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V.  Modeling,  Similarity,  and  Dimensional  Analysis 
 
 
To this point, we have concentrated on analytical methods of solution for fluids 
problems. 
 
 
However, analytical methods are not always satisfactory due to: 

(1) limitations due to simplifications required in the analysis, 
(2) complexity and/or expense of a detailed analysis. 

 
The most common alternative is to: 
 Use experimental test & verification procedures. 
 
However, without planning and organization, experimental procedures can : 
 

(a) be time consuming, 
(b) lack direction, 
(c) be expensive. 

 
This is particularly true when the test program necessitates testing at one set of 
conditions, geometry, and fluid with the objective to represent a different but 
similar set of conditions, geometry, and fluid. 
 
 
Dimensional analysis provides a procedure that will typically reduce both the time 
and expense of experimental work necessary to experimentally represent a desired 
set of conditions and geometry. 
 
 
It also provides a means of "normalizing"  the final results for a range of test 
conditions.   A normalized (non-dimensional) set of results for one test condition 
can be used to predict the performance at different but fluid dynamically similar 
conditions ( including even a different fluid). 
 
 
The basic procedure for dimensional analysis can be summarized as follows: 
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1. Compile a list of relevant variables (dependent & independent) for the 
problem being considered, 

2. Use an appropriate procedure to identify both the number and form of 
the resulting non-dimensional parameters. 

 
This procedure is outlined as follows for the Buckingham Pi Theorem 
 
Definitions: 

n  =  the number of independent variables relevant to the problem 
j’  =  the number of independent dimensions found in the n variables 
j   =  the reduction possible in the number of variables necessary to be 

considered simultaneously 
k  =  the number of independent pi terms that can be identified to describe the 

problem,  k  =  n - j 
 
Summary of Steps: 
 

1. List and count the n variables involved in the problem. 

2. List the dimensions of each variable using {MLTΘ} or {FLTΘ}.  Count the 
number of basic dimensions ( j’) for the list of variables being considered. 

3. Find j by initially assuming  j  =  j’ and look for j repeating variables which do 
not form a pi product.  If not successful, reduce j by 1 and repeat the process. 

4. Select j scaling, repeating variables which do not form a pi product. 
5. Form a pi term by adding one additional variable and form a power product.  

Algebraically find the values of the exponents which make the product 
dimensionless.  Repeat the process with each of the remaining variables. 

6. Write the combination of dimensionless pi terms in functional form: 
 

 Πk  =  f( Π1, Π2, …Π i) 

Consider the following example for viscous pipe flow.  The relevant variables for 
this problem are summarized as follows: 

 
∆P = pressure drop ρ = density V =  velocity D = diameter 
µ = viscosity ε = roughness L = length 

Seven  pipe flow variables: {∆P ρ,  V,  D,  µ,  ε,  L } 
 

  dependent independent 
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Use of the Buckingham Pi Theorem proceeds as follows: 
 
1. Number of independent variables:   n  = 7 
 
2. List the dimensions of each variable  ( use  m L t Θ ): 
 
variables ∆P ρ V D µ ε L 

dimensions mL-1t-2 mL-3 Lt-1 L mL-1t-1 L L 
 
 
The number of basic dimensions is  j’ = 3. 
 
3. Choose   j =  3 with the repeating variables being   ρ,  V,  and  D.  They do 

not form a dimensionless pi term.  No combination of the 3 variables will 
eliminate the mass dimension in density or the time dimension in velocity.    

 
4. This step described in the above step.  The repeating variables again are ρ,  

V,  and  D and j = 3.  Therefore,  k =  n – j = 7 – 3  =  4 independent Π 
terms. 

 
5. Form the  Π  terms: 
 
 Π1  =  ρa Vb Dc µ−1 =  (mL-3)a ( Lt-1)b Lc ( mL-1t-1 )−1 
 

In order for the  Π  term to have no net dimensions, the sum of the 
exponents for each dimension must be zero.  Therefore, we have: 

 
mass: a  -  1  = 0 ,   a =  1 
time: - b  +  1  =  0,    b  = 1 
length: -3a  + b  +  c + 1  =  0,  c =  3 – 1 – 1  =  1 
 

We therefore have 
 
 Π1  =  ρ V D /µ  =   Re =  Reynolds number 
 

Repeating the process by adding the roughness  ε 
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Π2 =  ρa Vb Dc ε1 =  (mL-3)a ( Lt-1)b Lc ( L )1 
 
Solving: 
 

mass: a    = 0 ,   a =  0 
time: - b  =  0,    b  = 0 
Length: -3a  + b  +  c + 1  =  0,  c =  – 1 

 
Π2 =  ε / D Roughness ratio 
 

Repeat the process by adding the length  L. 
 

Π3 =  ρa Vb Dc L1 =  (mL-3)a ( Lt-1)b Lc ( L )1 
 
Solving: 
 

mass: a    = 0 ,   a =  0 
time: - b  =  0,    b  = 0 
length: -3a  + b  +  c + 1  =  0,  c =  – 1 

 
Π3 =  L / D length-to-diameter ratio 
 
These three are the independent  Π  terms. 
 
Now obtain the dependent  Π  term by adding  ∆P 
 
Π4 =  ρa Vb Dc ∆P1 =  (mL-3)a ( Lt-1)b Lc ( mL-1t-2 )1 
 
Solving: 
 

mass: a  +  1  = 0 ,   a =  -1 
time: - b  - 2 =  0,    b  = -2 
length: -3a  + b  +  c - 1  =  0,  c =  0 

 
Π4 =  ∆P / ρ V2 Pressure coefficient 
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Application of the Buckingham Pi Theorem to the previous list of variables 
yields the following non-dimensional combinations: 

 
∆P

ρV2 = f ρVD
µ

, L
D

, ε
D

 
 
 

 
 
 

 

  or 
 

{{{{ }}}}pC f Re,L,εεεε====  

 
 

Thus, a non-dimensional pressure loss coefficient for viscous pipe flow 
would be expected to be a function of (1) the Reynolds number, (2) a non-
dimensional pipe length, and (3) a non-dimensional pipe roughness.  This 
will be shown to be exactly the case in Ch. VI, Viscous Internal Flow. 
 
A list of typical dimensionless groups important in fluid mechanics is given in 
the accompanying table. 
 

    From these results, we would now use a planned experiment with data analysis 
techniques to get the exact form of the relationship among these non - 
dimensional parameters. 

 
The next major step is concerned with the design and organization of the 
experimental test program 
 
Two key elements in the test program are: 

* design of the model 
* specification of the test conditions, particularly when the test must be 

performed at conditions similar, but not the same as the conditions of 
interest. 

 
Similarity and non-dimensional scaling 
 
The basic requirement is in this process to achieve 'similarity' between the 
'experimental model and its test conditions' and the 'prototype and its test 
conditions' in the experiment.   
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Table 5.2  Dimensional Analysis and Similarity 
 

Parameter Definition Qualitative ratio 
of effects 

Importance 

Reynolds number RE =
ρUL

µ  

Inertia
Viscosity

 Always 

Mach number MA =
U
A

 
Flow speed
Sound speed

 Compressible flow 

Froude number Fr =
U2

gL
 

Inertia
Gravity

 Free-surface flow 

Weber number We =
ρ U2L

γ
 

Inertia
Surfacetension

 Free-surface flow 

Cavitation number 
(Euler number) 

Ca =
p - pv

ρU 2  
Pressure
Inertia

 Cavitation 

Prandtl number Pr =
Cpµ

k
 

Dissipation
Conduction

 Heat convection 

Eckert number Ec =
U 2

cpTo

 
Kinetic energy

Enthalpy
 Dissipation 

Specific-heat ratio γ =
cp

cv

 
Enthalpy

Internal energy
 Compressible flow 

Strouhal number St =
ω L

U
 

Oscillation
Mean speed

 Oscillating flow 

Roughness ratio 
ε
L

 
Wall roughness

Body length
 Turbulent,rough 

walls 

Grashof number Gr =
β ∆TgL3ρ2

µ 2  
Buoyancy
Viscosity

 Natural convection 

Temperature ratio 
Tw

To

 
Wall temperature

Stream temperature
 Heat transfer 

Pressure coefficient Cp =
p − p∞

1/ 2ρU2  
Static pressure

Dynamic pressure
 Aerodynamics, 

hydrodynamics 

Lift coefficient CL =
L

1/ 2ρU2A
 

Lift force
Dynamic force

 Aerodynamics 
hydrodynamics 

Drag coefficient CD =
D

1/ 2ρ U2A
 

Lift force
Dynamic force

 Aerodynamics, 
hydrodynamics 
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In this context, “similarity” is defined as 
 

Similarity: All relevant dimensionless parameters have the same values 
for the model & the prototype. 

 
Similarity generally includes three basic classifications in fluid mechanics: 
 

(1)  Geometric similarity 
(2)  Kinematic similarity 
(3)  Dynamic similarity 

 
 
 

Geometric similarity 
 
 
In fluid mechanics, geometric similarity is defined as follows: 
 
 

Geometric Similarity All linear dimensions of the model are related 
to the corresponding dimensions of the 
prototype by a constant scale factor   SFG 

 
Consider the following airfoil section (Fig. 5.4): 
 

 

Fig. 5.4  Geometric Similarity in Model Testing 
 

For this case, geometric similarity requires the following: 
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SFG = rm

rp
= Lm

Lp
= Wm

Wp
= ⋅ ⋅ ⋅ 

In addition, in geometric similarity,  
 

All angles are preserved. 
All flow directions are preserved. 
Orientation with respect to the surroundings must be same for the model 
and the prototype, ie., 

 

Angle of attack )m = angle of attack )p 
 
Kinematic Similarity 
 
In fluid mechanics, kinematic similarity is defined as follows: 
 

Kinematic Similarity The velocities at 'corresponding' points on the 
model & prototype are in the same direction 
and differ by a constant scale factor   SFk. 

 
Therefore, the flows must have similar streamline pattterns 
 
Flow regimes must be the same. 
 
These conditions are demonstrated for two flow conditions, as shown in the 
following kinematically similar flows (Fig. 5.6). 
 

 
Fig. 5.6a  Kinematically Similar Low Speed Flows 
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Fig. 5.6b Kinematically Similar Free Surface Flows 

 
The conditions of kinematic similarity are generally met automatically when 
geometric and dynamic similarity conditions are satisfied. 
 
 
Dynamic Similarity 
 
In fluid mechanics, dynamic similarity is typically defined as follows: 
 

Dynamic Similarity This is basically met if model and prototype 
forces differ by a constant scale factor at 
similar points. 

 
This is illustrated in the following figure for flow through a sluice gate (Fig. 5.7). 
 

 
Fig. 5.7  Dynamic Similarity for Flow through a Sluice Gate 
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This is generally met for the following conditions: 
 
1.  Compressible flows: model & prototype   Re, Ma,   are equal 
 

Rem  =  Rep,    Mam=  Map  ,    γm  =  γp 
 
 
2. Incompressible flows 
 
 a.  No free surface 
 
  Rem  =  Rep 
 
 b.  Flow with a free surface 
 
  Rem  =  Rep      ,  Frm  =  Frp 
 
 
Note:  The parameters being considered, e.g., velocity, density, viscosity, 

diameter, length, etc.,  generally relate to the flow, geometry, and fluid 
characteristics of the problem and are considered to be independent 
variables for the subject problem. 

 
 

The result of achieving similarity by the above means is that relevant non - 
dimensional dependent variables, e.g., CD, Cp, Cf, or Nu, etc., are then equal for 
both the model and prototype.   
 
This result would then indicate how the relevant dependent results, e.g. drag force, 
pressure forces, viscous forces, are to be scaled for the model to the prototype.   
 
Equality of the relevant non-dimensional independent variables  Re, Ma, x/L, etc.,  
indicates how the various independent variables of importance should be scaled. 
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An example of this scaling is shown as follows: 
 
 
Example:  The drag on a sonar transducer prototype is to be predicted based on the 
following wind tunnel model data and prototype data requirements.   Determine 
the model test velocity  Vm   necessary to achieve similarity and the expected 
prototype force  Fp   based on the model wind tunnel test results. 
 

Given: Prototype Model 
 sphere sphere 

D 1 ft 6 in 
V 5 knots unknown? 
F ? 5.58 lbf 

ρ 1.98    
slugs

ft
3  0.00238   

slugs
ft

3  

ν 1.4 *10-5  ft
2

s  1.56 * 10-4 ft2

s  

   
 
 
 
From dimensional analysis: 
 

  
CD = f R e{ }

F
D2

ρ V2 = f
VD
υ

  
 

  
 

 

 
 
 
For the prototype, the actual operating velocity and Reynolds number are: 
 
 
Prototype:    

15 6080 8.44
3600p

na mi ft hr ftV
hr na mi s s
⋅⋅⋅⋅= == == == =

⋅⋅⋅⋅
15 6080 8.44

3600p
na mi ft hr ftV

hr na mi s s
⋅⋅⋅⋅= == == == =

⋅⋅⋅⋅  
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R e p
=

VD

υ
 
 p

=
8.44 ft

s * 1ft

1.4 *10 −5 ft 2

s
= 6.03 * 105 

 
Equality of Reynolds number then yields the required model test velocity of 

 

  
R e m

= R e p
=

VD

υ
 
 m

= > Vm = 188 ft
s  

 
Based on actual test results for the model, i.e. measured Fm, equality of model and 
prototype drag coefficients yields 
 

∴ CD p
= C Dm

= > Fp = Fm

ρp

ρm

Vp
2

Vm
2

D p
2

D m
2 = 37.4 lbf  

 
Note:  All fluid dynamic flows and resulting flow characteristics are not Re 

dependent. 
 
Example: 

 
The drag coefficient for bluff bodies with a fixed point of separation; e.g., 
radar antennae,  generally have a constant, fixed number for CD which is not 
a function of Re. 

 
 

 CD = const. ≠ f Re( ) 
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