—' '3”‘" HTML40-970708

HTML 4.0 Specification

W3C Working Draft 8-July-1997

This is] http://www.w3.0rg/TR/WD-html40-970708/

Abstract

This specification defines the HyperText Markup Language (HTML), version 4.0, the publishing language
of the World Wide Web. In addition to the text, multimedia, and hyperlink features of the previous
versions of HTML, HTML 4.0 supports more multimedia options, scripting languages, style sheets, better
printing facilities, and documents that are more accessible to users with disabilities. HTML 4.0 also takes
great strides towards the internationalization of documents, with the goal of making the Web truly World
Wide.

Status of this document

This is a W3C Working Draft for review by W3C members and other interested parties. It is a draft
document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate
to use W3C Working Drafts as reference material or to cite them as other than "work in progress". This is
work in progress and does not imply endorsement by, or the consensus of, either W3C or members of the
HTML working group.

This document has been produced as part ¢f the W3C HTML Agtivity, and is intended as a draft of a
proposed recommendation for HTML.

The latest version of this document can be retrieved from the list of W3C technical reports at
qhttp://www.w3.0rg/TR/> and is available as a gzip’ed tar file, a zip file, as well as a postscript (about
200 pages).

We also plan to provide translations in other languages, although the English version provides the
normative specification.

HTML 4.0 replaces HTML 3.2, specified[in http://www.w3.0rg/TR/REC-htmI32.

Editors

e [Dave Raggdt <dsr@w3.org>
® |Arnaud Le Hors <lehors@w3.org>

e lan Jacobs <ij@wa3.org>

http://www.w3.org/Consortium/
http://www.w3.org/TR/WD-html40-970708/
http://www.w3.org/MarkUp/Activity.html
http://www.w3.org/TR/
http://www.w3.org/TR/REC-html32
http://www.w3.org/People/Raggett
http://www.w3.org/People/Arnaud

Comments

Please send detailed comments on this document to www-html-editor@w3.org. We cannot garantee a
personal response but we will try when it is appropriate. Public discussion on HTML features takes place

on|www-html@w3.orp.

http://www.w3.org/MarkUp/Forums#www-html

Table of Contents

1. |About the HTML 4.0 Specificatipn
2. [Introduction to HTML 40
1. |Design principles of HTML 4]0
2. [Designing documents with HTML 4.0
3. |A brief SGML tutorigl
3. |Definitions and Conventions
4. [HTML and URLE Locating resources on the Web
5. [HTML Document Character $&tharacter sets, character encodings, and entities
6. |Basic HTML data typgsCharacter data, colors, and lengths
7. |Structure of HTML documentDetailed Table of Contents
1. |Global structure The HEAD and BODY of a document
2. |Language information and text direcfioimternational considerations for text
3. [Tex}- Paragraphs, Lines, and Phrases
4. [List$- Unordered, Ordered, and Definition Lists
5
6

-

. [Cinkg- Hypertext and Media-Independent Links
7. Objects, Images, and Applets in HTML documents
8. |Presentation of HTML documeptBetailed Table of Contents
1. [Style ShedtsControlling the presentation of an HTML document
2. |Alignment, font styles, and horizontal rjles
3. [Framds Multi-view presentation of documents
9. |[Interactive HTML documentsDetailed Table of Contents

1. User-input Forms: Text Fields, Buttons, Menus, and more
2. Animated Documents and Smart Forms

10. [SGML reference information for HTYHFormal definition of HTML and validation
1. [SGML Declaration
2. |Document Type Definitign
3. [Named character entifies

11. [References

12. [Indexds
1. [Index of Elements
2. [Index of Attributels

13. [Appendixes
1. [Changes between HTML 3.2 and HTML|4.0
2. |Performance, Implementation, and Design Notes

3. [HTML and Organizations (W3C, IETF, I30)

About the HTML 4.0 Specification

Contents

1. |[How to read the specification
2. |How the specification is organized
3. |Acknowledgmenis

This document has been written with two types of readers in mind: HTML authors and HTML
implementors. We hope the specification will provide authors with the tools they need to write efficient,
attractive, and accessible documents, without overexposing them to HTML’s implementation details.
Implementors, however, should find all they need to build user agents that interpret HTML correctly.

The specification has been written with two modes of presentation in mind: electronic and printed.
Although the two presentations will no doubt be similar, readers will find some differences. For example,
links will not work in the printed version (obviously), and page numbers will not appear in the electronic
version. In case of a discrepancy, the electronic version is considered the authoritative version of the
document.

How to read the specification
The specification may be approached in several ways:

® Read from beginning to end.The specification begins with a general presentation of HTML and
becomes more and more technical and specific towards the end. This is reflected in the
specification’s main table of contents, which presents topical information, and the indexes, which
present lower level information in alphabetical order.

® Quick access to information.n order to get information about syntax and semantics as quickly as
possible, the electronic version of the specification includes the following features:
1. Every reference to an element or attribute is linked to its definition in the specification.

2. Every page will include links to the indexes, so you will never be more than two links away
from finding the definition of an element or attribute.

3. The front pages of the three sections of the language reference manual extend the initial table of
contents with more detail about each section.

How the specification is organized

This specification includes the following sections:

Section 2: Introduction to HTML 4.0.
The introduction gives an overview of what can be done with HTML 4.0. It also provides some
design tips for developing good HTML habits.

Sections 3 - 11: HTML 4.0 reference manual.
The bulk of the reference manual consists of the HTML language reference, which defines all
elements and attributes of the language.

This document has been organized by topic rather than by the grammar of HTML. Topics are
grouped into three categories: structure, presentation, and interactivity. Although it is not easy to
divide HTML constructs perfectly into these three categories, the model reflects the designers’
experience that separating a document’s structure from its presentation produces more effective and
maintainable documents.

The language reference consists of the following information:

° used by the editors of this specification.

e How HTML fits into the World Wide Web and an introduction to related Web languages and
protocols such gs URLs.

e What[characte}s may appear in an HTML document.
e Basid data typés of an HTML document.

® Elements that pertain to the structure of an HTML document, including text, lists, tables, links,
and included objects, images, and applets.

® Elements that pertain to the presentation of an HTML document, including style sheets, fonts,
colors, rules, and other visual presentation, and frames for multi-windowed presentations.

® Elements that pertain to interactivity with an HTML document, including forms for user input
and scripts for active documents.

® The SGML definition of HTML, including the SGML declaration of HTML, the HTML DTD,
and the list of character entities.

® |Referencsds.

Section 12: Quick reference indexes.
Two indexes give readers rapid access to the definition of all elements and attributes The indexes
also summarize some key characteristics of each element and attribute.

Section 13: Appendixes.
The appendix contains information abjput changes from HTML 3.2, performance and implemgntation
[note$, and hofv W3C and other organizalions interact with respect to HTML.

Acknowledgments

Thanks to everyone who has helped to author the working drafts that went into the HTML 4.0
specification, and all those who have sent suggestions and corrections. A particular thanks to T.V. Raman
for his work on improving the accessibility of HTML forms for people with disabilities.

The authors of this specification, the members of the W3C HTML Working Group, deserve much
applause for their diligent review of this document, their constructive comments, and their hard work:
John D. Burger, Steve Byrne, Martin J. Durst, Daniel Glazman, Scott Isaacs, Murray Maloney, Steven
Pemberton, Jared Sorensen, Powell Smith, Robert Stevahn, Ed Tecot, Jeffrey Veen, Mike Wexler, Misha
Wolf, and Lauren Wood.

Thank you Dan Connolly for thoughtful input and guidance as chairman of the HTML working group.
Thank you Sally Khudairi for your indispensible work on the press release.

Of particular help from the Inria at Sophia-Antipolis were Janet Bertot, Bert Bos, Stephane Boyera, Daniel
Dardailler, Yves Lafon, Hakon Lie, Chris Lilley, and Colas Nahaboo.

Lastly, thanks to Tim Berners-Lee without whom none of this would have been possible.

Introduction to HTML 4.0

Contents

This is being written ...

Design principles of HTML 4.0

As you read the specification, you may find it enlightening to keep in mind the following principles that
guided the design of HTML 4.0.

® Interoperability

While most people agree that HTML documents should work well across different browsers and
platforms, achieving interoperability implies higher costs to content providers since they must
develop different versions of documents. If the effort is not made, however, there is much greater risk
that the Web will devolve into a proprietary world of incompatible formats, ultimately reducing the
Web’s commercial potential for all participants.

Each version of HTML attempts to reach greater consensus among industry players so that the
investment made by content providers will not be wasted and that their documents will not become
unreadable in a short period of time.

HTML has been developed with the vision that all manner of devices should be able to use
information on the Web: PCs with graphics displays of varying resolution and color depths, cellular
telephones, hand held devices, devices for speech for output and input, computers with high or low
bandwidth, and so on.

® [nternationalization

This version of HTML has been designed with the help of experts in the field of internationalization,
so that documents may be written in every language and be transported easily around the world. This
has been accomplished by incorporating [RFCZ070], which deals with the internationalization of
HTML.

One important step has been the adoption of the ISO/IEC:10646 stand@rd (see [I3010646]) as the

document character set for HTML. This is the world’s most inclusive standard dealing with issues of
the representation of international characters, text direction, punctuation, and other world language

Issues.

HTML now offers greater support for diverse human languages within a document. This allows for
more effective indexing of documents for search engines, higher-quality typography, better
text-to-speech conversion, correct hyphening, etc.

® Accessibility

As the Web community grows and its members diversify in their abilities and skills, it is crucial that
the underlying technologies be appropriate to their specific needs. HTML has been designed to make
Web pages more accessible to those with physical limitations. HTML 4.0 developments in the area of
accessibility include:

O Encouraging the use of style sheets (rather than tables) to achieve layout effect.
O Making it easier to provided alternate (textual and aural) descriptions of images for non-visual
browsers.

O Providing active labels for form fields
O Providing labeled hierarchical groupings for form fields.
O Providing the ability to associate a longer text description with an HTML element.

Authors who design pages with accessibility issues in mind will not only receive the blessings of the
accessbility community, but will benefit in other ways as well: well-designed HTML documents that
distinguish structure and presentation will adapt more easily to new technologies.

® Tables

The new table model in HTML is based[on [RFC1P42]. Authors now have greater control over
structure and layout (e.g., column groups). The ability of designers to recommend column widths
allows user agents to display table data incrementally (as it arrives) rather than waiting for the entire
table before rendering.

® Compound documents

HTML now offers a standard mechanism for embedding generic media objects and applications in
HTML documents. ThBJECfelement (together with its more specific ancestor elerjiki@sand
provides a mechanism for including images, video, sound, mathematics, specialized
applications, and other objects in a document. It also allows authors to specify a hierarchy of
alternate renderings for user agents that don’t support a specific rendering.

® Style sheets

Style sheets simplify HTML markup and largely relieve HTML of the responsibilities of
presentation. They give both authors and users control over the presentation of documents --- font
information, alignment, colors, etc.

Stylistic information can be:

O Attached to a specific element to affect, say the color or font of its content.
O Placed in the document header as a series of styles comprising a style sheet
O Linked to an HTML from an external style sheet.

The mechanism for associating a style sheet with a document is independent of the style sheet
language.

® Scripting

Through scripts, authors may create "smart forms" that react as users fill them out. Scripting allows
designers to create dynamic Web pages, and to use HTML as a means to build networked
applications. The mechanisms provided to associate HTML with scripts are independent of particular
scripting languages.

® Printing

HTML features allow user agents to print a collection of documents in an intelligent manner based on
descriptions of the relationships among documents acting as parts of a larger work.

Ease of use

This version of HTML has been designed to remain easy to learn and adequate for many common
publishing needs. The language offers more complex constructs (e.g., forms, scripting) for more
sophisticated tasks, but even these mechanisms will become easier to use as powerful HTML
authoring tools flourish.

Beware - at the time of writing, some HTML authoring tools rely extensively on tables for formatting,
which may easily cause accessibility problems.

10

Designing documents with HTML 4.0
General principles for good HTML design and implementation include:
® Separate structure and presentation

HTML has its roots in SGML which has always been a language for the specification of structural
markup. As HTML matures, more and more of its presentational elements and attributes are being
replaced by other mechanisms, in particular style sheets. Experience has shown that separating the
structure of a document from its presentational aspects reduces the cost of serving a wide range of
platforms, media, etc., and facilitates document revisions.

e Consider universal accessibility to the Web

To make the Web more accessible to everyone, notably those with disabilities, authors should
consider how their documents may be rendered on a variety of platforms: speech-based browsers,
braille-readers, etc. We do not recommend that designers limit their creativity, only that they
consider alternate renderings in their design. HTML offers a number of mechanisms to this end (e.g.,

thelalt] attribute, thfaccesskey] attribute, etc.)

Furthermore, authors should keep in mind that their documents may be reaching a far-off audience
with different computer configurations. In order for documents to be interpreted correctly, designers
should include in their documents information about the language and direction of the text, how the
document is encoded, and other issues related to internationalization.

® Help user agents with incremental rendering

By carefully designing their tables and making use of new table features in HTML 4.0, designers can
help user agents render documents more quickly.

11

A brief SGML tutorial

Contents

1.
2.
1
2. [Elemenis
3. |Attributes
4. [HTML comments
3. |How to read the HTML DTD
1. |Block level and Inline elemepts
2. |DTD Comments
3. [Entity Definitiong
4. [Element definitions
5. |Attribute definitions

This section of the document presents introductory information about SGML and its relationship to
HTML. It discusses:

o [HTML syntax| How to write elements, attributes, and comments.
e [The HTML DTD] How to read the HTML DTD.

About SGML

The Standard Generalized Markup Langua@SsML, defined in [ISO8879]), is a language for defining
markup languages. HTML is one such "application" of SGML.

An SGML application consists of several parts:

1. The SGML declaration. The SGML declaration specifies which characters and delimiters may appear
in the application.

2. The document type definition (DTD). The DTD defines the syntax of markup constructs. The DTD
may include additional definitions such as numeric and named character entities.

3. A specification that describes the semantics to be ascribed to the markup. This specification also
imposes syntax restrictions that cannot be expressed within the DTD.

4. Document instances containing data (contents) and markup. Each instance contains a reference to the
DTD to be used to interpret it.

Thel SGML declaration for HTML 440 and the DTD for HTML 4.0 are included in this reference manual,
along with th¢ entity sdts referenced by the DTD.

12

HTML syntax

In this section, we discuss the syntax of HTML elements, attributes, and comments.

Entities

Character entities are numeric or symbolic names for characters that may be included in an HTML
document. They are useful when your authoring tools make it difficult or impossible to enter a character
you may not enter often. You will see character entities throughout this document; they begin with a "&"
sign and end with a semi-colon (;).

We discusg HTML character entifies in detail later in the section on the HTML document character set.

Elements

An SGML application defines elements that represent structures or desired behaei@maAntypically
consists of three parts: a start tag, content, and an end tag.

A element’s start tag is writterelement-name> , whereelement-name is the name of the element.
An element’s end tag is written with a slash before the element réatement-name> . For
example,

<pre>The content of the PRE element is preformatted text.</pre>

The SGML definition of HTML specifies that some HTML elements are not required to have end tags.
The definition of each element in the reference manual indicates whether it requires an end tag.

Some HTML elements have no content. For example, the line break e@wh&ﬁ; no content; its only

role is to terminate a line of text. Such "empty" elements never have end tags. The definition of each
element in the reference manual indicates whether it is empty (has no content) or, if it can have content,
what is considered legal content.

Element names are always case-insensitive.

Elements are not tagsSome people refer incorrectly to elements as tags (e.g., "the P tag"). Remember
that the element is one thing, and the tag (be it start or end tag) is another. For instance, the HEAD
element is always present, even though both start and end HEAD tags may be missing in the markup.

Attributes

Elements may have associated properties, catteébutes to which authors assign values. Attribute/value
pairs appear before the final ">" of an element’s start tag. Any number of (legal) attribute value pairs,
separated by spaces, may appear in an element’s start tag. They may appear in any order.

In this example, thiglign_]attribute is set for tHelT element:

13

<H1 align="center">
This is a centered heading thanks to the align attribute
</H1>

By default, SGML requires you to delimit all attribute values using either double quotation marks (") or
single quotation marks (’). Single quote marks can be included within the attribute value when the value is
delimited by double quote marks, and vice versa. You may also use numeric character entities to represent
double quotes (") and single quotes ('). For double quotes you can also use the named character
entity ".

In certain cases, it is possible in HTML to specify the value of an attribute without any quotation marks.
The attribute value may only contain letters (a-z and A-Z), digits (0-9), hyphens (ASCII decimal 45), and
periods (ASCII decimal 46). We suggest using quotation marks even when it is possible to eliminate them.

Attribute names are always case-insensitive.

Attribute values are generally case-insensitive. The definition of each attribute in the reference manual
indicates whether its value is case-insensitive.

Note: HTML documents may compress better if you use lower case letters for element and attribute
names. The reason is that the compression algorithms do a better job for more frequently repeated
patterns, and lower case letters are more frequent than upper case ones.

HTML comments

HTML comments have the following syntax:

<!l-- this is a comment -->
<!-- and so is this one,
which occupies more than one line -->

Comments must not be rendered by user agents as part of a document. Similary, user agents must not
render SGML processing instructions (e.g., <?full volume>).

How to read the HTML DTD

This specification presents pertinent fragments of the DTD each time an element or attribute is defined.
Though cryptic and dissuasive at first, the DTD fragment gives concise information about an element and
its attributes. We have chosen to include the DTD fragments in the specification rather than seek a more
approachable, but longer and less precise means of describing an element. While almost all of the
definitions include enough English text to make them comprehensible, for those who require definitive
information, we complete this specification with a brief tutorial on reading the HTML DTD.

14

Block level and Inline elements

Certain HTML elements are said to be "block level" while others are "inline" (also known as "text level").
The distinction is founded on several notions:

Content model
Generally, block level elements may contain inline elements and other block level elements.
Generally, inline elements may generally contain only data and other inline elements. Inherent in this
structural distinction is the idea that block elements create "larger" structures than inline elements.

Formatting
By default, block level are formatted differently than inline elements. Block level elements generally
begin on new lines, inline elements generally do not. Block level elements end an unterminated
paragraph element. This enables you to omit end-tags for paragraphs in many cases.

Directionality
For technical reasons involving {he [UNICOIDE] bidirectional text algorithm, block level and inline
elements differ in how they inherit directionality information. For details, see the section on
inheritance of text directipn.

Style sheets provide the means to specify the rendering of arbitrary elements, including whether an
element is rendered as block or inline. In some cases, such as an inline style for list elements, this may be
appropriate, but generally speaking, authors are discouraged from overriding the conventional
interpretation of HTML elements in this way.

The alteration of the traditional presentation idioms for block level and inline elements also has an impact
on the bidirectional text algorithm. See the sectioh on the effect of style sheets on bidire¢tionality for more
information.

DTD Comments

In DTDs, comments may spread over one or more lines. In the DTD, comments are delimited by a pair of
"--"'marks, e.g.

<IELEMENT PARAM - O EMPTY -- named property value -->

Here, the comment "named property value" explains the use klement. DTD comments for
HTML do have not normative value.

Entity Definitions

The|HTML DTD begins with a series of entity definitions. émtity definition(not to be confused with an
SGML entity) defines a kind of macro that may be expanded elsewhere in the DTD. When the macro is
referred to by name in the DTD, it is expanded into a string.

An entity definition begins with the keywordENTITY % followed by the entity name, the quoted
string the entity expands to, and finally a closing he following example defines the string that the
%font entity will expand to.

15

<IENTITY % font"TT | 1| B|U| S | BIG | SMALL">

The string the entity expands to may contain other entity names. These names are expanded recursively. In
the following example, th&inline entity is defined to include ti¥éfont , %phrase , %special and
%formctrl entities.

<IENTITY % inline "#PCDATA | %font | %phrase | %special | %oformctrl">

You will encounter two DTD entities frequently in the HTML D[TD: %inline and %block. They are used
when the content model includes inline and block level elements respectively.

Element definitions

The bulk of the HTML DTD consists of the definitions of elements and their attributes. The
<IELEMENT> keyword begins an element definition and the > character ends it. Between these are
specified:

1. The element’s name.

2. Whether the element’s end tag is optional. Two hyphens that appear after the element name mean
that the start and end tags are mandatory. One hyphen followed by the letter "O" (not zero) indicates
that the end tag can be omitted. A pair of letter "O"s indicate that both the start and end tags can be
omitted.

3. The element’s content, if any. The allowed content for an element is calledtést model
Elements with no content are calleahptyelements. Empty elements are defined with the keyword
"EMPTY".

In this example:

<IELEMENT UL - - (LI)+>

® The element being definedUA. .

® The two hyphens indicate that both the start tag and the end tag for this element are required.

® The content model for this element defined to be "at least one LI element". We describe content
models in detail below.

This example illustrates the definition of an empty element:
<IELEMENT IMG - O EMPTY>

® The element being definedIdG .

® The hyphen and the following "O" indicate that the end tag can be omitted, but together with the
content model "EMPTY", this is strengthened to the rule that the emdusigoe omitted.

e The "EMPTY" keyword means the element must not have content.

16

Content model definitions
The content model describes what may be contained by an element. Content definitions may include:

® The names of allowed or forbidden elements (e.g[Uthelement includes instances of g
element).

e DTD entities (e.g., theABEL element includes instances of the %inline entity).

e Document text (indicated by the SGML construct "#PCDATA"). Text may cdntain numelic and
[hamed character entitjes. Recall that these begin with & and end with a semicolon (e.g.,
"Hergé’s adventures of Tintin" includes the named entity for the "acute e" character).

The content model use the following syntax to define what markup is allowed for the content of the
element:

(...)
Specifies a group.
A|B
Both A and B are permitted in any order.
A,B
A must occur before B.
A&B
A and B must both occur once, but may do so in any order.
A?
A can occur zero or one times
A*
A can occur zero or more times
A+
A can occur one or more times

Here are some examples from the HTML DTD:
<IELEMENT SELECT - - (OPTION+)>

The[SELECTelement must contain one or m@eTIONelements.
<IELEMENT DL - - (DT|DD)+>

TheDL element must contain one or m{@g or[DOelements in any order.
<IELEMENT OPTION - O (#PCDATA)*>

The[OPTIONelement may only contain text and entities, such as &

A few HTML elements use an additional SGML feature to exclude certain elements from content model.
Excluded elements are preceded by a hyphen. Explicit exclusions override inclusions.

17

In this example, the(A) signifies that the elemeitcannot be included in anotii@element (i.e.,
anchors may not be nested).

<IELEMENT A - - (%text)* -(A)>
Note that th] element is part of the DTD entiginline , but is excluded explicitly because-0f) .

Similarly, the following element definition ffFORMprohibits nested forms:

<I[ELEMENT FORM - - %block -(FORM)>

Attribute definitions

The <IATTLIST> keyword begins the definition of attributes that an element may take. It is followed by
the name of the element in question and a list of attribute definitions. An attribute definition is a triplet
that defines:

e The name of an attribute.

® The type of the attribute’s value or an explicit set of possible values. Values defined explicitly by the
DTD are case-insensitive.

® \Whether the default value of the attribute is implicit (keyword "#IMPLIED"), in which case the
default value must be supplied by the user agent (in some cases via inheritance from parent
elements); always required (keyword "#REQUIRED"); or fixed to the given value (keyword
"#FIXED"). Some attributes explicitly specify a default value for the attribute.

In this example, theame attribute is defined for tHglAPelement. The attribute is optional for this
element.

<IATTLIST MAP
name CDATA #IMPLIED
>

The type of values permitted for the attribute is given as CDATA, an SGML data type. CDATA is text
that may includg character entifies.

For more information about "CDATA", "NAME", "ID", and other data types, please consult the section
on[HTML data typds.

The following examples illustrate possible attribute definitions:

rowspan NUMBER 1 -- number of rows spanned by cell --
http-equiv. NAME #IMPLIED -- HTTP response header name --
id ID #IMPLIED -- document-wide unique id --

valign (top|middle|bottom|baseline) #IMPLIED

Therowspan attribute requires values of type NUMBER. The default value is given explicitly as "1".
The optionahttp-equiv attribute requires values of type NAME. The optiadalattribute requires
values of type ID. The optionghlign attribute is constrained to take values from the set {top, middle,
bottom, baseline}.

18

DTD entities in attribute definitions
Attribute definitions may also include DTD entities.

In this example, we see that the attribute definition list folEiheK] element begins with the %attrs entity.

<IATTLIST LINK
%attrs; -- id, class, style, lang, dir, title --
href %URL #IMPLIED -- URL for linked resource --
...more of the definition...
>

The %eattrs entity expands to:

<IATTLIST P
id ID #IMPLIED -- document-wide unique id --
class CDATA #IMPLIED -- comma list of class values --
style CDATA #IMPLIED -- associated style info --
title CDATA #IMPLIED -- advisory title/amplification --
lang NAME #IMPLIED -- [RFC1766] language value --
dir (Itrrtl) #IMPLIED -- direction for weak/neutral text --
align (left|center|right|justify) #IMPLIED
>

The %attrs entity has been defined for convenience since these seven attributes are defined for most
HTML elements.

Simiarly, the DTD defines the %URL entity as expanding into the string CDATA.
<IENTITY % URL "CDATA"
-- The term URL means a CDATA attribute
whose value is a Uniform Resource Locator,

See [RFC1808] and [RFC1738]
>

As this example illustrates, the entity %URL provides readers of the DTD with more information as to the
type of data expected for an attribute. Similar entities have been defined for %color, %Content-Type,
%Length, %Pixels, etc.

Boolean attributes

Some attributes play the role of boolean variables [@bgected). Their appearance in the start tag of
an element implies that the value of the attribute is "true". Their absence implies a value of "false".

Boolean attributes may legally take a single value: the name of the attribute itself (e.g.,
selected="selected").

This example defines t attribute to be a boolean attribute.

selected (selected) #IMPLIED -- reduced interitem spacing --

19

The attribute is set to "true" by appearing in the element’s start tag:
<OPTION selected="selected">

...contents...

<OPTION>

Minimized boolean attributesn HTML, boolean attributes may be appear in "minimized form" -- the
attribute’svalue appears alone in the element’s start tag. Thus:

<OPTION selected>

instead of

<OPTION selected="selected">

Authors should be aware than many user agents only recognize the minimized form and not the full form.

20

Definitions and Conventions
Contents

1. [Definitiong

2. [Document conventions
1. |Elements and attributes
2. |Notes and examples
3. [Document namgs

3. [SGML

Below we list some definitions and conventions adopted in this specification.

non

Words such as "must", "should", "can", and "may" are used in accordance with [RFC2119].

Definitions

User agentA user agent is any device that interprets HTML documents. User agents include visual
browsers (ascii and graphical), non-visual browsers (audio, braille), search robots, proxies, etc.

Conforming user ageni conforming user agent for HTML 4.0 is one that observes the mandatory
conditions set forth in this specification.

A user agent must try to render the content of any element it does not recognize.

A user agent must ignore any attribute it does not recognize.

A user agent should avoid imposing arbitrary length limits on string literals.

This specification does not define how conforming user agents should handle general error conditions.

DeprecatedA deprecated element or attribute is one that has been outdated by newer HTML constructs.
Deprecated elements are defined in the reference manual in appropriate locations, but are clearly marked
as deprecated. Deprecated elements may become obsolete in future versions of HTML.

We strongly urge authors to avoid deprecated elements and attributes. To this end, we provide alternatives
to them when appropriate in the specification.

User agents should continue to support deprecated elements for reasons of backward compatibility.

ObsoleteAn obsolete element or attribute is one for which there is no guarantee of support by a user
agent. Obsolete elements are no longer defined in the specification, but are listed for historical purpose in
the] changes sectipn of the reference manual.

21

Document conventions

This specification presents elements in a "semantic" order, from most basic to most sophisticated
constructs. Elements may be discussed in several different contexts depending on their[D$¢] @sa,
structuring element afdlV] and its role with style sheets). Despite scattered references, the specification
defines each element and attribute in one location only.

Elements and attributes

Similarly, attributes that apply to many elements (fagg |,[dir_||class | etc.) are defined where most
appropriate semantically. Consequently, an element definition may include a reference to an attribute that
may be defined elsewhere. When this is the case, the location of the definition will be clearly indicated
and for the electronic version of the specification, accessible by a link.

Definitions of elements and attributes clearly indicate which are deprecated. In such cases, the
specification includes examples of better HTML usage.

In the electronic version of the specification, all references to an element or attribute (from the index or in
the specification text) are linked to its definition.

Element names are written in upper case letters (e.g., BODY). Attribute names are written in lower case
letters (e.g., lang, onsubmit). Recall that in HTML, element and attribute names are case-insensitive. Our
convention is designed to encourage readability of the specification.

Element and attribute names are marked within the source HTML for the specification and may be
rendered specially depending on your user agent.

The type of an attribute’s value is specified in its definition. However, if the set of possible values is
small, the values are listed explicitly, separated by a bar (|). The first value in this list is the default value.

Notes and examples

Informative notes will be emphasized to stand out from surrounding text. How the emphasis is rendered
depends on your user agent.

An example that illustrates deprecated usage will be marked as a "DEPRECATED EXAMPLE".
Deprecated examples also include recommended alternate solutions. An example that illustrates illegal
usage will be clearly marked as an "ILLEGAL EXAMPLE".

Examples and notes are marked within the source HTML for the specification and may be rendered
specially depending on your user agent.

22

Document names

By convention, HTML files are usually given the extension ".html" or ".htm".

SGML

Comments appearing in the HTML 4.0 DTD have no normative value; they are informative only.

23

Fragment URLs

The URL specificatioren vigeurat the writing of this document ([RFC1738]) offers a mechanism to refer
to a resource, but not to a location within a resource. The Web community has adopted a convention
called "fragment URLS" to refer to anchors within an HTML document. A fragment URL ends with "#"
followed by an anchor identifier. For instance, here is a fragment URL pointing to an anchor named
section_2

http://somesite.com/html/top.html#section_2

Relative URLS

A relative URL (defined in [RFC1808]) doesn’t contain any protocol or machine information, and its path
generally refers to an HTML document on the same machine as the current document. Relative URLs may
contain relative path components (".." means the parent location) and may be fragment URLSs.

Relative URLs may be resolved to full URLs, for example when the user attempts to follow a link from
one document to another. [RFC1808] defines the normative algorithm for resolving relative URLs. The
following description is for convenience only.

Briefly, a full URL is derived from a relative URL by attaching a "base" part to the relative URL. The
base part is a URL that may come from any or all of the following sources:

e HTTP transfer protocol header information (see [RFC2068]).
e Metadata (thMETAelement) in thiiEADsection of an HTML document.

e Explicit base path information (tfi@ASEelement) in thfIEADsection of an HTML document, or
the CODEBASHttribute of th(APPLE Telement.

[RFC1808] specifies the precedence among multiple sources of base information. For the purposes of this
explanation, the last piece of base information takes precedence over the others and HTTP headers are
considered to occur earlier than the document HEAD.

If no explicit base information accompanies the document, the base URL is that which designates the
location of the current document.

Given a base URL and a relative URL (that does not begin with a slash), a full URL is derived as follows:

e |f the base URL ends with a slash the full URL is derived by appending the relative URL to the base
URL. For example, if the base URLh#p://nosite.com/dirl/dir2/ and the relative
URL isgee.html | the derived URL i$ttp://nosite.com/dirl/dir2/gee.html

e |f the base URL doesn t end with a slash, the last piece of the base URL is conS|dered a resource, so
the full URL is derived by appending the relative URL to the parent of the base URL. For example, if
the base URL ibttp://nosite.com/dirl/dir2 and the relative URL igee.html | the
derived URL ishttp://nosite.com/dirl/gee.html

25

URLs in HTML

In HTML, URLSs play a role in these situations:

® When referring to metadata describing a document (s¢i¢EAdelement).

® When citing a external reference (sed@HBLOCKQUOTINS], andDEL elements).

e When including an object directly in a document (se¢dB8ECT|IMG IMAP[FRAME andIFRAMH
elements).

e When linking to another document or program (se{B&8E [A, [LINK], AREA[FORMINPUT],
[SCRIPT] andAPPLE Jelements).

In each case, authors may use a full URL, a fragment URL, or a relative URL. Please consult the section
on[anchols for more information about links and URLS.

MAILTO URLs

In addition to HTTP URLSs, authors might want to include MAILTO URLs (see [RFC1738]) in their
documents. MAILTO URLs cause email to be sent to some email address. For instance, the author might
create a link that, when activated, causes the user agent to open a mail program with the destination
address in the "To:" field.

MAILTO URLSs have the following syntax:
mailto:email-address

User agents may support MAILTO URL extensions that are not yet Internet standards (e.g., appending
subject information to a URL with the syntax "?Subject=my%20subject" where any space characters are
replaced by "%20").

26

HTML Document Character Set

Contents

1. [The Document Character [Set
2. |Character entities

Human languages define a large number of text characters and human beings have invented a wide variety
of systems for representing these characters in a computer. Unless proper precautions are taken, differing
character representations may not be understood by user agents in all parts of the world.

The Document Character Set

To promote interoperability, SGML requires that each application (including HTML), as part of its
definition, define itsddocument character seA document character set is a set of abstract characters (such
as the Cyrillic letter "I", the Chinese character meaning "water", etc.) and a corresponding set of integer
references to those characters. SGML considers a document to be a sequence of references in the
document character set.

The document character set for HTML is the Universal Character Set (UCS) of [ISO10646]. This set is
character-by-character equivalent to Unicode 2.0 ([JUNICODE]). Both of these standards are updated from
time to time with new characters and the amendments should be consulted at the respective Web sites.

In the current specification, references to ISO/IEC-10646 or Unicode imply the same document character
set. However, the current document also refers to the Unicode specification for other issues such as the
bidirectional text algorithm.

Conforming HTML user agents may receive or output a document, or represent a document internally,
using anycharacter encodingA character encoding represents some subset of the document character set.
Character encodings such as 1ISO-8859-1 (commonly referred to as "Latin-1" since it encodes most
Western European languages), 1ISO-8859-5 (which supports Cyrillic), SHIFT_JIS (a Japanese encoding),
and euc-jp (another Japanese encoding) save bandwidth by representing only slices of the document
character set.

Thus, character encodings allow authors to work with a convenient subset of the document character.
Authors should not have to know anything about the underlying character encoding of the document or
tool they are using --- writing Japanese in a UTF-8 editor is as easy as writing Japanese in a JIS or
SHIFT_JIS editor.

Character encodings also mean that authors are not required to enter a document’s text in the form of
references the document character set. Requiring authors to work with such a large character encoding
would be cumbersome and wasteful (although encodings such as UTF-8 that cover all of Unicode do
exist).

27

To allow this convenience, conforming user agents must correctly map to [UNICODE] all characters in
any character encodings ("charsets") they recognize (or behave as if they did). A list of recommended
character encodings for various scripts and languages will be provided in a separate document.

How does a user agent know which character encoding has been used to encode a given document?

In many cases, before a Web server sends an HTML document over the Web, it tries to figure out the
character encoding (by a variety of techniques such as examining the first few bytes of the file, checking

its encoding against a database of known files and encodings, etc.). The server transmits the document and
the name of the character encoding to the receiving user agent by waygludtbet parameter of the

HTTP "Content-Type" field. For example, the following HTTP header announces that the character
encoding is "euc-jp".

Content-Type: text/html; charset=euc-jp
The value of the "charset" parameter must be the name of a "charset" as defined in [RFC2045].

Unfortunately, not all servers send information about the character encoding (even when the character
encoding is different from the widely used ISO-8859-1 encoding). HTML therefore allows authors a way
to tell user agents which character encoding has been used by specifying it explicitly in the document
header with th@element. For example, to specify that the character encoding of the current
document is "euc-jp”, include the followifETAdeclaration:

<META http-equiv="Content-Type" Content="text/html; charset=euc-jp">

This mechanism has a notable limit: the user agent cannot interdiEThkelement to determine the

character encoding if it doesn't already know the character encoding of the docum@METhe

declaration must only be used when the character encoding is organized such that ASCII characters stand
for themselves at least until fMETAelement is parsed. In this case, conforming user agents must

correctly interpret thRMETAelement.

To sum up, conforming user agents must observe the following priorities when determining a document’s
character encoding, (from highest priority to lowest):

Explicit user action to override erroneous behavior.

An HTTP "charset" parameter in a "Content-Type" field.

AMETAdeclaration with "http-equiv" set to "Content-Type" and a value set for "charset".

The "charset" attribute set for fendLINK] elements.

User agent heuristics and user settings. For example, user agents typically assume that in the absence
of other indicators, the character encodintpi®-8859-1 This assumption may lead to an

unreadable presentation of certain documents.

aprwdE

In all cases, the value of the "charset" attribute or parameter must be the name of a "charset" as defined in
[RFC2045].

If, for a specific application, it becomes necessary to refer to characters outside [ISO10646], characters
should be assigned to a private zone to avoid conflicts with present or future versions of the standard. This
is highly discouraged, however, for reasons of portability.

28

Note: Modern web servers can be configured with information about which document is using which
character encoding. Webmasters should use these facilities but should take pains to configure the server

properly.

Character entities

Your hardware and software configuration probably won’t allow you to refer to all Unicode characters
through simple input mechanisms, so SGML offers character encoding-independent mechanisms for
specifying any character from the document character set.

® Numeric character references (either decimal or hexadecimal form).
® Named character references.

Numeric character references specify the integer reference of a Unicode character. A numeric character
reference with the syntax &#D; refers to Unicode decimal character number D. A numeric character
reference with the syntax &#xH; refers to Unicode hexadecimal character number H. The hexadecimal
representation is a new SGML convention and is particularly useful since character standards use
hexadecimal representations.

Here are some examples:

Entity å refers to the letter "a" with a small circle above it (used, for example, in Norwegian).
Entity å refers to the same character with the hexadecimal representation.

Entity И refers to the Cyrillic capital letter "I".

Entity 水 refers to the Chinese character for water with the hexadecimal representation.

To give authors a more intuitive way to refer to characters in the document character set, HTML offers a
set ofnamed character entitiedlamed character references replace integer references with symbolic
names. The named entity å refers to the same Unicode character as å. There is no named
entity for the Cyrillic capital letter "I". The full list of named character entities is included in this
specification.

Four named character entities deserve special mention since they are frequently used to "escape" special
characters: For text appearing as part of the content of an element, you should escape < as < to avoid
possible confusion with the beginning of a tag. The & character should be escaped as & to avoid
confusion with the beginning of an entity reference.

You should also escape & within attribute values since entity references are allowefl within cdata attribute
values. In addition, you should escape > as > to avoid problems with older user agents that incorrectly
perceive this as the end of a tag when coming across this character in quoted attribute values.

Rather than worry about rules for quoting attribute values, its often easier to encode any instance of " by
" and to always use " for quoting attribute values. Many people find it simpler to always escape
these 4 characters in element content and attribute values.

29

"&" to represent the & sign.
"&It;" to represent the < sign.
">" to represent the > sign.
"" to represent the " mark.

Names of named character entities are case-sensitive. Thus, Å refers to a different character (upper
case A, ring) than å (lower case a, ring).

Note: In SGML, it is possible to eliminate the final ";" after a numeric or named character reference in
some cases (e.g., at a line break or directly before a tag). In other circumstances it may not be eliminated
(e.g., in the middle of a word). We strongly suggest using the ";" in all cases to avoid problems with user
agents that require this character to be present.

30

Basic HTML data types

Contents

1. [URL$
2. [Character dqata
3.

1. [Notes on using colgrs

4, [Lengths and Pixels

URLS

The type "url" refers to either an absolute or relative Universal Resource Locator. Please consult the
section on URLs for more details.

Character data

The syntax of valid character data in HTML is defined in terms of the SGML concepts of NAME and
CDATA. For more introductory information about SGML, please consult the SGML tutorial. For more
information about SGML, please consult the SGML handbook ([GOLD90]).

NAME SGML name tokens must begin with a letter (A-Z and a-z) and may be followed by any
number of letters, digits, hyphens ("-") and periods (".").

CDATA For attribute values, this refers to a sequence of characters from the document character set,
which may include character entities. User agents should resolve CDATA before further processing
of attribute values. The HTML 4.0 specification often places further constraints on the permitted
syntax for CDATA attributes.

Although thdSTYLHandSCRIPT elements use CDATA for their data model, for these elements,
CDATA must be handled differently by user agents. Markup and entities must be treated as raw text
and passed to the application as is. The first occurrence of the character sequence "</" is treated as
terminating the end of the element’s content. In valid documents, this would be the end tag for the
element.

Colors

The attribute value type "color" refers to color definitions as specified in [SRGB]. A color value may
either be a hexadecimal number (prefixed by a hash mark) or one of the following sixteen color names:

31

Color names and sRGB values

Black = "#000000"
Silver = "#C0C0CO0"
Gray = "#808080"
White = "#FFFFFF"
Maroon = "#800000"

Red = "#FF0000"

Green = "#008000"
Lime = "#00FF00"
Olive = "#808000"
Yellow = "#FFFF0O"
Navy = "#000080"

Blue = "#0000FF"

Purple = "#800080" Teal = "#008080"

Fuchsia = "#FFOOFF" Aqua = "#OOFFFF"

Thus, the color values "#800080" and "Purple" both refer to the color purple.

Notes on using colors

Although colors can add significant amounts of information to document and make them more readable,
please consider the following guidelines when including color in your documents:

® The use of HTML elements and attributes for specifying color is deprecated. You are encouraged to
use style sheets instead.

e Don't use color combinations that cause problems for people with color blindness in its various
forms.

e If you use a background image or set the background color, then be sure to set the various text colors
as well.

® Colors specified with tflBODYandFONTelements arfdgcolor _|on tables look different on
different platforms (e.g., workstations, Macs, Windows, and LCD panels vs. CRTs), so you shouldn’t
rely entirely on a specific effect. In the future, support for the [SRGB] color model together with ICC
color profiles should mitigate this problem.

® \When practical, adopt common conventions to minimize user confusion. Unless, of course, your
desired effect is to confuse users!

Lengths and Pixels

Values of the type "length" may either be specified as an integer representing the number of pixels of the
canvas (screen, paper) or as a percentage of the available horizontal or vertical space. The HTML DTD
generally uses %Length for length values that permit percentages and %Pixels for values that only permit
pixels.

32

Thus, the value "50" means fifty pixels. For widths, the value "50%" means half of the available
horizontal space (between margins, within a table cell, etc.). For heights, the value "50%" means half of
the available vertical space (in the current window, the current table cell, etc.).

For normative information about the definition of a pixel, please consult [CSS1].

33

Structure of HTML documents

Contents

1. |Global structure

1. |HTML version information

2. [TheHTMLelement

3. |TheHEADelement
1. [Titles: thelTITLE element and thitle attribute
2. |Meta information

4. |TheBODYelement
1. |[Element identifiers: the id and class attridutes
2. [Grouping elements: tialV andSPANelements
3. [Headings: Thell, H2, H3, H4, H5, H6 elements
4. [TheADDRES&®lement

2. [Lanquage information and text direction

1. [Specifying the language of content: ldweg _attributg
1. [Inheritance of language cofles
2. |Interpretation of language cofdes

2. |Specifying the direction of text: tide attributeg
1. [Introduction to the bidirectional algorithm
2. |Inheritance of text direction informatjon
3. |Setting the direction of embedded |text
4. [Overriding the bidrectional algorithm: tB®Oelemenit
5. [Support for character directionality and joifiing
6. | The effect of style sheets on bidirectionality
7. |Undisplayable charactgrs

3.
1. [White spade
2. [Structured tekt
1. [Phrasal element&M STRONGDFN CODESAMPKBD VAR CITE, andACRONYM

2. |Quotations: ThBLOCKQUOTE&NndQ elements

3. |Subscripts and superscripts: 81¢BandSUPelements
3. |Lines and Paragraphs

1. |Paragraphs: tHeéelement

2. [Visual rendering of paragraphs

3. [Controlling line breaks

4.

5. |Preformatted text: THeREelement
4. [Marking document changes: The INS and DEL elements

1. [Date and time format

4.
1. |UnorderedL) and ordered@L) listg

34

1. |Lists formatted by visual user ag¢nts
2. |Definition lists: theDL, DT, andDDelementis
3. [TheDIR andMENLElements

5. [Tables

1 e
1. [TheTABLE element

2. [Table Captions: ThHEAPTIONelement
3. |Groups of rows: thEHEAD TFOOT andTBODYelements
4. |Groups of columns: tt@OLGROUBNdCOLelements
5. |Table rows: The@R element
6. |Table cells: Th@HandTD elements
2. [Table formatting by visual user agents
1. |Horizontal and vertical alignmént
2. |Borders and rulgs
3.
3. [Some sample tabjes
1. [Sample]1
2. [Sample]2
6.
1. [Path Information: thBASEelement
2. |Links and anchdrs
1. [Definitions of links and anchors
2. [TheA element
3. |Anchors with thed attributé
4. |TheLINK element
5.
6. |Links and external style sheets
7. |Links and search engines
7.
1. [Including an object: theBJECTelemert
1. |Object initialization: th®@ ARAMelemerjt
2. |Object declarations and instantiatlons
3. [Object alignmept
2. |Including an image: th&1G element
1. [Image alignmept
3. |[Including an applet: thePPLET element
4. [Including HTML in another HTML document
5. [Including an image map in an HTML docunent
1. [Client-side image maps
2. [Client-side image maps withAPandAREA
3. [Server-side image maps
6. [Visual presentation of images, objects, and applets
7. [How to specify alternate text

35

Global structure

Contents

1. [HTML version information

2. [TheHTMLelement

3. [TheHEADelement
1. |Titles: theTITLE element and thetle attribute
2. [Meta information

4. [TheBODYelement
1. |Element identifiers: the id and class attrijutes
2. |Grouping elements: th&iV andSPANelements
3. |Headings: Thell, H2, H3, H4, H5, H6 elements
4. [TheADDRES®lement

An HTML 4.0 document generally consists of three parts: a line containing version information, a
descriptive header section, and a body, which contains the document’s actual content.

HTML version information

The SGMLDOCTYPEonstruct declares which version of HTML was used in composing the document

(seq [GOLD9Q)).
Authors should include a declaration resembling the following as the first line of each document:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Draft/EN">

The last two letters of the declaration indicate the language of the HTML DTD, in this case English
("EN"). User agents may ignore this information.

Authors may employ a different document type description depending on the version of HTML their
document relies on. Recommended document types for HTML 4.0 are:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Draft//EN">
For documents following the draft specification for HTML 4.0

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Final//EN"> or<IDOCTYPE
HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

For documents following the final specification for HTML 4.0
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Strict//EN">

For documents following the strict specification for HTML 4.0. This is appropriate when you wish to
validate documents that don’t use the HTML presentation elements and attributes, sufCaélthe
element and tHelign_] attribute.

36

<IDOCTYPE HTML SYSTEM "http://www.w3.org/MarkUp/Cougar/relaxed.dtd">
For validatation against the DTD on the W3C Web site

<IDOCTYPE HTML SYSTEM "http://www.w3.org/MarkUp/Cougar/strict.dtd">
For validation against the strict DTD on the W3C Web site

The binding between public identifiers and files can be specified using a catalog file following the format
recommended by the SGML Open Consortium. A sample catalog file for HTML 4.0 is included at the
beginning of the section on SGML reference information for HTMate: Some user-agents do not
understand more complicated DOCTYPE declarations than those listed above.

The HTMLelement

<IENTITY % version "version CDATA #FIXED '%HTML.Version;">
<IENTITY % html.content "HEAD, (FRAMESET|BODY)">

<I[ELEMENT O O (%html.content)>
<IATTLIST HTML
%version;

%i18n; -- lang, dir -- 1 [

>
Start tag:optional, End tag:optional
Attribute definitions

version =[url]
This attribute specifies (with a URL) the location of the DTD for the version of HTML governing the
current document. Since the same information must appearQ6d Y PHHeader, the usefulness of
this attribute is uncertain.

Attributes defined elsewhere

e [lang | (language informatignir | (text direction)

After version information, the remainder of an HTML document should be enclosedByMie
element. Thus, a typical HTML document has this structure:

<IDOCTYPE HTML PUBLIC -//W3C//DTD HTML 4.0 Draft//EN>
<HTML>

...The head, body, etc. goes here...

</HTML>

37

The HEADelement

<!-- %head.misc defined earlier on as "SCRIPT | STYLE | META | LINK" -->
<IENTITY % head.content "TITLE & ISINDEX? & BASE?">

<IELEMENT O O (%head.content) +(%head.misc)>
<IATTLIST HEAD

%i18n; -- lang, dir -- 1]
profile 9%qURL #IMPLIED -- named dictionary of meta info --
>

Start tag:optional, End tag:optional

Attribute definitions

profile =[url]
This attribute specifies the location of one or more meta data profiles, separated by white space. For
future extensions, user agents should consider the value to be a list even though this specification
only considers the first URL to be significant. Profiles are discussed below in the setion pbn meta

Information.

Attributes defined elsewhere

® [lang | (language informatigndir | (text direction)

TheHEADelement contains information about the current document, such as its title, keywords that may
be useful to search engines, and other data that is not considered document content. Elements within the
HEADdeclaration must not be rendered by conforming user agents unless otherwise specified.

Titles: the TITLE element and thetitle] attribute

<IELEMENT [[ITLE } - (#PCDATA)* -(%head.misc)
-- The TITLE element is not considered part of the flow of text.
It should be displayed, for example as the page header or
window title. Exactly one title is required per document.
>
<IATTLIST TITLE %i18n>

Start tag:required, End tag:required

Attributes defined elsewhere

e [lang | (language informatignidir | (text direction)

Every HTML documenmmust have exactly ongITLE |element in thiEADsection. User agents
generally use the title to give people some idea about the document’s contents, for example, by displaying
the title as a caption, or speaking it.

38

Titles may contaip character entities (for accented characters, special characters, etc.), but may not contain
other markup. Here is a sample document title:

<HTML>

<HEAD>

<TITLE>A study of population dynamics</TITLE>
... other head elements...

</HEAD>

<BODY>

... document body...

</BODY>

</HTML>

Related to thFITLE |element is thigtle | attribute.

Attribute definitions

title =cdata
This attribute offers advisory information about the element for which it is set.

Unlike thdTITLE | element, which provides information about an entire document and may only appear
once, thfiitle | attribute may annotate any number of elements. Please consult an element’s definition to
verify that it supports this attribute. Values of[tfile] attribute may be rendered by user agents in a
variety of ways. For instance, visual browsers frequently display the title as a "tool tip" (a short message
that appears when the pointing device pauses over an object). Audio user agents may speak the title
information in a similar context. For example, setting the attribute on a link allows user agents (visual and
non-visual) to tell users about the nature of the linked resource:

...some text...

Here's a photo of

me scuba diving last summer

...some more text...

Thefiitle]attribute has an additional role when used witfLilK]element to designate pn extefnal
[style shee}t. Please consult this section for details.

Note: To improve the quality of speech synthesis for cases handled poorly by standard techniques, future
versions of HTML may include an attribute for encoding phonemic and prosodic information.

Meta information

As this specification is being written, a number of approaches are being proposed for allowing authors to
assign richer machine-readable information about documents and other network-accessible resources to
an HTML document.

The current HTML specification allows authors to assign meta data to their documents as follows:

39

e Authors may cite an exterr{al profile where meta data properties are defined. For example, a profile
might define properties that help search engines index documents, such as "author", "copyright",
"keywords", etc. A profile is specified via attribute of th§HEADelement.

e Authors may set values for these properties. This may be done:

1. From within a document, via fMETAelement. Thus, the profile may define the name space of
properties that can be set by [METAelement.
2. From outside a document, by linking to meta data viiitiE]element (see the section[on Ink

ftype$). Thus, the profile may define the name space of relationship types that may be used by

the|L NK|eIement.

Note that since a profile is defined for [HEADelement, the same profile applies tqMETAandLINK]
elements in the document head.

The METAelement
<IELEMENT - O EMPTY -- Generic Metainformation -->
<IATTLIST META

%i18n; -- lang, dir, for use with coptent ktring =}

hltp-equiv_NAWE #IMPLIED -- HTTP response header name --
npme | NAME #IMPLIED -- metainformation name --

cpntent DATA #REQUIRED -- associated information --
stheme | CDATA #IMPLIED -- select form of content --
>

Start tag:required End tag:forbidden
Attribute definitions

For the following attributes, the permitted values and their interpretatifprafile | dependent:
name =[EdaE

This attribute specifies a property name.

content =[cdat3

This attribute specifies a property’s value.

scheme =[cdatd

This attribute names a scheme to be used to interpret the property’s value.

http-equiv. ~ =[cdatd
This attribute may be used in place of tiaene attribute. HTTP servers use this attribute to gather
information for HTTP response message headers.

Attributes defined elsewhere

e |lang | (language informatignyir | (text directiof)

ThelMETAelement can be used to describe properties of a document (e.g., author, expiration date, a list of
key words, etc.) and assign values to those properties. This specification does not define a normative set of
properties.

40

Thename attribute specifies a property and attribute specifies the property’s value. For
example,

<META name="Author" content="Dave Raggett">

Theflang] attribute can be used wMETAto0 specify the language for the value of[tbatent]

attribute. This enables speech synthesisers to apply language dependent pronunciation rules.

In this example, the author’'s name is declared to be French.

<META name="Author" lang="fr" content="Arnaud Le Hors">

Here’s another example: some user agents support the[M&€Tdto refresh the current page after a few
seconds, perhaps replacing it with another page.

<META name="refresh" content="3,http://www.acme.com/intro.html">

The content is a number specifying the delay in seconds, followed by the URL to load when the time is

up. This mechanism is generally used to show users a fleeting introductory page. However, since some
user agents do not support this mechanism, authors should include content on the introductory page to
allow users to navigate away from it (so they don’t remain "stranded" on the introductory page).

METAand HTTP headers

Thelhttp-equiv___ |attribute can be used in place of tteane attribute and has a special significance
when documents are retrieved via the Hypertext Transfer Protocol (HTTP). HTTP servers may use the

property name specified by théip-equiv__|attribute to create gn [RFC8P2]-style header in the HTTP
response. Please see the HTTP specificdtion ([RFG2068]) for details on valid HTTP headers.

The following samplfMETAdeclaration:
<META http-equiv="Expires" content="Tue, 20 Aug 1996 14:25:27 GMT">
will result in the HTTP header:

Expires: Tue, 20 Aug 1996 14:25:27 GMT

This can be used by caches to determine when to fetch a fresh copy of the associated document.

IMETAand search engines

A common use fqMETAIs to specify keywords that a search engine may use to improve the quality of
search results. When sev@elements provide language-dependent information about a document,
search engines may filter on {laag] attribute to display search results using the language preferences of
the user. For example,

<META name="keywords" lang="en"
content="vacation,Greece,sunshine">

<META name="keywords" lang="fr"
content="vacances,Grèce,soleil">

41

The effectiveness of search engines can also be increased by ufifghelement to specify links to
translations of the document in other languages, links to versions of the document in other media (e.qg.,
PDF), and, when the document is part of a collection, links to an appropriate starting point for browsing
the collection.

METAand PICS

The Platform for Internet Content Selectjon [PICS] is an infrastructure for associating labels (meta data)
with Internet content. Originally designed to help parents and teachers control what children can access on
the Internet, it also facilitates other uses for labels, including code signing, privacy, and intellectual
property rights management.

This example illustrates how one can up8ET Adeclaration to include a PICS 1.1 label:

<HEAD>
<META http-equiv="PICS-Label" content="
(PICS-1.1 "http://www.gcf.org/v2.5"
labels on "1994.11.05T08:15-0500"
until "1995.12.31T723:59-0000"
for "http://w3.org/PICS/Overview.html"
ratings (suds 0.5 density 0 color/hue 1))
>
<TITLE> ..title goes here.. </TITLE>
</HEAD>
<BODY>
...the body...
</BODY>

IMETAand default information

ThelMETAelement may be used to specify the default information for a document in the following
instances:

® The default scripting language.
e The default style sheet language.
® The[document character encodling.

The following example specifies the character encgding for a document as being 1SO-8859-5

<META http-equiv="Content-Type" content="text/html; charset=1SO-8859-5">

Meta data profiles

Thelprofile] attribute of thHEADspecifies the location of a meta data profile. The value of the
attribute is a URL. User agents may use this URL in two ways:

® As a globally unique name. User agents may be able to recognize the name (without actually
retrieving the profile) and perform some activity based on known conventions for that profile. For
instance, search engines could provide an interface for searching through catalogs of HTML
documents, where these documents all use the same profile for representing catalog entries.

® As a link. User agents may dereference the URL and, perform some activity based on the actual

42

definitions within the profile (e.g., validate the usage of the profile within the current HTML
document). This specification does not define formats for profiles.

This example refers to a hypothetical profile that defines useful properties for document indexing. The
properties defined by this profile --- including "author", "copyright”, "keywords", and "date" --- have their
values set by subsequfMETAdeclarations.

<HEAD profile="http://www.acme.com/profiles/core">

<TITLE>How to complete Memorandum cover sheets</TITLE>
<META name="author" content="John Doe">

<META name="copyright" content="© 1997 Acme Corp.">
<META name="keywords" content="corporate,guidelines,cataloging">
<META name="date" content="23 Jan 1997 16:05:31 GMT">
</HEAD>

As this specification is being written, it is common practice to use the date formats described in
[RFC2068]. HTTP applications have historically allowed three different formats for the representation of
date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C's asctime() format

According tq [RFC2068], the first format is preferred. It represents a fixed-length subset of that defined
by[[REC1123] (an update fo [RFC822]). The second format is in common use, but is based on the
obsolet¢ [RFC85(]date format and lacks a four-digit year. HTTP 1.1 clients must accept all of these
forms, but only generafe JRFC1123] format for use in HTTP headers. HTML user agents are expected to
follow HTTP 1.1 in this regards, and in addition to provide support fof the [[ISOB601] date format, e.g.
"1997-01-23T16:05:31+00:00". For more information, see the sections ¢iNGkandDEL elements.

Thelscheme] attribute is used to identify the expected format of the value @fothkent] attribute, for
cases when a property supports multiple formats. The values permittedgohémee] attribute depend
on the propertyiame and thdprofile |

The firsyMETAdeclaration in the following example refers to the Dewey Decimal System (dds) scheme.
The second refers to the ISBN scheme.

<META scheme="dds" name="description"
content="04.251 Supercomputers systems design">
<META scheme="ISBN" name="identifier" content="0-8230-2355-9">

Note: One sample profile is the Dublin Jore[DCORE]. This profile defines a set of recommended
properties for electronic bibliographic descriptions, and is intended to promote interoperability among
disparate description models.

43

The BODYelement

<IENTITY % block "(%blocklevel | %inline)*">
<IENTITY % Color "CDATA" -- a color using SRGB: #RRGGBB as Hex values -->
<!l-- There are also 16 widely known color names with their SRGB values:

Black =#000000 Green =#008000
Silver = #COCOCO Lime =#00FFO0
Gray =#808080 Olive =#808000
White =#FFFFFF Yellow = #FFFF00
Maroon = #800000 Navy = #000080
Red =#FF0000 Blue =#0000FF
Purple = #800080 Teal = #008080
Fuchsia= #FFOOFF Aqua =#00FFFF
->

<IENTITY % bodycolors "

bgcolor %Color #IMPLIED
text %Color #IMPLIED

link %Color #IMPLIED

vlink %Color #IMPLIED

alink %Color #IMPLIED

">

<IELEMENT 0 O (%block) -(BODY) +(INS|DEL)>
<IATTLIST BODY

%attrs; -- %%coreattrs, %i18n, %events --
bpckground %URL #IMPLIED -- texture tile for document background --
%bodycolors; -- bgcolor, text, link, vlink, alink --] | | | | | | | |

opload | %Script #IMPLIED -- the document has been loaded --
opunload %6Script #IMPLIED -- the document has been removed --
>

Start tag:optional, End tag:optional
Attribute definitions

background =[url]
DeprecatedThe value of this attribute is a URL that designates an image resource. The image
generally tiles the background (for visual browsers).
text
DeprecatedThis attribute sets the foreground color for text (for visual browsers).
link =[colof
DeprecatedThis attribute sets the color of text marking unvisited hypertext links (for visual
browsers).
vlink =[colof
DeprecatedThis attribute sets the color of text marking visited hypertext links (for visual browsers).
alink =[colof]
DeprecatedThis attribute sets the color of text marking hypertext links when selected by the user
(for visual browsers).

44

Attributes defined elsewhere

[d] [class_] {document-wide identifie}s)

lang | (language informatigndir | (text direction)
title |(element titlgs)

[style](inline style informatioh)

[bgcolor | (background colgr)

[onload }lonunload |({intrinsic events)

lonclick | ondblclick Llonmousedownllonmouseuglonmouseover llonmousemove|
onmouseout | fonkeypress | [onkeydown | [onkeyup] (intrinsic events)

The body of a document contains the document’s content. The content may be presented by a user agent
in a variety of ways. For example, for visual browsers, you can think of the body as a canvas where the
content appears: text, images, colors, graphics, etc. For audio user agents, the same content may be
spoken. Since style sheets are now the preferred way to specify a document’s presentation, the
presentational attributesBODYhave been deprecated. These attributes should only be used when you
need to control the presentation for user agents that don’t support style sheets.

The following line of HTML illustrates the use of the deprecated attributes. It sets the background color of
the canvas to white, the text foreground color to black, and the color of hyperlinks to red initially, fuschia
when activated, and maroon once visited.

DEPRECATED EXAMPLE:

<HTML>
<HEAD>

<TITLE>A study of population dynamics</TITLE>
</HEAD>
<BODY bgcolor="white" text="black"

link="red" alink="fuschia" vlink="maroon">

... document bodly...

</BODY>
</HTML>

Using style sheets, the same effect could be accomplished as follows:

<HTML>
<HEAD>
<TITLE>A study of population dynamics</TITLE>
<STYLE type="text/css">
BODY { background: white; color: black}
A:link { color: red }
A:visited { color: maroon }
A:active { color: fuschia }
</STYLE>
</HEAD>
<BODY>
... document bodly...
</BODY>
</HTML>

45

Using linked style sheets gives you the flexibility to change the presentation without revising the
document:

<HTML>
<HEAD>
<TITLE>A study of population dynamics</TITLE>
<LINK rel="stylesheet" type="text/css" href="smartstyle.css">
</HEAD>
<BODY>
... document body...
</BODY>
</HTML>

Framesets and HTML bodieDocuments that contain framesets replacé86® Yelement by the
FRAMESHElement. Please consult the sectiof on frhmes for more information.

Element identifiers: the id and class attributes

Attribute definitions

id =phame¢
This attribute assigns a document-wide name to a specific instance of an element. Vidusust
be unique within a document. Furthermore, this attribute shares the same name spawnaes the
attribute.

class =lcdata-lis}
This attribute assigns a class or set of classes to a specific instance of an element. Any number of
elements may be assigned the same class name or names. They must be separated by white space
characters.

Thefld Jandclass_] attributes assign identifiers to an element instance.

An identifier specified bfd Jmust be unique within a document. A class name specifigthbg_| may
be shared by several element instances. Class values should be chosen to distinguish the role of the
element the class is associated with, e.g. note, example, warning.

These attributes can be used in the following ways:

Thelid] attribute may be used as a destination for hypertext links (see the se¢tion or] anchors).
Scripts can use tifid] attribute to reference a particular element.

Style sheets can use figg] attribute to apply a style to a particular element.

Thelid] attribute is used to identff@BJECTelement declarations.

Style sheets can use attribute to apply a style to a set of elements associated with this
class, or to elements that occur as the children of such elements.

Both[id] andclass_]can be used for further processing purposes, e.g. for identifying fields when
extracting data from HTML pages into a database, translating HTML documents into other formats,
etc.).

46

Almost every HTML element may be assigned identifier and class information.

Suppose, for example, that we are writing a document about a programming language. The document is to
include a number of preformatted examples. We udBRielement to format the examples. We also
assign a background color (green) to all instances @element belonging to the class "example".

<HEAD>

<STYLE

PRE.example { background : green }
</STYLE

</HEAD>

<BODY>

<PRE class="example" id="example-1">
...example code here...

</PRE>

</BODY>

By setting thdd] attribute for this example, we can (1) create a hyperlink to it and (2) override class style
information with instance style information.

Grouping elements: theDIV and SPANelements

<IELEMENT - %block>

<IATTLIST DIV

%attrs; -- %coreattrs, %il18n, %events --

%align; -- align, text alignment -- []

>
<IELEMENT - - (%inline)* -- generic language/style container -->
<IATTLIST SPAN

%attrs; -- %coreattrs, %il18n, %events --

>
Start tag:required, End tag:required

Attributes defined elsewhere

[[d] [class_](document-wide identifiefs)

[ang | (language informatigndir | (text directiof)

title | (element titlgs)

[style |({inline style informatiop)

[align |{alignment)

[onclick | jondblclick }[onmousedown}jonmouseup }(onmouseover |jonmousemove}
[onmouseout] onkeypress] [onkeydown |, [onkeyup] (intrinsic events)

The[DIV]andSPANelements, in conjunction with thé] andclass_] attributes, offer a generic

mechanism for adding structure to documents. These are the only two HTML elements that do not add
presentation to their enclosed content. Thus, by creating instances and classes of elements and applying
[style shee}s to them, authors may specialize HTML according to their needs and tastes.

47

Suppose we wanted to generate a document from a database of client information. Since HTML does not

include elements that identify objects such as "client", "telephone number", "email address", etc., we use

andSPANto tailor HTML to our own needs.

In this example, every client’s last name belongs to the class "client-last-name", etc. We also assign a
unique identifier to each client ("client-boyera”, "client-lafon”, etc.).

<DIV id="client-boyera" class="client">

Last name: Boyera,
First name: Stephane
Telephone: (212) 555-1212
Email: sb@foo.org
</DIV>

<DIV id="client-lafon" class="client">

Last name: Lafon,
First name: Yves
Telephone: (617) 555-1212

Email: yves@bar.com
</DIV>

Later, we may easily add style information to our document to fine tune the presentation of these database
entries.

is an inline element and can be used within paragraphs, list items, etc. when you want assign class
or language information to a group of wofB®ANcannot be used to group block-level elemdBBAN

has no inherent effect on rendering until you apply a style, e.g.[siéea] attribute, or a linked style

sheet.

by contrast, is a block-level element. It can be used to group other block-level elements, but can’t be
used within paragraph elementgDiV]element following an unclos@element will terminate that
paragraph.

User agents generally place a line break before anqCiigelements, for instance:
<P>aaaaaaaaa<DIV>bbbbbbbbb</DIV><DIV>ccccc<P>cccee</DIV>

This is typically rendered as:

aaaaaaaaa
bbbbbbbbb
ccccc

Ccccec
Your user agent renders this as follows:
aaaaaaaaabbbbbbbbbccccc

Cccccce

48

Headings: TheH1, H2, H3, H4, H5, H6 elements

<IENTITY % heading "H1|H2IHBREHAIHER> 1 [

<l--
There are six levels of headings from H1 (the most important)

to H6 (the least important).
-->

<IELEMENT (%heading) - - (%inline;)*>
<IATTLIST (%heading)

%attrs; -- %%coreattrs, %i18n, %events --
%align; -- align, text alignment -- [_]
>

Start tag:required, End tag:required

Attributes defined elsewhere

id] [class_](document-wide identifiefs)

lang | (language informatigndir | (text direction)
title |(element titlgs)

[style |(inline style information)

[align | (alignment)

[onclick | jondblclick _}[onmousedown}jonmouseup }[onmouseover_|jonmousemove}
onmouseout } onkeypress | [onkeydown |, onkeyup | (intrinsic events)

A heading element briefly describes the topic of the section it introduces. Heading information may be
used by user agents, for example, to construct a table of contents for a document automatically.

There are six levels of headings in HTML W] as the most important ajiitf as the least. Visual
browsers usually render more important headings in larger fonts than less important ones.

The following example shows how to use[Bi&/] element to associate a heading with the document
section that follows it. Doing so allows you to define a style for the section (color the background, set the

font, etc.) with style sheets.

<DIV class="section" id="forest-elephants" >

<H1>Forest elephants</H1>

In this section, we discuss the lesser known forest elephants.
...this section continues...

<DIV class="subsection" id="forest-habitat" >
<H2>Habitat</H2>

Forest elephants do not live in trees but among them.

...this subsection continues...

</DIV>

</DIV>

This structure may be decorated with style information such as:

49

<HEAD>

<STYLE>

DIV.section { text-align: justify; font-size: 12pt}
DIV.subsection { text-indent: 2em }

H1 { font-style: italic; color: green }

H2 { color: green }

</STYLE>

</HEAD>

Numbered sections and references
HTML does not itself cause section numbers to be generated from headings. This facility may be offered
by user agents, however. Soon, style sheet languages such as CSS will allow authors to control the
generation of section numbers (handy for forward references in printed documents, as in "See section
7.2".

Some people consider skipping heading levels to be bad practice. TheyFaieedi] while they do not
accepfHIH3HIsince the heading leeldis skipped.

The ADDRES&Iement

<IELEMENT ADDRESS - - ((%inline;) | P)*>
<IATTLIST ADDRESS
%attrs; -- %coreattrs, %i18n, %events --

>

Start tag:required, End tag:required

Attributes defined elsewhere

e [id] [class_]({document-wide identifiefs)
e [lang | (language informatignlir | (text directiof)

[onclick_} jondblclick }jonmousedown}(onmouseu

[onmouseout | fonkeypress] jonkeydown |, fonkeyup

p | lonmouseover_|[onmousemove}

| (intrinsic evenis)

For lack of a better place, we include the definition oABDRESRere. This element adds author and
contact information to a document, e.g.,

<ADDRESS>

Newsletter editor

J. R. Brown

8723 Buena Vista, Smallville, CT 01234

Tel: +1 (123) 456 7890

</ADDRESS>

50

Language information and text direction

Contents

1. [Specifying the language of content: idveg attributé
1. [Inheritance of language cofles
2. |[Interpretation of language cofles

2. |Specifying the direction of text: tide attributé
1. |Introduction to the bidirectional algorithm
2. [Inheritance of text direction informatjon
3. [Setting the direction of embedded [text
4. [Overriding the bidrectional algorithm: tB®Oelement
5. |Support for character directionality and joifing
6. [The effect of style sheets on bidirectionality
7. |Undisplayable charactgers

This section of the document discusses two important issues that affect the internationalization of HTML.:
specifying the language (tfeng] attribute) and direction (tHgir_] attribute) of text in a document.

Specifying the language of content: theang attribute

Attribute definitions

lang =language-code
Specifies the primary language of an element’s text content. The value of this attribute is a language
code as specified fy [RFC1756]. Please consult this document for authoritative information on
language codes. Whitespace is not allowed within the language-code. All language-codes are
case-insensitive. The default language is "unknown".

Language information can be used to control rendering of a marked up document in a variety of ways.
Some situations where this information helps include:

Assisting search engines

Speech synthesis

Selecting glyph variants for high quality typography
Choosing a set of quotation marks

Resolvind hyphenatidn ligatures, and spacing

Spell checking and grammar checking

The[lang] attribute’s value is a language code that identifies a natural language spoken, written, or
otherwise conveyed by human beings for communication of information to other human beings. Computer
languages are explicitly excluded from language codes.

51

defines and explains the language codes that must be used in HTML documents.

Briefly, language codes consist of a primary code and a possibly empty series of subcodes:
language-code = primary-code *("-" subcode)

Here are some sample language codes:

"en": English

"en-US": the U.S. version of English.

"en-cockney": the Cockney version of English.

"i-cherokee": the Cherokee language spoken by some Native Americans.

"x-pig-latin": the language "pig-latin" has not been registered[with TANA, the organization that
controls the namespace of language tags.

Two-letter primary codes are reserved for [ISOB39] language abbreviations. Two-letter codes include FR
(French), DE (German), IT (Italian), NL (Dutch), EL (Greek), ES (Spanish), PT (Portuguese), AR
(Arabic), HE (Hebrew), RU (Russian), ZH (Chinese), JA (Japanese), HI (Hindi), UR (Urdu), and SA
(Sanskrit).

Any two-letter subcode is understood to lpe a [ISO3166] country code.

Inheritance of language codes

An element inherits language code information according to the following order of precedence (highest to
lowest):

e Theflang]attribute set for the element itself.

e An englobing element which has fla@g] attribute set (i.e., tHang] attribute is inherited by
nested elements).

e The HTTP "Content-Language" header, which may be set at the site level. For example:

Content-Language: en-cockney

® Sources external to HTML (e.g., user agent default values, user preferences, HTTP headers).

In this example, the primary language of the document is French (“fr"). One paragraph is declared to be in
Spanish ("es"), after which the primary language returns to French. The following paragraph includes an
embedded Japanese ("ja") phrase, after which the primary language returns to French.

<HTML lang="fr">

<BODY>

...Interpreted as French...

<P lang="es"> ...Interpreted as Spanish...

<P>...Interpreted as French again...

<P>...French text interrupted by <EM lang="ja">some
Japanese French begins here again...

</BODY>

</HTML>

52

http://www.iana.org/

Interpretation of language codes

In the context of HTML, a language code should be interpreted by user agents as a hierarchy of tokens
rather than a single token. When a user agent adjusts rendering according to language information (say, by
comparing style sheet language codesjand]values), it should always favor an exact match, but

should also consider matching primary codes to be sufficient. Thus@ attribute value of

"en-US" is set for thITMILelement, a user agent should prefer style information that matches "en-US"

first, then the more general value "US".

Note: Language code hierarchies do not guarantee that all languages with a common prefix will be
understood by those fluent in one or more of those languages. They do allow a user to request this
commonality when it is true for that user.

For artificial languages such as Elfish or Klingon, it would make sense to use the lang attribute to
indicate the change from the language of the enclosing context. Until the succgssor to [RFC1766] defines
a standard way to do this, one possibility is to use the x- prefix convention, e.g. x-elfish.

Specifying the direction of text: thedir attribute
Attribute definitions

dir =LTR|RTL
Specifies the default direction for directionally weak or neutral text in the element’s content
(left-to-right or right-to-left) in this document. Possible values:
® LTR: Left-to-right text.
® RTL: Right-to-left text.

In addition to specifying the primary language of a document, authors may need to specify the default
direction of pieces of text or the text in the entire document.

The[[UNICODE] specification assigns directionality to Unicode characters and defines a (complex)
algorithm for determining the proper directionality of text. If a document does not contain a displayable
right-to-left, a conforming user agent is not required to applly the [UNICPDE]bidirectional algorithm. If a
document contains a right-to-left character, and if the user agent chooses to display that character, the user
agent must use the bidirectional algorithm.

Although Unicode specifies special characters that deal with text direction, HTML offers higher-level
markup constructs that do the same thing[dihe] attribute (do not confuse with tfdR] element) and
theBDQelement. Thus, to express a Hebrew quotation, it is more intuitive to write

<Q lang="he" dir="rtl"> ...a Hebrew gquotation... </Q>

than the equivalent with Unicode references:

‫״ ...a Hebrew quotation... ״‬

53

User agents musiot use thffang]attribute to determine text directionality.

In the absence of local overrides, the default direction is inherited from enclosing elements.

Introduction to the bidirectional algorithm
The following example illustrates the expected behavior of the bidirectional algorithm.

Consider the following example text:

englishl HEBREW?2 english3 HEBREW4 english5 HEBREW6

The characters in this example (and in all related examples) are stored in the computer the way they are
displayed here: the first character in the file is "e", the second is "n", and the last is "6".

Suppose the predominant language of the document containing this paragraph is English (left-to-right
text). The correct presentation of this line would be:

englishl 2WERBEH english3 4WERBEH english5 6WERBEH

H H H

E

The dotted lines indicate the structure of the sentence: English predominates and some Hebrew text is
embedded. Achieving the correct presentation requires no additional markup since the Hebrew fragments
are reversed correctly by user agents applying the bidirectional algorithm.

If, on the other hand, the predominant language of the document is Hebrew (right-to-left direction), the
correct presentation is:

6WERBEH english5 4WERBEH english3 2WERBEH englishl

E E E

H

In this case, the whole sentence has been presented as right-to-left and the embedded English sequences
have been properly reversed by the bidirectional algorithm.

Inheritance of text direction information

The Unicode bidirectional algorithm requires an initial text direction. To specify the base direction of a
block-level element, set the elemefds] attribute. The default value of td&_]attribute is "ltr"
(left-to-right text).

When thddir_]attribute is set for a block-level element, it remains in effect for the duration of the element
and any nested block-level elements. Settinfdthdattribute on a nested element overrides the inherited
value.

54

To set the primary text direction for an entire document, sfithkattribute on thITMllelement.

For example:

<HTML dir="RTL">
...right-to-left text...

<P dir="Itr"> ...left-to-right text... </P>
<P>...right-to-left text again... </P>
</HTML>

Inline elements, on the other hand, do not inher{dihg attribute. This means that an inline element
without gdir_]attribute does not open an additional level of embedding with respect to the bidirectional
algorithm.

Setting the direction of embedded text

The[[UNICODE] bidirectional algorithm automatically reverses embedded character sequences according
to their inherent directionality (as illustrated by the previous examples). However, only one level of
embedding can be accounted for. To achieve additional levels of embedded direction changes, you must
make use of thdir_]attribute on an inline element.

Consider the same example text as before:

englishl HEBREW?2 english3 HEBREW4 english5 HEBREW6

Suppose the predominant language of the document containing this paragraph is English. The above
English sentence contains a Hebrew section extending from HEBREW?2 through HEBREWA4. The Hebrew
section contains an English quotation (english3). The desired presentation of the text is thus:

englishl 4AWERBEH english3 2WERBEH english5 6 WERBEH

To achieve two embedded direction changes, we must supply additional information, which we do by
delimiting the second embedding explicitly. In this example, we uggRAdllelement and tHdir_|
attribute to mark up the text:

englishl HEBREW?2 english3 HEBREW4 english5 HEBREW6

Authors may also use special Unicode characters to achieve multiply embedded direction changes. To
achieve left-to-right embedding, surround embedded text with the characters LEFT-TO-RIGHT
EMBEDDING ("LRE", hexadecimal 202A) and POP DIRECTIONAL FORMATTING ("PDF",
hexadecimal 202C). To achieve right-to-left embedding, surround embedded text with the characters
RIGHT-TO-LEFT EMBEDDING ("RTE", hexadecimal 202B) and PDF.

55

Using HTML directionality markup with Unicode characterguthors and designers of authoring

software should be aware that conflicts can arise ifding] attribute is used on inline elements (including
concurrently with the correspondipg [ISO10646] formatting characters. Preferably one or the other
should be used exclusively. The markup method offers a better guarantee of document structural integrity
and alleviates some problems when editing bidirectional HTML text with a simple text editor, but some
software may be more apt at using[the [I[SO10646] characters. If both methods are used, great care
should be exercised to insure proper nesting of markup and directional embedding or override, otherwise,
rendering results are undefined.

Overriding the bidrectional algorithm: the BDOelement

<IELEMENT - - (inline)* -- I18N BiDi over-ride -->
<IATTLIST BDO

Idng_] NAME #IMPLIED -- [RFC1766] langliage value -]
dir] (itrrtl) #REQUIRED -- directionality --

>

Start tag:required, End tag:required

Attributes defined elsewhere

e [lang | (language informatignir | (text directiof)

The bidirectional algorithm and tfr_] attribute generally suffice to manage embedded direction
changes. However, some situations may arise when the bidirectional algorithm results in incorrect
presentation. THBDQelement allows authors to turn off the bidirectional algorithm for selected
fragments of text.

Consider an English document containing the same text as before:

englishl HEBREW?2 english3 HEBREW4 english5 HEBREW6

Suppose this sequence of characters is being read by a user agent from left-to-right (the byte stream begins
with "e" and ends with "6"). The "e" in "english1" is to the left of "n", which is how authors tend to input
English characters. However, the "H" in "HEBREW2" is to the left of "E", which may not be how authors

of Hebrew create their documents. For example, the MIME starfdard ([RF£2045]) requires right-to-left
character sequences in email to be ordered right-to-left in the byte stream. This conflicts with the
[UNICODE] birectional algorithm, which expects Hebrew characters to be ordered left-to-right.

Thus, if "HEBREW4" in the above example were an excerpt from a Hebrew email message, it's structure
would actually be "4WERBEH". A user agent applying the bidirectional algorithm would thus display the
characters in the wrong order.

The easiest solution in this case is to override the bidirectional algorithm by putting the Hebrew email
excerpt in 8DQelement, whoddir_]attribute is set to "LTR":

englishl HEBREW?2 english3 <BDO dir="LTR">4WERBEH</BDO> english5 HEBREW6

56

This tells the bidirectional algorithm "Leave me left-to-right!" and would produce the desired
presentation:

englishl 2WERBEH english3 4WERBEH english5 6WERBEH

The[BD@should be used in scenarios where absolute control over sequence order is required (e.g.,
multi-language part numbers). Tt_] attribute is mandatory for this element.

Authors may also use special Unicode characters to override the bidirectional algorithm ---
LEFT-TO-RIGHT OVERRIDE (202D) or RIGHT-TO-LEFT OVERRIDE (hexadecimal 202E). The POP
DIRECTIONAL FORMATTING (hexadecimal 202C) character ends either bidirectional override.

Note: Recall that conflicts can arise if attribute is used on inline elements (includBgd)
concurrently with the correspondipg [ISO106¢46] formatting characters.

Bidirectionality and character encodinéccording tg [RFC155%] and [RFC1556], there are special
conventions for the use of "charset" parameter values to indicate bidirectional treatment in MIME mail, in
particular to distinguish between visual, implicit, and explicit directionality. The parameter value
"is0-8859-8" (for Hebrew) denotes visual encoding, "iso-8859-8-i" denotes implicit bidirectionality, and
"is0-8859-8-e" denotes explicit directionality.

Because HTML uses the full Unicode bidirectionality algorithm, conforming documents must be labeled
as "is0-8859-8-e". Implicit bidirectionality is part of the full Unicode algorithm, so the values
"is0-8859-8-i" may also be accepted, but should not be used.

The value "is0-8859-8" defines that the document is formatted visually, misusing some markup (such as
[TABLB with right alignment and no line wrapping) to ensure reasonable display on older user agents that
do not handle bidirectionality. Such documents do not conform to the present specification. If necessary,
they can be made to conform to the current specification (and at the same time will be displayed correctly
on older user agents) by addi@DPmarkup where necessagontrary to what is said jn [REC1555]
and[JRFC1556], iso-8859-6 (Arabic) it visual ordering.

Support for character directionality and joining

Since ambiguities sometimes arise as to the directionality of certain characters (e.g., some situations in
Arabic), thgd [UNICODH] specification includes characters to enable proper resolution. HTML 4.0
includes a set ¢f named character entities that allows partial support of the Unicode bidirectional
algorithm, plus some help with languages requiring contextual analysis for rendering.

The following DTD excerpt presents some of the directional entities:

<IENTITY zwnj CDATA "‌"--=zero width non-joiner-->
<IENTITY zwj CDATA "‍"--=zero width joiner-->
<IENTITY Irm CDATA "‎"--=left-to-right mark-->
<IENTITY rim CDATA "‏"--=right-to-left mark-->

Thezwnj entity is used to block joining behavior in contexts where joining will occur but shouldn’t. The
zwj entity does the opposite; it forces joining when it wouldn’t occur but should. For example, the Arabic
letter "HEH" is used to abbreviate "Hijri", the name of the Islamic calendar system. Since the isolated

57

form of "HEH" looks like the digit five as employed in Arabic script (based on Indic digits), in order to
prevent confusing "HEH" as a final digit five in a year, the initial form of "HEH" is used. However, there
is no following context (i.e., a joining letter) to which the "HEH" can join. Zlg character provides

that context.

Similarly, in Persian texts, there are cases where a letter that normally would join a subsequent letter in a
cursive connection should not. The charaetenj is used to block joining in such cases.

The other charactersm andrlm , are used to disambiguate directionality of directionally neutral
characters. For example, if a double quotation mark comes between an Arabic and a Latin letter, the
direction of the quotation mark is not clear (is it quoting the Arabic text or the Latin text2ymThend

rim characters have a directional property but no width and no word/line break property. Please consult

UNICODE]|for more details.

Reversed character glyph3he bidirectional algorithm reverses the presentation of a well-defined set of
characters such as parentheses [see [UNICQDE], table 4-7). Except for these characters, bidirectionality
processing leaves the shape of each glyph unaffected. Thus, if you wanted to display the word "MURDER"
as it would be seen in a mirror (right-to-left character order and reversed glyphs), you coulBOXPR a

element with th attribute to set the text direction to right-to-left order, e.g.,

<BDO class="mirror" dir="rtI">MURDER</BDO>

and the class value "mirror" with a matching rule in the style sheet to select a special font that displays
characters with the reversed glyphs.

The effect of style sheets on bidirectionality

In general, changing an element from being displayed in block from to inline or vice-versa due to a style
sheet is straightforward. However, because the difference between block elements and inline elements is
crucial for the bidirectional algorithm, special care must be taken.

When an inline element that does not hald g attribute is transformed to a block element by a style
sheet, it inherits tHdir_]attribute from the englobing element to define the base direction of the block.

When a block element that does not haldé g attribute is transformed to an inline element by a style
sheet, the resulting presentation should be equivalent, in terms of bidirectional formatting, to the
formatting obtained by explicitly addindda] attribute (assigned the inherited value) to the transformed
element.

Undisplayable characters
User agents may not be able to render meaningfully all character values, for instance, because of the lack

of an appropriate font, or because a character has a value which is inexpressible with the internal character
encoding.

58

Because there are many different things that can be done in such a case, this document does not prescribe
any specific behavior. Depending on the implementation, this may also be handled by the underlying
display system and not the application itself. This specification recommends the following behavior for

user agents:

1. Adopt a clearly visible, but unobtrusive mechanism to alert the user of missing resources.
2. If the user agent provides a numeric representation of missing characters, the hexadecimal (not
decimal) form is preferable as this is the form used in character set standards (se¢ [ERCS]).

59

Text

Contents

1. [White spade
2. [Structured tekt
1. |Phrasal element&M STRONGDFN CODESAMPKBD VAR CITE, andACRONYM

2. |Quotations: ThBLOCKQUOTE&NdQ elements

3. [Subscripts and superscripts: 81éBandSUPelements
3. |[Lines and Paragraphs

1. [Paragraphs: tHeelemert

2. |Visual rendering of paragraphs

3. |Controlling line breaks

4.

5. |Preformatted text: THeREelement
4. [Marking document changes: The INS and DEL elements

1. |Date and time format

The following sections discuss issues surrounding the structuring of text. Elements that format text
(alignment elements, font elements, style sheets, etc.) are discussed in later sections of the specification.
Please consult the section on SGML for questions @bout charactef syntax.

White space

The SGML specification distinguishes between record start characters (line feeds) and record ends
(carriage returns). On the Internet, some platforms use carriage return line feed pairs for line breaks, some
use just line feeds, and others just carriage returns. As a result, HTML user agents should consider both
isolated line feed and carriage return characters as line breaks, with carriage return line feed pairs treated
as single line breaks.

A line break occurring immediately following a start tag should be discarded, as should a line break
occurring immediately before an end tag. This applies to all HTML elements without exceptions. In
addition, for all elements exc a sequence of contiguous white space characters such as spaces,
horizontal tabs, form feeds and line breaks, should be replaced by a single word space.

Since the notion of what word space is varies from script (written language) to script, user agents should
collapse white space in script-sensitive ways. For example, in Latin scripts, a single word space is just a
space (ASCII decimal 32), while in Thai it is a zero-width word separator. In Japanese and Chinese, a
word space is ignored entirely.

These rules allow authors to use white space to lay out their markup as desired, clarifying the source
HTML with white space that will not be rendered by a user agent.

60

For instance, the following source HTML:

<p>
This example shows a paragraph and a list.
</P>

This is the first item

This is the second item

may be rewritten (by omitting end tags) and laid out differently (by using less white space):
<P>This example shows a paragraph and a list.

This is the first item

This is the second item

but should be rendered identically by a user agent.

The[PRBelement is used fr preformatted fext, where white space is significaffRBelement is
described belowwWord space processing can and should be done even in the absence of language
information specified by tilang] attribute. This is a script issue, not a language issue.

Structured text

Phrasal elementsEM STRONGDFN CODESAMRKBDO VAR CITE, and
ACRONYM

<IENTITY % phrase "EM [SITRGNG [DEN |[CODE ||
SAMP | KBD | CCEJACRONYM™] | |
<IELEMENT (%font|%phrase) - - (%inline)*>
<IATTLIST (%font|%phrase)
Y%attrs; -- Y%coreattrs, %i18n, %events --
>

Start tag:required End tag:required

Attributes defined elsewhere

id] [class_]{document-wide identifie}s)

[lang | (language informatigndir | (text direction)
ftitle | (element titlgs)

[style |(inline style informatioh)

61

e [onclick | jondbliclick }[onmousedown}jonmouseup }(onmouseover_|jonmousemove}
[onmouseout] onkeypress | fonkeydown |, fonkeyup] (intrinsic eventis)

Phrasal elements add structural information to text fragments. The usual meanings of phrasal elements are
following:

EM:

Indicates emphasis.
STRONG:

Indicates stronger emphasis.
CITE:

Cites a reference or other source.
DFN:

Indicates that this is the defining instance of the enclosed term.
CODE:

Designates a fragment of computer code.
SAMP:

Designates sample output from programs, scripts, etc.
KBD:

Indicates text to be entered by the user.
VAR:

Indicates an instance of a variable or program argument.
ACRONYM:

Indicates an acronym (e.g., WWW, HTTP, URL, etc.).

[EMandSTRON[zre useful in general to indicate emphasis. The other phrasal elements have particular
significance in technical documents. These examples illustrate the rendering of some of the textual
markup elements:

"More information can be found in <CITE>[ISO-0000]</CITE>."

"Please refer to the following reference number in future
correspondence: 1-234-55"

The]ACRONYdlement allows authors to clearly indicate a sequence of characters that compose an
acronym (e.g., "WWW", "FNAC", "IRS", etc.). The ability to identify acronyms is useful to spell
checkers, speech synthesizers, and other user agents and tools.

The content of tHACRONY|lement specifies the acronym itself. fitle]attribute may be used to
provide the text to which the acronym expands. Here are some sample acronym definitions:

<ACRONYM title="World Wide Web">WWW</ACRONYM>
<ACRONYM
title="Société Nationale de Chemins de Fer">
SNCF
</ACRONYM>

62

The presentation of phrasal elements depends on the user agent. Generally, visual user aggEld present
text in italics anfSTRON{Zext in bold font. Speech synthesiser agents might change the synthesis
parameters, such as volume, pitch and rate accordingly. Acronyms are generally spoken by pronouncing
the individual letters separately.

Note: This version of HTML doesn’t include special markup for abbreviations. We recommend that
speech synthesizers use client-side dictionaries to expand any abbreviations found in the document. For
specialized vocabulariglg/NK] elements in the document head can be used to reference suitable
dictionaries.

Quotations: The BLOCKQUOTE&Nd Qelements

<IELEMENT BLOCKQUOTE - - %block>
<IATTLIST BLOCKQUOTE

%attrs; -- %coreattrs, %i18n, %events --
cite %URL #IMPLIED -- URL for source document or msg --
>

<IELEMENT [- - (%inline)*>

<IATTLIST Q
%attrs; -- %coreattrs, %i18n, Y%events --
cfie__] %URL #IMPLIED -- URL for source document or msg --
>

Start tag:required End tag:required
Attribute definitions
cite =|url
The value of this attribute is a URL that designates a source document or message. This attribute is

intended to give information about the source from which the quotation was borrowed.

Attributes defined elsewhere

[[d] [class_](document-wide identifiefs)

[ang | (language informatigndir | (text directiof)
title | (element titlgs)

[style |({inline style informatiop)

lonclick |} ondblclick _}lonmousedown}{onmouseup |[onmouseover |jonmousemove)}
[onmouseout | onkeypress | [onkeydown], [onkeyup] (intrinsic events)

These two elements designate quoted [BxOCKQUOTE for long quotations af@is intended for
short quotations that don’t require paragraph breaks.

This example formats an excerpt from "The Two Towers", by J.R.R. Tolkien, as a blockquote.

<BLOCKQUOTE cite="http://www.mycom.com/tolkien/twotowers.htm|">
They went in single file, running like hounds on a strong scent,

and an eager light was in their eyes. Nearly due west the broad

swath of the marching Orcs tramped its ugly slot; the sweet grass

of Rohan had been bruised and blackened as they passed.
</BLOCKQUOTE>

63

Bs an indented block.

Visual user agents generally reniiO

Quotation markst is recommended that style sheets provide a way to insert quotation marks before and
after a quotation delimited §@or[BLOCKQUOTiE a manner appropriate to the current language
context (see thang]attribute) and the degree of nesting of quotations.

However, as some authors have Use¢@CKQUO [Eerely as a mechanism to indent text, in order to
preserve the intention of the authors, it is recommended that user agémtsert quotation marks in the
default style.

Furthermore, if authors include quotation marks @ar BLOCKQUOQOTé&ement, user agents should not
insert additional quotation marks.

The usage @BLOCKQUOT® indent text is deprecated in favor of style sheets.

Subscripts and superscripts: theSUBand SUPelements

<l-- subscripts and superscripts -->

<IELEMENT ($UBJ4UP] - - (%inline)*>

<IATTLIST (SUB|SUP)
%attrs; -- %coreattrs, %i18n, %events --
>

Start tag:required, End tag:required

Attributes defined elsewhere

id] [class_]{document-wide identifiefs)

[lang | (language informatignidir | (text direction)
[fitle | (element titlgs)

[style |(inline style informatioh)

[onclick | jondblclick }[onmousedown}jonmouseup j[onmouseover |jonmousemove}
onmouseout } onkeypress | [onkeydown |, onkeyup | (intrinsic events)

Many scripts (e.g., French) require superscripts or subscripts for proper render{gg)BaeSUR
elements should be used to markup text in these cases.

Here, we usfSURto raise the "lle" in the French " Dupont":

M^{lle} Dupont

Lines and Paragraphs

Authors traditionally divide their thoughts and arguments into sequences of paragraphs. The organization
of information into paragraphs is not affected by how the paragraphs are presented: paragraphs that are
double-justified contain the same thoughts as those that are left-justified.

64

The HTML markup fodefininga paragraph is straightforward: fe&lement defines a paragraph.

The visual presentation of paragraphs is not so simple. A number of issues, both stylistic and technical,
must be addressed:

Treatment of white space

Line breaking and word wrapping

Justification

Hyphenation

Written language conventions and text directionality
Formatting of paragraphs with respect to surrounding content

We address these questions below. Paragraph alignment and floatind objects are discussed later in this
document.

Paragraphs: theP element

<IELEMENT PJ- O (%inline)*>

<IATTLIST P
Yoattrs; -- %coreattrs, %il18n, %events --
Y%align; -- align, text alignment -- []

>
Start tag:required, End tag:optional

Attributes defined elsewhere

id] [class_]{document-wide identifie}s)

[lang | (language informatigniiir | (text directiof)
title | (element titlgs)

[style | (inline style informatioh)

[align | (alignment)

lonclick |} ondblclick _}/onmousedown}{onmouseup |[onmouseover |jonmousemove)}
[onmouseout | onkeypress | [onkeydown], [onkeyup] (intrinsic events)

The[d element represents a paragraph. It cannot contain block-level elements (irE]itd&if). You can
omit the end tag, which is then implied by the next block-level start tag. It is also implied by the end tag of
the element that encloses [lelement. For example, the following two paragraphs:

<P>This is the first paragraph.</P>
<P>This is the second paragraph.</P>
...a block element...

may be rewritten without their end tags:
<P>This is the first paragraph.

<P>This is the second paragraph.
...a block element...

65

since both are implicitly ended by the block elements that follow them. Similarly, if a paragraph is
enclosed by a block element, as in:

<DIV>
<P>This is the paragraph.
</DIV>

the end tag of the enclosing block element (H{eP¢) implies the end tag of tfildelement.

Empty[Plelements are bad form and should be ignored by the renderer.

Visual rendering of paragraphs

How paragraphs are rendered visually depends on the user agent. Paragraphs are usually rendered flush
left with a ragged right margin. Other defaults are appropriate for right-to-left scripts.

HTML user agents have traditionally rendered paragraphs with white space before and after, e.g.,

At the same time, there began to take form a system of numbering,
the calendar, hieroglyphic writing, and a technically advanced
art, all of which later influenced other peoples.

Within the framework of this gradual evolution or cultural
progress the Preclassic horizon has been divided into Lower,
Middle and Upper periods, to which can be added a transitional
or Protoclassic period with several features that would later
distinguish the emerging civilizations of Mesoamerica.

This contrasts with the style used in novels which indents the first line of the paragraph and uses the
regular line spacing between the line of the last paragraph and the first line of the next, e.g.,

At the same time, there began to take form a system of
numbering, the calendar, hieroglyphic writing, and a technically
advanced art, all of which later influenced other peoples.

Within the framework of this gradual evolution or cultural
progress the Preclassic horizon has been divided into Lower,
Middle and Upper periods, to which can be added a transitional
or Protoclassic period with several features that would later
distinguish the emerging civilizations of Mesoamerica.

Following the precedent set by the NCSA Mosaic browser in 1993, user agents generally don't justify
both margins, in part because it's hard to do this effectively without sophisticated hyphenation routines.
The advent of style sheets, and antialiased fonts with subpixel positioning promises to offer richer choices
to HTML authors than previously possible.

Style sheets provide rich control over the size and style of a font, the margins, space before and after a
paragraph, the first line indent, justification and many other details. The user agent’s default style sheet
rendergP] elements in a familar form, as illustrated above. You could in principle override this to render
paragraphs without the breaks that conventionally distinguish successive paragraphs, but this would be
confusing to readers and as a rule bad practice.

66

By convention, visual HTML user agents wrap text lines to fit within the available margins. Wrapping
algorithms depend on the script being formatted.

In Western scripts, for example, text should only be wrapped at white space. Early user agents incorrectly
wrapped lines at the beginning (or end) of elements, which resulted in dangling punctuation. For example,

A statue of the Cihuateteus, who are patron ...

Wrapping the line at the end of the anchor tag causes the comma to be stranded at the beginning of the
next line:

A statue of the Cihuateteus
, who are patron goddesses ...

This is an error, since there was no white space at that point in the markup.

Controlling line breaks

It is possible to force or forbid a line break in HTML.

Forcing a line break: theBRelement

<IELEMENT BR]- O EMPTY -- forced line break -->
<IATTLIST BR
%coreattrs; --id, class, style, title -- [] [] [] | |

c[ear (eft|all|rightjnone) none -- control of text flow --

>
Start tag:required End tag:forbidden

Attributes defined elsewhere

[[d] [class_](document-wide identifie}s)
title | (element titlgs)

[style |(inline style informatioh)

[clear |({alignment and floating obje¢ts)

The[BRelement forcibly breaks (ends) the current line of text.

For visual user agents, fokear] attribute can be used to determine whether markup followirjgRhe

element flows around images and other objects floated to the left or right margin, or whether it starts after
the bottom of such objects. Further details are given in the section on alignment and floating objects.
Authors are advised to use style sheets to control text flow around floating images and other objects. The
attribute, along with other HTML presentation attributes and tags, is only appropriate when you
need to consider user agents that don’t support style sheets.

With respect to bidirectional formatting, {B& element should be treated in the same way as a Unicode
LINE SEPARATOR character.

67

Prohibiting a line break

Sometimes you will want to prevent a line break from occurring between two words. The entity
(,
O0;) acts as a space where user agents should not cause a line break.

Hyphenation

In HTML, there are two types of hyphens: the plain hyphen and the soft hyphen. The plain hyphen should
be interpreted by a user agent as just another character. The soft hyphen tells the user agent where a line
break can occur.

Those browsers that interpret soft hyphens must observe the following semantics: If a line is broken at a
soft hyphen, a hyphen character must be displayed at the end of the first line. If a line is not broken at a
hyphen, the user agent must not display a hyphen character. For operations such as searching and sorting,
the soft hyphen should always be ignored.

In HTML, the plain hyphen is represented by the "-" character (-, -). The soft hyphen is
represented by the named character entity ­ (­, ­)

Preformatted text: The PREelement

<IENTITY % pre.exclusion "IMG|BIG|SMALL|SUB|SUP|FONT">

<IELEMENT - - (%inline)* -(%pre.exclusion)>
<IATTLIST PRE
Yoattrs; -- %coreattrs, %il18n, %events --

NUMBER #IMPLIED

>
Start tag:required, End tag:required
Attribute definitions
width =integer
This attribute provides a hint to visual user agents about the desired width of the formatted block.
The user agent can use this information to select an appropriate font size or to indent the content

appropriately. The desired width is expressed in number of characters. This attribute is not widely
supported currently.

Attributes defined elsewhere

e [id] [class_](document-wide identifie}s)

e [lang | (language informatigngir | (text direction)
e [title [(element titlgs)

e [style [(inline style informatioh)

e [onclick | jondbliclick }[onmousedown}jonmouseup }(onmouseover |jonmousemove}
[onmouseout] onkeypress | fonkeydown |, fonkeyup] (intrinsic eventis)

68

The[PREelement tells visual user agents that the enclosed text is "preformatted”. Visual user agents must
treat preformatted text as follows:

They may leavg white spgce intact.

They may render text with a fixed-pitch font.
They may disable automatic word wrap.

They must not disable bidirectional processing.

Note that the SGML standard requires that the parser remove a newline immediately following the start
tag or immediately preceding the end tag.

The DTD fragment above indicates which elements may not appear WiRIRE declaration. This is the
same as in HTML 3.2, and is intended to preserve constant line spacing and column alignment for text
rendered in a fixed pitch font. Authors are discouraged from altering this behavior through style sheets.

The following example shows a preformatted verse from Shelly’s @eanSkylark

<PRE>
Higher still and higher
From the earth thou springest
Like a cloud of fire;
The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.
</PRE>

Here is the same verse as rendered by your user agent:

Higher still and higher
From the earth thou springest
Like a cloud of fire;
The blue deep thou wingest,
And singing still dost soar, and soaring ever singest.

The horizontal tab character

The horizontal tab character (encoded in [UNICODE], US ASCII,|and [ISO88591] as decimal 9) is

usually interpreted by visual user agents as the smallest non-zero number of spaces necessary to line

characters up along tab stops that are every 8 characters. We strongly discourage using horizontal tabs in
preformatted text since it is common practice, when editing, to set the tab-spacing to other values, leading

to misaligned documents.

Marking document changes: The INS and DEL elements

<l-- INS/DEL are handled by inclusion on BODY -->
<IELEMENT (INS[DEL)] - (%inline)* -- inserted/deleted text -->
<IATTLIST (INS|DEL)

Y%attrs -- %coreattrs, %il18n, %events --
clie__] %URL #IMPLIED --info on reason for change --

dhietime___QDATA #IMPLIED -- when changed: ISO date format --
>

69

Start tag:required, End tag:required
Attribute definitions

cite =lurl
The value of this attribute is a URL that designates a source document or message. This attribute is
intended to point to information explaining why a document was changed.

datetime =lcdatd
The value of this attribute specifies the date and time when the change was made. This value must
have a format as specified[in [[SO8§01] and limited by the profile defined in the section below on

dates and times.

Attributes defined elsewhere

id] [class_](document-wide identifiefs)

[ang | (language informatigndir | (text direction)
title _[(element titlgs)

[style |{inline style informatioh)

[onclick_} jondblclick }jonmousedown}(onmouseup }[onmouseover_}jonmousemovej
onmouseout] onkeypress | fonkeydown], fonkeyup] (intrinsic evenis)

andDEL are used to markup sections of the document that have been inserted or deleted since a
previous version of a document (e.g., in draft legislation where law makers need to view the changes).

These two elements are unsual for HTML in that they are neither block-level nor inline elements. They
may contain one or more words within a paragraph or englobe one or more block-level elements such as
paragraphs, lists and tables.

User agents may render inserted and deleted text in ways that make the change obvious. For instance,
inserted text may appear in a special font, deleted text may not be shown at all or be shown as
struck-through or with special markings, etc.

User agents that do not recognize[Eite] element must render that element’s content nonetheless.

Date and time format

[ISO8601] allows many options and variations in the representation of dates and times. This specification
defines a specific format which is one of those allowed by [ISO8601].

The format is:
YYYY-MM-DDThh:mm:ssTZD

where:

70

YYYY = four-digit year

MM = two-digit month (01=January, etc.)

DD = two-digit day of month (01 through 31)

hh = two digits of hour (00 through 23) (am/pm NOT allowed)
mm = two digits of minute (00 through 59)

ss = two digits of second (00 through 59)

TZD = time zone designator

The time zone designator is one of:

Z

indicates UTC (Coordinated Universal Time).
+hh:mm

indicates that the time is a local time whicllishours andnnminutes ahead of UTC.
-hh:mm

indicates that the time is a local time whicllshours andnmminutes behind UTC.

Exactly the components shown here must be present, with exactly this punctuation. Notéhat the
appears literally in the string, to indicate the beginning of the time element, as spegified in [I$08601]

If a generating application does not know the time to the second, it may use the value "00" for the seconds
(and minutes and hours if necessary).

Both of the following examples correspond to November 5, 1994, 8:15:30 am, US Eastern Standard Time.

1994-11-05T13:15:30Z
1994-11-05T08:15:30-05:00

Used withINS], this gives:
<INS datetime="1994-11-05T08:15:30-05:00">

| added this on November 5th
</INS>

71

Lists

Contents

1. |[Unordered\L) and ordered@L) listg

1. [Lists formatted by visual user aggnts
2. |Definition lists: theDL, DT, andDDelements
3. |TheDIR andMENLelements

Unordered (UL) and ordered ©OL) lists

<IENTITY % ULStyle "disc|square|circle™>

<IELEMENT OO0- - (LI)+>

<IATTLIST UL -- unordered lists --
%attrs; -- %coreattrs, %il18n, %events --
tfpe | (%ULStyle) #IMPLIED -- bullet style --
cpmpact_](compact) #IMPLIED -- reduced interitem spacing --

>
<IENTITY % OLStyle "CDATA" -- constrained to: [1]|alAli|l] -->

<IELEMENT PO- - (LI)+>
<IATTLIST OL -- ordered lists --

Y%attrs; -- Y%coreattrs, %i18n, %events --
tfpe | %OLStyle #IMPLIED -- numbering style --
chbmpact__|(compact) #IMPLIED -- reduced interitem spacing --
sfart__JNUMBER #IMPLIED -- starting sequence number --
>

Start tag:required, End tag:required

<l-- The type attribute can be used to change the bullet style
in unordered lists and the numbering style in ordered lists -->

<IENTITY % LIStyle "CDATA" -- constrained to: "(%ULStyle|%OLStyle)" -->

<IELEMENT [T] O %block -- list item -->
<IATTLIST LI
%attrs; -- %coreattrs, %i18n, %events --
type | %LIStyle #IMPLIED -- list item style --
vhlue_] NUMBER #IMPLIED -- reset sequence number --
>

Start tag:required, End tag:optional
Attribute definitions
type =style-information

This attribute sets the style of a list item. Currently available values are intended for visual user
agents. Possible values are described below.

72

start =integer
For OL only. This attribute specifies the starting number of the first item in an ordered list. The
default starting number is one.

value =integer
ForLl only. This attribute sets the current number of a list element in an ordered list to a new integer
value.

compact
Deprecated.When set, this boolean attribute gives a hint to visual user agents to render the list in a
more compact way.

Attributes defined elsewhere

id] [class_](document-wide identifiefs)

lang | (language informatignir | (text direction)
title [(element titlgs)

[style |{inline style informatioh)

[onclick | jondblclick }[onmousedown}jonmouseup }[onmouseover |jonmousemove}
onmouseout } onkeypress |} [onkeydown |, onkeyup | (intrinsic evenis)

Ordered and unordered lists are identical except that visual user agents number ordered list items. User
agents may present those numbers in a variety of ways. Unordered list items are not numbered.

Both types of lists are made up of sequences of list items defined bl tlement (whose end tag is
generally omitted).

This example illustrates the basic structure of a list.

 ... first list item...
 ... second list item...

Lists may also be nested:

 ... Level one, number one...

 ... Level two, number one...
 ... Level two, number two...
<OL start="10">
 ... Level three, number one...

 ... Level two, number three...

 ... Level one, number two...

73

Details about number ordetin ordered lists, it is not possible to continue list numbering automatically
from a previous list or to hide numbering of some list items. However, you can reset the number of a list
item by setting it¥alue attribute. Numbering continues from the new value for subsequent list items.
For example:

<li value="30"> makes this list item number 30.

<li value="40"> makes this list item number 40.

 makes this list item number 41.

Lists formatted by visual user agents

The following description refers to the behavior of some current visual user agents when formatting lists.
Style sheets allow better control of list formatting (e.g., for numbering, language-dependent conventions,
etc.).

Visual browsers usually present nested lists indented with respect to the current level of indentation.
For botfOLandUL, theftype] attribute specifies rendering options for visual user agents.

For thdUL] element, possible values for attribute arelisc , square , andcircle . The default
value depends on the level of nesting of the current list.

How each value is presented depends on the user agent. User agents should attempt to present a "disc" as a
small filled-in circle, a "circle" as a small circle outline, and a "square" as a small square outline.

Your user agent displays them as follows (the bullet glyph in the line may or may not vary):

® s produced by the value "disc"
® s produced by the value "square"
® s produced by the value "circle"

For thdOL element, possible values for attribute are summarized in the table below:

Type Numbering style
1 arabic numbers 1,2,3, ..
a lower alpha a,b,ec, ..
A upper alpha A B, C, ..
i lower roman i, i, i, ...
[upper roman [1 1| TR

74

Definition lists: the DL, DT, and DDelements

<I-- definition lists - DT for term, DD for its definition -->

<IELEMENT DLJ- - (DT|DD)+>
<IATTLIST DL
%attrs; -- %%coreattrs, %i18n, %events --

chbmpact] (compact) #IMPLIED -- reduced interitem spacing --
>

Start tag:required, End tag:required

<IELEMENT DT]- O (%inline)*>

<IELEMENT DO - O %block>

<IATTLIST (DT|DD)
%attrs -- %coreattrs, %i18n, %events --
>

Start tag:required, End tag:optional

Attributes defined elsewhere

id] [class_]{document-wide identifie}s)

fang | (language informatigndir | (text direction)

ftitle] (element titlgs)

[style |(inline style informatioh)

[onclick | fondblclick _ }lonmousedown}jonmouseup |jonmouseover |lonmousemove]
[onmouseout | onkeypress |lonkeydown | jonkeyup | (intrinsic events)

Definition lists vary only slightly from other types of lists in that list items consist of two parts: an initial
label and a description. The label part is initiated byDtfielement and may only contain marked up text.
The description begins with tli#Delement and may contain block-level content.

Here is a sample definition list.

<DL>

<DT> Daniel

<DD> Born in France, Daniel’s favorite food is foie gras.
<P> In this paragraph, we’ll discuss Daniel’'s
harem: Pascale, Audrey, Laurie, and Alice.

<DT> Tim

<DD> Born in New York, Tim’s favorite food is ice cream.

</DL>

The rendering of a definition list depends on the user agent. Your user agent renders this example as
follows:

Daniel
Born in France, Daniel’s favorite food is foie gras.

75

In this paragraph, we’ll discuss Daniel’'s harem: Pascale, Audrey, Laurie, and Alice.
Tim
Born in New York, Tim’s favorite food is ice cream.

The DIR and MENUlElements

DIR and MENU are deprecated

<IELEMENT (DIR]N - - (LDh+ -(%blocklevel)>
<IATTLIST DIR

%%attrs; -- %coreattrs, %i18n, %events --
cbmpact__|(compact) #IMPLIED

>

<IATTLIST MENU
Y%attrs; -- %coreattrs, %i18n, %events --
chmpact_](compact) #IMPLIED

>
Start tag:required End tag:required

Attributes defined elsewhere

id] [class_|{document-wide identifie}s)

[lang |(language informatignllir | (text direction)

ftitle] (element titlgs)

[style |(inline style informatioh)

lonclick | jondblclick |lonmousedown}jonmouseup|lonmouseover |lonmousemove|
[onmouseout | onkeypress | [onkeydown | jonkeyup | (intrinsic events)

TheDIR element was designed to be used for creating multicolumn directory listsiHNEElement
was designed to be used for single column menu lists. Both elements have the same stfuidtjwstas
different rendering. In practice, a user agent will rendeiRaor MENUist exactly as fJL] list.

We strongly recommend usifuf] instead of these elements.

76

Tables

Contents

1. [Table structufe
1. [TheTABLEelement

2. [Table Captions: THEAPTIONelemerjt
3. |Groups of rows: thEHEAD TFOOT andTBODYelementss
4. [Groups of columns: tHeOLGROUBRNdCOL elements
5. |Table rows: Th@R element
6. |Table cells: Th&H andTD elements
2. [Table formatting by visual user ag¢nts
1. [Horizontal and vertical alignmént
2. [Borders and rulgs
3.
3. [Some sample tables
1. [Sample]t
2. [Sample]2

The HTML table model allows users to organize data in complex tabular structures. Tables can include
lists, paragraphs, forms, figures, preformatted text, and other tables.

In this table model, rows and columns may be grouped together. This grouping conveys structural
information about the table and may be rendered by user agents in ways to emphasize this structure.

Row groups are particularly useful in large tables. Intelligent visual user agents may allow scrolling of a
table body while preserving the head and foot information on the screen. Similarly, when long tables are
printed, the head and foot information may be repeated on each page that contains table data.

Note: This specification includes more detailed information about tables in sectipns on tablg design
[rationale and implementation issiies.

Table structure

An HTML table has the following structure:

® An optional caption.

e One or mor§ groups of rojvs. Each row group consists of an optional head section, an optional foot
section, and a series|of rqws.

® One or morg groups of colunins.

EacH ro\} consists of one or more cells.

e Eachce]l may contain either header information (meant to describe the nature of data in the column
or row) or data. A cell may span more than one row or column.

i

The TABLE element

<IELEMENT - - (CAPTION?, (COL*COLGROUP*), THEAD?, TFOOT?, TBODY+)>
<IATTLIST TABLE -- table element --

%attrs; -- %%coreattrs, %i18n, %events --

%TAlign; #IMPLIED -- table position relative to window --

bpcolor __$Color #IMPLIED -- background color for cells --
width__| CDATA #IMPLIED -- table width relative to window --
pls_] NUMBER #IMPLIED -- used for immediate display mode --
prder |CDATA #IMPLIED -- controls frame width around table --
feme 1 %TFrame; #IMPLIED -- which parts of table frame to include --
es %TRules; #IMPLIED -- rulings between rows and cols --
spacing CDATA #IMPLIED -- spacing between cells --
[padding CDATA #IMPLIED -- spacing within cells --

= o O

1901 | 192

vV O 0O =

Start tag:required, End tag:required
Attribute definitions

align = left|center|right
This attribute specifies the position of the table with respect to the document. Possible values:
e left: The table is to the left of the document.
® center: The table is to the center of the document.
® right: The table is to the right of the document.
width =[ength
This attribute specifies the desired width of entire table for visual user agents. In the absence of this
attribute, table width is determined by the user agent.
cols =integer
This attribute specifies the number of columns for the table. When specified, this attribute helps
visual user agents render the table as soon as it receives incoming data, rather than having to wait for
the entire table to determine the number of columns for certain.

Attributes defined elsewhere

id] [class_]{document-wide identifiefs)

[lang |(language informatignllir | (text direction)
ftitle [{element titlgs)

[style |(inline style informatioh)

[onclick | jondblclick | [onmousedown}jonmouseup }[onmouseover_|jonmousemove}
onmouseout } onkeypress | [onkeydown |, onkeyup | (intrinsic events)

[bgcolor | (background colgr)
[frame |} rules |[border |(borders and rulgs)
[cellspacing }[cellpadding |[{cell marging)

The[TABLH element contains all other elements that specify caption, rows, content, and formatting.

78

Calculating the number of rows and columns in a table

The number of rows in a table is equal to the numb@RElements it contains. User agents should
ignore rows that are implied by cells spanning rows beyond this number.

There are several ways to determine the number of columns:

® Scan each row in turn to compute the minimum number of columns needed (taking column spans
into account). If the column count for the table exceeds the number of cells in a given row (including
spanned rows), the end of that row is padded with empty cells. The "end" of a row depends on the
directionality of the table.

e Count the number of columns as specifiefdi)landCOLGROUElements which can only occur at
the start of the table (after the optiof@PTION

® Use thecols attribute on thEABLEelement. This is the weakest method as you don’t get any
additonal information on column widths. This may not matter though if you use style sheets to
specify widths.

User agents can assume that the table in this example has three columns.

<TABLE cols="3">
...the rest of the table...
</TABLE>

If the number of columns in a table is not specified byctile attribute, a visual user agent may wait for
the entire table to arrive before beginning rendering. In general waiting until the end of the table allows
the number of columns and their widths to be determined without the need for a redisplay. Setting the
cols attribute acts as a hint to visual user agents to display tables as each row is received. Authors are
recommended to use fO]andCOLGROUPlements to specify column properties rather than using the
cols attribute.

Table directionality

The directionality of a table is specified by [thie] attribute for thTABLE element. For a left-to-right
table (the default), column one is on the left side of the table and row one is at the top. For a right-to-left
table, column one is one the right side and row one is at the top.

Similarly, for left-to-right tables (the default), extra row cells are added to the right of the table, and for
right-to-left tables, extra cells are added to the left side.

When set for thEABLHelement, thfgir_|attribute also affects the direction of text within table cells
(since thddir_]attribute is inherited by block-level elements).

To specify a right-to-left table, set attribute as follows:
<TABLE dir="RTL">

...the rest of the table...
</TABLE>

79

The direction of text in individual cells can be changed by settifdithfattribute in element that defines
the cell. Please consult the section on bidirectiondl text for more information on text direction issues.

Table Captions: TheCAPTIONelement

<IELEMENT EAPTION - - (%inline;)+>
<IENTITY % CAlign "(top|bottom|left|right)">

<IATTLIST CAPTION -- table caption --
%attrs; -- %%coreattrs, %i18n, %events --

%CAlign; #IMPLIED -- relative to table --
>

Start tag:required, End tag:required
Attribute definitions

align =top|bottom|left|right
This attribute specifies the position of the caption with respect to the table. Possible values:
® top: The caption is above the table. This is the default value.
® bottom: The caption is below the table.
e left: The caption is to the left of the table.
® right: The caption is to the right of the table.

Attributes defined elsewhere

[[d] [class_]{document-wide identifie}s)

[lang | (language informatigndir | (text direction)

title [(element titlgs)

[style [({inline style informatiop)

[onclick | jondblclick |lonmousedown}lonmouseup |(onmouseover |lonmousemove}
[onmouseout | onkeypress |} jonkeydown |, [onkeyup | (intrinsic events)

When present, thf€APTIONelement’s text should describe the nature of the tablgCRRI IO
element must come immediately after[[&BLE start tag.

For instance,
<TABLE cols="3">
<CAPTION>Cups of coffee consumed by each senator</CAPTION>

...the rest of the table...
</TABLE>

Groups of rows: theTHEAD TFOOT and TBODYelements

<IELEMENT - O (TR+)>
<IELEMENT [FOOT - O (TR+)>

80

Start tag:required, End tag:optional
<IELEMENT O O (TR+)>
Start tag:optional, End tag:optional

<IATTLIST (THEAD|TBODY|TFOOT) -- table section --

%attrs; -- %%coreattrs, %i18n, %events --
%cellhalign; -- horizontal alignment in cells --
%cellvalign; -- vertical alignment in cells --

>

Attributes defined elsewhere

id] [class_]{document-wide identifiefs)

[lang |(language informatianllir | (text direction)
ftitle [{element titlgs)

[style |(inline style informatioh)

[onclick | jondblclick _}[onmousedown}jonmouseup }[onmouseover_|jonmousemove}
onmouseout } onkeypress | [onkeydown |, onkeyup | (intrinsic events)

[align | char [[charoff |[valign |(cell alignment)

A table must contain at least one row group. Each row group is divided into three sections: head, body,
and foot. The head and foot sections are optional[TFHeADelement defines the head, [ieOOT
element defines the foot, and element defines the body.

When present, eaffHEADTFOOT andTBODYinstance must contain one or more rows [Eée

This example illustrates the order and structure of table heads, feet, and bodies.

<TABLE>
<THEAD>
<TR> ...header information...
</THEAD>
<TFOOT>
<TR> ...footer information...
</TFOOT>
<TBODY>
<TR> ...first row of block one data...
<TR> ...second row of block one data...
</TBODY>
<TBODY>
<TR> ...first row of block two data...
<TR> ...second row of block two data...
<TR> ...third row of block two data...
</TBODY>
</TABLE>

TFOOTmust appear befofEBODYwithin aTABLE definition so that user agents can render the foot

before receiving all of the (potentially numerous) rows of data.

81

Optional row group tags

e When a table contains only one body and no head or foot sectiofi@@iystart and end tags may
be omitted.

e When a table block contains a head, the start tag ffrlEgADelement is required. The end tag may
be omitted when @FOOTor[TBODYstart tag follows.

e When a table block contains a foot, the start tag §T F@OTelement is required. The end tag may
be omitted when @HEADor[TBODYstart tag follows.

Conforming user agent parsers must obey these rules for reasons of backward compatibility.

The table of the previous example could be shortened by removing certain end tags.

<TABLE>
<THEAD>
<TR> ...header information...
<TFOOT>
<TR> ...footer information...
<TBODY>
<TR> ...first row of block one data...
<TR> ...second row of block one data...
<TBODY>
<TR> ...first row of block two data...
<TR> ...second row of block two data...
<TR> ...third row of block two data...
</TABLE>

Groups of columns: thCOLGROUBNd|COllelements

The COLGROUPIement
<IELEMENT EOLGROUP - O (col*)>

<IATTLIST COLGROUP

%attrs; -- %%coreattrs, %i18n, %events --

sban_] NUMBER 1 -- default number of columns in group --
CDATA #IMPLIED -- default width for enclosed COLs --
%cellhalign; -- horizontal alignment in cells --
%cellvalign; -- vertical alignment in cells --

>
Start tag:required End tag:optional
Attribute definitions

span =integer
When present, this attribute specifies the default number of columns in this group. User agents
should ignore this attribute if the current column group contains one of@@i}elements. The
default value of this attribute is one.

width =[eng
This attribute specifies a default width for each column in the current column group. In addition to
the standard pixel and percentage values, this attribute may take the special form "0*", which means

82

that the width of each column in the group should be the minimum width necessary to hold the
column’s contents.

Attributes defined elsewhere

e [id}[class |({document-wide identifie}s)

e [lang | (language informatignir | (text directiof)

o [title [{element titlgs)

e |style [(inline style informatiop)

e |onclick] jondblclick |lonmousedown}|onmouseup }[onmouseover |[onmousemove}
[onmouseout | onkeypress |lonkeydown | jonkeyup | (intrinsic events)

e [align |(char |[charoff ||valign |(cell alignment)

A table must contain at least one column group. In the absence of any column group definitions, a table is
considered to have one column group that includes all columns in the tanl@OTEBEROUBlement
creates an explicit column group.

Thewidth attribute of th¢gCOLGROUBlement specifies a default width for each column in a column
group. The special value "0*" tells user agents to set every column in a group to its minimum width. This
behavior may be overridden by the presencd@®gelement.

The table in the following example contains two column groups. The first column group contains 10
columns and the second contains 5 columns. The default width for each column in the first column group
is 50 pixels. The width of each column in the second column group will be the minimum for the column.

<TABLE>

<COLGROUP span="10" width="50">
<COLGROUP span="5" width="0*">
<THEAD>

<TR> ...

</TABLE>

The COLelement

<IELEMENT [COI] - O EMPTY>

<IATTLIST COL -- column groups and properties --
%attrs; -- %coreattrs, %i18n, %events --
sban] NUMBER 1 -- number of columns spanned by group --
CDATA #IMPLIED -- column width specification --
%cellhalign; -- horizontal alignment in cells --
%cellvalign; -- vertical alignment in cells --
>

Start tag:required End tag:forbidden

Attribute definitions

83

width =[ength
This attribute specifies a default width for each column in the current column group. In addition to
the standard pixel and percentage values, this attribute may take the special form "0*", which means
that the width of the each column in the group should be the minimum width necessary to hold the
column’s contents. The attribute may also have the form "i*", where "i" is an integer. This is called a
relative width When allotting space to rows and columns, user agents allot absolute widths first, then
divide up remaining available space among relative width rows or columns. Each relative width row
or column receives a portion of the space proportional to the integer preceding the "*". The value "*"
is equivalent to "1*".

Attributes defined elsewhere

e [id] [class]({document-wide identifiefs)

e [lang | (language informatignir | (text direction)

e [title [(element titlgs)

e [style |[(inline style informatioh)

e [onclick | jondbliclick }[onmousedown}jonmouseup }(onmouseover |jonmousemove}

[onmouseout] onkeypress] [onkeydown |, [onkeyup] (intrinsic events)

e [align [[char ||charoff ||valign [(cell alignment)
Each column group defined SOLGROURay contain zero or mof@Ollelements. ACOllelement does
not define a column group in the same senf@GISGROUR is simply a way to share attribute values

among columns in a column group. Note [@&ilelements are empty; they are only affected by
attributes.

Thelspan] attribute fofCOllmeans the following:

® In the absence oflgpan]declaration, eadgOllelement represents one column.

e If the[span]attribute is set to N > 0, the curr{@®lelement spans N columns in the table.

e |f the[span]attribute is set to 0, the curr{@®Ilelement spans the remaining columns in the table,
including the current and final columns.

As for[COLGROURhewidth attribute fofCOllaffects the width of the columns subsumed by the
element. If COllelement spans several columns thewitkth ~ attribute specifies the width of each
column in the span, not the width of the span as a whole.

The table in this example contains two column groups. The first group contains three columns, the second
contains two columns. The available horizontal space will be alloted as follows: First the user agent will
allot 30 pixels to the first column. Then, the minimal space required for the second column will be alloted
to it. The remaining horizontal space will be divided into six equal portions. Column three will receive

two of these portions, column four will receive one, and column five will receive three.

<TABLE>
<COLGROUP>

<COL width="30">

<COL width="0*">

<COL width="2*">
<COLGROUP align="center">

84

<COL width="1*">

<COL width="3*" align="char" char=":">
<THEAD>
<TR> ...
</TABLE>

We have set the value of attribute in the second column group to "center". All cells in every
column in this group will inherit this value, but may override it. In fact, the [@@il does just that, by
specifying that every cell in the column it governs will be aligned along the ":" character.

Table rows: TheTR element

<IELEMENT [TR]- O (TH|TD)+>

<IATTLIST TR -- table row --
%attrs; -- %coreattrs, %i18n, %events --
%cellhalign; -- horizontal alignment in cells --
%cellvalign; -- vertical alignment in cells --

bpgcolor __J6Color #IMPLIED -- background color for row --
>

Start tag:required End tag:optional

Attributes defined elsewhere

e [d}[class |({document-wide identifie}s)

e [lang | (language informatignir | (text directiof)

o [title [(element titlgs)

e |style [(inline style information)

e [onclick | fondbiclick _|lonmousedown} onmouseup }[onmouseover }jonmousemovel
[onmouseout] onkeypress] [onkeydown |, [onkeyup | (intrinsic events)

e [align |char }|charoff |}[valign |(cell alignmert)

The[TR elements acts as a container for a row of table cells.

This sample table contains three rows, each begun [Rkeément:

<TABLE>

<CAPTION>Cups of coffee consumed by each senator</CAPTION>
<TR> ...A header row...

<TR> ...First row of data...

<TR> ...Second row of data...

...the rest of the table...

</TABLE>

Table cells: TheTHand TD elements

<IELEMENT (TH[TD)]- O %block>
<IATTLIST (TH|TD) -- header or data cell --

%attrs; -- %coreattrs, %i18n, %events --
Kis CDATA #IMPLIED -- defaults to cell content --
akes CDATA #IMPLIED -- list of axis names --
npwrap_| (nowrap) #IMPLIED -- suppress word wrap --

85

bcolor oColor #IMPLIED -- cell background color --
rfwspan _|NUMBER 1 -- number of rows spanned by cell --
cplspan NUMBER 1 -- number of cols spanned by cell --
%cellhalign; -- horizontal alignment in cells --
%cellvalign; -- vertical alignment in cells --

>
Start tag:required, End tag:optional
Attribute definitions

axis =[cdatd
This attribute defines an abbreviated name for a header cell. The default name for a cell is its content.

axes =[cdata-fis]
The value of this attribute, a comma-separated I names, specifies the row and column
headers that pertain to this cell. In the absence of this attribute, user agents may make other attempts
to identify the cell’s pertinent header cells.

rowspan =integer
This attribute specifies the number of rows spanned by the current cell. The default value of this
attribute is one ("1"). The value zero ("0") means that the cell spans all rows from the current row to
the last row of the table.

colspan =integer
This attribute specifies the number of columns spanned by the current cell. The default value of this
attribute is one ("1"). The value zero ("0") means that the cell spans all columns from the current
column to the last column of the table.

nowrap
DeprecatedWhen present, this boolean attribute tells visual user agents to disable automatic text
wrapping for this cell. Style sheets should be used instead of this attribute (e.g., the "white-space”
attribute of [CSS1] . Note: if used carelessly, this attribute may result in excessively wide cells.

Attributes defined elsewhere

e [id] [class_]({document-wide identifie}s)

e [lang | (language informatignfir | (text direction)

e [title [(element titlgs)

e [style |[(inline style informatioh)

e [onclick [jondblclick |lonmousedown}jonmouseup|lonmouseover |jonmousemove
[onmouseout |} jonkeypress | lonkeydown |, jonkeyup | (intrinsic events)

e |bgcolor | (background colgr)

® [align |[char |[charoff |}[valign |(cell alignmert)

The[THelement stores header information, while[TiBkelement stores data. This distinction enables user
agents to render header and data cells distinctly, even in the absence of style sheets.

Cells may be empty (i.e., contain no data).

86

The following table contains four columns of data, each headed by a column description.
<TABLE>

<CAPTION>Cups of coffee consumed by each senator</CAPTION>

<TR> <TH>Name <TH>Cups <TH>Type of Coffee <TH>Sugar?

<TR> <TD>T. Sexton <TD>10 <TD>Espresso <TD>No

<TR> <TD>J. Dinnen <TD>5 <TD>Decaf <TD>Yes

...the rest of the table...
</TABLE>

Your user agent renders the beginning of this table as follows:

Cups of coffee consumed by each senator
Name Cups Type of Coffee Sugar?
T. Sexton 10 Espresso No

J.Dinnen 5 Decaf Yes

To help distinguish the cells of this table, we can sdbtder |attribute of th¢TABLHelement:

<TABLE border="border">
...the rest of the table...
</TABLE>

With a border, your user agent renders the beginning of this table as follows:

Cups of coffee consumed by each senator

Name | Cups| Type of Coffee Sugarf?

T. Sexton 10 Espresso No

J. Dinnen 5 Decaf Yes

Labeling cells

Thelaxis_| andaxes | attributes provide a means for specifying cell labels.

Speech synthesizers may use these labels to identify the contents and location of each cell. Processing
software might consider these labels as database field names when transferring a table’s contents to a
database.

In the following example table, we set the value ofakis | attribute to be the last name of each senator.
We also label the cell value as falling under the "Name" column.

87

<TABLE border="border">

<CAPTION>Cups of coffee consumed by each senator</CAPTION>

<TR> <TH>Name <TH>Cups <TH>Type of Coffee <TH>Sugar?

<TR> <TD axis="Sexton" axes="Name">T. Sexton <TD>10

<TD>Espresso <TD>No

<TR> <TD axis="Dinnen" axes="Name">J. Dinnen <TD>5 <TD>Decaf <TD>Yes
</TABLE>

Cells that span several rows or columns

Cells may span several rows or columns. The number of rows or columns spanned by a cell is set by the
[rowspan] andcolspan_]attributes for either tHéH or[TD elements.

In this table definition, we specify that the cell in row four, column two should span a total of three
columns, including the current row.

<TABLE border="border">

<CAPTION>Cups of coffee consumed by each senator</CAPTION>
<TR> <TH>Name <TH>Cups <TH>Type of Coffee <TH>Sugar?
<TR> <TD>T. Sexton <TD>10 <TD>Espresso <TD>No

<TR> <TD>J. Dinnen <TD>5 <TD>Decaf <TD>Yes

<TR> <TD>A. Soria <TD colspan="3">Not available
</TABLE>

This table might be rendered by a visual user agent as follows:

Cups of coffee consumed by each senator

| Name |Cups|Type of Coffee|Sugar?|

|T. Sexton|10 |Espresso |[No |

[J. Dinnen|5 |Decaf |Yes |

|A. Soria |[Not available |

This example illustrates how cell definitions that span more than one row or column affect the definition
of later cells. Consider the following table definition:

<TABLE border="border">

<TR><TD>1 <TD rowspan="2">2 <TD>3

<TR><TD>4 <TD>6

<TR><TD>7 <TD>8 <TD>9
</TABLE>

This table might be rendered something like this:

88

Since the cell labeled "2" spans two rows, it affects the positions of the cells defined in the following
rows. Note that if cell "6" had not been defined in row two, an extra empty cell would have been added by
the user agent to complete the row.

Similarly, in the following table definition:
<TABLE border="border">

<TR><TD>1 <TD>2 <TD>3

<TR><TD colspan="2">4 <TD>6

<TR><TD>7 <TD>8 <TD>9
</TABLE>

cell "4" spans two columns, so cell "6" is placed in column three.

This example illustrates how one might create overlapping cells. In this table, cell "5" spans two rows and
cell "7" spans two columns, so there is overlap in the cell between "7" and "9":

<TABLE border="border">

<TR><TD>1 <TD>2 <TD>3

<TR><TD>4 <TD rowspan="2">5 <TD>6
<TR><TD colspan="2">7 <TD>9
</TABLE>

This table might be rendered as follows to convey the overlap:

The rendering of overlapping cells is undefined. Rendering will vary between user agents.

Table formatting by visual user agents

The following description describes the HTML table attributes that tell visual user agents how to format
tables. Style sheets will offer better control of visual table formatting. At the writing of this specification,
CSS1] did not offer mechanisms to control all aspects of visual table formatting.

89

This version of HTML includes mechanisms to control:

e |horizontal and vertical alignment of cell contents,

® |border stylejs
o and| cell margins

Horizontal and vertical alignment

The following attributes may be set for different table elements (see their definitions).

<l-- horizontal alignment attributes for cell contents -->
<IENTITY % cellhalign
"align _(left|center|right|justify|char) #IMPLIED

cjar__] CDATA #IMPLIED -- alignment char, e.g. char=":" --

cHaroff _CIPATA #IMPLIED -- offset for alignment char --"
>

<l-- vertical alignment attributes for cell contents -->
<IENTITY % cellvalign
"vlign (tog|middle|bottom|baseline) #IMPLIED"

>

Attribute definitions

align

left|center|right|justify|char

This attribute specifies the alignment of data and the justification of text in a cell. Possible values:

valign

left: Left-flush data/Left-justify text. This is the default value for table data.
center: Center data/Center-justify text. This is the default value for table headers.
right: Right-flush data/Right-justify text.

justify: Double-justify text.

char: Align text around a specific character.

=top|middle|bottom|baseline

This attribute specifies the vertical position of data within a cell. Possible values:

top: Cell data is flush with the top of the cell.

middle: Cell data is centered vertically within the cell. This is the default value.

bottom: Cell data is flush with the bottom of the cell.

baseline: All cells in the same row as a cell whasdign attribute has this value should
have their textual data positioned so that the first text line occurs on a baseline common to all
cells in the row. This constraint does not apply to subsequent text lines in these cells.

char =[cdatd

This attribute specifies a character within a text fragment which will act as an axis for alignment. The

default value for this attribute is the decimal point character for the current language (as set by the
attribute (e.g., the period (".") in English and the comma (",") in French). The value of this
attribute is case-sensitive.

charoff

=[ength

When present, this attribute specifies the offset to the first occurrence of the alignment character on
each line. If a line doesn't include the alignment character, it should be horizontally shifted to end at
the alignment position.

90

Whencharoff _]is used so set the offset of an alignment character, the direction of offset is
determined by the current text direction (set bydine] attribute). In left-to-right texts (the default),
offset is from the left margin. In right-to-left texts, offset is from the right margin.

The table in this example aligns a row of currency values along a decimal point. We set the alignment
character to "." explicitly.

<TABLE border="border">

<COLGROUP>

<COL><COL align="char" char=".">
<THEAD>

<TR><TH>Vegetable <TH>Cost per kilo
<TBODY>

<TR><TD>Lettuce <TD>$1
<TR><TD>Silver carrots <TD>$10.50
<TR><TD>Golden turnips <TD>$100.30
</TABLE>

The formatted table should look something like this:

| Vegetable |Cost per kilo|
I I I
|Lettuce | $1 |
I I I
|Silver carrots| $10.50|

I I I
|Golden turnips| $100.30|

Inheritance of alignment specifications

The alignment of cell contents can be specified on a cell by cell basis, or inherited from enclosing
elements, such as the row, column or the table itself.

The order of precedence (from highest to lowest) for the attrifalitgs | [char | andcharoff _|is the
following:

1. An alignment attribute set on an element within a cell’'s data[@-g.,

2. An alignment attribute set on a cBIHandTD).

3. An alignment attribute set on a column or column gri@®landCOLGROUWYPWhen a cell is part
of a multi-column span, the alignment property is inherited from the cell definition at the beginning
of the span.

4. An alignment attribute set on a row or row gr¢t [THEAD[TFOOT andTBODY. When a cell is
part of a multi-row span, the alignment property is inherited from the cell definition at the beginning
of the span.

5. An alignment attribute set on the taff&BLB).

6. The default alignment value.

91

The order of precedence (from highest to lowest) for the attilalign | (as well as the other inherited
attributedang | |dir | andstyle) is the following:

1. An attribute set on an element within a cell’s data [@g.,

2. An attribute set on a cdili§ andTD).

3. An attribute set on a row or row grofiid[THEAD[TFOOT andTBODY. When a cell is part of a
multi-row span, the attribute value is inherited from the cell definition at the beginning of the span.

4. An attribute set on a column or column grg@@JandCOLGROUPWhen a cell is part of a
multi-column span, the attribute value is inherited from the cell definition at the beginning of the
span.

5. An attribute set on the tabJEABLE).

6. The default attribute value.

Furthermore, when rendering cells, horizontal alignment is determined by columns in preference to rows,
while for vertical alignment, rows are given preference over columns.

The default alignment for cells depends on the user agent. However, user agents should substitute the
default attribute for the current directionality (i.e., not just "left" in all cases).

User agents that do not support the "justify” value offlgm _|attribute may substitute the "left" value.

Borders and rules

The following attributes affect a table’s external frame and internal rules.

Attribute definitions

frame =void|above|below|hsides|lhs|rhs|vsides|box|border
This attribute specifies which sides of the frame that surrounds a table will be visible. Possible
values:

rules

void: No sides. This is the default value.
above: The top side only.

below: The bottom side only.

hsides: The top and bottom sides only.
vsides: The right and left sides only.
Ihs: The left-hand side only.

rhs: The right-hand side only.

box: All four sides.

border: All four sides.

= none|groups|rows|cols|all

This attribute specifies which rules will appear between cells within a table. Possible values:

none: No rules. This is the default value.

groups: Rules will appear between row groups (FeEEADTFOOT andTBODY and
column groups (sé€OLGROURBRNACOI) only.

rows: Rules will appear between rows only.
cols: Rules will appear between columns only.

92

e all: Rules will appear between all rows and columns.
border =[cdatgd
This attributes specifies the width (in pixels only) of the frame around a table (see the Note below for
more information about this attribute).

In the following table, borders five pixels thick will be rendered on the left- and right-hand sides of the
table and rules should be displayed between all columns.

<TABLE border="5" frame="vsides" rules="cols">
<TR> <TD>1 <TD>2 <TD>3

<TR> <TD>4 <TD>5 <TD>6

<TR> <TD>7 <TD>8 <TD>9

</TABLE>

The following settings should be observed by user agents for backwards compatibility.

e Settingborder E"0" impliesfframe E"void" and, unless otherwise specifipdles F"none".

e Other values dborder_]imply[frame "border" and, unless otherwise specifjrdes F"all".

® The value "border" in the start tag of fR@BLE element should be interpreted as the value of the
frame] attribute. It impliegulesF"all" and some default (non-zero) value for [feeder |

attribute.

Thus, for example:

<FRAME border="2"> <=> <FRAME border="2" frame="border" rules="all">
and

<FRAME border> <=> <FRAME frame="border" rules="all">

Note: Thgborder | attribute also defines the border behavior for[@BJEC Tand[MG elements, but
takes different values for those elements.

Cell margins
Two attributes control spacing between and within cells.

Attribute definitions

cellspacing =[length}
This attribute specifies how much space should be left between the table frame and the first or last
cell border for each row or column, and between the cells in a table.

cellpadding =[length
This attribute specifies the amount of space between the border of the cell and its contents, on all
sides of the contents.

In the following table, thgellspacing | attribute specifies that cells will be separated from each other
and from the table frame by twenty pixels. Fedipadding | attribute specifies that the top margin of
the cell and the bottom margin of the cell will each be separated from the cell's contents by 10% of the

93

available vertical space (the total being 20%). Similarly, the left margin of the cell and the right margin of
the cell will each be separated from the cell's contents by 10% of the available horizontal space (the total
being 20%).

<TABLE>
<TR cellspacing="20"> <TD>Datal <TD cellpadding="20%">Data2 <TD>Data3
</TABLE>

If a table or given column has a fixed wiqgellspacing |andcellpadding | may demand more
space than assigned. We recommend that user agents give these attributes precedeneédiler the
attribute when a conflict occurs, but this is not a requirement.

Some sample tables

The following table samples illustrate the interaction of all the table elements.

Sample 1

In "ascii art”, the following table:

<TABLE border="border">
<CAPTION>A test table with merged cells</CAPTION>
<TR><TH rowspan=2><TH colspan="2">Average

<TH rowspan="2">other
category<TH>Misc
<TR><TH>height<TH>weight
<TR><TH align="left">males<TD>1.9<TD>0.003
<TR><TH align="left" rowspan="2">females<TD>1.7<TD>0.002
</TABLE>

would be rendered something like this:

A test table with merged cells
\
| Average | other | Misc |
R — | category |-------- |
| height | weight | | |
I I
males [1.9 |0.003 | | |

I I
females | 1.7 |0.002 | | |

— —— e —— — — ~—

On your browser, the table looks like this:

94

A test table with merged cells

Average other | Misc

category

height | weight

males |1.9 0.003

females| 1.7 0.002

Sample 2

This sample illustrates grouped rows and columns. The example is adapted from "Developing
International Software", by Nadine Kano.

In "ascii art”, the following table:

<TABLE border="2" frame="hsides" rules="groups">

<CAPTION>CODE-PAGE SUPPORT IN MICROSOFT WINDOWS</CAPTION>
<COLGROUP align="center">

<COLGROUP align="left">

<COLGROUP align="center" span="2">

<COLGROUP align="center" span="3">

<THEAD valign="top">

<TR>

<TH>Code-Page
ID

<TH>Name

<TH>ACP

<TH>OEMCP

<TH>Windows
NT 3.1

<TH>Windows
NT 3.51

<TH>Windows
95

<TBODY>

<TR><TD>1200<TD>Unicode (BMP of ISO/IEC-10646)<TD><TD><TD>X<TD>X<TD>*
<TR><TD>1250<TD>Windows 3.1 Eastern European<TD>X<TD><TD>X<TD>X<TD>X
<TR><TD>1251<TD>Windows 3.1 Cyrillic<TD>X<TD><TD>X<TD>X<TD>X
<TR><TD>1252<TD>Windows 3.1 US (ANSI)<TD>X<TD><TD>X<TD>X<TD>X
<TR><TD>1253<TD>Windows 3.1 Greek<TD>X<TD><TD>X<TD>X<TD>X
<TR><TD>1254<TD>Windows 3.1 Turkish<TD>X<TD><TD>X<TD>X<TD>X
<TR><TD>1255<TD>Hebrew<TD>X<TD><TD><TD><TD>X
<TR><TD>1256<TD>Arabic<TD>X<TD><TD><TD><TD>X
<TR><TD>1257<TD>Baltic<TD>X<TD><TD><TD><TD>X
<TR><TD>1361<TD>Korean (Johab)<TD>X<TD><TD><TD>**<TD>X
<TBODY>

<TR><TD>437<TD>MS-DOS United States<TD><TD>X<TD>X<TD>X<TD>X
<TR><TD>708<TD>Arabic (ASMO 708)<TD><TD>X<TD><TD><TD>X
<TR><TD>709<TD>Arabic (ASMO 449+, BCON V4)<TD><TD>X<TD><TD><TD>X
<TR><TD>710<TD>Arabic (Transparent Arabic)<TD><TD>X<TD><TD><TD>X
<TR><TD>720<TD>Arabic (Transparent ASMO)<TD><TD>X<TD><TD><TD>X
</TABLE>

would be rendered something like this:

95

CODE-PAGE SUPPORT IN MICROSOFT WINDOWS

Code-Page | Name | ACP OEMCP | Windows Windows Windows
ID | | | NT3.1NT3.51 95
1200 | Unicode (BMP of ISO 10646) | | X X *
1250 | Windows 3.1 Eastern European | X | X X X
1251 | Windows 3.1 Cyrillic | X | X X X
1252 | Windows 3.1 US (ANSI) | X | X X X
1253 | Windows 3.1 Greek | X | X X X
1254 | Windows 3.1 Turkish | X | X X X
1255 | Hebrew | X | X
1256 | Arabic | X [X
1257 | Baltic | X | X
1361 | Korean (Johab) | X | o X
437 | MS-DOS United States | X | X X X
708 | Arabic (ASMO 708) | X] X
709 | Arabic (ASMO 449+, BCON V4) | X | X
710 | Arabic (Transparent Arabic) | X | X
720 | Arabic (Transparent ASMO) | X | X

On your user agent, this tables is rendered as follows:

96

CODE-PAGE SUPPORT IN MICROSOFT WINDOWS

Code-Page| Name ACP OEMCP | Windows Windows Windows

ID NT 3.1 NT 3.51 95
Unicode (BMP of .

1200 ISO/IEC-10646) X X

1250 Windows 3.1 Eastern X X X X
European

1251 Windows 3.1 Cyrillic X X X X
Windows 3.1 US

1252 (ANSI) X X X X

1253 Windows 3.1 Greek X X X X

1254 Windows 3.1 Turkish X X

1255 Hebrew X X

1256 Arabic X X

1257 Baltic X X

1361 Korean (Johab) X *x X

437 MS-DOS United States X X X X

708 Arabic (ASMO 708) X X
Arabic (ASMO 449+,

709 BCON V4) X X

710 Arab!c (Transparent X X
Arabic)
Arabic (Transparent

720 ASMO) X X

This example illustrates hd@OLGROUPan be used to group columns and set the default column

alignment. Similarly|,TBOD

which borders and rules to render.

97

is used to group rows. Tliame

andrules |attributes tell the user agent

Links

Contents

1. [Path information: thBASEelemert
2. [Links and anchgrs

. |Definitions of links and anchors
2. [TheA elemerjt

3. [Anchors with thed attribute

4. [TheLINK element

5. [Link type$

6. [Links and external style shgets
7. |Links and search engifes

=

Up to now, the specification has dealt with HTML constructs that add structure to a single document. In
this section, we introduce concepts and constructs that allow authors t¢ crehte links between documents.

Path information: the BASEelement

<IELEMENT -0 EMPTY>

<IATTLIST BASE
hfefl] %URL #REQUIRED
tdrgef” ICDATA #IMPLIED -- where to render linked resource --
>

Start tag:required End tag:forbidden
Attribute definitions

href =|url
This attribute specifies an absolute URL that acts as the base URL for resolving relative URLS.

Attributes defined elsewhere

® [target |(target frame informatign)

It is important to consider the issue of paths when linking to another document or including an object. In
HTML, path information is always specified by a RL. Relative URLs are resolved according to a base
URL, which may come from a variety of sources (see the sectjon on relativé URLs for information about
sources of base URLSs). TBASEelement allows authors to specify a document’s base URL explicitly.

When present, thBASEelement must appear in {READsection of an HTML document. The scope of
theBASEelement is the current document only.

For example, given the followifgASEdeclaration:

98

<HTML>
<HEAD>
<BASE href="http://www.barre.fr/fou/intro.htm|">
</HEAD>

</HTML>

the relative URL "../gee/foo.html" would resolve to:

http://www.barre.fr/gee/foo.html

Links and anchors

A HTML link is a connection from one Web resource to another. Though a very simple concept, links
have been one of the key reasons the Web has been so successful.

Definitions of links and anchors

An HTML link has two ends and a direction. The link starts at the "source" end and points to the
"destination" end.

Every link definition specifies both the source and the destination of the link. One end is always defined
as the location where the link definition occurs. The other end is specified by an attribute in the link
definition.

A link end refers to some Web resource, such as an HTML document, an image, a video clip, a sound, a
program, the current document, etc. A link end may also refer to an anchamclAoris a named zone
within an HTML document. The zone may include text or other objects.

Uses of links

Defined this way, links have no inherent semantics; they just associate a source and a destination.
However, links also includigype informatiorthat allows user agents to interpret them in interesting ways.

Of course, by far the most commoseof a link is to retrieve another Web resource (e.g., by clicking with
a mouse, activating the link with a voice command, etc.).

Web-surfing is not the only use of links, however. For instance, authors may define links that specify the
"next" and "previous" documents in a series of documents. User agents can render such links with
navigation tools rather than as part of the document’s contents.

Similarly, authors may use links to define a print order for a series of documents. User agents may follow
these links to produce a coherent printed version of a manual or book.

99

Making heads and tails of links

As defined, a link has two ends (the source and the destination), one of which is specified by the location
where the link definition occurs. But is this end the source or the destination of the link?

Imagine you are the author of a book written in HTML, and you want your readers to be able to read the
book from beginning to end, chapter by chapter. If each chapter is in a separate HTML document, you can
represent the order information with links: each document would include two links, one pointing to the
previous chapter and one to the next. The link designating the previous chapter has its destination in the
current document and its source in the preceding chapter. The link designating the next chapter has its
source in the current document and its destination in the next chapter. By recording this structural
information in the link definitions, you enable user agents to present the ordered relationships in
interesting ways, such as navigation buttons, menus, etc.

Thefrel]attribute specifies that the link being defined has its source in the current documfat: The

attribute specifies that the link being defined has its destination in the current document. Furthermore, the
values of these attributes give user agents some information about the type of resource located at the other
end of the link. Examples illustrating their use are given below.

Elements that define links
There are two HTML elements that define lifkBYK]andAl

LINK] may only appear in tfgEADsection of an HTML document. It defines a relationship between the
current document and another resource. Alth@ilti<] has no content, the relationships it defines may
be rendered by some user agents.

The[d element may only appear in {B&DYof a document. It defines a relationship between a zone
within the current document and another reso{jdeas content (text, images, etc.) that may be rendered
with the rest of the document’s contents. User agents generally highlight this content to indicate the
presence of a link.

The other important distinction between these two elements is that a link def@id tynerally

interpreted by user agents to mean "retrieve the resource at the other end of this link". The retrieved
resource may be handled by the user agent in several ways: by opening a new HTML document in the
same user agent window, opening a new HTML document in a different window, starting a new program
to handle the resource, etc.

Thefiitle]attribute may be set for these elements to add information about the nature of a link. This
information may be spoken by a user agent, rendered as a tool tip, cause a change in cursor image, etc.

Elements that define anchors
There are two ways to specify anchors in an HTML document:

e The[A element.
e Thelfid] attribute of any element.

100

Links and anchors togetheThel4 element is used to define both links and anchors. It is possible, and
even economical, to use the s@helement to define a link and an anchor.

Internationalization and links

Since links may point to documents written in different languages (possibly with different writing order)

and using differerjt character encodings[AlendLINK]elements support tfiang |(language)dir]
(writing direction), anfEharset_] (character encoding) attributes. These attributes allow authors to advise

user agents about the nature of the data at the other end of the link.

Armed with this additional knowledge, user agents should be able to avoid presenting "garbage" to the
user. Instead, they may either locate resources necessary for the correct presentation of the document or, if
they cannot locate the resources, they should at least warn the user that the document will be unreadable
and explain the cause.

The A element

<IELEMENT [- - (%inline)* -(A)>
<IATTLIST A

%attrs; -- %coreattrs, %i18n, %events --
charset__¢DATA #IMPLIED -- char encoding of linked resource --
me CDATA #IMPLIED -- named link end --
%URL #IMPLIED -- URL for linked resource --
drget ICDATA #IMPLIED -- where to render resource --
¢ | CDATA #IMPLIED --forward link types --
¢v_| CDATA #IMPLIED -- reverse link types --
Ccesskey QDATA #IMPLIED -- accessibility key character --
hape | %Shape rect -- for use with OBJECT SHAPES --
pords__] %Coords #IMPLIED -- for use with OBJECT SHAPES --
dbindex_ NUMBER #IMPLIED -- position in tabbing order --

e g I
= E
D
—

= =

QO 0

vV o

Start tag:required, End tag:required
Attribute definitions

name =
This attribute indicates that the element is being used to define an anchor. The value of this attribute
is a unique anchor name. The scope of this name is the current document. Note that this attribute
shares the same name space adthattribute.

href =|url
This attribute indicates that the element is being used to define a link. The value of this attribute is
the location of one end of the link (the other end being defined by the location of this element).

rel =lcdatd
This attribute indicates that the source of the link being defined is at the current location. The value
of[href] in this case designates the destination of the link. The vahe¢ o$pecifies the type of the
link. This attribute may take a space-separated list of link types.

rev =[datg
This attribute indicates that the destination of the link being defined is at the current location. The
value ofhref]in this case designates the source of the link. The valgw ofpecifies the type of

101

the link. This attribute may take a space-separated list of link types.

charset =[cdat3
This attribute specifies the character encoding of the data designated by the link. The value of this
attribute must be the name of a "charset" as defined in [RFC2045] (e.g., "euc-jp"). The default value
for this attribute is "ISO-8859-1".

Attributes defined elsewhere

id] [class_]({document-wide identifieks)

lang | (language informatigngir | (text direction)
title |(element titlgs)

[style](inline style informatioh)

[onclick | jondblclick }[onmousedown}jonmouseup }j[onmouseover |jonmousemove}
[onmouseout] onkeypress | fonkeydown |, fonkeyup] (intrinsic eventis)

target _|(target frame informatign)
[tabindex |(tabbing navigatidn)
[accesskey |(access keys)

[shape } coords | (image maps)

The[d element may define an anchor, a link, or both.

This example illustrates the definition of a link.

For more information about W3C, please consult the
W3C Web site

This link designates the home page of the World Wide Web Consortium. When a user activates this link
in a user agent, the user agent will retrieve the resource, in this case, an HTML document.

User agents generally render links in such a way as to make them obvious to users (underlining, reverse
video, etc.). Rendering depends on the user agent. Rendering may vary according to whether the user has
already visited the link or not. One possible rendering of the previous link might be:

For more information about W3C, please consult the W3C Web site.

To tell user agents explicitly what the character encoding of the destination page iqclsatsee
attribute:

For more information about W3C, please consult the
W3C Web site

The following example illustrates the definition of an anchor. Suppose we define an anchor named
"anchor-one" in the file "one.html".

...text before the anchor...

This is the location of anchor one.
...text after the anchor...

102

This definition assigns an anchor to the entire document zone that contains the text "This is the location of
anchor one". Usually, the content§®ére not rendered in any special way whkiefines an anchor
only.

Having defined the anchor, we may link to it from the same or another document. URLs that designate
anchors end with "#" followed by the anchor name. Here are some examples of such URLs:

e An absolute URLhttp://www.mycompany.com/one.html#anchor-one
® A relative URL:../one.html#anchor-one
® \When the link is defined in the same docum#&atchor-one

Thus, a link defined in the file "two.html" in the same directory as "one.html" would refer to the anchor as
follows:

...text before the link...
For more information, please consult anchor one.
...text after the link...

ThelA element in the following example specifies an anchor and a link simultaneously:

| just returned from vacation! Here'’s a

<A name="anchor-two"
href="http://www.somecompany.com/People/lan/vacation/family.png">

photo of my family at the lake..

This example contains a link to a different type of Web resource (a PNG image). Activating the link
should cause the image resource to be retrieved from the Web (and possibly displayed if the system has
been configured to do so).

Note: Some user agents fail to find anchors represented by efsynents. For example, some user
agents may not find the "empty-anchor" in the following HTML fragment:

...some HTML...
Link to empty anchor

Syntax of link attribute values
Values of thename, [rel] andrev] attributes observe the following:

® Case sensitivityValues are case-insensitive.

e String matching Characters with several possible representatidns in [ISO]0646] (e.qg., both
precomposed and bsae+diacritic forms) match in two strings only if they have the same
representation, except for case differences, in both strings. Case folding must be performed as
specified if JUNICODH]. In particular, it is recommended that case-insensitive matching be
performed by folding to uppercase letters from lowercase, not vice versa.

103

Mailto links

Authors may create links that do not lead to another document but instead cause email to be sent to an
email address. When the link is activated, user agents should cause a mail program to open that includes
the destination email address in the "To:" field.

To cause email to be sent when a link is activated, specify a MAILTO URL as the valufpiefthe
attribute.

In this example, when the user activates the link, the user agent should open a mail program with the
address "joe@somplace.com” in the "To:" field.

...this is text...
For all comments, please send email to
Joe Cool.

Nested links
Links and anchors defined by {Akelement may not be nested.

ILLEGAL EXAMPLE:
The following example illustrates nested links. Nested links are not permitted.

This text contains

an outer anchor and
and link and an inner
anchor and link.

Anchors with the id attribute
Thefd] attribute may be used to position an anchor at the start tag of any element.

This example illustrates the use of fid attribute to position an anchor in[ei@ element. The anchor is
linked to via th¢A element.

You may read more about this in Section Two.
...later in the document

<H2 id="section2">Section Two</H2>

...later in the document

Please refer to Section Two above

for more details.

Thefid]andname attributes share the same name spacg (see [ISOJ.0646]). This means that they cannot
both define an anchor with the same name in the same document.

ILLEGAL EXAMPLE:
The following excerpt is illegal HTML since these attributes declare the same name twice in the same
document.

104

<BODY>

...

<H1 id="al">

...pages and pages...

</BODY>

Because of its specification in the HTML DTD, theme attribute may contain entities. Thus, the value

Dé&#txfc;rst

is a valid name. THel]Jattribute, on the other hand, may not contain entities.

The LINK element

<IELEMENT O EMPTY>
<IATTLIST LINK

%attrs;
hfef] %URL #IMPLIED -- URL for linked resource --

rl

\

=3

vV =t

-- %coreattrs, %i18n, %events --

CDATA #IMPLIED -- forward link types --

CDATA #IMPLIED -- reverse link types --
t)D/oContentType #IMPLIED -- advisory Internet content type --
jedia_| CDATA #IMPLIED -- for rendering on these media --
drget__ICDATA #IMPLIED -- where to render linked resource --

Start tag:required End tag:forbidden

Attributes defined elsewhere

id] [class_|{document-wide identifie}s)

[lang |(language informatignllir | (text direction)

[title

| (element titlgs)

Istyle

| (inline style informatioh)

lonclick | jondblclick |lonmousedown}jonmouseup|lonmouseover |lonmousemove|

[onmouseout | onkeypress | [onkeydown | jonkeyup | (intrinsic events)

[href |rel l[rev |({links and anchors)

ftarget

| (target frame informatign)

type) Imedia | (header style informatipn)

This element, which must appear in [fiEADsection of a document (any number of times), defines a
media-independent link. AlthoudiNK has no content, it conveys relationship information that may be
rendered by some user agents in a variety of ways (e.g., a toolbar with a drop-down menu of links).

This example illustrates how sevdEANK] definitions may appear in tfgEADsection of a document.
Thelrel Jandrev]attributes specify where the source and destination are for each link. The values
"Index", "Next", and "Previous" are explained in the sectioh on link fypes.

105

<HTML>

<HEAD>

<LINK rel="Index" href="../index.htm|">
<LINK rel="Next" href="Chapter_3.htm|">
<LINK rev="Previous" href="Chapter_1.htm[">
</HEAD>

...the rest of the document

When should | usfrel]and[rev]? It is not always necessary to identify which end is the destination and
which is the source of a link. For tfgelement, you are not required to specifyjtdle]andrev]

attributes. For thL/NK]element, you must choose one or the other. See the descriptions above on the
distinction betweejnel]and[rev]

Link types

Thelrel_Jandrev] attributes specify which end of a link definition is the destination and which is the
source. In both cases, the value or values of the attribute describe the nature of the link. Both attributes
may be specified in the same element start tag.

Authors may use the following recognized link types, listed here with their conventional interpretations.

User agents, search engines, etc. may interpret these link types in a variety of ways. For example, user
agents may provide access to linked documents through a navigation bar. Or, when the link type is "Next",
user agents may preload the next document to save access time.

Contents
The link refers to a document serving as a table of contents.
Index
The link refers to a document providing an index for the current document.
Glossary
The link refers to a document providing a glossary of terms that pertain to the current document.
Copyright
The link refers to a copyright statement for the current document.
Next
The link refers to the next document in an ordered series of documents. This value is generally used
with[rel”]
Previous
The link refers to the previous document in an ordered series of documents. This value is generally
used withrev |
Start
The link refers to the first document in a collection of documents. This link type tells search engines
which document in a collection is considered by the author to be the starting point of the collection.
Help
The link refers to a document offering help (more information, links to other sources information,
etc.)
Bookmark
The link refers to a bookmark. A bookmark is a link to a key entry point within an extended
document. Thiitle] attribute may used, for example, to label the bookmark. Note that several

106

bookmarks may be defined in each document.
Stylesheet
The link refers to an external style sheet. See the sect|on on external style sheets for details.
Alternate
The link refers to different versions of the same document. When used in tandem [eitlythe
attribute, implies a translated version of the same document. When used in tandem|wgtige
attribute, implies a version for a different medium.

Links and external style sheets

When thdLINK]element links an external style sheet to a documerfiyplee] attribute specifies the style
sheet language and fheedia | attribute specifies the destination medium or media. User agents may save
time by retrieving from the network only those style sheets that apply to the current device.

Media typep are further discussed in the section on style sheets.

Links and search engines
Authors may use thelNK|element to provide a variety of information to search engines, including:

® Links to versions of a document written in another language.
® Links to versions of a document for different media, such as printable versions.
® Links to the front page of a collection of documents.

The examples below illustrate how language information, media types, and link types may be combined to
improve document handling by search engines.

In the following example, we tell search engines where to find Dutch, Portuguese, and Arabic versions of
a document.

<HEAD>
<LINK lang="nl" tittle="The manual in Dutch"
rel="alternate"
href="http://someplace.com/manual/dutch.htm|">
<LINK lang="pt" titte="The manual in Portuguese"
rel="alternate"
href="http://someplace.com/manual/portuguese.html">
<LINK lang="ar" title="The manual in Arabic"
dir="rtl"
rel="alternate"
href="http://someplace.com/manual/arabic.html">
</HEAD>

In the following example, we tell search engines where to find the printed version of a manual.

<HEAD>

<LINK media="print" titte="The manual in postscript"
rel="alternate"
href="http://someplace.com/manual/postscript.ps">

</HEAD>

107

In the following example, we tell search engines where to find the front page of a collection of documents.

<HEAD>

<LINK rel="Start" titte="The first page of the manual"
href="http://someplace.com/manual/postscript.ps">

</HEAD>

108

Inclusions

Contents

1. [Including an object: th@BJECTelemerit
1. [Object initialization: th€ ARAMelement
2. |Object declarations and instantiatjons
3. |Object alignmept
2. [Including an image: th&1G element
1. [Image alignmeht
3. [Including an applet: thePPLETelement
4. |Including HTML in another HTML document
5. [Including an image map in an HTML docunpent
1. [Client-side Image maps
2. [Client-side image maps wilhAPandAREA
3. [Server-side image maps
6. |Visual presentation of images, objects, and applets
7. |How to specify alternate text

The following sections describe the various mechanisms offered by HTML to include a resource in a
document. HTML allows authors to include objefts, ImHges, applets, filds, and image maps.

Including an object: the OBJECTelement

<IENTITY % OAlign "(texttop|middle|textmiddle|baseline|
textbottom|left|center|right)">

<IELEMENT PBJECT - - (PARAM | %block)*>
<IATTLIST OBJECT

%attrs -- %coreattrs, %i18n, %events --
declare__(declare) #IMPLIED -- declare but don’t instantiate flag --
[assid__%URL #IMPLIED -- identifies an implementation --
pdebase _PoURL #IMPLIED -- some systems need an additional URL --
pta | %URL #IMPLIED -- reference to object’s data --
pe_|%ContentType #IMPLIED -- Internet content type for data --
bdetype % ontentType #IMPLIED -- Internet content type for code --
fandby __ICDATA #IMPLIED -- message to show while loading --
igh] %OAlign #IMPLIED -- positioning inside document --
height %Length #IMPLIED -- suggested height --
width %Length #IMPLIED -- suggested width --
bprder | %Length #IMPLIED -- suggested link border width --
hspace %Length #IMPLIED -- suggested horizontal gutter --
vspace %length #IMPLIED -- suggested vertical gutter --
ugemap | %URL #IMPLIED -- reference to image map --
shapes] (shapes) #IMPLIED -- object has shaped hypertext links --
name %URL #IMPLIED -- submit as part of form --
tdbindex NUMBER #IMPLIED -- position in tabbing order --

>

D 0N oOoF O 00

109

Start tag:required, End tag:required
Attribute definitions

codebase =url
This attribute specifies the base path used to resolve relative URLs specifieddi¢ | (i.e., it
gives the base URL when the object requires code). If this attribute is not specified, its default value
is the base URL of the current document. Not all rendering mechanisms require this attribute.

classid =url
This attribute specifies the location of a rendering mechanism via a URL.

codetype =cdata
This attribute specifies the Internet Media Type [see [MIMETYPES]) of data expected by the
rendering mechanism specified[ffassid] This attribute is optional but recommended when
is specified since it allows the user agent to avoid loading information for unsupported
media types. If no explicit value is given for this attribute, it defaults to the valuefiybté
attribute.

data =url
This attribute specifies the location of the data to be rendered.

type =cdata
This attribute specifies the Internet Media Type [see [MIMETYPES]) for the data specified by
[data] This attribute is optional but recommended is specified since it allows the user
agent to avoid loading information for unsupported media types. If no explicit value is given for this
attribute, the user agent should attempt to determine the type of the data to be rendered.

declare
When present, this boolean attribute makes the c{@BAECTdefinition a declaration only. The
object must be instantiated by a subsed@BUECTdefinition referring to this declaration.

standby =cdata
This attribute specifies a message that a user agent may render while loading the object’s
implementation and data.

align =texttop|middle|textmiddle|baseline|textbottom|left|center|right
Deprecated.This attribute specifies the position of the object with respect its surrounding context.
Its possible values are explained in the sectign on object alignment.

Attributes defined elsewhere

[d] [class_]({document-wide identifiefs)

lang | (language informatignidir | (text direction)
title |{element titlgs)

[style |(inline style informatioh)

[onclick | jondblclick }[onmousedown}jonmouseup }j[onmouseover_|jonmousemove}
[onmouseout] onkeypress | fonkeydown |, fonkeyup] (intrinsic eventis)

[tabindex | (tabbing navigatign)

[shapes ||lusemap](client side image maps)

name (submitting objects with forms)

height , width ,, hspace , vspace (visual presentation of objects, images, and applets)

110

Most user agents contain mechanisms for rendering common data types such as text, GIF images, colors,
fonts, and a handful of graphic elements. To render data types they don’t support natively, user agents
generally run external applications. TRBJECTelement allows authors to control whether included

objects are handled by user agents internally or externally.

In the most general case, an inserted rendering mechanism specifies three types of information:

e The rendering mechanism’s implementation
® The data to be rendered
® Additional values required by the rendering mechanism at run-time.

In certain cases, it may not be necessary to specify all of this information. For example, some rendering
mechanisms may not require data (e.g., a self-contained applet that peforms a small animation). Other
rendering mechanisms may not require run-time initialization. Finally, some rendering mechanisms may
not require additional implementation information, i.e., the user agent itself may already know how to
render that type of data (e.g., GIF images).

In HTML, the]OBJECTelement specifies the location of a rendering mechanism and the location of data
required by the rendering mechanism. This information is specified by the attributefO&IRET

element. ThPARAklement specifies a set of run-time values. We discuss this element below, in the
section on object initialization.

A user agent must interpret [@BJECTelement according to the following precedence rules:

1. The user agent must first try to render the mechanism specified by the element’s attribute.
2. If the user agent is not able to render this mechanism for whatever reason (configured not to, lack of
resources, wrong architecture, etc.), it must try to render the element’s contents.

In the following example, we insert a fictitious rendering mechanism written in the Python language that
displays an analog clock. This applet requires no additional data or run-time val
attribute specifies the location of the applet:

<OBJECT classid="http://www.miamachina.it/analogclock.py">
</OBJECT>

We recommend completing this declaration by including alternate text in the con{f©®B3ECT in case

the user agent cannot render the clock.

<OBJECT classid="http://www.miamachina.it/analogclock.py">
An animated clock.
</OBJECT>

Note that the clock will be rendered as soon as the user agent interpf@BJIRS Jdeclaration. It is
possible to delay execution of the rendering mechanism by first declaring the object (described below).

111

One significant consequence of ABJECJelement’s design is that it offers a mechanism for specifying
alternate object renderings; each embe@dBdECTdeclaration may specify an alternate rendering
mechanism. If a user agent cannot render the outelBHEECT, it tries to render the contents, which

may be anotheDBJECTelement, etc.

In the following example, we embed sev§@&JECTdeclarations to illustrate how alternate renderings
work. User agents will attempt to render the fEIECTelement it can, in the following order: (1) an

Earth applet written in the Python language, (2) an MPEG animation of the Earth, (3) a GIF image of the
Earth, (4) alternate text.

<OBJECT title="The Earth as seen from space"
classid="http://www.observer.mars/TheEarth.py">

<OBJECT data="TheEarth.mpeg" type="application/mpeg">
<OBJECT src="TheEarth.gif">
The Earth as seen from space.
</OBJECT>

</OBJECT>

</OBJECT>

The outermost declaration specifies an applet that requires no data or initial values. The second
declaration specifies an MPEG animation and, since it does not define a rendering mechanism, relies on
the user agent to handle the animation. We also sptghd attribute so that a user agent that cannot

render MPEG can elect not to retrieve "TheEarth.mpeg" from the network. The third declaration specifies
the location of a GIF file and furnishes alternate text in case all other mechanisms fail.

Inline vs. external dataData to be rendered may be supplied in two ways: inline and from an external
resource. While the former method will generally lead to faster rendering, it is not convenient when
rendering large quantities of data.

Object initialization: the PARAMelement

<IELEMENT PARANI - O EMPTY -- named property value -->
<IATTLIST PARAM

npme | CDATA #REQUIRED -- property name --
vilue | CDATA #IMPLIED -- property value --
vhluetype (DATA|REF|OBJECT) DATA -- How to interpret value --
tfpe_| CDATA #IMPLIED -- Internet media type --
>

Start tag:required End tag:forbidden
Attribute definitions

name = cdata
This attribute defines the name of a run-time parameter name, assumed to be known by the inserted
object. Whether the property name is case-sensitive depends on the object.

value =cdata
This attribute specifies the value of a run-time parameter specifiedrbg. Property values have no
meaning to HTML; their meaning is determined by the object in question.

112

valuetype = data|ref|object
This attribute specifies the type of tha@lue attribute. Possible values:
® data: The value specified byalue will be passed directly to the rendering mechanism as a
string, after resolving any embedded character or numeric character entities. This is the default
value for this attribute and may appear alone in the start tag of the element.
e ref: The value specified byalue is a URL that designates a resource where run-time values
are stored. The URL must be passed to the rendering mechamisme., unresolved.
® object: The value specified byalue is a fragment URL that designate§@BJECT
declaration in the same document. In this casOB@EECJdefinition must be identifiable by
its[id] attribute.
type =cdata
This attribute specifies the Internet Media Type [see [MIMETYPES]) of the resource designated by
thevalue attributeonly in the case whepluetype |is set to "ref". This attribute thus specifies
for the user agent, the type of values that will be found at the URL designatallidy.

The[PARANelement specifies a set of values that may be required by a rendering mechanism at run-time.
Any number of oPARANElements may appear at the beginning JDBIEC Jdeclaration. The syntax of

names and values is assumed to be understood by the rendering mechanism. Names and values are passed
to the rendering mechanism on its standard input.

We return to our clock example. This time, we suppose that the rendering mechanism (the clock) is able to
handle two run-time parameters that define its initial height and width. We set the initial dimensions to

40x40 pixels with twfPARAVelements.

<OBJECT classid="http://www.miamachina.it/analogclock.py">
<PARAM name="height" value="40" valuetype="data">
<PARAM name="width" value="40" valuetype="data">

This user agent cannot render Python apps.

</OBJECT>

Since the defauftaluetype |for aPARANelement is "data"”, we could replace the above declarations
with either:

<PARAM name="height" value="40">
<PARAM name="width" value="40" >

or:

<PARAM name="height" value="40" data>
<PARAM name="width" value="40" data>

(The latter form -- the value "data" only fealuetype] attribute -- is possible due to the DTD definition
of this attribute.)

In the following example, run-time data for the rendering mechanism’s "Init_values" parameter is
specified as an external resource (a GIF file). The value piibetype |attribute is thus set to "ref",
and thevalue is a URL designating the resource.

113

<OBJECT classid="http://www.gifstuff.com/gifappli"
standby="Loading Elvis...">

<PARAM name="Init_values"
value="./images/elvis.gif">
valuetype="ref">

</OBJECT>

Note that we have also set attribute so that the user agent may render a message while the
rendering mechanism loads.

Rendering mechanisms are located by URLs. As we discussed in the seftion bn URLs, the first segment of
an absolute URL specifies the protocol used to transfer the data designated by the URL. For HTML
documents, this protocol is generally "http". Some rendering mechanisms might employ other protocols.
For instance, when specifying a Java rendering mechanism, you may use URLSs that begin with "java" and
for ActiveX applets, you may use "clsid".

In the following example, we insert a Java applet into an HTML document.

<OBJECT classid="java:program.start">
</OBJECT>

By setting thdcodetype |attribute, a user agent can decide whether to retrieve the Java application based
on its ability to do so.

<OBJECT codetype="application/octet-stream"
classid="java:program.start">
</OBJECT>

Some rendering schemes require additional information to identify their implementation and must be told
where to find that information. You may give path information to the rendering mechanism via the
codebase attribute.

<OBJECT codetype="application/octet-stream"
classid="java:program.start">
codebase="http://foooo.bar.com/java/myimplementation/"
</OBJECT>

The following example specifies (with tiassid | attribute) an ActiveX rendering mechanism via a
URL that begins with the protocol information "clsid". Tdheta]attribute locates the data to render
(another clock).

<OBJECT classid="clsid:663C8FEF-1EF9-11CF-A3DB-080036F12502"
data="http://www.acme.com/ole/clock.stm">

This application is not supported.

</OBJECT>

Object declarations and instantiations

The preceding examples have only illustrated isolated object definitions. When a document is to contain
more than one instance of the same object, it is possible to separate the declaration of the object from its
instantiations. Doing so has several advantages:

114

e Data may be retrieved from the network by the user agentime(during the declaration) and
reused for each instantiation.

® |t is possible to instantiate an object from a different location in the document, for example, by
activating a link.
® |t is possible to specify objects as run-time data for other objects.

To declare an rendering mechanism so that it is not executed when read by the user agent, set the boolean

attribute in thgOBJECTelement. At the same time, you must identify the declaration by
setting thfid] attribute in theDBJECT element to a unique value. Later instantiations of the object will
refer to this identifier.

A rendering mechanism defined with ffieclare | attribute is instantiated every time f8JECTis
referenced thereafter.

In the following example, we declare @BJECTand cause it so be instantiated by referring to it from a
link. Thus, the object can be activated by clicking on some highlighted text, for example.

<OBJECT declare
id="earth_declaration"
data="TheEarth.mpeg"
type="application/mpeg">
<OBJECT src="TheEarth.gif">
The Earth as seen from space.
</OBJECT>
</OBJECT>
...later in the document...
Click to see a neat
animation of The Earth!

The following example illustrates how to specify run-time values that are other objects. In this example,
we send text (a poem, in fact) to a hypothetical mechanism for viewing poems. The rendering mechanism
recognizes a run-time parameter named "font" (say, for rendering the poem text in a certain font). The
value for this parameter is itself an object that inserts (but does not render) the font object. The
relationship between the font object and the poem viewer object is achieved by (1) assiidihg the
"tribune" to the font object declaration and (2) referring to it fronfPARANelement of the poem viewer

object (withivaluetype] andvalue).

<OBJECT declare
id="tribune"
type="application/x-webfont"
data="tribune.gif">
</OBJECT>
...view the poem in KublaKhan.txt here...
<OBJECT classid="http://foo.bar.com/poem_viewer"
data="KublaKhan.txt">
<PARAM name="font" valuetype="object" value="#tribune">
<P>You're missing a really cool poem viewer ...
</OBJECT>

115

User agents that don’t support feclare]attribute must render the contents of @@JECT

declaration.

Object alignment

Thealign attribute has been deprecated for this element in favor of style sheets.
Thealign attribute specifies the position of an object with respect to its context.
The following values place an object in the heart of text:

® texttop: means the top of the object should be vertically aligned with the top of the current text

line.
® middle: means the middle of the object should be vertically aligned with the current baseline.
e textmiddle: means the middle of the object should be vertically aligned with the position

midway between the baseline and the x-height for the current font. The x-height is defined as the top
of a lower case x in Western writing systems. If the text font is an all-caps style, user agents should
use the height of a capital X. For other writing systems, user agents should align the middle of the
object with the middle of the text.

® baseline: means the bottom of the object should be vertically aligned with the current baseline.

® textbottom: means the bottom of the object should be vertically aligned with the bottom of the
current text line.

Three other valueseft |, center , andright , cause an object to float. They are discussed in the

section on floating objects.

Including an image: thelMG element

<!-- To avoid problems with text-only UAs you need to provide
a description with ALT, and avoid server-side image maps -->

<IELEMENT - O EMPTY -- Embedded image -->
<IATTLIST IMG
%attrs; -- %coreattrs, %i18n, %events --

s[c %URL #REQUIRED -- URL of image to embed --

t CDATA #IMPLIED -- description for text only browsers --
ign__|%IAlign #IMPLIED -- vertical or horizontal alignment --
height %Pixels #IMPLIED -- suggested height in pixels --
width %Pixels #IMPLIED -- suggested width in pixels --
bprder]| %Pixels #IMPLIED -- suggested link border width --
hspace %Pixels #IMPLIED -- suggested horizontal gutter --
vspace %Pixels #IMPLIED -- suggested vertical gutter --
usema %URL #IMPLIED -- use client-side image map --
igma (ismap) #IMPLIED -- use server-side image map --

>

Start tag:required End tag:forbidden

Attribute definitions

116

src =url
This attribute specifies the location of the image resource. Examples of widely recognized image
formats include GIF, JPEG, and PNG.

align = bottom|middle|top]|left|right
Deprecated.This attribute specifies the position of the image with respect its surrounding context.
Its values are explained in the section on image alignment.

Attributes defined elsewhere

e [id] [class_]({document-wide identifiefs)

e [alt |(alternate text)

e [lang | (language informatignir | (text directiof)

o [title [(element titlgs)

e |style [(inline style information)

e [onclick | fondbiclick _|lonmousedown}onmouseup }[onmouseover }jonmousemovel
[onmouseout] onkeypress] [onkeydown |, [onkeyup | (intrinsic eventis)

e |ismap | usemap|(client side image maps)

® name (submitting objects with forms)

e height ,width ,[porder | hspace , vspace (visual presentation of objects, images, and applets)

The[[MGelement embeds an image in the current document at the location of the element’s definition.
However, we recommend using [@BJECTelement to insert an image into a document.

Theheight andwidth attributes of this element override the natural height and width of the source
image. User agents should scale the image appropriately.

In an earlier example, we defined a link to a family photo. Here, we insert the photo directly into the
current document

...preceding text...

I just returned from vacation! Here’s a photo of my family at the lake:

<IMG src="http://www.somecompany.com/People/lan/vacation/family.png"
alt="A photo of my family at the lake.">

This may be expressed with BBJECTelement as follows:

...preceding text...

| just returned from vacation! Here’s a photo of my family at the lake:

<OBJECT data="http://www.somecompany.com/People/lan/vacation/family.png"
type="image/png">

A photo of my family at the lake.

</OBJECT>

Thefalt Jattribute specifies alternate text when the image cannot be displayed (see below for information
on[how to specify alternate text).

117

Image alignment

Thealign attribute has been deprecated for this element in favor of style sheets.
Thealign attribute specifies the position of an object with respect to its context.
The following values place an object in the heart of text:

® bottom: means that the bottom of the image should be vertically aligned with the current baseline.
This is the default value.

e middle: means that the center of the image should be vertically aligned with the current baseline.

e top: means that the top of the image should be vertically aligned with the top of the current text
line.

Two other valuedeft andright , cause the image to float. They are discussed in the section on
floating objects.

Differing interpretations ofalign. Existing user agents vary in their interpretation of{#ign_|
attribute. Some only take into account what has occurred on the text line prior to the element, some take
into account the text on both sides of the element.

Including an applet: the APPLETelement

APPLET is deprecated.

<I[ELEMENT APPLET] - - (PARAM | %inline)*>

<IATTLIST APPLET

bdebase PoURL #IMPLIED -- optional base URL for applet --
afchive _¢DATA #IMPLIED -- comma separated archive list -
C‘

o

(@]

o
o
]

CDATA #IMPLIED -- applet class file --

plect__|CDATA #IMPLIED -- serialized applet file --

CDATA #IMPLIED -- description for text only browsers --
neme] CDATA #IMPLIED -- allows applets to find each other --
width__| %Pixels #REQUIRED -- suggested width in pixels --
height_|%Pixels #REQUIRED -- suggested height in pixels --
afign__]%lAlign #IMPLIED -- vertical or horizontal alignment --
hspace %Pixels #IMPLIED -- suggested horizontal gutter --

vspace %Pixels #IMPLIED -- suggested vertical gutter --
>

Start tag:required End tag:required
Attribute definitions

codebase =url
This attribute specifies the base URL for the applet. If this attribute is not specified, then the base
URL for the applet is the same as for the current document.

code =cdata
This attribute specifies the name of the resource that contains the applet’s compiled applet subclass.
The value must be a relative URL with respect to the applet base URL.

118

name = cdata
This attribute specifies a name for the applet instance, which makes it possible for applets on the
same page to find (and communicate with) each other.

width =length
This attribute specifies the initial width of the applet display area (not counting any windows or
dialogs that the applet brings up).

height =length
This attribute specifies the initial height of the applet display area (not counting any windows or
dialogs that the applet brings up).

align = bottom|middle|top]|left|right
This attribute specifies the position of the object with respect to its surrounding context. Its values are
explained in the section pn image alignment.

archive =cdata
This attribute specifies the names of one or more comma-separated archives containing classes and
other resources that will be "preloaded”. The classes are loaded using an instance of an
AppletClassLoader with the givexmdebase . Preloading resources can significantly improve the
performance of applets.

object =cdata
This attribute gives the name of the resource that contains a serialized representation of an applet.
The applet will be deserialized. Thret() method will not be invoked; but istart() method
will. Attributes valid when the original object was serialized are not restored. Any attributes passed
to this applet instance will be available to the Applet.

Attributes defined elsewhere

e [alt |(alternate text)
® hspace ,vspace (visual presentation of objects, images, and applets)

This element, supported by all Java-enabled browsers, allows designers to embed a Java applet in an
HTML document. It has been deprecated in favor ofdBdECTelement.

The content of thPPLETacts as alternate information for user agents that don’t support this element or
are currently configured not to support applets. The content must be ignored otherwise.

The following sample Java applet:

<APPLET code="Bubbles.class" width="500" height="500">
Java applet that draws animated bubbles.
</APPLET>

may be rewritten as follows WilBBJECT

<OBJECT codetype="application/octet-stream"
classid="java:Bubbles.class"
width="500" height="500">
Java applet that draws animated bubbles.
</OBJECT>

119

Initial values may be supplied to the applet viRR&RAlelement.

The following sample Java applet:

<APPLET code="Audioltem" width="15" height="15">
<PARAM name="snd" value="Hello.au|Welcome.au">
Java applet that plays a welcoming sound.
</APPLET>

may be rewritten as follows wif@BJECT

<OBJECT codetype="application/octet-stream"
classid="Audioltem"
width="15" height="15">
<PARAM name="snd" value="Hello.au|Welcome.au">
Java applet that plays a welcoming sound.
</OBJECT>

Including HTML in another HTML document

Sometimes, rather than linking to another document, it is helpful to include the contents of an HTML
document in another HTML document. We recommend usif@B#ECTelement with thiglata |
attribute for this purpose.

For instance, the following line will include the contentpiefte to_include.html at the location

where thgOBJECTdefinition occurs.

...text before...

<OBJECT data="file_to_include.html">

Warning: file_to_include.html could not be included.
</OBJECT>

...text after...

The contents gDBJECTmust only be rendered if the file specified by[daga] attribute cannot be
loaded.

The behavior of a user agent in cases where a file includes itself is not defined.

Careful file inclusions.Be careful if you attempt to include a section of an HTML document defined by an
anchor. The entire document after the anchor definition will be included, and you might unwittingly
include unwanted end tags (for elements su¢B@B)} etc.) in your document.

ThelFRAME element may also be used to insert an inline frame containing text in an HTML document.

Including an image map in an HTML document

An image map allows users authors to specify active regions of an image or object and assign a specific
action to each region (e.g., retrieve a document, run a program, etc.)

120

An image map is created by associating an object with a specification of sensitive geometric areas on the
object.

There are two types of image maps:

® Server-sideWhen a user activates a region of a server-side image map with a mouse, the pixel
coordinates of the click are sent to the server where the document is housed. The server interprets the
coordinates and performs some action.

e Client-side.When a user activates a region of a client-side image map with a mouse, the pixel
coordinates are interpreted by the user agent. The user agent selects a link that was specified for the
activated region and follows it.

Client-side image maps are preferred over server-side image maps. It is possible to implement client-side
image maps with several elements.

Non-graphical representation of image mapson-graphical user agents may render client-side image
maps as sets of textual links. The textual region may be activated by keyboard input.

Client-side image maps

The following attributes are defined for several elem@eEndAREA. They allow authors to specify a
set of geometrical regions and associate URLs with them.

Attribute definitions

shape = default|rect|circle|poly
This attribute specifies the shape of a region. Possible values:
e default: Specifies the entire region.
e rect: Define a rectangular region.
® circle: Define a circular region.
e poly: Define a polygonal region.
coords =length-list
This attribute specifies the position a shape on the screen. The number and order of values depends
on the shape being defined. Possible combinations:
® rect: left-x, top-y, right-x, bottom-y.
® circle: center-x, center-y, radius.
® poly: x1,vyl,x2,y2, ..., xN, yN.

Coordinates are relative to the top, left corner of the object. All values are lengths (they may be pixel
values or percentage values).

The following attribute is defined for tf{@BJECTelement.

Attribute definitions

121

shapes
When set, this boolean attribute specifies that the object being defined is an image map. The contents
of theOBJECTelement will specify the active regions.

In the following example, we create a client-side image map f@B¥ECTelement by associating
URLs with regions specified by a serie$Aélements.

<OBJECT data="navbar.gif" shapes>

Access Guide |

Go |

Search |

Top Ten
</OBJECT>

If the[OBJECTelement includes[ghapes]attribute, user agents must parse the contents of the element to
look for anchors.

If two or more defined regions overlap, the region defined first takes precedence (i.e., responds to user
input).

Client-side image maps withMAPand AREA
The[MAPandAREAelements provide an alternate mechanism for client side image maps.

<IELEMENT - - (AREA)*>

<IATTLIST MAP
%coreattrs; --id, class, style, tite - [] |] [| |
name CDATA #IMPLIED
>

Start tag:required, End tag:required

<IELEMENT EREA - O EMPTY>

<IATTLIST AREA

shape_| %Shape rect -- controls interpretation of coords --
cpords__] %Coords #IMPLIED -- comma separated list of values --
hfef] %URL #IMPLIED -- this region acts as hypertext link --
tdrget |CDATA #IMPLIED -- where to render linked resource --
nphref | (nohref) #IMPLIED -- this region has no action --

t CDATA #REQUIRED -- description for text only browsers --
ibindex NUMBER #IMPLIED -- position in tabbing order --

—

>
Start tag:required, End tag:forbidden
Attribute definitions

nohref
When set, this boolean attribute specifies that a region has no associated link.

122

Attributes defined elsewhere

[d] [class_] {document-wide identifie}s)

lang | (language informatigndir | (text direction)

title |(element titlgs)

[style](inline style informatioh)

name (submitting objects with forms)

[alt_|(alternate texkt)

[href | (anchor referengéarget | (frame target informatign)
[tabindex |(tabbing navigatidn)

[accesskey |(access keys)

[shape } coords | (image maps)

Several elementfOBIJECT[IMG andINPUT) allow the following attribute to specify an associated
client-side image map.

Attribute definitions

usemap = url
This attribute specifies the location of a map define¥iByandAREA

We can rewrite the previous example in tern[M@&PandAREA We still create af@BJECTthat will
insert an image. We associate the object and the image map by seftisgrfap] attribute on the

OBJECTand thename attribute of thgMARelement to the same value.

<OBJECT data="navbarl.gif" usemap="#mapl"></OBJECT>

<MAP name="map1">
<AREA href="guide.htm|"
alt="Access Guide"
shape="rect"
coords="0,0,118,28">
<AREA href="search.html"
alt="Search"
shape="rect"
coords="184,0,276,28">
<AREA href="shortcut.html"
alt="Go"
shape=circ
coords="184,200,60">
<AREA href="top10.html"
alt="Top Ten"
shape="poly"
coords="276,0,373,28,50,50,276,0">
</MAP>

Thefalt Jattribute specifies alternate text for cases when the image map may not be displayed (see below
for information on how to specify alternate {ext).

123

Note:[MAHs not backwards compatible with HTML 2.0 user agents.

Server-side image maps

Server-side image maps may be interesting in cases where the image map is too complicated for a
client-side image map.

It is only possible to define a server-side image map witfMi&element. To do so, set the boolean
attributeismap in thelMG definition. The associated map of regions must be specified witisémap
attribute.

When the user activates a region of the image map, the screen coordinates are sent directly to the server
where the document resides. Screen coordinates are expressed as screen pixel values. For normative
information about the definition of a pixel and how to scale it, please cpnsult JCSS1].

The location clicked is passed to the server as follows. The user agent derives a new URL from the URL
specified by thfaref]attribute by appending ‘?’ followed by the x and y coordinates, separated by a
comma. The link is then followed using the new URL. For instance, in the previous example, if the user
clicks at at the location x=10, y=27 then the derived URL is "/cgibin/navbar.map?10,27".

In the following example, the first active region defines a client-side link. The second defines a server-side
link, but doesn't assign a specific shape to it (this is accomplished with the "default" valushuijbé

attribute). Since the regions of the two links overlap, the first takes precedence of the later definition.
Thus, a click anywhere but in the rectangle will cause the click’s coordinates to be sent to the server.

<OBJECT data="game.gif" shapes>

Rules of the Game
<A href="http://www.acme.com/cgi-bin/competition"
ismap
shape="default">
Guess the location
</OBJECT>

Visual presentation of images, objects, and applets

All [MG andOBJE CTattributes that concern visual alignment or presentation have been deprecated in
favor of style sheets.

Theheight andwidth attributes give user agents an idea of the size of an image or object so that they
may reserve space for it and continue rendering the document while waiting for the image data. Both
attributes take values of typength User agents may scale objects and images to match these values if
appropriate.

Thevspace andhspace attributes specify the amount of white space to be inserted to the left and right
(hspace) and above and below (vspace) an image or object. The default value for this attribute is not
specified, but is generally a small, non-zero length. Both attributes take values lefityibe

124

Images or objects that are the content ¢llaement are sometimes surrounded by a border. The
[border]attribute specifies the width of this border.

How to specify alternate text
Attribute definitions

alt =cdata
For user agents that cannot display images, forms, or applets, this attribute specifies alternate text.
The language of the alternate text is specified bjjaig] attribute.

Several non-textual elemeni®G [AREA[APPLET andINPUT) allow authors to specify alternate text

to serve as content when the element cannot be rendered normally. Specifying alternate text assists users
without graphic display terminals, users whose browsers don’'t support forms, visually impaired users,
those who use speech synthesizers, those who have configured their graphical user agents not to display
images, etc.

While alternate text may be very helpful, it must be handled with care. Authors should observe the
following guidelines:

® Do not specify meaningless alternate text when including images intenfdech&ta page. In this
case, the alternate text should be the empty string (™). In any case, authors should not use images to
format pages; style sheets should be used instead.

® Do not specify meaningless alternate text (e.g., "dummy text"). Not only will this frustrate users, it
will slow down user agents that must convert text to speech or braille output.

Thefalt_]attribute is mandatory for tfEREAelement, but optional fiMG [APPLET, andINPUT]

When an author does not set[dle] attribute for thff MG orfAPPLE Jelements, user agents should
supply the alternate text, calculated in the following order:

1. If thdtitle] has been specified, its value should be used as alternate text.

2. Otherwise, if HTTP headers provide title information when the included object is retrieved, this
information should be used as alternate text.

3. Otherwise, if the included object contains text fields (e.g., GIF images contain some text fields),
information extracted from the text fields should be used as alternate text. Since user agents may
have to retrieve an entire object first in order to extract textual information, user agents may adopt
more economical approaches (e.g., content negotiation).

4. Otherwise, in the absence of other information, user agents should use the file name (minus the
extension) as alternate text.

When an author does not set[dle] attribute for thNPUT]element, user agents should supply the
alternate text, calculated in the following order:

1. If thetitle | has been specified, its value should be used as alternate text.
2. Otherwise, if thipame has been specified, its value should be used as alternate text.
3. Otherwise (submit and reset buttons), the value attribute should be used as alternate text.

125

Presentation of HTML documents
Contents

1. [Style Shedlts
1. [Adding style to HTML
1. [Setting the default style sheet langliage
2. |Inline style informatign
3. [Header style information: ti&l YLE element
4. |External style shegts
5. [Setting the default named style
2. |Inheritance and cascading
3. [Hiding the Content of Style Elements from non-conforming User Agents
4. |Specitying style through HTTP headers
2. [Alignment, font styles, and horizontal riiles

1. [Formatting
1. |[Background color

2. [Alignmenk

3. |Floating objecis
2.
1. [Font style elements: tAd, | , B, BIG, SMALL STRIKE, S, andU elements
2. |Font modifier element&ONTandBASEFON|T
3. |Rules: thedRelemert
3. |Framgs

1. |Layout of framds
1. [TheFRAMESE Elemert
2. |TheFRAMEelement
2. |Specifying target frame information
1. [Setting the default target for lipks
2. |Target semantics
3. [Target names
3. |Alternate content
1. [TheNOFRAMES8lemerit
4. [Inline frames: thtFRAME element

126

Style Sheets

Contents

1. |Adding style to HTML
1. |Setting the default style sheet langliage
2. |Inline style informatign
3. |Header style information: tI&TYLE element
4. [External style shegts
5. [Setting the default named style
2. [Inheritance and cascading
3. |Hiding the Content of Style Elements from non-conforming User Agents
4. [Specifying style through HTTP headers

Style sheets represent a major breakthrough in how Web page designers work, by expanding their ability
to improve the appearence of their pages. In the scientific environments in which the Web was conceived,
people are more concerned with the content of their documents than the presentation. As people from
wider walks of life discovered the Web, the limitations of HTML became a source of continuing

frustration. These authors were used to paper media where they had full control. They learned how to
sidestep HTML's stylistic limitations. While the intentions have been good - to improve the presentation

of Web pages - the techniques for doing so have had unfortunate side effects. These techniques work for
some of the people, some of the time, but never for all of the people, all of the time, They include:

Using proprietary HTML extensions
Converting text into images

Using images for white space control
Use of tables for page layout

Writing a program instead of using HTML

These technigues considerably increase the complexity of Web pages, have limited flexibilty as well as
suffering from interoperability problems, and creating hardships for people with disabilities.

Style sheets bring back the ease of control over presentation, and supercede the limited range of
presentation mechanisms added to HTML over the last few years. Style sheets make it easy to specify the
amount of white space between text lines, the amount lines are indented, the colors used for the text and
the backgrounds, the font size and style, and a host of other details.

HTML 4.0 provides support for the following features:

Flexible placement of Style Information
Placing style sheets in separate files makes them easy to reuse. Sometimes its useful to include
rendering instructions within the document to which they apply, either grouped at the start of the
document, or in attributes of the elements throughout the body of the document. To make it easier to
manage style on a site basis, this specification describes how to use HTTP headers to set the style
sheets to be applied to a document.

127

Independence from specific style sheet languages
This specification doesn't tie HTML to any particular style sheet language. This allows for a range of
such languages to be used, for instance simple ones for the majority of users and much more complex
ones for the minority of users with highly specialized needs. The examples included below all use the
CSS (Cascading Style Sheets) langyage [GSS1], but other style sheet languages would be possible.

Cascading Style Sheets
This is the capability provided by some style sheet languages such as CSS to allow style information
from several sources to be blended together. For instance, corporate style guidelines, styles common
to a group of documents, and styles specific to a single document. By storing these separately, style
sheets can be reused, simplifying authoring and making more effective use of network caching. The
cascade defines an ordered sequence of style sheets where rules in later sheets have greater
precedence than earlier ones. Not all style sheet languages support cascading.

Media Dependencies
HTML allows you to specify documents in a media independent way. This allows people to access
Web pages using a wide variety of devices and media, e.g. graphical displays for windows, macs, and
X11, set-top boxes for television sets, specially adapted phones and pda based portable devices,
speech-based browsers, and braille-based tactical devices.

Style sheets, by contrast, apply to specific media or media groups. A style sheet intended for screen
use, may be applicable when printing, but is of little use for speech-based browsers. This
specification allows you to define the broad categories of media a given style sheet is applicable to.
This allows user agents to avoid retrieving inappropriate style sheets. Style sheet languages may
include features for describing media dependencies within the same style sheet.

Alternative Styles
Authors may wish to offer readers several alternative styles for viewing a document. For instance, a
compact version with small fonts, and one with larger fonts for increased legibility. This specification
allows you to specify such alternatives, including which one is the default. Users should be given the
opportunity of selecting between these styles or switching off style sheets altogether.

Note: This specification includes more detailed information about style sheets in sections on performance
issues and new media types.

Adding style to HTML

HTML documents may contain style sheet rules directly in them or they may import style sheets. Any

style sheet language may be used with HTML. A simple style sheet language may suffice for the needs of
most users, but languages may be more suited to highly specialized needs. HTML does not depend on one
specific style sheet language. For the purposes of this document, however, we will present examples that
illustrate Cascading Style Shegts ([C$S1]), abbreviated CSS.

Setting the default style sheet language

The syntax of a style rule is that of the style sheet language, not HTML. Since user agents that support
style sheets must parse these rules, users must declare which style sheet languages are being employed.

128

Use thgMETAelement to set the default style sheet language for a document. For example, to set the
default to CSS, put the following declaration in[HigADof your document:

<META http-equiv="Content-Style-Type" content="text/css">

The default style sheet language can also be set with HTTP headers. TheIBBdwkeclaration is
equivalent to the HTTP header:

Content-Style-Type: text/css

If two or morMETAdeclarations or HTTP headers specify the default style sheet language, the last one
takes precedence. HTTP headers are considered as occuring earlier than the {lEAR@mtthis

purpose. In the absence of an explicit declaration, the default style sheet language is assumed to be CSS.
We recommend that authoring tools provide an explicit declaration.

Conforming HTML parsers must be able to distinguish HTML from style sheet rules. HTML elements

and attributes define the beginning of style sheet data. The end of style sheet data is defined as the end tag
open delimiter (</) immediately followed by an SGML name start character ([a-zA-Z]). All style sheet

data must be provided to user agent’s appropriate style sheet handler.

Inline style information
Attribute definitions

style =[cdatd

This attribute specifies style information for the current element.

TheEtQIe :attribute specifies style information for a single element. The style information is specified
using the default style sheet langyage.

This example sets color and font size information for the text in a specific paragraph.

<P type="text/css" style="font-size: 12pt; color: fuschia">Aren’t style
sheets wonderful?

Note the syntax of a CSS declaratiname : valueProperty declarations are separated by a semi-colon.

Thelstyle]attribute is appropriate when you want to apply a particular style to an individual HTML
element. If the style will be reused for several elements, you should consider usg ttieelement.
For the best flexibility, place styles in separate style sheets.

Header style information: the STYLE element

<IELEMENT BTYLE]- - CDATA -- style info -->
<IATTLIST STYLE

%i18n; -- lang, dir, for use with titg = [_]
tfpe_| CDATA #REQUIRED -- Internet content type

129

for style language --
edia CDATA #IMPLIED -- designed for use with these media --
tiffe CDATA #IMPLIED -- advisory title --
>

Start tag:required, End tag:required

Attribute definitions

type =[cdatd
This attribute specifies the style sheet language of the element’s contents, thus overriding the default
style sheet language. The style sheet language is specified as an Internet Media Type (e.g.,
“text/css"). Internet Media Types are definefl in [MIMETYHES].
media =[cdata-lis}
This attribute specifies the intended destination medium for style information. It may be a single
media type or a comma-separated list. Possible media types:
e screen: Output is intended for non-paged computer screens. This is the default value.
e print: Output is intended for paged, opaque material and for documents on screen viewed in
print preview mode.
projection: Output is intended for projectors.
braille: Output is intended for braille tactile feedback devices
speech: Output is intended for a speech synthesizer.
all: Applies to all devices.

Attributes defined elsewhere

e [lang | (language informatignlir | (text directiof)

The|STYLHelement allows authors to put style sheet rules in the header of the document. HTML permits
any number dETYLHelements in thlIEADsection of a document.

User agents that don’t support style sheets, or don’t support the specific style sheet language used by a
[STYLH elemenimust hide the contents of tf&T YLE element. It is an error to render the content as part

of the document’s text. Some style sheet languages support syntax for hiding th¢ content from
non-conforming user agents.

Some style sheet implementations may allow a wider variety of rules|8irthie element than in the
[style]attribute. For example, with CSS, rules may be declared wifYa.g element for:

e All instances of a specific HTML element (e.g. [@klements, aJH1]elements, etc.)

e Allinstances of an HTML element belonging to a specific class (i.e., idiase | attribute is set to
some value).

e Single instances of an HTML element (i.e., wHakkattribute is set to some value).

Rules for style rule precedences and inheritance depend on the style sheet language.

130

The following CSYSTYLHdeclaration puts a border around eid@yelement in the document and
centers it on the page.

<HEAD>
<STYLE type="text/css">
H1 {border-width: 1; border: solid; text-align: center}
</STYLE>
</HEAD>

To specify that this style information should only applfdelements of a specific class, we modify it as
follows:

<HEAD>
<STYLE type="text/css">
H1.myclass {border-width: 1; border: solid; text-align: center}
</STYLE>
</HEAD>
<BODY>
<H1 class="myclass"> This H1 is affected by our style </H1>
<H1> This one is not affected by our style </H1>
</BODY>

Finally, to limit the scope of the style information to a single instanf&lp$et thdd] attribute:

<HEAD>
<STYLE type="text/css">
H1.myid {border-width: 1; border: solid; text-align: center}
</STYLE>
</HEAD>
<BODY>
<H1 class="myclass"> This H1 is not affected </H1>
<H1 id="myid"> This H1 is affected by style </H1>
<H1> This H1 is not affected </H1>
</BODY>

Although style information may be set for almost every HTML element, two elements are particularly
useful in that they do not impose any predefined presentation.[SiM¢andSPANelements define
structure only, when combined with style sheets, they allow users to extend HTML indefinitely.

In the following example, we use fBPANelement to set the font style of the first few words of a
paragraph to small caps.

<HEAD>

<STYLE type="text/css">
SPAN.sc-ex { font-variant: small-caps }

</STYLE>

</HEAD>

<BODY>
<P>The first few words of
this paragraph are in small-caps.

</BODY>

131

In the following example, we uf@V] and thfclass | attribute to set the text justification for a series of
paragraphs that make up the abstract section of a scientific article. This style information could be reused
for other abstract sections by setting[thass | attribute elsewhere in the document.

<HEAD>
<STYLE type="text/css">
DIV.Abstract { text-align: justify }
</STYLE>
</HEAD>
<BODY>
<DIV class="Abstract">
<P>The Chieftain product range is our market winner for
the coming year. This report sets out how to position
Chieftain against competing products.

<P>Chieftain replaces the Commander range, which will
remain on the price list until further notice.
</DIV>
</BODY>

Media types

HTML enables authors to design documents that do not depend on a specific presentational medium.
Thus, users may browse the Web with a wide variety of user agents: graphical displays for personal
computers and workstations, set-top boxes for televisions, specially adapted telephones and pda-based
portable devices, speech-based browsers, and braille-based tactile devices.

Thelmedia] attribute specifies the intended output for a style rule. By settifigéé] attribute, authors
may allow user agents to avoid retrieving from the network style sheets that do not apply to a given
device.

The following sample declarations all apply to @element. When displayed on a computer screen, all
instances will be centered and blue. When printed, all instances will be centered. We specify a different
style altogether for speech synthesizers.

<HEAD>

<STYLE type="text/css" media="screen">
H1 { color: blue}

</STYLE>

<STYLE type="text/css" media="screen, print">
H1 { text-align: center }
</STYLE>

<STYLE type="text/acss" media="speech">

H1 { cue-before: url(bell.aiff); cue-after: url(dong.wav)}
</STYLE>
</HEAD>

Media control is particularly interesting when applied to external style sheets since user agents can save
time by retrieving from the network only those style sheets that apply to the current device.

132

The previous example may be rewritten to refer to external style sheets (instead of USingLtHe
element) in conjunction with theedia attribute. User agents may consultthedia] attribute and
retrieve only those style sheets appropriate for the destination medium.

<HEAD>

<LINK href="doc1-screen.css" rel="stylesheet"
type="text/css" media="screen">

<LINK href="doc1-print.css" rel="stylesheet"
type="text/css" media="print">

<LINK href="doc1-speech.css" rel="stylesheet"
type="text/css" media="speech">

</HEAD>

See the following section on external style sheets for more information.

External style sheets

Style sheets may be defined separately from an HTML document. This has the advantage of offering the
ability:

® to share style sheets across a number of documents (and sites)
® to change the style sheet without modifications to the document

When style sheets are enabled, users may be offered a choice of styles. Each style is potentially a cascade
of several style sheets. Some style sheets (knopwaraistent are applied independently of the user’s

choice (as long as it refers to the correct media type), while others (kn@laraate only apply to

specific choices. Alefault stylesheet is one that applies when the page is loaded, but which the user can
disable in favor of aalternate stylesheet.

Use theLINK]| element to designate an external style sheet. You must set the following attributes:

e Set the value diiref]to the location of the style sheet file. The valufpref]is a[URL.
e Set the value of tHeel] attribute to indicate whether the style sheet is persistent (rel="stylesheet"),
default (rel="stylesheet"), or alternate (rel="alternate stylesheet").

e Set the value of tHifle_]attribute when the style sheet is a default style sheet, i.e., when it may be
activated or deactivated by the user.

In this example, we first specify a persistent external style sheet in theyftgle.css
<LINK href="mystyle.css" rel="stylesheet">

Setting thdiitle] attribute changes the style sheet from persistent to default; user agents should offer
users the possibility of applying named styles, based updiiléhe]attribute.

<LINK href="mystyle.css" tittle="Compact" rel="stylesheet">

Adding the keyword "alternate" to thel] attribute makes this an alternate style sheet.

133

<LINK href="mystyle.css" tittle="Medium" rel="alternate stylesheet">

All alternate styles sharing the same title will be applied when the user (through the user agent) activates
that style. Style sheets with different titles will not be applied in this case. However, style sheets that do
not have thiitle] attribute set will always apply (unless the user turns off style sheets altogether).

User agents should provide a means for users to view and pick from the list of alternative styles. We
recommend that the value of flide] attribute be used to name each choice.

Cascadingstyle sheet languages such as CSS allow style information from several sources to be blended
together. However, not all style sheet languages support cascading. To define a cascade you simply
provide a sequence [bfNK] and/ofSTYLHelements. The style information is cascaded in the order the
elements appear in tf€EAD A cascade can include style sheets applicable to different media. The user
agent is then responsible to filtering out those style sheets which are inapplicable to the current situation.

In the following example, we define two alternate style sheets named "compact”. If the user selects the
"compact” style, both external style sheets will be applied, as well as the "common.css" style sheet,
(always applied since i attribute is not set). If the user selects the "big print" style, the files
"bigprint.css" and "common.css" will be applied by the user agent, and the "compact" style sheets will not.

<LINK rel="alternate stylesheet" title="compact" href="small-base.css">
<LINK rel="alternate stylesheet" title="compact"
href="small-extras.css">

<LINK rel="alternate stylesheet" title="big print" href="bigprint.css">
<LINK rel=stylesheet href="common.css">

Here is an example with bdthiNK] andSTYLHelements.

<LINK REL=stylesheet HREF="corporate.css">
<LINK REL=stylesheet HREF="techreport.css">
<STYLE TYPE="text/css">

p.special { color: rgh(230, 100, 180) }
</STYLE>

Setting the default named style

Use thgMETAelement to set the default named style for a document. For example, to set the default
named style in a document to "compact” (see the preceding example), include the following line in the

HEAD

<META http-equiv="Default-Style" content="compact">

The default style can also be set with HTTP headers. The piVédeclaration is equivalent to the
HTTP header:

Default-Style: "compact"

134

If two or morgMETAdeclarations or HTTP headers specify the default style, the last one takes
precedence. HTTP headers are considered as occuring earlier than the détttdvibfat this purpose. In
the absence of an explicit declaration, the default style is defined by tfigNiksfelement whostle]
has been set and whreg | attribute has the value "stylesheet".

Inheritance and cascading

When the user agent wants to render a document, it needs to find values for style properties, e.g. the font
family, font style, size, line height, text color and so on. The exact mechanism depends on the style sheet
language, but the following description is generally applicable:

The cascading mechanism is used when a number of style rules all apply directly to an element. The
mechanism allows the user agent to sort the rules by specificity, to determine which rule to apply. If no
rule can be found, the next step depends on whether the style property can be inherited or not. Not all
properties can be inherited. For these properties the style sheet language provides default values for use
when there are no explicit rules for a particular element.

If the property can be inherited, the user agent examines the immediately enclosing element to see if a rule
applies to that. This process continues until an applicable rule is found. This mechanism allows style
sheets to be specified compactly. For instance, you can specify the font family for all elements within the

by a single rule that applies to fB®DYelement.

Hiding the Content of Style Elements from non-conforming User
Agents

Some style sheet languages support syntax intended to allow authors to hide the d&it¢éhfof
elements from non-conforming user agents.

This example illustrates for CSS how to comment out the contfSTTIER elements to ensure that older
non-conforming user agents will not render them as text.

<STYLE type="text/css">
<l--
H1 { color: red }

P { color: blue}
>

</STYLE>

Specifying style through HTTP headers

Sometimes its convenient to configure a Web server to specify the style sheet to be applied to a group of
pages at a site. The HTThhk header has the same effect i$NK]element with the same attributes

and values. Multipléink headers correspond to multiftlENK] elements occurring in the same order.

Thus,

135

Link: REL=stylesheet HREF="corporate.css"

corresponds to:

<LINK rel="stylesheet" href="corporate.css">

You can specify several alternative styles, using multipie headers, and then use [fe€] attribute to
determine the default style.

In the following example, "compact" is applied by default since it omits the "alternate" keyword for the

attribute.

Link: rel="stylesheet" title="compact" href="compact.css"
Link: rel="alternate stylesheet" title="big print" href="bigprint.css"

This should also work when HTML documents are being by transported via email. Some email agents can
alter the ordering ¢f [REC872] headers. To protect against this affecting the cascading order for style

sheets specified by Link headers, you can use header concatenation to merge several instances of the same
header field. The quote marks are only needed when the attribute values include whitespace. Use SGML
entities to reference characters that are otherwise not permitted within HTTP or email headers, or that are
likely to be affected by transit through gateways.

[CINK] andMETAelements implied by HTTP headers are defined as occurring before any [exiskdit
andMETAelements in the documenEtEAD

136

Alignment, font styles, and horizontal rules

Contents

1.
1. [Background colpr
2,
3. |Floating objects
2.
1. |[Font style elements: tAd, | , B, BIG, SMALL STRIKE, S, andU elements
2. |[Font modifier element&ONTandBASEFONIT
3. |Rules: thedRelement

This section of the specification discusses some HTML elements and attributes that may be used for visual
formatting. Generally speaking you are recommended to use style sheets instead. An exception is when
dealing with user agents that either don’t support style sheets or which don’t support the particular style
sheet features needed. A number of HTML 4.0 elements and attributes dealing with visual presentation are
deprecated and may become obsolete in future versions of HTML.

Formatting

Background color

Attribute definitions

bgcolor =[colof

DeprecatedThis attribute sets the background color for the document body or table cells.

This attribute sets the background color of the canvas for the document bg@@Relement) or for
tables (thTABLE [TR [TH andTD elements). Additional attributes for specifying text color can be used
with theBODYelement.

This attribute has been deprecated in favor of style sheets for specifying background color information.

Alignment

It is possible to align block elements on the canvas (tables, images, objects, paragraphs, etc.) with the
element. Although this attribute may be set for many HTML elements, its range of possible values
sometimes differs from element to element.

Attribute definitions
align = left|center]|right|justify

Deprecated.This attribute specifies the horizontal alignment of its element with respect to the
surrounding context. Possible values:

137

e left: Left alignment/justification. This is the default value.
e center: Center alignment/justification.

® right: Right alignment/justification.

® justify: Double justification.

DEPRECATED EXAMPLE:
This example centers a heading on the canvas.

<H1 align="center"> How to Carve Wood </H1>

Using cascading style sheets, for example, you could achieve the same effect as follows:

<HEAD>

<STYLE>

H1 { text-align: center}
</STYLE>

</HEAD>

<H1> How to Carve Wood </H1>

Note that this would center §i1 declarations. You could reduce the scope of the style by settifdyJthe
attribute on the element:

<HEAD>

<STYLE type="text/css">

H1.wood {text-align: center}

</STYLE>

</HEAD>

<H1 id="wood"> How to Carve Wood </H1>

Similarly, to double justify a paragraph on the canvas with HTfalign_] attribute:

<P align="justify"> ...Lots of paragraph text...

which, in cascading style sheets, would be:

<HEAD>

<STYLE type="text/css">

P.mypar {text-align: justify}

</STYLE>

</HEAD>

<P id="mypar"> ...Lots of paragraph text...

To double justify a series of paragraphs, group them wifPigelement:

<DIV align="justify">

<P>...text in first paragraph...
<P>...text in second paragraph...
<P>...text in third paragraph...
</DIV>

With cascading style sheets, this would be:

138

<HEAD>

<STYLE type="text/css">
DIV.mypars {text-align: justify}
</STYLE>

</HEAD>

<DIV id="mypars">

<P>...text in first paragraph...
<P>...text in second paragraph...
<P>...text in third paragraph...
</DIV>

To justify the entire document with cascading style sheets:
<HEAD>

<STYLE type="text/css">

BODY {text-align: justify}

</STYLE>

</HEAD>

<BODY>

...the body is justified...

</BODY>

The CENTERelement is exactly equivalent to specifying[B¥]element with th@align] attribute set to
"center".The|CENTERelement is deprecated.

Floating objects

Images and objects may appear directly "in-line" or may be floated to one side of the page, temporarily
altering the margins of text that may flow on either side of the object.

Float an object

Thefalign] attribute for objects, images, frames, etc., floats the object to either the left or right margin.
Floating objects generally begin a new line. This attribute takes the following values to float an object:

e left: Floats the object to the current left margin. Subsequent text flows along the image’s right
side.

e center: Floats the object in the center of the page. Subsequent text flows down the object’s left
side, then continues down the right side.

e right. Floats the object to the current right margin. Subsequent text flows along the image’s left
side.

The following example shows how to floatfdhG element to the current left margin of the canvas.

Float text around an object

Another attribute, defined for telement, controls text flow around floating objects.

139

Attribute definitions

clear =none|left|right|all
Specifies where the next line should appear in a visual browser after the line break caused by this
element. This attribute takes into account floating objects (images, tables, etc.). Possible values:
® none: The next line will begin normally. This is the default value.
e left: The next line will begin at nearest line below any floating objects on the left-hand
margin.
® right: The next line will begin at nearest line below any floating objects on the right-hand
margin.
e all: The next line will begin at nearest line below any floating objects on either margin.

Consider the following visual scenario, where text flows to the right of an image until a line is broken by a

K*kkkkkkkk

| image | --

K*kkkkkkkk

If the[clear] attribute is set taone , the line followindBRwill begin immediately below it at the right
margin of the image:

K*kkkkkkkk

| image | --

K*kkkkkkkk

If the[clear] attribute is set tteft orall , next line will appear as follows:

*kkkkkkkk

| image | --<BR clear="left">

*kkkkkkkk

Using style sheets, you could specify that all line breaks should behave this way for objects (images,
tables, etc.) floating against the left margin. In cascading style sheets, you could achieve this as follows:

<STYLE type="text/css">

BR {clear: left}
</STYLE>

To specify this behavior for a specific instance olement, you could combine style information
and thdid] attribute:

140

<HEAD>

<STYLE type="text/css">
BR.mybr {clear: left}
</STYLE>

</HEAD>

<BODY>

K*kkkkkkkk

||
| table | --<BR id="mybr">

K*kkkkkkkk

</BODY>

Fonts

The following HTML elements specify font information. Although they are not all deprecated, their use is
discouraged in favor of style sheets.

Font style elements: thel'T, | , B, BIG, SMALL STRIKE, S, and U
elements

<IENTITY % font
" | 8]V [§ | STRIKE] BIELSMAL L | |
<IELEMENT (%font|%phrase) - - (%inline)*>
<IATTLIST (%font|%phrase)
%attrs; -- %coreattrs, %il18n, %events --
>

Start tag:required, End tag:required

Attributes defined elsewhere

id] [class]({document-wide identifiefs)

[lang |(language informatianlir |(text direction)
[title | (element titlgs)

[style](inline style informatioh)

[onclick | jondblclick }[onmousedown}jonmouseup j[onmouseover |lonmousemove}
onmouseout } fonkeypress _} [onkeydown Jlonkeyup | (intrinsic events)

Rendering of font style elements depends on the user agent. The following is an informative description
only.

TT: Renders as teletype or monospaced text.
I: Renders as italic text style.

B: Renders as bold text style.

BIG: Renders text in a "large” font.

141

SMALL: Renders text in a "small” font.
STRIKE andS: Deprecated.Render strike-through style text.
U: Deprecated.Renders underlined text.

The following sentence shows several types of text:

bold,
<i>italic</i>, <i>bold italic</i>, <tt>teletype text</tt>, and
<big>big</big> and <small>small</small> text.

Your browser renders the words as follows:

bold, italic, bold italic, teletype text , andbig andsmalltext.

It is possible to achieve a much richer variety of font effects using style sheets. To specify blue, italic text
in a paragraph with cascading style sheets:

<HEAD>

<STYLE>

P.mypar {font-style: italic; color: blue}
</STYLE>

</HEAD>

<P id="mypar"> ...Lots of blue italic text...

Font style elements may be nested and they must be properly nested. Rendering of nested font style
elements depends on the user agent.

Font modifier elements:FONTand BASEFONT
[FONTand BASEFONTre deprecated.

<IELEMENT - - (%inline)* -- local change to font -->

<IATTLIST FONT

slze_] CDATA #IMPLIED -- [+]nn e.g. size="+1", size=4 --

cplor] CDATA #IMPLIED -- #RRGGBB in hex, e.g. red: "#FF0000" --
fice_| CDATA #IMPLIED -- comma separated list of font names --

>

Start tag:required, End tag:required
<IELEMENT BASEFONY - O EMPTY>
<IATTLIST BASEFONT
size CDATA #REQUIRED -- base font size for FONT elements --

chlor] CDATA #IMPLIED -- #RRGGBB in hex, e.g. red: "#FF0000" --
fice_| CDATA #IMPLIED -- comma separated list of font names --
>

Start tag:required End tag:forbidden

Attribute definitions

142

size =|cdatg

Deprecated.This attribute sets the size of the font. Possible values:

O An integer between 1 and 7. This sets the font to some fixed size, whose rendering depends on the
user agent. Not all user agents may render all seven sizes.

O A relative increase in font size. The value "+1" means one size larger. The value "-3" means three
sizes smaller. All sizes belong to the scale of 1 to 7.

color =[colof]

Deprecated.This attribute sets the text color.

face =[cdata-lis}
Deprecated.This attribute defines a comma-separated list of font names the user agent should search
for in order of preference.

The[FONTelement changes the font size and color for text in its contents.

ThelBASEFON[element sets the base font size (usingibe attribute). Font size changes achieved
with are relative to the base font size s§BBSEFONITIf BASEFONis not used, the default base

font size is 4.

DEPRECATED EXAMPLE:
The following example will show the difference between the seven font sizes availaOMHh

<P>size=1
size=2
size=3
size=4
size=5
size=6
size=7

Your user agent renders this as follows:

sizezlsize:25ize=35ize:4~size:5SiZe:$ i Z e — 7

The following shows the effect of relative font sizes using a base font size of 3:

size:-4Size=—35iZe=-25iZe:'1Size:+15ize:+$ize:+$ I Z e - +4

The same thing with a base font size of 6:
size=-4 size=-3 size:-zsize=-1Size:+ 1S I Z e — + 5 i Z e — + 3
Size=+4

143

The base font size does not apply to headings, except where these are modified [ENi#lement
with a relative font size change.

Rules: theHRelement

<IELEMENT - O EMPTY>

<IATTLIST HR

%coreattrs; --id, class, style, title -- [_] | | |] |]
Y%events;

afign (Tett|right|center) #IMPLIED

nbshade] (noshade) #IMPLIED

slze_] %Pixels #IMPLIED

%Length #IMPLIED

>

Start tag:required End tag:forbidden

Attribute definitions

noshade
When set, this boolean attribute requests that the user agent render the rule in a solid color rather than
as the traditional two-color "groove".

size =[length
Deprecated.This attribute specifies the height of the rule. The default value for this attribute
depends on the user agent.

width =[engtl
Deprecated.This attribute specifies the width of the rule. The default width is 100%, i.e., the rule
extends across the entire canvas.

Attributes defined elsewhere

o [align [({alignment)

O [onclick _}jondblclick | [onmousedown}jonmouseup|jonmouseover_|jonmousemove}
onmouseout } onkeypress |} [onkeydown], [onkeyup] (intrinsic evenis)

The[HRelement causes a horizontal rule to be rendered by visual user agents.

The amount of vertical space inserted between a rule and the content that surrounds it depends on the user
agent.

DEPRECATED EXAMPLE:

This example centers the rules, sizing them to half the available width between the margins. The top rule
has the default thickness while the bottom two are set to 5 pixels. The bottom rule should be rendered in a
solid color without shading:

<HR width="50%" align="center">

144

Your browser renders these rules as follows:

145

Frames

Contents

1. [Layout of framgs
1. [TheFRAMESE Element
2. [TheFRAMEelement
2. |Specifying target frame information
1. [Setting the default target for lipks
2. [Target semantics
3. [Target names
3. [Alternate content
1. [TheNOFRAMES8lemerit
4, |Inline frames: thtFRAME element

HTML frames allow authors to present documents in multiple views. Views may be independent windows
or subwindows. Multiple views offer designers a way to keep certain information visible, while other
views are scrolled or replaced. For instance, to use three frames: one for a static banner, one for a
navigation menu, and one for a main view that can be scrolled though or replaced by clicking on an item
in the navigation frame.

Layout of frames

An HTML document with frames has a slightly different makeup than an HTML document without
frames. A standard document has [BiEADsection and o A document with frames hafHEAD
a[FRAMESHTand an optionf8ODY

The[FRAMESE[Eection of a document specifies the layout of views in the main user agent window.

The[BODYsection that follows tHERAMESE]Heclaration provides alternate content for user agents that
do not support frames or are configured not to display frames. We discuss alternatg content in more detalil

below.

Elements that might normally be placed in[B@DYelement must not appear before the first

[FRAMESERlement or thERAMESHWill be ignored.
The FRAMESEElement

<IELEMENT - - (FRAMESET|FRAME)+ & NOFRAMES?)>
<IATTLIST FRAMESET

-- absolute pixel values, percentages or relative scales. --
rfws | CDATA #IMPLIED --if not given, default is 1 row --
cpls_] CDATA #IMPLIED --if not given, default is 1 column --
opload] %Script #IMPLIED -- all the frames have been loaded --
opunload_J6Script #IMPLIED -- all the frames have been removed --
>

146

Start tag:required, End tag:required
Attribute definitions

rows =[length-lis|
This attribute specifies the layout of horizontal frames. It is a comma-separated list of lengths. If not
specified, the default value is 100%.

cols =
This attribute specifies the layout of vertical frames. It is a comma-separated list of lengths. If not
specified, the default value is 100%.

Attributes defined elsewhere

e [onload ||onunload |(intrinsic events)

The[FRAMESE[Element specifies the layout of the main user window in terms of rectangular subspaces.

Rows and columns

Setting thgrows]attribute defines the number of horizontal subspaces. Settigglthéattribute defines
the number of vertical subspaces. Both attributes may be set simultaneously to create a grid.

If the[rows | attribute is not set, each column extends the entire length of the pagfedEthattribute is
not set, each row extends the entire width of the page. If neither attribute is set, the frame takes up exactly
the size of the page.

These two attributes have values that are comma-separated lists of lengths. A length may be absolute
(given as a number of pixels or a percentage of the screen) or a relative length, indicated by the form "i*",
where "i"* is an integer. When allotting space to rows and columns, user agents allot absolute lengths first,
then divide up remaining space among relative length rows or columns. The value "*" is equivalent to
"L

Views are created left-to-right for columns and top-to-bottom for rows. When both attributes are specified,
views are created left-to-right in the top row, left-to-right in the second row, etc.

The first example divides the screen vertically in two (i.e., creates a top half and a bottom half).

<FRAMESET rows="50%, 50%">
...the rest of the definition...
</[FRAMESET>

The next example creates three columns: the second has a fixed width of 250 pixels (useful, for example,
to hold an image with a known size). The first receives 25% of the remaining space and the third 75% of
the remaining space.

<FRAMESET cols="1*,250,3*">

...the rest of the definition...
</[FRAMESET>

147

The next example creates a 2x3 grid of subspaces.

<FRAMESET rows="30%,70%" cols="33%,34%,33%">
...the rest of the definition...
</[FRAMESET>

For the next example, suppose the browser window is currently 1000 pixels high. The first view is allotted
30% of the total height (300 pixels). The second view is specified to be exactly 400 pixels high. This
leaves 300 pixels to be divided between the other two frames. The fourth frame’s height is specified as
"2*" so it is twice as high as the third frame, whose height is only "*" (1*). Therefore the third frame will
be 100 pixels high and the fourth will be 200 pixels high.

<FRAMESET rows="30%,400,*,2*">
...the rest of the definition...
</FRAMESET>

Absolute lengths that do not sum to 100% of the real available space should be adjusted by the user agent.
When underspecified, remaining space should be allotted proportionally to each view. When
overspecified, each view should be reduced according to its specified proportion of the total space.

Nested frame sets
Framesets may be nested to any level.

In the following example, the oueRAMESE[Divides the available space into three equal columns. The
innenFRAMESHThen divides the second area into two rows of unequal height.

<FRAMESET cols="33%, 33%, 34%">
...contents of first frame...
<FRAMESET rows="40%, 50%">
...contents of second frame, first row...
...contents of second frame, second row...
</[FRAMESET>
...contents of third frame...
</[FRAMESET>

The FRAMEelement

<l-- reserved frame names start with "_" otherwise starts with letter -->
<IELEMENT - O EMPTY>

<IATTLIST FRAME

neme] CDATA #IMPLIED -- name of frame for targetting --
sfc_] %URL #IMPLIED -- source of frame content --
meborder (1|4) 1 -- request frame borders? --
narginwidith %Pjxels #IMPLIED -- margin widths in pixels --
jarginheight %Pikels #IMPLIED -- margin height in pixels --
presize__(foresize) #IMPLIED -- allow users to resize frames? --
Frolling (ves]nojauto) auto -- scrollbar or none --

=

vV o S 3

148

Start tag:required End tag:forbidden
Attribute definitions

name =
This attribute assigns a name to the current frame. This name may be the target of subsequent links.
src =[ur|
This attribute specifies the location of the initial document to be contained in the frame.
noresize
When present, this boolean attribute tells the user agent that the frame window must not be
resizeable.
scrolling = autolyes|no
This attribute specifies scroll information for the frame window. Possible values
® auto: This value tells the user agent to provide scrolling devices for the frame window when
necessary. This is the default value.
e yes: This value tells the user agent to always provide scrolling devices for the frame window.
® no: This value tells the user agent not to provide scrolling devices for the frame window.
frameborder =1]0
This attribute provides the user agent with information about the frame border. Possible values:
® 1. This value tells the user agent to draw a separator between this frame and every adjoining
frame. This is the default value.
® (: This value tells the user agent not to draw a separator between this frame and every
adjoining frame. Note that separators may be drawn next to this frame nonetheless if specified
by other frames.
marginwidth =[length
This attribute specifies the amount of space to be left between the frame’s contents in its left and
right margins. The value must be greater than one pixel. The default value depends on the user agent.
marginheight =[length
This attribute specifies the amount of space to be left between the frame’s contents in its top and
bottom margins. The value must be greater than one pixel. The default value depends on the uesr
agent.

Attributes defined elsewhere

e [target |[(target frame information)

The[FRAMEelement defines the contents and appearance of a single view.

Setting the initial document in a frame

Thelsrc Jattribute specifies the initial document the frame will contain. It is not possible for the contents
of a frame to be in the same document as the frame’s definition.

The following example example HTML document:

149

<HTML>
<FRAMESET cols="33%,33%,33%">
<FRAMESET rows="*,200">
<FRAME src="contents_of_framel.htm|">
<FRAME src="contents_of_frame2.gif">
</FRAMESET>
<FRAME src="contents_of_frame3.htm|">
<FRAME src="contents_of_frame4.htm|">
</FRAMESET>
</HTML>

will create a frame layout something like this:

|Frame 1 |Frame 3 |Frame 4 |

|Frame 2 | | |

and cause the user agent to load each file into a separate view.

ILLEGAL EXAMPLE:
The following frameset definition is not legal HTML since the contents of the second frame are in the
same document as the frameset.

<HTML>
<FRAMESET cols="50%,50%">
<FRAME src="contents_of_framel.html">
<FRAME src="#anchor_in_same_document">
</FRAMESET>
<BODY>
...some text...
<H2>Important section</H2>
...some text...
</BODY>
</HTML>

Decorating a frame

The following example illustrates the usage of the decorfeR&Mattributes. We specify that frame 1

will allow no scroll bars. Frame 2 will leave white space around its contents (initially, an image file) and
the frame will not be resizeable. No border will be drawn between frames 3 and 4. Borders will be drawn
(by default) between frames 1, 2, and 3.

150

<HTML>
<FRAMESET cols="33%,33%,33%">
<FRAMESET rows="*,200">
<FRAME src="contents_of_framel.html" scrolling="no">
<FRAME src="contents_of_frame2.gif"
marginwidth="10" marginheight="15"
noresize>
</FRAMESET>
<FRAME src="contents_of_frame3.html" border="0">
<FRAME src="contents_of_frame4.html" border="0">
</FRAMESET>
</HTML>

Specifying target frame information
Attribute definitions

target =cdata
This attribute specifies the name of a target frame where a document is to be opened.

By assigning a name to a frame vialtfaend attribute, authors can refer to it as the "target" of links
defined by other elements. Teget | attribute may be set for elements that create [[AKEINK]),

image mapgAREA, and forms[EOR

This example illustrates how targets allow the dynamic modification of a frame’s contents. First we define
a frameset in the documdmameset.html |, shown here:

<HTML>
<FRAMESET rows="50%,50%">
<FRAME name="fixed" src="init_fixed.htm|">
<FRAME name="dynamic" src="init_dynamic.htm|">
</FRAMESET>
</HTML>

Then, ininit_dynamic.html , we link to the frame named "dynamic".

<HTML>
<BODY>
...beginning of the document...
Now you may advance to
slide 2.
...more document...
You're doing great. Now on to
slide 3.
</BODY>
</HTML>

Activating either link opens a new document in the frame named "dynamic" while the other frame,
“fixed", maintains its initial contents.

151

Note: Once a frame’s content is changed dynamically, the original frameset definition no longer reflects
the true contents of each frame; the frameset definition does not change.

The is currently no way to encode the entire state of a frameset in a URL. Therefore, many user agents do
not allow users to assign a bookmark to a frameset.

Framesets may make navigation forward and backward through your user agent’s history more difficult
for users.

Setting the default target for links

When many links in the same document designate the same target, it is possible to specify the target once
and dispense with titarget] attributes in each element. This is done by settingtiget | attribute of
the[BASHelement.

We return to the previous example, this time factorizing the target information by defining iBA 3
element and removing it from t@elements.

<HTML>
<HEAD>
<BASE target="dynamic">
</HEAD>
<BODY>
...beginning of the document...
Now you may advance to slide 2.
...more document...
You're doing great. Now on to
slide 3.
</BODY>
</HTML>

Target semantics
There are several methods for making a frame the target of a link. Here we define their interaction.

1. If an element has its target attribute set to a known frame, when the element is activated, the
document designated by the element will be loaded into the target frame.

2. If an element does not have[taeget] attribute set but t{BASHelement does, tHRASE
element’s target determines the frame, and loading obeys the same semantics as 1.

3. If neither the element nor tBASHEelement refer to a target, the document designated by the element
will be loaded into the frame containing the element.

4. If any target refers to an unknown framedhe user agent will create a new window and frame,
assign the namie to the frame, and load the document designated by the element in the new frame.

User agents may provide users with a mechanism to overrife attribute.

152

Target names

Except for the reserved names listed below, target names must begin with an alphabetic character
(a-zA-Z). User agents should ignore all other target names.

The following target names are reserved and have special meanings.

_blank
The user agent should load the designated document in a new, unnamed window.
_self
The user agent should load the document in the same frame as the element that refers to this target.
_parent
The user agent should load the document into the immégeRAMESE]
This value is equivalent toself if the current frame has no parent.
_top
The user agent should load the document into the full, original window (thus cancelling all other
frames). This value is equivalent teelf if the current frame has no parent.

barent of the current frame.

Alternate content

We strongly recommend providing alternate versions of content for those user agents that do not support
frames or are configured not to display frames.

User agents that do not support frames must displgg@izYsection that follows the outermost

FRAMESHDf a document. User agents that do support frames must igndBidikunless currently
configured not to display frames.

The NOFRAMES8Iement

<l--

The following is quite complicated because of the mixed
content model. However it's actually only meant to contain
either BODY or %block.

-->

<IELEMENT NOFRAME - -

(#PCDATA,((BODY #PCDATA)|
(((%6blocklevel)|%font|%phrase|%special|%formctrl),%block)))>

Start tag:required End tag:required

The]NOFRAMHS8lement specifies content that should be displayed only when frames are not being
displayed. User agents that support frames must only display the contefM®BRAMHES8eclaration
when configured not to display frames. User agents that do not support frames must display the contents

ofNOFRAMH# any case.

Suppose we have a sample frameset defined in "top.html" that designates a document ("main.html") and a
special table of contents ("table_of_contents.html") related to the main document. Here is "top.html":

153

<HTML>
<FRAMESET cols="50%, 50%">
<FRAME src="main.html">
<FRAME src="table_of_contents.htm|">
</[FRAMESET>
</HTML>

What happens when the user reads "top.html" and the user agent is not displaying frames? The user won't
see anything since we have not specified alternate conten{BOD¥of "top.html". If we insert

"table_of _contents.html" and "main.html" directly in [BEDY we solve the problem of associating the

two documents, but we may cause user agents that support frames to retrieve the same data twice: one
copy associated with the frameset and one copy insertedRODY

It is more economical to include the table of contents at the top of "main.html" S
element:

<!I-- This is main.html -->
<HTML>

<BODY>

<NOFRAMES>

...the table of contents here...
</NOFRAMES>

...the rest of the document...
</BODY>

</HTML>

and to link to "main.html" from "top.html" for the case when frames are not displayed:

<l-- This is top.html -->
<HTML>
<FRAMESET cols="50%, 50%">
<FRAME src="main.html|">
<FRAME src="table_of_contents.html">
</FRAMESET>
<BODY>
Click here for a non-frames version.
</BODY>
</HTML>

Inline frames: the IFRAME element

<IELEMENT - - %block>

<IATTLIST IFRAME
name CDATA #IMPLIED -- name of frame for targetting --
sic_] %URL #IMPLIED -- source of frame content --

flameborder (1[Q) 1 -- request frame borders? --

jarginwidth %Pjxels #IMPLIED -- margin widths in pixels --
jarginheight %Pikels #IMPLIED -- margin height in pixels --
sErolling (vesinolauto) auto -- scrollbar or none --
align__| %lAlign #IMPLIED -- vertical or horizontal alignment --
height__]%Length #IMPLIED -- suggested height --

%Length #IMPLIED -- suggested width --

>

154

Start tag:required, End tag:required
Attribute definitions

width =length

The width of the inline frame.
height =length

The height of the inline frame.

® [hamd, |src |[frameborder |[marginwidth ||marginheight ||scrolling | (frame controls and

[decoratioh)

e [target |[(target frame informatign)
e [align [(alignment)

ThelFRAMH element allows authors to insert a frame within a block of text. Inserting an inline frame
within a section of text is much like inserting an object vigQBIECTelement: they both allow you to
insert an HTML document in the middle of another, they may both be aligned with surrounding text, etc.

The information to be inserted inline is designated bjstbd attribute of this element. Trententsof
the[[FRAMH element, on the other hand, should only be rendered by user agents that do not support
frames or are configured not to display frames.

For user agents that support frames, the following example will place an inline frame surrounded by a
border in the middle of the text.

<IFRAME src="foo.html" width="400" height="500"
scrolling="auto" frameborder="1">
[Your user agent does not support frames or is currently configured
not to display frames. Click to retrieve
the related document.]
</IFRAME>

Inline frames may not be resized (and thus, they do not tak®tbsize] attribute).

Note: HTML documents may also be embedded in other HTML documents y@BiBE Jelement. See
the section oh including files in HTML documénts for details.

155

Interactive HTML documents
Contents

1.
1. [TheFORMelement

2,
1. [ThelNPUT elemerijt
2. [TheBUTTONelement
3. [TheSELECTandOPTIONelements

4. |ITheTEXTAREAelement

5. [TheLABEL element

6. [TheFIELDSET andLEGENDelements
3. [GlIving focus to an elemént

1. [Tabbing navigatign

2. S
4. [Disabled and read-only elemgnts

1. [Disabled elements

2. |Read-only elements
5. [Form submissign

1. [Which element values are submitted

2.

1. [Designing documents for user agents that support scfipting
1. [TheSCRIPT element
2. [Specifying the scripting language
3. |Syntax of script contgnt
4. [Intrinsic events
5. |Dynamic modification of documepts

2. [Designing documents for user agents that don’t support sgripting
1. [TheNOSCRIPTelement
2. |Commenting out scripts

156

Forms

Contents

1. [TheFORMelemerit
2. [Controlk
1. |[TheINPUT elemerijt
2. |TheBUTTONelement
3. [TheSELECTandOPTIONelementis

4. [TheTEXTAREZAelement
5. |TheLABEL element

6. |TheFIELDSET andLEGENDelements
3. |Giving focus to an elemént

1. [Tabbing navigatign

2. S
4. [Disabled and read-only eleménts

1. |Disabled elements

2. |Read-only elements
5. |Form submissign

1. [Which element values are submitted

An HTML form is a section of a document containing normal content, markup, and special elements
calledcontrold Controls respond to and accept user input. Users generally "complete” forms by entering
text, selecting menu items, etc., and then submitting the form for processing. Submitted forms may either
be mailed to another user or fed to a program for treatment.

Controls may be check boxes, radio buttons, labels, menus, etc. Each control may be assigned a name.
When the form is submitted, some contfols (depending on theil state) have their name and current value
submitted along with the form. The nature of the value submitted depends on the control (e.g., the value of
a text box is the input text).

Note: This specification includes more detailed information about forms in sectipns on form]display
issuek. Further information on encoding form contents is expected to be added in later revisions to this
draft.

The FORMelement

<IELEMENT FORM - - %block -(FORM)>
<IATTLIST FORM

%attrs; -- %coreattrs, %i18n, %events --

Ction [%URL #REQUIRED -- server-side form handler --
niethod] (GET|POST) GET -- HTTP method used to submit the form --
ehctype PoContentType; "application/x-www-form-urlencoded"

opsubmit__%6Script #IMPLIED -- the form was submitted -

157

opreset _ %Script #IMPLIED -- the form was reset --
tdrget__ICDATA #IMPLIED -- where to render result --

afcept-charset CDAJTA #IMPLIED -- list of supported charsets --
>

Start tag:required, End tag:required
Attribute definitions

action =[url]
This attribute specifies a program for handling the submitted form. It may be an HTTP URL (to

submit the form to a program) of a MAILTO URL (to email the form).
method = get|post
This attribute specifies which HTTP method will be used to submit name/value pairs to the form
handler. The Possible values:
® post: Use the HTTP POST method. The POST method includes name/value pairs in the body
of the form and not in the URL specified by fletion | attribute.
® get: Deprecated.Use the HTTP GET method. The GET method appends name/value pairs to
the URL specified bfaction _|and sends this new URL to the server. This is the default value
for backwards compatibility. This value has been deprecated for reasons of internationalization.
enctype =|cdatz
This attribute specifies the Internet Media Type [see [MIMETYPES]) used to submit the form to the
server (when the value is "post”). The default value for this attribute is
"application/x-www-form-urlencoded". The value "multipart/form-data” should be used when the
returned document includes submitted files.
accept-charset =|cdatz
This attribute specifies the list|of character encoglings for input data that must be accepted by the
server processing this form. The value is a space and/or comma-delimited list of "charsets" as defined
in [RFC2045]. The server must interpret this list as an exclusive-or list, i.e., the server must be able
to accept any single character encoding per entity received.

The default value for this attribute is the reserved string "UNKNOWN". User agents may interpret
this value as the character encoding that was used to transmit the document contafaglhis
element.

accept =[cdatg
This attribute specifies a comma-separated list of MIME types that a server processing this form will
handle correctly. User agents may use this information to filter out nonconformant files when
prompting a user to select files to be sent to the server (iNEH&T] element wheftype ="file").

Attributes defined elsewhere

id] [class_]{document-wide identifiefs)

[lang | (language informatignidir | (text direction)

[style |(inline style informatioh)

title | (element titlgs)

target |(target frame informatign)

[onsubmit ||onreset | (intrinsic events)

[onclick | jondblclick |fonmousedown}|onmouseup|fonmouseover |lonmousemove}

158

[onmouseout | onkeypress |} jonkeydown |, [onkeyup | (intrinsic events)

The[FORMelement acts as a container for controls. It specifies:

® The layout of the form (given by the contents of the element).
® The program that will handle the completed and submitted fornaétien | attribute). The

receiving program must be able to parse name/value pairs in order to make use of them.
e The method by which user data will be sent to the serveln{éileod] attribute).
® A character encoding that must accepted by the server in order to handle this form (the
accept-charset attribute). User agents may advise the user of the value of the
accept-charset attribute and/or to restrict the user’s ability to enter unrecognized characters.

A form can contain text and markup (paragraphs, lists, etc.) as well as the controls listed below.

The scope of theame attribute for any controls withinfBORNelement is thEORNelement.

The following example specifies that the submitted form will be processed by the "adduser" program. The
form will be sent to the program using the HTTP POST method.

<FORM action="http://somesite.com/prog/adduser" method="post">
...form contents...
</[FORM>

The following example shows how to send a submitted form to an email address.

<FORM action="mailto:Kligor.T@gee.whiz.com" method="post">
...form contents...
</FORM>

Controls

The following control elements generally appear wit{fQRelement declaration. However, these
elements may also appear outside [BDRJelement declaration when they are used to build user
interfaces. This is discussed later in this specification, in the sectfon on intrinsic| events.

Control labels
Some form controls automatically have labels associated with them (press buttons cl#dRidThsnd

BUTTOMN while most do not (text fields created[yPUT] andTEXTARERAcheckboxes and radio buttons
created bfiINPUT], and menus created [BELECT.

For those controls that have implicit labels, user agents should take the valueadfi¢heattribute for
the label string.

For those controls without implicit labels, authors must provide labels before or after the control element’s
definition. This is illustrated in the examples below.

159

The INPUT element

<IENTITY % InputType
"(TEXT | PASSWORD | CHECKBOX |
RADIO | SUBMIT | RESET |
FILE | HIDDEN | IMAGE | BUTTON)"
>

<!l-- HSPACE and VSPACE missing due to lack of widespread support -->
<IELEMENT [NPUT]- O EMPTY>
<IATTLIST INPUT

%attrs; -- %%coreattrs, %i18n, %events --
%InputType TEXT -- what kind of widget is needed --
pme CDATA #IMPLIED -- required for all but submit & reset --
Rlue] CDATA #IMPLIED -- required for radio and checkboxes --
hecked (checked) #IMPLIED -- for radio buttons and check boxes --
[sabled (difabled) #IMPLIED -- control is unavailable in this context --
fadonly _(rdadonly) #IMPLIED -- for text and passwd --
ze__| CDATA #IMPLIED -- specific to each type of field --
jaxlength_ NUMBER #IMPLIED -- max chars for text fields --
C %URL #IMPLIED -- for fields with images --
CDATA #IMPLIED -- description for text only browsers --

[

o 0 < 3

=

=
.

=)

—

ugemap | %URL #IMPLIED -- use client-side image map --
align__|%lAlign #IMPLIED -- vertical or horizontal alignment --
tdbindex NUMBER #IMPLIED -- position in tabbing order --
opfocus _ P4Script #IMPLIED -- the element got the focus --

opblur__ [%Script #IMPLIED -- the element lost the focus --
opselect__%Script #IMPLIED -- some text was selected --
opchange _%6Script #IMPLIED -- the element value was changed --
afcept _|CDATA #IMPLIED -- list of MIME types for file upload --
>

Start tag:required End tag:forbidden

Attribute definitions

type =

text|password|checkbox|radio|submit|reset]|file|hidden]image|button
This attribute specifies the type of input control to create. We discuss input contrpl types below. The
default value for this attribute is "text".

name =
This attribute assigns a name to the control. This name will be paired with the current value of the
control if the element’s value is submitted along with the form.

value =cdatg
This attribute specifies the initial value of the control. It is optional except when the control type is
"radio”.

size =[cdatd
This attribute tells the user agent the initial width of the control. The width is given in pixels, except
for control types "text" and "password" when it is the (integer) number of characters.

maxlength =integer
When the control type is "text" or "password"”, this attribute specifies the maximum number of
characters that may be entered. This number may exceed the sjgodigdn which case the user

160

agent should offer a scrolling mechanism. The default value for this attribute is an unlimited number.
checked
When the control type is "radio", this boolean attribute specifies that the radio button is on. This
attribute must be ignored for other control types.
src =[ur]
When the control type is "image", this attribute specifies the location of the image to be used to
decorate the graphical submit button.

Attributes defined elsewhere

id] [class_]{document-wide identifie}s)

[ang | (language informatigndir | (text direction)

ftitle] (element titlgs)

[style |(inline style informatioh)

[alt_|(alternate tekt)

[align [(alignment)

[accept |(legal MIME types for a server)

[readonly [({read-only input contrgls)

[disabled |(disabled input contrgls)

[tabindex | (tabbing navigatign)

[usemap](client-side image maps)

[onfocus | lonblur |lonselect |lonchange |(intrinsic events)

lonclick | jondblclick |lonmousedown}jonmouseup|lonmouseover |lonmousemove}
[onmouseout | jonkeypress | onkeydown } jonkeyup | (intrinsic events)

The nature of a control defined by element depends on the value offiyge] attribute.

Input types
The[NPUT] element'§type |attribute determines which control will be created.

text
This type creates a single-line text box. The value submitted by a text control is the input text.
password
Like "text", but the input text is rendered in such a way as to hide the characters (e.g., a series of
asterisks). This control is used for sensitive input such as passwords. The value submitted by a
password control is the input text (not the rendering).
checkbox
A checkbox is an on/off switch. When the switch is on, the value of the checkbox is "active". When
the switch is off, the value is inactive. The checkbox value is only submitted with the form when the
switch is on.

Several checkboxes within the same form may bear the same name. Upon submission, each "on"
checkbox with the same name submits a name/value pair with the same name component. This
allows users to select more than one value for a given property.

161

radio
A radio button is an on/off switch. When the switch is on, the value of the radio button is "active".
When the switch is off, the value is inactive. The radio button value is only submitted with the form
when the switch is on.

Several radio button within the same form may bear the same name. However, only one of these
buttons may be "on" at any one time. All related buttons are set to "off" as soon as one is set to "on".
Thus, for related radio buttons, only one name/value pair is ever submitted.

submit
Creates a submit button. When this button is activated by the user, the form is submitted to the

location specified by tHaction] attribute of the englobif§ORWelement.

A form may contain more than one submit button. Only the name/value pair of the activated submit
button is submitted with the form.

image
Creates a graphicalibmitbutton. The value of t attribute specifies the URL of the image that
will decorate the button. Some users will be unable to see this image. We strongly recommend you
provide a value for tHalt] attribute as an textual alternative for the image.

When a pointing device is used to click on the image, the form is submitted and the location passed
to the server. The x value is measured in pixels from the left of the image, and the y value in pixels
from the top of the image. The submitted data includesex=x-valueandnamey=y-valuewhere
"name"is the value of theame attribute, anc-valueandy-valueare the x and y coordinate values
respectively.

If the server takes different actions depending on the location clicked, users of non-graphical
browsers will be disadvantaged. For this reason, you are recommended to consider alternative
approaches:

® Use multiple submit buttons (each with their own image) in place of a single graphical submit
button. You can use style sheets to control the positioning of these buttons.
® Use 4 client-side image map together with scripting.

A possible future extension would be to addubemap] attribute t/NPUT] for use as as client-side
image map wherfiype Fimage". ThdAREAelement corresponding to the location clicked would
contribute the value to be passed to the server. To avoid the need to modify server scripts, it may be
appropriate to exterfdREAto provide x and y values for use with fRPUT] element.

reset
Creates a reset button. When this button is activated by the user, all of the form’s controls have their
values reset to the initial values specified by thalue attributes. The name/value for a reset
button are not submitted with the form.

button
Creates a push button that has no default behavior. The behavior of the button is defined by
associating the button with client-side scripts that are triggered when events affecting the button
occur (e.g., clicking the button). The value of Wadue attribute is the label used for the button.

162

For example, the following declaration causes the function naerdg to be executed when the
button is clicked. The script must be defined [SGRIPT] element.

<INPUT type="button" value="Click Me" onclick="verify()">
Please consult the section|on intrinsic eyents for more information about scripting and events.

hidden

Creates a element that is not rendered by the user agent. However, the element’'s name and value are

submitted with the form.

This control type is generally used to store information between client/server exchanges that would
otherwise be loss due to the stateless nature of HTTP.

INPUT]controls of typéhidden have their values submitted with the form. The same holds for
controls that are not rendered because of style information. The following control, though hidden by
the user agent, will have its value submitted with the form.

<INPUT type="password" style="display:none"
name="invisible-password"
value="mypassword">

file
Prompts the user for a file name. When the form is submitted, the contents of the file are submitted to
the server as well as other user input.

User agents should encapsulate multiple files in a MIME multipart documeft (see [REC2045]). This
mechanism encapsulates each file in a a body-part of a multipart MIME body that is sent as the
HTTP entity. Each each body part can be labeled with an appropriate "Content-Type", including if
necessary a "charset" parameter that specifies the character encoding.

The following sample HTML fragment defines a simple form that allows the user to enter a first name,
last name, email address, and sex. When the submit button is activated, the form is sent to the program

specified by thfaction] attribute.

<FORM action="http://somesite.com/prog/adduser" method="post">
<p>
First name: <INPUT type="text" name="firsthame">

Last name: <INPUT type="text" name="lasthame">

email: <INPUT type="text" name="email">

<INPUT type="radio" name="sex" value="Male"> Male

<INPUT type="radio" name="sex" value="Female"> Female

<INPUT type="submit" value="Send"> <INPUT type="reset">
</[FORM>

This form might be rendered as follows:

163

First name: |

L ast name: |

ermail; |

Llale
Female

=Send| Eeset

In the section on t element, we discuss marking up labels such as "First name".

The following example shows how the contents of a user-specified file may be submitted with a form.
This example is based on an example from [RFC1867].

In this example, the user is prompted to enter a name and a list of names of files whose contents should be
submitted with the form. By specifying tleactype]value of "multipart/form-data”, each file’s contents
are stored in a separate section of a multipart document.

<FORM action="http://server.dom/cgi/handle"
enctype="multipart/form-data”
method="post">
What is your name? <INPUT type="text" name="name_of_sender">
What files are you sending? <INPUT type="file" name="name_of_files">
</[FORM>

Please consylt [RFC1867] for more information about file submissions.

The ISINDEX element

ISINDEX is deprecated.Users should use tiidPUT|element instead of this element.

<IELEMENT [SINDEX} O EMPTY>

<IATTLIST ISINDEX
%coreattrs; --id, class, style, title -- [_]] | |
%i18n; -- lang, dir -- |
pfompt_| CDATA #IMPLIED -- prompt message -->

Start tag:required, End tag:forbidden

Attribute definitions

prompt =[cdatg

Deprecated.This attribute specifies a prompt string for the input field.

164

Attributes defined elsewhere

[d] [class_] {document-wide identifie}s)

lang | (language informatigndir | (text direction)
title |(element titlgs)

[style](inline style informatioh)

Thel[SINDEX] element causes the user agent to prompt the user for a single line of input (allowing any
number of characters). The user agent may use the valudpbthpt] attribute as a title for the prompt.

DEPRECATED EXAMPLE:
The followingISINDEX [declaration:

<ISINDEX prompt="Enter your search phrase: ">

is equivalent to the followingNPUT] declaration:

<FORM action="..." method="post">
Enter your search phrase: <INPUT type="text">
</[FORM>

Semantics of SINDEX. Currently, the semantics fg6/NDEX]are only well-defined when the base
URL for the enclosing document is an HTTP URL. In practice, the input string is restricted to Latin-1 as
there is no mechanism for the URL to specify a different character set.

The BUTTONelement

<IELEMENT --
(%inline | %blocklevel)* -(A | %formctrl | FORM | ISINDEX | FIELDSET)>
<IATTLIST BUTTON
%attrs; -- %coreattrs, %il8n, %events --
neme | CDATA #IMPLIED -- for scripting/forms as submit button --
flue__| CDATA #IMPLIED -- gets passed to server when submitted --
Jpe__[submit|reset) #IMPLIED -- for use as form submit/reset button --

=

disabled(disabled) #IMPLIED -- control is unavailable in this context --
tdbindex NUMBER #IMPLIED -- position in tabbing order --
opfocus _ PAScript #IMPLIED -- the element got the focus --

hblur__|%Script #IMPLIED -- the element lost the focus --

vV O

Start tag:required, End tag:required
Attribute definitions

name =[cdatd
This attribute assigns a name to the button.
value =[cdata
This attribute assigns a value to the button.
type = button|submit|reset
This attribute declares the type of the button. When this attribute is not set, the button’s behavior is
undefined. Possible values:

165

e button: Creates a simple push button intended to trigger a script.
® submit: Creates a button that submits an englobing form. This is the default value.
® reset: Creates a button that resets an englobing form.

Attributes defined elsewhere

[disabled |(disabled input contrqls)
[tabindex [({tabbing navigatign)
[usemap](client-side image maps)
[onfocus | jonblur | (intrinsic events)

lonclick | jondblclick }Jonmousedown]jonmouseup }[onmouseover |jonmousemove}
[onmouseout] pnkeypress | [onkeydown |, jonkeyup] (intrinsic evenis)

A BUTTONelement whose type is "submit" is very similar td dRUT| element whose type is "submit".
They both cause a form to be submitted, bulg@ TOlelement allows richer presentational
possibilities.

A[BUTTORelement whose type is "submit" and whose content is an image (ej§/Grdement) is very
similar to aff[NPUT]element whose type is "image". They both cause a form to be submitted, but their
presentation is different. In this context,JAlPUT]element is supposed to be rendered as a "flat" image,
while aBUTTONSs supposed to be rendered as a button (e.qg., with relief and an up/down motion when
clicked).

The following example expands a previous example by substitutifiyiéT] elements that create
submit and reset buttons with butlBTTONnstances. The buttons contain images by way
element.

<FORM action="http://somesite.com/prog/adduser" method="post">
<p>
First name: <INPUT type="text" name="firsthame">

Last name: <INPUT type="text" name="lasthame">

email: <INPUT type="text" name="email">

<INPUT type="radio" name="sex" value="Male"> Male

<INPUT type="radio" name="sex" value="Female"> Female

<BUTTON name="submit" value="submit" type="submit">
Send</BUTTON>
<BUTTON name="reset" type="reset">
Reset</BUTTON>
</[FORM>

If aBUTTONSs used with afiMG element, you are recommended to exploiflhg element'falt |

attribute to provide a description for users unable to see the image.
It is illegal to associate an image map witildig that appears as the contents [BUATTONelement.

ILLEGAL EXAMPLE:
The following is not considered legal HTML.

166

<BUTTON>

</BUTTON>

A BUTTONelement whose type is "reset" is very similar t element whose type is "reset". They
both cause controls to regain their initial values, buBid& TOINelement allows richer presentation.

TheBUTTONelement may also be used together with scripts, in which capg#’d should be "button”.
When such a button is activated, a client-side script is executed. We discuss thiBWi$a& OfNater in

the specification in the section [on intrinsic events.
The SELECTand OPTIONelements

<IELEMENT BELECT - - (OPTION+)>
<IATTLIST SELECT

%attrs; -- %coreattrs, %i18n, %events --
npme CDATA #REQUIRED -- field name --
slze NUMBER #IMPLIED -- rows visible --
nfultiple_(myltiple) #IMPLIED -- default is single selection --
disabled (dikabled) #IMPLIED -- control is unavailable in this context --
tdbindex _NUMBER #IMPLIED -- position in tabbing order --
pfocus_ PoScript #IMPLIED -- the element got the focus --
hblur__|%Script #IMPLIED -- the element lost the focus --
hselect _9%Script #IMPLIED -- some text was selected --
hchange [%Script #IMPLIED -- the element value was changed --

:

o

VO O O

Start tag:required, End tag:required
SELECT Attribute definitions

name =
This attribute assigns a name to the element. This name will be paired with any selected values when
the form is submitted.

size =integer
This attribute specifies the number of rows to be rendered by the user agent. The number of rows
may be smaller than the number of possible choices. In this case, the user agent should provide a
scrolling mechanism for accessing all possible choices.

multiple
When set, this boolean attribute allows multiple selections. When not {SEIREC T element only
permits single selections. Traditionally, visual user agents render multiple-selection elements as list
boxes, while single-selection elements are rendered as drop-down menus.

The[SELECTelement creates a list of choices that may be selected by the us¢@EE&DTelement
must contain at least one choice. Each choice is specified by an instang®BiilkNelement.

167

<IELEMENT - O (#PCDATA)*>
<IATTLIST OPTION
%attrs; -- %coreattrs, %i18n, %events --
sklected (sdlected) #IMPLIED
djsabled (dikabled) #MPLIED -- control is unavailable in this context --
vhlue | CDATA #IMPLIED -- defaults to element content --
>

Start tag:required, End tag:optional
OPTION Attribute definitions

selected
When set, this boolean attribute specifies that this option is selected (initially or by the user).
value =[cdatg
This attribute specifies the value to be submitted for this choice if the choice is selected when the
form is submitted. The value is paired with tieme assigned to t{EELECTelement. If this
attribute is not set, the submitted value defaults to the content{ORMEONelement.

Attributes defined elsewhere

id] [class_]{document-wide identifiefs)

[lang |(language informatignllir | (text direction)
ftitle [{element titlgs)

[style |(inline style informatioh)

[disabled |(disabled input contrgls)

tabindex | (tabbing navigatign)

[onfocus | jonblur | fonchange |(intrinsic events)

[onclick | jondblclick }[onmousedown}jonmouseup }[onmouseover |jonmousemove}
onmouseout } onkeypress |} [onkeydown |, onkeyup | (intrinsic evenis)

User agents should use the content ofdR§ IONelement as the displayed choice.

In this example, we create a menu that allows the user to select which of seven software components to
install. The first and second components are initially selected but may be deselected by the user. The
remaining components are not initially selected.@ilke] attribute states that the menu should only have

4 rows even though the user may select from among 7 options. The other options must be made available
through a scrolling mechanism.

The|SELECTis followed by submit and reset buttons.

<FORM action="http://somesite.com/prog/component-select" method="post">
<SELECT multiple size="4" name="component-select">
<OPTION selected value="Component_1_a">Component_1</OPTION>
<OPTION selected value="Component_1_b">Component_2</OPTION>
<OPTION>Component_3</OPTION>
<OPTION>Component_4</OPTION>
<OPTION>Component_5</OPTION>
<OPTION>Component_6</OPTION>

168

<OPTION>Component_7</OPTION>
</SELECT>
<INPUT type="submit" value="Send"><INPUT type="reset">
</[FORM>

When the form is submitted, each selected choice will be paired with the name "component-select” and
submitted. The submitted value of el @RTIONwill be its contents, except where overridden by the
value attribute (here, in the first two components).

The TEXTAREAelement

<IELEMENT - - (#PCDATA)*>
<IATTLIST TEXTAREA
%%attrs; -- %coreattrs, %i18n, %events --
npme CDATA #REQUIRED
rows NUMBER #REQUIRED
cpls_] NUMBER #REQUIRED
djsabled (difabled) #IMPLIED -- control is unavailable in this context --

rd=a only (rdadonly) #IMPLIED
tdbindex NUMBER #IMPLIED -- position in tabbing order --
op hfocus__ PoScript #IMPLIED -- the element got the focus --

Eur]%Script #IMPLIED -- the element lost the focus --
hselect %Script #IMPLIED -- some text was selected --
hchange [6Script #IMPLIED -- the element value was changed --

vV O O ‘O

Start tag:required End tag:required
Attribute definitions

name =

This attribute assigns a name to the element. This name will be paired with the content of the element
when submitted to the server.

rows =integer
Specifies the number of visible text lines. Users should be able to enter more lines than this, so user
agents should provide some means to scroll through the contents of the textarea field when the
contents extend beyond the visible area.

cols =integer
Specifies the visible width in average character widths. Users should be able to enter longer lines
than this, so user agents should provide some means to scroll through the contents of the textarea
field when the contents extend beyond the visible area. User agents may wrap visible text lines to
keep long lines visible without the need for scrolling.

Attributes defined elsewhere

[[d][class]<<<<<<< forms.srd (document-wide identifiers)
lang | (language informatigndir | (text direction)

title [(element titlgs)

[style |{inline style informatioh)

[readonly |{read-only input contrdls)

169

[disabled |(disabled input contrqls)
tabindex | ({tabbing navigatign)
[onfocus | jonblur | jonselect }lonchange |(intrinsic events)

lonclick | jondblclick }lonmousedown]jonmouseup |[onmouseover |jonmousemove}
[onmouseout] pnkeypress] [onkeydown | [onkeyup] (intrinsic evenis)

The[TEXTAREAelement creates a multi-line text input control (as opposed to a sindBHRE]

control). The content of this element provides the initial text presented by the control.

This example createsT&XTAREfcontrol that is 20 rows by 80 columns and contains two lines of text
initially. The[TEXTAREAs followed by submit and reset buttons.

<FORM action="http://somesite.com/prog/text-read" method="post">
<TEXTAREA rows="20" cols="80">
First line of initial text.
Second line of initial text.
</TEXTAREA>
<INPUT type="submit" value="Send"><INPUT type="reset">
</FORM>

Setting thdreadonly] attribute allows authors to display unmodifiable text[fEeXTAREA This differs
from using standard marked-up text in a document because the VAl DAREAfs submitted with the
form.

It is recommended that user agents canonicalize line endings to CR, LF (ASCII decimal 13, 10) when
submitting the field’s contents. The character set for submitted data should be 1ISO Latin-1, unless the
server has previously indicated that it can support alternative character sets.

The LABEL element

<IELEMENT [ABEL]- - (%inline)* -(LABEL) -- field label text -->
<IATTLIST LABEL

Y%attrs; -- %coreattrs, %i18n, %events --

ffr_] IDREF #IMPLIED -- matches field ID value --
disabled_(diisabled) #IMPLIED -- control is unavailable in this context --
Ccesske DATA #IMPLIED -- accessibility key character --

6l
opfocus__PoScript #IMPLIED -- the element got the focus --
0
>

hblur__ 1%Script #IMPLIED -- the element lost the focus --

Start tag:required, End tag:required
Attribute definitions

for =control-name
This attribute explicitly associates the label being defined with another control. The value of this
attribute must be the value of fieg]attribute of some other control in the same document. In the
absence of this attribute, the label being defined is associated with its contents.

170

Attributes defined elsewhere

[d] [class_] {document-wide identifie}s)

lang | (language informatigndir | (text direction)
title |(element titlgs)

[style](inline style informatioh)

[disabled |(disabled input contrqls)
[accesskey | (access keys)

tabindex | (tabbing navigatign)

fonclick]

[onfocus | fonblur | {intrinsic events)

[onclick | jondblclick }[onmousedown}jonmouseup }[onmouseover |jonmousemove}
[onmouseout] onkeypress | fonkeydown |, fonkeyup] (intrinsic eventis)

The[LABEL element may be used to attach information to other control elements (excludirigAREz}
elements). Labels may be rendered by user agents in a number of ways (e.g., visually, read by speech
synthesizers, etc.)

When gLABEL element receives focus, it passes the focus on to its associated control. See the section
below on access keys for examples.

To associate a label with another control explicitly, sgtdhd attribute of th

This example creates a table that is used to alig controls and their associated labels. Each
label is associated explicitly with one of iNPUT]elements.

<FORM action="..." method="post">
<TABLE>
<TR>
<TD><LABEL for="fname">First Name</LABEL>
<TD><INPUT type="text" name="firsthame" id="fname">
<TR>
<TD><LABEL for="Iname">Last Name</LABEL>
<TD><INPUT type="text" name="lastname" id="Iname">
</TABLE>
<FORM>

This example extends a previous example form to indl4&EL elements. Note that theABEL
elements are associated to[IN®UT] elements through tifid] attribute.

<FORM action="http://somesite.com/prog/adduser" method="post">

<pP>

<LABEL for="firstname">First name: </LABEL><INPUT
type="text" id="firstname">

<LABEL for="lastname">Last name: </LABEL><INPUT
type="text" id="lastname">

<LABEL for="email"email: </LABEL><INPUT
type="text" id="email">

171

<INPUT type="radio" name="sex" value="Male"> Male

<INPUT type="radio" name="sex" value="Female"> Female

<INPUT type="submit" value="Send"> <INPUT type="reset">
</FORM>

More than on may be associated with the same control by creating multiple references via the
attribute.

To associate a label with another control implicitly, make the control the content{ &BE#] In this
case, th may only contain one other control element. The label itself may be positioned before or
after the associated control.

In this example, we implicitly associate two labels andIMPBUT] elements. Notice that the implicit
association prevents us from being able to layout the label and its associated control in a table (see the
previous example).

<FORM action="..." method="post">
<LABEL>
First Name
<INPUT type="text" name="firstname">
</LABEL>
<LABEL>
<INPUT type="text" name="lastname">
Last Name
</LABEL>
</[FORM>

The FIELDSET and LEGENDelements

<l--
#PCDATA is to solve the mixed content problem,
per specification only whitespace is allowed there!
>
<IELEMENT FIELDSET]- - (#PCDATA,LEGEND,%block)>
<IATTLIST FIELDSET
Y%attrs; -- %coreattrs, %i18n, %events --
>

<I[ELEMENT LEGEND - - (%inline;)+>
<IENTITY % LAlign "(top|bottom|left|right)">

<IATTLIST LEGEND -- fieldset legend --
Y%attrs; -- %coreattrs, %i18n, %events --
align] %LAlign; #IMPLIED -- relative to fieldset --
afcesskey QDATA #IMPLIED -- accessibility key character --
>

Start tag:required, End tag:required

LEGEND Attribute definitiorsdign = top|bottom|left|right
This attribute specifies the position of the legend with respect to the fieldset. Possible values:

172

bottom: The legend is below the fieldset.
left: The legend is to the left of the fieldset.

Attributes defined elsewhere

[d] [class_](document-wide identifiefs)

right: The legend is to the right of the fieldset.

[ang | (language informatigndir | (text directiof)

title [(element titlgs)

[style |{inline style informatioh)
[accesskey |(access keys)
[align_](alignment)

top: The legend is above the fieldset. This is the default value.

[onclick | jondblclick }[onmousedown}jonmouseup j[onmouseover |lonmousemove}
onmouseout } onkeypress] [onkeydown |, [onkeyup] (intrinsic events)

The[FIELDSET]element allows form designers to group thematically related controls together. Grouping
controls makes it easier for users to understand their purpose while simultaneously facilitating tabbing
navigation for visual user agents and speech navigation for speech-oriented user agents. The proper use of
this element makes documents more accessible to people with disabilities.

The[LEGENIelement allows designers to assign a captioffi&BDSET| The legend improves
accessibility when tHEIELDSET]is rendered non-visually. When rendered visually, settinglige]
attribute on thit EGENPelement aligns it with respect to {REELDSET

In this example, we create a form that one might fill out at the doctor’s office. It is divided into three
sections: personal information, medical history, and current medication. Each section contains controls for

inputting the appropriate information.

<FORM action="..." method="post">
<FIELDSET>
<LEGEND align="top">Personal Information</LEGEND>

Last Name: <INPUT name="personal_lastname" type="text" tabindex="1">
First Name: <INPUT name="personal_firstname" type="text" tabindex="2">

...more personal information...
</FIELDSET>
<FIELDSET>
<LEGEND align="top">Medical History</LEGEND>
<INPUT name="history_illness"

type="checkbox"

value="Smallpox" tabindex="20"> Smallpox</INPUT>
<INPUT name="history_illness"

type="checkbox"

value="Mumps" tabindex="21"> Mumps</INPUT>
<INPUT name="history_illness"

type="checkbox"

value="Dizziness" tabindex="22"> Dizziness</INPUT>
<INPUT name="history_illness"

type="checkbox"

value="Sneezing" tabindex="23"> Sneezing</INPUT>

173

...more medical history...
</FIELDSET>
<FIELDSET>
<LEGEND align="top">Current Medication</LEGEND>
Are you currently taking any medication?
<INPUT name="medication_now"
type="radio"
value="Yes" tabindex="35">Yes</INPUT>
<INPUT name="medication_now"
type="radio"
value="No" tabindex="35">No</INPUT>

If you are currently taking medication, please indicate
it in the space below:
<TEXTAREA name="current_medication"
rows="20" cols="50"
tabindex="40">
</TEXTAREA>
</FIELDSET>
</FORM>

Note that in this example, we might improve the presentation of the form by aligning elements within each
[FIELDSET] (with style sheets), adding color and font information (with style sheets), adding scripting

(say, to only open the "current medication” text area if the user indicates he or she is currently on
medication), etc.

Giving focus to an element

Active elements in HTML documents must recdiweusfrom the user in order to perform their tasks. For
example, users must activate a link specified bjAleeement in order to follow the specified link.
Similarly, users must giveBEEXTAREfocus in order to enter text into it.

There are several ways to give focus to an element:

e Designate the element with a pointing device.

® Navigate from one element to the next with the keyboard. The document’s author may define a
tabbing orderthat specifies the order in which elements will receive focus if the user navigates the
document with the keyboard (tabbing navigdtion). Once selected, an element may be activated by
some other key sequence.

e Select an element by a series of keyboard actions knowrjezsess kdysometimes called
"keyboard shortcut" or "keyboard accelerator").

Tabbing navigation
Attribute definitions
tabindex =integer

This attribute specifies the position of the current element in the tabbing order for the current
document. This value may be a positive or negative integer.

174

The tabbing order defines the order in which elements will receive focus when navigated by the user via
the keyboard. The tabbing order may include elements nested within other elements.

Elements that may receive focus should be navigated by user agents according to the following rules:

1. Those elements that supportflieindex] attribute and assign a postive value to it are navigated
first. Navigation proceeds from the element with the lofiashdex | value to the element with the
highest value. Values need not be sequential nor must they begin with any particular value. Elements
that have identicfthbindex | should be navigated in the order they appear in the document.

2. Those elements that do not defineidi@ndex_|attribute or do not support it are navigated next.
These elements are navigated in the order they appear in the document.

3. Those elements that supportfthleindex] attribute and assign a negative value to it do not
participate in the tabbing order.

4. Elements that afe disalled do not participate in the tabbing order.

The following elements support fkebindex] attribute[A|[AREA[OBJECT[INPUT],[SELECT,
TEXTARERAandBUTTON

In this example, the tabbing order will be BT TONthe[NPUT]elements in order (note that "field1"
and the button share the same tabindex, but "field1" appears later in the document), and finally the link
created by thid] element.

<HTML>

<BODY>

...some text...

Click to go to the

W3C Website.

...some more...

<BUTTON type="button" name="get-database"
tabindex="1" onclick="get-database">

Click me to receive the current database.

</BUTTON>

...some more...

<FORM action="..." method="post">

<INPUT tabindex="1" type="text" name="field1">

<INPUT tabindex="2" type="text" name="field2">

<INPUT tabindex="3" type="submit" name="submit">

</[FORM>

</BODY>

</HTML>

Tabbing keysThe actual key sequence that causes tabbing navigation or element activation depends on
the configuration of the user agent (e.qg., the "tab" key is used for navigation and the "enter" key is used to
activate a selected element).

User agents may also define key sequences to navigate the tabbing order in reverse. When the end (or
beginning) of the tabbing order is reached, user agents may circle back to the beginning (or end).

175

Access keys
Attribute definitions

accesskey =[cdatd
This attribute assigns an access key to an element. An access key is a single character from the user
agent’s current character encoding. User agents should treat the value of this attribute as
case-insensitive.

Pressing an access key assigned to an element gives focus to the element. The action that is executed
when an element receives focus depends on the element. Links defiedebgenerally followed by the
user agent, activated radio buttons change values, text fields with focus allow user input, etc.

The following elements support faecesskey]attribute]|LABEL} [4] [CAPTION andLEGEND

This example assigns the access key "U" to a label associated {WitR@MN| control. Typing the access
key gives focus to the label which in turn gives it to the associated control. The user may then enter text
into thgINPUT] area.

<FORM action="..." method="post">
<LABEL for="user" accesskey="U">
User Name

</LABEL>

<INPUT type="text" name="user">
</[FORM>

In this example, we assign an access key to a link defined @eteeent. Typing this access key takes
the user to another document, in this case, a table of contents.

<A accesskey="C"
href="http://somplace.com/specification/contents.html">
Table of Contents

The invocation of access keys depends on the underlying system. For instance, on machines running MS
Windows, one generally has to press the "alt" key in addition to the access key. On Apple systems, one
generally has to press the "cmd" key in addition to the access key.

The rendering of access keys depends on the user agent. We recommend that authors include the access
key in label text or wherever the access key is to apply. User agents should render the value of an access
key in such a way as to emphasize its role and to distinguish it from other characters (e.g., by underlining

it).

Disabled and read-only elements

In contexts where user input is either undesirable or irrelevant, it is important to be able to disable an
element or render it read-only. For example, one may want to disable a form’s submit button until the user
has entered some required data. Similarly, an author may want to include a piece of read-only text that
must be submitted as a value along with the form. The following sections describe disabled and read-only
elements.

176

Disabled elements
Attribute definitions

disabled
When set for a form control, this boolean attribute disables the control for user input.

When set, thilisabled |attribute has the following effects on an element:

® Disabled elements do not receive focus.
o Disabled elements are skipped in tabbing navigation.
® Values of disabled controls are not submitted with a form.

The following elements support tkdésabled | attribute[INPUT],[TEXTAREASELECT|OPTION

[OBJECT[LABEL, andBUTTO

How disabled elements are rendered depends on the user agent. For example, some user agents "gray out"
disabled menu items, button labels, etc.

In this example, the disablfdPUT]element cannot receive user input nor will its value be submitted
with the form.

<INPUT disabled name="fred" value="stone">

Note: The only way to modify dynamically the value diikebled | attribute is through a script.

Read-only elements
Attribute definitions

readonly
When set for a form control, this boolean attribute prohibits changes to control.

Thelreadonly _]attribute specifies whether the element may be modified by the user.
When set, thpeadonly _|attribute has the following effects on an element:

® Read-only elements receive focus but cannot be modified by the user.
® Read-only elements are included in tabbing navigation.
® Values of read-only controls are submitted with a form.

The following elements support theadonly] attribute[[NPUT], TEXT, PASSWORRNATEXTARE]

How read-only elements are rendered depends on the user agent.

Note: The only way to modify dynamically the value attribute is through a script.

177

Form submission

Which element values are submitted

Not all elements have their values submitted with a form. Conforming user agentsrajtaudmit:

e Disabled form contrd|s.
e [Form controls without values for tmame attribute.

o |OBJECTelements without theame attribute.
e [OBJECTelements with thideclare] attribute.

178

Scripts

Contents

1. |Designing documents for user agents that support scfipting
1. [TheSCRIPT element
2. |Specifying the scripting langugge
3. |Syntax of script contgnt
4. [Intrinsic events
5. |Dynamic modification of documents
2. |Designing documents for user agents that don’t support sgripting
1. |TheNOSCRIPTelement
2. |Commenting out scrigts

A client-sidescriptis a program that may accompany an HTML document or be embedded directly in it.
The program executes on the client’'s machine when the document loads, or at some other time such as
when a link is activated. HTML’s support for scripts is independent of the scripting language.

Scripts offer authors a means to extend HTML document in highly active and interactive ways. For
example:

® Scripts may be evaluated as a document loads to modify the contents of the document dynamically.

® Scripts may accompany a form to process input as it is entered. Designers may dynamically fill out
parts of a form based on the values of other fields. They may also ensure that input data conforms to
predetermined ranges of values, that fields are mutually consistent, etc.

® Scripts may be triggered by events that affect the document, such as loading, unloading, element
focus, mouse movement, etc.

® Scripts may be linked to form controls (e.g., buttons) to produce graphical user interface elements.
There are two types of scripts authors may attach to an HTML document:

® Those that are executed one time when the document is loaded by the user agent. Scripts that appear
within a|SCRIPT| element are executed when the document is loaded. For user agents that cannot or
will not handle scripts, authors may include alternate content iIA@&CRIP Jelement.

e Those that are executed every time a specific event occurs. These scripts may be assigned to a
number of elements via the intrinsic eyent attributes.

Note: This specification includes more detailed information about scripting in sectipns on scriptfmacros.

Designing documents for user agents that support scripting

The following sections discuss issues that concern user agents that support scripting.

179

The SCRIPT element

<IELEMENT ECRIPT]- - CDATA -- script statements -->
<IATTLIST SCRIPT
tfjpe 1 CDATA #IMPLIED -- Internet content type for
script language --
dnguage_CDATA #IMPLIED -- predefined script language name --
sic_] %URL #IMPLIED -- URL for an external script --
>

Start tag:required, End tag:required
Attribute definitions

type =[cdata
This attribute specifies the scripting language of the contents of this element. The value must be an
Internet Media Type. There is no default value for this attribute.

language =lcdatg
DeprecatedThis attribute specifies the scripting language of the contents of this element. Its value is
an identifier for the language, but since these identifiers are not standard, this attribute has been
deprecated in favor ¢fpe |

src =rl

This attribute specifies the location of an external script.

Thel[SCRIPT| element places a script within a document. This element may appear any number of times in
the][HEADor[BODYof an HTML document.

The script may be defined within the contents ofSRRIPT]element or in an external file. If tjsec |
attribute is not set, user agents must interpret the contents of the element as the scfgpt. |hteea
URL value, user agents must ignore the element’s contents and retrieve the script via the URL.

Scripts are evaluated Isgript engineshat must be known to a user agent.

Specifying the scripting language

As HTML does not rely on a specific scripting language, document authors must explicitly tell user agents
the language of each script. This may be done either through a default declaration or a local declaration.

Documents that contain neither a default scripting language declaration nor a local ¢BERIPA
element are incorrect. User agents may still try to interpret the script but are not required to.

The default scripting language

To specify the default scripting language for all scripts in a document include the follahEind
declaration in thiE{EADof a document:

180

<META http-equiv="Content-Script-Type" content="type">

where "type" is an Internet Media Type (fee [MIMET YHES]) naming the scripting language. Examples of
values include "text/tcl", "text/javascript”, "text/vbscript". $ee [MIMETYRES] for a complete list of valid
scripting language types.

In the absence of/dETAdeclaration, the default can be set by a "Content-Script-Type" HTTP header.
Content-Script-Type: type
where "type" is again an Internet Media Type naming the scripting language.

When several HTTP headers #METAelements occur, the last one defines the default scripting language.
For our purposes, HTTP headers are considered to occur earlier than the document HEAD.

Local declaration of a scripting language

It is also possible to specify the scripting language in element via thigype] attribute. In the
absence of a default scripting language specification, this attribute must be set[sge#el element.
When a default scripting language has been specifiefydbd attribute overrides it.

In this example, we declare the default scripting language to be "text/tcl". We inclug€RitieT] in the
header, whose script is located in an external file and is in the scripting language "text/vbscript". We also
include ongSCRIPT]in the body, which contains its own script written in "text/javascript".

<HTML>

<HEAD>

<META http-equiv="Content-Script-Type" content="text/tcl">
<SCRIPT type="text/vbscript" src="http://someplace.com/progs/vbcalc">
</SCRIPT>

</HEAD>

<BODY>

<SCRIPT type="text/javascript">

...some JavaScript...

</SCRIPT>

</BODY>

</HTML>

References to HTML elements from a script

Each scripting language has its own conventions for referring to HTML objects from within a script. This
specification does not define a standard mechanism for referring to HTML objects.

However, scripts should refer to an element according to its assigned name. Scripting engines should
observe the following precedence rules when identifying an elemeataattribute takes precedence
over did |if both are set. Otherwise, one or the other may be used.

181

Syntax of script content

The content of thiECRIPT]element is a script, and as such, must not be evaluated by the user agent as
HTML markup. The user agent must pass it on as data to a script engine.

HTML parsers must be able to recognize script data as beginning immediately after the start tag and
ending as soon as the ETAGO ("</") delimiters are followed by a name character ([a-zA-Z]). The script
data does not necessarily end with the </SCRIPT> end tag, but is terminated by any "</" followed by a
name character.

Consequently, any HTML markup that is meant to be sent to a script engine (which may do whatever it
wants with the markup) must be "escaped"” so as not to confuse the HTML parser. Designers of each
scripting language should recommend language-specific support for resolving this issue.

ILLEGAL EXAMPLE:
The following code is invalid due the to presence of the "" characters found insid{SaRfeT]
element:

<SCRIPT type="text/javascript">

document.write ("This won't work")
</SCRIPT>

A conforming parser must treat the "" data as the end of script data, which is clearly not what the
author intended.

In JavaScript, this code can be expressed legally by ensuring that the apparent ETAGO delimiter does not
appear immediately before an SGML name start character:

<SCRIPT type="text/javascript">

document.write ("This will work<\VVEM>")
</SCRIPT>

In Tcl, one may accomplish this as follows:

<SCRIPT type="text/tcl">
document write "This will work<\VEM>"
</SCRIPT>

In VBScript, the problem may be avoided with @ier() function:

"This will work<\" & Chr(47) + "EM>"

Intrinsic events
Attribute definitions

onload = script
Theonload event occurs when the user agent finishes loading a window or all frames within a

FRAMESE[TThis attribute may be used WBODYandFRAMESEJElements.

182

onunload = script
Theonunload event occurs when the user agent removes a document from a window or frame.
This attribute may be used wBODYandFRAMESHElements.

onclick = script
Theonclick event occurs when the pointing device button is clicked over an element. This
attribute may be used with most elements.

ondblclick = script
Theondbiclick event occurs when the pointing device button is double clicked over an element.
This attribute may be used with most elements.

onmousedown = script
Theonmousedown event occurs when the pointing device button is pressed over an element. This
attribute may be used with most elements.

onmouseup = script
Theonmouseup event occurs when the pointing device button is released over an element. This
attribute may be used with most elements.

onmouseover = script
Theonmouseover event occurs when the pointing device is moved over an element. This attribute
may be used with most elements.

onmousemove = script
Theonmousemove event occurs when the pointing device is moved over an element. This attribute
may be used with most elements.

onmouseout = script
Theonmouseout event occurs when the pointing device is moved away from an element. This
attribute may be used with most elements.

onfocus =script
Theonfocus event occurs when an element receives focus either by the pointing device or by
tabbing navigation. This attribute may be used with the following elenflehBEL, [NPUT]
[SELECT[TEXTARERAandBUTTO

onblur = script
Theonblur event occurs when an element loses focus either by the pointing device or by tabbing
navigation. It may be used with the same elementafagus .

onkeypress = script
Theonkeypress event occurs when a key is pressed and released over an element. This attribute
may be used with most elements.

onkeydown = script
Theonkeydown event occurs when a key is pressed down over an element. This attribute may be
used with most elements.

onkeyup =script
Theonkeyup event occurs when a key is released over an element. This attribute may be used with
most elements.

onsubmit = script
Theonsubmit event occurs when a form is submitted. It only applies tE@RIelement.

onreset =script
Theonreset event occurs when a form is reset. It only applies tF@RIJelement.

onselect = script
Theonselect event occurs when a user selects some text in a text field. This attribute may be used

183

with the[NPUT]andTEXTARERelements.

onchange = script
Theonchange event occurs when a control loses the input fecults value has been modified
since gaining focus. This attribute applies to the following elemJ T, [SELECT, and

EXTAREA

It is possible to associate an action with a certain number of events that occur when a user interacts with a
user agent. Each of the "intrinsic events" listed above takes a value that is a script. The script is executed
whenever the event occurs for that element.

Control elements such IsTsIPUTl, |§ELEC I; |BUTTON, i EXTARE]\andLABEEIaII respond to certain

intrinsic events. When these elements do not appear within a form, they may be used to augment the
graphical user interface of the document.

For instance, designers may want to include press buttons in their documents that do not submit a form but
still communicate with a server when they are activated.

The following examples show some possible control and user interface behavior based on intrinsic events.

In the following example, userName is a required text field. When a user attempts to leave the field, the
OnBlur event calls a JavaScript function to confirm that userName has an acceptable value.

<INPUT NAME="userName" onBlur="validUserName(this.value)">

Here is another JavaScript example:

<INPUT NAME="num"
onChange="if (IcheckNum(this.value, 1, 10))
{this.focus();this.select();} else {thanks()}"
VALUE="0">

Here is a VBScript example of an event handler for a text field:

<INPUT name="edit1" size="50">
<SCRIPT type="text/vbscript">
Sub editl_changed()
If editl.value = "abc" Then
buttonl.enabled = True
Else
buttonl.enabled = False
End If
End Sub
</SCRIPT>

Here is the same example using Tcl:

184

<INPUT name="editl" size="50">
<SCRIPT type="text/tcl">
proc editl_changed {} {
if {[edit value] == abc} {
buttonl enable 1
}else {
buttonl1 enable 0

}

editl onChange editl_changed
</SCRIPT>

Here is a JavaScript example for event binding within a script. First, here’s a simple click handler:

<BUTTON type="button" name="mybutton" value="10">
<SCRIPT type="text/javascript">
function my_onclick() {

}...

document.form.mybutton.onclick = my_onclick
</SCRIPT>
</BUTTON>

Here’s a more interesting window handler:

<SCRIPT type="text/javascript">
function my_onload() {

o

var win = window.open("some/other/URL")
if (win) win.onload = my_onload
</SCRIPT>

In Tcl this looks like:

<SCRIPT type="text/tcl">
proc my_onload {} {

}...

set win [window open "some/other/URL"]
if {Swin 1= ""}{
$win onload my_onload

}
</SCRIPT>

Note that "document.write" or equivalent statements in intrinsic event handlers create and write to a new
document rather than modifying the current one.

185

Parsing of intrinsic event scripts

The script attributes for intrinsic events are defined as CDATA. The SGML processing of CDATA
attribute values requires that (1) entity replacement occur within the attribute value; and (2) that the
attribute value be delimited by matching pairs of double quotes (") or single quotes ().

Given these lexical restrictions, the delimiters (), ("), "&", and "&#" may not occur freely in the value of
a script attribute. To resolve this issue, we recommend that script event handler attributes always use (")
delimiters and that occurrences of (") and "&" inside an event handler attribute be written as follows:

" should be written as """ or as """
‘& should be written as "&" or as "&"

Thus, for example, one could write:

<INPUT name="num" value="0"
onChange="if (compare(this.value, "help")) {gethelp()}">

SGML permits (°) to be included in attribute strings quoted by ("), and vice versa. The following is
therefore correct:

"this is 'fine™ and 'so is "this"

Dynamic modification of documents

Scripts that are executed when a document is loaded may be able to modify the document’s contents
dynamically. The ability to do so depends on the scripting language itself (e.g., the "document.write"
statement in the HTML object model supported by some vendors).

The dynamic modification of a document may be modeled as follows:

1. All[SCRIPT elements are evaluated in order as the document is loaded.

2. All script constructs within a givgBCRIPT element that generate SGML CDATA are evaluted.
Their combined generated text is inserted in the document in placdCRI® T element.

3. The generated CDATA is re-evaluated.

HTML documents are constrained to conform to the HTML DTD both before and after processing any

[SCRIPT]elements.

The following example illustrates how scripts may modify a document dynamically. The following script:
<TITLE>Test Document</TITLE>
<SCRIPT type="text/javascript">

document.write("<p>Hello World!<\/b>")
</SCRIPT>

Has the same effect as this HTML markup:

186

<TITLE>Test Document</TITLE>
<P>Hello World!

Designing documents for user agents that don’t support
scripting

The following sections discuss issues about lack of support for scripting that authors should also consider
when designing good HTML documents.

The NOSCRIPTelement
<IELEMENT - - (%block)>

Start tag:required, End tag:required

ThelNOSCRIPTelement allows authors to provide alternate content when a script is not executed. The
content of NOSCRIPTelement should only rendered by a script-aware user agent in the following cases:

® The user agent is configured not to evaluate scripts.
e The user agent doesn’t support a scripting language invokef$GREP T element earlier in the
document.

User agents that do not support client-side scripts must render this element’s contents.

In the following example, a user agent that executgS@RIPT| will include some dynamically created
data in the document. If the user agent doesn’t support scripts, the user may still retrieve the data through
a link.

<SCRIPT type="text/tc|">
...some Tcl script to insert data...
</SCRIPT>
<NOSCRIPT>
<P>To access the data, click here.
</NOSCRIPT>

Commenting out scripts

User agents that don’t recognize [B€RIPT] element will likely render that element’s contents as text.
Some scripting engines, including those for languages JavaScript, VBScript, and Tcl allow the script
statements to be enclosed in an SGML comment. User agents that don’t recod@2BHRd element

will thus ignore the comment while smart scripting engines will understand that the script in comments
should be executed.

Another solution to the problem is to keep scripts in external documents and refer to themisvH the
attribute.

187

Commenting scripts in JavaScript

The JavaScript engine allows the string "<!--" to occur at the start of a SCRIPT element, and ignores
further characters until the end of the line. JavaScript interprets "//" as starting a comment extending to the
end of the current line. This is needed to hide the string "-->" from the JavaScript parser.

<SCRIPT type="text/javascript">
<l-- to hide script contents from old browsers
function square(i) {
document.write("The call passed ", i ," to the function.","
")
returni*i

}

document.write("The function returned ",square(5),".")
/I end hiding contents from old browsers -->
</SCRIPT>

Commenting scripts in VBScript
In VBScript, a single quote character causes the rest of the current line to be treated as a comment. It can
therefore be used to hide the string "-->" from VBScript, for instance:

<SCRIPT type="text/vbscript">
<l--

Sub foo()

End Sub
V>
</SCRIPT>

Commenting scripts in TCL
In Tcl, the "#" character comments out the rest of the line:

<SCRIPT type="text/tcl">
<!l-- to hide script contents from old browsers
proc square {i} {
document write "The call passed $i to the function.
"
return [expr $i * $i]
}
document write "The function returned [square 5]."
end hiding contents from old browsers -->
</SCRIPT>

Note: Some browsers close comments on the first ">" character, so to hide script content from such
browsers, you can transpose operands for relational and shift operators (e.g., use "y < X" rather than "x >
y") or use scripting language-dependent escapes for ">".

188

SGML reference information for HTML

Contents

1. |Document Validatign
2. [Sample SGML catalpg

The following sections contain the formal SGML definition of HTML 4.0, including the SGML
and te Document Type Definition (DTD), as well[as a sample SGML Latalog.

Document Validation

Many authors rely on a limited set of browsers to check on the documents they produce, assuming that if
the browsers can render their documents they are valid. Unfortunately, this is a very ineffective means of
verifying a document’s validity precisely because browsers are designed to cope with invalid documents
by rendering them as well as they can to avoid frustrating users.

The following sample SGML catalog can be used with an SGML parser, such as nsgmls, to verify that
HTML documents conform to the HTML 4.0 DTD. It assumes that the DTD has been saved as the file
"HTML4.dtd" and that the entities are in the files "HTMLIlatl.ent", "HTMLsymbol.ent" and
"HTMLspecial.ent". See your validation tool documentation for further details.

Beware that such validation, although useful and highly recommended, does not guarantee that a
document fully conforms to the HTML 4.0 specification. This is because an SGML parser relies solely on
the given SGML DTD which does not express all aspects of a valid HTML 4.0 document. Specifically, an
SGML parser ensures that the syntax, the structure, the list of elements and their attributes are valid. But
for instance, it cannot catch errors such as settingitite attribute of afiMGelement to an invalid

value (i.e., "foo", "12.5", or "25%"). Although the specification restricts the value for this attribute to an
"integer representing a length in pixels", the DTD only defines it fo be CDATA, which actually allows any
value. Only a specialized program could capture the complete specification of HTML 4.0.

Nevertheless, this type of validation is still highly recommended since it permits the detection of a large
set of errors that make documents invalid.

Sample SGML catalog

PUBLIC "-//W3C//DTD HTML 4.0 Draft/EN" HTML4.dtd

PUBLIC "-//W3C//DTD HTML 4.0 Final//EN" HTML4.dtd

PUBLIC "-//W3C//DTD HTML 4.0//EN" HTMLA4.dtd

PUBLIC "-//W3C//ENTITIES Latin1//EN//HTML" ISOlatl.ent
PUBLIC "-//W3C//ENTITIES Special//EN//HTML" HTMLmisc.ent
PUBLIC "-//W3C//ENTITIES Symbols//EN//HTML" HTMLsym.ent

189

SGML Declaration

Contents

1. [The Document Character [Set

1. |Data transfer
2. |The SGML Declaratipn

The Document Character Set

The HTML 4.0 document character set, in the SGML sense, is the Universal Character Set (UCS) of
[1SO10646]. Currently, this is code-by-code identical with the [UNICQDE] standard.

Data transfer

When HTML text is transmitted directly in UCS-2 (charset="UNICODE-1-1"), one must address the
guestion of byte order: does the high-order byte of each two-byte character come first or second? This
specification recommends that the UCS-2 be transmitted in big-endian byte order (high order byte first),
which corresponds both to the established network byte order for two-byte quantities and to the Unicode
(JUNICODE]) recommendation for serialized text data. Furthermore, to maximize chances of proper
interpretation, it is recommended that documents transmitted as UCS-2 always begin with a
ZERO-WIDTH NON-BREAKING SPACE character (hexadecimal FEFF) which, when byte-reversed
becomes number FFFE, a character guaranteed to be never assigned. Thus, a user-agent receiving an
FFFE as the first octets of a text would know that bytes have to be reversed for the remainder of the text.

The UTF-1 transformation format of [ISO10646] (registered by IANA as 1SO-10646-UTF-1), should not
be used.

The SGML Declaration

<ISGML "ISO 8879:1986"
SGML Declaration for HyperText Markup Language version 4.0

With support for Unicode UCS-4 and increased limits
for tag and literal lengths etc.

CHARSET
BASESET "ISO Registration Number 177//CHARSET
ISO/IEC 10646-1:1993 UCS-4 with
implementation level 3/ESC 2/5 2/15 4/6"
DESCSET 0 9 UNUSED
92 9
11 2 UNUSED
131 13
14 18 UNUSED
32 95 32
1271 UNUSED

190

128 32 UNUSED
160 2147483486 160

In 1ISO 10646, the positions with hexadecimal

values 0000D800 - 0000DFFF, used in the UTF-16
encoding of UCS-4, are reserved, as well as the last
two code values in each plane of UCS-4, i.e. all

values of the hexadecimal form xxxxFFFE or xxxxFFFF.
These code values or the corresponding humeric
character references must not be included when
generating a new HTML document, and they should be
ignored if encountered when processing a HTML
document.

CAPACITY SGMLREF
TOTALCAP 150000
GRPCAP 150000

ENTCAP 150000

SCOPE DOCUMENT
SYNTAX
SHUNCHAR CONTROLS 012345678910111213141516
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 127
BASESET "ISO 646IRV:1991//CHARSET
International Reference Version
(IRV)//[ESC 2/8 4/2"
DESCSET 01280

FUNCTION
RE 13
RS 10
SPACE 32

TAB SEPCHAR 9

NAMING LCNMSTRT ™
UCNMSTRT ™
LCNMCHAR ".-" -- ?include "~/_" for URLs? --
UCNMCHAR ".-"
NAMECASE GENERAL YES

ENTITY NO

DELIM GENERAL SGMLREF
SHORTREF SGMLREF

NAMES SGMLREF

QUANTITY SGMLREF
ATTSPLEN 65536 -- These are the largest values --
LITLEN 65536 -- permitted in the declaration --
NAMELEN 65536 -- Avoid fixed limits in actual --
PILEN 65536 --implementations of HTML UA’s --
TAGLVL 100
TAGLEN 65536
GRPGTCNT 150
GRPCNT 64

FEATURES

MINIMIZE
DATATAG NO

191

OMITTAG YES
RANK NO
SHORTTAG YES
LINK

SIMPLE NO
IMPLICIT NO
EXPLICIT NO
OTHER
CONCUR NO
SUBDOC NO
FORMAL YES

192

Document Type Definition

<l--
This is an EXPERIMENTAL version of HTML 4.0 that
extends HTML 3.2 to add support for proposals under review by
the W3C HTML Working Group, including style sheets, scripting,
the object tag, internationalization and some extensions to
forms for improved accessibility by people with disabilities.
The frame tags have been added in acknowledgement of their
widespread deployment.

Draft: $Date: 1997/07/08 10:47:55 $

Authors:
Dave Raggett <dsr@w3.org>
Arnaud Le Hors <lehors@w3.org>

This is work in progress, subject to change at any time.

It does not imply endorsement by, or the consensus of,
either W3C or members of the HTML working group. Further
information about HTML 4.0 is available at:

http://iwvww.w3.org/TR/WD-html40-970708/.
-->

<IENTITY % HTML.Version "http://www.w3.0org/TR/WD-html40-970708/HTML4.dtd"
-- Typical usage:

<IDOCTYPE HTML SYSTEM "http://www.w3.0rg/TR/WD-html40-970708/HTML4.dtd">
<html>

</html>

>

<l-- Imported Names

<IENTITY % ContentType "CDATA"

-- an Internet media type, as per [RFC2045] C——
>

<IENTITY % URL "CDATA"
-- a Uniform Resource Locator,

see [RFC1808] and [RFC173B |
->

<IENTITY % Script "CDATA" -- scriptlet -->
<!-- Parameter Entities -->

<IENTITY % head.misc "SCRIPT|STYLE|METAILINK" -- repeatable head elements -->

<IENTITY % heading "H1|{Z[HBREREERE][]

<IENTITY % list "UL | OL | DIR | MENU">

<IENTITY % preformatted "PRE">

193

<! Character mnemonic entities

<IENTITY % HTMLIatl PUBLIC
"-/IW3C//[ENTITIES Latinl//EN//HTML">
%HTMLIatl;

<IENTITY % HTMLsymbol PUBLIC
"-/IW3C//[ENTITIES Symbols//EN//HTML">
%HTMLsymbol;

<IENTITY % HTMLspecial PUBLIC
"-/IW3C//[ENTITIES Special/EN//HTML">

[%HTMLspecial; |

<! Generic Attributes

<IENTITY % coreattrs
] ID #IMPLIED -- document-wide unique id --
class_] CDATA #IMPLIED -- space separated list of classes --
style CDATA #IMPLIED -- associated style info --
tiffe CDATA #IMPLIED -- advisory title/amplification --"
>

<IENTITY % i18n

"ldgng_|] NAME #IMPLIED -- [RFC1766] langhiage value -}
dir _] (itrrtl) #IMPLIED -- direction for weak/neutral text --"
>

<IENTITY % events

nclick 9YoScript_#IMPLJED -- the pointing device button was clicked --
hdbIclick %Strit_ #IMPLIED -- the pointing device button was double clicked --
hmousedown %Fcript_ #MPLIED -- the pointing device button was pressed down --
hmouseup PoSEript #IMPLIED -- the pointing device button was released --
hmouseover %9cript_ #INPLIED -- the pointing device was moved over --
hmousemove YoBcript #MPLIED -- the pointing device was moved --
hmouseout_%S¢ript_ #IMPLIED -- the pointing device was moved away --
hkeypress %%pcfipt_ #AIMPLIED -- a key was pressed and released --

hkeydown poSdript_ #IMPLIED -- a key was pressed down --

hkeyup | %Script_#IMHPLIED -- a key was released --"

VOOOOOoOOoOOOo O

<IENTITY % attrs "%coreatirs %i18n Ydevents|'t]

<IENTITY % align "align (left|center|right|justify) #/MPLIED"

-- default is left for Itr paragraphs, right for rtl --
>

<! Text Markup

<IENTITY % font
TN §] U [§ | STRIKE] BIE[SMALL"E] | |

<IENTITY % phrase "EM [SITRANG [DEN |[CODE |[__]
SAMP | KBD [VAR | C[TEJACRONYM>_] | |

194

<IENTITY % special
"A| IMG | APPLET | OBJECT | FONT | BASEFONT | BR | SCRIPT |
MAP | Q | SUB | SUP | SPAN | BDO | IFRAME">
<IENTITY % formctrl "INPUT | SELECT | TEXTAREA | LABEL | BUTTON">

<!-- %inline covdrs inline or "text-level" elements -->

<IENTITY % inline "#PCDATA | %font |[%phrase |[%special]| %formctr™ | |

<IELEMENT «{sfont[%phrase, -]+%inlinef>____|
<IATTLIST *%font|%pHrase, |

-- %coreattrs, %i18n, %evnts -] [] |

>

<l-- subscripts and superscripts -->

<IELEMENT «§UBJ$UP]- - *%inlife> |
<IATTLIST *SUB|SUP,

-- Y%coreattrs, %i18n, Y%evEents -- 1 | 1]

>

<IELEMENT - - «%irfline* -] generic language/style container -->
<IATTLIST SPAN

-- Y%coreattrs, %i18n, %evEents -- 1 | 1]

>

<l-- INS/DEL are handled by inclusion on BODY -->

<IELEMENT «INSIDEL,] - *%inling,* - insefted/deleted text -->
<IATTLIST «INS|DEL,

%atirs__] -- %coreattrs, %i18n, %evénts --] 1 11

clte__] %URL [#MPLIED --info on reason for change --
datetime__GDATA #IMPLIED -- when changed: ISO date format --
>

<IELEMENT - - «%irfline* __J- 118N BiDi over-ride -->
<IATTLIST BDO

lgng_] NAME #IMPLIED -- [RFC1766] langliage value -]
dir] eltr|rtl, #REQUIRED -- directionality --

>

<IELEMENT - O EMPTY>

<IATTLIST BASEFONT
size CDATA #REQUIRED -- base font size for FONT elements --
c CDATA #IMPLIED -- #RRGGBB in hex, e.g. red: "#FF0000" --
fdce | CDATA #IMPLIED -- comma separated list of font names --
>

<IELEMENT - - «%irfline,* _-- Tocal change to font -->
<IATTLIST FONT
slze_] CDATA #MPLIED --[+]nn e.g. size="+1", size=4 --
cblor | CDATA #IMPLIED -- #RRGGBB in hex, e.g. red: "#FF0000" --
fice | CDATA #IMPLIED -- comma separated list of font names --
>

<IELEMENT BR- O EMPTY -- forced line break -->
<IATTLIST BR
9fcoreattrs; | -- id, class, style, title --

]

>

<!

HTML content models

<l--

HTML has two basic content models:

%inlife_chargcter level elements and text strings
%blogk___Dblokk-like elements e.g. paragraphs and lists

-->

<IENTITY % blocklevel

<!

"P | %heafling [%list]| %prefornjatted [DL [DIV] CENTER |
NOSCRIPT | NOFRAMES | BLOCKQUOTE | FORM | ISINDEX | HR |
TABLE | FIELDSET | ADDRESS">

Document Body

<IENTITY % block "(%blocklevel T %inlink)*"{]

<IENTITY % Color "CDATA" -- a color using sRGB: #RRGGBB as Hex values -->

<l-- There are also 16 widely known color names with their sSRGB values:

Black =#000000 Green =#008000
Silver = #C0OC0OCO Lime =#00FF00
Gray =#808080 Olive =#808000
White =#FFFFFF Yellow = #FFFF00
Maroon = #800000 Navy =#000080
Red =#FF0000 Blue =#0000FF
Purple = #800080 Teal =#008080
Fuchsia= #FFOOFF Aqua =#00FFFF

-->

<IENTITY % bodycolors "

b

gcolor %Color #IMPLIED

text %Cdlor #MPLIED

link %Cdlor #AMPLIED

vlink %C

al

or_#
or #

PLIED
PLIED

Iy
Iy

]

link %C

"

<IELEMENT 0 O (%Block) -(BODY) +(INS|DEL)>
<IATTLIST BODY

-- %coreattrs, %i18n, %evénts -] |] |
bpckground %URL | #IMPLIED -- texture tile for document background --
9fbodycolors; -- bgcolor, text, link, vlink, alink --

opload | %Scripf_#IMPLIED -- the document has been loaded --
opunload_%6Scripi__#MBLIED -- the document has been removed --

>

<IELEMENT [EDDRESS - - ((%iine)) [PY3
<IATTLIST ADDRESS

-- Y%coreattrs, %il18n, %evénis -] [| |

>

<IELEMENT DIV} - %blpock>__]

196

<IATTLIST DIV

%attrs; -- %coreattrs, %il18n, %events -- | |
%align, -- align, text alignment --
>

<!-- CENTER is a shorthand for DIV with ALIGN=CENTER -->
<IELEMENT CENTER - - %plock> |

<IATTLIST CENTER
-- Y%coreattrs, %il18n, %evénis -] [
>

<! The Anchor Element

<IENTITY % Shape "(rect|circle|poly|default)'>
<IENTITY % Coords "CDATA" -- comma separated list of numbers -->

<IELEMENT B]- - (%in[ine)* -(A)%
<IATTLIST A

%attrs; -- %coreattrs, %i18n, %evénts -- | |

charset __¢DATA #IMPLIED -- char encoding of linked resource --
name CDATA #IMPLIED -- named link end --

%URL [_#IMPLIED -- URL for linked resource --
tqu_t__pDATA #IMPLIED -- where to render resource --
CDATA #IMPLIED -- forward link types --

Y CDATA #IMPLIED -- reverse link types --

Ccesskey QDATA #IMPLIED -- accessibility key character --
bape] %Shage __rec] -- for use with OBJECT SHAPES --
pords__] %Coorfls_#IMALIED -- for use with OBJECT SHAPES --
dbindex NUMBER #IMPLIED -- position in tabbing order --

e

oml—x—x

V &t

<! Client-side image maps

<l-- These can be placed in the same document or grouped in a
separate document although this isn't yet widely supported -->

<IELEMENT - - (AREA)*>
<IATTLIST MAP

--id, class, style, title --
name CDATA #IMPLIED
>

<IELEMENT BREA - O EMPTY>
<IATTLIST AREA

shape | %Shafe rect] - controls interpretation of coords -
cpords__] %Coorfis #IMPI_IED -- comma separated list of values --
hiel] %URL [#MPLIED -- this region acts as hypertext link --
tyrget__|CDATA #IMPLIED -- where to render linked resource --

re (nohref) #IMPLIED -- this region has no action --

CDATA #REQUIRED -- description for text only browsers --
tdbindex NUMBER #IMPLIED -- position in tabbing order --
>

<l The LINK Element

<l--

Relationship values can be used in principle:

197

a) for document specific toolbars/menus when used

with the LINK element in document head e.g.
start, contents, previous, next, index, end, help

b) to link to a separate style sheet (rel=stylesheet)

c) to make a link to a script (rel=script)

d) by stylesheets to control how collections of
html nodes are rendered into printed documents

e) to make a link to a printable version of this document
e.g. a postscript or pdf version (rel=print)

>

<IELEMENT [INK} O EMPTY>
<IATTLIST LINK

-- %coreattrs, %i18n, %evénis --] |] |

hief] %URL [#MPLIED -- URL for linked resource --

rel CDATA #IMPLIED -- forward link types --

rev CDATA #IMPLIED -- reverse link types --

type _PoColteniType #IMPLIED -- advisory Internet content type --
niedia_| CDATA #IMPLIED -- for rendering on these media --
tdrget__|ICDATA #IMPLIED -- where to render linked resource --
>

<! Images

<IENTITY % Length "CDATA" -- nn for pixels or nn% for percentage length -->
<IENTITY % Pixels "CDATA" -- integer representing length in pixels -->

<IENTITY % IAlign "(top|middle|bottom|left|right)" -- center? -->

<!l-- To avoid problems with text-only UAs you need to provide
a description with ALT, and avoid server-side image maps -->

<IELEMENT [MG]- O EMPTY -- Embedded image -->
<IATTLIST IMG
-- %coreattrs, %i18n, %evénis --] |] |

sfc %URL [#REQUIRED -- URL of image to embed --

t CDATA #IMPLIED -- description for text only browsers --
ign__| %lAlign [FIMPLIED -- vertical or horizontal alignment --
height %Pixeld MPLJED -- suggested height in pixels --
width %Pixelsd_#IMPLIED -- suggested width in pixels --
bprder | %Pixel§ _#IMPLIED -- suggested link border width --
hspace %Pixe[s__#IMPLIED -- suggested horizontal gutter --
vspace %Pixe[s__#IMPLIED -- suggested vertical gutter --
uemap | %URIC___#IMPLIED -- use client-side image map --
iqmap_| (ismap) #IMPLIED -- use server-side image map --

>

I

<l-- USEMAP points to a MAP element which may be in this document
or an external document, although the latter is not widely supported -->

<! OBJECT tag

<l-- PARAM elements should precede other content. SGML mixed content model
technicality precludes specifying this formally ...
>

<IENTITY % OAlign "(texttop|middle|textmiddle|baseline|
textbottom|left|center|right)">

198

<IELEMENT - - (PARAM | %bl¢cky™>]

<IATTLIST OBJECT

%atirs__] -- %coreattrs, %i18n, %evénts --] 1 11

declare___{declare) #IMPLIED -- declare but don’t instantiate flag --

classid __%URL |__#IMPLIED -- identifies an implementation --

cp aeBase P/oURI__#IMPLIED -- some systems need an additional URL --
d %URL [#FIMPLIED -- reference to object’s data --

i |

ty %Corfient] Eﬁe #IMPLIED -- Internet content type for data --
cpbdetype %tbntentType ZIMPLIED -- Internet content type for code --

[andby [CDATA #IMPLIED -- message to show while loading --
igh] %O0Aligf_#IMPLJED -- positioning inside document --
height ~ %Length_ #IMPLIED -- suggested height --

width %Llengt MPIIED -- suggested width --

bprder]| %Lengfh_#MPLIED -- suggested link border width --
hspace %lendth_#MRLIED -- suggested horizontal gutter --
vspace %lendth_#IMHALIED -- suggested vertical gutter --
ugemap | %URIL___#IMPLIED -- reference to image map --
shapes] (shapes) #IMPLIED -- object has shaped hypertext links --
name %URL[__#IMPLIED -- submit as part of form --

tdbindex NUMBER #IMPLIED -- position in tabbing order --
>

i

4

<IELEMENT PARANI - O EMPTY -- named property value -->
<IATTLIST PARAM

neme | CDATA #REQUIRED -- property name --
vilue | CDATA #IMPLIED -- property value --
vhluetype (DATA|REF|OBJECT) DATA -- How to interpret value --
tfpe | CDATA #IMPLIED -- Internet media type --
>
<! Java APPLET tag
<l--

One of code or object attributes must be present.
Place PARAM elements before other content.

>

<IELEMENT - - (PARAM | %ininey>__]

<IATTLIST APPLET

pdebase PoURL #IMPLIED -- optional base URL for applet --
fchive _¢CDATA #IMPLIED -- comma separated archive list --
pde | CDATA #IMPLIED -- applet class file --

plect__|CDATA #IMPLIED -- serialized applet file --

i | CDATA #IMPLIED -- description for text only browsers --
Eme] CDATA #IMPLIED -- allows applets to find each other --

%Pixeld _#REQUIRED -- suggested width in pixels --

o 0 D 0

>

height __]%Pixel{ _#REQUIRED -- suggested height in pixels --
align | %lAlign [AIMPLIED -- vertical or horizontal alignment --
hspace %Pixe[s__#IMPLIED -- suggested horizontal gutter --
vspace %Pixel[s_#IMPLIED -- suggested vertical gutter --
>

<l Horizontal Rule

<IELEMENT - O EMPTY>

<IATTLIST HR

9fcoreattrs; | -- id, class, style, title --
%events;]

199

align (left|right|center) #IMPLIED
npshade | (noshade) #IMPLIED
[Ze] %Pixels [FAMPLIED
widih__| %Length_#IMPIIED

>

n

<! Paragraphs

<IELEMENT - O (%ifliney’>]
<IATTLIST P

%attrs; -- %coreattrs, %il8n, %events -- | |

O:Elqn; -- align, text alignment --
>

<l Headings

<l--
There are six levels of headings from H1 (the most important)
to H6 (the least important).

>

<IELEMENT (feheading) } - (%inline*>_____|
<IATTLIST (%peading)

%attrs; -- %coreattrs, %i18n, %evénts -- | |

%align; -- align, text alignment --
>

<! Preformatted Text

<l-- excludes markup for images and changes in font size -->
<IENTITY % pre.exclusion "IMG|BIG|SMALL|SUB|SUP|FONT">

<IELEMENT PRE - - (%infine)* -(%}pre.exglusion)> |
<IATTLIST PRE

-- %coreattrs, %i18n, %evénts -] |

NUMBER #IMPLIED

>

<! Inline Quotes

<IELEMENT [- - (%infiney>__]
<IATTLIST Q

%attrs; | -- %coreattrs, %i18n, %events -- | |

cfie_] %URL [HIMPLIED -- URL for source document or msg --
>

>

<! Block-like Quotes

<IELEMENT BLOCKQUOTE - -
<IATTLIST BLOCKQUOTE

-- %coreattrs, %i18n, %evénis --] |

cite %URL | #IMPLIED -- URL for source document or msg --
>

<! Lists

>

<!-- definition lists - DT for term, DD for its definition -->

200

<IELEMENT PLJ- - (DT|DD)+>
<IATTLIST DL

%pattrs; -- %coreattrs, %i18n, %evénts --

>

<IELEMENT PT]- O (%infiney>]
<IELEMENT PO - O %lflock>]
<IATTLIST (DT|DD)

cpmpact__[(compact) #IMPLIED -- reduced interitem spacing --

-- %coreattrs, %i18n, %events -- |

>
<l-- Ordered lists (OL) Numbering style

1 arablic numbers 1, 2,3, ...

a lower alpha a,b,c, ..
A upper alpha A B, C, ..
i lower roman i, i, i, ...

| upper roman I, 1,0,

The style is applied to the sequence number which by default
is reset to 1 for the first list item in an ordered list.

This can't be expressed directly in SGML due to case folding.
>

<IENTITY % OLStyle "CDATA" -- constrained to: [1]|alAli|l] -->

<IELEMENT PL- - (LlI)+>
<IATTLIST OL -- ordered lists --

(=]

patirs; | -- %coreattrs, %i18n, %evénts --

—

ype | %OLSty[e_#AIMPLIED -- numbering style --

art___INUMBER #IMPLIED -- starting sequence number --

vV 0 o

<l-- Unordered Lists (UL) bullet styles -->
<IENTITY % ULStyle "disc|square]circle">

<IELEMENT OOJ- - (LI)+>

pmpact__](compact) #IMPLIED -- reduced interitem spacing --

<IATTLIST UL -- unordered lists --
oatirs; | -- %coreattrs, %i18n, %events --

type_1 (%ULStylE)EIMPLIED -- bullet style --

>

<!ELEMENT (PIRIYENU] - - (LI)+ -(%blocklefel>]

<IATTLIST DIR

cpmpact__[(compact) #IMPLIED -- reduced interitem spacing --

-- %coreattrs, %i18n, %evénts -

cbmpact_](compact) #IMPLIED

>
<IATTLIST MENU

%pattrs; -- %coreattrs, %i18n, %evénts --

cpmpact |(compact) #IMPLIED
>

201

<l-- <DIR> Directory list -->

<l-- <DIR COMPACT> Compact list style -->
<l-- <MENU> Menu list -->

<l-- <MENU COMPACT> Compact list style -->

<l-- The type attribute can be used to change the bullet style
in unordered lists and the numbering style in ordered lists -->

<IENTITY % LIStyle "CDATA" -- constrained to: "(%ULStyle|%OLStyle)" -->] [

<IELEMENT LT] O %b[ock -- lit item -->
<IATTLIST LI

oatirs; | -- %coreattrs, %i18n, %events -- | | | |

type 1 %LIStyld FAMPLIED -- list item style --
plue__ | NUMBER #IMPLIED -- reset sequence number --

<

>

<! Forms

<IELEMENT EORMN - - %block -(HORM)>
<IATTLIST FORM

opaitrs; | -- %coreattrs, %i18n, %evénts —-] | |
affion |%URL [_#HEQUIRED -- server-side form handler --

njethod | (GET|POST) GET -- HTTP method used to submit the form --
ehctype _ PoConfentType; "applicalion/x-www-form-urlencoded"

ophsubmit %Script #IMPLIED -- the form was submitted --

opreset__ ¥%Scrigi_ #IMPLUIED -- the form was reset --

—+

él'rget [CDATA #IMPLIED -- where to render result --
A #IMPLIED -- list of supported charsets --

<!-- Each label must not contain more than ONE field -->
<IELEMENT [ABEL]- - (%in[ine)* -(CABEL) -- field label text -->
<IATTLIST LABEL

-- %coreattrs, %i18n, Y%evénts —] [] [
for IDREF #IMPLIED -- matches field ID value --

djsa (disabled) #IMPLIED -- control is unavailable in this context --
d@DATA #IMPLIED -- accessibility key character --

ohfocus PeScrigt_#IMPLIED -- the element got the focus --
opblur__1%Scrip{_#IMPLIED -- the element lost the focus --

>

<IENTITY % InputType
"(TEXT | PASSWORD | CHECKBOX |
RADIO | SUBMIT | RESET |
FILE | HIDDEN | IMAGE | BUTTON)"
>

<l-- HSPACE and VSPACE missing due to lack of widespread support -->
<IELEMENT |NPUT|- O EMPTY>
<IATTLIST INPUT

9pattrs; | -- %coreattrs, %i18n, %evénts -- | | | |

tj €| %inpu{Type_TEXT] -- what kind of widget is needed --

Bme] CDATA #IMPLIED -- required for all but submit & reset --
Blue] CDATA #IMPLIED -- required for radio and checkboxes --
becked (khecked) #IMPLIED -- for radio buttons and check boxes --
[sabled (difabled) #IMPLIED -- control is unavailable in this context --

Q_AO<3

202

—

¢adonly (rdadonly) #IMPLIED -- for text and passwd --

slze_] CDATA #IMPLIED -- specific to each type of field --
jaxlengtih NUMBER #IMPLIED -- max chars for text fields --

C %URL [HFMPLIED -- for fields with images --

t CDATA #IMPLIED -- description for text only browsers --
emap | %URL FIMPLIED -- use client-side image map --
igh] %lAlign [#IMPLIED -- vertical or horizontal alignment --
ibindex NUMBER #IMPLIED -- position in tabbing order --
hfocus PoScrii #IMPLIED -- the element got the focus --
hblur__|%Scrip{_#IMPLIED -- the element lost the focus --
hselect %Scrigt #IMPIIED -- some text was selected --
hchange PoSciipt_#IMPLIED -- the element value was changed --
Fcept]CDATA #IMPLIED - list of MIME types for file upload --

7]

‘@g‘c

Vo oo o o

<IELEMENT EELECT - - (OPTION+)>
<IATTLIST SELECT

O/EattrS' | -- %coreattrs, %il18n, %events -- | |

ngpme CDATA #REQUIRED -- field name --

slze NUMBER #IMPLIED -- rows visible --

njultiple_(multiple) #IMPLIED -- default is single selection --

dfsabled (dikabled) #IMPLIED -- control is unavailable in this context --
4bindex NUMBER #IMPLIED -- position in tabbing order --

hfocus PoScrii #IMPLIED -- the element got the focus --
hblur__|%Scrip{_#IMPLIED -- the element lost the focus --

hselect %Script #IMPIIED -- some text was selected --

hchange P6Sciipt_ ZIMPLIED -- the element value was changed --

—+

VO OoOoOo

<IELEMENT - O (#PCDATA)*>
<IATTLIST OPTION

|

opattrs; -- %coreattrs, %i18n, %evénts -- | |

sElected (sdlected) #IMPLIED

d[Sable jsabled (dikabled) #IMPLIED -- control is unavailable in this context --
VR

>

i

Blue__| CDATA #IMPLIED -- defaults to element content --

<l-- Multi-line text input field. -->
<IELEMENT [EXTARER - - (#PCDATA)*>
<IATTLIST TEXTAREA

ofattrs; -- %coreattrs, %i18n, %events -- | |

i

Y
3
(]

n CDATA #REQUIRED

r NUMBER #REQUIRED

cp NUMBER #REQUIRED

d| abled (dikabled) #IMPLIED -- control is unavailable in this context --
r

éadonli (rdadonly) #IMPLIED
tdbindex_NUMBER #IMPLIED -- position in tabbing order --

ofifocus__psScrifi_#MPLIED -- the element got the focus --
ohblur__1%Scrip{”_#MPLIED -- the element lost the focus --
ohselect__%Scrift_#IMPIIED -- some text was selected --
ohchange [%Sciipt #IMPLIED -- the element value was changed --
>

=
@

j|

IHI

<l--
#PCDATA is to solve the mixed content problem,
per specification only whitespace is allowed there!

\

203

<IELEMENT EIELDSET]- - (#PCDATA,LEGEND,%block)>]
<IATTLIST FIELDSET

-- Y%coreattrs, %il8n, Y%eveénts -- 1 | 1]

>

<IELEMENT LEGEND - - (%ifiline))+> |
<IENTITY % LAlign "(top|bottom|left|right)">

<IATTLIST LEGEND -- fieldset legend --
-- %coreattrs, %i18n, %evénts -] |] |

align__| %LAlign[_#MPLIEp -- relative to fieldset --

afcesskey GQDATA #IMPLIED -- accessibility key character --
>

<IELEMENT BUTTON - -

(%inline | %blgcklgvel)* -(A | %forgmctrl | FORM | ISINDEX|| FIELDSET)>
<IATTLIST BUTTON

-- Y%coreattrs, %il8n, Y%eveénts -- 1 | 1]

neme] CDATA #IMPLIED -- for scripting/forms as submit button --
vhlue CDATA #IMPLIED -- gets passed to server when submitted --
ype_[submit|reset) #IMPLIED -- for use as form submit/reset button --
[sabled (djsabled) #IMPLIED -- control is unavailable in this context --
4bindex__NUMBER #IMPLIED -- position in tabbing order --

=+ O ~

offocus__PAScrift_ZIMPLIED -- the element got the focus --
opblur__1%Scrip{_#IMPLIED -- the element lost the focus --
>

<! Tables

<l |[ETF HTML table standard, see [RFC1942][=>_____|

<l--

The BORDER attribute sets the thickness of the frame around the
table. The default units are screen pixels.

The FRAME attribute specifies which parts of the frame around
the table should be rendered. The values are not the same as
CALS to avoid a name clash with the VALIGN attribute.

The value "border" is included for backwards compatibility with
<TABLE BORDER> which yields frame=border and border=implied
For <TABLE BORDER=1> you get border=1 and frame=implied. In this
case, it is appropriate to treat this as frame=border for backwards
compatibility with deployed browsers.

>

<IENTITY % TFrame "(void|above|below|hsides|lhs|rhs|vsides|box|border)">

<l--
The RULES attribute defines which rules to draw between cells:

If RULES is absent then assume:

"none" if BORDER is absent or BORDER=0 otherwise "all"
>

<IENTITY % TRules "(none | groups | rows | cols | all)">

204

<l-- horizontal placement of table relative to document -->
<IENTITY % TAlign "(left|center|right)">

<l-- horizontal alignment attributes for cell contents -->
<IENTITY % cellhalign

"align (lefl|center|right]justify|char) #IMPLIED
cfar__] CDATA #IMPLIED -- alignment char, e.g. char=":" --
cHaroff _CIPATA #IMPLIED -- offset for alignment char --"
>

<l-- vertical alignment attributes for cell contents -->
<IENTITY % cellvalign

"vdlign (top|middie|bottom|baseline) #IMPLIED"
>

<IELEMENT - - (CAPTION?, (COL*|COLGROUP*), THEAD?, TFOOT?, TBODY+)>
<IELEMENT - - (%ifing})+>__]

<IELEMENT [THEAD - O (TR+)>

<IELEMENT [[EOOT - O (TR+)>

<IELEMENT O O (TR+)>

<IELEMENT COLGROUP - O (col*)>

<IELEMENT Ol - O EMPTY>

<IELEMENT [TR]- O (TH|TD)+>

<IELEMENT (THITDY- O %blpck>]

<IATTLIST TABLE -- table element --
9pattrs; | -- %coreattrs, %i18n, %evénts -- | | | |

align | %TAlign[_#IMPLIED -- table position relative to window --
bpcolor —_%6Colof _#MRBLIED -- background color for cells --

CDATA #IMPLIED -- table width relative to window --

pbis NUMBER #IMPLIED -- used for immediate display mode --
bprder |CDATA #IMPLIED -- controls frame width around table --
flame | %TFrae; #AIMPIIED -- which parts of table frame to include --
rliles %TRule§,_#MPLIED -- rulings between rows and cols --
cEllspacing CDATA #IMPLIED -- spacing between cells --

cEllpadding CDATA #IMPLIED -- spacing within cells --

>

(@]

<IENTITY % CAlign "(top|bottom|left|right)">

<IATTLIST CAPTION -- table caption --
9pattrs; | -- %coreattrs, %i18n, %evénts -- | | | |
afign | %CAlign,_#IMPLIHD -- relative to table --
>

<l--

COLGROUP groups a set of COL elements. It allows you to group
several columns together.

>
<IATTLIST COLGROUP
ofattrs; -- %coreattrs, %i18n, %evénts -- | | | |
span_ | NUMBER 1 -- default number of columns in group --
idth | CDATA #IMPLIED -- default width for enclosed COLs --
%cellhalign; -- horizontal alignment in cells --
ocellvalign; -- vertical alignment in cells --
>

205

<l--

COL elements define the alignment properties for cells in a given
column or spanned columns. The WIDTH attribute specifies the
width of the columns, e.g.

width=64 width in screen pixels
width=0.5* relative width of 0.5

>
<IATTLIST COL -- column groups and properties --
-- %coreattrs, %i18n, %evénts -] |
sban] NUMBER 1 -- number of columns spanned by group --
Idt CDATA #IMPLIED -- column width specification --
%cellhalign; -- horizontal alignment in cells --
9fcellvalign; | -- vertical alignment in cells --
>
<l--

Use THEAD to duplicate headers when breaking table
across page boundaries, or for static headers when
TBODY sections are rendered in scrolling panel.

Use TFOOQOT to duplicate footers when breaking table
across page boundaries, or for static footers when
TBODY sections are rendered in scrolling panel.

Use multiple TBODY sections when rules are needed
between groups of table rows.

>
<IATTLIST (THEAD|TBODY|TFOOT) --table section --
-- %coreattrs, %i18n, %evénts -] |
%cellhalign; -- horizontal alignment in cells --
o%cellvalign: -- vertical alignment in cells --
>
<IATTLIST TR -- table row --
opattrs; | -- %coreattrs, %i18n, %events -- | |
%cellhalign; -- horizontal alignment in cells --
opcellvalign; | -- vertical alignment in cells --
bfcolor _%Colof _#MRBLIED -- background color for row --
>
<IATTLIST (TH|TD) -- header or data cell --
opatirs; | -- %coreattrs, %i18n, %evénts -] [

akis CDATA #IMPLIED -- defaults to cell content --
Kes CDATA #IMPLIED -- list of axis names --
npwrap | (nowrap) #IMPLIED -- suppress word wrap --

bpcolor__$6Colof__#MRLIED -- cell background color --
rfwspan _|NUMBER 1 -- number of rows spanned by cell --
cblspan_ NUMBER 1 -- number of cols spanned by cell --
%cellhalign; | -- horizontal alignment in cells --
-- vertical alignment in cells --
>

<! Document Frames

<I[ELEMENT ERAMESET - - (FRAMESET|FRAME)+ & NOFRAMES?)>
<IATTLIST FRAMESET

206

-- absolute pixel values, percentages or relative scales. --
rgﬁws CDATA #IMPLIED -- if not given, default is 1 row --
plS CDATA #IMPLIED -- if not given, default is 1 column --

hload | %Scri #IMPUIED -- all the frames have been loaded --
hunload _ $%Script_ #IMALIED -- all the frames have been removed --

VO O O

<l-- reserved frame names start with "_" otherwise starts with letter -->
<IELEMENT FRAME - O EMPTY>

<IATTLIST FRAME

neme] CDATA #IMPLIED -- name of frame for targetting --
sfc_] %URL [#AMPLIED -- source of frame content --
flameborder (1[q) 1 -- request frame borders? --

jarginwidth %Pj{els_ #IMPLIED -- margin widths in pixels --
Jarginheight %PIKEls_#IMHLIED -- margin height in pixels --
presize__(horesize) #IMPLIED -- allow users to resize frames? --
Erolling (ves]no|auto) auto -- scrollbar or none --

>

<IELEMENT [FRAMH - - %Hlock>]
<IATTLIST IFRAME
name CDATA #IMPLIED -- name of frame for targetting --
sfc_] %URL [AIMPLIED -- source of frame content --
flameborder (114) 1 -- request frame borders? --
niarginwidth %P}{els_#IMPLIED -- margin widths in pixels --
arginheight %Pikels #IMBLIED -- margin height in pixels --
Crolling (ves]nolauto) auto - scrollbar or none --
igh] %lAlign [#IMPLIED -- vertical or horizontal alignment --
height__|%Length__#IMPLIED -- suggested height --
%Length_#IMPIIED -- suggested width --
>

w -5

o 0

<l--
The following is quite complicated because of the mixed
content model. However it's actually only meant to contain

either BODY or %bldck.]

>
<IELEMENT NOFRAMES - -
(#PCDATA,((BODY #PCDATA)

(((voblockleyel)|%font|%phidaske|%spd¢ial| %formqtrl),%eblock]))>

<! Document Head
<!-- %lfiead.misc deflned earlier on as "SCRIPT | STYLE | META | LINK" -->
<IENTITY % head.content "TITLE & ISINDEX? & BASE?">

<IELEMENT 0 O (%head.content) +(%head.misc)> |
<IATTLIST HEAD

opIE,_] - lang, dir -
pfofle 94URL [#NIPLIED -- named dictionary of meta info --
>

<IELEMENT - (#HPCDATA)* -(%headmisc)]
-- The TITLE element is not considered part of the flow of text.
It should be displayed, for example as the page header or
window title. Exactly one title is required per document.
-->

<IATTLIST TITLE %if8n>_]

207

>

<IELEMENT |SINDEX } O EMPTY>
<IATTLIST ISINDEX

9%coreatirs; | --id, class, style, title --
ofii8n;, | -- lang, dir --

CDATA #IMPLIED -- prompt message -->

<IELEMENT BASH - O EMPTY>

<IATTLIST BASE
hief] %URL [#REQUIRED
tdrget__|ICDATA #IMPLIED -- where to render linked resource --
>

<IELEMENT META - O EMPTY -- Generic Metainformation -->
<IATTLIST META
o%pil8n; | -- lang, dir, for use with content string --
hftp-equiv NAVE #IMPLIED -- HTTP response header name --
ngme | NAME #IMPLIED -- metainformation name --
chnieni_TDATA #REQUIRED -- associated information --
stheme | CDATA #IMPLIED -- select form of content --
>

<IELEMENT BTYLE]- - CDATA -- style info -->
<IATTLIST STYLE
-- lang, dir, for use with title --
tfpe | CDATA #REQUIRED -- Internet content type
for style language --
edia CDATA #IMPLIED -- designed for use with these media --
CDATA #IMPLIED -- advisory title --

]

fi

<IELEMENT BECRIPT]- - CDATA -- script statements -->
<IATTLIST SCRIPT
tfpe_| CDATA #IMPLIED -- Internet content type for
script language --
dnguageCDATA #IMPLIED -- predefined script language name --

[c] %URL [AIMPLIED -- URL for an external script --
>

7]

<IELEMENT NOSCRIPT - - (%b[ock)>]

<l Document Structure

<IENTITY % version "version CDATA #FIXED '%HTML.\Yersion; >

<IENTITY % html.content "HEAD, (FRAMESET|BODY)">

<IELEMENT O O (%html.content)> |
<IATTLIST HTML
-- lang, dir --

>

208

>

Named character entities

Contents

1. [Named entities for ISO 8859-1 charagters
1. [The list of charactdrs

2. [Named entities for symbols, mathematical symbols, and GreeK letters
1. |[The list of charactdrs

3. [Named entities for markup-significant and internationalization chatfacters
1. |The list of charactdrs

A character entity is an SGML construct that references a character of the document character set. The
document character set for HTML is the Universal Character Set (UCS) of [ISO10646]. This set is
character-by-character equivalent to Unicode 2.0 (([UNICODEY)).

This version of HTML supports several sets of named character entities:

e [ISO 8859-1 (Latin-I) charactérs In accordance with section[14 of [REG1866], the set of Latin-1
entities has been extended by this specification to cover the whole right part of ISO-8859-1 (all code
positions with the high-order bit set), including the already commonly used , © and
®. The names of the entities are taken from the appendices of $GML ([ISP8879]).

e |symbols, mathematical symbols, and Greek Igtters. These characters may be represented by glyphs in
the Adobe font "Symbol".

e |arkup-significant and internationalization charagters (e.g., for bidirectional text).

The following sections present the complete lists of named character entities. Although by convention,
[1SO10646] names are written with upper case letters, we have converted them to lower case in this
specification for reasons of readability.

Named entities for ISO 8859-1 characters

The named character entities in this section produce characters whose numeric equivalents should already
be supported by conforming HTML 2.0 user agents. Thus, the named character entity ÷ is a more
convenient form than ÷ for obtaining the division sign (=).

To support these named entities, user agents need only recognize the entity names and convert them to

characters that lie within the repertoirg of [ISO88591].

Character 65533 (FFFD hexadecimal) is the last valid character in UCS-2. 65534 (FFFE hexadecimal) is
unassigned and reserved as the byte-swapped version of ZERO WIDTH NON-BREAKING SPACE for
byte-order detection purposes. 65535 (FFFF hexadecimal) is unassigned.

209

The list of characters

<l-- Portions © International Organization for Standardization 1986
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-->

<!l-- Character entity set. Typical invocation:
<IENTITY % HTMLIatl PUBLIC

"-//W3C//ENTITIES Full Latin 1/EN//HTML">
%HTMLIat1;
-->

<IENTITY nbsp CDATA " " -- no-break space -->

<IENTITY iexcl CDATA "¡" -- inverted exclamation mark -->
<IENTITY cent CDATA "¢" -- cent sign -->

<IENTITY pound CDATA "£" -- pound sterling sign -->
<IENTITY curren CDATA "¤" -- general currency sign -->
<IENTITY yen CDATA "¥" -- yen sign -->

<IENTITY brvbar CDATA "¦" -- broken (vertical) bar -->
<IENTITY sect CDATA "§" -- section sign -->

<IENTITY uml CDATA "¨" -- umlaut (dieresis) -->

<IENTITY copy CDATA "©" -- copyright sign -->

<IENTITY ordf CDATA "ª" -- ordinal indicator, feminine -->
<IENTITY laquo CDATA "«" -- angle quotation mark, left -->
<IENTITY not CDATA "¬" -- not sign -->

<IENTITY shy CDATA "­" -- soft hyphen -->

<IENTITY reg CDATA "®" -- registered sign -->

<IENTITY macr CDATA "¯" -- macron -->

<IENTITY deg CDATA "°" -- degree sign -->

<IENTITY plusmn CDATA "±" -- plus-or-minus sign -->
<IENTITY sup2 CDATA "²" -- superscript two -->

<IENTITY sup3 CDATA "³" -- superscript three -->
<IENTITY acute CDATA "´" -- acute accent -->

<IENTITY micro CDATA "µ" -- micro sign -->

<IENTITY para CDATA "¶" -- pilcrow (paragraph sign) -->
<IENTITY middot CDATA "·" -- middle dot -->

<IENTITY cedil CDATA "¸" -- cedilla -->

<IENTITY supl CDATA "¹" -- superscript one -->

<IENTITY ordm CDATA "º" -- ordinal indicator, masculine -->
<IENTITY raquo CDATA "»" -- angle quotation mark, right -->
<IENTITY frac14 CDATA "¼" -- fraction one-quarter -->
<IENTITY fracl1l2 CDATA "½" -- fraction one-half -->
<IENTITY frac34 CDATA "¾" -- fraction three-quarters -->
<IENTITY iquest CDATA "¿" -- inverted question mark -->
<IENTITY Agrave CDATA "À" -- capital A, grave accent -->
<IENTITY Aacute CDATA "Á" -- capital A, acute accent -->
<IENTITY Acirc CDATA "Â" -- capital A, circumflex accent -->
<IENTITY Atilde CDATA "Ã" -- capital A, tilde -->

<IENTITY Auml CDATA "Ä" -- capital A, dieresis or umlaut mark -->
<IENTITY Aring CDATA "Å" -- capital A, ring -->

<IENTITY AElig CDATA "Æ" -- capital AE diphthong (ligature) -->
<IENTITY Ccedil CDATA "Ç" -- capital C, cedilla -->
<IENTITY Egrave CDATA "È" -- capital E, grave accent -->
<IENTITY Eacute CDATA "É" -- capital E, acute accent -->
<IENTITY Ecirc CDATA "Ê" -- capital E, circumflex accent -->

210

<IENTITY Euml CDATA "Ë" -- capital E, dieresis or umlaut mark -->
<IENTITY Igrave CDATA "Ì" -- capital |, grave accent -->
<IENTITY lacute CDATA "Í" -- capital |, acute accent -->
<IENTITY Icirc CDATA "Î" -- capital I, circumflex accent -->
<IENTITY luml CDATA "Ï" -- capital |, dieresis or umlaut mark -->
<IENTITY ETH CDATA "Ð" -- capital Eth, Icelandic -->

<IENTITY Ntilde CDATA "Ñ" -- capital N, tilde -->

<IENTITY Ograve CDATA "Ò" -- capital O, grave accent -->
<IENTITY Oacute CDATA "Ó" -- capital O, acute accent -->
<IENTITY Ocirc CDATA "Ô" -- capital O, circumflex accent -->
<IENTITY Otilde CDATA "Õ" -- capital O, tilde -->

<IENTITY Ouml CDATA "Ö" -- capital O, dieresis or umlaut mark -->
<IENTITY times CDATA "×" -- multiply sign -->

<IENTITY Oslash CDATA "Ø" -- capital O, slash -->

<IENTITY Ugrave CDATA "Ù" -- capital U, grave accent -->
<IENTITY Uacute CDATA "Ú" -- capital U, acute accent -->
<IENTITY Ucirc CDATA "Û" -- capital U, circumflex accent -->
<IENTITY Uuml CDATA "Ü" -- capital U, dieresis or umlaut mark -->
<IENTITY Yacute CDATA "Ý" -- capital Y, acute accent -->
<IENTITY THORN CDATA "Þ" -- capital THORN, Icelandic -->
<IENTITY szlig CDATA "ß" -- small sharp s, German (sz ligature) -->
<IENTITY agrave CDATA "à" -- small a, grave accent -->
<IENTITY aacute CDATA "á" -- small a, acute accent -->
<IENTITY acirc CDATA "â" -- small a, circumflex accent -->
<IENTITY atilde CDATA "ã" -- small a, tilde -->

<IENTITY auml CDATA "ä" -- small a, dieresis or umlaut mark -->
<IENTITY aring CDATA "å" -- small a, ring -->

<IENTITY aelig CDATA "æ" -- small ae diphthong (ligature) -->
<IENTITY ccedil CDATA "ç" -- small c, cedilla -->

<IENTITY egrave CDATA "è" -- small e, grave accent -->
<IENTITY eacute CDATA "é" -- small e, acute accent -->
<IENTITY ecirc CDATA "ê" -- small e, circumflex accent -->
<IENTITY euml CDATA "ë" -- small e, dieresis or umlaut mark -->
<IENTITY igrave CDATA "ì" -- small i, grave accent -->

<IENTITY iacute CDATA "í" -- small i, acute accent -->

<IENTITY icirc CDATA "î" -- small i, circumflex accent -->
<IENTITY iuml CDATA "ï" -- small i, dieresis or umlaut mark -->
<IENTITY eth CDATA "ð" -- small eth, Icelandic -->

<IENTITY ntilde CDATA "ñ" -- small n, tilde -->

<IENTITY ograve CDATA "ò" -- small o, grave accent -->
<IENTITY oacute CDATA "ó" -- small o, acute accent -->
<IENTITY ocirc CDATA "ô" -- small o, circumflex accent -->
<IENTITY otilde CDATA "õ" -- small o, tilde -->

<IENTITY ouml CDATA "ö" -- small o, dieresis or umlaut mark -->
<IENTITY divide CDATA "÷" -- divide sign -->

<IENTITY oslash CDATA "ø" -- small o, slash -->

<IENTITY ugrave CDATA "ù" -- small u, grave accent -->
<IENTITY uacute CDATA "ú" -- small u, acute accent -->
<IENTITY ucirc CDATA "û" -- small u, circumflex accent -->
<IENTITY uuml CDATA "ü" -- small u, dieresis or umlaut mark -->
<IENTITY yacute CDATA "ý" -- small y, acute accent -->
<IENTITY thorn CDATA "þ" -- small thorn, Icelandic -->

<IENTITY yuml CDATA "ÿ" -- small y, dieresis or umlaut mark -->

211

Named entities for symbols, mathematical symbols, and Greek
letters

The named character entities in this section produce characters that may be represented by glyphs in the
widely available Adobe Symbol font, including Greek characters, various bracketing symbols, and a
selection of mathematical operators such as gradient, product, and summation symbols.

To support these entities, user agents may suppdrt full [I[SO10646] or use other means. Display of glyphs
for these characters may be obtained by being able to display the rElevant [ISP10646] characters or by
other means, such as internally mapping the listed entities, numeric character references, and characters to
the appropriate position in some font that contains the requisite glyphs.

When to use Greek entitieghis entity set contains all the letters used in modern Greek. However, it does
not include Greek punctuation, precomposed accented characters nor the non-spacing accents (tonos,
dialytika) required to compose them. There are no archaic letters, Coptic-unique letters, or precomposed
letters for Polytonic Greek. The entities defined here are not intended for the representation of modern
Greek text and would not be an efficient representation; rather, they are intended for occasional Greek
letters used in technical and mathematical works.

The list of characters

<!I-- Mathematical, Greek and Symbolic characters for HTML -->

<!-- Character entity set. Typical invocation:
<IENTITY % HTMLsymbol PUBLIC
"-/IW3C//ENTITIES Symbolic/EN//HTML">
%HTMLsymbol; -->

<l-- Portions © International Organization for Standardization 1986:
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
ISO 8879, provided this notice is included in all copies.

-

<!-- Relevant ISO entity set is given unless names are newly introduced.
New names (i.e., not in ISO 8879 list) do not clash with any
existing ISO 8879 entity names. ISO 10646 character numbers
are given for each character, in hex. CDATA values are decimal
conversions of the ISO 10646 values and refer to the document
character set. Names are Unicode 2.0 names.

>

<!-- Latin Extended-B -->
<IENTITY fnof CDATA "ƒ" -- latin small f with hook, =function, =florin, u+0192 I1SOtech -->

<l-- Greek -->

<IENTITY Alpha CDATA "Α" -- greek capital letter alpha, u+0391 -->

<IENTITY Beta CDATA "Β" -- greek capital letter beta, u+0392 -->

<IENTITY Gamma CDATA "Γ" -- greek capital letter gamma, u+0393 ISOgrk3 -->
<IENTITY Delta CDATA "Δ" -- greek capital letter delta, u+0394 1SOgrk3 -->
<IENTITY Epsilon CDATA "Ε" -- greek capital letter epsilon, u+0395 -->

<IENTITY Zeta CDATA "Ζ" -- greek capital letter zeta, u+0396 -->

<IENTITY Eta CDATA "Η" -- greek capital letter eta, u+0397 -->

<IENTITY Theta CDATA "Θ" -- greek capital letter theta, u+0398 ISOgrk3 -->
<IENTITY lota CDATA "Ι" -- greek capital letter iota, u+0399 -->

<IENTITY Kappa CDATA "Κ" -- greek capital letter kappa, u+039A -->

<IENTITY Lambda CDATA "Λ" -- greek capital letter lambda, u+039B 1SOgrk3 -->
<IENTITY Mu CDATA "Μ" -- greek capital letter mu, u+039C -->

212

<IENTITY Nu CDATA "Ν" -- greek capital letter nu, u+039D -->

<IENTITY Xi CDATA "Ξ" -- greek capital letter xi, u+039E 1SOgrk3 -->
<IENTITY Omicron CDATA "Ο" -- greek capital letter omicron, u+039F -->
<IENTITY Pi CDATA "Π" -- greek capital letter pi, u+03A0 ISOgrk3 -->
<IENTITY Rho CDATA "Ρ" -- greek capital letter rho, u+03A1 -->

<!-- (there is no Sigmaf, and no u+03A2 character either) -->

<IENTITY Sigma CDATA "Σ" -- greek capital letter sigma, u+03A3 ISOgrk3 -->
<IENTITY Tau CDATA "Τ" -- greek capital letter tau, u+03A4 -->

<IENTITY Upsilon CDATA "Υ" -- greek capital letter upsilon, u+03A5 ISOgrk3 -->
<IENTITY Phi CDATA "Φ" -- greek capital letter phi, u+03A6 ISOgrk3 -->
<IENTITY Chi CDATA "Χ" -- greek capital letter chi, u+03A7 -->

<IENTITY Psi CDATA "Ψ" -- greek capital letter psi, u+03A8 ISOgrk3 -->
<IENTITY Omega CDATA "Ω" -- greek capital letter omega, u+03A9 ISOgrk3 -->

<IENTITY alpha CDATA "α" -- greek small letter alpha, u+03B1 ISOgrk3 -->
<IENTITY beta CDATA "β" -- greek small letter beta, u+03B2 ISOgrk3 -->
<IENTITY gamma CDATA "γ" -- greek small letter gamma, u+03B3 1SOgrk3 -->
<IENTITY delta CDATA "δ" -- greek small letter delta, u+03B4 ISOgrk3 -->
<IENTITY epsilon CDATA "ε" -- greek small letter epsilon, u+03B5 ISOgrk3 -->
<IENTITY zeta CDATA "ζ" -- greek small letter zeta, u+03B6 1ISOgrk3 -->
<IENTITY eta CDATA "η" -- greek small letter eta, u+03B7 ISOgrk3 -->
<IENTITY theta CDATA "θ" -- greek small letter theta, u+03B8 1SOgrk3 -->
<IENTITY iota CDATA "ι" -- greek small letter iota, u+03B9 ISOgrk3 -->
<IENTITY kappa CDATA "κ" -- greek small letter kappa, u+03BA 1SOgrk3 -->
<IENTITY lambda CDATA "λ" -- greek small letter lambda, u+03BB ISOgrk3 -->
<IENTITY mu CDATA "μ" -- greek small letter mu, u+03BC ISOgrk3 -->
<IENTITY nu CDATA "ν" -- greek small letter nu, u+03BD ISOgrk3 -->
<IENTITY xi CDATA "ξ" -- greek small letter xi, u+03BE I1SOgrk3 -->

<IENTITY omicron CDATA "ο" -- greek small letter omicron, u+03BF NEW -->
<IENTITY pi CDATA "π" -- greek small letter pi, u+03CO ISOgrk3 -->
<IENTITY rho CDATA "ρ" -- greek small letter rho, u+03C1 ISOgrk3 -->
<IENTITY sigmaf CDATA "ς" -- greek small letter final sigma, u+03C2 ISOgrk3 -->
<IENTITY sigma CDATA "σ" -- greek small letter sigma, u+03C3 1SOgrk3 -->
<IENTITY tau CDATA "τ" -- greek small letter tau, u+03C4 1SOgrk3 -->
<IENTITY upsilon CDATA "υ" -- greek small letter upsilon, u+03C5 ISOgrk3 -->
<IENTITY phi CDATA "φ" -- greek small letter phi, u+03C6 1SOgrk3 -->
<IENTITY chi CDATA "χ" -- greek small letter chi, u+03C7 1SOgrk3 -->
<IENTITY psi CDATA "ψ" -- greek small letter psi, u+03C8 ISOgrk3 -->
<IENTITY omega CDATA "ω" -- greek small letter omega, u+03C9 ISOgrk3 -->
<IENTITY thetasym CDATA "ϑ" -- greek small letter theta symbol, u+03D1 NEW -->
<IENTITY upsih CDATA "ϒ" -- greek upsilon with hook symbol, u+03D2 NEW -->
<IENTITY piv CDATA "ϖ" -- greek pi symbol, u+03D6 ISOgrk3 -->

<!-- General Punctuation -->

<IENTITY bull CDATA "•" -- bullet, =black small circle, u+2022 ISOpub -->

<!-- bullet is NOT the same as bullet operator, u+2219 -->

<IENTITY hellip CDATA "…" -- horizontal ellipsis, =three dot leader, u+2026 ISOpub -->
<IENTITY prime CDATA "′" -- prime, =minutes, =feet, u+2032 ISOtech -->

<IENTITY Prime CDATA "″" -- double prime, =seconds, =inches, u+2033 |SOtech -->
<IENTITY oline CDATA "‾" -- overline, =spacing overscore, u+203E NEW -->
<IENTITY frasl CDATA "⁄" -- fraction slash, u+2044 NEW -->

<l-- Letterlike Symbols -->
<IENTITY weierp CDATA "℘" -- script capital P, =power set, =Weierstrass p, u+2118 ISOamso -->
<IENTITY image CDATA "ℑ" -- blackletter capital I, =imaginary part, u+2111 ISOamso -->
<IENTITY real CDATA "ℜ" -- blackletter capital R, =real part symbol, u+211C ISOamso -->
<IENTITY trade CDATA "™" -- trade mark sign, u+2122 ISOnum -->
<IENTITY alefsym CDATA "ℵ" -- alef symbol, =first transfinite cardinal, u+2135 NEW -->
<!-- alef symbol is NOT the same as hebrew letter alef, u+05D0 although the same glyph

could be used to depict both characters -->

<I-- Arrows -->
<IENTITY larr CDATA "←" -- leftwards arrow, u+2190 ISOnum -->
<IENTITY uarr CDATA "↑" -- upwards arrow, u+2191 ISOnum-->
<IENTITY rarr CDATA "→" -- rightwards arrow, u+2192 ISOnum -->
<IENTITY darr CDATA "↓" -- downwards arrow, u+2193 ISOnum -->
<IENTITY harr CDATA "↔" -- left right arrow, u+2194 ISOamsa -->
<IENTITY crarr CDATA "↵" -- downwards arrow with corner leftwards, =carriage return, u+21B5 NEW -->
<IENTITY IArr CDATA "⇐" -- leftwards double arrow, u+21DO0 ISOtech -->
<!-- Unicode does not say that IArr is the same as the ’'is implied by’ arrow but also
does not have any other character for that function. So ? |Arr can be used for

213

'is implied by’ as ISOtech suggests -->
<IENTITY uArr CDATA "⇑" -- upwards double arrow, u+21D1 ISOamsa -->
<IENTITY rArr CDATA "⇒" -- rightwards double arrow, u+21D2 ISOtech -->
<l-- Unicode does not say this is the 'implies’ character but does not have another
character with this function so ? rArr can be used for 'implies’ as ISOtech suggests -->
<IENTITY dArr CDATA "⇓" -- downwards double arrow, u+21D3 ISOamsa -->
<IENTITY hArr CDATA "⇔" -- left right double arrow, u+21D4 ISOamsa -->

<!-- Mathematical Operators -->
<IENTITY forall CDATA "∀" -- for all, u+2200 1SOtech -->
<IENTITY part CDATA "∂" -- partial differential, u+2202 ISOtech -->
<IENTITY exist CDATA "∃" -- there exists, u+2203 ISOtech -->
<IENTITY empty CDATA "∅" -- empty set, =null set, =diameter, u+2205 ISOamso -->
<IENTITY nabla CDATA "∇" -- nabla, =backward difference, u+2207 ISOtech -->
<IENTITY isin CDATA "∈" -- element of, u+2208 ISOtech -->
<IENTITY notin CDATA "∉" -- not an element of, u+2209 1SOtech -->
<IENTITY ni CDATA "∋" -- contains as member, u+220B 1SOtech -->
<!-- should there be a more memorable name than 'ni'? -->
<IENTITY prod CDATA "∏" -- n-ary product, =product sign, u+220F ISOamsb -->
<!I-- prod is NOT the same character as u+03A0 'greek capital letter pi’ though the same
glyph might be used for both -->
<IENTITY sum CDATA "∑" -- n-ary sumation, u+2211 ISOamsb -->
<l-- sum is NOT the same character as u+03A3 'greek capital letter sigma’ though the same
glyph might be used for both -->
<IENTITY minus CDATA "−" -- minus sign, u+2212 1SOtech -->
<IENTITY lowast CDATA "∗" -- asterisk operator, u+2217 1SOtech -->
<IENTITY radic CDATA "√" -- square root, =radical sign, u+221A ISOtech -->
<IENTITY prop CDATA "∝" -- proportional to, u+221D ISOtech -->
<IENTITY infin CDATA "∞" -- infinity, u+221E |SOtech -->
<IENTITY ang CDATA "∠" -- angle, u+2220 ISOamso -->
<IENTITY and = CDATA "⊥" -- logical and, =wedge, u+2227 ISOtech -->
<IENTITY or CDATA "⊦" -- logical or, =vee, u+2228 ISOtech -->
<IENTITY cap CDATA "∩" -- intersection, =cap, u+2229 I1SOtech -->
<IENTITY cup CDATA "∪" -- union, =cup, u+222A 1SOtech -->
<IENTITY int CDATA "∫" -- integral, u+222B ISOtech -->
<IENTITY there4 CDATA "∴" -- therefore, u+2234 ISOtech -->
<IENTITY sim CDATA "∼" -- tilde operator, =varies with, =similar to, u+223C I1SOtech -->
<I-- tilde operator is NOT the same character as the tilde, u+007E, although the same
glyph might be used to represent both -->
<IENTITY cong CDATA "≅" -- approximately equal to, u+2245 1SOtech -->
<IENTITY asymp CDATA "≈" -- almost equal to, =asymptotic to, u+2248 ISOamsr -->
<IENTITY ne CDATA "≠" -- not equal to, u+2260 ISOtech -->
<IENTITY equiv CDATA "≡" -- identical to, u+2261 1SOtech -->
<IENTITY le CDATA "≤" -- less-than or equal to, u+2264 ISOtech -->
<IENTITY ge CDATA "≥" -- greater-than or equal to, u+2265 1SOtech -->
<IENTITY sub CDATA "⊂" -- subset of, u+2282 1SOtech -->
<IENTITY sup CDATA "⊃" -- superset of, u+2283 ISOtech -->
<!-- note that nsup, 'not a superset of, u+2283’ is not covered by the Symbol font
encoding and is not included. Should it be, for symmetry? It is in ISOamsn -->
<IENTITY nsub CDATA "⊄" -- not a subset of, u+2284 ISOamsn -->
<IENTITY sube CDATA "⊆" -- subset of or equal to, u+2286 1SOtech -->
<IENTITY supe CDATA "⊇" -- superset of or equal to, u+2287 ISOtech -->
<IENTITY oplus CDATA "⊕" -- circled plus, =direct sum, u+2295 ISOamsb -->
<IENTITY otimes CDATA "⊗" -- circled times, =vector product, u+2297 ISOamsb -->
<IENTITY perp CDATA "⊥" -- up tack, =orthogonal to, =perpendicular, u+22A5 ISOtech -->
<IENTITY sdot CDATA "⋅" -- dot operator, u+22C5 ISOamsb -->
<!-- dot operator is NOT the same character as u+00B7 middle dot -->

<!I-- Miscellaneous Technical -->
<IENTITY Iceil CDATA "⌈" -- left ceiling, =apl upstile, u+2308, ISOamsc -->
<IENTITY rceil CDATA "⌉" -- right ceiling, u+2309, ISOamsc -->
<IENTITY Ifloor CDATA "⌊" -- left floor, =apl downstile, u+230A, ISOamsc -->
<IENTITY rfloor CDATA "⌋" -- right floor, u+230B, ISOamsc -->
<IENTITY lang CDATA "〈" -- left-pointing angle bracket, =bra, u+2329 I1SOtech -->
<!-- lang is NOT the same character as u+003C ’less than’

or u+2039 'single left-pointing angle quotation mark’ -->
<IENTITY rang CDATA "〉" -- right-pointing angle bracket, =ket, u+232A ISOtech -->
<l--rang is NOT the same character as u+003E 'greater than’

or u+203A ’single right-pointing angle quotation mark’ -->

<!-- Geometric Shapes -->

214

<IENTITY loz ~ CDATA "◊" -- lozenge, u+25CA ISOpub -->

<l-- Miscellaneous Symbols -->

<IENTITY spades CDATA "♠" -- black spade suit, u+2660 ISOpub -->

<!-- black here seems to mean filled as opposed to hollow -->

<IENTITY clubs CDATA "♣" -- black club suit, =shamrock, u+2663 1SOpub -->
<IENTITY hearts CDATA "♥" -- black heart suit, =valentine, u+2665 ISOpub -->
<IENTITY diams CDATA "♦" -- black diamond suit, u+2666 1SOpub -->

Named entities for markup-significant and internationalization
characters

The named character entities in this section are for escaping markup-significant characters (these are the
same as those in HTML 2.0 and 3.2), for denoting spaces and dashes. Other characters in this section
apply to internationalization issues such as the disambiguation of bidirectional text (see the section on
[bidirectional text for details).

Entities have also been added for the remaining characters occuring in CP-1252 which do not occur in the
HTMLIatl or HTMLsymbol entity sets. These all occur in the 128 to 159 range within the cp-1252
charset. These entities permit the characters to be denoted in a platform-independent manner.

To support these entities, user agents may suppdrt full [I[ISO10646] or use other means. Display of glyphs
for these characters may be obtained by being able to display the rElevant [ISPP10646] characters or by
other means, such as internally mapping the listed entities, numeric character references, and characters to
the appropriate position in some font that contains the requisite glyphs.

The list of characters

<!-- Special characters for HTML -->

<l-- Character entity set. Typical invocation:
<IENTITY % HTMLspecial PUBLIC
"-//[W3C//ENTITIES Special//EN//HTML">
%HTMLspecial; -->

<!-- Portions © International Organization for Standardization 1986:
Permission to copy in any form is granted for use with
conforming SGML systems and applications as defined in
1ISO 8879, provided this notice is included in all copies.

>

<l-- Relevant ISO entity set is given unless names are newly introduced.
New names (i.e., not in ISO 8879 list) do not clash with any
existing ISO 8879 entity names. 1ISO 10646 character numbers
are given for each character, in hex. CDATA values are decimal
conversions of the ISO 10646 values and refer to the document
character set. Names are Unicode 2.0 names.

>

<!-- CO Controls and Basic Latin -->

<IENTITY quot CDATA """ -- quotation mark, =apl quote, u+0022 ISOnum -->
<IENTITY amp CDATA "&" -- ampersand, u+0026 ISOnum -->

<IENTITY It CDATA "<" --less-than sign, u+003C ISOnum -->

<IENTITY gt CDATA ">" -- greater-than sign, u+003E ISOnum -->

<l-- Latin Extended-A -->
<IENTITY OElig CDATA "Œ" -- latin capital ligature oe, u+0152 ISOlat2 -->

215

<IENTITY oelig CDATA "œ" -- latin small ligature oe, u+0153 ISOlat2 -->

<!I-- ligature is a misnomer, this is a separate character in some languages -->

<IENTITY Scaron CDATA "Š" -- latin capital letter s with caron, u+0160 ISOlat2 -->
<IENTITY scaron CDATA "š" -- latin small letter s with caron, u+0161 I1SOlat2 -->
<IENTITY Yuml CDATA "Ÿ" -- latin capital letter y with diaeresis, u+0178 ISOlat2 -->

<l-- Spacing Modifier Letters -->
<IENTITY circ CDATA "ˆ" -- modifier letter circumflex accent, u+02C6 1ISOpub -->
<IENTITY tilde CDATA "˜" -- small tilde, u+02DC ISOdia -->

<!-- General Punctuation -->

<IENTITY ensp CDATA " " -- en space, u+2002 ISOpub -->

<IENTITY emsp CDATA " " -- em space, u+2003 ISOpub -->

<IENTITY thinsp CDATA " " -- thin space, u+2009 ISOpub -->

<IENTITY zwnj CDATA "‌" -- zero width non-joiner, u+200C NEW RFC 2070 -->
<IENTITY zwj CDATA "‍" -- zero width joiner, u+200D NEW RFC 2070 -->
<IENTITY Irm CDATA "‎" -- left-to-right mark, u+200E NEW RFC 2070 -->
<IENTITY rim CDATA "‏" -- right-to-left mark, u+200F NEW RFC 2070 -->
<IENTITY ndash CDATA "–" -- en dash, u+2013 ISOpub -->

<IENTITY mdash CDATA "—" -- em dash, u+2014 ISOpub -->

<IENTITY Isquo CDATA "‘" -- left single quotation mark, u+2018 ISOnum -->
<IENTITY rsquo CDATA "’" -- right single quotation mark, u+2019 ISOnum -->
<IENTITY sbquo CDATA "‚" -- single low-9 quotation mark, u+201A NEW -->
<IENTITY ldquo CDATA "“" -- left double quotation mark, u+201C ISOnum -->
<IENTITY rdguo CDATA "”" -- right double quotation mark, u+201D ISOnum -->
<IENTITY bdquo CDATA "„" -- double low-9 quotation mark, u+201E NEW -->
<IENTITY dagger CDATA "†" -- dagger, u+2020 ISOpub -->

<IENTITY Dagger CDATA "‡" -- double dagger, u+2021 ISOpub -->

<IENTITY permil CDATA "‰" -- per mille sign, u+2030 ISOtech -->

<IENTITY Isaquo CDATA "‹" -- single left-pointing angle quotation mark, u+2039 ISO proposed -->
<!l-- Isaquo is proposed but not yet ISO standardised -->

<IENTITY rsaquo CDATA "›" -- single right-pointing angle quotation mark, u+203A ISO proposed -->
<l-- rsaquo is proposed but not yet ISO standardised -->

216

References

Contents

1. [Normative references
2. |Informative referencgs

Normative references

[RFC822]
"Standard for the Format of ARPA Internet Text Messages", Revised by David H. Crocker, August
1982.
Download froni ftp://ds.internic.net/rfc/rfc822 Jtxt.
[RFC1123]
"Requirements for Internet Hosts -- Application and Support”, R. Braden, October 1989.
Download fronj ftp://ds.internic.net/rfc/rfc1123|txt.
[RFC1468]
"Japanese Character Encoding for Internet Messages", J. Murai, M. Crispin, and E. van der Poel,
June 1993.
Download from ftp://ds.internic.net/rfc/rfc1468|txt.
[RFC1555]
"Hebrew Character Encoding for Internet Messages", H. Nussbacher and Y. Bourvine, December
1993.
Download froni ftp://ds.internic.net/rfc/rfc1555]txt.
[RFC1556]
"Handling of Bi-directional Texts in MIME", H. Nussbacher, December 1993.
Download from ftp://ds.internic.net/rfc/rfc1556]txt.
[RFC1590]
"Media Type Registration Procedure", J. Postel, March 1994.
Download from ftp://ds.internic.net/rfc/rfc1590]txt.
[RFC1738]
"Uniform Resource Locators"”, T. Berners-Lee, L. Masinter, and M. McCahill, December 1994.
Download froni ftp://ds.internic.net/rfc/rfc1738|txt.
[RFC1766]
"Tags for the Identification of Languages", H. Alvestrand, March 1995.
Download fronj ftp://ds.internic.net/rfc/rfc1766|txt.
[RFC1808]
"Relative Uniform Resource Locators", R. Fielding, June 1995.
Download froni ftp://ds.internic.net/rfc/rfc1808]txt.
[RFC1867]
"Form-based File Upload in HTML", E. Nebel and L. Masinter, November 1995.
Download from ftp://ds.internic.net/rfc/rfc186 7]txt.
[RFC2045]
"Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", N.
Freed and N. Borenstein, November 1996.
Download fronj ftp://ds.internic.net/rfc/rfc2045|txt. Note that this RFC obsoletes RFC1521,

217

ftp://ds.internic.net/rfc/rfc822.txt
ftp://ds.internic.net/rfc/rfc1123.txt
ftp://ds.internic.net/rfc/rfc1468.txt
ftp://ds.internic.net/rfc/rfc1555.txt
ftp://ds.internic.net/rfc/rfc1556.txt
ftp://ds.internic.net/rfc/rfc1590.txt
ftp://ds.internic.net/rfc/rfc1738.txt
ftp://ds.internic.net/rfc/rfc1766.txt
ftp://ds.internic.net/rfc/rfc1808.txt
ftp://ds.internic.net/rfc/rfc1867.txt
ftp://ds.internic.net/rfc/rfc2045.txt

RFC1522, and RFC1590.

[RFC2046]
"Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", N. Freed and N.
Borenstein, November 1996.
Download fronm ftp://ds.internic.net/rfc/ric2046]txt. Note that this RFC obsoletes RFC1521,
RFC1522, and RFC1590.

[RFC2068]
"HTTP Version 1.1 ", R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, and T. Berners-Lee,
January 1997.
Download fron] ftp://ds.internic. net/rfc/rfc2068]txt.

[RFC2070]
"Internationalization of the HyperText Markup Language”, F. Yergeau, G. Nicol, G. Adams, and M.
Dirst, January 1997.
Download fronj ftp://ds.internic.net/rfc/rfc2070]txt.

[RFC2119]
"Key words for use in RFCs to Indicate Requirement Levels", S. Bradner, March 1997.
Download froni ftp://ds.internic.net/rfc/rfc2119]txt.

[1ISO639]
"Code for the representation of names of languages”, ISO 639:1988.
For more information, consult http://www.1so.ch/cate/d4 766|html.
See alsp http://www.sil.org/sgml/iso639a.jtml.

[1ISO646]
"Information technology -- ISO 7-bit coded character set for information interchange, ISO/IEC
646:1991.

[ISO1000]
"Sl units and recommendations for the user of their multiples and of certain other units", ISO
1000:1992.

[ISO3166]

"Codes for the representation of names of countries”, ISO 3166:1993.
[1SO4217]

"Codes for the representation of currencies and funds”, ISO 4217:1995.
[ISO8601]

"Data elements and interchange formats -- Information interchange -- Representation of dates and
times", 1ISO 8601:1988.

[ISO88591]
"Information processing -- 8-bit single-byte coded graphic character sets -- Part 1: Latin alphabet No.
1", 1ISO 8859-1:1987.

[ISO8879]
"Information Processing -- Text and Office Systems -- Standard Generalized Markup Language
(SGML)", ISO 8879:1986.
For the list of SGML entities, consplt ftp://ftp.ifi.ui0.no/pub/SGML/ENTITIES/.

[1ISO10646]
"Information Technology - Universal Multiple- Octet Coded Character Set (UCS) - Part 1.
Architecture and Basic Multilingual Plane", ISO/IEC 10646-1:1993. The current specification also
takes into consideration the first five amendments to ISO/IEC 10646-1:1993.

218

ftp://ds.internic.net/rfc/rfc2046.txt
ftp://ds.internic.net/rfc/rfc2068.txt
ftp://ds.internic.net/rfc/rfc2070.txt
ftp://ds.internic.net/rfc/rfc2119.txt
http://www.iso.ch/cate/d4766.html
http://www.sil.org/sgml/iso639a.html
ftp://ftp.ifi.uio.no/pub/SGML/ENTITIES/

[UNICODE]
"The Unicode Standard: Version 2.0", The Unicode Consortium, Addison-Wesley Developers Press,
1996.
For more information, consult the Unicode Consortium’s home pdge at http://www.unicqde.org/
[SRGB]
"A Standard Default color Space for the Internet”, version 1.10, M. Stokes, M. Anderson, S.
Chandrasekar, and R. Motta, 5 November 1996.
Download fron] http://www.w3.0rg/Graphics/Color/sRGB.html
[CSS1]
"Cascading Style Sheets, level 1", H. W. Lie and B. Bos, 17 December 1996.
Download fron{ http://www.w3.0rg/TR/REC-CSS1-961217.html
[ADOBE90Q]
"Postscript Language Reference Manual”, 2nd Edition, Appendix E., Addison-Wesley Publishing
Co., 1990.
[ERCS]
"Extended Reference Concrete Syntax for SGML", 30 May 1995.
Download fronj http://www.sgmlopen.org/sgml/docs/ercs/ercs-home.html

Informative references

[MIMETYPES]
Download a list of registered Internet Media Types (MIME types) from
[fitp://itp.1si.edu/in-notes/iana/assignments/media-types/.

[RFC850]
"Standard for Interchange of USENET Messages", M. Horton, June 1983.
Download fron ftp://ds.internic.net/rfc/rfc850 Jtxt.

[RFC1866]
"HyperText Markup Language 2.0", T. Berners-Lee and D. Connolly, November 1995.
Download froni ftp://ds.internic.net/rfc/rfc1866]txt.

[HTML30]
"HyperText Markup Language Specification Version 3.0", Dave Raggett, September 1995.
Download fron] HyperText Markup Language Specification Version 3.0.

[HTML32]
"HTML 3.2 Reference Specification”, Dave Raggett, 14 January 1997.
Download fronj http://www.w3.org/TR/REC-htmI32.himl

[CALS]
Continuous Acquisition and Life-Cycle Support (CALS). CALS is a Department of Defense strategy
for achieving effective creation, exchange, and use of digital data for weapon systems and
equipment. More information can be found on the CALS home pagé at at
|http://navysgml.dt.navy.mil/cals.html.

[RFC1942]
"HTML Tables", Dave Raggett, May 1996.
Download from ftp://ds.internic.net/rfc/rfc1942]txt.

[HTML3STYLE]
"HTML and Style Sheets", B. Bos, D. Raggett, and H. Lie, 24 March 1997.
Download from)_http://www.w3.0rg/TR/WD-style.html

219

http://www.unicode.org/
http://www.w3.org/Graphics/Color/sRGB.html
http://www.w3.org/TR/REC-CSS1-961217.html
http://www.sgmlopen.org/sgml/docs/ercs/ercs-home.html
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/
ftp://ds.internic.net/rfc/rfc850.txt
ftp://ds.internic.net/rfc/rfc1866.txt
http://www.w3.org/MarkUp/html3/CoverPage.html
http://www.w3.org/TR/REC-html32.html
http://navysgml.dt.navy.mil/cals.html
http://navysgml.dt.navy.mil/cals.html
ftp://ds.internic.net/rfc/rfc1942.txt
http://www.w3.org/TR/WD-style.html

[LEXHTML]
"A Lexical Analyzer for HTML and Basic SGML", D. Connolly, 15 June 1996. Download from
[http://www.w3.org/TR/WD-html-lex
[BRYANSS]
"SGML: An Author’s Guide to the Standard Generalized Markup Language”, M. Bryan,
Addison-Wesley Publishing Co., 1988.
[GOLD90]
"The SGML Handbook", C. F. Goldfarb, Clarendon Press, 1991.
[VANH90]
"Practical SGML", E. van Herwijnen, Kluwer Academicq Publishers Group, Norwell and Dordrecht,
1990.
[SQ91]
"The SGML Primer", 3rd Edition, SoftQuad Inc., 1991.
[ETHNO]
"Ethnologue, Languages of the World", 12th Edition, Barbara F. Grimes editor, Summer Institute of
Linguistics, October 1992.
[DCORE]
The Dublin Core: for more information gee http://purl.org/metadata/dublin_core
[PICS]
Platform for Internet Content (PICS). For more informatior) see http://www.w3.0rg/PICS/
[TAKADA]
"Multilingual Information Exchange through the World-Wide Web", Toshihiro Takada, Computer
Networks and ISDN Systems, Vol. 27, No. 2, pp. 235-241, November 1994.

220

http://www.w3.org/TR/WD-html-lex
http://purl.org/metadata/dublin_core
http://www.w3.org/PICS/

Indexes

Contents This specification includes the following indexes for quick reference:

e |Index of elements
e (Index of attributgs

221

Index of Elements

Legend:Required /Optional /Forbidden,Yes /No

>
e z|Z | Z2|>lz|>>|z|z|Z2|z|>lz|lz|2|z 2| |2|lz|lz|z|z
wm
(@)]
©
5 r ¥ | w o |uw|b |y || |0l |l | g | |w Ol |||
C
w
(@)]
©
e r ¥ | ¥ x|l | || x| x| |0|r || ¥ x| | ||y ||
©
N
_nlu o
) =| |5 -))
£ >| |[? S o 2] 0
3 z| |l |5 i < ol 119] || o
P ol x| ||l&] [o | | ol I =l E | F 1 O
x|l (o] | S.GOD =l [1Z] T (e — =
ol llal x| | < “LOHUAE OﬂomﬂFm
< ||l =] | =] |) o [@ ||@ o O] O Ol 10! IO al |l

222

FIELDSE

FRAM

FRAMESE

=

o

T

HTML

IFRAME

INPU

ISINDEX

KBD

LABEL

LEGEND

223

CINK

MENU
META

NOFRAMES

NOSCRIP

OBJEC

PARAM

SCRIP

ELE

SMALL

STRIKE

STRONG

:

ABLE

BODY

EXTAREA

224

TFOOT

HEAD
ITLE

225

Index of Attributes

Related

Name Elements Type Default Comment
list of supported
Bcceptcharskt [FOR
accept-charsgt FORM CDATA #IMPLIED charsets
list of MIME
[accep [NPO CDATA #IMPLIED types for file
upload
- A] LABEL accessibility key|
[accesskdy LEGEND CDATA #IMPLIED character
FOR #REQUIRED Ser"ﬁ;'ri'j‘f:rform
CAPTIO %CAlig #IMPLIED relative to tablg
[APPLET, vertical or
IFRAME]} DolAlign #IMPLIED horizontal
NPU alignment
[EGERD #IMPLIED et
positioning insidg
[OBIECT ROATIq #IMPLIED document
table position
[TABLH [%TATig #IMPLIED relative to
window
bv] B3 [, .
(left | center | align, text
IFBI.TFMI,EBIHB, right | justify) #MPLIED alignment
COL,
OLGROUR, | (left| center |
[TBODY][TO, | right | justify | #IMPLIED
[EOOT[TH, char)
(HEAD [TH
- (left | right |
center) #IMPLIED
bgcolor, text
v))
CDATA #IMPLIED link, viink, alink
description for
AP' CDATA #IMPLIED text only
browsers
description for
[AREA CDATA #REQUIRED text only
browsers
APPLE CDATA #IMPLIED comma separate
archive list
[TO[TH CDATA #IMPLIED list of axis namg

226

n

CDATA

#IMPLIED

defaults to cell

s content
texture tile for
BOD [RURL #IMPLIED document
background
[bgcolo] TABLE r #IMPLIED bacl;grrocuer;lds colo
[7%Colar HMPLIED background colo
[7%Colar HIMPLIED cell background
CDATA #IMPLIED
suggested link
BJE [%Lendth #IMPLIED border width
suggested link
G 0 :
2orce #AMPLIED border width
controls frame
bord ; width aroun
borde] TABL CDATA #IMPLIED idth d
table
[TABLE CDATA #IMPLIED Spac'cr;?ls"‘”th'”
cellspacing [TABLE CDATA #IMPLIED SpaCIQEHk')Setwee
€oq
OLGROUR,)
TBODY} [TD, CDATA #IMPLIED a“egnriir:rf.r.'?r’
18, .g. char=":
[(HEAD, TR
€oq
[charofi _||01L]G)R‘OU T offset for
charet e CDATA AMPLIED alignment char
FOOT[TH,
HEAD, R
[charsd char encoding of
d = CDATA AMPLIED linked resource
checkel [TNPOr for radio buttons
— (checked) MMPLIED and check boxe
BLOCKQUOTE, - URL for source
g URL]
= Q #IMPLIED document or msg
citd DET NS #IMPLIED info on reason fo

change

227

(=)
QD
7]
2
zZ
O
U

g

=
@S
dlalmo
Z
=]

i
23

S
secEik
EESE
'EEEE%*

m|
L
O
B (2
m

o
T

5

5

N
ElE

=
T
Cc
z

r
(B
Q5
oy,

m

—

|
sl
B

=
m
z
-

g,_>?E%§ZE:@
FEElE e e

CDATA

#IMPLIED

space separated
list of classes

C0RL

#IMPLIED

identifies an
implementation

|

(left | all | right
| none)

none

control of text
flow

Ei ii 2

) QD
Ql 7]
2| | 2

APPLE

CDATA

#IMPLIED

applet class filg

odebage

APPLET

[C%URL

#IMPLIED

optional base
URL for applet

[OBJETT

[%URL

#IMPLIED

some systems
need an
additional URL

[[OBJEQT

[%ContentTy

pe

#MPLIED

Internet content
type for code

N

colo

BASEFONT,
[EONT

CDATA

#IMPLIED

#RRGGBB in
hex, e.g. red:
"#FF0000"

228

if not given,

[FRAMESEY CDATA #IMPLIED default is 1
column
used for

TABLH NUMBER #IMPLIED immediate

display mode

TEXTAREA NUMBER #REQUIRED

number of cols
b

NUMBER 1 spanned by cell

[compadt [DIR MEN (compact) #IMPLIED

Compadt [(DLOL[OL (compact) #IMPLIED reduced interiter
spacing

CDATA #REQUIRED associated

information
‘ - ‘ comma separated
coords [AREA s #IMPLIED list of values
for use with

A [%Coords #IMPLIED OBJECT
SHAPES

reference to

[OBJEQT [%URL #IMPLIED object's data

. when changed:
datetim [OEILINB CDATA #IMPLIED SO date format

[OBJEQT (declare) #IMPLIED declare but don’

instantiate flag

229

o]
S > c 22 9 |sg
5= 5 o ¥ £5 2 oo
= [] n o 5
c £ S| 32 g5 2o |5ED
g & g £%8 °5 83 253
3£ | 5zuo EC 5> |Besk
= = 8 = S =
5§ S S<S E-2|8 58
2 S8 €
5
()
°
o
[$)
c
g
S
2
A £
o [m)
a) w 9 Tl o | o w
w T 5 w w 3
1 o] o u - o
T o < = oL | o S
= i = x| = = ®
x| 2
<
8
=
Q.
ua
[
g
— s 4}
—~ d =
= = 3} c < L
— —] c < Y LL
s E %) Q w a s
= ~ el - S
~ A
II IIII ﬂ " -
m %- n 7 - - BES rEE 5 B
<C —
m : -SH- SEPIEE m o m S mmgm :
O _m - DG_VMME - o Bl (kzli<| K 2 =
BEW m - LL ol LLI m_.n
&l x 2 =

disablef

230

[FRAME,

request frame

r [FRAME| 19 ! borders?
heigh M”:RAME PoLength #IMPLIED suggested heig
height [%oPixels #IMPLIED SUQ?ne;EgIQEigh
[APPLEF [%Pixds #REQUIRED SUQ?ne;;‘fglsheigh
BImH | B #IMPLIED T esource
ARER AR #IMPLIED M yperextink |
#REQUIRED

hspace [OBJEGT | [&Length #IMPLIED hor?:(?r?tZIS?ljjtter
hitp-equiy NAME #IMPLIED HTTP response

header name

231

—

document-wide
unique id

use server-side
image map

*
e BeerbEEEE ol on pue e ge
=z | =
G
= ok 2 I . E

Ismap

232

=
0
by
®)
Z
<
<

EE

vy
O
N
O
-
O
M

EE().(I-[Z?I vy

E UI_EA ™
- EE%-“ TEE%
SEiE :

|
m
i
O
0
m

==
===
SERNE
= 0| = = s
L EEEEE
ASEEE

,_
m
O
m
Z

=

:

<
m
—
>

*rﬁ;ﬂgé
e

)
<
2] B=
pe] I
=
_II

NAME

#IMPLIED

[RFC1766]
language value

%

CDATA

#IMPLIED

predefined script
language name

ink

j | d

CDATA

#IMPLIED

Y

%0Pixels

#IMPLIED

margin height in
pixels

=
L
>
<

%

%0Pixels

#IMPLIED

margin widths in
pixels

maxlengt

INPU

NUMBER

#IMPLIED

max chars for
text fields

CDATA

#IMPLIED

designed for usq
with these medid

EE!I

CDATA

#IMPLIED

for rendering on
these media

233

HTTP method
method [FORM (GET | POST) GET used to submit
the form
o1 ELE (multiple) #IMPLIED defaults single
selection
name [OBJIEQT [%URL #IMPLIED S”bm]lgf‘; part o
name CDATA #IMPLIED
. allows applets tg
[APPLE CDATA #IMPLIED tind each other
for
name O scrlptlng orms
[nam; [BUTTON CDATA #IMPLIED ipting/f
as submit button
. [FRAMH, name of frame
FRAVE] CDATA #IMPLIED for targetting
A CDATA #IMPLIED named link end
required for all
INPU CDATA #IMPLIED but submit &
reset
[namé TEXTARER CDATA #REQUIRED
[SELEQr CDATA #REQUIRED field name
PARA CDATA #REQUIRED property namq
NAME #IMPLIED meta':;‘r’rzg‘a“"”
hohre (nohref) #IMPLIED this rZ%'t?(;‘nhaS np
- . allow users to
FRAM (noresize) #IMPLIED resize frames?
(noshade) #IMPLIED
[T [TH (nowrap) #IMPLIED S“pﬂrvfass word
serialized applet
[APPLET CDATA #IMPLIED file
BUTTON,
INPUT][LABEL] . - the element lost
BELECT, #IMPLIED the focls
EXTAREZA
INPUT],
onchangke SELECT, 6SCrip #IMPLIED the element valu
was changed
EXTAREZA

234

1%

the pointing

device button
was clicked

#IMPLIED

CDATA

O
(g
C

=

il

=4
.M.SHEM

z__u_g

FO-

EEEEE

.m_w___;_ i

235

the pointing
device button

was double

clicked

the element got
the focus

#IMPLIED

#MPLIED

CDATA

DOSCrIp

O
(g
C

=

il

=4
.M.SHEM

z__u_g

gEEEEEEE

U

|INP I|

EEEEE

.m_w___;_ i

[CABET]
SELECT,

ondblclic

onfocug

236

a key was
pressed down

#IMPLIED

CDATA

ACRON

m_w___;_

EEEEE

B
m B
El

onkeydow

237

a key was

pressed and
released

#IMPLIED

CDATA

ACRON

ek -m
m_w___ _m_m

regs

onke

238

a key was
released

all the frames
have been loaded

the document has
been loaded

#IMPLIED

#IMPLIED

#IMPLIED

CDATA

%Script

| YeScript

O
(g
C

=

e

EEEEE

_ .m_w___;_ 0

[FRAMESEN

BOD

jonkeyup

onloag

239

the pointing

device button
was pressed

down

#IMPLIED

CDATA

O
(g
C

=

il

=4
.M.SHEM

z__u_g

gEEEEEEE

U

EEEEE

.m_w___;_ i

onmousedow|n |INP !|

240

the pointing

device was

moved

#IMPLIED

CDATA

O
(g
C

=

il

=5
.M.SHEM

z__u_g

Fo-

.m_w___. A_

EEEEE

onmousemo

241

>
238
E=@
803
> >
L O O
£T g
o)
w
—
o
=
I+
<
T
<
a
O

O
(g
C

=

il

=5
.M.SHEM

JDG_

SPERERE

.m_w___. A_

EEEEE

onmouseoyit

242

(o) N
£s8
£25
8573
S >
v O
£ T E
o
w
-
o
=
Ers
<
T
<
o
O

O
(g
C

=

il

=5
.M.SHEM

JDG_

SPERERE

.m_w___. A_

EEEEE

r

onmouseov

243

=
o b (%
Alalfm|o
Z
P

vy
O
N
-
O
M

wJ
[v3]
©]
O
=<

-E (I'R
gecEik
B
“ggedd

O[T
M
=15
T
lum

=8

i
ElE

&l

IOanUSGQp

))

[@) =i A=
ml|C j(/) O zmHZ
o=l mi[o = |OLSI| T
o > m'_C

;, mI<rS Zl 3|
F]UU [T O-'; E-‘%E

11 [o el = 5 2 5

i
29
EE

E
=
E
E

CDATA

#IMPLIED

the pointing
device button
was released

i

nresqt

-
E

R

[%Script

#IMPLIED

the form was
reset

i

nselegt

b
T
C

oScrip]

#IMPLIED

some text was
selected

nsubm

T

[%Script

#IMPLIED

the form was
submitted

nunloagl

[%Script

#IMPLIED

all the frames
have been
removed

nunioag

[VScript

#IMPLIED

the document has
been removed

#MPLIED

named dictionary
of meta info

CDATA

#MPLIED

4%

prompt messag

(—S.Eo S (o)
@
o
Sl el e

TEXTARE

-
E 2 3
= o | x>
: 0 2B
[1] >

(readonly)

#IMPLIED

244

for text and

o

[

f

readonl INPU (readonly) #IMPLIED passwd
A [LNK CDATA #IMPLIED forward link
types
[A[CINK] CDATA #IMPLIED reverse link types$
- if not given,
[FRAMESEY CDATA #IMPLIED default is 1 row
[TEXTAREA NUMBER #REQUIRED
number of rows
rowspa [TH[TH NUMBER 1 spanned by cell
y TS T rulings between
[TABLE S S #MPLIED rows and cols
select form of
h \/} [\
schem | ME 1/ CDATA #IMPLIED content
IIT:RR':I\IC/IE (yzitlor)]o | auto scrollbar or nong
(selected) #IMPLIED
controls
[Shapk [AREA [%Shape rect interpretation of
coords
for use with
) [%Shape rect OBJECT
SHAPES
. object has shapg
shapess [CBIEQT (shapes) #MPLIED hypertext links
Siz [HR [%Pixels #IMPLIED
e [+]nn e.g.
CDATA #IMPLIED size="+1". size=2
— specific to each
INPU CDATA #IMPLIED type of field
; base font size fo
size BASEFON CDATA #REQUIRED FONT elements
SELEC NUMBER #IMPLIED rows visible
default number o)
COLGROUP NUMBER 1 columns in grou
number of
NUMBER 1 columns spanne
by group
URL for an
[SCRIPT [AURL #IMPLIED external script
ST NI=8 #IMPLIED for fields with

images

245

= % 0]
[} o 2 <L o o o
.5, 288 3 -3 28
S_ | o = = k=
— = c O O T O o ko) m nruo
58 |E3 Mm < Lo mg o 0
oS |CcE|o" | & 8 e b=l ==
0o 9Q | o © O =} o = 03 (=]
20O o= |5 c o) ol S 2
5 - nE |) o3 2 x
o @ (O (7] S < c
a S = 7 © 2 =

o
o
(] o

2 |z | Y o n 0 m
| 2 o = _ U J
a o s s a o a
S i S = = = S
= o H* ey = = =
* x BT * H

S | O < i <
4 x < @ = L =
S S O =) o 5 g
(=) zZ (@] = o

[FRAME,

OBJEQT

m _mL .. -
COfia

m m_-ﬂ
m_ --

m

“_@_m.-__

m C
EE
.JL
E

af)

REA|[BASH,
[CINK]

standb

246

CDATA

#IMPLIED

where to render
resource

CDATA

#IMPLIED

where to render
result

—

&l

P @)
D

CDATA

#IMPLIED

=
=
(]

CDATA

#IMPLIED

advisory title

B

B
B

:

:
|
C

%
2
o
v
|;|
vy

]

=
m
@
m
Z|
-
=

=
B

<
m
P
c

g

K
=)
=

7]

mE
1>
mij <]
OlT

E
2
[
I
[2)
E

_|
Py,
O

)

mjj@f S

o_l
) = =

.

E
d
=
<
%

>/l
os)
]

(%)
ml|C

X
3
>
Tl=
MiE

CDATA

#IMPLIED

advisory
title/amplification

Y%Contentlype

#IMPLIED

Internet content
type for data

[%eContentTyge

#IMPLIED

advisory Internet
content type

[TeinputTyple

TEXT

what kind of
widget is needed

#IMPLIED

list item style

@EE]%E

%OLStylp

#IMPLIED

numbering styl

247

(%ULStyle) #IMPLIED bullet style
for use as form
BUTTO (submit | resef) #IMPLIED submit/reset
button
Internet content
typd [SCRIPIr CDATA #IMPLIED type for script
yp p
language
PARA CDATA #IMPLIED '”ter?ye;emecj'a
Internet content
STYLH CDATA #REQUIRED type for style
language
[OBJEGT [URL #IMPLIED :ﬁ:ggee”ffaf
= - use client-side
Usemal TMQ, INPU [7%URL #IMPLIED image map
coL,
OLGROUR, | (top | middle | vertical
TBODY} [TD, bottom | #IMPLIED alignment in cells
[[ECOT[TH, baseline) 1
HEAD.[TR
defaults to
valug [OPTION CDATA #IMPLIED clement content
gets passed to
BUTTO CDATA #IMPLIED server when
submitted
PARA CDATA #IMPLIED property value
- required for radig
INPU CDATA #IMPLIED and checkboxes
NUMBER #IMPLIED reset sequence
number
1 (DATA | REF How to interpret
PARA | OBJECT) DATA value
CDATA "http://www.w3.0rg/TR/WD-html40-970708/HTMLA4.dtd’ Constant
CDATA #IMPLIED
= suggested
vspace | OBJEQT | %Lendth #IMPLIED vertical gutter
— suggested
vspace APPLE[T, IM | /oPlx&Is #IMPLIED vertical gutter
Y%Lengt #IMPLIED
Wi LVE #IMPLIED suggested widt
width #IMPLIED suggested width

in pixels

248

suggested width

[APPLET [%Pixels #REQUIRED in pixels
column width
CDATA #IMPLIED specification
default width for
COLGROU CDATA #IMPLIED enclosed COLS
table width
[widiH TABLE CDATA #IMPLIED relative to
window
width [PRE NUMBER #IMPLIED

249

Appendixes

Contents

® [Changes between HTML 3.2 and HTML 4.0
e [Performance, Implementation, and Design Notes
e [HTML and Organizations (W3C, IETF, 1I§0)

250

Changes between HTML 3.2 and HTML 4.0

Contents

1. |[Changes to elemehts
1. S
2. |Deprecated elements
3. |Obsolete elements

2. [Changes to Tables

3. [Changes to Forins

Changes to elements

New elements

The new elements in this version of HTML [E4INS] [DEL, ACRONY/)LEGENIH{COLGROUP
[BUTTONandFIELDSET

Deprecated elements

The following elements are now deprecall@NDEX | |APPLET,(CENTERFONT|BASEFON|T
[STRIKE}[§ [0 DIR} andMEN

Obsolete elements

The following elements are now obsoleX®IP PLAINTEXT, andLISTING . For all of them, you should
use thPREelement instead.

Changes to Tables

The HTML 4.0 table model has grown out of early work on HTML+ and the initial drgft of HTML3.0.
The earlier model has been been extended in response to requests from information providers for
improved control over the presentation of tabular information:

e The ability to align on designated characters such as "." and":"
(e.g., aligning a column of numbers on the decimal point).

® The need for more flexibility in specifying table frames and rules.

e The need for incremental display of large tables as data is received.

® The ability to support scrollable tables with fixed headers plus better support for breaking tables
across pages for printing.

® The need for optional column based defaults for alignment properties

251

In addition, a major goal has been to provide backwards compatibility with the widely deployed Netscape
implementation of tables. Another goal has been to simplify importing tables conforming to the SGML
CALS model. The latest draft makes attribute attribute compatible with the latest versions of

the most popular browsers. Some clarifications have been made to the rofdiof]tgribute attribute

and recommended behavior when absolute and relative column widths are mixed.

A new elemen{COLGROUMas been introduced to allow sets of columns to be grouped with different
width and alignment properties specified by one or (@i elements. The semanticJ©@OLGROUP
have been clarified over previous drafts, ands="basic" replaced byules="groups"

The attribute is included as a means for extending the properties associated with edges and
interiors of groups of cells. For instance, the line style: dotted, double, thin/thick etc; the color/pattern fill
for the interior; cell margins and font information. This will be the subject for a companion specification
on style sheets.

Thefframe |andrules |attributes have been modified to avoid SGML name clashes with each other, and
to avoid clashes with thaign |andvalign |attributes. These changes were additionally motivated by
the desire to avoid future problems if this specification is extended tofadlove |andrules |attributes

with other table elements.

Changes to Forms
The forms specified in HTML 3.2 have the following problems:

® There is no provision for keyboard shortcuts for particular actions, for access keys for driving menus,
etc.

® Although form controls can be made insensitive dynamically, they cannot be declared as such at
initialization time.

® Along the same line form controls, such as form fields, cannot be made "read only".

® | abels for radio buttons and checkboxes are not sensitive, i.e., clicking on a label text doesn't effect
the button state.

® There is no way to markup groups of related form fields in a way that effectively supports browsing
with speech-based user agents.

® There is no provision for checking values as they are entered into form fields. All checking is done at
the server when the form’s contents are submitted.

® Nothing is provided to specify what type of data file is expected when the user is asked to submit
files.

® Forms can only contain the two buttons submit and reset.

There is no way to specify what character sets the server issuing a form can handle.

To solve these problems this specification introduces several new attributes and elements.

Thefaccesskey] attribute provides for specifying direct keyboard access to form fields.
Theldisabled]attribute allows form providers to make a form control initially insensitive.
And with the additional attribufleeadonly] authors can prohibit changes to a form field.
The[LABEL element associates a label with a particular form contro[FTREDSET] element

252

groups related fields together and, in association witfhE@ENDelement, can be used to name the
group. Both of these new elements allow better rendering and better interactivity. Speech-based
browsers can better describe the form and graphic browsers can make labels sensitive.

A new set of attributes, includirgnchange-INPUT , in association with support for scripting
languages, allows form providers to verify user-entered data.

The[[NPUT]element has a new attribfgecept]that allows authors to specify a list of valid media
types or type patterns for the input.

The newBUTTORelement can be used to make richer forms with more than just a submit and a reset
button.

The[FORMelement includes the attribjgecept-charset | modeled on the HTTP

"Accept-Charset" header (§ee [JREC2068]). This attribute (first propofed in [RF{C1867]) may be used

to specify a list of character sets acceptable to the server.

253

Performance, Implementation, and Design Notes

Contents

1. [Notes on helping search engines index your Wdb site
1. [Search robdts
2. [Notes on tables
1. |Design rationaje
2. |[Recommended Layout Algorithins
3. [Notes on styles
1. [New media types
4. S
1. [Incremental display
2. S
5. [Notes on scripting
1. |Reserved syntax for future script mafros

The following notes are informative, not normative.

Notes on helping search engines index your Web site

This section provides some simple suggestions that will make your documents more accessible to search
engines.

Define the document language
In the global context of the Web it is important to know which human language a page was written
in. This is discussed in the section[on language information.
Specify language variants of this documenf you have prepared translations of this document into
other languages, you should use[ti€K] element to reference these. This allows an indexing engine to
offer users search results in the user’s preferred language, regardless of how the query was written. For
instance, the following links offer French and German alternatives to a search engine:

<LINK rel="alternate" href="mydoc-fr.html"
lang="fr" title="La vie souterrainne">

<LINK rel="alternate" href="mydoc-de.htm|"
lang="de" title="Das Leben im Untergrund">

Provide keywords and descriptions
Some indexing engines look fdfETAelements that define a comma-separated list of
keywords/phrases, or that give a short description. Search engines may present these keywords as the
result of a search. The value of g attribute sought by a search attribute is not defined by this
specification. Consider these examples,

<META name="keywords" content="vacation,Greece,sunshine">
<META name="description" content="Idylic European vacations">

254

Indicate the beginning of a collection
Collections of word processing documents or presentations are frequently translated into collections
of HTML documents. It is helpful for search results to reference the beginning of the collection in
addition to the page hit by the search. You may help search engines by ufiigithelement with
rel="begin" along with aTITLE | as in:

<LINK rel="begin"
href="pagel.html"
titte="General Theory of Relativity">

Provide robots with indexing instructions
People may be surprised to find that their site has been indexed by an indexing robot and that the
robot should not have been permitted to visit a sensitive part of the site. Many Web robots offer
facilities for Web site administrators and content providers to limit what the robot does. This is
achieved through two mechanisms: a "robots.txt" file anfiilB€éAelement in HTML documents,
described below.

Search robots

The robots.txt file

When a Robot vists a Web site, say http://www.foobar.com/, it firsts checks for
http://www.foobar.com/robots.txt. If it can find this document, it will analyze its contents to see if it is
allowed to retrieve the document. You can customize the robots.txt file to apply only to specific robots,
and to disallow access to specific directories or files.

Here is a sample robots.txt file that prevents all robots from visiting the entire site:

User-agent: * # applies to all robots
Disallow: / # disallow indexing of all pages

The Robot will simply look for a "/robots.txt" URL on your site, where a site is defined as a HTTP server
running on a particular host and port number. Here are some sample locatioh®feitxt

Site URL URL for robots.txt
http://www.w3.org/ http://www.w3.org/robots.txt
http://www.w3.0rg:80/ http:/imwww.w3.0rg:80/robots.txt

http://www.w3.0rg:1234/ http://www.w3.0rg:1234/robots.txt

http://w3.org/ http://w3.org/robots.txt

255

There can only be a single "/robots.txt" on a site. Specifically, you should not put "robots.txt" files in user
directories, because a robot will never look at them. If you want your users to be able to create their own
"robots.txt", you will need to merge them all into a single "/robots.txt". If you don't want to do this your
users might want to use the Robots META Tag instead.

Some tips: URL'’s are case-sensitive, and "/robots.txt" string must be all lower-case. Blank lines are not
permitted.

There must be exactly one "User-agent” field. The robot should be liberal in interpreting this field. A case
insensitive substring match of the name without version information is recommended.

If the value is "*", the record describes the default access policy for any robot that has not matched any of
the other records. It is not allowed to have multiple such records in the "/robots.txt" file.

The "Disallow" field specifies a partial URL that is not to be visited. This can be a full path, or a partial
path; any URL that starts with this value will not be retrieved. For example,

Disallow: /help disallows both /help.html and /help/index.html, whereas
Disallow: /help/ would disallow /help/index.html but allow /help.html.

An empty value for "Disallow", indicates that all URLs can be retrieved. At least one "Disallow" field
must be present in the robots.txt file.

Robots and the META element

The[METAelement allows HTML authors to tell visiting robots whether a document may be indexed, or
used to harvest more links. No server administrator action is required.

In the following example a robot should neither index this document, nor analyze it for links.

<META name="ROBOTS" content="NOINDEX, NOFOLLOW">

The list of terms in the contentAd.L, INDEX, NOFOLLOYWOINDEX The name and the content
attribute values are case-insensitive.

Note: In early 1997 only a few robots implement this, but this is expected to change as more public
attention is given to controlling indexing robots.

Notes on tables

Design rationale

The HTML table model has evolved from studies of existing SGML tables models, the treatment of tables
in common word processing packages, and a wide range of tabular layout techniques in magazines, books
and other paper-based documents. The model was chosen to allow simple tables to be expressed simply
with extra complexity available when needed. This makes it practical to create the markup for HTML
tables with everyday text editors and reduces the learning curve for getting started. This feature has been
very important to the success of HTML to date.

256

Increasingly, people are creating tables by converting from other document formats or by creating them
directly with WYSIWYG editors. It is important that the HTML table model fit well with these authoring
tools. This affects how the cells that span multiple rows or columns are represented, and how alignment
and other presentation properties are associated with groups of cells.

Dynamic reformatting

A major consideration for the HTML table model is that the author does not control how a user will size a
table, what fonts he or she will use, etc. This makes it risky to rely on column widths specified in terms of
absolute pixel units. Instead, tables must be able to change sizes dynamically to match the current window
size and fonts. Authors can provide guidance as to the relative widths of columns, but user agents should
ensure that columns are wide enough to render the width of the largest element of the cell’'s content. If the
author’s specification must be overridden, relative widths of individual columns should not be changed
drastically.

Incremental display

For large tables or slow network connections, incremental table display is important to user satisfaction.
User agents should be able to begin displaying a table before all of the data has been received. The default
window width for most user agents shows about 80 characters, and the graphics for many HTML pages

are designed with these defaults in mind. By specifying the number of columns, and including provision

for control of table width and the widths of different columns, authors can give hints to user agents that
allow the incremental display of table contents.

For incremental display, the browser needs the number of columns and their widths. The default width of
the table is the current window sizeidth="100%"). This can be altered by setting the

jwidth-TABLE |attribute of th¢TABLE element. By default, all columns have the same width, but you

can specify column widths with one or m@®I elements before the table data starts.

The remaining issue is the number of columns. Some people have suggested waiting until the first row of
the table has been received, but this could take a long time if the cells have a lot of content. On the whole
it makes more sense, when incremental display is desired, to get authors to explicitly specify the number

of columns in thETABLE element.

Authors still need a way of telling user agents whether to use incremental display or to size the table
automatically to fit the cell contents. In the two pass auto-sizing mode, the number of columns is
determined by the first pass. In the incremental mode, the number of columns must be stated up front. It
makes more sense to set[dods]attribute to the number of columns rather than using some "layout"
attribute (e.g., layout="fixed" or layout="auto").

Structure and presentation

HTML distinguishes structural markup such as paragraphs and quotations from rendering idioms such as
margins, fonts, colors, etc. How does this distinction affect tables? From the purist’s point of view, the
alignment of text within table cells and the borders between cells is a rendering issue, not one of structure.
In practice, though, it is useful to group these with the structural information, as these features are highly
portable from one application to the next. The HTML table model leaves most rendering information to

257

associated style sheets. The model presented in this specification is designed to take advantage of such
style sheets but not to require them.

Current desktop publishing packages provide very rich control over the rendering of tables, and it would
be impractical to reproduce this in HTML, without making HTML into a bulky rich text format like RTF

or MIF. This specification does, however, offer authors the ability to choose from a set of commonly used
classes of border styles. attribute controls the appearence of the border frame around the table
while thdrules] attribute determines the choice of rulings within the table. A finer level of control will

be supported via rendering annotations.[Jlyke_] attribute can be used for specifying rendering
information for individual elements. Further rendering information can be given w{BTtHEE element

in the document head or via linked style sheets.

During the development of this specification, a number of avenues were investigated for specifying the
ruling patterns for tables. One issue concerns the kinds of statements that can be made. Including support
for edge subtraction as well as edge addition leads to relatively complex algorithms. For instance, work on
allowing the full set of table elements to includefitagne |andrules |attributes led to an algorithm

involving some 24 steps to determine whether a particular edge of a cell should be ruled or not. Even this
additional complexity doesn’t provide enough rendering control to meet the full range of needs for tables.
The current specification deliberately sticks to a simple intuitive model, sufficient for most purposes.
Further experimental work is needed before a more complex approach is standardized.

Row and column groups

This specification provides a superset of the simpler model presented in earlier work on HTML+. Tables
are considered as being formed from an optional caption together with a sequence of rows, which in turn
consist of a sequence of table cells. The model further differentiates header and data cells, and allows cells
to span multiple rows and columns.

Following the CALS table model (sge JCALS]), this specification allows table rows to be grouped into
head and body and foot sections. This simplifies the representation of rendering information and can be
used to repeat table head and foot rows when breaking tables across page boundaries, or to provide fixed
headers above a scrollable body panel. In the markup, the foot section is placed before the body sections.
This is an optimization shared with CALS for dealing with very long tables. It allows the foot to be
rendered without having to wait for the entire table to be processed.

Accessibility

For the visually impaired, HTML offers the hope of setting to rights the damage caused by the adoption of
windows based graphical user interfaces. The HTML table model includes attributes for labeling each cell,
to support high quality text to speech conversion. The same attributes can also be used to support
automated import and export of table data to databases or spreadsheets.

Recommended Layout Algorithms

If the[cols_]attribute on thfFABLE element specifies the number of columns, then the table may be
rendered using a fixed layout, otherwise the autolayout algorithm described below should be used.

258

If the width attribute is not specified, visual user agents should assume a default VEOO&«dbr
formatting.

We recommended that user agents increase table widths beyond the value spewifigdl bin cases

when cell contents would otherwise overflow. User agents that override the specified width should do so
within reason. User agents may elect to split words across lines to avoid the need for excessive horizontal
scrolling or when such scrolling is impractical or undesired.

Fixed Layout Algorithm

For this algorithm, it is assumed that the number of columns is known. The column widths by default
should be set to the same size. Authors may override this by specifying relative or absolute column
widths, using thfEOLGROUBr[COl elements. The default table width is the space between the current
left and right margins, but may be overridden bywiith] attribute on th ABLEelement, or

determined from absolute column widths. To deal with mixtures of absolute and relative column widths,
the first step is to allocate space from the table width to columns with absolute widths. After this, the
space remaining is divided up between the columns with relative widths.

The table syntax alone is insufficient to guarantee the consistency of attribute values. For instance, the
number of columns specified by fbels] attribute may be inconsistent with the number of columns

implied by thelements. This in turn, may be inconsistent with the number of columns implied by

the table cells. A further problem occurs when the columns are too narrow to avoid overflow of cell
contents. The width of the table as specified byTtRBLE element ofCOll.elements may result in

overflow of cell contents. It is recommended that user agents attempt to recover gracefully from these
situations, e.g., by hyphenating wdrds and resorting to splitting words if hyphenation points are unknown.

In the event that an indivisible element causes cell overflow, the user agent may consider adjusting
column widths and re-rendering the table. In the worst case, clipping may be considered if column width
adjustments and/or scrollable cell content are not feasible. In any case, if cell content is split or clipped
this should be indicated to the user in an appropriate manner.

Autolayout Algorithm

If the COLSattribute is missing from the table start tag, then the user agent should use the following
autolayout algorithm. It uses two passes through the table data and scales linearly with the size of the
table.

In the first pass, line wrapping is disabled, and the user agent keeps track of the minimum and maximum
width of each cell. The maximum width is given by the widest line. Since line wrap has been disabled,
paragraphs are treated as long lines unless broKBRbiements. The minimum width is given by the

widest text element (word, image, etc.) taking into account leading indents and list bullets, etc. In other
words, it is necessary to determine the minimum width a cell would require in a window of its own before
the cell begins to overflow. Allowing user agents to split words will minimize the need for horizontal
scrolling or in the worst case, clipping the cell contents.

259

This process also applies to any nested tables occuring in cell content. The minimum and maximum
widths for cells in nested tables are used to determine the minimum and maximum widths for these tables
and hence for the parent table cell itself. The algorithm is linear with aggregate cell content, and broadly
speaking, independent of the depth of nesting.

To cope with character alignment of cell contents, the algorithm keeps three running min/max totals for
each column: Left of align char, right of align char and un-aligned. The minimum width for a column is
then:max(min_left + min_right, min_non-aligned)

The minimum and maximum cell widths are then used to determine the corresponding minimum and
maximum widths for the columns. These in turn, are used to find the minimum and maximum width for
the table. Note that cells can contain nested tables, but this doesn’t complicate the code significantly. The
next step is to assign column widths according to the available space (i.e., the space between the current
left and right margins).

For cells that span multiple columns, a simple approach (as used by Arena) consists of apportioning the
min/max widths evenly to each of the constituent columns. A slightly more complex approach is to use the
min/max widths of unspanned cells to weight how spanned widths are apportioned. Experiments suggest
that a blend of the two approaches gives good results for a wide range of tables.

The table borders and intercell margins need to be included in assigning column widths. There are three
cases:

1. The minimum table width is equal to or wider than the available spacdn this case, assign the
minimum widths and allow the user to scroll horizontally. For conversion to braille, it will be
necessary to replace the cells by references to notes containing their full content. By convention these
appear before the table.

2. The maximum table width fits within the available spaceln this case, set the columns to their
maximum widths.

3. The maximum width of the table is greater than the available space, but the minimum table
width is smaller. In this case, find the difference between the available space and the minimum table
width, lets call itW. Lets also calD the difference between maximum and minimum width of the
table.

For each column, let be the difference between maximum and minimum width of that column.
Now set the column’s width to the minimum width ptlimesW overD. This makes columns with
large differences between minimum and maximum widths wider than columns with smaller
differences.

This assignment step is then repeated for nested tables using the minimum and maximum widths derived
for all such tables in the first pass. In this case, the width of the parent (i.e., englobing) table cell plays the
role of the current window size in the above description. This process is repeated recursively for all nested
tables. The topmost table is then rendered using the assigned widths. Nested tables are subsequently
rendered as part of the parent table’s cell contents.

260

If the table width is specified with tiveidth | attribute, the user agent attempts to set column widths to
match. Th@vidth |attribute is not binding if this results in columns having less than their minimum (i.e.,
indivisible) widths.

If relative widths are specified with t{@0llelement, the algorithm is modified to increase column widths
over the minimum width to meet the relative width constraints[d@Belements should be taken as hints
only, so columns shouldn’t be set to less than their minimum width. Similarly, columns shouldn’t be made
so wide that the table stretches well beyond the extent of the windof@Oflalement specifies a relative
width of zero, the column should always be set to its minimum width.

When using the two pass layout algorithm, the default alignment position in the absence of an explicit or
inheritedcharoff] attribute can be determined by choosing the position that would center lines for which
the widths before and after the alignment character are at the maximum values for any of the lines in the
column for whichalign="char" . For incremental table layout the suggested default is

charoff="50%" . If several cells in different rows for the same column use character alignment, then by
default, all such cells should line up, regardless of which character is used for alignment. Rules for
handling objects too large for column apply when the explicit or implied alignment results in a situation
where the data exceeds the assigned width of the column.

Choice of attribute namedt would have been preferable to choose values fdfrémee]attribute

consistent with thleules | attribute and the values used for alignment. For instanoae, top,

bottom, topbot, left, right, leftright, all . Unfortunately, SGML requires

enumerated attribute values to be unique for each element, independent of the attribute name. This causes
immediate problems for "none”, "left", "right" and "all". The values fo[fte] attribute have been

chosen to avoid clashes with thdes ||align _|andvalign-COLGROUP attributes. This provides a
measure of future proofing, as it is anticipated that thajfthee | andrules | attributes will be added to

other table elements in future revisions to this specification. An alternative would be ffranakéda

CDATA attribute. The consensus of the W3C HTML Working Group was that the benefits of being able to
use SGML validation tools to check attributes based on enumerated values outweighs the need for
consistent names.

Notes on styles

Some people have voiced concerns over performance issues for style sheets. For instance, retrieving an
external style sheet may delay the full presentation for the user. A similar situation arises if the document
head includes a lengthy set of style rules.

The current proposal addresses these issues by allowing authors to include rendering instructions within
each HTML element. The rendering information is then always available by the time the user agent wants
to render each element.

In many cases, authors will take advantage of a common style sheet for a group of documents. In this case,
distributing style rules throughout the document will actually lead to worse performance than using a

linked style sheet, since for most documents, the style sheet will already be present in the local cache. The
public availability of good style sheets will encourage this effect.

261

New media types

It is likely that the list of media types will grow in the future. To enable such extensions to be introduced
smoothly, user agents conforming to this specification must be able to parse the media type attribute value
as follows:

1. Comma characters (Unicode decimal 44) are used to break the media attribute value into a list of
entries. For example,

media="screen, 3d-glasses, print and resolution > 90dpi"

is mapped to:

"screen”
"3d-glasses”
"print and resolution > 90dpi"

2. Each entry is truncated just before the first character that igiStASCII lettefa-zA-Z] (Unicode
decimal 65-90, 97-122), dwyphen(Unicode decimal 45). In our example, this gives:

"screen"”
"3d-glasses”
llprintll

3. A case-insensitive match is then made with the set of media types defined above. Entries that don't
match should be ignored. In the example we are leftseitben andprint

Note: Style sheets may include media dependent variations within them. For instance the proposed CSS
@mediaconstruct. In such cases it may be appropriate to use the default value "all".

Notes on forms

Incremental display

The incremental display of documents being received from the network gives rise to certain problems with
respect to forms. User agents should prevent forms from being submitted until all of the form’s elements
have been received.

The incremental display of documents raises some issues with respect to tabbing navigation. The heuristic
of giving focus to the lowest valufg@bindex |in the document seems reasonable enough at first glance.
However this implies having to wait until all of the document’s text is received, since until then, the

lowest valuedfabindex | may stil change. If the user hits the tab key before then, it is reasonable for user
agents to move the focus to the lowest currently avaftabledex |

If forms are associated with client-side scripts, there is further potential for problems. For instance, a
script handler for a given field may refer to a field that doesn’t yet exist.

262

Future projects

This specification defines a set of elements and attributes powerful enough to fulfill the general need for
producing forms. However there is still room for many possible improvements. For instance the following
problems could be addressed in the future:

® The range of form field types is too limited in comparison with modern user interfaces. For instance
there is no provision for tabular data entry, sliders or multiple page layouts.

® Servers cannot update the fields in a submitted form and instead have to send a complete HTML
document causing screen flicker.

® These also cause problems for speech based browsers, making it difficult for the visually impaired to
interact with HTML forms.

Notes on scripting

Reserved syntax for future script macros

This specification reserves syntax for the future support of script macros in HTML CDATA attributes.
The intention is to allow attributes to be set depending on the properties of objects that appear earlier on
the page. The syntax is:

attribute = "... &{ macro body };.."
Current Practice for Script Macros

The macro body is made up of one or more statements in the default scripting language (as per instrinsic
event attributes). The semicolon following the right brace is always needed, as otherwise the right brace
character "}" is treated as being part of the macro body. Its also worth noting that quote marks are always
needed for attributes containing script macros.

The processing of CDATA attributes proceeds as follows:

1. The SGML parser evaluates any SGML entities (e.g., ">").
2. Next the script macros are evaluated by the script engine.
3. Finally the resultant character string is passed to the application for subsequent processing.

Macro processing takes place when the document is loaded (or reloaded) but does not reoccur when the
document is resized, repainted, etc.

Here are some examples using JavaScript. The first one randomizes the document background color:

<BODY bgcolor="&{randomrbg()};>

Perhaps you want to dim the background for evening viewing:

263

<BACKGROUND src="&{if(Date.getHours > 18)...};’>

The next example uses JavaScript to set the coordinates for a client-side image map:

<MAP NAME=foo>
<AREA shape="rect" coords="&{myrect(imageurl)};" href="&{myurl};">
</MAP>

This example sets the size of an image based upon document properties:

You can set the URL for a link or image by script:

<SCRIPT>
function manufacturer(widget) {

}

function location(manufacturer) {

}

function logo(manufacturer) {

}
</SCRIPT>

widget

This last example shows how SGML CDATA attributes can be quoted using single or double quote
marks. If you use single quotes around the attribute string then you can include double quote marks as part
of the attribute string. Another approach is use " for double quote marks:

264

HTML and Organizations (W3C, IETF, 1SO)

Contents

265

	HTML 4.0 Specification
	Abstract
	Status of this document
	Editors
	Comments

	Table of Contents
	About the HTML 4.0 Specification€
	How to read the specification€
	How the specification is organized€
	Acknowledgments€

	Introduction to HTML 4.0€
	Design principles of HTML 4.0€
	Designing documents with HTML 4.0€
	A brief SGML tutorial€
	About SGML€
	HTML syntax€
	Entities€
	Elements€
	Attributes€
	HTML comments€

	How to read the HTML DTD€
	Block level and Inline elements€
	DTD Comments€
	Entity Definitions€
	Element definitions€
	Content model definitions€

	Attribute definitions€
	DTD entities in attribute definitions€
	Boolean attributes€

	Definitions and Conventions€
	Definitions€
	Document conventions€
	Elements and attributes€
	Notes and examples€
	Document names€

	SGML€

	HTML and URLs€
	Universal Resource Locators †URLs‡€
	Fragment URLs€
	Relative URLs€
	URLs in HTML€
	MAILTO URLs€

	HTML Document Character Set€
	The Document Character Set€
	Character entities€

	Basic HTML data types€
	URLs€
	Character data€
	Colors€
	Notes on using colors€

	Lengths and Pixels€

	Structure of HTML documents€
	Global structure€
	HTML version information€
	The HTML element€
	The HEAD element€
	Titles: the TITLE element and the title attribute€
	Meta information€
	The META element€
	META and HTTP headers€
	META and search engines€
	META and PICS€
	META and default information€

	Meta data profiles€

	The BODY element€
	Element identifiers: the id and class attributes€
	Grouping elements: the DIV and SPAN elements€
	Headings: The H1, H2, H3, H4, H5, H6 elements€
	The ADDRESS element€

	Language information and text direction€
	Specifying the language of content: the lang attribute€
	Inheritance of language codes€
	Interpretation of language codes€

	Specifying the direction of text: the dir attribute€
	Introduction to the bidirectional algorithm€
	Inheritance of text direction information€
	Setting the direction of embedded text€
	Overriding the bidrectional algorithm: the BDO element€
	Support for character directionality and joining€
	The effect of style sheets on bidirectionality€
	Undisplayable characters€

	Text€
	White space€
	Structured text€
	Phrasal elements: EM, STRONG, DFN, CODE, SAMP, KBD, VAR, CITE, and ACRONYM€
	Quotations: The BLOCKQUOTE and Q elements€
	Subscripts and superscripts: the SUB and SUP elements€

	Lines and Paragraphs€
	Paragraphs: the P element€
	Visual rendering of paragraphs€
	Controlling line breaks€
	Forcing a line break: the BR element€
	Prohibiting a line break€

	Hyphenation€
	Preformatted text: The PRE element€

	Marking document changes: The INS and DEL elements€
	Date and time format€

	Lists€
	Unordered †UL‡ and ordered †OL‡ lists€
	Lists formatted by visual user agents€

	Definition lists: the DL, DT, and DD elements€
	The DIR and MENU elements€

	Tables€
	Table structure€
	The TABLE element€
	Calculating the number of rows and columns in a table€
	Table directionality€

	Table Captions: The CAPTION element€
	Groups of rows: the THEAD, TFOOT, and TBODY elements€
	Optional row group tags€

	Groups of columns: the COLGROUP and COL elements€
	The COLGROUP element€
	The COL element€

	Table rows: The TR element€
	Table cells: The TH and TD elements€
	Labeling cells€
	Cells that span several rows or columns€

	Table formatting by visual user agents€
	Horizontal and vertical alignment€
	Inheritance of alignment specifications€

	Borders and rules€
	Cell margins€

	Some sample tables€
	Sample 1€
	Sample 2€

	Links€
	Path information: the BASE element€
	Links and anchors€
	Definitions of links and anchors€
	Uses of links€
	Making heads and tails of links€
	Elements that define links€
	Elements that define anchors€
	Internationalization and links€

	The A element€
	Syntax of link attribute values€
	Mailto links€
	Nested links€

	Anchors with the id attribute€
	The LINK element€
	Link types€
	Links and external style sheets€
	Links and search engines€

	Inclusions€
	Including an object: the OBJECT element€
	Object initialization: the PARAM element€
	Object declarations and instantiations€
	Object alignment€

	Including an image: the IMG element€
	Image alignment€

	Including an applet: the APPLET element€
	Including HTML in another HTML document€
	Including an image map in an HTML document€
	Client-side image maps€
	Client-side image maps with MAP and AREA€
	Server-side image maps€

	Visual presentation of images, objects, and applets€
	How to specify alternate text€

	Presentation of HTML documents€
	Style Sheets€
	Adding style to HTML€
	Setting the default style sheet language€
	Inline style information€
	Header style information: the STYLE element€
	Media types€

	External style sheets€
	Setting the default named style€

	Inheritance and cascading€
	Hiding the Content of Style Elements from non-conforming User Agents€
	Specifying style through HTTP headers€

	Alignment, font styles, and horizontal rules€
	Formatting€
	Background color€
	Alignment€
	Floating objects€
	Float an object€
	Float text around an object€

	Fonts€
	Font style elements: the TT, I, B, BIG, SMALL, STRIKE, S, and U elements€
	Font modifier elements: FONT and BASEFONT€

	Rules: the HR element€

	Frames€
	Layout of frames€
	The FRAMESET element€
	Rows and columns€
	Nested frame sets€

	The FRAME element€
	Setting the initial document in a frame€
	Decorating a frame€

	Specifying target frame information€
	Setting the default target for links€
	Target semantics€
	Target names€

	Alternate content€
	The NOFRAMES element€

	Inline frames: the IFRAME element€

	Interactive HTML documents€
	Forms€
	The FORM element€
	Controls€
	The INPUT element€
	Input types€
	The ISINDEX element€

	The BUTTON element €
	The SELECT and OPTION elements€
	The TEXTAREA element€
	The LABEL element€
	The FIELDSET and LEGEND elements€

	Giving focus to an element€
	Tabbing navigation€
	Access keys€

	Disabled and read-only elements€
	Disabled elements€
	Read-only elements€

	Form submission€
	Which element values are submitted€

	Scripts€
	Designing documents for user agents that support scripting€
	The SCRIPT element€
	Specifying the scripting language€
	The default scripting language€
	Local declaration of a scripting language€
	References to HTML elements from a script€

	Syntax of script content€
	Intrinsic events€
	Parsing of intrinsic event scripts€

	Dynamic modification of documents€

	Designing documents for user agents that don't support scripting€
	The NOSCRIPT element€
	Commenting out scripts€

	SGML reference information for HTML€
	Document Validation€
	Sample SGML catalog€

	SGML Declaration€
	The Document Character Set€
	Data transfer€

	The SGML Declaration€

	Document Type Definition€
	Named character entities€
	Named entities for ISO 8859-1 characters€
	The list of characters€

	Named entities for symbols, mathematical symbols, and Greek letters€
	The list of characters€

	Named entities for markup-significant and internationalization characters€
	The list of characters€

	References€
	Normative references€
	Informative references€

	Indexes€
	Index of Elements
	Index of Attributes
	Appendixes€
	Changes between HTML 3.2 and HTML 4.0€
	Changes to elements€
	New elements€
	Deprecated elements€
	Obsolete elements€

	Changes to Tables€
	Changes to Forms€

	Performance, Implementation, and Design Notes€
	Notes on helping search engines index your Web site€
	Search robots€
	The robots.txt file€
	Robots and the META element€

	Notes on tables€
	Design rationale€
	Dynamic reformatting€
	Incremental display€
	Structure and presentation€
	Row and column groups€
	Accessibility€

	Recommended Layout Algorithms€
	Fixed Layout Algorithm€
	Autolayout Algorithm€

	 Notes on styles€
	New media types€

	Notes on forms€
	Incremental display€
	Future projects€

	Notes on scripting€
	Reserved syntax for future script macros€
	Current Practice for Script Macros€

	HTML and Organizations †W3C, IETF, ISO‡€

