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Gas Dynamics

T'his is the only authorized English edition of Gasdynamik (a volume in the series ‘“Leit-
fliden der angewandten Mathematik und Mechanik,” edited by Professor Dr. H. Gortler),
originally published in the German language by B. G. Teubner Verlagsgesellschaft mbH,
Stuttgart, 1966.

PREFACE TO THE GERMAN EDITION

‘This book is intended to be an introduction to the dynamics and ther-
modynamics of gases. The limitation of space requires a strict choice of the
material. The book therefore cannot give a complete survey of the entire
fleld of gas dynamics. It should rather make the reader familiar with the
fundumental facts of gas dynamics, thus enabling him to go on to more
advanced works and original literature without much difficulty.

In selecting the material, I have strived to take a modern point of view,
despite the introductory nature of the book. Such a viewpoint is important
If one wishes to study high speeds and extreme altitudes of flight. The in-
¢lusion in the theory of the physical effects which then play a role leads
beyond the classical dynamics of ideal gases. Some of the important effects
are the following: 1. The gas in a flow does not behave like an ideal gas. 2.
The local thermodynamic state of the gas can no longer be described as
being an unconstrained equilibrium, and gas dynamic relaxation appears.
3. The gas does not behave like a continuum, and the effect of the mean free
path plays a role. 4. At high temperatures, the gas ionizes and becomes elec-
trically conducting, so that it is affected by electromagnetic forces. Effects
3 and 4 are studied in the dynamics of rarefied gases and in magnetogas-
dynamics; they will not be considered in this book. However, departures
from ideal gas behavior and from unconstrained thermodynamic equilibrium
ure considered. Effects 1 and 2 have recently made the viewpoint of ther-
modynamics and physics in gas dynamics much more important than was
customary one or two decades ago.

Chapter 1 presents the fundamentals of thermodynamics in as complete a
manner as | deemed necessary for a first understanding of many new develop-
ments in gas dynamics. In the subsequent chapters, the deductions are special-
ized as late as possible to an ideal gas as an example—but invariably an impor-
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Area; thermodynamic state variable defined by Eq. (3.1)
(Equilibrium) sound velocity

Thermodynamic state variable defined by Eq. (3.71)
Frozen sound velocity

Heat capacity at constant pressure or constant volume
Characteristic curves

Mach lines

Streamlines in the x, y plane or particle paths in the x, ¢ plane
Mass concentration; phase velocity

Drag coefficient

Friction coefficient

Lift coefficient

Specific heat at constant pressure; pressure coefficient
Specific heat at constant volume

Drag

Friction drag

Deformation tensor

Internal energy

Unit tensor

Specific internal energy

Free energy

Specific free energy

Blasius function

Gibbs enthalpy

Specific Gibbs enthalpy

Enthalpy function for flat-plate boundary layer
Enthalpy

Constant in the equation of state (1.56) of calorically ideal gas

* In this book, the terms ‘‘strong shock’ and ‘“‘weak shock’ are used in two different
senses: In Section 3.5, these terms have the meaning defined on p. 141, while elsewhere
they are used in the usual sense of a ‘“sufficiently strong™ or “sufficiently weak” shock.
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A(T)

Pa

Nomencinture

Specitic enthalpy

Constant in the equation of state (1.58) of calorically ideal gas
Recovery enthalpy

Isothermal compressibility cocllicient; circulation; transonic similarity
parameter

Equilibrium constant in the law of mass action

Thermal conductivity; wave number

Volume force per unit mass (components k., ky, kz)

Lift; relaxation function

Shock thickness

Width of fully dispersed wave

Mecan free path

Mass of a thermodynamic system; Mach number

Mach number based on equilibrium sound velocity

Mach number based on frozen sound velocity

Molar mass

Molecular mass

Molar number

Unit vector in normal direction

Prandtl number

Prandtl number characteristic of flow in a normal shock (= ¢p#i/k)
Pressure

Characteristic pressure for dissociation

Quantity of heat

Heat flux on the wall in boundary layer flow

Energy flux vector, in general, heat flux vector (components gz, gy, gz)
Specific gas constant (= R/D = R*/M)

Gas constant

Function for flat-plate boundary layer defined by Eq. (4.140)
Reynolds number

Universal gas constant

Recovery factor

Position vector

Entropy

Function for flat-plate boundary layer defined by Eq. (4.141)
Entropy introduced from outside

Entropy generated in system

Stress tensor (= —pE +T)

Stanton number

Specific entropy

Absolute temperature

Constant in the equation of state (1.57) of calorically ideal gas
Characteristic temperature for dissociation

Recovery temperature
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P

Nomencinture xiil

Viscous stress tensor

Time

Decay time [Eq. (3.103)]

Stress vector; unit vector in tangential direction

Magnitude of velocity vector (= |v|}

Isentropic maximum speed

Components of velocity vector v in x, y, z directions

Components of velocity perpendicular or parallel to a wavefront or
shock front

Volume

Mean thermal speed of molecules

Velocity vector

Work

Vorticity vector (= curl v)

Mole fraction

Cartesian coordinates

Compressibility factor

Coefficient of thermal expansion; degree of dissociation; angle of attack
= (1 — Mo2)L2

= (Max® — 1)1/2

= (Mpo? —1)1/2

Thermodynamic state variable defined by Eq. (1.73) or (1.138)
Adiabatic exponent (= cp/cy)

Constants in the linearized solution of the flow past a wavy wall
Boundary layer thickness

Displacement thickness

Shock angle; similarity variable for flat-plate boundary layer

Viscosity

Bulk viscosity

Viscosity characteristic of flow in shock (=4#/3 4 #7v)

Mass flow; momentum thickness

Characteristic temperature for molecular vibrations; angle between
velocity and x direction; deflection angle; enthalpy thickness
Relaxation length; characteristic length for shock wave

Chemical potential; Mach angle (= arc sin M 1)

Temperature function in equation of state (1.53) for thermally ideal gas
Stochiometric coefficient; kinematic viscosity (=#/¢)

Prandtl—Meyer function

Thermodynamic variable to describe constrained equilibrium; affinely
distorted x coordinate for subsonic flow past slender body

Density

Characteristic density for dissociation

Entropy generated per unit volume per unit time

Entropy generated by viscous friction



xlv Nomenclature

an  Lintropy generated by heat conduction
ar, oy, 0, Diagonal terms of viscous stress tensor T
5 Mecan normal stress [ —p -+ (62 | 6y -1 62)/3)
7, 7. Reclaxation times [see Eq. (3.95)]
7w Wall shear stress
Toy, TeesTyz  Shear stresses
& Dissipation function; error integral
¢ Angle in polar coordinates; potential of perturbation velocity
@(I') Thermodynamic function for thermally ideal gas [Eq. (1.103)]
¥ Stream function
12 Potential of volume forces; molecular collision cross section
w  Clircular frequency; exponent in viscosity law (4.3)
@) Density function for unsteady simple waves [Eq. (3.39)]
o Angular velocity vector

Nubweripts and Superscripts

m  Molar quantities

t Isentropic stagnation quantities (reservoir quantities)
u,l Upper or lower side of a profile

* Critical quantities (Values of flow variables at Mach number 1 in steady

inviscid flow)

0 Quantities in undisturbed gas at rest for unsteady wave propagation
1,2 Values ahead or behind a shock wave

o Free stream

"Tilde (~) denotes quantities in unconstrained thermodynamic equilibrium
Prime () denotes perturbations to a gas at rest or in uniform motion
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1] FUNDAMENTALS
OF THERMODY NAMICS

1.1 Basic Concepts

In classical hydrodynamics, the compressibility of the flowing media is
neglected. For the flow of liquids, this is almost always permissible, while
for the flow of gases, this is permissible for relatively low velocities only. In
a flow field, the pressure gradient serves as the driving force, and the density
and the entire thermodynamic state of the flowing gases change with the
pressure. Thermodynamic laws are therefore of basic importance in gas
dynamics. This introductory chapter gives a brief survey of those laws of
thermodynamics which are necessary for the understanding of gas dynamics.

The essential characteristic of thermodynamics involves the discussion of
the relationship between heat and the other forms of energy (mechanical,
electrical, etc.). Every system of material bodies whose thermodynamic be-
havior is being studied will be called a thermodynamic system. For our
purposes, it is generally sufficient to consider systems of the following type:
We take a closed surface enclosing a finite volume filled with a gas. The
enclosed gas forms the system of interest, and the bounding surface and the
space outside form the environment. We call a system closed when no trans-
port of matter across the boundary of the system is possible, i.c., when the
surface of the volume is impervious to gas. The mass of such a system is a
constant which remains invariant throughout all changes of the system.
When the transport of matter across the boundary is possible, then the
system is called open. In this case, the boundary of the system can be, for
example, an imaginary closed surface in the gas, which we may want to
specify for some purposes.



2 1 Fundamentals of Thermodynamicy

Closed systems will be divided into the following: An isolated system is
one which cannot have any interaction (e.g., work done or heat transfer)
with its environment. An adiabatic system is one whose only possible inter-
action with its environment is through positive or negative work done on
the system (the boundary of the system is heat-insulating).

In a sufficiently long time-interval, an isolated system tends toward thermo-
dynamic equilibrium, after which no further observable macroscopic changt?s
can be found in the system. Conversely, we say a system is in thermodynamic
equilibrium if no macroscopic changes occur in the system after it has 1:.>een
isolated. The system is then completely homogeneous, and for the unique
characterization of its state it is sufficient to give the pressure p and the
volume V. Therefore, if, in two different observations, it is found that the
system is in equilibrium and that it has the same pressure and volume, then
all other macroscopic properties will also be the same, irrespective of changes
the system has undergone in the interim.

When two closed nonadiabatic systems are brought into contact, then the
states of both systems will generally change until a new equilibrium ste.lte is
reached. The two systems are then in mutual thermal equilibrium. Experience
shows that when two systems are in thermal equilibrium with a third, then
the two systems are always also in equilibrium with each other.

We now assume that a system 4 is in thermal equilibrium with a system B.
The state of A can be represented by a point 4" in the p, V plane (Fig. 1). If
we separate the systems from each other and change the pressure and volume
of A, then A will in general no longer be in equilibrium with B, except for
special combinations of pressures and volumes of 4. If we connect all the

Fig. 1. Isotherms in the p, ¥ plane.
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points A’, A", ete., in the p, V plane of A, at which states 4 is still in
equilibrium with B, then we obtain a curve which we can characterize nu-
merically by a parameter 0. Now, we take a system C and similarly draw
in its p, ¥ plane all points which are in equilibrium with B, and we charac-
terize the resulting curve by the same value of the parameter 6. From the
above discussion, we see that systems 4 and C are always in equilibrium
when their states correspond to points on these two curves. We call 0 the
temperature of both systems. Two systems are thus in mutual thermal
equilibrium when their temperatures coincide. When we now change the
state of B and again connect all the points of A4 in the p, ¥ plane which
correspond to thermal equilibrium with the new state of B, then we obtain
in general a new curve, which will be characterized by a numerically different
temperature 0. Thus, the p, ¥ plane of a system is covered by a family of
constant temperature curves, the isotherms. This family of curves can
be represented in implicit form by a relation @(p, ¥, ) =0, which we call
the thermal equation of state of the system. Thus far, the value of the para-
meter § has been left arbitrary. From now on, we shall adopt as the appro-
priate temperature scale the absolute temperature 7, since the formulation
of thermodynamic laws in terms of T is particularly simple; the absolute
temperature is always positive.

We have thus far mentioned three thermodynamic state variables: p, V,
and T. In the first law of thermodynamics, another state variable, the internal
energy E, will be introduced (Section 1.2). Since the thermodynamic state of
a system of the type being considered here is determined by two state vari-
ables, there must exist for each system a relation of the form ¥(E, T, V) =0,
the caloric equation of state. The thermal and caloric equations of state
of a system are not completely independent of each other: Given the thermal
equation of state, the possible forms of the caloric equation of state are
limited. For a system consisting of a thermally ideal gas, we have, for ex-
ample, the thermal equation of state

pV =R*T (%))

with constant R*; one may deduce from this that E = E(T), or, the internal
energy depends only on the temperature and not on the volume or pressure
of the system (Section 1.4). In the special case

E=CT+E (1.2)
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with constant C, and E,, the gas is called a calorically ideal gas (C, is the
specific heat at constant volume, see Section 1.4).

In the second law of thermodynamics, the entropy S will be introduced
as another state variable. The five quantities p, V, T, E, and S are completely
adequate for the formulation of thermodynamic laws for closed systems
(for open systems, the number of moles must be given; see Section 1.7).
However, it has proved convenient to introduce certain combinations of
these five quantities as new state variables, in particular, the enthalpy H,
the free energy F, and the Gibbs enthalpy G (Section 1.4).

The state variables defined so far can be divided into infensive and extensive
variables: If one imagines a system in thermodynamic equilibrium divided
into two parts by means of a partition, such that each part contains exactly
half the mass of the total system, then in each part, the temperature and
pressure are the same as in the original undivided system, whereas the vol-
ume, internal energy, entropy, enthalpy, free energy, and Gibbs enthalpy all
have exactly half the values of the undivided system. In other words, p and
T do not depend on the mass of a system, and are intensive quantities, while
V,E, S, H, F, and G are proportional to the mass, and are extensive quan-
tities. When these extensive quantities are divided by the total mass M, we
get quantities which, upon subdivision of the system (because of its homo-
geneity in thermodynamic equilibrium), also will not change, just as p and
T will not; they are thus also intensive quantities. These intensive quantities
are also called specific quantities. The specific quantities (specific volume,
etc.) corresponding to the variables V, E, S, H, F, and G will be denoted by
1/0, e, 5, h, f, and g, respectively, where g is the density (mass/volume). In
the formulation of the laws of gas dynamics, we will only encounter intensive
quantities. Let us remark now that we shall sometimes use molar quantities,
which are obtained by dividing the extensive quantities by the number of
moles (mass of system/molar mass), and which will be denoted by the sub-
script m: E,, H_, etc. Molar quantities, like specific quantities, are also
intensive.

Two further important concepts are change of state and process. If a
system at time ¢, is in a thermodynamic equilibrium state 1, and at time
t, > t, it is in another equilibrium state 2, then a change of state has taken
place; the term “‘change of state” comprises the pair of states, initial state 1
and final state 2. Such a change of state is produced by a thermodynamic
process occurring in the time interval between ¢, and ¢,. The same change

1.1 Basle Concopts 5

of state can be produced by very different kinds of processes; for example,
we can increase the temperature of a body of water by a given increment
cither by heating it in a vessel over a flame or by adding a certain amount
of encrgy through mechanical means. In general, a system does not pass
through equilibrium states during a process. (In the heating of water, an
uneven distribution of temperature is usually produced, and a convection
flow results; a certain time is required for heat transfer to be completed,
after which equilibrium is again achieved.) This process is then called non-
static. On the other hand, during an infinitesimally slow process, a system
does pass through equilibrium states; such a process is called quasistatic. A
quasistatic process can be represented in the p, ¥ plane (or the plane of any
other two state variables) by a curve connecting the initial and final states

and passing through the intermediate states assumed during the process

(Fig. 2).
’ 2

4

Fig. 2. Diagram of different quasistatic processes in the p, V plane that result in the
same change of state (1, 2).

Another classification of processes is into reversible and irreversible pro-
cesses. Indeed, we can always make a change of state in the reverse direction,
irrespective of the nature of the forward process 1 —2; but generally, after
the reverse process 2 — 1 has been completed, a change in the environment
of the system remains. When it is possible in principle to find a process
2—1 such that after completion both the system and the environment will
be in the same state as before the process 1 — 2 took place, we then call the
process 1 — 2 reversible (and 2 — 1 is then also reversible). The different kinds
of processes are related in the following manner:

quasistatic nonstatic
N
reversible

irreversible
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While a quasistatic process can be reversible as well as irreversible, a non-
static process is always irreversible.

1.2. First Law of Thermodynamics

Let us consider a closed adiabatic system. If we take the system from an
initial state 1 to a final state 2, then we know from experience that whatever
the nature of the process may be, the same work 4 W will have been done on
the system. For a given initial state 1, the work done on the system is
dependent only on the final state 2, and is therefore a state variable of the
system. Using an arbitrary choice of the initial value E;, we define this state
variable as the internal energy E:

E,=E, +AW. (1.3)

The work AW done on the system through an adiabatic process (process in
an adiabatic system) is thus equal to the change AE = E, — E, of the internal
energy of the system.

In the case of a nonadiabatic system, Eq. (1.3) does not apply in general,
i.e., AE# AW. In this case, we have

E,—E, =AW+ 4Q, (1.4)

by which the quantity of heat 4Q transmitted to the system during the
process is defined. When a system is changed from an initial state 1 to a
final state 2, regardless of the nature of the process used, the sum of the
work AW done on the system and the heat 4Q conducted to the system must
remain constant, i.c., this sum is equal to the change 4E of the internal
energy of the system. This change depends only on the initial and final
states: AE=E, — E|. .

Example: A gas enclosed in a box of constant volume ¥ can be brought
from temperature T, to temperature T, (a) through stirring and (b) through
heating over a flame. In the first case, E; — E; = AW, while in the second
case, E, — E; = AQ. If we stir and heat at the same time, then we have
E,—E =AW+ AQ.

Note: In a relation like (1.4), all quantities should naturally be measured

1.3 Second Law of Thermodynamics 7

in the same units. We therefore recall the conversion of mechanical and
caloric units of energy (mechanical equivalent of heat):

1 kcal = 4.19 x 10® kg m? sec™2

1.3 Second Law of Thermodynamics

The starting point for the formulation of the second law of thermodynam-
ics is the differential form

E(p, V)

E(p.V) ,
av p-

dE + pdV = (
r (L.5)

+ p) av +
Experience shows that (1.5) is not an exact differential: If one integrates in
the p, ¥ plane of a thermodynamic system along a smooth path (which may
be assumed to symbolize a quasistatic process 1 — 2, see Fig. 2), the integral
[#(dE + p dV') depends on the path connecting state 1 with state 2 in the
p, V plane. But, as is known from calculus, there always exists an infinite
number of “integrating factors” ¢(p, ¥) such that [2 ¢(p, V) (dE + p dV)
is independent of the path and hence depends only on the limits of inte-
gration, i.e., on initial state 1 and final state 2.

The content of the second law may now be divided into two separate
statements:

First Statement: There exists for all thermodynamic systems an integrating
factor which depends only on the temperature 6 of the system (as defined
on p. 3) and which, moreover, is, for all systems, the same positive function
of temperature ¢(6) > 0. We denote this universally valid integrating factor
by 1/T and define a new state variable S by

TdS =dE + pdV. 1.6)

T(0) > 0 can be chosen as a convenient measure of temperature. Using that
temperature, the thermal equation of state of a thermally ideal gas has the
simple form (1.1). Since the integral jf dS is now independent of the path
leading from 1 to 2, we can write, with arbitrarily fixed value S, :

2
dE + pdV
sz=sl+f T”—; .

1
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S, depends only on state 2, and S is therefore a state variable, as already
mentioned. S is called the entropy of the system, and it is an extensive
variable, since E and V are extensive.

In preparation for the second statement of the second law, let us imagine
that the system illustrated in Fig. 3 is undergoing a quasistatic process. Here,

7 i
Hith
r

System

Heat bath

Fig. 3. A system in a heat bath.

heat is conducted into the system and from it through contact with heat
baths, whose temperatures are at an infinitesimal value above or below that
of the system itself. At the same time, the volume of the system is decreased
or increased by making the weight on the piston which closes the cylinder
infinitesimally greater or smaller than the force exerted on the piston by the
pressure p of the system. The process is thus quasistatic, and we can easily
show that it is also reversible. By a volume change dV we do work to the
system

dW =— pdV. (1.8)

According to the first law (1.4), therefore,
dQ = dE + pdv, (1.9)
and, according to the definition (1.6) and u;fhg (1.9), we get
ds = do,./T, (1.10)

in which the subscript “rev”’ indicates that the process is a reversible one.

1.3 S d Law of Th dy i 9

The total change of entropy is therefore

2

S: =5, =derev/T- 111

1

We now assume that the system is brought from an initial state 1 to a
final state 2 by means of any process 1 —2. Then,

S, — S; = A4S, + 48;. (1.12)

Here, AS; is the entropy produced in the system during this process and 45,
is the entropy carried into the system over the boundaries from the outside;
we can compute 45, in the following manner: When an area element d4 of
the boundary is at a temperature T and a quantity of heat 4O flows into the
system across this element during time df, then the contribution to 4S5, from
this element will be equal to dQ/T. These contributions are to be summed
over the entire boundary of the system and over the entire duration of the
process. (When nonstatic processes are used, the temperature 7 will vary
with the location and time in the system and on the boundary.)
Second Statement: The inequality

48,20 (1.13)

holds. Only in a reversible process is 4S; =0, and dQ = dQ,.,, so that (1.12)
becomes (1.11).

To make this more clear let us look again at the example mentioned at
the end of Section 1.2. The final state of the system differs from the initial
state by a change of energy AE at constant volume V. Independent of the
nature of the process, the change of entropy is given by definition (1.7):1

2 2
s _s - [9E_ 6E) dT (L14)
e J\er)y T :
1 1

In this manner, we can compute the change of entropy when we know the
initial and final temperatures of the system and the caloric equation of state.
If we now carry out the process by stirring the gas without heat transfer from

1 Since the independent variables in thermodynamic relations are changed frequently,

it is always desirable to state them explicitly. It is customary in writing the partial deriva-
tives of thermodynamic quantities to specify the variable being held fixed by a suffix.
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the outside, then S, — S; = 4S;. On the other hand, we can produce the
same change of state by means of a quasistatic heat transfer, in which case
S, — S; =A4S,.

Example I1: Entropy generation by viscosity. Consider an annular space
between two concentric circular cylinders. The annulus is filled with gas
(Fig. 4), the inner cylinder is held fixed, and the outer cylinder rotates with

U

——

el

wa

(

. NS ——

N\
\
/
/

~

<
/
Z

1

f /”
/
\\
\\

Fig. 4. Flow in the annulus between a fixed and a rotating cylinder.

a peripheral velocity U. The gas adheres to the cylinders, and its velocity in
the space is given by u = Uy/b if the width of the annulus is small (b <r)
and the peripheral velocity is not too great. To rotate the outer cylinder, a
torque M = 2nrlzr is required, in which 2nrl is the‘cylinder area, 7 the shear
stress resulting from the viscosity of the gas, and r the lever arm. The me-
chanical work to be done per unit time is

W= MUJr, (1.15)

so that the mechanical power per unit volume of the gas is
w U du
=l b dy

On the other hand, we have T =1 du/d;z; there n is the coefficient of shear

viscosity of the gas. If, furthermore, we think of the entire setup as an
adiabatic system, then, according to the first law of thermodynamics,

(1.16)

1.3 Second Law of Thermodynamics 1

AE = AW, or E = W per unit time; since the volume of the gas in the annulus
does not change, we have, by (1.6), TS = W, or, per unit volume,

To = W = tdu/dy

o'—ﬂ du2>0 )
T\ay =0, 1.17)

where o is the irreversibly generated entropy per unit time per unit volume
of the gas as a result of viscosity. Thus, Eq. (1.17) gives the distributed
entropy sources due to viscosity in the fiow field produced by the rotation
of the outer cylinder.

Example 2: Generation of entropy through heat conduction. Let two heat
reservoirs at temperatures T; and T, < T; be connected with a heat-con-
ducting material of length b and cross section 4 (Fig. 5). Then a quantity
of heat

or

Q0 =kA(T, — T,)/b = — kAdT|dx

Reservoir 1 Reservoir 2

<| 2.

!

1

h L<h

:‘7 p ]

-

7

T 3 P
4 b

Fig. 5. Heat conduction between two heat reservoirs.

flows from reservoir 1 into reservoir 2 per unit time (k is the constant thermal
conductivity of the material), where we assume that both reservoirs remain
in thermodynamic equilibrium during the process. This is the case if the
thermal conductivity of the reservoir material is so large that infinitesimal
temperature differences can produce finite heat flows. The volumes of all the
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parts are assumed to be constant. According to the first law, the internal
energy of the reservoirs changes by £, = — @ and E, = + Q per unit time.
According to (1.6), the following entropy changes occur: §; = — (Q/T;) and
S; =+ (Q/T,). Reservoir 2 gains more entropy than reservoir 1 loses, since
T, < T, . The difference
s_s s _ofLl_1 kA(Tl—T2)2>0
48=8,+8,=0(g - )= O
is the entropy produced in the irreversible heat-conduction process. The
entropy generated per unit volume per unit time by the heat conduction is,
accordingly,
3 2
a=%)= %(3—:) =20 (1.18)

We readily see that the integral 4 ﬂ’, o dx directly gives the above value of
(k4/b)[(T, — T,)*/T,T,] for AS (see Section 4.1.2).

When a thermodynamic system goes through an arbitrary process, heat
conduction as well as viscosity will, in general, appear in the system. The total
entropy generated in the system during the process is then A4S; = [{[{ o dV dt,
where the entropy generated per unit volume per unit time ¢ is now expressed
as a sum of expressions of the forms (1.17) and (1.18), and the integral ex-
tends over the entire volume of the system and the entire duration of the
process. Other mechanisms of entropy generation are diffusion and relax-
ation processes, which we shall return to later (see Section 2.4).

1.4 Canonical Equations of State; Heat Capacities

1.4.1 CANONICAL EQUATIONS OF STATE

Although the five variables p, T, V, E, and S already introduced are suf-
ficient for the formulation of thermodynamic laws of closed systems, it often
becomes desirable to define more state variables, of which the following are
frequently used:

Enthalpy: H=E+pV, (1.19)
Gibbs enthalpy: G=H-TS=E+pV—-TS, (1.20)
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Free energy: F=E-TS. (1.21)
Among the five original state variables, the relation (1.6) holds:
dE=TdS — pdV. T 122
We can establish similar relations for H, G, and F. By (1.19), '
dH =dE + pdV + Vdp,
which becomes, upon the introduction of dE from (1.22),
dH=TdS+Vdp. (1.23)
In a completely similar manner, we derive

dG=—-8SdT + Vdp (1.24)
and
dF =— SdT — pdV. (1.25)

Since the state of thermodynamic equilibrium of a closed system is de-
termined by two state variables, E, H, G, and F must be functions each
of two different state variables. The relations (1.22)-(1.25) yield some es-
pecially convenient choices of these state variables as arguments:

E=E(S,V); H=H(S,p); G=G(T,p); F=F(T,V). (1.26)

Each of the relations (1.26) is called a canonical equation of state. Each
relation defines the complete thermodynamic behavior of the system. If we
take any one of these relations, all the thermodynamic state variables can
be computed as functions of the two independent variables in the canonical
equation of state. In taking a thermal equation of state, this is not so; we
have already seen in Section 1.1 that while the choice of a thermal equation
of state does somewhat restrict the choice of a caloric equation of state, the
caloric equation of state is nevertheless not fixed by the thermal equation of
state, but must be added in order to give a complete description of the
thermodynamic behavior of a system.
Let us assume that G(7,, p) is given. From (1.24), it follows that

(8Glop)r =V, .27
. (66JeT), =~ 8. (1.28)
Equation (1.27{3956 T and }\,\rel_}\ and is therefore the thermal equation
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of state of our system. On the other hand, (1.28) contains the caloric .cquulim\
of state, since it follows from the definition (1.20) of G together with (1.27)
and (1.28) that

E=G— pV + TS = G — p(3G/op)r — T (8G/eT),. (1.29)
whereby E(T, p) is known if G(T, p) is given. The relations for E, H, and F

corresponding to (1.27) and (1.28) follow immediately from (1.22), (1.23),
and (1.25):

(9EjoS)y = T; (OEJoV)s = — P; (1.30)
(¢H/0S),= T; (@Hop)s= V. (131)
(@FjoT), =—S;  (9FIV)r=—"p. (1.32)

Supplementary Remarks. 1. From a given thermal equation of state
v = V(T, p), we can compute the volume expansivity

a= <ﬂ> (1.33)
v\er/,

as well as the isothermal compressibility

1[0V
N A (1.34)
K= 4 (6P>T .
We have (8p/oT)y = oK, (1.35)
(@poV)r =— YKV . (1.36)

For a system satisfying the ideal gas equation (1.1), we have

a=1T, K=1/p. (1.37)

o (oF _ag<aj»>
fTT(«WT_aV T )y’

it follows immediately from observing (1.32) and (1.35) that

ol =(§Pr) =2 (1.38)
), \er), K

2. From
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Likewise, it follows from (1.27), (1.28), and (1.33) that

as av
(=), a»

These Maxwell’s relations give the dependence of entropy on volume and
pressure in terms of the easily measurable quantities @ and K.
3. From (1.21), we get E = F+ TS, and thus

OE oF as
(sv>T - (a”v*)r T (57) (1.40)

Using (1.32) and (1.38), it follows that

OE «T — Kp
ry2 e . 1.41
(aV)T K (1.40)

For a thermally ideal gas, (1.37) is valid, and (1.41) gives (OE/0V )y =0.
From the validity of the thermal equation of state (1.1), it follows that the

internal energy E is dependent only on the temperature 7, a fact already
pointed out in Section 1.1.

1.4.2 HEAT CAPACITIES

Imagine the system in Fig. 3 undergoing a quasistatic reversible process.
When an addition of heat dQ changes the temperature of the system by dT,
we call

C =dQ[dT (1.42)

the heat capacity of the system; heat capacity depends not only on the
thermodynamic state of a system but also on the process (heat is not a state
variable!). Two kinds of heat capacities are especially important:

a. Heat capacity at constant pressure, C, (heat capacity for an isobaric
process). In such a process, p is constant, and thus dW = — p dV = — d(pV);
consequently, by the first law of thermodynamics,

dQ =dE +d(pV)=dH.
Moreover, by (1.23), dH = T dS, so that

co=(Gr) =7 (5 1.43
= (or), =7 (ar), @
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b. Heat capacity at constant volume, C, (heat capacity for an isochoric
process). Since in this process dV = 0, the first law gives dQ = dE, and, by
(1.22), dE =T dS, so that

J0E aS
() o

The heat capacities C, and C, are commonly used extensive state variables.
Moreover, we can show that C,>0 must always hold, for otherwise the
thermodynamic system will be unstable (the condition of thermal stability).

We can obtain a relation between the heat capacities C, and C, in the
following manner: We start from S=S(T, V) and V = V(T, p) and con-
struct the differential

ds = aﬁ>+as v dT + AN LA
~\or), "\av ), \oT), ov ) \op Jr P
It follows that
as\ _(os . as (av
aT), \aT/, \ev/:\oT/,’

From this, as well as (1.43), (1.44), (1.33), and (1.38), we get the following
relation between the heat capacities:

C,=C,+(TV)K=C,+R*, (1.45)

where the latter equation follows from the use of (1.1) and (1.37) and thus
holds only for a thermally ideal gas. A necessary and immediately obvious
condition for the stability of a thermodynamic system is K> 0; i.e., in an
isothermal system, a decrease of volume must accompany an increase of
pressure (the condition of mechanical stability). It then follows from (1.45)
that we must always have.

C,>C,>0. (1.46)

Specific heats are heat capacities divided by the system mass M:c, = C,/M
and ¢,=C,/M are the specific heats at constant pressure and constant
volume, respectively.

Because of the importance of specific quantities in gas dynamics, we sum-
marize the important formulas of this section in terms of specific quantities.
We give these formulas the same numbers as before, but distinguish them
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by asterisks:

h=e+(plo) (1.19%)
g=h—Ts (1.20%)
f=e-Ts (1.21%)

de = T ds + (plo®) do (1.22%)

dh = Tds + (1)) dp (1.23%

dg =—sdT + (1/g) dp (1.24%)

df =—sdT + (p/e®) do (1.25%)
(0e/ds), = T; (9e/d0) = plo* (1.30%)
(0hlos), = T; (0hjop), =1/o (1.31%)
(09/0T), = —s;  (3g/dp)r = 1/o (1.27%); (1.28%)
(0f1oT), = —s;  (8fd0)r = plo® (1.32%)
@ =~ (1/g) (6¢/3T), (1.33%)

K = (1/e) (de/op)r (1.34%)
(9s/0e)r = — a/(Ke®); (2s/dp)r=—ajo  (1.38%); (1.39%)
(%¢/de)r = (Kp — «T)/(Ke?) (L.41%)
¢, = (0h/T), = T (35/0T), (1.43%)

¢, = (3¢/3T), = T (3s/0T), (1.44%)

¢, =c, + *T/(Ko). (1.45%)

1.5 Equations of State for Gases

We know from experience that in a gas at constant temperature, the
product pV is constant to a good approximation (Boyle-Mariotte’s law). If
. the temperature changes at constant pressure p, the volume changes pro-
portionally to the absolute temperature T (Gay-Lussac’s law). Both laws are
incorporated in the thermal equation of state (1.1). If the system contains
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moles of a chemically homogeneous gas (thus, no mixtures), we have, in
addition
R* = nR, (1.47)

where R is the universal gas constant. Relation (1.47) together with (1.1)
contain Avogadro’s law, which states that at a given temperature and given
pressure, equal volumes of different gases contain an equal number of moles
(or equivalently, an equal number of molecules N =nL, where L is
Loschmidt’s constant or the number of molecules per mole).

Deviations from the ideal gas law (1.1) become noticeable, for example,
under high compression of a gas. We can take these deviations into account
by generalizing the thermal equation of state as follows:

RT(1 By S 1.48
pV=n <+V+V2+-~~). (1.48)
The temperature-dependent quantities B, C, etc., are called the second, third,
etc., virial coefficients. In many cases, introducing the second virial coefficient
B alone is sufficient; B is negative for low temperatures and positive for high
temperatures. The temperature T, at which B(T,)=0 is called the Boyle
temperature, since for this temperature the Boyle-Mariotte law holds up to
the term of order C/V2. For air, T, = 347 °K.

Another form of thermal equation of state for gases is van der Waal’s

(,, + ’%)(V — nb) = nRT, (1.49)

with two positive constants a and b. If we expand the product p¥ in powers
of 1/¥, we obtain the virial form (1.48) of the equation of state, where, in
particular,

B = n(b — (a/RT)). (1.50)

Qualitatively, B possesses the temperature dependence mentioned before. It
should be mentioned that the quotient p¥/nRT, which equals unity for a
thermally ideal gas, is called the compressibility factor Z. The values of Z
for air are presented in Fig. 6b.

We now turn to the caloric properties of a gas system, restricting ourselves
to a thermally ideal gas. From the thermal equation of state

V=nRT/p, (1.51)
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and from (1.27) it follows that

(6G/op)r = nRT|p. (1.52)
From this, we obtain after integration
G(T, p) =n[RT In(p/po) + 1o (T)]. (1.53)

Here, p, is an arbitrary reference pressure, and po(7) is a function of tem-
perature, which cannot be more precisely defined from thermodynamics; for
each gas, uo(7T) must be either determined experimentally or computed
theoretically using statistical mechanics. The subscript 0 on g, indicates that
the value of this function depends on the choice of p,. For subsequent use
(see Section 1.8), we transform the expression (1.53) for G, replacing the
variable p by V by using the thermal equation of state:

G(T, V)= nRT [m (’ﬁf) + %‘] (1.54)
0

The enthalpy can be calculated from the relation H=G + TS, i.e., by
(1.28): H=G — T(0G/dT),. We get

dpo d (uo
H= —T=)=—-nT?— [=2). .
" <”° dT) AT (T (1:55)

Here H is a function of temperature alone.
We now turn to the special case of a calorically ideal gas, which, by
definition, has C, = dH/dT = const, i.e.,
d (u
H=n(H*+C,,T)=—nT?> —(22), 1.56
(H* + CyuT) Pl 156
where C,,, is the (constant) molar heat capacity and H* is a constant which
cannot be made further precise. From (1.56), it immediately follows from
integration with respect to T that

po = H* — C,, T In(TT™), (1.57)

where T* is a constant of integration having the dimension of temperature.
If we divide (1.56) by the mass of the system M =nJt (M is the molar
mass) and introduce the specific heats ¢, and ¢, the specific gas constant
R =R/, and the notation #* = H*/IN, then we get for the specific enthalpy

h=h*+¢,T. (1.58)
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The equation of state (1.1) written for specific quantities is
p=R/M)Te=RTe, (1.59)

and, from (1.45), we have
¢,=c¢,+R. (1.60)

Finally, we can calculate e and s from the relations e = — (p/e) (1.19*) and
s=—(g/0T), (1.27%):

e=h*+e¢,T, (1.61)

s=— Rln<£>+cp|:ln (2)+ 1]. | (1.62)
Do T

From (1.62), we can derive another important retation: (1.62) can be written

as
T \"@-1 —
P_ (F) exp (-c "R—S), (1.63)
Po

C
=F=_7 "M 51 1.64
v ¢, ¢—R Cp—R (1.64)

where

is the adiabatic exponent, which is a constant for a calorically ideal gas (as
considered here) and a function of temperature for a thermally ideal gas. We
now study isentropic changes of state, i.e., changes of state in which the
entropy remains constant. We can introduce a new reference temperature
T, defined as T, = T* exp[(s — ¢,)/c,), and find, from (1.63), that for isen-

tropic changes of state,
T\"0-1 7
P _ <_) = (E) . (1.65)
Po To Qo

This equation follows from the thermal equation of state if we set g, = po/RT,.

Equation (1.62) also permits us to calculate 7 as a function of s and p. If
we substitute the result into (1.58), then we obtain = h(p, 5), one of the
possible forms of the canonical equation of state. The canonical equation of
state h = h(p, s) may be represented graphically, with the lines p = const
drawn in the s, & plane. For a calorically ideal gas, these are simply ex-
ponential curves. As a more general example, Fig. 6 gives these curves for
air over a wide range of states. Such a figure is called a Mollier diagram.
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Fig. 6a. Mollier diagram for air: R = 6.886 x 10~2 cal/g °K = 2.882 x 106 cm?/sec? °K ;
T0=273.16 °K; po=1 atm. (From J. Hilsenrath, C.W. Beckett et al., Tables of thermo-
dynamic and Transport Properties of Air etc., Pergamon Press Oxford 1960).




Fig. 6b. (See legend to Fig. 6a). (From S. Feldman, Hypersonic gasdynamic charts
for Equilibrium Air. AVCO Res. Lab. Rept. RR40, 1957.)

The Mollier diagram contains all the thermodynamic information on a gas,
since all the information is contained in the canonical equation of state.
While monatomic gases (noble gases such as argon) behave like a caloric-
ally ideal gas over a wide range of temperatures and pressures, diatomic (and
polyatomic) gases do not. Oxygen and nitrogen, for example, at room tem-
peratures and pressures below about 10 atm behave approximately like a
calorically ideal gas, the specific heats ¢, and c, not changing with temper-
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ature; at temperatures of several hundred degrees centigrade, however, the
specific heats increase noticeably with temperature. This is caused by the fact
that at high temperatures, the vibration of the atoms in the molecules absorbs
a portion of the heat added, thus making this heat unavailable for increasing
the temperature; this phenomenon does not occur at lower temperatures.
Yet another large increase in the specific heats occurs with dissociation, and
the gas is then no longer thermally ideal (see Section 1.10). We can take into
account the influence of molecular vibration on the caloric behavior of
diatomic gases (for sufficiently low temperatures, C,, =7%R/2) to a good
approximation by adding another term to the y, given by (1.57):

po = H* —IRT In(T/T*) + RT In[1 —exp(— 6/T)],  (1.66)
where 0 is a constant characteristic of the particular molecules and having
the dimension of temperature. Proceeding from this expression, we see:
RO

=h*+1 e 1.67
h h+2RT+exp(0/T)_1, (6D

Rin(2)+ T Rlm( L)+ 1
s=— =)+ -R{In[ =
"\po) 2 T*

RO|T
—RIn [1 — exp(G/T)] + W) _71'.

(1.68) -

In particular, with this expression for s, we have, in place of (1.65), the
relation for isentropic change of states (T, being a suitably defined reference
temperature):

P_ (1)”’ 1 — exp(— 0/Ty) T 0T, ]
Do - T, 1—exp(—0/T) o [exp @IT)—1 exp(8/To)—1]
(1.69)

The thermal equation of state (1.59) remains unchanged. We notice from this
formula that at T < 6, the gas behaves like a calorically ideal gas with specific
heat c,= 3R, while at T> 0, it behaves like a calorically ideal gas with
¢, =%R. Thedeparture from a calorically ideal gas is most marked at T~ 0.
We get for y

_ T[exp(8/T) — 11% + 2(0/T)* exp (0/T)
7= STexp(8/T) — 112 + 2(6/T) exp(O]T)
Thus, y=7/5 for T< 8, and y =9/7 for T> 6.

(1.70)
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1.6 Conditions of Equilibrium

A system left to itself will tend toward a state of thermodynamic equi-
librium. We now consider the case where, because of an internal constraint,
the system is prevented from assuming unconstrained equilibrium, but, in-
stead, has to remain in a constrained equilibrium. As an illustration, we
imagine an isolated system in which one half remains at temperature T; and
the other half at T, # T, (Fig. 7). This 'state can only be maintained by

I T,

T
|
1
1
1
|
|
!
+
)
]
i

Fig. 7. A system with a heat-insulating dividing wall.

preventing heat flow from 1 to 2 (such as by artificially introducing a heat-
insulating dividing wall). We further assume that the quantities E, S, and G
can be defined for such constrained states of equilibrium. This is easily done
in our example: these quantities for the total system, being extensive quanti-
ties, are the sums of the quantities of the two parts. Another example we can
imagine is a box containing a mixture of hydrogen and oxygen in the volume
ratio of 2:1 at room temperature. This mixture will remain in a constrained
equilibrium practically indefinitely. However, the internal constraint can be
removed instantly if we introduce a platinum catalyst; the mixture imme-
diately reacts and forms water, and the system has then reached uncon-
strained equilibrium.

If we remove the internal constraints (by removing the dividing wall or
introducing the catalyst), a process will start in the system that will lead to
an unconstrained equilibrium. For an isolated system, according to (1.13),
each process will give

AS = 45,>0.

In other words, after the completion of the process leading to unconstrained
equilibrium, the entropy cannot be less than the entropy in the constrained
state of equilibrium. Since we assume the system to be isolated, £ and V
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remain constant in the process. Thus, we can state the result: For given
values of £ and V, the entropy of a system in an unconstrained state of
equilibrium is a maximum.

More precisely, we can say the following: In an unconstrained thermo-
dynamic equilibrium (as we have seen in the previous sections), S is a
function of its natural variables E and ¥V, S = S(E, V). But to describe fully
the state in a constrained equilibrium, we must introduce at least one ad-
ditional parameter ¢ which quantitatively characterizes the departure from
unconstrained equilibrium (in our first example, £ =T, — Ty, or £ = T, /T,
etc.). Thus, S=S(E, V, ), and a necessary condition for unconstrained
equilibrium is

(05/08)g,y =0. (1.71)

For a given function S(E, V, &), this condition permits us to determine the
value of ¢ in unconstrained equilibrium when E and ¥V are given.

In our second example (H,-O, mixture) the system in constrained equi-
librium is also homogeneous, and has a uniquely defined temperature 7 and
pressure p. With a properly chosen variable ¢ (for example, relative mass of
H, to H,0), we can generalize Eq. (1.6) as follows:

TdS=dE+pdV +TId¢, (1.72)
in which the new state variable I is obviously
I'=T(35/0)g,y - (1.73)

If n variables &, &,, ..., &, are needed to describe constrained states of
equilibrium, we can generalize as follows: S= S(E, V, &,,..., £,) and

TdS=dE+pdV + ¥ I, d&, (1.74)
i=1
with
aS
=T (;) ) (1.75)
aéi E,V,&+#i

Before proceeding with the study of thermodynamic conditions of equi-
librium, let us say a few more words about the significance of the relations
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(1.72)—(1.75) in gas dynamics. The gas particles? in a flow field undergo
changes in their thermodynamic states during motion. In classical gas dy-
namics, it is always assumed that the processes causing these changes are
quasistatic, i.e., that the individual gas particles proceed through uncon-
strained states of equilibrium. The entropy changes are given by (1.6), since
in an unconstrained equilibrium I = 0. In the case of very high flow veloci-
ties, however, the states of the gas particles change so fast under certain
conditions that this assumption no longer holds. The gas then goes through
constrained states of equilibrium, and in order to describe these states fully,
we need at least one other variable £. The entropy changes are then given in
(1.72) or (1.74). Then we are talking about gasdynamic relaxation.

The condition derived earlier for unconstrained equilibrium, i.e. S = max
for E, V' =const, can be expressed in a series of completely equivalent for-
mulations. Among these, we shall use the following: Given a system with
pressure p and temperature 7T, the unconstrained state of equilibrium can be
distinguished from the constrained equilibria by a minimum in the Gibbs
enthalpy G, i.e., G = min for p, T = const. The necessary condition for this is

0G(T, p, &)joE =0, (1.76)

in which & has the meaning given earlier.
We briefly sketch how this condition is derived from the previous con-
dition on S. Let us imagine a system A immersed in a system B (Fig. 8).

System 8 p, T

Fig. 8. Diagram for the derivation. of formula (1.79).

2 By a “gas particle,” we shall alwaj@‘mean an arbitrary volume in the flow field, the
surface of which is moving with the local mass velocity, and which, on the one hand, is
sufficiently small so that the thermodynamic variables of pressure, temperature, etc.,
inside it have essentially no spatial variation, while, on the other hand, it is still large
compared to the mean free path of the gas molecules.
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Let B be completely isolated from its environment, and let it be so large
compared to A that its pressure and temperature remain constant regardless
of the state changes that may occur in 4. If the boundary between them is
movable and heat conducting, the pressures and temperatures in 4 and B
will be the same. Let A first be in a constrained state of equilibrium, then go
into an unconstrained state of equilibrium through some appropriate
process, while B is in unconstrained equilibrium at the beginning as well as
at the end of the process. As a result of this process, we have 4V, = — AV,
and AE, = — AEg (the volume and energy of the total system remain con-
stant, since the system is entirely isolated from its environment).
Furthermore,
AS =AS, + A4S = 0. (1.77)

On the other hand, since p and T are constant, we can integrate (1.6) for
system B:
ASg = (1/T)(AEg + p AVy) =— (1/T) (AdE, + p 4V,). (1.78)

Substituting this into (1.77), we get
A(TS,—E,—pV) =0,
and using the definition (1.20) of G,
4G, <0. (1.79)

Therefore, the Gibbs enthalpy of system A decreases during the process
toward an unconstrained equilibrium, or at best remains constant.

1.7* Chemical Potentials

So far we have only studied closed systems, i.e., systems that contain a
fixed amount of gas. A convenient measure of this quantity is the mole
number n, which is a constant parameter in a closed system. In an open
system, material is transported across system boundaries, so that the mole
number 7 is a variable, and must be used together with the thermodynamic
variables in defining the state. Imagine an open system which contains a
mixture of k gases. Then we have to specify all the k¥ mole numbers n,,
n,..., ny in addition to temperature and pressure (or two other state vari-
ables) in order to fully describe the thermodynamic state in an unconstrained
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equilibrium. In particular, the entropy is dependent on all the #; in addition
to Eand V: S=S(E, V,n,,..., ny), and (1.6) can be replaced by

k
TdS=dE+pdV — Y udn,, (1.80)
i=1
where
aS
,ui=—T<¥> o (1.81)
on; EV,nj2:

We call the intensive state variable y; the chemical potential of the ith
component of the gas mixture. As intensive variables, the p; do not change
if all the n,,..., n, are changed proportionally.® Thus, the u; can depend
only on the ratios of the mole numbers. Accordingly, we introduce the mole
fractions X; as variables

k
Xo=n/ 3 n, (1.82)
i=1
where, naturally, 'i‘=1 X;=1. Then,
wi=w (T, p, Xy 5o, Xioi).

Furthermore, by the definition (1.20) for G and by (1.80), it follows that
k
dG=—SdT +Vdp+ Y pdn;, (1.83)
i=1

or, if we regard G as a function of T, p, and ny, ..., n,

oG
"= (—) : (1.84)
onijr, Pinj#i .

On the other hand, as an extensive state variable, G has the following

property: If we change all the mole numbers in the system from n; to an;

with T and p fixed, then G changes to aG,% i.e.
G(T,p,any,...,an)=aG(T, p,ny,...,n).

Differentiating this identity with-respect to «, setting a equal to 1, and using
3 Mathematically speaking, the u; are homogeneous functions of #,..., nx of zeroth

degree.
4 G as a function of m,..., nx is thus homogeneous of first degree.
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(1.84), we obtain®

(=3

G k
— =G, G = e 1.85
ln'ani izzln” ( )

If the system contains only one gas, then G =ny, i.e., u here is the molar
Gibbs enthalpy. For a thermally ideal gas, because of (1.53), we have

it =RT In(p/po) + po(T). (1.86)
Supplementary Remarks. An analog of (1.83) follows from (1.80)and (1.21):

o

i

dF=—8SdT —pdV + i udn;, 1.87)
and, similarly, k‘= !
dE=TdS—pdV+ Y pidn, (1.88)
t=kl
dH=TdS+Vdp+ i; u; dn;. (1.89)

Since in gas dynamics we use specific variables rather than extensive state
variables, Eq. (1.80) will be transformed so that it contains only intensive
state variables. Introducing the molar mass 9; of the ith component, the
total mass M =Y nIN,;, and the mass concentration ¢; = nIR,/M of the ith
component, we rewrite (1.80) as

k
M .
T d(sM)=d(eM) + p d( 7> NV H dem) (1.90)
e L M,
or i=1
k
1 .
MT ds + Ts dM = M[de +p d(—) et dc,]
Q ! ",
i
p Hi
am|e+2-) Eic ) 1.91
i=1

But if (1.85) is divided by M, it can be written as

g=) i, (1.92)

5 This is a special case of Euler’s theorem for homogeneous functions.
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On the other hand, according to (1.19*) and (1.20*), g = e + (p/e) — Ts, so
that the terms multiplied by dM on both sides of (1.91) cancel. The result is
k

Ll

p
Tds=de— —do—
Q2 ¢ M,

de;. (1.93)

i=

Equations (1.83), (1.88), and (1.89) can be written in specific form if the
extensive variables are replaced by the corresponding intensive ones, and
#; dn; by (1/BY) de;.

1.8* Mixtures of Ideal Gases

We shall now study systems comprised of a mixture of &k thermally ideal
gases. Separately, each of the k components of the mixture satisfies its own
thermal equation of state (1.1) of an ideal gas. All the important physical
phenomena, for our purposes here, can be summarized in the statement:
Let @ be any extensive state variable (except V) of the system, which we
regard as a function of T, ¥, ny,..., n,; then,

k
(T, V,ng,..n)= Y, &(T,V,n), (1.94)
i=1
where @; is the value @ assumes when the n; moles of the ith component

alone occupy the volume V at temperature 7. In particular, (1.94) is valid
for the free energy:

' k
F(T,Ving,eon)=Y F(T, V,n). (1.95)
i=1
On the other hand, the generalization of (1.32) immediately follows from
(1.87), or
r=—(5 ) (1.96)
ov T,m,...,mg. '
If we then substitute for F the expression on the right side of (1.95), we
obtain
k k
oF,(T, V, n)
=— ) 28 =Y p, 1.97
P Z % p (.97
i=1 i=1

1.8 Mixturen of Ideal Gases k|

where the partial pressures p, are obviously the pressures which the i com-
ponents would exert individually if alone in volume V" at temperature T.
Equation (1.97) is Dalton’s law. Since each component satisfies by itself the
thermal equation of state of an ideal gas, p; = n,RT/V, we can write (1.97) as

p=(ny+ny +--+n)RT/V. (1.98)

Dividing (1.98) by the mass M =Y n,3t; (where M, is the molar mass of the
ith component), we transform it into the equation of state (1.59), now written
for specific variables, with the specific gas constant R for the mixture defined

as
k
i=1 M

Z?= L '

Applying the relation (1.94) to the Gibbs enthalpy, and using the ex-
pression (1.54) for G, we obtain

k nRT (T
G(T,Vinism)= 3 n,.‘.RT[ln ( pOV)+ ”‘E’R% ] (1.100)

e

R=%R (1.99)

If we then replace p by ¥ from (1.98), we obtain

k
G(T,p.nyonm) =RT Y n,.[m (ﬂ) +In X, + ’L(T)] (1.101)
i=1 Do RT
where the mole fractions X; are defined in (1.82). The subscript i on y, in-
dicates that this function can be different for different gases. Comparing
(1.101) with (1.85), we finally arrive at an important relation for the chemical
potential y; of the ith component in a mixture of ideal gases:

1= RT [In(p/po) + In X; + ¢,(T)], (1.102)
with
(T) = po:(T)RT . (1.103)

Thus, in an ideal gas mixture, each y; depends only on T, p, and the single
mole fraction X;. In conclusion, we note that from (1.103),

¢, 1 d (‘Lﬂ) Y (1.104)

dT  RdT\T RT?’

where we have used (1.55) and where H,,;(T) is the molar enthalpy (enthalpy
per mole) of the ith component.
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1.9* Law of Mass Action

Consider a closed system consisting of a mixture of 4 thermally ideal gases
Ay, A,, A3, and 4, which react with one another according to the reaction
equation

viA; + v, Ay 2 v3A5 + v A, (1.105)
(for example: CO, + H,==CO + H, 0, the water—gas reaction). In a closed
system, changes of mole numbers n,, n,, n;, and n, can occur only as a
result of chemical reaction, where, by (1.105), the changes Arn; must obviously
satisfy the relation

AniAny:Ang:Ang = vi:vyi(—vs)i(—v,). (1.106)
On the basis of this relation, we can express the possible mole numbers in
the system in terms of an auxiliary variable £:
v
ng=Nvi(1-9) +/t10’
ny = Nvy(1 = &) + nyo,
n3 = Nvsé + n3,
Ny = Nvy + M40,

(1.107)

with the five constants N and nyg,..., n49. A change of A¢ in ¢ produces
changes 4n; in the n; which satisfy (1.106). Now, assume that the reaction
given by (1.105) has progressed so far from left to right that all the A4,
molecules have been used up (this of course presumes that there are sufficient
A, molecules for the 4; molecules to react with; otherwise, we interchange
the subscripts 1 and 2). For this state, we arbitrarily set £ = 1, and, by (1.107),
nyo must be zero. Conversely, if the reaction from right to left has progressed
so far that all the 4; molecules have been used up, then we define ¢ = 0 (and
thus, n3o = 0). With this definition, £ is called the degree of reaction. The
constant N is the number of moles of 4, divided by v, when all the moles
of A4, have been used up, or, conversely, it is the mole number of 45 divided
by v; when all the 4, molecules have been used up; N, as well as the re-
maining constants n,, and n,,, depends on the amounts of the gases which
originally were filled into the system.

For each pressure p and temperature 7, there will be an unconstrained
thermodynamic equilibrium in which the degree of reaction £ will have a
definite value depending on T and p. If T and p are changed, but ¢ remains

1.9 Law of Mass Action a3

fixed because of internal constraints, then the new state will, in general, not
be one of unconstrained equilibrium. Upon removal of the internal con-
straint, ¢ will change until the new unconstrained state of equilibrium is
reached. It is easy to formulate the conditions for this unconstrained equi-
librium. In (1.101), G is given as a function of 7, p, and n,, ..., n,. If we put
in the n; given by (1.107), then G = G(T, p, &); for an unconstrained equi-
librium with given T and p, we must have, by (1.76),

oG _ 0G dn, + 0G dn, N 0G dn, + 0G dn, _ 0 (1.108)
O Jr,, Ony dE " ony dE " ony dE " omyde
Comparing (1.84) with (1.107), we obtain
Villy + Vally = V3ly + Vafis. (1.109)

Using Eq. (1.102) for the chemical potentials in an ideal gas mixture, we can
express this condition (1.109) for unconstrained equilibrium as

XYaxre p (vatva—vi—-va)
lextz <g> = K(T). (1.110)
i 2

The “equilibrium constant,” which depends only on T, is

K(T)=exp(vi¢; + V.0, — v33 — vady). (1.111)

Equation (1.110) is the law of mass action.
From (1.111) it immediately follows that

dinK _ dé, d¢, dos dd,

— - . 1.
ar ~tar T ar T ar T Mar (1112
Because of (1.104), this means
dinK 1 SH,(T)
dT R [vsHus + vaHps — viHyy — v, Hy] = RT? (1.113)

This is Van ’t Hoff’s relation for the equilibrium constant X. 6H,, is a short-
hand notation for the sum of the products of the molar enthalpies with the
stoichiometric coefficients v; (with ““+” or “—"" as indicated).

These formulas, valid for thermally ideal gases in general, can be further
simplified when the gases are in addition calorically ideal. Then, according to
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(1.56), H, = H* 4 C,,,T, so that
8H,, = (viH} + v H — v H — v,H})
+ (¥3Cpm3 + ¥4Cpms — ¥1Cpm1 — V2Cpm2) T
=6H* + 6C,,T. (1.114)

Substituting this into (1.113) and integrating with respect to T, we obtain

K=K LA Ts 1.115
] ?d €Xp _? s ( )

where K, is an integration constant and T; denotes H*/R and has the
dimension of temperature.
1t is not difficult to generalize these formulas to reactions of the type

vidi+ot v A, 2V A e VA
The law of mass action (1.110) becomes

X:r“Xr\'r*zl_.Xch P Vet tve—vi— =y '
DO (;) =K(T), (1.116)
PP SR, &

and the generalization of (1.111)—(1.115) is obvious. For example, instead of
(1.111), we have

K(T) =exp[(vip1 +-+ v¢) = (Gpa1Ppras ++vp)].  (L117)

Supplementary Remarks. We have ascribed the symbol & to the degree of
reaction; the same symbol was used in Section 1.6 for the variables which
describe the deviations from thermodynamic equilibrium. We use the same
symbol for the following reason: In some thermodynamic processes involving
chemical reactions (e.g., dissociation; see Section 1.10), unconstrained ther-
modynamic equilibrium is not attained at all under certain conditions,—for
example, if the process occurs with so high a velocity that the reaction “lags”
behind the other changes (relaxation; see Section 1.6). The states assumed
during such processes can often be described as constrained equilibria, and
their degrees of reaction do not agree with the equilibrium values. We then
have to use the more general equation (1.72) instead of (1.6). One equation
of this form follows immediately from (1.80) if we note that by (1.107),

dn, =— Nv, d¢&; dn, = — Nv, d&;
dny =+ Nv; d; dng =+ Nv, d&.

1,10 Dissociation as

With this, (1.80) becomes
T dS=dE+ pdV + N(vipty + Vot — Vapts — Valls) d€.

But this is of the form (1.72). At the same time, we have found an expression
for the quantity I" which is valid for chemical reactions of the type charac-
terized by Eq. (1.105):

I'= N vty + Vaptz = Vais = Valla)-

If ¢ coincides with its equilibrium value given by the law of mass action,
then, according to (1.109), I' =0.

1.10* Dissociation

Let us consider a diatomic gas, which can dissociate into its atoms; for
example, oxygen:
0,=220. (1.118)

This dissociation reaction belongs to the type of reactions described in
Section 1.9, if we identify O, molecules with 4, and O atoms with 43, so
that v, = 1, v3 = 2. The law of mass action (1.110) gives

X 2 T 6Cpm/R T .
I K0(7> exp| — i). (1.119)
Xi Ppo Ty T

We now introduce the degree of reaction given by (1.107). In dissociation,
it is common to denote this by a, and it is called the degree of dissociation:

ny=N(—«); ny=2Nax. (1.120)

From this, we obtain
nj n M, M,
o= = =
ns+2n; n s +n2M; My + M,

(1.121)

where M, is the molar mass of the atoms and 29t, =M, is that of the
molecules. Thus, according to (1.121), « can also be interpreted as the ratio
of the mass of atoms in the system Mj to the total mass M; + M;. The mole
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fractions X, and X; can be expressed in terms of « as:

ny l-a
X, = = R
n+n; l+4+a
n 200
X, 2

Thitns l+a

Substituting into (1.119), we get

2 T 8Cpm/R T
a 2=&(~ exp[ — 22). (1.122)
1-«a p \T, T

pa = Kopo/4 and T, are constants characteristic of the particular dissociation
reaction, and have the dimensions of pressure and temperature respectively.

The thermal equation of state of a partially dissociating gas is, according
to (1.98),

pV = (n; + n3)RT.
Dividing this by the system mass M = (r; + $n3) M, = NN, , we obtain
p=(1+0)R,To, (1.123)

with R, = R/IM,, the specific gas constant of the molecular gas.

Further discussion of Eq. (1.122) requires an assumption concerning 6C,,,.
We discuss two different assumptions:

(@) 6Cp =0, OF Cpmy =2C,pm3. We assume that the molar heat capacity
of the molecules at constant pressure is exactly double that of the atoms.
This implies that the specific heat ¢, is the same for atomic and molecular
gases. Equation (1.122) then becomes

2

o Pa Ty
=-—exp| — —=}: 1.124
op p( T> 129

(b) 0Cpm =R, 01 2Cp3 — Cpmy = R. From (1.45), Cppy = Cora + R, so that
C,u1 = 2C,m3 - Now, we assume that the molar heat capacity of the molecules
at constant volume is exactly double that of the atoms, and, accordingly, the
specific heats are the same for both. This assumption is to be found in a
fundamental paper of Lighthill on the dynamics of dissociating gas,® and we
therefore call a gas satisfying such an assumption a Lighthill gas. We obtain

6 M.J. Lighthill, Dynamics of a dissociating gas. Part I: Equilibrium flow, J. Fluid
Mech. 2, 1-32 (1957).
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from (1.122)
o? T T
S=P " exp( = 22). (1.125)
1—a p Ty T

If we then substitute for the pressure p in terms of the density ¢ from (1.123),
we obtain a relation equivalent to (1.125):

a? 0 T,
= ; exp<— "), (1.126)

1—a

where g4 = ps/(R,Ty) is a characteristic density for the dissociation process.

21

h
2. 7, const
75 const "la

——L
o const

&y
Y

Fig. 9. Degree of dissociation of a Lighthill gas as a function of temperature; pressure,
density, and enthalpy are parameters.

In Fig. 9, the degree of dissociation is presented as a function of the
pressure p or density ¢ and the temperature T, according to (1.125) or (1.126).
The constants py, ¢4 and T are different for different gases. According to
Lighthill: for oxygen, pg = 2.3 x 107 atm, g3 = 150 gcm ™3, and T, = 59,000
°K ; for nitrogen, py = 4.5 x 107 atm, g4 = 130 gcm ™3, and T, = 113,000°K..
These values provide acceptable agreement with experimental data in the
pressure and temperature regimes of practical interest. On the other hand,
fairly good agreement with experimental values can also be obtained by the
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use of assumption (a), 6C,,, = 0, with suitably chosen values for T; and p,.
We conclude this section by giving some caloric properties of a Lighthill
gas. For the molar enthalpies of the molecules or atoms, we have

Hyy =Cpy T, 1.127)
Hpy = Cpps T + 36H™. (1.128)

Here we have set to zero the unimportant additive constant on the right side
of (1.127). But then, we must put a constant in (1.128), which was called
S0H*/2 in (1.114). Since C,p3 = 3Cpmy + R, the total enthalpy of the system
is

H =n Hyy + n3Hps = Com T (ny + 3n3) + 403 (RT + SH*).

Dividing by the mass M = (n, + $n,) MM, , making the assumption (valid for
diatomic gases) that
Cpmy = 4R, (1.129)

and using the previously defined temperature Ty = H*/R and specific gas
constant R, = R/IM, of the molecules, we finally obtain the following ex-
pression for the specific enthalpy:

h=(4+a)R,T + aR;Ty. (1.130)
From this, we immediately obtain for the specific internal energy e = & —(p/o)
e=3R,T + aRT,. (1.131)

In an unconstrained thermodynamic equilibrium, « is defined as a function
of ¢ and T by (1.126). Thus, /# and e are known functions of ¢ and T, by
(1.130) and (1.131). In Fig. 9, the lines h = const are drawn. The constant
R, T, has the meaning of dissociation energy. By (1.131), this is the amount
of energy by which the internal energy of a fully dissociated gas exceeds that
of the molecular gas at the same temperature. The specific entropy of a

Lighthill gas is given by

oG

S=—|— s

0T )y us

which, upon division by M, gives
s T ' I

—=3In{—)+a(l-2Ine)—(1—a)In(1 —a) = (1 + ) In—. (1.132)
R, T, Qa
A Mollier diagram can be found in Lighthill’s original paper.

i
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1.11 Speed of Sound

In general, the gas particles in a flow field undergo unconstrained thermo-
dynamic equilibrium, i.e., the thermodynamic processes occuring in a flow
field are usually quasistatic. For such flows, the state variable a defined by

a* = (3ploe); (1.133)

has a special significance; a has the dimension of velocity. In Section 3.2.1,
we shall show that this is the speed with which a small disturbance or sound
wave propagates in a gas. Like any other state variable, the sound speed a
is determined by two independent thermodynamic variables. We can show
that as a consequence of the thermal and mechanical stability requirements
(see Section 1.4), we always have a? > 0; thus, a is always a real velocity.
The expression (1.133) for a can be transformed as follows: From the
caloric equation of state, & = 2(p, ¢), and we can write (1.23) in the form

(0h/op) dp + (0h/dg) do = T ds + (1/e) dp.

Setting ds = 0, we get

517) 2 dh|dg
—)=a*=—_———. 1.134)
(aa s (0hjop) — /e (
For a thermally ideal gas, h = h(T), so that

2 _ (dh/dT) (6T |de),

= (dh)dT) (2T )ép), — (1/e)’
Using dh/dT = ¢,(T) (the specific heat), and the thermal equation of state
(1.59), we get
a’=y(T)RT =yple, (1.135)

where y(T) = ¢,/(c, — R) = ¢,/c,. The sound speed of a thermally ideal gas
thus depends on the temperature only. For a calorically ideal gas, moreover,
y = const, so that a ~\/ T. Figure 10 gives the speed of sound in air as a
dimensionless variable as calculated by Hansen and Heims.

We now extend the discussion to systems in constrained equilibrium, which
must be described in terms of at least one additional variable £. The caloric
equation of state will be & =hi(p, g, ). In unconstrained equilibrium, ¢ is a
known function of p and g, & = &(p, @), so that h = h(p, 0, &(p, @)) = k(p, 0)-
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Fig. 10. Speed of sound in air as a function of temperature at different pressures.
(From C.F.Hansen and S.P. Heims, A Review of the Thermodynamic, Transport and
Chemical Reaction Rate Properties of High Temperature Air. NACA TN 4359, 1958.)

We now define two quantities a and b, both having the dimension of velocity:

d
a? = (—p) , (1.136)
BQ s=const; -{=€ \“,

op
b? =(—> . (1.137)
aQ s=const; &=const

These expressions can be transformed. To this end, we start from Eq. (1.72),
which is, in specific quantities,

—

Tds=dh—dplo+Tde. ' ! (1.138)
3y

[We keep the symbol I for simplicity. Here, I' is (6s/6f)e,\_,{, whereas in (1.72)
it had the meaning given by (1.73).] With ds = 0 and the fact that I' = 0 for
¢ =&, we now obtain
oh + oh o6& oh
Oo 3¢ o 9o
2
=— — =— 1.139
T TTh ehot 1 an 1 (1.139)

__._+___ p—
op %dp o op ¢
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and
oh
de
b= ——. 1.140
oh 1 ( )
op ¢

The definition of a is identical to definition (1.133); b depends naturally on
¢ in addition to p and ¢. We call a the equilibrium speed of sound, and b the
frozen speed of sound. In general, we shall study flows in which the gas
particles are in unconstrained thermodynamic equilibrium; in this case, a
will just be called the speed of sound.

We briefly remark further on the meaning of the speeds a and b. In certain
gas flows, relaxation phenomena must be considered (Section 1.6); if the
processes are sufficiently slow, the gas particles undergo unconstrained equi-
librium (¢ = E), whereas, if the processes are very fast, the equilibrium be-
comes constrained or frozen (£ = const). A slow process is one in which the
state variables do not change significantly over time intervals comparable to
characteristic relaxation times 7. Under such circumstances, we can show
that a is the phase velocity of a harmonic sound wave whose frequency is
very small compared to t~ %, while b is the phase velocity of a sound wave
whose frequency is very large compared to t~!. For unconstrained equi-
librium, we always have a? < b? (see Section 3.3.2). For a Lighthill gas, we
obtain?

2 32_ 3
2T+%1T2
— o)
=21+ a2 (1.141)
1+ T?
a(l —a)
4
pr=Pite (1.142)
o 3

Here, b is the sound speed for « = const, i.e., for frozen dissociation equilib-
rium,

7 J.P. Appleton, The Structure of a Centered Rarefaction in an Ideal Dissociating Gas.
Rep. No. 136 Univ. of Southampton, Southampton, England, (1960).
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1.12 Application to Systems in Motion

The thermodynamic laws given in the previous sections are relations con-
necting the states of thermodynamic equilibrium to one another, each state
being specified by two state variables. There may be constrained equilibrium
states which require the introduction of some finite number of additional
variables &;. However, a gas in motion is not a system in equilibrium de-
scribable by a finite number of variables, and the questions are raised of
whether and how we can apply thermodynamic laws to these systems.

Such a generalization is made possible by the use of local state variables.
Local state variables are functions of position in the flow field and of time,
and are defined thus: We imagine a volume element cut out in the neigh-
borhood of a point P at time ¢ in the flow field. Now we isolate this volume
element completely from its environment and let it move with the mass
velocity it possessed just before it was cut out. After a while, all the initial
inhomogeneities would have evened out, and the smaller the element, the
faster this happens. The element is then in a state of thermodynamic equi-
librium, with definite and measurable values of its intensive and specific state
variables. The limiting values of these quantities for infinitesimal volume
elements (and therefore infinitesimal equilibrating times) are defined-as the
local state variables at the point P and time ¢. .

The starting point of classical gas dynamics is the assumption that these
volume elements are in unconstrained equilibrium. It is therefore assumed
that the thermodynamic processes undergone by each gas particle® moving
in the flow field are quasistatic processes, and that the local state variables
for such a gas particle are connected to one another by relations valid for
unconstrained thermodynamic equilibrium. These assumptions will also be
the basis for subsequent discussions in general, unless broader assumptions
are stated. It then suffices to use two state variables, e.g., pressure p and
density g, to characterize the local states.

As already mentioned in Section 1.6, nowadays such flow problems
assume ever more significance in which the gas particles do not undergo
unconstrained thermodynamic equilibrium. To describe the constrained equi-
libria established in an isolated small volume element, at least another
variable ¢ is needed, which also varies with position and time in the flow

8 See footnote 2 for the meaning of a “‘gas particle.”
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field. In this case, the thermodynamic relations must be modified accordingly
(see Section 1.6).

Our discussion so far assumes that a gas is a continuum. But every gas is
composed of molecules, so that the previous arguments become meaningless
if the dimensions of the volume element cut out from the flow field become
comparable to the typical lengths of the molecular structure. The important
length in limiting the validity of gas dynamics is the mean free path of the
molecules, and the previous ideas remain meaningful only if the thermo-
dynamic state variables (obtained by isolating and shrinking the volume
elements) are already practically independent of the dimensions of the
volume element when these dimensions are still large compared to the mean
free path. In other words, the local state variables must not change signifi-
cantly over distances of the order of the mean free path.? If this assumption
is violated, e.g., in flows of highly rarefied gases (e.g., reentry of space
vehicles in the upper atmosphere) or with extremely high gradients of the
state variables (e.g., strong shock waves), continuum gas dynamics becomes
no longer applicable. We must then resort to kinetic theory of gases, which
is outside the scope of the present book.

9 In addition, we must require that the characteristic time scale for the substantial time
derivative (see Section 2.2) of the thermodynamic variables be large compared with the
time between the collisions of two molecules.



2 FUNDAMENTALS OF
CONTINUUM MECHANICS

Remarks on Notation. In the following sections, we shall denote vectors by
lower-case boldface Roman letters: a, b, etc., and square matrices (which
ulways represent second-order tensors) by capital boldface Roman letters:
A, B, cte. The vector (A -b) is the product of the matrix A with the vector b
(written as a column matrix), while the vector (a-B) is the product of the
vector a (written as a row matrix) with the matrix B. The scalar (a-b), or
the product of the row matrix a with the column matrix b, is the scalar
product of the vectors a and b. (a+(A -b)) then denotes the scalar product of
the vectors a and (A-b). The vector product of a vector a with a vector b
will be written as a x b.

Althoughwe are primarily concerned with gases in this book, the discussions
of Sections 2.1-2.5 remain valid, with slight exceptions, for deformable media
in general; in particular, they are also valid for liquids. As is customary, we
shall call each function defined at all the points of a connected region in space
and at all the points in a time interval a field function, or, for short, a field.

2.1 Kinematics of a Flowing Medium

The state of motion of a flowing gas is characterised by the velocity field
v(x, y, z, t). The vector v is the velocity with which a gas particle at time #
and location x, y, z moves.1% In general, we use rectangular Cartesian co-

10 In kinetic theory, v is defined as the mean mass velocity, i.e., it is the weighted (with

molecular mass) average of the molecular velocities at the point x, y, z and time z. If all
the molecules have equal mass, this mean is just an arithmetic mean.
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ordinates x, y, z. The components of the velocity in the x, p, z directions
will be denoted by u, v, w:

v(x, p,z, 1) = (u(x, y, 2, 1), v(x, y, 2, 1), w(x, y, z, 1)). 2.1)
4 We shall assume for the velocities u, v, w, as well as for.the density g, the
' ! pressure p, and other field functions to be introduced, that these functions
‘ % and their derivatives appearing in our equations are all continuous functions
of their arguments. When this is not the case, special considerations must
be used (see Section 3.4).

When the velocity and all the other flow variables do not depend on time,
we say the flow is steady; otherwise, it is unsteady. The velocity field gives a
direction at each point in space at any instant. The integral curves of this
direction field at any given instant are the streamlines. For these curves, we
have dx:dy:dz = u:v:w. By particle paths, we mean the space curves traced
out by the individual gas particles in the course of time. In steady flows, the
streamlines and particle paths are identical; in unsteady flows, they generally
, are not. If one takes a point P on a streamline in an unsteady flow, then the
patﬁ of the particle which coincides with P at that instant ¢ will be tangent

to the streamline at P (Fig. 11a). By a streamtube we mean the surface formed
H by all the streamlines passing through a closed curve (Fig. 11b).
. i 12)
! 1)

Fig. 11. a. (1) Streamline and (2) particle path. b. Streamtube.

.

To study the deformation of a moving medium, we consider two infinites-
imally close points P; and P, which at time ¢ are separated from each other
by a displacement vector dr with components dx, dy, dz. The velocity com-
ponents u; and u, at the two points differ by

6ud +6u
™ o

ou
Uy —u; =du=—dx+ dz, 2.2)
0x
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and similarly for v and w. Introducing the square matrix .
du dv Ow
0x 0x Ox
ou dv ow
Jdy 0y 0y
du Ov ow
0z 0z 0z
and regarding the vector v as a column matrix, we can combine the three
component equations (2.2) into a single equation:

v, — vy = dv = (dr-gradv), 2.4)
where the product of the matrix grad v with the vector dr is defined in the
preliminary remarks on notation. '

Every matrix, which gives a linear relation between two vectors (as in
Eq. (2.4), the relation between dr and dv is given by grad v), is the repre-
sentation of a second-order tensor in the coordinate system chosen. Thus,
we call grad v the gradient tensor of the velocity field. Just as vectors have
significance independent of the choice of the coordinate system—namely,
that they can be regarded as directed line segments—tensors also have a
significance independent of the choice of coordinates. If we introduce a new
Cartesian coordinate system by a rotation of the original coordinate system,
then all the components of dr and grad v will indeed be changed, but the
relation (2.4) remains unchanged in the new coordinate system. From the
known transformation for vector components under rotation of coordinates,
we can derive the transformation formulas for tensor components.

Let the points P, and P, move with the flowing medium (Fig. 12); then

gradv = 23)

g wt %

p vdt

Fig. 12. Translation of the material points P and Pz in time dfr.
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the displacement vector dr* at time 7 + dr will be given by
dr* = dr + (vy — v,) dt = dr + (dr - grad v) dt. 2.5)

Th: scalar distance between the points at time ¢ + 4, or the absolute value
|dr*| of the vector dr*, is in general different from the distance |dr| at time 7.

As a mf:asure of this change, we introduce the difference 4 in the squares of
these distances:

A = (dr* - dr*) — (dr - dr). (2.6)
Substituting dr* from Eq. (2.5) into this, we get the first-order term in dt:
A =2dt(dr-(dr-gradv)). (V)

F o}' further discussion, we split the tensor grad v into the sum of a sym-
metric part D and an antisymmetric part R:

gradv=D + R, (2.8)
~where, using the notations du/dx = u,, etc., we have
u, 1o, +uy) t(we+u,)
D ={4(u, +v,) v 3w, tou) |, 29
%(“z + Wx) % (Uz + Wy) w,
0 %(vx'_uy) 'ZL(wx_u)
R=|%(u,—v) 0 1w, —v) . (2.10)
Jf(uz - wx) % (vz - w.v) 0

}Slincc R is antisymmetric, for any vector a, and in particular for a = dr, we
ave: ,
(a-(a-R) =0,
so that (2.7) becomes just
A =2di(dr(dr-D)). 2.11)

I-.“rom this, it follows that when, in a flow, at any point at any instant D = 0,
(1.e.,'whe}1 all the components of D vanish), then the distance between an)"
twq infinitesimally close points moving with the medium there and then will
be ms.ta.ntaneously unchanged. The local motion of the medium must then
be a rigid translation, rotation, or a combination of the two. More precisel

when D =0, then (2.5) becomes ”

dr* = dr + dt(dr-R). (2.12)
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Using the dcfinition of curl v, this can also be written as
dr* = dr + § dt(curlv x dr). (2.13)

This is easily seen if Egs. (2.12) and (2.13) are both written in terms of their
components. On the other hand, we know that if the points P, and P, are
regarded as rigidly connected, and this “dumbbell” is rotating with vector
angular velocity o in space, then, independent of the translatory motion, the
displacement dr between these two particles will change in time df to dr*,
where dr* = dr + dt(o x dr). 2.14)
Comparing (2.13) and (2.14), we obtain an important relationship between
the angular velocity @ of a particle in a moving medium ard the vector
S o =1curlv. ‘ (2.15)

On the other hand, if R =0, then we have the following: Because of the
symmetry of D, a well-known theorem of analytic geometry permits us to
find a special Cartesian coordinate system in which the matrix D is diagonal:

«a00
D=[{0p0]}. (2.16)
00y

In this coordinate system, Eq. (2.5) becomes

dx* =dx(1 + « dt),
dy* = dy(1 + p dv), (2.17)
dz* =dz(1+ydi).

This means that a small element of the flowing medium will be stretched or
compressed in these three directions, depending on whether o, §, and y are
positive or negative. Thus, the element undergoes a deformation, and D is
called the deformation tensor.

In general, neither D nor R vanishes, and an element experiences, in
addition to pure translation, a rotation given by R and a deformation given
by D (stretching in three mutually perpendicular directions).

We illustrate this by an example of plane shear flow (Fig. 13).1! The velocity

11 A flow is said to be plane if an x, y, z coordinate system can be chosen such that all

the flow variables are independent of the z direction and the w component of the velocity
field is identically zero.
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AN

field has un x component u = ¢y with constant ¢, and the other components
ve=w=0. Curlv has only onc component, which is perpendicular to the
X, y planc and has the value ¢, so that the angular velocity of any element
in this flow is ¢/2. The upper diagrams of Fig. 13 show the motion and
deformation of a square element during time dt; we easily see that the angle
dp = c dt. The lower diagrams show the same element, apart from pure
translation, being stretched in direction 1, compressed in direction 2, and
rotated through d@/2, i.e., since d¢p/2dt = ¢/2, the angular velocity is ¢/2.

2.2 Derivatives with Respect to Time

2.2.1 SUBSTANTIAL DERIVATIVE WITH RESPECT TO TIME

Let a scalar field function @(x, y, z, t) be given. We imagine an observer
moving in space and measuring the quantity ¢ while moving. The time rate
of change of ¢ as registered by this observer is given by

dp 1
—=1lim —[®(x+4x,y + Ay, z + Az, t + At) — & (x, y, z, D],
dt -0 At
ie.,
dd b  _8d b P
a e Ty it a
y

ooy 2 1

Fig. 13. Deformation of an originally square fluid element in plane shear flow.
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where Ax is the distance traveled by the observer during time 4¢ in the x
direction. Hence x is the x component of the observer's velocity. The same
upplies to y and 2. Let the space now be filled with a moving medium of
velocity field v, and let the observer move along with an element of the
medium. The speed of the observer will be the same as v at every instant and
at every location. If we denote the time rate of change in this case by the
symbol D/Dt, then we have

| op 0d 0P
l:)(:’:uz—f+va—j+waz+5=§+(v-grad¢), (2.18)
with the vector grad @ = (0®/0x, d@/dy, 09/0z).

'T'he time derivative defined by Eq. (2.18) is called a substantial derivative.
The total rate of change of @ is seen to be the sum of the local rate of change
0@/0t und the convective rate of change (v-grad ®).

The assumption that @ is a scalar quantity can be relaxed. If & is one of
the three components of a vector field a(x, y, z, 1), e.g., ® = a,, then Eq.
(2.18) holds unchanged:

Da, da, da,

+ + a, Oa,
— v —
Dt ot 0x dy

v .19

Likewise, there are two similar equations in which a, is replaced by a, and
a,, respectively. These three equations may be combined into a single vector
equation:
Da_da +( d a) (2.20)
— =—_— +(v-grada), .
Dt ot &
with the meaning of the gradient grad a of a vector ficld a explained in
Section 2.1. In particular, for a =v, we have:

Dv ov

E=5t+ (v-gradv) (2.21)
or

Dv ov v?

i + grad O (v x curly). (222)

The identity of Egs. (2.21) and (2.22) is readily shown if the right-hand sides
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of both relutions arc written out in terms of their components [v? denotes
the scalar product (v-v)]. Dv/Dt is the acceleration of an element of the
moving medium. In a steady flow, dv/0t =0, but the acceleration Dv/Dr is
in general nonzero.

2.2.2 INTEGRAL TIME RATE OF CHANGE

In the following discussion, we shall derive a three-dimensional general-
ization of the differentiation formula for integrals depending on a parameter
o, well known from elementary analysis:

&2(a) £2(a)

d [, ds dé;

= f f(& oy dé= J A ) - (e, )
S1(@) S1(x)

For further use, we next note the trivial generalization of (2.23) to the case
when the integral depends not only on a but also on additional parameters
B, 7,.... We then have

&2(a, B, -0) $2(a, B, ---)a
a
Pn j f& o B )d= f (%dé
&1 Br ) c‘(s ) 5 (2.23%
+ 53 f(éz’ «, ﬂ> ) - ;if(éh o, ﬁ, )

a0l
‘We now consider a volume ¥ enclosed by a smooth surface 4 in a moving
medium. Let each point on the surface move with the flow velocity v, so that

the surface will always consist of the same material points. In addition, let
a scalar field &(x, y, z, t) be given. Integration of @ over this volume ¥ gives

x2(1)  ya(x, 1) z2(x, 3. 1)

‘"(‘)=fﬂ“v=f{f [ f qf'(x,y,z,t)dz] dy}dx. @2.24)

x1(t) yi(x 0 zi(x, 3, 1)

The meaning of the limits of integration x;, x,, ¥y, ¥», z;, z, is evident
from Fig. 14. Now let us construct the time derivative of ¥, which we shall
denote by D¥/Dt; the symbol D/Dt implies that the surface moves with the
fluid velocity and thereby always encloses the same fluid mass. Application
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of formula (2.23) to the integral in x gives

xa(r) y2(x,8)  22(x,9,0)
0
= TRLTCL swonnns)a o
x1(1) yux, ) zi(x y,t)

ya(x2, 1) z2(x2, %, 1) y2(x1, 1) z2(x1, 1, 1)

dx, dx,
—= Gdz)dy — —
T J ( f z) YT J

yi(x2, 1) z1(x2,3,1) yilx, ) zi(x1, 3, 1)

<sz>dy.

Here, the latter two terms drop out, since the lower and upper limits of the
y Integral (and also the z integral) coincide (see Fig. 14): y, (x5, 1) =y, (x5, )

Fig. 14. Diagram for the derivation of Eq. (2.25).

and y, (x,,?) = y,(x;, t). To carry out the partial differentiation with respect
to ¢, we can now use formula (2.23%). Applying this formula to the integral
in y, we get next (here, x plays the role of a parameter),

x2(t)  ya(x,1) z2(x, ¥, 1)
DY a
—_— — D(x,y,z,t)dz ) |dyydx.
o [{[ [ [ senmoe]o}
x1() yi(x,1) zi(x, ¥, 1)

The two terms involving multiplication by dy,/dt and dy,/0t that result from
applying (2.23*) can be omitted. They vanish, since the lower and upper
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~

N
limits of the integrals over z appearing in these terms coincide: z, (x, y;, t) =
zy(x, ¥y, 1) and z; (x, ya, t) = 2,(x, y,, t) (see Fig. 14). A repeated application
of (2.23*) to the integral over z finally gives

x2(1)  ya(x, 1) z2(x,¥,t)
ld P
= —dz|dy,dx
Dt ot
x1() yi(x, 1) zi(x, 1)

x2(8) ya(x, 1)

F
+ J{ J- 4s(x,y,zz,t)§dy}dx
x1(t)  yi(x, 1)

x2(t)  ya(x,1)

0
- J‘ { J Q(x’y’zl’t)gdy}dx'
x1(t) yi(x, 1)

The double integral can be written in a somewhat simpler form: We take
an element d4 of the surface, and denote by n its outward normal (unit
vector in normal direction); the projection of this element in the x, y plane
shall be dx dy. The velocity of this element in the normal direction is v-n,
and the z component of the velocity is 8z,/0¢ or 0z, /¢ [ depending on whether
the normal n has a positive or negative z component, i.e., whether it is on
the upper or lower surface of the volume ¥ (see Fig. 14)]. On the other hand,
the velocity of the element in the z direction can be written as (v+n)/cos(n, z),
where cos (n, z) is the cosine of the angle between the normal and the positive
z direction. Considering the fact that d4 cos (n, z) = + dx dy for an element
of the upper surface, and d4 cos (n, z) = — dx dy for an element of the lower
surface, we see that (0z,/0t) dx dy =(n-v) d4 for the element of the upper
surface and — (0z,/0t) dx dy = (n-v) dA for the element of the lower surface.
Thus, the final result can be written as:

‘l’)’t’:m%‘;dmf (n-@v) dA. 2.25)

A

The first integral is the contribution of the local change of the field @ to the
time rate of change of ¥, while the surface integral is the contribution due
to the motion of the surface at the fluid velocity, resulting in the enclosing
of new space by the volume ¥ as time goes on.

Upon transforming the surface integral into a volume integral by means
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of Gauss's theorem,!2 Eq. (2.25) becomes

¥ = fﬂ [‘Z’ +div (tbv)] dv (2.26)
Il Dg )
‘t_f”[ﬁﬁbdm] av. (2.27)

Bquation (2.27) is obtained from Eq. (2.26) by the substitution of div(®v) =
(v:grad @) + & div v. It is not necessary to restrict @ to a scalar field. If we
replace @ by the three components of a vector field a in Egs. (2.25) and
(2.27) und combine the three corresponding equations into a vector equation,
then we readily get the following formulas: If G

b(t) = JI[ a(r,t)dv, (2.28)
H'[ —dv + ”a(n -v)dA (2.29)
= H J [1; +a divv] av. (2.30)

2.2.3 CoNTINUITY EQUATION

or

then

or

, If we identify the quantity @ in the previously derived formulas with the

density ¢ of the flowing medium, then ¥ becomes the total mass M of the
volume considered. Since by assumption the surface moves with the fluid
velocity, then no mass can flow in or out across the surface; at the same

12 Gauss’s theorem states that for a differentiable vector field a and a volume ¥ with

smooth surface 4 :
”(n.a)dF:_[”divadV
4 v

dxva—%-kaa"

oy | oz

where
oaz

[P

2.2 Derlvatives with Respect to Time 58

~
time, spontancous generation or annihilation of mass in the volume shall be
excluded. Thus, M will not change with time. Equation (2.27) then gives

II[Ee-eam]ar=o. -
v

Since the volume ¥ can be chosen completely arbitrary, the integrand must
vanish wherever it is continuous:

Do/Dt + o divv=0 (2.32)
or
do/ot +div(gv)=0. (2.33)

Equation (2.32) [or Eq. (2.33)] is called the continuity equation. Equation
(2.31) may be written in the form [corresponding to Eq. (2.25)]

U de=—J‘J‘g(n~v)dA, @39

which permits the following interpretation: If we regard ¥ as a volume fixed
in space and unchanging in time, then the left side is the time rate of change
of the mass enclosed in this volume, and the right side is the net of the mass
inflow per unit time over the mass outflow.

We apply the continuity equation to the following useful transformation:
Let ¢ be a field function and let

=flj@¢dV.

Then, from Eq. (2.27),13 we have
] av

z-re
(e

13 QOne can readily convince oneself that for the substantial derivative with respect to
time the usual rules of differentiation regarding the sum and product of two functions
all hold, as does the chain rule.
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DY D¢
Dt =_[U"bt dv. (2.35)
4

¢ can be cither a scalar field or a vector field.

2.2.4 CiaNGE OF CIRCULATION WITH TIME

We consider a closed smooth curve € in a flow field, and let ds be a vector
line element of it (Fig. 15). We fix a positive sense of rotation, and define

Fluid curve for

rat+adt),

Fluid curve
for time t

T (a+dat)

4 18, Translation of a fluid curve in time dr. Diagram for the derivation of Eq. (2.39).

olrculation around this curve by the line integral

K= §(v-ds). (2.36)

[4

¢ We now assume that every point of the curve moves with the velocity of the
fluld; in other words, the curve always carries the same fluid particles. We
shall call such a curve a fluid curve. We characterize the points on the fluid
eurve by a parameter « such that a fixed « value corresponds to a fixed
material particle at all time 7. A convenient choice of a, for example, would
be the arc length from some arbitrary reference point to the material point
on the fluid curve at some initial time #, in the positive direction of rotation.
In this case, o varies between the values of 0 and /, where / is the total length
of € at the initial time #,. This fluid line is then described for all time bya

2.3 Momentum Equation L)

—

vector equation of the form r -\t(oe. t). We have(dr/do) do = ds(see Fig. 15);
morcover Jr/df = v and d%r/dt? = Dv/Dt. Differentiation with respect to time
for a fixed o gives the time rate of change of a quantity in question for a
material point.

The circulation K is in general a function of time. Using the above re-

lations, we can write K as
1

or or
={—= . 2.37
K J <6t 60() da 237
0

We now construct the derivative of K with respect to time, and denote this
derivative by DK/Dt for obvious reasons; thus:

1 1
DK &r or or or
—= |l - )da+ || 5= ) da. 2.38
Dr f (aﬁ 5oc> * f (6t o aa) : (2.38)
0 (1]
The second integral can be transformed as follows:
1 ] 4

o o°r 1[0 [oror 1 for\?
———da=-| — |+~ Jda==|~
dt ot oo, 2 ) da\ot ot 2\at

[ [

1]

Since the initial point « =0 and the endpoint a =/ coincide, this integral
vanishes and (2.38) becomes

DK [(D
2 fﬁ(l -ds). : (2.39)
Dt Dt

(1

2.3 Momentum Equation

If we identify the vector a in Eq. (2.28) with gv, then b is the total mo-
mentum of the fluid enclosed by the volume in question. By Newton’s law
in mechanics, the time rate of change of this momentum is equal to the total
force acting on the volume. This force can be divided into those forces acting
on the surface of this volume and those acting on the individual volume
elements. When such volume forces exist, e.g., inertial forces, gravitational
forces, electromagnetic forces, etc., it is convenient to refer them to unit
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mass by introducing a specific force vector k(x, y, z,t). The total volume
force is then [{f, ok dV.

The surface forces must be studied in somewhat greater detail. We single
out a surface element of area 44 (Fig. 16). On this surface element, the

Fig. 16. Stress vector t and normal vector n.

surrounding fluid outside the volume V will exert a force AK. We define the
stress vector at each point of the surface to be

. 4K
t=lim —,
44-044
where 44 contracts toward the point in question. Using this definition, the
totalsurface force is [{, t d4. The stress vector t does not in general lie along
the normal direction given by the unit vector n, but has both a normal and
a tangential component. In gases, such tangential components (and also a
certain contribution to the normal components) enter only when the gas is
moving and not when it is at rest, and are caused by viscosity. A relationship
between these viscous stresses and the velocity field will be given in Section
4.1.1.
In many cases, one may neglect viscosity, at least in those regions of the
flow fields where no large velocity gradients appear. Then the entire surface
force will consist of only the thermodynamic pressure, and we have

t=—pn. (2.40)

(The negative sign must be introduced, since n has been defined as the
outward-pointing normal, whereas the pressure causes a force in the direction
opposite to this normal.) It is already clear in this special case that the stress
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vector t does not form a vector field, i.e., does not depend only on space and
time; t also depends, in addition to space and time (p can be space- and
time-dependent), on n, i.e., on a direction in space. This leads to the con-
clusion that in general, when viscous stresses appear in addition to the
pressure, a complete description of the state of stress requires the introduction
of a tensor field S(x, , z, ), the stress tensor. The stress vector t at the point
x, y, z and time ¢ for a normal direction n is then given by

t=(n-S). (2.41)

The proof of the fact that the relation between t and n is given by a tensor S
according to Eq. (2.41) is found in basic texts on continuum mechanics. It
is also shown in these texts that S is a symmetric tensor.

When the viscous stresses drop out completely, then the stress tensor S
reduces to the spherically symmetric tensor

-p 0 O
S= 0—-p O0]=—pE (242)
0 0-p

(E = unit tensor), and Eq. (2.41) becomes Eq. (2.40), since (n-E) =n. In the
general case, we split S:
S=—pE+T. (2.43)

Here, T is the viscous stress tensor, which, like S, is also symmetric, and p
is the thermodynamic state variable, pressure. The re}lation (2.41) becomes

=—pn+(n-T), (2.44)

(nT) being the viscous stress vector. We introduce the following represen-
tation in components:14

o‘x Xy Xz
T=\{ 1,09, T (2.45)
Tox sz [P}
Symmetry of T means
Tyy = Tyxs Ty = Tzys (T = [T (2.46)

The components of the stress tensor can be readily interpreted: If we

14 Subscripts on the stress components do not denote partial derivatives.
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consider a surface clement with a normal in the positive x direction, then
the stress vector is given by Eq. (2.44) as

t(x)=(_p+ﬂx$rxy’rxz)'

Anulogous results can be obtained for surface elements with normals in the
»yor z direction. On an infinitesimal cube, the components of the stress tensor
hence appear as components of the stress vector on the three mutually
perpendicular surfaces directed along the coordinate axes, as shown in
Kig. 17. Through the symmetry of the stress tensor, we can always introduce
# coordinate system in which the stress tensor has diagonal elements only
(oo Section 2.1). Then, only normal stresses appear on the surfaces of the

¢

4

P+0;
Ty
T2x
Ty
r" J‘ | £+0y
Try T
“p+0y | Y

Fig. 17. The elements of the stress tensor as stress components in three planes perpen-
dloular to the coordinate axes.

cube in Fig. 17. The off-diagonal stresses of T are called the shear
stresses.

Having made these preparations, we can now write down Newton’s second
law of motion for an arbitrary volume of a flowing gas:

B[ Jesr=- [ [fomice [ o

A A

This equation can be written in many other forms which are convenient for
various applications. Transformation of the left side on the basis of Eq. (2.29)
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\
leads to

fffa%’lv)[w:—jfv(n-gv)m
’ _fAjpndA+ff(n-T)dA+fff@de. (2.48)

Equation (2.48) can be interpreted [similar to the interpretation of
Eq. (2.34)] as follows: Let us think of the volume ¥ as fixed in space and
unchanging in time, a “control volume.” The left side of the equation gives
the time rate of change of the momentum of the fluid contained in this
volume. The first term on the right gives the net of the momentum inflow
per unit time over the momentum outflow, since gv is the mass flow vector,
— (n-gv) is the mass inflow per unit time across a unit surface with outward
pointing normal n, and — v(n-gv) is the momentum of this mass. The other
three terms are the forces acting on the volume—namely, the pressure and
viscous stress on the surface and the volume force. In the important special
case of steady flow without volume forces, (2.48) becomes

ff [v(n-gv) + pn —(n-T)] d4 =0. (2.49)

If we use Eq. (2.35) to transform the left side of (2.47), and convert the surface
integral on the right side by means of Gauss’s thecorem !5 to a volume integral,

15 For a differentiable tensor field, Gauss’s theorem holds in the form

Lf(n.T)dA :J‘ﬂ divT av.

Here, div T is a vector with the components

. 90z | OTyzr  OTz
divT)z = — + + -,
( /3 ox dy oz

ATy i @ T dTzy

divT)y =
( Yy o . 2z

ey OTyz | 002

divT), = —
(@ivD: ax oy oz

This follows immediately from Gauss’s theorem in the form given in footnote 12, which
we apply to each component of the above vector equation.
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Jj”: +gradp — divT — Qk]dV 0. (2.50)

Since V is arbitrarily chosen, the integrand must vanish everywhere where it
is continuous:

we get

Dv
QE =—gradp + divT + gk. (2.51)

This differential form of the momentum theorem is of fundamental signifi-
ciance in the theory of all flow processes. For this reason, we shall give it in
detail in component form:

u du ou ou op do, Ot, O,
0[71+"ax+v@+ az:l T ox +0y+6z gk
v ov ) ov ap arw ds, 01,
0[61 o 0x + 067 62] T dy o0x  dy * 0z ok, 1. (252
ow ow ow ow 6p or,, 0t, Oo,
[0'+ua~x+v 62]— +ax+ﬂ~+az+gk,.

If we neglect the viscous stresses in Egs. (2.51) or (2.52), the resulting
equations are called the Euler equations. With the expression for the relation-
ship between the viscous stresses and the velocity field (to be explained further
in Section 4.1.1), Egs. (2.51) or (2.52) become the Navier-Stokes equations.

Supplementary Remarks. One can also write the first term on the right side
of Eq. (2.48) in the form — [{,(n-J) d4, where J denotes the momentum flow
tensor with components of the form ou?, guv, etc. While the flow of mass
(a scalar) is defined by a mass flow vector, a tensor is necessary to define
the flow of momentum (a vector). It is of interest to note that the viscous
stress tensor T for a thermally ideal gas can also be written in the form of
a momentum flow tensor. Instead of the products of the macroscopic velocity
components u, v, and w as in J, we have the mean values of the products of
the components of the thermal or peculiar velocities of molecules relative to
the flow velocity v. Finally, J — T can also be interpreted as a single momen-
tum flow tensor, the components of which are now mean values of the
products of the components of the absolute molecular velocities (flow
velocity + peculiar velocity).
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2.4 Energy Equation

We now set up an energy balance for an arbitrary volume in a flowing gas.
The total energy of such a volume of gas is the sum of its internal energy and
its kinetic energy. The time rate of change of this total energy must equal
the work done per unit time by all the forces acting on the volume, i.e., the
volume forces and surface forces (pressure and viscous stress), plus the influx
of energy into the volume per unit time. We characterize this energy flux by
an energy flow vector g, such that the flow of energy per unit time across a
surface element d4 with outward-pointing normal n is given by — (n-q) d4.
Generally, q will simply be the heat flow due to temperature gradients in the
gas. However, in the flow of gas mixtures, energy can be transported inde-
pendently of normal heat conduction, e.g., by diffusion processes, and these
also contribute to q. The transport of energy by radiation will not be con-
sidered here.

The energy balance can now be formulated as follows:

oI (” 7)o ﬂf"“ 94 .
ﬂ( (.. T))dA+mo(v k)dV J(n q)dA

L, L, L,

where E is the sum of internal and kinetic energies, L, the work done by
pressure, L, the work done by viscous stresses, L3 the work done by volume
forces, and L, the energy influx per unit time. To explain the terms L,, L,,
and L,, we recall that, in general, a force K acting on a point moving with
velocity v produces the work (v-K) per unit time.

We now specify several equivalent formulations of the energy balance, in
a similar way as was done with the momentum equation in Section 2.3 which
can be derived from Eq. (2.53):

1. Transforming the left side of Eq. (2.53) with the use of (2.25) and
combining the resulting surface integral with the term L, of (2.53), we obtain

Maz[ (e+ >]dV— Ue(v n)[e+ + ]dA+L2+L3+é454)
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The quantity in square brackets [ ] in the first integral on the right side will
be denoted by 4,:

e+(plo) +4vi=h + vi=h,; (2.55)

hq is the sum of the specific enthalpy # and the specific kinetic energy v2/2
and is called the specific total enthalpy, (hence the subscript ¢) or the
stagnation enthalpy (see Section 3.1). We can now interpret Eq. (2.54) in the
same way as Eqs. (2.34) and (2.48), by regarding the volume ¥ as a “control
volume” fixed in space and unchanging in time. The left side is the time rate
of change of the total energy in the control volume, the first integral on the
right is the net inflow of total enthalpy across the surface per unit time, while
the remaining terms are the same as already given.

When we can neglect both the energy flux and the viscous stresses, we call
the flow an ideal fluid flow or an inviscid flow. If the flow is inviscid, steady,
and without volume forces, then Eq. (2.54) assumes the following simple
form:

oh(n-v)d4d =0. (2.56)
i

We now apply this equation to a streamtube with infinitesimal cross section
(Fig. 18); since no flow crosses the sides of the streamtube, we have

hyoy(ngvi) dd; = hy0,(n, *Vy)d4,.

)

v

Fig. 18. Streamtube of infinitesimal cross section.

On the other hand, conservation of mass [applying Eq. (2.34) to the stream-
tube] requires

01 (n;+v,)d4, = 02(ny+v,) d4,.

i
i
i
1
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™
Thus, we have A, = h,,. In inviscid steady flows without body forces, there-
fore,
h, = const 2.57)

on each streamline; naturally, this constant can vary from streamline to
streamline. In Eq. (2.63) we shall give a somewhat generalized form of
Eq. (2.57).

2. Having become familiar with the notion of specific total enthalpy A, in
the special case of inviscid steady flow without body forces, we shall now
derive from Eq. (2.53) a generally valid relation for 4, including all the terms
on the right side of (2.53). To this end, we add the term D/Dt [{f, p d¥ to
both sides of Eq. (2.53), and, at the same time, we transform the right side
of this equation using Eq. (2.25). The result is:

D Dh,
— e av=|||e="av
\4

14

= JJ[%F av +Jf('n-pv) dA+ L, +L,+Ly;+L,. (2.58)
| 4 A

The second integral on the right will cancel L;. The terms L, and L, will be
transformed into volume integrals by Gauss’s theorem. In the transforma-
tion, we note thatsince T is symmetric, we have: (v+(n+T)) = (n+(v+T)). Then
Gauss’s theorem gives

ff(v'("'T)) dd = fff div(v-T)dV .

4 v
Finally, we get

jfj[@%}:'—g—tp—div(v'T)—g(v-k)+divq:|dV=0. (2.59)

Since ¥ can be chosen arbitrarily, the integrand must vanish:

Dh, _ dp

0 T +div(v.T) + o(v-k) — divq. (2.60)

In a steady inviscid flow without body forces, this means that

Dh, /Dt =0. (2.61)
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Thus, the specific total enthalpy of a particle does not change; then, along
each streamline, which coincides with a particle path in this case, the specific
total enthalpy must be constant, as we had already established in Eq. (2.57)
for this case. Equation (2.61) may be slightly generalized: We still assume
Inviscid flow, but now admit a body force which is derived from a potential
Q: k = — grad Q (a conservative force field). Since, in steady flow (v-grad Q)
In ldentical to DQ/Dt by definition (2.18), we get from Eq. (2.60) for this case

D(h + Q)/Dt=0. 2.62)
Thus, tor cach streamline,
h, + Q = const.. (2.63)

If the constant has the same value on all the streamlines, the flow is called
Isoenergetic flow.16

E ). We now undertake a third important transformation of the energy
balance (2.53). On the basis of Eq. (2.35), the left side becomes

allf el )er= [l e[5re (5]

Wa can now substitute Dv/D¢ from the momentum equation. Transforming
i the surfuce integrals into volume integrals at the same time, we change

E (2.53) 0

£ De
J.Jj[o bt~ (v-gradp) + (v-divT) + Q(V-k)] av

= J] [—div(pv) + div(v+T) + ¢(v-k) — divq] dV. (2.64)

But — (v-gradp) =p div v — div(pv), and by the continuity equation (2.32),
div v = — ¢~ 'Dg/Dr. Substituting these into Eq. (2.64) and simplifying, we

18 We should note that it would be consistent, in analogy to the difference between
Isentropic flow and homentropic flow as explained later, to use the term isoenergetic flow
for those flows for which Eq. (2.63) holds along the streamlines and to call the flows for
which the constant in (2.63) is the same on all streamlines homenergetic flows. Since iso-
energetic flows (in this sense) which are not at the same time homenergetic will play no
role in the following discussion, we keep the term isoenergetic flow in the special sense
defined above.

1
¥
i
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\

ﬁ (De Pz zf) v = I_U (¢ —divg)dv, (2.65)

where @ is defined as
¢ =div(v-T) — (v-divT)
ou dv ow

=ﬂ'xa+a'y5+0'25;

du v ov ow ow ou
ol =+t I+ttt )+ =+ ) 2.66
* oy (ay ax> o (62 8y> (ax az) (2.66)
The scalar field quantity @ is called the dissipation function. It can be
interpreted as the irreversible dissipation of mechanical energy into heat
caused by the viscosity per unit time per unit volume.
Again, the arbitrariness in the choice of V requires that both integrands

in (2.65) be equal. We consider this equation for the integrands, multiply it
by a scalar field 1/7, and use the transformation

divgq _ div (q gradT)
T T T2

have

Integrating over the volume ¥ again, we finally obtain

[ 2
{3 e

The volume integral for div(q/T) has been transformed to a surface integral

) here. _\_)/‘yn ¢ {.»

Up to this' point, we have only Mmade use of the thermodynamic ™
laws; thermodynamic concepts have entered our formulation only through
the specific internal energy e (or the enthalpy 4). We shall now stipulate in
addition that the field function T used in Eq. (2.67) is to be the absolute
temperature, and shall introduce the entropy into the energy equation (2.67)
under various simplifying assumptions, thereby gaining some new insight.

First, we make the following basic assumptions, which are satisfied in
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many practically important cases and which form the basis for classical
gan dynamics:

1. 'The moving gas particles are at all time in thermodynamic equilibrium.
The thermodynamic state variables for the gas are therefore everywhere and
at all time connected by relations valid for equilibrium.

2. Each volume being considered, the surfaces of which are moving with
the fluid velocity, may be regarded as a closed thermodynamic system; in
other words, no cxchange of different gases through diffusion occurs at the
boundury surface.

Under these two assumptions, the entropy equation (1.6) holds, as does
. the specific form resulting from (1.22): 7 ds = de — (p/o*)dg. Substituting
k. Into Eq. (2.67), we get

Jﬂ 02 M‘”‘W“H(ﬂ q)d“m‘fdlf 2.68)

The timo rutc of change of the total entropy (ff, esdV in the volume appears
A two parts: The surface integral on the right side is the inflow of entropy
';cr unit time into the volume, while the volume integral is the entropy
@onerated by the system; according to the second law of thermodynamics,
L # » 0. Equation (2.68) is none other than a special form of Eq. (1.12), with
1 above two assumptions incorporated. The entropy source o is given by

_o_(@emd7)

2.69
T T (2.69)

 The term &/T gives the entropy generated by viscosity, while the second term
F {8 the entropy generated by heat conduction. Under the plausible assumption
that viscosity and heat conduction are independent of each other, each
term must be > 0.

When we assume a flow is inviscid, which by definition means q =0 and
T w0, then 6 =0, and Eq. (2.68) gives

Ds/Dt =0. (2.70)
Thus, in this case, the entropy of a gas particle is constant, and the flow is
isentropic. If s is, in addition, constant throughout the entire flow field, then

the flow is called homentropic.
We now keep assumption 2, but modify assumption 1 to the extent that
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relaxation phenomena are included; with relaxation phenomena, the gas will
undergo an cquilibrium lag, as explained in Section 1.6. In the case where
this lag can be described by one additional variable £, Eq. (1.72) becomes,
in terms of specific quantities,

T ds = de — (p/e*)do + I d¢ Q7))

[Here we have kept the notation I' and & for simplicity, even though we are
now using specific quantities as against the total quantities in (1.72); I" now
has the meaning I = T(0s/0¢), ,]. Substitution of Eq. (2.71) into Eq. (2.67)
gives yet another equation of the form (2.68), except that ¢ now has a differ-
ent meaning from (2.69), namely

K dT D
_ (g-gra )+ r2

272
T T? T Dt 272

As a result of the relaxation process, an additional entropy generation
appears, given by the last term of Eq. (2.72). This entropy generation will
vanishif the gas attains unconstrained equilibrium at all time, since then I' = 0.
However, it will also vanish if the variable ¢ for the individual gas particles
does not change, so that the flow is frozen with respect to the variable . In
case n variables are necessary to describe the equilibrium lag, the last term
in (2.72) will have to be replaced by Y 1., (eI';/T) D&,/ Dt.

In the flow of a mixture of different gases which are chemically reactmg,
we must discern two cases:

1. When diffusion processes may be neglected, we can still consider a
volume whose surface moves with fluid velocity as a closed system. As
explained in Section 1.9, we can then introduce a degree of reaction ¢ (for
many mutually independent reactions, many &; must be introduced). Then,
Eq. (2.67) still holds (see supplementary remarks at the end of Section 1.9),
and the entropy generation due to chemical reaction is again given by the
last term of formula (2.72). (Of course, we should remark that in those
regimes where diffusion procesgggwcan be neglected, the viscosity and heat
conductivity can in general also be neglected, so that the other two terms
in (2.72) will be absent.) In case the degree of reaction is everywhere the same
as the equilibrium value (i.e., given by the law of mass action), or I'=0
everywhere, then the chemical reaction does not contribute to entropy
generation. Likewise, it will not contribute if ¢ remains constant for each
gas particle, so that the reaction is not occurring at all. This is the case of a
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reacting mixture in which, for example, the reaction speed is negligibly small
in comparison with the flow velocity, which governs the rate of change of
thermodynamic state of a gas particle.

2. If we cannot neglect diffusion processes in a flow field, then we must
take formula (1.93) into account, which is valid for open systems. In addition,
the entropy flux over the system boundary must be supplemented by a term
wecounting for the material transport over the boundary. Then, another
term, the entropy source due to diffusion, must be added to the entropy
source I'.

The details cannot be given in this introduction (see special references 7).
Woe ropeut, however, that the formulas of this section through Eq. (2.67)
held Irrespective of the thermodynamic behavior of a flowing gas.

Supplementary Remarks. One can readily show, by applying Egs. (2.53)
and (2.65), the validity of the following formula: ‘

;Hﬁg”E‘HNWﬂM+H@@J»M
+M[@(v-k)+§%’+ ¢] av.

Applying this formula to a streamtube with infinitesimal cross section
(Fig. 18), we see that for an inviscid steady flow without body forces in a
medium of constant density (i.e., Dg/Dt = 0), Bernoulli’s equation holds on
each streamline:

p + ov* = const.

From this it follows that for an inviscid flow of a constant density fluid,

De/Dt =0.

2.8 Vorticity Theorems

In the following we shall, for the sake of simplicity, use w to denote the
vorticity vector curl v. The vector w defines a direction at each point in

17 For example: S.R. de Groot, “Thermodynamik irreversibler Prozesse.”” Mannheim,
Germany, 1960.

\‘ 2.8 Vortlcity Theorems mn

space (provided that w # 0). The integral curves of this direction field are
called vortex lines; they correspond to streamlines for a velocity field. A
vortex tube is formed by all the vortex lines passing through a closed curve €.
The circulation

K= ﬂﬁ(ds.v) @73)
[4

is the same along all the curves € generating a vortex tube, i.e., it is a constant
of the vortex tube. This is easily shown by integration of the expression
divw=0 over an arbitrary piece of the vortex tube and transforming

_surface integrals into line integrals by Stokes’ theorem.

2.5.1 KELVIN’S THEOREM

We substitute the expression (2.51) for Dv/Dt into the formula (2.39),
which governs the time rate of change of the circulation around a fluid line.
We shall neglect the viscous stresses (T = 0), and assume that the body force
possesses a potential: k = — grad Q. Then,

K . d
DK __ jg(i’igﬂl’) _ 3Q(ds.gmdg) __ §1_§;d9,
Dt 0 Q
[ € (04

(1

where dp and dQ are the changes in p and Q over ds along the fluid line €.
Since the second integral vanishes if we assume a single-valued potential,!8
we obtain Kelvin’s theorem

DK dp

Dt . Joe
[0}

2.74)

If along the contour € the density is a single-valued function of the pressure
alone, ¢ = ¢(p), then the integral in (2.74) vanishes, and we get DK/Dt =0.
A flow field in which the density is a single-valued function of pressure is
called a barotropic flow. Thus, in a barotropic inviscid flow field, the
circulation around a fluid line remains constant for all time. Moreover, it
follows from this that a gas particle which is rotating with a certain speed

18 In this way, we have excluded cyclic potentials, which may appear in multiply-
connected regions.
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(vorticity w3 0) at any instant will continuc to rotate at all time. Conversely,
a gus particle which is rotation-free at any instant will always remain rotation-
free under our assumption of a barotropic and inviscid flow field.
Equation (2.74) can be transformed under various assumptions. If we
assume that the gas attains immediate thermodynamic equilibrium every-
where, then Eq. (1.23*) [dp/g = dh — T ds] holds, and
DK

o= 4; T ds. 2.75)

€

In a homentropic flow, the specific entropy is uniform by definition, so that
DK/Dt = 0. ,

- 2.8.2 Crocco's THEOREM

Under the assumption that the body force possesses a potential 2, and
- taking Eq. (2.22) into account, we can write the momentum equation (2.51)
[ 14 =

OVt —v xw=—(1/g)gradp — grad(3v* + Q) + (1/@) divT.  (2.76)

. We utilize the relation (1.23*), valid for equilibrium flow, in the form
dp/¢ = dh — T ds, and obtain from (2.76), for steady inviscid flow, Crocco’s
 theorem: z

—vxw=—grad(h, + Q) + T grads. Q.77

Bince in a steady, inviscid flow A, + Q is constant along streamlines and
#lnoe v x w has no component in the direction v and hence along the stream-
line, it follows that grad s cannot have a component along the streamline.
Thus, s is constant along the streamline, which has been established for a
special case in Eq. (2.70).

In Section 2.4, we called a flow isoenergetic when the quantity 4, + Q has
the same value throughout the entire flow field. For such flows, Eq. (2.77)
reduces to

—vxw=T grads. (2.78)

It follows from this that every irrotational, isoenergetic flow is a homentropic
flow (grad s = 0). Conversely, every nonhomentropic, isoenergetic flow must
be rotational. In a plane flow, w is perpendicular to v, so the product v X w
for nonzero v can only vanish when w=0. Thus, for plane flow, we have

~
N 73
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/
J

the theorem: Every isoenergetic, homentropic flow is irrotational. We can
summarize all these consequences of Crocco’s theorem for steady, inviscid,
isoenergetic flows as follows:

Irrotational -~ homentropic
Nonhomentropic — rotational
Homentropic, plane — irrotational.

If we now include a relaxation process, so that dp/e = dh — Tds+TI d¢
then instead of (2.77), we have the following for steady inviscid flows:

—vxw=—grad(h, + Q) + T grads — I grad .. (2.79)

If ¢ changes along a streamline, so that grad £ has a component along it,
then grad s also has a component along the streamline. The change of s along
the streamline is then given by ds = (I'/T)d¢; this is in agreement v.vxth the
term given in Eq. (2.72), in which entropy generation by relaxation was
considered.
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31 Relation between Velocity and State Variables in Inviscid Steady Flow

From the results of Section 2.4 we can draw certain conclusions which
‘,hlve great significance in the theory of steady gas flows. We assume that
(e flow fleld is steady and inviscid, and that the gas is in unconstrained
#hermodynamic equilibrium everywhere, so that its thermodynamic state is
efined by two variables. We shall also neglect volume forces. For simplicity,
N0 magnitude of the velocity vector |v| will be denoted by U.

- Fleat of all, we make an assumption on the thermodynamic behavior of

.l,m. namely !9
E ?p 0a®
A=) = . :
()=~ o

: hile we can conclude from general thermodynamic considerations that

Pp/0¢), = a* > 0 must always hold (see Section 1.11), the condition (3.1) does

ot follow from thermodynamic laws. However, for all gases of practical

terest, (3.1) is satisfied. :

J From Eqs. (2.57) or (2.61) and from Eq. (2.70), we see that along each

treamline

. 3U% + h = h, = const, 3.2)
s =5, = const, 3.3)

where A, and s, can vary from streamline to streamline. If /, is constant in
the entire flow field, the flow is called isoenergetic; if s, has the same value

1% We can replace the relation (3.1) by the more general condition (62p/2(1/g)2)s>0
without changing the essence of the conclusions. Since we want to present basic concepts in
a single way rather than in complete generality, we use the somewhat simpler condition

a.n.
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everywhere, the flow is called homentropic. When & = h and s = s,, we define
this special thermodynamic state of the gas as the isentropic stagnation state
or reservoir state; the values of the thermodynamic variables in this state
are also called “total values” (hence the subscript ¢ to denote this state).
The gas attains this state at the points of a streamline where U = 0.

From Egs. (3.2) and (3.3) we obtain the relations for the change of the
thermodynamic state variables on a streamline: As the speed U increases,
the enthalpy 4 decreases. Since dp = g dh for s = const, the pressure p also
decreases; this also follows naturally from the momentum theorem that an
acceleration must be accompanied by a pressure drop. Because do = a™2 dp,
the density ¢ also drops. Then, by Eq. (3.1), the speed of sound & must also

'decrease with the density. We now define a dimensionless velocity parameter,

the Mach number M, to be the ratio of the flow velocity to the sound speed:
M ="Uja. (3.4)

Since a decreases as U increases, M increases with U. For U<a, M is <1
(subsonic flow), while for U > a, M is > 1 (supersonic flow). Finally, we can
use the additional assumption that the thermal expansivity [see Eq. (1.33)]
be positive to show that the temperature 7 must decrease with an increase
in U.

The magnitude Jgv| of the mass-flow vector will be denoted by @, which
we just call mass-flow. For a streamtube of infinitesimal cross section dA4,
@ dA is constant along the entire length, by continuity; the.teciprocal © !
is thus everywhere proportional to the cross section of the tube, the greatest
mass flow being at the narrowest cross section. From @ = gU, we have

dO =0dU + Udp. (3.5)

We now consider the change d@ along a streamline. From (3.2), and
dh=0 'dp=a’9 ' dg (since s=const), we obtain: UdU+dh=UdU +
a*e~' do =0, or dop = — oUa™? dU. Substituting this into (3.5), we get

de|dU = o(1 — M?). (3.6)

This relation holds along every streamline, and in the special case of iso-
energetic, homentropic flow, it holds in the entire flow field. By Eq. (3.6),
@ increases monotonically with increasing U when M <1, but decreases
monotonically with increasing U when M > 1. The mass flow © as a function
of the velocity has the shape shown in Fig. 19: For U =0, it is obvious that
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@ = 0. The velocity is bounded above; the gas particles accelerate to the
maximum velocity U, when the pressure drops to p=0. Sincc in an
Isentropic expansion of a gas, ¢ tends to zero with p, then for U = U,,,, © is
again 0. In practice, p =0 is unattainable, since this must be accompanied

{
[
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Umax

Fig. 19. Dependence of the mass flow ® on the speed U. ¢

the tomperature tending to zero, and, in a real gas, condensation would
Ve occurred.

The behavior of the mass flow as shown in Fig. 19 explains the flow out
& slender convergent nozzle (Fig. 20); as the pressure difference p, —p

P p
Fig. 20. Flow out of a reservoir through a convergent nozzle. Dependence of the mass

flow per unit time Q on the external pressure p (schematic); p is the reservoir pressure.

increases, the mass flow per unit time Q first increases, but when the pressure
difference exceeds a certain critical value p, — p4, the mass flow remains

N
3.1 Rolation betwoun Velocity and State Varlablen in Inviscid Steady Flow 77
|

constant. At the critical pressure difference, the exit velocity is exactly the
sonic velocity, and the mass flow attains its maximum. With further decrease
in the exit pressure the nozzle exit velocity remains at the sonic value, since the
exit cross section is the narrowest cross section along the streamtube. Outside
the nozzle, there is at first an expansion of the jet, with a corresponding
widening in the cross section. This initial widening will stop after a certain
distance. The jet then contracts over a certain distance, then expands again,
etc., (see Fig. 86).

To summarize, as the velocity U increases along a streamline: the Mach
number M increases, the pressure p, density g, enthalpy 4, temperature 7,
and sound speed a decrease, and the mass flow @ increases when M < 1 and
decreases when M > 1.

Before we study these facts more precisely for a calorically ideal gas, we
shall draw another important conclusion from Eq. (3.2) on the dependence
of the pressure on the speed along a streamline. Since from Eq. (3.3),
dh =o' dp, Eq. (3.2) can be written as

Ul (d
halpy
2 e

P

0 (3.7)

(This equation can also be obtained, without recourse to Eq. (3.3), directly
from the momentum equation (2.51) for steady inviscid flows without volume
forces). For sufficiently small velocities U, the thermodynamic state of the
gas is not much different from the reservoir state, and one may use the
following approximation:

o0 p—p
e=go+ (5) (p—p)= Qt(l += 7—2"'),
P/s [N

where a, is the velocity of sound for the reservoir state. Then, restricting
ourselves to the linear term in the integrand of (3.7), we get

S P
U? d - vU? - —p)
_ﬁlﬂgo_p M)=;_+p p_(—p)y _

2 Q o4’ 2 Q¢ 20 %a’ a

Pt
From this equation, we can express (p — p,)/¢, as — U?/2 in linear approxi-
mation, and then substitute this for the square term in p — p,, thereby

bt
obtaimng p=p.— 3oU*[t — (U*4a2) +-1, (3.8)
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where the -+ indicates higher-order terms in Ufa,. For very small flow
velocity, Eq. (3.8) becomes the Bernoulli equation for incompressible fluids:
p=p,— 4,U% The error in this equation for compressible fluids will be
small, by Eq. (3.8), if U?/(4a?) is small compared to 1. If U<0.24,
U?/(4a,?) <0.01. In air at room temperature, a, = 340 m/sec. Thus, for flow
speeds below about 70 m/sec, we may regard the flow of air at room temper-
ature as incompressible with negligible error.

We now consider the special case of a calorically ideal gas. From Eq. (1.58),
I = ¢,T + const with constant specific heat c,. Equation (3.2) then becomes

1U% +¢,T=c,T,. 3.9)

One again sees that with increase in velocity U the temperature T' decreases.
By Eq. (1.65), the pressure p =0 corresponds to the temperature T'=0 in
an isentropic change of state. Thus, for T=0, the maximum velocity is
attained:

Upax = (2¢,T)F. (3.10)

8ince from Eq. (1.135) the speed of sound is given by
a=@w-1cT (3.11)
with constant adiabatic coefficient y, we can write Eq. (3.9) in the alternate
form
U? N a? _ a’
2 Ty—1 y—1
Dividing through by a? and introducing the Mach number, we obtain

a¢ T y—1 \ 7!
7=_=<1+TM2) . (3.13)

(3.12)

However, for a calorically ideal gas at constant entropy, Eq. (1.65) holds, i.c.,
plp.= (T/T)""*, which, when combined with Eq. (3.13), gives

-1 —y/(y—1)
P_ (1 1= M2> ) (.14)
D 2
Since by Eq. (1.65) p ~ g7, we finally get from (3.14)
—1 —-1/(r—-1)
2_ (1 + 12 MZ) . (3.15)
Q 2

N
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Considering Eq. (3.10), we can also write Eq. (3.9) as:
UZ/U‘:“ =1- (T/T;) 0
This, together with Eq. (3.13), yields

U 2 Sk
=M|{— +M* . 3.16
Umax ('Y -1 ) ( )
As T—0, by Eq. (3.13), a—0; and, by Eq. (3.12), we have the expression:
Unix = a[2/(y — D]*. (3.17)

We now define the critical sound velocity, or simply, critical velocity, ay as
the sound velocity at the location where it just equals the flow velocity, or
where M = 1. From Eq. (3.13), it follows that

a, = a [2/(y + D]*. (3.18)

We shall also call the values of the other state variables for M =1 the
“critical” values, and denote them by a subscript (*). The critical value @
of the mass flow is in addition the maximum value of the mass flow, as
explained above. By Eqgs. (3.15) and (3.18), we have

2 \@+D2G-1) .
O, = 0404 =04, — . 3.19
* = Qxly = O :<y T 1) ( )
This equation, together with Eqs. (3.15) and (3.16), finally gives us
e U 24(y—1 M? =(@+1)/2(y~1)
o_9 _u (_*(“’ ) ) ) (3.20)
Oy 0404 y+1

The formulas (3.13)—~(3.16) and (3.20) give the dependence of the temperature,
speed of sound, pressure, density, velocity, and mass flow on the Mach
number M and the stagnation values T, a,, p, and ¢,. These relations are
shown in Fig. 21 for y = 1.2 and y = 1.4. It is a fortunate circumstance that
the ratios of the variables to the stagnation values (or to the critical values,
as with @, or to the maximum values, as with U) depend only on the Mach
number and not on the stagnation values; this is a result of the assumption
of a calorically ideal gas. If we assume that the gas is thermally ideal but
not calorically ideal, then p/p,, ¢/o., etc., will depend not only on the Mach
number M but also on the stagnation temperature T, (see supplementary
remark 3, p. 85). In the general case, in addition to the stagnation temper-
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ature T,, the stagnation density ¢, also appears in these relations (or two
other appropriate state variables).

The curves corresponding to those in Fig. 21 for a general gas can readily
be constructed if we know the thermodynamic properties of the gas. Particu-
larly useful is a Mollier diagram of the type shown in Fig. 6. For a given
stagnation state and any velocity U, we can immediately read off the temper-
uture and pressure. Since the difference in ordinates corresponds to U?
[ by Eq. (3.2)], it is advantageous to use a straight paper edge with a U-scale
marked on it to read off values from such a diagram. Furthermore, the
donsity ¢ is given by formula (1.31%*) as ¢~ = (h/0p),.

~
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Fig. 21. Dependence of pressure, density, and temperature of a calorically ideal gas
on the Mach number in steady flow.
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To clarify the principles described here, we shall now discuss the flow of
a gas from a reservoir through a Laval nozzle, i.e., a convergent-divergent
nozzle (Fig. 22). If the nozzle is relatively slender, then the flow variables

4]

P>

75 20 2530 40 50

Fig. 22. Pressure distribution in a Laval nozzle for different pressures at the exit
section (calorically ideal gas with y =1.4),

over a cross section perpendicular to the nozzle axis are appro)iimately
constant, and we can treat the nozzle as if it were a single streamtube over
whose cross section the flow quantities do not vary significantly. The nature
of the flow established in the nozzle depends on the external pressure p, at
the exit section of the nozzle. For a specific exit pressure p, = p; (Fig. 22),
the gas will accelerate smoothly from the stagnation state in the reservoir
toward sonic velocity at the throat (i.e., the narrowest section); beyond the
throat, the velocity continues to increase and the pressure continues to
decrease smoothly. The velocity and pressure distributions are easily calcu-
lated for a calorically ideal gas from the formulas given above. At every
point along the nozzle, the mass-flow ratio is given by the area ratio 4/4,
thus: @/0, =A4,/A (continuity equation). Equation (3.20) then determines
the Mach number M, and Eq. (3.14) gives p/p, (and accordingly all the other
state variables). But if p, # p;, then one of the following flows would take
place:

1. p. =p,: The gas remains everywhere at rest.
2. p.>p.>p,: The exit pressure is only slightly below the reservoir
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pressure p,, and the gas accelerates to a speed below the sound speed at the
throat. The entire flow is subsonic (Fig. 22, curves a, b).

3. py=p;: The speed of sound is only attained at the throat. Beyond the
throat, the pressure rises again, and we again have subsonic flow. The flow
Is symmetrical with respect to the throat: At cross sections of the same area
before or after the throat, we have the same flow velocities and the same
thermodynamic states.

4. p, > p, > p,: Beyond the throat, the flow is supersonic, but at a definite
location between the throat and the exit section, a normal shock wave
uppears (sce Section 3.4), across which the flow velocity suddenly becomes
subsonic again. In the shock wave, the change of state is not isentropic;
therefore, the dependence of the velocity and the state variables on the
Mauch number behind the shock is different from that in fiont, since the
stagnation states of the gas are different on the two sides of the shock.

4. p, = p,: The shock wave has moved to the exit section.

6. p; > p, > py: Oblique shock waves appear beyond the exit section (see
Fig. 87).

7. p, = p;: The flow is everywhere continuous (see the introductory para-
graph).

8. py >p,: The flow inside the nozzle is the same as in cases 6 and 7;
outside the nozzle, there is an over-expansion, as already mentioned in
connection with Fig. 20 (see Fig. 86).

A high-pressure reservoir with a Laval nozzle obviously offers a simple
means of producing a supersonic gas jet. Such a jet can be used in aero-
dynamic research, such as with flight models. The entire assembly of a
reservoir-Laval nozzle is thus a simple wind tunnel (intermittent-operation
blowdown tunnel). If we want to attain high Mach numbers with such a
wind tunnel, we shall invariably encounter one practical difficulty: Because
of the drop in temperature with the increase in Mach number, the gas in
the tunnel will condense when a certain limiting Mach number is exceeded.
For operation with air at room temperature and a reservoir pressure of the
order of a few atmospheres, the practically attainable Mach numbers are
below M = 4-5. Higher Mach numbers require the heating of the gas in the
reservoir, or the use of gases with very low condensation temperatures (e.g.,
helium).

Supplementary Remarks. 1. Let us consider a circularly symmetric, plane,

\
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steady flow. It is then convenient to introduce polar coordinates r, ¢
(Fig. 23a). Because of circular symmetry, the velocity components u,, uy
depend only on r, as do all the thermodynamic variables. We thus have the
same stagnation state and the same entropy on all the streamlines, so that

Subsonic

.

Fig. 23. Streamlines in a circularly symmetric plane flow.

the flow is isoenergetic and homentropic. (Exceptions are those flows with
circular streamlines r = const. For these flows, we must further assume that
they be isoenergetic and homentropic.) By Eq.(2.78), an isoenergetic,
homentropic, plane flow must be irrotational. This implies that in this case

uy=cyr, (3.21)

with constant ¢, (since then the circulation for each circle of radius r and
center at the origin is constant: K = 2nru, = 27c;, and by Stokes theorem
the flow is irrotational in every annular region 0 < r; <r < r,). On the other
hand, the continuity equation requires that

u, = c,/or (3.22)

(since then the same mass flows across each circle of radius r and center at
the origin: Q = 2nrou, = 2nc,).
Using the previously derived relation between the density ¢ and the speed
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U, we can casily determine all the flow variables as functions of r: First of all,

we have
Ul =u +uy® = (c'/e*r?) + (¢, Ir?)
or (3.23)
r? = (c,2/0%) + (c,}JU?),
with @ =gU. Using the relation ©(U) given in Fig. 19, we sketch the
function r?(U?) in Fig. 24. This naturally permits us to know the inverse

8 A

Cirv2s ci/9%r?

,7/8°

.\. v

]
2 7
Uc-ay Upnax

Fig. 24. Circularly symmetric plane flow; explanation of Eq. (3.23).

function U as a function of r. Since the velocity U must be a single-valued
function of r, it is obvious that two completely different flows are possible,
corresponding to the two branches M4 and MB of the curve r2(U?) in
Fig. 24. In the case M4, we have a purely supersonic flow (Fig. 23b), whereas
in the case MB, we have a supersonic flow for ry <r<ry and a subsonic
flow for r > r, (Fig. 23a). In both cases, the flow is possible only for r > ry,.
The limiting circle r = ry, is determined from the condition d(r?)/dU* =0.
Applying this to Eq. (3.23) and taking Eq. (3.6) into account, we get the
relation satisfied on the limiting circle:

sing =M™, (3.24)

Thus, on the limiting circle, o is identical to the Mach angle y (see Section 3.5);
accordingly, the limiting circle coincides with a Mach line.

M2 One-Dimensional Unsteady Flow 8s

2. Using Eq. (1.65), we sce that for a calorically ideal gas
A =y(y -1 pe .
3. For a thermally ideal gas described by Egs. (1.66)-(1.70), the ratios
pipes efe,, etc., depend on the parameter /T, in addition to the Mach
number M. For 0/T,— oo, we get the previously given formula with y =7/5,

while for 6/T, - 0, we have the same with y = 9/7. From Eq. (3.2) and using
Eq. (1.67), we first have

v?=2rt| (1-T o ! !
- [2( ‘i)*i(exp(o/m—l ‘exp(wT)—l)]‘

Dividing by @ = yRT, with y given by Eq. (1.70), we then get M? as a function
of T. The pressure is then determined as a function of T by Eq. (1.69) (with
Po=pi, To=T).20

3.2 One-Dimensional Unsteady Flow

In what follows we shall study flows in which only a single velocity compo-
nent u is nonzero; furthermore, all the flow variables shall depend only on
one space coordinate x and on time 7. One such example is the flow in a
cylindrical tube, filled with gas, produced by the motion of a piston in the
axial direction. The continuity equation (2.32) reduces to

o, +ug, +ou, =0 (3.25)
(here and hereafter, we shall denote the partial derivatives with respect to
x and ¢ by subcripts). The momentum equation (2.52) is, in the absence of

volume forces and friction,
ou; +guu, + p, =0, (3.26)

while Eq. (2.70), which expresses the isentropy of the change of state of each
gas particlé, becomes 5+ us, = 0. (27)

We sha’" .irst study homentropic flow (Sections 3.2.1-3.2.3), in which the
specific entro, y s has a constant value s, independent of x and ¢. If the gas
20 A.J. Eggers, Jr., One-dimensional Flows of an Imperfect Diatomic Gas. NACA

Report No. 959 (1950); Ames Research Staff, Equations, Tables and Charts for Com-
pressible Flow. NACA Report No. 1135 (1935).
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is at rest und in thermodynamic equilibrium (and hence homentropic) at
any time, then it is homentropic at all times (except for those flows in which
shock waves later appear; see Section 3.2.4). Thus, if we know ¢(x, 7), all
the thermodynamic state variables of the gas are known as functions of x
and ¢, since density ¢ and entropy s determine the thermodynamic state.
(We assume that the gas is in thermodynamic equilibrium everywhere;
relaxation processes will be treated later in Section 3.3.) We can then elimi-
nate the pressure from (3.26) with dp = a® dp, and obtain

o(u, + uu,) + a’0, =0. (3.28)

3.2.1 LINEAR WAVE EQUATION

Let the gas be initially at rest; in this state, the variables (independent of
x and ¢) will be denoted by the subscript 0: p,, 0o, @, etc. (We discern
between the stagnation state in steady flow, denoted by the subscript “‘t,”” and
the state of rest in unsteady flow, denoted by ““0”.) We shallnow perturb this
state of rest, so that p=py+p’, 0=0,+0, a=a,+a’, etc. We assume that
these perturbations remain small, i.e., |o'| €00, || €po, |@’| €ag, etc. This
also implies that we must have |u| <a,, as we shall see later [see Eq. (3.35)].
We can then linearize Eqs. (3.25) and (3.28) by neglecting the products of
the perturbation quantities ¢’, a’, and u:

Qt’ + Qolix = 0’ (3'29)

Qotty + ag’g;’ = 0. (3.30)

Eliminating ¢’ from these equations, we obtain the linear wave equation for u:

Uy — Gl =0 (3.31)

or, eliminating » from (3.29) and (3.30), we obtain the analogous equation
for Q/: ’ 2

@ — 80 Cxx = 0. (332

The general solution of the system of Egs. (3.29) and (3.30) is

X X
u —f(z—a:)+g(t+a—o>, (3.33)
Q:=Q_°[f(,_i)_g(,+i>], (3.34)
ao ao o,

e
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Inserting expressions (3.33) and (3.34) into Egs. (3.29) and (3.30), we easily
scc that the equations are satisfied if f and g are differentiable functions
of their arguments. Likewise, Eqgs. (3.31) and (3.32) are satisfied if fand g
are twice differentiable. Equations (3.29) and (3.30), or (3.31) and (3.32),
are the basic equations of acoustics for the one-dimensional propagation of
sound waves in a gas at rest.

If g =0, the disturbance propagates into the gas at rest by a simple
translation of points of equal states with a velocity a, in the positive
x direction. We call this motion a forward-running wave (or just a forward
wave for short). This shows that a, is indeed the propagation velocity of
small disturbances, and thus the velocity of sound. When f'= 0, we have a
backward-running wave. In a forward wave, an increment du between the
velocity at location x; and time #, and the velocity at x, 73, corresponds,
according to (3.33) and (3.34), to a density difference of

8¢ = (go/ao) ou . (3.35)

For a backward-running wave, a minus sign appears on the right side of
(3.35). The functions f and g in the general solutionr (3.33), (3.34) are
determined in each specific problem by the initial and boundary conditions.
Let us consider the following case: The gas is at rest in the region x> 0 at
t=0. For ¢ > 0, we prescribe the gas velocity at x =0 to be u(0, 1)=u,(t)
(cither by blowing or suction of the gas at this point). If we define f(¢) in the
following way:
f=0 for t<0, f()=us() for 1>0,
then the solution of the problem is given by a forward wave

u=f(t- (x/ao))-

Let us now assume more specifically that the velocity uo(¢) is 0 at =0 and

u

L .
|

X
- g0—]

Fig. 25. Forward-running wave generated by a continuous piston motion.

a5t
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increases in a short time &¢ to du and then remains constant; then the forward
wave will have the form shown in Fig. 25.

To prepare ourselves to solve the nonlinear equations (3.25) and (3.28) by
the method of characteristics, let us consider the following process: Let the'
gas be at rest in a cylindrical tube at time # = 0. The tube is closed at x =0
by a piston, which at the instant #, = 0 suddenly starts to move with velocity
du; < 0 (toward the left). For a sufficiently small |y, |, such that linear theory
is valid, an unsteady Mach wave propagates to the right into the gas at rest
and has a form that is the limiting case (as 6¢— 0) of the wave shown in
Fig. 25. As the gas particles cross the wavefront, their velocity jumps from
0 to du, . This value remains constant behind the wavefront, so that at the
piston surface the boundary condition: gas velocity = piston velocity is
satisfied (Fig. 26). In the meantime, by (3.35), passage across the wavefront

=8ty Oy —————
zZ -0y
iﬂ’ -0 | - g
u=0u == .
] u-0
X0

Fig. 26. Wave generated by a suddenly started piston.

changes the gas density from g, to ¢; = 0o + €o(6u;/ay). The other state
variables change accordingly. To an observer moving with the velocity du,
in the x direction, the gas between the piston and the wavefront is at rest.
Thus, at time ¢, > 0, if the piston again suddenly accelerates toward the
left by du, < 0 to a total velocity of du, + du,, the observer will see a second
wave of the type described propagating into the gas between the piston and
the first wavefront. The velocity of the second wave relative to the observer
is a; = a, + da,,and thatrelative to the fluid at rest is @, + du, . Since du; <0,
690, < 0; with assumption (3.1), we also have da, <0, so that q; + du, < a,,
i.e., the second wave remains behind the first. (Had we not assumed 6y, <0,
we would have to contend with the possibility of the second wave over-
taking the first. Then we must consider shock waves, which we shall do in
Section 3.2.4.) Across the second wave, the gas density decreases to
02 = 01 + 0, (Bus/ay).

We can imagine these repeated backward accelerations to continue, and
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obtain the following picture in the x, ¢ plane (Fig. 27): The path of the piston
is a polygonal curve with corners at the times #,, at which the piston receives
the sudden accelerations. The straight lines issuing from these corners have
slopes given by dx/dt = a; +ZI:: , éu;, and represent theindividua? wa.vefronts.
They divide the x, ¢ plane to the right of the piston path into strip-like areas,
in each of which the gas variables and flow velocity are constant. Indeed,

t

10,01, +0,
-8y Ouye Oty dx/di=a,+0ty+0Up

u=0up+Oy _ax/dt-g,+ 81

\“ c*e“d\\ u-0u;
ax/dt-,

Piston 0] =0 i

Fig. 27. Sequence of waves in the x, ¢ plane generated by sudden movements of a piston.

in the kth strip, we have

k k
du;
U = 25“5 0 =Qo + ZQ;‘-) - (3.36)

i-1
i=1 i=
The remaining state variables py, a, etc., are determined from g,. Using the
density jumps d¢; = ¢; — 0,1, We can also write the following instead of

(3.36): )

k
a;_
=00+ Zéel; U= Z 1 5g,. (3.37)
Qi-1
i=1 i=1

If we now imagine the velocity changes du; to become increasingly smaller
and to follow each other increasingly more often, then we approach in the
limit a continuous piston motion. Then (3.37) for u, becomes

u=owe)), (3.38)
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where
[at)
ale
w(e) = J 'y do. . (3.39)
(4]

Equation (3.38) gives the relation between u and ¢ (and hence with all the
other state variables) in the flow resulting from the piston motion. Thus, at
each point of the x, 7 plane, we can find the flow velocity u(x, t) and density
o(x, t), when we realize that the strips in Fig. 27 will collapse to straight lines
in the limit of reductions in velocity jumps du; and time steps #;4, — ¢;. The
velocity u is then constant on each straight line, being equal to the piston
velocity at the initial point of each such straight line on the piston path.
According to (3.38), the density is also constant and can be computed from
the known function w(g). Thus, the sound velocity a(o) is also known, and
the slope of each straight line is dx/dr = u + a. We call these straight lines
Mach lines. A flow of this type, in which the velocity and the thermodynamic
state are constant along the Mach lines, is called a simple wave. We shall
return to the details later, after we put these ideas on a firmer basis by
discussing the nonlinear equations (3.25) and (3.28).

Supplementary Remark. When the velocity changes by duin a forward wave
in a calorically ideal gas, then the following relations govern the changes of
the other variables in the linear approximation:

Ju_ég_lép_ 1 6T 2 da

— —. (3.40)
G @ 7ypo y—-1T, y—-1la,

3.2.2 METHOD OF CHARACTERISTICS FOR HOMENTROPIC FLOW

Let us return to Eqgs. (3.25) and (3.28), which we shall transform as follows:
We multiply (3.25) by a and then add or subtract the product from (3.28);
this gives us the two equations

ale.+(m+a)e]+elu,+@u+a)u]=0, (3.41)
afo,+(u—a)o] —o[u +(u—a)u]=0. (3.42)

We now define two families of curves, €, and @,, in the x, ¢ plane thus: Each
curve of the family €, is defined by

dx/dt =u +a (3.43)

i o
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and each curve of the family €, by
dx/dt=u —a. (3.44)

These two families of curves are called the characteristic curves, or, for short,
the characteristics of the systems (3.41) and (3.42). €, are the forward-
running characteristics and €, the backward-running characteristics. In
gas dynamics, €, and €, are also called Mach lines. In the previous example,
the forward-running Mach lines €, are of special form: they are straight lines.
In any specific problem, the Mach lines are obviously known only if the
solutions u(x, t) and ¢(x, t), and hence also a(x, t), are known.

Equations (3.41) and (3.42) imply the following relations between u and @
along the curves €, and €,:

ado+odu=0 along G, (3.45)
ado—odu=0 along @, (3.46)

[In Eq. (3.45), we recognize (3.35)!].

To deduce the relations (3.45) and (3.46) from Egs. (3.41) and (3.42) we
can proceed as follows: We designate the curves of the family €, by a
parameter A such that each curve of this family corresponds to a definite
value of this parameter. In the same way, we designate the curves of the
family €, by a parameter p. Then the x, ¢ plane will be covered by a curvi-
linear system of coordinates A, u. Although this coordinate net is not defined
beforehand, but has to be constructed gradually as each specific problem is
being solved (in a way to be described later), the following considerations
are nevertheless valid: We interpret u and ¢ as functions of A and yu. Then,

du 0x ot
a—#—ux6”+u,a”.
The partial derivatives with respect to u, i.e., derivatives at fixed 4, are
directional derivatives in the direction of §,. According to (3.43), we have

Ox/op = (u + a) 8t/ou,
so that
oufdp = [u, + (u + a) u,] otfop.

In the same way, we also get:

do/on = [e, + (u + a) o] Ot/op.
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Multiplying Eq. (3.41) by d¢/0p and taking into account the two relations
Jjust derived, we obtain
adg/op + @ouldu =0. (3.45%)

But this is identical to relation (3.45). In a completely analogous manner,
we also obtain

adlod — @duldA =0, (3.46*)

which is identical to Eq. (3.46).
Introducing the function () defined by Eq. (3.39), we can simplify
Eqgs. (3.45) and (3.46) to

dwo+du=0 along C,,
do —du=0 along C,,
or
o + u = const on @, (3.47)

w—u=const on G,. (3.48)

The quantities » + u and @ — u are called Riemann invariants.

Let us now point out the connection between formulas (3.47) and (3.48)
and the results of linear theory in Egs. (3.33) and (3.34). If the state of the
gas does not deviate much anywhere from a state of rest, then we can make

a linear approximation:
e e eote

a
w=f— dg:ﬂ f dg=ﬂg’.
Q Qo Qo
2o

(0]

Nf)w, multiplying Eq. (3.34) by a,/0,, adding the result to Eq. (3.33), and
using the expression for o just derived, we obtain o + u = 2f [t = (x/ao)].
Thus, ® + u is always constant on the straight lines £ — (x/ay) = const. These
straight lines are the characteristics €, in linear theory. In a completely
similar way, we also obtain w — u = 2g [+ (x/ao)], i.e., ® — u is constant on
the characteristics €, of linear theory.

The two relations (3.47) and (3.48) form the starting point for computing
e(x,t) and u(x,f)in a specific problem, i.e., with given initial values. We
shall study three different possibilities for initial value problems:

The First Initial-Value Problem ( Cauchy Initial-Value Problem). The values
of u and g, and thus also w (where an arbitrary but convenient lower limit
in the integral (3.39) is chosen, that does not have to be the rest-state density

)
I
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Qo) are prescribed on a segment of a noncharacteristic curve 4yB, in the
x, f plane (Fig. 28). Noncharacteristic in this context means that the curve
is nowhere tangent to a Mach line. If the €, and €, characteristics issuing
from all the points of the segment 4,B, were known, then we could get the
solution at each interior point P of the triangle 4,P,B, (and also of the
triangle formed by 4,B, and the two characteristics forming a vertex on the

Fig. 28. Diagram for the explanation of the method of characteristics for the first
initial-value problem.

other side of 4,B, from the point P; in general, we are interested only in
the solution in one of these two triangles). According to Egs. (3.47) and (3.48),

o (P) + u(P) = w(A) + u(4),
@ (P) — u(P) = w(B) — u(B),

and thus w(P) and u(P) are uniquely determined. Of course, as already
stated, the characteristics and thus the point P are not known beforehand,
but must be constructed together with the solution. This can be done in the
following manner of approximation: We divide the curve 4,8, into small
segments by a large number of points 4,, where the number of these points
A, will determine the accuracy of the approximate solution to be constructed.
We approximate the characteristics €, and €, through the points 4, by their
tangents at 4,. The directions of these tangents are known because « and g,
and thus a(g), are given on A,B,. The intersections of these tangents
determine a row of points P, (Fig. 28). We obtain the values of # and ¢ at
P, approximately by applying relations (3.47) and (3.48), valid for €, and
€,, to the straight tangential segments; thus w(P,) + u(P,)=w(4,-)+
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u(A, )and w(P,) - u(P,) -w(A4,) u(A,). Thesolution is thus determined
at the points P,; by repeating the same process, it can be extended to a
further row of points P,". It can be shown that in the limit, as the distance
between the points A, tends to zero, the approximate solution thus obtained
converges to the true solution (in the regions where a continuous solution
exists). 2!

T'his construction of the solution immediately shows that the solution at
point P (Fig. 28) depends only on the initial values on the portion of the
curve between A and B; a change of the initial values on the curve outside
ol A8 has no influence on the solution at P. The initial values on the segment
'D, for example, influence the solution only in the area bounded by the two
charuacteristics, i.e., the shaded area in Fig. 28. We can interpret this physi-
cally: Small perturbations in the flow propagate with sound velocity relative
to the gas, i.c., with velocity u + a in the positive x direction and u —a in
the negative v direction. Therefore, the sound wavefronts correspond to the
characteristics €, and €, in the x, 7 plane. A change in the initial values on
(' does not influence P if P is outside the shaded region in Fig. 28.

The Second Initial-Value Problem (Characteristic Initial-Value Problem).
The values of u and g are given on a segment AB of a &, characteristic and
on a segment AC of a €, characteristic (Fig. 29). Of course, u and ¢ cannot
be prescribed completely arbitrarily: they must satisfy the compatibility
relations (3.47) on AB and (3.48) on AC. We can then start from the corner A

Fig. 29. Diagram for the second initial-value problem.

21 We return to this in Section 3.8.2; see also R. von Mises, ‘“Mathematical Theory of
Compressible Fluid Flow”. Academic Press, New York, 1958.
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and determine the solution in the characteristic rectangle 4BCD. For
example, the solution at the point Py is found from w(P)+u(P)=
w(A,) +u(A;) and w(P,)— u(P,) = w(B,) — u(B,). Subsequently, the solu-
tion at P, is found from the initial values at 4, and the solution at P,, the
solution at P, from the initial values at B, and the solution at P;, etc. The
characteristics are again replaced by their local tangents piece by piece.

The Third Initial-Value Problem. u and ¢ [satisfying Eq. (3.47)] are pre-
scribed on a segment of the characteristic curve AB; on a segment of a
noncharacteristic curve AC, only u or only ¢ or w, or more generally, a
functional relation f (4, w) =0, is given. We can then determine the solution
in the triangle 4BC (Fig. 30). First,

o(Ay) —u(4,) = o(By)—u(B,) and ("(Ax)’w(Al))=0'

Fig. 30. Diagram for the third initial-value problem.

From this we obtain w(4,) and u(4,). Then we immediately obtain the
solution at P, from w(P,)+u(P,)=w(4,)+u(4,) and o(P,)—u(P)=
w(B,) — u(B,), etc.

Allthree initial-value problems play a role in solving the following problem
(Fig. 31): A cylindrical tube is closed at right and at left by pistons K, and
K,, respectively. The gas is at rest between the pistons at time 7=0; i.e.,
u=0 and w =0 on the segment AB in the x, # plane. (We choose as lower
limit g, in Eq. (3.39) the rest-state density of the gas in the cylinder). The
two pistons are set in motion at time ¢ = 0 with continuous velocities; u is
prescribed on the piston paths &, and K, in the x, ¢ plane, since the gas
velocity and piston velocity must be the same there. In the triangle AEB,
we must solve the first initial-value problem. It is immediately clear that u
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Fig. 31. Gas motion generated by two pistons; location of the characteristics.

and o vanish everywhere in AEB, including the boundaries: The gas remains
undisturbed and at rest, which is physically clear, since the effect of the
piston motion is transmitted inward from both sides at sound speed, i.e.,
the initial signals propagate into the gas at rest along the characteristics AE
and BE. Thus, these characteristics are straight lines with slopes dx/dt = + a,
and — a,. In the triangle 4 EC we must solve the third initial-value problem.
Since the disturbance in the originally stationary gas resulting from the
motion of the piston K, propagates leftward along the characteristic BEC
and cannot be observed at all in 4EC, the flow in AEC is the same one
would see if the tube were open on the right without the piston K, . Thus, we
have in AEC the forward-running simple wave described before. In the same
way, we have in BED a backward-running simple wave.

We can also demonstrate the fact that these are simple waves in a purely
formal way: Let us take an arbitrary forward-running characteristic in AEC
and choose two arbitrary points on it, P, and P, (Fig. 31). Joining these
two points by two backward-running characteristics to the points @, and
Q, on AE, we then have

o(P)—u(P)=w(@,)—-u(Q,)=0,
@(P) —u(P)=w(Q;) —u(Q;)=0,
@ (Py) + u(P) = w(P,) + u(P,).
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I'rom this, it follows that w(P)  @(P,) and u(P;) =u(P,);i.c., w and u are
constant on &, so &, is a straight line. This conclusion also holds when w
and u do not vanish on AE, but arc constant there.

The two simple waves emanating from the two pistons intersect above
CED; from there on it is not so easy to describe the flow without constructing
the explicit solution. [n CEDF we must solve the second initial-value problem.

3.2.3 SIMPLE EXPANSION WAVES IN CALORICALLY IDEAL GASES

We shall now study simple waves in greater detail; without loss of gener-
ality, we shall confine ourselves to forward-running waves. Let the wave
propagate into a gas at rest, whose state we denote by the subscript 0. We
can imagine such a wave to have been produced by the motion of a piston K
in a tube open at the right. According to Eq. (3.38), the relation u = w(g)
obtains between the density and the velocity in the wave. For a calorically
ideal gas, w(p) is easily given explicitly: With a* =yRT, it follows that

T At
a® = yRT, — = a,” <£> .
Ty Qo
Substituting this into Eq. (3.39) and integrating, we obtain

—-1)/2
w(e) = 240 [<5> - 1], (3.49)
y—1}\@o

and the following for a forward-running wave:

2 -1/2 2
DR
as v—1[\eo y—1\a

=1+ (3.51)

or,

Let us now restrict ourselves to the case where the piston moves leftward
with a speed that monotonically increases with time (Fig. 32a). As the wave
passes through a given point x,, the density decreases monotonically with
time (since u decreases monotonically, and, with it, according to (3.50), so
does g), and we have an expansion wave. We can imagine a special expansion
wave, called a centered expansion wave, which is produced by impulsively
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a)

Fig. 32. Simple expansion waves generated by piston motion. (a) Piston motion with
continuous velocity change. (b) Piston suddenly set in motion, centered simple wave,

accelerating the piston backwards at time ¢ =0 so that for >0 it moves
with constant velocity u, (Fig. 32b). The point x = ¢ = 0 is a singular point,
from which the forward characteristics of the expansion wave emanate in a
fan formation, and at which u and g are not defined. There is a state of rest
in front of the expansion wave (E) in the region (4), but behind the wave (B)
there is a constant state with constant flow velocity equal to the piston velocity.

We now introduce the Mach number M as a parameter to describe the

states in an expansion wave; with |u| =—u = U (since u <0), the Mach
number is U/a. But
1
1=e£=_Mf=_M<1+L 1)
ap adae do 2 a
[by Eq. (3.51)]. We have from this
U u y—1_ \7!
—=——=M[14+"— 5 (3.52)
a, ay 2

now, since afa, = M ~"'U/a,,

a y—1 -1
= 1+ - Ml o, (3.53)
0
and, since a/a, = (o/g,)" 12,
~1 \2o-D
ff = <1 +7 . M) , (3.54)
o

—1 -2y/(y-1)
Lo <1 + Z--z— M) , (3.55)
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and finally, since 7/Ty = (afay)?,

T y—1 -2
={1+—M . 3.56
T, ( L ) (3.56)

These formulas express the velocity U and the most important thermo-
dynamic state variables in an expansion wave as functions of the Mach
number M. The relations (3.52)—(3.56) can be applied to simple compression
waves if everywhere we substitute — M for M, where, as before, M = U/a.
In Fig. 33, these relations are given graphically for y=1.2 and 1.4; in

1
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Fig. 33. State variables in a simple expansion wave.

addition, relation (3.14) for steady flow is also shown for comparison. We
see that in order to achieve a given Mach number M by a simple wave, a
higher pressure drop is needed than in a steady expansion (e.g., Laval nozzle)
for small M; for large M, the converse is true (see supplementary remark 1
below). Obviously, a maximum velocity exists for expansion through a simple
wave; when M = oo, we get from Eq. (3.52)

Upax = 200/(y — 1). 3.57)
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Corresponding to this maximum speed, p=¢ =T =a = 0. The slope of the
characteristic is dx/dt = u = — U,,,, and the characteristic is tangent to the
piston path in the x, ¢ plane (Fig. 34). If the piston is accelerated *o a speed
greater than U,,,, then a vacuum is created between this last characteristic
and the piston.

Supplementary Remarks. 1. For each point of a simple expansion wave we
can define an adiabatic reservoir state (denoted by a subscript “t”), which is
connected to the local state variables p, g, 7, and a through the formulas
(3.13)—(3.15). We can show that p,Sp;, 0, S0, I, S Ty, and a, S a, if
MS4/(3~y).

=

Fig. 34. Formation of vacuum for sufficiently large piston speed.

2. A special form of intermittent blow down wind tunnel mentioned at
the end of Section 3.1 is the Ludwieg tube 22 (Fig. 35). It consists of a thin
cylindrical tube closed at the right and connected at the left to a Laval
nozzle which is initially sealed off from the outside by a thin diaphragm or
membrane. The tube is initially filled with a gas at high pressure. If the
nozzle length is negligible compared with the tube length, then when the
diaphragm is punctured, a centered expansion wave propagates into the gas
and generates behind it a uniform subsonic flow in the direction toward the
nozzle. The Mach number M, < 1 of this flow is just large enough for the
steady flow in the nozzle to attain sound velocity at the throat, and the flow
in the divergent part of the nozzle has supersonic velocity (assuming that
the exit pressure is sufficiently low; see the discussion on Laval nozzle flow
in Section 3.1). In a calorically ideal gas, M, is determined by the ratio of
the nozzle throat area to the tube arca [formula (3.20)]. Figure 35 gives the

22 H. Ludwieg, Der Rohrwindkanal, Z. Flugwiss. 3, 205-216 (1955).
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Fig. 35. Characteristics for the flow of a calorically ideal gas in a Ludwieg tube;
y=1.4, M1=0.4.

characteristics diagram of a Ludwieg tube for M, =0.4 and y =7/5. The
centered expansion wave running to the right will be reflected at the closed
end of the tube; here, the boundary condition ¥ = 0 must be satisfied at all
times (in the region of interaction of the incident and reflected waves, we
must solve initial-value problem 3). After leaving the interaction region, the
reflected wave (again a simple wave, but no longer centered) runs toward
the nozzle. Behind the reflected wave, the gas is again at rest, but its state
has been changed from the original state of rest by a reduction in pressure,
temperature, and density. At time #; , the head of the wave reaches the nozzle,
and the wave will then reflect from the Laval nozzle. If the dimensions of
the nozzle are negligibly small compared to the length of the tube, then the
flow in the nozzle during the reflection process may be treated as quasisteady.
To calculate the reflection, we must again solve the third initial-value
problem, where now the boundary condition u = — M, a must be satisfied at
the nozzle (x =0), since in quasisteady flow the Mach number M, is still
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determined by the area ratio of the nozzle. In gencral, only the flow for
0 < t <1, is of interest, since, when using this arrangement as a wind tunnel,
a strictly steady flow is desired.

Using the relations derived above for simple waves, we can show after
some calculation that

21 —1 \etbre-n
t1=4<1+y—Ml> 1+Mm) "
ag 2

Furthermore, the pressure p,’ in the gas at rest behind the reflected wave
(reflected from the closed end) is

, [2 + (.y _ 1) Ml]‘z)’/()'—l)
Po =Po|l 7 \ar
2-(r—-1)M,

3.2.4 SiIMPLE COMPRESSION WAVES. FORMATION OF SHOCK WAVES

We again consider a simple wave propagating to the right into a gas at
rest, caused by a piston moving to the right (Fig. 36). This time, instead of
an expansion wave, we obtain a compression wave. We write the piston path
as x, = x,(¢), the piston velocity as u, = X,(f), and the piston acceleration as
b, = %,(t). The slope of a forward characteristic starting from the piston path
at time ¢ = 7 is given by

dxfdt=a+u=a¢+ 3y + Du(x,)=a,+ 3y + 1) u,(7),
where Eq. (3.51) has been used. Thus, the equation of this characteristic is
x=x,(7) + (t — 7) [@o + 3(y + 1) u, (v)]. (3.58)

This one-parameter family of straight characteristics forms an envelope from
some definite point S onward; the equation of the envelope is readily found
in the usual manner by differentiating Eq. (3.58) with respect to the parameter
7 and then eliminating t. This elimination cannot always be carried out in
closed form for arbitrary piston paths. Only the initial point S of the envelope
can always be found, provided we assume that it lies on the characteristic
emanating from the origin (x = 0, ¢ = 0) (Fig. 36)23; this point is determined,

23 This is always the case when b,(0) = bp(r).
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Fig. 36. (a) Formation of envelope of forward-running characteristics. (b) Velocity
distribution at different time ¢ for the piston motion xp = Br2/2,

by setting the parameter =0, to be

= 2a,

2a, ;= B
C+1)by(0)

e 3.59
= G+ 1) 6,0) @3

and

We see from these formulas that, in particular, the coordinates of the initial
point of the envelope (x,, ¢,) depend only on the initial acceleration b,(0) of
the piston, and with increasing b,(0) this point can approach the origin
arbitrarily closely.

For the special piston motion xp=-§-Bt2, the envelope can be given
explicitly; it is a parabolic arc. For the initial point of the envelope, the
value b,(0) = B is substituted into Eq. (3.59). As is evident from Fig. 36a,
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u wedge-shaped region is formed in the x, 7 plane for x > x,, 1 > t,, in which
the characteristics overlap and in which, therefore, no unique solution can
be found. On each characteristic, u = Br; replacing © in Eq. (3.58) by u/B
und eliminating B with Eq. (3.59), we obtain for u(x, t) in the present case

the relation
Y+ u\ y+1 t\u x t
— =) + 1-- + - —-=0, 3.60

4 ag 2 t,)as x, t (360

from which u(x, t) can be calculated. Figure 36b shows the velocity distri-
bution at different times ¢ as found from this equation. When 7> ¢, and
x>x,, three values appear for  [i.e., u=0 and two more from (3.60)];
obviously, this cannot occur physically.

Experience shows that in this case a compression shock forms, i.e., an
extremely thin region of width /, in which the velocity, pressure, density, etc.,
change very rapidly. Since in this region very large gradients of these quanti-
tics appear, viscosity and thermal conductivity play a role, and the entropy
of a gas particle going through the shock increases, as we shall establish in
detail later (see Section 3.4). On the other hand, experimental observations
and theory (see Section 4.2) both show that the width / of a shock is in
general so small that it can be neglected. Then we treat a shock as a dis-
continuity in an otherwise inviscid flow field; in Fig. 36, the discontinuity
lies between the envelope and the extension of the straight line OS.

Now, the following considerations should be noted: While the solution in
the triangle OSB of the x, ¢ plane is not changed by the appearance of the
shock wave, we expect it to be changed to the right of the backward Mach
line SB from the point S. Thus, the solution is no longer a simple wave. Since
the backward characteristics emanating from the region of rest intersect the
shock wave, the arguments of Section 3.2.2, on which the existence of simple
waves adjacent to a region of rest was based, become invalid; in fact, the
previous assumption that s is constant must be abandoned, as the entropy
undergoes a jump in the shock wave. To be sure, it will be shown in Section 3.4
that the entropy of a gas particle changes significantly only if it goes through
arelatively strong shock. For a weak shock, such as the shock in our example
for ¢ not much greater than #,, we can still consider the flow field as approxi-
mately homentropic. Therefore, the flow to the right of the characteristic SB
is also only slightly different from a simple wave. In sketching the velocity
distribution for #/t;=4/3 in Fig. 36, this has been tacitly assumed, and,
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behind the shock, the velocity distribution corresponding to a simple wave
given by (3.60) has been retained.

3.2.5 METHOD NOF CHARACTERISTICS FOR NONHOMENTROPIC FLOW

To find the solution in the region to the right of SB (Fig. 36) there are two
problems to be solved: First, we must determine the location of the shock
wave in the x, ¢ plane and know the discontinuous changes in the flow va-
riables across the shock. The discussion of the relevant shock relations will
be postponed to Section 3.4. Second, we must extend the method of charac-
teristics to the case of variable entropy. While in-a- homentopic flow it suffices
to find the density ¢(x, ) along with the velocity u(x, t), since the thermo-
dynamic state is completely determined by the density and the known constant
entropy s,, it is now necessary to determine an additional thermodynamic
variable besides ¢. For this variable, we shall select the pressure p, and we
start our discussion from Eqgs. (3.25)-(3.27). Since, by Eq. (3.27), the entropy
of each individual gas particle remains constant, we have from a® = (dp/de),

Dp/Dt = a® Dg/Dt,;
i.e., (3.27) may be replaced by 1
p. +up,— a*(g, + ug,) = 0. (3.61)
Using Eq. (3.25), we can rewrite this as
P, + up, + a’ou, = 0. (3.62)
Multiplying (3.26) by a and adding the result to Eq. (3.62) yields
po+(u+a)p.+ealu+@u+a)u]=0, (3.63)
while multiplying (3.26) by @ and subtracting the result from (3.62) yields
p+@w—a)p.—ealu +u—-a)u]=0. (3.64)

In addition to the characteristics €, and €, defined before (the Mach lines),
we now define a third family of characteristic curves €5, for which at any
point in the x, f plane

dxjdt =u. (3.65)

The curves ¢, are none other than the particle paths in the x, ¢ plane.
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Equations (3.63), (3.64), and (3.61) can now be written in the following
form [sce the analogous derivation for Egs. (3.45) and (3.46)]:

dp +oadu =0 along ¢, (3.66)
dp—eadu=0 along G,, (3.67)
dp —a*do =0 along C,. (3.68)

In homentropic flow, as studied in Section 3.2.2, Eq. (3.68) holds not only
ulong @;, but along every arbitrary curve as well, and in particular along
€, and €,; we can thus replace dp by a’ dp in Eqgs. (3.66) and (3.67) and
recover relations (3.45) and (3.46).

To illustrate the method of characteristics based on Eqgs. (3.66)—(3.68), we
now discuss the first initial-value problem only; the other two initial-value
problems can be solved in an analogous way. The p, ¢, and u are to be con-
tinuously prescribed on a noncharacteristic curve | (which is nowhere
tangent to €, €,, or €,) in the x,  plane (Fig. 37). The values of p,o,and u

p

A
¢ s &

Fig. 37. Diagram for the explanation of the method of characteristics for a non-
homentropic flow; first initial-value problem.

at a point in the neighborhood of & is found approximately as follows: We
take two neighboring points 4, B on § and approximate the characteristic ¢,
through A by its tangent at 4; a(p, @) is known from p and p, so that the
direction of the tangent to €, at 4 is known. Similarly, we approximate the
characteristic €, through B by its tangent. Let the two tangents intersect at
the point P. Now we replace the differential equations (3.66) and (3.67) by
difference equations, using for the quantities o and a their values on K, and
obtain the approximate relations

p(P)—p(d) +e(A) a(4) [u(P)—u(4)] =0
and

p(P) = p(B) - e(B) a(B) [u(P) — u(B)] = 0.
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We can calculate p(P) and u( P) from these equations. Next, we approximate
the characteristic €, through P by its tangent at P, this being defined by the
value u(P) just calculated. Let C be the intersection of this tangent with K.
The differential equation (3.68) is replaced by the difference equation
p(P)—p(C)—a*(C) [e(P)— o(C)] =0, from which ¢(P) is found.

This procedure can be improved by iteration, by which we construct a new
point and calculate the state at this point by repeating the process using the
arithmetic means of the variables at 4 and P or B and P.

3.3* One-Dimensional Wave Propagation in a Gas with Relaxation

3.3.1* METHOD OF CHARACTERISTICS 24 —

From the study of nonhomentropic wave propagation in Section 3.2.5 it
is only a short step to the study of wave propagation in a gas with relaxation
processes, i.e., thermodynamic processes leading through constrained equi-
librium states (see Section 1.6). Then, at least one more variable ¢ is needed
to describe the thermodynamic states, and here we shall restrict ourselves to
the case where one single additional variable ¢ suffices. The variable £ is to
be determined as a function of x and ¢, just as the velocity u and the variables
p and g are.

To this end, we must observe that the hitherto useful relation Ds/Dt =0
no longer holds. In Section 2.4 it was indeed shown that relaxation processes
and entropy changes are connected [see formula (2.72)]. While the conti~
nuity equation (3.25) and the momentum equation (3.26) still hold, we must
abandon Eq. (3.27) as well as the relations (3.61) and (3.62) derived from it.

24 L.J.F. Broer, On the influence of acoustic relaxation on compressible flow, Appl.
Sci. Res. A2, 447-468 (1950). L.J.F. Broer, Characteristics of the equations of motion of
a reacting gas, J. Fluid Mech. 4, 276-282 (1958). E.L. Resler, Jr., Characteristics and
sound speed in nonisentropic gas flows with nonequilibrium thermodynamic states, J.
Aero-Space Sci. 24, 785-791 (1957). W.W. Wood and J. G. Kirkwood, Characteristic
equations for reactive flow, J. Chem. Phys. 27, 596 (1957). B.T. Chu, Wave Propagation
and the Method of Characteristics in Reacting Gas Mixtures with Applications to Hyper-
sonic Flow. Brown Univ., Providence, Rhode Island, WADC TN 57-213 (1957). B.T. Chu,
Wave Propagation in a Reacting Mixture. Heat Transfer and Fluid Mechanics Institute,
Stanford, California, 1958. T.Y. Li, Recent advances in nonequilibrium dissociating gas-
dynamics, Am. Rocket Soc. J., 170-178 (1961).
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Instead, we return to Eq. (2.65), which is valid independently of any assump-
tion on the thermodynamic behavior. Neglecting viscosity and heat con-
duction, we see that the right side vanishes, and since the volume ¥ in (2.65)
is arbitrary, and since ¢ > 0, we must have
De_pDe Dk _1Dr_, (3.69)
Dt o*Dt Dt oDt
where the enthalpy & = e + (p/e) has been introduced to replace the internal
energy e; h is now a function of p, g, and &, i.e., h =h(p, o, &). (We use the
notation f for this function, just as we did in Section 1.11). Equation (3.69)
can now be written as

ok 1\(D D D¢
N | et SEVE LI S B Y (3.70)
op o)\ Dt Dt Dt

where the frozen sound speed b was introduced in Eq. (1.140) and the short
hand notation
ohjo¢ ohjo¢
B(p,o.&)=-r - =—10b" / (3.711)
(ohfop) — (1/e) ohjde
has been used. Since the first factor in (3.70) does not vanish identically,
Eq. (3.70) becomes [with D/Dt = 8/dt + u(0/dx)]

P+ up, — b (0, + ug,) = — B(& + u&,), (3.72)

or, taking (3.25) into account, we have

pe + up, + 0b%u, = — B(& + ul,). 3.73)

These two equations now take the place of Egs. (3.61) and (3.62).
Furthermore, we must realize that we are determining a fourth variable
£ as a function of x and # in addition to the three variables u, p, and g, and
therefore we need a fourth equation in addition to the three equations (3.25),
(3.26), and (3.73). To establish this equation, we observe the following:
Imagine a gas at rest in a fixed state p, g, &, which does not coincide with any
unconstrained state of equilibrium. In general, the variable ¢ will change
with time as long as unconstrained equilibrium has not yet been reached.
We now assume that the time rate of change ¢ of the variable ¢ depends only
on the instantaneous thermodynamic state p, o, &, i.e., ¢ = L(p, g, £). The
function L must either be determined experimentally or calculated theoreti-
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cally with the help of theories which go beyond simple thermodynamics
(such as statistical mechanics and reaction kinetics). If ¢ coincides with the
cquilibrium value &(p, ¢) corresponding to p and g, then, by definition,

L(p,0,¢(p,0))=0. (3.74)

We now transfer these statements on the rate of change & of ¢ to a moving
gas, in which, for each gas particle, we set

D¢IDt =& + ué, = L(p, 0, &). (3.75)
Then, Eq. (3.73) can be written as
p, + up, + ob’u, = — BL. (3.76)

Everything else now continues exactly as in Section 3.2: We multiply
Eq. (3.26) by b and add the result to Eq. (3.76):

p+ (u+b)p, +bolu, +(u+b)uj=~ BL. 3.77)
Multiplying by b and subtracting yields
pe+ (u—b)p, — bo[u, + (u — b)u,] = — BL. (3.78)
The families of curves €, and €, are defined by
dx/dt=u+b for €, 3.79)
dxjdt=u—b for G,. (3.80)

As before, the family €; remains identical to the particle paths [formula
(3.65)]. Equations (3.72), (3.75), (3.77), and (3.78) are in characteristic form,
i.e., in each case, they contain differentiation in one direction only: Egs. (3.72)
and (3.75) in the direction of €5, (3.77) in the direction of €, and (3.78) in
the direction of €, . Of course, the form of the relations (3.66)—(3.68) will be
changed because of the inhomogeneous term — BL. Nevertheless, the method
of characteristics is still applicable with a minor modification: If we go
forward, say, along a €, characteristic, by a line element whose projection
is dt on the ¢ axis, we would have

dp/dt = p, + p,(dx/dt) = p, + (u + b) p,.
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The other characteristics are treated similarly, and we can finally write:

dp + gobdu = — BLdt along C,, (3.81)
dp — obdu =— BLdt along C,, (3.82)
dp —b%dp=—BLdt along G5, (3.83)

dé = Ldt along C;. (3.84)

[One should compare the derivation of Eqgs. (3.45) and (3.46)]. For given
boundary values, we can use these equations and construct a solution piece
by piece in exactly the same way as in Section 3.2.5. The method should be
evident from this point on, and no further detailed explanation is required.

An important result of this discussion is the fact that in the definitions (3.79)
and (3.80) of the characteristics €, and €, the frozen sound speed b appears
instead of a. Therefore, b is the speed with which small disturbances propa-
gate relative to the gas. If we set L =0, then ¢ for each particle cannot
change. We call this a frozen flow. Equations (3.81)-(3.83) then become
Egs. (3.66)—(3.68), but with b replacing a. The limiting transition to a flow
which is everywhere in thermodynamic equilibrium, i.e., starting from
Eqgs. (3.81)-(3.84) and obtaining Eqgs. (3.66)—(3.68), is likewise possible, but
not so simple to carry out. Therefore, rather than carrying out this transition
in full generality, we shall discuss it in the following section after first
linearizing the equations.

3.3.2* LINEAR WAVE EQUATION 25

We now apply the discussion of Section 3.2.1 to a gas with relaxation. Let
this gas be initially at rest and in unconstrained thermodynamic equilibrium:
u=0, p=p,, 0 =00, and &= &, =E&(py, 0o). We now perturb this state:
u#0,p=po+p, 0=0,+¢’, and & =&, + &'. Under the assumption that
the perturbation quantities u, p’, o', and ¢’ remain sufficiently small, Egs.
(3.26), (3.72), (3.75), and (3.76), which describe the propagation of distur-
bances in full generality, will now be linearized in these perturbation quanti-
ties. In linearizing L(p, ¢, £) we make several observations: First of all, in

25 E.V. Stupochenko and I.P. Stakhanov, The equations of relaxation hydrodynamics,
Soviet Physics Doklady 8 (1961), 957-960 [Engl. transl. of Doklady Akademii Nauk SSSR
134 (1960), 782-785]. F.K. Moore and W.E. Gibson, Propagation of weak disturbances
in a gas subject to relaxation effects, J. dero-Space Sci. 27, 117-127 (1960).

|
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the lincar approximation

L{po + p'. 00 + 0", &0 + &)
oL oL JL
= L(po, 0o, &o) +| - T - "= " 3.
(Po > Co» o) <3p>op (6@)09 (%)oé (3.85)

The partial derivatives of L with respect to its arguments are taken at
Pos> Qo> and &,, and are denoted by the subscript 0. We should note that
because of Eq. (3.74), the first term on the right side of Eq. (3.85) vanishes:
L(po, 00, &o) =0, since, by assumption, &, = &(p,, o).

In formula (3.85), L is already linearized, but it is more convenient to
express L in terms of the departure from thermodynamic equilibrium. We
first write, by (3.74),

L(po + 1,00 + 2, €(po + 1’ 00 + ) = 0. (3.86)
We expand to terms of the first order to get, since L(py, 0o, &) =0,

(ol Gohe == GG, (oo 0w
op op d0 oQ 0 )o | \Op op de og]. —

Combining Egs. (3.87) and (3.85), we obtain the following linearized expres-

sion for L:
aL l 05) ’ (ag) ,:I
L=|— === — =2
(65)0 [f (al’ 0 d 92/o “ (3.83)

This formula can be interpreted in an obvious manner, if we add to the
square brackets the term &, — &, =0:

(G [oee =l (G CoLel]

Now, &o + &' = ¢, while the expression in the curly brackets is &, the equi-
librium value of ¢ corresponding to p = p, +p’ and ¢ = g, + ¢'. Using the
shorthand notation (0L/0¢)5 ' = — 1., we thus have in the linear approxi-
mation

D¢[Dt = L= — (¢ — &)/r,. (3.89)

The time rate of change of ¢ in the linear approximation is thus directly
proportional to the deviation of ¢ from the equilibrium value & corre-
sponding to p and . The quantity z, has the meaning of a relaxation time.
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It is a measure of the speed with which the gas approaches unconstrained
thermodynamic equilibrium.

Linearization of the remaining terms in Egs. (3.26), (3.72), (3.75), and (3.76)
offers no difficulty. We obtain finally

from Eq. (3.26) oo, + p,/ =0, (3.90)
from Eq. (3.72) p — bo’e, = - B,L, (3.91)
from Eq. (3.75) & =1, (3.92)
from Eq. (3.76)  p + gobo’u, = — B, L, (3.93)

where the linearized expression (3.89) is used for L and By denotes
B(po, 00, &o) [see Eq. (3.71)]. Eliminating p’, ¢’, and &, we can derive from
this first-order system of four equations a single third-order equation for .
Considering definitions (1.139) and (1.140) for a and b, we obtain after some
lengthy but trivial calculations

rg(u = bo’u) + (u 5
ot 1 0 Yxx, « — Qo uxx) =0. (394)
Here
BTk, -/
T=1,|14 By| - = 2~ X
T l: 0(6p>0] T, Py (l/g)' (3.95)

The factor by which 7 and 7, differ is in general of the order of unity. In
subsequent discussions, we shall always use the term relaxation time to mean
the quantity .

Various interesting conclusions may be drawn from (3.94): If 7, = 0 (and
thus 7 =0), then, by Eq. (3.89), £ =Z. Obviously, this implies that for a
vanishingly small relaxation time, the gas is always in unconstrained thermo-
dynamic equilibrium. Equation (3.94) then becomes the wave equation (3.31).
On the other hand, dividing Eq. (3.94) by t and passing to the limit 7 — oo
we cancel the term u,, — ay2u,, (which is divided by 1) and obtain ’

a
(’%(u” - bozuxx) =0.

Under the additional assumption that the motion of the gas started from a
state of rest, so that for time s <1, (r, = start of motion) u(x,t)=0, it
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follows that
u, — bo’u, =0. (3.96)

Thus, we see that for a completely frozen flow, for which Eq. (3.89) gives
DE/Dt = 0 and thus the gas particles retain their initial values of ¢ at all time,
the lincar wave equation again holds, except that a, is replaced by b, .

Let us now consider a particular solution of Eq. (3.94) in the form of a
forward-moving wave periodic in time (harmonic sound wave):

u = Aexp[i(wt — kx)]. 397

As is customary, only the real part of (3.97) has physical meaning. 4 is the
amplitude, w is a real circular frequency (7=2nw ™' is the period of
oscillation), and k is a complex number determined by w, k =k, +ik;;
k.=2m A7! is the real wave number (4 is the wave length), and k; is a
measure of the damping of the wave. Upon substituting (3.97) into Eq. (3.94)
and canceling the common factor 4 exp[i(wt — kx)] from each term, we get
the following relation between k and w:

? 1 +iwt

" ag? L +iwt(bo?fag?)’

2

(3.98)

For 1 -0, we have k, » + w/a,, k; >0, corresponding to undamped waves
with a phase velocity a,. In + w/a,, we must choose the + sign for forward
waves, and the — sign for backward waves. In the limit of T — oo, on the other
hand, we have k,— + w/b,, k; = 0. Thus, we again get an undamped wave,
only this time with the phase velocity b,. For intermediate values of 7, k; # 0,
so that the waves are damped in the direction of propagation. (In calculating
the square root of the expression on the right side of Eq. (3.98), two things
should be noted: wk, > 0 and wk, < 0 correspond to forward and backward
waves respectively; moreover, by? is always greater than a2, as already
mentioned in Section 1.12. If b,? < a,2, we would have a wave with increasing
amplitude, or the gas would be unstable; this is contrary to experience.)
Thus, we have
u = Aexp(F |k;| x)exp [iw(t F Ik ol x)].

The amplitude of the wave decreases exponentially in the direction of
propagation. Moreover, the phase velocity of the wave ¢ = |w/k,| depends
on the frequency w, a phenomenon which we call dispersion (see Fig. 38).

The fact that harmonic sound waves experience damping and dispersion
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Fig. 38. Phase velocity ¢ and the ratio of the imaginary part ki to the real part kr of
the wave number for sound waves with relaxation as a function of the frequency w;
7 is the relaxation time, ao the equilibrium sound speed; bo?/ao? = 1.1.

is well known. Studies in which only shear viscosity and heat conduction
(both generate damping and dispersion) are included lead, in general, to too
small values of damping, particularly in ultrasonic waves. Only by con-
sidering the relaxation processes can we explain theoretically the observed
damping.26 Relaxation damping is caused, above all, by the molecular
vibrational and rotational degrees of freedom, which require a considerably
longer relaxation time 7 for adjustment to a change in thermodynamic state
than do the translational degrees of freedom. At ultrasonic frequencies, the
product @t can reach the order of magnitude of unity. Then, pronounced
damping and dispersion phenomena appear. Just as a knowledge of the
relaxation time permits us to calculate the dispersion and damping of sound
waves, so naturally the measurements of dispersion and damping permit us
to determine the relaxation time.

To conclude this section, we yet have to discuss how a wave of the type
sketched in Fig. 25 in the limit of d¢— 0 behaves in a gas with relaxation.
Such a wave propagating to the right in the region x > 0 can be generated
in the following manner: For ¢ < 0, let the gas be at rest in the region x > 0;
for >0, let it be arranged so that at the point x=0 a constant velocity
u(0, 1) = du obtains. This can be achieved, for example, by blowing (éu > 0)
or by suction (du < 0). In the linear approximation, we can also imagine the
motion to be generated by a piston which is started suddenly; for, although

26 See H.O. Kneser, Schallabsorption und -dispersion in Gasen. In ‘“Handbuch der
Physik™ (S. Fliigge, ed), vol. XI/1, p. 129-201, Springer, Berlin, 1961.
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the boundary condition: gas velocity = piston velocity sho.uyd bff satis.ﬁed‘at
the piston location, for sufficiently small du the piston position 1s.arb1trar11.y
close to x =0. In the flow without relaxation as sketched in Fig. 26, th.15
really makes no difference, since the gas velocity is everywhere constant in
the region between the piston and the wave front.
Considering now the fact that the function
! o) 22 3.99)
N=— | exp(iot)—, 3.
7@ 2ni J ( w
e
(where the integration is taken over the entire real axis of the complex
o plane with an arc below and around the singular point o = 0) possesses
the following properties:

0 for t<0,
f@=1% for t=0, (3.100)
1 for t>0,

we can write the solution of our problem in the following form:

d
u(x,t)= ;S'Zl j expi[w? — k(w) x] —g, (3.101)

-

with k() given by (3.98) also extended to complex values of .

The expression (3.101) satisfies the wave equation (3.94), since .the e.xpo-
nential function in the integrand satisfies this equation. Moreover, it satisfies
the boundary condition at x =0, since the expression (3..101) reducc.s to
Suf(t) at x=0. Further consideration of the intcgra.l in F3.1F)1) gives,
moreover, u = 0 for x > byt (compare with the detailed dlscuss.10n in Section
3.10.3). For ¢ <0, the condition w=0 in x>0 is thus satisfied. On the
straight line x = by7 in the x,? plane (Fig. 39), u jumps from the value 0 for
x > byt to the value edu (see Section 3.10.3), where

ag?\ t
e= exp[— <1 = T}) 27]. (3.102)

This discontinuity on the straight line x = byt thus decays exponentially with

time, where
1= 2t[1 — (ag’ /b1 ™" (3.103)

measures the decay time. In the region x < byt, u increases continuously to



116 3 Inviscid Flows

M--]

Wavefront

Gas af rest X

Fig. 39. Waves generated by an impulsively accelerated piston in a gas with relaxation.

its ﬁI'lal value éu at x=0. For times > t4, we find that this increase is
practically complete in a region of width / located around the straight line
x =agt (Fig. 39), where

I'=[2tr(by” — )}t (3.104)

The solution (3.101) for ¢ > f3 becomes asymptotically

u(x, 1) = %" [1 - gp(x 7"”)} (3.105)

where @ is the error integral

¢
2©) == [ (- r)an.
/]
Figure 39 shows the important features of this solution. With the help of
formulas (3.101)—(3.105), we can easily discuss how the solution tends to the
one without relaxation as 7 0 (Fig. 26).

In. conclusion, we point out the following: If éu > 0, i.e., when we are
dealing with compression waves, then the widening of the transition region
as predicted by Eq. (3.104) does not go on indefinitely. The nonlinearity of
the process works against this widening. As we have seen before in Section
3.2.4, this nonlinearity in a gas without relaxation always causes a steepening
of an originally continuous compression wave in time (see Fig. 36). This
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steepening tendency also exists in a gas with relaxation. While the widening
tendeney is dominating for small time ¢, for large time ¢ a final state is
reached where both influences balance each other exactly. Then, a continuous
wave propagates with constant velocity into the gas at rest without further
changing its form (*‘fully dispersed wave™).2? A measure of the width of this
wave is the length
T(b02 - aoz)
ou ’

i= (3.106)
The velocity profile in the wave is given by a hyperbolic tangent function;
in Eq. (4.47) a corresponding formula will be given for the velocity profile
of a weak shock with viscosity and heat conductivity considered.2? (See below
for the connection between relaxation processes and bulk viscosity.)
Supplementary Remarks. If the period of oscillation 2w ™! is large com-
pared to the relaxation time t, i.e., ot <€ 1, the state of the gas will deviate
only slightly from thermodynamic equilibrium at any instant. On the other
hand, we obtain for wt <1, by expanding (3.98) in wt, the approximate

expression
, o . bo® —ay’
k"=-—5]1-ior ——7F—|.
)

An analogous formula results if we calculate the propagation of sound waves
in a gas with finite bulk viscosity 7, (see Section 4.1.1) but negligible shear
viscosity and thermal conductivity. In this case, we get

This formula is identical to the one above if we set 17, = 047(bo* — @o%). The
agreement is not incidental. Indeed, one can show in general that, when the
time scale of the state changes is large compared to the relaxation time, the
effect of the relaxation process can be accounted for by assuming that the
thermodynamic state variables are connected by relations valid for un-
constrained equilibrium, but with a finite bulk viscosity included. Since the

27 M.J. Lighthill, Viscosity Effects in Sound Waves of Finite Amplitudes, in Surveys in
Mechanics (G.K. Batchelor and R.M. Davies, eds.), 250-351, Cambridge Univ, Press,
London, 1956.
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relaxation time of the rotational degrees of freedom of a molecule is very
small, we can often describe the effect of this relaxation by a corresponding
bulk viscosity, while with vibrational degrees of freedom, this is usually not
permissible because of the much longer relaxation times.

3.4 Normal Shock Waves

3.4.1 SHOCK RELATIONS

In Section 3.2.4, the formation of a shock wave was explained for a special
example. The shock wave that appeared in the flow treated in that example is
unsteady, i.e., its strength, measured, say, by the jump of the pressure across
the shock, changes with time. A simpler behavior is found if the piston is not
accelerated continuously from zero velocity, as was done in Section 3.2.4,
but is suddenly accelerated to a constant final velocity 4u. Then, a shock of
constant strength will propagate into the stationary gas with constant velocity
u, . Introducing a coordinate system which moves with the shock, we trans-
form the flow to a steady flow in this coordinate system: In front of the shock
the gas has velocity u,, and behind it a velocity u, = u; — 4u (Fig. 40).

In a shock wave, viscosity and heat conduction play a role. As we shall
establish more exactly later on (Section 4.2), these effects in general remain
confined to a very small region of width / (shock thickness). We now imagine

a

N

o 20,3 —

Control volume

Fig. 40. Shock wave generated by a piston suddenly set in motion. In the upper figure,
the gas in front of the shock is at rest; in the lower figure, the coordinate system is chosen
so that the shock is at rest.
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a control volume as sketched in Fig. 40. The surfaces 1 and 2 of the control
volume completely enclose the shock region of width /. On these surfaces,
therelore, neither shear stress nor heat flow occurs.28 The side surface 3 of
the control volume is a streamtube, i.e., the normal to the surface is every-
where perpendicular to the streamlines. Now we must note that in a one-
dimensional flow, the gradients of all the flow variables only have compo-
nents in the flow direction. In an isotropic medium, the energy flux vector q
introduced in Section 2.4 is then also in the streamline direction; moreover,
on the side surface 3 the viscous stress is perpendicular to the flow direction,
and does not enter the momentum equation. In applying the three conser-
vation laws of mass, momentum, and energy to our control volume, viscous
stress and heat conduction drop out of these equations.

In each equation, we assume the steadiness of the flow, and we divide by
the area 4, = 4,; the continuity equation (2.34) becomes

QU1 = QUs. (3.107)

(The subscript “1”’ denotes quantities in front of the shock, the subscript *2”
those behind it.) With body forces neglected, the momentum equation (2.49)
becomes

01y* + p1 = 0" + pa (3.108)

The energy equation (2.54) or (2.56) [since in (2.54) the terms L,, Ly, and L,
all drop out for reasons given above] becomes -

u 2+ hy =32+ h,. (3.109)

For given velocity #; and given thermodynamic state 1 before the shock,
we can use the caloric equation of state h=h(p, ¢) and calculate from
Egs. (3.107)~(3.109) the velocity #, and the thermodynamic state 2 behind
the shock without knowing the detail processes in the shock region. Thus,
without express reference to viscosity or heat conduction, we can consider
the shock (because of its small thickness /) as a discontinuous surface in an

28 In a shock wave, relaxation processes of the type considered in Section 3.3. can also
play a role and considerably influence the shock thickness (consider, for example, the
thickness / given by (3.106) for a fully dispersed wave, which is nothing more than a weak
shock; see Section 4.2.3). The shock relations about to be derived, however, remain
unchanged if the control surface fully encloses the relaxation region and thermodynamic
equilibrium obtains outside the control volume.

L
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inviscid flow ficld on which the three shock relations (3.107)-(3.109) arc to
be satisfied. The assumptions of steadiness and negligible body forces are,
moreover, not very essential; in nearly all practical cases, these relations can
also be applied to unsteady shocks, as well as to shocks with volume forces
present.

The effect of unsteadiness can, for example, be estimated in the continuity
equation (2.34) as follows: The contribution to the surface integral in
Eq. (2.34) from surface 1 is (apart from the sign), o,u,4 (4 =4, =A4,)
and the contribution from surface 2 is ¢,u,F. The volume integral yields
a contribution A47¢dg/dt), where {3g/ot) is an appropriate mean value of
do/0t. We now set {dp/0t) = (0 + 0,)/2F, where the time 7 is the time scale
measuring the local time-variation of the density. The volume integral can
then be neglected when compared with the contributions from the two
surfaces if Al(g, + 0,)/2F < A(0,u, + 0 u5), ie., if

i>la, (3.110)

where i = (20,u; + 20,u,)/(g; +¢,). Since I can be chosen to be of the order
of the shock thickness /, this means that the characteristic time 7 of the
unsteady changes must be large compared to the time //i, which is the order
of magnitude of the duration of stay of a gas particle inside the shock region.
Because of the smallness of the shock thickness, this condition is almost
always satisfied. Similar consideration of the momentum and energy equa-
tions including the presence of body forces leads to the same conclusion.

3.4.2 CHANGE IN THE THERMODYNAMIC STATE ACROSS A SHOCK WAVE

We now study the change of the thermodynamic state across a shock by
eliminating the velocities u, and u, from Egs. (3.107)~(3.109). We first get,
from (3.107) and (3.108),

e Y B T L CO E BT

ut =
0102 — Oy 2202 — @y

Substituting this into Eq. (3.109) and making a short calculation, we obtain

1/1 1
hy — by :5(54—&*) (p2 —py)- (3.112)
2

1

This equation, which is fundamental in shock theory, is called the Hugoniot
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relation. For very weak shocks in which state 1 differs only very slightly from
state 2, we can set iy — I, = dh, p, — py = dp, and 3(1/¢, + 1/0,) = 1o, and
Eq. (3.112) becomes dh = dpfe or ds=0. Thus, in very weak shocks, the
entropy change of the gas particles is negligible. In this limiting case, we get
the discontinuous waves discussed in Section 3.3.2.

For further discussion, we imagine the fixed initial state to be the state
Pi»0; in a p, o plane (point 4, Fig. 41). For a given caloric equation of state

7

24

]

] 73

Fig. 41. [Isentropes (---) and Hugoniot curve in the p, o plane.

h = h(p, 0), all the attainable final states can be determined by calculating' P2
from (3.112) with given values of g, . These states p,, ¢, lic on a curve passing
through A, the “Hugoniot adiabatic.” In Fig. 41, the isentropic curves
s(p. ) = const are drawn. It is assumed here that the isentropes always rise
with density and are convex with respect to the ¢ axis, which is always true
when relation (3.1) is fulfilled. Moreover, it is assumed that the entropy

increases with pressure, i.e.
(8s/op), > 0. (3.113)

Applying the relations given in Section 1.4, we can show that Eq. (3.113) it
satisfied if the volume expansivity & > 0, which will always be assumed ir
the following. )
Since the change of state is isentropic for weak shocks, the Hugonio
adiabatic must be tangent to the isentrope passing through 4. This tangenc)
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is' cven of second order, ie., at the point of tangency, not only arc the
directions of both curves the same, but so are the curvatures. This can be
shown as follows: The relation p, = f(g,) for the Hugoniot adiabatic through
4 is given by Eq. (3.112). We drop the subscript “2”* for simplicity and
differentiate Eq. (3.112) with respect to o:

dh - 1/1 1\d
S A <~+~)—p.

e: ¢/ de

Substituting from (1.23) dh = T ds + (1/g) dp, we get

d; -
r%__p 2p1 + 1/1 1 dp
do 20 2 do’
from which follows the already known fact that dsj/dg=0atp=p ,o=op,.
Differentiation again of (3.114) with respect to o yields

i%+dTg§_p—pl 1/1 1\d%p
do® “dede @ "2\, o) de*
This shows that at the point 4, d2s/dg? is also zero, so that at this point the
curvatures of the isentrope and Hugoniot adiabatic coincide, as asserted
before. Another differentiation with respect to o finally leads to the result
which is valid specially for the point A:

ds 1 dp) 1 d%p
153 = =35 +—-
dQ’ly=o, 0% doly,,  20,% do?
However, because of the second-order tangency of the Hugoniot curve with
the isentrope at point 4, the derivatives on the right side are identical to the

derivatives (9p/do), and (6°p/dg®),. Using definitions (1.133) and (3.1), we
thus get from (3.116)

de~ 20 T2

= 3.
o o (3.114)

(3.115)

. (3.116)

=01

dss‘ 1 [alz Ay

—l = — +— .

dga‘e:m T1012 Q21 2 @.117)
Expénding the entropy s on the Hugoniot adiabatic as a Taylor series in the
density ¢ about the point 4, we get from the above results

D a’ 4, 3 4
s ] Pl R (PR B (3.118)

This shows that in a weak shock, §2 > s, always when g, > g, i.e., the
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entropy increases across a shock when the density increases. By the second
law of thermodynamics, positive entropy is generated in the shock region,
so that it must increase. Then we must have g, > ¢,, so that only the branch
of the Hugoniot adiabatic to the right of 4 has physical meaning>A shock
must actually be a compression, under the assumed thermodynamic behavior
of gases [e.g., satislying Eq. (3.1)], and expansion shocks are to be excluded.
Of course, this conclusion drawn from Eq. (3.118) is thus far good only for
weak shocks, for which @, — g, is so small that the term 0[(g, — ¢,)*] in
Eq. (3.118) plays a negligible role. Nevertheless, we can show by a more
general procedure that in every shock, the entropy increases (or decreases)
as the density increases (or decreases), so that only compression shocks can
exist.29

Using this fact, we can now easily show that the flow in front of a com-
pression shock is always supersonic, i.e., 4, > @, . To this end, we observe that

dp
-2
! ag s=s1]|e=e1

is the slope of the isentrope at the initial point 4, and hence also of the
Hugoniot adiabatic there. But g,/g, > 1, and Fig. 41 leads us to the con-
clusion that (p, —p,)/(e; — 0,) > (dp/dg), = a;*. Thus, by Eq. (3.111),
;2 >a,% In a gas at rest, a shock wave thus always propagates with a
velocity greater than the sound velocity. In an entirely similar manner, we
can show that u,? is always < a,?, i.e., the flow behind the shock is always
subsonic. To this end we regard the final state 2 as fixed, and seek all possible
initial states 1 that will lead to this final state across a shock. When we
interchange the meaning of the subscripts “1”” and “2” in Fig. 41 and identify
point 4 with the final state 2, then all possible initial states 1 must lic on the
Hugoniot curve to the left of 4. The same arguments as before then lead
to u,? < a,’.

Let us now briefly sketch how one can determine the shock wave from a
given Hugoniot adiabatic, for example, in the problem of the suddenly
started piston (with constant final velocity Au) in a gas-filled cylindrical tube.
From Eq. (3.111), we can calculate for each point on the Hugoniot adiabatic

29 Relations (3.1) and (3.113) suffice as assumptions for the validity of this statement;
Eq. (3.1) can even be replaced by the weaker requirement (82p/e(1/p)2)> 0. See J. Serrin,
Mathematical Principles of Classical Fluid Mechanics, in “Handbuch der Physik™ (S.
Fliigge, ed.), vol. VIII/1, p. 125-263. Springer, Berlin, 1959.
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through p,, g, (the pressure and density of the stationary gas in front of the
shock) the velocities u, and u,, and the difference v, — u,. The state of the
gas behind the shock produced by the piston motion corresponds to that
point on the Hugoniot adiabatic at which the difference u, — u, equals the
piston velocity. Using assumptions (3.1) and (3.113) on the thermodynamic
behavior of the gas, we can, moreover, show that 4, increases monotonically
when we proceed along the Hugoniot adiabatic away from the initial point.
This means, therefore, that the normal shock is uniquely determined by
P10y, and uy.

3.4.3 SPECIAL FORMULAS FOR A CALORICALLY IDEAL GAS

For a calorically ideal gas the caloric equation of state can be written in

the form 4 =hA* +[y/(y —1)] p/o. Substituting this into Eq. (3.112) and

- solving for the pressure ratio p,/p, , we obtain the equation of the Hugoniot
adiabatic:

P2 _(eafe) 7+ 1) —(v—1)

o yH1=(G-1)(eles)

(3.119)

The density ratio of the gas that can be attained across a compression shock
is accordingly bounded by the value

(02/01)max = (v + DIy — 1), (3.120)

since 0,/01 = (€2/01 Jmax COTrEsponds to p,/p, — oco. Together with the pressure
P2, the temperature T, also increases without bounds, since the thermo-
dynamic equation of state gives T,/T; = (p./p,) (¢,/¢2)- The change of spe-
cific entropy of a gas particle across the shock is given from (1.62):

52 = sy = ¢, In(T/Ty) — RIn(p,/p;)
= ¢, [In(pa/p:) — v In(gz/e1)] (3.121)

If we realize that the stagnation temperature T, (see Section 3.1) of a caloric-
ally ideal gas does not change across a shock (we shall return to this later),
ie., T,y = T,,, we can write in place of Eq. (3.121)

$5 =5y =—RlIn(p./p1). (3.122)

As a convenient parameter to express the connection of the velocity and
state variables in front of the shock to those behind the shock, we now
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introduce the Mach number M, = u,/a, of the flow in front of the shock.
From Eq. (3.111), we get

u,2 2 P{:QZPZ_PL

2o M2ai=M
uxzal s 1}’91 0122~ &
or
Z_(ﬂg/Pl);¥Qiz.
(02/01) — 1 eou

Substituting for p,/p, according to (3.119) and then solving for ¢,/g;, we get

1

0, (+DHM’ (3.123)

o 2+ -1)M
The maximum value of g,/e;, (3.120), is attained for M; —o0. Substituting
(3.123) into Eq. (3.119), we get
P2 _ M’ - = 1) (3.124)
D y+1
and we obtain from (3.123) and (3.124) together

2
IEQ‘,=E=[2)}M12_(?—_1)] 52“'57 _71) M, ] (3.125)
pie: Ty (v + 1)* M,
The Mach number M, behind the shock can be calculated as follows: By
Eq. (3.107), u,% = 0,%u;/@,”, so that
w'_elwle MP
a0t yp2 (eale) (p2/py)
Hence, with Eqs. (3.123) and (3.124),
2
2=V+1+(Y']>)(A2/[1 —1)‘ (3.126
y+1+29(M*—1)
As M, > o, M, tends to the finite limit
Mo = [(r = /21" (127
We now derive a relation between the velocities u; and u,, commonl;
called the Prandtl relation. Using the definition of the stagnation, or reser
voir, quantities given in Section 3.1, Eq. (3.109) can also be written a
hy = hy,. For a calorically ideal gas, A is a pure function of temperature
so that we also have T, = T;; and a,; = a,;. By Eq. (3.18), the critical soun

M,* =

M,
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velocity a, is proportional to the stagnation sound velocity gy, so that we also
have a,( = day, = a,. From Eq. (3.111), it follows that
" _ D (Pz/P1)‘1_alz(P2/P:)* 1
M= 0 = T -
o1 (eale) =1 v (eade) — 1

Again substituting p,/p, from Eq. (3.124) and 02/0, from Eq. (3.123), we
obtain

= 12 1 71M2 (3 128)
uu + . .
2 V+1 2 !

From relations (3.13) and (3.18), it immediately follows that Eq. (3.128) can
be written in the form given by Prandtl:

U, = a,’. (3.129)

From Eq. (3.128) we can derive an expression for the velocity difference
Au=u; —u,, and thus for the gas velocity behind the shock as seen by an
observer at rest with the gas in front of the shock. This difference is

Au=uy —u, = Mya, [(1 — (u,u,/u,?)].

Substituting for u,u, from Eq. (3.128) and making a short transformation,

we get
2 1
du="2 (M, - \>. (3.130)
v+ 1 M,

We now define M,’ = Aufa, as the Mach number of the flow behind the
shock as seen by an observer fixed to the gas at rest in front of the shock.
Since a,/a, = (T,/T,)~"/?, we get, from Eq. (3.130) with (3.125),

2(M,* — 1)

M, = . 3.131
FT M- R G- M OB
M’ is bounded from above by
Mimx = lim My = [2/y(y — 1)]"/2. (3.132)
Mi—>w

For y =7/5, for example, M .. = 1.89. Thus, although by (3.130) the velocity
Au increases without bounds with M,, the Mach number M,  remains
bounded, since the temperature T, and thus the sound velocity a, also
increase without bounds.
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Finally, we must point out the following: Although the changes of state
in a shock wave (for a calorically ideal gas) indeed give T,, =T,, and
thercfore p, /o = palen » nevertheless, p,, # py and g, # 0,,- In fact, the
stagnation pressurc and stagnation density both decrease across a shock.
Combining formulas (3.124), (3.126), and (3.14) and performing a short
calculation for the ratio of stagnation pressures, we get

P2 (+1)M? mr“l:z)’Mlz - - 1)]_ ”w_l)__ [(Qz/Ql)y]”(Yﬂ)
Pa L2+ (—1M? r+1 Palps i

(3.133)
The most important of the relations derived here are shown graphically in
Fig. 42.
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Fig. 42. Pressure, density, temperature, stagnation pressure, and Mach number M:
behind a normal shock wave as a function of the Mach number My in front of the shock;

calorically ideal gas.
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Supplementary Remarks. For weak shocks in a calorically idcal gas, the
following expansions from (3.122) and (3.133) hold:

S3 = 8y 2y 2y?

= o M- 1) - o) 4 *

R 3(v+1)2( - G+ 1) M =D+, (3122%)
Pr2 2y 2?

=l s (M 1) TS (M - 1) *

Pu 3(y+1)2( g ) +(Y+ 1) M = 1)* e (3.133%)

Introducing in place of the flow Mach number M, the pressure ratio p,/p,
as independent variable, we obtain, after applying (3.124),

Sy — 8 7+1<P2 )3 y+1<p2 ¢
- 2_q) _ 1) 4, 3.122%*
R 12)}2 )2 Dy ) ( )

Syz
Po Y+1<Pz )3 y+1(p ¢
AC I 21 + I R i
Pu 12'}’2 P 8)’2 P * (3.133 )

3.4.4 SIMPLE APPLICATIONS

Using the relations deduced above, we can calculate the pressure distri-
bution along a slender Laval nozzle when a shock wave occurs in the di‘}erging
part of the nozzle (see the discussion of nozzle flow in Section 3.1). If we
assume that the shock wave occurs at a certain location of the nozzle where
the cross-sectional area is A, then the ratio A/ Ay (A, = throat area) will
determine the Mach number M, of the flow Jjust in front of the shock wave.
We can then calculate M,, p,, and p,, from the above relations, and from
M.2 we can determine @,/0,, from Eq. (3.20). By continuity, at a section
with cross-sectional area 4 downstream of the shock, @A = 0,4, or

0 0,4y,

@*2 @*2 A ’

In this way, we therefore obtain the ratio ©/0,, for each cross section 4,
and get from Eq. (3.20) the corresponding Mach number M < 1. With this
Mach number, we can calculate the pressure p at the cross section 4 from
Eq. (3.14), in which we set p, = p,, . The curves shown in Fig. 22, for example,
were calculated in this manner; they give the pressure distribution as a
function of 4/A4, for y =7/5. The different curves correspond to different
positions of the shock wave, i.e., to different pressures at the nozzle exit.
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As a further application, let us now consider the following problem: A gas
is lowing past a rotationally-symmetric, or, in plane flow, an axisymmetric,
solid, blunt-nosed body with constant velocity u,, (and hence constant Mach
number M, ) in the dircction of the axis of symmetry (Fig. 43). We shall
designate the constant state far upstream, which is undisturbed by the body,
by the subscript ““00,” just as we designate the freestream velocity. Upstream
of the body, the axis of symmetry is a streamline, while at point .S on the
body, the stagnation point, the velocity is zero. When the flow is subsonic
or sonic, M, < 1, we can calculate the state variables at the stagnation point

Shock

—_——

e —

—_— ]

Moo

V)

+

Fig. 43. Supersonic flow past a blunt-nose body with a detached shock.

(denoted by the subscript ““s””) from the isentropic relations given in
Section 3.1, since the quantities at the stagnation point will be identical to
the corresponding total or reservoir quantities defined in Section 3.1. Thus,
for example, we get from Eq. (3.14),

=P [1+3( = MO, (.134)

This changes when the flow around the body has supersonic velocity (M,, > 1),
since then a shock wave will be created in front of the body (Fig. 43), as
will be explained later (Section 3.5.1). The flow in front of the shock is
completely uninfluenced by the body. On the axis of symmetry, we have a
normal shock (since there the streamline is perpendicular to the shock
surface) with upstream Mach number M_ . The pressure at the stagnation
point is calculated as follows: First we obtain the total pressure p,,, of the
flow in front of the shock from M, and ¢, using Eq. (3.14), and then, using
Eq. (3.133), we obtain the total pressure behind the shock, which will be
identical to the pressure p, at the stagnation point. The result is

+1 Ya=1) 2 UG-
Ds = P (’y 2‘ M@Z) L+ ;’:’y—l (Macl - 1) (3.135)
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Formulas (3.134) and (3.135) are useful in experimental determinations off
the Mach number of a flow. By measuring the pressure p, at the stagnation
point and simultaneously the pressure p far ahead of the body, we can
calculate the flow Mach number M,, from these formulas.

In contrast to the total pressure (and total density), the total enthalpy does
not change when the gas passes through a shock wave; in a thermally ideal
gas, the total temperature also does not change. This is why we can use the
particular relations (3.13) given in Section 3.1 for calculating the stagnation-
point temperature of a calorically ideal gas:

T,=T,[t+3( - )M, (3.136)

Instead of thinking of a gas flowing with velocity u,, past a body at rest, we
can imagine the body to move with velocity u,, in a gas at rest. The relation
between the state variables of a gas at the stagnation point and those in the
stationary gas far ahead of the moving body (denoted by the subscript “co”
can again be determined from the above formulas. In particular, we find from
Eq. (3.136) that the temperature T, of the gas at the stagnation point increases
with the flight Mach number M, (the ratio of flight velocity u,, to the sonic
velocity a,, of the undisturbed gas far away from the body). With y = 1.4 and
M, =2.24, wehave T, = 2T, . Since at an altitude of 10 km the sound velocity
in the atmosphere will be approximately 1100 km/h (corresponding to a
temperature of 230°K there), this means, for example, that at the stagnation
point of a flight vehicle with a speed of 1100 x 2.24 = 2464 km/h, a temper-
ature of 2 x 230°K =460°K = 187°C will occur! Temperatures such as
these do not only appear at stagnation points. A more careful examination
of the hitherto neglected friction and heat conduction in the boundary layer
at the body surface shows that the gas near the entire body surface experi-
ences temperatures of the order of magnitude of the stagnation-point temper-
ature provided that no heat transfer occurs between the body and the gas
(thermal steady state, see also Section 4.3.2). Much higher temperatures
appear at velocities of importance to space flight (orbit velocity near the
earth is 7.9 km/sec = 28,440 km/h, for example). The heating of the body as
a result of these high gas temperatures plays a crucial role in the reentry of
space vehicles into the upper atmosphere. On the other hand, we can no
longer regard air at high temperatures as a calorically ideal gas, so that
formula (3.136) is not applicable. As already explained in Section 1.5, the
specific heat of the gas rises appreciably at higher temperatures, which results
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Fig. 44. Temperature, pressure, and density behind a normal shock wave in air as a
function of the Mach number M; and the pressure p; in front of the shock. 71 = 300 °K.
Comparison with a calorically ideal gas with y=1.4. (a) Temperature, (b) pressure,
(c) density.
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in lower temperatures behind the shock than those calculated for a calorically
ideal gas. Therefore, it is particularly important in calculating this heating
process that we study the normal shock relations for real gases, of the type
shown in Fig. 42 for a calorically ideal gas.

Figure 44 contains the important relations for air based on the calculations
of S. Feldman. In particular, we can see from the density ratio curve how
the departure from the behavior of a calorically ideal gas with y = 1.4 is
caused by three different processes: At relatively small Mach numbers M,
and thus relatively low temperatures 7,, molecular vibrations first become
noticeable behind the shock, these vibrations being unexcited at the initial
temperature of 300 °K. This constitutes the first departure from the curve for
y = 1.4, and it is independent of pressure p,. At higher temperatures, dis-
sociation sets in, which is strongly pressure-dependent (see Section 1.10).
Finally, at Mach numbers of the order of 20 or higher, the gas ionizes
because of the high temperature 7,, resulting in yet another departure from
the ideal gas curve. Moreover, the ionized gas becomes electrically con-
ducting, which may permit the flow processes to be influenced by electro-
magnetic forces. These phenomena form the subject of magnetogasdynamics,
which is beyond the scope of the present work.

3.4.5 SHOCK TUBE

For experimental gas dynamics and for many physical-chemical studies of
high-temperature gas properties, such as those involving relaxation processes,
etc., a device known as a shock tube is of great value.30 In its simplest form,
the shock tube is a cylindrical tube which is partitioned by a membrane
(uppermost part of Fig. 45). To the right of the membrane is a stationary
gas at pressure p, , and to the left, a stationary gas at pressure p, > p, . At time
t =0, the membrane is instantaneously removed—for example, by puncturing
it with a needle, so that the pressure difference causes the membrane to burst.
For ¢ > 0, the initial pressure difference will then tend to equalize through a
flow shown in Fig. 45: In the low-pressure stationary gas, a shock wave S

30 1.1. Glass, W. Martin, and G.N. Patterson, A Theoretical and Experimental Study
of the Shock Tube. University of Toronto, Institute of Aerophysics (UTIA) Rep. No. 2,
Toronto, Canada, 1953. A. Ferri (ed.). Fundamental data obtained from shock tube
experiments. AGARD-ograph No. 41, Oxford-London-New York-Paris, 1961. J.K.
‘Wright, Shock tubes, London-New York, 1961.
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Fig. 45. Flow in a shock tube.

propagates to the right with velocity u,, raising the pressure from p, to p,
and generating a velocity Au. In the high-pressure stationary gas, a centered
expansion wave E propagates to the left, reducing the pressure from p, to
p, and generating a velocity Au’. At the contact surface K, the original
high-pressure gas and the original low-pressure gas adjoin each other. At the
location of the contact surface, we can imagine an infinitely thin piston
moving to the right and producing exactly the same flow with the same
shock and expansion wave. On purely kinematic grounds, the gas velocity
on the right and on the left of the contact surface must be the same (4u’ = Au).
The same must be true for the pressure (p; = p,), since a pressure disconti-
nuity (i.e., shock) cannot be convected with the flow (since it must propagate
with supersonic velocity relative to the stream!). However, all the other
thermodynamic quantities can be discontinuous across the contact surface X,
and it is therefore also called a “contact discontinuity.”

For further discussion, let us confine ourselves to calorically ideal gases.
Let the adiabatic coefficient and sound velocity in the stationary low-pressure
gas be y; and a,, respectively, and those in the high pressure gas y, and
a,, respectively. (Since we can select two different gases on the two sides of
the membrane, we generally have y; # 74; also, even in the same gas, a; # a,

" is possible when the initial temperatures T; and T, are different.) We intro-

duce the shock Mach number M, =u;/a; as a parameter. The pressure
increase across the shock is then given by Eq. (3.124), while the density
increase and temperature increase are given by Eq. (3.123) and (3.125),
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respectively. The gas velocity du behind the shock is determined from
Eq. (3.130). On the other hand, for the expansion wave E,

D3 ( y4—1 Ay \2v4a= )
2 ={1- - .
Pa )

o (3.137)

This formula is obtained by eliminating M from Egs. (3.52) and (3.55) and
substituting in this case du’ for 4u, p, for p,, and a, for a,. Now we set
Au = Au’ and p; = p,; dividing Eq. (3.124) by Eq. (3.137), we obtain

pe 29 M*—(y, -1 ya—1la 1\~ 2e/a-1)
Ps _ 2¥iMy =1 Iz g, — 7)] e
1

P Y+ 1 v +1a, M,

From this equation, we can calculate for each shock Mach number M, the
required pressure ratio p,/p; ; conversely, for a given pressure ratio, we can
find the resulting Mach number M, , from which all the other quantities in
the shock tube can be calculated. Formula (3.138) shows that for a given
pressure ratio p,/p, , the larger a,/a,, the larger the attainable shock Mach
number M, . To generate strong shock waves, it is therefore advantageous
to use for the high-pressure gas (the driver gas) a gas with the smallest
possible molecular weight (e.g., helium), since, in such a case, the specific
gas constant R=R/IM will be large, and, by formula (1.135), so will the
sound velocity at a given temperature. Naturally, we can also increase the
sound velocity a, by heating the high-pressure gas. In Fig. 46, the pressure
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Fig. 46. Shock Mach number M; in a shock tube as a function of the pressure ratio
s/ p1and the ratio of the sound velocities as/a1; calorically ideal gas with y=1.4.
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ratio pg/p, is shown as a function of the Mach number M;, with a4/a, as
parameter and y; =y, =7/5.

The main purpose of a shock tube is generally to produce a slug of very
hot gas (temperature T,) between the shock S and the contact surface K.
This temperature can be increased even further in a very simple manner,
just by making the right end of the tube rigidly closed. The incident shock
will then reflect at the closed end, and the reflected shock runs toward the
left. The strength of the reflected shock is just great enough to stop the
gas motion which has been caused by the incident shock, since the gas
cannot flow into or out of the closed end. We denote by M, the Mach number
of the reflected shock relative to the gas motion resulting from the incident
shock. Applying Eq. (3.130) to the reflected shock, we get for the resulting
velocity Au, relative to the moving gas behind the incident shock the value

2a, 1
Au, = M, — — ).
Y1 +1 Mr

Since Au, = Au must hold, we get, after using Au from (3.130),

(Ml——l )‘2=M,—i. (3.139)
Ml as Mr

This determines M, for every M, , and M, in turn determines all the properties

of the reflected shock.

The shock tube can be modified in various ways. If, for example, we adjoin
the tube at the right end to a Laval nozzle, the throat cross section of which
is very small in comparison to the tube cross section, then the incident shock
will reflect from the nozzle in practically the same way as from a closed end.
Following the reflection, we have a practically stationary gas of very high
temperature in front of the Laval nozzle and flowing through it. The combi-
nation of a shock tube and a Laval nozzle is then a simple blowdown tunnel
of the type already mentioned at the end of Section 3.1. The time usable for
aerodynamic measurements is of course limited to the time during which the
flow through the nozzle is steady, i.e., the time between the arrival at the
nozzle of the first incident shock S and the arrival of the disturbance S’
resulting from the interaction of the reflected shock with the contact surface
(Fig. 47). This type of apparatus plays a great role in studying the processes
for high-speed flight, for which very high stagnation temperatures result. If
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Fig. 47. Reflection of a shock wave in a shock tube.

we are to study these processes in a wind tunnel, then the reservoir tempera-
ture of the gas must be very high. In the device discussed here, this heating
is achieved by the incident and reflected shock waves.

3.5 Oblique Shocks and Mach Waves in Steady Supersonic Flow

3.5.1 OBLIQUE SHOCKS

Let there be a normal shock in a steady flow, as shown in Fig. 40. We
now take the point of view of an observer moving with constant velocity — v
perpendicular to the flow, i.c., along the shock. As seen by this observer, the
gas enters the shock with velocity U, and leaves it with velocity U, (Fig. 48;
for the sake of convenience, we have here changed the direction of the flow

Fig. 48. Derivation of an oblique shock wave from a normal shock by translating the
coordinate system at the velocity v.

T
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given in Fig. 40). The shock wave forms an angle { with the upstream flow,

with
tan{ = u,fv. (3.140)

The downstream flow is deflected at an angle 6 from the upstream flow:
tan({ — 0) = u,fv. (3.141)

The normal shock has become an oblique shock in the coordinate system
moving with velocity — v. In this way, we can associate with each normal
shock a family of oblique shocks by superimposing on the normal shock
different velocities v.

The shock relations (3.107)—(3.109) continue to be valid, since they are
invariant with respect to a uniform translation of the coordinate system
(Galilean transformation). Therefore, all the consequences of these relations
also hold as before; in particular, for example, formulas (3.111), (3.112), and
(3.117)—(3.121) all hold. But, in (3.123)~(3.125) and (3.133), we must remem-
ber that the Mach number M, is the ratio u,/a,; with oblique shocks, it is
more convenient to define M; to be U/a,, so that u,/a, = M, sin{. This
means that formulas (3.123)-(3.125) and (3.133) also hold for oblique shocks
if M, is replaced by M, sin{. In particular, we have:

Q2 _ (v + 1) M,*sin’{

% _ N 3.142

er 2+ —1)M*sin’(’ 142
M 2 .2 . —

P _ M sin - (- 1) (3.143)

P y+1

T, a® [2yM,*sin’{—(y = D] [2+ (y — )M, *sin*{] (3.144)

T, a’ (y + 1)> M, * sin*¢ ’ ’

Since for a shock wave we must always have u, >a,, then, for a given
Mach number M, , we can only have shock angles { for which { > u, where
u=arc sinM; ! is the Mach angle corresponding to the Mach number M, .
u is the limiting value of the shock angle for infinitesimally weak shocks:
lim {=u
p2/p1 =1
The Mach number M, in the relations for normal shocks must be replaced
by M, sin({ — 0) for oblique shocks; then, they continue to hold for oblique
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shocks, and M, now means U,/a, . In particular, from (3.126), which is valid
for calorically ideal gases, we have

Y+ 14 (y— 1) (M ?sin>¢ — 1)

M2 sin?(f—0) ="+
2 ( ) P+ 142p(M,*sin®{ —1) ~ (.143)

A relation between the deflection angle 6 and shock angle { is obtained
as follows: From Egs. (3.140), (3.141), and (3.107), it follows that

tan{ u, 0,
= 3.146
tan((—0) u, ¢ ( )
which becomes, after trigonometric transformations,
-1
ang— @le) =1 (3.147)

(e2/0,) + tan®¢

0° 10° 20° Jo° 40°

Fig. 49. Relation between shock angle ¢ and deflection angle 6 for an oblique shock;
calorically ideal gas with y =1.4.
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IFor the special case of calorically ideal gases, we can use (3.142), and we get
M,? cos*{ — cot?¢

J— 2 = ta
1+ $M,*(y + cos20)

Shown in Fig. 49 is the relation between 0 and { according to (3.148), with
the Mach number M, as a parameter (and y = 1.4). The deflection angle 0 is
zero for {=p (weak shock limit) and for {=90° (normal shock) while for
values in between, there is one maximum deflection 0,,,(M,) corresponding
to each upstream Mach number M,. The curve connecting the points of
maximum deflection is drawn in Fig. 49 as a dot-dash line; it differs only
slightly from the curve M, =1, which connects all the points at which the
flow behind the shock is exactly sonic. To find the thermodynamic quantities
behind an oblique shock, we can use Fig. 42 for normal shocks, in which M
sin { must be substituted for M for the abscissa. This quantity can be first
found from Fig. 50 for a given upstream Mach number M, and a given
deflection (for caloricaily ideal gases with y=1.4). Using Figs. 50 and 42, we
can readily find the ratios p,/p;, 0,/0,, T»/Ty, and p,,/p,, as functions of M,

tan0 = n{. (3.148)

M, sinl

5
. )
2
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i
5
2 A [

M
14 20

! 15

Fig. 50. The quantity M; sin{, which determines thermodynamic changes of state in
an oblique shock, as a function of the Mach number M; ahead of the shock and the
deflection angle @; calorically ideal gas with y =1.4.



140 3 Inviscld Flowsy

Pty

!
C-50° 400 30° 25° 20° 15e

1 2 3 4 5

Fig. 51. Pressure ratio for an oblique shock as a function of the Mach number M;
ahead of the shock and the deflection angle 6 or the shock angle ¢; calorically ideal gas
with y=1.4. (From L. Rosenhead (ed.), A selection of Graphs for Use in Calculations of
Compressible Airflow, Oxford, 1954.)

and 0. As an example, Fig. 51 shows p,/p, as a function of M, and 8 (or {).

These results permit us to determine in a simple fashion the symmetric
two-dimensional flow with uniform supersonic upstream velocity (M, > 1)
past a wedge-shaped body with vertex angle 20 (Fig. 52). Two oblique
shocks issue from the vertex, each toward one side of the wedge and each
deflecting the flow to an angle 0 with respect to the free stream. The shock

i-—.»*
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Fig. 52. Supersonic flow past a wedge.

directed to the right of the flow direction (lower part of Fig. 52) will be called
“right-running” and the other shock “left-running.”” In front of the shocks,
the flow is completely undisturbed by the wedge. The shock angle { and the
uniform flow states behind the shocks can be found from Figs. 49-51 for
calorically ideal gases. Two completely different flow patterns result, de-
pending on whether the wedge angle 0 is smaller or greater than the maximum
possible deflection 6,,,, corresponding to the particular M, :

1. When the wedge angle is § < 8,,,, then, according to Fig. 49, there are
two shock angles { for each given 0, i.e., the solutions can have either a
strong shock or a weak shock. We call an oblique shock a strong shock if {
is greater than the value of { corresponding to the maximum deflection 0,,,,,
and a weak shock for the opposite case. Since in Fig. 49 the curves 0=0,,.,
and M, =1 almost coincide, a weak shock will generally have supersonic
flow behind it, while a strong shock will always have subsonic flow behind it.
Which of these two solutions occurs in reality can only be decided experi-
mentally, and, indeed, experiments show that, but for a few exceptions, the
weak-shock solution is generally realized. Therefore, we shall always assume
a weak shock from now on. Moreover, it is not necessary that the wedge be
symmetric to the direction of flow. If we place the axis of the wedge at a
certain angle to the flow (Fig. 53), then on the upper surface a shock will

Fig. 53. Supersonic flow past a wedge at an angle of attack.
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appear corresponding to the deflection 0, and on the lower surface a shock
corresponding to (. We assume that both 0, and 0, are smaller than 0,,,,.
The flows on the upper and lower surfaces of the wedge are completely
independent of one another.

Of course, a wedge extending to infinity to the right cannot be realized in
practice, since a real wedge must somehow be terminated—for example, as
is shown in Fig. 54 (double wedge). In the case considered with 6 < 6,,,,, the

M

Fig. 54. Supersonic flow past a double-wedge profile; attached shocks.

flow near the vertex is actually observed to be the same as that described
before for the infinite wedge. To be sure, the shock waves emanating from
the vertex extend outward with constant strength only to the points 4 where
they intersect the expansion waves emanating from the corners B (Prandtl-
Meyer flow, see Section 3.6) and thereby become weakened; this process will
be studied in greater detail later (Section 3.6.2). In these considerations, we
tacitly assume that the flows behind the weak shocks from the vertex are
supersonic (M, > 1), so that the flows in the triangles formed by the vertex,
points A4, and points B are uniform. If we had chosen an upstream Mach
number M, and wedge angle 6 in such a manner that the weak shock solution
in Fig. 49 corresponds to a point between the curves M, =1 and 0 =0,,,,
then we would have subsonic flow behind the shocks and no uniform flows
anywhere in that region.

2. If the vertex angle of the wedge is 0 > 6,,,,, then in each case we no

g
!
!
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longer observe two attached shock waves pointing to the two sides of the
wedge from the vertex, but instead a detached shock wave (Fig. 55). This
detached shock is curved, i.e., the shock angle { varies along the shock, and
the flow behind the shock is not uniform. On the line of symmetry of the
flow, { = 90°, so that the shock is normal. Away from this line of symmetry,
the shock angle { decreases monotonically, and at sufficiently large distances
away, it tends to the Mach angle u, corresponding to M, (the latter also
obtains for the attached shock in Fig. 54 after it becomes weak and curved
as result of the interaction with the expansion wave from the point 4 onwards).

A curved shock cannot be derived from a normal shock by a translation
of the coordinate system parallel to the shock, as was done for a plane oblique
shock. The question therefore arises: what are the shock relations for a
curved shock? Moreover, we would like to be able to deal with flows
which are variable in space in front of the shock, rather than uniform, as in

Fig. 55. Supersonic flow past a double-wedge profile; the bow shock is detached.

the example discussed above. Applying the conservation laws for mass,
momentum, and energy to an appropriate control volume, we conclude,
after considerations similar to those used in Section 3.4.1 for unsteady shocks,
that the shock relations obtained before (in which M, and { are now local,
position-dependent quantities) also hold for curved shocks provided that the
thickness of the shock is small in comparison with the characteristic dimen-
sions over which the flow changes significantly, both in front and behind the
shock. These assumptions are almost always valid, and we can treat the
shock as a discontinuity surface in an inviscid flow across which the shock
relations hold. Thus far, we have only considered plane steady flow or one-
dimensional unsteady flow with shocks. But it is clear that the shock relations
also hold for three-dimensional unsteady flows when the above requirements
and those of Section 3.4.1 are satisfied.
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While for wedge-shaped, pointed bodies in supersonic flow either attached
or detached shocks can appear, depending on the Mach number and wedge
angle, for a blunt-nosed body in supersonic flow only detached shocks are
possible. In this sense, a wedge in supersonic flow is a blunt body when
0 > 0. - It is not difficult in principle to calculate the plane flow-field past
a two-dimensional body if only attached shocks appear and there are no
regions of subsonic flow. On the other hand, such a calculation is difficult
if detached shocks and subsonic regions do appear, unless certain simplifying
assumptions can be made (e.g., Newtonian theory in hypersonic flow; see
the following remarks and Section 3.7.).

We add the following to the discussion of the flow past a wedge: Let
0 <1 (in radians) and tan6 = 6. Since for an attached shock we must always
have { > 0, then, for fixed 0 and increasing upstream Mach number M, , we
will eventually have M, sin{ > 1. Flows with upstream Mach number M; > 1
are in general called Aypersonic flows. In hypersonic flow past a wedge, the
condition M, sin{ > 1 need not hold, even when M, > 1, if { is sufficiently
small and therefore the nose shocks are sufficiently weak (weak-shock as-
sumption). To differentiate it from the general concept of hypersonic flow
defined above, we shall call those flows for which M;0 ~ M, sinf > 1 strong
hypersonic flows. Since { > 0, we have M, sin{ > 1 for strong hypersonic
flows, and the density ratio across the shock becomes, at least in a calorically
ideal gas, independent of the Mach number: ¢,/0; = (02/01)max- Considering
this fact and the assumption that the weaker of the two possible shocks
appears, we get, from Eq. (3.147),

1
_ (@t g _7H1, (3.149)

(QZ/gl)max -1 2
(where tan” { has been neglected in comparison to g,/¢;). The shock angle {
and the wedge angle 0 are thus, for high enough Mach numbers, proportional
to each other, with the proportionality constant independent of the Mach
number and determined only by the thermodynamic properties of the gas
(by ). This results in the fact that the streamline patterns become completely
independent of the Mach number; to be sure, changing the freestream Mach
number changes the thermodynamic state at the various points of the flow
field, but the purely geometrical features of the flow field no longer change.
Since the density ratio g,/0, has also become independent of Mach number
[=0(02/@1)max)> this means that the ratios of the velocities behind the
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shock to the freestream velocity are also independent (.>I‘ the Mach number.
The greater the attainable compression in the shogk (i.c., the smaller thehy
of the calorically ideal gas), the closer the shock lies to the surface of the
as can be scen in (3.149).3t For y— 1, i.e., (02/01)max = 05 the sho&fk
coincides with the wedge surface, and the gas flows in an inﬁni.tesimally tl.nn
layer with infinite density along the surface of the wedge. Th1§ agrees .thh
the model which Newton postulated for the flow pas? a .soht.l body: He
assumed that the flowing gas consists of particles Whl.Ch 1mp.1r%ge on the
wedge surface with the flow velocity and then lose thc}r veloc'1t1es norm'ai
to the wedge surface and glide along the surface with their tangentia

wedge,

M

My
s 7 M

A

4

Fig. 56. Top: Reflection of an oblique shock S on a soli
tation of the reflection in the 0, { plane.

d wall. Below: Represen-

31 These ideas are valid not only for the flow past a wedge, but, with obvious exter.xsmr;s,
for flow past other bodies as well. In particular, in the flow past a blu.nt-nose !)qd);i (Fig. :lt )I,
the distance between the detached shock and the body (s’fandoiff _dlstam:fe) is ind egten en
of the upstream Mach number when this Mach number is sufficiently blgh. Thﬁ lS(a;llcf
is then dependent only on y for a calorically ideal gas, and the closer y is to 1, the smalle:

this distance will be.
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velocitics. Of course, this Newtonian theory agrees at best only in hypersonic
flows approximately with the reality; for flows with smaller Mach numbers,
particularly subsonic flows, the real flow pattern is significantly different from
the Newtonian model.

Let us now direct our attention to the reflection of a shock from a solid
wall: We imagine a weak shock S (in the sense defined on p. 141) formed
by a wedge in a uniform supersonic flow (of Mach number M, ) (see Fig. 56).
The flow behind the shock does not satisfy the condition that the flow direc-
tion be tangential to the wall. In many cases, however, this boundary con-
dition can be satisfied by the assumption of a reflected shock S’, which
straightens out the flow previously deflected by the shock S. There are again
two possibilities for the reflected shock: The shock can be either a strong or
a weak shock. Usually, for a weak incident shock, we also observe a weak
reflected shock. If we now fix the Mach number M, and enlarge the wedge
angle 6, the shock S then becomes stronger, and the Mach number M,’
behind the shock decreases. For a sufficiently large wedge angle, the maxi-
mum deflection corresponding to M;’ will finally become smailer than that
required to satisfy the wall boundary condition, and the wall boundary
condition can no longer be satisfied by a normal reflection of the shock, as
shown in Fig. 56. Experiments show that a shock configuration of the form

Fig. 57. Mach reflection of an oblique shock S on a solid wall.

shown in Fig. 57 then appears. Near the wall, we have an approximately
normal shock S” intersecting the incident shock at the point P. From there,
an oblique reflected shock S’ also emanates, which, just like S, is also not
of constant strength, but is curved near the point P. Also emanating from
there is a contact surface (the dot-dash line in Fig. 57), across which the
tangential component of the velocity is discontinuous. We shall go into
greater detail concerning these points later. This type of reflection is called
Mach reflection.

The reflection of an oblique shock on a plane wall can also be regarded
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as the intersection of two oblique shocks of equal} strengths (F1.g. 58). The
flow is symmetric, and the line of symmetry, being a st.rear.nlmeZ can l:ie
replaced by a planc wall, whereupon we return to the reﬂe({tlon]ust discussed.
The intersection of two shocks of unequal strengths (Fig. 59) can also .be
treated by the theory of oblique shocks explained before. We must determine

Fig. 59. Intersection of two oblique shocks S1 and Sz of different strengths.

the shocks S, and S, such that behind both shocks the same flow direction
and the same pressure occur. While in the intersection of two 6([]1:131 st'locks
the state of the gas in the entire region downstream of S;" and .S;" is u'mform
and the flow direction is the same as that upstream of §; and S, thisis .nc
longer so in the case of two unequal shocks. For that case, the _strea}mhr;
through the intersection point (indicated by the dot—dash curve in Fig. 59
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now scparates (wo regions of uniform states in which the same pressure
occurs, but all other thermodynamic varables and, in particular, the velocity
are different. The streamline separating the two regions is thus a contact
discontinuity, similar to that which appeared, for example, in the shock-tube
flow problem (see Section 3.4.5). In the present case, the contact disconti-
nuity has in addition the role of a vortex sheet, i.c., the tangential velocity
along this discontinuity surface changes discontinuously. Another such dis-
continuity also appears in Mach reflection, with the added complication that
the states downstream of S” and S are not constant on either side of the
contact surface. The contact surface is thus itself curved, as are the shocks.
The thecry of this particular phenomenon is therefore difficult. It is self-
evident that in the intersection of two shocks, the phenomenon corresponding
to Mach reflection can also appear.

In the flow sketched in Fig. 60, two shocks S, and S, emanating from the

Fig. 60. Merging of two oblique shocks S; and S into a single shock S.

two corners of a wall combine into a single shock S at the point P. At the
same time, there issues from P a right-running wave S’, which need not
always be a compression shock of the type hitherto considered (although it
will be a shock if S, is much weaker than S;), but can also be an expansion
wave (Prandtl-Meyer wave, Section 3.6). The strengths of S and S” are again
determined by the condition that along the streamline K through P (which
is again a contact discontinuity), the pressures and flow directions must be
equal on the two sides. If the shocks S| and S, are so weak that entropy
changes across them are negligible, then we can also neglect the entropy
changes across the shock S and the wave S’. The flow is then everywhere
isoenergetic and homentropic, so that the vortex sheet from the intersection
point vanishes (see also Section 2.5), i.e., the flow velocities will be the same
on the two sides of the sheet. We assert without proof that, in the same
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approximation, the reflected wave S’ may be neglected. Since the entropy
pise across a4 shock increases as the third power of the shock strength
[expressed, e.g., as Agfo, = (02 — 01)/¢.], we can concisely state: Up to terms
of the third order in the shock strength, the reflected wave and the vortex
sheet may be neglected. _ ]
Supplementary Remarks. The symmetric supersonic flow past a vs_/edgc is
related to the axisymmetric supersonic flow past a circular cone.32 Since for
an infinite cone the flow has no characteristic length, the flow state must. be
constant on each straight line emanating from the vertex of the cone (conical
flow). Because of axisymmetry, the flow state must then be constant or} each
circular cone having the same vertex and axis as the given cone. In particular,
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Fig. 61. Axisymmetric supersonic flow past a circular cone. (Fror_n L. Rosenhead (ed.),
A Selection of Graphs for Use in Calculations of Compressible Airflow. Oxford, 1954)

32 G.I Taylor and J.W. Maccoll, The air pressure on a cone moving at high speed,
Proc. Roy. Soc. A 139, 278 (1933). Z. Kopal, Tables of Supersonic Flow Around Cones

M.LT. Center of Analysis, Tech. Rep. No. 1, 1947.
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the attached shock must be one of these cones, so that this shock must be
of constant strength (Fig. 61). Also, the flow state on the surface of the given
cone must be constant. In contrast to the analogous flow past a wedge,
however, we do not have a constant state in the region between the shock
and the cone. Through the shock the pressure will increase to a fraction of
its value on the surface of the cone, and the gas is compressed isentropically
behind the shock. We shall not go into the detailed results of the theory,
except to show one important result in Fig. 61 for a calorically ideal gas
with y=1.4. Just as in wedge flow, there is for each upstream Mach number a
maximum vertex angle 0,,, for the cone beyond which an attached shock
wave is no longer possible. Since the flow behind the shock does not imme-
diately attain the asymptotic flow direction given by the vertex angle 0, the
shock is weaker than the corresponding one for a wedge of the same vertex
angle, and the maximum possible vertex angle 0, is accordingly higher for
the cone. For angles 6 > 0., we have a detached shock, just as in the case
of the wedge. In actuality, the distance of this shock from the vertex will be
determined by the finite length of the cone. This length is a characteristic
length of the flow field, so that the flow field is no longer conical in the sense
defined above.

3.5.2 MAcH WAVES

In Section 3.5.1, the relations for oblique shocks were derived from those
for normal shocks by a constant velocity translation parallel to the disconti-
nuity surface. Instead of a shock let us now consider a discontinuous wave
of the type sketched in Fig. 25 (with 67 = 0), which we can assume to be
either a compression or expansion wave, provided it is sufficiently weak such
that linearization of the equations of motion (as in Section 3.2.1) is valid.
The relations of Section 3.2.1 as well as those to be derived below strictly
hold only in the limit of infinitesimal waves. In a coordinate system moving
with the wave, i.e., with sound velocity, the flow will be stationary; super-
posing a velocity v parallel to the discontinuity surface, we obtain a stationary
Mach wave inclined to the flow direction at the Mach angle u. From Fig. 62,
we read off the relations corresponding to (3.140) and (3.141) for such waves:

tanpu = afv; tan(u — 80) = (a + du)/v. (3.150)

Here, a is the sound speed of the gas in front of the wave and is equal to
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Fig. 62. Diagram for the derivation of formula (3.151) for Mach waves.

the normal component of the flow velocity U; éu is the change in the velocity
component normal to the wave; and 46 is the angle of deflection of the
flow direction, taken as positive for a flow deflection to the left. Moreover,
we use the notation of right- and left-running waves in exactly the same
fashion as for oblique shocks (see Section 3.5.1). . .
From Eq. (3.150), we obtain, by limiting ourselves to terms linear in 60

and using sinu =M "' =a/U,

ou 1 - M?

T =—80tanp+ — |=—00 —5; - (3.151)

a < K tanu\) (M?* - 1)*
Since U? = u? + v?, or USU = u bu = a du(since v = 0 and u = a), Eq. (3.151)

can also be written as
SUJU =—80(M? - 1), (3.152)

(where U is the magnitude of the velocity vector). Now, considering the
relation (3.35) between u and the density change d¢ (altered slightly by
taking into account a minus sign, as explained below) we obtain from
Eq. (3.151) ,

d _ ST T (3.153)

) (M*—1)f a® ¢

where ¢ is the density in front of the wave and dp is the pressure change.
A minus sign has been introduced because (3.35) is valid for a nonsta-
tionary right-running wave. Figure 62, however, is based on a nonstationary
left-running wave, for which Eq. (3.35) holds with a minus sign. As ex-
plained above, this nonstationary left-running wave is first made sta-
tionary by introducing a coordinate system moving with wave velocity;
finally, adding the velocity v in the suitable direction leads to the left-running
wave shown in Fig. 62. For this wave, relations (3.151)~(3.153) [and also
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(3.154)] obtain. By superposing the velocity v in the opposite direction, one
can, in the same manner, deduce a stationary right-running wave from a
nonstationary left-running wave; for such a wave, we must replace d0 by
— 80 in formulas (3.151)-(3.153), as well as in (3.154). Since M? = U?/a?, we
obtain from Eq. (3.153)

dp=oU*(M*—1)"%30 = — U dU. (3.154)

Using these relations valid for Mach waves, we can construct an approxi-
mate theory for the plane steady supersonic flow of a gas approaching a thin
airfoil in an isoenergetic, homentropic parallel stream with velocity U,
and Mach number M, . This flow can also be interpreted as the flow around
a profile moving with velocity U, through a gas of infinite extent at rest.
An observer moving with the profile will then see the steady flow considered
here. In the linear theory (often called the acoustic approximation or Ackeret
theory33) we consider the upstream parallel flow distorted by Mach waves
which emanate from the profile and deflect the flow in such a way that the
boundary condition of a tangential flow direction on the profile is just satis-
fied. In considering the direction and strength of a single Mach wave, we
neglect the disturbances created by all the other waves. We thus assume the
same direction for all the waves, given by the Mach angle u, = arc sinM ;!
corresponding to the unperturbed parallel flow, and in calculating the rela-
tion between the deflection 66 and the pressure change dp we replace the
local values ¢, U, M in (3.154) by the values ¢, U,, M, .

We first consider a polygon-shaped profile. A Mach wave emanates from
each corner of the polygon; these waves are left-running on the upper surface
of the profile and right-running on the lower surface. The wave issuing from
the ith corner turns the flow to a direction determined by 86;. In a region
above the profile where the flow direction is determined by 86, (the subscript
“u” shall denote upper, the subscript “/”” lower), the pressure is changed
from that of the unperturbed stream by an amount

3p. = 0 Us 2 (M,,2 — 1)7% 50,. (3.155)

This expression immediately results if we sum up the contributions to p,
from all the Mach waves lying upstream of the region in question. A similar

33 J. Ackeret, Luftkrifte auf Fliigel, die mit groBerer als Schallgeschwindigkeit bewegt
werden, Z. Flugtechnik und Motorluftschiffahrt 16, 72-74, (1925).

formula obtains below if we replace 80, by — 80, and dp, by dp;.

obtain the flow past the polygon | 63.1
to the flow created by the profile propagate with undiminishe
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We thus
as sketched in Fig. 63. The perturbations
d strength out
(o infinity on both sides. At the trailing edge of the airfoil, t_he flow must
again be deflected to the (commoa) exit direction, for otherwise a pressure
difference will arise between the gas streams from abov.e_and fror.n below.
The flow behind the two Mach waves issuing from the trailing edge is exactly
the same as the flow upstream.

A solution of this flow proble:
running upstream (i.e., right-running above the pro

m can also be given in terms of Mach waves
file, left-running below).

Fig. 63. Supersonic flow pasta polygon-shaped profile according to Ackeret theory.

This solution, however, is physically without meaning. In real cases, t%le flow
must somehow be established from rest—for examp.le, by acceletl'atmg t.he
profile in a gas at rest from zero velocity to a velocity of — U, ina ﬁn.lte
time interval; an observer moving with the profile then'sees the gas.ﬂowuﬁg
toward the profile with velocity U, and, after a sufﬁclently. long thle, t de
transient starting process passes over to the steady flow b.emg considered.
The disturbances of the gas at rest, created by the profile as it starts to .mol\lle;
propagate in all directions with the velocity of sound. 'The .en.d resul.t ist 'ah
these disturbances cannot catch up with the profile, since 1t 1s-m0\./1ng wit
d they will remain behind, as shown in Flg. 63. A
ly differently in this respect: the moving bod.y
s from moving upstream, and the gas is
has been attained. To illustrate

supersonic velocity, an
subsonic flow behaves complete
can no longer keep the disturbance
thus also disturbed there after the steady state
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Fig. 64. (a) Propagation of a small di i
) S sturbance in parallel flow. (b) R.
In supersonic flow; Mach cones, (®) Rectangular plate

these facts, Fig. 64a shows how the disturbances from a point source of
sound waves propagate in a parallel stream. Relative to the gas, the dis-
turbances spread out in all directions with the sound speed a, . Ir; a gas at
res't, the disturbance created at 1 = ¢ reaches a circle of radiusz t about the
point source at any later time ¢ > 0. If the £gas now moves withuile]ocity U,
past a fixed point source, then the circular wavefronts will be transportecc;
downstream with the velocity U, . If U, > Gy, then a cone-shaped envelope
of these circles will result. We call this envelope the Mach cone issuing from
the p?int source. The half-vertex angle of the Mach cone is the Mach angle u_, ;
the disturbances created by the point source are confined to the interior ZE'
the Mach cone, i.c., the Mach cone is the boundary of the region of influence
of the point source. In plane flow, the Mach cone is replaced by the wedge
formed by the two Mach lines emanating from the point source.

On the basis of this illustration, we can, moreover, easily see that a plane
supersonic flow can be realized even when the body is not infinite in
length in the direction perpendicular to the flow. As an example, Fig. 64b
shows a rectangular plate placed in a supersonic flow perpendicu}ar to the
edge 4B. The influence of the finite plate length is only noticeable inside the
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Mach cones emanating from A4 and B. The flow past the nonshaded region
ABCD of the plate is no different from a plane flow. This is still qualitatively
true when the disturbances of the parallel flow are so large that linear
acoustic theory is no longer valid and the Mach cones are no longer purely
circular cones, since the contribution of the perturbation velocities to the
convection of wavefronts and the dependence of the sound velocity on the
flow velocity can both no longer be ignored.

By increasing the number of corners of the polygon indefinitely, and at
the same time decreasing the length of each segment, we pass over from a
polygonal profile to a smooth profile; from the condition that the inclination
of the profile contour to the stream direction be everywhere small (thin
airfoil), the leading edge and trailing edge of the profile must both be sharp.
Using the more precisely defined notation of Fig. 65, we have on the upper

Fig. 65. Supersonic flow past a thin profile according to Ackeret theory.

surface of the profile
060, = —a+ dy,ldx, (3.156)

and on the lower surface
00, = — o + dy/dx, (3.157)

where « is called the angle of attack of the profile.

The resultant force on the profile may be found from the integral of the
perturbation pressure dp over the entire surface of the profile (the force due
to the unperturbed pressure p, will cancel out in this integration). We
decompose this force into a lift L perpendicular to the flow direction and a
drag D in the flow direction. If we consider the profile to be the cross section
of a wing of width 4 in the z direction which is perpendicular to the x, y plane,
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then the lift on this wing is

L=—bf5pu cos 86, ds+bf5p,cosc39, ds, (3.158)
u 1

where the first integral is taken over the upper surface and the second over
the lower surface of the profile; ds is the element of arc length of the contour.
Because of the thin-profile assumption and for small angles of attack we
may set cos 60, ~ 1 xcosdl, and ds~dx:

U’

1

]

b

L= _ _ So¥o ¥ ’ ’

b‘J:(apl ‘Spu)dx_(Mmz_l)gf(Z“_Yu —y/)dx.
0

The integral of y,+y,” vanishes, since =
: : : Y.(0) =2,(0) = y,(!) =y.(1)= 0.
Using the definition of the lift coefficient ) (=20

¢ = L/ (30, U, "bD),
we thus obtain 2 (3.159)

e =da(M, 2 —1)"%, (3.160)

Therefore, for a given flow Mach number M_, the lift coefficient ¢; in the
linear approximation depends only on the angle of attack «; in fact, ¢, is
completely independent of the shape of the profile. Here lies a difference
between supersonic flow and subsonic flow past a profile: For example, in
subsonic ﬂow, an infinitesimally thin curved plate in the shape of a circtilar
arc experiences a finite lift at o =0, and this lift depends on the curvature;
in supersonic flow, this lift is zero. To explain this further, Fig. 66 show;

Fig. 66j Pressure distribution on a curved plate of the shape of a circular arc in
supersonic flow and subsonic flow.
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the pressure distribution in the lincar approximation for both cases. The
pressure distribution for supersonic flow follows from our formulas, but we
shall not enter into the pressure calculations for subsonic flow.34

The drag D and the drag cocfficient

¢p = D[30,Ubl (3.161)

are obtained by setting sin 60 = 86 in

©—_ ~

D= b (—5p[50!+6pu 66u) dx.
This gives
1
2
LT iM, - J (30,7 + 66,%) dx
)
1
LS PW. IS VI VR (3-162)
(Mw2 - 1)1 l ‘
o
or
!
2 2 2 6
cD:cL“+m:2T1)* >+ vy dx. (CHLE)
[

The second term on the right side vanishes for a flat plate: y,=y,=0. It
differs from zero for a finite profile curvature, finite thickness, or both. As
M_— 1, ¢, and ¢, both become infinite. This does not correspond to actual
physical behavior, but is due to the fact that linear theory is inapplicable
for Mach numbers near unity, i.e., for transonic flows (see Section 3.7).
The fact that a flat plate must have cp=c %, ie., D= La, is readily
understood. The pressure forces and their resultant are everywhere perpen-
dicular to the plate, which is inclined to the flow direction at an angle a.
Since o is small, the resultant force has a magnitude equal to L, and its
component in the flow direction is La. Here is an essential difference between
the supersonic and subsonic flows past a flat plate. While in subsonic,

34 See, e.g., F.W. Riegels, «Aerodynamische Profile.” Miinchen, 1958. L.M. Milne-
Thomson, “Theoretical Aerodynamics”, London-New York, 1958.
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irrotational steady plane flow the pressure forces are still everywhere per-
pendicular to the plate, there is absolutely no drag force on a flat plate. This
d’ Alembert paradox is resolved by the fact that in subsonic flow, the gas flows
from the pressure side (below) to the suction side (above) around the leading
edge, thereby creating in a finite suction force at the leading edge which
exactly balances the component of the resultant pressure force in the flow
direction. In supersonic flow, there is no flow around the leading edge, and
this suction force is absent.

It should be pointed out that the relations derived in this section, and
particularly the Ackeret theory of airfoils, are completely independent of
the thermal and caloric properties of the gas. These properties will begin to
play a role when the perturbations in the variables of the flow field have
become so large that linear theory fails. We shall go into the details of the
limits of validity of the linear theory in Section 3.7.

The Ackeret theory for airfoils is an important example of linear acoustic
theory of plane supersonic flows which deviate only slightly from a parallel
flow. In many cases, the application of linear theory requires a knowledge
of the simple laws for the reflection and intersection of Mach waves, which
will now be stated (see Fig. 67): At a solid wall, a right- (or left-) running

\. 7/
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Fig. 67. Reflection of Mach waves at a solid wall (a, b) and at a free-stream surface
(c, d).

wave will reflect as a left- (or right-) running wave of the same strength,
since this just satisfies the condition that the flow be tangential at the wall.
This reflection can also be interpreted as the intersection of two equal-
strength, oppositely-running (i.e., one left- and one right-running) waves.
Also, waves of different strengths intersect without disturbing each other. In
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a uniform supersonic Mow along a plane *“free-stream” surface (vortex sheet)
separating a region of gas at rest, a Mach wave reflects at the free boundary
as an oppositely-running, opposite-type Mach wave of equal strength (i.e.,
an incident compression wave reflects as an expansion wave, and vice versa;
an incident right-running wave veflects as a left-running wave, and vice versa.)
The flow and also the boundary behind the second wave are thereby deflected
by twice the angle of flow deflection behind the incident wave, and the
pressure downstream of the reflected wave is equal to that upstream of the
inciden! wave. This happens because the gas at rest on the other side of
boundary, and hence on the boundary itself, is at constant pressure.

Fig. 68. Example of supersonic flow according to the acoustic theory. (a) Flow pas
a thin profile between two solid walls. (b) Flow at a widening of the channel.

As an example, we sketch in Fig. 68a the supersonic flow past a profilc
located in a finite-width channel bounded by fixed walls. The disturbance:
generated by the profile propagate downstream with undiminished strengtl
through a series of reflections on the walls of the channel. The flow on th
profile itself is no different from that on a profile located in a parallel strean
of infinite width, as long as the reflected waves from the channel walls do no
again intersect the profile. For a given channel width J and profile length
this intersection will take place if the Mach angle p,, exceeds a certain value
ie., when the Mach number M,, is below a certain lower limit. For :
profile located in the center of the channel, this limit is given by sinp, =
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d(1* +d*) "2, 'The same thing holds for a flow bounded not by fixed walls,
but by free-strcam surfaces; the only difference is that the Mach waves arc
then reflected to the opposite type each time (i.e., compression to expansion
and vice versa). This explains why, in supersonic wind-tunnel tests at suffi-
ciently high Mach numbers, the finite width of the tunnel exerts no influence,
and finite-width corrections are totally unneeded, while for Mach numbers
only slightly higher than one (transonic flow), they are very important.
Subsonic flows behave completely differently: The disturbances on the par-
allel flow caused by the profile propagate upstream as well as downstream
but die down quite rapidly in both directions. At any event, the finite-width
correction plays a role here. — In Fig. 68b, the influence of a slight widening
of the channel on the parallel incoming flow is shown. The flow downstream
of the change of section is distorted by the Mach waves reflecting back and
forth from the channel walls, and, at least according to the linear approxi-
mation, the flow does not return to an undisturbed parallel flow, as would
be the case in subsonic flow. Downstream of the section-change, the gas
density in the mean is lower than that upstream; however, the gas density is
not constant, and there are periodically alternating regions of density lower
than that upstream with regions of density equal to that upstream. In
Fig. 68b, the lower pressure regions are shown as shaded and dotted areas;
in the dotted regions, the perturbations in pressure and density from their
original values are twice as great as in the shaded regions.

In conclusion, we comment on the intersection between a shock and a
Mach wave of the same family (i.e., both left-running or both right-running):
This corresponds completely to the combination of two shocks of the same
family. We can amend Fig. 60 by regarding S, as still a shock but S, as a
Mach wave. The wave S, must intersect the shock S, since the component
of the velocity normal to the shock downstream is subsonic, so that the
Mach wave S, is inclined more steeply to the stream than is .S;. The shock
S, and the Mach wave .S, combine into a shock S, and at the intersection
point, a reflected Mach wave and a vortex sheet also emanate. The vortex
sheet may be neglected if the shock is so weak that the entropy change across
it is negligible; in this approximation, the strength of the reflected wave is
also negligible compared to that of the incident wave .S, . We can also regard
S, as a Mach wave and S, as a shock in Fig. 60; the above remarks analog-
ously apply to this case.

Supplementary Remarks. 1. For an oblique shock, we have, instead of the
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Prandt! relation (3.129), the equation

2 ('Y - 1) 2 N
= - v°. 3.164
Uy = dy (+1) ( A
2. The maximum deflection for an oblique shock is given by
lim 0, =arcsiny ™ '. (3.165
M-

3. It is not unimportant to point out that the solutions to the variou
problems in steady supersonic flow given in this section are not the only one:
possible. The flow past a symmetric wedge shown in Fig. 52 can also b
regarded as the flow past a wall with a concave corner if we reinterpret the
symmetric streamline as a wall; as was already shown, it is theoretically
possible to have a strong or a weak shock in this flow. Apart from this, ther
are still infinitely many other solutions imaginable, as shown in Fig. 69

Fig. 69. A possible solution of the flow near a corner.

By assuming a shock S, from A and a vortex sheet 4C, with the gas throug]
the shock S, at the same pressure as the gas at rest in 4BC, one can arbitrar
ily construct many solutions, all satisfying the tangential flow condition a
the wall. In many cases, the type of solution shown in Fig. 69 is actuall
realized in experiments, and the simple solution with a single shock from .
does not occur. In such cases, the boundary layer established along the wa
plays a decisive role (see Section 4.3). Within the framework of the stead
irrotational theory, however, it is impossible to decide which of the possibl
solutions will be realized in practice. Such a decision is possible only b
resorting to experimental evidence, or to refined analyses in which th
viscous and heat-conduction processes, or, possibly the circumstances unde
which an unsteady initial flow finally attains the steady flow, are all take
into account.



162 3 Inviscid Flows
3.6 Prandtl-Mcyer Flow

3.6.1 FUNDAMENTAL RELATIONS

In the same way as in Section 3.2.1, where we presented the unsteady flow
generated by a piston as a succession of infinitesimal waves, we shall now
consider the deflection of a steady-plane supersonic flow at a finite corner
as a succession of infinitesimal deflections achieved by Mach waves (Fig. 70).
The incident parallel flow with constant velocity U, > a, (i.e., Mach number
M; > 1) shall be isoenergetic, and thus also homentropic (see Section 2.5).
Upon crossing the Mach wave emanating from the corner 4, of the boundary

ul

a)

"

b)

Fig. 70. Diagram for the derivation of Prandtl-Meyer flow. (a) Mach waves on a
multicornered wall. (b) Prandtl-Meyer waves on a continuously curved wall.

wall, the flow turns an angle of 30,. The velocity behind this first wave is
U, ="U; +9U,, and in general, U,,, = U, + Y f_, U;. On the other hand,
by Eq. (3.152),

80, = — (M;> — 1)* U, U, (3.166)

where M; (or U)) is the Mach number (or velocity) in the strip between the

(i — 1)th and ith wavefronts. The ith wavefront is inclined to the flow direc-

tion in this strip at the Mach angle y; = arc sinM, *. By (3.166), we have
k k L o,

b= 80,=— Y (M?*—-1)} 7 (3.167)

i=1 i=1

i
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lFor the case shown in Fig, 70a, all 80, < 0. All the Mach waves are therefore
expansion waves, for which dU, > 0; according to the results of Section 3.1,
da; < 0. This implics that the wavefronts issuing from the individual corners
will diverge with increasing distance from the wall.

By increasing the number of corners indefinitely and reducing the angles
at the corners simultaneously, we can attain a continuous smooth contour
(Fig. 70b). From Eq. (3.167), we get, after a corresponding limiting process,

0=v(M,) —v(M), (3.168)
where the function v(M) is defined as follows:
M
LdU
v(M)= j (M* — 1) T (3.169)
M=1

Before we discuss this function v(M), we first remark : Equation (3.168) gives
the connection between M and 0. We can thus use (3.168) to determine the
appropriate Mach number M from 6 at each point on the wall. This fixes
the direction of the Mach line issuing from this point, the Mach line being
a straight line inclined at u = arcsinM ™! to the flow and thus at 0 + pu to
the original upstream flow direction. The strip-like regions of constant states
for the wall with corners now shrink into Mach lines, on each of which the
flow state is constant and determined by the state at the wall. Thus, the
flow field is known everywhere. The flow is plane, steady, and inviscid, and
since it is isoenergetic and homentropic in front of the first Mach wave, it
remains so everywhere. Thus, by Section 2.5, it is everywhere irrotational.

This flow is called a Prandtl-Meyer flow,35 after the two scientists who
first posed and studied it. The function v(M) is called the Prandtl-Meyer
function. In Section 3.8, we shall use another method to rederive the relations
(3.168) and (3.169). We shall then see that there exists a far-reaching analogy
between plane, steady, supersonic flow and one-dimensional unsteady flow,
and the Prandtl-Meyer flow plays the same role for steady plane flow as does
the simple wave treated in Section 3.2 for unsteady flow, where time takes
the place of the second space coordinate.

For steady inviscid flow, the dependence of the velocity U on the Mach

35 L. Prandtl, Neue Untersuchungen iiber die stromende Bewegung der Gase und
Dimpfe. Phys. Z. 8, 23 (1907). Th. Meyer, Uber zweidimensionale Bewegungsvorginge in
einem Gas, das mit Uberschallgeschwindigkeit strémt. Mitt. Forsch. Arb. VDI 62 (1908).
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number M is known (Section 3.1), and we can calculate v(M) in Eq. (3.169).
In general, the stagnation quantities (e.g., 4, and s, or p, and 7)) enter into
v(M):v=v(M;h,, s,). For a calorically ideal gas, v() is independent of
these stagnation quantities. If, for a calorically ideal gas, we substitute for
the U in integral (3.169) in terms of M from Eq. (3.16), then the integration
can be carried out explicitly with the result

1 % -1 3
v(M)=u(M)—72—[+<Z’+—1) arctanli:_l_l(Mz—l):I ,  (3.170)

where g = arc sin M . In Fig. 71, v(M) and p(M) are given for y = 1.2 and
1.4. In the insert, the meaning of the quantities v and u are again summarized ;
it is assumed there that the gas approaches with a Mach number M = 1 and
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Fig. 71. Prandtl-Meyer function v(M) for a calorically ideal gas and Mach angle u(M).

that the curved part of the wall is shrunk into a corner. We call this a
centered Prandtl-Meyer wave, in analogy to the centered unsteady expansion
wave treated in Section 3.2. From Eq. (3.170), we obtain the upper limit
for v and thus also for the deflection:

1 E3
O = Vonan = [(i) - 1] z. G.171)
y—1 2

When the wall bends beyond this limiting angle (for y = 1.4, it is 130.5°), a
vacuum occurs between the wall and the gas (Fig. 72; also see the analogous
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Fig. 72. Occurrence of vacuum for sufficiently large deflection of a supersonic flow.

Fig. 34). The streamline separating the vacuum from the gas is at the same
time a Mach line.

Through a Prandtl-Meyer wave, a gas can either be expanded or be
compressed. Figures 70 and 72 assume an expansion of the gas. If we bend
the wall not into a convex curve, but into a concave one, we then obtain a
compression. In this case, of course, the Mach lines can converge and form
an envelope at a certain distance from the wall, as in unsteady flow (Fig. 73).
This formation of the envelope shows the building up of a shock wave. In a
concave wall with a corner, this shock does not form at some distance from
the wall, but at the corner itself; we then have the same flow as the flow past
a wedge, where the streamline hitting the vertex of the wedge is to be inter-
preted as a part of the wall.

Fig. 73. Formation of a shock on a concave curved wall.
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Of practical importance, particularly in flows past wing airfoils, is a
comparison of the pressure change across a Prandtl-Meyer wave and the
pressure jump across an oblique shock: A parallel flow with Mach number
M; > 1 will be deflected through an angle 6 by a Prandtl-Meyer wave and
leave the wave with a Mach number M, which can be calculated immediately
from the known function v(M): v(M,)=v(M,) — 6. The pressure changes
from p; to p,; with p;, M, and M, (for a calorically nonideal gas, we need,
in addition, the stagnation quantities 4, and s,), p, is determined. For a
calorically ideal gas, we use formula (3.14) to calculate p,. From this
formula, p,/p, comes out as a function of M, and M, only. Since, on the
other hand, M, can be expressed in terms of M, and 0, we obtain a relation
of the form p,[p; = f(M,, 6). Similar results hold for the deflection through
an oblique shock, for which this relation is given graphically in Fig. 51.

For applications to the flow past profiles, which we shall discuss further
later on, it is convenient to introduce, instead of p,/p,, a pressure coefficient

¢,36 defined as:

— 2 2

¢, mP2 =01 2P (1_’3 _ 1) . <”£ - 1>, (3.172)
10U, 2, Ui" \p; yM;" \p,

where the last of these expressions holds only for calorically ideal gases, to
which we shall now confine our discussion. In Fig. 74, ¢, for a Prandtl-Meyer
wave is presented as function of M; with § as parameter; c,> 0 signifies
compression, ¢, <0 expansion. Drawn in dotted lines next to the curves for
Prandtl-Meyer flow are the corresponding curves for deflection through a
shock (of the two possible solutions, only the weak shock is considered ; see
Section 3.5.1.). The shock curves end at the Mach numbers for which the
given deflections are the maximum possible, and the Prandtl-Meyer curves
end at M, =1.

We see that the compression through a shock for deflections not too large
is practically identical to compression through a Prandtl-Meyer wave. This
fact will be confirmed through an expansion of ¢, as function of 6:

¢, =C10+ Cy0% + C30° +---. (3.173)

It turns out that in this expansion the coefficients C; and C, for a shock
and for a Prandtl-Meyer wave are identical, a fact which we shall not prove

36 In what follows, there should be no confusion with the specific heat cp.

%
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Fig. 74. Pressure coefficient ¢, for the deflections through Prandtl-Meyer waves and
through shocks as functions of the upstream Mach number M; and the deflection angle;
calorically ideal gas with y=1.4.

here; thus, in both cases, for left-running waves or shocks, we have37

2 (M2 —2)* +yM,*
Ci=— d CN=p = AL
! a 2T oM - 1)

R (3.174)

37 A, Busemann, Aerodynamischer Auftrieb bei Uberschallgeschwindigkeit, Luftfahrt-
Sforschung 12, 210, (1935).
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(For right-running waves, we change the signs on C,, C;, ctc.) A differeace
can first be seen in the third term, but the difference in the coeflicients C;
for a Prandtl-Meyer wave and for a shock is quite small, which explains the
remarkable coincidence of the curves in Fig. 74. For Prandtl-Meyer flow,38

=(y+ DM®—(5+Ty—29*) M,® + 10(y + 1) M, * — 12M, + 8

G 6(M2—1)"? ’
(3.175)
while for the shock we shall substitute Cy — X for C,, with
G+ D)MAG-3y) M*— (12— 4p) M,> + 8
XY= ) M *[( ) M, ( 7) M, ] (3.176)

48(M2 —1)"2

Also drawn in Fig. 74 are the approximate values of ¢, for 6 =4°, obtained
from Eq. (3.173) by truncating up to the second term. Moreover, we also
give in dot-dash lines the results of linear theory for 0 = +4°, which is
equivalent to truncating the series (3.173) to the first term. The coefficient C,
is furthermore independent of the gas properties, and is therefore also good
for gases not calorically ideal. This comes directly out of the linear theory
discussed in Section 3.5.2.

3.6.2 APPLICATIONS

Through combinations of Prandtl-Meyer waves and shocks, we can con-
struct a whole series of plane supersonic flows of practical importance. An
almost trivial example is the isentropic conversion of a parallel flow of Mach
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Fig. 75. Expansion of a parallel flow of Mach number M;>> 1 into another parallel
flow of Mach number M2>> M, in the same direction through two Prandtl-Meyer waves.

3% A. Kahane and L. Lees, The flow at the rear of a two-dimensional supersonic airfoil,
J. Aero. Sci. 15 167-170, (1948).

2.6 Prandtl-Meyer Flow 169

number M, > 1| into a parallel flow in the same direction with a different
Mach number M, > 1. This can be achieved in every case through two
Prandtl-Meyer waves in the manner shown in Fig. 75. We can imagine any
two streamlines to be replaced by fixed walls, and thereby obtain a parallel
flow in a channel of width d;, which then goes through a curved section of
length / and exits in a channel of width d,. If we change the channel width
from d, to d, arbitrarily, then, in general, the gas will not leave this variable-
area region as an undistorted parallel flow. There will be distortions of the
parallel low downstream, as was shown, for example, in Fig. 68b in the
linear approximation.

An arrangement as described above can be used in combination with a
converging nozzle, which brings the flow from subsonic velocity through
sonic velocity to produce a parallel supersonic flow. The shortcoming of
such a nozzle is its lack of symmetry with respect to the flow direction.
Besides, we must realize that the flow in the narrowest section is not exactly
one-dimensional, and the Mach number of 1 is not attained on a straight
line perpendicular to the flow but on a curve whose shape depends on the
nozzle shape upstream of the throat, i.e., the subsonic part. Only when the
subsonic part of the nozzle is relatively narrow can we assume that the
Mach number 1 is attained on each streamline at the narrowest cross section
of the nozzle. In Section 3.8.2 we shall give, in connection with the method
of characteristics, another procedure for nozzle design in which these short-
comins are avoided (see Fig. 88).

We again return to the plane supersonic flow past a profile, for which a
linear theory was already discussed in Section 3.5.2. We shall now treat the
general nonlinear problem. We assume that subsonic velocity does not occur
anywhere in the flow field. To realize such flows, the freestream Mach number
must be sufficiently greater than 1, and the profile shape must be suitable.
In particular, no detached shock waves must be permitted to occur. This
requires that the profile has sharp leading and trailing edges. As the simplest
profile of this type, we first consider a flat plate inclined at an angle of attack
o toward the free stream. The following regions of the flow field are then to
be distinguished in the vicinity of the plate (Fig. 76): 1. The unperturbed
flow with Mach number M,,. 2. A centered Prandtl-Meyer wave starting
from the leading edge 4, which deflects the flow by an angle 6 = — a, so that
the gas above the plate flows tangentially along the plate. 3. A uniform
parallel flow downstream of the expansion wave, where the flow direction
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Fig. 76. Supersonic flow on a flat plate at an angle of attack.

is tangential to the plate. 4. A similar flow on the lower side of the plate,
which results from the incoming stream 1 being deflected through a shock
wave S; emanating from the leading edge 4. The flow 4 is then turned back
into a uniform parallel flow 6 through a Prandtl-Meyer expansion 5 centered
at the trailing edge B. Similarly, the flow 3 is bent back into a uniform flow 7
by a shock S, from the trailing edge. The magnitudes of the deflections in
the shock S, and in the expansion wave 5 are dictated by the requirement
that the pressures and flow directions in regions 6 and 7 must be the same;
in particular, this direction is not exactly the same as that of the incoming
flow. In addition, from the trailing edge B there is a contact discontinuity
(vortex sheet, shown by dot-dash line in Fig. 76) separating regions 6 and 7.

The flow in the vicinity of the profile remains as described downstream up
to the two Mach lines W, and W, . W, starts from point C, where the shock Sy
intersects the Prandtl-Meyer flow 5; W, starts from point D, the intersection
of the expansion wave 2 with the shock S,. Downstream of the curves
formed by the Mach lines W, and W,, as well as in the outer portions of
the shocks Sy and S,, the flow field is no longer a simple combination of
parallel flow and Prandtl-Meyer flow. The flow field downstream of these
curves can be numerically calculated by the method of characteristics, as we
shall explain in a subsequent section. To calculate the pressure on the plate,
however, the knowledge of this flow field is not necessary at all, since the
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pressure is completely determined by the pressure changes across the wave 2
and shock S, .

Entirely analogous is the flow past a double-wedge (or diamond) profile
as sketched in Fig. 77. On the other hand, the flow past a continuously curved
profile is a different situation. Taking the profile in Fig. 78 as basis for
discussion and letting the angle of attack be o« = 0, we see that shocks emanate
from the leading edge A4 on both sides of the profile. However, these shocks
are no longer straight but are curved. The different streamlines cross the
bow shock at locations with different shock strengths, so that the entropy
increase across the shock differs from streamline to streamline. The flow

Moo

X

Fig. 77. Supersonic flow past a double-wedge profile.

downstream of the shock is thus no longer homentropic, and, consequently,
it is no longer a Prandtl-Meyer flow, since for a Prandtl-Meyer flow the
flow quantities, and, in particular, the entropy must be constant along the
Mach lines. From the Crocco theorem (Section 2.5), this implies, moreover,
that the flow behind the shock is rotational. Crocco’s theorem may be applied
here, since the flow is assumed to be isoenergetic, and this property remains
valid across the shock.

We can also interpret the flow past a curved profile by a wave picture:
At the beginning of Section 3.6.1, Prandtl-Meyer flow was derived from a
succession of Mach waves through a limiting process. The Mach waves
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Moo

Fig. 78. Supersonic flow past a thin profile.

emanate from the curved part of the fixed wall (Fig. 70) and continuously
bend the flow to the wall direction. In the flow past a profile (Fig. 78),
left-running and right-running Mach waves leave the upper and lower sur-
faces of the profile, respectively. These will partially intersect the two shocks
from the leading edge; this results in reflected waves, as was explained more
precisely in Section 3.5. Consequently, the flow field downstream of the
bow shock above the profile contains not only left-running waves, but also
reflected right-running waves, while the flow field below the profile contains
reflected left-running waves in addition to the right-running waves. (The
Mach lines corresponding to the reflected waves have not been drawn in
Fig. 78.) From this we again infer that the flow is not a Prandtl-Meyer flow,
since only waves of one kind can appear in it.

To calculate the complete flow field numerically, we can apply the method
of characteristics. Frequently, however, we are less interested in an exact
calculation of the complete flow field than in a practically adequate calcu-
lation of the pressure on the profile. To this end, there are several approxi-
mate methods at our disposal, which we shall present in decreasing order
of accuracy:

a). Shock-Expansion Theory. The reflected Mach waves are neglected, and
the strength of the shock immediately at the leading edge is determined
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uniquely by the deflection. The flow along the upper or lower surface of the
profile, up to the trailing edge, is calculated as a Prandtl-Meyer flow, using
the flow state immediately behind the shock as the initial state (Fig. 78). The
pressure on the two surfaces is then easily calculated.

The following remarks are in order for this approximation: Neglecting
the reflected waves and replacing the flow between the leading and trailing
shocks by a Prandtl-Meyer flow would be exactly correct if the change of
state across a shock were isentropic (as a Prandtl-Meyer wave is homen-
tropic), and if a shock and a Prandtl-Meyer wave gave the same pressure rise
for the same flow and same deflection (i.e., if the curves for shock and
Prandtl-Meyer flow in Fig. 74 coincide exactly); for only then can a shock
and a Prandtl-Meyer wave cancel exactly. Both conditions are satisfied only
to second order in the deflection (and hence in shock strength).39 It is natural
to conjecture that the errors in the approximation are of the order of the
third power of some characteristic angle of the deflection. In fact, it is even
smaller, being of the order of the fourth power in such an angle; this is
connected with the fact that only a small portion of the waves reflected from
the bow shock hit the profile again.40

b). Simple Wave Theory. In addition to neglecting the reflected waves,
we consider the change of state in the shock as isentropic, so that the entire
flow field is homentropic, and we assume that the pressure coefficients c, for
Prandtl-Meyer waves and for shocks depend in the same way on the Mach
number M, and the deflection angle 6 (see Section 3.6.1; the curves for
shocks and Prandtl-Meyer waves given in Fig. 74 are assumed to coincide).
There then exists for any given flow Mach number M, a unique relation in
the entire flow field between ¢, and the flow direction specified by 0:c, =
¢,(8; M,). In general, this relation contains the stagnation thermodynamic
quantities in addition to the Mach number M, . For a calorically ideal gas,
this dependence is absent, and we can take ¢, from Fig. 74 (where M, is the
present M,,). The lift and drag coefficients of the profile result from formulas
(3.158) and (3.161), when we divide through by }¢,, U, ? and introduce the

39 Compare this with the discussion of the interaction of Mach wave and shock wave
in Section 3.5.2.

40 Cf. M.J. Lighthill, Higher Approximations, in “General Theory of High Speed Aero-
dynamics”, Sect. E, High Speed Aerodynamics and Jet Propulsion, vol. VI, Princeton
Univ. Press, Princeton, New Jersey, 1954.
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pressure coefficient c,:

d
¢ =— J.c,,(Ou) cosd, dls + JCP(B,) cosf, Ts, 3.17)

u i

d d
ep= fc,,(e,,) siné, Ts - J ¢,(6,)sin6, TS (.178)

u !

(Instead of 86, we write 9 for a finite deflection.)

¢). Busemann Approximation.*! Next, we approximate ¢,, which was as-
sumed in (b) to be a function of 6, by taking the first two terms in the
expansion (3.173). By consistently neglecting all terms which give a third-
order contribution (in the deflection) to (3.177) and a fourth-order contri-
bution to (3.178), we finally obtain the following, in the notation of Fig. 65:

1
C
¢, =2Ca + sz(yfz —y2)dx, 3.179)
)
1
1
cp=C; [2“2 + ij(y}z +¥3) dx]
: )

1 1
Cl 2 ’2 3 _ 73
+7 |3 =y dx+ | (7 —y)dx ] (3.180)
0 [

Whereas in the linear Ackeret theory (Section 3.5.2), the lift coefficient ¢, is
independent of the profile shape, here, the second term on the right side of
Eq. (3.179) gives a dependence on the profile shape. Of course, this second
term is nonzero only when y.? # y;%. Thus, it vanishes for infinitesimally-
thin curved profiles (y,"=y;) and for finite-thickness symmetric profiles
== _

d). Ackeret Approximation. We now consider the linear term only in the
relation between c, and 0. Then formulas (3.179) and (3.180) become
formulas (3.160) and (3.163), and we have returned to the linearized Ackeret
theory.

41 A, Busemann, footnote 37.
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The calculation of the entirc flow field in the linear approximation has
already been discussed in Section 3.5.2. We should now mention that the
entire flow field in the approximation corresponding to assumptions (c)above
can be found as follows: Since the Prandtl-Meyer flow is determined by the
profile shape and the free stream, and since the flow behind the rear shock
is the same as the free stream (this follows from the fact that the same
pressure must exist above and below the streamline starting from the trailing
edge, which in this approximation is possible only for 6 =0 and then also
¢, =0) we have only to calculate the shape of the shock wave. Using the
appropriate shock relations [Eq. (3.148) for calorically ideal gases], we select
at each point on the bow shock the shock angle { such that the flow direction
behind the shock is exactly the same as that produced by the Prandtl-Meyer
flow at the same location. Then, the pressure jump across the shock leads,
apart from terms of order 6, to the pressure in the Prandtl-Meyer wave, a
condition that obviously must hold. In a similar way, we choose the rear
shock so that the Prandtl-Meyer flow is everywhere bent back to the original
flow direction. In this construction of the shock and in the framework of this
approximation, it is meaningful to develop the function { = {(6) [for example,
Eq. (3.148)] in powers of 6 and only keep terms in 0 and 62, since the shock
relations are only satisfied with errors of order 63. We have thus obtained
the approximate flow field construction due to Friedrichs.42

The shape of the shock at sufficiently large distance from the body is easily
found from the fact that a weak shock just bisects the angle formed by
the Mach lines in front of and behind the shock (Fig. 79). Let us consider
the leading-edge shock above the profile: In the uniform flow in front of the
shock, the Mach lines are a family of parallel straight lines. At large distance
from the body, the Prandtl-Meyer wave behind the shock behaves like a
centered wave, with all the Mach lines originating from the same point. The
curve which everywhere bisects the angle between two such families of
straight lines is well known to be a parabola (the Mach lines of the upstream
uniform flow are parallel to the parabola axis, while those of the Prandtl-
Meyer wave are the focal rays of the parabola). A similar discussion is also
possible for all other shocks, so that, with complete generality, all shocks
originating from a profile have this parabolic form at large distances away

42 K. O. Friedrichs, Formation and decay of shock waves, Comm. Pure and Appl. Math.
1, 211 (1948).
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Fig. 79. A weak shock bisecting the angle between the Mach lines of the flows before
and after the shock.

from the body. This implies that the shock strength, and consequently the
strongth of the disturbances on the parallel stream caused by the profile,
docreases as the square root of the distance from the profile, a fact first
eatablished by Busemann.

3,7 Limits of Validity of Linear Theory in Transonic and Hypersonic Regimes

In the following discussion, the limits of validity of linear theory for plane
supersonic flow will be illustrated through the consideration of special exam-
ples. The starting point is the deflection of a parallel stream of Mach number
M, by a Prandtl-Meyer wave or by a shock. Using relation (3.14) for calor-
ically ideal gases, the pressure coefficient ¢, defined by Eq. (3.172) can be
written as follows for shock-free flow:

e 2 [(2 +(y — 1) M2\

ToMA L2+ (- 1) M22> - l:l' (G180
a. Transonic Prandti-Meyer Wave. We now assume that 0 <M, —1<1

and 0 <M, —1<1, i.e., the Mach numbers M; and M, are only slightly

different from 1. Upon neglecting the terms of higher order in M —1,
Eq. (3.181) becomes

¢, =4(M; — Mp)/(y + 1). (3.182)
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On the other hand, for M — | < 1, we can expand the Prandtl-Meyer function
v(M) in powers of M —1. The first term of this expansion gives

42

V(MY = N2 =12, 3.183
(M) =55 M= .18
By combining Egs. (3.182) and (3.183), we get for the pressure coefficient ¢,
for deflection through & small angle 6 = v(M,) — v(M,) (we limit ourselves
to expansions for which, according to the present definition, 6 > 0):

3 2/3
c, =407y +1)7" [K - (—5 + K”) ] (3.184)

4/

Here we have introduced the transonic similarity parameter X, defined as:
K= (M, —1)[(y+1)6]7. (3.185)
If K> 1, we can set in Eq. (3.184)

3 AL 1
——+K =K+z—7-
R

Equation (3.184) then becomes
¢, =—+/20(M —1)7.

This result agrees with the result of linear theory, since, when M; —1 < 1,
(M? — )2 =/2(M, —1)"/* is a good approximation.43 This also shows
that for freestream Mach numbers which are only slightly greater than 1,
linear theory can be applied only when K > 1. For a given fixed deflection 6,
however small, if we decrease the Mach number M; we shall eventually
exceed the limit of validity of linear theory.

b. Hypersonic Prandtl-Meyer Wave. We now assume M, > 1,M,> 1. We
then obtain from Eq. (3.181)

2 M. 2y/(y=1)
=2 [(ﬁ) _ 1], (3.186)
Yl 2

(Here we have neglected in the square brackets terms of order M%) On
the other hand, expanding Eq. (3.170) in powers of 1/M and neglecting terms

43 For many purposes, an expansion in M 2 _ | is advantageous; we have here chosen
the direct course of expanding in M — 1.
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of order M ™3 gives

+ 1\ 2
v=’f[<y——> - 1]———. (3.187)
2{\y—-1 y—-O)M
Combination of (3.186) and (3.187) results in
2g2 y - 1 2y/(»—1)
T < [( 2 ) ] G189

where K is the hypersonic similarity parameter, defined by
K=Mp0, (3.189)

When K < 1, we can expand ¢, in Eq. (3.188) in powers of K. For the first
term of the expansion, we obtain ¢, = — 20*/K = — 20M *. This again agrees
with the results of linear theory, since when M, > 1, we have (M} — 1)V/2 =
M. Linear theory is thus applicable to large Mach numbers only when
M,0 < 1. For afixed 0, however small, increase in the Mach number M, will
eventually cause the limit of validity of linear theory to be exceeded.

The reason for the failure of linear theory in the hypersonic regime is
readily understood if we recall the derivation of the formulas in Section 3.5.2.
The Mach waves considered there result from the nonstationary waves dis-
cussed in Section 3.2.1. For the linear theory of Section 3.2.1 to be valid,
we must have |du/a| < 1. According to Eq. (3.151), however, this implies that
|M 80] < 1 must hold, which is identical to the condition derived above. The
analogous discussion for Mach numbers near 1 is somewhat complicated,
and will not be given. We shall only mention that for the formulas in
Section 3.5.2 to be valid, the change du in the normal component of the
velocity must remain small compared to the difference between the free-
stream velocity and the sound velocity. This leads to the condition K> 1.

¢. Hypersonic Shock. We shall now consider deflection through a hyper-
sonic shock wave, employing arguments similar to those used for deflection
through an expansion wave in the hypersonic regime. Again let § denote the
deflection angle. Combining the definition (3.172) for ¢, and the result (3.143)
for the pressure ratio across an oblique shock, we first get

40> M,*sin?¢ —1
y+1 K

» (3.190)

C'p=

where K is again defined as in (3.189). Let us now confine ourselves to small
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deflections 0and large Mach numbers M, > 1. Since for such Mach numbers
the shock angle ¢ (for weak shocks) remains small with 9, we can in all the
formulas replace sin0 or sin{ by 0 or ¢, respectively, and cos8 or cos{ by 1.
Then, we first get from (3.190)
49* K2 -1
= y+1 K*

(3.191)

>

with the notation K, =M,{. From (3.148) we get, after neglecting the terms
as described before and after a short computation,

K —1=1(@+ DKK,, (3.192)
and then, from Eq. (3.191), N
¢, = 20" (K/K). (3.193)
Solving Eq. (3.192) for K;, on the other hand, we get
KR(y+1 y+1\> 4
= — )+t (3.194)
k= { 2 [( 2 > R

Substitution of this into (3.193) results in

AR Ith 2 3.195
w5+ oo o

Figure 80 shows this expression for ¢, plotted together with the exact results
and the results of linear theory. What has been said about the validity of
linear theory in connection with expansion waves is also true here: The
higher the Mach number M, the smaller must be the angle @ in order for
linear theory to hold. From Eq. (3.195), it follows that for K<, cp= 20%/K,
which corresponds to linear theory [see Eq. (3.154)]. On the other hand from
Eq. (3.194) we get for R > 1the result derived earlier, (3.149), while Eq. (3.195)

in this case becomes
=(y+1)6°. (3.196)

In Section 3.5.1 we called a flow satisfying the condition K> 1(ie, M0>1)
a strong hypersonic flow, and we established that the geometric properties
of this flow are independent of the Mach number. Equation (3.196) now
states that the pressure coefficient is similarly independent of the Mach
number.

In this connection, we should also mention the main features of an approx-
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Fig. 80. Pressure coefficient ¢, for the deflection in a shock; exact (——), according to

the hypersopic approximation (3.195) (—-—), and according to the linear approximation
(--~) ; calorically ideal gas with y=14,

imate theory for hypersonic flow past solid bodies known as Newtonian
theory. Thereby we return to the Newtonian concepts already mentioned in
Section 3.5.1. We consider a flow past a body with Mach number M, >1
(Fig. 81). If we assume y = 1, then, under strong hypersonic flow, the shock
will coincide with the body surface [see Eq. (3.149)], and the infinitely
compressed gas flows in an infinitesimally thin layer along the body surface.
The pressure coefficient immediately behind the shock is given for y=1

{=0, and M, sin{> I by Eq. (3.190) to be ’

¢, =2sin%9. (3.197)

i—.
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Fig. 81. Hypersonic flow with attached shock.

If the body surface is not curved (wedge), then this is also the pressure
coefficient on the upper surface of the body. If, on the other hand, the body
is curved, so that the gas between the shock and the body flows along a
curved streamline, then a centrifugal force will occur and produce a pressure
gradient perpendicular to the body surface. Although in the limit of y =1
the layer between the shock and the body is infinitesimally thin, the density,
and hence also the pressure gradient, in the layer are infinitely high, and
therefore a finite difference in pressure between the body and a point imme-
diately behind the shock is generated. We can estimate this pressure differ-
ence and take it into account in the theory. It has been shown, however, that
a frequently useful approximation to the pressure coefficient on the body
surface can be obtained as follows: If we denote by 6, the angle at the nose of
the body, then, by (3.197), the pressure coefficient ¢, there is ¢,o = 2 sin®0,.
Then, (3.197) can also be written as
sin’
C, = Cpo EGT, (3.198)

Formula (3.198) has proven to be a truly useful approximation for the
pressure coefficient in hypersonic flow.44 On the basis of its derivation as
indicated here, it is clear that it holds only under the assumption M, sind > 1.
In particular, it is applicable to blunt bodies (6, = 90°) on the front surface
facing the flow, when only M, > 1 is assumed. It cannot say anything about
the pressure on the back of the body. This is not an important limitation
on the usefulness of the formula, since the pressure on the back never exceeds
the order of magnitude of the freestream pressure p,, while the pressure on
the front is very much greater in hypersonic flow.

44 L. Lees, Hypersonic Flow. Proc. Sth Int. Aero. Conf., Los Angeles, California,
pp. 241-276. Inst. Aero. Sci., New York, 1955.
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Supplementary Remarks. The formulas in this section have been derived
for calorically ideal gases. However, they can be generalized in part to
arbitrary gases without much difficulty. This point will be illustrated in the
example of transonic Prandtl-Meyer waves: From definition (3.172) for the
pressure coefficient, it follows that approximately for Mach numbers M, and
M, close to 1:

(0p/oM) (M, — M, 2 /0
€= 1*' 3 1)=*<£ (M, — ;)
2040y 0x \OM /,,
- dlng
=2\ om )* (M, — M,). (3.182%

Here we have used the relation

9p  (dp\ [ de 2 Oe
o=l ll=]=a"—.
oM oo/ \oM oM
The subscript () means that the corresponding quantities are taken at loca-

tions of M = 1. On the other hand, from definition (3.169) for the Prandtl-

Meyer function v(M), we get, for Mach numbers near 1, the approximate
result:

M M
v v (o1
v = f (M2—1)1/2_=\/2(0 “U) J. (M —1)12 am
U *
M=1 M=1

oM

2%2 (31U
- _{_ = _ 3/2
; ( o ) (o1 — 1772,
At the locations of M = 1, however, d(eU) =0 [see Eq. (3.6)]; thus

(@InUfolng)y=—1 and @mU/oM), =—(@1In g/OM), .

With this, we obtain

2%2 (9 1ng
- T( o >* (M —1)*2, (3.183%)

Combining (3.182*) and (3.183*), we get, after suitable transformation,

dlng\'? 3 e
—n5/3
=2 02/3<- FM—)* [K—(M+K3/2) ] (3.184%)
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Here the transonic similarity paramcter has the meaning
K =(M; —1)(20)"**(-d1ng/aM)i>. (3.185%)
For a calorically ideal gas, we have from (3.15) the result
(2 Ing/oM)y = — 2(y + 1).

With this, Eqgs. (3.182%)—(3.185*) again become (3.182)—(3.185), the former
being generalizations of the latter. For K> 1, we get the results of linear
theory from (3.184*); as was stated earlier, these results are independent of
the thermodynamic properties of the gas. The previous discussion on the
validity limit of linear theory in the transonic regime for calorically ideal
gases can be carried over without change to arbitrary gases.

3.8 Plane Steady Supersonic Flow

3.8.1 Basic EQUATIONS FOR THE VELOCITY FIELD

Before specializing to plane steady flow, we take the continuity equation

(2.33) or
d0/0t + (v-gradg) + ¢ divv=0 (3.199)

and transform it as follows: We take the scalar product of v with the momen-
tum equation (2.51) for inviscid flow without body forces and get

Dv
Q(V' ) = —(v-gradp). (3.200)
Dt
If the flow field is homentropic, we can replace gradp by a? gradg. If the
flow field is nonhomentropic but steady, then, by Eq. (2.18),
(v-gradp) = Dp/Dt. (3.201)
and since for each gas particle the entropy always remains constant,
Dp/Dt = a® Do/Dt = a*(v-grad g).
In both cases, Eq. (3.200) will become

D
Q<V.E‘:>=—a2(v-gradg). (3.202)
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If we now substitute (v gradg) into (3.199), we get the following form of

the continuity equation:

e 1/ D
= (v- F:) +divy=0. (3.203)

Now, specializing to steady flows (0¢/0t =0), we can write Eq. (3.203)
explicitly as

1 i +,(1 4 +w,(1 v Yy +vy)
x -2 v - w, ~ 11— — .
u az y az az a2 Uy v
uw ow
=zt w) - a2 +w)=0. (3204

Let us now confine our attention to plane flows, for which w= 0 and «
and v depend only on x and y. For the following discussion, it is advanta-
geous to introduce the magnitude of the velocity U and the angle 6 as
dependent variables in place of u and v, the angle 6 being defined as the
angle between the velocity vector v and the positive x axis:

u="Ucos#, ula =M cos,

v="Usind, v/a= M sinf. 2

The derivatives appearing in Eq. (3.204) are of the type u, = U, cosf—
U0, sin 0. After a short transformation and combination of terms, Eq. (3.204)
becomes

U, (M? — 1) cos 8 + U,(M? — 1) sin0 + UG, sin 6 — Uf, cosf = 0.
(3.206)

By far the most important case, and the one we consider first, is isoenergetic
homentropic flow, which, according to Section 2.5 is also irrotational. Then,
v, —u,=0, or, in terms of U and 6,

U, sin® — U, cos@ + U, cos O + Uf,sin6=0. (3.207)

Now we further confine our study to M > 1, i.e., to supersonic flows. This
restriction is very important for our discussion, since only supersonic flows
permit the use of the method of characteristics which will be described.
Mathematically, this is due to the fact that only for M > 1 is the system of
equations (3.206), (3.207), a hyperbolic system. For M <1 it is elliptic, and
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there exist no real characteristic curves (denoted below by €, and §,) in the
X, y plane. The equations for one-dimensional unsteady flow are alwa-ys
hyperbolic, and can therefore always be solved by the method of characteris-
tics (scc Section 3.2). ) , i

For M > 1,(M?* — 1)"/2 is real. Multiplying Eq. (3.207) by U~} (M?*—1)
and adding the result to Eq. (3.206) multiplied by U ~*, we get

[UU ' (M? = D) + 0] [(M* — 1)t cos 0 + sin 0]
+ [U,U " (M? = 1)* +0,] [(M? — 1)* sin 0 — cos§] = 0.
(3.208)
We now define the family of curves €, in the x, y plane; for each curve of
this family, we require:
2 1+
dy (M- 1) sin0—cosb 9 . (3.209)
dx (M? —1)* cos 0 + sin0
Here, p is the Mach angle: = arc sin M ™! = arc tan(M? — 1) /2, Accord-
ing to (3.209), the curves €, cut the streamlines everywhere at angle u, and
point to the right of each streamline along the flow direction (Fig. 82). We

[\
miine
5tred

x- Direction

Fig. 82. Characteristics of steady inviscid supersonic flow in the flow plane (x, y plane).

again call these right-running Mach lines or right-running characteristics.
In a manner entirely analogous to Section 3.2.2 for unsteady flow, we con-
clude from Egs. (3.208) and (3.209) that along a curve €, the changes d0 and
dU are connected by the following relation (also see the more detailed
derivation of Eq. (3.219) in Section 3.8.3):

(M? — 1) dUU +d6=0. (3.210)
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Using the definition (3.169) for the function v(M), we can interpret this as
dv+df=0 along c,. (3.211)

We now define the family of curves €, (left-running Mach lines, Fig. 82) by
dyldx =tan(0 + p), (3.212)

and get, by subtracting the product of Eq. (3.207) with U ~*(M? — 1)!/2 from
the product of Eq. (3.206) with U~ !:

dv—do=0 along c,. (3.213)
The results (3.211) and (3.213) can be expressed in the following form:

v + 6 = const on ¢, (3.219)

v — 0 = const on C,. (3.215)

3.8.2 METHOD OF CHARACTERISTICS FOR HOMENTROPIC FLOW

The relations (3.214) and (3.215) are formaily identical to the relations (3.47)
and (3.48). In Section 3.2.2, we explained how to use the method of charac-
teristics to find the solution (in this case, the variables 0 and U ) in certain
regions of the x, y plane under suitable initial conditions, so that we shall
dispense with a detailed repeated discussion here.

In plane flow, the first initial-value problem has the following form: On
a noncharacteristic curve segment A, B, in the x, y plane, the velocity vector v
is prescribed, i.e., U and 8 are prescribed on AoBy. From U and the stagna-
tion quantities 4, and s, (or two equivalent state variables), which are constant
in the entire homentropic, isoenergetic flow field, v is determined on the curve
AyB,. We can then find the solution in the triangle A,B,P (Fig. 83) in the

4

Boundory hy
Curve

L

Fig. 83. Diagram for the first initial-value problem.
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manner expliined in Section 3.2.2. Naturally, as with one-dimensional
unsteady flow, it is assumed that no shocks appear in the triangle 4,B,P,;
the occurrence of shocks can be noticed from the intersection of Mach lines
of the same family. Forcontinuously differentiable initial values and a smooth
curve AyB,, there is always a neighborhood of 4,B, contained in 4B, P, in
which a unique continuous solution exists. In favorable cases, this neighbor-
hood fills outthe entire triangle 4, B, P,.4% The approximate solution for finite
grid size, obtained from the method described in Section 3.2.2, converges to
the exact solution as the grid size decreases to zero. Similarly, the explanation
of the second and third initial-value problems given in Section 3.2.2 can be
transferred to the present problem of steady supersonic flow without further
difficulty.

As in the one-dimensional unsteady flow in Section 3.2.2, there are also
many cases of plane steady supersonic flow with regions in which the flow
is a simple wave, i.e., in this case, a Prandtl-Meyer wave. This always occurs
when the flow field contains a region of uniform state. Since in a uniform
region the characteristics are always parallel straight lines, such a region
must have the shape of a parallelogram (Fig. 84; unless a portion of the

Fig. 84. Region of constant flow state bounded by four simple waves 4, B, C, and D.

parallelogram ends ina wall or a freestream boundary). In regions 4, B, C,
and D adjacent to the four edges of the parallelogram, simple waves exist;
this is readily shown by arguments completely analogous to those used in
connection with Fig. 31.

For the solution of concrete flow problems, we must still have a knowledge
of the boundary conditions for v and 6 which are to be satisfied on solid walls
or freestream boundaries (these being the two most important types of

45 See R. von Mises, ‘“Mathematical Theory of Compressible Fluid Flow.” Academic
Press, New York, 1958.
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stream boundaries): Since the flow direction must be tangential to the wall,
.0 is given on a solid wall. On a freestream boundary, the pressure of the gas
is constant and equal to that of the gas at rest on the other side of the
boundary. Fixing the pressure p also fixes the Mach number on the boundary
(see Section 3.1). On the other hand, for constant M, the quantity v (M) is
also constant and given on the boundary. In contrast to a solid wall, the
shape of a freestream boundary is not known a priori, but must be deter-
mined piece by piece during the solution process by the method of charac-
teristics. In this case, the situation sketched in Fig. 85 appears: In con-

Fig. 85. Construction of the free stream boundary ABC... by the method of characteristics.

structing the characteristic net, the quantities v and 6 at the points 4, P, and
Q will have been determined; A4 lies on the free boundary. The next point B
on the free boundary is found from the intersection of the characteristic ©,
from P (approximated as a straight line segment) and the free boundary (also
approximated between 4 and B by a straight line using the flow direction
already found at A). Since v has a known constant value v, on the free
boundary, 05 results from the relation valid along PB:0z= (0p — v p) + ;.
In this way, the broken line ABC is constructed as an approximation to the
free boundary.

As an example, we consider the efflux of a supersonic stream from a
nozzle when the external pressure is lower than that of the stream (see
Section 3.1, p.82, case 8: p; >p,). The flow is sketched in Fig. 86; since
the flow is symmetric with respect to the center line of the jet, we can replace
the center line by a solid wall. The incoming parallel flow 1 will expand to
the external pressure through a Prandtl-Meyer wave 2. The free boundary
starting from the corner A is a straight line up to the point B, and it is
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Fig. 86. Supersonic jet into an under-pressure region.

directed at an angle 6 with respect to the initial flow, 8 being the deflection
produced by the Prandt-Meyer flow 2. Region 3 is another parallel flow of
constant state. Region 4 may be regarded as the intersection of the Prandtl-
Meyer wave 2 and its reflected wave from the flat wall. To compute the flow
in 4, we must solve the third initial-value problem: On the characteristic DE,
v and 0 are both known, while on DF only 6 is known. By the constancy of
the flow variables in region 3, region 5 must again be a Prandtl-Meyer wave
(it may be regarded as the reflection of wave 2 from the wall). This wave is
determined when v and 6 on EF are determined. In region 6, the wave 5
intersects its reflected wave from the free boundary, which then continues
outside the region of interaction as a Prandtl-Meyer flow 8. In region 6, the
third initial-value problem must again be solved, with the added complication
that the free boundary between B and C must be constructed together with
the solution. Region 7 is another uniform region, imbedded between the two
simple waves 5 and 8. In contrast to the expansion waves 2 and 5, wave 8 is
a compression wave. Region 9 is again a region of constant flow state, and
has a straight free boundary, while 10is a compression wave. In 11, the flow
is exactly the same as that in 1, and the entire flow pattern periodicalty
repeats itself downstream. The numerical method of characteristics for the
pointwise construction of the solution is, in this case, only necessary for the
regions 4, 6, etc.; in all other regions, the flow is determined either as a
simple wave or as a uniform parallel flow.

For the sake of completeness, we should also sketch the corresponding
flow pattern for the case when the pressure of the parallel flow at the nozzle
exit is below the external pressure (Section 3.1, p. 82, case 6: p; > p > P3).
Instead of the Prandtl-Meyer wave 2, there now appears a shock Sy, which
then reflects on the wall as shock S, (under certain conditions, a Mach
reflection may occur, see Section 3.5.1). This shock S will in turn reflect
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from the free boundary as a centered Prandtl-Meyer expansion wave, which
just compensates for the pressure increase in S, . Naturally, downstream of
S, we have exactly the same flow as an underexpanded nozzle flow (Fig. 87).

We now come back to the problem, already treated in another way in
Section 3.6.2, of a constant parallel flow of Mach number M, > 1 expanding
to another such flow of M, > M, (Fig. 88). The contour of the wall between

7z

Fig. 87. Supersonic jet into an over-pressure region.

Fig. 88. Expansion of a parallel flow of Mach number M;> 1 into a parallel flow of
Mach number M2>> M in the same direction.

A and B can be selected arbitrarily. The Prandtl-Meyer wave 2 is determined
by the data on AB. Downstream of B, the upper wall will first be extended
as a straight line in the direction attained at B. In 3, we must again solve
the third initial-value problem. Wave 5 is a Prandtl-Meyer wave, which
adjoins the two uniform regions 4 and 6. The wall contour CD is determined
from the wave 5. Downstream of D, the upper wall again runs parallel to
the lower wall. Reflecting the flow pattern with respect to the lower wall, we
get a symmetric nozzle flow. If the Mach numbers M, and M, are given and
the problem consists of finding a suitable wall contour ABCD, then we
proceed as follows: We select the wall contour starting from 4 up to a point
B with wall angle § monotonically increasing in the flow direction. We can
then calculate the flow up to the characteristic BF and find the Mach number
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M at F.If this Mach number M (F) agrees with the desired given value M,,
then we continuc the upper wall from C to D in the manner explained before.
In some cases, the parallel flow 4 and the straight portion of the wall BC
do not appear at all. This can be illuminated by considering the fact that
any streamline can be used to replace a solid wall, including, for example,
the streamline drawn in Fig. 88, which does not penetrate the region 4.

The construction of flow fields as just explained is important in the deter-
mination of the wall contours of symmetric Laval nozzles for the production
of disturbance-free parallel gas streams (see Section 3.6.2). The gas flows
through the convergent part of the nozzle with subsonic velocity and attains
sonic velocity in the neighborhood of the throat. An initial characteristic for
the method of characteristics, corresponding to the Mach line AE, is in
general found from an analytic calculation of the flow field in the neigh-
borhood of the throat (transonic flow, M ~ 1).

Supplementary Remarks. 1. The families of characteristics €, and €, are
not fixed given curves in the x, y plane; they depend on the flow field in the
x, y plane, and must therefore be determined together with the solution to
a concrete problem. This is different if we consider the u, v plane, i.e., velocity
or hodograph plane, instead of the flow plane, or x, y plane. We imagine
a point in this plane specified by the polar coordinates U and §. Each point
in the flow plane corresponds to exactly one point in the hodograph plane.
The converse does not hold in general; for example, in a parallel flow with
constant velocity, all points of the flow plane will be transformed into one
single point in the hodograph plane,—namely, the endpoint of the constant
velocity vector. The characteristics €; of the flow plane form images in the
hodograph plane as curves €,* on which v + 6 = const, in accordance with
Eq. (3.214), and the characteristics €, form images as curves €,* on which
v — 6 = const. Since for a given stagnation state, v in a homentropic, iso-
energetic flow field depends only on M, i.e., only on U, we can draw these
curves in the hodograph plane. For a calorically ideal gas, these are epi-
cycloids, obtained by rolling a circle of diameter U,,, — a, outside a circle
of radius a,. Figure 89 shows a segment of a €,* curve in the hodograph
plane. The Mach angle u can be read off immediately from this characteristic
diagram in the hodograph plane: Since AP*=—Udf and ;1? = dU, we get
the following relation for the angle AP*Q*:

tan (AP*Q*) = AQ*/AP* = — dU|U d6.
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Fig. 89. Characteristics € and €z in the flow plane (top) and characteristic €;* in
the hodograph plane (below).

Now, however, on €, *, we have by Eq. (3.210),

dU=—-U(M>—-1)"%49,
so that
tan (AP*Q*) = (M2 - 1) * = tany.

The angle AP*Q* is thus the same as the Mach angle u.

We can apply the geometric properties of the characteristics in the hodo-
graph plane to the graphical construction of plane supersonic flows. If shocks
occur in the flow field, it is convenient to use a shock polar together with the
characteristic diagram in the hodograph plane. A shock polar is the geo-
metric locus of the endpoints of all vectors v, in the hodograph plane which
are the possible velocities downstream of a shock for a given upstream
velocity v, (Iv,| > a,). Figure 90 shows a shock polar. At the initial point v,
the polar is tangent to the characteristic through this point, since for infini-
tesimal-strength shocks the shock angle ¢ coincides with the Mach angle u.
The construction of the shock angle { shown in Fig. 90 is made on the basis
that the velocity component tangential to the shock is unchanged through
the shock.
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Fig. 90. Shock polar.

2. Using the method of characteristics explained above, the flow quantities
at the corner points of the characteristic net (which is approximated by
straight-line segments) are determined. Thus, we sometimes call this a net-
point or grid-point method. However, we can just as well imagine the flow
state to be constant in each mesh of the characteristic net, which covers the
entire plane. The values of the flow quantities will jump from one mesh to
the next across each mesh boundary; the mesh boundaries thus play the role
of the wavefronts of the Mach waves. If we cross the boundary of a mesh
which is a left-running wavefront, then the jumps in v and 0 must satisfy
the relation 4v 4+ 40 =0, which is valid along a right-running characteristic
€, ; similarly, if we cross a right-running characteristic which is a mesh
boundary, then 4v — A8 = 0. In this manner, we can easily develop a numeri-
cal scheme which works in a manner similar to the net-point method and
which will be called the field-line method. In this method, we can uniquely
define the directions of the piecewise linear approximating wavefronts by
identifying them with the characteristic directions in the mesh immediately
upstream of the wave front. Figure 70a can now be interpreted as the
approximation of a continuous Prandtl-Meyer flow by the field-line method.
Since, due to the especially simple structure of a Prandtl-Meyer wave, it is
not necessary to draw in the characteristics €,, the meshes of the charac-
teristic net degenerate in this case to the strip-like regions of Fig. 70a.

3. The method of characteristics, derived for plane supersonic flows, can
also be carried over after some minor modifications to axisymmetric super-
sonic flows with no azimuthal velocity components. It suffices in these flows
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to consider only the flow in the meridian plane. Let the x axis coincide with
the axis of symmetry, and let y denote the perpendicular distance from this
axis. Let the velocity components in the x and y directions be ¥ and v,
respectively. The magnitude of the velocity is U, and 6 denotes the angle
between the velocity vector and the x axis. The starting point is now
Eq. (3.203). In cylindrical coordinates x, y (by axisymmetry, all quantities
are independent of the third, or azimuthal, coordinate) the expression for
divv is divv=1u, + v, + (v/y), while the expression for Dv/Dt has the same
form as in plane flow; we thus obtain from (3.203) the following relation in
place of (3.204):

u2 v2 uv v %
U l= 3|40 1-— —;,(uy+vx)+}=0. (3.204%)

This differs from (3.204) for w = 0 only in the term v/y. After transformation
to the variables U and 6 according to (3.205), there results from (3.204*) a
relation corresponding to (3.206) and differing from it only in the presence
on the left side of an additional term — (U sin6)/y, which came from v/y.
Equation (3.207), the irrotationality condition, is unchanged. Carrying out
on this equation the transformation explained more precisely in connection
with Eq. (3.207), we obtain an equation corresponding to Eq. (3.208) and
differing from it only in the presence of the additional term — (sin@)/y on
the left side. From this equation, we finally obtain, after a short transfor-
mation, the following in place of (3.211) for the characteristics €, defined
by (3.209):
sin 0

— dx
yM cos (0 — p)

and, in an entirely analogous manner,

v+ do = along @, (3.211%)

sin @

dv—dl=—— — —dx
yM cos (8 + u)

along  @,. (3.213%)
The quantity dx appearing on the right refers to the change of the coordinate
x when advancing along the particular characteristic.

In the same manner as explained before for plane flow, the equations
(3.211%*) and (3.213*) can be made the starting point of a numerical method
for calculating axisymmetric supersonic flows. A difficulty arises in the use
of this method of characteristics when one starts advancing along a charac-
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teristic from an initial point y =0 on the axis of rotation, since, for such a
case, the values of y and 0 are both zero, and the value of sinf/y is at first
indeterminate. This difficulty can be overcome if we approximate these values
by the corresponding values at the next grid point away from the axis.

3.8.3 METHOD OF CHARACTERISTICS FOR NONHOMENTROPIC FLOW

In the flow past a profile discussed in Section 3.6.2, the flow downstream
of the curved shock wave from the nose of the profile is indeed isoenergetic
but no longer homentropic: The specific entropy varies from streamline to
streamline. Thus, by Crocco’s theorem, the flow is no longer irrotational. To
calculate such flow fields, the method of characteristics must be generalized
to account for the entropy gradients. As was already established, Eq. (3.204)
[and thus, Eq. (3.206)] still holds in plane, nonhomentropic flow; but
Eq. (3.207), asserting the irrotationality of a homentropic flow field, is no
longer valid. If we mark at each point in the flow field the direction of the
velocity by a unit vector t and the direction perpendicular to it by a unit
vector n, as shown in Fig. 91, then we have

grads = n ds/on

Fig. 91. Diagram for the derivation of Eq. (3.216).
and
w=curlv=(v,—u)n xt,
where d/dn denotes differentiation in the direction of m. Furthermore,
—vxw=—U(,—u)t x(mxty=—U(v,—u)n.

Substituting these expressions into Eq. (2.78) and replacing # and v by U and
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6 [according to (3.205)], then we obtain the following relation in place of
Eq. (3.207):
. . T os
U, sin6 — U, cos0 4+ U0, cosf + UB, sinf = — T (3.216)
n
Multiplying this equation by U ~* (M? — 1)!/2 and multiplying Eq. (3.206) by
U~" and then adding them, we get an equation nearly the same as (3.208),
except that the right-hand side has the expression

T Js
- (M? -1 2
T n* - (3217

instead of zero. If we denote for the moment the arc length along a right-
running characteristic €; by o and differentiation in the direction of this
characteristic by d/de, then, for advancing along €, (Fig. 91), we have

d ] d ’
—=cos(0 — p) — +sin(f —p) —. 3.21
= O—p) o +sin@-p) & (3.218)
Dividing Eq. (3.208) (with the right-hand side given by (3.217) instead of
zero) by M, taking into account (3.218), and using the relations
cos(f — p) = M~ [(M? — 1)* cos 0 + sin 0]
and .
sin(6 — p) = M~ '[(M? — 1)*sin 6 — cos 0],
we get:
M*—1)*oUu 260 T (M*-1)tos
U 9 9 U* M on’
or, since M ™! do = sinu do = dn, with dn the element of length along the
direction perpendicular to the streamline (see Fig. 91),

(M* - 1)t T
Y au =—___(M?*=1)
g dU+do=— 5 (M~ 1) ds, (3.219)
ie.
d T o *
v+ di=— T (M?* - 1)*ds along q,. (3.220)

In a similar way, we also obtain

T
dv—df = — 0 (M*-1)tds along G,. (3.221)
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Finally, if we define the streamlines whose direction at every point is given
by dy/dx = tan0 as the third family of characteristics, then we can write the
conscrvation of specific entropy along streamlines in the form

ds =0 along C;. (3.222)

The relations hold for isoenergetic (A, = const), plane, inviscid, steady
supersonic flows. If, in addition, the flow is homentropic, then ds=0 not
only along €5, but also along €, and §,; then the relations (3.220) and
(3.221) revert to (3.211) and (3.213). In the numerical calculation of flow
fields, we must note that in the relation between U and M in steady flow
(Section 3.1), the stagnation enthalpy A, as well as the entropy (which in
general varies from streamline to streamline, in contrast to the case in
Section 3.8.2) both enter. The same is true for the relation between T'and M.
An exception is the case of a calorically ideal gas, for which the relation
between U (or T') and M depends only on /4, and not on s,. For the calorically
ideal gas, moreover, the right side of Eqgs. (3.220) and (3.221) can be further
simplified: Using a®> = yRT [Eq. (1.135)] and M? = U?/a?, we have

2 +
T 2 — 1) ds = (i_zl) d<s>. (3.223)
U M R

The first initial-value problem now has the following form: On a non-
characteristic curve 4,B, (nowhere is it tangent to the characteristics €, , €,,
or §,), the velocity vector v and the entropy s are prescribed. From v, both
U = |v| and 0 are determined. From s and /& = h, — 3U?, we calculate a(k; s)
on AyB,, and from this, the Mach number M = U/a and the quantity
v(M;h,, s,). Similarly, we can calculate the temperature T=T(h,s) on
AyB,, or we can read it off a Mollier diagram; for a calorically ideal gas,
the temperature need not be determined, since by Eq. (3.223), T can be
eliminated from Eqs. (3.220) and (3.221). We calculate the quantities v, 6, and
s for a point not lying on 4,B, as follows: First, we subdivide 4,B,, and
let AB be a segment of the subdivision. Then we find a point P as the
intersection of the Mach lines €; and €, issuing from A4 and B, each
approximated by a straight line. Through P we draw the straight line PCin
the streamline direction backwards to determine the point C on the segment
AB. The streamline direction at P is determined by bisecting the angle made
by the two Mach lines at P. Eq. (3.220) holds along AP, Eq. (3.221) along BP,
and Eq. (3.222) along CP, so that vp, p, and sp can be found from the
initial values at 4, B, C. We can also improve these values by iterating, as
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explained at the end of Section 3.2.5. This method simplifies significantly for
a calorically ideal gas: By prescribing M, 0, and s on A4,B, and using
expression (3.170) for v(M) and relation (3.223), we can find the quantities
M, 6, and s without the use of any other relations by the method of charac-
teristics just described.

In the flow past a profile discussed in Section 3.6.2, the shock wave is not
determined a priori, but must be constructed piece by piece together with
the calculation of the flow field by the method of characteristics. Let us
explain the principle for a shock issuing from the nose of a profile (Fig. 92):

Fig. 92. Construction of the shock PQ ... by the method of characteristics,

In front of the shock we have a homentropic parallel flow of Mach number
M, . We assume that the shock is already known up to a point P, and that
the flow is already determined behind the shock up to the €, characteristic
PA through the point P. We first extend the shock by a segment of a straight
line, using the inclination of the shock {, previously calculated at P. In
addition, we select a point C near P on the characteristic P4. The charac-
teristic €, through C will be approximated by a straight-line segment until
it intersects the shock at Q. Since the flow in front of the shock is given, all
the flow variables behind the shock at Q depend on one parameter, which
we can select to be the flow direction 6,. Thus, vy, My, and s, are, by the
shock relations, known functions of 6,. We substitute this function into
relation (3.221), valid along CQ, approximate dv by vy — v, etc., and
calculate 6,. But then, the flow state at Q immediately behind the shock is
known. We can then use the method of characteristics and calculate the flow
states at the grid points on the €, characteristic OB, and finally extend the
shock in the direction {, calculated for Q. This process can then be repeated.
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3.9 Theory of Small Perturbations (Acoustic Approximation)

3.9.1 LINEAR WAVE EQUATION

We continue the discussion of Section 3.2.1: Let there be given a body of
gas initially at rest and then set in motion by a small disturbance. In contrast
to Section 3.2.1, we now no longer limit ourselves to the one-dimensional
motion of the gas in the x direction, but shall consider general motion in
space. Finally, for pure convenience, we shall somewhat alter the notation
of Section 3.2.1 and use the subscript “o0” instead of ““0” to denote the
unperturbed initial state of the gas; the perturbation quantities will be
denoted again by p’, ¢, and velocity v’. As in Section 3.2.1, we linearize the
continuity equation (2.33) and the momentum equation (2.51) for the per-
turbation quantities:

90'[0t + 9, divy' =0, (3.224)

Qo OV'[0t = —gradp’, (3.225)
or, since dp = a® do (see p. 86),
0 V)0t = —a, gradg’. (3.226)

Applying the operations a,,* grad to Eq. (3.224) and 9/t to Eq. (3.226) and
subtracting the resulting equations from each other, we eliminate ¢’ and
obtain for the velocity v/

o™ |0t* = a,? grad divy'. (3.227)

On the other hand, it follows from applying the operation curl to Eq. (3.225)
that (9/0¢) curlv’ = 0. If the gas at some arbitrary instant is at rest everywhere
and therefore irrotational, then this states that the gas will remain irrotational
for all time. This also follows from the results of Section 2.5, and is the
reason why irrotational flow is of such great importance. We can then let the
velocity field v’ to be the gradient of a scalar potential ¢:48 v’ = grad ¢.
Equation (3.227) then becomes

grad ($, — a,> 46) = 0.

46 If curl v/ =0, then there always exists a velocity potential ¢, although not necessarily

' a unique one.
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From this, it follows that the quantity ¢, —a,2 4¢ depends only on time
and not on the space variables x, y, z. Thus, without loss of generality, we
may set

by —an’ 4 =0, (3.228)

since we can add an arbitrary function of time to ¢ without changing the
perturbation velocity v’ = grad¢ and therefore also any of the other per-
turbation quantities (p’, ¢’, etc.). From Eq. (3.225), we get

grad (p’ + 0¢,) = 0.

From this, we have for the perturbation pressure p’

P'==0xd:. (3.229)

Here we have again set to zero a possible additive function of time on the
right side. The justification for this is that in the problems being considered
here, the perturbed variables, including p’, vanish identically for all time in
some regions of space (e.g., far in front of a slender body moving through
a gas at rest). Since we can then without loss of generality set ¢ =0 there,
Eq. (3.229) immediately follows.

In the following discussion, we shall essentially fix our attention to a
slender body in steady flow. It is then convenient to introduce a coordinate
system X, j, Z, which moves in the negative x direction with respect to the
X, y, z system at a constant velocity u,, (later on we shall identify u,, with
the velocity of the body moving relative to the gas at rest). The independent
variables are thus transformed as follows:

X=X+ uyt; y=y; Z=1z; f=t. (3.230)
For the space and time derivatives appearing in Eq. (3.228), we have
52 52 2 52 2 o2
e A
o 9 d @ & &
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Since from now on we shall always use this new coordinate system, we can

for the sake of simplicity drop the bars and obtain, after transforming (3.228)
to this new coordinate system and using the notation M, = Uy [,

(1= M) b + by + .. = QM fa,) by + (1/an2) ¢, (3.232)
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For the perturbation pressure p', we have from Eq. (3.229) with (3.231)
P'==0u(d + b)) (3.233)
The velocity of the gas relative to the new coordinate system is
T=uge, +gradd¢ =u e, +v, (3.234)

where e, is the unit vector in the x direction.

These formulas willnow be specialized to flows which are stationary in the
new coordinate system. This is, for example, the case if the motion of the
gas is created by a body moving at constant velocity u,, in the negative
x direction in a gas at rest. In the coordinate system moving with the body,
we then have a steady flow: The undisturbed flow past the body has a
velocity u,, in the x direction. The assumption of small perturbations (i.e.,
that perturbations to the uniform flow velocity u,, and to the variables
Pos 0u» €tc., be small) without which linearization of the equation is un-
justified, is then satisfied if the body is so slender that the disturbance
velocities generated by it are small compared to u,,. If the surface of the
body is given by the equation F(x, y, z) =0, then the necessary condition
of slenderness is the relation

|Fy < (F + F2 + F2)'2, (3.235)
which must be satisfied everywhere on the body surface; in other words, the
unit vector normal to the body surface must be everywhere almost perpen-
dicular to the x axis.4” As indicated in the discussion in Section 3.7, we must
here remark that both in the transonic and hypersonic flow regimes, the
slenderness condition (3.235) is no longer sufficient to justify linearization
of the gas dynamical equations. The flow processes in these regimes can, in
general, only be described in a meaningful way by taking the nonlinear
effects into account.

By the assumption of steady flow, the time derivatives in Egs. (3.232) and
(3.233) drop out, and we get

(=M% s + by, + $,. =0, (3.236)
P == 0l = — Qultalt’s (3.237)

47 In subsonic flow past an airfoil M the leading edge is generally rounded to
prevent separation of the flow at this edge€. The slenderness condition (3.235) is then no
longer fulfilled near the leading edge, and the actual flow in this region is different from
that calculated from linear theory.
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where u’ is the x component of the perturbation velocity v'; [also see formula
(3.154)]. In place of p’ it is convenient to introduce the pressure coefficient

¢p= (P = Pou)(300t?) = P’ (3011, %) [see Eq. (3.172)]:
€ =—2¢,up=—2u'lu,. (3.238)

This relation for the pressure coefficient holds for the plane flow past a
thin profile and also for the three-dimensional flow past a wing-shaped body
occupying a certain region in the x, y plane and having only a slight thickness
in the z direction (Fig. 94); for such bodies, the results are reliably valid in
the entire flow field. In the flow past a spindle-shaped body, e.g., a slender
body of revolution, however, Eq. (3.238) can lead to wrong results on the
surface and in the immediate vicinity of the body, and a correction is re-
quired. It turns out that in the immediate neighborhood of the body, the
components v’ and w’ of the perturbation velocity perpendicular to the flow
direction can be much greater than the component »’ along the flow direction,
although all components are still small compared to u,, . Thus, (v'* + w'?)/u,,?
can reach the same order of magnitude as u'/u,, . Detailed investigations have
shown that in this case we can still use the linear equation (3.236) to calculate
u', v, and w’, but the relation

=2 i 3 vitw

4 2
Up Uy

2

(3.238%)

gives a better approximation for the pressure coefficient than (3.238). In what
follows, whenever we speak of the pressure coefficient, we shall confine
ourselves to cases in which the relation (3.238) is applicable.

3.9.2 FLOW PAST A WAVY WALL

As a first application of these ideas, we shall consider the plane flow along
a wavy wall. The uniform parallel flow with velocity u,, will be distorted by
the waviness of the wall. Let the wall contour be given by

Yo = A coskx (3.239)

(Fig. 93), in which, by Eq. (3.235), the condition |4k| < 1 must be satisfied,
i.e., the amplitude 4 of the waviness must be much smaller than the wave-
length A = 2nk~!. The perturbation potential ¢ satisfies Eq. (2.236), in which
the term ¢,, drops out because of independence of z. At the wall, the flow
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Fig. 93. Flow past a wavy wall in the linear approximation.

must be tangential to the wall. Thus, ¢ must satisfy the boundary condition

Py —dl‘!:—Aksinkx

U + b dx

at the wall. In the linear approximation, we neglect ¢, when compared to
u,, in the denominator on the left side, and, moreover, the boundary con-
dition is not to be satisfied at the wall itself but at the mean wall contour,
namely, the straight line y = 0. In other words, we seek a solution of Eq. (3.236)
which satisfies the boundary condition

¢, = — uodk sinkx (3.240)

on y =0. Because of the periodicity of the wall, we expect the solution ¢ to
be periodic with the same wavelength in the x direction, and thus use a trial

solution
¢ =[Bcosk(x —ey) + Csink(x —ey)] exp(— kdy)  (3.241)

with real constants ¢, 8, B, and C. Upon substituting (3.241) into Eq. (3.236),
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we obtain the following relations for ¢ and é:
A-MD)+e -8 =0, (3.242)
e6=0. (3.243)

By Eq. (3.243), at least one of the quantities ¢ and 6 must vanish. Since, on
the other hand, e and ¢ must by assumption be real, it results from Eq. (3.242)
that

£=0, S=+(1-M) for M,<1,

o=+ (M2 1)} 5=0 for Mw>1.} (.244)

In both cases, the positive sign is chosen for the square root sign, although
for different reasons: For M, < 1, this sign is chosen from the requirement
that the disturbances in the parallel stream must decay and not increase
without bound with increasing distance from the wall. For M_ > 1, this sign
is chosen on the basis explained in Section 3.5.2: The disturbances from the
wall should propagate downstream and not upstream along Mach lines
(Fig. 93). The constants B and C are determined by substituting the trial
solution (3.241) into the boundary condition (3.240). This boundary con-
dition is satisfied when B and C satisfy the following equations:

B: — Co=—u, A,
Bé + Ce=0. } (3.243)
The final result may be written in the following form:
UpA . 203
¢ = m(smkx) exp[— ky(1 — M *)*] for M,<1,
1 (3.246)
—u .
¢=(mcos{k[x—y(sz - D for M, >1.

The result for M, > 1 (supersonic flow) need not be discussed any further,
since it is a special case of the Ackeret solution treated in Section 3.5.2. The
* disturbances originating from the wall propagate with undiminished strength
along the Mach lines x — y (M ,* — 1)*/* = const. In subsonic flow (M,, < 1),
on the other hand, the disturbances decay exponentially with distance from
the wall. This decay diminishes as M, gets closer to the value 1. This behavior
is clearly seen from the streamline pattern (Fig. 93). From Eq. (3.237) we
can calculate the perturbation pressure p’ by which the flow pressure differs

3.9 ‘Theory of Small Perturbations (Acoustic Approximation) 208

from the unperturbed pressure p,, . The pressure directly on the wall (y = 0)
is given by

o=

wll o Ak k f M, <1
Dol oo _{cos X or . (3.247)

(L — M2 Usinkx  for M, >1.

p'y is thus 180° out of phase from the waviness of the wall for M, <1,
and 90° for M, > 1. This leads to the result that in supersonic flow the
pressure force acting on the wall has a component in the flow direction,
which results in a finite drag force D in supersonic flow (for a wavelength
A =2nk™! in the x direction and unit width in the z direction). For the drag
coefficient found from D, we get

D A%k?

= — - = — 1 - 3248
P Towun 2nkt T (M F— 1) (3:248)

This result can also be derived immediately from Eq. (3.163) if we identify /
there with the wavelength 27k~' and set y, =y, = 4 coskx, y, =0, and
a=0.

3.9.3 SuBSONIC FLOW PAST SLENDER BODIES

Limiting ourselves to subsonic flow, we introduce for short fZ=1—
M_? > 0. Equation (2.236) now reads

Bex+ by + ¢, =0. (3.249)

We consider a slender body, say, an airfoil (Fig. 94), in a steady flow with
velocity u,. The perturbation potential ¢ satisfies Eq. (3.249); as M, —0,
i.e., f—1, this equation turns into the Laplace equation A¢ =0 satisfied
by incompressible flow. The solutions of this equation for various flow
problems are well known, as are the methods for obtaining such solutions.
Consequently, it is of great theoretical and practical significance that we can
transform Eq. (3.249) into the equation 4¢ = 0 by a simple coordinate trans-
formation, and that therefore by a corresponding transformation of the
boundary conditions each compressible flow past a slender body (for M, < 1)
can be transformed into an equivalent incompressible flow, as will be further
explained below.

Let the surface of the body be given by F(x, y, z) =0. The components
of the velocity vector are u,+ ., ¢,, .. Considering the fact that the
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Fig. 94. Affine transformation of an airfoil-shaped body according to Goethert’s rule.

vector with components F,, F,, F, on the surface F = 0 is everywhere normal
to it, the condition of tangential flow direction on this surface may be
expressed in the form (u,, + ¢,) F, + ¢, F, + ¢.F, = 0. With the assumption
that for sufficiently slender bodies [¢,| < u,, (this is an assumption for the
validity of linear theory), we neglect ¢, in comparison with u,, in the first
term and obtain the following boundary condition for ¢:

upFy + ¢,F, + ¢.F, =0. (3.250)

In addition, there is the boundary condition grad ¢ — O for sufficiently large
distances from the body. We now transform the variables as follows:48
x=ps  y=n_ z=0
F(x,y,2) = F(BE, n,0) = F(&n,0); (3.251)
¢(x’ Vs Z) = ¢(ﬁf, f, C) = (ﬁ(éa n, C)

We have then ¢, = 7' ¢, dux = B Pzt Py = bpys €tC., and Eq. (3.249) be-

eomes G+ Gy + by = 0. (3.252)
In a similar way, the boundary condition (3.250) becomes
uoFy + B, Fy + pdF, = 0. (3.253)

The boundary condition grad¢ — 0 at sufficiently large distances from the
body goes over unchanged into the corresponding boundary condition
grad$ — 0, where the gradient is now taken with respect to the variables
&, 1, L. Finally, setting B¢ = ¢;.. (&, 1, {), then, on the basis of Eq. (3.252),

48 The tilde (~) here of course has nothing to do with unconstrained thermodynamic
equilibrium,
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which can naturilly also be written as

2 B
(652 + W + ;—Mz) ¢inc = 0’

and on the basis of the boundary condition (3.253), we can interpret the
function ¢;, as the perturbation potential of an incompressible flow at speed
U, past a body with a surface F(&, 1, £) =0 in the &, #, {-space. Compared
to the body F(x, y, z) = 0, this new body has been stretched by a factor p!
in the flow direction (Fig. 94). If we know the solution of the incompressible
flow problem in the ¢, 5, {-space, and in particular, the perturbation veloci-
ties Uine = 0¢;/0€, Vi =0;, /00, and Wi, = 8¢;,./0C, then we can obtain
the perturbation velocities in the compressible problem as follows:

u’ = ¢x = (ﬁtéx = ﬂ-zu;nca
'=¢y = ¢ty =B Vi, (3.254)
w=6, =L =B W

For the perturbation pressure p’, we have

p’ == Qwuw¢x =- B_zea)umu;nc = B_zpl{nc s (3255)
or, upon introducing the pressure coefficient ¢, [Eq. (3.238)],
c,= /}‘ch‘m. (3.256)

Thus, from every incompressible flow past a slender body with upstream
velocity u,,, we can deduce from formulas (3.254)~(3.256) a compressible
flow by shortening the body by a factor § in the flow direction. These
formulas embody Goethert’s rule.4?

We now apply this rule to the plane flow past a profile at subsonic
velocity (Fig. 95). In practice, the most interesting quantity is the pressure
or pressure coefficient on the surface of the profile, since this determines the
force exerted on the profile, which in subsonic flow has only a component
perpendicular to the flow direction (lift). The horizontal double arrow in
Fig. 95 indicates the relation between the pressure coefficients at affinely
related points on the profile for the compressible subsonic flow and for the
corresponding equivalent incompressible flow based on Goethert’s rule. The

49 B. Goethert, Ebene und rdumliche Strémung bei hohen Unterschallgeschwindig-
keiten, Jb. d. dtsch. Luftfahriforschung 1, 156-157, (1941).
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Fig. 95. Diagram for the derivation of the Prandtl-Glauert rule for the plane flow past
a thin profile.

vertical double arrow connects two profiles placed in the same incompressible
flow and differing in shape by the shortening factor . As is known from the
theory of incompressible flow past slender profiles, the pressure coefficients
at affinely related points on the contour are connected by the relation
€0 =B ¢,,inc- The last step of our discussion is to produce the connection
indicated by the dotted double arrow: Here we have the same profile (same
shape, same angle of attack) in incompressible flow in one case and in
compressible flow in the other. Hence c,, denotes the limiting value of ¢, for
M, =0, and we obtain the relation between the pressure coefficients:

cp=cpoll — M,)7%; (3.257)

this is known as the Prandtl-Glauert rule.5¢ By this rule, the dependence of
the pressure coefficient on the Mach number M, in the linear approximation
is defined. Further statements on the dependence of the entire flow field on
M,, may easily be deduced from Goethert’s rule in the manner indicated.
There are several methods for calculating the incompressible flow past a
profile, and, in particular, the pressure on the surface, but we cannot enter
into further details here.5! The Prandtl-Glauert rule permits the generaliza-
tion of the results found by these methods to the entire subsonic regime. The
50 H. Glauert, The effect of compressibility on the lift of airfoils, Proc. Roy. Soc. A118

113, (1927). g
51 See footnote 36. ;
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analogous result for supersonic flow is provided by the Ackeret theory
(Section 3.5.2). Thus, we have found the lift force on the profile as a function
of the Mach number M, within the framework of linear theory (drag exists
in inviscid flow only for M., > 1). A flat plate with an angle of attack o,
for example, has a lift coefficient 2na in incompressible flow, so that
e =2ma(1 — M,%)~ 12 for M, < 1, while ¢, = 4a(M_,2 — 1)~ /2 for M, > 1,
as was given by Eq. (3.160).

The fact that accordingto both (3.257) and the Ackeret theory ¢, increases
without bound as M, — | indicates that the linear theory breaks down for
transonic flow, i.e., flow with M, near 1 (also see Section 3.7). In Fig. 96,

G

004 13 08

Fig. 96. Comparison of the Prandtl-Glauert rule with measured results on a symmetric
profile with thickness ratio 0.09. (From A. Lippisch and W. Beuschausen, Deutsche Luft-
fahrtforschung. Forschungsbericht # 1669, 1942.)

the Prandtl-Glauert rule is compared with measured results. The dot-dash
line corresponds to the particular Mach number M, at which, for each given
angle of attack «, the local Mach number M = 1 was first attained (according
to measurements) at some point of the profile surface; this freestream Mach
number M, is called the critical Mach number. The agreement between
experimental values and the Prandtl-Glauert rule is rather good up to Mach
numbers M,, slightly above the critical, and then quickly becomes poor: The
lift coeflicient finally decreases with further increase in M,, .

Measurement of the drag coeficient ¢, on a profile of the type used in
Fig. 96 shows that in the regime of validity of the Prandtl-Glauert rule (and
for a Reynolds number of the order of 10%), ¢j, has a value of around 0.01.52
Inviscid theory gives ¢, =0, as already mentioned; the finite drag is due to

52 See Section 4.3 for the definition of Reynolds number.
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the viscous friction of the gas that occurs in actuality and that leads to the
formation of a boundary layer on the profile surface (sec Scction 4.3). This
boundary layer causes both a friction drag, due to the shear stresses acting
on the profile, and a pressure drag. Because of the presence of the boundary
layer, the pressure in actuality is changed from the inviscid pressure, and
produces a finite drag force when integrated over the entire profile. This
change in the pressure is a consequence of the displacement effect of the
boundary layer, which changes the effective shape of the profile seen by the
flow outside the boundary layer (see Section 4.3.3). As M, = 1 is approached,
the drag increases, and, in fact, ¢, rapidly rises by at least an order of mag-
nitude when we reach the Mach number regime where the drop in ¢, occurs.
Both effects, the increase in drag and the decrease in lift, are connected
with the appearance of shock waves in local, bounded regions of supersonic
flow around the profile. This phenomenon cannot be given by linear theory,
which, for M, < 1, gives a continuous flow field independently of M.
When a shock wave appears, the flow with M,, < 1 past a symmetric (fore
and aft) profile becomes asymmetric, and, together with this, the pressure
distribution on the profile becomes asymmetric (fore and aft) even with
viscosity and boundary layers neglected, so that a finite drag results.53 At
the same time, the shock wave interacts with the boundary layer which occurs
in reality on the profile contour. In many cases, this interaction leads to the
separation of the boundary layer from the profile, which is still another cause
for the increase in drag. Apart from this very complicated process in the
boundary layer, we can also easily see the inadequacy of the linear approxi-
mation near M, =1 as follows: The linear equation (3.236) is elliptic for
M_, < 1 and hyperbolic for M, > 1. Thus, the type of the differential equation
depends only on the freestream Mach number M. However, actual expe-
rience shows that in transonic flow an elliptic region with local Mach number
M < 1 exists side by side with a hyperbolic region with M > 1. These phe-
nomena, which result in significant complication, can only be theoretically
understood when the nonlinearity of the gasdynamic equations is taken into
account. In Fig. 97, we show in a schematic manner how the flow field around
a symmetric profile in inviscid flow changes with changes in the freestream
Mach number M. The sonic line (shown dashed) and part of the shock

53 The existence of this drag can also be deduced from purely thermodynamic arguments
concerning the increase of entropy in the shock, using a theorem of K. Oswatitsch.
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Fig. 97. Transonic flow past a thin symmetric profile (schematic); — shock; ---sonic line.

waves separate the subsonic and supersonic regions. The Mach number M,,
increases from part (a) of the figure to part (f), and M, =1 in part (d). The
Prandtl-Glauert rule is only valid in some degree when the flow is continu-
ous, i.e., when the Mach number M, is still below that corresponding to
the flow of Fig. 97a. On the other hand, the range of validity of the Ackeret
theory of supersonic flow starts from Fig, 97f onward. The transonic regime
in between is defined not only by the Mach number M, but also depends on
the profile shape and the angle of attack; the thinner the airfoil and the
smaller the angle of attack, then the smaller this transonic interval will be
around M, =1. This is plausible when we think of the discussion in
Section 3.7, where we found for a special example the condition for the
validity of linear theory to be K> 1, where K is the transonic similarity
parameter defined by Eq. (3.185); this equation can be generalized to the
flow past a slender profile if we now regard 6 to be a typical angle of incli-
nation between the profile surface and the flow direction (e.g., ratio of profile
thickness to chord length). The transonic flow regime is then characterized
by the condition — 1 S K+ 1.

Supplementary Remarks. 1. Equation (3.236) can be derived from
Eq. (3.204) by linearization. If we set into (3.204) u=u +u',v=0", w=w/,
and a=a,+a' and keep only linear terms in the perturbation quantities
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denoted by ('), we transform (3.204) into
u/ (1 - M)+, +w, =0. (3.258)
Introducing the potential ¢ of the perturbation velocity v', Eq. (3.236) follows
immediately.
2. The Prandtl lifting-line theory gives, for a wing of elliptical planform
and large aspect ratio A4;,, > 1 in incompressible flow, the lift coefficient
P (3.259
fine 1+ (cl/nAinc) ’ ' )
where ¢’ is a constant depending on the airfoil section of the wing, equal to
2n for a profile of infinitesimal thickness. By Goethert’s rule, the equivalent
wing in compressible flow has the aspect ratio A = A;,, . The angle of
attack will be a=oa;,, f~" and the lift coefficient ¢ = ¢y j,. 72, From
Eq. (3.259), this gives
‘L

_ ca

(1 — M%) +(c'/nA)’
With ¢’ =2z and A =00, we obtain the previous result for a flat plate in
plane flow.

3. Tsien has given, by theoretical methods, an improvement of the
formula (3.257) for the dependence of the pressure coefficient at the surface
of a thin profile on the freestream Mach number.5¢ Using the notation
introduced above, Tsien’s result is

(3.260)

_ Cpo
(= M+ e[l — (1 - M

This formula is in better agreement with experimental values than Eq. (3.257).

¢ (3.261)

3.10* Relaxation Processes in Steady Flow

3.10.1* LiNEAR WAVE EQUATION 53

In what follows we shall repeat the discussions of Section 3.9.1 for a gas
which does not experience unconstrained thermodynamic equilibrium during

54 H.S. Tsien, Two-dimensional subsonic flow of compressible fluids, J. Aero Sci. 6,
399, (1939).
55 W.G. Vincenti, Nonequilibrium flow over a wavy wall, J. Fluid Mech. 6, 481-496,
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the flow, but instead experiences a constrained equilibrium that can be de-
scribed by a single additional thermodynamic variable ¢ (see Section 1.6).
Section 3.3 contains the corresponding discussion for one-dimensional wave
propagation in the linear approximation, which we shall now extend to
three-dimensional wave propagation. We first again consider a gas initially
at rest (density 0, pressure p,, and sound velocities a,, and b,; see
Section 1.11). The momentum equation (3.225) remains unchanged, as does
its consequence, that curly’ = 0 obtains for all motions originating from rest.
We can thus again introduce a velocity potential: v’ = grad¢. If, as in
Section 3.9.1, the gas is assumed to be always in unconstrained thermo-
dynamic equilibrium, ¢ will satisfy the wave equation (3.228); this results
from the one-dimensional wave equation (3.31), with §%/0x? replaced by the
Laplace operator A = 3%/0x? + 8%/dy* + 6%/0z* (and ¢ replacing u as the
dependent variable). In a completely similar way, the method of elimination,
explained in Section 3.3 for one-dimensional wave propagation with relax-
ation, will lead to the following equation [corresponding to (3.94)] for three-
dimensional wave propagation:

T(%(d’n_ bacz A¢)+ ¢lt_am2A¢ =0. (3.262)

Formula (3.229) for the perturbation pressure p’, which was derived from
the momentum equation (3.225), continues to hold.

Now we again go to a coordinate system which moves with velocity u,, in
the negative x direction. The corresponding transformation formulas are
given by formulas (3.230) and (3.231). We confine ourselves to the case when
the motion of the gas in the new coordinate system is steady. Then, all the
time derivatives vanish in this system, and, in particular, we have the trans-
formation formula 8"/0t" = u " 8"[0x" for n =1, 2, .... Since from now on we
shall only use this coordinate system, we can again drop the bars on the new
variables. Under this transformation, Eq. (3.262) becomes

AL LM by + 61+ (1= M2 s+ by 4 6= 0.
x (3.263)

(1959). F.K. Moore and W.E. Gibson, Propagation of weak disturbances in a gas subject
to relaxation effects, J. dero Space Sci. 27, 117-127, (1960). J.F. Clarke, The linearized
flow of a dissociating gas, J. Fluid Mech. T, 577-595, (1960). I.P. Stakhanov and E.V.
Stupochenko, The structure of Mach lines in relaxing media. Sov. Phys. Doklady S,
964-968, (1961). [English transl. of: Doklady Akademii Nauk SSSR134,1044-1047, (1960)].
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Two Mach numbers appear here, M, = u_/a,, and M,, = u, /b, <M, as
well as the relaxation length A = u,1b,2/a,2. The relaxation length A is a
measure of the distance which a particle must traverse in the flow field in
order for its thermodynamic state to attain a new unconstrained equilibrium
following a sudden change of its original unconstrained equilibrium. For
A—0, Eq. (3.263) formally changes to Eq. (3.236), with M, replaced by M, ;
for A — o0, Eq. (3.263) when divided by 4 again changes to Eq. (3.236), but
with M,, replaced by M,,. In the next section, we shall study these limiting
transitions for a special solution of Eq. (3.263). Formulas (3.237) and (3.238)
for the perturbation pressure p’ and the pressure coefficient ¢, are unchanged.

3.10.2* FLow PAST A WAVY WALL56

A simple but very instructive solution of Eq. (3.263) arises for the flow past
a wavy wall. Let the wall contour again be given by Eq. (3.239). The boundary
condition (3.240) remains unchanged ; in addition, we have the condition that
¢ should not increase without bounds with increasing distance from the wall.
The trial solution (3.241) with real constants ¢, §, B, and C will be used
without change. Substitution into Eq. (3.263) leads to the following relations
for ¢ and §:
M[(1— ML) +¢e®—8%] —26=0, (3.264)

(1—MZ) +¢e® — 6%+ 21ked = 0. (3.265)

For 1k — 0, i.e., if the relaxation length A is very small compared to the wall
wave length 2rk ~ 1, which is the limiting case of equilibrium flow, Egs. (3.264)
and (3.265) become (3.242) and (3.243). Here, M, appears in place of M,,.
Correspondingly, for 2k — 0o (frozen flow), we again obtain the system (3.242),
(3.243) but with M, replaced by M,,,. In both limiting cases, the solution
discussed in Section 3.9.2 will thus still hold, except with M, interpreted
differently in each case. The dependence of ¢ and & on the Mach number M,
for these two limiting cases are shown in Fig. 98. It is assumed there that the
ratio b /a,, of the two sound speeds in the gas being considered has a value
of 1.1.57

56 W.G. Vincenti, footnote 55; F.K. Moore and W.E. Gibson, footnote 55.

57 For a diatomic gas, the speed of sound for completely excited molecular vibrations
(y =9/7) is given by a® = (9/7) RT, and for completely unexcited vibrations by 52 = (7/5) RT.
Thus, b2/a? =49/45, or b/a =1.042. The value of 1.1 assumed above is somewhat higher
than this, but still has the right ordér of magnitude for processes of this kind.
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Fig. 98. The quantities & and ¢ for the flow past a wavy wall. (From W.G. Vincenti,
Non-equilibrium flow over a wavy wall. J. Fluid Mech. 6 (1957), 481-496.)

Equations (3.264) and (3.265) have real solutions ¢ and 6 for all positive
values of 1k. The somewhat unmanageable formulas for ¢ and § as functions
of k, M,,, and M, will not be explicitly given. Instead, the dependence of
& and & on the Mach number is shown in Fig. 98 for Ak =1.

The constants B and C are obtained by substituting the solution (3.241) in
the boundary condition (3.240); this leads to the equations (3.245) for B and
C. The final result is

A
6= %2 [6 sink(x — ey) — e cosk(x — ey)] exp(— kdy),  (3.266)
€

with ¢ and & given by (3.264) and (3.265). This representation is valid for all
values of M,,,, My, and Ak, and, in particular, contains the solution (3.246)
as the limiting cases Ak = 0, M, = M,_,, or Ak = 0, M, = M, .. Animportant
characteristic feature of the solution (3.266) is that for finite values of Ak,
i.e., whenever the relaxation process plays a role and the flow is neither in
unconstrained thermodynamic equilibrium (Ak = 0) nor completely frozen
(Ak = o0), ¢ will decay exponentially with increasing distance y from the wall
(since J is always > 0). The disturbances originating at the wall thus also
decay when M, > 1 (pure supersonic flow). On the other hand, in a pure
subsonic flow (M, < 1), we have ¢>0, so that with increasing distance from

58 W, G. Vincent, footnote 55.
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the wall the phase shift of the streamlines from that of the waviness of the
wall increases; in the solution found in Section 3.9.2, this phase shift is
always zero (Fig. 93). Further details on the flow field can be found in the
original work of Vincenti.38

The perturbation pressure p’ can be calculated from (3.237). If we denote
by D the streamwise component of the pressure force exerted on the wall
(per wavelength in x direction, unit length in z direction), and define the
drag coefficient cj, by (3.248), then

ep = A%k%e)(e* + 6%). (3.267)

This formula contains formula (3.248) as special case for equilibrium flow or
frozen flow. It should be remarked that for finite values of Ak, there is always
a finite drag force (cp # 0),5° even in pure subsonic flow. The relaxation
process in the gas and the related entropy generation (see Section 2.4) thus
cause a flow resistance. That this is true in complete generality and not only
for our special example can be shown from purely thermodynamic consider-
ations: Every entropy source in a flow field results in flow resistance.

3.10.3* FLow PAST A WALL WITH CORNER

In this section, we study, in the linear approximation, the flow along a
straight wall which at the point x =0 has a sudden bend through a small
angle 66 (Fig. 99). Upstream of the corner, there is uniform parallel flow
with velocity u,; the gas is in unconstrained thermodynamic equilibrium
there. We shall assume that u, > b, i.e., M, > 1, where b, is the frozen
sound speed of the gas upstream of the corner. Then, since a,, < b,,, we also
have M,, = (u,/a,)>1. Under this assumption, there is a far-reaching
analogy between the steady plane flow past a corner, which we are considering
now, and the unsteady one-dimensional flow generated by an impulsively-
accelerated piston in a gas-filled tube (see Section 3.3.2).

The starting point of our consideration is Eq. (3.263) for the perturbation
potential ¢. Instead of the real representation (3.241) for the particular
solutions of this equation, we now use for convenience complex represen-

59 J, Ackeret, Uber Widerstidnde, die durch gasdynamische Relaxation hervorgerufen
werden, Z. Flugwiss. 4, 14-17 (1956).
60 J F. Clarke, footnote 55; I.P. Stakhanov and E.V. Stupochenko, footnote 55.
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tation and take particular solutions in the form
b = Aexp[ik(x — )], (3.268)

where A4 is an amplitude constant and the wave number k and phase velocity ¢
are also constants, only one of which can be chosen arbitrarily, since there is
a relation between the two that can be obtained by substituting (3.268) into

(3.263). We get

. 2 2\%

c= (‘ik%c + f > , (3.269)
ik +

where we have introduced 8,2 = M2, — 1 >0 and 8,2 = M2, — 1 > 0 for con-
ciseness. For the flow along the wall with a corner, ¢ must satisfy the
following boundary conditions:
v’ =3d¢/dy =0 for y=0 and x <0,
v' = 0¢/dy = u,00 for y=0 and x>0.
The latter condition is actually to be satisfied on the wall behind the corner;
however, in the framework of the linear approximation, it may be satisfied
on the straight line y = 0 by the assumption of the smallness of the angle 60.
Using the step function (3.99), we can write the boundary condition in the
form
o
=%
¥y

_u,80 [ exp(ikx)

2mi ok

=0 -

v dk. (3.270)

|
y=0

Here the integration is carried out over the real axis of the complex k plane
with the neighborhood of k =0 excepted; the point k = 0 is bypassed by an
arc going below it. For x =0, the integral has the value $u,60.

We now construct a solution of the differential equation (3.263) which is
compatible with the boundary condition on the wall by superposition of
particular solutions of the form (3.268):

o(x,y) = fA(k) exp [ik(x — cy)] dk. (3.271)

¢ is a solution of the differential equation (3.263) whenever ¢ and k satisfy
the frequency equation (3.269). Moreover, the integral can be taken over an
arbitrary path in the complex k plane. To satisfy the boundary condition, we
substitute (3.271) into (3.270) and choose the same path of integration. Then
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we get
5 ik
— [ a0 ike expixy ar = “=8 [ LU
27i k

By the uniqueness of the Fourier representation, we can conclude from this
that 4 (k) = u,,00/2nkc. Substituting this expression into (3.271), we have
for the potential

¢

00 ik(x —
_ 4a® f explik(x = ey)] ) 3272)

2n k*c

This gives the solution, but not yet uniquely. Indeed, there are two solutions
¢ (k) to the frequency equation (3.269), which differ in the sign. The solution
will reach the unperturbed flow at x - — oo, if we choose from (3.269) the
root with positive real part (i.e., the root which becomes positive and real in
the limits of A=0 and A=o00). This branch corresponds to disturbances
y = 0 that propagate downstream. The other branch leads to solutions with
upstream-propagating disturbances (see Sections 3.5.2. and 3.10.2).

A detailed investigation of the integral (3.272) gives the following: If
x —y(MZ,—1)'/2 <0, i.e., if the point x, y lies in the region upstream of
the frozen Mach line issuing from the corner (which is inclined at an angle
My = arc sin M, against the flow direction), then we can complete the path
of integration into a closed path in the lower half of the complex plane
without altering the value of the integral. Since this closed path does not
enclose any singularities inside it, the residue theorem gives ¢ = 0. Hence,
the disturbances produced by the corner on the free stream cannot be
noticed in front of the frozen Mach line from the corner. The frozen Mach
lines x + y (M2, — 1)!/2 = const are the characteristics of the differential
equation (3.263). As is known, discontinuities in the derivatives of the
solution ¢ propagate along the characteristics. In this case, the boundary
condition (3.270) generates a discontinuity in ¢, and ¢, which originates
from the point x = y = 0 and propagates along the left-running characteristic
x —y(MZ,—1)}/2 = 0. The strength of this discontinuity, however, decays
with increasing distance from the wall. This can be shown as follows: 61 We

81 F.K. Moore and W.E. Gibson, footnote 55. P.P. Wegener and J.D. Cole, Experi-
ments on propagation of weak disturbances in stationary supersonic nozzle flow of
chemically reacting gas mixtures, Eight Internat. Symp. Combustion, Baltimore, Maryland,
p. 348-359, 1962.
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introduce characteristic coordinates denoted by ¢ and 1:

o=y+(x/B); t=y—(xIB).

The right- or left-running characteristics are the lines ¢ = const or 7 = const,
respectively; the line 7=0 is the left-running characteristic through the
corner. By replacing the derivatives of ¢ according to

8 _1/8 a\ a_a+3
ox P \oc or)° a8y oo ot

we transform (3.263) to the following equation for ¢ as a function of ¢ and 7:

42[/0 0 B2 2 _
_E<5g_—a—‘r>¢ﬂ—2<ﬂ‘b2+ 1)¢“'+<W_1>(¢aa+ ¢")_0’
(3.273)

Since ¢ is continuous on the characteristic =0, so are ¢, and ¢,,; a
discontinuity appears only in ¢,. If we integrate (3.273) with fixed o over t

from t = —¢ to T = + ¢, i.e., across the characteristic 7 =0, and then pass
to the limit ¢ =0, we shall obtain for the jump of [¢,], defined as
[¢.] =1lim[¢ (o, + &) — ¢.(0, — &)], (3.274)
&—=0

the following ordinary differential equation:

44d[¢.] <ﬁa2 )

e +{=5~-1)[¢.]=0. (3.275)

By do ﬁbz

From this, we obtain by integration

[6.] = 600 exp( -

2 2
M a) S (3.276)

418,

where [¢,],-, denotes the value of the jump at the point o =0, i.e., at the
corner of the wall. Since, on the characteristic T = 0 we have y = 1o, we can
then write (3.276) as follows:
M2, — MZ
J=[¢.],=0exp| - =22y 3.277
(6] = T8 -oexp( "ot G27)
In the same manner as by this law for the discontinuity of ¢,, the discon-
tinuities in all the flow variables (pressure, velocity, etc.) decay with increasing
distance from the corner along the frozen Mach line from the corner.
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We now turn to the derivation of an approximate formula for the com-
ponent v’ of the perturbation velocity at large distances from the wall. From
(2.372), we have

v = ¢y - uLM f M dk . (3.278)

2ni k

If we think of the arc on the path of integration which bypasses the singular
point k =0 as a semicircle K, with radius ¢ about k =0, then the integral
can be split up as follows:

- + o0
1 1 1
vV=u,60— | -~dk+— | --dk+— | ---dk}. (3.279)
2mi 2ni 2ni
Ke —o +e
Now,
o1
lim — | --dk=1%,
=0 27i
Ks
as we can show by introducing the polar angle @, with k = ¢ expi®, as the
integration variable. The remaining two integrals are integrals over the real
k axis. The integrand contains the real factor exp [Ak-Im(c)- y/A]}, which is
1 for =0 and decreases exponentially with increasing y, since, as said
before, we must choose the branch of ¢(k) with positive real part; but for
real k, k-Im(c) < O for this branch. If we confine our attention to distances
so great from the wall that y/A > 1, then only the neighborhood of k=0 is
important in the value of the integral. For this neighborhood we can expand
¢ from Eq. (3.269) in kA:
M2, — M2, ik
c=f— 2 R e, 3.280
Ba 5, 5 (3.280)
If we use the first two terms of the expansion in the integral and pass to the
limit ¢ > 0, we get, after a short computation,

- + o

1
im o ([ s [ ax)
e0 271
- +e
i — By M2, — M
_1 sink (x ﬂ"y)exp M bo k2 )dk.  (3.281)
n k 2ﬁn

[¢]
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In (3.281) we recognize an integral representation of the error function @
[see Eq. (3.105)] with the argument 62

Ma2m — le —1/2
(x —ﬂ,,y)( = uy) .
ﬁﬂ
Using this, we can write the solution for v" as
60 x — B,
ot [1 . d,( B Y)] (3.282)
2 1
in which
Y~ I
1= \/M—“‘L—M”E 24y. (3.283)
Ba

Accordingly, at a sufficiently large distance from the wall, v’ increases

in a region of widht / which is centered about the equilibrium Mach line
x —y(M2,—1)/* =0 from the corner, from a value of zero upstream con-
tinuously to a value u,,30 downstream. The distribution of v’ in the entire
flow field is shown qualitatively in Fig. 99, as described in the present
discussion. We can also contrast this with the analogous Fig. 39 for the
flow generated by an impulsively-accelerated piston.

rIME-1y-0 ,.{71,7___—7 y-0

Uso

Ued?

Fig. 99. Distribution of the vertical velocity v” at various distances from a wall with a
corner for flow with relaxation (schematic).

62 See W. Magnus and F. Oberhettinger, ‘“Formulas and Theorems for the Special
Functions of Mathematical Physics.” Chelsea, New York, 1949.
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As was already explained in Section 3.3.2, the width of the region given
by (3.283), which increases with y and across which v’ and all the other
flow variables change from their upstream values to their downstream values,
will eventually reach an asymptotic value if the bend in the wall is concave.
This asymptotic width cannot be found from linear theory. It results from
the balance between the widening tendency as given by linear theory and the
nonlinear steepening tendency, which, in a flow without relaxation, finally
leads to a shock wave (Section 3.3.2).

With ¢, from (3.272), the pressure coefficient ¢, from (3.238) is

88 [ explik(x — cy)]
¢, = r J‘ e dk. (3.284)
For y =0, i.e., the points directly on the wall, ¢, can be expressed as function
of x in terms of Bessel functions.63 Instead of deriving this somewhat
intricate formula, we shall give only a qualitative discussion of the pressure
distribution on the wall: Using the substitution kx = z, ¢, for y =0 can be
written as

50 i
e (r0)=" | ZPE4, (3.285)
Coom z¢(z)

where, by (3.264), ¢(z) has the meaning
B2 (Ax) z + BT
c()y=|—>r— 1.
i(Ax)z +1
For A/x -, ¢(z) = B, = (M2, — 1)!/2. In this case, we get from (3.285):

260
c,(x,0)= (M2 — 1)} for x>0. (3.286)
(For x < 0, we always have ¢, = 0). On the other hand, for 4/x — 0, the phase
velocity ¢(z)— B, = (M2, — 1)'/2, and from (3.285) we get

250
¢, (x,0) = =T for  x>0. (3.287)

63 See J.F. Clarke, footnote 55.
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Immediately downstream of the corner, we thus get from (3.286) the pressure
corresponding to a completely frozen flow, while at sufficiently large distance
from the corner, (3.287) gives the equilibrium pressure. The pressure distri-
bution on the wall is drawn in Fig. 100.

It is evident that we can use the method of superposing particular solutions
of Eq. (3.263) in a Fourier integral, shown here for the example of flow past
a wall with a corner, to treat arbitrary-shaped walls, provided that the
inclination of the wall contour with respect to the flow direction remains
everywhere small such that linear theory is applicable. The plane supersonic
flow past a thin profile can also be treated in this way.6¢ We then get a
generalization of the Ackeret theory (see Section 3.5.2) to flows with relax-
ation. If the inclination of the wall to the flow is too large, then the nonlinear

7}

4 7 2

Fig. 100. Pressure coefficient ¢, on the wall for the flow shown in Fig. 99 (schematic).

equations must be used to calculate the flow. In flows without relaxation,
the deflection of a flow past a convex wall is achieved through a Prandtl-
Meyer wave (see Section 3.6), i.e., through a simple wave, for which the
flow states on the Mach lines of one family are constant and these Mach lines
are, accordingly, straight lines. In a flow with relaxation, there are no simple
waves. Neither are the characteristics of one family straight, nor are the
states on them constant. To calculate the flow field, we must return to the
method of characteristics. Using the method of characteristics, many authors
have treated, among other things, the flow around a convex wall with a

64 J.F. Clarke, Relaxation effects on the flow over slender bodies, J. Fluid. Med. 11,
577-603, (1961). J.J. Der, Linearized Supersonic Nonequilibrium Flow past an Arbitrary
Boundary. NASA TN R-119, 1961. K.C. Wang, Unstady linearized flow past slender
bodies, Phys. Fluids 7, 25-32, (1964).
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corner, which is the generalization of the centered Prandtl-Mecyer wave.%5
We shall not go into any further discussion of the method of characteristics
for plane steady flow with relaxation. A reference to the analogy in Section
3.3.1 should be sufficient here; there, we find the basic Eqgs. (3.81)-(3.84) of
the method of characteristics for a one-dimensional unsteady flow.

6 LI. Glass and H. Kawada, Prandtl-Meyer Flow of Dissociated and Tonized Gases.
Univ. of Toronto, Institute of Aerophysics Report No. 85, Toronto, Ontario, (1962).
J.P. Appleton, Structure of a Prandtl-Meyer expansion in an ideal dissociating gas, Phys.
Fluids 6, 1057-1062 (1963).

4 VISCOUS FLOWS

4.1 Transport Properties of Gases

4.1.1 Viscosity

In Section 2.3, we divided the stress tensor S of a flowing gas into a spheri-
cally symmetric tensor — pE and the viscous stress tensor T [Eq. (2.43)).
The pressure p is a thermodynamic state variable, and is related to the other
thermodynamic state variables through the equations of state of the medium
(see Sections 1.5 and 1.12). The components of the viscous stress tensor T
depend on the state of motion of the medium. In a gas at rest, all components
of T are equal to zero, as is also the case in a body of gas translating or
rotating like a solid body. The viscous stresses will only be nonzero when
the deformation tensor D introduced in Section 2.1 does not vanish iden-
tically.

One of the simplest flows in which not all components of T vanish is the
plane shear flow shown in Fig. 13; the only component of the velocity which
is nonzero is u, and it depends only on the coordinate y: u =u(y) (Fig. 13
shows the more special case of u = cy). From experience, we know that in
such a flow only the components t,, = t,, of the viscous stress tensor are
nonzero, and

Ty =1 dufdy, 4.1)

where the proportionality factor  depends only on the thermodynamic state
of the gas (e.g., on temperature and pressure) but not on the velocity field,
and it is called the coefficient of shear viscosity, or, for short, the viscosity

225
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of the gas. A medium in which a lincar relation (4.1) holds between the shear
stress and velocity gradient is called a Newtonian fluid. The Newtonian fluid
is an idealization, since in real media the relation between shear stress and
velocity gradient is in general not exactly linear. Nevertheless, for almost all
practical purposes, it is sufficient to treat a gas as a Newtonian fluid.

As long as the gas does not dissociate, i.e., its temperature is not too high,
or it is monatomic, etc., then the viscosity # depends strongly only on tem-
perature but negligibly on pressure. In Fig. 101, 5 for air is shown in the tem-
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Fig. 101. Viscosity # and Prandtl number Pr of air as functions of the temperature
T (p=1atm). (From J. Hilsenrath er al., Tables of Thermodynamic and Transport Prop-
erties of Air, etc. Oxford-London-New York-Paris 1960).

perature range of 100°K to 1400°K. In gases, the viscosity increases with
temperature (in liquids, it decreases with increase in temperature). This also
agrees with the results of the kinetic theory of gases, which (for not too dense
gases) gives the following expression for # (with a dimensionless numerical
factor): 7 o mi[Q. “2)
Here, m is the molecular mass, & the mean thermal speed of the molecules,
and Q a cross section for collision between two molecules. For completely
hard spherical molecules with diameter d, Q = nd? and is thus independent
of temperature 7. [In this case, the proportionality factor on the right side
of Eq. (4.2) has the value 0.35.66] Since, on the other hand, the mean thermal

66 See, e.g., R.D. Present, “Kinetic Theory of Gases (Chap. 11.2).” McGraw-Hill,
New York, 1958.
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speed #oc /T, Eq. (4.2) then gives a direct proportionality between # and
\/T. However, this agrees only qualitatively with observations. In many
cases, the dependence of viscosity on temperature in practically interesting
gases in the important range of temperatures 10>-10%°K is better described
by a power law of the form

noc T, 4.3)

with w = 0.7 to 0.8 (for vapors—e.g., steam—to ® = 1.0). This departure
from the T'/2-law can be interpreted by taking into account the decrease of
effective cross section £ with increase in temperature 7, and hence with
increase in thermal velocity and energy of the molecules. A relatively simple
formula which takes this effect into account and which is based on the idea
that the molecules may be regarded as hard spheres that attract each other
only weakly is the Sutherland formula:

n=C\/T<1+I—;)> , (4.4)

with two constants C and D. By adjusting these constants to experimental
results, formula (4.4) can be made to describe very well the dependence of
the viscosity # on T in a wide range of temperatures. When T is measured in
°K and 5 in g cm ™! sec™!, the special formula for air is

s /= 12\7*
n=146-10"°/T L) @.5)

At increased temperatures, Eq. (4.4) becomes the simple law n = C\/ T.
which is to be expected for hard-sphere molecules. The term D/T, which
accounts for the mutual attraction of molecules, is of significance only at
low temperatures, hence at low thermal velocities, since only then does the
attraction force have important influence on the paths of two interacting
molecules, while at high molecular velocities, only the hard centers of the
molecules have any significance. For very high temperatures, the Sutherland
formula becomes invalid when the gas dissociates or ionizes. The viscosity
then depends on pressure in addition to temperature. Figure 102 reproduces
the data for air from the calculations of Hansen and Heims; #g is the
Sutherland value corresponding to each temperature as given by Eq. (4.5).
Dissociation shows itself in an increase of 5 over #g, and ionization in a
decrease. This is understandable, since in dissociation the gas becomes
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monatomic¢ and the collision cross section of an atom is smaller than that
of a molecule, while in ionization, because of the strong electrical interaction
between the electrically charged atoms, Q again increases rapidly.

With respect to later applications, we should also note: In many cases,
particularly in boundary-layer theory, it is convenient to assume that the

4 4 8 wr 12

Fig. 102. The ratio of the viscosity # of air to the Sutherland value #; as a function of

temperature 7 and pressure p. (From C.F. Hansen and S.P. Heims, A Review of the )

Thermodynamic, Transport and Chemical Reaction Rate Properties of High Temperature
Air, NACA TN 4359, 1958.)

product no depends only on the pressure p and not on the temperature 7.
In a thermally ideal gas, ng = np/(RT), so that this assumption is equivalent
to assuming that # be proportional to the absolute temperature 7. Under
the assumption 5 oc 7, on the other hand, s decreases with increasing T
at constant pressure if @ < 1. If Eq. (4.4) holds, ng increases with T when
T< D, and decreases with increasing 7 when 7> D. Since D for air and
other technically important gases is of the order of 10?°K, we should expect
no to decrease with increasing 7" in applications, where T is usually above
this value. The assumption of 5g =f(p) can thus be used in theoretical
investigations only if high accuracy is not claimed.

We now generalize the relation (4.1) between shear stress and velocity
gradient, which is valid for simple shear flow, to a relation between the
components of the viscous stress tensor T and the corresponding components
of the deformation tensor D for arbitrary flow fields. This generalization will
be based on the following postulates, which characterize a Newtonian fluid
in a completely general way:
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I. The components of T at a given point in space and a given instant of
time depend only on the components of D at the same point and same instant.

2. The relation between the components of T and D is linear and homoge-
neous (the latter means that the components of T will all vanish only when
the components of D all vanish).

3. With respect to this relation, the medium is isotropic (i.e., there are no
preferred directions in the fluid).

In textbooks of continuum mechanics, it is shown that under these assump-
tions two constants # and 7,, which depend on the thermodynamic state of
the medium, will enter this relation; and, indeed, when written in component
form, this relation is:87

I

$nu, — 3n(v, +w,) +n, divy,
y %ﬂl}y - %’I (Wz + ux) + My divv ’
. =4w, — n(uy +vy) + 1, divy,
(4.6)
Txy = Tyx = r’(uy + vx) ’
Tye = Ty = 0{0; + W),
T Tep = n(wye +u,).

Ox

I

[
0.

I

zx
This can be summarized in tensorial notation as:
T = 24D + (1, — %1) (divv)E. 4.7

Specializing formula (4.6) to the simple shear flow u=u(y), v=w=0, it
immediately follows that y is the shear viscosity discussed before. 7, is called
the coefficient of bulk viscosity.

We denote by mean normal stress & the arithmetic mean of the diagonal
terms of the stress tensor S (Section 2.3). This quantity is an invariant of
the stress tensor (36 is the trace of S), i.e., it does not change under rotation
of coordinate system, although the individual stress components do. From
Eq. (2.43),

6=—p+3(,+0,+0)=—p+n,divy. 4.8)

When 7, # 0, the mean normal stress & does not equal the negative thermo-
dynamic pressure — p, as is sometimes incorrectly assumed. This has the

67 The partial derivatives of the velocity components are denoted by appropriate
indices. On the other hand, the subscripts in the stress components do not denote differ-
entiation.
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conscquence that in a pure isotropic volume change of the gas, work is done
not only against the pressure p but also against the viscous stresscs. Let us
imagine a spherical body of gas which is isotropically expanded or com-
pressed. Such an expansion can be achieved by a velocity field v = cr, with
the constant ¢ > 0 for expansion and < 0 for compression. From Eq. (4.6),
it follows that for this case all shear stresses vanish, while the normal stresses
are 6,=0,=0,=3n,c. The stress tensor is thus spherically symmetric:
S = (—p + 3n,¢)E. The shear viscosity 1 plays no role in this process, and
only the bulk viscosity #, does. On each surface element of the spherical body
of the gas, the normal stress — p + 3n,c = & acts. The kinetic theory of gases
gives #, = 0 for hard-sphere molecules, which agrees with measurements on
monatomic gases (noble gases). For polyatomic gases, on the other hand, we
observe, particularly from the damping of ultrasonic waves, that 5, # 0. This
is because of the internal degrees of freedom of the molecules (rotational and
vibrational degrees of freedom), and is closely connected with the relaxation
processes in these degrees of freedom. This connection was already referred
to in Section 3.3. Here it suffices to include », as an empirically given quantity.
In connection with the supplementary remarks to Section 3.3.2, however,
we must remember that in certain gasdynamical processes in which the
thermodynamic state changes rapidly with time, the assumption of a finite
bulk viscosity #;, depending solely on the thermodynamic state must be
replaced by a more exact consideration of the relaxation phenomena. More-
over, the concept of shear viscosity (as well as heat conductivity) also be-
comes shaky when the characteristic time for changes in the flow field
becomes so small as to be of the same order of magnitude as the time between
two successive collisions of a molecule with others. This time is the relaxation
time for the translational degrees of freedom of molecules, which is respon-
sible for the shear viscosity. The methods of continuum theory break down
in these cases (see Section 1.12).

4.1.2 THERMAL CONDUCTIVITY

After clarifying the relation between the viscous stress tensor and the
velocity field, we must now connect the energy flux vector q introduced in
Section 2.4 to the state variables of the gas. We shall confine ourselves to
the simplest case and take q to be identical to the heat flux vector caused by
a temperature gradient. Energy transport through diffusion processes (e.g.,
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transport of chemical energy) will be neglected. The heat flux vector q
vanishes when the space-wise temperature gradient grad T vanishes. If we
assume that the components of q are linearly and homogeneously dependent
on the components of grad T and that the medium is isotropic with respect
to heat flow, then Fourier’s heat conduction law results:

q=-kgradT. 4.9)

By inserting the “— sign, k becomes a positive quantity. This quantity is
dependent on the thermodynamic state of the medium, but not on grad7.
We call k the coefficient of thermal conductivity, or, for short, the thermal
conductivity.

Just as with #, the thermal conductivity k for gases depends on the
temperature 7 but only slightly on the pressure p. Figure 103 shows k for
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Fig. 103. Thermal conductivity k for air as a function of the temperature T'(p =1 atm).
(From J. Hilsenrath et al., Tables of Thermodynamic and Transport Properties of Air,
etc. Oxford-London-New York-Paris 1960).

air. Elementary kinetic theory predicts a direct proportionality between k
and 7. Since, in the framework of this theory, the specific heat ¢, is also a
constant, this means that the dimensionless quantity

Pr=cnlk (4.10)

must be a constant. This is an important quantity in gas dynamics and is
called the Prandtl number. For monatomic gases, the Prandtl number is
actually very nearly constant. Figure 101 gives the Prandtl number for air.
In the temperature range from 200°K to 1000°K, Pr varies only slightly from
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its mean value of 0.7. By a well confirmed formula of Eucken, Pr can be
expressed in terms of the adiabatic coefficient y:

Pr = 4y/(9y - 5). 4.11)

The variation of Pr with T can thus be traced back to the variation of y with
T, resulting from departure from calorically ideal gas behavior. These rela-
tions for the heat conductivity will be invalid when the gas dissociates or
ionizes. For then, just as with viscosity, the heat conductivity will depend
strongly on the pressure.

We can now use relations (4.6) and (4.9) to derive an explicit expression
for the entropy generation by viscosity and heat conduction, according to
formula (2.69). With the definition (2.66) for the dissipation function ¢ and
by substituting for the viscous stresses in terms of the velocity gradients in ac-
cordance with Eq. (4.6), we get for the entropy generated by viscous friction o :

Tog =@ =29 [(u,)* + (v,)° + (w,)*] + 1 [, + v)* (v, + w,)
+ (e + )]+ (16 — 30) (s + 0, + W) (4.12)

‘We at once recognize this to be the generalization of expression (1.17), which
was derived in Section 1.3 for a special example. Since by the second law of
thermodynamics, o; must be > 0 for any velocity field (see Section 2.4), we
can conclude, in addition, from Eq. (4.12) that n > 0 and #, > 0 must hold.
In an entirely analogous manner, we obtain from Eq. (2.69), using Eq. (4.9),
the following for the entropy generated by heat conduction g, :

oy = (k/T?) (grad T)?. (4.13)

This is the generalization of formula (1.18). By the second law of thermo-
dynamics, k must be > 0, as was already mentioned.

Supplementary Remarks. If we multiply the numerator and denominator
of expression (4.2) for # by n, the number of molecules per unit volume, then
the density ¢ = nm appears in the numerator and the product »Q in the
denominator. The quantity (nQ) ™" has the dimension of a length. For hard-
sphere molecules, (7 \/2)" has the meaning of mean free path /,. We can
then also write (4.2) in the form

7 oc odlg. (4.14)

The kinetic theory of gases gives the value 0.499 for the proportionality factor
on the right side.
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4.2 Flow through a Normal Shock Wave

4.2.1 BASIC RELATIONS FOR ARBITRARY SHOCK STRENGTHS

In the following sections we study a normal shock wave into which a gas
flows with velocity u, in the x direction; the downstream velocity is u, < u, .
For given upstream quantities (denoted by the subscript “1”’), the downstream
quantities (denoted by the subscript “2°”) are determined by the shock rela-
tions (3.107)—(3.109). While we have thus far neglected viscosity and thermal
conductivity and treated the shock wave as a discontinuity in the flow field,
we shall now regard it as a phenomenon occuring over a finite region of
space with a continuous distribution of the flow variables (Fig. 104). The

Flow direction [

l L Shock mgm———’!

Fig. 104. Velocity and temperature distribution in a shock wave (schematic).

upstream values will be assumed by the flow variables asymptotically for
x — — o0, and the downstream values for x — + c0. The flow will be assumed
to be steady; u(x) appears as the only velocity component, and all the other
flow variables, like u, are also functions of x only. Under the fundamental
assumption that the relations discussed in Sections 4.1.1 and 4.1.2 for the
viscous stress tensor T and the heat flux vector q are valid in the shock wave,
T contains, among others, the component g, where68

4 du du

=l-n+ — =f—, 4.15

ox <3n 11.,) ok i (4-19)

For simplification, we have introduced the notation #. For the heat flow q,
only the x component remains:

q,=—kdT]dx. (4.16)

68 In what follows, the other components of the tensor T play no role, since they drop
out of the momentum equation.
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The continuity equation (2.33) reduces to

d

—(pu)=0

(v @17
From the momentum equation (2.52), we obtain, with the aid of Eq. (4.15),

u@~ dp d [ du
%o dx+dx Tax) (4.18)

Taking (4.17) into account, we can also write this in the form

d Wt p—4 du) 0
Ix 0 p e (4.19)
The energy equation (2.60), when Egs. (4.15) and (4.16) are used, becomes
gui<u—2+h _d(, du de
dx \2 Ta\™ax T ) (420

Equations (4.17), (4.19), and (4.20) can immediately be integrated once with
respect to x. If we denote the constants of integration by @y, p,, and h,,
(4.17) becomes

ou=0¢ =gy, (4.21)
(4.19) becomes
2 . [du 2
eut+p— Al )=Po=pi+ew’, 422
X
and, since gu = const, (4.20) becomes
u? fidu k dT u,?
— + h———_ " = &8
) 0dx  gudx ho="h, + 5 (4.23)

The constants of integration @, p,, and hy can be expressed in terms of the
given data upstream, since, for x— — oo, we must have 9—0,P—py,
h—>hy, u—u,, duldx -0, and dT/dx — 0. Similarly, we can also express the
constants of integration in terms of the downstream quantities.®? Equa-

% Here it is tacitly assumed that a solution to Egs. (4.21)-(4.23) exists, which for
X —> 4 o0 assumes the upstream or downstream values. The question of existence—and
also uniqueness—of such a solution is answered positively for the special cases to be
treated by explicitly exhibiting the solution. For the general case, see J. Serrin, Mathe-
matical principles of Classical Fluid Mechanics, in “Handbuch der Physik> (S. Fliigge
ed.), vol. VIIIA, pp. 125-263. Springer, Berlin, 1960-62. ’
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tions (4.21)-(4.23) arc the generalizations of the shock relations (3.107)-
(3.109); while these only connect the upstream and downstream quantities,
Eqs. (4.21)-(4.23) describe the flow at every point in the shock.

We assume that the gas is in unconstrained thermodynamic equilibrium
at every point in the shock; this assumption we shall later analyze critically.
In unconstrained thermodynamic equilibrium, two state variables suffice for
the unique specification of a thermodynamic state—e.g., T and ¢. From
Eq. (4.21), ¢ can be expressed in terms of u: ¢ = @,/u, so that we can choose T’
and u as independent thermodynamic variables. If 7" and u are known as
functions of x, then all the other variables are also known as functions of x.
For u(x) and T(x) we obtain, from Egs. (4.22) and (4.23) after a short
transformation,

u
f—=p—po+ Oou, (4.24)
dx
k dT 2 -
Lo W NSNS Lk Y (4.25)
8, dx 2 6,

From the knowledge of the equations of state and the material properties
of the gas, ie., the relations p=p(T,¢), h=h(T,0), A=#(T,¢), and
k = k(T, ¢), we know the right side of Eqs. (4.24) and (4.25), as well as the
factors #j and k on the left side, as functions of T and u, and we have a system
of two differential equations of the first order for 7'(x) and u(x). Dividing
one equation by the other, we next obtain an equation of the form d7/du =
f(T, u), from which, by integration, 7" will result as a function of u. Substi-
tuting the result in Eq. (4.24) and integrating, we then get u(x).

In general, this integration must be carried out numerically, and only in
certain special cases is a solution in closed form possible. We pick out three
such special cases:

1. This special case results from a series of increasingly narrow spe-
cializations (a to e):

a. The gas is thermally ideal, so that h = h(T) and dh = ¢, dT. With this,
we get from Eq. (4.23)

2 4 2 h
2 ou \dx\ 2 cf dx
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The combination of material constants appearing in the last term on the right
N
cAlk =Pr 4.27)

is the Prandtl number characteristic of the flow in the shock wave. When,
in particular, n, = 0, then Pr = 4Pr/3, where the ordinary Prandtl number Pr
is defined by Eq. (/1.10).

b. We assume Pr = 1. Then we get from Eq. (4.26)

NP N P (4.28)
2 ° T oudx\2 °) ’
For x —»— o0 and x — + o0, 3u® + h — h, must vanish, since, by the definition
of hy in Eq. (4.23):3u,2 + h, = $u,® + h, = hy. The only solution of the
differential equation (4.28) for the quantity 1u® 4+ h— h, that vanishes at
x~—»—o00 and x— + oo is the identically vanishing solution. Thus,
W+ h=hy. (4.29)

In other W(;X'dS, the stagnation enthalpy &, = h 4+ 1u? of the gas has the same
value A, everywhere.

c. For further simplification, we now specialize to a calorically ideal gas.
We then have from Eq. (1.58) (since only entropy difference plays a part, the
constant #* may be dropped):

&P _ Y P
h=¢T=2F"=—"— 4.30
@l = R e 7—1¢ (4.30)
or
y—1 y—1 u?
P=—_hQ=—(ho""‘ Q. (4.31)
4 y 2

Substituting into Eq. (4.24) and transforming, we obtain

2y fdu_1(, 2y po 20-1)
——— —=—|uf-———u+ ho ).
y+160,dx u y+106, y+1
In the brackets on the right is a second-degree polynomial in ». It has the
two roots u = u, and u = u,, as we can easily establish by calculation. This
also immediately follows from the fact that the quantity du/dx must vanish
for u=u, and u = u,. This permits us to write Eq. (4.32) as follows:

(4.32)

2 4 du_ (e w) (e w) )
y+10,dx u ’ )
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To enable us to find u(x) by integration from this stage, we must make yet
another assumption concerning the dependence of the viscosity f on the
thermodynamic state variables.

d. We assume that § ~ T%. From Eq. (4.29) with & =¢,T it follows that
T=(1/2¢,) (UZe — u?), where Uy = (2ho)"/? is the maximum speed corre-
sponding to the stagnation enthalpy A, = h, [see Eq. (3.10)]. If we denote by
flo the viscosity corresponding to the temperature T, = ho/c,, then

Ul . — u2]m
f=fo| = —1| . 4.39)
¢ [ U:\ax
Substituting the expression (4.34) for # into Eq. (4.33), and introducing for
short
=& B (4.35)
y+106,
we obtain the equation
20 - _
G _Um_Gowow)
dx (UZ.—u?)° u

A has the dimension of a length.
Solution of Eq. (4.36) in closed form is particularly simple in the following

two cases:
e,. Viscosity # is independent of the temperature, i.e., @ = 0. In this case,

it follows from Eq. (4.36) that

dx 1 u u
—=—- ( R — )du,
A Uy — Uy \U; — U  U—U,

and by integration,

x _uyInfl— (ufuy)] — uz In[(u/us) — 1]. 4.37)
Yl Uy — Uy

e,. Viscosity ) is proportional to the absolute temperature, ie., @ = 1.
From Eq. (4.36), it follows after integration that

2 u 2
u1<1 = u+) ln(l S l) - uz(l - ‘i—) ln<l - 1)
§ — Umax Ug ymax Uz o (4.38)

A Uy — U,

1 [u?
——UT[‘Z— +(u1 +u2)u:|.

max
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In Eq. (4.37) as well as in (4.38), we have set another integration constant x,
to be zero without loss of generality, since x, # 0 in our problem merely
corresponds to an unimportant translation of the origin of the x coordinate.
The velocity distributions given by Egs. (4.37) and (4.38) are qualitatively
the same, and correspond to the shape sketched in Fig. 104. The temperature
distribution comes out of Eq. (4.29) with & = ¢,T once the velocity distribu-
tion is known, and it also corresponds qualitatively to that sketched in
Fig. 104.

Before we embark on a discussion of the solution obtained here, we should
mention the other two special cases for which we can find a solution just as
easily as above:

2. The gas is calorically ideal/\and its thermal conductivity is k=0; for
finite voscosity, this implies that Pr=co. From Eq. (4.25), it then follows that

h — ho — $u* + (po — p) 4/6, =0,
and from this, with 2 = [y/y — 1)] (p/e), we obtain

y—1 u’  po
="—6Olho+———u). 4.39
p " o( ot 2o, “) ( )
Substituting into Eq. (4.24) gives
A2 du_ (u—u)(u—u)

— = (4.40)
Opy+ 1dx u

Equation (4.40) is the same as Eq. (4.33) except for a factor of y on the left
side. Again assuming f) =fj, = const, we get the expression (4.37) as the
solution of Eq. (4.40), with A replaced by 4., where

A= 2 ﬁl; (4.41)
y+16,

A, is ™! times the quantity A defined in (4.35). The velocity distribution and
the temperature distribution (and thus the distribution of all the other
variables) are thus for Pr=oc0 steeper by a factor of y than for Pr=1.
Qualitatively, this is also true when # depends on the temperature; but then
the shock profile for Pr=co is no longer simply obtained from that for
Pr =1 by an affine distortion in the x direction.

3. The limiting case of =0,k #0, i.e., l/"} =0, leads to an interesting
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result. From Eq. (4.24) we obtain, by virtue of p = py — Oqu and p = RTg =

RTO,/u,
1 Po 2
T=-{—u-— , 442
i < o, u—u (442)
and with it,
dT 1 [po du
—=——-2u|—. 44
dx R <@o u) dx (443

If we substitute this expression for dT]dx in the left side of Eq. (4.25) and
replace 4 on the right side of Eq. (4.25) by ¢,T (under the assumption of a
calorically ideal gas), with T from (4.42), then we obtain, after transforming,

20—1) k du_(u—u,)(u—uy)
y+1 ROgdx  2u—(po/@0)

(4.449)

For simplicity, we now set k = k, = const. Upon introducing the length 1,
defined by
2(y-1) ko
= - 4.45
27 y+1 RO, (443

‘we get from (4.44), after integration,

<2u1—é’)‘l)ln(1—1>—(2u2—;—°)1n(1—1>
= ° - o Mz . (446)

Ay Uy —uy

We will get a velocity distribution of the type shown in Fig. 104 from
Eq. (4.46) only when 2u, > p,[©g, i.e., if the shock does not exceed a certain
strength. (We always have 2u; > p,/©,, as we can see from the following:
2uy = (Po/Og) = us [1 — (p1/0,4,%)] = uy [1 = (a,*/yu,?)] > 0, sinceu, > a).
When 2u, < p,/©,, then the situation shown in Fig. 105 results: The solution
u(>x) given by (4.46) and the corresponding temperature 7'(x) from Eq. (4.42)
are shown in dotted lines. Obviously, we can satisfy the boundary condition
u— u, for x - + oo only if we assume a discontinuity in the velocity distri-
bution. This discontinuity must appear at the point where the temperature 7
reaches the final value T,. There is thus an isothermal discontinuity in the
shock region. We will obtain more realistic behavior if we take the Prandtl
number Pr to be different from zero but very small compared to 1; this
means that the effect of heat conduction strongly dominates the effect of
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viscosity. The discontinuity will then disappear, and we get instcad a con-
tinuous but very steep velocity distribution.

4.2.2 WEAK SHOCK WAVES

We now confine our attention to weak shock waves. A weak shock is
defined here as a shock for which Au < a,, where Au=u; —u,. Since as
Au— 0 the velocities u, and u, both tend to the critical sound speed a,, we
have for a weak shock in calorically ideal gas u, = ay + $4u, u, = a, — 34u;

] —_,/7/
.'_4 e
i
——]
l ™
S _1/ ‘
S
f ~ -

Fig. 105. Velocity and temperature distribution in a sufficiently strong shock for zero
viscosity.

these result immediately from the Prandtl relation (3.129) when we neglect
the quadratic terms in du/a, . Finally, we should note the obvious fact that
in a weak shock all the state variables differ only slightly from the critical
values marked with a, (see Section 3.1). The state variables will thus be
replaced by the critical values in the following when the error so introduced
is negligible.

Now we return to Eq. (4.37), which holds for shocks of arbitrary strength
under the assumptions (a) through (e,) formulated above. For a weak shock,
we obtain from Eq. (4.37), using u; & u, = ay, first

x du <u1 —u)
=In s
a,l u—u,

\
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and from this, using u, = a, + §4u and u, = g, — $4u,

u=ay -2 tanh (x 4 "), (447

2 2a 4

where 4 has the meaning defined in Eq. (4.35).

We state without proof that the result (4.47) is also correct when tl}g
viscosity #i depends on the temperature and when the Prandtl number Pr
is different from 1. However, we must then replace the quantity Ain Eq. (4.47)

by 43, where
2 i y—1
a=— T4 , 448
} v+1@o( f);*) (448)

with 7, the viscosity corresponding to the critical temperature T,. For
constant viscosity fj = #,, the following holds: For Pr=1, 1; becomes 4,
for P/r\ — 0, A5 tends to 4,. For — 0 and constant heat conductivity k = k,,
i.e., Pr—>0, then 1, - 4, (y — 1)/y. Regarding this last result, we should add
that the solution (4.46), when specialized to a weak shock, will become
Eq. (4.47) with 2 replaced by 4, (y — 1)/y.
The result (4.47) will now be used to estimate the thickness / of a weak shock
"wave. A natural and convenient definition of this width is I = Au|du/dx|™*,
where the derivative du/dx is taken at the point where u =a,, i.e., at the
point x =0 by Eq. (4.47) (Fig. 106). We then get from Eq. (4.47)

l =4a,Aldu. (4.49)

u

—|Au/Zf=—

4.1 Au/2l—

I
|

— | ——

Fig. 106. Definition of shock thickness /.

For Au— 0, the shock thickness /— 0, and as the shock strength increases
(i.e., increasing Au), the thickness decreases. For further discussion, we
identify A with the quantity A; defined by Eq. (4.48), and assume for sim-
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plicity that Pt = 1, which Ix approximately valid for many gases. Further-
more, we assume that the bulk viscosity n, (see Section 4.1.1) vanishes, or
is much smaller compared to the shear viscosity n and is hence negligible.
Since, in that case, f/ = 45/3, we get from Eq. (4.49) using O ~ 0,4y,

32y mx

ly — 4.50
3+ 1) ox du (=)

If we now substitute 5 from Eq. (4.14) [with the value 0.499 for the propor-
tionality factor on the right side of (4.14)], then Eq. (4.50) becomes, for
y=14,

17~ 35l/Au. (4.51)

The mean thermal velocity of the molecules & is known to be proportional
to the sound velocity a,, and differs only slightly from it. From Eq. (4.51),
it therefore follows that the shock thickness / decreases toward the order of
one mean free path /; as the velocity difference Au approaches the order of
the sound speed, i.e., when the shock is no longer very weak. In all problems
in which the characteristic lengths of the flow field are very large compared
with the mean free path of the gas (and these are the flows that can generally
be treated by continuum mechanics, as explained in Section 1.12), we may
treat the shock waves—except the very weak shocks—as discontinuities, as
we did in Section 3.4. On the other hand, directly from the basic assumption
of continuum mechanics that the mean free path must be sufficiently small,
doubts arise on the permissibility of treating the flow in a shock wave by
continuum mechanics, as was just done in this section; i.e., there are doubts
concerning, among other things, the correctness of the forms of the stress o,
given by (4.15) and of the heat flux g, given by (4.16). It is noteworthy,
however, that measured velocity and temperature distributions in shock
waves show rather good agreement with the results of continuum theory
for moderately strong shocks, whereas gas-kinetic calculations of the pro-
cesses in shocks did not always lead to equally good results.

Even if we succeeded in justifying the continuum-theory treatment of the
processes in a shock wave, there remains one assumption made at the
beginning which, in view of the thinness of the shock and the resulting
shortness of the transit time of a gas particle, remains questionable—namely,
the assumption that the gas is everywhere in unconstrained thermodynamic
equilibrium and that its state is uniquely specified by two independent vari-

4.2 Ilow through n Normal Shock Wave 243

ables. It has been pointed out many times in this book that, for example,
on account of the internal degrees of freedom of the gas molecules (vibration,
rotation), relaxation times for the establishment of unconstrained thermo-
dynamic equilibrium appear which are much longer than the time needed
for the equilibration of the translational degrees of freedom, and are thus
also much longer than the transit time through a shock. In many cases, we
can, however, introduce additional variables to describe the state of the gas
as constrained equilibrium. We shall discuss the consequence of this with
regard to the structure of the shock wave in Section 4.2.3.

Starting from Eq. (4.47), we shall now explicitly calculate the entropy
generated in a weak shock. The entropy source terms o, from Eq. (4.12) and
gy, from (4.13) reduce to the following for the flow in a weak normal shock:

flx (du 2 ke (dT\?
=) ==} . 4.52
o Ty (dx) ’ % T, \dx (“452)

For further calculations, we now express dT/dx in terms of du/dx: were the
state changes in a shock isentropic, then the relation ¢, 7+ 1u? = const would
hold; from this it follows that ¢, dT/dx = — u du/dx = — a, du[dx. Now, the
state changes in a shock are indeed not isentropic, but, by Eq. (3.118), the
entropy increase in a weak shock is small enough so that we may use this
relation between dT/dx and dujdx as an approximation [for Pr =1, this
relation is exact because of Eq. (4.29)!] We get thus

ke ay’ (du\? — V) ky fis fdu\* y—1
ah=%%<_> =(v*)*ﬁ<7) T e 45y
T, c,” \dx chls Ty \dx

Pr

Here we have substituted a,> = yRT, = c,(y — 1) T. The entropy generated
per unit volume per unit time is thus

-1 du\?
a=(7f+ah=<1+yf>\ )%(d;) . (4.54)
T *

In a streamtube of unit cross-sectional area, the entropy generated per
unit time will thus be:

+ o0

. y— 1\ fiy du\?
as=(1+—)ZF () 4
() [ ) =

If we calculate du/dx from Eq. (4.47) with 4 = 4, [Eq. (4.48)], and consider
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the fact that [, cosh™* r dr = 4, then we get

3
48 = 0404 Y(ylz D R(j") . (4.55)

Consequently, as the gas passes through the shock region, the specific entropy
rises by an amount

A4S 48 1) _[4u\?
o5 245 _AS 204D (au) (4.56)
Oy 0484 12 A

This agrees with the result of Eq. (3.118) up to terms 0(g, — ¢,)*], which
are negligible for weak shocks. For weak shocks Au/a, = (0, — ¢1)/; [see
Eq. (3.35)], and for calorically ideal gases, 42 [of Eq. (3.1)] is equal to
y(y — 1) RT/g (see Supplementary Remark 2 to Sectio/tl 3.1).

The fact mentioned earlier that the shock wave for Pr = co (i.e., negligible
thermal conductivity) is steeper than that for Pr =1 is immediately clear if
we consider the fact that the total entropy generated in a shock wave is
already determined by the upstream variables independently of viscosity and
heat conduction, as was discussed in Section 3.4. If entropy generation by
heat conduction is suppressed, the entropy generated by viscosity must be
increased correspondingly, which, for the same viscosity, can only be attained
by an increase of the velocity gradients. The fact that for vanishing viscosity
a continuous solution for the velocity distribution can be found only for
moderately strong shocks can be qualitatively interpreted as follows: While
for moderately strong shocks the entropy generation from heat conduction
is sufficient for the total entropy increase, for strong shocks there must be
additional entropy generation. This occurs within the framework of con-
tinuum theory in the formation of a nearly discontinuous zone in the velocity
distribution, where the velocity gradients are so high that even the slightest
viscosity will result in finite entropy generation.

4.2.3* RELAXATION PROCESSES IN A SHOCK WAVE

As was mentioned before, the thickness of a shock (except the very weak
shocks) turns out to be so small that the assumption of thermodynamic equi-
librium in a shock is often no longer valid. In what follows, we shall assume
that, for such cases, the state of the gas in the shock region can be described
as constrained equilibrium by the introduction of an additional thermo-
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dynamic variable &. In terms of the notation first introduced in Section 1.11,
the specific enthalpy /# will then be a function fi (p, ¢, &) of three independent
variables p, ¢, and &. In unconstrained thermodynamic equilibrium, £ assumes
its equilibrium value &(p, @), which depends only onp and g, and the enthalpy
becomes a function of p and ¢ only: A(p, o, E(p, ¢)) = h(p, @). Outside the
shock region in which relaxation processes, viscosity, and heat conduction
all play a role, the gas is in thermodynamic equilibrium. Its thermodynamic
state far ahead of the shock is defined by p,, o,, and &, = &(p,, ¢,); the
velocity ahead of the shock will as always be denoted by u, . The state of the
gas far behind the shock (p,,0,, &, = &(p,, 0,), u,) results from the shock rela-
tions (3.107)—(3.109). The relation (3.109), when written out completely, reads

B(Pz »025 E(Pz > Qz)) + %”22 = E(Pl »Q1> E(Pl B Ql)) + %“12~ 4.57)

The consequences of the shock relations have been mentioned in Sections 3.4.1
and 3.4.2. A necessary condition for the existence of a shock is u; >ay,
where a, is the equilibrium sound speed of the gas ahead of the shock, as
defined by Eq. (1.136).

Since in what follows we shall be interested only in the influence of
relaxation on the shape of the shock, we shall neglect viscosity and heat
conduction, i.e., we set # =0 and k = 0. Under this assumption, we obtain
from Eqgs. (4.21)-(4.23)

¢ =0fu, (4.58)
p=po— O, (4.59)
E(P, 0 &)+ u?=h, = E(Ih > Q15 E(sz Ql)) + %_—ule (4.60)

With the appearance of the new variable &, another equation will be necessary
to describe the change of ¢ with changes in the other variables. We obtain
this equation from Section 3.3.1, Eq. (3.75):

u déldx = L(p, ¢, £). (4.61)
The meaning of the function L was given in Section 3.3.1. Now, the velocity
distribution u(x) can be calculated as follows: By substituting ¢ and p from
Egs. (4.58) and (4.59) into Eq. (4.60) and solving Eq. (4.60) for £, we get &
as a function of u, & = &(u). Substituting this into Eq. (4.61), we then get

du Li(P (u)i(u), é(L)) (4.62)

—= - 5

dx u dé/du

and, by integration, the velocity distribution u(x).
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Without carrying out the integration explicitly, which would require special
assumptions on the thermodynamic equations of state of the gas and on L,
we can use these equations to study several important facts. We first
investigate the possibility of the appearance of a discontinuity in the velocity
distribution. At the point x, where » and thus p and ¢ are all discontinuous,
dé|dxundergoes a jump of the same magnitude as L/u, according to Eq. (4.61);
¢ itself is thus continuous. In other words, the relaxation is frozen. For fixed
&=E&(py, 0,), however, Egs. (4.58)—(4.61) formally reduce to the relations
for a normal shock without relaxation (in a medium without viscosity and
heat conduction) if we replace the equilibrium sound speed a in these relations
everywhere by the frozen sound speed b. All the consequences of the shock
relations hold correspondingly. In particular, in analogy to the condition
u, > a, for the equilibrium shock, the condition u; > b is necessary for the
occurrence of a frozen shock, b, being the frozen sound speed ahead of the
shock defined by Eq. (1.140)7°; conversely, a frozen shock is impossible in a
flow with @, <u, <b,.

Case I: (u, > b,). Here, Eq. (4.60) for the special value of ¢ =&(p,, 0,)
[as well as ¢ (u) and p (u) from (4.58) and (4.59), respectively], has, in addition
to the trivial solution u =u,, another solution in the region u, <u<u,,
which we shall denote by u,, (Fig. 107; '/ indicates frozen). Now let us
imagine the function &(u), which results from solving (4.60) and which is
assumed to be continuous, to be drawn in the £, u plane. Then it follows
from &(uy;)=&(u,) that &(u) must have at least one extremum. Under
rather general assumptions about the thermodynamic behavior of the gas,
one can indeed show that it has not more than one maximum.?! In the
vibration relaxation of a thermally ideal gas, for example, & (1) is a parabola
in the &, u plane (Fig. 107)72 if we identify & with the temperature charac-
terizing the vibrational degree of freedom. Integrating Eq. (4.62) with such
a function ¢ (u), we obtain a velocity distribution which, because of the change

70 'We here assume that the gas in unconstrained equilibrium as well as in the frozen
state will satisfy relations (3.1) and (3.113), which are the assumptions for the validity of
the resuits derived in Section 3.4.2.

71 E, Becker, Verdichtungsstofe in einem Gas mit Relaxation, ZAMM 45 (1965),
T145; Eindimensionale stationdre Verdichtungsstromungen in einem Gas mit Relaxation.
ZAMM 46 363, (1966); Steady one-dimensional flow of a gas with relaxation. Recent
Advances in Aerothermochemistry, AGARD Conference Proc. 12, 477, (1967).

72 L.J.F. Broer, On the influence of acoustic relaxation on compression flow, Appl.
Sci. Res. A2, 447-468, (1950).
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of the sign of d&/du in the denominator of (4.62), cannot be a single-valued
function of x. Such a solution will be physically meaningless; to obtain a
single-valued velocity distribution, we must assume a jump in u, which is
just a frozen shock by the above discussion. Downstream of the shock, there
is now a relaxation zone (Fig. 107) in which the velocity distribution can be
calculated according to Eq. (4.62), with & (u) given by the branch BC of the
curve. In this relaxation zone, the thermodynamic state variables change from
their frozen values p, ;, g, etc. immediately behind the frozen shock to their
equilibrium values p,, g,, etc.; the velocity changes from u,, to u,. When
viscosity and heat conductivity are taken into account, the frozen shock will
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Fig. 107. Shock wave in a gas with relaxation for the case 1> b1. Top: &(u). Below:
Velocity and pressure distribution.
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naturally no longer be an exact discontinuity, but will be “smeared” out into
a region of finite width in the manner discussed in Sections 4.2.1 and 4.2.2.

Case IT: (a, <u, < b,). Under this assumption, as was mentioned before,
no discontinuity is possible, i.e., Eq. (4.60) for the special value of ¢ = &(p, , 0,)



248 4 Viscoun Flows

has, in the region u, < u < u,, only the trivial solution ¥ = u,. Since then & ()
is a monotone function, we will get by integrating Eq. (4.62) a continuous
velocity distribution (Fig. 108), for which we shall keep the name *shock.”

For weak shocks, i.e., the upstream velocity u, is only slightly higher than

£
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Fig. 108. Shock wave in a gas with relaxation for the case 61> u1> ai. Top: &(u).
Below: Velocity distribution.

a,, nowhere in the flow field is the thermodynamic state much different from
the upstream state, which is an equilibrium state by assumption. In the
supplementary remarks to Section 3.3.2, it was pointed out that under this
circumstance the effect of relaxation can be described by the assumption of
a finite bulk viscosity #,. In our case, 5, is given by (sce the supplementary
remarks to Section 3.3.2):

M = Q*T(b*z - a*z), (4.63)

where 7 is the relaxation time given by (3.95). The velocity distribution is
obtained from Eq. (4.47), which is valid for weak shocks, in which 4 is set
equal to
_ 2 m
y+16,
with 5, taken from Eq. (4.63). (Thus, a thermally ideal gas has been assumed,
y being the equilibrium value of the adiabatic coefficient.) The weak shock
is none other than the fully-dispersed wave mentioned in Section 3.3.2 which
is established after a long time in the flow in a tube with an impulsively
started piston.

(4.64)

4
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4.3 Boundary Layer Flow

4.3.1 Basic CONCEPTS OF BOUNDARY LAYER THEORY

Thus far, when the theory of inviscid gas flows was considered 73 and
flow problems having a solid wall as a boundary were solved, we always
assumed as boundary condition on the wall the requirement that the gasslide
along it tangentially. The necessity of this condition on an inpermeable wall
is so evident that no discussion is needed. But experience shows that as a
gas flows along a wall it adheres to it. At least this is true when the mean
free path of the gas is small compared to a characteristic length in the
immediate neighborhood of the body, ie., in the regime of validity of
continuum theory according to the remarks of Section 1.12. In the continuum
treatment of flow problems, therefore, we must also satisfy as boundary
condition on the wall the no-slip condition. The length which is characteristic
for this boundary condition on the wall is the thickness of the boundary layer
on the wall, the meaning of which we shall discuss thoroughly in the following
paragraphs.’4

To illuminate the following discussion, we shall for now imagine as a
concrete example a steady, uniform, plane parallel flow past a stationary,
solid, two-dimensional body; such flows are of significance in many practical
questions. In inviscid theory, as was explained before, a single boundary
condition for the velocity is prescribed on the body surface—namely, that
the normal component of the velocity vanish there. In addition, there are
boundary conditions characterizing the behavior of the flow at large distances
from the body. In contrast, the tangential component of the velocity on the
body surface cannot be prescribed; it comes out from the solution and will
generally violate the no-slip condition. In general, inviscid theory will even
yield an infinite manifold of solutions for the above-mentioned boundary
condition, none of which satisfy the no-slip condition. (Regarding the non-

73 We remind the reader that the notion of inviscid always also includes non-heat-
conducting; see Section 2.4,

74 This statement should be supplemented as follows: In some flows, the mean free
path is still so small that the equations of continuum theory are applicable for the flow
in the boundary layer, but the boundary condition on the wall must be altered to account
for the finite mean free path. In this case, the gas will have a finite slip velocity at the wall
(slip flow).
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uniqueness of inviscid solutions, also see Supplementary Remark 3 to
Section 3.5.) By considering viscosity and thermal conductivity, however,
the no-slip condition can be satisfied. By prescribing the normal component
of the velocity on the body surface, the tangential component is then not
yet determined, so that we can prescribe it so as to satisfy the no-slip
condition.”® Mathematically, this is based on the fact that the differential
forms of the momentum and energy equations [(2.51) or (2.60)] contain
second derivatives of the velocity components and the temperature when
the dissipative processes of viscous friction and heat conduction are con-
sidered, but they only contain first derivatives when the dissipative processes
are neglected. The increase in the order of the differential equations by 1
necessitates and permits the increase in the number of boundary conditions
on the body by 1.

What we have said here on the boundary condition for the velocity is
similarly true for the boundary condition for the temperature which must
be satisfied by the gas at the body surface: In inviscid theory, the gas temper-
ature on the body surface is determined by the velocity on the body surface,
since the velocity and temperature are in this case coupled in the manner
explained in Section 3.1. In the framework of this theory, therefore, the
gas temperature on the body cannot be arbitrarily prescribed. However, we
can always use various methods, such as heating, cooling, etc., to fix the
body surface temperature in a way independent of the gas flow, and expe-
rience shows that the gas immediately next to the body surface assumes the
temperature of this surface. We must therefore demand as a further boundary
condition on the body surface that the gas temperature be the same as the
arbitrarily prescribed body temperature. (In some cases, this boundary con-
dition will be given in terms of the temperature gradient on the body surface,
see Section 4.3.2. This is, however, unimportant for our immediate dis-
cussion.) The equality of the gas temperature and wall temperature corre-
sponds to the no-slip condition for the velocity on the wall, and is also only
guaranteed under the same assumption on the mean free path of the gas.
Prescribing the gas temperature (or equivalently, the temperature gradient)
on the wall is mathematically possible only when viscosity and heat con-

7 To satisfy the no-slip condition, the consideration of viscosity is already enough on
a purely formal basis. But viscosity and heat conduction in a gas are so intimately coupled
with each other that they should always be considered simultaneously.
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duction are considered, just as with the no-slip condition on the velocity.?6

Under these circumstances, it at first appears very questionable that the
inviscid theory of flows is of any practical value at all, since the solutions
based on the theory cannot satisfy the boundary conditions on the body
demanded by actual experience. It has been shown, however, that despite
these defects the inviscid theory yields acceptable results in many cases,
particularly in flow past slender bodies, where the actual flow picture is one
in which the flow departs significantly from that predicted by inviscid flow
only in a thin layer right next to the body surface.

In the following manner, we shall obtain a criterion which must be fulfilled
in order for inviscid theory (with the restriction just mentioned) to lead to
meaningful results: We compare an inertial force term appearing on the left
side of the momentum equation (2.52), such as ou (du/0x), with a viscous
force term appearing on the right side, such as dz,,/0y. If we estimate these
quantities in terms of a typical length I, a typical density g,, a typical
velocity U,, and a typical value of the viscosity 7., then the inertial force is
of the order of magnitude o U.2/l,, and the viscous force is of the order of
magnitude ,U,/I,2 (since t,, is of the order of magnitude n.U./l,). Neglecting

. the viscous term in the momentum equation is certainly only permissible

when the inertial force terms on the left side are several orders of magnitude
larger than the viscous force terms on the right, or when the dimensionless

ratio o U2, .Ul
el= =

nUfl* ne
the Reynolds number, is much greater than 1. In the flow past a slender body
of length /, the typical variables can, for example, be chosen to be those in
the free stream, and we then have the Reynolds number based on the free-
stream quantities, Re = ., U,o//n,. For air under normal conditions, nle=
151076 m?/sec. For velocities of several hundred m/sec and lengths of the
order of 1 m, as is typical in aerodynamics, the Reynolds number is so large
(about 107 to 108) that inviscid theory is justified. Nonetheless, for example,
this is no longer true for flight at high altitudes, since the density of the
atmosphere decreases rapidly with increase in altitude (at 100-km altitude,
the density is only 10~ 7 the sea level value), while the viscosity # changes but
little. If we consider the flow in the immediate neighborhood of the body

76 Considering the heat conduction of the gas is sufficient per se. See, however the
previous footnote.

(4.65)

>
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surface, however, ncglecting viscosity and heat conduction is not permissible
even at large Reynolds numbers, since velocity and temperature must change
from their values in the inviscid flow to the values required by the boundary
conditions on the wall. Thus, a thin boundary layer is formed (Fig. 109) in

\_____

L Watke
Boundary layer

Inviscid outer flow

Fig. 109. Plane boundary layer flow.

which the gradients of velocity and temperature perpendicular to the wall
assume such large values that the shear stresses and heat flux there can no
longer be neglected. The greater the Reynolds number as defined above, the
thinner the boundary layer will be, and the smaller the deviation of the flow
outside the boundary layer from the inviscid flow calculated with the bound-
ary layer completely neglected will be.

The procedure of boundary layer theory,?? which was founded by L. Prandtl
and on which a considerable part of modern fluid dynamics is based, thus
consists of the following: For a given flow problem with sufficiently large
Reynolds number, we first neglect the boundary layer to find the inviscid
solution, and then calculate the boundary layer corresponding to this inviscid
solution on the body surface. Because of the thinness of the boundary layer,
certain terms in the momentum and energy equations may be neglected,
resulting in a simplification of the boundary layer problem without losing
the physically important phenomena. As boundary conditions for the flow

77 L. Prandtl, Uber Fliissigkeitsbewegung bei sehr kieiner Reibung. Proc. of 3rd Inter-
nat. Congress of Math. Heidelberg, Germany, (1904), p. 484. Teubner, Leipzig, 1905.
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in the boundary layer, we have the above-mentioned conditions on the wall
together with conditions on the outer edge of the boundary layer to insure
a continuous transition of the boundary layer flow to the inviscid external
flow. Instead of this outer boundary condition, we do, in some cases, pre-
scribe an initial distribution of the flow quantitiesin the boundary layer;these
flow variables can then be continued downstream. Such a program, when car-
ried out for the flows past a slender body with Mach numbers below the hyper-
sonic regime, leads, in general, to useful results that agree with experiments.

Naturally, this method will not work if the presence of the boundary layer
significantly alters the inviscid flow outside the boundary layer from that
calculated with the boundary layer neglected. This is, for example, often of
decisive significance in hypersonic flow; also, the boundary layer plays an
important role if shock waves hit the body surface, as is particularly notice-
able in the transonic regime. Furthermore, it cannot be neglected when
boundary layer separation occurs. If the pressure on the body surfaces rises
in the direction of the flow, it can slow down the flow near the wall so much
as to produce, among other things, a reversal in the direction of the flow.
When this happens, the boundary layer detaches from the wall, and often
a large wake region is formed behind the separation point. Without entering
into the nature of the flow in such a wake region, we can say that its occur-
rence will greatly change the flow field from that calculated by inviscid flow
which will often no longer be even approximately the same as it. Here we should
make a certain reservation: It was already mentioned in Supplementary
Remark 3 to Section 3.5 that the inviscid solution is not uniquely determined
unless we make certain additional assumptions originating outside the realm
of inviscid theory. Figure 69 gives such an example. It is often possible to
determine inviscid flows which contain discontinuities in the form of vortex
sheets (contact discontinuities) in such a way that the actual flow resulting
from boundary layer separation is well approximated by this inviscid flow.
Of course, the choice of the correct inviscid flow presumes a knowledge of
the processes in the boundary layer, which in turn depends on the inviscid
solution. As a result of this coupling, the calculation of flow fields with
boundary layer separation is very difficult. If the boundary layer does not
separate, then the choice of the correct inviscid solution is also not com-
pletely straightforward, but is generally possible on the basis of some em-
pirical facts. The Kutta-Joukowski condition, for example, is one such
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empirical postulate, which must be satisfied by the inviscid subsonic flow
around a profile with sharp trailing edge; as is well known, it requires the
gas to flow off the trailing edge smoothly.

The above complications are beyond the scope of the present work. Simi-
larly, we must also omit from consideration a phenomenon which always
appears at high enough Reynolds numbers—namely, the transition of lami-
nar flow in the boundary layer to turbulent flow.”® While for small to
moderately large Reynolds numbers the gas flow is laminar (i.e., neighboring
layers of the gas slide along each other without distortion), above a critical
Reynolds number which depends on various factors, the flow in the boundary
layer changes over into an unsteady turbulent flow, even though the flow
outside is steady. The flow variables (velocity, pressure, etc.) then fluctuate
statistically, and there is strong eddy formation and mixing of neighboring
layers over a macroscopic scale. While in laminar flow an exchange of
momentum and energy between neighboring fluid layers is possible only
through molecular transport processes, in turbulent flow there is an added
exchange of momentum and energy due to the macroscopic mixing. We can
regard this as causing a large increase in the effective viscosity and thermal
conductivity of the gas in a turbulent boundary layer. The theory of turbulent
flows is very complicated, and at present cannot be carried through without
the addition of several semiempirical assumptions. The following discussions
are thus restricted to laminar boundary layers.

4.3.2 BOUNDARY LAYER EQUATIONS

)
We consider the steady laminar boundary layer on a plane wall. The

x axis of the Cartesian coordinate system will lie along the wall and the
y axis will be perpendicular to it. All the flow variables shall depend only
on x and y, and the w component of the velocity shall be zero (plane flow).
For readers not familiar with boundary layer theory, we shall derive the
boundary-layer differential equations from the momentum and energy equa-
tions heuristically, and refer to the special literature for a more rigorous

78 See K. Wieghardt, Theoretische Stromungslehre. Teubner, Stuttgart, 1965.

7 See H. Schlichting, Boundary Layer Theory (J. Kestin, transl.). McGraw-Hill,
New York, 1960; N. Curle, The Laminar Boundary Layer Equations. Oxford, Univ.
Press, London, 1962; K. Stewartson, The Theory of Laminar Boundary Layer in Com-
pressible Fluids. Oxford, Univ. Press, London, 1964.
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foundation.” We assume that constraints on thermodynamic equilibrium
play no role, so that the thermodynamic state of the gas is specified by two
variables. The inviscid flow field in the half-space y > 0 will be assumed to
be known, and, in particular, the velocity and temperature directly on the
wall are known. This flow is to be replaced in the immediate neighborhood of
the wall by a boundary layer flow in which the velocity and temperature
will change from the values u =0 and 7= T, (x) on the wall to the values
u,(x) and T,(x) at the exterior edge of the boundary layer as given by the
inviscid flow solution. When the boundary layer is sufficiently thin, as will
be assumed in the following, then we can identify u, (x) and T,(x) with the
corresponding values of the inviscid flow on the wall (Fig. 109).

We make the assumption that the boundary layer is ““thin’> more precise:
this means that in the boundary layer the derivatives of the velocity and
temperature in the direction perpendicular to the wall are much greater in
magnitude than those in the direction parallel to the wall. In accordance
with this assumption, we may assume that the direction of the velocity in
the boundary layer is only slightly different from the x direction, and that
therefore [v| < |u|. These two assumptions serve as justification for neglecting
all the components of the viscous stress tensor T except t,, = 7,,. For this
we get from Eq. (4.6)

Tyx = Txy = 1 Oufdy, (4.66)

where 0v/0x is neglected in comparison to du/dy. For the same reason, we
shall only keep the normal component g, of the heat flux vector q, which,
by Eq. (4.9), is

q,=—koT[dy. (4.67)

Since the gas in the boundary layer flows nearly parallel to the wall every-
where—or, in other words, there is not much acceleration in the direction
perpendicular to the wall—the pressure gradient perpendicular to the wall
remains small. Thus, in a thin boundary layer, the pressure change in the
direction perpendicular to the wall is insignificant. Consequently, we are
permitted in boundary layer theory to replace the pressure in the entire
boundary layer by its inviscid value at the wall p, (x).

With this assumption and ignoring volume forces, the first momentum
equation (2.52) becomes

u6u+ ou dpe+ a Ou 4.68)
o Ou__dp. 0f 0w\ .
T T (
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Although |v| < |u| in the boundary layer, we must still keep the term con-
taining v on the left side, since the same term also contains the derivative
Ou/dy, which is significantly larger in magnitude than du/dx in the term
containing u. The energy equation will be used in the form (2.60). The term
div (v-T) reduces to (6/0y) [nu(0u/dy)] after neglecting the terms as described
above. We thus get

oh,  oh, 9
t ‘ ( Ou kaT). (4.69)

U —+Qv—= U —+kKk_—

angay 6y’18y oy
Since |v] < |u], we can neglect v> when compared with 4 in the definition (2.55)
for the total enthalpy; thus, for the flow in the boundary layer, we can set:

ho=h+ Lu®. (4.70)
The continuity equation (2.32) remains unchanged for boundary layer flow:
d(ou)fox + d(gv)/oy =0. “.71)

Together with the thermal equation of state @ (p, ¢, T) = 0 and the calorical
equation of state ¥ (h, p, T) =0, Eqs. (4.68), (4.69), and (4.71) suffice for the
determination of the five unknowns u, v, g, 7, and 4 as functions of x and y
in the boundary layer.

To solve for these unknowns, we naturally need boundary conditions. On
the wall, we have

y=0: u=0, (4.72)
v=0, (4.73)
T="T,(x). (4.74)

(4.72) ané (4.73) express the no-slip condition. In boundary condition (4.74),
T, (x) denotes the prescribed wall temperature. In many cases, however, the
temperature has to satisfy an entirely different boundary condition on the
wall: If a body of finite heat capacity is in contact with no heat reservoirs
other than the flowing gas and has been in the gas flow for a sufficiently long
time, then the body temperature will finally reach a steady value which is
just large enough so that no further heat is exchanged between the body and
the gas. This steady final state is a state often encountered in practice. Since
in this state the heat flux g,, on the wall vanishes,8¢ the boundary condition

80 Tt will become clear later that this discussion rigorously requires the assumption that
the recovery factor be independent of the position on the body surface.
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characterizing this is
y=0: dT[dy =0. 4.75)

Instead of the boundary conditions (4.74) and (4.75) for the temperature, an
equivalent boundary condition can be given for the specific enthalpy /; for
(4.74) we then obtain

y=0: h=h.(x), (4.74%)

where ,,(x) denotes the prescribed enthalpy at the wall, which is calculated
from the prescribed wall temperature T, and the known pressure p, through
the caloric equation of state. To convert the boundary condition (4.75), we
observe that by the independence of the pressure on the y coordinate in the
boundary layer, the following holds:

T
oh = oh\ oT = c,,i—. 4.76)
Jdy oT ), 0y dy
We thus get, in place of (4.75),
y=0: 0h/dy=0. (4.75%)

At the exterior edge of the boundary layer, the velocity u and temperature T’
must approach their respective values in inviscid flow. We thus require:

lim u(x, y) = u.(x), 4.77)
y= o

lim T (x, y) = T.(x), (4.78)
lim h(x, y) = h.(x). (4.78%)

In the regime of validity of boundary layer theory, the distance from the wall
at which » and T practically attain their asymptotic values (for y —c0) is so
small that these quantities for the inviscid outer flow will coincide with the
wall values of the inviscid flow u, and T, with sufficient accuracy, and (4.77)
and (4.78) will guarantee a continuous transition of the boundary layer flow
to the outer flow.
Now, boundary condition (4.77) leads to the consequence that
lim du/dy =0.

y=©

A transition to the outer flow in which not only u is continuous, but also
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Oufdy, thus requires that for the inviscid outer flow du/dy =0 on the wall.
Since on the wall, v = 0 always holds and thus also dv/dx = 0, this condition
will be fulfilled when du/dy — 0v/dx = 0 near the wall, or when the inviscid
flow is irrotational. In many important gasdynamical problems, this assump-
tion is not valid, e.g., when the gas passes through a strong curved shock.
When the flow ahead of the shock is irrotational, the flow behind it will be
rotational, since the entropy increase is different at different points along the
shock (see Section 2.5). The outer boundary condition (4.77) is, in this case,
somewhat questionable. The same is also true for the boundary condition
(4.78) for the temperature. It insures a continuous transition of 07/dy of the
boundary layer flow to the inviscid outer flow if the outer flow is not only
irrotational but also isoenergetic. In the following paragraphs, we shall only
treat those applications for which these assumptions are satisfied, thereby
evading these difficulties connected with the outer boundary condition.

The above equations and boundary conditions have been derived for the
boundary layer on a plane wall. We can show, however, that they are also
valid on a curved wall, and therefore can be applied to the flow past a
cylindrical body. In this case, we only have to identify x with the arc length
in the direction of the wall and y with the direction perpendicular to the wall
(Fig. 109). The assumption for the continued validity of the equations is,
however, that the boundary layer thickness everywhere be smail compared
to the local radius of curvature of the wall.

From the energy equation (4.69), we can draw an important conclusion
with regard to the total enthalpy 4, in the boundary layer: If we replace
0T[0y on the right side of (4.69) by dk/dy in accordance with (4.76) and
consider the definition (4.10) of the Prandtl number Pr, then we can write
(4.69) in the following form:

oh oh, @ aw?2) 1 oh
ou D pg =iy o) 1 am] (4.79)
s 0Ox dy Oy dy Pr oy
With the additional assumption of Pr = 1, (4.79) becomes
Oh, + Oh, 0 ( Oh, (4.80)
u(’)x gvay—i)y n@y ) ’

A solution of this equation is A, = const. This solution is obviously com-
patible with boundary condition (4.78*) at the outer edge of the boundary
layer if we identify the constant A, with the constant total enthalpy of the
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inviscid outer flow:
ho=h+4u?=h, + iu’. (4.81)

In this case, h— h, for u— u, at the outer edge of the boundary layer. The
solution for the enthalpy found from (4.81) satisfies boundary condition
(4.75*) at the wall. This follows from differentiation of (4.81) by y:

Oh/dy + u duldy =0. (4.82)

Since u=0 on the wall, dh/dy also vanishes there, according to (4.82).
Solution (4.81) thus corresponds just to the case in which no heat exchange
takes place between the wall and the gas; we shall from now on use the term
heat-insulating wall for conciseness.

The results of these discussions can be summarized as follows: For a gas
with Prandtl number Pr =1 and a heat-insulating wall, the total enthalpy
in the boundary layer is constant and equal to the total enthalpy of the
inviscid outer flow. Under these circumstances, the flow in the boundary
layer is thus isoenergetic. It therefore behaves exactly like an inviscid flow
as far as energy is concerned. In inviscid flow, the energy equation given in
Section 2.4 has no L, term (representing the work done by the viscous stresses)
and no L, term (representing the energy flow per unit time due to heat
transfer), since both the viscous stresses and heat flux are identically zero.
In the boundary layer flow just considered, L, and L, do not vanish indi-
vidually, but their sum vanishes, i.e., in each volume of gas, the work done
by the viscous stresses per unit time is exactly equal to the energy transported
out of this volume per unit time due to heat conduction. This can be under-
stood as follows: The right side of (4.79) can be written in the form
8 (ur,,)|0y — 8q,/dy. The first term is the work L, done by the viscous stress
7,, Der unit volume per unit time, and the second term is the energy L,
transported by heat flow g,. Under the assumption of Pr=1 and a heat-
insulating wall, the right side of (4.79) vanishes, since, for Pr=1, it is,
according to Eq. (4.80), identical to (9/dy) (n 0h,/dy), and in this case &, =
const; we thus have

a oq,
—(ut,,) — —=0. (4.83)
é‘y( D=3 »

This equation, however, expresses just the state of affairs described above,

that the viscous work and heat flow cancel each other. Since on the edge of
the boundary layer 7,, and g, vanish, Eq. (4.83) becomes, moreover, the
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special relation

uty, —q,=0. (4.84)
For the flow past a solid body with freestream velocity U,,, we have
by +3u = hy + 3U2. (4.85)

If the surface of the body is heat-insulating, at the surface (z = 0) the gas will,
by Eq. (4.81), assume the enthalpy #4,:

h=h,+3u’=h, +1U,2. (4.86)

In thermal steady state, with no further heat exchange between the gas and
the body, the gas thus assumes the constant enthalpy 4, given by (4.86) on
the body surface, which is exactly equal to the stagnation enthalpy of the
stream. The surface everywhere attains the temperature 7, corresponding to
this enthalpy. This enthalpy 4, is exactly the same as the enthalpy of the gas
at a stagnation point in inviscid theory. What was said in Section 3.4.4 about
heating at the stagnation point is thus true here for every point on the
body surface, as was already suggested in that section. This is strictly valid
only for Pr = 1. Since the Prandtl number of actual gases does not vary much
from 1, the actual enthalpy attained on the body surface is only slightly
different from the value given by (4.86).

We call the enthalpy attained on a heat-insulating wall the recovery
enthalpy 4,, and the corresponding temperature the recovery temperature T,.
If Pr # 1, we can generalize (4.86) to

h,=h, 4+ rul = hy + (U2 —u2) + ru’. (4.87)

This defines the recovery factor r. In general, the recovery factor is a function
of the location on the surface; this function contains the Prandtl number as
an important parameter, but also depends to a small extent on the viscosity
law #(T). For Pr =1, the recovery factor is everywhere r=1; for Pr#1,
r # 1 also, but the difference from 1 is everywhere small if the Prandtl number
is not too different from 1. We shall return to this in further detail in Sec-
tion 4.3.3.

4.3.3 BOUNDARY LAYER ON A FLAT PLATE

We now specialize our consideration to an outer flow for which the wall
pressure p, is independent of x. An example is the flow past a flat plate in
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the direction parallel to the plate, with the leading edge of the plate at x =0
(Fig. 110). In this flow, p,=p, and u,= U,,.

Before we investigate the steady boundary layer on the flat plate we shall
first consider a very simple unsteady flow of a fluid with constant density ¢

Fig. 110. Boundary layer on a semi-infinite flat plate.

and constant viscosity, which permits us to study in a simple way several
essential features of boundary layer flow. This flow consists of the following:
An infinite plane wall y =0 at rest for time # <0 is in contact with a fluid
which fills the half-space y > 0 and is at rest for time # <0 (Fig. 111). At

Fig. 111. Boundary layer on an impulsively started plane wall (‘‘Rayleigh boundary
layer”).

time ¢t =0, the wall is brought to velocity U impulsively in its own plane,
and remains moving at the same speed for ¢ > 0 (the “Rayleigh problem”).
Then, an increasingly-wider layer of fluid will be carried along by the wall
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(Fig. 111). The only nonzero component of velocity is the component u,
which depends only on y and ¢. From the momentum equation (2.51), we
get for u, with nothing neglected

oulot = v 0*ujdy?, (4.88)

where the kinematic viscosity v = 5/¢ has been introduced for the sake of
conciseness. Equation (4.88) has the form of a one-dimensional heat con-
duction equation, where the velocity corresponds to the temperature and
the kinematic viscosity to the temperature diffusivity. The solution of (4.88),
which on the one hand satisfies the boundary condition u = U on the wall
y=0for all >0, and on the other hand satisfies the initial condition u =0
at t =0 for all y > 0, is well known from heat-conduction theory to be

u(y, 1) = U[l - 4’(;(;{)1,2)], (4.89)

where @ is the error function defined in connection with Eq. (3.105). If we
define the thickness ¢ of the boundary layer carried along by the wall to be
the distance in which u has dropped to a certain fraction of U (e.g., 1%),
then we conclude from (4.89) that

5~ (m)'2. (4.90)

The boundary layer thickness grows as \/; ; for a given time, the smaller the
kinematic viscosity v, the thinner the boundary layer. For #— 0, it contracts
to a discontinuity immediately on the wall, which can be regarded as a
vortex sheet across which the velocity jumps from the value 0 in the fluid
to the value U on the wall. With increasing time, this vortex sheet diffuses
by constantly widening into the fluid, as a result of the viscosity.

We can transfer these results qualitatively to a steady flow past a flat plate
with the leading edge at x = 0 (Fig. 110). The presence of the plate is com-
pletely unnoticed in the region x < 0, in any case, since within the realm of
boundary layer approximation, the disturbances to the simple parallel flow
originating from the plate can only propagate in two interrelated ways:

(1) In the direction perpendicular to the wall, they spread out because of
the diffusion due to viscosity, as described above. (The diffusion in the
direction parallel to the wall is neglected in boundary layer theory, since,
in the viscous stresses, all x derivatives are neglected; the same holds for
heat conduction.)
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(2) In the dircction parallel to the wall, the disturbances spread by con-
vection with the flow velocity.

These two processes, however, can only act downstream from the leading
edge of the plate. With complete generality, the region of influence of a point
with the abscissa x = x, is the region x > x,. From this, it also follows that
the flow upstream of the point x = x, will not change at all if we cut the
plate there, i.e., make x = x, the trailing edge of the plate.

From a mathematical standpoint, this is a consequence of the fact that
the boundary layer equations, with the parallel components (to the wall) of
the velocity and temperature gradients neglected in the viscous stresses and
the heat flux, i.e., in the terms with the highest derivatives, have become
parabolic equations. Witheut neglecting these terms, the equations of steady
viscous flow are elliptic. When the complete elliptic equations are used to
describe the flow, the region of influence of the flat plate also contains the
upstream region x < 0.

Since a fluid particle located at the outer edge of the boundary layer at x
has come from the location x = 0 during the time interval ¢ = x/U,, and has
entered the region of influence of the plate at the beginning of that time inter-
val, it is reasonable to assume that the thickness of the boundary layer at the
point x is approximately given by formula (4.90), in which ¢ = x/U,. Thus,

we have 5 ANT X 101
(Uw) \/ Re’ L
The thickness of the boundary layer thus increases as the square root of the
distance from the leading edge of the plate. In formula (4.91) we have
introduced the Reynolds number based on x, Re = U, x/v. At a fixed location
x, the larger the Reynolds number Re, the thinner the boundary layer. The
fundamental assumption of boundary layer theory—that changes in the
flow variables in the x direction are small compared to the changes in the
y direction—is certainly only assured if the boundary layer thickness does
not change much over a distance in the x direction comparable to J, i.e., if

do 1

dx 2 \/ Re
This condition is satisfied for sufficiently large Reynolds numbers Re. On
the other hand, however, Re~ x, so that in the immediate neighborhood of
the leading edge x = 0, condition (4.92) and the basic assumption of boundary

<1. (4.92)
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layer theory are not satisfied. If, however, the Reynolds number based on the
total length of the plate /, U,l/v, is sufficiently large, this expected error will
be confined to a region near the leading edge which is small compared to
the total length of the plate, so that in many cases it can be neglected.
With these preparatory remarks we return to the equations for the com-
pressible boundary layer on a plate. With dp,/dx = 0, the momentum equa-

tion (4.68) becomes
ou + ou 0 ou 4.93)
w-—+gv—=—n_—). :
T "\ Tay
Comparing this with Eq. (4.80), which is valid for Pr = 1, we get the following
theorem: If u(x, y) is a solution of (4.93), then
h,=a + bu,

with the constants a and b, is a solution of Eq. (4.80). This solution can also
be written as Crocco’s integral:

h=a+bu— u®. (4.94)

We can adjust the solution (4.94) to fit the boundary condition 4 = h,, = const
on the wall (y = 0; u = 0) and A = h,, at the outer edge of the boundary layer
(u=U,) by selecting the constants a and b accordingly. We then get the

following relation between the specific enthalpy 4 and the velocity u in the -

boundary layer of the plate for Pr=1:

P PR PR Y T AR WL L (4.95)
e v © 2 U, 2 U,?) '

For a calorically ideal gas with & = h* + ¢, T, we can immediately rewrite all
formulas given in specific enthalpy in terms of temperature. From (4.95),
for example,

rer r—(m s T (1o ) U (4.96)
et U 2, U,) 2, U,/ '

If we take it for granted that the velocity distribution u in the boundary
layer is of the form shown on the left side of Fig. 112, then the enthalpy will
have the distribution shown on the right side of Fig. 112. For a calorically
ideal gas, the temperature distribution has the same shape, by Eq. (4.96).
When, in particular, h, =h,++U,? then we get, from Eq. (4.95),
h=h,+31U_?—1u?, i.e., the total enthalpy 4 + 1u? is constant. In this case,
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the heat transferred to the wall vanishes, since it follows from Eq. (4.95) that
0h[dy = 0 for u = 0. The recovery enthalpy is thus A, = 4, + U % Thisis a
special case of the state of affairs established in general form in Section 4.3.2.

The heat flux g,, on the wall is not zero when the wall temperature does

y y
Yoo

u(y) hiy)
-—L—.c—a ﬂ

Fig. 112. Velocity and enthalpy distribution in the flat-plate boundary layer (schema-~
tic); a =4 Uax? [1 — (¥ U], B = (hw — hr) [1 — (4] Ux)].

not equal the recovery temperature, or, equivalently, the enthalpy #,, of the
gas right on the wall is different from the recovery enthalpy 4,. We find an
expression for the heat flux g,, in the following manner (the subscript “w”
denotes the value of the quantity at the wall y = 0):

T| k,, oh| on|
. = S (4.97)
dy

Pr, 0y ,-0
The derivative dh/dy is found by differentiation of Eq. (4.95); if we set the
result into Eq. (4.97) and use the notation

y=0 cpw ay

y=0

u
Tw=Hws] (4.98)
oy y=0
we get, for Pr, = Pr =1, the expression
hy — (hy + U2 h, —h,
gt e T3] Pl 499

U, v Uy

where 1, =1,,(y =0) denotes the wall shear stress. Equation (4.99) shows
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that everywhere on the wall the heat flux g, is proportional to the local
wall shear stress 7,,. For a given wall shear stress, g,, is proportional to the
difference between the wall enthalpy and the recovery enthalpy. When A, > 4,
heat flows from wall to the gas (g,, > 0); when &, < h,, the gas gives heat to
the wall (g,, < 0). The proportionality between the heat flux and the wall shear
stress is called the Reynolds analogy between these two quantities.

It is usual to introduce dimensionless quantities instead of the dimensional
quantities 7,, and g,,. We define the friction coefficient ¢, as a dimensionless
measure for the wall shear stress:

Tw Tw

==
20U, 300Ux

c; (4.100)
The first equation is entirely general, while the second only holds for the flat
plate, for which u,=U,_, and ¢, = ¢,. In a similar way, we define as a
dimensionless measure for the heat flux on the wall g,, the Stanton number

e e
(hw - hr) Qelle (hw - hr) Qs Uw ’
where the second equation again holds only for the flat plate. The ratio

s =2St/c,. (4.102)
is called the Reynolds analogy factor. From Eq. (4.99), the Reynolds analogy
factor s = 1 for the flow past a flat plate with Pr = 1. For arbitrary boundary
layer flows, s is a function of the position on the surface of the body, just
as is the recovery factor r. This function contains as essential parameter the
Prandtl number Pr (assumed constant). As we shall further show below, in
the special case of flow past a flat plate, which we consider here, r and s are
independent of position, i.e., of x. If Pr is not much different from 1, we can,
in good approximation, set for the flat plate

r=Ppr'/?, (4.103)
s=Pr 23, (4.104)

St = (4.101)

These approximate formulas have been obtained from numerical calculations.
While the viscosity law 7(7) has indeed a certain influence on r and s, this
effect is negligible for practical purposes. The approximate formulas (4.103)
and (4.104) can, moreover, be applied to boundary layer flow with a pres-
sure gradient if the pressure gradient is kept within moderate limits.
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An interesting conclusion can be drawn from Eq. (4.99): Imagine a flat
plate of finite extent moving with velocity U, through a gas at rest. The
wall temperature will be kept at the temperature of the unperturbed gas at
rest, i.e., h,, = h,,; we speak of this as the cold wall case. From Eq. (4.99), it

follows that gy =—3U,1,. (4.105)

Integrating the heat flux g,, over the entire surface of the plate, we get

dQ___ _ ng
i quw dA =+ > J‘J‘rw dA. (4.106)

Here, dQ/dt is the heat flow per unit time from the gas to the plate. On the
other hand, D; = [fz, dA is the drag force exerted on the plate, the friction

drag. Thus, dQjdt = 1U,D;. (4.107)

Thus, half of the work U, D done by the plate moving with constant velocity
U,, against the friction drag D, per unit time flows on to the plate as heat.
The other half of this work goes into the kinetic energy as well as into the
heating of the gas particles in the boundary layer, and causes a wake to form
downstream of the flat plate; the temperature and velocity profiles in the
wake widen continuously and level off, and the kinetic energy is continuously
transformed into heat, so that far downstream the wake asymptotically be-
comes the undisturbed gas at rest again. For a heat-insulating plate, i.e., when
the plate temperature equals the recovery temperature, the entire work done
against the friction drag goes into the kinetic energy and heating of the
boundary layer, since for this case no heat can flow on to the plate.

If a flat plate with initial velocity U, and a cold wall is brought into a gas
at rest, then, in the absence of any propulsive force to overcome the friction
drag Dg, the plate will be slowed down by D, and finally come to rest. The
entire initial kinetic energy E, of the plate is then changed into heat or
transformed into the kinetic energy of the gas particles in the bodndary layer
(which, however, also dissipates as heat after sufficiently long time). During
the process, half the energy, E,/2, flows into the plate as heat. Thereby we
assume that during the unsteady braking process, Eq. (4.99) is valid at each
instant. This assumption is not very critical; in any case, it is permissible
when the flow in the boundary layer at each instant is not too far different
from a steady boundary layer flow, as we have considered here (quasisteady
flow). Moreover, during the braking, the plate must not heat up so much
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that its temperature 7, greatly exceeds T,. For initial velocities U, of the
order of magnitude of reentry velocities for spacecraft into the earth’s atmo-
sphere (satellite velocity 7.9 km/sec, escape velocity 11.2 km/sec), the kinetic
energy E, of a solid body exceeds the heat energy required for its vaporiza-
tion. If such a spacecraft were to be slowed down like a flat plate with a
cold wall, the energy E,/2 would be transferred to the craft, and it would be
completely destroyed. In actuality, the heat transferred is smaller than E,/2,
and, in fact, considerably so, on account of the following reasons:

1. The surface temperature T, of the spacecraft increases during the
braking process and can reach values considerably above T,,. Thus, the heat
transferred from the gas to the spacecraft is smaller than if it were a cold
body. Moreover, at high wall temperatures, the energy radiated from the wall
into space plays a role; according to the Stefan-Boltzmann law, it increases
as the 4th power of the wall temperature T, and it partially or totally
compensates for the heat flux g, from the gas to the wall. This radiative
cooling effect can be increased by selecting a high-emissivity material for the
surface of the spacecraft.

2. The flat plate, for which the total drag D is identical to the friction drag
Dy, is not a realistic body shape for spacecraft. For bodies blunted in the
direction of flight, a considerable portion of the total drag D is pressure drag.
(A pressure drag results when the integral of the pressure forces over the
surface of the body has a component in the flow direction; examples of
pressure drag have been seen in Sections 3.5.2 and 3.6.2.) The decrease of
the kinetic energy during braking is given by

dE[dt = — DU, (4.108)

where U, denotes the instantaneous velocity. If we again take Eq. (4.107) as
valid for the heat transferred to the body, we obtain from a combination of
(4.107) and (4.108)

do 1D,

dE- 2D’
If during the braking process the ratio D, /D of the friction drag to the total
drag does not change very much, then we get, by integrating (4.109) for
deceleration to velocity 0, the total heat transferred to the body:

(4.109)

Q= E- (4.110)
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The smaller the friction drag relative to the total drag, the smaller the fraction
of total cnergy transferred as heat to the body [here, the effect explained in
(1) above is completely ignored]. More heat will then be transferred to the
gas, since the shock waves, which cause a large pressure drag, are also the
agents of that energy transfer.

Finally, we should mention that in the reentry of space vehicles into
the earth’s atmosphere at velocities of the order of the escape velocity
(11.2 km/sec), the gas in the boundary layer in the shock around the body
becomes so hot that its self-radiation can no longer be ignored, and it
constitutes, among other things, an important contribution to the heat
transferred to the spacecraft. Unable to enter further into these processes
here, we shall only mention that such studies have started to develop a new
branch of gas dynamics, which is called radiation gas dynamics.

4.3.4 VELOCITY AND ENTHALPY DISTRIBUTION IN THE FLAT-PLATE BOUNDARY
LAYER

In Sections 4.3.2 and 4.3.3, we studied several important properties of
boundary layer flow without having to solve the boundary layer equations
(4.68), (4.69), and (4.71) explicitly. However, numerical results, particularly
for the physically important quantities of friction coefficient c,, Stanton
number St, recovery factor r, and Reynolds analogy factor s, can only be
obtained by calculating the velocity and enthalpy or temperature distribution
in the boundary layer explicitly. For Pr = 1, the enthalpy calculation can be
spared, since the enthalpy is coupled to the velocity according to Eq. (4.95).
We always assume in the following that the wall enthalpy h,=const
[otherwise, Eq. (4.95) will not hold, and the discussion following Eq. (4.121)
will no longer be valid].

The calculation of the velocity and enthalpy in the boundary layer will be
simplified by the introduction of a stream function. From the continuity
equation (4.71) there follows the existence of a stream function ¥ (x, y) such
that

0o OF
7 e e

s @.111)
d
u:f%g. “.112)
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It is easily seen that the continuity equation is satisfied with Eqs. (4.111) and
(4.112). Moreover, it is convenient to transform the coordinate » perpen-
dicular to the wall. We denote the new independent variables by % and 3, and
set
X=x, (4.113)
y

y =F%le. (4.114)

J is a function of x and y which will be known only when the density
@ (x, y) in the boundary layer is known. In the following discussion, ¥ and
h will be regarded as functions of the new variables % and ¥; for the sake of
simplicity, we retain the same notation ¥ and 4. Derivatives with respect to
x and y are now converted to derivatives with respect to ¥ and y in the
following manner:

o 90 opa

ox ox oxay’

d o o 0

¥ 0y0y 0,05
Using this, we obtain from Egs. (4.111) and (4.112)

o¥ (%, 5)
L 5 (4.115)
0o [0¥(X,7) 0¥ 05
Sl — = 4.116
Q [ ox + a7 ox ( )

Putting these into the momentum equation (4.93), we obtain, after some
transformation,

0 (ne
V¥ — VW55 = 5‘37 (a? 'I’ﬁ) (CRIW))
(The subscripts denote partial derivatives). The energy equation (4.69) can
be brought into the following form if we consider the definition (4.70) for
hy, the relation (4.76), and the fact that the momentum equation (4.93) is

satisfied:
JOh, o _ 0 (ndh N 2 i
T rov ==Y — ouy .
HoxTe oy 9y \Pray "\a ( )
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Using (4.115) and (4.116) and transforming the variables to £ and j, we
obtain
d( ne ne 2
Yhy — ¥iohy = b)‘: <g;,2 e hy) + é'—a? (). (4.119)
Equations (4.117) and (4.119) are to be solved under the following boundary

conditions: On the wall,
7=0: ¥=0,¥%=0, (4.120)

h = h,, = const. (4.121)

Condition (4.120) results from (4.72) and (4.73). Strictly, by Eq. (4.73)
we must require ¥;=0, or ¥ = const, but we can set the constant zero
without loss of generality. Condition (4.121) corresponds to condition (4.74)
under the additional assumption that the wall enthalpy is constant. At the
exterior edge of the boundary layer, we must have

lim ¥; = U,,, (4.122)
o
limh =h,. (4.123)
y- o

Finally, the boundary layer thickness must be zero at the leading edge of the
plate, i.e., we must have

u=¥;="0U, and h=h, for x=0,y>0. (4.129)

We find a solution of (4.117) and (4.119) that satisfies boundary conditions
(4.120) to (4.124) by tentatively assuming

¥ = (2v, U )" £ (O, (4.125)
h=heg((), (4.126)
where the variable { has the following meaning:
U 1/2
{=y (i;ic) . 4.127)

From (4.125) and (4.127), it follows in particular that
w=¥y=U,f' () @.128)

(Here, the prime denotes differentiation with respect to (). Provided that
(4.125) is valid, the velocity [Eq. (4.128)] and the enthalpy [Eq. (4.126)]
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depend only on a single variable { (and by the constancy of the pressure,
so will all the other thermodynamic state variables). The distribution of these
quantities in the 7 direction at a fixed location x, differs from that at another
location x, only by an x-dependent stretching in the direction perpendicular
to the wall. Such solutions, which instead of depending on two variables x
and y depend only on one variable and for which therefore the boundary
layer profiles at various locations x are related to each other by an affine
transformation, are called similar solutions of the boundary layer equations,
or, for short, similar boundary layers. Substituting (4.125) and (4.126) into
Egs. (4.117) and (4.119), we obtain, after some transformation,

e y
f") +ff"=0, 4.129
e N .., ne Us® .,
g ) +fg=- == (f"), 4.130
<Prrlmaw ) Nl Moo &, him
with the boundary conditions following from (4.120)—(4.124):
{=0: f=f"=0, (4.131)
g = h,/h, = const, (4.132)
and
limf'=limg=1. (4.133)
{0 {0

The solution of this system of equations for the functions f and g will be
particularly simple if we assume that the product 5 is temperature inde-
pendent. Since, moreover, the pressure in the flat-plate boundary layer is
constant, then ng is equal to a constant:

10 =Nl - (4.134)

We shall assume in the following that Eq. (4.134) holds. The permissibility
of this assumption has already been discussed in Section 4.1.1. Under (4.134),
Eq. (4.129) becomes

"+ ff7=0. (4.135)

This equation can be solved completely independently of the equation for g.
Moreover, the same equation is encountered for the flat-plate boundary
layer for a constant-density, constant-viscosity fluid. This boundary layer was
studied by H. Blasius in 1908 in one of the first works on boundary layer
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theory,®! in which he gave a numerical solution of (4.135). Existence and
uniqueness of the solution of (4.135) with the boundary conditions (4.134)
and (4.133) were proved by H. Weyl.82 This existence proof yields at the same
time an iteration procedure which is particularly suited for a numerical
calculation of the solution. Figure 113 shows the result of the numerical
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Fig. 113. Blasius function f* ({); dimensionless velocity distribution in the flat-plate
boundary layer.

calculation. Knowing f({), we can calculate the wall shear stress t,,:

du du 0¢ 0y
T o <i5y‘6_y>y=o'
From this, it follows with #,0, = #,0 that
Ty = N U (U [2vx)% £ (0). (4.136)
The friction coefficient defined by (4.100) will then be
= M = (ﬂ (4.137)

(Upxfv)'? \/Re
Here, Re = U_x/v,, denotes the Reynolds number based on the freestream
quantities U, and v,, and the distance x from the leading edge of the plate.
The friction coefficient decreases with increasing distance as 1/\/ x; this is
caused by the growth in boundary layer thickness as \/ x, as was concluded
earlier by analogy [Eq. (4.91)]. The product ¢, \/Re s, by (4.137), a constant.

81 Y, Blasius, Grenzschichten in Fliissigkeiten mit kleiner Reibung. Z. Math. Phys. 56
1-37, (1908).

82 H. Weyl, On the differential equations of the simplest boundary layers problems.
Ann. Math. 43 381-407, (1942).
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It thus depends neither on the Mach number M, = U_/a,, nor on the wall
temperature T,,. This remarkable result is an immediate consequence of the
assumption (4.134). Only when this assumption is correct can we solve
Eq. (4.129) independently of (4.130), and only then will the wall shear stress
be independent of the enthalpy or temperature distribution in the boundary
layer. We shall later find an obvious interpretation for this. As soon as
relation (4.134) is violated, ¢, \/ Re will be a function of the Mach number
M, the Prandtl number Pr, the viscosity law #(T) [or the exponent w if
we use (4.3)], and the ratio T,/T,, of the wall temperature to the freestream
temperature. Numerical results for the calorically ideal gas are given in
Fig. 115.

To calculate the specific enthalpy 2 we assume in addition to (4.134) that
the Prandtl number Pr is constant. Then, with the function f({) now known,
Eq. (4.130) becomes

Ly sg == U2 gy (.138)
pe? A he ’ ’
This equation for g ({) is linear, and its solution can thus be written as the
sum of a solution to the homogeneous equation and a particular solution,
as follows:
hog =h=heg +[h, — he —3U,?PrR(0)] S(£) + U, PrR(0).
(4.139)
Here, S({) is the solution of the homogeneous equation corresponding to
(4.138), which satisfies the boundary conditions S(0)=1 and S(c0)=0.
(U,? Pr/2h,) R({) is the solution to the inhomogeneous equation (4.138),
which satisfies the boundary conditions R’ (0) =0 and R(c0) = 0. Under the
assumptions on R and S, the boundary conditions (4.132) and (4.133) for g
are satisfied, i.e., h = h,, on the wall and 4 =h,, at the outer edge of the
boundary layer. We can confirm by substitution in (4.138) that the following
functions R and S satisfy the differential equations and boundary conditions
in question:

R() =2 f RO j [F" (1> du di, (4.140)
4 0

5O = [Urora / [rrara. 4.141)
4 0
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Thus, the expression for g given by (4.139) also satisfics Eq. (4.138). Since
by (4.139) the derivative dh/d{ on the wall will just vanish when
hy, =h, = h, + 3U,*Pr R(0) 4.142)

[because R’ (0) =0 while S’ (0) # 0], we get for the recovery factor
© i
r = Pr R(0) = 2Pr f L (T f L dudh.  (4143)
) 0

The recovery factor thus depends only on the Prandtl number. If Pr does
not differ much from 1, the numerical evaluation of (4.143) is well approxi-
mated by the result given in Eq. (4.103).

When h, # h,, there is a heat flow g,, at the wall given by

qw=—"l<ﬁa—€a—y> . (4.144)
Pr\d{ 05 0y/y=0

Using (4.139) and the definition (4.101) of the Stanton number, we get from

(4.144)
v U, \'?
St=— "2 x S'(0). 4.145

U,Pr (2vwx> © ¢ )
In combination with the result for the friction coefficient (4.137) and taking
(4.141) into account, we find the following for the Reynolds analogy factor
defined by (4.102):

” Pr—1
I FALC)| (4.146)
Pr jo [f (A dA
Just as the recovery factor, the Reynolds analogy factor depends only on
the Prandtl number. If Pr is not much different from 1, formula (4.104) gives

a good approximation.
In the special case of Pr=1, we get from (4.140) and (4.141)

RO =1-f"7=1-("Uy%, (4.147)
S@O=1-f"=1-(/Us). (4.148)

With this, Eq. (4.139) becomes the previously derived formula (4.95) for
Pr = 1. The enthalpy portions o and 8 introduced in Fig. 112 thus correspond
to the terms 41U, ? Pr R and (h,, — h,) S, respectively in, Eq. (4.139). We call
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o the heat of friction, while for B the expression conducted heat is perhaps
suitable. The former depends only on the freestream velocity U, and the
thermodynamic properties of the gas, while the latter depends essentially on
the wall enthalpy 4, .

In order to obtain the distribution of the velocity  and the thermodynamic
state variables with the distance y from the wall, we must finally transform
back from the variable { to the variable y. From relations (4.127), (4.113),

and (4.114), it follows that
0 U, \'?
E—( = ) L (4.149)

¢ will be determined from & (p, @) = #({) with p =p,, and is thus a known
function of {. Integrating (4.149) with the initial condition y =0 for { =0,

we get ¢
U 1lzy = |%=a (4.150)
20X o ’
1]

Thus, {(x, y) is known; substituting this function into the state variables we
get these quantities as functions of x and y.

As an example, we consider the calorically ideal gas with Pr=1 and a
heat-insulating wall. For this case,

0o T U’
—=—=14+
¢ T, 2¢,T,,

[see formula (4.96)]. Substituting this into (4.150) and in addition setting
¢, T, = a,2[(y — 1), we get

(1-5? (4.151)

¢
U 1/2 _
(ﬁ) y={+ yTl Mmzf(l —fd. (4.152)
0
According to (4.152), at a fixed location x and for fixed value of U, /v, the
greater the Mach number M, the greater will be the value of y corresponding
to a given { and thus to a given /'({)=u/U,, < 1. The velocity profile, i.e., the
velocity as function of the distance y, will become flatter as the Mach number
M, increases, as can plainly be seen in the numerical results plotted in Fig.
114. In the same way, the profiles of the thermodynamic variables will also
become flatter. This thickening of the boundary layer with increasing Mach
number is qualitatively easy to understand if we realize that because of the
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heat of friction the gas is heated more at higher Mach numbers, so that its
density must be less. This cxpansion of the gas causes an inflation of the boun-
dary layer. 1t will now also be qualitatively understandable that under the as-
sumption ng=const the friction coefficient ¢, depends only on the Reynolds
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Fig. 114. Velocity profiles for the flat-plate boundary layer of a heat-insulating wall;
y=1.4, Pr=1. (From K. Stewartson, The Theory of Laminar Boundary Layers in Com-
pressible Fluids. Oxford, England, 1964.)

number Re= U, x/v,, and not on the Mach number M ,, or wall temperature
T, as was established earlier. With the density decrease in the boundary layer
as a result of the heat of friction or the conducted heat, the boundary layer
reacts with an increase in its thickness. Thus, all the gradients of the flow
variables in the direction perpendicular to the wall will decrease, while the
viscosity # increases, since o =const. The increase of # will now just be com-
pensated by the decrease of du/dy on the wall, so that 7, = n,,(Cu/0y)|, - o does
not change its value. An analogous effect is present when the density in the
boundary layer increases. In Section 4.1.1, it was indicated that the product
no at constant pressure generally decreases with increasing temperature. This
means that at constant pressure the product ng decreases together with g.
As a boundary layer widens due to a density decrease, the viscosity does not
increase fast enough to be able to compensate for the decrease in the velocity
gradient at the wall, so that the friction coefficient cannot remain constant.
For this reason the friction coefficient decreases with increasing Mach
numberM ., for example, for a heat-insulating wall, as can be seen in Fig. 115.
This effect is even more pronounced for a turbulent boundary layer than for a
laminar boundary layer. The effective viscosity in a turbulent boundary layer,
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which is mainly generated by the macroscopic mixing process between neigh-
boring gas layers, is dependent on the temperature to a much lesser extent
than is the molecular viscosity.

Supplementary Remarks. The starting point for many approximate methods
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Fig. 115. Pressure coefficient of the flat-plate boundary layer as a function of the free-
stream Mach number. Heat-insulating wall, calorically ideal gas with y=1.4, Pr=1,
noc T, (From W. Hantzsche and H. Wendt, Zum KompressibilititseinfluB bei der lami-
naren Grenzschicht der ebenen Platte, Jahrbuch der deutschen Luftfahriforschung I, 517-521,
(1940).

of calculating boundary layers is the use of the integral theorems of boundary
layer theory. These are equations derived by integration of the momentum
equation (4.68) and the energy equation (4.69) in the y direction. As an
example, we shall derive such an integral theorem from the energy equation.
Using the notation 5 du/dy =t and — k dT/0y =q, we can write Eq. (4.69)
in the following form:

oh a :
QU — +ov—=—(ut — q). (4.153)
x Y

We now integrate this equation with respect to y between the fixed limits O
and 4: 4

oh, oh, &

ou— +gv — |dy=(ut —q)| - (4.154)
0x dy lo

V]
From integration by parts, we form:
4 4

0oh, B dgv

ov ——dy=gvh| — | h —dy. (4.155)

J oy o J ay g
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By the continuity equation, dgv/dy = — dpu/dx, so that

a4
" dou
aih == h(#) [
0

o

dy.
6xy

With this, Eq. (4.155) becomes

A a4

oh dou
vade=J[h,—h,(A)]£— dy. (4.156)
. dy ) O0x

The specific total enthalpy at the edge of the boundary layer will be denoted
by h,.; we have 0k, [0x = 0, since in the isoenergetic inviscid outer flow, 4, is
constant. Thus, the following identity holds:

Oh, dou 0 dou
— +[h, - h(4)] — =— h,—h he — h(4)] —.
Qu ax [h t( )] ox % [Qu( t :e)] + [he t( )] ox
(4.157)
Taking (4.156) and (4.157) into consideration, we can now write Eq. (4.154)

in the following form:

4 4

d dou &

*J-Qu (hy—h)dy + [he — B (A)] | —— dy =(ur—q)| . (4.158)
dx ox lo

V] ]

Here the differentiation with respect to x in the first integral could be pulled
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Fig. 116. Distribution of total enthalpy in the flat-plate boundary layer for a heat-
insulating wall for various Prandtl numbers (schematic).
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in front of the integral sign, since the upper limit 4 is, by assumption,
independent of x. We now assume the existence of the improper integral
feou(h — h)dy. Obviously, this integral will exist when thc difference
h(4) — h, goes to zero faster than 4! as 4 — 0. Experience indicates that
this assumption on the asymptotic behavior at the outer boundary layer edge
is always fulfilled. Since, on the other hand jg dou/dx dy increases at most
proportionally to 4 as 4 — o, the two terms on the left side of Eq. (4.158)
drop out in the limit of 4 —co0. By this limiting process we obtain

(d)dx) (eeuchi0) = — g, (4.159)

where the quantity 6 has the dimension of length and is defined as follows:
ou h,

0= —=(1-=)dy. (4.160)
geue hte

[

We call this quantity 6 the enthalpy thickness.

For a heat-insulating wall, i.e., ¢, =0, it follows from Eq. (4.159) that
01,0 must be a constant, or g.u.0 is a constant, since A, = const. For the
flat-plate boundary layer considered above, the boundary layer thickness is
zero at the leading edge of the plate, so that 8 =0 there. However, this
implies that for the heat-insulating flat plate, § =0 must hold everywhere.
When the Prandtl number Pr and, accordingly, the recovery factor r both
have the value 1, then h,=h, everywhere in the boundary layer (see
Section 4.3.2) and the integral (4.160) thus vanishes. If Pr < 1, then we also
have r < 1, i.e., on the wall A, =h, <h,. At some distance from the wall,
h,> h,, must then hold, or else the integral (4.160) cannot vanish (u is
everywhere positive in the flat-plate boundary layer, and g is always positive).
When Pr > 1, then r > 1, and thus A, > A,,. Then, A, < h,, must occur at some
distance from the wall. Thus, the different enthalpy distributions for different
Prandtl numbers sketched in Fig. 116 can be qualitatively understood.

In closing, we should mention that if we integrate the momentum equa-
tion (4.68) with respect to y, then the following integral theorem can be
derived in exactly the same manner as was done in deriving Eq. (4.159) from
the energy equation (4.69):

du, _

. 4.161
=1, (.16

d
dix (Qeuezg) + Qeuea*
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Here, @ and 8* are two quantities with the dimension of a length:

e =LQZ~<1 - 5—) dy, (4.162)
s e“e €,
5* = f<1 - Ql) dy. (4.163)
chc
o

We call @ the momentum thickness and 6* the displacement thickness of
the boundary layer. Both quantities are natural, physically meaningful mea-
sures for the thickness of the boundary layer. The meaning of the displace-
ment thickness can be clarified by the following: In an inviscid flow without
boundary layer, the mass g u.b flows at the wall through a streamtube of
width b and depth 1 perpendicular to the flow plane. Here it is assumed
that b is so small that the density and velocity in the streamtube practically
coincide with the values at the wall. If now a boundary layer exists on the
wall, then the mass flow through the same stream tube will be jg oudy. The
difference between the inviscid mass flow and the mass flow in the presence
of the boundary layer is [} (o.u, — ¢u) dy. If the boundary layer thickness is
small compared to b, we can also substitute » for the upper limit in the
definition (4.163) for the displacement thickness ¢*. The difference of the
two mass flows is then _[f', (oett, — ou) dy = g.u.6*. From this we can conclude
that the presence of the boundary layer affects the inviscid outer flow to first
approximation exactly as if the wall had been displaced outward through a
distance 6* in the direction perpendicular to the wall. The momentum
thickness has the following meaning: The momentum jﬁ ou?* dy flows per
unit time through the streamtube of width 4. If the entire mass flowing
through this streamtube were to have the velocity of the inviscid flow u,,
then the momentum flow per unit time would be jﬁ ouu, dy. The momentum
deficiency, i.e., the difference between these two momentum flows, is
o ou(u, —u) dy = e, *0.

4.3.5 BOUNDARY LAYERS WITH SUCTION OR BLOWING AT THE WALL

In the previous sections, it was assumed that the wall on which the
boundary layer built up is inpermeable to gas, and the gas must satisfy the
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no-slip condition on the wall. For many practical applications, a permeablc
wall is of significance, through which either the gas from the stream is
sucked out or additional gas is blown in into the stream. To achieve such
boundary layer control, the wall must be porous, or be provided with holes,
slits, etc. A detailed knowledge of the condition of the wall is not needed
below; it suffices to assume that the properties of the wall permit a sufficiently
continuous distribution of suction or blowing velocities. For walls with holes
or slits, this will be the case when the dimensions of the holes or slits as well
as the distances between neighboring holes or slits are very small compared
with the boundary layer thickness. The boundary layer equations for the flow
in the immediate neighborhood of the wall remain valid with suction or
blowing if the suction and blowing velocities are sufficiently small. However,
one of the boundary conditions on the wall is changed : While we still assume
u=0 on the wall, we now assume a finite velocity v,, on the wall in the
direction perpendicular to it. For suction, v, <0, and for blowing, v, > 0.
We admit only small velocities v, such that the basic assumption of the
boundary layer equations, |v| < |u], is still satisfied (except in the boundary
region immediately next to the wall, where this assumption and the condition
u = 0 cannot be satisfied at the same time; the width of this region, however,
remains small compared to the thickness of the boundary layer if v, is
sufficiently small). The theory shows that even very small wall velocities v,,,
for which the boundary layer approximations are still valid, can already have
considerable influence on the boundary layer. In the example which we shall
treat below, we shall in addition assume for the case of blowing that the
gas blown into the boundary layer is chemically the same as the gas in the
stream, thereby avoiding the complications arising from the mixing of two
gases.

As an example, we again consider the flat-plate boundary layer, with a
specially prescribed velocity v,, on the wall, namely

0wty =% 0, U, (A/x)'12. (4.164)

Here, 2 is a constant having the dimension of a length, the “+ sign corre-
sponds to blowing, and the “—*" sign to suction. For this special choice of
v,,, the flat-plate boundary layer remains a similar boundary layer in the sense
of Section 4.3.4, so that the theoretical treatment is greatly simplified. For
x — 0, by (4.164), the prescribed velocity v,, becomes unbounded, so that near
the leading edge, i.e., for small x, the condition |v| < |u| cannot be satisfied.
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However, we established in Scction 4.3.3 that the boundary layer equations
for v, = 0 also begin to be valid only at some distance from the leading edge;
the singular behavior of v,, at the leading edge is thus no worse to the theo-
retical treatment of flow with suction or blowing than are the defects in the
boundary layer assumptions in the neighborhood of the leading edge in flows
without boundary layer control.

With the same assumptions on the material properties of the gas as were
introduced in Section 4.3.4 for Eq. (4.135) and using the same notation
introduced there, we again have Eq. (4.135), also for the case v, # 0. The
boundary condition (4.133) also remains unchanged. From the two condi-
tions (4.131), £ (0) = 0 still holds, since this condition follows from u =0.
In contrast, £ (0) =0 no longer holds. The present condition for f results
from (4.164) with the use of (4.116):

oy 1/2
Qwlw = — Qo I:W)'c + lIli a ] SEE Qono<_) J (4'165)
0x Jy=0 x
Since on the wall (y =0) u = ¥; =0, this implies that
Y. =F U,y (Ax)"2. (4.166)
However, it follows from (4.125) that
Yo =32voUn/)' 2 (f = LS"). 4.167)

On the wall, { =0, and we obtain, by substituting expression (4.167) for

Fig. 117. Dimensionless velocity distribution £’ ({) for the flat-plate boundary layer
with suction or blowing. (From H. Schlichting and K. Bussmann, Exakte Losungen fiir
die laminare Reibungsschicht mit Absaugung und Ausblasen, Schr. d. dt. Akademie d.
Luftfahrtforschung TB, Nr. 2, 1943.)
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¥ into (4.166),
FO) =F QU A/v,)'", (4.168)

where the upper sign holds for blowing.

Numerical solutions of Eq. (4.135) which satisfy the boundary condition
(4.168) and the other boundary conditions f'(0)=0 and f'(c0)=1 are
shown in Fig. 117. From this figure, we draw the obvious conclusion that
in suction, for otherwise unchanged flow conditions, the boundary layer
thickness is decreased, while in blowing it is increased. In addition, the
velocity profile u/U, =f"'({) contains an inflection point for blowing,
while for suction the profile becomes fuller in form and its curvature has
the same sign everywhere. The decrease in the boundary layer thickness and
the change in the profile shape due to suction has a stabilizing influence on
the laminar boundary layer, i.e., it changes to turbulent flow at higher
Reynolds numbers than in the case without suction. This effect is utilized
in aerodynamics to reduce the high friction coefficient connected with tur-
bulent boundary layers. Moreover, for boundary layers with a pressure
increase in the direction of the flow (for which flows suction has qualitatively
the same effect as in boundary layers without pressure gradient) suction
deters the separation of the boundary layer.

In high-speed aerodynamics, boundary layer control by blowing is of
particular significance, since this is an effective means of reducing the heat
transfer from the hot gas in the boundary layer of a hypersonic body to
the body surface. As can be seen from Fig. 117, for otherwise unchanged
flow conditions, blowing reduces the velocity gradients on the wall. This has
the consequence of decreasing the wall shear stress t,,, and with it the
conduction heat transfer q,, between a unit surface of the wall and the gas
per unit time (see Section 4.3.3). This effect is called heat blocking by blowing.
In addition to heat blocking, blowing produces yet another cooling effect:
the gas blown through the porous wall or the wall with holes absorbs the
heat from the wall and transports it away from the body; this is called the
heat sink effect. The cooling capacity of the heat sink effect can be greatly
increased if, instead of a gas, a fluid is used, which vaporizes as it is blown
through the hot wall. This vapor issuing from the surface will have absorbde
its entire heat of vaporization from the wall. The effect of heat blocking is
still present, since the reduction of the gradients at the wall occurs regard less
of the type of gas blown in, and by no means requires the gas to be chem-
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ically the same as the gas in the flow. Both the heat blocking and heat
sink effect also occur when instead of providing blowing through the wall,
the wall temperature is allowed to become so high that the wall material
vaporizes from the surface. The vaporized material enters the boundary layer
and works just as a gas blown through the wall would. In general, there will
be a layer of melted wall material inside the gas boundary layer. However,
there are also materials, e.g., certain plastics, which directly pass from the
solid state to the vapor state by depolymerization. Such processes, collectively
known as ablation, play a great role in the reentry of space vehicles and the
entry of meteorites into the earth’s atmosphere, and have been studied in
detail both theoretically and experimentally in the last decade.
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