Radar Measurements

The radar scenario involves a transmitter and a receiver (usually at the same
location) with one or two antennas, a target at range R, and a signal that
travels the round-trip between the radar and the target. The target sometimes
has a velocity relative to the radar, in which case the range rate R is also
measurable (Fig. 1.1).

The transmitted signal is usually an electromagnetic signal (but an acoustic
one is also a possibility). The signal can be described by a carrier sine wave at
frequency f, with modulation of one or more of its parameters—amplitude,
phase, and frequency.

The changes observed in the returned signal can provide information about
the target position and sometimes its character. In simple terms, the delay of
the returned signal yields information on the range. The frequency shift
(Doppler) yields information on the range rate (velocity). The antenna point-
ing direction yielding maximum return strength (or other criteria) provides the
azimuth and elévation of the target relative to the radar, From the progress of
some of these parameters with time, the target’s trajectory can be estimated.

DELAY AND RANGE

In radar the relationship between the delay = and the range R is given by
R=1:C, (1.1)

where C, is the velocity of propagation. The factor of 4 is the result of the
round trip travel time. The propagation velocity is not exactly the speed of
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Figure 1.1 A typical radar scene.

light C (C = 299.7925 m/ps), because radar signals do not propagate in
vacuum but in a real atmosphere. As we will see at the end of this chapter,
they do not propagate in straight lines either. However, a good approxima-

:o%m”a é%p_n: we will generally use, is a straight-line propagation at a constant
sp e

DOPPLER SHIFT AND RANGE RATE

ﬂE.UoE&Q frequency shift will be defined as the difference between the
received frequency and the transmitted frequency. Thus

fo=Ix—fr (1.2)

.anﬁﬁmbm second-order @m,cnﬁm (relativistic, acceleration, ete.) the Doppler
shift is related to the range rate R by

2R
Jys = (1.3)

where the wavelength A is given by

-
-7 (1.4)

. The transmitted frequency of a signal is not a single value, since most
Emnm;m have some bandwidth, For narrow-band signals replacing the trans-
:.Eﬁon_ frequency with the carrier frequency is sufficient, whereas for wide-band
signals more complicated measures, involving Doppler broadening, are neces-
sary. In our text we will usually assume, for a given target velocity, the same
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Doppler shift for the entire signal bandwidth. A proof of (1.3) for a continu-
ous wave (CW) signal is given in Insert 1A.

INSERT 1A Doppler Shift
Consider a transmitted signal whose voltage equation is
pr(£) = sin(2afpt + By) (1A.1)

where ¢, is the phase at ¢ = 0. The signal is reflected from a moving point target
whose range from the radar is given by

R(#) =Ry + R (1A.2)

where R is the range at t =0 and where it was assumed that the acceleration
and higher range derivatives are equal to zero, The signal received back at the
radar, neglecting attenuation, is the one transmitted = seconds earlier—namely,

vp(1) =op(t—1) (1A.3)
or
og( 1) = sin[27fp(t — 7) + ] (1A.4)
where the delay is given by
(1) = le%b (1A.5)

_ Ignoring the change in range during the signal travel time, since usually
R = C, we can use the value of 7 that existed at the time of receiving —namely,
at ¢; hence

T (1A.6)
Substituting (1A.6) in (1A 4) yields

2R R,
v, (1A.7)

vpli) = mmsﬁm&;«i = mﬂ&q_lﬁlﬁ ~ aﬁ?ﬂ + gy

All the terms in the argument that multiply 2#¢ are frequencies. Hence we
define

2R 2R

o= .Ib_,|ﬁ__... =S ﬁ\w,mv
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and rewrite (LA.7) as

R
vp(t) = mETaQq. b fo )t — 331% ity (1A.9)
which leads to a received frequency of
fe=tr+fp (1A.10)

THE RADAR EQUATION

The target’s range, velocity, and bearing can be measured very accurately
when the return signal-to-noise ratio (SNR) is very high. They can be detected
within a certain range and velocity windows, at somewhat lower SNR. The
radar equation is our source of information on the expected return signal and
SNR,

Assume that a radar transmits a pulse with power Py, and seeks the return
from a target at a range R (Fig. 1.2). If the radar transmitting antenna had an
isotropic radiation pattern, then it would have spread the power with spherical
symmetry, and the power flux per unil area at range R would have been

Pr
47R?

Power density =

(4w R2)2 47 R?

Figure 1.2 Power densities in the radar scene.
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If the antenna has a gain G, and it is pointing in the direction of the target,
then the power density at the target area would be multiplied by G. Now
assume that the target reflects back all the power intercepted by its effective
area, and the reflection pattern is isotropic. If the effective area of that
isotropic target is o, then the power that it reflects isotropically is given by

S PrGo
ected power = ——
eflected powe 1ok
Since the power is reflected isotropically, the reflected power density back
at the radar is

P.Go

Reflected power density = ————
(4nR2)

If the radar’s receiving antenna has an effective area A4, then the power
received by the antenna is given by

P,GAc
_,ux = I,.Hl.m AH.uu
(47R?)
In Insert 1B we will show that the relationship between the antenna gain G
and its effective area A is given by

GN
s (1.6)

Inserting (1.6) in (1.5) yields the basic radar equation

PG N

p,=—
' (4r)’R

(1.7)

The radar equation was developed assuming a target with area ¢ and with
the rare quality of an isotropic reflection pattern. Most targels are not
isotropic. So that we may still be able to use the radar equation, we will
replace each real target with an isotropic target and change the area of the
isotropic target until it produces the same return power as the original target.
Thus, o is the area of a target that reflects back isotropically and would have
caused the same return power as the original target.

The o area of a target is called its radar cross section. Usually the physical
area of a real target will be quite different from its o. Furthermore, most
targets exhibit different o’s at different aspect angles and at different frequen-
cies. The next chapter is devoted to the issue of radar cross section. Table 1.1
lists typical values of ¢ for several targets.
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Table 1.1 Typical Values of Radar Cross Section

Target o (m?)
Insect i0°®
Bird 0.m
Small missile 0.1
Man 1
Small aircraft 2
Large fighter 10
Large airliner | 40
Car 100

INSERT 1B Antenna Aperture and Gain

A nonrigorous tesult of the relation between gain and effective aperture will be
reached using two parabolic antennas facing each other. In the parabolic
reflector shown in Fig, 1.3 it is known that if the feeding is done at the focal
point then the wave front is parallel to the vertical line PP, Toward the tilted
direction #, the additional distance of the path from P’ is

P'P" = Dsinf = D (1B.1)
where D is the diameter of the antenna aperture and ¢ is small.

When that additional distance is equal to &, the radiation from the two edges
of the parabola are out of phase and cancel each other, which hints that the

Figure 1.3 Path differences from the antenna aperture edges to a tilted
direction,
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overall radiation in the direction

A

s =
' 2p

(1B.2)

is considerably weaker than at # = 0. We will assume that the radiated power is
evenly distributed within the cone defined by |#] < @, and is zero outside that
cone. Thus, at a distance R from a transmitting parabolic antenna with diameter
Dy, the power is evenly distributed over a circular area whose diameter is
RX/D, (Fig, 1.4). If a receiving parabola with diameter D, is placed at distance
R, then the received power will be

P, D3
S (1B.3)
Py (RA/Dy)
Converting from diameter to area we can rewrite (1B.3) as
P, 16Ad,4, AgA,
e W e (1B.4)
Pr w2(R)N) {RA)

The factor 1.62 is the result of our various simplifying assumptions, The exact
factor is 1. Hence

Py Apdy

2 (RA) )

On the other hand, we showed that the received {and reflected) power by an
area Ay = o is given by

F ApG
e (1B.6)
Pr 4aR
Equating (1B.5) to (1B.6) and dropping the subseript T, we obtain
A s 1B.7
gl = LB

A dipole can provide a check for (1B.7). In a dipole it is well known that
G=15and A = 0.119X* Indeed, 1.5/(47) = 0.119,

P

Another form of the radar equation is the SNR as function of range. In
order to develop this form it will be helpful first to define a signal. Later it will
be shown that the equation is universal for all signals. Let the signal be a train
of coherent RF pulses, at the carrier frequency f, as shown in Fig. 1.5.

A nearly optimal receiver for the detection of the pulse train is shown in
Fig. 1.6. It comprises a narrow-band filter “matched” to the single-pulse
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Figure 1.4 [llumination geometry between two parabolic antennas.
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Figure 1.5 A coherent pulse train.
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Figure 1.6 An optimal receiver for a coherent pulse train.
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width, followed by a synchronous detector and an integrator. The topic of
matched filters will be discussed separately in a later chapter. Here it will
suffice to mention that a bandpass filter with a rectangular response over the
bandwidth f, (in hertz) is a good representative of a matched filter to a single
pulse of duration {,, if the bandwidth is related to the pulse duration as

= (1.8)

The thermal noise power after such a filter is given by

N = FKTyfy= No/fs ﬁbu

where

F 15 the receiver noise figure,

K is Boltzmann’s constant (= 1.38 X 1072 W - 5/°K),

T is the temperature in degrees Kelvin,

N, is the noise (one-sided) spectral power density in watls per hertz.

Having the noise power (1.9) and the signal power (1.7), it is now possible
to write the radar equation in terms of signal-to-noise ratio

PG\

SNR , = T T T
T?qu RNy 1y

(1.10)

SNR , is the signal-to-noise power ratio when only one pulse is returned
from the target. Normally the larget is illuminated for a relatively long period
of time T}, and the number of pulses that can be used is M, where

M =Tfp (1.11)

and where f is the pulse repetition frequency.

The synchronous detector used in the receiver maintains phase information
[through the in-phase (I) and the quadrature (Q) components] and therefore
allows coherent integration of the M pulses. The issue of coherent and
noncoherent integration will be further discussed in the chapter on radar
detection. Here it will suffice to mention that the SNR of M coherently
integrated pulses is M times the SNR of a single pulse; that is,

SNR = M SNR, (1.12)
Noting that the average transmitted power is given by

M

Puye = Pripfp= mﬁwl:mw (1.13)
a1y
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and using it and (1.10) in (1.12) yields

hU}#._mN._mQ M?Hn—

. (1.14)

SNR =

Note that P,uT; is the energy transmitted by the radar during the
illumination time of the target, and it is this energy that determines the SNR
that results from optimal processing of the signal during the entire target
illumination time. .

To show that (1.14) is independent of the type of signal, let us transmit a
CW signal for the entire illumination time. This signal can be treated as one
pulse of duration 7,. We can therefore use (1.10) with the following replace-
ments:

1
SNR,=SNR, Pr=Pas, f5= 7 (1.15)
Fi

which will also yield (1.14).

The illumination time of a point target by a scanning radar is a function of
the antenna scan rate and the antenna beamwidth in the scan plane. The
antenna beamwidth is obviously related to the antenna gain. A simple rela-
tionship can be deduced from realizing that there are 4#7(180 /) = AH_wm.u
square degrees in a sphere. An antenna with 3-dB beamwidths f, and &, in
the two principal planes, radiates into 6,8, square degrees out of a total of
41,253. The antenna efficiency p, is usually about 0.5, Thus

41,253 20,000

G= py = (1.16)
mmm.u\ a Q}q%_\.
where 0, and 8, are in degrees. When #; and 6, are in radians,
4o
~ 1.17
G m:mﬁ_f A )

Another form of the radar equation is suitable for a surveillance radar,
which scans a two-dimensional angular region of § square radians. If the total
scan time is tg, then the target illumination time is given by,

Ouly 41,y
=l Q ity 0G (1.18)
Using (1.18) and (1B.7) in (1.14) yields
Poypdop, i
B (1.19)

4aR*N, Q
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Equations (1.12), (1.14), and (1.19) assumed coherent integration of the
received signal over the entire illumination time. If this is not the case, then
the radar equation should be modified to include an integration loss. The
integration loss will be discussed in more detail in the chapter on radar
detection, Integration loss and antenna efficiency are not the only losses that
should be accounted for in the radar equation. For example, a loss term
should be added because of the erroneous assumption that the radiation
pattern is uniform over the antenna beamwidth. A very practical loss is due to
attenuation and mismatch in the transmission line. A practical discussion of
most loss factors can be found in [1]. [t is customary to include all the losses in
one coefficient L (> 1), which appears in the denominator of the radar
equation. Since L covers also the antenna efficiency, Eq. (1.19) will be
rewritten as

N

SNR = =
4wR*N,L §

(1.20)

The loss term [ should appear also in the other versions of the radar
equation—in particular, Eq. (1.14).

We will conclude the first chapter with a discussion of radar propagation
velocity and direction as they behave in a real atmosphere.

ELECTROMAGNETIC PROPAGATION IN THE REAL ATMOSPHERE

The propagation velocity in any homogeneous medium is given by

Cp=— (1.21)

where # is the refractive index. Since n is very close to onme, it is more
convenient to use N, defined by

N = (n—1)10° (1.22)
A common semiempirical expression for N is

77.6

N
T

e
P+ 4810 — /
h ﬁv (1.23)
where

T is the air temperature in degrees Kelvin,
P is the air pressure in millibars,
e is the water vapor pressure in millibars.
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Table 1.2 Refraction Index as a Function of Height for a Standard Atmosphere

h (km) N Ny — [h/(4a)]10°
0 319 = N - 39
1 27T 279
3 216 201
10 92 =
20 20 —
50 0.2 ==

All three parameters affecting N are usually changing with altitude. At a
given altitude, they also change with the weather conditions. Assuming stan-
dard atmosphere, the average N as function of the altitude 4, is given in Table
1.2.

The last column is an empirical fit for the measured change of N with
altitude (a is the earth radius = 6370 km). The fit is good to an altitude of
about 5 km. This linear model of the refractive index with height is also called
the effective 4 /3 earth radius model and will be described later in this chapter.

Since N changes with altitude, ray propagation will suffer bending unless its
direction is perpendicular to the earth surface. Thus, the antenna’s pointing
direction, based on maximum signal, will not necessarily indicate the correct
geometrical direction to the target. Maximum bending occurs when the radar
looks toward the horizon. It is well known that the apparent sun at sunset is
seen between 0.5° and 1° above its true direction. Tables for the elevation
angle error [2], for a target at a height of 70 km (practically outside the
atmosphere), indicate an elevation error of 0.92° for an initial elevation of 0°,
and an error of 0.24° for an initial elevation of 3°. Exact calculations of the
bending and the elevation angle error involve complicated ray tracing. The
linear model, however, yields relatively simple expressions, which are sum-
marized below, with the geometry as defined in Fig. 1.7.

In Fig. 1.7 the radar is on the surface of the earth at point S, where the
index of refraction is ng. The target is at point 7, at an altitude & above the
spherical earth. The index of refraction n is spehrically stratified and con-
centric with the earth. The trace of the ray from § to T (heavy line) is bent.
The initial elevation angle is #,. The local elevation angle at 7 is 8. The
bending « is the angle between the tangents to the ray at S and at 7. The
elevation angle error ¢ is the angle between the tangent to the ray at S and
the straight line connecting S to T.

We will begin our analysis with two results of geometrical optics. From
Snell’s law for polar coordinates we have

ngacos by = n{a+ h)cost (1.24)
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0]
Figure 1.7 The geometry of radio propagation through the atmosphere.

From Snell’s law and the geometry it can be shown [2] that

da cot &

o . (1.25)
and since n is very close to one,

da g

— = —cot

= co (1.26)

The simplified analysis is based on the linear model of the refractive index
as function of height

h
nB=Hg— — {1.27)

4a
which yields
dn |

e e (1.28)

Using the linear model in (1.24), and bearing in mind that ng = 1, 7 < 1,
we get

cos f 3a

cosf,  fa+h L)
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Equation (1.29) is what gave the linear model its other name— the effective

4/3 earth radivs model. Note that Snell's law (1.24) for an earth with an i
atmosphere that has a constant index of refraction (n = ng), and a radius i
4a/3, would reduce to (1.29). Over 'such an earth, there will be no ray i 5
bending. ‘ riodst
For small 8, Eq. (1.29) becomes # -
2 ., A ﬂ i
6* = b5 ¥ 6 = 1r1ad (1.30) ! =
d W Exponential
Also for small 8, Eq. (1.26) becomes W 3 s
W =, AL 131 |
— = ——, < lra .
dn ¢ (131) w
Using (1.28) and (1.30) in (1.31) and integrating, we obtain “
b dh | | J
a= [ Ve (1.32) ,_ 5 2
0 ha?% + mw\wav : Height (km)
: ) . — Figure 1.8 Ray bendi . height f =
For the special case in which 8, = 0, Eq. (1.32) can be solved explicitly, 4 ol s
yielding,
N 1&! 12 i i (1.33) Our limited discussion of electromagnetic propagation in the real atmo-
eyl o = . MMWMW HMMMM WQ.M. qw.uﬁm %m many MSQ. topics such as more accurate refractive
) ) ) ) i ¢ s, ducting effects, and attenuation by atmospheri
In (1.33) we have obtained an approximate simple expression for the ! rain. The interested reader is referred to [2] and W_. B psemc 1y
bending of a beam pointed toward the horizon. It should be emphasized again -
that many simplifying assumptions were made in order to obtain the simple
expression of (1.33), beginning with the linear model of the refraction index REFERENCES
and ending with a horizontal pointing ray.
A plot of (1.33) (bending as function of height) is given in Fig. 1.8, next to _ 1.1 Merril I. Skolnik, Introduction to Radar Systems, 2nd ed., M i
g ; : ; ? ; ., McGraw-Hil
the direct integration of (1.25) using (1.24) and the linear model given In ; York, 1980. o . G
(1.27). The two curves are indeed very close to each other. 1.2 B. R Bean and E. J. Dutton, Radio Meterology, Dover, New York, 1968
The linear model predicts n < 1 above h = 8 km, which, of course, cannot 1.3 Lamont V. Blake, Radar Range-Perform xm s, i
3 ] u. 5 o  ; & .- 3 HlH i -
be correct. A model that avoids this problem is the exponential model given by sachusetts, 1980. Ay et TR,
N = Nexp(—0.143%) (1.34)
where & is the altitude (in kilometers). A plot of the expected bending as PROBLEMS
function of the target’s height, for the exponential model, is also given in Fig.
1.8. Note that both the linear model and the exponential model, used in Fig. L1 What will be the Doppler frequency when there is target acceleration
1.8, assumed N = 319. Note also that Fig. 1.8 is for a horizontal pointing (namely, R + 0)?
beam—namely, §, = 0. : .
ke 1.2 For the Doppler shift from a moving target if relativistic effects are

The elevation angle error ¢ is different from the bending angle «. An exact
expression for the elevation angle error as function of 8, a, ng, and n is given
in the problems of this chapter. Here we will only point out that

comnsidered, the received frequency is given by

1-R/C
a/l<e<a (1.35) buaﬂm
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For an electromagnetic wave and target radial velocity of 300 m/s,
compare this expression to the simplified one (1.3).

If police radars were using acoustic signals (whose velocity of propa-
gation is 333 m/s), and a car was traveling away from the radar at a
speed of 120 km/h, what would be the measurement error if the
relativistic effect (see Problem 1.2) was ignored?

A radar with antenna gain G, is illuminating a target anienna whose

gain (pointing toward the radar) is G,. A receiver is connected at the

target antenna. Half the power received by the target antenna is

forwarded to the receiver and the other half is reflected back to the

radar.

(a) Find an expression for the ratio between the power received by the
target receiver and the power received by the radar.

(b) What is the ratio, in decibels, when G; = G; = 100 and R/A = 107

Police radar is designed to receive a return from a car, with a radar
cross section o, up to a distance of R, = 50 m. The car is equipped
with a radar detector. The effective area of the detector antenna is ko
(k = 0.001). The other radar parameters arc G = 100 and A = 0.02 m.
Assuming that the car’s radar detector has the same sensitivity as the
radar receiver, at what distance will the radar detector provide &
warning?

The radar parameters are: Pyyg =1 kW, T, = 005s F=5 A=02
m, and G = 100. What is the range from which a target with o = 10 m?
will yield an SNR of 20 dB?

Find the ground distance to the radar horizon from an antenna at
height k. Assume the linear model of the refractive index.

Ny of 319 was obtained for the standard surface parameters: T = 288°K,
P = 1013 mb, and e = 10.2 mb. Find the (separate) effects of the
following practical meteorological changes on N AT =10° AP =10
mb, and Ae = 3 mb.

Prove that the elevation angle error is given by

cosa — sinatand — {n/ng)

tan g = -
(n/ng)tanf, — sine — cos a tand

1.10 Extend Table 1.2 by adding a column for the exponential model.

Cross Section of Radar Targets

A major parameter in the radar equation is the target’s radar cross section (o)
A verbal definition of ¢ was given in Chapter 1. There is some ooﬁn_mmo_w
between o and the size of the target, but other factors such as configuration
aspect angle, and wavelength also affect its value. In this chapter we s_E_

Hmo_ﬁw ﬁ_m»aﬁuﬁE&E, expressions of ¢ for some simple geometrical bodies and
several common statistical behaviors of more complex targets.

SPHERES

JME cross m..onmou o of a sphere of radius @ is shown in Fig. 2.1 as function of
the circumference Aso.aﬁm_.ﬁ& with respect to A). In the optical region (large
spheres) the asymptotic expression is given by

o=mna", A=a (2.1)
For small spheres (Rayleigh region) the asymptotic expression is
o =mna*9(ka)', a<A (2.2)

where

== (2.3)

19
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Figure 2.1 Radar cross section of a sphere.

In between these two regions lies the resonance (Mie) region, in which the
behavior is indeed oscillatory, with a peak of approximately 3.6 at a = A2,
The resonant mode is explained by a creeping wave that travels around the
rear of the sphere and adds constructively or destructively to the specular
reflection from the front of the sphere. Whether the addition is constructive or
destructive depends on the additional distance traveled by the creeping wave,
which is a function of the radius of the sphere.

1t should be noted that because of its symmetrical shape, a sphere exhibits
the same o at all aspect angles, and that o is very well known. Furthermore, in
the optical region o is independent of A. Thus a sphere can serve as a good
calibration device in radar measurements,

The general approximations for the Rayleigh and optical regions are as
follows:

in the Rayleigh region of a rounded smooth object of volume V'

a4y

T

F =

(2.4)
In the optical region of a smooth curved surface normal to the incident

wave, in which a, and a, are the two radii of curvature of the surface,
0 = maa, (2.5)

Setting @, = a, = a in (2.5) will yield (2.1); however, (2.4) differs from (2.2)
in the coefficient, which is 64/9 rather than 9.

PLANAR SURFACES
When a large, smooth surface is placed perpendicular to the range vector from

the radar (i.e., normal incidence), and its area is 4, then its effective aperture,
which intercepts the power flux density, is also A. If that power is reflected
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pmcﬁoum.nm:q then o will be equal to A. But a large smooth surface reflects
most of the power back in the perpendicular direction, with a gain related to
the aperture 4, as was calculated in Insert 1A as follows:

i (2.6)

, d.:..ﬁ the effective cross section of a large, smooth plane in the normal
direction is

474?
X ¢

0=AG= 2aA % > A (2.7)

The question of what is “smooth” will be discussed in Chapter 4. Equation
(2.7) says that o of a large plane is much larger than the area A of that plane
but only at a normal incidence. ,
. ? other than normal incidence the dependence of o on the angle of
incidence ® (measured from the normal), for a square flat plate is given by [1]
as .

4qa* | sin(kasin®) |2
n =
>~ kmm:w@ (2.8)

where « is the length of the side. For a cirenlar flat plate,

ma’ . .
8= 8 [Ji(2kasin®)] (2.9)

Eﬂann a is the radius of the disk and J,(x) is the Bessel function of the first
order.

.Zouﬁm that (2.8) reduces to (2.7) at ® = 0, but drops off rapidly, following
the (sin x)/x shape, with a first null at ® = A/(2«) radians. For a = 102, the
first null occurs at ® = 2.9°. Thus we see that the large backscattering of a flai
_u_m:mn has a pattern that becomes narrower the larger the plate is. When it is
desired to take advantage of this large o at other than normal incidence, it is
possible to use a corner reflector. _

CORNER REFLECTORS

A corner reflector can provide a large cross section over a wide range of aspect
mumﬁmwu A cut along a dihedral corner is shown in Fig. 2.2, in which the
nomam:mﬁ concept is also demonstrated. The ray tracing shows that whatever
the incident angle, after two specular reflections the reflected ray is always
parallel to the incident ray. However, the area thal participates in the
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Figure 2.2 Reflection from a corner.

reflection process and its projection on the plane normal to the incidence are
maximum at a = 45° and drops in either direction. This area is called the
effective area. If the dihedral corner is symmetrical with width a (of each wall)
and height b, then the efective area is given by

Appr = 2absine, 0 <a <45 (2.10)

The cross section is related to the effective area approximately as if it were
the area of a perpendicular large plane [see {2.7)]; hence

o= ——5— (2.11)

Using (2.10) in (2.11) will yield an approximate expression for the cross
section of a dihedral corner reflector; that is,
167a’b?
o= VM
For 45° < & < 90° use 90° — o instead of .
Setting & = 45° in (2.11) will yield the maximum cross section available
from a dihedral corner reflector (see Fig. 2.3a):
8aa?h?
Opax = Vu

sinfr, 0 <o<45° (2.12)

(dihedral) (2.13)

Equation (2.12) ignores the fact that at a = 0 there is normal incidence on
one of the walls of the corner reflector, which should yield the strong, flat plate
reflection rather than the zero reflection predicted by (2.1 2). Furthermore, this
flat plate reflection should extend to small negative «, until the shadowing
effect of the other wall becomes significant. Note also that the fiat plate
reflection blends with the dihedral reflection without a phase {delay) step. A
model suggested in [2] for a square dihedral is

o= (fop + fope) (2.14)
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2 )

(c) (@

Figure 2.3 Corner reflectors: (a) Dihedral 7 ar i
i el e i fa) edral. (b) Triangular trihedral. (c) Square

where
167a*
op = ———sin’a 0<ax<d45°
N = sax= , zero elsewhere
and
4 ¢ .
" 4ma* [ sin(ka sine) \?
= e o
FF A2 . s 20° < & < 45°, zero elsewhere

k,u., plot of (2.14) is given in Fig. 2.4 for a case in which a = 15X, Despite its
simplicity, the model agrees fairly well with measurements.
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Figure 2.4 (Calculated radar cross section of a diedral corner reflector,
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The reflection from a dihedral corner reflector is insensitive to the incidence
angle in only one plane (e.g, azimuth). To extend this quality to the other
plane (e.g., elevation) it is necessary to use a trihedral reflector. There are
several configurations of trihedral corner reflectors. Two are shown in Fig. 2.3.
The triangular trihedral (Fig, 2.3b) has a maximum radar cross section of

4mat

Tax = 5y~ (riangular trihedral) (2.15)

and its angular coverage can be described by a 3-dB drop at about 20° off the
symmetry axis. The square trihedral (Fig. 2.3¢) has a larger maximum cross
section (but narrower angular coverage); that is,

127a*
o =

(square trihedral) (2.16)

where a is defined in Fig. 2.3.

In order to yield complete spherical coverage, at least eight trihedrals are
necessary (Fig. 2.3d). Such a body is called a retroflector. Retroflectors are
used extensively to enhance friendly radar returns.

RADAR CROSS SECTION OF ANTENNAS

Many drivers have noticed the strong reflection from the eyes of a cat caught
in the light beam of their car at night. The same phenomenon makes antennas
strong backscatterers when they face the radar, The backscattering from
antennas is also strongly dependent on the load at the antenna terminals. This
can be explained by the part of the power received by the antenna and either
absorbed in the load, if it is well matched to the antenna impedance, or
reflected back and retransmitted, with some phase and amplitude changes. The
retransmitted field may be constructively or destructively added to the portion
of the field directly reflected from the antenna structure. The ability to affect
the backscattering of antennas by changing their load can be used in several
ways. One use is to mark a specific return relative to other undesired (clutter)
returns by modulating the scatterer using impedance switching. Such mod-
ulated scatterers are used in microwave measurements [3]. Modulated scatterers
are also used for calibration and testing of Doppler radars, by setting the
modulation rafe at the expected Doppler rate. A completely opposite applica-
lion is to impedance-load an antennalike reflector to reduce its radar cross

section,

Here we will deal only with the most basic antenna—the dipole. Dipole
backscattering and the effect of different loading at its center were studied by
Harrington [4] and Harrington and Mautz [5]. They showed that the radar
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cross section of a shori-circuited small dipole of length L and wire radius a is
given by

0.176 M L
a= — %y — <04 (2.17)
1+ 122(kL) °[3In(2L/a) — 7] A
For a small apen-circuited dipole, o is given by
N (kL) £
o i) —z b8 (2.18)

" 962 [In(L/a) — 2177 A
Both dipoles can reach resonance. At resonance the cross section is given by
o = 0.716N (2.19)

The shorted dipole reaches resonance when L = 0.45A, and the open-
circuited dipole reaches resonance when L = 0.87A. Small dipoles of other
lengths can be resonated by loading them with the appropriate inductive
reactance. At resonance they will also exhibit the maximum o given by (2.19).

Comparing (2.19) to (2.18) we note that a thin dipole ( L/a = 150} of length
I = 0.45)\, when its load is switched from a short circuit to an open circuit,
exhibits a drop in its 0/A% from 0.716 down to 0.002, namely a drop of 26 dB.

Finally, note that the dipole gain is G = 1.5, and that 0.716 = 1.5% /. Thus
(2.19) can be written as

NG?

kil

(2.20)

g =

This relationship between the antenna gain and its radar cross section is a
good approximation for other antennas as well.

MULTIPLE SCATTERERS

When several scatterers contribute to the return, they should be added
vectorially, taking into consideration the phase differences. Because o is
related to power, whereas phase is 2 quality of fields or voltages, the quantity
that will be associated with phase and vector sum will be va . In general the
total radar cross section of M scatterers is given by

M j4aR,[
o=|3 o, mx_uk__ y (2.21)
n=1

where o, and R, are, respectively, the cross section of and the range to the
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L

nth individual scatterer. Note that the round-trip distance is accounted for in
.Em exponent by having a 47 rather than a 2« factor. The model in {2.21)
ignores mwmao,.z.ﬁm and multiple reflections between the individual mnng..oa
For a multiple-scatterers target, if the number of scatterers is larger Emm_
two and the spacing is longer than few wavelengths, then the total cross
section becomes strongly dependent on aspect angle and there is a very
complicated scattering pattern. To demonstrate such a pattern we have calcu-
lated Ea total cross section of five scatterers located on a plane, at the
Cartesian nﬁoH&an% 2,0); (1,3); (=1L, 1) (—3,-2) and (0 I,mu .1;0
wavelength is 0.28 (in the same units). To simplify the analysis :6_ S&ﬁasm_
scatterers were chosen to be spheres, which exhibit no dependence of m on the
aspect angle. ._uc_,ﬂ:mﬁnucnﬁ all spheres are of the same size; that is, o - o
Hr.ﬁ.am:_:um two-dimensional pattern of ¢(®)/a, in dB, is mmﬁw in mwm_
2.5. It is clearly a very complicated pattern, with peaks as _va as M2 (14 dB
for M = 5) and very deep nulls (theoretically there can be nulls down o zero).

Furthermore, the angular spaci i
: 7 pacing between peaks and nulls is sometimes
fraction of a degree. B

Figure 2.5 Calculated radar cross section of five point scatterers in a plane,
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Figure 2.6 A histogram of the radar cross section of five points compared to an
exponential probability density function.

Considering that this complicated patiern .Smc_ ted from a rather EEEm.mﬂ.a
idealized target (five equal spheres), it is obvious that any 8&.495 multiple-
scatterers target (e.g., an aircraft) will yield an even more .oo.Bﬁwomﬁma pattern.
For such a target it makes sense to abandon the &mﬁmaﬁim:n approach and to
treat its o as a random variable. Thus we went one mﬁw.wEEmn and cw_oc_m.wow
the histogram of the 360 values of o (@) obtained at 1° Eﬁn?m_m. of ©. ﬁqb__ww
was chosen.) The result is plotted in Fig. w..o. msﬁoandm.om& on it (dotted line)
is an exponential probability density function (PDF) given by

1 —a
= —exp— < o, zero elsewhere (2.22)
plo) = = SXp—> 0<o,
in which @ = Mo, = 5. Here it suffices to point out the mooa_ mm«moﬂ%ﬂ
between the histogram and the exponential PDF. A theoretical justification

will be given in the next section.

FLUCTUATING TARGETS

Complex bodies (e.g., aircraft) have been mapped to yield their radar cross
section in various planes as a function of the aspect angle. However, because
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of their motion relative to the radar, the aspect angle changes, and it may be
more practical to describe them in term of the probability density function
(PDF) of their o. The same is true with rough surfaces, such as the ocean or a
terrain, which change constantly due to either the surface motion or the radar
motion that brings different sections of the surface into view. These kind of
targets are called fluctuating targets, and another parameter of importance in
their regard is the power-frequency spectrum or the autocorrelation function,
which indicates how fast meaningful changes in ¢ occur.

When the target is constructed from many independently positioned
scatterers, the PDF of its ¢ can usually be described by a Rapleigh PDF (for
power), also called exponential PDF.

1 —0
pifa) = —exp—, 0 <o, zeroelsewhere (2.23)
a

where o is the average radar cross section. Since o is linearly related to the
received power, (2.23) is the power version of the Rayleigh PDF. To convert to
the amplitude version we first note that, ignoring constants, the amplitude 4 is
related to power (and hence to o) as

.\Am
i (2.24)
Hence
m:.maw ;
R
p,(4) aajdol|,_, . (2.25)
which yields
A —A?
pafA) = wﬂlmm&u Ve 0=<4 (2.26)
when
A2 =35 (2.27)

INSERT 2A  Multiple-Scatterers Rayleigh Distribution

[n this insert we will present a heuristic analysis that explains the origin of a
Rayleigh PDF when the target is constructed from many independently posi-
tioned scatterers of similar size. Consider that the radar illuminates an arca that
can be described by M reflectors. The common illumination means that the

antenna beam sees all the M reflectors, and, because of the extended duration of
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the transmitted signal, they all contribute to the received signal at a given delay.
The difference in the ranges to the various reflectors is expressed in the relative
phases of the reflected signals, and the differences in their sizes affect the
magnitude of the individually reflected signals. Assume further that because of
the roughness of the target area, the range differences to the various reflectors are
much larger than the signal wavelength, Because of the medulo 2% nature of the
phase term, it is therefore reasonable to assume that the phase of the returns
from the various reflectors will be a random variable with a uniform PDF

between O and 27,
We can express the signal reflected from the target as a sum of M signals with
a common central phase and frequency and with individual amplitudes and

additional phases. Thus
M
sp(1) = Rel [exp( jo,t + jgo)] L ayexp(jdy) (2A.1)
k=1

The sum in (2A.1) describes the complex envelope of the returned signal and
will be termed

M
u=rexp( j8) = 2 aexplity) (2A.2)
k=1
Equation (2A.2) can be written as
M M
u= ) acos(¢) +j ). aysin(dy) (2A.3)
k=1 k=1

We will simplify the assumption that all scatterers contribute more or less
equally by choosing

G, =@ (2A.4)
Thus, (2A.3) reduces to
7 M M
P 2 cos{dy) +Jj Ml sin( ¢, ) = X + /¥ (2A.5)
k=1 k=1

Since ¢, is distributed evenly between 0 and 2w, both cos(d,) and sin(d,)
have a zero mean. For large M, the central limit theorem is satisfied, and both X
and ¥ [defined in (2A.5)] become Gaussian distributions with zero mean and a
variance that is M times the variance of cos(g, ). Thus

2 1, ) M
Var¥ = Var X = M["(27) 'eos’p d = — (2A.6)
0

X and ¥ are uncorrelated since; from (2A.5),

E{XY}=0=E{X}E(Y) (2A.7)

FLUCTUATING TARGETS 3

Being uncorrelated and Gaussian implies that X and ¥ are also independent.
We can now obtain the PDFs of r and @, We note that

ﬁﬂrkﬁ. W P
5l = ; = arctan— (2A.8)

E_u,.w_.n X and Y are independent Gaussian random variables with zero mean and
varance M /2. The joint PDF of X and ¥ is given by

P(X,Y) = p(X)p(Y) = %3 u%%w (2A.9)

yielding (see, e.g., pp. 145-146 and 96 in [6))

; 2¥ —p?
p(r) = a2 &P YR D<e (2A.10)
and
1
pl{8) = g 0<@<2nm (2A.11)
Using the transformations
A=r2, A= Ma* (24.12)
in (2A.10), we get
(a) = S exp o
rla) = Hwném.wl 3 O0<A AM\#HwV

which is the Hﬂ.mﬁnmm_u PDF (for amplitude) appearing in (2.26).

Our analysis assumed equal contributions from all the scatterers (2A.4), but it
can be shown [7] that if the a,’s are samples from a random variable ,S.uE any
PDF, then we still get Rayleigh PDF for the amplitude of the received return.

A plot of p,(A) is given in Fig. 2.7 (curve II). Note that Ay is the most
wa_mmgo A. The average, mean-square, and median values of 4 are, respec-
vely,

A = Ay(my2)"? (2.28)

A* =245 (2.29)
and

A=Az )" (2.30)
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Figure 2.7 Three common PDFs of the signal amplitude from fluctuating targets.

The exponential distribution can be seen as a special case from a distribu-
tion family called chi-square, and described by PDF
k ko\¥ ' —kao

— 0= 2.31)
b~ —pe\s,) " w ’ (

i : 1 = 1. (Recall that 0! = 1.)
Equation (2.26) reduces to {2.23) by choosing _w 1. ( .
bﬂww:mu AEO wmmwnﬁa signal contains a dominant oo.sﬁm_: ooBﬁo_.umE in
addition to a Rayleigh-distributed random ooBmoum_:_ it can be described by
choosing k = 2 in the chi-square PDF, which yields

da 20
=—exp—, 0=<o0 (2.32)
pa(0) = —zexp—

(43
The PDF of the signal amplitude corresponding to py(o) is

94? — 342
= ——exp——7 < 2.33
hwﬂhv|whm@uﬁ@ Nh.w 3 0<4 A v
where A is related to o as in (2.24). Ps(A) is plotted in Fig. 2.7 as oE.émmE,
with a most probable value 4, = 2. Note that the _maam: value of 4 is
Ag(3m/8)'/%, and the mean-square value of 4 is (4/3) 45 .
As was indicated before, the rate of the fluctuations is also of importance.
However, instead of getting into the fine details of the autocorrelation func-

FLUCTUATING TARGETS 33

Table 2.1 Classification of Fluctuating Targets

Case k in Eq. (231} Fluctuations Rate
Swerling | k=1 (Rayleigh) Scan-to-scan
Swerling 1| k=1 (Rayleigh) Pulse-to-pulse
Swerling 111 k = 2 (Dominant + Rayleigh) Scan-to-scan
Swerling IV k = 2 (Dominant + Rayleigh) Pulse-to-pulse

tion, it is customary to divide the rate of change into two categories: (a) where
there are no changes in the amplitude of all the pulses in a train of pulses
(usually the pulses received in one scan of the radar antenna over the target),
but that amplitude is a single random variable with one of the PDFs
mentioned above; (b) where the amplitude of each pulse in the train is a
statistically independent random variable with the same PDF. The first case is
called “scan-to-scan fluctuating target”, whereas the second case is called
“pulse-to-pulse fluctuating target”.

In addition to the amplitude, we can add an “incoherency” restriction on
the initial phase of each pulse—namely, that in both cases the initial phase of
each pulse is a statistically independenf random variable with a uniform PDF.
(It is unlikely that the initial phase will remain constant, even when the
fluctuations rate is slow.)

So far we have defined two PDFs and two rates of fluctuations, which can
vield four combinations. These combinations were studied extensively by
Swerling and are named after him, as shown i Table 2.1.

Recently there have been other distributions that were found to fit some
measured returns better, particularly sea clutter and rain clouds. For example,
the Rayleigh PDF given in (2.26) can be considered to be a special case of a
more general family called Weibull PDF, given by

peld) = —{—= expl —

Qx_nL I\_.n
Lm B

0<4, 0<B, 0<C (2.34)

in which A is the signal amplitude, B is a scale parameter, and C is called a
shape parameter. Setting C =2 and B?= 243 in (2.34) will yield (2.26).
However, some sea clutter and cloud return measurements yielded better fits
when C was smaller than 2, and typically between 1.2 and 2. Tt can easily be
shown that the most probable amplitude of the Weibull PDF is given by

1 \€
A= B|1 = — 2.35
The mean value is given by

A= BT'|1 + .m AMumv
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where I'( ) is the gamma function. The median value is given by
Ay = B(In2)"¢ (2.37)

The mean-square value is given by

= 2
A*= BT(1+ = (2.38)

and the variance by

4 - 7 : (2.39)
Vard = B HH,__.N|~ g+m :

Another interesting feature of the Weibull PDF is the fact that the w_ﬁ:u of
the power (o) that yields the Weibull PDF of the amplitude ( .\: is a.mo
Weibull and has the same form but different constants. Thus, replacing 4 with
o and setting C =1 and B =7 in (2.34) will yield (2.23), which is the
Rayleigh PDF for power. S .

A plot of p.(A4), according to (2.34), appears as curve | in Fig, 2.7, The
shape parameter was chosen as C = 1.5, and B was then nm_n:_mﬂma (B =
1.4086) in order to vield the same mean-square value as the Rayleigh PDF
{curve II). ,

A useful feature of the Weibull PDF is the fact that its constants can be
determined from the straight line

Y=CX-CliB (2.40)
where
X=1In4 (2.41)
and
¥= iLbT s ﬁié %& (2.42)

Note that the integration is performed on the measured PDF.

Results of measurements [8] of sea clutter at low grazing mnmpmmu gﬂzwau
0.5° and 0.72°, for sea state 3 reveal an excellent fit to a straight line, which
confirms that a Weibull PDF is a good model for the measured sea clutter.
The slope of the straight line yields (for this case of sea clutter) a shape factor
C = 1.585. .

Another PDF sometimes used to fit sea clutter data is the log-normal PDF

1 ~(In 4 - a)’
T A g

pa(4) (2.43)
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The log-normal PDF obtained its name from the fact that if In 4 is
considered to be the variable

Y=1InA (2.44)
then p(Y) is a normal PDF with a mean & and a standard deviation B. Like
Weibull PDF, log-normal PDF has the same form for the PDFs of the

amplitude 4 and the power o. Clutter sea return of high-resolution radar
showed very good fit to the following representation of a log-normal PDF of ¢

-— 1 _— - TBA 0/0y v_p
Ba(2m)'/? 28*
where o, is the median radar cross section, and £ is the standard deviation of
In(a/o,,).

With regard to the log-normal PDF, it is easy to show that the relations

between the average, the most probable, and the median value of o are simple
functions of 8;

pi(0) = (2.45)

= 2
a
— = oxv_m| (2.46)
Far 2
and
o ~ 2
— —exp i (2.47)
Our 2

We have by no means exhausted the discussion of different PDFs for the
enormous variety of fluctuating radar targets, Such PDFs as I', K, Rician are
also used. Describing the target statistics faithfully becomes very important
when techniques of automatic threshold adjustment are used, which are called
constant false-alarm rate (CFAR). Chapter 12 covers this important concepl.

The discussion on fluctuating targets referred to complex targets, as well as
ground and sea returns, which were termed clutter. Only the statistical
qualitites of clutter were discussed. Chapter 4, dedicated to clutter, will cover
other concepts that affect the average a of clutter, such as incident angle, type
of illumination, polarity, type of terrain, and roughness.
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PROBLEMS

2.1 Two metal spheres, one with radius a and the other with radius 24, act
as a target for a radar at wavelength A (a > A). The spheres are spaced
more than several wavelengths apart. The total radar cross section of the
two spheres ¢ is changing with aspect angle. Find the 1atio o444/ 0N
(Ignore shadowing effects.)

2.2 Draw an arbitrary wavefront (perpendicular to the propagating rays) in
front of a cut of a corner reflector (Fig. 2.2), and prove that the total path
length between the two crossings of that wavefront by any ray is a
constant equal to twice the shortest distance between the wavefront and
the vertex of the corner reflector.

2.3 Show that the eflective area of a dihedral comer reflector is

Agpp = 2ab sina, 0<a=x<45°
where ¢ and b are as defined in Fig. 2.3a.

2.4 What will be the angular spacing between the incident and reflected rays
if the corner of a dihedral reflector has an angle of 90° + §7?

2.5 What is the angle of symmetry of a trihedral corner reflector?

2.6 Show that the average, mean-square, and median values of the Rayleigh
PDF (for amplitude) are

A=A,(n/2)"?, A2=24%, A, = Ay(In4)""?

2.7 Find the average, mean-square, and median values of ps(4) (dominant
+ Rayleigh).

2.8 The median o is easier to measure than the average g, because it does not

require linear receivers. (The median is the value that is exceeded half the
time.) Find the ratio o/0,, for a Rayleigh distribution.
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