CONTENTS

[Version 0200.1, 26 September 2002]
Note: Concurrently with the 2002–2003 course Ph136, we are producing a final revision of
this book. The following table of contents is for the 2000-2001 version of the book, which
is available on the Web at
http://www.pma.caltech.edu/Courses/ph136/ph136.html

1. Physics in Flat Spacetime: Geometric Viewpoint
 1.1 Overview
 1.2 Foundational Concepts
 1.3 Tensor Algebra Without a Coordinate System
 1.4 Particle Kinetics and Lorentz Force Without a Reference Frame
 1.5 Component Representation of Tensor Algebra
 1.6 Particle Kinetics in Index Notation and in a Lorentz Frame
 1.7 Orthogonal and Lorentz Transformations of Bases, and Spacetime Diagrams
 1.8 Time Travel
 1.9 Directional Derivatives, Gradients, Levi-Civita Tensor, Cross Product and Curl
 1.10 Nature of Electric and Magnetic Fields; Maxwell’s Equations
 1.11 Volumes, Integration, and the Gauss and Stokes Theorems
 1.12 The Stress-energy Tensor and Conservation of 4-Momentum

I. STATISTICAL PHYSICS

2. Kinetic Theory
 2.1 Overview of this Chapter
 2.2 Phase Space and Distribution Function
 2.3 Other Normalizations for the Distribution Function
 2.4 Thermal Equilibrium
 2.5 Number-Flux Vector and Stress-Energy Tensor
 2.6 Perfect Fluids and Equations of State
2.7 Evolution of the Distribution Function: Liouville’s Theorem, the Vlasov Equation and the Boltzmann Transport Equation

2.8 Transport Coefficients
3. Statistical Mechanics

3.1 Overview
3.2 Systems, Ensembles, and Distribution Functions
3.3 Liouville’s Theorem and the Evolution of the Distribution Function
3.4 Statistical Equilibrium
3.5 The Microcanonical Ensemble and the Ergodic Hypothesis
3.6 Entropy and the Evolution into Statistical Equilibrium
3.7 Statistical Mechanics of an Ideal Monatomic Gas
3.8 Statistical Mechanics in the Presence of Gravity: Galaxies, Black Holes, the Universe, and Evolution of Structure in the Early Universe
3.9 Entropy and Information [not yet written]

4. Statistical Thermodynamics

4.1 Overview
4.2 Microcanonical Ensemble and the Energy Representation of Thermodynamics
4.3 Canonical Ensemble and the Free-Energy Representation of Thermodynamics
4.4 The Gibbs Representation of Thermodynamics; Phase Transitions and Chemical Reactions
4.5 Fluctuations of Systems in Statistical Equilibrium
4.6 The Ising Model and Renormalization Group Methods
4.7 Monte Carlo Methods [not yet written]

5. Random Processes

Note: In 2000–2001 we will expand this chapter and break it into two.
5.1 Overview
5.2 Random Processes and their Probability Distributions
5.3 Correlation Function, Spectral Density, and Ergodicity
5.4 Noise and its Types of Spectra
5.5 Filters, Signal-to-Noise Ratio and Shot Noise
5.6 The Evolution of a System Interacting with a Heat Bath: Fluctuation-Dissipation Theorem, Fokker-Planck Equation and Brownian Motion
II. OPTICS

6. Geometrical Optics
 6.1 Overview
 6.2 Waves in a Homogeneous Medium
 6.3 Waves in an Inhomogeneous, Time-Varying Medium: The Eikonal Approximation
 6.4 Paraxial Optics
 6.5 Polarization and the Berry Phase
 6.6 Caustics and Catastrophes — Gravitational Lenses

7. Diffraction
 7.1 Overview
 7.2 Helmholtz-Kirchhoff Integral: diffraction by an aperture; spreading of the wavefront
 7.3 Fraunhofer Diffraction: diffraction grating; Babinet’s principle; Hubble space telescope
 7.4 Fresnel Diffraction: lunar occultation of a radio source; circular apertures
 7.5 Fourier Optics: coherent illumination; point spread functions; Abbé theory; phase contrast microscopy; Gaussian beams
 7.6 Diffraction at a Caustic

8. Interference
 8.1 Overview
 8.2 Coherence: Young’s slits; extended source; van Cittert-Zernike theorem; general formulation of lateral coherence; lateral coherence length; Michelson stellar interferometer; temporal coherence; Michelson interferometer; degree of coherence
 8.3 Radio Telescopes: two-element interferometer; closure phase; angular resolution
 8.4 Etalons and Fabry-Perot Interferometers — Gravitational Wave Detection: multiple-beam interferometry; Fabry-Perot interferometer; lasers
 8.5 Laser Interferometer Gravitational Wave Detectors
 8.6 Intensity Correlation and Photon Statistics

9. Nonlinear Optics
 9.1 Overview
9.2 Lasers: Basic Principles; Types of Pumping and Types of Lasers
9.3 Holography
9.4 Phase-Conjugate Optics
9.5 Wave-Wave Mixing in Nonlinear Crystals: nonlinear dielectric susceptibility; wave-wave mixing; resonance conditions and growth equations
9.6 Applications of Wave-Wave Mixing: Frequency doubling; phase conjugation; squeezing

III. ELASTICITY

10. Elastostatics
 10.1 Overview
 10.2 Strain; Expansion, Rotation, and Shear
 10.3 Cylindrical and Spherical Coordinates: Connection Coefficients and Components of Strain
 10.4 Stress and Elastic Moduli: stress tensor; elastic moduli; energy of deformation; molecular origin of elastic stress; Young’s modulus and Poisson ratio
 10.5 Thermoelastic noise in gravitational-wave detectors
 10.6 Bending of Beams — Cantilever Bridges
 10.7 Deformation of Plates — Keck Telescope Mirror
 10.8 Bifurcation — Mountain Folding

11. Elastodynamics
 11.1 Overview
 11.2 Conservation Laws
 11.3 Basic Equations of Elastodynamics: equation of motion; elastodynamic waves; longitudinal sound waves; transverse shear waves; energy of elastodynamic waves
 11.4 Waves in Rods, Strings and Beams: compression waves; torsion waves; waves on strings; flexural waves on a beam; buckling
 11.5 Body and Surface Waves — body waves; edge waves; Green’s function for a homogeneous half space; free oscillations of solid bodies; seismic tomography
 11.6 The Relationship of Classical Waves to Quantum Mechanical Excitations
IV. FLUID DYNAMICS

12. Foundations of Fluid Dynamics

12.1 Overview

12.2 Hydrostatics: Archimedes law; stars and planets; rotating fluids

12.3 Conservation Laws for an Ideal Fluid: mass conservation; momentum conservation; Euler equation; Bernoulli principle; energy conservation

12.4 Incompressible Flows

12.5 Viscous Flows: decomposition of the velocity gradient into expansion, vorticity, and shear; Navier-Stokes equation; energy conservation and entropy production; molecular origin of viscosity; blood flow

13. Vorticity

13.1 Overview

13.2 Vorticity and Circulation: vorticity transport; tornados; Kelvin’s theorem; diffusion of vortex lines; sources of vorticity

13.3 Low Reynolds’ Number Flow — Stokes’ flow; Nuclear Winter; sedimentation rate

13.4 High Reynolds’ Number Flow — Laminar Boundary Layers: separation

13.5 Kelvin-Helmholtz Instability: temporal and spatial growth; excitation of ocean waves by wind; physical interpretation; the Rayleigh and Richardson stability criteria

14. Turbulence

14.1 Overview

14.2 The Transition to Turbulence — Flow past a Cylinder

14.3 Semi-Quantitative Analysis of Turbulence: weak turbulence; turbulent diffusivity; relationship to vorticity; Kolmogorov spectrum

14.4 Turbulent Boundary Layers: profile of a turbulent boundary layer; instability of a laminar boundary layer; the flight of a ball

14.5 The Route to Turbulence — Onset of Chaos: Couette flow; Feigenbaum sequence
15. Waves

15.1 Overview

15.2 Gravity Waves on Surface of a Fluid: deep water waves; shallow water waves; capillary waves; Helioseismology

15.3 Nonlinear Shallow Water Waves and Solitons: Korteweg-deVries equation; physical effects in the kdV equation; single soliton solutions; two soliton solution; solitons in contemporary physics

15.4 Rotating Fluids: equations of fluid dynamics in a rotating reference frame; geostrophic flows; Taylor-Proudman theorem; Ekman pumping; Rossby waves

15.5 Sound Waves; sound generation

16. Supersonic Flow

16.1 Overview

16.2 Equations of Compressible Flow

16.3 Stationary, Irrotational Flow: quasi-one-dimensional flow; setting up a stationary transonic flow; rocket engines

16.4 One Dimensional, Time-Dependent Flow: Riemann invariants; shock tube

16.5 Shock Fronts: shock jump conditions in a perfect gas; Mach cone

16.6 Similarity Solutions — Sedov-Taylor Blast Wave: atomic bomb; supernovae

17. Convection

17.1 Overview

17.2 Heat Conduction

17.3 Boussinesq Approximation

17.4 Rayleigh-Bernard Convection

17.5 Convection in Stars

17.6 Double Diffusion — Salt Fingers
18. Magnetohydrodynamics

18.1 Overview

18.2 Basic Equations of MHD: induction equation; dynamics; boundary conditions; magnetic field and vorticity

18.3 Magnetostatic Equilibria: controlled thermonuclear fusion; Z pinch; theta pinch; tokamak

18.4 Hydromagnetic Flows: electromagnetic brake; MHD power generator; flow meter; electromagnetic pump; Hartmann flow

18.5 Stability of Hydromagnetic Equilibria: linear perturbation theory; Z pinch; energy principle

18.6 Dynamos and Magnetic Field Line Reconnection: Cowling’s theorem; kinematic dynamos; magnetic reconnection

18.7 Magnetosonic Waves and the Scattering of Cosmic Rays

V. PLASMA PHYSICS

19. The Particle Kinetics of Plasmas

19.1 Overview

19.2 Examples of Plasmas and their Density-Temperature Regimes: ionization boundary; degeneracy boundary; relativistic boundary; pair production boundary; examples of natural and man-made plasmas

19.3 Collective Effects in Plasmas: Debye shielding; collective behavior; plasma oscillations and plasma frequency

19.4 Coulomb Collisions: collision frequency; Coulomb logarithm; thermal equilibration times

19.5 Transport Coefficients: anomalous resistivity and anomalous equilibration

19.6 Magnetic field: Cyclotron frequency and Larmor radius; validity of the fluid approximation; conductivity tensor

19.7 Adiabatic invariants: homogeneous, time-independent magnetic field; homogeneous time-independent electric and magnetic fields; inhomogeneous time-independent magnetic field; a slowly time-varying magnetic field
20. Waves in Cold Plasmas: Two-Fluid Formalism

20.1 Overview

20.2 Dielectric Tensor, Wave Equation, and General Dispersion Relation

20.3 Wave Modes in an Unmagnetized Plasma: two-fluid formalism

20.4 Wave Modes in a Cold, Magnetized Plasma: dielectric tensor and dispersion relation

20.5 Propagation of Radio Waves in the Ionosphere

20.6 CMA Diagram for Wave Modes in Cold, Magnetized Plasma

20.7 Two-Stream Instability

21.1 Overview

21.2 Basic Concepts of Kinetic Theory and its Relationship to Two-Fluid Theory: distribution function and vlasov equation; relation to two-fluid theory; Jeans’ theorem

21.3 Electrostatic Waves in an Unmagnetized Plasma and Landau Damping; formal dispersion relation; two-stream instability; the Landau contour; dispersion relation for weakly damped or growing waves; Langmuir waves and their Landau damping; ion acoustic waves and conditions for their Landau damping to be weak

21.4 Stability of Electromagnetic Waves in an Unmagnetized Plasma: stability; particle trapping

21.5 N-Particle Distribution Function

22. Nonlinear Dynamics of Plasmas

22.1 Overview

22.2 Quasi-Linear Theory in Classical Language: classical derivation of the theory; summary of the theory; conservation laws; generalization to three dimensions

22.3 Quasilinear Theory in Quantum Mechanical Language: fundamental equations and their interpretation; relationship between classical and quantum formulations; inhomogeneous plasmas; generalization to other processes

22.4 Quasilinear Evolution of Unstable Distribution Function: The Bump in Tail: instability of streaming cosmic rays

22.5 Parametric Instabilities

22.6 Solitons and Collisionless Shock Waves
VI. GENERAL RELATIVITY

23. From Special to General Relativity

23.1 Overview

23.2 Special Relativity Once Again: geometric, frame-independent formulation; inertial frames and components of vectors and tensors; physical laws; light speed, the interval, and spacetime diagrams

23.3 Differential Geometry in General Bases and in Curved Manifolds: nonorthonormal bases; vectors as differential operators; tangent space; commutators; differentiation of vectors and tensors; connection coefficients; integration

23.4 Stress-Energy Tensor Revisited

23.5 Proper Reference Frame of an Accelerated Observer

24. Fundamental Concepts of General Relativity

24.1 Overview

24.2 Local Lorentz Frames, the Principle of Relativity, and Einstein’s Equivalence Principle

24.3 The Spacetime Metric, and Gravity as a Curvature of Spacetime

24.4 Free-fall Motion and Geodesics of Spacetime

24.5 Relative Acceleration, Tidal Gravity, and Spacetime Curvature: Newtonian description of tidal gravity; relativistic description of tidal gravity; comparison of descriptions

24.6 Properties of the Riemann curvature tensor

24.7 Curvature Coupling Delicacies in the Equivalence Principle, and some Non-gravitational Laws of Physics in Curved Spacetime

24.8 The Einstein Field Equation

24.9 Weak Gravitational Fields: Newtonian limit of general relativity; linearized theory; gravitational field outside a stationary, linearized source

25. Relativistic Stars and Black Holes

25.1 Overview

25.2 Schwarzschild’s Spacetime Geometry

25.3 Static Stars: Birkhoff’s theorem; stellar interior; local energy and momentum conservation; Einstein field equations; stellar models and their properties
25.4 Gravitational Implosion of a Star to Form a Black Hole

25.5 Spinning Black Holes: The Kerr Spacetime: motivation — conservation laws for mass, momentum, and angular momentum; the Kerr metric; dragging of inertial frames; light-cone structure and the horizon; evolution of black holes — rotational energy and its extraction

25.6 The Many-Fingered Nature of Time

26.1 Overview

26.2 Experimental Tests of General Relativity: equivalence principle, gravitational redshift, and global positioning system; perihelion advance of Mercury; gravitational deflection of light, Fermat’s principle and gravitational lenses; Shapiro time delay; frame dragging and Gravity Probe B; binary pulsar

26.3 Gravitational Waves and their Propagation: the gravitational wave equation; the waves’ two polarizaitons, + and ×; gravitons and their spin; energy and momentum in gravitational waves; wave propagation in a source’s local asymptotic rest frame; wave propagation via geometric optics; metric perturbation and TT gauge

26.4 The Generation of Gravitational Waves: multipole-moment expansion; quadrupole moment formalism; gravitational waves from a binary star system; detection of gravitational waves

26.5 The Detection of Gravitational Waves: [not yet written]

26.6 Sources of Gravitational Waves: [not yet written]

27. Cosmology

27.1 Overview

27.2 Homogeneity and Isotropy of the Universe — Robertson-Walker Line Element

27.3 The Stress-energy Tensor and the Einstein Field Equation

27.4 Evolution of the Universe: constituents of the universe — cold matter, radiation, and exotic matter; the vacuum stress-energy tensor; evolution of the densities; evolution in time and redshift; physical processes in the expanding universe

27.5 Observational Cosmology: parameters characterizing the universe; local Lorentz frame of homogenous observers near Earth; Hubble expansion rate; big-bang nucleosynthesis; density of cold dark matter; radiation temperature and density; anisotropy of the CBR: measurements of the Doppler peaks; age of the universe — constraint on the exotic matter; magnitude-redshift relation for type Ia supernovae — confirmation that the universe is decelerating

27.6 The Big-Bang Singularity, Quantum Gravity and the Initial Conditions of the Universe
27.7 Inflationary Cosmology