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CHAPTER 27

INTRODUCTION TO COMMUNICATION THEORY

We noted in Chapter 11 that one of the motivations behind this work was the attempt to see
Gibbsian statistical mechanics and Shannon's communication theory as examples of the same line
of reasoning. A generalized form of statistical mechanics appeared as soon as we introduced the
notion of entropy, and we ought now to be in a position to treat communication theory in a similar
way.

One di�erence is that in statistical mechanics the prior information has nothing to do with
frequencies (it consists of measured values of macroscopic quantities such as pressure), and so
we have little temptation to commit errors. But in communication theory the prior information
consists, typically of frequencies; and this makes the probability{frequency conceptual pitfalls much
more acute. For this reason it seemed best to take up communication theory only after we had seen
the general connections between probability and frequency, in a variety of conceptually simpler
applications.

Origins of the Theory

First the di�cult matter of giving credit where credit is due. All major advances in understanding
have their precursors, whose full signi�cance is never recognized at the time. Relativity theory had
them in the work of Mach, Fitzgerald, Lorentz and Poincar�e, to mention only the most obvious
examples. Communication theory had many precursors, in the work of Gibbs, Nyquist, Hartley,
Szilard, von Neumann, and Wiener. But there is no denying that the work of Shannon (1948)
represents the arrival of the main signal, just as did Einstein's of 1905. In both cases ideas which
had long been, so to speak, \in the air" in a vague form, are grasped and put into sharp focus.

Shannon's papers were so full of important new concepts and results that they exercised not
only a stimulating e�ect, but also a paralyzing e�ect. During the �rst few years after their appear-
ance it was common to hear the opinion expressed, rather sadly, that Shannon had anticipated and
solved all the problems of the �eld, and left nothing else for others to do.

The post{Shannon developments, with few exceptions, can be classed into e�orts in two entirely
di�erent directions. On the applications side we have the Expansionists (who try to apply Shannon's
ideas to other �elds, as we do here), the Entropy Calculator (who works out the entropy of a
television signal, the French Language, a chromosome, or almost anything else you can imagine;
and then �nds that nobody knows what to do with it), and the Universalist (who assures us that
Shannon's work will revolutionize all intellectual activity; but is unable to o�er a speci�c example
of anything that has been changed by it).

We should not be overly critical of these e�orts because, as J. R. Pierce has remarked, it
is very hard to tell at �rst which ones make sense, which are pure nonsense, and which are the
beginning of something that will in time make sense. The writer's e�orts have received all three
classi�cations from various quarters. We expect that, eventually, the ideas introduced by Shannon
will be indispensable to the linguist, the geneticist, the television engineer, the neurologist, the
economist. But we share with many others a feeling of disappointment that 40 years of e�ort along
these lines has led to so little in the way of really useful advances in these �elds.

During this time there has been an overabundance of vague philosophy, and of abstract math-
ematics; but outside of coding theory a rather embarrassing shortage of examples where speci�c
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real problems have been solved by using this theory. We believe that the reason for this is that
conceptual misunderstandings, almost all of which amount to the Mind Projection Fallacy, have
prevented workers from asking the right questions. In order to apply communication theory to
other problems than coding, the �rst and hardest step is to state precisely what is the speci�c

problem that we want to solve?

In almost diametric opposition to the above e�orts, as far as aim was concerned, were the
mathematicians, who viewed communication theory simply as a branch of pure mathematics. Char-
acteristic of this school was a belief that, before introducing a continuous probability distribution,
you have to talk about set theory, Borel �elds, measure theory, the Lebesgue{Stieltjes integral,
and the Radon{Nikodym theorem. The important thing was to make the theorems rigorous by the

criteria of rigor then fashionable among mathematicians, even if in so doing we limit their scope
for applications. The book on information theory by A. I. Khinchin (1957) can serve as a typical
example of the style prevalent in this literature.

Here again, severe criticism of these e�orts is not called for. Of course, we want our principles
to be subjected to the closest scrutiny the human mind can bring to bear on them; if important
applications exist, the need for this is so much the greater. However, the present work is not
addressed to mathematicians, but to persons concerned with real applications. So we shall dwell
on this side of the story only to the extent of pointing out that the rigorized theorems are not the
ones relevant to problems of the real world. Typically, they refer only to situations that do not
exist (such as in�nitely long messages) and as a result they degenerate into \nonsense theorems"
which assign probability 1 to an impossible event, therefore zero to all possible events. We have no
way of using such results, because our probabilities are always conditional on our knowledge of the
real world. Now let's turn to some of the speci�c things in Shannon's papers.

The Noiseless Channel.

We deal with the transmission of information from some sender to some receiver. We shall speak of
them in anthropomorphic terms, such as \the man at the receiving end," although either or both
might actually be machines, as in telemetry or remote control systems. Transmission takes place
via some channel, which might be a telephone or telegraph circuit, a microwave link, a frequency
band assigned by the FCC, the German language, the postman, the neighborhood gossip, or a
chromosome. If, after having received a message, the receiver can always determine with certainty
which message was intended by the sender, we say that the channel is noiseless.

It was recognized very early in the game, particularly by Nyquist and Hartley, that the capa-
bility of a channel is not described by any property of the speci�c message it sends, but rather by
what it could have sent. The usefulness of a channel lies in its readiness to transmit any one of a
large class of messages, which the sender can choose at will.

In a noiseless channel, the obvious measure of this ability is simply the maximum number,
W (t), of distinguishable (at the destination) messages which the channel is capable of transmitting
in a time t. In all cases of interest to us, this number goes eventually into an exponential increase for
su�ciently large t: W (t) / expfCtg, so the measure of channel performance which is independent
of any particular time interval is the coe�cient C of this increase. We de�ne the channel capacity

as

C � lim
t!1

�
1

t
logW (t)

�
: (27{1)

The units in which C is measured will depend on which base we choose for our logarithms. Usually
one takes base 2, in which C is given in \bits per second," one bit being the amount of information
contained in a single binary (yes{no) decision. For easy interpretation of numerical values the bit
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is by far the best unit to use; but in formal operations it may be easier to use the base e of natural
logarithms. Our channel capacities are then measured in natural units, or \nits per second." To
convert, note that 1 bit = (ln 2) = 0:69315 nits, or 1 nit = 1:4427 bits.

The capacity of a noiseless channel is a de�nite number, characteristic of the channel, which
has nothing to do with human information. Thus, if a noiseless channel can transmit n symbols
per second, chosen in any order from an alphabet of a letters, we have W (t) = ant, or C = n log2 a
bits/second = n loge a nits/second. Any constraint on the possible sequences of letters can only
lower this number. For example, if the alphabet is A1; A2; : : : ; Aa, and it is required that in a long
message of N = nt symbols the letter Ai must occur with relative frequency fi, then the number
of possible messages in time t is only

W (t) =
N !

(Nf1)! : : :(Nfa)!
(27{2)

and from Stirling's approximation, as we found in Chapter 11,

C = �n
X
i

fi log fi nits/second : (27{3)

This attains its maximum value, equal to the previous C = n log a, in the case of equal frequencies,
fi = 1=a. Thus we have the interesting result that a constraint requiring all letters to occur with
equal frequencies does not decrease channel capacity at all. It does, of course, decrease the number
W (t) by an enormous factor; but the decrease in logW is what matters, and this grows less rapidly
than t, so it makes no di�erence in the limit. In view of the entropy concentration theorem of
Chapter 11, this can be understood in another way: the vast majority of all possible messages are
ones in which the letter frequencies are nearly equal.

Suppose now that symbol Ai has transmission time ti, but there is no other constraint on
the allowable sequences of letters. What is the channel capacity? Well, consider �rst the case of
messages in which letter Ai occurs ni times, i = 1; 2; : : : ; a. The number of such messages is

W (n1 : : :na) =
N !

n1! : : :na!
(27{4)

where

N =
aX
i=1

ni : (27{5)

The total number of di�erent messages that could have been transmitted in time t is then

W (t) =
X
ni

W (n1 : : :na) (27{6)

where we sum over all choices of (n1 : : :na) compatible with Ni � 0 and
aX
i=1

niti � t : (27{7)

The number K(t) of terms in the sum (27{6) satis�es K(t) � (Bt)a for some B < 1. This is
seen most easily by imagining the ni as coordinates in an a{dimensional space and noting the
geometrical meaning of K(t) as the volume of a simplex.

Exact evaluation of (27{6) would be quite an unpleasant job. But it's only the limiting value
that we care about right now, and we can get out of the hard work by the following trick. Note
that W (t) cannot be less than the greatest term Wm = Wmax(n1 : : :na) in (27{6) nor greater than
WmK(t):
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logWm � logW (t) � logWm + a log(Bt) (27{8)

and so we have

C � lim
t!1

1

t
logW (t) = lim

t!1

1

t
logWm (27{9)

i.e., to �nd the channel capacity, it is su�cient to maximize logW (n1 : : :na) subject to the con-
straint (27{7). This rather surprising fact can be understood as follows. The logarithm of W (t) is
given, crudely, by logW (t) = logWmax + log [number of reasonably large terms in (27{6)]. Even
though the number of large terms tends to in�nity as ta, this is not rapid enough to make any dif-
ference in comparison with the exponential increase of Wmax. As explained by Schr�odinger (1948),
this same mathematical fact is the reason why, in statistical mechanics, the Darwin{Fowler method
and the method of most probable distribution lead to the same results in the limit of large systems.

We can solve the problem of maximizing logW (n1 : : :na) by the same Lagrange multiplier
argument used in Chapter 11. The problem is not quite the same, however, because now N is also
to be varied in �nding the maximum. Using the Stirling approximation, which is valid for large ni,
we have

logW (n1 : : :na) � N logN �
aX
i=1

ni log ni: (27{10)

The variational problem, with � a Lagrangian multiplier, is

�[logW + �
X

niti] = 0 (27{11)

but since �N =
P

�ni, we have

� logW = �N logN � �N �
X
i

(�ni logni � �ni)

= �
X

�ni log(ni=N):

(27{12)

Therefore (27{11) reduces to
aX
i=1

[log(ni=N) + �ti]�ni = 0 (27{13)

with the solution

ni = Ne��ti : (27{14)

To �x the value of � we require

N =
X

ni = N
X

e��ti : (27{15)

With this choice of ni, we �nd
1

t
logWm = �

1

t
log(ni=N) =

1

t

X
ni(�ti): (27{16)

In the limit, t�1
P

niti ! 1, and so

C = lim
t!1

1

t
logW (t) = �: (27{17)

Our �nal result can be stated very simply: To calculate the capacity of a noiseless channel in which

symbol Ai has transmission time ti and which has no other constraints on the possible messages,

de�ne the partition function Z(�) �
P

i e
��ti . Then the channel capacity C is the real root of

Z(�) = 1 (27{18)
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You see already a very strong resemblance to the reasoning and the formalism of statistical me-
chanics, in spite of the fact that we have not yet said anything about probability.

From (27{15) we see that W (n1 : : :na) is maximized when the relative frequency of symbol Ai

is given by the canonical distribution

fi =
ni

N
= e��ti = e�Cti : (27{19)

Some have concluded from this that the channel is being \used most e�ciently" when we have
encoded our messages so that (27{19) holds. But that would be quite mistaken because, of course,
in time t the channel will actually transmit one message and only one; and this remains true
regardless of what relative frequencies we use. Equation (27{19) tells us only that { in accordance
with the entropy concentration theorem { the overwhelming majority of all possible messages that
the channel could have transmitted in time t are ones where the relative frequencies are canonical.

On the other hand, we have a generalization of the remark following (27{74); if we impose
an additional constraint requiring that the relative frequencies are given by (27{19), which might
be regarded as de�ning a new channel, the channel capacity would not be decreased. But any
constraint requiring that all possible messages have letter frequencies di�erent from (27{19) will
decrease channel capacity.

There are many other ways of interpreting these equations. For example, in our above argu-
ments we supposed that the total time of transmission is �xed and we wanted to maximize the
number W of possible messages amount which the sender can choose. In a practical communication
system, the situation is usually the other way around; we know in advance the extent of choice
which we demand in the messages which might be sent over the channel, so that W is �xed. We
then ask for the condition that the total transmission time of the message be minimized subject to
a �xed W .

It is well known that variational problems can be transformed into several di�erent forms, the
same mathematical result giving the solution to many di�erent problems. A circle has maximum
area for a given perimeter; but also it has minimum perimeter for a given area. In statistical
mechanics, the canonical distribution can be characterized as one with maximum entropy for a
given expectation of energy; or equally well as the one with minimum expectation of energy for a
given entropy. Similarly, the channel capacity found from (27{18) gives the maximum attainable
W for a given transmission time, or equally well the minimum attainable transmission time for a
�xed W .

As another extension of the meaning of these equations, note that we need not interpret the
quantity ti as a time; it can stand equally well for the \cost" as measured by any criterion, of
transmitting the i'th symbol. Perhaps the total length of time the channel is in operation is of no
importance, because the apparatus has to sit there in readiness whether it is being used or not.
The real criterion might be, for example, the amount of energy that a space probe must dissipate
in transmitting a message back to earth. In this case, we could de�ne ti as the energy required to
transmit the i'th symbol. The channel capacity given by Equation (27{18) would then be measured,
not in bits per second but in bits per joule, and its reciprocal is equal to the minimum attainable
number of joules needed per bit of transmitted information.

A more complicated type of noiseless channel, also considered by Shannon, is one where the
channel has a memory; it may be in any one of a set of \states" fS1 : : :Skg and the possible future
symbols, or their transmission times, depend on the present state. For example, suppose that if
the Channel is in state Si, it can transmit symbol An, which leaves the channel in state Sj , the
corresponding transmission time being tinj . Surprisingly, the calculation of the channel capacity in
this case is quite easy.

LetWi(t) be the total number of di�erent messages the channel can transmit in time t, starting
from state Si. Breaking down Wi(t) into several terms according to the �rst symbol transmitted,
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we have the same di�erence equation that we used to introduce the partition function in Chapter
8:

Wi(t) =
X
jn

Wj(t� tinj) (27{20)

where the sum is over all possible sequences Si ! An ! Sj . As before, this is a linear di�erence
equation with constant coe�cients, so its asymptotic solution must be an exponential function:

Wi(t) � Bi exp(Ct) (27{21)

and from the de�nition (27{1) it is clear that, for �nite k, the coe�cient C is the channel capacity.
Substituting (27{21) into (27{20), we obtain

Bi =
kX

j=1

Zij(C)Bj (27{22)

where

Zij(�) =
X
n

exp(��tinj) (27{23)

is the \partition matrix." Compare this argument with our �rst derivation of a partition function
in Chapter 8. If the sequence Si ! An ! Si is impossible, we set tinj =1. By this device we can
understand the sum in (27{23) as extending over all symbols in the alphabet.

Equation (27{22) says that the matrix Zij has an eigenvalue equal to unity. Thus, the channel
capacity is simply the greatest real root of D(�) = 0, where

D(�) � det[Zij(�)� �ij ]: (27{24)

This is one of the prettiest results given by Shannon. In the case of a single state, k = 1, it reduces
to the previous rule, Equation (27{18).

The problems solved above are, of course, only especially simple ones. By inventing channels
with more complicated types of constraints on the allowable sequences (i.e. with a long memory),
you can generate mathematical problems as involved as you please. But it would still be just
mathematics { as long as the channel is noiseless, there would be no di�culties of principle. In
each case you simply have to count up the possibilities and apply the de�nition (27{1). For some
weird channels, you might �nd that the limit therein does not exist, in which case we cannot speak
of a channel capacity, but have to characterize the channel simply by giving the function W (t).

The Information Source.

When we take the next step and consider the information source feeding our channel, fundamentally
new problems arise. There are mathematical problems aplenty, but there are also more basic
conceptual problems, which have to be considered before we can state which mathematical problems
are the signi�cant ones.

It was Professor Norbert Wiener who �rst suggested the enormously fruitful idea of representing
an information source in probability terms. He applied this to some problems of �lter design, which
we take up briey in a later Chapter. This work was an essential step in developing a way of thinking
which led to communication theory.

It is perhaps di�cult nowadays for us to realize what a big step this was. Previously, com-
munication engineers had considered an information source simply as a man with a message to
send; for their purposes an information source could be characterized simply by describing that
message. But Wiener suggested instead that an information source be characterized by giving the
probabilities pi that it will emit various messages Mi. Already we see the conceptual di�culties
faced by a frequency theory of probability { the man at the sending end presumably knows perfectly
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well which message he is going to send. What, then, could we possibly mean by speaking of the
probability that he will send something? There is nothing analogous to \chance" operating here.

By the probability pi of a message, do we mean the frequency with which he sends that
particular message? The question is absurd { a sane man sends a given message at most once,
and most messages never. Do we mean the frequency with which the message Mi occurs in some
imaginary \ensemble" of communication acts? Well, it's all right to state it that way if you want
to, but it doesn't answer the question. It merely leads us to restate the question as: what de�nes
that ensemble? How is it to be set up? Calling it by a di�erent name doesn't help us. What

information is that entropy H = �
P

pi log pi really measuring?

We take a halting �rst step toward answering this if we suppose that Shannon's H measures,
not the information of the sender, but the ignorance of the receiver, that is removed by receipt of the
message. Indeed, most later commentators make this interpretation. Yet on second thought, this
does not make sense either; for Shannon proceeds to develop theorems relating H to the channel
capacity C required to transmit the messages Mi. But how well a channel can transmit messages
obviously depends on properties of the channel and the messages; and not at all on the state of
ignorance of the receiver! You see the conceptual mess that the �eld has been in, for 40 years.

Right at this point we have to state clearly: what is the speci�c problem we want solved. A
probability distribution is a means of describing a state of knowledge. But whose state of knowledge
do we want to talk about? Evidently, not the man at the sending end or the one at the receiving
end; and Shannon o�ers us no explicit help on this. But implicitly, the answer seems to be clear; in
view of the theorems he gives, he cannot be describing the \general philosophy" of communication
between sender and receiver, as so many have supposed. He is thinking of the theory as something of
practical value to an engineer whose job is to design the technical equipment in the communication
system. In other words, the state of knowledge Shannon is describing is that of the communication

engineer when he designs the equipment. It is his ignorance about the messages to be sent that is
measured by H .

Although this viewpoint would seem perfectly natural for an engineer employed by the Bell
Telephone Laboratories, as Shannon was at the time, you will not �nd it actually expressed in
his words, or in the later literature based on the viewpoint which sees no distinction between
probability and frequency. For on the frequentist view, the notion of a probability for a person

with a certain state of knowledge simply doesn't exist, because probability is thought to be a
real physical phenomenon which exists independently of human information. But the problem of
choosing some probability distribution to represent the information source still does exist; it cannot
be evaded. It is now clear that the whole content of the theory depends on how we do this.

We have already emphasized several times that in probability theory we never solve an actual
problem of practice. We solve only some abstract mathematical model of the real problem. Setting
up this model requires not only mathematical ability, but also a great deal of practical judgment.
If our model does not correspond well to the actual situation then our theorems, however rigorous
the mathematicians may have made them, can be more misleading than helpful. This is so with
a vengeance in communication theory, because not only the quantitative details, but even the
qualitative nature of the theorems that can be proved, depend on which probability model we use
to represent an information source.

The purpose of this probability model is to describe the communication engineer's prior knowl-
edge about what messages his communication system may be called upon to send. In principle,
this prior knowledge could be of any sort; in particular, nothing prevents it from being semantic
in nature. For example, he might know in advance that the channel will be used only to transmit
stock market quotations; and not quotations from the Bible or obscene limericks. That is a per-
fectly valid kind of prior information, which would have de�nite implications for the probabilities
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pi by restricting the sample space in de�nite, speci�c ways, although they might be hard to state
in general mathematical terms.

We stress this point because some critics harp away incessantly on the theme that information
theory does not consider semantic meaning, and hold this to be a basic defect of our whole phi-
losophy. They could not be more mistaken; the issue of semantic meaning is not a philosophical
one but a technical one. The only reason why we do not consider semantic meaning is that we do
not know how to do it as a general procedure, although we could certainly do it \by hand" in the
context of a speci�c, �nite set of possible messages. Probably all of us have tried to restore some
corrupted text by drawing upon our perception of its semantic meaning; but how do you teach a
computer to do this?.

So let us assure those critics: if you will show us a de�nite, usable algorithm for assessing
semantic meaning, we are most eager to incorporate this too into information theory. In fact, our
present inability to do this is a serious handicap in many applications, from image restoration to
pattern recognition to arti�cial intelligence. We need your constructive help, not your criticisms.

But in traditional Shannon{type communication theory the only kind of prior knowledge con-
sidered is \statistical" because this is amenable to mathematical treatment at once. That is, it
consists of frequencies of letters, or combinations of letters, which have been observed in past sam-
ples of similar messages. Then a typical practical problem { indeed, the actual problem of writers
of those popular text compression computer programs { is to design encoding systems which will
transmit binary digits representing English text, reliably and at the maximum possible rate, given
an available channel with known properties. This would be also the actual problem of designers
of computer hardware like disk drives and modems, if they became a little more sophisticated.
The designer will then, according to the usual viewpoint, need accurate data giving the correct
frequencies of English text. Let's think about that a little.

Does the English Language have Statistical Properties?

Suppose we try to characterize the English language, for purposes of communication theory, by
specifying the relative frequencies of various letters, or combinations of letters. Now we all know
that there is a great deal of truth in statements such as \the letter E occurs more frequently than
the letter Z." Long before the days of communication theory, many people made obvious common{
sense use of this knowledge. One of the earliest examples is the design of the Morse telegraphic
code, in which the most frequently used letters are represented by the shortest codes { the exact
prototype of what Shannon formalized and made precise a century later.

The design of our standard typewriter keyboard makes considerable use of knowledge of letter
frequencies. This knowledge was used in a much more direct and drastic way by Ottmar Mergen-
thaler, whose immortal phrase

ETAOIN SHRDLU

was a common sight in the newspapers many years ago when linotype machines �rst came into use
(an inexperienced operator, who allowed his �ngers to brush lightly across the keys, automatically
set this in type). But already we are getting into trouble, because there does not seem to be
complete agreement even as to the relative order of twelve most common letters in English, let
alone the numerical values of their relative frequencies. For example, according to Pratt (1942) the
above phrase should read

ETANOR ISHDLF
while Tribus (1961) gives it as

ETOANI RSHDLC:
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As we go into the less frequently used letters, the situation becomes still more chaotic.

Of course, we readily see the reason for these di�erences. People who have obtained di�erent
values for the relative frequencies of letters in English have consulted di�erent samples of English
text. It is obvious enough that the last volume of an encyclopedia will have a higher relative
frequency for the letter Z than the �rst volume. The word frequencies would be very di�erent in a
textbook on organic chemistry, a treatise on the history of Egypt, and a modern American novel.
The writing of educated people would reveal systematic di�erences in word frequencies from the
writing of people who had never gone beyond grade school. Even within a much narrower �eld, we
would expect to �nd signi�cant di�erences in letter and word frequencies in the writings of James
Michener and Ernest Hemingway. The letter frequencies in the transcript of a tape recording of
a lecture will probably be noticeably di�erent from those one would produce if he sat down and
wrote out the lecture verbatim.

The fact that statistical properties of a language vary with the author and circumstances of
writing is so clear that it has become a useful research tool. A doctoral thesis in classics submitted to
Columbia University by James T. McDonough (1961) contains a computer{run statistical analysis
of Homer's Iliad. Classicists have long debated whether all parts of the Iliad were written by the
same man, and indeed whether Homer is an actual historical person. The analysis showed stylistic
patterns consistent throughout the work. For example, 40.4% of the 15,693 lines end on a word
with one short syllable followed by two long ones, and a word of this structure never once appears
in the middle of a line. Such consistency in a thing which is not a characteristic property of the
Greek language, seems rather strong evidence that the Iliad was written by a single person in a
relatively short period of time, and it was not, as had been supposed by some nineteenth century
classicists, the result of an evolutionary process over several centuries.

Of course, the evolutionary theory is not demolished by this evidence alone. If the Iliad was
sung, we must suppose that the music had the very monotonous rhythmic pattern of primitive
music, which persisted to a large extent as late as Bach and Haydn. Characteristic word patterns
may have been forced on the writers, by the nature of the music.

Archaeologists tell us that the siege of Troy, described in the Iliad, is not a myth but an his-
torical fact which occurred about 1200 B. C., some four centuries before Homer. The decipherment
of Minoan Linear B script by Michel Ventris in 1952 established that Greek existed already as a
spoken language in the Aegean area several centuries before the siege of Troy; but the introduction
of the Phoenician alphabet, which made possible a written Greek language in the modern sense,
occurred only about the time of Homer.

The considerations of the last two paragraphs still suggest an evolutionary development. You
see that the question is very complex and far from settled; but we �nd it fascinating that a statistical
analysis of word and syllable frequencies, representing evidence which has been there in the Iliad
for some 28 Centuries for anyone who had the wit to extract it, is �nally recognized as having a
de�nite bearing on the problem.

Well, to get back to communication theory, the point we are making is simply this: it is utterly
wrong to say that there exists one and only one \true" set of letter or word frequencies for English
text. If we use a mathematical model which presupposes the existence of such uniquely de�ned
frequencies, we might easily end up proving things which, while perfectly valid as mathematical
theorems, are worse than useless to an engineer who is faced with the job of actually designing a
communication system to transmit English text most e�ciently.

But suppose our engineer does have extensive frequency data, and no other prior knowledge.
How is he to make use of this in describing the information source? Many of the standard results
of communication theory can, from the viewpoint we are advocating, be seen as simple examples
of maximum{entropy inference; i.e., as examples of the same kind of reasoning as in statistical
mechanics.
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Optimum Encoding: Letter Frequencies Known.

Suppose our alphabet consists of di�erent symbols A1; A2; : : : ; Aa, and we denote a general symbol
by Ai, Aj , etc. Any message of N symbols then has the form Ai1Ai2 : : :AiN . We denote this
message by M , which is a shorthand expression for the set of indices: M = fi1i2 : : : iNg. The
number of conceivable messages is aN . By

P
M we mean a sum over all of them. Also, de�ne

Nj(M) � (number of times the letter Aj appears in message M)

Nij(M) � (number of times the digram AiAj appears in M)
and so on.

Consider �rst an engineer E1, who has a set of numbers (f1 : : : fa) giving the relative frequencies
of the letters Aj , as observed in past samples of messages, but has no other prior knowledge. What
communication system represents rational design on the basis of this much information, and what
channel capacity does E1 require in order to transmit messages at a given rate of n symbols per
second?

To answer this, we need the probability distribution p(M) which E1 assigns to the various
conceivable messages. Now Mr. E1 has no deductive proof that the letter frequencies in the future
messages will be equal to the fi observed in the past. On the other hand, his state of knowledge
a�ords no grounds for supposing that the frequency of Ai will be greater than fi rather than less,
or vice versa. So he is going to suppose that frequencies in the future will be more or less the same
as in the past, but he is not going to be too dogmatic about it. He can do this by requiring of
the distribution p(M) only that it yield expected frequencies equal to the known past ones. Put
di�erently, if we say that our distribution p(M) \contains" certain information, we mean that that
information can be extracted back out of it by the usual rule of estimation. In other words, E1 will
impose the constraints

hNii =
X
M

Ni(M)p(M) = Nfi; i = 1; 2; : : : ; a: (27{25)

Of course, p(M) is not uniquely determined by these constraints, and so E1 must at this point
make a free choice of some distribution.

We emphasize again that it makes no sense to say there exists any \physical" or \objective"
probability distribution p(M) for this problem. This becomes especially clear if we suppose that
only a single message is ever going to be sent over the communication system, but we still want it to
be transmitted as quickly and reliably as possible, whatever that message turns out to be (perhaps
we know that the system will be destroyed by impact on Ganymede immediately afterward); thus
there is no conceivable way in which p(M) could be measured as a frequency. But this would in no
way a�ect the problem of engineering design which we are considering.

In choosing a distribution p(M), it would be perfectly possible for E1 to assume some message
structure involving more than single letters. For example, he might suppose that the digram A1A2

is twice as likely as A2A3. But from the standpoint of E1 this could not be justi�ed, for as far

as he knows, a design based on any such assumption is as likely to hurt as to help. From E1's
standpoint, rational conservative design consists just in carefully avoiding any such assumptions.
This means, in short, that E1 should choose the distribution p(M) by maximum entropy consistent
with (27{25).

All the formalism of the maximum{entropy inference developed in Chapter 11 now becomes
available to E1. His distribution p(M) will have the form

log p(M) + �0 + �1N1(M) + �2N2 + : : :+ �aNa(M) = 0 (27{26)

and in order to evaluate the Lagrangian multipliers �i, he will use the partition function
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Z(�1 : : :�a) =
X
M

exp[��1N1(M)� : : :� �aNa(M)] = zN (27{27)

where

z ���1 + : : :+ e��a : (27{28)

From (27{25) and the general relation

hNii = �
@

@�i
logZ(�1 : : :�a) (27{29)

we �nd

�i = � log(zfi); 1 � i � a (27{30)

and, substituting back into (27{26), we �nd the distribution which describes E1's state of knowledge
is just the multinomial distribution:

p(M) = fN1

1 fN2

2 : : : fNa

a (27{31)

which is a special case of an exchangeable sequence; the probability of any particular message
depends only on how many times the letters A1; A2; : : : appear, not on their order. The result (27{
31) is correctly normalized,

P
M p(M) = 1, as we see from the fact that the number of di�erent

messages possible for speci�ed Ni is just the multinomial coe�cient

N !

N1! : : :Na!
:

The entropy per symbol of the distribution (27{31) is

H1 = �
1

N

X
M

p(M) log p(M) =
logZ

N
+

aX
i=1

�ifi = �
aX
i=1

fi log fi: (27{32)

Having found the assignment p(M), he can encode into binary digits in the most e�cient way by a
method found independently by Shannon (1948, Sec. 9) and R. M. Fano. Arrange the messages in
order of decreasing probability, and by a cut separate them into two classes so the total probability
of all messages to the left of the cut is as nearly as possible equal to the probability of the messages
on the right. If a given message falls in the left class the �rst binary digit in its code is 0; if in
the right, 1. By a similar division of these classes into subclasses with as nearly as possible a total
probability of 1/4, we determine the second binary digit, etc. It is left for you to prove that (1)
the expected number of binary digits required to transmit a symbol is equal to H1, when expressed
in bits, and (2) in order to transmit at a rate of n of the original message symbols per second, E1

requires a channel capacity C � nH1, a result �rst given by Shannon.

The preceding mathematical steps are so well{known that they might be called trivial. How-
ever, the rationale which we have given them di�ers essentially from that of conventional treatments,
and in that di�erence lies the main point of this section. Conventionally, one would use the fre-
quency de�nition of probability, and say that E1's probability assignment p(M) is the one resulting
from the assumption that there are no intersymbol inuences. Such a manner of speaking carries
a connotation that the assumption might or might not be correct, and the implication that its
correctness must be demonstrated if the resulting design is to be justi�ed; i.e. that the resulting
encoding rules might not be satisfactory if there are in fact intersymbol inuences unknown to E1.

On the other hand, we contend that the probability assignment (27{26) is not an assumption
at all, but the opposite. Eq. (27{26) represents, in a certain na��ve sense which we shall come
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back to later, the complete absence of any assumption on the part of E1, beyond speci�cation of
expected single{letter frequencies, and it is uniquely determined by that property. Because of this,
the design based on (27{26) is the safest one possible on his state of knowledge.

By that we mean the following. If, in fact, strong intersymbol correlations do exist unknown
to E1 (for example, Q is always followed by U), his encoding system will still be able to handle the
messages perfectly well, whatever the nature of those correlations. This is what we mean by saying
that the present design is the most conservative one; that it assumes nothing about correlations
does not mean that it assumes no correlations and will be in trouble if correlations are in fact
present. On the contrary, it means that it is prepared in advance for whatever kind of correlations

might exist ; they will not cause any deterioration in performance. We stress this point because it
was not noted by Shannon, and it does not seem to be comprehended in the more recent literature.

But if he had been given this additional information about some particular kind of correlations,
he could have used it to arrive at a new encoding system which would be still more e�cient (i.e.
would require a smaller channel capacity), as long as messages with only the speci�ed type of

correlation were transmitted . But if the type of correlations in the messages were suddenly to
change, this new encoding system would likely become worse than the one just found.

Better Encoding From Knowledge of Digram Frequencies.

Here is a rather long mathematical derivation which has, however, useful applications outside the
particular problem at hand. Consider a second engineer, E2. He has a set of numbers fij , 1 � i � a,
1 � j � a, which represent the expected relative frequencies of the digrams AiAj . E2 will assign
message probabilities p(M) so as to agree with his state of knowledge,

hNiji =
X
M

Nij(M)p(M) = (N � 1)fij (27{33)

and in order to avoid any further assumptions which are as likely to hurt as to help as far as

he knows, he will determine the probability distribution over messages p(M) which has maximum
entropy subject to these constraints. The problem is solved if he can evaluate the partition function

Z(�ij) =
X
M

exp

2
4�

aX
ij=1

�ijNij(M)

3
5 : (27{34)

This can be done by solving the combinatorial problem of the number of di�erent messages with
given fNijg, or by observing that (27{34) can be written in the form of a matrix product:

Z =
aX

ij=1

�
QN�1

�
ij

(27{35)

where the matrix Q is de�ned by

Qij � e��ij : (27{36)

The result can be simpli�ed formally if we suppose that the messageAi1 : : :AiN is always terminated
by repetition of the �rst symbol Ai1 , so that it becomes Ai1 : : :AiNAi1 . The digram AiNAi1 is added
to the message and an extra factor exp(��ij) appears in (27{34). The modi�ed partition function
then becomes a trace:

Z0 = Tr(QN) =
aX

k=1

qNk (27{37)

where the qk are the roots of jQij � q�ij j = 0. This simpli�cation would be termed \use of periodic
boundary conditions" by the physicist. Clearly, the modi�cation leads to no di�erence in the limit
of long messages; as N ! 1,
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lim
1

N
logZ = lim

1

N
logZ0 = log qmax (27{38)

where qmax is the greatest eigenvalue of Q. The probability of a particular message is now a special
case of (27{82):

p(M) =
1

Z
exp[�

X
�ijNij(M)] (27{39)

which yields the entropy as a special case of (27{82):

S = �
X
M

p(M) log p(M) = logZ +
X
ij

�ijhNiji: (27{40)

In view of (27{33) and (27{38), Mr. E2's entropy per symbol reduces, in the limit N !1, to

H2 =
S

N
= log qmax +

X
ij

�ijfij (27{41)

or, since
P

ij fij = 1, we can write (27{41) as

H2 =
X
ij

fij(log qmax + �ij) =
X
ij

fij log

�
qmax

Qij

�
: (27{42)

Thus to calculate the entropy we do not need qmax as a function of the �ij (which would be
impractical analytically for a > 3), but we need �nd only the ratio qmax=Qij as a function of the
fij . To do this, we �rst introduce the characteristic polynomial of the matrix Q:

D(q) � det(Qij � q�ij) (27{43)

and note, for later purposes, some well-known properties of determinants. The �rst is

D(q)�ik =
aX

j=1

Mij(Qkj � q�kj) =
X
j

MijQkj � qMik (27{44)

and similarly,

D(q)�ik =
X
j

MjiQjk � qMki (27{45)

in which Mij is the cofactor of (Qij � q�ij) in the determinant D(q); i.e. (�)i+jMij is the deter-
minant of the matrix formed by striking out the ith row and jth column of the matrix (Q� q1). If
q is any eigenvalue of Q, the expression (27{44) vanishes for all choices of i and k.

The second identity applies only when q is an eigenvalue of Q. In this case, all minors of the
matrix M are known to vanish. In particular, the second order minors are

MikMjl �MilMjk = 0; if D(q) = 0: (27{46)

This implies that the ratios (Mik=Mjk) and (Mki=Mkj) are independent of k; i.e. that Mij must
have the form

Mij = aibj ; if D(q) = 0: (27{47)

Substitution into (27{44) and (27{47) then shows that the quantities bj form the right eigenvectors
of Q, while ai is a left eigenvector:X

j

Qkjbj = qbk; if D(q) = 0 (27{48)

X
i

aiQik = akq; if D(q) = 0: (27{49)
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Suppose now that any eigenvalue q of Q is expressed as an explicit function q(�11; �12; : : : ; �aa) of
the Lagrangian multipliers �ij. Then, varying a particular �kl while keeping the other �ij �xed,
q will vary so as to keep D(q) identically zero. By the rule for di�erentiating the determinant
(27{43), this gives

dD

d�kl
=

@D

@�kl
+
@D

@q

@q

@�kl
= �MklQkl �

@q

@�kl
Tr(M) = 0 (27{50)

Using this relation, the condition (27{33) �xing the Lagrangian multipliers �ij in terms of the
prescribed digram frequencies fij , become

fij = �
@

@�ij
log qmax =

MijQij

qmaxTr(M)
: (27{51)

the single-letter frequencies are proportional to the diagonal elements of M :

fi =
aX

j=1

fij =
Mii

Tr(M)
(27{52)

where we have used the fact that (27{44) vanishes for q = qmax, i = k. Thus, from (27{51) and
(27{52), the ratio needed in computing the entropy per symbol is

Qij

qmax

=
fij

fi

Mii

Mij

=
fij

fi

bi

bj
(27{53)

where we have used (27{47). Substituting this into (27{42), we �nd that the terms involving bi
and bj cancel out, and E2's entropy per symbol is just

H2 = �
X
ij

fij log

�
fij

fi

�
= �

X
ij

fij log fij +
X
i

fi log fi: (27{54)

This is never greater than E1's H1, for from (27{82), (27{54),

H2 �H1 =
X
ij

fij log

�
fifj

fij

�
�
X
ij

fij

�
fifj

fij
� 1

�
= 0

where we used the fact that log x � x � 1 in 0 � x < 1, with equality if and only if x = 1.
Therefore,

H2 � H1 (27{55)

with equality if and only if fij = fifj , in which case E2's extra information was only what E1

would have inferred. To see this, note that in the message M = fi1 : : : iNg, the number of times
the digram AiAj occurs is

Nij(M) = �(i; i1)�(j; i2) + �(i; i2)�(i; i3) + � � �+ �(i; iN�1)�(j; iN) (27{56)

and so, if we ask E1 to estimate the frequency of digram AiAj , by the criterion of minimizing the
expected square of the error, he will make the estimate

hfiji =
hNiji

N � 1
=

1

N � 1

X
M

p(M)Nij(M) = fifj (27{57)
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using for p(M) the distribution (27{82) of E1. In fact, the solutions found by E1 and E2 are
identical if fij = fifj , for then we have from (27{51), (27{52), and (27{47),

Qij = e��ij = qmax

p
fifj : (27{58)

Using (27{38), (27{56), and (27{58), we �nd that E2's distribution (27{39) reduces to (27{82).
This is a rather nontrivial example of what we noted in Chapter 11, Eq. (11{74).

Relation to a Stochastic Model.

The quantities introduced above acquire a deeper meaning in terms of the following problem.
Suppose that part of the message has been received, what can Mr. E2 then say about the remainder
of the message? This is answered by recalling our product rule

p(ABjI) = p(AjBI)p(BjI)

or, the conditional probability of A, given B, is

p(AjBI) =
p(ABjI)

p(BjI)
(27{59)

a relation which in conventional theory, which never mentions prior information I , is taken as the
de�nition of a conditional probability (i.e., the ratio of two \absolute" probabilities). In our case,
let I stand for the general statement of the problem leading to the solution (27{39), and let

B � \The �rst (m� 1) symbols are fi1i2 : : : im�1g."

A � \The remainder of the message is fim : : : iNg."

Then p(ABjI) is the same as p(M) in (27{39). Using (27{56), this reduces to

p(ABjI) = p(i1 : : : iN jI) = Z�1Qi1i2Qi2i3 � � �QiN�1 iN (27{60)

and in

p(BjI) =
aX

im=1

� � �
aX

iN=1

p(i1 : : : iN jI) (27{61)

the sum generates a power of the matrix Q, just as in the partition function (27{35). Writing, for
brevity, im�1 = i, im = j, iN = k, and

R �
1

Z
Qi1i2 � � �Qim�2im�1 ; (27{62)

we have

p(BjI) = R

aX
k=1

(QN+m+1)ik = R

aX
jk=1

Qij(Q
N�m)jk (27{63)

and so

p(AjBI) =
QijQimim+1

� � �QiN�1iNPa

k=1
(QN�m+1)ik

(27{64)

since all the Q's contained in R cancel out, we see that the probabilities for the remainder fim : : : iNg
of the message depend only on the immediately preceding symbol Ai, and not on any other details
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of B. This property de�nes a generalized Markov Chain. There is a huge literature dealing with
them; it is perhaps the most thoroughly worked out branch of probability theory, and we used a
rudimentary form of it in calculating the conditional sampling distributions in Chapter 3. The basic
tool, from which essentially all else follows, is the matrix pij of \elementary transition probabilities."
This is the probability pij = p(Aj jAiI) that the next symbol will be Aj , given that the last one
was Ai. Summing (27{64) over im+1 : : : iN , we �nd that for a chain of length N the transition
probabilities are

p
(N)

ij = p(Aj jAiI) =
Qij � TjP
k QikTk

(27{65)

where

Tj �
aX

k=1

(QN�m)jk: (27{66)

The fact that Tj depends on N and m is an interesting feature. Usually, one considers from the
start a chain inde�nitely prolonged, and so it is only the limit of (27{65) for N ! 1 that is ever
considered. This example shows that prior knowledge of the length of the chain can a�ect the
transition probabilities; however, the limiting case is clearly of greatest interest.

To �nd this limit we need a little more matrix theory. The equation D(q) = det(Qij�q�ij) = 0
has a roots (q1q2 : : : qa), not necessarily all di�erent, or real. Label them so that jq1j � jqqj � : : : �
jqaj. There exists a nonsingular matrix A such that AQA�1 takes the canonical \superdiagonal"
form:

AQA�1 = Q =

0
BB@
C1 0 0 � � �
0 C2 0 � � �
0 0 C3 � � �
...

...
... Cm

1
CCA (27{67)

where the Ci are sub-matrices which can have either the forms

Ci =

0
BBBB@

qi 1 0 0 � � �
0 qi 1 0 � � �
0 0 qi 1 � � �
0 0 0 qi 1
...

...
... 0 qi

1
CCCCA or, Ci =

0
BB@
qi

qi
. . .

qi

1
CCA : (27{68)

The result of raising Q to the n'th power is

Qn = AQ
n
A�1 (27{69)

and as n!1, the elements ofQ
n
arising from the greatest eigenvalue qmax = q1 become arbitrarily

large compared to all others. If q1 is nondegenerate, so that it appears only in the �rst row and
column of Q, we have

lim
N!1

�
Tj

qN�m1

�
= Aj1

aX
k=1

(A�1)1k; (27{70)

lim
N!1

�
TjP

k QikTk

�
=

Aj1

q1Ai1

; (27{71)

and the limiting transition probabilities are
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p
(1)

ij =
Qij

q1

Aj1

Ai1

=
Qij

q1

Mij

Mii

(27{72)

where we have used the fact that the elements Aj1 (j = 1; 2; : : : ; a) from an eigenvector of Q with
eigenvalue q1 = qmax, so that, referring to (27{47), (27{82), Aj1 = Kbj where K is some constant.
Using (27{51), (27{52), we have �nally,

p
(1)

ij =
fij

fi
: (27{73)

From this long calculation we learn many things. In the �rst place, for a sequence of �nite length
(the only kind that actually exists), the exact solution has intricate �ne details that depend on the
length. This, of course, could not be learned by those who try to jump directly into an in�nite set
at the beginning of a problem. Secondly, it is interesting that standard matrix theory was adequate
to solve the problem completely. Finally, in the limit of in�nitely long sequences the exact solution
of the maximum{entropy problem does indeed go into the familiar Markov chain theory. This gives
us a deeper insight into the basis of, and possible limitations on, Markov chain analysis.

Exercise 22-1: The exact meaning of this last statement might be unclear; in a classical
Markov chain the transition probabilities two steps down the chain would be given by the square
of the one{step matrix pij , three steps by the cube of that matrix, and so on. But our solution
determines those multi{step probabilities by summing (27{64) over the appropriate indices,
which is not obviously the same thing. Investigate this and determine whether the maximum
entropy multi{step probabilities are the same as the classical Markov ones, or whether they
become the same in some limit.

We see that the Maximum{Entropy Principle su�ces to determine explicit solutions to prob-
lems of optimal encoding for noiseless channels. Of course, as we consider more complicated con-
straints (trigram frequencies, etc.), pencil{and{paper methods of solution will become impossibly
di�cult (there is no `standard matrix theory' for them), and to the best of our knowledge we must
resort to computers.

Now Shannon's ostensibly strongest theorem concerns the limit as n ! 1 of the problem
with n-gram frequencies given; his H � lim Hn is held to be the \true" entropy of the English
language, which determines the \true" minimum channel capacity required to transmit it. We do
not question this as a valid mathematical theorem, but from our discussion above it is clear that
such a theorem can have no relevance to the real world, because there is no such thing as a \true"
n-gram frequency for English even when n = 1.

Indeed, even if such frequencies did exist, think for a moment about how one would determine
them. Even if we do not distinguish between capital and small letters and include no decimal digits
or punctuation marks in our alphabet, there are 2610 = 1:41�1014 ten{grams whose frequencies are
to be measured and recorded. To store them all on paper at 1000 entries per sheet would require
a stack of paper about 7000 miles high.

************************* MORE COMING! NOISY CHANNELS! *******************

When we turn to the noisy channel, fundamentally new features appear, and even the basic
theorems given by Shannon have been called into question by mathematicians. But they did not
have the tool of probability theory as logic; so let us see whether we are now in a better position
to deal with these problems.

The Noisy Channel

From a physical standpoint, the basic idea is that the transmitted messages are corrupted en route,
in an unpredictable and uncontrollable way, so that a given sent message can produce any one of
several!
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************************* MORE COMING! *******************

Fixing a Noisy Channel

Let us examine the simplest nontrivial case, where the noise acts independently (without memory)
on each separate letter transmitted. Suppose that each letter has independently the probability �

of being transmitted incorrectly. Then in a message of N letters the probability that there are r
errors is the binomial

p(r) =

�
N

r

�
�r (1� �)N�r (27{74)

and the expected number of errors is hri = N�. Then if N� << 1, we might consider the com-
munication system satisfactory for most purposes. However, it may be essential that the message
be transmitted without any error at all (as in sending a computer code instruction to a satellite
in orbit). The �eld of fancy error{correcting codes has a large literature and much sophisticated
theory; but a very popular and simple procedure is the checksum.

Suppose, as is usually the case in computer practice, that our \alphabet" consists of 28 = 256
di�erent characters sent as eight{bit binary numbers, called `bytes'. At the end of the message one
transmits one more byte, which is numerically the sum (mod 256) of the N previous ones. The
receiver recalculates this sum from the �rst N bytes received, and compares it with the transmitted
checksum. If they agree, then it is virtually certain that the transmission was error{free (if there
is an error, then there must be at least two errors which just happened to cancel each other out in
the checksum, and the probability of this is astronomically small, far less than �). If they disagree,
then it is certain that there was a transmission error, so the receiver sends back a \please repeat"
signal to the transmitter, and the process is repeated until error{free transmission is achieved.

Let us see just how good the checksum procedure is according to probability theory. Write,
for brevity,

q � (1� �)N+1: (27{75)

Then to achieve error{free transmission, there is

probability q that it will require (N + 1) symbols transmitted.

probability (1� q)q that 2(N + 1) symbols will be required.

probability (1� q)2q that 3(N + 1) symbols will be required,

� � � and so on.

The expected length of transmission to achieve error{free operation is then the sum

hLi = (N + 1)q[1 + 2(1� q) + 3(1� q)2 + 4(1� q)3 + � � �]: (27{76)

Since j1� qj < 1, the series converges to 1=q2, and so

hLi =
N + 1

(1� �)N+1
' NeN�; (27{77)

the approximation holding reasonably well if N >> 1. But if the message is so long that N� >> 1,
this procedure fails; there is almost no chance that we could transmit it without error in any feasible
time.

But now an ingenious device comes to the rescue, and shows how much a little probability
theory can help us to achieve exactitude. Let us break the long message into m shorter blocks of
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length n = N=m, and transmit each block with its own checksum. From (27{77) the expected total
transmission length is now

hLi = m
n + 1

(1� �)n+1
= N

n+ 1

n(1� �)n+1
(27{78)

It is evident that if the blocks are too long, then we shall have to repeat too many of them; if they
are too short, then we shall waste transmission time sending many unnecessary checksums. Thus
there should be an optimal block length, which minimizes (27{78). Providentially, this turns out
to be independent of N ; varying n, (27{78) reaches a minimum when

1 + n(n+ 1) log(1� �) = 0; or (1� �)n+1 = exp(�1=n) (27{79)

For all practical purposes, then, the optimal block length is

(n)opt =
1
p
�

(27{80)

and the minimum achievable expected length is

hLimin = N �
n+ 1

n
� exp

�
1

n

�
' N(1 + 2

p
�) (27{81)

By breaking a long message into blocks, we have made an enormous improvement. If � ' 10�4, then
it would be impractical to send an error{free message of length N = 100; 000 bytes in a single block;
for one expects about 10 errors in each transmission. The expected transmission length would be
about 22; 000N bytes, signifying that we would have to repeat the message, on the average, about
22; 000 times before achieving one error{free result. But the optimal block length is about n ' 100,
and by using this the expected length is reduced to hLi = 1:020N . This signi�es that we are sending
1000 blocks, of which each has one extra byte (which accounts for the factor (n+1)=n ' 1+

p
�) and

about 10 will probably need to be repeated (which corresponds to the factor exp(1=n) ' 1 +
p
�).

But the minimum in (27{78) is very broad; if 40 � n � 250, we have hLi � 1:030N . If � = 10�6,
then the block technique allows us to transmit error{free messages of any length with virtually no
penalty in transmission time [hLi ' 1:002N if n is anywhere near 1000].

To the best of our knowledge, the block technique is an intuitive ad hockery, not derived
uniquely from any optimality criterion; yet it is so simple to use and comes so close to the best
that could ever be hoped for [hLi = N ], that there is hardly any incentive to seek anything better.

In the early days of microcomputers, messages were sent to and from disks in block lengths of
128 or 256 bytes, which would be optimal if the error probability for each byte were of the order
� ' 10�5. At the time of writing (1991) they are being sent instead in blocks of 1024 to 4096 bytes,
suggesting that disk reading and writing is now reliable to error probabilities of the order of 10�8

or better. Of course, it is conservative design to use block lengths somewhat shorter than the above
optimal value, to hedge against deterioration in performance as the equipment wears out and the
error rate increases.

But let us note a point of philosophy; in this discussion, have we abandoned our stance of
probability theory as logic, and reverted to frequency de�nitions? Not at all! It is perfectly true
that if the error probability � is indeed an \objectively real" frequency of errors measured in
some class of repetitions of all this, then our hLimin is equally well the objectively real minimum
achievable average transmission length over that same class of repetitions.

But there are few cases where this is really known to be true; such experiments are costly in
time and resources. In the real world, they are never completed before the design becomes frozen
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and the manufactured product delivered to the customers. Indeed, reliability experiments on highly
reliable systems can never be really completed at all, because in the time it requires to do them,
our state of knowledge and technical capabilities will change, making the original purpose of the
test irrelevant.

Our present point is that probability theory as logic works as well, in the following sense,
whether our probabilities are or are not known to be real frequencies. As we saw in Chapter 8, it
is an elementary derivable consequence of probability theory as logic that our probabilities are the
best estimates of those frequencies that we can make on the information we have.

Then, whatever the evidence on which that probability assignment � was based, the above
equations still describe the most rational design that could have been made, here and now, on the

information we had. As noted, this remains true even if we know in advance that only a single
message is ever going to be sent over our communication system. Thus probability theory as logic
has a wider range of applications, even in situations where one sometimes pretends that he is using
a frequency de�nition for psychological reasons.

******************** A LITTLE MORE HERE! *****************************


