arising from plp'1 can be geradeif p and p' are both g or both u or
ungeradeif p and p' are of opposite inversion symmetry.

The state symmetries appropriate to the non-equivalent p1p' 1 case can,
alternatively, be identified by "coupling" the spin and L, angular momenta of two
"independent" subsystems-the p system which givesriseto 2P symmetry (with M| =1
and -1 and S=1/2) and the p' 1 system which also give 2P symmetry. The coupling gives
riseto triplet and singlet spins (whenever two full vector angular momenta | j,m> and |
j';m'> are coupled, one can obtain total angular momentum values of J=j+j', j+j'-1, j+j'-
2,... i-]']; see Appendix G for details) and to M|_ values of 1+1=2, -1-1=-2, 1-1=0 and -
1+1=0(i.e., to D, S, and S states). The L, angular momentum coupling is not carried out
in the full vector coupling scheme used for the electron spins because, unlike the spin case
where oneis forming eigenfunctions of total 2 and S, oneis only forming L, eigenstates

(i.e., L2isnot avalid quantum label). In the case of axial angular momentum coupling, the
various possible M| values of each subsystem are added to those of the other subsystem to



arrive a the total M value. This angular momentum coupling approach gives the same set
of symmetry labels (3D, 1D, 3S, 1S, 3S, and 1S) as are obtained by considering al of the
determinants of the composite system as treated above.

IV. Non-Linear Molecule Term Symbols and Wavefunctions
A. Term Symbols for Non-Degenerate Point Group Symmetries

The point group symmetry labels of the individual orbitals which are occupied in
any determinental wave function can be used to determine the overall spatia symmetry of
the determinant. When a point group symmetry operation is applied to adeterminant, it acts
on al of the electronsin the determinant; for example, sy [f 1f of 3| = |suf 1Suf 2S\f 3. If
each of the spin-orbitalsf; belong to non-degenerate representations of the point group,
svf i will yield the character cj(sy) appropriate to that spin-orbital multiplyingfi. Asa
result, sy |f 1f of 3| will equal the product of the three characters ( one for each spin-orbital)
Pi ci(sy) times|f 1f of 3|. This gives an example of how the symmetry of a spin-orbital
product (or an antisymmetrized product) is given as the direct product of the symmetries of
theindividua spin-orbitalsin the product; the point group symmetry operator, because of
its product nature, passes through or commutes with the antisymmetrizer. 1t should be
noted that any closed-shell parts of the determinant (e.g.,1a122a121b2 in the configuration
1a122a21b2 1b11) contribute unity to the direct product because the squares of the
characters of any non-degenerate point group for any group operation equals unity.
Therefore, only the open-shell parts need to be considered further in the symmetry
analysis. For abrief introduction to point group symmetry and the use of direct productsin
this context, see Appendix E.

An examplewill help illustrate these ideas. Consider the formal dehyde molecule
H2CO in Cyp, symmetry. The configuration which dominates the ground-state
wavefunction has doubly occupied O and C 1sorbitals, two CH bonds, aCO s bond, a
CO p bond, and two O-centered lone pairs; this configuration is described in terms of
symmetry adapted orbitals as follows: (1ag22a123a21by?
4an21b125:22y2) and is of 1A, symmetry becauseit is entirely closed-shell (note that
lower case |etters are used to denote the symmetries of orbitals and capital letters are used
for many-electron functions symmetries).

The lowest-lying n=>p* states correspond to a configuration (only those orbitals
whose occupancies differ from those of the ground state are listed) of the form 2by12b41,
which givesriseto 1A, and 3A; wavefunctions (the direct product of the open-shell spin



orbitalsis used to obtain the symmetry of the product wavefunction: Ao =bj x bp). The p
=> p” excited configuration 1b112b;1 gives 1A; and 3A; states because by x by = Ax.

The only angular momentum coupling that occursin non-linear moleculesinvolves
the electron spin angular momenta, which are treated in a vector coupling manner. For
example, in the lowest-energy state of formaldehyde, the orbitals are occupied in the
configuration 1a22a123a21bp24321b125322b,2. This configuration has only asingle
entry inits"box". Its highest Mg vaueisMs = 0, so thereisasinglet S= 0 state. The
gpatial symmetry of thissinglet stateis totally symmetric A1 because thisis aclosed-shell
configuration.

The lowest-energy np* excited configuration of formaldehyde has a
1aq22an 23812102481 210b125a122b»12b1 1 configuration, which has atotal of four entriesin
its "box" diagram:

Mg=1 |2byla 2byla|,
Ms=0 I2bpa 2by b,
Ms=0 2bplb2bytal,
Mg = -1 2b,1b2by D).

The highest Ms valueisMgs = 1, so thereisan S = 1 state. After deleting one entry each
withMs =1, 0, and -1, there is one entry left with Mg = 0. Thus, thereisan S = 0 state
also.

Asillustrated above, the spatial symmetries of thesefour S=1 and S= 0 states are
obtained by forming the direct product of the "open-shell” orbitals that appear in this
configuration: by x by = Ao.

All four states have this spatial symmetry. In summary, the above configuration yields 3A,
and 1A, term symbols. The plp*1 configuration 1a;22aq23a;21bp24an 21b1 152 22bp22b4 1
produces 3A; and 1A; term symbols (because by x by = Ay).

B. Wavefunctions for Non-Degenerate Non-Linear Point Molecules

The techniques used earlier for linear molecules extend easily to non-linear
molecules. One begins with those states that can be straightforwardly identified as unique
entries within the box diagram. For polyatomic molecules with no degenerate
representations, the spatial symmetry of each box entry isidentical and is given asthe direct
product of the open-shell orbitals. For the formal dehyde example considered earlier, the
spatial symmetries of the np* and pp* stateswere Ao and A1, respectively.



After the unique entries of the box have been identified, one uses S. operations to
find the other functions. For example, the wavefunctions of the 3A, and 1A, states of the
np* lay22a123a 21243211253 22by12b41 configuration of formal dehyde are formed by
first identifying the Ms = £1 components of the S = 1 state as |2bpa 2bja | and [2bob2b1b|
(@l of the closed-shell components of the determinants are not explicitly given). Then,
applying S to the Mg = 1 state, one obtains the Ms = 0 component (1/2)V2 [|2bsb2bia | +
|2bpa 2b1b| ]. The singlet state is then constructed as the combination of the two
determinants appearing inthe S= 1, Mg = 0 state that is orthogonal to thistriplet state. The
result is (1/2)Y2 [|2byb2ba | - [2bya2bib] ].

The results of applying these rulesto the np™ and pp* states are as follows:

3Ao (Ms= 1) =[1;alagb2aa2ab3xa3ablbya lbob4aadablbialbib
S5aga5ab2boa 2bial,
3Ao (Mg =0) = 1/Q2 [|2bpa 2b1b| + |2pb2bsal],

3A2 (Ms = -1) = [2bpb2bs b,
1A, = 1/¢2 [[20pa2b1b] - [2bpb2bsal].

The lowest pp* states of triplet and singlet spin involve the following:
3A1 (Ms=1) = [1bja2bsal,
1A; = 12 [|1bia2bib]| - [1gb2bsal]].

In summary, forming spatial- and spin- adapted determinental functions for
molecules whose point groups have no degenerate representations is straightforward. The
direct product of all of the open-shell spin orbitals gives the point-group symmetry of the
determinant. The spin symmetry is handled using the spin angular momentum methods
introduced and illustrated earlier.

C. Extension to Degenerate Representations for Non-Linear Molecules

Point groups in which degenerate orbital symmetries appear can betreated in like
fashion but require more analysis because a symmetry operation R acting on a degenerate



orbital generaly yields alinear combination of the degenerate orbitals rather than amultiple
of the original orbital (i.e., Rfj =cj(R) fj isnolonger valid). For example, when a pair of
degenerate orbitals (denoted e; and e ) are involved, one has

R =5j Rij g,

where Rjj isthe 2x2 matrix representation of the effect of R on the two orbitals. The effect
of R on aproduct of orbitals can be expressed as.

R &g =Sk, Rik Rjl &8 .

The matrix Rjj kI = Rik Rj| representsthe effect of R on the orbital products in the same
way Rjk represents the effect of R on the orbitals. One saysthat the orbital products also
form a basis for a representation of the point group. The character (i.e., the trace) of the
representation matrix Rjj kI appropriate to the orbital product basisis seen to equal the
product of the characters of the matrix Rjk appropriate to the orbital basis. cZ(R) =
cdR)c«R), whichis, of course, why the term "direct product” is used to describe this
relationship.

For point groups which contain no degenerate representations, the direct product of
one symmetry with another is equal to a unique symmetry; that is, the characters ¢ (R)
obtained as ¢ y(R)cp(R) belong to a pure symmetry and can be immediately identified in a
point-group character table. However, for point groups in which degenerate representations
occur, such is not the case. The direct product characters will, in general, not correspond to
the characters of a single representation; they will contain contributions from more than one
representation and these contributions will have to be sorted out using the tools provided
below.

A concrete example will help clarify these concepts. In Czy symmetry, thep
orbitals of the cyclopropenyl anion transform according to a; and e symmetries

e 1



and can be expressed as LCAO-MO'sin terms of theindividual pj orbitals as follows:
a =1/OB[ p1+p2 +p3], 1= V[ p1 - p3],
and

e2=1UC6[ 2 pz-p1-Pg]-
For the anion's lowest energy configuration, the orbital occupancy a;2e2 must be
considered, and hence the spatial and spin symmetries arising from the e2 configuration are
of interest. The character table shown below

allows one to compute the characters appropriate to the direct product (e x €) asc(E) = 2x2
=4, c(sy) = 0x0 =0, c(C3) = (-1)x(-1) =1.

This reducible representation (the occupancy of two e orbitalsin the anion givesrise to
more than one state, so the direct product e x e contains more than one symmetry
component) can be decomposed into pure symmetry components (labels Gare used to
denote the irreducible symmetries) by using the decomposition formula given in Appendix
E:

n(G =1/g Sg c(R)cR).



Here g isthe order of the group (the number of symmetry operationsin the group- 6 in this
case) and c(R) isthe character for the particular symmetry Gwhose component in the
direct product is being calculated.

For the case given above, onefinds n(ap) =1, n(az) = 1, and n(e) =1; so within the
configuration e2 there is one A1 wavefunction, one Ao wavefunction and a pair of E
wavefunctions (where the symmetry labels now refer to the symmetries of the
determinental wavefunctions). This analysistells one how many different wavefunctions of
various spatial symmetries are contained in a configuration in which degenerate orbitals are
fractionally occupied. Considerations of spin symmetry and the construction of proper
determinental wavefunctions, as developed earlier in this Section, still need to be applied to
each spatial symmetry case.

To generate the proper A1, A2, and E wavefunctions of singlet and triplet spin
symmetry (thusfar, it is not clear which spin can arise for each of the three above spatia
symmetries; however, only singlet and triplet spin functions can arise for this two-electron
example), one can apply the following (un-normalized) symmetry projection operators (see
Appendix E where these projectors are introduced) to al determinental wavefunctions
arising from the e2 configuration:

Pc=SrcagR)R .
Here, cqR) isthe character belonging to symmetry Gfor the symmetry operation R .
Applying this projector to a determinental function of the form [f f j| generates a sum of
determinants with coefficients determined by the matrix representations Rj:

Pglfifj| = Sr Ski caR) RikR;l fkfil.

For example, in the €2 case, one can apply the projector to the determinant with the
maximum Mg value to obtain

Pcleiaexa| = Sr cR) [R11R22 [e1aezal + Ri2R21 [eaesal]
= SR cdR) [R11R22 -R12R21 | [e1aezal,
or to the other two members of this triplet manifold, thereby obtaining

Pgleibeob| = Sk cqR) [R11R22 -R12R21 ] |erbenb|



and
Pc U/ [|lejaexb| +lebera[] = Sr cq(R) [R11R22 -R12R21 ]

1/C2[leraexb| +letbesal] .

The other (singlet) determinants can be symmetry analyzed in like fashion and result in the
following:

PG |eiaeib| = Sg cgR){ R11R11|e1aeib| +R12R12 |eaesb| +R11R12
[leraebl-lerbecall},

PG |exaeb| = Sr ca(R){ R22R22 |e2aezb| + R21R21|e1aerb| + R22R21
[lexaerbl|-leberal]},
and
P U(2[leaezb| - letbezal] = Sk cd(R) { 2 RuiRzleiaerb|
+(2 RooRyoleaeph| + ( R11R22 +R12R21) [|eraepb| -lerbeyal]} .

To make further progress, one needs to evaluate the Rjk matrix elementsfor the
particular orbitals given above and to then use these explicit values in the above equations.
The matrix representations for the two e orbitals can easily be formed and are as follows:

1 0 <-1 o> <-1/2 c'je/z>
0 0 1 o872 1/2

E Sy s’y

172 -CB/2 <-1/2 oe/2><-__1/2 -c‘je/2>
<-os/2 1/2> ~(8/2 -1/2) \B/2 -1/2
s" Cs C's

\"

Turning first to the three triplet functions, one notes that the effect of the symmetry
projector acting on each of these three was the following multiple of the respective function:
Sr cdR) [R11R22



-R12R21 ]. Evaluating this sum for each of the three symmetries G= A1, Ao, and E, one
obtainsvalues of 0, 2, and O, respectively. That is, the projection of the each of the
origina triplet determinants gives zero except for Az symmetry. Thisalows oneto
conclude that thereareno A or E triplet functionsin this case; the triplet functions are of
pure 3A, symmetry.

Using the explicit values for Rjx matrix e ements in the expressions given above for
the projection of each of the singlet determinental functions, one finds only the following
non-vanishing contributions:

(i) For Ay symmetry- P lejaerb| = 3] leaeb| + [aexbl] = P eaeb,

(i) For Ao symmetry- all projections vanish,

(iii) For E symmetry- P |gjaeib| = 3/2 [lejaelb| - |epaeob|] = -P |exaexb|
and PL/C2[leaezb| - [erbeyal] = 3 U2 le1aezb| - lebezall.

Remembering that the projection process does not |ead to a normalized function, although it
does generate a function of pure symmetry, one can finally write down the normalized
symmetry-adapted singlet functions as:

(i) *A1= VC2[leaenb| + [exaezbl],

(i) 1E = { VC2[leaeb| - [exaezbl], and Y[ leraezb| - fesbeall }.
The triplet functions given above are:

(iii) 3A2 = { leraezal, VC2[le1aezb| +lebezall, and lerbeb } .

In summary, whenever one has partially occupied degenerate orbitals, the
characters corresponding to the direct product of the open-shell orbitals (as always, closed-
shells contribute nothing to the symmetry analysis and can be ignored, although their
presence must, of course, be specified when one finally writes down complete symmetry-
adapted wavefunctions) must be reduced to identify the spatial symmetry components of
the configuration. Given knowledge of the various spatial symmetries, one must then form
determinental wavefunctions of each possible space and spin symmetry. In doing so, one



starts with the maximum Mg function and uses spin angular momentum algebra and
orthogonality to form proper spin eigenfunctions, and then employs point group projection
operators (which require the formation of the Rjk representation matrices). Antisymmetry,
as embodied in the determinants, causes some space-spin symmetry combinations to vanish
(e.g., 3A1 and 3E and 1A, in the above exampl€) thereby enforcing the Pauli principle. This
procedure, although tedious, is guaranteed to generate all space- and spin-symmetry
adapted determinants for any configuration involving degenerate orbitals. The results of
certain such combined spin and spatial symmetry analyses have been tabulated. For
example, in Appendix 11 of Atkins such information is given in the form of tables of direct
products for several common point groups.

For cases in which one has a non-equivalent set of degenerate orbitals (e.g., for a
configuration whose open-shell part is ele'l), the procedure is exactly the same as above
except that the determination of the possible space-spin symmetriesis more
straightforward. In this case, singlet and triplet functions exist for al three space
symmetries- A1, Ao, and E, because the Pauli principle does not exclude determinants of

theform |ejae'1a| or |exbe’ob|, whereas the equivalent determinants (Jeraeja| or |ecbexb|)
vanish when the degenerate orbitals belong to the same set (in which case, one says that the
orbitals are equivalent).

For al point, axial rotation, and full rotation group symmetries, this observation
holds: if the orbitals are equivalent, certain space-spin symmetry combinations will vanish
due to antisymmetry; if the orbitals are not equivalent, al space-spin symmetry
combinations consistent with the content of the direct product analysis are possible. In
either case, one must proceed through the construction of determinental wavefunctions as
outlined above.

V. Summary

The ability to identify all term symbols and to construct al determinental
wavefunctions that arise from a given electronic configuration isimportant. This
knowledge allows one to understand and predict the changes (i.e., physical couplings due
to external fields or due to collisions with other species and chemical couplings due to
interactions with orbitals and electrons of a'ligand’ or another species) that each state
experiences when the atom or molecule is subjected to some interaction. Such
understanding plays central roles in interpreting the results of experiments in spectroscopy
and chemical reaction dynamics.



The essence of this analysisinvolves being able to write each wavefunction asa
combination of determinants each of which involves occupancy of particular spin-orbitals.
Because different spin-orbitals interact differently with, for example, a colliding molecule,
the various determinants will interact differently. These differencesthus give rise to
different interaction potential energy surfaces.

For example, the Carbon-atom 3P(M| =1, Ms=0) = 2-V2 [|p1bpoa | + |prapgb]] and
3P(M =0, Ms=0) = 2-V2[|pibp.1a| + |pmap.1b]] statesinteract quite differently ina
collision with aclosed-shell Ne atom. The M| = 1 state's two determinants both have an
electron in an orbita directed toward the Ne atom (the 2pg orbital) aswell asan electronin
an orbital directed perpendicular to the C-Ne internuclear axis (the 2p; orbitd); theM_ =0
state's two determinants have both electronsin orbitals directed perpendicular to the C-Ne
axis. Because Ne is a closed-shell species, any electron density directed toward it will
produce a"repulsive” antibonding interaction. As aresult, we expect the M| = 1 state to
undergo a more repulsive interaction with the Ne atom than the M = 0 state.

Although one may be tempted to 'guess how the various 3P(M| ) states interact
with aNe atom by making an analogy between the three M| states within the 3P level and
the three orbitals that comprise a set of p-orbitals, such analogies are not generally valid.
The wavefunctions that correspond to term symbols are N-electron functions; they describe
how N spin-orbitals are occupied and, therefore, how N spin-orbitals will be affected by
interaction with an approaching 'ligand' such as a Ne atom. The net effect of the ligand will
depend on the occupancy of al N spin-orbitals.

Toillustrate this point, consider how the 1S state of Carbon would be expected to
interact with an approaching Ne atom. This term symbol's wavefunction 1S = 3-12
Ipoa pob| - [p1a pibl
- |p12p-1b[] contains three determinants, each with a 1/3 probability factor. The first,
lpoa pob|, produces a repulsive interaction with the closed-shell Ne; the second and third,
|p-1ap1b]| and |p1ap-1b|, produce attractive interactions because they allow the Carbon's
vacant pg orbital to servein aLewis acid capacity and accept electron density from Ne. The
net effect islikely to be an attractive interaction because of the equal weighting of these
three determinantsin the 1S wavefunction. This result could not have been 'guessed’ by
making making analogy with how an s-orbital interacts with a Ne atom; the 1S state and an
s-orbital are distinctly different in this respect.



Chapter 11

One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N-
Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in
Particular. The Sater-Condon Rules Provide this Capability

|. CSFs Are Used to Express the Full N-Electron Wavefunction

It has been demonstrated that a given el ectronic configuration can yield several
space- and spin- adapted determinental wavefunctions; such functions are referred to as
configuration state functions (CSFs). These CSF wavefunctions are not the exact
eigenfunctions of the many-electron Hamiltonian, H; they are ssimply functions which
possess the space, spin, and permutational symmetry of the exact elgenstates. As such,
they comprise an acceptable set of functionsto usein, for example, alinear variationa
trestment of the true states.

In such variational treatments of electronic structure, the N-electron wavefunction
Y isexpanded as asum over all CSFs that possess the desired spatial and spin symmetry:

Y =53;C3F3.

Here, the F jrepresent the CSFsthat are of the correct symmetry, and the Cj are their
expansion coefficients to be determined in the variational calculation. If the spin-orbitals
used to form the determinants, that in turn form the CSFs {F 3}, are orthonormal one-
electron functions (i.e., <f i | fj> = d j), then the CSFs can be shown to be orthonormal
functions of N electrons

<Fj|Fk>=djk.

In fact, the Slater determinants themselves also are orthonormal functions of N electrons
whenever orthonormal spin-orbitals are used to form the determinants.

The above expansion of the full N-electron wavefunction istermed a
"configuration-interaction” (Cl) expansion. It is, in principle, amathematically rigorous
approach to expressing Y because the set of all determinants that can be formed from a
complete set of spin-orbitals can be shown to be complete. In practice, oneislimited to the
number of orbitalsthat can be used and in the number of CSFsthat can be included in the
Cl expansion. Nevertheless, the Cl expansion method forms the basis of the most
commonly used techniques in quantum chemistry.



In general, the optimal variational (or perturbative) wavefunction for any (i.e., the
ground or excited) state will include contributions from spin-and space-symmetry adapted
determinants derived from all possible configurations. For example, although the
determinant with L =1, S=1, M =1, Mg =1 arising from the 1s22s22p2 configuration
may contribute strongly to the true ground electronic state of the Carbon atom, there will be
contributions from all configurations which can providethese L, S, M, and Mg values
(e.g., the 1s22s22p13pl and 2s22p# configurations will also contribute, although the
1s22522p13s! and 1s22s12p23pt will not because the latter two configurations are odd
under inversion symmetry whereas the state under study is even).

The mixing of CSFsfrom many configurations to produce an optimal description of
the true electronic states is referred to as configuration interaction (Cl). Strong Cl (i.e.,
mixing of CSFswith large amplitudes appearing for more than one dominant CSF) can
occur, for example, when two CSFs from different electronic configurations have nearly
the same Hamiltonian expectation value. For example, the 1s22s2 and 1s?2p2 1S
configurations of Be and the analogous ns? and np2 configurations of al akaline earth
atoms are close in energy because the ns-np orbital energy splitting is small for these
elements; the p2 and p*2 configurations of ethylene become equal in energy, and thus
undergo strong Cl mixing, as the CCp bond is twisted by 90° in which case the p and p*
orbitals become degenerate.

Within avariationa treatment, the relative contributions of the spin-and space-
symmetry adapted CSFs are determined by solving a secular problem for the eigenvalues
(Ej) and eigenvectors (Cj) of the matrix representation H of the full many-electron
Hamiltonian H within this CSF basis:

SLHk,L GiL=E Cik.
The eigenvalue E; givesthe variational estimate for the energy of the ith state, and the
entriesin the corresponding eigenvector C; k give the contribution of the Kth CSF to the ith
wavefunction Y j in the sense that

Yi=Sk Cik Fk,

whereF g isthe Kth CSF.

[1. The Slater-Condon Rules Give Expressions for the Operator Matrix Elements Among
the CSFs



To form the Hk | matrix, one uses the so-called Slater-Condon rules which express

all non-vanishing determinental matrix elements involving either one- or two- electron
operators (one-electron operators are additive and appear as

F=Si f(i);
two-€electron operators are pairwise additive and appear as
G = Sjj 9(i.j))-

Because the CSFs are smple linear combinations of determinants with coefficients
determined by space and spin symmetry, the H; y matrix in terms of determinants can be
used to generate the Hk | matrix over CSFs.

The Sater-Condon rules give the matrix elements between two determinants

|>=1[f1f of 3... TN
and

|'>=|f"1f"of "3...T"N]|

for any quantum mechanical operator that isasum of one- and two- electron operators (F +
G). It expresses these matrix elementsin terms of one-and two-€lectron integralsinvolving
the spin-orbitals that appear in | > and | > and the operators f and g.

Asafirst step in applying these rules, one must examine | > and | "> and determine
by how many (if any) spin-orbitals| > and | > differ. In so doing, one may have to
reorder the spin-orbitalsin one of the determinants to achieve maximal coincidence with
those in the other determinant; it is essential to keep track of the number of permutations (
Np) that one makesin achieving maximal coincidence. The results of the Sater-Condon
rules given below are then multiplied by (-1)Np to obtain the matrix elements between the
origina | >and | ">. Thefina result does not depend on whether one chooses to permute |
>or | ">,

Once maximal coincidence has been achieved, the Slater-Condon (SC) rules
provide the following prescriptions for evaluating the matrix elements of any operator F +
G containing aone-electron part F = S; f(i) and atwo-€lectron part G = Sjj o(i,j) (the
Hamiltonian is, of course, a specific example of such an operator; the electric dipole



operator Sj erj and the electronic kinetic energy - h2/2meSjN;2 are examples of one-electron
operators (for which one takes g = 0); the electron-electron coulomb interaction Si>j €2/rjj
is atwo-electron operator (for which one takesf = 0)):



The Slater-Condon Rules

() If | >and | > areidentical, then
<|F+G|>=Sj<fj|f[fi>+Sj5 [<fifj|g|fifj>-<fifj|g|fjfi>],
where the sumsover i and j run over al spin-orbitalsin | >;

(ii) If | > and | "> differ by asingle spin-orbital mismatch (fp? f'p),
<|F+G|>=<fp|f[f'p>+Sj[<fpfj|g|f'pfj>-<fofjlglfjf'p>],
where the sum over j runsover all spin-orbitalsin | > except f ;

(i) If | > and | "> differ by two spin-orbitals (fp* f'pandfq? f'g),
<|F+G|>=<fpfqlg|f'pf'g>-<fpfqglg|f'qf'p>
(note that the F contribution vanishesin this case);

(iv) If | > and | > differ by three or more spin orbitals, then
<|F+G|'>=0;

(v) For the identity operator I, the matrix elements< |1 |"™>=0if | > and | "> differ by one
or more spin-orbitals (i.e., the Slater determinants are orthonormal if their spin-orbitals

are).

Recall that each of these results is subject to multiplication by afactor of (-1)Np to
account for possible ordering differencesin the spin-orbitalsin | > and | ">.
In these expressions,

<fi[f[fj>

is used to denote the one-electron integral
of "i(r) f(r) f;(r) dr

and

<fifj | g|f«f1> (orin short hand notation <i j| k | >)
represents the two-electron integral



of "i(r) £7(r") g(r,r") fk(nf(r') drdr".

The notation <i j | k I> introduced above gives the two-electron integrals for the
g(r,r") operator in the so-called Dirac notation, in which thei and k indices label the spin-
orbitals that refer to the coordinates r and the j and | indices label the spin-orbitals referring
to coordinatesr'. Ther and r' denoter,q,f,s and r',q",f",s' (with s and s’ being the a or
b spin functions). The fact that r and r* are integrated and hence represent ‘dummy’
variablesintroduces index permutational symmetry into thislist of integrals. For example,

<ijlkl>=<ji|lk>=<kl|ij>* =<Ik]|]i>*;

the final two equivalences are results of the Hermitian nature of g(r,r).
It is also common to represent these same two-electron integralsin anotation
referred to as Mulliken notation in which:

of "i(Nf*j(r) g(r,r) f()fi(r) drdr' = (i k [j I).

Here, theindicesi and k, which label the spin-orbital having variablesr are grouped
together, and j and |, which label spin-orbitals referring to the r' variables appear together.
The above permutational symmetries, when expressed in terms of the Mulliken integral list
read:

(k{i=0T1ik)=&il)=q0j1ki)*.

If the operators f and g do not contain any electron spin operators, then the spin
integrationsimplicit in theseintegrals (all of thef are spin-orbitals, so eachf is
accompanied by ana or b spin function and each f * involves the adjoint of one of thea or
b spin functions) can be carried out as<ala> =1, <alb> =0, <bja> =0, <bjp> =1,
thereby yielding integrals over spatial orbitals. These spin integration results follow
immediately from the general properties of angular momentum eigenfunctions detailed in
Appendix G; in particular, because a and b are eigenfunctions of S; with different
eigenvalues, they must be orthogonal <a |b> = <bfa> = 0.

The essentia results of the Sater-Condon rules are:



1. Thefull N! termsthat arise in the N-electron Slater determinants do not have to be
treated explicitly, nor do the N!(N! + 1)/2 Hamiltonian matrix elements among the N! terms
of one Slater determinant and the N! terms of the same or another Siater determinant.

2. All such matrix elements, for any one- and/or two-€lectron operator can be expressed in
terms of one- or two-electron integrals over the spin-orbitals that appear in the
determinants.

3. Theintegrals over orbitals are three or six dimensional integrals, regardless of how
many electrons N there are.

4. These integrals over mo's can, through the LCAO-MO expansion, ultimately be
expressed in terms of one- and two-electron integrals over the primitive atomic orbitals. It
isonly these ao-based integrals that can be evaluated explicitly (on high speed computers
for al but the smallest systems).

[11. Examples of Applying the Slater-Condon Rules

It iswiseto gain some experience using the SC rules, so let us consider afew
illustrative example problems.

1. What is the contribution to the total energy of the 3P level of Carbon made by the two 2p
orbitals alone? Of course, the two 1s and two 2s spin-orbitals contribute to the total energy,
but we artificially ignore al such contributions in this example to smplify the problem.

Because all nine of the 3P states have the same energy, we can calculate the energy
of any one of them; it istherefore prudent to choose an "easy" one

3P(ML=1Ms=1) = |mapoal .
The energy of thisstateis< |p1apoa| H |p1apoa| >. The SC rulestell usthis equals:

12p; + 12pg + <2P12po| 2p12p0> - <2p12po| 2po2p1>,
where the short hand notation |j = <j| f [j> isintroduced.

If the contributions from the two 1s and two 2s spin-orbitals are now taken into
account, one obtains atotal energy that also contains 2115 + 2l o5 + <1sls|1s1s> +
4<1829|182s> - 2 <1825|251s>+ <2529|2525> + 2<1S2p1|1s2p1> - <1s2p1|2p11s> +
2<1s2po|1s2po> - <1s2p|2ppls> + 2<2S2p1|252p1> - <2S2p1|2p12S> + 2<2S2p0|2S2p0> -
<2s2po|2po2s>.



2. Isthe energy of another 3P state equal to the above state's energy? Of course, but it may
prove informative to prove this.

Consider the Ms=0, M =1 state whose energy is:
2-Y2<[|papob| + [pibpoall| H [<[Ip1a pob| + [pibpoal]>2-12
=1/2{12p, + l2py + <2P12Pol 2P12p0> + I 2p; + 12py + <2P12P0| 2P12p0>}
+ 12 { - <2p12pol2po2p1> - <2p12po|2po2p1>}
= lopq + l2pg + <2p12po| 2p12po> - <2p12po| 2P02p1>.
Which is, indeed, the same as the other 3P energy obtained above.
3. What energy would the singlet state 2-Y/2<[|p1a pgb| - |pibpoa || have?

The 3P Ms=0 example can be used (changing the sign on the two determinants) to
give

E = l2p; + 12py + <2p12po| 2p12p0> + <2p12po| 2po2p1>.
Note, thisis the M =1 component of the 1D state; it is, of course, not a 1P state because no
such state exists for two equivalent p electrons.
4. What isthe Cl matrix element coupling |1s22s2| and |1s23s2|?
These two determinants differ by two spin-orbitals, so
<|1salsb2sa2sb| H |1salsb3sa3sh|> = <2s25|3s3s> = <2s35|3s25>
(note, thisis an exchange-typeintegral).

5. What isthe CI matrix element coupling [papb|and |p*ap*b|?

These two determinants differ by two spin-orbitals, so



<[papb| Hjp*ap*b|> = <pp|p*p*> = <pp*[p*p>
(note, again thisis an exchange-type integral).

6. What is the Hamiltonian matrix element coupling |papb| and
2°V2[ jpap*b| - pbp*a[]?

The first determinant differs from the p2 determinant by one spin-orbital, as does
the second (after it is placed into maximal coincidence by making one permutation), so

<|papb|H| 2Y2[ |pap*b| - pbp*al]>
= 2V2[<pffjp*> + <pp|p*p>] -(-1) 212 <plfjp*> + <pp|p*p>]

= 2V2[<plf|p*> + <pp|p*p>].
7. What is the dement coupling |papb| and 2V2[ jpap*b| + |pbp*a[]?

<lpapb|H| 2Y2[ jpap*b]| + pbp*a[>
= 212 <plfp*> + <pp|p*p>] +(-1) 2V <plfjp*> + <pp|p*p>] = 0.

This result should not surprise you because [papb| is an S=0 singlet state while 2-1/2 [
lpap*b| + |pbp*a|] isthe Ms=0 component of the S=1 triplet state.

8. What isther = Sjer;j electric dipole matrix €l ement between [piap1b| and 2V2[|mapgb|
+ |poap1b|]? Isthe second function asinglet or triplet? It isasinglet in disguise; by
interchanging the ppa and p1b and thus introducing a (-1), this function is clearly identified
as 2-V2[|prapgb| - |pibpoal] which isasinglet.

Thefirst determinant differs from the latter two by one spin orbital in each case, so

<|prapiblr[2V2[|pmapob| + |poapibl]> =

2-V2[<pq|r|po> + <p1lrlpo>] = 2V/2 <pq|r|po>.



9. What isthe electric dipole matrix elements between the
1D = |piap1b| state and the 1S = 2-V2[|pjap.1b| +|p-1ap1b[] state?

<2"V2[|p1ap-1b| +jp-1ap1b[] Ilp1apibl>
= 2-V2[<p_q|r|p1> + <p-1lr[p1>]
=212 <p_q|rjp1>.

10. As another example of the use of the SC rules, consider the configuration interaction
which occurs between the 12252 and 1s22p? 1S CSFsin the Be atom.

The CSFs corresponding to these two configurations are as follows:

F1=|1salsb2sa2sb|

and

Fo=1/G3[ |1sa1sb2pga2pgb| - |1sa 1sb2pia2p.1b|

- |1sa1sb2p.1a2p1b]].
The determinental Hamiltonian matrix el ements needed to evaluate the 2x2 Hy | matrix
appropriate to these two CSFs are evaluated via the SC rules. Thefirst such matrix element
is:

< |lsalsb2sa2sb|H |1salsb2sa2sb| >

= 2h1s + 2hps + J1s1s + A1s.2s + J2s.25 - 2K 1525,
where

hj = <fj |- h22me N2 -4e2/r [fi>

Ji,j :<fifj |e2/r12 rfifj> ,



and
Kij = <fifj | e/r1o ffifi>

arethe orbital-level one-electron, coulomb, and exchange integrals, respectively.

Coulomb integrals Jj describe the coulombic interaction of one charge density ( 2
above) with another charge density (f j2 above); exchange integrals Kij describe the
interaction of an overlap charge density (i.e., adensity of the form fif ;) with itself ( ff;
with fif; in the above).

The spin functionsa and b which accompany each orbital in |1sa1sb2sa2sb| have

been eliminated by carrying out the spin integrations as discussed above. Because H
contains no spin operators, this is straightforward and amounts to keeping integrals
<fj|f|fj>onlyiff;andf; areof the same spin and integrals
<fifj|glfkf|>onlyiff;jandfg areof thesame spinand f; and f| are of the same spin.
The physical content of the above energy (i.e., Hamiltonian expectation value) of the
|1sa 1sh2sa 2sb| determinant is clear: 2h;s + 2hys isthe sum of the expectation val ues of
the one-electron (i.e., kinetic energy and electron-nuclear coulomb interaction) part of the
Hamiltonian for the four occupied spin-orbitals; Jis 1s + 4J1s2s + J2s 25 - 2K 1525 contains
the coulombic repulsions among all pairs of occupied spin-orbitals minus the exchange
interactions among pairs of spin-orbitals with like spin.

The determinental matrix elementslinking F 1 and F » are asfollows:

<|1salsb2sa2sb| H |1salsb2ppa2pob| > = < 2s2s | 2po2po>,
< |1lsalsb2sa2sb|H |lsalsh2pia2p.1ib|> =< 2s2s| 2p12p-1>,
<|1salsb2sa2sb| H |1salsb2p.ja2pib| > = < 2s2s| 2p.12p;>,
where the Dirac convention has been introduced as a shorthand notation for the two-
electron integrals (e.g., < 2s2s | 2pp2po> represents 02s*(r1)2s" (r2) €2/r12 2po(r1) 2po(r2)
drq dro).

The three integrals shown above can be seen to be equal and to be of the exchange-
integral form by expressing the integrals in terms of integrals over cartesian functions and

recognizing identities due to the equiva ence of the 2py, 2py, and 2p; orbitals. For example,

< 2825 | 2p12p.1> = (1) < 2525 | [2py +i 2py] [2px -i 2py] >} =



12{<2S2S|XX>+<2s2S|yy>+i<2s2s|yXx>-i<2s2s|xy>} =

<2s2s|xx>=Kosx
(here the two imaginary terms cancel and the two remaining real integrals are equal);

<252s82pp2pp>=<282s|22>=<2525|XxX>=Kpsx

(thisis because Kosz = Kosx = Kosy);

<2s2s|2p.12p1 > = U2 {<2s2s|[2px -i 2py] [2px +i 2py] >} =
<2s2s|x X >= 02s"(r1) 25" (r2) €2/r12 2px(r1) 2px(r2) drq dro = Kosx.
These integrals are clearly of the exchange type because they involve the coulombic
interaction of the 2s 2py y or z Overlap charge density with itself.
Moving on, the matrix elements among the three determinantsin F , are given as
follows:
< |1sa1shb2ppa2pgb| H |1sa 1sb2pga 2pgb| >
= 2hys + 2hop + J1s1s + Jopz,2pz + A1s,2p - 2K1s2p
(J1s,2p and K15 2p are independent of whether the 2p orbital is 2py, 2py, or 2p);
< |1salsb2pia2p.1b| H |1salsb2pia2p.1b| >

= 2hys + 2hop + 1515 + A1s2p - 2K1s2p + <2P12p-112p12p-1>;

< |1salsb2p.i1a2pib| H |1salsb2p.ja2p;ib| >
2hys + 2hop + J1s1s + AJ1s2p - 2K1s2p + <2p-12P112p-12p1>;

< |1salsh2ppa2pgb| H [1salsb2pia2p.1b| > = < 2po2po | 2p12p-1 >



< |1salsh2ppa2pgb| H [1salsb2p.ja2pib| > = < 2po2po | 2p-12p1 >
< |1salsh2pia2p.1b| H |1salsb2p.ja2pib| > =< 2p12p.1 | 2p-12p1 >.

Certain of these integrals can be recast in terms of cartesian integrals for which
equivalences are easier to identify asfollows:

< 2po2p0 | 2P12p-1>=<2pp2Po | 2p-12p1>=<ZzZ| XX >=Kzx;

<2P12p.1]2p-12p1 > =<XX|yy >+ V2[<XX|XX>-<XYy|XYy>]
=Kxy +U2[ Jx - Iyl
<2p12p.12p12p.1> = <2p-12p1|2p-12p1> = V2(Ix x + Ixy)-

Finally, the 2x2 CI matrix corresponding to the CSFs F 1 and F 2 can be formed
from the above determinental matrix e ements; thisresultsin:

H11 = 2hgs+ 2hps + J1s1s + 4J15,25 + 25,25 - 2K 15,25 ;
H1o=-Kosx /OB
Hoo = 2h1s + 2hpp + J1g1s + AJ1s2p - 2K1s2p + 72 - 2/3 Ky x.

The lowest eigenvalue of this matrix provides this Cl calculation's estimate of the ground-
state 1S energy of Be; its eigenvector provides the Cl amplitudesfor F 1 and F 2 in this
ground-state wavefunction. The other root of the 2x2 secular problem gives an
approximation to another 1S state of higher energy, in particular, a state dominated by the
3V2[|1sa1sh2pga2pgb | - [1salsb2pia2p.ib |- |1salsb2p.ia2pib ]

CSF.

11. Asanother example, consider the matrix elements which arisein electric dipole
trangitions between two singlet electronic states:

<Y1 |EXS;er|Y 2> Here E- Sj erj isthe one-electron operator describing the interaction
of an electric field of magnitude and polarization E with the instantaneous dipole moment



of the electrons (the contribution to the dipole operator arising from the nuclear charges- Sz
Z£2 R does not contribute because, when placed between Y 1 and Y 2, this zero-electron
operator yields avanishing integral because Y 1 and Y 2 are orthogonal).

When the states Y 1 and Y 2 are described as linear combinations of CSFs as
introduced earlier (Y i = Sk CikF k), these matrix elements can be expressed in terms of
CSF-based matrix elements< F g | Sj erj |F L >. Thefact that the electric dipole operator is
aone-electron operator, in combination with the SC rules, guarantees that only states for
which the dominant determinants differ by at most a single spin-orbital (i.e., those which
are"singly excited") can be connected via electric dipole transitions through first order
(i.e., in aone-photon transition to which the <Y 1 |S; erj [Y 2 > matrix elements pertain). It
isfor thisreason that light with energy adequate to ionize or excite deep core electronsin
atoms or molecules usually causes such ionization or excitation rather than double
ionization or excitation of valence-level eectrons; the latter are two-electron events.

In, for example, thep => p* excitation of an olefin, the ground and excited states
are dominated by CSFs of the form (where all but the "active" p and p* orbitals are not
explicitly written) :

F1=] ...papb]|
and
Fo=1C2[| ..pap*b|-| ..pbp*al].

The electric dipole matrix element between these two CSFs can be found, using the SC
rules, to be

d@[<plrp*>+<p|rp”>]=Qe<p]|rp*>.

Notice that in evaluating the second determinental integral

<| ...papb|e | ..pbp*a|>, asignchange occurs when one puts the two determinants
into maximum coincidence; this sign change then makesthe minussignin F o yield a
positive sign in the final result.

V. Summary



In all of the above examples, the SC rules were used to reduce matrix elements of
one- or two- electron operators between determinental functionsto one- or two- electron
integrals over the orbitals which appear in the determinants. In any ab initio electronic
structure computer program there must exist the capability to form symmetry-adapted CSFs
and to evaluate, using these SC rules, the Hamiltonian and other operators matrix elements
among these CSFsin terms of integrals over the mos that appear in the CSFs. The SC rules
provide not only the tools to compute quantitative matrix elements; they allow oneto
understand in qualitative terms the strengths of interactions among CSFs. In the following
section, the SC rules are used to explain why chemical reactions in which the reactants and
products have dominant CSFsthat differ by two spin-orbital occupancies often display
activation energies that exceed the reaction endoergicity.



Chapter 12
Along "reaction paths’, configurations can be connected one-to-one according to their
symmetries and energies. Thisis another part of the Woodwar d-Hoffmann rules

I. Concepts of Configuration and State Energies
A. Plots of CSF Energies Give Configuration Correlation Diagrams

The energy of a particular el ectronic state of an atom or molecule has been
expressed in terms of Hamiltonian matrix elements, using the SC rules, over the various
spin-and spatialy-
adapted determinants or CSFs which enter into the state wavefunction.

E:S|,J< Fi |H|FJ>C| Cy.

The diagona matrix elements of H in the CSF basis multiplied by the appropriate CI
amplitudes<F| |H |F| > C C; represent the energy of the Ith CSF weighted by the
strength ( G2) of that CSF in the wavefunction. The off-diagonal elements represent the
effects of mixing among the CSFs; mixing is strongest whenever two or more CSFs have
nearly thesameenergy (i.e,<F||H|F>@<Fj| H|F3>)

and thereis strong coupling (i.e,, < F||H |F 3> islarge). Whenever the

CSFs are widely separated in energy, each wavefunction is dominated by asingle CSF.

B. CSFsInteract and Couple to Produce States and State Correlation Diagrams

Just as orbital energies connected according to their symmetries and plotted as
functions of geometry constitute an orbital correlation diagram, plots of the diagonal CSF
energies connected according to symmetry, constitute a configuration correlation diagram (
CCD ). If, near regions where energies of CSFs of the same symmetry cross (according to
the direct product rule of group theory discussed in Appendix E, only CSFs of the same
symmetry mix because only they have non-vanishing < F | H | F 3> matrix elements), Cl

mixing is allowed to couple the CSFsto giverise to "avoided crossings’, then the CCD is
converted into a so-called state correlation diagram ( SCD ).

C. CSFsthat Differ by Two Spin-Orbitals Interact Less Strongly than CSFsthat Differ by
One Spin-Orbital



The strengths of the couplings between pairs of CSFs whose energies cross are
evauated through the SC rules. CSFsthat differ by more than two spin-orbital occupancies
do not couple; the SC rules give vanishing Hamiltonian matrix elements for such pairs.
Pairsthat differ by two spin-orbitals (e.g. |.. fa... fp...] vS|.. f5... fp...]) have interaction
strengths determined by the two-€electron integrals
<ab|ab' >-<ab|ba>. Parsthat differ by asingle spin-orbital (e.g. |.. fa.. ... | vs|..
fa......|) are coupled by the one- and two- electron partsof H: <a|f |b>+ Sj [< g | bj> -
<@g |jb>]. Usudly, couplings among CSFs that differ by two spin-orbitals are much
weaker than those among CSFsthat differ by one spin-orbital. In the latter case, the full
strength of H is brought to bear, whereas in the former, only the electron-electron coulomb
potential is operative.

D. State Correlation Diagrams

In the SCD, the energies are connected by symmetry but the configurational nature
as reflected in the C; coefficients changes as one passes through geometries where
crossingsin the CCD occur. The SCD isthe ultimate product of an orbital and
configuration symmetry and energy analysis and gives one the most useful information
about whether reactionswill or will not encounter barriers on the ground and excited state
surfaces.

As an example of the application of CCD's and SCD's, consider the disrotatory
closing of 1,3-butadiene to produce cyclobutene. The OCD given earlier for this proposed
reaction path is reproduced below.
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Recall that the symmetry labels e and o refer to the symmetries of the orbitals under
reflection through the one Cy, plane that is preserved throughout the proposed disrotatory

closing. Low-energy configurations (assuming one is interested in the thermal or low-lying
photochemically excited-state reactivity of this system) for the reactant molecule and their
overall space and spin symmetry are as follows:

(i) p12p22 = 1€2102, 1Even

(i) p12p2lpst = 1e21012el, 30dd and 1Odd.

For the product molecule, on the other hand, the low-lying states are
(iii) s2p2 = 1e22¢2, 1Even

(iv) s2plp*l=1e22el10!, 30dd, 1Odd.

Notice that although the lowest energy configuration at the reactant geometry p12p22 =
1e2102 and the lowest energy configuration at the product geometry s2p2 = 1e22¢e? are
both of 1Even symmetry, they are not the same configurations; they involve occupancy of
different symmetry orbitals.



In constructing the CCD, one must trace the energies of all four of the above CSFs
(actually there are more because the singlet and triplet excited CSFs must be treated
independently) along the proposed reaction path. In doing so, one must realize that the
12102 CSF has low energy on the reactant side of the CCD because it corresponds to
p12p22 orbital occupancy, but on the product side, it corresponds to s2p*2 orbital
occupancy and is thus of very high energy. Likewise, the 1e22e2 CSF has low energy on
the product side whereitiss2p2 but high energy on the reactant side where it corresponds
to p12p32 . The low-lying singly excited CSFs are 1e22el10! at both reactant and product
geometries; in the former case, they correspond to p12p2lp3l occupancy and at the latter to
s2p1p*1 occupancy. Plotting the energies of these CSFs along the disrotatory reaction path
resultsin the CCD shown below.

1e22e2

1e2102

2, 2
le 2e
If the two 1Even CSFs which cross are allowed to interact (the SC rules give their

interaction strength in terms of the exchange integral
<|1e2102 | H | |1e22€2 | > = < 1010 | 2e2e > = K 1 2¢ ) to produce states which are

combinations of the two 1Even CSFs, the following SCD resuilts:
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This SCD predicts that the thermal (i.e., on the ground electronic surface)
disrotatory rearrangement of 1,3-butadiene to produce cyclobutene will experience a
symmety-imposed barrier which arises because of the avoided crossing of the two 1Even
configurations; this avoidance occurs because the orbital occupancy pattern (i.e., the
configuration) which is best for the ground state of the reactant is not identical to that of the
product molecule. The SCD & so predicts that there should be no symmetry-imposed barrier
for the singlet or triplet excited-state rearrangement, athough the reaction leading from
excited 1,3-butadiene to excited cyclobutene may be endothermic on the grounds of bond
strengths alone.

It isaso possible to infer from the SCD that excitation of the lowest singlet pp*
state of 1,3-butadiene would involve alow quantum yield for producing cyclobutene and
would, in fact, produce ground-state butadiene. As the reaction proceeds along the singlet
pp” surface this1Odd state intersects the ground 1Even surface on the reactant side of the
diagram; internal conversion (i.e., quenching from the 10dd to the 1Even surfaces induced
by using a vibration of odd symmetry to "digest” the excess energy (much like vibronic
borrowing in spectroscopy) can lead to production of ground-state reactant molecul es.
Some fraction of such events will lead to the system remaining on the 10dd surface until,
further along the reaction path, the 10dd surface again intersects the 1Even surface on the
product sideat which time quenching to produce ground-state products can occur.




Although, in principle, it is possible for some fraction of the eventsto follow the 1Odd
surface beyond this second intersection and to thus lead to 10dd product molecules that
might fluoresce, quenching is known to be rapid in most polyatomic molecules; as a resullt,
reactions which are chemiluminescent are rare. An appropriate introduction to the use of
OCD's, CCD's, and SCD's as well as the radiationless processes that can occur in thermal
and photochemical reactionsis given in the text Energetic Principles of Chemical Reactions
, J. Simons, Jones and Bartlett, Boston (1983).

[1. Mixing of Covalent and lonic Configurations

As chemists, much of our intuition concerning chemical bondsis built on simple
models introduced in undergraduate chemistry courses. The detailed examination of the Ho
molecule via the valence bond and molecular orbital approaches formsthe basis of our
thinking about bonding when confronted with new systems. Let us examine this model
system in further detail to explore the electronic states that arise by occupying two orbitals
(derived from the two 1s orbitals on the two hydrogen atoms) with two electrons.

In total, there exist six eectronic states for all such two-orbital, two-electron
systems. The heterolytic fragments X +Y: and X: +Y producetwo singlet states; the
homolytic fragments X- + Y- produce one singlet state and a set of threetriplet states
having Ms =1, 0, and -1. Understanding the relative energies of these six states, their
bonding and antibonding characters, and which molecular state dissociates to which
asymptote are important.

Before proceeding, it isimportant to clarify the notation (e.g., X-, Y-, X, Y: ,
etc.), which is designed to be applicable to neutral aswell as charged species. In al cases
considered here, only two electrons play active rolesin the bond formation. These electrons
are represented by the dots. The symbols X and Y- are used to denote speciesin which a
single electron is attached to the respective fragment. By X: , we mean that both electrons
are attached to the X- fragment; Y means that neither electron resides on the Y - fragment.

L et us now examine the various bonding situations that can occur; these examples will help
illustrate and further clarify this notation.

A. The H Case in Which Homolytic Bond Cleavage is Favored

To consider why the two-orbital two-€electron single bond formation case can be
more complex than often thought, let us consider the H, system in more detail. Inthe
molecular orbital description of Hp, both bonding s g and antibonding s, mos appear.



There are two electrons that can both occupy the s g mo to yield the ground €lectronic state
Ho(1S4*, sg?); however, they can also occupy both orhitals to yield 3Sy*(s¢1s 1) and
ISy (sglsyd), or both can occupy the sy mo to givethe 1Sg*(s 2) state. As
demonstrated explicitly below, these latter two states dissociate heterolyticallyto X +Y @ =
H* + H-, and are sufficiently high in energy relativeto X + Ye = H + H that we ordinarily
can ignore them. However, their presence and character are important in the development

of afull treatment of the molecular orbital model for Ho and are essential to a proper
treatment of casesin which heterolytic bond cleavage is favored.

B. Casesin Which Heterolytic Bond Cleavage is Favored

For some systems one or both of the heterolytic bond dissociation asymptotes
(e.g., X+Y: orX: +Y)may belower in energy than the homolytic bond dissociation
asymptote. Thus, the states that are analogues of the 1S *(s¢1s 1) and 1S4*(s2) states of
H2 can no longer beignored in understanding the valence states of the XY molecules. This
situation arises quite naturally in systems involving transition metals, where interactions
between empty metal or metal ion orbitals and 2-electron donor ligands are ubiquitous.

Two classes of systems illustrate cases for which heterolytic bond dissociation lies
lower than the homolytic products. The first involves transition metal dimer cations, Mo*.
Especially for metals to the right side of the periodic table, such cations can be considered
to have ground-state el ectron configurations with s2d"d"*1 character, where the d electrons
are not heavily involved in the bonding and the s bond is formed primarily from the metal
atom sorbitals. If thes bond is homolytically broken, oneforms X- + Y. =M (sld"1)
+ M* (sldn). For most metals, this dissociation asymptote lies higher in energy than the
heterolytic products X: +Y =M (d") + M+ (s0dn+1), since the latter electron
configurations correspond to the ground states for the neutrals and ions, respectively. A
prototypical specieswhich fits this bonding picture is Nio*.

The second type of system in which heterolytic cleavage isfavored ariseswith a
metal-ligand complex having an atomic metal ion (with asd"*1 configuration) and atwo
electron donor, L : . A prototypeis(Ag CgHg)* which was observed to photodissociate
toform X- + Y- = Ag(4S, sld10) + CgHg*(2B1) rather than the lower energy
(heterolytically cleaved) dissociation limit Y + X: =
AgH(1S, sPd19) + CgHg (1A1).

C. Anaysis of Two-Electron, Two-Orbital, Single-Bond Formation



1. Orbitals, Configurations and States
Theresultant family of six electronic states can be described in terms of the six

configuration state functions (CSFs) that arise when one occupies the pair of bonding s
and antibonding s* molecular orbitals with two electrons. The CSFs are combinations of

Slater determinants formed to generate proper spin- and spatial symmetry- functions.

The spin- and spatial- symmetry adapted N-electron functions referred to as CSFs
can be formed from one or more Slater determinants. For example, to describe the singlet
CSF corresponding to the closed-shell s2 orbital occupancy, asingle Slater determinant

1S (0) = |sa sb| = (2)VY2{ sa(1)sb(2) - sb(l)sa(2) }
suffices. An analogous expression for the (s*)2 CSF is given by

1S*™ (0) = |s*as*b| = (2 V2{ s*a (1)s*b (2)-s*a (2) s*b (1) }.

Also, the Mg = 1 component of the triplet state having ss* orbital occupancy can be
written as asingle Slater determinant:

38" (1) = |sas*al = (2V2{ sa(l)s* a(2)- s* a(l)sa(?) },
ascan the Mg = -1 component of thetriplet state
3S*(-l) = |sbs*b| = (2)'Y2{ sb(1) s* b(2) - s* b(1)sb(2) }.

However, to describe the singlet CSF and Mg = O triplet CSF belonging to the ss*
occupancy, two Slater determinants are needed:

15* (0) = — [Vsas*bYs- Ysbs*alj

V2

isthe singlet CSF and

*
3S (0) = \/—1_2[1/5as*b1/2 + Ysbs*alj



isthetriplet CSF. In each case, the spin quantum number S, its z-axis projection Ms , and
theL quantum number are given in the conventional 2S+1L (Mg) notation.

2. Orbital, CSF, and State Correlation Diagrams

i. Orbital Diagrams
The two orbitas of the constituent atoms or functional groups (denoted s, and sy

for convenience and in anticipation of considering groups X and Y that possess valence s
orbitals) combine to form abonding s = sg molecular orbital and an antibonding s* = sy

molecular orbital (mo). Asthe distance R between the X and Y fragmentsis changed from
near its equilibrium value of Re and approaches infinity, the energies of thes and s*

orbitals vary in amanner well known to chemists as depicted below.

Energies of the bonding s and antibonding s* orbitals as functions of interfragment
distance; Re denotes a distance near the equilibrium bond length for XY'.

In the heteronuclear case, the sy and sy orhitals till combine to form abonding s
and an antibonding s* orbital, athough these orbitals no longer belong to g and u
symmetry. The energies of these orbitals, for R values ranging from near Reto R® ¥, are

depicted below.
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Energies of the bonding s and antibonding s* orbitals as functions of internuclear distance.
Here, X ismore electronegativethan Y.

For the homonuclear case, as R approaches ¥, the energies of thesg and s
orbitals become degenerate. Moreover, asR ® 0, the orbital energies approach those of the
united atom. In the heteronuclear situation, as R approaches ¥, the energy of thes orbita
approaches the energy of the s, orbital, and the s* orbital convergesto the s, orbital
energy. Unlike the homonuclear case, thes and s* orbitals are not degenerate as R® ¥ .
The energy "gap" betweenthe s and s* orbitalsat R =¥ depends on the electronegativity
difference between the groups X and Y. If thisgapissmall, it is expected that the behavior
of this (dightly) heteronuclear system should approach that of the homonuclear X2 and Y2
systems. Such similarities are demonstrated in the next section.

ii. Configuration and State Diagrams

The energy variation in these orbital energies givesriseto variationsin the energies
of the six CSFs and of the six electronic states that arise as combinations of these CSFs.
The three singlet (1S (0),1S™ (0), and 1S™* (0) ) and threetriplet (3™ (1), 3S™ (0) and
35*(-1)) CSFsare, by no means, the true electronic eigenstates of the system; they are
simply spin and spatial angular momentum adapted antisymmetric spin-orbital products. In
principle, the set of CSFsF | of the same symmetry must be combined to form the proper
electronic eigenstates Y i of the system:



YK=|S CKF.

Within the approximation that the valence el ectronic states can be described adequately as
combinations of the above valence CSFs, thethree 1S, 1S* | and 1S** CSFs must be
combined to form the three lowest energy valence electronic states of 1S symmetry. For
the homonuclear case, the 1S™ CSF does not couple with the other two because it is of
ungerade symmetry, while the other CSFs 1S and1S** have gerade symmetry and do
combine.

The relative amplitudes C/K of the CSFs F | within each state Y k are determined by
solving the configuration-interaction (Cl) secular problem:

S éF|1/Hl/2FJﬁc'§ = Ex c‘f
J

for the state energies Ex  and state ClI coefficient vectors C'f . Here, H isthe electronic

Hamiltonian of the molecule.

To understand the extent to which the 1S and 1S** (and 1S* for heteronuclear
cases) CSFs couple, it is useful to examine the energies
& | YHYzF iof these CSFsfor the range of internuclear distances of interest Re<R<¥ .
Near Rg, Where the energy of the s orbital is substantially below that of the s* orbital, the
s21S CSF lies significantly below thess* 1S* CSF which, in turn lies below thes™*?
1S** CSF; the large energy splittings among these three CSFs simply reflecting the large
gap betweenthes ands™ orbitals. The3S* CSF generally lies below the corresponding
1S* CSF by an amount related to the exchange energy between thes ands™ orbitals.

AsSR® ¥, the CSF energies & | YHYF jfiare more difficult to "intuit" because the
s and s* orbitals become degenerate (in the homonuclear case) or nearly so. To pursue this
point and arrive at an energy ordering for the CSFsthat is appropriatetothe R® ¥ region,
itisuseful to express each of the above CSFsin terms of the atomic orbitals s; and sy that
comprises and s*. To do so, the LCAO-MO expressionsfor s and s*,

s=C[sx+zs)]
and
s*=C*[zsx - 5],



are substituted into the Slater determinant definitions of the CSFs. Here C and C* are the
normalization constants. The parameter z is 1.0 in the homonuclear case and deviates from
1.0inrelation to the s, and s, orbital energy difference (if s liesbelow s, then z < 1.0; if
sx liesabovesy, z > 1.0).

To smplify the analysis of the above CSFs, the familiar homonuclear case in which
z=1.0will be examined first. The process of substituting the above expressionsfor s and
s* into the Slater determinants that define the singlet and triplet CSFs can beillustrated as
follows:

1S(0) = ¥sa sh¥s= C2¥x(sy + sy) a(sx + sy) b'%
= C2[Ysy a sx b¥a+ Vsy a sy bYa+ Vs, a sy b+ sy a sy b'g

Thefirst two of these atomic-orbital-based Slater determinants (Ysx a sy b%2and sy a sy
b3 are denoted "ionic" because they describe atomic orbital occupancies, which are
appropriatetothe R® ¥ region, that correspondto X: +Y and X +Y : vaence bond
structures, while¥sy a sy b%2and ¥sy a sy b'zare called "covalent” because they
correspond to X- + Y- structures.

In similar fashion, the remaining five CSFs may be expressed in terms of atomic-
orbital-based Slater determinants. In so doing, use is made of the antisymmetry of the
Slater determinants
|f1fof3|= -|f1f3f2], whichimpliesthat any determinant in which two or more spin-
orbitalsareidentical vanishes|f1fofo|= -|f1f2f2|=0. Theresult of decomposing the
mo-based CSFsinto their atomic orbital componentsis as follows:

1S** (0) = V¥s*a s*bY
=C*2[ Ysy a s bYa+Ysya sy bz
- Y8ca sy b%- Ysya sy b'j
1S* (0) :\/—1_2[1/£a s*bY%- Ysb s*alj
= CC* V2 [Vsx a sx b¥s- Ysya sy b¥j

3S* (1) =VYsa s'a¥
=CC" 2¥sy a s als



3S* (0) = \/—1_2[1/£a s*bY%+ Ysb s*aq

=CC" 2 [¥5, a s b¥s- Ysca sy bYj

3S* (-1) =V¥sa s"al
= CC* 2Ysy b s¢ b¥s

These decompositions of the six valence CSFsinto atomic-orbital or valence bond
components allow the R =¥ energies of the CSFsto be specified. For example, the fact
that both 1S and 1S** contain 50% ionic and 50% covalent structuresimpliesthat, as R ®
¥ , both of their energies will approach the average of the covalent and ionic atomic
energies/2[E (X-) +E(Y:) +E(Y)+E(X: )]. The1S* CSF energy approachesthe
purely ionicvalue E (Y)+ E (X: ) asR® ¥. Theenergiesof 3S*(0), 35*(1) and 3S*(-1)
all approach the purely covalent valueE (X-) + E(Y-) asR® ¥.

The behaviors of the energies of the six valence CSFs as R varies are depicted
below for situations in which the homolytic bond cleavage is energetically favored (i.e., for
which E(X-)+E(Y-) < E(Y)+tE(X:)).



E(Y) +E(X)

U2 [E(Xs) +E(Ye) + E(Y) +E(X3)]

E(Xe) +E(Ye)

Configuration correlation diagram for homonuclear case in which homolytic bond cleavage
isenergetically favored.

When heterolytic bond cleavage is favored, the configuration energies as functions of
internuclear distance vary as shown below.
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E(Xe) + E(Y?)

1/2 [E(X#) + E(Ye) + E(Y) + E(X2)]

E(Y) + E(X)
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Configuration correlation diagram for a homonuclear case in which heterolytic bond
cleavageis energetically favored.

It is essentia to realize that the energies & | YHYF |fiof the CSFs do not represent
the energies of the true el ectronic states Ex ; the CSFs are simply spin- and spatial-
symmetry adapted antisymmetric functions that form abasis in terms of which to expand
the true electronic states. For R-values at which the CSF energies are separated widely, the
true Ex are rather well approximated by individua & | YHY# i values; such isthe case
near Re

For the homonuclear example, the 1S and 1S** CSFsundergo CI coupling to form
apair of states of 1S symmetry (the 1S* CSF cannot partake in this CI mixing becauseit is
of ungerade symmetry; the 3S* states can not mix because they are of triplet spin
symmetry). The Cl mixing of the 1S and 1S** CSFsis described in terms of a 2x2 secular

problem
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The diagonal entries are the CSF energies depicted in the above two figures. Using the
Slater-Condon rules, the off-diagonal coupling can be expressed in terms of an exchange
integral betweenthe s and s* orbitas:

ASYHYAS**fi= d/sa shy¥HY3/s*a s*b¥4i= Easl/%i—z Yos*s*fi= Kgg*

AtR® ¥, wherethelS and 1S** CSFs are degenerate, the two solutions to the above Cl
secular problem are:

E =U2[ E(X-)+E(Y:) +E(Y)*E(X:)] - éssl/zﬁlz 14s* S*f
+

with respective amplitudes for the 1S and 1S** CSFs given by

A. =+ B. :;i_
2

The first solution thus has

Y. = L [Ysa sbY%.- Ys*a s*bhY]

V2

which, when decomposed into atomic valence bond components, yields

1
Y. == [ VYs.a syb¥e- ¥s.b syaq.
NG [ Yaxa sy sxb sya’q
The other root has
1
Y == [Ysa sbhla+VYs*a s*b?
+ 73 [ /3
1 1
== Usa Syble+ Vs, a s,byg.
NG [ Y8xa sx sya syb%]

Clearly, 1S and 1S**, which both contain 50% ionic and 50% covalent parts, combine to
produceY _ whichispurely covalent and Y 4+ which is purely ionic.



The above strong Cl mixing of 1S and 1S** asR® ¥ quditatively dtersthe
configuration correlation diagrams shown above. Descriptions of the resulting valence
snglet and triplet S statesare given below for homonuclear situations in which covalent
products lie below and above ionic products, respectively. Note that in both cases, there
exists asingle attractive curve and five (n.b., the triplet state has three curves superposed)
repulsive curves.

E(Y) + E(X))

el

E(Xs) + E(Y+)

R —»

State correlation diagram for homonuclear case in which homolytic bond cleavageis
energetically favored.
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State correlation diagram for homonuclear case in which heterolytic bond cleavageis
energetically favored.

If the energies of the s, and sy orbitals do not differ significantly (compared to the
coulombic interactions between electron pairs), it is expected that the essence of the
findings described above for homonuclear species will persist even for heteronuclear
systems. A decomposition of the six CSFs listed above, using the heteronuclear molecular
orbitals introduced earlier yields:

1S(0) = C2[ ¥sxa sb¥e+z2 Vsya sybVs
+Z Ysa syb¥e+zYsya sb'j

1S**(0) = C*2[22 Ysxa sbY2e+ Ysya syblz
-ZY/s¢a sybYe-z Ysya s

cc*
V2

+(Z2- 1)Vsya sib¥et (22 - 1) Ysxa syb¥4

1s*(0) = [ 2ZY/sxa sxb¥2-2zYsya syb'z



35*(0) = % (2+1) [Yaya sb¥e- Vaa s,bvg

35%(1) = CC* (22 + 1) Yosya sxa¥
35" (-1) = CC* (22 + 1) ¥s,b sxb¥s

Clearly, thethree 3S* CSFsretain purely covalent R® ¥ character eveninthe
heteronuclear case. The 1S, 1S**, and 1S* (all three of which can undergo CI mixing
now) possess one covalent and two ionic components of the form ¥sya syb'2+ ¥sya
sxb¥%; ¥sxa sxb¥s and ¥sya syb'z Thethree singlet CSFs therefore can be combined to
produce asinglet covalent product function ¥/sca syb%2+ Vsya scb%2aswell asboth X +Y

and X : + Y ionic product wavefunctions
Ysya syb%2and ¥sca sxb¥; respectively. In most situations, the energy ordering of the
homolytic and heterolytic dissociation productswill beeither E(X-) +E(Y-)<E(X: ) +
E(Y)<EX)+E(Y:)orE(XX:)+E(Y)<EX:-)+E(Y-)<E(X)+E(Y:).

The extensions of the state correlation diagrams given above to the heteronuclear
situations are described below.
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E(X) + E(Y)

E(Xe) + E(Y?)

State correlation diagram for heteronuclear case in which homolytic bond
cleavage is energetically favored.
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E(Xe) + E(Y?)
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State correlation diagram for heteronuclear case in which heterolytic
bond cleavage to one product is energetically favored but homolytic
cleavage lies below the second heterolytic asymptote.
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E(X) + E(Y:)
E(X:) + E(Y)

State correlation diagram for heteronuclear case in which both heterolytic bond cleavage
products are energetically favored relative to homolytic cleavage.

Again note that only one curveisattractive and five arerepulsivein al cases. In
these heteronuclear cases, it isthe mixing of the 1S, 1S*, and 1S** CSFs, which varies

with R, that determines which molecular state connects to which asymptote. As the energy
ordering of the asymptotes varies, so do these correlations.

3. Summary



Even for the relatively simple two-electron, two-orbital single-bond interactions
between a pair of atoms or functional groups, the correlations among energy-ordered
molecular states and energy-ordered asymptotic states is complex enough to warrant
considerations beyond what is taught in most undergraduate and beginning graduate
inorganic and physical chemistry classes. In particular, the correlations that arise when one
(or both) of the heterolytic bond dissociation aysmptotes lies below the homolytic cleavage
products are important to realize and keep in mind.

In all casestreated here, the three singlet states that arise produce one and only one
attractive (bonding) potential energy curve; the other two singlet surfaces are repulsive. The
three triplet surfaces are also repulsive. Of course, in arriving at these conclusions, we have
considered only contributions to the inter-fragment interactions that arise from valence-
orbital couplings, no consideration has been made of attractive or repulsive forces that
result from one or both of the X- and Y - fragments possessing net charge. In the latter
case, one must, of course, add to the qualitative potential surfaces described here any
coulombic, charge-dipole, or charge-induced-dipole energies. Such additional factors can
lead to attractive long-range interactions in typical ion-molecule complexes.

The necessity of the analysis devel oped above becomes evident when considering
dissociation of diatomic transition metal ions. Most transition metal atoms have ground
states with electron configurations of theform s2d (for first-row metals, exceptions
include Cr (sld®), Cu (std0), and the sld® state of Ni is basically isoenergetic with the
s2d8 ground state). The corresponding positive ions have ground states with stdn (Sc, Ti,
Mn, Fe) or s0d*1 (V, Cr, Co, Ni, Cu) electron configurations. For each of these
elements, the aternate electron configuration leads to low-lying excited states.

One can imagine forming aM 2" metal dimer ion with a configuration described as
sg? d2+1  where the s¢ bonding orbital isformed primarily from the metal s orbitals and
the d orbitals are largely nonbonding (as is particularly appropriate towards the right hand
side of the periodic table). Cleavage of such as bond tends to occur heterolytically since
this forms lower energy species, M(s2d") + M*(s0dn+1), than homolytic cleavage to
M(stdn*1) + M+(sld"). For example, Cos * dissociates to Co(d’) + Cot(s0d8) rather
than to Co(std8) + Co*(sld”),2 which lies 0.85 eV higher in energy.

Quialitative aspects of the above analysis for homonuclear transition metal dimer
ionswill persist for heteronuclear ions. For example, the ground-state dissociation
asymptote for CoNi* isthe heterolytic cleavage products Co(s?d”) + Ni*(s0d®). The
aternative heterolytic cleavage to form Co*(s%d8) + Ni(s2d8) is 0.23 eV higher in energy,
while homolytic cleavage can lead to Co*(sld’) + Ni(s1d9), 0.45 eV higher, or Co(sld8) +
Ni*(sld8), 1.47 eV higher. Thisisthe situation illustrated in the last figure above.



[11. Various Types of Configuration Mixing
A. Essential ClI

The above examples of the use of CCD's show that, as motion takes place along the
proposed reaction path, geometries may be encountered at which it is essential to describe
the electronic wavefunction in terms of alinear combination of more than one CSF:

Y=5CFy,

where theF | are the CSFs which are undergoing the avoided crossing. Such essential
configuration mixing is often referred to as treating "essential Cl".

B. Dynamical Cl

To achieve reasonable chemical accuracy (e.g., + 5 kcal/mole) in electronic
structure calculationsit is necessary to use a multiconfigurational Y even in situations

where no obvious strong configuration mixing (e.g., crossings of CSF energies) is
present. For example, in describing the p2 bonding electron pair of an olefin or the ns?

electron pair in alkaline earth atoms, it isimportant to mix in doubly excited CSFs of the
form (p*)2 and np? , respectively. The reasons for introducing such a Cl-level treatment
were treated for an akaline earth atom earlier in this chapter.

Briefly, the physical importance of such doubly-excited CSFs can be made clear by
using the identity:

Cy1|.fafb.|]-Co|..f'laf'b.|

=Cq2{|..(f-xtYa (f +xfYb..|-|..(f -xf)b (f +xf)a..|},
where

x = (Co/Cp)V2,

This allows one to interpret the combination of two CSFswhich differ from one another by
adouble excitation from one orbital (f ) to another (f ') as equivalent to a singlet coupling of



two different (non-orthogonal) orbitals (f - xf') and (f + xf'). Thispictureis closely
related to the so-called generalized vaence bond (GVB) model that W. A. Goddard and his
co-workers have developed (see, for example, W. A. Goddard and L. B. Harding, Annu.
Rev. Phys. Chem. 29, 363 (1978)). In the simplest embodiment of the GVB model, each
electron pair in the atom or molecule is correlated by mixing in a CSF in which that electron
pair is"doubly excited" to a correlating orbital. The direct product of all such pair
correlations generates the GV B-type wavefunction. In the GVB approach, these electron
correlations are not specified in terms of double excitations involving CSFs formed from
orthonormal spin orhitals; instead, explicitly non-orthogonal GVB orbitals are used as
described above, but the result is the same as one would obtain using the direct product of
doubly excited CSFs.

In the olefin example mentioned above, the two non-orthogonal "polarized orbital
pairs' involve mixing the p and p* orbitals to produce two left-right polarized orbitals as
depicted below:

e

In this case, one says that the p2 electron pair undergoes left-right correlation when the
(p*)2 CSF is mixed into the Cl wavefunction.

In the alkaline earth atom case, the polarized orbital pairs are formed by mixing the nsand
np orhitals (actually, one must mix in equal amounts of p1, p-1, and pg orbitalsto preserve

p+Xp p-Xp
left polarized right polarized

overall 1S symmetry in this case), and give rise to angular correlation of the electron pair.
Use of an (n+1)s2 CSF for the alkaline earth calculation would contribute in-out or radial
correlation because, in this case, the polarized orbital pair formed from the nsand (n+1)s
orbitals would be radially polarized.

The use of doubly excited CSFsis thus seen as a mechanism by which Y can place
electron pairs, which in the single-configuration picture occupy the same orbital, into



different regions of space (i.e., one into amember of the polarized orbital pair) thereby
lowering their mutual coulombic repulsions. Such electron correlation effects are referred to
as "dynamical electron correlation”; they are extremely important to include if one expects
to achieve chemically meaningful accuracy (i.e., + 5 kcal/mole).




Section 4 Molecular Rotation and Vibration

Chapter 13

Treating the full internal nuclear-motion dynamics of a polyatomic molecule is complicated.
It is conventional to examine the rotational movement of a hypothetical "rigid" molecule as
well asthe vibrational motion of a non-rotating molecule, and to then treat the rotation-
vibration couplings using perturbation theory.

|. Rotational Moations of Rigid Molecules

In Chapter 3 and Appendix G the energy levels and wavefunctions that describe the
rotation of rigid molecules are described. Therefore, in this Chapter these results will be
summarized briefly and emphasis will be placed on detailing how the corresponding
rotational Schrédinger equations are obtained and the assumptions and limitations
underlying them.

A. Linear Molecules

1. The Rotational Kinetic Energy Operator
Asgiven in Chapter 3, the Schrodinger equation for the angular motion of arigid
(i.e., having fixed bond length R) diatomic moleculeis

W2/2m{(R?sinq)-11/q (sing 1/Mq) + (R%sin?q) 1 12/1f2} y =Ey
or

L2y /2nR2=EYy.
The Hamiltonian in this problem contains only the kinetic energy of rotation; no potential
energy is present because the molecule is undergoing unhindered "free rotation”. The
anglesq and f describe the orientation of the diatomic molecule's axisrelative to a

laboratory-fixed coordinate system, and mis the reduced mass of the diatomic molecule
mEmMymy/(Mp+my).

2. The Eigenfunctions and Eigenvalues



The eigenvalues corresponding to each eigenfunction are straightforward to find
because Hrqt is proportional to the L2 operator whose eigenval ues have already been

determined. The resultant rotational energies are given as.
Ej=h2 J(J+1)/(2nR2) = B J(J+1)

and are independent of M. Thus each energy level islabeled by Jand is 23+1-fold
degenerate (because M ranges from -Jto J). The rotational constant B (defined as h2/2nR?)
depends on the molecule's bond length and reduced mass. Spacings between successive
rotational levels (which are of spectroscopic relevance because angular momentum selection
rules often restrict DJ to 1,0, and -1) are given by

DE = B (J+1)(3+2) - B JJ+1) = 2B (J+1).

Within this"rigid rotor" model, the absorption spectrum of arigid diatomic molecule
should display a series of peaks, each of which corresponds to a specificJ==>J+1
transition. The energies at which these peaks occur should grow linearally with J. An
example of such aprogression of rotational linesis shown in the figure below.

Intensity
1

J
The energies at which the rotational transitions occur appear to fit the DE = 2B (J+1)

formularather well. Theintensities of transitions from level Jto level J+1 vary strongly
with Jprimarily because the population of moleculesin the absorbing level varies with J.



These populations Pj are given, when the system is at equilibrium at temperature T, in
terms of the degeneracy (23+1) of the J level and the energy of thislevel B J(J+1) :

Py= Q1 (23+1) exp(-BI(I+1)/KT),
where Q isthe rotational partition function:
Q=353 (2}+1) exp(-BI(IF+1)/KT).

For low values of J, the degeneracy islow and the exp(-BJ(3H1)/KT) factor is near unity.
As Jincreases, the degeracy grows linearly but the exp(-BJ(JH+1)/kT) factor decreases more
rapidly. Asaresult, thereisavalue of J, given by taking the derivative of (2+1) exp(-
BJ(J1)/KT) with respect to J and setting it equal to zero,

at which theintensity of the rotational transition is expected to reach its maximum.

The eigenfunctions belonging to these energy levels are the spherical harmonics
Y m(q,f) which are normalized according to

2p
(%(Y*L,M(q,f) YL m(a.f) sing dg df)) =d_ . duwm .

o OO0 ©

These functions are identical to those that appear in the solution of the angular part of
Hydrogen-like atoms. The above energy levels and eigenfunctions also apply to the rotation
of rigid linear polyatomic molecules; the only differenceis that the moment of inertial
entering into the rotational energy expression is given by

| = Sa ma Ra2
where my is the mass of the ath atom and Ry is its distance from the center of mass of the

molecule. This moment of inertia replaces mR2 in the earlier rotational energy level
expressions.



B. Non-Linear Molecules

1. The Rotational Kinetic Energy Operator
Therotational kinetic energy operator for arigid polyatomic molecule is shown in
Appendix G to be

Hrot = Ja2/2|a+ Jb2/2|b + JCZ/ZIC

wherethe I (k = a, b, ) are the three principal moments of inertia of the molecule (the
eigenvalues of the moment of inertia tensor). Thistensor has elementsin a Cartesian
coordinate system (K, K' = X, Y, Z) whose origin islocated at the center of mass of the
molecule that are computed as.

i = Smj (R2-R) (for K =K

KK =" Sj m; Rk j Rk (for K * K").

The components of the quantum mechanica angular momentum operators along the three
principa axesare:

Ja = -ih cosc [cotq f/9c - (sing)-19/9f ] - -ih sinc 1/q

Jp = ih sinc [cotq 1/9c - (sing)-19/9f ] - -ih cosc 1/1q
Je=-1h 1c.
Theanglesq, f, and c arethe Euler angles needed to specify the orientation of therigid

molecule relative to alaboratory-fixed coordinate system. The corresponding square of the
total angular momentum operator 2 can be obtained as

R =32+ 2+ 2



=_ 1292 - cotq 1/q
- (Using) (112/9 2 + 72/1ic2 - 2 cosqT2/f fic),

and the component along the lab-fixed Z axis Jz is - ifh J/f .

2. The Eigenfunctions and Eigenvalues for Special Cases
a. Spherical Tops

When the three principal moment of inertiavalues areidentical, the moleculeis
termed aspherical top. Inthis case, the total rotational energy can be expressed in terms
of the total angular momentum operator J

Hrot = J2/2| .

As aresult, the eigenfunctions of Hyqt are those of 2 (and J; as well as Jz both of which
commute with J and with one another; Jz is the component of J along the lab-fixed Z-axis
and commutes with J; because Jz = - ik §/{if and J3= - ik 1/ c act on different angles).
The energies associated with such eigenfunctions are

E(J,K,M) = h2 J3+1)/212,

for all K (i.e., Jg quantum numbers) ranging from -Jto Jin unit steps and for al M (i.e.,
Jz quantum numbers) ranging from -Jto J. Each energy level istherefore (2J + 1)2
degenarate because there are 2J + 1 possible K values and 2J + 1 possible M values for
each J.

The eigenfunctions of %2, Jz and J5, |J,M ,K> are given in terms of the set of
rotation matricesDjm K :

2+ 1 .
IJ,M,K>=w/ 8 07 D amk(q.f,c)

which obey




RIM K> = h2 J(3+1) |IM K>,

Ja IM,K>=hK [JM,K>,

3z [IMK>=hM |JJM,K>.

b. Symmetric Tops

Molecules for which two of the three principal moments of inertiaare equal are
caled symmetric tops. Those for which the unique moment of inertiais smaller than the
other two are termed pr olate symmetric tops; if the unique moment of inertiaislarger than
the others, the molecule is an oblate symmetric top.

Again, the rotational kinetic energy, which isthe full rotational Hamiltonian, can be
written in terms of the total rotational angular momentum operator 2 and the component of
angular momentum along the axis with the unique principal moment of inertia:

Hrot = J2/21 + 34 1/2l4- 1/21}, for prolate tops
Hrot = J2/21 + 3 1/2l - 1/21}, for oblate tops.

As aresult, the eigenfunctions of Hyt are those of 2 and J; or J. (and of Jz), and the
corresponding energy levels are:

E(JK,M) = h2 J(J+1)/212 + h2K2{1/214- 1/21},
for prolate tops
E(JK,M) = h2 J(J+1)/212 + A2 K2{1/2I.- 1/2I},

for oblate tops, again for K and M (i.e., Jgor Jc and Jz quantum numbers, respectively)
ranging from -Jto Jin unit steps. Since the energy now depends on K, these levels are
only 2J + 1 degenerate due to the 2J + 1 different M values that arise for each Jvaue. The
eigenfunctions |J, M,K> are the same rotation matrix functions as arise for the spherical-top
case.



c. Asymmetric Tops

Therotational elgenfunctions and energy levels of amolecule for which al three
principal moments of inertiaare distinct (aso-called asymmetric top) can not easily be
expressed in terms of the angular momentum elgenstates and the J, M, and K quantum
numbers. However, given the three principal moments of inertialg, I, and I ¢, a matrix

representation of each of the three contributions to the rotational Hamiltonian

Hrot = Ja2/2|a+ Jb2/2|b + JCZ/ZIC
can be formed within abasis set of the{|J, M, K>} rotation matrix functions. This matrix
will not be diagonal because the |J, M, K> functions are not eigenfunctions of the
asymmetric top Hyot. However, the matrix can be formed in this basis and subsequently
brought to diagonal form by finding its eigenvectors {Cn jm Kk} anditseigenvalues{Ep} .
The vector coefficients express the asymmetric top eigenstates as

Yn(@ f,c)=Sy M kCnamk |9 M, K>.

Because the total angular momentum J still commutes with Hyqt, €ach such eigenstate will
contain only one Jvalue, and hence Y , can also be labeled by a J quantum number:

Yni (@ f,¢)=Sm kCnimk 3 M, K>

To form the only non-zero matrix elements of Hyqt within the [J, M, K> basis, one
can use the following properties of the rotation-matrix functions (see, for example, Zare's
book on Angular Momentum):

<I M, K|IZ I M, K>=<I M, K|J2JIM,K>

=1/2<I M, K| B-J2| I M, K>=h2[ J3+1) - K2],

<M, K|J2 I, M, K>=h2K2,

<I M, K|IZIM, K+2>=-<I M, K|} I M,K+2>

= R2 [J(J+1) - K(K= D)]Y2 [J(3+1) -(K+ 1)(K+ 2)] L2

<M, K|J2 I, M, K +2>=0,



Each of the elements of J.2, J#, and Jo2 must, of course, be multiplied, respectively, by
1/2I¢, 1/21 5 and 1/21p and summed together to form the matrix representation of Hyet. The
diagonalization of this matrix then provides the asymmetric top energies and
wavefunctions.

[1. Vibrational Motion Within the Harmonic Approximation

The simple harmonic motion of a diatomic molecule was treated in Chapter 1, and
will not be repeated here. Instead, emphasisis placed on polyatomic molecules whose
electronic energy's dependence on the 3N Cartesian coordinates of its N atoms can be
written (approximately) in terms of a Taylor series expansion about a stable local minimum.
We therefore assume that the molecule of interest existsin an electronic state for which the
geometry being considered is stable (i.e., not subject to spontaneous geometrical
distortion).

The Taylor series expansion of the electronic energy iswritten as:

V (k) =V(0) + Sk (TVMIak) ak + V2Sj k gj Hjk Ok + ... ,

where V(0) isthe value of the electronic energy at the stable geometry under study, g is
the displacement of the ki, Cartesian coordinate away from this starting position, (TV/Alqk)
isthe gradient of the electronic energy along this direction, and the H; k are the second
derivative or Hessian matrix elements along these directions Hj x = (12V Alg;ak). If the
starting geometry corresponds to a stable species, the gradient termswill all vanish
(meaning this geometry corresponds to a minimum, maximum, or saddle point), and the
Hessian matrix will possess 3N - 5 (for linear species) or 3N -6 (for non-linear molecul es)
positive eigenvalues and 5 or 6 zero eigenval ues (corresponding to 3 trandational and 2 or
3 rotational motions of the molecule). If the Hessian has one negative eigenvalue, the
geometry corresponds to atransition state (these situations are discussed in detail in
Chapter 20).

From now on, we assume that the geometry under study corresponds to that of a
stable minimum about which vibrational motion occurs. The treatment of unstable
geometriesis of great importance to chemistry, but this Chapter deals with vibrations of
stable species. For agood treatment of situations under which geometrical instability is
expected to occur, see Chapter 2 of the text Energetic Principles of Chemical Reactions by




J. Simons. A discussion of how local minima and transition states are located on electronic
energy surfacesis provided in Chapter 20 of the present text.

A. The Newton Equations of Motion for Vibration

1. The Kinetic and Potential Energy Matrices

Truncating the Taylor series at the quadratic terms (assuming these terms dominate
because only small displacements from the equilibrium geometry are of interest), one has
the so-called har monic potential:

V () =V(0) + 12 Sj k gj Hj k Ok-

The classical mechanical equations of motion for the 3N { gk} coordinates can be written in
terms of the above potential energy and the following kinetic energy function:

T= 1/28j mj qj2,
whereq j denotesthetimerate of change of the coordinate gj and my is the mass of the
atom on which the jth Cartesian coordinate resides. The Newton equations thus obtained
are;

mj q j =- Sk Hjk Ok

where the force along the jth coordinate is given by minus the derivative of the potential V
along this coordinate (TVAqj) = Sk Hj k gk within the harmonic approximation.

These classical equations can more compactly be expressed in terms of the time
evolution of aset of so-called mass weighted Cartesian coordinates defined as:

Xj = gj (mj)Y2,

in terms of which the Newton equations become

X j =- Sk H'jk Xk



and the mass-wel ghted Hessian matrix e ements are

H'jk =Hjk (mjmk)'1/2.

2. The Harmonic Vibrational Energies and Normal Mode Eigenvectors
Assuming that the x; undergo some form of sinusoidal time evolution:

Xj(t) = x;j (0) cos(wt),
and substituting thisinto the Newton equations produces amatrix eigenval ue equation:
w2 Xj = Sk H'j,k Xk

in which the eigenvalues are the squares of the so-called nor mal mode vibrational
frequencies and the eigenvectors give the amplitudes of motion along each of the 3N mass
weighted Cartesian coordinates that belong to each mode.

Within this harmonic treatment of vibrational motion, the total vibrational energy of
the moleculeis given as

3N;50r6
E(vi, v2, - Vansore) = ahw (vj + 1/2)
j=1

as sum of 3N-5 or 3N-6 independent contributions one for each normal mode. The
corresponding total vibrational wavefunction

Y (Xx1X2, - Xan-sore) = Yy (X))

as aproduct of 3N-5 or 3N-6 harmonic oscillator functionsy Vi (x;) arefor each normal

mode within this picture, the energy gap between one vibrationa level and another in which
one of the v; quantum numbersisincreased by unity (the origin of this"selection rule" is

discussed in Chapter 15) is

DEVJ® Vj+]_:h\Nj



The harmonic model thus predicts that the "fundamental” (v=0® v = 1) and "hot band"
(v=1® v = 2) trandition should occur at the same energy, and the overtone (v=0® v=2)
transitions should occur at exactly twice this energy.

B. The Use of Symmetry
1. Symmetry Adapted Modes

It is often possible to simplify the calculation of the normal mode frequencies and
eigenvectors by exploiting molecular point group symmetry. For molecules that possess
symmetry, the electronic potential V(qj) displays symmetry with respect to displacements
of symmetry equivalent Cartesian coordinates. For example, consider the water molecule at
its Cpy equilibrium geometry asillustrated in the figure below. A very small movement of
the H,O molecul€e's left H atom in the positive x direction (Dx) produces the same change
inV asacorrespondingly small displacement of the right H atom in the negative x direction
(-DxR). Similarly, movement of the left H in the positive y direction (Dy| ) produces an
energy change identical to movement of theright H in the positivey direction (DyR).

\/

The equivalence of the pairs of Cartesian coordinate displacementsis aresult of the
fact that the displacement vectors are connected by the point group operations of the Cpy
group. In particular, reflection of Dx_ through the yz plane produces - DxR, and reflection
of Dy, through this same plane yields Dyg.

More generdly, it is possible to combine sets of Cartesian displacement coordinates
{ak} into so-called symmetry adapted coordinates { Qgj}, where the index Glabelsthe
irreducible representation and j labels the particular combination of that symmetry. These
symmetry adapted coordinates can be formed by applying the point group projection
operators to the individual Cartesian displacement coordinates.



Toillustrate, again consider the H>O molecule in the coordinate system described
above. The 3N =9 mass weighted Cartesian displacement coordinates (X, Y, ZL, Xo,
Yo, Zo, XR, YR, ZR) Can be symmetry adapted by applying the following four projection
operators:

Paj=1+syz+syy+C2
Pppy =1+ Syz-Sxy-C2
Pop=1-Syz+Sxy-C2
Pap=1-Syz-Sxy+C2
to each of the 9 original coordinates. Of course, one will not obtain

9 x 4 = 36 independent symmetry adapted coordinates in this manner; many identical
combinationswill arise, and only 9 will be independent.

The independent combination of a1 symmetry (normalized to produce vectors of unit
length) are

Qq,1 = 2V2[X| - XR]
Qq,2 =2V2[YL +YR]
Qa,3 = [YO

Those of by symmetry are
Quy1 = 2°V2 XL + XR]
Quy2 =2°Y2[YL - YR]
Qo,,3 = [Xal,

and the combinations



Qp,1 =2V2[Z + ZR]
Qo,,2 = [Z0]

are of by symmetry, whereas
Qa,1=2V2[Z - ZR]

isof a symmetry.

2. Point Group Symmetry of the Harmonic Potential

Thesenine Qg jare expressed as unitary transformations of the original mass

weighted Cartessian coordinates:
Qej=a CagjkXk
k

These transformation coefficients { Cgj k} can be used to carry out aunitary transformation
of the 9x9 mass-weighted Hessian matrix. In so doing, we need only form blocks

HG

1= Caik Hike (M m')-Y2 Cg) K

within which the symmetries of the two modes are identical. The off-diagonal elements

GG
Hi = Ceik Hik (M mk) Y2 Cg K

vanish because the potential V () (and the full vibrational HamiltonianH =T + V)

commutes with the Coy point group symmetry operations.

As aresult, the 9x9 mass-weighted Hessian eigenval ue problem can be sub divided
into two 3x3 matrix problems ( of &g and by symmetry), one 2x2 matrix of by symmetry



[EEY

&‘YB> CD@\

N

M:(D

o

and one 1x1 matrix of ap symmetry. For example, the a3 symmetry block H,alI isformed
J

asfollows:

0 AN sl i 0 AN
l';l 4 1 ﬂ -1 Y (my mg) Y2 N % 2 l';l
u e HﬂXLZ HﬂXL TxXr HTo XL Txo u e u
u gm’lH i m'lH HZ;/ (my mo) 2 i L/J a 1 1 u

0 TxRY X xg 1 — 0
2@ e e e & F oL
u e (my mo) V2 (my mey 2 mlo U e u
> xo Tx xo TXR xo? e =
u e,,. u

The by, by and & blocks are formed in asimilar manner. The eigenvalues of each of these
blocks provide the squares of the harmonic vibrational frequencies, the eigenvectors
provide the normal mode displacements as linear combinations of the symmetry adapted
{QS}.

Regardless of whether symmetry is used to block diagonalize the mass-weighted
Hessian, six (for non-linear molecules) or five (for linear species) of the eigenvalues will
equal zero. The eigenvectors belonging to these zero eigenvalues describe the 3
trandations and 2 or 3 rotations of the molecule. For example,

i [XL+XR+X0]

V3

1
— [Y_ +YR+Y
\/§[L R+ Y(Q]
1
r— [ZL+ZR+ZO]

V3

are three trandation eigenvectors of by, a; and b; symmetry, and

1

V2

(ZL - ZR)

isarotation (about the Y -axisin the figure shown above) of ap symmetry. Thisrotation
vector can be generated by applying the a projection operator to Z| or to Zr. The fact that
rotation about the Y -axisis of a symmetry isindicated in the right-hand column of the Cp,



character table of Appendix E viathe symbol Rz (n.b., care must be taken to realize that the
axis convention used in the above figure is different than that implied in the character table;
the latter has the Z-axis out of the molecular plane, while the figure calls thisthe X-axis).
The other two rotations are of by and by symmetry (see the Cyy, character table of
Appendix E) and involve spinning of the molecule about the X- and Z- axes of the figure
drawn above, respectively.

So, of the 9 cartesian displacements, 3 are of a3 symmetry, 3 of by, 2 of by, and 1
of ap. Of these, there are three trandations (a1, b2, and b;) and three rotations (bp, b1, and
a). Thisleavestwo vibrations of a; and one of by symmetry. For the H,0O example treated
here, the three non zero eigenvalues of the mass-weighted Hessian are therefore of a1 by,
and & symmetry. They describe the symmetric and asymmetric stretch vibrations and the
bending mode, respectively asillustrated below.

\4\// \4\ / H/\)

The method of vibrational anaysis presented here can work for any polyatomic
molecule. One knows the mass-weighted Hessian and then computes the non-zero
eigenvalues which then provide the squares of the normal mode vibrational frequencies.
Point group symmetry can be used to block diagonalize this Hessian and to label the
vibrational modes according to symmetry.

[11. Anharmonicity

The electronic energy of amolecule, ion, or radical at geometries near a stable
structure can be expanded in a Taylor seriesin powers of displacement coordinates as was
donein the preceding section of this Chapter. This expansion leads to a picture of
uncoupled harmonic vibrational energy levels

3N-50r6
E(vi--Van-sord = & hwj(vj+1/2)
=1



and wavefunctions

Y (X1 - X3N-50r6) = 3'\'_'5ff6 Yyj (%)
J:

The spacing between energy levelsin which one of the normal-mode quantum
numbers increases by unity

DEVJ. = E(---Vj+1 ) -E ("'Vj ) =h Wj

is predicted to be independent of the quantum number vj. This picture of evenly spaced
energy levels

DEg =DE; =DEp = -
isan incorrect aspect of the harmonic model of vibrational motion, and is aresult of the
quadratic model for the potential energy surface V().

A. The Expansion of E(v) in Powers of (v+1/2).

Experimental evidence clearly indicates that significant deviations from the
harmonic oscillator energy expression occur as the quantum number vj grows. In Chapter
1 these deviations were explained in terms of the diatomic molecul€e's true potentia V(R)
deviating strongly from the harmonic 1/2k (R-Rg)2 potential at higher energy (and hence
larger 1 R-Rdl') as shown in the following figure.

4




At larger bond lengths, the true potential is "softer” than the harmonic potential, and
eventually reaches its asymptote which lies at the dissociation energy De above its
minimum. This negative deviation of the true V(R) from 1/2 k(R-Rg)? causes the true
vibrational energy levelsto lie below the harmonic predictions.

It is convention to express the experimentally observed vibrational energy levels,
along each of the 3N-5 or 6 independent modes, as follows:

E(vj) =h[wj (vj + 1/2) - (Wx)j (vj + 1/2)2+ (wy)j (vj + 12)3 + (W 2)j (vj + 1/2)4+ -]

Thefirst term is the harmonic expression. The next is termed the first anharmonicity; it
(usually) produces a negative contribution to E(v;) that varies as (vj + 1/2)2. The spacings
between successive vj ® vj + 1 energy levelsisthen given by:

DE; =E(vj +1)- E(v)
=h[wj-2(wx)j (vj +1) +...]

A plot of the spacing between neighboring energy levels versus vj should be linear for
values of v; where the harmonic and first overtone terms dominate. The slope of such a
plot is expected to be -2h(wx); and the small -v; intercept should be h[w; - 2(wx)j]. Sucha
plot of experimental data, which clearly can be used to determine the w; and (wx);
parameter of the vibrational mode of study, is shown in the figure below.
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B. The Birge-Sponer Extrapolation

These so-called Birge-Sponer plots can also be used to determine dissociation
energies of molecules. By linearly extrapolating the plot of experimental DEy; values to
large vj vaues, one can find the value of vj at which the spacing between neighboring
vibrational levels goesto zero. Thisvalue
vj, max specifies the quantum number of the last bound vibrational level for the particular
potential energy function V(x;) of interest. The dissociation energy De can then be
computed by adding to 1/2hw; (the zero point energy aong this mode) the sum of the
spacings between neighboring vibrational energy levels from vj = 0 to vj = vj, max:

De= L/2hw; + Vi M DE,.
vj=0

Since experimental data are not usually available for the entire range of v; values (from O to
Vj,max), this sum must be computed using the anharmonic expression for DEVJ- :

DEy; = h[w - 2 (Wx)j (v} + 1/2) + - - .



Alternatively, the sum can be computed from the Birge-Sponer graph by measuring the area
under the straight-linefit to the graph of DEVJ- or vj from vj = 0t0 Vj = Vj max-

This completes our introduction to the subject of rotational and vibrational motions
of molecules (which applies equally well to ions and radicals). The information contained
in this Section is used again in Section 5 where photon-induced transitions between pairs of
molecular eectronic, vibrational, and rotational eigenstates are examined. More advanced
treatments of the subject matter of this Section can be found in the text by Wilson, Decius,
and Cross, aswell asin Zare'stext on angular momentum.



Section 5 Time Dependent Processes

Chapter 14

Theinteraction of a molecular species with €l ectromagnetic fields can cause trangitions to
occur among the available molecular energy levels (electronic, vibrational, rotational, and
nuclear spin). Collisions among molecular species likewise can cause transitions to occur.
Time-dependent perturbation theory and the methods of molecular dynamics can be
employed to treat such transitions.

|. The Perturbation Describing Interactions With Electromagnetic Radiation

The full N-electron non-relativistic Hamiltonian H discussed earlier in this text
involves the kinetic energies of the electrons and of the nuclei and the mutual coulombic
interactions among these particles

H=Sa1m (-h22ma) N2+ Sj [ (-hZ2me) Nj2- SaZ£2/rj 4]
+ Sj<k €Mjk + Sa<b ZaZh €/Rap.

When an electromagnetic field is present, thisis not the correct Hamiltonian, but it can be
modified straightforwardly to obtain the proper H.

A. The Time-Dependent Vector A(r,t) Potentia

The only changes required to achieve the Hamiltonian that describes the same
system in the presence of an eectromagnetic field are to replace the momentum operators
Paand p;j for the nuclei and electrons, respectively, by (Pa- Za€/cA(Rat)) and (p;j - €/c
A(rj,1)). Here Z, eisthe charge on the &M nucleus, -eisthe charge of the electron, and cis
the speed of light.

The vector potential A depends on timet and on the spatia location r of the particle
in the following manner:

A(r,t) =2 Agcos (Wt -K-r).

The circular frequency of the radiation w (radians per second) and the wave vector k (the
magnitude of k is [k| = 2p/l , where | isthe wavelength of the light) control the temporal



and spatia oscillations of the photons. The vector A characterizes the strength (through
the magnitude of Ao) of the field aswell asthe direction of the A potentid; the direction of

propagation of the photonsis given by the unit vector k/|k|. The factor of 2 in the definition
of A alowsoneto think of Ag as measuring the strength of both exp(i(wt - k- r)) and exp(-
i(wt - k- r)) components of the cos (wt - k- r) function.

B. The Electric E(r ,t) and MagneticH(r ,t) Fields
The eectric E(r,t) and magnetic H (r,t) fields of the photons are expressed in terms
of the vector potential A as

E(r,t)=- UcJAMt=w/c2Aposin(Wt-k-r)
H(rt)= Nx A=Kkx Ag2sin(wt-k-r).

TheE field lies paralld to the A vector, and theH field is perpendicular to A; both are
perpendicular to the direction of propagation of the light k/|k|. E and H have the same

phase because they both vary with time and spatial location as
sin (wt - k- r). Therelative orientations of these vectors are shown below.

>
H/ k

C. The Resulting Hamiltonian



Replacing the nuclear and el ectronic momenta by the modifications shown abovein
the kinetic energy terms of the full electronic and nuclear-motion hamiltonian resultsin the
following additional factors appearing in H:

Hint = Sj { (ieh/mec) A(rj.t) - Nj + (€2/2mec?) JA(r 1)1}
+Sa{ (i Z&h/me) A(Rat) - Na+ (ZL222me?) A(Rat )2}

These so-called interaction perturbations Hipy are what induces transitions among the

various e ectronic/vibrational/rotational states of a molecule. The one-electron additive
nature of Hjpt plays an important role in determining the kind of transitions that Hijnt can

induce. For example, it causes the most intense electronic transitions to involve excitation
of asingle electron from one orbital to another (recall the Slater-Condon rules).

I1. Time-Dependent Perturbation Theory

A. The Time-Dependent Schrodinger Equation

The mathematical machinery needed to compute the rates of transitions among
molecular states induced by such atime-dependent perturbation is contained in time-
dependent perturbation theory (TDPT). The devel opment of this theory proceeds as
follows. One first assumes that one has in-hand all of the eigenfunctions{F } and
eigenvalues { Ex0} that characterize the Hamiltonian HO of the molecule in the absence of
the external perturbation:

HOF, =EOFy.
One then writes the time-dependent Schrédinger equation
iATY /it =(HO+ Hijn) Y

in which the full Hamiltonian is explicitly divided into a part that governsthe system in the
absence of the radiation field and Hipyt which describes the interaction with the field.

B. Perturbative Solution
By treating HO as of zeroth order (in the field strength |Ag|), expanding Y order-by-
order in the field-strength parameter:



Y=Y0+Yl+Y2+Y3+ |
realizing that Hjnt contains terms that are both first- and second- order in |Ag|
Hypn = Sj{ (ieh/mgL) A(rj,t) - Nj }
+Sa{ (i Zeeh/me) A(Rat) - Na},
HZint = S { (e2/2mee?) |A(rj,t)[2 }
+Sa{ (ZLe22me?) IA(Rat)I? },

and then collecting together al terms of like power of |Ag|, one obtains the set of time-
dependent perturbation theory equations. The lowest order such equations read:

iATYO/t=HOYO

i A Y Ut = (HOY 1+ Hjpy Y O)

iAY 2/t = (HOY 2+ H2j YO + HYjp Y D).
The zeroth order equations can easily be solved because HO is independent of time.
Assumingthatatt=-¥, Y =y (weusetheindex i to denote theinitial state), this solution
is:

YO=F;exp(-i EOt/h).

The first-order correctionto Y 0, Y1 can be found by (i) expanding Y 1 in the
complete set of zeroth-order states{F+}:

Y1=SiFi<FeY1>=SiFs Gt
(i) using the fact that

HOF¢ = EQFy,



and (iii) substituting all of thisinto the equation that Y 1 obeys. The resultant equation for
the coefficients that appear in the first-order equation can be written as

iR CMt = Sk {ExO Cil i k }+ <Fi| Hlint [Fi> exp(- i EOt/h),
or
i A ICYMt = EO CiL + <F¢| HYi [Fi> exp(-i EOt/h).
Defining
Crl (t) = Drl(t) exp (-1 EOt /),
this equation can be cast in terms of an easy-to-solve equation for the Df! coefficients:
i h DMt = <F e Hine [Fi> exp(i [E9- EO] t/h).

Assuming that the electromagnetic field A(r,t) is turned on at t=0, and remains on
until t =T, this equation for D! can be integrated to yield:

T
Dfl(t) = (i h)'lé <Fi¢| HLint |[Fi> exp(i [E- EiO] t' / k) dt'.
0

C. Application to Electromagnetic Perturbations

1. First-Order Fermi-Wentzel "Golden Rule"
Using the earlier expressions for H1j: and for A(r t)

Hline = Sj{ (ieh/mg) A(rj.t) - Nj }
+Sa{ (i Zeeh/mg) A(Rat) - Na}

and



2Aocos(Wt-k-r)=Ag{ exp[i Wt-k-r)] +exp[-i Wt-k-r)]},

itisreatively straightforward to carry out the above time integration to achieve afina
expression for Dyl(t), which can then be substituted into C¢ (t) = Del(t) exp (-i E©0t/h)
to obtain the final expression for the first-order estimate of the probability amplitude for the
molecule appearing in the state F t exp(- i 0t /) after being subjected to electromagnetic
radiation fromt =0 until t = T. Thisfina expression reads:

Ci(T)= (ih)Llexp(-i EOT/h) {<F¢|Sj{ (ieh/me) exp [-ik-rj] Ag - Nj

exp(i(w+ wi)T)-1
(W i)

+Sa(i Zeh/mge) exp[-k-Rg Ao+ Na |Fi>}

+(ih)Llexp (-1 BEOT/h) {<F¢|Sj{ (ieh/mg) exp[ik- rj]Ag - N;

+Sa(i Zehimg) exp[ik-Rg Ag- Ng [Fis} =P (i (-i\?i\;+v\\,,:f.’i)) T) - 1’

where
wei = [EQ-EO0]/h

is the resonance frequency for the transition between "initia" state Fj and "fina" state F .
Defining the time-independent parts of the above expression as

af =<F¢|Sj{ (e/me) exp [-ik-rj] Ao - Nj
+Sa(Zge/mg) exp[-ik-Rg Ap- Na |Fi>,
this result can be written as

exp(i(w+ wj) T) -1
F(WHW )

Cl(T)= exp(-i EO T /h) { af,

exp (- (w- ) T) - 1

+axy, :
-i (W-w )

} .



The modulus squared |Cf1(T)P gives the probability of finding the molecule in the final
stateF¢ attimeT, giventhat it wasin Fj at time t = 0. If the light's frequency w is tuned
close to the trangition frequency wg j of aparticular transition, the term whose denominator
contains (W - w j) will dominate the term with (w + w j) in its denominator. Within this
"near-resonance”’ condition, the above probability reducesto:

CAMR =2 fay p L coS(W - Wi)T))
| (W - W j)?

2 sSn2(L2(w - wg)T)
(W - wj)2 '

= 4lag,

Thisisthefinal result of the first-order time-dependent perturbation theory treatment of
light-induced transitions between states F and F+.

The so-caled sinc- function

sSn2(12(w - wg)T)
(W - )2

as shown in the figure below is strongly peaked near w = w j, and displays secondary
maxima (of decreasing amplitudes) nearw=wsj +2np/T ,n=1,2,....IntheT ® ¥
[imit, this function becomes narrower and narrower, and the area under it

¥ ¥
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growswith T. Physically, this means that when the molecules are exposed to the light
source for long times (large T), the sinc function emphasizes w values near w j (i.e., the
on-resonancew values). These properties of the sinc function will play important rolesin

what follows.

Intensity

w—p

In most experiments, light sources have a"spread” of frequencies associated with
them; that is, they provide photons of various frequencies. To characterize such sources, it
is common to introduce the spectral source function g(w) dw which gives the probability
that the photons from this source have frequency somewhere between w and w+dw. For
narrow-band lasers, g(w) is asharply peaked function about some "nomina" frequency wp;
broader band light sources have much broader g(w) functions.

When such non-monochromatic light sources are used, it is necessary to average
the above formulafor |CfL(T)P over the g(w) dw probability function in computing the
probability of finding the moleculein state F ¢ after time T, given that it wasin Fj up until t
= 0, when the light source was turned on. In particular, the proper expression becomes:

sSn2(LU2(w - wgj)T) dw

Q
Cii(T)Pave= 4 lasil ogw
IC(T)Fave lat i 69( ) w - Wf,i)z



¥
sSn2(12(w - wg)T)
VAT2(wW - W j)2

= 2JatiP T§ a(w) dWT/2 .

-¥

If the light-source function is "tuned" to peak near w = w¢ j, and if g(w) is much broader (in
sSn2(U2(w - wg)T)

w-space) than the function, g(w) can be replaced by itsvalue at the

(W - wg )2
- .
peskc of the SNTY2W = WEDT) ¢ - ion, vielding:
(W - wg )2
¥
Q  sin(1/2w - wi)T)
CL(MPBae = 20w i) lasiP TO : dwT/2
IC+H(T) Fave a(wr ) lat,il g VAT2w - Wf,i)z
-¥
¥
6 sin?
= 2.g(w ) |af,i|2T8 S”:(Z(X) dx =2pgw,)lasifeT.
¥

Thefact that the probability of excitation from Fi to Ff growslinearly with the time
T over which the light source is turned on implies that the rate of transitions between these
two statesis constant and given by:

Rif=2p gw,) latif;
thisisthe so-called first-order Fermi-Wentzel "golden rule" expression for such
trangition rates. It givesthe rate as the square of atransition matrix el ement between the two

states involved, of the first order perturbation multiplied by the light source function g(w)
evaluated at the transition frequency wy ;.

2. Higher Order Results
Solution of the second-order time-dependent perturbation equations,



which will not be treated in detail here, givesrise to two distinct types of contributions to
the transition probabilities between Fj and F -

i. There will be matrix elements of the form
<F1|Sj{ (e22mec?) JA(rj;t)|2}+ Sa{ (ZLe22mee?) |A(Rat )12 }Fi>

arising when HZj,; couplesFi toFs

ii. There will be matrix elements of the form
Sk <Ft|Sj{ (ieh/m) A(rj,t) - Nj }+ Sa{ (i Z&eh/mg) A(Rat) - Na} [Fi>
<Fk|Sj{ (ieh/mg) A(rj,t) - Nj }+ Sa{ (i Z&eh/mL) A(Rat) - Na} Fi>

arising from expanding Hljn; Y 1 = Sy Cxl HYj¢|F k> and using the earlier result for the
first-order amplitudes Cy 1. Because both types of second-order terms vary quadratically
with the A(r,t) potential, and because A has time dependence of the form cos (wt - k- r),
these terms contain portions that vary with time as cos(2wt). As aresult, transitions
between initial and final states Fj and F  whose transition frequency isws i can be induced
when 2w = w j; in this case, one speaks of coherent two-photon induced transitions in
which the el ectromagnetic field produces a perturbation that has twice the frequency of the
"nominal™ light source frequency w.

D. The"Long-Wavelength" Approximation

To make progress in further analyzing the first-order results obtained above, it is
useful to consider the wavelength | of the light used in most visible/ultraviolet, infrared, or
microwave spectroscopic experiments. Even the shortest such wavelengths (ultraviolet) are
considerably longer than the spatial extent of all but the largest molecules (i.e., polymers
and biomolecules for which the approximations we introduce next are not appropriate).

In the definition of the essential coupling matrix element a

af | :<Ff|Sj (e/mec) exp [-ik-rj] Ao - Nj

+ Sa(Ze/mg) exp[-k-Rg Ag- Na |Fi>,



the factors exp [-ik - rj] and exp[-i k- R4 can be expanded as:
exp[-ik-rj] =1+ (-ik-rj) + U2 (-ik-rj)2 + ...
exp[-ik-Rg =1+ (-ik-R) + /2 (-ik-Rg2 + ... .

Because [k| = 2p/l , and the scales of rj and Ra are of the dimension of the molecule, k- rj
and k- R are less than unity in magnitude, within this so-called "long-wavel ength™
approximation.

1. Electric Dipole Transitions
Introducing these expansions into the expression for as j gives rise to terms of
various powersin 1/ . The lowest order terms are:

afi (E1)=<F¢|Sj(e/m) Ag - Nj +Sa(Ze/mg) Ag- Na |Fi>
and are called "dectric dipol€e" terms, and are denoted E1. To see why these matrix
elements are termed E1, we use the following identity (see Chapter 1) between the
momentum operator - i N and the corresponding position operator r:

Nj=-(mg ) [H,rj]

Na=- (md h2) [ H, Ral.
This derives from the fact that H contains Nj and Nzin its kinetic energy operators (as N2,
and sz ).

Substituting these expressions into the above at j (E1) equation and using H Fj o f

=ES or £ Fi or f, ONe obtains:

agj (E1) = (E% - E0) Ag - <F¢| S (e /H2%c) r + Sa(Ze/Hc) Ry |Fi>

Wi Ag- <F¢|Sj (efc)rj +Sa(Zehc) Ra |Fi>

(Wi ac) Ag - <F¢|m|Fi>,



where mis the e ectric dipole moment operator for the electrons and nuclei:
m= SJ e rj + Sa Zae Ra.

Thefact that the E1 approximation to afj contains matrix elements of the electric dipole

operator between theinitia and final states makesit clear why thisis called the electric
dipole contribution to a¢ j; within the E1 notation, the E stands for electric moment and the

1 stands for the first such moment (i.e., the dipole moment).
Within this approximation, the overall rate of transitionsis given by:

Rif=2pgw,) laf,?
=2p g(w,) (W Fc)2 JAg - <Ff|m|Fi> |2,

Recalling that E(r,t) = - L/c JA/fit =w/c Ag Sin (wt - k- 1), the magnitude of Ag can be
replaced by that of E, and this rate expression becomes

Rif =(2p/2) g(ws,i) |Eo - <Ff|m|Fi> |2
This expresses the widely used E1 approximation to the Fermi-Wentzel golden rule.

2. Magnetic Dipole and Electric Quadrupole Transitions

When EL1 predictions for the rates of transitions between states vanish (e.g., for
symmetry reasons as discussed below), it is essential to examine higher order contributions
to at. The next termsin the above long-wavelength expansion vary as 1/l and have the
form:

afi(E2+M1) =<F¢|S;j (e/me) [-ik-rj] Ao - N;
+Sa(Ze/mg) [-ik- Ry Ag- Na |Fi>.

For reasons soon to be shown, they are called electric quadrupole (E2) and magnetic dipole
(M1) terms. Clearly, higher and higher order terms can be so generated. Within the long-
wavelength regime, however, successive terms should decrease in magnitude because of
the successively higher powers of 1/l that they contain.



To further analyze the above E2 + M1 factors, let us label the propagation direction
of thelight asthe z-axis (the axis long which k lies) and the direction of Ag asthe x-axis.
These axes are so-called "lab-fixed" axes because their orientation is determined by the
direction of the light source and the direction of polarization of the light source'sE field,
both of which are specified by laboratory conditions. The molecule being subjected to this
light can be oriented at arbitrary angles relative to these lab axes.

With the x, y, and z axes so defined, the above expression for
afj (E2+M1) becomes

afj(E2+M1) =-i (Ag2p/l )<F¢|S; (e/mg) z TMX;
+ Sa( Zee /M) za1/Mxa | Fi>.
Now writing (for both z and z,)
z/MIx =12 (z 191x - x 19z + z 1/9x + x 91/12),
and using
Nj=-(mgh2) [H,rj]
Na= - (md #2) [ H, Ral,
the contributions of 1/2 (z 1/9x + x 1/9z) toa¢,i (E2+M1) can be rewritten as

(Ao €2p w i)

afi(E2) =-i <Ft|Sj 7 Xj +SaZazXa |Fi>.

The operator Sj zj Xj + SaZaZaXa that appears aboveisthe z,x element of the electric
quadrupole moment operator Q; x ; it isfor this reason that this particular component is
labeled E2 and denoted the electric quadrupol e contribution.

Theremaining 1/2 (z 1/x - x 1/9z) contribution to af j (E2+M 1) can be rewritten in
aform that makes its content more clear by first noting that

12 (2% - X TM12) = (i/28) (2 px - X p) = (i/2h) Ly



contains the y-component of the angular momentum operator. Hence, the following
contributionto af j (E2+M1) arises:

Ao2p e
asi (M1 =
fi (M1) ol ch

<F¢|S;j Ly, Ime+ Sa Zaly, /ma |Fi>.

The magnetic dipole moment of the electrons about they axisis
Ny electrons = Sj (€/2MeC) Lyj ;

that of the nuclei is
Ny nuclei = Sa(Zae/2mgc) Ly,

Theas; (M1) term thus describes the interaction of the magnetic dipole moments of the
electrons and nuclel with the magnetic field (of strength [H| = Ag k) of the light (which lies

along they axis):
H
afi (M1) :lh_l <Ft|my dectrons+ My nuclei | Fi>.

Thetota rate of transitionsfrom Fj to F¢isgiven, through first-order in
perturbation theory, by

Rif=2p gw,) lat,if2,

whereasj isasum of itsE1, E2, M1, etc. pieces. In the next chapter, molecular symmetry
will be shown to be of use in analyzing these various pieces. It should be kept in mind that
the contributions caused by E1 terms will dominate, within the long-wavel ength
approximation, unless symmetry causes these termsto vanish. It is primarily under such
circumstances that consideration of M1 and E2 transitions is needed.

[11. The Kinetics of Photon Absorption and Emission

A. The Phenomenologica Rate Laws



Before closing this chapter, it isimportant to emphasize the context in which the
transition rate expressions obtained here are most commonly used. The perturbative
approach used in the above development gives rise to various contributions to the overall
rate coefficient for transitions from aninitial state F; to afina state F ¢; these contributions
include the electric dipole, magnetic dipole, and electric quadrupole first order terms as well
contributions arising from second (and higher) order termsin the perturbation solution.

In principle, once the rate expression

Rif=2pgw,) laf,?

has been evaluated through some order in perturbation theory and including the dominant
electromagnetic interactions, one can make use of these state-to-state rates, which are
computed on a per-molecule basis, to describe the time evolution of the populations of the
various energy levels of the molecule under the influence of the light source's
electromagnetic fields.

For example, given two states, denoted i and f, between which transitions can be
induced by photons of frequency w j, the following kinetic model is often used to describe
the time evolution of the numbers of molecules nj and ¢ in the respective states:

dnj
— =-Rifni+Rejny

dns
i =-Rgine+ R0 .

Here, Rj s and Ry j are the rates (per molecule) of transitions for thei ==>f and

f ==>1 trangitions respectively. As noted above, these rates are proportional to the intensity
of the light source (i.e., the photon intensity) at the resonant frequency and to the square of
amatrix element connecting the respective states. This matrix element squareis [a; ¢|2 in the
former case and [at ;|2 in the latter. Because the perturbation operator whose matrix
elementsarea; s and af j isHermitian (thisis true through all orders of perturbation theory
and for al termsin the long-wavelength expansion), these two quantities are complex
conjugates of one another, and, hence [a; |2 = |as i[¢, from which it follows that R = R
. This means that the state-to-state absorption and stimulated emission rate coefficients

(i.e., therate per molecule undergoing the transition) areidentical. Thisresult isreferred to
asthe principle of microscopic reversibility.



Quite often, the states between which transitions occur are members of levelsthat
contain more than a single state. For example, in rotational spectroscopy atransition
between a state in the J= 3 level of adiatomic molecule and astatein the J= 4 level involve
such states; the respective levelsare 2H+1 = 7 and 21 = 9 fold degenerate, respectively.

To extend the above kinetic model to this more general case in which degenerate
levels occur, one uses the number of moleculesin each level (N;j and Ns for the two levels
in the above example) as the time dependent variables. The kinetic equations then
governing their time evolution can be obtained by summing the state-to-state equations over
al statesin each leve

dnj , _dN
Siintevel 1 () = g

dnf, _ dN
SfinlevelF(th)thF

and redizing that each state within agiven level can undergo transitionsto all stateswithin

the other level (hence the total rates of production and consumption must be summed over

all statesto or from which transitions can occur). This generalization resultsin a set of rate
laws for the populations of the respective levels:

dNj
< =- 9 Rif Ni+giRej Nt

dNs
<t =9 Rei Ni+0rRiN; .

Here, gi and gr are the degeneracies of the two levels (i.e., the number of statesin each
level) and the R; f and Ry j, which are equal as described above, are the state-to-state rate
coefficients introduced earlier.

B. Spontaneous and Stimulated Emission

It turns out (the development of this concept is beyond the scope of this text) that
the rate at which an excited level can emit photons and decay to alower energy level is
dependent on two factors: (i) the rate of stimulated photon emission as covered above,
and (ii) therate of spontaneous photon emission. The former rate gr R; f (per molecule)
is proportional to the light intensity g(ws ;) at the resonance frequency. It is conventional to



separate out thisintensity factor by defining an intensity independent rate coefficient B; ¢ for
this process as:

o Ri,f = d(wr i) Bi .

Clearly, Bj ¢ embodiesthe final-level degeneracy factor gf, the perturbation matrix
elements, and the 2p factor in the earlier expression for R; f. The spontaneous rate of
trangition from the excited to the lower level isfound to be independent of photon
intensity, because it deals with a process that does not require collision with a photon to
occur, and is usually denoted A . The rate of photon-stimulated upward transitions from
dtate f to statei (gi Re,i = gi Ri ¢ inthe present case) is aso proportional to g(w j), soitis
written by convention as:

gi Rfi = d(wr i) By, .

Animportant relation between the Bj ¢ and Bt j parameters exists and is based on the
identity Rj f = R¢,j that connects the state-to-state rate coefficients:

(Bif) _ (oRif) _ of
(Bfi) ~ (@Rfi) G -

This relationship will prove useful in the following sections.

C. Saturated Transitions and Transparency

Returning to the kinetic equations that govern the time evolution of the populations
of two levels connected by photon absorption and emission, and adding in the term needed
for spontaneous emission, one finds (with the initial level being of the lower energy):

dN;

<t = 9Bif Ni+ (At +9Br,i)Ns

dN
—O|t—f =- (Ar,i + 9Bf,i)Nf + gBjf N

where g = g(w) denotes the light intensity at the resonance frequency.



At steady state, the populations of these two levels are given by setting
dN; _ dNg

T @ ¢
Nt __ (9Bif)
Ni = (Afj+gBs,i) -

When the light source's intensity is so large asto render gB¢j >> Agj (i.e., when the rate
of spontaneous emission is small compared to the stimulated rate), this population ratio
reaches (B ¢/Bs j), which was shown earlier to equal (g¢/g;). In this case, one says that the
populations have been satur ated by the intense light source. Any further increase in light
intensity will result in zero increase in the rate at which photons are being absorbed.
Transitions that have had their populations saturated by the application of intense light
sources are said to display optical transpar ency because they are unable to absorb (or
emit) any further photons because of their state of saturation.

D. Equilibrium and Relations Between A and B Coefficients

When the moleculesin the two levels being discussed reach equilibrium (at which

timethe—dl\L %I\ﬁ = 0 aso holds) with a photon source that itself isin equilibrium

characterized by atemperature T, we must have:

Ni _g

N =g OPC(E - EKT) = exp(-h w/kT)

where gf and g; are the degeneracies of the states labeled f and i. The photon source that is

characterized by an equilibrium temperature T isknown asablack body radiator, whose
intensity profile g(w) (in erg cm 3 sec) is know to be of the form:

_ 2(hw)

gw) =

Equating the kinetic result that must hold at equilibrium:

Nt __ (9Bif)
Ni ~ (Af,i+0Bt,)



to the thermodynamic resullt:
Ni _gr
Ni "o exp(-h w/kT),

and using the above black body g(w) expression and the identity

E. Summary

In summary, the so-caled Einstein A and B rate coefficients connecting a
lower-energy initial statei and afinal state f are related by the following conditions:

ot

Bif =g

Bt,i

and

_ 2(w)3
pc3h2

fi Bt,i.

These phenomenological level-to-level rate coefficients are related to the state-to-state R; f
coefficients derived by applying perturbation theory to the el ectromagnetic perturbation
through

g Ri s =o(wri) Bif .

The A and B coefficients can be used in akinetic equation model to follow the time
evolution of the populations of the corresponding levels:



dN;
o =- 9Bif Ni+ (Arj + gBf Ny
dNs

<t = (Ati +9Bri)Nt +gBif Ni .

These equations possess steady state solutions

Nt __ (9Bip)
Ni = (Af,i+0Bs,i)

which, for large g(w), produce saturation conditions:

Nt _ (Bif) _ o

Ni “Bri) g



Chapter 15
Thetools of time-dependent perturbation theory can be applied to transitions among
electronic, vibrational, and rotational states of molecules.

|. Rotational Transitions

Within the approximation that the electronic, vibrational, and rotational states of a
molecule can be treated as independent, the total molecular wavefunction of the "initial"
state is a product

Fi=YeiCvifri

of an electronic functiony ¢, avibrational function cj, and arotational functionf . A
similar product expression holds for the "final" wavefunction F .

In microwave spectroscopy, the energy of the radiation liesin the range of fractions
of acnrl through several cmL; such energies are adequate to excite rotational motions of
molecules but are not high enough to excite any but the weakest vibrations (e.g., those of
weakly bound Van der Waals complexes). In rotational transitions, the electronic and
vibrational states are thus left unchanged by the excitation process, hencey ¢ = Y o and Cyj
= Cvf.

Applying the first-order electric dipole transition rate expressions

Rif=2p gw,) latif
obtained in Chapter 14 to this case requires that the E1 approximation
Rif = (2p/H2) g(wi,i) |Eo - <F¢|m|F> |2

be examined in further detail. Specifically, the electric dipole matrix elements<Ff | m| F >
withm=S; e rj + Sz Zae Ramust be analyzed for Fj and F ¢ being of the product form
shown above.

The integrations over the electronic coordinates contained in <Ff | m| F >, aswell
asthe integrations over vibrational degrees of freedom yield "expectation values' of the
electric dipole moment operator because the electronic and vibrational components of F
and F ¢ areidenticd:



<Ye |[Mlyea>=m(R)

isthe dipole moment of theinitial eectronic state (which isafunction of the internal
geometrical degrees of freedom of the molecule, denoted R); and

<Cvi |MR) | Ccvi> = Mye

isthe vibrationally averaged dipole moment for the particular vibrationa state labeled c ;.
The vector my,e has components along various directions and can be viewed as a vector
"locked" to the molecul€'sinterna coordinate axis (labeled a, b, ¢ as below).

Z

depends on
f andc



Therotational part of the <Ff | m| Fi> integral is not of the expectation value form
because the initial rotational function f i, is not the same asthe fina f ¢. Thisintegral hasthe
form:

<fir| mwelfr>=8(Y*L.m (@.f) mweYL m (q,f) sing dq df)

for linear molecules whose initial and final rotational wavefunctionsare Y| v and YL v,
respectively, and

_ _ 2L + 1 2L'+ 1
<f|r|mive|ffr>—\/ 8 p2 \/ 8 p2

8(DL.m .k (0.F.C) mweD*L M k' (a.f,¢) sing dg df dc)

2L +1
p2

for spherical or symmetric top molecules (here, D*L mk (q,f,c) arethe

normalized rotational wavefunctions described in Chapter 13 and in Appendix G). The
anglesq, f, and c refer to how the molecule-fixed coordinate system is oriented with

respect to the space-fixed X, Y, Z axis system.
A. Linear Molecules

For linear molecules, the vibrationally averaged dipole moment myeliesaong the
molecular axis; hence its orientation in the lab-fixed coordinate system can be specified in

terms of the same angles (g and f ) that are used to describe the rotational functionsY | m
(q,f). Therefore, the three components of the <f j; | mue|f 1> integral can be written as:

<fir | myelffx = mB(Y*L m (q.f) sing cosf Y+ m (q,f) sing dg df)

<fir| mwelfi>y=m8B(Y*L M (q,f) sing sinf Y\ (q,f) sing dg df)



<fir | myelff>z=mB(Y*L m (a.f) cosq Y m' (q,f) sing dq df),

where mis the magnitude of the averaged dipole moment. | f the molecule has no
dipole moment, al of the above electric dipole integrals vanish and theintensity of E1
rotational transitionsis zer o.

Thethree E1 integrals can be further analyzed by noting that cosq 1 Y10 ; sing
cosf p Y11+ Y-1;andsing sinf g Y11 - Y1-1 and using the angular momentum
coupling methodsiillustrated in Appendix G. In particular, the result given in that appendix:

Dj, m, m' DI, n, n'

= SJ,M,M' <JMJj,m;l,n> <j,m’; 1,n'|J;M'> D3 m. M
when multiplied by D* 3 m M and integrated over sing dq df dc, yields:
8(D*sM M Dj, m, m' DI, n, n sing dq df dc)

- B <JMJj,m;l,n><j,m’; I,n'[J,M">
_ﬂ ] |J!m1 !n J!m’ 1n||

—a2ad | Joaed | I 54y Mem
=8p ann -Mgam' n'-l\/l'g(l) o

To usethisresult in the present linear-molecule case, we note that the Dy m k functions and
the Y 3 functions are related by:

Yam (9.F) =\ (23+1)/4p D*3m0 (a.f,C).

The normalization factor is now \/ (23+1)/4p rather than \/ (23+1)/8p2 becausetheY 3\ are
no longer functions of ¢, and thus the need to integrate over O £ ¢ £ 2p disappears.

Likewise, the c-dependence of D* 3 k disappears for K = 0.
We now use these identitiesin the three E1 integrals of the form

m8(Y*L m (a,f) Y1i.m (a,f) YL m (g,f) sing dq df),



with m = 0 being the Z- axisintegral, and the Y - and X- axis integrals being combinations
of them =1 and m =-1 results. Doing so yields:

m8(Y*L.m (a,F) Y1i,m (a,F) YL m (g,f) sing dq df)

= m\/ZL+1 22 B8(DL m,0 D*1,mo D* 'm0 Sing dq df dc/2p) .
4p 4p  4p

Thelast factor of 1/2p isinserted to cancel out the integration over dc that, because all K-
factorsin the rotation matrices equal zero, trivialy yields 2p. Now, using the result shown
above expressing the integral over three rotation matrices, these E1 integrals for the linear-
molecule case reduce to:

m8(Y*L.m (a,F) Y1i,m (a,F) YL m (g,f) sing dq df)

ma [2FL 2L'+1 3 8p2 ' 1 Lgsgh' 1 Lb(_l)M
4p 4p 4p 2p aM'm-Mga 00-0 g

] i é‘l 1 LO&'. 1 LO_ M
m\/(2L+1)(2L+1)4p M Mga 000 g0 D™ -

Applied to the z-axis integral (identifying m = 0), thisresult therefore vanishes
unless:

M=M
and
L=L"+1orlL'-1.

Even though angular momentum coupling considerations would allow L = L' (because
coupling two angular momentawithj =1 andj =L"'should giveL'+1, L', and L'-1), the

3-j symbol %g vanishesfor the L = L' case since 3-j symbols have the following

symmetry



6&#0 = (-1)L+L+1 &O

av'm -M M'"-m Mg

with respect to the M, M', and mindices. Applied to the SLOT 3-j symboal, this

means that this particular 3-j element vanishesfor L =L'sinceL + L'+ 1isodd and hence
(_1)L +Ll'+1jg -1.

Applied to the x- and y- axis integrals, which contain m = £ 1 components, this
same analysisyields:

3 4 1L gaé 1 Ly, avm
— 1
\/(2L+1)(2L +1) M 2L Moo 000 g( )

which then requires that

M=M'=+1
and
L=L"+1,L"-1,

with L = L' again being forbidden because of the second 3-j symbol.

These results provide so-called "selection rules" because they limit theL and M
values of the final rotational state, giventheL', M' values of the initial rotational state. In
the figure shown below, the L = L' + 1 absorption spectrum of NO at 120 °K is given. The
intensities of the various peaks are related to the populations of the lower-energy rotational
states which are, in turn, proportional to (2 L' + 1) exp(- L'(L'+1) h2/8p2IKT). Also
included in the intensities are so-called line strength factor s that are proportional to the
sguares of the quantities:

o3 ' 1 Lghk' 1 Lg
m\/(2L+1)(2L+1)E MM Maa 000 g( 1) M

which appear in the E1 integrals analyzed above (recall that the rate of photon absorption
Rif =(2p/h2) g(ws i) |Ep - <Ff|m|Fi>[2involvesthe squares of these matrix elements).
The book by Zare gives an excellent treatment of line strength factors' contributionsto
rotation, vibration, and electronic line intensities.



Intensity
| |

I =
B. Non-Linear Molecules

For molecules that are non-linear and whose rotational wavefunctions are givenin
terms of the spherical or symmetric top functions D*|_ v k , the dipole moment nyyecan
have components along any or all three of the molecule€'sinternal coordinates (e.g., the
three molecule-fixed coordinates that describe the orientation of the principal axes of the
moment of inertiatensor). For a spherical top molecule, | myd vanishes, so E1 transitions

do not occur.
For symmetric top species, myeliesaong the symmetry axis of the molecule, so

the orientation of myye can again be described interms of q and f, the angles used to locate
the orientation of the molecule's symmetry axis relative to the lab-fixed coordinate system.
Asaresult, the E1 integral again can be decomposed into three pieces:

<fir|mad fox = mé(DL,M,K(q,f,c) cosqg cosf D* ' m' k' (9,f,c) sinq dg df dc)
<fir | muwd fr>y =8 (DL M.k (a.f,c) cosq sinf D* L+ w k: (q,f,¢) sing dq df dc)

<fir | myd ff>z=n8 (DL Mk (9.F,c) cosq D* L m k' (9.f,c) sing dg df dc).



Using the fact that cosq p D*1,0,0; sing cosf i D*11 0+ D*1-1,0; andsing sinf p
D*1.1,0 - D*1.-1,0, and the tools of angular momentum coupling allows these integrals to be
expressed, as above, in terms of products of the following 3-j symbols:

' 1 Lagk' 1 Lg
M m -MgeK 0 -Kg'

from which the following selection rules are derived:

L=L'"+1,L,L"-1 (butnotL =L'=0),
K=K’
M=M"+m,

with m = O for the Z-axisintegral and m = + 1 for the X- and Y- axisintegrals. In
addition, if K =K"'=0, theL = L' transitions are also forbidden by the second 3-j symbol
vanishing.

[1. Vibration-Rotation Transitions

When theinitial and final electronic states are identical but the respective vibrational
and rotational states are not, one is dealing with transitions between vibration-rotation states
of the molecule. These transitions are studied in infrared (IR) spectroscopy using light of
energy inthe 30 cmr? (far IR) to 5000 cm-1 range. The electric dipole matrix element
analysis still begins with the electronic dipole moment integral <y & | M|y &> = m(R), but
the integration over interna vibrational coordinates no longer produces the vibrationally
averaged dipole moment. Instead one forms the vibrational transition dipole integral:

<cvf |MR) |cvi>=m;
between theinitia ¢ and final c+ vibrational states.

A. The Dipole Moment Derivatives
Expressing n(R) in a power series expansion about the equilibrium bond length
position (denoted Re collectively and Ra e individualy):



rr(R) = rr(Re) + SaﬂMﬂRa(Ra' Ra'e) + ...,

substituting into the <cyf | MR) | cyi> integral, and using the fact that ¢j and ct are
orthogonal (because they are eigenfunctions of vibrational motion on the same electronic
surface and hence of the same vibrational Hamiltonian), one obtains:

<cvf |MR) | cvi>=mMRe) <Cvf | Cvi>+ SaMMRa<cvi | (Ra- Rag) [Cvi> + ...
= Sa(MYRa) <cvi| (Ra- Rag) ICvi> + ... .
Thisresult can be interpreted as follows:

i. Each independent vibrational mode of the molecule contributes to the n3 ; vector an
amount equal to (fMRy) <cvf| (Ra- Rae) [Cvi> + ...

ii. Each such contribution contains one part (nMfIR;) that depends on how the molecule's
dipole moment function varies with vibration along that particular mode (labeled @),

iii. and asecond part <cyf | (Ra- Rae) | Cvi> that depends on the character of theinitial
and final vibrational wavefunctions.

If the vibration does not produce amodulation of the dipole moment (e.g., aswith
the symmetric stretch vibration of the CO2> molecule), itsinfrared intensity vanishes
because (TmMRy) = 0. One saysthat such transitions are infrared "inactive'.

B. Selection Rules on the Vibrational Quantum Number in the Harmonic Approximation

If the vibrational functions are described within the harmonic oscillator
approximation, it can be shown that the <cyf | (Ra- Rae) | Cvi> integrals vanish unless vf
=vi +1, vi -1 (and that these integrals are proportional to (vi +1)Y2 and (vi)V2 in the
respective cases). Even when cys and ¢y are rather non-harmonic, it turns out that such Dv
=+ 1 transitions have thelargest <cyf | (Ra- Rag) | Cvi> integrals and therefore the highest
infrared intensities. For these reasons, transitions that correspond to Dv = + 1 arecalled
"fundamental”; those withDv = *+ 2 are called "first overtone" transitions.



In summary then, vibrations for which the molecul€'s dipole moment is modul ated
asthe vibration occurs (i.e., for which (mfRy) is non-zero) and for which Dv = + 1 tend

to have large infrared intensities; overtones of such vibrations tend to have smaller
intensities, and those for which (MR = 0 have no intensity.

C. Rotational Selection Rulesfor Vibrational Transitions

The result of al of the vibrational modes contributions to
Sa(TMTRy) <cvf | (Ra- Rae) | Cvi> isavector myansthat istermed the vibrational
"trangition dipole’ moment. Thisis avector with components along, in principle, all three
of the interna axes of the molecule. For each particular vibrational transition (i.e., each
particular cj and cy) its orientation in space depends only on the orientation of the molecule;
it isthus said to be locked to the molecul€'s coordinate frame. As such, its orientation
relative to the lab-fixed coordinates (which is needed to effect a derivation of rotational
selection rules as was done earlier in this Chapter) can be described much as was done
above for the vibrationally averaged dipole moment that arisesin purely rotational
trangitions. There are, however, important differencesin detail. In particular,

i. For alinear molecule myans Can have components either along (e.g., when stretching
vibrations are excited; these cases are denoted s-cases) or perpendicular to (e.g., when
bending vibrations are excited; they are denoted p cases) the molecul€'s axis.

ii. For symmetric top species, Nnrans Need not lie along the molecule's symmetry axis; it can
have components either along or perpendicular to this axis.

iii. For spherical tops, myans Will vanish whenever the vibration does not induce adipole
moment in the molecule. Vibrations such asthe totally symmetric &g
C-H stretching motion in CH4 do not induce a dipole moment, and are thus infrared

inactive; non-totally-symmetric vibrations can also be inactive if they induce no dipole
moment.

Asaresult of the above considerations, the angular integrals

<fir | Mrans|f > = é(Y*L,M (a,f) Mrans YL',m (,f) sing dq df)



and
<fir | Mrans|f > = é(DL,M,K (9.,f,c) Mrans D* L', M k" (9,f,c) sing dqg df dc)

that determine the rotational selection rules appropriate to vibrational transitions produce
similar, but not identical, results asin the purely rotational transition case.

The derivation of these selection rules proceeds as before, with the following
additional considerations. The transition dipole moment's nyans components along the lab-

fixed axes must be related to its molecule-fixed coordinates (that are determined by the
nature of the vibrational transition as discussed above). This transformation, asgivenin
Zare'stext, reads as follows:

(Mrang), = Sk D*1,mk (a.f,c) (Mrang,

where (Mrang) ,, Withm = 1, O, -1 refer to the components along the lab-fixed (X, Y, Z)
axes and (Mrang), Withk = 1, O, -1 refer to the components along the molecule- fixed (a, b,

C) axes.
This relationship, when used, for example, in the symmetric or spherical top E1
integral:

<fir |Mrans|f 1> = é(DL,M,K (9,f,¢) Mrans D* L' m' k' (0,f,c) sing dq df dc)
givesriseto products of 3-j symbols of the form:

' 1 Lok 1 Lg
MM -MgeK Kk -Kg°

The product of these 3-j symbols is nonvanishing only under certain conditions that
provide the rotationa selection rules applicable to vibrational lines of symmetric and
spherical top molecules.

Both 3-j symbols will vanish unless

L=L"+1,L"orL"-1.



In the special casein which L = L' =0 (and hencewithM = M' =0 =K =K', which means
that m = 0 = k), these3-j symbols again vanish. Therefore, transitions with
L=L"=0

areagainforbidden. Asusual, the fact that the lab-fixed quantum number m can range
over m=1,0, -1, requires that

M=M"+1, M, M'-1.

The selection rules for DK depend on the nature of the vibrational transition, in
particular, on the component of myans along the molecule-fixed axes. For the second 3-j
symbol to not vanish, one must have

K =K"+Kk,

wherek =0, 1, and -1 refer to these molecul e-fixed components of the transition dipole.
Depending on the nature of the transition, various k values contribute.

1. Symmetric Tops

In asymmetric top molecule such as NH3, if the transition dipole lies along the
molecul€'s symmetry axis, only k = 0 contributes. Such vibrations preserve the molecule's
symmetry relative to this symmetry axis (e.g. the totally symmetric N-H stretching modein
NH3). The additional selectionruleDK =0
isthus obtained. Moreover, for K = K' =0, al transitions with DL = 0 vanish because the
second 3-j symbol vanishes. In summary, one has:

DK=0; DM =+1,0; DL =+1 ,0 (butL =L'=0isforbiddenand al DL =0
areforbidden for K =K' =0)

for symmetric tops with vibrations whose transition dipole lies along the symmetry axis.
If the transition dipole lies perpendicular to the symmetry axis, only
k = 1 contribute. In this case, one finds

DK =+1;DM =+1,0; DL =+1,0 (neither L =L'=0nor K =K'=0can occur
for such transitions, so there are no additional constraints).



2. Linear Molecules

When the above analysis is applied to adiatomic speciessuch asHCI, only k =0is
present since the only vibration present in such amoleculeis the bond stretching vibration,
which hass symmetry. Moreover, the rotational functions are spherical harmonics (which
can beviewed as D* ' v k' (9,f,c) functions with K' = 0), so the K and K" quantum
numbers are identically zero. Asaresult, the product of 3-j symbols

' 1 Lagk' 1 Lg
M m -MgaK K -K g

reduces to

b 1 Lagh' 1Ly
M M -Mge000g*

which will vanish unless
L=L"+1,L"-1,

but not L = L' (since parity then causes the second 3-j symbol to vanish), and
M=M+1 M, M1,

TheL =L'+1 transitions are termed R-branch absorptions and those obeying L =L'-1
are caled P-branch transitions. Hence, the selection rules

DM =+1,0; DL = +1

areidentical to those for purely rotational transitions.

When applied to linear polyatomic molecules, these same selection rulesresult if the
vibration isof s symmetry (i.e., hask = 0). If, on the other hand, the transition is of p
symmetry (i.e., hask = 1), so the trangition dipole lies perpendicul ar to the molecul€e's
axis, one obtains:

DM =+1,0; DL =1, 0.



These selection rules are derived by redlizing that in addition to k = 1, one has:

() alinear-molecule rotational wavefunction that in thev = 0 vibrational level is described
in terms of arotation matrix D' m*,0 (9,f,¢) with no angular momentum along the

molecular axis, K' =0 (ii) av = 1 molecule whose rotational wavefunction must be given
by arotation matrix D m 1 (9,f,c) with one unit of angular momentum about the

molecule's axis, K = 1. In the latter case, the angular momentum is produced by the
degenerate p vibration itself. Asaresult, the selection rules above derive from the

following product of 3-j symbols:

' 1 Lggbh" 1 Lp
aM'm-Mga 01-1 -

Because DL = 0 transitions are allowed for p vibrations, one says that p vibrations possess
Q- branches in addition to their R- and P- branches (with DL = 1 and -1, respectively).

In the figure shown below, thev = 0 ==> v = 1 (fundamental) vibrational
absorption spectrum of HCI is shown. Here the peaks at lower energy (to the right of the
figure) belong to P-branch transitions and occur at energies given approximately by:

E = A Wgretch + (h2/8p2l) ((L-1)L - L(L+1))
= A Weretch -2 (h2/8p2l) L.
The R-branch transitions occur at higher energies given approximately by:
E = h Watrerch + (h%/8p21) ((L+1)(L+2) - L(L+1))
= h Watretch +2 (h2/8p21) (L+1).

The absorption that is "missing” from the figure below lying slightly below 2900 cmrlis
the Q-branch transition for which L = L"; it is absent because the selection rules forbid it.



It should be noted that the spacings between the experimentally observed peaksin
HCI are not constant as would be expected based on the above P- and R- branch formulas.
Thisis because the moment of inertia appropriate for thev = 1 vibrational level is different
than that of thev = 0 level. These effects of vibration-rotation coupling can be modeled by
allowingthev=0and v = 1levelsto haverotational energieswritten as

E = hwgretch (v + 1/2) + (h?/8p21y) (L (L+1))

wherev and L arethe vibrational and rotational quantum numbers. The P- and R- branch
trangition energies that pertain to these energy levels can then be written as:

Ep = A Waretch - [ (h%/8p2l1) + (h%/8p2lg) ] L +[ (h2/8p2y) - (h2/8p2g) ] L2
ER = A Watretch + 2 (h%/8p2l 1)
+[ 3(h2/8p2l1) - (h2/8p20) ] L + [ (h2/8p2l7) - (h2/8p2lg) ] L2.

Clearly, these formulas reduce to those shown earlier inthe 1 = Ig limit.

If the vibrationally averaged bond length islonger inthev = 1 statethan inthev =0
state, which isto be expected, 11 will be larger than 1, and therefore [ (n2/8p2l4) -
(h2/8p21g) ] will be negative. In this case, the spacing between neighboring P-branch lines
will increase as shown above for HCI. In contrast, the fact that [ (h2/8p2l1) - (h2/8p2l0) ]
IS negative causes the spacing between neighboring R- branch linesto decrease, again as
shown for HCI.

[11. Electronic-Vibration-Rotation Transitions



When electronic transitions are involved, theinitial and final states generally differ
in their electronic, vibrational, and rotational energies. Electronic transitions usually require
light in the 5000 cm-1 to 100,000 cm1 regime, so their study lies within the domain of
visible and ultraviolet spectroscopy. Excitations of inner-shell and core orbital el ectrons
may require even higher energy photons, and under these conditions, E2 and M1
transitions may become more important because of the short wavelength of the light
involved.

A. The Electronic Transition Dipole and Use of Point Group Symmetry
Returning to the expression
Rif =(2p/H2) g(wi i) |[Eo - <Ff|m|Fi> 2

for the rate of photon absorption, we realize that the electronic integral now involves
<Yef IMlye>=m, (R),

atrangition dipole matrix element between the initia y & and final y ¢f €lectronic
wavefunctions. This element isafunction of the internal vibrational coordinates of the
molecule, and again is avector locked to the molecule'sinternal axis frame.

Molecular point-group symmetry can often be used to determine whether a
particular transition's dipole matrix element will vanish and, as aresult, the electronic
transition will be "forbidden" and thus predicted to have zero intensity. If the direct product
of the symmetries of theinitial and final electronic statesy ¢ and y ¢ do not match the
symmetry of the electric dipole operator (which has the symmetry of itsx, y, and z
components; these symmetries can be read off the right most column of the character tables
givenin Appendix E), the matrix element will vanish.

For example, the formal dehyde molecule H,CO has a ground electronic state (see
Chapter 11) that has 1A; symmetry in the Coy point group. Its p ==> p* singlet excited
state also has 1A symmetry because both the p and p* orbitals are of by symmetry. In
contrast, the lowest n ==> p* singlet excited state is of 1A, symmetry because the highest
energy oxygen centered n orbital is of by symmetry and the p* orbital is of by symmetry,
so the Slater determinant in which both the n and p* orbitals are singly occupied hasits
symmetry dictated by the by x b1 direct product, which is Ao.



Thep ==> p* transition thus involves ground (1A1) and excited (1A1) states whose
direct product (A1 x Aj) isof A; symmetry. This trangition thus requires that the electric
dipole operator possess a component of A1 symmetry. A glance at the Cyy, point group's
character table shows that the molecular z-axisisof A1 symmetry. Thus, if the light's
electric field has a non-zero component along the C, symmetry axis (the molecul€'s z-axis),
thep ==> p* trangition is predicted to be allowed. Light polarized along either of the
molecul€'s other two axes cannot induce this transition.

In contrast, the n ==> p* transition has a ground-excited state direct product of B»
x B1 = Az symmetry. The Cpy 's point group character table clearly shows that the electric
dipole operator (i.e., its x, y, and z components in the molecule-fixed frame) has no
component of Az symmetry; thus, light of no electric field orientation can induce thisn ==>
p* transition. We thus say that the n ==> p* transition is E1 forbidden (although itisM1
allowed).

Beyond such electronic symmetry analysis, it is also possible to derive vibrational
and rotational selection rulesfor electronic transitions that are E1 alowed. Aswas donein
the vibrational spectroscopy case, it is conventional to expand n3; (R) in apower series
about the equilibrium geometry of theinitial electronic state (since this geometry is more
characteristic of the molecular structure prior to photon absorption):

mi(R) =mi(Re + SaTm i/TRa(Ra- Rae + -...
B. The Franck-Condon Factors

Thefirst term in this expansion, when substituted into the integral over the
vibrational coordinates, gives my j(Re) <Cvf | Cvi>, which hasthe form of the electronic
transition dipole multiplied by the "overlap integral” between theinitial and final vibrationa
wavefunctions. The ny j(Re) factor was discussed above; it is the electronic E1 transition
integral evaluated at the equilibrium geometry of the absorbing state. Symmetry can often
be used to determine whether thisintegral vanishes, asaresult of which the E1 transition
will be "forbidden”.

Unlike the vibration-rotation case, the vibrational overlap integrals
<cCvf | cvi> do not necessarily vanish because cyf and cyj are no longer eigenfunctions of
the same vibrational Hamiltonian. cyf is an eigenfunction whose potential energy isthe
final electronic state's energy surface; cyj hastheinitia electronic state's energy surface as
its potential. The squares of these <c s | cyi> integrals, which are what eventually enter
into the transition rate expression R; 1 = (2p/h?) g(wr i) | Eo - <Ff|m|Fi> |2, are caled



"Franck-Condon factor s". Their relative magnitudes play strong roles in determining
the relative intensities of various vibrational "bands’ (i.e., peaks) within a particular
electronic transition's spectrum.

Whenever an electronic transition causes a large change in the geometry (bond
lengths or angles) of the molecule, the Franck-Condon factors tend to display the
characteristic "broad progression” shown below when considered for one initial-state
vibrational level vi and various final-state vibrational levels vf:

|<Ci|Cf>|2

|
vi0 1 23 456
Final state vibrational Energy (E,s)

Notice that as one movesto higher vf values, the energy spacing between the states (Eyf -
Evf-1) decreases, this, of course, reflects the anharmonicity in the excited state vibrational

potential. For the above example, the transition to the vf = 2 state has the largest Franck-

Condon factor. This means that the overlap of theinitial state's vibrational wavefunction

cvj islargest for thefinal state's cyf function with vf = 2.

Asaqualitative rule of thumb, the larger the geometry difference between theinitial
and final state potentials, the broader will be the Franck-Condon profile (as shown above)
and the larger the vf value for which this profile peaks. Differencesin harmonic frequencies
between the two states can also broaden the Franck-Condon profile, although not as
significantly as do geometry differences.



For example, if theinitial and fina states have very similar geometries and
frequencies aong the mode that is excited when the particular electronic excitation is
realized, the following type of Franck-Condon profile may result:

2
[<cilce|

v 0 1 23456

Final state vibrational Energy (E.s)

In contragt, if theinitial and final e ectronic states have very different geometries and/or
vibrational frequencies along some mode, a very broad Franck-Condon envelope peaked at
high-vf will result as shown below:

7
|<cilce|

v 0 123456
Final state vibrational Energy (E)




C. Vibronic Effects

The second term in the above expansion of the transition dipole matrix element Sy
1M j/Ra (Ra - Ra,e) can become important to analyze when the first term ny;(Re) vanishes
(e.g., for reasons of symmetry). This dipole derivative term, when substituted into the
integral over vibrational coordinates gives
Sam i/fRa<cvf | (Ra- Rae)| cvi>. Transitions for which ny j(Re) vanishes but for which
im j/Ra does not for the ah vibrational mode are said to derive intensity through "vibronic
coupling” with that mode. The intensities of such modes are dependent on how strongly the
electronic dipole integral varies along the mode (i.e, on 3 i/Ra) as well as on the
magnitude of the vibrational integral
<cvf | (Ra- Rae)l cvi>.

An example of an E1 forbidden but "vibronically allowed" transition is provided by
the singlet n ==> p* transition of HyCO that was discussed earlier in this section. As
detailed there, the ground electronic state has 1A, symmetry, and the n ==> p* stateis of
1A, symmetry, so the E1 transition integral
<y ef | M|y &> vanishesfor al three (x, y, z) components of the electric dipole operator m.
However, vibrations that are of by symmetry (e.g., the H-C-H asymmetric stretch
vibration) can induce intensity in the n ==> p* trangition asfollows:

(1) For such vibrations, the by mode'svi = 0 to vf = 1 vibronic integral

<cvf | (Ra- Rag)| Cvi> Will be non-zero and probably quite substantial (because, for
harmonic oscillator functions these "fundamental” transition integrals are dominant- see
earlier);

(if) Along these same by modes, the electronic transition dipole integral derivative ny i/Ra
will be non-zero, even though the integral itself nmy j (Re) vanishes when evaluated at the
initial state's equilibrium geometry.

To understand why the derivative fn3 j/Ra can be non-zero for distortions
(denoted Ry) of by symmetry, consider this quantity in greater detail:

M,ifRa = <y ef M|y ei>/TRa
=<fyefTRalm|yei>+ <y ef | M|y &/TR2> + <y ef | 1MTRa |y &>
Thethird integral vanishes because the derivative of the dipole operator itself

m=S;j e rj + Sy Zae RaWwith respect to the coordinates of atomic centers, yields an
operator that contains only a sum of scalar quantities (the elementary charge e and the



magnitudes of various atomic charges Z5); as aresult and because the integra over the
electronic wavefunctions <y ¢f | y &> vanishes, this contribution yields zero. The first and
second integrals need not vanish by symmetry because the wavefunction derivatives

TV e/ TRz and Ty /R4 do not possess the same symmetry as their respective
wavefunctionsy ¢ and y . In fact, it can be shown that the symmetry of such aderivative
isgiven by the direct product of the symmetries of its wavefunction and the symmetry of
the vibrational mode that gives rise to the f/fiRa. For the H>CO case at hand, the b, mode
vibration can induce in the excited 1A, state a derivative component (i.e., Ty «/Ra) that is
of 1B1 symmetry) and this same vibration can induce in the 1A; ground state a derivative
component of 1B, symmetry.

As aresult, the contribution <fly f/fRa | M|y &> to 1n3 j/IR4 arising from vibronic
coupling within the excited electronic state can be expected to be non-zero for components
of the dipole operator mthat are of (y f/fRa X Y &) = (B1 X A1) = B1 symmetry. Light
polarized along the molecul€e's x-axis gives such ab; component to m(see the Cyy, character
tablein Appendix E). The second contribution <y ¢ | m| fly &i/fRz> can be non-zero for
components of mthat are of (y ¢f X Ty &/IRa) = (A2 X B2) = B1 symmetry; again, light of
x-axis polarization can induce such atransition.

In summary, electronic transitions that are E1 forbidden by symmetry can derive
significant (e.g., in HoCO the singlet n ==> p* transition israther intense) intensity
through vibronic coupling. In such coupling, one or more vibrations (either in the initial or
the final state) cause the respective e ectronic wavefunction to acquire (through fly /1Rz) a
symmetry component that is different than that of y itself. The symmetry of fly /R which
isgiven asthe direct product of the symmetry of y and that of the vibration, can then cause
the eectric dipole integral <y '|nly /fRz> to be non-zero even when <y |y > is zero.
Such vibronically allowed transitions are said to derive their intensity through vibronic
borrowing.

D. Rotationa Sdection Rules for Electronic Transitions

Each vibrational peak within an electronic transition can also display rotational
structure (depending on the spacing of the rotational lines, the resolution of the
spectrometer, and the presence or absence of substantial line broadening effects such as



