

baudrate ()
baudrate returns the output speed of the terminal. The
number returned is the integer baud rate, for example, 9600,
rather than a table index such as B 9600.

erasechar ()
The erase character chosen by the user is returned. This is the
character typed by the user to erase the character just typed.

killchar ()
The line-kill character chosen by the user is returned. This is the
character typed by the user to abort the entire line being typed.

flushinp ()
This function throws away any typeahead that has been typed by
the user and has not yet been read by the program.

3.13 Delays
The functions described here are highly unportable, but are often
needed by programs that use curses, especially real-time response
programs. Some of these functions require a particular operating
system or a modification to the operating system to work. In all cases,
the routine compiles and returns an error status if the requested action
is not possible. It is recommended that you avoid use of these
functions if possible.

draino (ms)

The program is suspended until the output queue has drained
enough to complete in ms additional milliseconds. Thus,

draino(50)

at 1200 baud would pause until there are no more than six
characters in the output queue, because it would take 50
milliseconds to output the additional six characters. The purpose
of this routine is to keep the program (and thus the keyboard)
from getting ahead of the screen. If the operating system does
not support the ioctls needed to implement draino, the value
ERR is returned; otherwise, OK is returned.

napms (ms)

This function suspends the program for ms milliseconds. It is
similar to sleep except with higher resolution. The resolution

curses Reference 24-33

actually provided varies with the facilities available in the
operating system, and often a change to the operating system is
necessary to produce good results. If resolution of at least .1
second is not possible, the routine rounds to the next higher
second, calls sleep, and returns ERR. Otherwise, the value OK

is returned. Often the resolution provided is l/60th second.

3.14 Lower-level functions
The functions described here are provided for programs not needing
the screen optimization capabilities of curses. Programs are
discouraged from working at this level, because they must handle
various glitches in certain terminals. However, a program can be
smaller if it only brings in the low-level routines.

3.14.1 Cursor motion

mvcur (oldrow, oldcol, newrow, newcol)
This routine optimally moves the cursor from (oldrow, oldcol) to
(newrow, newcol). The user program is expected to keep track
of the current cursor position. Note that unless a full screen
image is kept, curses will have to make pessimistic
assumptions, sometimes resulting in less than optimal cursor
motion. For example, moving the cursor a few spaces to the
right can be done by transmitting the characters being moved
over, but if curses does not have access to the screen image, it
does not know what these characters are.

3.14.2 terminfo level
These routines are called by low-level programs that need access to
specific capabilities of terminfo. A program working at this level
should include both <curses. h> and <term. h>, in that order.
After a call to set upterm, the capabilities will be available with
macro names defined in <term. h>. See terminfo(4) for a detailed
description of the capabilities.

Boolean-valued capabilities will have the value 1 if the capability is
present, 0 if it is not. Numeric capabilities have the value -1 if the
capability is missing, and have a value at least 0 if it is present. String
capabilities (both those with and those without parameters) have the
value NULL if the capability is missing, and otherwise have type

24-34 AlUX Programming Languages and Tools, Volume 2

char *
and point to a character string containing the capability. The special
character codes involving the \ and ... characters (such as \ r for
RETURN, or ... A for CONfROL-a) are translated into the appropriate
ASCII characters. Padding information (of the fonn $<time» and
parameter information (beginning with %) are left uninterpreted at this
stage. The routine tputs interprets padding information, and tparm
interprets parameter information.

If the program needs to handle only one terminal, the definition
-DS INGLE can be passed to the C compiler, resulting in static
references to capabilities instead of dynamic references. This can
result in smaller code, but prevents use of more than one terminal at a
time. Very few programs use more than one terminal, so almost all
programs can use this flag.

setupterm <term,filenum, errret)
This routine is called to initialize a terminal. term is the
character string representing the name of the terminal being used.
filenum is the NUX file descriptor of the terminal being used for
output. errret is a pointer to an integer, in which a success or
failure indication is returned. The values returned can be 1 (all is
well), ° (no such tenninal), or -1 (some problem locating the
terminfo data base).

The value of term can be given as 0, which causes the value of
TERM in the environment to be used. The errret pointer can also
be given as 0, meaning no error code is wanted. If errret is
defaulted, and something goes wrong, setuptermprints an
appropriate error message and exits, rather than returning. Thus,
a simple program can call set upterm < 0 , 1, 0) and not worry
about initialization errors.

If the variable TERMINFO is set in the environment to a
pathname, set upterm checks for a compiled terminf 0

description of the terminal under that path, before
checking /usr / lib/terminfo. Otherwise, only
/usr / lib/terminfo is checked.

set upterm checks the TTY driver mode bits, usingfilenum,
and changes any that might prevent the correct operation of other

curses Reference 24-35

low-level routines. Currently, the mode that expands tabs into
spaces is disabled, because the tab character is sometimes used
for different functions by different terminals. (Some terminals
use it to move right one space. Others use it to address the cursor
to row or column 9.) If the system is expanding tabs,
setupterm removes the definition of the tab and backtab
functions, making the assumption that because the user is not
using hardware tabs, they may not be properly set in the terminal.
Other system-dependent changes, such as disabling a virtual
terminal driver, may be made here.

As a side effect, set upterm initializes the global variable
ttytype, which is an array of characters, to the value of the list
of names for the terminal. This list comes from the beginning of
the terminfo description.

After the call to setupterm, the global variable cur_term is
set to point to the current structure of terminal capabilities. By
calling setupterm for each terminal, and saving and restoring
cur_term, it is possible for a program to use two or more
terminals at once.

The mode that turns newlines into "carriage return-line feed" on
output is not disabled. Programs that use cu r so r _down or
scroll_forward should avoid these capabilities if their value
is line feed unless they disable this mode. setuptermcalls
reset yrog_ mode after any changes it makes.

defyrog_mode ()
def_shell_mode ()
resetyrog_mode()
reset_shell~ode()

These routines can be used to change the TTY modes between
the two states: shell (the mode they were in before the program
was started) and program (the mode needed by the program).
defyrog_mode saves the current terminal mode as program
mode. setuptermand initscr call def_shell_mode
automatically. resetyrog_mode puts the terminal into
program mode, and reset_sheIl_mode puts the terminal
into normal mode. A typical calling sequence is for a program to
call initscr (or setupterm if a terminfo-Ievel program),

24-36 A/UX Programming Languages and Tools, Volume 2

then to set the desired program mode by calling routines such as
cbreak and noecho, and then to call def yrogyode to
save the current state. Before a shell escape or CONTROL-z
suspension, the program should call reset_shell_mode, to
restore normal mode for the shell. Then, when the program
resumes, it should call reset yrog_ mode. Also, all
programs must call reset_shell_mode before they exit.
(The higher level routine endwin automatically calls
reset _ shell_mode.)

Normal mode is stored in

cur_term->Ottyb,

and program mode is in

cur_term->Nttyb

These structures are both of type SGTTYB (which varies
depending on the system). Currently the possible types are

struct sgttyb

(on some other systems) and

struct termio

(on this version of the A/UX system). def yrog_ mode
should be called to save the current state in Nt t yb.

vidputs (newmode, pute)
newmode is any combination of attributes, defined in
<curses. h>. putc is a putchar-like function. The proper
string to put the terminal in the given video mode is generated.
The previous mode is remembered by this routine. The result
characters are passed through putc.

vidattr (newmode)
The proper string to put the terminal in the given video mode is
output to stdout .

tparm (instring, pJ , p2, p3, p4, p5, p6, p7, pB, p9)
tparm is used to instantiate a parameterized string. The
character string returned has the given parameters applied, and is
suitable for t pu t s. Up to nine parameters can be passed, in

curses Reference 24-37

addition to the parameterized string.

tputs (cp, affcnt, outc)
A string capability, possibly containing padding information, is
processed. Enough padding characters to delay for the specified
time replace the padding specification, and the resulting string is
passed, one character at a time, to the routine outc, which should
expect one character parameter. (This routine often just calls
putchar.) cp is the capability string. affcnt is the number of
units affected by the capability, which varies with the particular
capability. (For example, the affcnt for insert_line is the
number of lines below the inserted line on the screen, that is, the
number of lines that will have to be moved by the terminal.)
affcnt is used by the padding information of some terminals as a
multiplication factor. If the capability does not have a factor, the
value 1 should be passed.

putp (str)

This is a convenient function to output a capability with no
affcnt. The string is output to putchar with an affcnt of 1. It
can be used in simple applications that do not need to process the
output of tputs.

delay_output(~)

A delay is inserted into the output stream for the given number of
milliseconds. The current implementation inserts sufficient pad
characters for the delay. This should not be used in place of a
high-resolution sleep, but rather for delay effects in the output.
Due to buffering in the system, it is unlikely that this call will
result in the process actually sleeping. Because large numbers of
pad characters can be generated, it is recommended that ~ not
exceed 500.

4. Operation details
These paragraphs describe many of the details of how the curses and
terminfo package operates.

4.1 Insert and delete line and character
The algorithm used by curses takes into account insert and delete
line and character functions, if available, in the terminal. Calling the
routine

24-38 AlUX Programming Languages and Tools, Volume 2

idlok(stdscr, TRUE);

enables insert/delete line. By defaultt curses does not use
insert/delete line. This was not done for performance reasonst because
there is no speed penalty involved. Rathert experience has shown that
some programs do not need this facility, and that if curses uses
insert/delete line, the result on the screen can be visually annoying.
Many simple programs using curses do not need this, so the default
is to avoid insert/delete line. Insert/delete character is always
considered.

4.2 Additional terminals
cur s e s will work even if absolute cursor addressing is not possible,
as long as the cursor can be moved from any location to any other
location. It considers local motions, parameterized motions, home, and
carriage return.

curses is aimed at full-duplex, alphanumeric, video terminals. No
attempt is made to handle half-duplex, synchronous, hard copy, or bit­
mapped terminals. Bit-mapped terminals can be handled by
programming the bit-mapped terminal to emulate an ordinary
alphanumeric terminal. This does not take advantage of the bit-map
capabilities, but it is the fundamental nature of curses to deal with
alphanumeric terminals.

The curses package handles terminals with the "magic cookie
glitch" in their video attributes. The term "magic cookie" means that
a change in video attributes is implemented by storing a magic cookie
in a location on the screen. This cookie takes up a spacet preventing an
exact implementation of what the programmer wanted. curses takes
the extra space into account, and moves part of the line to the right, as
necessary. Advantage is taken of existing spaces, but in some cases,
this unavoidably results in losing text from the right edge of the screen.

4.3 Multiple terminals
Some applications need to display text on more than one terminal,
controlled by the same process. Even if the terminals are of different
typeSt curses can handle this.

All information about the current terminal is kept in a global variable

curses Reference 24-39

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler
will accept declarations of variables that are pointers. The user
program should declare one screen pointer variable for each terminal it
wishes to handle. The routine

struct screen *newterm (type ,fd)

sets up a new terminal of the given terminal type, which does output on
file descriptorfd. A call to initscr is essentially

newterm(getenv(nTERMn),stdout)

A program wishing to use more than one terminal should use
newterm for each terminal and save the value returned as a reference
to that terminal.

To switch to a different terminal, call

set_term (term)

The old value of SP is returned. The programmer should not assign
directly to SP because certain other global variables must also be
changed.

All curses routines always affect the current terminal. To handle
several terminals, switch to each one in turn with set_term, and then
access it. Each terminal must be set up with newterm, and closed
down with endwin.

4.4 Video attributes
Video attributes can be displayed in any combination on terminals with
this capability. They are treated as an extension of the standout
capability, which is still present.

Each character position on the screen has 16 bits of information
associated with it. Seven of these bits are the character to be displayed,
leaving separate bits for nine video attributes. These bits are used for
standout, underline, reverse video, blink, dim, bold, blank, protect, and
alternate character set. Standout is taken to be whatever highlighting
works best on the terminal, and should be used by any program that
does not need specific or combined attributes. Underlining, reverse
video, blink, dim, and bold are the usual video attributes. Blank means

24-40 AlUX Programming Languages and Tools, Volume 2

that the character is displayed as a space, for security reasons.
Protected and alternate character set depend on the particular terminal.
The use of these last three bits is subject to change and not
recommended. Note also that not all terminals implement all
attributes-in particular, no current terminal implements both dim and
bold.

The routines to use these attributes include

attrset (attrs)

attron (attrs)

attroff (attrs)

standout ()

standend ()

wattrset (win, attrs)

wattron (win, attrs)

wattroff (win, attrs)

wstandout (win)
wstandend (win)

Attributes, if given, can be any combination of

A STANDOUT
A UNDERLINE

A REVERSE

A BLINK
A DIM
A BOLD

A INVIS

A PROTECT

A ALTCHARSET

These constants, defined in curses. h, can be combined with the C
language OR operator (I) to get multiple attributes.

attrset(attrs)

attron (attrs)

attroff (attrs)

standout ()

standend ()

curses Reference

Sets the current attributes to the given attrs

Turns on the given attrs in addition to any
attributes that are already on

Turns off the given attrs, without affecting
any others

Equivalent to

attron(A_STANDOUT)

attrset(A_NORMAL)

24-41

If the particular tenninal does not have the particular attribute or
combination requested, curses will attempt to use some other
attribute in its place. If the tenninal has no highlighting at all, all
attributes will be ignored.

4.5 Special keys
Many tenninals have special keys, such as arrow keys, keys to erase
the screen or insert or delete text, and keys intended for user functions.
The particular sequences these tenninals send differ from tenninal to
terminal. curses allows the programmer to handle these keys.

A program using special keys should tum on the keypad by calling

keypad (stdscr, TRUE)

at initialization. This causes special characters to be passed through to
the program by the function getch. These keys have constants that
are listed in the section on "Input" above. They have values starting
at 0401, so they should not be stored in a char variable, as significant
bits will be lost.

A program using special keys should avoid using the ESCAPE key,
because most sequences start with escape, creating an ambiguity.
curses will set a I-second alarm to deal with this ambiguity, which
will cause delayed response to the ESCAPE key. It is a good idea to
avoid escape in any case, since there is eventually pressure for nearly
any screen-oriented program to accept arrow-key input.

4.6 Scrolling region
There is a programmer-accessible scrolling region. Nonnally, the
scrolling region is set to the entire window, but the calls

setscrreg (top, bot)
wsetscrreg (win, top, bot)

set the scrolling region for stdscr or the given window to any
coinbination of top and bottom margins. When scrolling past the
bottom margin of the scrolling region, the lines in the region move up
one line, destroying the top line of the region. If scrolling has been
enabled with scrollok, scrolling takes place only within that
window. Note that the scrolling region is a software feature, and only
causes a window data structure to scroll. This mayor may not translate
to use of the hardware scrolling-region feature of a tenninal or of

24-42 AlUX Programming Languages and Tools, Volume 2

insert/delete line; some "intelligent" terminals perform these
operations rather than being controlled directly by the software.

4.7 Mini-curses
curses copies from the current window to an internal screen image
for every call to refresh. If the programmer is interested only in
screen output optimization and does not want the windowing or input
functions, an interface to the lower-level routines is available. This
will make the program somewhat smaller and faster. The interface is a
subset of full curses, so that conversion between the levels is not
necessary to switch from mini-curses to full curses.

The following functions of curses and terminfo are available to
the user of mini-curses:

addch (ch) addstr (str) attroff (attrs)

attron (attrs) ttrset (at) clear ()
erase () initscr move (y,x)
mvaddch (y, x, ch) mvaddstr (y, x, str) newterm
refresh () standend() standout ()

The following functions of curses and terminfo are not available
to the user of mini-curses:

box clrtobot clrtoeol
delch deleteln delwin
getch getstrs inch
insch insert In longname
makenew mvdelch mvgetch
mvgetstr mvinch mvinsch
mvprintw mvscanw mvwaddch
mvwaddstr mvwdelch mvwgetch
mvwgetstr mvwin mvwinch
mvwinsch mvwprintw mvwscanw
newwin overlay overwrite
printw putp scanw
scroll setscrreg subwin
touchwin vidattr waddch
waddstr wclear wclrtobot
wclrtoeol wdelch wdeleteln

curses Reference 24-43

werase
winsch
wprintw
wsetscrreg

wgetch
winsertln
wrefresh

wgetstr
wmove
wscanw

The subset mainly requires the programmer to avoid use of more than
the one-window stdscr. Thus, all functions beginning with w are
generally undefined. Certain high-level functions that are convenient
but not essential are also not available, including printw and scanw.
Also, the input routine getch cannot be used with mini-curses.
Features implemented at a low level, such as use of hardware
insert/delete line and video attributes, are available in both versions.
Also, mode setting routines such as crmode and noecho are allowed.

To access mini-curses, add -DMINICURSES to the CFLAGS in the
makefile. If routines are requested that are not in the subset, the loader
will print error messages such as

Undefined:
~getch

m waddch

to tell you that the routines getch and waddch were used but are not
available in the subset. Because the preprocessor is involved in the
implementation of mini-curses, the entire program must be
recompiled when changing from one version to the other.

4.8 TTY mode functions
In addition to the save/restore routines savetty and resetty,
standard routines are available for going into and out of normal TTY
mode. These routines are reset term, which puts the terminal back
in the mode it was in when curses was started; fixterm, which
undoes the effects of resetterm, that is, restores the "current
curses mode"; and saveterm, which saves the current state to be
used by fixterm. endwin automatically calls reset term, and the
routine to handle CONIROL-z (on other systems that have process
control) also uses resettermand fixterm. Programmers should
use these routines before and after shell escapes, and also if they write
their own routine to handle CONTROL-z. These routines are also
available at the terminfo level.

24-44 A/UX Programming Languages and Tools, Volume 2

4.9 Typeahead check
If the user types something during an update, the update stops, pending
a future update. This is useful when the user hits several keys, each of
which causes a good deal of output. For example, in a screen editor, if
the user presses the "forward screen" key, which draws the next
screenful of text, several times rapidly, rather than drawing several
screens of text, the updates are cut short, and only the last screenful is
actually displayed. This feature is automatic and cannot be disabled.

4.10 qetstr
No matter what the setting of the stty echo is, strings typed in here are
echoed at the current cursor location. The user's erase and kill
characters are understood and handled. This makes it unnecessary for
an interactive program to deal with erase, kill, and echoing when the
user is typing a line of text.

4.11 l.onqname
The longname function does not need any arguments. It returns a
pointer to a static area containing the actual long name of the terminal.

4.12 nodelay mode
The call

nodelay(stdscr, TRUE)

puts the terminal in nodelay mode. While in this mode, any call to
ge t ch returns -1 if there is nothing waiting to be read immediately.
This is useful for writing programs requiring "real-time" behavior,
where the users watch action on the screen and press a key when they
want something to happen. For example, the cursor can be moving
across the screen, in real time. When it reaches a certain point, the user
can press an arrow key to change direction at that point.

4.13 Portability
Several useful routines are provided to improve portability. The
implementation of these routines is different from system to system,
and the differences can be isolated from the user program by including
them in curses.

erasechar ()
Returns the character that erases one character.

curses Reference 24-45

killchar ()
Returns the character that kills the entire input line.

baudrate ()
Returns the current baud rate as an integer. (For example, at
9600 baud, the integer 9600 is returned, not the value B 9 60 0

from <sgtty. h>.)

flushinp ()
Causes all typeahead to be thrown away.

24-46 A/UX Programming Languages and Tools, Volume 2

5. Example program: scatter
/*
* scatter: this program takes the first
* screenful of lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS]i

main ()
{

register int row, COli

register char Ci
int char_count=Oi
long ti
char buf[BUFSIZ]i

initscr () i

/* Screen array */

for (row=Oirow<MAXLINESi row++)
for (col=Oicol<MAXCOLSicol++)

s [row] [col] =' , i

row = Oi
/* Read screen in */
while ((c=getchar(» != EOF && row < LINES) {

if (c ! = ' \n') {
/* Place char in screen array */
s[row] [col++] = Ci
if(c !=' ')

char_count++i
else {

col=O;
row++i

time(&t)i /* Seed random number generator */

curses Reference 24-47

srand((int) (t&0177777L»;

while (char_count) {
row=rand() % LINES;
col=(rand() »2) % eOLS;
if(s[row] [col] != , ')
{

move (row, col);
addch(s[row] [col]);
s[row] [col]=EOF;
char_count--;
refresh();

endwin () ;
exit(O);

24-48 A/UX Programming Languages and Tools, Volume 2

6. Example program: show
/*
* The show program pages through
* a file, showing one full screen each
* time the user presses the space bar
*/

#include <curses.h>
#include <signal.h>

main (argc, argv)
int argc;
char *argv [] ;
{

FILE *fp;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if(argc != 2)
{

fprintf(stderr,"usage: %s file\n", argv[O]);
exit(l);

if ((fp=fopen (argv [1] , "r"))
{

perror(argv[l]);
exit(2);

signal (SIGINT, done);

initscr () ;
noecho();
cbreak();
nonl () ;
idlok(stdscr, TRUE);

while (1)
{

move(O,O);

NULL)

for(line=O; line<LINES; line++)
{

if (fgets (linebuf, sizeof linebuf, fp)

curses Reference

NULL)

24-49

void
done ()
{

clrtobot () ;
done () ;

move (line, 0);
printw("%s", linebuf);

refresh () ;
if (getch () , q')
done () ;

move (LINES-l, 0);
clrtoeol();
refresh () ;
endwin ();
exit(O);

24-50 A/UX Programming Languages and Tools, Volume 2

7. Example program: highlight
/*

* highlight: a program to turn \U, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <curses.h>

main (argc, argv)
char **argv;
{

FILE *fp;
int c, c2;

if (argc ! = 2) {
fprintf(stderr, "Usage: highlight file\n");
exit(l);

fp = fopen(argv[l] , "r");
if (fp == NULL) {

perror(argv[l]);
exit(2);

initscr 0 ;
scrollok(stdscr, TRUE);

for (;;) {
c = getc(fp);
if (c == EOF)

break;
if (c == '\\')

c2 = getc (fp) ;
switch (c2) {
case'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

curses Reference 24-51

case ' N' :

attrset(O);
continue;

addch(c);
addch(c2);
}

else
addch (c) ;

fclose(fp);
refresh();
endwin();
exit(O);

24-52 A/UX Programming Languages and Tools, Volume 2

8. Example program: window
/*

* This program shows the use of mUltiple windows.
* The main display is kept in stdscr.
* When the user temporarily wants to put
* something else on the screen,
* a new window is created covering
* part of the screen.
*/

#include <curses.h>

WINDOW *cmdwin;

main()
{

int i, c;
char buf[120);

initscr () ;
nonl () ;
noecho () ;
cbreak();

/* top 3 lines */
cmdwin = newwin(3, eOLS, 0, 0);
for (i=O; i<LINES; i++)

mvprintw(i, 0, "This is line %d of stdscr", i);

for (;;) {
refresh () ;
c = getch ();
switch (c) {
case 'c': /* Enter command from keyboard */

werase(cmdwin);
wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, 0);
for (i=O; i<eOLS; i++)
waddch(cmdwin, '-');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf};

curses Reference 24-53

24-54

touchwin(stdscr);
/*
* The command is now in buf.
* It should be processed here.
*/
break;

case ' q' :
endwin();
exit(O);

}

A/UX Programming Languages and Tools, Volume 2

9. Example program: two
/*

* The two program pages through a file,
* showing one page to the first terminal and
* the next page to the second terminal
* It then waits for a space to be typed on
* either terminal, and shows the next
* page to the terminal typing the space.
*/

#include <curses.h>
#include <signal.h>

struct screen *me, *you;
struct screen *set_term();

FILE *fp, *fpyou;
char linebuf[512];

main (argc, argv)
char **argv;
{

int done () ;
int c;

if (argc != 4) {
fprintf(stderr,
"Usage: two othertty otherttytype inputfile\n");
exit(l);

fp = fopen(argv[3] , "r");
fpyou = fopen (argv [1], "w+");
signal (SIGINT, done);
/* die gracefully */

me = newterm (getenv (" TERM"), stdout);
/* initialize my tty */
you = newterm(argv[2] , fpyou);
/* Initialize his terminal */

/* Set modes for my terminal */
set_term (me) ;

curses Reference 24-55

noecho (); /* turn off tty echo
cbreak(); /* enter cbreak mode
nonl () ; /* Allow linefeed */
nodelay(stdscr,TRUE); /* No hang on

/* Set modes for other terminal */;
set_term (you)
noecho 0;
cbreak();
nonl () ;
nodelay(stdscr,TRUE);

input

/* Dump first screenful on my terminal */
dump~age(me);

/* Dump second screenful on his terminal */
dump~age(you);

/* for each screenful */
for (;;) {

set_term(me);
c = getch () ;
/* wait for user to read it */)
if (c == ' q'
done () ;
if (c == ' ')
dump_page (me) ;

set_term (you) ;
c = getch ();
/* wait for user to read it */
if (c == 'q')
done () ;
if (c == ' ')
dump_page(you);
sleep(l);

dump_page (term)
struct screen *term;

*/
*/

*/

24-56 A/UX Programming Languages and Tools, Volume 2

int line;

set_term (term) ;
move (0, 0);
for (line=O; line<LINES-l; line++) {

if (fgets(linebuf, sizeof linebuf, fd)
{

clrtobot();
done () ;
}

mvprintw(line, 0, "%S", linebuf);

standout () ;
mvprintw(LINES-l, 0, "--More--");
standend () ;
refresh(); /* sync screen */

NULL)

/*
* Clean up and exit.
*/

done ()
{

/* Clean up first terminal */
set_term (you) ;
move(LINES-l,O);
clrtoeol();
refresh () ;
endwin ();

/*
/*
/*
/*

to lower left corner
clear bottom line */
flush out everything
curses cleanup */

/* Clean up second terminal */
set_term (me) ;
move(LINES-l,O);
clrtoeol();
refresh () ;
endwin();

exit(O);

/*
/*
/*
/*

to lower left corner
clear bottom line */
flush out everything
curses cleanup */

*/

*/

*/

*/

curses Reference 24-57

10. Example program: termhl
/*

* A terminfo-level version of highlight.
*/

#include <curses.h>
#include <term.h>

int ulmode = 0; /* Currently underlining */

main (argc, argv)
char **argv;
{

FILE *fp;
int c, c2;
int outch () ;

if (argc > 2)
fprintf(stderr, "Usage: termhl [file]\n"};
exit(l);

if (argc == 2) {
fp = fopen(argv[l], "r");
if (fp == NULL) {
perror(argv[l]);
exit(2);
}

else {
fp = stdin;

setupterm(O, 1, 0);

for (;;) {
c = getc (fp) ;
if (c == EOF)

break;
if (c == '\ \ ')
c2 = getc (fp) ;
switch (c2) {
case 'B':

tputs(enter_bold_mode, 1, outch);

24-58 NUX Programming Languages and Tools, Volume 2

/*

continue;
case'U':

tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;

case'N':
tputs(exit_attribute mode, 1, outch);
ulmode = 0;
continue;

putch (c);
putch(c2);
}

else
putch(c);

fclose(fp);
fflush (stdout) ;
resetterm () ;
exit(O);

* This function is like putchar,
* but it checks for underlining.
*/

putch (c)
int c;

/*

outch(c);
if (ulmode && underline char) {

outch (' \b') ;
tputs(underline_char, 1, outch);

* Out char is a function version
* of putchar that can be passed to
* tputs as a routine to call.
*/

outch (c)

curses Reference 24-59

int c;

putchar (c) ;

24-60 AlUX Programming Languages and Tools, Volume 2

11. Example program: editor
/*

* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr itself to simplify
* the program.
*/

#include <curses.h>

#define CTRL(c} ('c' & 037)

main (argc, argv)
int argci
char **argvi

int i, n, li
int Ci

FILE *fPi

if (argc != 2) {
fprintf(st,derr, "Usage: edit file\n")i
exit(l)i

fp = fopen (argv [1], "r");
if (fp == NULL) {

perror(argv[l])i
exit(2);

initscr () ;
cbreak();
nonl ();
noecho ();
idlok(stdscr, TRUE);
keypad (stdscr, TRUE};

/* Read in the file */
while «c = getc(fp» != EOF)

addch(c};
fclose (fp) ;

curses Reference 24-61

move(O,O);
refresh () ;
edit () ;

/* Write out the file */
fp = fopen (argv[l], "w");
for (1=0; 1<23; 1++) {

n = len(l);
for (i=O; i<n; i++)
putc (mvinch (1, i), fp);
putc (' \n', fp);

fclose(fp);

endwin();
exit(O);

len (lineno)
int lineno;

int line len = COLS-1;

while (linelen >=0
&& mvinch(lineno, linelen) ")

linelen--;
return linelen + 1;

/* Global value of current cursor position */
int row, col;

edit ()
{

int c;

for (;;)
move (row, col);
refresh () ;
c = getch ();
switch (c) { /* Editor commands */

24-62 NUX Programming Languages and Tools, Volume 2

/* hjkl and arrow keys: move cursor */
/* in direction indicated */
case 'h':
case KEY LEFT:
if (col > 0)

col--;
break;

case ' j' :
case KEY DOWN:
if (row < LINES-l)

row++;
break;

case 'k':
case KEY UP:
if (row> 0)

row--;
break;

case ' l' :
case KEY RIGHT:
if (col < COLS-l)

col++;
break;

/* i: enter input mode */
case KEY IC:
case ' i' :
input();
break;

/* x: delete current character */
case KEY DC:
case ' x' :
delch () ;
break;

/* 0: open up a new line and enter input mode */
case KEY IL:
case'o':
move (++row, col=O);

curses Reference 24-63

/*

insertln();
input();
break;

/* d: delete current line */
case KEY DL:
case 'd':
deleteln () ;
break;

/* AL: redraw screen */
case KEY CLEAR:
case CTRL(L) :
clearok(curscr);
refresh () ;
break;

/* w: write and quit */
case 'w':
return;

/* q: quit without writing */
case 'q':
endwin ();
exit (1) ;

default:
flash () ;
break;

* Insert mode: accept characters and insert them.
* End with AD or EIC
*/

input ()
{

int c;

standout () ;
mvaddstr (LINES-l , COLS-20, "INPUT MODE");

24-64 A/UX Programming Languages and Tools, Volume 2

standend () ;
move (row, col):
refresh () ;
for (;;) {

c = getch () ;
if (c == CTRL(D) I I c
break;
insch(c);
move (row, ++col);
refresh () ;

move (LINES-l, COLS-20);
clrtoeol();
move (row, col):
refresh () ;

curses Reference 24-65

Chapter 25

Other Programming Tools

Contents

1. Overview • • • • • • • • • •

2. Maintaining portable archives and libraries: ar

3. Beautifying C programs: cb .• .•..

4. Generating a C ftowgraph: cflow

5. A C language preprocessor: cpp. .

6. Finding a function definition quickly: ctags .

7. Comparing source files • • • • • .

8. Finding files: find.

9. Printing the symbol table for a COFF file: nm • • • • •

10. Obtaining an octal dump of a file: od

11. Displaying profile data: prof

12. Printing the section sizes of COFF files: size

13. Finding the version number of a file: version

14. Sharing strings from C programs: xstr

- i -

1

1

1

2

2

3

3

4

4

4

5

5

5

5

Chapter 25

Other Programming Tools

1. Overview
This chapter provides a brief introduction to some of the other
programming tools available on the NUX system. Some of these
commands group together naturally. For example, if you are creating
an archive library, you probably will want to familiarize yourself with
each of ar, lorder, and tsort. If you need to identify unfamiliar
binary files, you have a choice between using strings and using od
(with the -c option) to isolate the printable portions of these files (see
the section on od for both commands).

2. Maintaining portable archives and libraries: ar
You may use the archive command a r to combine several files into
one archive. An archive consists of a collection of files, plus a table of
contents. They are used mainly as libraries to be searched by the link
editor ld. A library (or library archive) is an archive that contains
object files (plus a table of contents). Putting together your own library
allows you to use locally produced functions (instead of limiting you to
the functions supplied in standard libraries).

a r also provides the facility to append files to and delete files from the
archive. Because the order of files is so important to ld's efficient
operation, you can also move files around within the archive, as well as
extract them, print them, and produce a table of contents. See ar(1) in
AIUX Command Reference for more information.

3. Beautifying C programs: cb
cb is used to improve the legibility and structure of your own or
someone else's C code. It reads C programs either from its arguments
or from the standard input and writes them on the standard output with
spacing and indentation that displays the structure of the code. See
cb(1) in AIUX Command Reference for more information.

Other Programming Tools 25-1

4. Generating a C flowgraph: cflow
cf low generates a C flowgraph. A C flowgraph gives an idea of the
following:

• How the program is put together

• The program's flow of control

• How subroutines are called (that is, by which other routines and
in which order)

This flowgraph shows the order in which routines are called
graphically, by level of indentation. The graph is built of external
references, which include globals and function calls. See cflow(l) in
AIUX Command Reference for more infonnation.

5. A C language preprocessor: cpp
You can use cpp, the C preprocessor, as a simple programming
language that takes less time to compile than more complex languages.
It strips comments, expands macros into their definitions, allows files to
be read in (via,. incl udes), and provides a facility for conditional
command execution. This means that you can intersperse text with
comments. Comments will be stripped; commands will be executed.

Nonnally, cpp is invoked automatically as (the first) part of the cc
command.

You can use m4, instead of cpp, if you need a macro facility. m4 is
generally much more powerful than cpp as a macro processor. (For
instance, m4 allows recursive macro substitutions, while cpp does
not)

cpp is useful for

• Stripping comments

• Standardizing included definitions among many files for one
project

• Debugging (certain commands executed if in this mode, others if
not)

• Minimizing file space, combining many files into one

25-2 AlUX Programming Languages and Tools, Volume 2

(

\:

One of the most useful applications of cpp is as a debugging and
program control tool. Any statement included after an # i f de f
definition is executed only if the definition has actually been defined
previously by means of a #def ine statement (or a -Ddefinition in the
command line). If not, and if there is an #else present, the statements
between it and the #endif are executed. Otherwise, control is
resumed at the level of the statement immediately following #endif.
See cpp(l) in A/UX Command Reference for more information.

6. Finding a function definition quickly: ctags
Programs can rapidly accumulate a large number of functions, either in
one source file or scattered across many files. ctags goes through the
file(s) given as its argument(s) and creates a new file, called tags.
Each line in the file tags contains the following:

• The name of one function

• Where that function is located

• A scanning pattern that can be used to find the above

Unless ctags is used with either the -a (append) or the -u (update)
option, a new tags file is created each time it is invoked.

Once the tag s file is created, it can be accessed (thanks to the
scanning pattern in the last field of each line) from vi (also from ex)
by typing

: t a function-name

This causes the named function to appear on the editor's screen.

ctags may be used on Fortran and Pascal sources as well as C
programs. See ctags(l) inA/UX Command Reference.

7. Comparing source files
NUX includes a number of programs that compare files, including

bdiff Used similarly to diff; its purpose is to allow processing
of files that are too large for di f f.

di f f A differential file comparator. It tells what lines differ in
two files.

Other Programming Tools 25-3

diff3 A three-way differential file comparator, which works only
on files less than or equal to 64K bytes. It compares three
versions of a file and publishes disagreeing ranges of text,
flagged with special codes.

diffmk Marks the differences between files. It compares two
versions of a file and creates a third file that includes
"change mark" commands for the nroff and troff
formatters.

di f f di r Compares the differences in two directories of files.

carom Selects or rejects lines common to two sorted files.

8. Finding files: find
find is a powerful utility that performs a depth-first recursive search
for files of a given characteristic such as name, group, owner name,
time of last modification or access, and so on.

See find(1) in AIUX Command Reference for more information.

9. Printing the symbol table for a COFF file: run
nm writes the symbol table for a COFF file to standard output. This is
useful for debugging. nm lists each symbol and its value, along with
the location at which it is stored in memory. See nm(1) in AIUX
Command Reference for more information.

10. Obtaining an octal dump of a file: od
od provides a means for examining binary files (usually unreadable on
A/UX systems). If you need to know the function and procedure of
some file available only in binary, you can try the od command with
various options to discover what the file contains. The options
correspond to available formats for interpreting either bytes, characters,
or words. If no options are specified, a true octal dump is obtained, as
words are interpreted in octal.

See od(1) in AlUX Command Reference for more information.

You can also use the strings program to write the printable ASCII
strings in a binary file onto standard output. This is useful for
identifying unknown binary files. See strings(l) inAIUX Command
Reference for more information.

25-4 AlUX Programming Languages and Tools, Volume 2

11. Displaying profile data: prof
prof displays profile data on the running of a program to aid in its
optimization. For each function or global, it gives the percentage of
time spent executing it, the number of times it was called, and the time
(in milliseconds) per call. You must compile your program with a
special option to enable profiling (see cc(1) in A/UX Command
Reference for more details). See prof(1) in A/UX Command
Reference for more information.

12. Printing the section sizes of COFF files: size
The size command produces size information for common object
format files. See size(l) inA/UX Command Reference for more
information.

13. Finding the version number of a file:
version

version is useful for determining which version of a program you
are running. ve r s ion takes a list of files and reports the version
number for each. If the file is not a binary, it reports that. If no version
number is associated with the file, it reports that. version also
reports the object file format of each file, that is, either Coff object
file format,orOld a.out object file format.

The user may associate a version number with a file by defining a string
constant at the top of the source code, such as

char *_Version_ = \
"(c) Copyright 1986\
Standard Software Version V.2.1"

See version(l) inA/UX Command Reference for more details.

14. Sharing strings from C programs: xstr
The object of using xs t r is to share one copy of a string among
several files. If you need to modify the string throughout your
program, you can modify it once instead of doing global searches
through all your modules. If you have, in two different files,

char *ptrl "blah";
char *ptr2 = "blah";

Other Programming Tools 25-5

xstr combines this into one string, in its strings file, and replaces
occurrences of the string in the original files with a pointer to this
string. This allows for shared constant strings among several files, or
possibly among several users.

In practice, use of xs t r can save memory space. After making the
xstr array read only, you can arrange to have multiple users share
these strings, thereby saving even more memory space. See xstr(l)
in AIUX Command Reference for more information.

25-6 A/UX Programming Languages and Tools, Volume 2

Appendix A

Additional Reading

Introduction to Compiler Construction with UNIX
Axel T. Schreiner, H. George Friedman, Jr.
Prentice-Hall, 1985
{lex and yacc, practice}

Compilers: Principles, Techniques, and Tools
Alfred V. Abo, Ravi Sethi, Jeffrey D. Ullman
Addison-Wesley, 1986
{lex and yacc, theory}

The UNIX Programming Environment
Brian W. Kernighan, Rob Pike
Prentice-Hall, 1984

Additional Reading A-1

(

