
Solution for Chapter 4

(compiled by Xinkai Wu, revised by Kip Thorne)

A.
Exercise 4.1 Pressure Measuring Device [by Kip Thorne]
We could choose our pressure measuring device (pressure meter) to exchange
only volume and not heat with its reservoir, but that leads to some tricky
subtleties as we see in Exercise 4.8; so it is better (more straightforward) to let
the meter exchange both volume and heat with its reservoir. This is analogous
to the meter that Kip discussed in class on Monday, which exchanged particles
and heat.

Then the probability for the meter to be in a (quantum) state with vol-
ume ∆V and energy ∆Ẽ (probability measured either using an ensemble of
meter&reservoir systems or via the fraction of the time the meter spends in a
given state) is given by the meter’s Gibb’s distribution:

ρ = K exp[(−∆Ẽ − P∆V )/kT ] ;

or equivalently

ln ρ = (−∆Ẽ − P∆V )/kT + constant .

Here K is the normalization constant and P and T are the reservoir’s pressure
and temperature.

Suppose that the reservoir plus meter has total energy Ẽo, volume Ṽo, and
number of particles No; and the meter plus reservoir is a closed system. Then
by energy and volume conservation, when the meter has volume ∆V and energy
∆E, the reservoir has volume Vr = Vo−∆V and energy Er = Eo−∆E. Denote
by Nr(Ẽr, Vr) the total number of states of the reservoir that have energy Er,
volume Vr and particle number Nr, and similarly Nm(∆E,∆V ) for the meter.
(The meter might not be made of the same kind of particles as the reservoir; it
might, for example, just be a mass-spring system that can be heated; the only
variables we care about for it are energy and volume.) Then the probability ρ
is proportional to the following product of numbers of states for the reservoir
and meter:

ρ ∝ Nr(Eo −∆E, Vo −∆V,No)×Nm(∆E,∆V ) .

Because the meter is tiny compared to the reservoir, when we take the logarithm
of this ρ, the changes in the meter term, as energy and volume flow back and
forth, are negligible compared to the changes in the reservoir term, so

ln ρ = ln[Nr(Eo −∆E, Vo −∆V,No)] + constant .

This logarithm of the number of reservoir states is proportional to the reservoir
entropy, so

ln ρ = Sr(Eo −∆E, Vo −∆V,No)/k + constant .
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Expanding to first order in the meter energy and volume we obtain

ln ρ = −
(
∂Sr
∂Er

)
Vr,Nr

∆E −
(
∂Sr
∂Vr

)
Er,Nr

∆V .

Comparing with our previous expression for ln ρ we see that the pressure and
temperature that appear in the meter’s Gibbs distribution are related to the
reservoir’s entropy by the usual reservoir thermodynamic relations

1
T

=
(
∂Sr
∂Er

)
Vr,Nr

,

P = T

(
∂Sr
∂Vr

)
Ẽr,Nr

=

(
∂Ẽr
∂Sr

)
Nr,Vr

(
∂Sr
∂Vr

)
Ẽr,Nr

= −

(
∂Ẽr
∂Vr

)
Nr,Sr

.

In the last step we have used an obvious analog of Eq. (4) of Box 4.1.

B
Exercise 4.3 Enthalpy Representation of Thermodynamics [by Xinkai Wu]
(a) Combining H = Ẽ + PV with the first law dẼ = TdS − PdV + µ̃dN one
immediately finds dH = V dP+TdS+µ̃dN . Having this expression we can com-
pute V, T, µ̃ by differentiating H w.r.t. P, S,N , respectively, namely H serves
as the fundamental potential in this case.
(b) In the first law derived in part (a), there’s dS, dN but no dV . Thus the only
extensive quantities exchanged between the system and the bath are volume and
energy; and the energy exchange is fixed completely by the volume exchange,
dẼ = −PdV , i.e., it is entirely mechanical energy exchange. There is no ex-
change of heat and no exchange of particles. A physical situation which could
produce this ensemble is: the system is put in a chamber, with a frictionless
piston separating the system and the bath, where the walls and the piston are
impermeable and heat-insulating.
(c) The equations of state read off from the enthalpy first law and the associated
Maxwell relations are:

V =
(
∂H

∂P

)
S,N

, T =
(
∂H

∂S

)
P,N

, µ̃ =
(
∂H

∂N

)
P,S

∂2H

∂P∂S
=
(
∂V

∂S

)
P,N

=
(
∂T

∂P

)
S,N

=
∂2H

∂S∂P

∂2H

∂S∂N
=
(
∂T

∂N

)
P,S

=
(
∂µ̃

∂S

)
P,N

=
∂2H

∂N∂S

∂2H

∂N∂P
=
(
∂µ̃

∂P

)
S,N

=
(
∂V

∂N

)
P,S

=
∂2H

∂P∂N

(d) “adding up small subsystems”, we get

H = TS + µ̃N
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(e) In Exercise 2.4 it is shown that the inertial mass per unit volume is

ρinertji = T 00δji + Tji

for isotropic system

= ρδji + Pδji = (ρ+ P )δij .

Thus the total inertial mass is isotropic and is given by ρV +PV = Ẽ+PV = H.
(f) To create the sample, we need ∆Ẽ, the sample’s energy. To inject the sample
into the system, we need to perform an amount of work P∆V on the system.
Thus the total energy required to create the sample and perform the injection
is ∆Ẽ + P∆V , which is just the sample’s enthalpy. Thus, enthalpy has the
physical interpretation of “energy of injection at fixed volume V”.

Exercise 4.2 Energy Representation for a Nonrelativistic Monatomic Gas [by
Xinkai Wu]
(a) To derive eqn. (4.18), one only has to substitute the fundamental potential
E as given by eqn. (4.15) into eqn. (4.16) and perform the partial differentia-
tion. We assume this is trivial for everyone and omit the details here.
(b) Again, to verify eqn. (4.17) is simple differentiation and we omit the details
here.
(c) Expressing exp

(
2S

3kN −
5
3

)
in terms of (T,N, V ) using the second equation

of (4.18), then substituting the resulting expression into the first equation of
(4.18), one readily gets P = N

V kT .

C
Exercise 4.4 Latent Heat and the Clausius-Clapeyron Equation [by Xinkai Wu]
(a) For fixed temperature and pressure, the change in the Gibbs potential is

dG = µ̃adNa + µ̃bdNb = (µ̃a − µ̃b)dNa

where we’ve used the fact that dNb = −dNa.
By the minimum principle for the Gibbs potential, Na will decrease when
µ̃a > µ̃b, and increase when µ̃a < µ̃b. As a consequence, if phases a and b are in
equilibrium with each other, one must have µ̃a = µ̃b(subtracting mH2Oc

2 from
both sides one finds µa = µb.) The Gibbs potential G is a function of (T, P,N),
so the chemical potential µ =

(
∂G
∂N

)
T,P

is also a function of (T, P,N). However,
µ is an intensive quantity and consequently can’t depend on the extensive quan-
tity N , namely µ is a unique function of T and P . The above reasoning is valid
for any phase a. In a two-phase region, we must have µa(T, P ) = µb(T, P ), which
is one equation for two variables T and P , giving a line in the T − P plane. In
a three-phase region, µa(T, P ) = µb(T, P ), and µb(T, P ) = µc(T, P ), which are
two equations for the two variables T and P , giving a point in the T −P plane.
(b) The melting curve P = P (T ) is determined by µice(T, P ) = µwater(T, P ).
Then taking temperature derivative of the above identity along the melting
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curve gives(
∂µice
∂T

)
P

+
(
∂µice
∂P

)
T

(
dP

dT

)
melt

=
(
∂µwater
∂T

)
P

+
(
∂µwater
∂P

)
T

(
dP

dT

)
melt

⇒
(
dP

dT

)
melt

=
[(

∂µwater
∂T

)
P

−
(
∂µice
∂T

)
P

]
/

[(
∂µice
∂P

)
T

−
(
∂µwater
∂P

)
T

]
Using the Maxwell relations that one reads off of dG = −SdT + V dP + µdN ,
we find (

∂µI
∂T

)
P

= −
(
∂SI
∂NI

)
T,P

= −mH2OsI(
∂µI
∂P

)
T

=
(
∂VI
∂NI

)
T,P

= mH2O/ρI

where I denotes either phase(ice or water), sI , ρI are the entropy per unit mass
and density for phase I, respectively. Thus(

dP

dT

)
melt

=
−mH2O(swater − sice)

mH2O

ρice
− mH2O

ρwater

= (swater − sice)
ρiceρwater
ρice − ρwater

=
∆qmelt
T

(
ρiceρwater
ρice − ρwater

)
(c) In equilibrium we still have µwater(T, Pwater) = µvapor(T, Pvapor). However,
now Pwater is no longer equal to Pvapor. Instead, Pwater = Ptotal = Pvapor+Pgas.
So we have µwater(T, Ptotal) = µvapor(T, Pvapor). Fixing T and differentiating
the above identity w.r.t. Ptotal, we have(

∂µwater
∂Ptotal

)
T

=
(
∂µvapor
∂Pvapor

)
T

(
dPvapor
dPtotal

)
T

⇒
(
dPvapor
dPtotal

)
T

=
(
∂µwater
∂Ptotal

)
T

/

(
∂µvapor
∂Pvapor

)
T

=
mH2O

ρwater
/
mH2O

ρvapor

= ρvapor/ρwater

Exercise 4.5 Electron-Positron Equilibrium at “Low” Temperatures [by Xinkai
Wu]
(a) The reaction equation e− + p −→ e− + p + e− + e+ gives µ̃e− + µ̃p =
2µ̃e− + µ̃p + µ̃e+ , which implies µ̃e− + µ̃e+ = 0, i.e. µ̃e− = −µ̃e+ .
(b) In what follows we shall use µ̃− to denote µ̃e− , and µ̃+ to denote µ̃e+ . The
distribution function(density in phase space) for positrons and electrons (both
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having gs = 2) is given by

N± =
2
h3
η± =

2
h3

1
e(Ẽ−µ̃±)/kT + 1

Ẽ ≈ mc2 + p2/2m

⇒ N± =
2
h3

1

e( p2
2m+mc2−µ̃±)/kT + 1

The density in coordinate space n± is given by
∫
d3pN±. We know that n− >

n+ because while positrons and electrons are created in pairs we also have
ionization electrons from hydrogen atoms. Thus we must have µ̃− > µ̃+. This
inequality combined with µ̃− + µ̃+ = 0 gives µ̃− > 0, µ̃+ < 0.
(c) In the dilute-gas regime, η± ≈ exp

[
−( p2

2m +mc2 − µ̃±)/kT
]
. It’s trivial to

perform the momentum-space integral and find

n± =
2
h3

(2πmkT )3/2exp

(
µ̃± −mc2

kT

)
η << 1 means (µ̃± −mc2) << −kT (see Chapter 2), i.e.

n± <<
2
h3

(2πmkT )3/2 = 4.8× 1027

(
T

108K

)3/2

cm−3

The hydrogen mass density is ρ ≈ n−mp (because me << mp and also electron-
positron pair generation is negligible.) Thus the dilute-gas region is given by

ρ << 8× 103

(
T

108K

)3/2

g · cm−3

(d) Define x ≡ eµ̃−/kT , then eµ̃+/kT = 1/x. And using the expression for n± we
found in part (c), we get

n = n− − n+ =
2
h3

(2πmkT )3/2e−mc
2/kT (x− 1/x)

define y ≡ 1
4
nλ3emc

2/kT , where λ ≡ h√
2πmkT

⇒ 2y = (x− 1/x)
⇒ x = y + (1 + y2)1/2

Thus
n+

n
=

1/x
x− 1/x

=
1

2y
[
y + (1 + y2)1/2

]
(e) [this part by Kip Thorne] The amount of phase space available to the ioniza-
tion electrons, per ionization electron, is of order Vphase ∼ (2πmkT )3/2mp

ρ . If
one pair forms per ionization electron (our criterion for significant pair forma-
tion), then each positron will also have available to it the phase volume Vphase.
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When this Vphase is very large (i.e. when ρ is very small, at fixed T ∼ 108K),
then the positron is almost completely unaware of the presence of the electrons,
so the probability of its meeting an electron and annihilating is very small. This
means that, although pair production occurs only very rarely (because of the
very few number of photons with sufficient energy to produce a pair), once it
has occured, on average the positron lives for a very long time. It is this balanc-
ing of the long life, due to the huge phase space per particle, against the rarity
of pair production, that enables significant pairs to form at T as low as ∼ 108K.

D
Exercise 4.7 Fluctuations and Phase Transitions in a Van der Waals Gas [by
Xinkai Wu]
(a)

P = −
(
∂E

∂V

)
S,N

=
h2

2πm

(
V

N
− b
)−5/3

exp

(
2S

3kN
− 5

3

)
− aN2

V 2

T =
(
∂E

∂S

)
N,V

=
h2

2πmk

(
V

N
− b
)−2/3

exp

(
2S

3kN
− 5

3

)
use the second equation to eliminate S in favor of N, V, T

P (N,V, T ) =
kT

V/N − b
− a

(V/N)2
=

kT

v − b
− a

v2
where v ≡ V/N

while for an ideal gas

P (N,V, T ) =
NkT

V
=
kT

v

One needs to solve the equation
(
∂P
∂v

)
T

= 0 for v. One finds that for T < Tcrit,
there are two solutions v1, v2 (namely there’s a local maximum and a local
minimum); when T = Tcrit, v1 and v2 merge into a single vcrit; and when
T > Tcrit, there’s no solution. Now let’s determine Tcrit and vcrit. At Tcrit, vcrit,
we have

0 =
(
∂P

∂v

)
T

=
−kT

(v − b)2
+

2a
v3

0 =
(
∂2P

∂2v

)
T

=
2kT

(v − b)3
− 6a
v4

Combining the above two equations, we find Tcrit = 8a
27bk = 8

27T0, and vcrit = 3b.
(b) For the system to be stable against volume fluctuations under isother-
mal conditions, we must have

(
∂P
∂v

)
T
< 0 (the arguement for this is: sup-

pose initially our system is in equilibrium under the external pressure, namely
Psystem = Pexternal. If by statistical fluctuation the system’s volume decreases
by a small amount ∆v > 0, Psystem will correspondingly change by ∆Psystem =
−∆v

(
∂P
∂v

)
T

. If
(
∂P
∂v

)
T
> 0, then ∆Psystem < 0, namely Psystem will drop below

Pexternal and the system will keep collapsing. A similar reasoning can be car-
ried out when the volume increases a little bit by fluctuation. Thus we conclude
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(
∂P
∂v

)
T
> 0 would lead to instability against volume fluctuations.)

So we can look at the slope of the curves in Fig. 4.7(a) and conclude that: when
T > Tcrit, the gas is stable all along the curve; when T = Tcrit, the gas is stable
except at the one particular point v = vcrit; when T < Tcrit, the gas is stable in
two regions (and these are the two different phases that are both stable against
volume fluctuations) b < v < vmin and v > vmax, where vmin and vmax are the
locations of the local minimum and the local maximum, respectively, and the
gas is unstable in the region vmin < v < vmax.
(c) By the principle of minimum Gibbs potential, the chemical potential at
point A must be equal to that at point B (see Exercise 4.4). Recall that be-
ing on the same isothermal curve A and B have the same temperature. Thus
µ(T, PA) = µ(T, PB) gives PA = PB , i.e. the straight line from A to B is hori-
zontal.
We have the following differential equation

dG = d(µN) = −SdT + V dP + µdN

⇒ Ndµ = −SdT + V dP

⇒ dµ = −sdT + vdP, where s ≡ S/N, v ≡ V/N

Along the isothermal curve, dT = 0, so dµ = vdP . Thus

µ|B − µ|A =
∫ B

A

dµ =
∫ B

A

vdP

Easily seen,
∫ B
A

vdP is just the difference between the areas of the two stippled
regions. Thus µ|A = µ|B tells us that these two areas are equal.
(d) The fractional volume fluctuation is given by

σV
V

=

√
kTκ

V
=

√
kT

−
(
∂P
∂V

)
T,N

V 2
;

see Eq. (4.80) and the paragraph that follows it. We see that small values of
−
(
∂P
∂V

)
T,N

correspond to large volume fluctuations. Thus near the “critical
point” (with Tcrit = 8a

27kb , Vcrit = 3Nb, Pcrit = a
27b2 ), −

(
∂P
∂V

)
T,N

is very small
and the gas exhibit huge volume fluctuations. (For T < Tcrit, near the the local
minimum and maximum on the P − V plot, we also have small −

(
∂P
∂V

)
T,N

.
However, as argued in part (b) and (c), these regions are not physical and in
general don’t exist in nature. Also, −

(
∂P
∂V

)
T,N

gets small when V gets large.
But σV /V actually doesn’t get huge, because −

(
∂P
∂V

)
T,N
∼ NkT/V 2 for large

V , and σV /V remains ∼ 1/
√
N .)

Exercise 4.8 Fluctuations of Systems in Contact with a Volume Bath [by Xinkai
Wu]
(a) No matter whether the ensemble is in equilibrium or not, the (very gen-
eral) energy conservation law always holds. Since there’s no heat or particle
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exchange between the system and the bath, the change in the system’s energy
is completely due to the work performed on the system by the bath, namely
dẼ = −PbdV . (Note that since the bath is huge compared to the system, the
bath’s pressure Pb remains fixed, so ∆Ẽ = −Pb∆V for finite volume change.)
This implies that ∆H = ∆Ẽ + Pb∆V = 0, i.e. the system’s enthalpy is con-
served.
(b) Since the system is very small compared to the bath, the bath is always
in equilibrium. Then we can use the first law for the bath ∆Ẽb = Tb∆Sb −
Pb∆Vb + µ̃b∆Nb. Since there’s no particle exchange, ∆Nb = 0. Also by energy
and volume conservation, ∆Ẽb = −∆Ẽ = Pb∆V = −Pb∆Vb. These combined
with the first law tells us Tb∆Sb = 0, i.e. ∆Sb = 0. So we conclude that inter-
action with a system cannot change the bath’s entropy.
(c) The bath and the system form a closed supersystem with a total entropy
Stotal = Sb + S. This supersystem, like any closed system, must evolve toward
increasing Stotal. This combined with the fact that Sb doesn’t change (proved
in part (b)) tells us S always increases. When the supersystem reaches statisti-
cal equilibrium, it is in the microcanonical ensemble with ρtotal = e−Stotal/k =
e(−Sb−S)/k = const. This, combined with Sb = const, gives us ρ = e−S/k =
const for the regions of phase space that have enthalpy H in the small range
δH.
(d) For fluctuations away from equilibrium, the probability ∝ eStotal/k ∝ eS/k.
Note that the enthalpy H is a function of (P, S,N) (see Exercise 4.3). Inverting
this relation we get S = S(H,P,N). So we still have equations (4.65), (4.66)
but with E replaced by H, V replaced by P .
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