
A/UX® Programming Languages and Tools,
Volume 2

031-0127

• APPLE COMPUTER, INC.

© 1987, 1988, Apple Computer, Inc.,
and UniSoft Corporation.
© 1990, Apple Computer, Inc.
All rights reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple.
The same proprietary and copyright
notices must be affIxed to any
permitted copies as were affixed to the
original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, A!UX,
ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

MacPaint is a registered trademark of
Claris Corporation.

UNIX is a registered trademark of
AT&T Information Systems.

Simultaneously published in the
United States and Canada.

031-0127

LIMITED WARRAN1Y ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPliED WARRANTIES OF
MERCHANTABll..ITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM TIlE DATE OF TIlE
ORIGINAL RETAIL PURCHASE OF
TInS PRODUCf.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO TInS MANUAL,
ITS QUAUTY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, TInS MANUAL IS SOLD
"AS IS," AND YOU, mE
PURCHASER, ARE ASSUMING mE
ENTIRE RISK AS TO ITS QUAUTY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
UABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN mIS MANUAL,
even if advised of the possibility of
such damages.

mE WARRANTY AND REMEDIES
SET FORm ABOVE ARE EXCLUSIVE
AND IN LIEU OF All OmERS, ORAL
OR WRfITEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

031-0127

AlUX Programming Languages and Tools
Volume 2

Contents

Preface

Chapter 16 make Reference

Chapter 17 SCCS Reference

Chapter 18 awk Reference

Chapter 19 lex Reference

Chapter 20 yacc Reference

Chapter 21 bc Reference

Chapter 22 dc Reference

Chapter 23 m4 Reference

Chapter 24 curses Reference

Chapter 25 Other Programming Tools

Appendix A Additional Reading

Preface

Conventions Used in This Manual
Throughout the NUX manuals, words that must be typed exactly as
shown or that would actually appear on the screen are in Courier
type. Words that you must replace with actual values appear in italics
(for example, user-name might have an actual value of joe). Key
names appear in CAPS (for example, RETURN). Special terms are in
bold type when they are introduced; many of these tenns are also
defined in the glossary in the AIUX System Overview.

Syntax notation
All NUX manuals use the following conventions to represent
command syntax. A typical NUX command has the form

command [flag-option] [argument] ...

where:

command

flag-option

argument

Command name (the name of an executable file).

One or more flag options. Historically, flag options
have the form

-[opt .. . J

where opt is a letter representing an option. The
form of flag options varies from program to
program. Note that with respect to flag options, the
notation

[-a][-b][-cJ

means you can select one or more letters from the
list enclosed in brackets. If you select more than one
letter you use only one hyphen, for example, -abo

Represents an argument to the command, in this
context usually a filename or symbols representing
one or more filenames.

[] Surround an optional item.

Follows an argument that may be repeated any
number of times.

Courier type anywhere in the syntax diagram indicates that
characters must be typed literally as shown.

italics for an argument name indicates that a value must be
supplied for that argument.

Other conventions used in this manual are:

<CR>

cmd(sect)

indicates that the RETURN key must be pressed.

An abbreviation for CONTROL-X, where x may be
any key.

A cross-reference to an NUX reference manual.
cmd is the name of a command, program, or other
facility, and sect is the section number where the
entry resides. For example, ca t(l).

Chapter 16

make Reference

Contents

1. make: a file production tool

2. Using make . . .
2.1 Writing a makefile ..•.
2.2 make command syntax •

2.2.1 Flag options
2.2.2 Using make on individual files

3. The description file . . •
3.1 Makefile entries

3.1.1 Targets vs. rules
3.1.2 Fake targets
3.1.3 Dependency statements
3.1.4 Commands .

3.2 Comments . .
3.3 include lines . . • . .
3.4 Macro definitions •

3.4.1 Internal macros
3.4.2 Dynamic dependency parameters

3.5 Options • • • . • • . . • . .
3.5.1 Suppressing printing of commands .
3.5.2 Ignoring errors. . . .
3.5.3 Combining commands
3.5.4 Default commands
3.5.5 Saving files. . • • •
3.5.6 Use of selected flag options .

4. Suffixes and rules • . • •
4.1 Suffixes. • . . • • • .
4.2 Transformation rules . • • • .

4.2.1 The default macro settings

- i -

1

1
2
4
5
6

6
6
7
7
8
9

10
10
10
12
13
15
15
15
16
17
17
17

18
18
19
24

4.3 Changing default suffixes and rules •••.
4.3.1 The default suffix list. . . • •
4.3.2 The default rules • • • •

5. Operation • . • • • • •
5.1 Environment variables
5.2 Precedence. •
5.3 Archive libraries • • .
5.4 sees files . • • • .

5.4.1 sees filename prefixes
5.4.2 sees filename suffixes
5.4.3 sees transformation rules
5.4.4 sees makefiles • • . .

6. Advanced topics . • . • • . . .
6.1 Walking the directory tree
6.2 The make predecessor tree. .
6.3 The makefile as shell script •

6.3.1 Unintended targets •..•.•.
6.3.2 Mnemonic targets . • • . .
6.3.3 Macro translation •

6.4 A warning for system administrators

Figures

Figure 16-1. A simple makefile

Figure 16-2. A makefile with multiple objects and defs . h

25
25
25

26
26
27
29
32
32
32
32
33

33
33
35
36
36
36
37
38

3

file • • • • • • • • • • 3

Figure 16-3. Sample listing of default rules file 21

Figure 16-4. Replacing a default rule 26

Tables

Table 16-1. Default suffix list • • • • • .

Table 16-2. Macro names and default compilers

- ii -

19

24

Chapter 16

make Reference

1. make: a file production tool
The make program automates the production of related sets of files. It
simplifies the task of administering libraries, functions, related source
and object files, and so on, that must reflect a change when you update
one file in the set. Although make is normally used to maintain
program code, it can also be used for other batch data processing
activities (for example, make is often used to produce technical
manuals with traff).

make keeps track of program file dependencies; when you change one
part of a program, make recompiles related files with a minimum
amount of effort. The required information is maintained by the make
program itself (which has built-in "rules" for recompilation), by using
certain system information such as the timestamp on the files, and by
the description of operations kept in a file called the "description file"
or "makefile." Once you have set up a makefile for a large project,
make keeps track of your files for you and frees you to concentrate on
programming or other tasks.

2. Usi ng make
The simplest use of make is

make filel

where a file named filel. c resides in the current directory.
filel. c can #include other files. This command causes make to
find f i Ie 1 . c in the local directory and issue the proper command to
compile it into filel.

Note: If filel. c has the same filename prefix (the same
filename without the. c suffix) as another file, make may
compile that file instead. If, for example, there is a more recent
f i Ie 1 . 1 file, it is compiled instead, and f i Ie 1 . c is

make Reference 16-1

overwritten in the process. If these files are not different
incarnations of the same program, losing the . c file could be
quite dangerous.

As long as only one file is involved and only a standard compilation is
required, you do not need to create a makefile to make your files.

If, however, your program is spread over multiple files, you do need to
create a makefile, which is a control file containing the filenames, a
description of their interrelations, and actions to be performed on them.
When it does not have enough to go on, make looks in the current
directory for a file named makef ile (or Makef ile) that contains
the necessary administrative information. In general, you must put an
entry in the makefile for any file that has a nonstandard compilation
procedure.

2.1 Writing a makefile
To write a makefile, you must determine the following:

• the target filename (see below)

• filenames of related compilation units (files)

• file dependencies (see below)

• related libraries

• the command that will produce the target (including options for
the programs to be run)

Targets are filenames, or placeholders for them, that are meant to be
compiled.

To the make program, the specific meaning of dependency is as
follows: filel depends onfile2 only iffilel needs to be recompiled
whenever file2 is changed. For example, if file x . c contains the line

#include "defs.h"

the object file x. 0 depends on defs. h. If defs. h is changed, the
x .0 file must be remade by compiling x . c. Note that the x. c
(source) file does not depend on defs. h, because it does not need to
be recreated when de f s . h changes.

16-2 NUX Programming Languages and Tools, Volume 2

For example, you have a file named zeke, which depends on
zeke. 0, and which uses library functions from libe. a. To relink
zeke, you would type

ee -Ie zeke.o -0 zeke

The two flag options, -Ie and -0, are both passed to ld by ee.

-Ie causes library libe. a to be searched;

-0 renames the compiled binary file' zeke' (instead of the default
'a. out').

The following makefile is required:

Figure 16-1. A simple makefile

zeke: zeke.o
AI ee -Ie zeke.o -0 zeke

The first line states the dependency (that zeke depends on zeke . 0).
The second line is the command line describing the action that must
take place whenever zeke . 0 changes. The command line must begin
with a tab (represented by A I in the figures).

In a more complicated example, a file named xavier depends on
three files named yancy. 0, quincy. 0, and wally. 0, all of which
depend on defs . h and use the library libe. a. The command to
link xavier is

ee -0 xavier -Ie yaney.o quiney.o wally.o

The makefile for xavier follows:

Figure 16-2. A makefile with multiple objects and defs.h file

xavier: yaney.o quiney.o wally.o
AI ee -Ie yaney.o quiney.o wally.o -0 xavier

yaney.o quiney.o wally.o: defs.h

When makefiles become more complicated, you can use macros and
other features described in the sections that follow.

make Reference 16-3

When you have included the interfile dependencies and command
sequences in a makefile, the command

make

updates the appropriate files, regardless of how many files you have
edited since the last make. make uses the date and time that a file was
last modified to find files that are out of date with respect to their
targets.

2.2 make com mand syntax
make uses the following command syntax:

make [option ...][macro=def .. .][-f filename] [target ...]

These arguments are interpreted in the following order:

1. First the macro definition arguments (arguments with embedded
equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files. See' 'Macro Definitions" below for
more information.

2. Next, the flag options are examined. See "Flag Options" below
for details.

3. Finally, the remaining arguments are assumed to be the names of
targets to be made, and these are made in left-to-right order. If
there are no remaining arguments, the first target in the
description file is made.

Note: make finds the first target by scanning the
description file for a target that does not represent an
internal file transformation rule (see' 'Transformation
Rules" below). Since these "built-in" rules are of the
form

.n [.m] :

where nand m are suffixes, any rule begins with a period
and contains no slashes (as a full pathname might). Thus,
the first target will be the first name in the description file
that does not begin with a period or begins with a period
but contains a slash.

16-4 AlUX Programming Languages and Tools, Volume 2

2.2.1 Flag options
make accepts the following flag options:

- i Ignore error codes (nonzero exit status) returned by invoked
commands. This mode is entered automatically if the fake target
name . IGNORE appears in the description file. See "Fake
Targets" below.

- s Silent mode. Do not print command lines before executing. This
mode is entered automatically if the fake target name . SILENT

appears in the description file.

- r Rule-out mode. Do not use the built-in rules.

-n No-execute mode. Print commands, but do not execute them.
Even lines beginning with an @ sign are printed.

-t Touch the target files (causing them to be up to date) rather than
issuing the usual commands.

-q Question. The make command returns a zero or nonzero status
code, depending on whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target
descriptions.

-d Debug mode. Print out detailed information on files and times
examined.

-ffilename
Use a different description file. filename is the name of a
description file. Afilename of - denotes the standard input. If
there are no -f arguments, make reads the file named
makefile or Makefile in the current directory in the order
stated. Failing these, s .makefile or s .Makefile is sought
in the sees directory, if such a directory exists. If a description
file is present, its contents override the default rules.

- k Abandon work on the current entry, but continue work on other
branches that do not depend upon that entry. (Entries are
described under "Makefile Entries," and branches are discussed
in "The make Predecessor Tree.")

make Reference 16-5

-e Cause environment variables to override assignments within
makefiles.

- b Compatibility mode for old makefiles.

2.2.2 Using make on individual files
Individual files mentioned in the makefile can also be used as
arguments on the command line, if you want to compile only a single
file. For example, with the makefile in Figure 16-2 and the command
line

make yancy.o

make remakes only yancy. 0, including defs . h in the process. To
make both yancy. ° and wally. 0, you type

make yancy.o wally.o

and both files are remade properly.

3. The description file
The description file (often called the m akefi Ie) defines the target file
and its dependencies.

A description file can contain the following:

• makefile entries, consisting of dependency statements, and
commands or command sequences

• comments

• include lines

• macro definitions

Note: If you do not supply a description file, make uses its
default rules to produce the file named on the command line.
See "The Default Rules." If you name your description file
something other than makefile or Makefile, you must use
the -f flag option on the make command line. See "Flag
Options" for details.

3.1 Makefile entries
A make file entry defines the relationship between a target and its
dependent(s) and (usually) stipulates the command as well.

16-6 AlUX Programming Languages and Tools, Volume 2

Multiple entries within one description file are permissible and
usual.

The general form of a makefile entry is

targetl [target2 ...] : [:][dependentl ...][; commands][#comment]
[A I commands][# ...]

[AI commands][# ...]

where A I represents a tab character. Shell metacharacters such as
* and? are expanded in the command sequence only.

For example,

zeke: zeke.o
AI ee -Ie zeke.o -0 zeke

3.1.1 Targets VS. rules
Within a description file, user-defined rules may replace make's
built-in rules. User-defined rules can appear in the makefile entry
anywhere a target name can be given.

Some aspects of rule syntax are similar to target syntax. A target
can be differentiated from a rule by the following criteria:

• A target name either does not begin with a period or does
begin with a period and contains slashes .

• A rule begins with a period and does not contain slashes (see
"Transformation Rules" for more information).

3.1.2 Fake targets
Not all targets correspond to files to be made. make has defined
certain fake targets (targets to which no files correspond) to pass it
certain options permanently. Examples of fake targets include

. SILENT

. IGNORE

. DEFAULT

. PRECIOUS

. SUFFIXES

For more information on . SUFFIXES, see the "Suffixes" section.
For the others, see "Options."

make Reference 16-7

3.1.3 Dependency statements
A dependency statement in a makefile asserts the logical relation
between a target and its dependent(s). The syntax for a dependency
statement is

targetl [target2 ...] : [:][dependentl .. .][; commands][# comment]

A sample dependency statement would be

dancing: music.o

A more complex dependency statement with an associated
command sequence would be

yancy.o wally.o: defs.h ;
AI echo "defs.h has been changed"

A dependency statement can contain either a single or a double
colon.

Note: A target name may appear in more than one
dependency statement, but each of those statements must be
of the same (single-colon or double-colon) type.

For the usual single-colon case, a command sequence may be
associated with, at most, one dependency line; that is, a target
cannot appear in more than one dependency line if there is a
command sequence associated with more than one of them. For
example, the fragment

yancy.o wally.o: defs.h

yancy.o quincy.o: menus.h

is correct because there is no command sequence associated with
the dependencies in which yancy. 0 appears.

The following is also correct, because there is only one command
sequence associated with the dependencies in which yancy. 0

appears:

16-8 NUX Programming Languages and Tools, Volume 2

yancy.o wally.o: defs.h
..... 1 echo "defs.h has been changed"
yancy.o quincy.o: menus.h

If the target is out of date with respect to any of the dependents on
any of the lines, and a command sequence is specified (even a null
one following a semicolon or tab), that command sequence is
executed. Otherwise (if a command sequence is not specified)
default rules may be invoked.

The following fragment is incorrect, because a target appears in
two dependency lines, each of which is associated with a command,
and single colons are used:

yancy.o wally.o: defs.h
..... 1 echo "defs.h has been changed"
yancy.o quincy.o: menus.h
..... 1 echo "menus.h has been changed"

In the double-colon case, a command sequence can be associated
with each dependency line. For example:

yancy.o wally.o:: defs.h
..... 1 echo "defs.h has been changed"
yancy.o quincy.o:: menus.h
..... 1 echo "menus.h has been changed"

If the target is out of date with respect to any of the files on a
particular line, the associated commands are executed, possibly in
addition to default rules. If a target must be created, the entire
sequence of commands is executed. This detailed form is of
particular value in updating archive-type files.

3.1.4 Commands
A command is usually the command line required for producing
the target(s) from the dependent(s). Syntactically, a command is
any string of characters, not including a number sign (:/I:) (except
when the :/I: is in quotes) and not including a newline.

Note: When a command appears on a line separate from a
dependency statement, it must be preceded by a tab. If not
preceded by a tab, the command usually results in the

make Reference 16-9

message "Make: must be a separator on
rules line x. Stop."

3.2 Comments
Comments are lines beginning with a number sign (=#:) and ending
with a newline. These lines are ignored by make. (Blank lines are
also ignored.)

3.3 .incl.ude lines
The C syntax for include lines,

=#:include includeJtle

cannot be used in description files, because comments begin with a
number sign. Therefore, the following policy was adopted for
include lines in make description files.

If the string include appears as the first seven letters of a line in
a makefile and is followed by a blank or a tab, the string following
is assumed to be a filename to be read by the current invocation of
make. Thus, a makefile might contain the following:

include macro defs =#:reads in file macro defs

lunch: supplies =#:(entries follow)

In this example, macro _defs would be a file containing make
macro definitions. No more than 16 levels of nested includes are
supported.

3.4 Macro definitions
Macros are defined in make command line arguments or in the
makefile. In the makefile, a macro definition is a line containing an
equal sign, and the line must not begin with a colon or a tab. For
example,

OBJECTS = x.o y.o z.o

The syntax for macro substitution is

$ (name)

The name of the macro is either a single character after the dollar
sign or a name inside parentheses or braces. Macro names longer

16-10 AlUX Programming Languages and Tools, Volume 2

than one character must be put inside parentheses or braces. For
example, the following are valid macro invocations:

$ (CFLAGS)
$2
${xy}
$Z
$ (Z)

The last two invocations listed are functionally identical. Note that
two dollar signs ($$) may also be used to denote a dollar sign. The
following fragment illustrates the assignment and use of some
macros:

OBJECTS = x.O y.o z.o
LIBES -1m
prog: $ (OBJECTS)
AI cc $ (OBJECTS) $ (LIBES) -0 prog

In this example, make loads the three object files with the math
library. The command line

make "LIBES = -11 -1m"

would load them with both the lex (-11) and the math (-1m)
libraries.

Macro definitions on the command line override definitions in the
description file, which, in turn, override the default macros.

For example, if you have defined macros in your makefile, you can
redefine the library on the command line for a single run of make,
without changing the meaning of the macros defined in the
makefile. For example, the command

make "LIBES = -lg"

redefines the LIBES macro for this run.

To see a listing of the default macros, you can consult the Macros
part of the listing produced by the command

make -np

make Reference 16-11

3.4.1 Internal macros
The following are internal macros that change values during the
execution of a description file. These internal macros are useful
generic terms for current targets and out-of-date dependents. make
sets these internal macros as follows:

$ @ Current target. The $ @ macro is set to the full target name of
the current target. This macro is evaluated only for explicitly
named dependencies. For example, in the following
makefile, the current target is zeke, so $@ is translated as
zeke:

zeke: zeke.o
~I cc zeke.o -0 $@

$? Out of date relative to target. The $? macro is set to the
string of names that were found to be younger than the target.
This macro is evaluated when explicit rules from the makefile
are evaluated. For example, the following makefile prints all
files younger than springtime:

springtime: lp $?

$< Related file causing action. If the command was generated
by a default rule, the $< macro expands to the name of the
related dependent that caused the action. For example, the
following makefile establishes an implicit rule to create
targets from " . 0" files:

.0:
~I cc $< -0 $@

$ * Shared prefix, current and dependent files. If the command
was generated by a default rule, the $ * macro is given the
value of the filename prefix shared by the current and
dependent filenames. For example, the following makefile
sets the prefix $ * to zeke and links zeke . 0:

zeke: zeke.o
~I cc $*.0 -0 $*

In the following additions, the D refers to the directory part of the
single-letter macro, and the F refers to the filename part of the

16-12 NUX Programming Languages and Tools, Volume 2

single-letter macro. These are useful when building hierarchical
makefiles.

$(@D) Current target directory

$(@F) Current target filename

$(*D) Shared directory prefix

$(*F) Shared filename prefix

$«D) Related dependent directory

$«F) Related dependent filename

For example, the following instruction uses the D to gain access to
directory names in order to use the cd command:

cd $«D); $ (MAKE) $«F)

3.4.2 Dynamic dependency parameters
The following parameters have meaning only within a dependency
statement in a makefile.

$ $ @ The current item to the left of the colon. The double dollar
signs denote a metalevel macro, that is, a macro referring to
another macro. Thus, $ $ @ is a macro variable for whatever
target is current, and $ @ is a macro for the current target. If
the target is static, $@ can be used instead of $$@; however,
$ $ @ allows for use of a dynamic target, a macro defined to
denote many files, each of which is processed in turn. This is
useful for building a large number of executable files, each of
which has only one source file.

For example, the following makefile defines CMDS as the
stipulated subset of single-file programs in the NUX
software command directory. Each of the programs (or
CMDS) is compiled correctly in turn using this syntax.

CMDS = cat dd echo date cc crop comm ar ld chown

$ (CMDS) : $$@.c
AI $(CC) -0 $? -0 $@

make Reference 16-13

(See "The Default Macro Settings" for more information on
$ (CC) .)

The dependency statement for the first item in the list of
CMD S is translated as follows:

1. The target is set to ca t.

2. The dependent is set to cat. c (the current target
plus. c).

3. The cc command (optimized using -0) runs on the
dependent (c at. c) if it is younger than the target.

4. The results are linked into the target file (cat).

Note: This syntax cannot be used for multiple-file
programs. To deal with multiple-file programs, a
directory is usually allocated and a separate makefile
written. Then a specific makefile entry is made for
files requiring nonstandard compilation.

$$(@F)
Another form of $ $ @, representing just the filename part of
$ $ @. This parameter is also evaluated at execution time. For
example, the following makefile maintains the
/usr / include directory from a makefile in another
directory:

INCDIR = /usr/include

INCLUDES = \
~I $(INCDIR)/stdio.h \
~I $(INCDIR)/pwd.h \
~I $(INCDIR)/dir.h \
~I $(INCDIR)/a.out.h

$ (INCLUDES) : $$(@F)
~I cp $? $@
~I chmod 0444 $@

16-14 AlUX Programming Languages and Tools, Volume 2

The $ $ (@F) macro represents the filename prefix part of the
current target $ @. Because the target is also a macro, its
value will equal each of the four files named in turn. On the
first file's run,

1. The target is stdio. h.

2. The macro $$ (@F) is stdio (the targetfilename
prefix).

3. The next line copies the younger file ($?), if it exists,
into the target file.

4. The last line changes the mode of the new target file
($@) (in this case, stdio. h) to read only.

This pattern is repeated for the other three files stated.

3.5 Options
3.5.1 Suppressing printing of commands
Normally, when make processes a description file, each command
is printed and then passed to a separate invocation of the shell after
substituting for macros. The printing is suppressed in the silent
mode (make -5), or if the special name. SILENT appears on a
line by itself as a target in the makefile, or if the command line
begins with an @ sign. For example,

@size make /usr/bin/make

If the command line above were in a description file, the printing of
the command line itself would be suppressed by the @ sign, but the
output of the command would be printed.

3.5.2 Ignoring errors
The make program normally stops if any command signals an error
by returning a nonzero exit status. Errors are ignored if any of the
following are used:

• The - i flag on the make command line (where the scope is
global)

• The fake target name. IGNORE in the description file (where
the scope is the description file)

make Reference 16-15

• A hyphen beginning the command string in the description
file (where the scope is the command following the hyphen)

Thus, if the -i option is used, the target is file. 0, and the
compilation is unsuccessful, make effectively pretends that it
worked. When file. 0 is found to be a dependent of some other
files, make tries, for instance, to load all the object files together,
and fails with an error message when one (file. 0) is found to be
missing. For all subsequent accesses (within this make), file. 0

is treated as though it existed and as though it were up to date. You
should beware of this possible consequence of the - i option.

Some commands return with nonzero status even though they have
worked correctly. For example, diff returns 1 to indicate the
presence of differences in the compared files, and rm returns a
nonzero status if the file you remove is already nonexistent. It is
safer to use a leading hyphen for commands that may return a
nonzero exit status without indicating an error, so make can
continue processing.

3.5.3 Combining commands
As stated above, when make processes a description file, each
command or individual command line is printed and then passed to
a separate invocation of the shell after substituting for macros.
Because the shell to which each command line is passed is a
completely new invocation, care must be taken with certain
commands (for example, cd and shell control commands) that have
meaning only within a single shell process. If special means are not
taken, the results of these commands will be lost before the next
line is executed.

One way to avoid this is to combine two or more shell commands
on one line, thus keeping the same shell active on each. This may
be done in one of two ways. If both commands are kept on one
physical line, a semicolon (;) may be inserted between the
commands. If the commands are put on separate physical lines, but
should form one logical line, a semicolon (;) and a backslash (\)
should be appended to the first command. In the latter case, the
semicolon separates the commands, and the backslash escapes the
newline. Examples of these two methods follow:

16-16 A/UX Programming Languages and Tools, Volume 2

cd .. , cc -c x.o y.o z.o

with both commands can be on the same line

cd .. ; \
cc -c x.o y.o z.o

with ; and \ before <CR>, this is read as one line

3.5.4 Default commands
If a file, prog, must be made, but there are no explicit commands
given or relevant rules to apply, make looks for commands
dependent on the target . DEF AULT to use. If there is no
. DEF AULT target, make prints a message,

Don't know how to make prog. Stop

and stops. Thus, . DEF AULT may be set up by the user to specify
default-case treatments for files not covered by make's built-in
rules. (For a listing of the types of file compilations covered by
these rules, see the "Transformation Rules" section.)

3.5.5 Saving files
If a file or files are assigned as dependent to . PRECIOUS, those
files will not be removed, regardless of any command to the
contrary. This is especially helpful to avoid the removal of targets
when an interrupt or quit is sent.

3.5.6 Use of selected flag options

-n The -n option is useful to discover what make would do.

make -n

instructs make to print out the commands it would issue,
without actually executing them.

-t The -t ("touch") option updates the modification times on
the affected file, and thereby can avoid a large number of
superfluous recompilations. Be careful when using this
option.

make Reference 16-17

-d The -d ("debug") flag prints out a detailed description of
what it is doing, including the file times. The output is
verbose and potentially confusing. This is therefore
recommended as a last resort.

4. Suffixes and rules
The make program uses a table of significant suffixes and a set of
transformation rules to supply default dependency information and
implied commands. All of this information is stored in an internal
table (the default rules) that has the form of a description file. (If
the -r flag option is specified, this internal table is not used.)

4.1 Suffixes
The list of suffixes is actually the dependency list for the fake target
• SUFFIXES in the description file. The make program searches
for a file with any of the suffixes on the list. If such a file exists and
there is a transformation rule for that combination, make

transforms a file with one suffix into a file with another suffix.

The order of the suffix list is significant because the list is scanned
from left to right. The first name formed that is associated with
both a file (in the directory) and a rule (in the makefile or default
rules) is made, and no others.

Note: You should know the order of the default suffix list if
you are not specifying a command in the makefile.
Otherwise, you may make an unexpected file.

The default suffix list is as follows:

16-18 AlUX Programming Languages and Tools, Volume 2

Table 16-1. Default suffix list
Suffix File type
.0 Object file

.c C source file

.e EFL source file

.r ratfor source file

.f Fortran source file

.s Assembler (as(l» source file

.y yacc-C source grammar

.yr yacc-ratfor source grammar

.ye yacc-EFL source grammar

.1 lex source grammar

4.2 Transformation rules
make has an internal table of transformation rules that perform
certain default commands if there is no command specified in the
makefile. Note that the default rules are also known as the
"implicit rules." There are two types of transformation rules,
, 'double suffix rules" and "single suffix rules. " In double suffix
rules, the stage of compilation is discerned from the suffix (for
example, x. c is a source file and x. 0 is an object file). These
rules are phrased in terms of transformations from one type of
suffix to another. The names of these rules are formed by
concatenating the two filename suffixes; for example, the name of
the rule to transform a . r file to a .0 file is . r . o.

Single suffix rules describe the transformation of a file with a given
suffix into one with no suffixes or a null suffix.

If a rule is listed in the internal table and there is no command
sequence given in the description file, the rule is used. Thus,
standard transformations (from one type of file to another; for
example, from a source file to an object file) do not call for a
makefile entry unless nonstandard treatment is required.

If a rule is used (that is, if a default command is generated), the $ *
macro is given the value of the filename prefix of the file to be
maintained. Then the $< macro is the name of the dependent that
caused the command.

make Reference 16-19

make has all the required information for compiling programs
written in languages supported by NUX. For example, after the
command

make x.o

where x. 0 is a C language object file, make searches for a file
called x. c (a C language source file) in the local directory. If it
finds x. c, make consults its default rules for compilation. make
finds the rule. c. 0, which states the default command

cc -0 -c x.c

which make then issues to produce x. o.

make uses the default suffix list (see "Suffixes") to decide when
to invoke which rules. This list tells the order in which to search
for certain suffixes.

Within make's default rules file, the name of the rule to follow
appears in the place of the target filename. Thus, the . c . 0 rule is
represented by

.c.o:
... I cc -0 -c [filename]. c

The contents of the current default rules file used by make can be
directed to standard output with the command

make -np

Any error messages produced at the end of this output should be
ignored. The example that follows shows a representative file,
giving one version of the default rules used by make.

16-20 A/UX Programming Languages and Tools, Volume 2

Figure 16·3. Sample listing of default rules file

* LIST OF SUFFIXES

. SUFFIXES: .0 .c .c- .y .y- .1 .1-
.s .s- .sh .sh- .h .h-

* PRESET VARIABLES

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=ld
LDFLAGS=
CC=cc
CFLAGS=-o
AS=as
ASFLAGS=
GET=get
GFLAGS=

* SINGLE SUFFIX RULES

.c:

c-·

.sh:

.sh-:

$(CC) -n -0 $< -0 $@

$ (GET) $ (GFLAGS) -p $< > $*.c
$(CC) -n -0 $*.c -0 $*
-rm -f $*.c

cp $< $@

$ (GET) & (GFLAGS) -p $< > .sh
cp $* .sh $*
-rm -f $* .sh

make Reference 16-21

Figure 16-3. Sample listing of default rules file (continued)

* DOUBLE SUFFIX RULES

.c.o:
$(CC) $ (CFLAGS) -c $<

.c-.o:
$ (GET) $ (CFLAGS) -p $< > $*.c
$(CC) $ (CFLAGS) -c $*.c
-rm -f $*.c

.c-.c:
$ (GET) $ (GFLAGS) -p $< >$*.c

.s .0:
$ (AS) $ (ASFLAGS) -0 $@ $<

.s-.o:

.y.o:

$ (GET) $ (GFLAGS) -p $< > $*.s
$ (AS) $ (ASFLAGS) -0 $*.0 $*.s
-rm -f $*.s

$ (YACC) $ (YFLAGS) $<
$(CC) $ (CFLAGS) -c y.tab.c
rm y.tab.o$@

.y-.o:

.1.0:

$ (GET) $ (GFLAG) -p $< > $*.y
$ (YACC) $ (YFLAGS) $*.y
$(CC) $ (CFLAG) -c y.tab.c
rm -f y.tab $*.y
mv y.tab.o $*.0

$ (LEX) $ (LFLAGS) $<
$(CC) $ (CFLAGS) -c lex.yy.c
rm lex.yy.c
mv lex.yy.o $@

16-22 A/UX Programming Languages and Tools, Volume 2

Figure 16-3. Sample listing of default rules file (continued)

.1-.0:

.y.c:

$ (GET) $ (GFLAGS) -p $< > $*.1
$ (LEX) $ (LFLAGS) $*.1
$(CC) $ (CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.1
mv lex.yy.o $*.0

$ (YACC) $ (YFLAGS) $<
mv y.tab.c $@

.y-.c:

.1.c:

.c.a:

$ (GET) $(GFLAGS) -p $< > $*.y
$ (YACC) $ (YFLAGS) $*.y
mv -f $*.c
-rm -f $*.y

$ (LEX) $<
mv lex.yy.c$@

$(CC) -c $ (FLAGS) $<
ar rv $@ $*.0
rm -f $*.0

.c-.a:
$ (GET) $ (GFLAGS) -p $< > $*.c
$(CC) -c $ (CFLAGS) $*.c
ar rv $@ $*.0

.s-.a:

.h-.h

$ (GET) $ (GFLAGS) -p $< > $*.5
$(AS) $ (ASFLAGS) -0 $*.0 $*.5
ar rv $@ $*.0
-rm -f $*. [so]

$ (GET) $ (GFLAGS) -p $< > $*.h

make Reference 16-23

If there are two paths in the rules connecting a pair of suffixes, the
longer one is used only if the intermediate file exists or if it is
named in the description file. The following are two examples
illustrating how this works:

1. If an x . 0 file is needed and a file called x . c is found in the
current directory or specified in the description file, the x . 0

file is compiled using x. c. If an x.l also exists and is out
of date with respect to x . c, that file is processed through
lex before compiling the result. This is a case of the longer
path (x.l to x. c to x. 0) being used since the intermediate
file (x . c) exists.

2. If the file x . 0 is needed and x . 1 but not x . c is found,
make discards the intermediate C language file (in this case,
x. yy. c) and uses the shorter path (x.l to x. 0).

4.2.1 The default macro settings
You can change the names of some of the compilers used in the
default rules, or the flag arguments with which they are invoked, by
knowing the macro names used. These macro names, the default
compilers they denote, and their associated flags are as follows:

Table 16-2. Macro names and default compilers

Compiler Macro Flags
make command MAKE MAKEFLAGS

Assembler (as) AS -
C compiler (cc) CC CFLAGS

ratfor compiler RC RFLAGS
EFL compiler EC EFLAGS

yacc-C compiler YACC YFLAGS

yacc-ratfor compiler YACCR YFLAGS

yacc-EFL compiler YACCE YFLAGS

lex compiler LEX LFLAGS

get command GET GFLAGS

These macros can be used as arguments on the command line to
change defaults for one run of make. For example, the command

16-24 AlUX Programming Languages and Tools, Volume 2

make CC=newcc •..

causes the newcc compiler to be used instead of the usual C.
language compiler. An example of the use of flags follows:

make "CFLAGS=-O" ...

passes the -0 flag to the C compiler, cc, causing the C language
optimizer to be used.

Sometimes it is possible to use macro redefinition instead of stating
a local version of the default rule. (Of course, this change is
temporary, because it takes place on the command line, and must
be restated, whenever desired, every time the file is remade.) To
change the . c . 0 rule you can say

make "CFLAGS=-V" thorax.o

and the flag option -v will replace the default setting for CFLAGS

for this one run.

4.3 Changing default suffixes and rules

4.3.1 The default suffix list
You can add suffixes to the end of the default suffix list, change the
order of the list, or change the contents of the list.

If you append new names to the suffix list, an entry can be included
for. SUFFIXES in the description file. The dependents to
• SUFFIXES are then added onto the end of the default list.

To change the order or contents of the list, you must be aware that a
· SUFFIXES line without any dependents deletes the current list of
suffixes. Therefore, you must clear the current list to change the
order of names. Thus, to install a new list, include lines such as

.SUFFIXES :

.SUFFIXES : .n .n- .1 .1-

4.3.2 The default rules

removes old list
installs new list

You can modify or replace a default rule in a makefile. For
example, if you define a . c . 0 rule in a makefile, your definition
overrides the default one. For example, Figure 16-4 defines a new
· c. 0 rule:

make Reference 16-25

Figure 16-4. Replacing a default rule

.c.o: cc -v -c $< *RuIe, not target

stomach.c: stomach.1 *First target

stomach.l: defs.h

This invokes the -v option of cc every time a .0 file is linked,
printing the version of the assembler that was used.

5. Operation

5.1 Environment variables
Environment variables from the shell are read by make and
considered in processing makefiles. These variables include PATH,
HOME, TERM, SHELL, TERMCAP, and LOGNAME (see A/UX User
Interface for more information on environment variables). Thus, a
reference to $ (HOME) , otherwise undefined in a makefile, will be
translated correctly into the full pathname for the user's home
directory.

Note: The value of the SHELL variable determines which
shell is used to execute commands in the makefile (by
default, your login shell). If you wish to include shell
scripts that require a different shell (for example, a Bourne
shell script when your login shell is the C shell), you must
specify the new shell either on the command line:

make [options] SHELL=/bin/ sh

Or you can do it by including the following line at the
beginning of your description file:

SHELL=/bin/sh

To see which environment variables make recognizes in the
present directory (directed to standard output), give the command

make -np I head -50 I more

16-26 A/UX Programming Languages and Tools, Volume 2

The first part of this command's output prints the environment
variables.

make also maintains an environment variable named MAKEFLAGS.

The value of this variable is all command line flag arguments
(without minus signs). The macro is "exported" and accessible to
further invocations of make. Command line flags and assignments
in the makefile update MAKEFLAGS. MAKEFLAGS is read and set
again when the environment settings are read by make.

The first part of this command's output prints the environment
variables.

5.2 Precedence
Environment variables are read and added to the macro definitions
each time that ma ke executes. Precedence is a prime consideration
in doing this properly. The following is the default precedence of
assignments:

1. Command line

2. Makefile(s)

3. Environment

4. Default macros

When executed, make assigns macro definitions in the order stated,
by doing the following:

• Reading the MAKEFLAGS environment variable.

Each letter in MAKEFLAGS is processed as an input flag
argument, unless the letter is -f, -p, or - r. These flag
options give directions to make involving overall processing,
as follows:

- f Precedes the makefile filename

- r Leaves out the built-in rules

-p Prints out all macro definitions and target
descriptions

If the MAKEFLAGS variable is null, or is not present,
MAKEFLAGS is set to the null string. This pass establishes if

make Reference 16-27

the debug (-d) flag is set, in time for this to be of use.

• Reading and setting the input flags from the command line.
The command line adds to the previous settings in the
MAKEFLAGS environment variable.

• Reading macro definitions from the command line. Any
macro definitions set from the command line cannot be reset.
Further assignments to these macro names are ignored.

• Reading the internal list of macro definitions. make reads its
default rules file, which contains the internal list of macro
definitions. For example, if the command

make -r ...

is given, and a makefile already includes all of the rules
that are found in make's default rules file (for instance, by
means of an include line; see "include lines"), the -r
option would not have the stated effect of "ruling out" the
rules. It would do the right thing, namely, not go to its
default rules itself, but it is not bright enough to undo an
include line in a makefile. In fact, the effect would be
identical to that occurring if both the - r option and the
include line in the makefile were excluded, since they
cancel each other out.

• Reading the environment settings in the shell. The
environment variables are treated as macro definitions and
marked as exported.

Note: Because MAKEFLAGS is not a variable in
make's default rules file, this step has the effect of
doing the same assignment twice. (The exception to
this is when MAKEFLAGS is assigned on the
command line.)

The MAKEFLAGS variable is read and set again.

• Reading the makefile(s). Assignments in the makefile(s)
override the environment unless the -e flag is used. The
command line option -e instructs make to override the

16-28 A/UX Programming Languages and Tools, Volume 2

makefile assignments with the environment settings.

If assigned, the MAKEFLAGS variable overrides the
environment. This is useful for further invocations of make
from the current makefile. There is no way to override
command line assignments. For example, if the command

make -e ...

is given, the variables in the environment override the
definitions in the makefile and reset the precedence of
assignments to the following:

1. Command line

2. Environment

3. Makefile(s)

4. Default macros

This has the effect of giving the environment priority over
the makefile, as opposed to the reverse in the default case.

5.3 Archive libraries
A . a suffix rule builds libraries. (There is no actual . a suffix
appended to the filename, however; see below for how to recognize
candidates for this rule.) For example, the . c . a rule is the rule for
all of the following:

• Compiling a C language source file

• Adding a C language source file to the library

• Removing the . 0 cadaver of the C language source file

The . y . a rule is the rule for performing the same functions on a
yacc file; the . s. a rule, for an assembler file; and the .1. a rule,
for a lex file.

The current archive rules defined internally are . c. a, . c-. a, and
. s-. a. (See the section on "sccs Filename Prefixes" for an
explanation of the tilde (-) syntax.)

Programmers may choose to define additional rules in the
makefile(s).

make Reference 16-29

A library is then maintained with the following makefile:

lib: lib (ctime.o)
~I @echo lib up-to-date

Note: The first parenthesis in the filename identifies the
target suffix rule, not an explicit . a suffix.

For example, the actual rule . c . a is defined as follows:

.c.a:
~I

~I

~I

$(CC) -c $(CFLAGS) $<
ar rv $@ $*.0
rm -f $*.0

In the . c . a rule:

$ @ This macro is the . a target. (Using the library
example, this macro would be defined as lib.)

$< and $ * These macros are set to the out-of-date C language
file, and the filename without the suffix, respectively.
Using the previous example, these macros would be
defined as ctime. c and ctime. Using this
example, the $< macro could have been changed to
$* .c.

When make sees the lib (ctime. 0) instruction in the makefile
(assuming the object in the library is out of date with respect to
ctime. c, and there is no ctime. 0 file), it translates that
construct into the following sequence of operations:

1. make lib.

2. To make lib, make each dependent of lib.

3. make lib(ctime. 0).

4. To make lib(ctime. 0), make each dependent of
lib(ctime.o). (There are none in this example.)

To allow ct ime .0 to have dependencies, the following
syntax is required:

16-30 AlUX Programming Languages and Tools, Volume 2

lib(ctime.o): $(INCDIR)/stdio.h

Thus, explicit references to .0 files are unnecessary.

Note: There is also a macro for referencing the
archive member name when this form is used. The
$ % macro is evaluated each time $ @ is evaluated. If
there is no current archive member, $% is null. If an
archive member exists, then $ % evaluates to the
expression between the parentheses.

5. Use default rules to try to build lib(ctime. 0). (There is
no explicit rule.)

Note: It is the first parenthesis in the name
lib(ctime. 0) which identifies the (. a) target
suffix. This is the key. There is no explicit . a at the
end of the 1 ib library name. The parenthesis forces
the . a suffix. In this sense, the suffix is hard-wired
into make.

6. Break the name lib(ctime. 0) up into lib and ctime . o.
Define two macros, $@ (=lib) and $* (=ctime).

7. Look for a rule . x . a and a file $ * . x. The first . x (in the
. SUFFIXES list in the default rules file) that fulfills these
conditions is . c, so the rule is . c . a and the file is
ctime .c.

8. Set $< to ctime. c and execute the rule.

In fact, make must then make ctime. c. The search of the
current directory yields no other candidates, however, and the
search ends.

9. The library has been updated. Perform the next instruction
associated with the lib: dependency. Therefore, make will
echo

lib up-to-date

make Reference 16-31

5.4 sees flies
make can be used on sees files and knows to run get on them, if
required, before otherwise processing them. Those unfamiliar with
sees (Source Code Control System) should refer to Chapter 17,
, 'sees Reference."

5.4.1 sees filename prefixes
make syntax does not allow for direct prefix references. sees
files constitute the one important exception to this rule.

sees filenames are preceded by as. prefix. make uses a tilde (-)
appended to the suffix to identify sees files. The expression
. c- . 0 refers to the rule that transforms an sees e language
source file into an object file.

The following example shows a transformation from an sees
filename to a name with a suffix already fixed for make: the sees
filename s. filel. c into the non-SeeS, make-ready filename
f ile 1 . c-. This file is then assembled using the command

.c-.o:
~I $ (GET) $ (GFLAGS) -p $< > $*.c
~I $(CC) $ (CFLAGS) -c $*.c
~I -rm -f $*.c

The tilde appended to any suffix transforms the file search into an
sees filename search with the actual suffix named by the dot and
all characters up to (but not including) the tilde (-).

5.4.2 sees filename suffixes
The following sees suffixes are internally defined:

.c- .y- .s- .sh- .h-

5.4.3 sees transformation rules
The following rules involving sees transformations are internally
defined:

c-· .1-.0: .sh-: .y-.c: .c-.o:

.c-.a: .s-.o: .s-.a: .y-.o: .h-.h:

These rules transform sees files into non-SeeS format and
perform the compilations indicated by the letter combinations in the

16-32 A/UX Programming Languages and Tools, Volume 2

rule names. (See "Transformation Rules" for how to translate
rules names into the rules they designate.)

Other rules and suffixes that may prove useful can be defined using
the tilde as a handle on the sees filename format.

5.4.4 sees makefiles
sees makefiles are "invisible" to make, in that, if you give the
command

make

and only a makefile named s .makefile resides in the current
directory, make will get, read, and remove the file. get creates a
file called makefile which remains in the directory (in addition
to the p-file, p. makef ile). If the -f option is used, make will
get, read, and remove the specified makefile (as well as include
files), creating a non-SeeS makefile named the same as the old
sees version, except that the s . prefix is removed.

6. Advanced topics

6.1 Walking the directory tree
It is possible to get make to walk the directory tree, either by
guiding it explicitly or by including a shell script that will discover,
implicitly, what directories are there, so that it can visit them.
While make is in each directory, it can make the files specified in
the directory's makefile. This allows you to bring whole systems
up to date without yourself changing directories by having make
follow directions in one local (meta-)makefile.

The explicit route is by far the easiest. If you know the structure of
your tree and the names of all the directories you intend to visit,
you can include commands in a makefile in the directory at the top
of your tree. If, below your current directory, you have directories
named i 0, 0 s, and others, you can include lines like the following
in your makefile

all:
~I cd io; make -f io.mk; \
~I cd .. /os; make -f os.mk;

make Reference 16-33

Note: The backslash (\) at the end of command lines is
necessary if you want to keep the same invocation of the
shell active for a group of commands. If a different shell is
invoked, the knowledge of being in a new directory is lost.

If, for example, no backslash terminated the first command line,
and so a different shell was invoked on the second line, the second
cd would be executed from the parent directory for io and os
instead of from the io directory. In this case, to keep the same
effect, the line should read

~I cd os; make -f os.mk;

As this shows, it is possible to write a script that does invoke a new
shell with each line and still travels the directory tree. This just
changes the mode of travel: With the one-shell-per-journey
method, you state explicit directions for going to each directory
from where you are relative to that directory and for going back to
the originating directory afterward. With the one-shell-per
command method, you state explicit directions (that is, a full
pathname) for going to the directory, and the return trip is done for
you when the shell you are using quits.

To travel a tree of unknown structure but with fairly standard
makefile names (like dirname . mk, where dirname stands for the
name of the directory where the file is located), you could use a
fragment like the following in your makefile:

subdirs:
~I for i in 'find Ipathname -type d -print'; \
~I do \
AI if test -f $$il$$i.mk; \

AI then \
AI cd $$i; \
AI $ (MAKE) -f $$i.mk; \
AI fi \
AI done

Note: The above is a Bourne shell script, and it will work
only if your login shell is /bin/ sh or your SHELL

16-34 A/UX Programming Languages and Tools, Volume 2

environment variable is set to /bin/ sh. See
"Environment Variables" for more infonnation on using
different shells to execute a makefile.

6.2 The make predecessor tree
The $! macro represents the current predecessor tree. A make
predecessor tree contains the series of files linked through the
dependency relation for one run of make. For example, using the
makefile

all: cat
~I @echo cat up-to-date
cat: cat.c
~I echo $!

when the command echo $! is executed, the variable $!
evaluates to

cat.c cat all

which is the current predecessor tree of this run of make, read from
left to right (leaf to root, respectively). The connection constituting
branches is the "is depended on by" relation: The leftmost file is
depended on by the next file to the right, and so on. Thus, the
nodes are dependents of their right neighbors and are targets of
their left neighbors (except for the leaf). The predecessor tree can
be useful as a debugging tool for make itself, if what it has done
does not make sense. Examination of the tree can reveal why
certain files were updated, or which files were touched in this run of
make.

Another means of debugging must be found if make prints the
following message:

$! nulled, predecessor circle

If the predecessors of a file are circular, they cannot form a tree,
and one will not be printed. The actual evaluation of the $! macro
is terminated, and the macro's value is set to null.

make Reference 16-35

6.3 The makefile as shell script
If a target cannot be found in the local or specified directory, make
attempts to create it. This feature of make's processing may be
exploited by the advanced user. When make discovers the absence
of the file corresponding to target, it considers target to be out of
date and so executes the specified command sequence. If the
results do not include creating the target, this leaves the directory in
question in the same state, ready for the same scenario to take place
whenever the make command is invoked.

This allows a makefile to function more like a shell script, with
each absent target causing make to try to create it, using the
command sequence specified.

6.3.1 Unintended targets
make considers missing files to be out of date and processes them.
Conversely, existing files may be deemed up to date wrongfully
(due to user error) and skipped for processing by make. This
might happen in the situation described in "The Makefile as a Shell
Script" if one of the targets was

print:
~I Ip foo bazz fizz

Here the command sequence creates no file called print, so the
same description file can be used over and over for maintenance,
each time executing this line. If, however, you inadvertently name
a program in that directory pr int, this latter file's modification
information will be checked to determine if print needs to be
remade, probably finding it to be up to date, and telling you so on
the screen. Failure to note this might cause a bug that is hard to
trace in the working of the "shell script" description file, even
though the entry for print is correct.

6.3.2 Mnemonic targets
A useful method is to include targets with mnemonic names and
commands that do not actually produce a file with the same name
as the label in the shell script. These entries can take advantage of
make's ability to generate files and substitute macros. For
example, save might be included to copy a certain set of files, or
an entry cleanup might be used to throwaway unneeded

16-36 A/UX Programming Languages and Tools, Volume 2

intermediate files. It is also possible to maintain a zero-length file
purely to keep track of the time at which certain commands were
performed. For example,

print: $ (FILES)
~I pr $? I Ip
AI touch print

The print entry prints only the files changed since the last make
print command. A zero-length file print is maintained to keep
track of the time of the printing, the time since the file print was
last touched. The $? macro in the command sequence then picks
up only the names of those files changed since print was
touched. The touch command creates this zero-length file if no
file called print exists in this directory.

6.3.3 Macro translation
To supplement macro definition and substitution, make also
provides a macro translation facility. As a macro is evaluated, the
translation takes place within the set of names of items to which the
macro refers. (Such item names are probably filenames; in any
case, they are considered as strings, where a string is delimited by
blanks or tabs.) Thus, the macro translation facility allows for more
refined and narrow macro definitions and for more concise code in
description file command sequences.

The format for macro translation follows:

$ (macro-name: string 1 =string2)

This tells make to substitute string2 for string1 everywhere among
the item names produced on evaluation of macro-name. (make
assumes that these substitution strings are suffixes.) Thus,

[process] $ (?: .0=. c)

results in processing of all files younger than target, except that, in
this list of files, wherever there was a . 0 file, a . c file will be
processed instead.

To illustrate the usefulness of this facility, consider the following
example situation: To maintain an archive library, the out-of-date
members must be accumulated and a shell script must be written to

make Reference 16-37

handle all the C programs. The following fragment will optimize
the executions of make for archive libraries:

.SUFFIXES: .c .a

.c. a:;
$(LIB): $(LIB) (a.o) $(LIB) (b.o) $(LIB) (c.o)

$(CC) -c $(CFLAGS) $(?:.o=.c)
ar rv $(LIB) $?
rm $?

The translation ($ (? : . 0= • c)) tells make to compile from the
. c file, every time it finds a . 0 file younger than the target library.
(This would act as an added check to ensure that all changes were
incorporated, as the . c files might have been altered without being
subsequently recompiled.) This results in the rule desired (. c . a),
rather than a nonstandard . 0 • a rule.

6.4 A warning for system administrators
If the system's setting for da t e is wrong (especially if it is very far
behind the actual date), make can get very confused. Since make
works by comparing previous dates with the current one, it is
important to make sure that what it is given as the current date is
accurate. Therefore, to ensure proper functioning of make, the
accuracy of date should be checked frequently.

16-38 A/UX Programming Languages and Tools, Volume 2

Chapter 17

secs Reference

Contents

1. Introduction

2. sees for beginners • • • •
2.1 Creating an sees file
2.2 Retrieving a file and storing a new version
2.3 Retrieving versions
2.4 On-line information. •

3. sees files. . • • • • •
3.1 Standard A/UX protection
3.2 sees protection mechanisms •
3.3 Administering sees

3.3.1 Group project administration
3.4 sees file formats
3.5 sees file auditing
3.6 Delta numbering. .

3.6.1 Branch deltas . • • •

4. sees command conventions
4.1 sees command arguments
4.2 Flags
4.3 Diagnostics
4.4 Temporary files • •
4.5 sees ID keywords .

5. sees command summary •
5.1 Create sees files: admin

5.1.1 sees flags . • • •• •.•••
5.1.2 Comments and MR numbers .•..
5.1.3 Descriptive text • • • . • • • •

5.2 Change comments in an secs file: cdc
5.3 Combine deltas to save space: comb

- i -

1

2
2
3
5
6

6
6
7
8
8

11
12
13
14

16
16
17
17
17
20

22
23
24
25
26
26
27

5.4 Store a new SCCS file version: de1ta . 28
5.4.1 Required temporary files. • • • 28
5.4.2 Comments and ~ numbers •••• 28
5.4.3 Keywords • • • • • • • 30
5.4.4 Removal of temporary files • • 31

5.5 Retrieve an SCCS file version: get . 31
5.5.1 Retrieving different versions •••• 32
5.5.2 Retrieving a file to create a new delta • . 33
5.5.3 Concurrent edits of different versions 35
5.5.4 Concurrent edits of same SID • • • . 38
5.5.5 Keyletters that affect output. . 39

5.6 Restore a version unchanged: unget 41
5.7 On-line explanations: he1p 42
5.8 Print part(s) of an SCCS file: prs 42
5.9 Remove a specific delta: rmde1 -r 44
5.10 Account for open SCCS files: sact 45
5.11 Compare two SCCS files: sccsdiff . 46
5.12 Check an SCCS file's characteristics: va1 46
5.13 Find identifying information: what. . . . 47

Figures

Figure 17-1. Sample interface program for group
projects •..•••.

Figure 17-2. A linear progression of versions •

Figure 17-3. A branching sees tree

Figure 17-4. A complicated branch structure •

Figure 17-5. Relationships among temporary
files • • • • . • .

Figure 17-6. Determination of new SID

Figure 17-7. Removing a delta

Tables

- ii -

10

14

15

16

18

37

45

Table 17-1. sees ID Keywords • • • • • • • • • 21

- iii -

1. Introduction

Chapter 17

secs Reference

The source code control system (SeeS) is a collection of NUX
commands that controls and reports on changes to files of text. sees
is a valuable tool for version management of program source code or
ordinary text files. In large group projects, sees prevents multiple,
inconsistent versions of files from accumulating in several places. For
a single user, multiple versions of a file can be stored without using a
lot of disk space, previous versions can be easily reconstructed, and
versions can be kept track of with a simple, consistent numbering
scheme.

sees provides facilities for

• Efficient storage of multiple versions of files

• Retrieving earlier versions of files

• Controlling update privileges to files

• Identifying the version of a retrieved file

• Recording when, where, why, and by whom each change was
made to a file

sees stores the original file on disk. Whenever changes are made to
the file, sees stores only the changes. Each set of changes is called a
delta. When you retrieve a particular version of the file (the default is
the most recent version), sees applies the appropriate deltas to the
original file to reconstruct that version.

This chapter provides an introduction and a general reference guide to
sees. The following topics are covered here:

• sees for beginners: A step-by-step guide to creating sees
files, updating them, and retrieving a version of a file.

sees Reference 17-1

• sees files: A description of the protection mechanisms, format,
auditing, and delta numbering of sees files. The differences
between individual sees use and group or project sees use are
discussed, and the role of the sees administrator in a group
project is introduced.

• sees command conventions: A description of the conventions
that generally apply to sees commands and the temporary files
created by sees commands.

• sees command summary: A summary of sees commands and
their arguments.

In addition to the programs described in this chapter, the see s
command provides a front end to sees functionality. Basically, the
sees front end runs the sees commands documented in the "sees
Command Summary" as well as several commands that are equivalent
but easier to use than the most frequently used sees commands. See
sees(1) inA/UX Command Reference for more information on the
sees front end.

28 sees for beginners

2.1 Creating an SCCS file
Using a text editor, create an ordinary text file named lang that
contains a list of some programming languages:

C
PL/I
FORTRAN
COBOL
ALGOL

To bring the tools of sees into play, you need to create a (different)
file that various sees commands will read and modify. You can do
this with the admin command, as follows:

admin -ilang s.lang

The admin command with the - i keyletter (and its value, lang)
creates a new sees file and initializes it with the contents of the file
named lang. An initial sees delta is created by applying a set of
changes (the contents of lang) to a new (null) sees file (s . lang).

17 -2 AlUX Programming Languages and Tools, Volume 2

All sees files must have names that begin with "s . ". This
effectively limits sees filenames to 12 characters.

Each delta is assigned a name called the sees Identification string, or
SID. The SID is normally composed of two components (the release
number and the level number) separated by a period. For example, the
initial version of a file is delta 1.1 (that is, release 1, level 1). sees
keeps track of subsequent versions of a file by incrementing the level
number whenever you create a new delta. The release number can also
be changed (allowing, for example, deltas 2.1,3.1, and so on) to
indicate a major change to the file.

The adrnin command returns a warning message (which may also be
issued by other sees commands):

No id keywords (cm7)

The absence of keywords is not a fatal error under most conditions, and
this warning message does not affect the sees file you have just
created. In the following examples, this warning message is not shown
although it may actually be issued by the commands.

You should now remove the lang file from your directory:

rm lang

2.2 Retrieving a file and storing a new version
To reconstruct the lang file you just deleted, use the sees get
command:

get s.lang

This retrieves the most recent version of file s . lang and prints the
messages

1.1
5 lines

(the SID of the version retrieved, and the length of the retrieved text).
The retrieved text is placed in another file called the g-file. The name
of the g-file is formed by deleting the s . prefix from the name of the
sees file. Hence, the file lang is reconstructed.

When you use the get command with no keyletters (in the format
above) the lang file is created with read only mode (mode 440), and

sees Reference 17-3

no information about the sees file is retained. If you want to be able
to change an sees file and create a new version, use the -e (edit)
key letter on the get command line:

get -e s.lang

The -e key letter causes get to create lang with read-write
permission and places certain information about the sees file in
another file called the p-file, which will be read by the delta
command when the time comes to create a new delta.

The same messages are displayed, as well as the SID of the next delta
(to be created). For example,

get -e s.lang

produces

1.1
new delta 1.2
5 lines

Mter this command, you can edit the lang file and make changes.
For example, suppose that you use v i to create the following new
version of the file:

C

PL/I
FORTRAN
COBOL
ALGOL
ADA

PASCAL

The command

delta s.lang

records the changes you made to the lang file within the sees file.
sees prints the message

comments?

Your response should be a description of why the changes were made.
For example,

17-4 AlUX Programming Languages and Tools, Volume 2

comments? added more languages

The de 1 t a command then reads the p-file and determines what
changes were made to the file lang. When this process is complete,
the changes to lang are stored in s . lang, and delta displays

1.2
2 inserted
o deleted
5 unchanged

The number 1.2 is the SID of the new delta, and the next three lines
refer to the changes recorded in the s . lang file.

2.3 Retrieving versions
The - r keyletter allows you to retrieve a particular delta by specifying
its SID on the get command line. For the previous example, the
following commands are all equivalent

get s.lang
get -r1 s.lang
get -r1.2 s.lang

The numbers following the -r keyletter are SIDs.

The first command retrieves the most recent version of the sees file,
because no SID is specified. When you omit the level number of the
SID (as in the second command), sees retrieves the most recent level
number in that release (in the previous example, the latest version in
release 1, namely 1.2). The third command explicitly requests the
retrieval of a particular version (in this case, also 1.2).

Whenever a major change is made to a file, the significance of that
change is usually indicated by changing the release number (the first
component of the SID) of the delta being made. Because normal
automatic numbering of deltas proceeds by incrementing the level
number (the second component of the SID), you must explicitly change
the release number as follows:

get -e -r2 s.lang

Because release 2 does not yet exist, get retrieves the latest version
before release 2 and changes the release number of the next delta to 2,
naming it 2.1 rather than 1.3. This information is stored in the p-file so

sees Reference 17-5

the next execution of the de 1 t a command will produce a delta with
the new release number. The get command then produces

1.2
new delta 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the
version de 1 t a will create. Subsequent versions of the file will be
created in release 2 (deltas 2.2, 2.3, and so on).

2.4 On-line Information
The help command is useful whenever there is any doubt about the
meaning of an sees message. Detailed explanations of almost all
sees messages can be found using the help command and the code
printed in parentheses after the message.

If you give the command

get abc

sees prints the message

ERROR [abc]: not an sees file (col)

The string co 1 is a code that can be used to obtain a fuller explanation
of that message using the help command. The command

help col

produces

col:
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s.".

3. sees files
This section discusses the protection mechanisms used by sees, the
format of sees files, recommended procedures for auditing sees
files, and how deltas are numbered.

3.1 Standard AlUX protection
In addition to the special sees flags and keyletters described in
"sees Protection Mechanisms," sees uses standard NUX

17-6 NUX Programming Languages and Tools, Volume 2

protection mechanisms to prevent you from making changes to sees
files using non-SeeS commands. The following precautions are
automatically taken by sees:

• When you create an sees file (using admin), it is automatically
given mode 444 (read only) if your umask is less than or equal
to 333. If your umask is 334 the sees file will be created with
mode 440 (no read permission for others). If your umask is 344
the sees file will be created with mode 400 (read permission for
the owner only). If your umask is 444 or higher, the sees file
will be created with no permissions across the board, and a lock
file, also called a z-file, will be created. The preferred mode for
an sees file is 444; this protects against modifying sees files
using non-SeeS commands and should not be changed .

• If you make a hard link from an sees file to another file, sees
commands will not process the sees file. sees commands
produce an error message rather than process a file that has been
linked. The reason for this is the same: Protection is provided
against using non-SeeS commands to modify sees files.

3.2 sees protection mechanisms
sees provides the following protection features directly: three sees
file flags (release ceiling, release floor, and release lock) and a user list
for sees files.

The sees file flags are set using the -f keyletter with the admin
command. This keyletter specifies a flag and possibly a value for the
flag, to be placed in the sees file. Several - f keyletters may be
supplied on a single admin command line (see "sees Flags" under
"Create sees Files: admin").

The flags used for file protection are

c ceiling The highest release (" ceiling' ') that can be retrieved by a
get command for editing. ceiling is a number less than or
equal to 9999. If this flag is not used, the default value for
ceiling is 9999, which allows all releases up to and
including 9999 to be retrieved for editing.

f floor The lowest release (' 'floor' ') that can be retrieved by a
get command for editing. floor is a number less than

sees Reference 17-7

9999 and greater than O. If this flag is not used, the default
value for floor is 1, which allows the first release to be
retrieved for editing.

1 list A list of "locked" releases to which deltas can no longer
be made. (See admin(l) in A/UX Command Reference
for the complete syntax of this list.) The get -e
command fails if you attempt to retrieve one of these
locked releases for editing. The character a in list can be
specified to protect all releases for the named sees file.

sees files may also contain a user list of login names and/or group IDs
of users who are or who are not allowed to create deltas of that file.
This list is empty by default, which means that anyone may create
deltas. To add names to the list (either to allow permission or to deny
it) the -a keyletter is used with the admin command. The argument
to the -a keyletter can be

login-name A login name or numerical group ID may be specified;
a group ID is equivalent to specifying all login names
common to that ID.

! login-name If a login or group ID is preceded by an exclamation
character (!), these ID's are denied permission to make
deltas.

These features are described in more detail under the admin
command.

3.3 Administering sees
If you are using sees to manage personal files, the protection
mechanisms described above should be used to keep certain releases
from being modified, or to prevent you from accidentally modifying
your files without using sees.
Aside from these protections, you can simply use sees directly. See
"Delta Numbering" for information on storing and retrieving different
releases.

3.3.1 Group project administration
If you are using sees to manage and protect files in a large project
with several users having access to the same files, a single user should
own the sees files and directories. This single user will be the only

17-8 A/UX Programming Languages and Tools, Volume 2

one to administer the sees files.

The following precautions are recommended:

• Directories containing sees files should be mode 755. This
allows only the owner of the directory to modify its contents.

• sees files should be kept in directories that contain only sees
files (and any temporary files created by sees commands). This
simplifies protection and auditing of sees files. The contents of
directories should correspond to convenient logical groupings,
for example, subsystems of a large project.

• No sees users other than the sees administrator should be able
to use those commands that require write permission in the
directory containing the sees files. Instead, a project-dependent
program should be written to provide an interface to certain
sees commands, usually the get, delta, and, if desired,
rmde 1 and cdc commands.

This last precaution requires that you write an interface program
(usually specific to the project) that invokes the desired sees
command and gives other users (who are not the owners of the sees
files) the pennissions they need to modify specific sees files, using
only those commands that are linked to the interface program.

Note: If you are not using the sees front end (see sees(1) in
AIUX Command Reference), you may need to write an interface
program such as the sample program shown in Figure 17-1 to
handle special file permissions for a particular project.

The sample program in Figure 17-1 causes the invoked command to
inherit the privileges of the interface program for the duration of that
command's execution. Users whose login names or group IDs are in
the user list for that file (but who are not the owner), and who have the
path to the executable interface program in their PATH variable, are
given the necessary permissions only for the duration of the execution
of the interface program. They can modify the sees files only through
the use of those commands that are linked to the interface program.

sees Reference 17-9

Figure 17·1. Sample interface program for group projects

main (argc, argv)
int argc;
char *argv[];
{

register int i;
char cmdstr [BUFSIZ];

/* Process file arguments
(those that don't begin with '-') */

for (i = 1; i < argc; i ++)
if (a rgv [i] [0] ! = , -')

argv[i] = filearg (argv[i]);

/* Get 'simple name' of name
used to invoke program
(strip off directory prefix, if any) */

argv[O] = sname (argv[O]);

/* Invoke actual sees command,
passing arguments */

sprintf(cmdstr, "/usr/bin/%s", argv[O]);
execv(cmdstr,argv);

This sample interface program is an example only; the functions
sname and filearg are not standard functions. You should write
these and any other functions required by your project.

Such an interface program must be owned by the sees administrator,
must be executable by the new owner, and must have the setuid (set
user ID on execution) bit on (see set uid(2)).

Links can then be created between the executable interface program
and the command names. For example, if the path to the file is

/sccs/interface.c

17-10 A/UX Programming Languages and Tools, Volume 2

then the commands

cd /sccs
cc interface.c -0 inter

compile the program into the executable module inter. At this point,
the command

chmod 4755 inter

sets the proper mode and setuid bit. You can then create links from
any directory with the commands

In /sccs/inter get
In /sccs/inter delta
In /sccs/inter rmdel
In /sccs/inter cdc

The full pathname of the directory containing the links must then be
included prior to the /usr /bin directory in the PATH variable (in the
.profile or . login files of all sees users who need to use the
desired sees commands). For example,

PATH=(.:/usr/new:/bin:/sccs:/usr/bin)

Depending on the type of interface program you have written, the
names of the links can be arbitrary (if the program can determine from
them the names of the commands to be invoked), the pathname to your
project can be supplied, and so on. If the pathname to your project is
supplied in the interface program, the user can use the syntax

get -e s.abc

regardless of where the user is currently located in the file system.

3.4 sees file formats
sees files are composed of ASeII text arranged in six parts, as
follows:

checksum This part of the file contains the sum of the ASeII
values of all characters in the file (not including the
checksum itself). The sees checksum is described
in "sees File Auditing."

sees Reference 17-11

delta table

user list

flags

This part contains information about each delta, such
as type, SID, date and time of creation, and
commentary.

This is a list of login names and/or group IDs of
users who are allowed to modify the file by adding
or removing deltas. The user list is described under
, 'sees Protection Mechanisms."

This part contains indicators that control certain
actions of sees commands. Flags are discussed
under' 'Create sees Files: admin."

descriptive text This is arbitrary text provided by the user, usually
comments that provide a summary of the contents
and purpose of the file. Descriptive text is discussed
under' 'Create SCCS Files: admin."

body This is the actual text of the ASCII file being
administered by sees, intermixed with internal
sees control lines.

For information regarding the physical layout of sees files, see
sees f ile(4) in A/UX Command Reference.

Note: Because sees files are ASCII files, they can be
processed by other A/UX commands such as vi, grep, and
cat. This can be convenient when an SCCS file must be
modified manually or when you simply want to look at the file.
However, it is extremely important to be careful about
introducing changes that will affect future deltas. It is wise to
make a backup copy first.

3.5 sees file auditing
On rare occasions (such as a system crash) an sees file may be
destroyed or corrupted (that is, one or more blocks of it may be
destroyed). If the entire secs file has been trashed, the secs
commands issue an error message when you attempt to process that
file. In this case, you need to restore the file from your most recent
backup copy.

17-12 A/UX Programming Languages and Tools, Volume 2

If one or more blocks of an sees file have been trashed by a system
crash, the sees commands will recognize this through an inconsistent
checksum. In this case, the only sees command that will process the
file is the admin command with the - h or - z key letter:

admin - h s .filel s .file2 ...

It is a good idea to use these commands routinely to audit your sees
files to detect any inconsistent checksums (indicating file corruptions).
If the new checksum of any file is not equal to the checksum in the first
line of that file, sees prints the message

corrupted file (co6)

This process continues until all the files have been examined. The
admin - h command can also be applied to directories:

admin - h directoryl directory2 ...

This prints an error message for any corrupted files, but does not
automatically report missing sees files. To determine whether any of
your sees files are missing, list the contents of each directory (Is).

If you have an sees file that has been extensively corrupted, the best
solution is to restore the file from your most recent backup copy. If
there is only minor damage, you may be able to repair it using a text
editor. In this case, after you have repaired the file, use the command

admin - z s .file

This recomputes the file's checksum so that it agrees with the file
contents. Mter you use admin -z, any corruption that existed in the
file will no longer be detectable by the admin - h command.

3.6 Delta numbering
sees deltas are changes applied to an original (null) file to produce
different versions and releases of your file.

sees names deltas with an sees Identification string (a SID). SIDs
have exactly two components (the release number and the level
number) separated by a period:

release . level

sees Reference 17-13

sees names the initial delta 1.1. This is considered a set of changes
applied to the null file. Subsequent deltas are named by incrementing
the level number (1.2, 1.3, and so on) when the delta is created. If you
make a major change to the file, you may want to specify a new release
number when you create the new delta. In this case, sees assigns a
new release number (2.1) and subsequent deltas are incremented as in
release 1. This is shown in Figure 17-2.

Figure 17-2. A linear progression of versions

r-----------.

1.1 1.2 1.3 1.4 2.1 2.2 I L ___________ .J

Release 1 Release 2

In this simplest case the deltas progress linearly; that is, any delta is
dependent on all preceding deltas. When sees reconstructs a
particular version of your sees file, it applies all deltas up to and
including the number you specify. In most cases, this is all you will
need to know about sees delta numbering.

3.6.1 Branch deltas
The linear progression of file versions shown above is sometimes
called the "trunk" of the sees tree for that file. Under special
conditions, you may need to use a "branch" in the tree: an
independent progression of deltas that does not depend on all previous
deltas for that file.

For example, suppose you have a program at version 1.3 that is being
used in a production environment. You are developing a new release
(release 2) of the program, and already have several deltas of that
release. This situation uses the simple linear organization shown
above.

Now suppose that a user reports a problem in version 1.3 which
requires changes only to version 1.3 but does not affect subsequent
deltas. This requires a branch from the previous linear ordering. The

17-14 AlUX Programming Languages and Tools, Volume 2

new (branch) delta's name consists of exactly four components:
release and level numbers (as in the trunk delta) plus a branch number
and sequence number, all separated by periods:

release . level . branch. sequence

Thus, a branch delta can always be identified as such from its name.

Once you have created a branch delta, sees increments subsequent
deltas on that branch by incrementing the sequence number. This is
shown in Figure 17-3.

Figure 17-3. A branching sees tree

Branch 1

I I

I 1.3.1.2 I L ___________ .J

While sees increments the sequence number on each branch, it
increments the branch number according to when you create the
branch. If you need to complicate your sees branch structure,
consider this carefully. While the trunk delta (the initial linear
progression) can always be identified by the branch delta's name (by
the release and level numbers), it is not possible to determine the entire
path leading from the trunk delta to the particular branch delta you may
have retrieved.

For example, if delta 1.3 has one branch, all deltas on that branch will
be named 1.3.1.n. If a delta on this branch (for example, delta 1.3.1.1)
has a branch, all deltas on the new branch will be named 1.3.2.n. This
is shown in Figure 17-4.

sees Reference 17-15

Figure 17·4. A complicated branch structure

1.3.1.2

If you retrieve version 1.3.2.2, you know that (chronologically) it is the
second delta on the second branch from delta 1.3. You are not able to
deduce how many deltas there are between version 1.3.2.2 and version
1.3. Thus, although the branching capability has been provided for
managing files under certain special conditions, it is much easier to
manage your files if you keep the sees organization as linear and
simple as possible.

4. sees command conventions
This section discusses the conventions and rules that apply to sees
commands. Except where noted otherwise, these conventions apply to
all sees commands. A list of the temporary files generated by various
commands (and referred to in the "sees Command Summary") is
also provided.

4.1 sees command arguments
sees commands accept two types of arguments: keyletters and file
arguments.

Keyletters consist of a minus sign followed by a lowercase character,
which may be followed by a value. For example, -a is a key letter.
Keyletters control the execution of the command to which they are
supplied. All keyletters specified for a given command apply to all file
arguments of that command. Keyletters are processed before any file
arguments, with the result that the placement of key letters is arbitrary
(that is, keyletters may be interspersed with file arguments). Somewhat

17-16 A/UX Programming Languages and Tools, Volume 2

different argument conventions apply to the help, what, sccsdiff,
and va 1 commands.

Note: Keyletters are command-line options equivalent to A/UX
flag options. Do not confuse keyletters with sees flags,
discussed in "sees Flags. "

File arguments (names of files and/or directories) specify the file(s) to
be processed by the given sees command. Naming a directory is
equivalent to naming all the sees files within the directory. Non
sees files in the named directories are silently ignored. In general,
file arguments may not begin with a minus sign, but if the name - (a
single minus sign) is specified as an argument to a command, the
command reads the standard input (until end-of-file) and takes each
line as the name of an sees file to be processed. This feature is often
used in pipelines. File arguments are processed left to right.

4.2 Flags
eertain actions of sees commands can be controlled by flags, which
appear in sees files. These flags are discussed in "sees Flags."

4.3 Diagnostics
sees commands produce diagnostics (on the standard error output)
that use this format:

ERROR [filename]: message text (code)

The code in parentheses may be used as an argument to the he 1 p
command to obtain a further explanation of the diagnostic message.

Detection of a fatal error during the processing of a file causes the
sees command to stop processing that file and to proceed with the
next file, in order, if more than one file has been named.

eertain sees commands check both the real and effective user IDs
(see passwd(1) inAIUX Command Reference). If you are using
sees to manage your personal files, these two IDs are the same; if you
are working in a group project, see" sees Protection Mechanisms."

4.4 Temporary files
Several sees commands generate temporary files and file copies
during the process of creating, retrieving, and updating sees files.

sees Reference 17-17

The temporary files are normally named by stripping off the s . prefix
of the sees filename and replacing it with another single alphabetic
character.

The g-file is named by simply deleting the s . prefix. Thus, if the
sees file is named s . abc the g-file will be named abc. The p-file
will be named p . abc.

Figure 17-5. Relationships among temporary files

z-file:

lock file
for s. abc

r---------------------,

i-file:

table
of deltas

g-file:

d-file:

copy of
g-file

s . abc text file

q-file: p-file:

buffer file data on

for s .abc for p-file user, etc.

Created by get

These temporary files are as follows:

g-file This is the text file created by a get command. It contains a
particular version of an sees file, and its name is formed by
stripping off the s . prefix from the sees file.

17-18 AlUX Programming Languages and Tools, Volume 2

The g-file is created in the current directory and is owned by the
real user. The mode assigned to the g-file depends on how the
get command is invoked. The version it contains also depends
on how the get command is invoked. The default version is
the most recent trunk delta (that is, excluding branches).

d-file When you invoke a get command, sees creates its own
temporary copy of the g-file by performing an internal get at
the SID specified in the p-file entry. This temporary copy is
called the d-file.

When you record your changes in a new version, the delta
command compares the d-file to to the g-file (using the diff
command). The differences between the g-file and the d-file are
the changes that constitute the delta.

p-file When the get -e command creates a g-file with read-write
permission (so you can edit it), it places certain information
about the sees file (that is, the SID of the retrieved version,
the SID to be given to the new delta when it is created, and the
login name of the user executing get) in another new file
called the p-file.

When you record your changes in a new version, the de 1 t a
command reads the p-file for the SID and the login name of the
user creating the new delta.

When the new delta has been made, the p-file is updated by
removing the relevant entry. If there is only a single entry in
the p-file. then the p-file itself is removed.

q-file Updates to the p-file are made to a temporary copy, the q-file,
whose use is similar to the use of the x-file.

x-file All sees commands that modify an sees file do so by writing
a temporary copy, called the x-file (to ensure that the sees file
is not damaged if processing terminates abnormally). When
processing is complete, the old sees file is removed and the
x-file is renamed (with the s. prefix) to be the sees file.

The x-file is created in the directory containing the sees file,
given the same mode as the sees file, and owned by the

sees Reference 17-19

effective user.

z-file To prevent simultaneous updates to an sees file, commands
that modify sees files create a "lock file" called the z-file.
This file exists only for the duration of the execution of the
command that creates it. The z-file contains the process
number of the command that creates it. While the z-file exists,
it indicates to other commands that the sees file is being
updated. sees commands that modify sees files will not
process a file if the corresponding z-file exists.

The z-file is created with read-only mode (mode 444, possibly
modified by the user's umask) in the directory containing the
sees file. It is owned by the effective user.

I-file The get -1 command creates an I-file containing a table
showing the deltas used in constructing a particular version of
the sees file. This file is created in the current directory with
mode 444 (read only) and is owned by the real user.

In general, users can ignore most of these temporary files, although
they can be useful in the event of system crashes or similar situations.

4.5 sees 10 keywords
When you retrieve an sees file to compile it, it is useful to record the
date and time of creation, the version retrieved, the module's name, and
so forth, within the g-file. This information appears in a load module
when one is eventually created.

sees uses ID keywords for recording such information about deltas
automatically. ID keywords can appear anywhere in the generated file
and will be replaced by appropriate values.

The format of an ID keyword is an uppercase letter enclosed by percent
signs (%). When these appear in the generated sees file they are
replaced by the values defined for that keyword. For example,

%I%

is replaced by the SID of the retrieved version of a file. Similarly,

%H%

is replaced by the current date (in the form mmlddlyy).

17-20 AlUX Programming Languages and Tools, Volume 2

When no ID keywords are substituted by get, the following message
is issued:

No id keywords (cm7)

This message is normally treated as a warning by get, unless the i
flag is present in the sees file (see "sees Flags").

Here is a complete list of the ID keywords:

Table 17-1. sees 10 Keywords

Keyword Value
%M% Module name: either the value of the rn flag in the

file (see admin(1)), or the name of the sees file
with the leading s. removed.

%1% sees identification (SID) (%R%. %L%. %B%. %S%)
of the retrieved text.

%R% Release.

%L% Level.

%B% Branch.

% S % Sequence.

%D% Current date (yy/mmldd).

%H% Current date (mm/dd/yy).

%T% Current time (hh:mm:ss).

%E% Date newest applied delta was created (yy/mm/dd).

%G% Date newest applied delta was created (mmJdd/yy).

%U% Time newest applied delta was created (hh:mm:ss).

%Y% Module type: the value of the t flag in the sees
file (see admin(1)).

% F % sees file name.

%P% Fully qualified sees filename.

%Q% Value of the q flag in the file (see admin(l)).

sees Reference 17-21

%c% Current line number. This keyword is intended for
identifying messages sent by the program. It is not
intended to be used on every line to provide
sequence numbers.

% Z % Four-character string @ (*) recognizable by
what.

%W% Shorthand notation for constructing what strings
for A/UX system program files. %W% =
%Z%%M%'" 1% 1% (where'" I is the tab character).

%A% Another shorthand notation for constructing what
strings for non-NUX system program files. %A% =
%Z%%Y%%M%%I%%Z%

5. sees command summary
This section describes the features of all the SCCS commands. The
sees commands are as follows:

admin

cdc

comb

delta

get

unget

help

prs

rmdel

sact

17-22

Creates secs files and applies changes to
characteristics of secs files.

Changes the commentary associated with a delta.

Combines two or more consecutive deltas of an sees
file into a single delta; often reduces the size of the
sces file.

Applies changes (deltas) to the text of sces files, that
is, creates new versions.

Retrieves versions of sees files.

"Undoes" a get -e command if invoked before the
new delta is created.

Prints explanations of diagnostic messages.

Prints portions of an sees file in user-specified format.

Removes a delta from an sees file; allows the removal
of deltas that were created by mistake.

Accounts for SCCS files in the process of being
changed.

AlUX Programming Languages and Tools, Volume 2

seesdiff Shows the differences between any two versions of an
sees file.

val Validates an sees file.

what Searches any A/UX system file(s) for all occurrences of
a special pattern and prints out what follows it; what is
useful in finding identifying information inserted by the
get command.

5.1 Create SCCS files: admin
admin creates new sees files or changes characteristics of existing
ones. You can create an sees file with the command

admin - ifilename s .filename

where filename is a file from which the text of the initial delta of the
sees file s .filename is to be taken.

Note: There is no space between the -i keyletter and the
filename argument.

sees files are created in read-only mode (444) and are owned by the
effective user (see passwd(l) in AIUX Command Reference). Only a
user with write permission in a directory containing sees files can use
the admin command on a file in that directory.

If you omit the value of the - i key letter, admin reads the standard
input for the text of the initial delta. Thus, the command

admin -is .filename < filename

is also valid. Only one sees file can be created at a time using the - i
keyletter.

If the text of the initial delta does not contain ID keywords, the
message

No id keywords (em7)

is issued as a warning. See "sees ID Keywords" for more
information.

sees Reference 17-23

If you set the i flag in the sees file (using the -f keyletter with the
admin command; see "sees Flags"), the above message is treated as
a fatal error and the sees file is not created.

The first delta of an sees file is normally 1.1. The - r key letter to the
admin command is used to specify a different release number for the
initial delta. Because it is only meaningful in creating the first delta
(with admin), its use is permitted only with the -i keyletter. The
command

admin -ifilename -r3 s .filename

specifies that the first delta should be named 3.1 rather than 1.1.

5.1.1 sees flags
sees file flags are used to direct certain actions of sees commands.

The flags of an sees file are initialized or changed using the - f
keyletter, and deleted using the -d key letter. When you create an
sees file, flags are either initialized by the - f keyletter on the
command line or assigned default values.

For example, the following command sets the i flag and the m (module
name) flag:

admin -ifilename -fi -fmmodname s .filename

The i flag specifies that a warning message stating that there are no ID
keywords contained in the sees file should be treated as a fatal error.

The value modname specified for the m flag is the value that the get

command will use to replace the sees ID keyword. (In the absence of
the m flag, the name of the g-file is used as the replacement for the
see s ID keyword.)

Note that several -f key letters may be supplied on the admin
command line and that - f key letters may be supplied whether the
command is creating a new sees file or processing an existing one.

The -d key letter is used to delete a flag from an sees file and may be
specified only when processing an existing file. For example, the
following command removes the m flag from the sees file:

admin -dm s .filename

17-24 NUX Programming Languages and Tools, Volume 2

Several -d keyletters may be supplied on a single invocation of
admin and may be intermixed with -f keyletters.

A user list of login names and/or group IDs of users who are allowed to
create deltas of that file is checked by several sees commands to
ensure that the delta is authorized. This list is empty by default, which
means that anyone may create deltas. The -a keyletter is used to
specify users who are given permission or denied permission to create
deltas. You can use the -a keyletter whether admin is creating a new
sees file or processing an existing one, and it can appear several times
on a command line.

For example, the command

admin -avz -aram -a1234 s .filename

gives permission to create deltas to the login names vz and ram and
the group ID 1234. The command

admin -a! vz s .filename

denies permission to create deltas to the login name vz. Similarly, the
-e keyletter is used to remove (erase) login names or group IDs from
the list. For example,

admin -evz s .filename

removes the login name vz from the user list of s .filename.

5.1.2 Comments and MR numbers
When an sees file is created, you may insert comments stating your
reasons for creating the file. In a controlled environment, it is expected
that deltas are created only as a result of some trouble report, change
request, trouble ticket, and so forth, all of which are collectively called
MRs (for "modification request' ').

The creation of an sees file may sometimes be the direct result of an
MR. MRs can be recorded by number in a delta via the -m keyletter,
which can be supplied on the admin (or delta) command line.

The -y key letter can also be used to supply comments on the command
line rather than through the standard input.

If comments (-y key letter) are omitted, a comment line of the form

sees Reference 17-25

date and time created YYIMMIDD hh:mm:ss by logname

is automatically generated.

If you want to supply an MR number (using the -m keyletter), the v
flag must also be set (using the -f keyletter described below), as in the
command

admin - ifilename -mmrlist -fv s .filename

The v flag causes the del ta command to prompt for MR numbers as
the reason for creating a delta. (See sccsf ile(4) in AIUX
Programmer's Reference.) Note that the -y and -mkeyletters are
effective only if a new sees file is being created.

5.1.3 Descriptive text
The portion of the sees file reserved for descriptive text can be
initialized or changed using the -t keyletter. Descriptive text is
intended as a summary of the contents and purpose of the sees file.

To insert descriptive text in a file you are creating, the -t key letter is
followed by the name of a file from which the descriptive text is to be
taken. For example, when a new sees file is being created, the
following command takes descriptive text from description-fiie:

admin - ifilename -tdescription-file s .filename

When processing an existing sees file, the -t key letter specifies that
text found in description-file should overwrite current descriptive text
(if any). If you omit the file name after the -t keyletter, as in

admin -t s .filename

the descriptive text currently in the sees file is removed.

5.2 Change comments in an SCCS file: cdc
cdc changes the comments or MR numbers that were supplied when a
delta was created. It is invoked as follows:

cdc -r3. 4 s .filename

This specifies that you want to change the comments of delta 3.4 of
s .filename. You can also use cdc to delete selected MR numbers by
preceding the selected MR numbers by the exclamation character (!).

17-26 AlUX Programming Languages and Tools, Volume 2

cdc prompts for MR numbers and new comments:

cdc -r3. 4 s .filelUlme

MRs? mrlist! mrlist
comments? deleted wrong MR number and inserted\
correct MR number

The new MR number(s) in the first mrlist are inserted, and the old
MR number(s) (preceded by the exclamation character) are deleted.
The old comments are kept and preceded by a line, indicating that they
have been changed. The inserted comment line records the login name
of the user executing cdc and the time of its execution.

S.3 Combine deltas to save space: comb
The comb command generates a shell script (see sh(l) in A/UX
Command Reference) that is written to standard output. When
executed, the script attempts to save space by discarding deltas that are
no longer useful and combining other specified deltas.

Note: comb should be used only a few times in the life of an
sees file. Before any actual reconstructions, comb should be
run with the - s keyletter (in addition to any other keyletters
desired).

In the absence of any keyletters, comb preserves only the most recent
deltas and the minimum number of "ancestor" deltas necessary to
preserve the sees file tree. The effect of this is to eliminate middle
deltas on the trunk and on all branches of the tree.

Some of comb's keyletters are as follows:

-p Specifies the oldest delta that is to be preserved in the
reconstruction. All older deltas are discarded.

-c Specifies a list of deltas to be preserved (see get(1) in A/UX
Command Reference for the syntax of this list). All other deltas
are discarded.

- s Causes the generation of a shell script that, when run, produces
only a report summarizing the percentage space (if any) to be
saved by reconstructing each named sees file. You should run

sees Reference 17-27

comb with this key letter (in addition to any others desired)
before any actual reconstructions.

Note that the shell script generated by comb is not guaranteed to save
space. In fact, it is possible for the reconstructed file to be larger than
the original. Note, too, that the shape of the sees file tree may be
altered by the reconstruction process.

5.4 Store a new sees file version: del.ta
de 1 t a creates a new delta by recording the changes made to a g-file.
The differences between the g-file and the d-file are the changes that
constitute the delta. These changes are normally stored as a delta; they
may also be printed on the standard output by using the -p keyletter.
The format of this output is similar to that produced by di f f.

5.4.1 Required temporary files
All temporary files used by the delta command are described in
"Temporary Files." There must be ap-file and a d-file for delta to
work.

delta looks in the p-file for the user's login name and a valid SID for
the next delta. There should be just one entry for the user (created
when the user does a get -e) and it should be the same user who is
trying to create a delta. Otherwise, de 1 t a will print an error message
and stop. If the user's login name appears in more than one entry in the
p-file, the same user has executed more than one get -e on the sees
file. In this case the -r keyletter must then be used with delta to
specify the SID that uniquely identifies the p-file entry. This entry is
the one used to obtain the SID of the delta to be created.

The delta command also performs the same permission checks
performed by get -e. If all checks are successful, delta performs
a di f f on the g-file and the d-file and records the changes as a new
delta.

5.4.2 Comments and MR numbers
In practice, the most common use of del ta is

de 1 t a s .filename

which prompts

17-28 AlUX Programming Languages and Tools, Volume 2

comments?

on the screen. Your response can be up to 512 characters long if you
escape all newlines with a backslash (\). The response is terminated
by a newline character.

In a controlled environment, deltas are usually created only as a result
of some trouble report, change request, trouble ticket, and the like.
These are collectively called MRs (modification requests) and can be
recorded in each delta. If the sees file has a v flag set, de 1 t a first
prompts with

MRs?

on the screen. The standard input is then read for MR numbers,
separated by blanks and/or tabs. Your response can be up to 512
characters long if you escape all new lines with a backslash (\). The
response is terminated by a newline character.

The -y and/or -m key letters on the de 1 t a command line can also be
used to supply comments and MR numbers, respectively, instead of
supplying these through the standard input. The format of the de 1 t a
command is then

delta -ydescriptive comment -romrlist s .filename

The -m key letter is allowed only if the sees file has a v flag. These
key letters are useful when delta is executed from within a shell
script (see sh(l) inAIUX Command Reference).

The -s keyletter suppresses all output that is normally directed to the
standard output except for the prompts comments? and MRs? Use
of the -s keyletter together with the -y keyletter (and possibly the -m

key letter) causes delta to neither read standard input nor write to
standard output.

The comments and/or MR numbers are recorded as part of the entry for
the delta being created and apply to all sees files processed by the
same invocation of delta. If delta is invoked with more than one
file argument and the first file named has a v flag, all files named must
have the v flag. Similarly, if the first file named does not have this flag,
then none of the files named may have it. Any file that does not
conform to these rules is not processed.

sees Reference 17-29

When processing is complete, the SID of the created delta (obtained
from the p-file entry) and the counts of lines inserted, deleted, and left
unchanged by the delta are written to the standard output.

Thus, a typical output might be

1.4
14 inserted
7 deleted
345 unchanged

Note: The counts of lines reported as inserted, deleted, or
unchanged by de 1 t a may not agree with your perception of
the changes applied to the g-file. There are usually several
ways to describe a set of changes, especially if lines are moved
around in the g-file, and de 1 t a is likely to find a description
that differs from your perception. However, the total number of
lines of the new delta (the number inserted plus the number left
unchanged) should agree with the number of lines in the edited
g-file.

5.4.3 Keywords
If de 1 t a finds no ID keywords in the edited g-file, it prints the
message

No id keywords (cm7)

after it prompts for comments, but before any other output. This
indicates that any ill keywords that may have existed in the SCCS file
have been replaced by their values or deleted during the editing
process. This could be caused by

• Creating a delta from a g-file that was created by a get
command without the -e key letter (lD keywords are replaced by
get in that case)

• Accidentally deleting or changing the ID keywords while you are
editing the g-file

• The file's having no ID keywords to begin with

17-30 AlUX Programming Languages and Tools, Volume 2

In any case, it is left up to the user to determine what to do about it.
The delta is created whether or not ID keywords are present, unless
there is an i flag in the sees file indicating that this should be treated
as a fatal error. In this last case, the delta is not created until the ID
keywords are inserted in the g-file and the delta command is
executed again.

See "sees ID Keywords" for more information.

5.4.4 Removal of temporary files
When processing of an sees file is complete, the corresponding p-file
entry is removed from the p-file. All updates to the p-file are made to a
temporary copy called the q-file. If there is only one entry in the p-file,
then the p-file itself is removed.

When processing of the corresponding sees file is complete, de 1 t a
also removes the edited g-file unless the -n keyletter is specified. The
command

delta -n s .filename

keeps the g-file upon completion of processing.

5.5 Retrieve an sees file version: qet
get creates a text file containing a particular version of an sees file.
The get command applies deltas to the initial version of the file to
obtain the version you specify or the most recent version (excluding
branch versions, which must be retrieved specifically).

The resulting text file is called the g-file (see "Temporary Files' '). The
mode of the g-file depends on how the get command is invoked.

For example, the command

get s .filename

produces

1.3
67 lines
No id keywords (cm7)

on the standard output. This indicates that version 1.3 (the most recent
delta) was retrieved, that there are 67 lines of text in this version, and
that no ID keywords were substituted in the file.

sees Reference 17-31

The generated g-file is assigned mode 444 (read only), which does not
allow you to modify the file, although you can read the file or compile
it, and so on. The file is not intended for editing (that is, for making
deltas).

If you specify several file arguments (or directory-name arguments) on
the get command line, similar information is displayed for each file
processed, preceded by the sees filename. For example, the
command

get s.abc s.def

produces

s.abc:
1.3
67 lines
No id keywords (cm7)

s.def:
1.7
85 lines
No id keywords (cm7)

See" sees ID Keywords. "

5.5.1 Retrieving different versions
By default the get command retrieves the most recent delta of the
highest-numbered release on the basic trunk of the sees file tree
(exclusive of branches). To change this default, you can

• Set the d flag in the sees file. Then the SID specified as the
value of this flag is used as a default.

• Use the - r key letter on the get command line to specify which
SID you want to retrieve. (If the version you specify does not
exist, an error message results.) For example,

get -r1.3 s .filename

In this case, the d flag (if any) is ignored. A branch delta can be
retrieved similarly:

17-32 NUX Programming Languages and Tools, Volume 2

get -rl.5. 2.3 s .filename

If you omit the level number

get -r3 s .filename

the highest level number (most recent delta) within the given
release will be retrieved. If the given release does not exist, get
retrieves the most recent trunk delta (not in a branch) with the
highest level number within the highest-numbered existing
release that is lower than the release you specify .

• Use the -t keyletter to retrieve the most recent (top) version in a
particular release (when no -r keyletter is supplied or when its
value is simply a release number). Most recent is independent of
location in the sees tree (see "Delta Numbering"). For
example, if the most recent delta in release 3 is 3.5,

get -r3 -t s .filename

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created
after delta 3.5), the same command might produce

3.2.1.5
46 lines

5.5.2 Retrieving a file to create a new delta
When you specify the -e keyletter to get, the retrieved file has read
write permission and can be edited to make a new delta. For example,
the command

get -e s .filename

produces

1.3
new delta 1.4
67 lines

on the standard output. The use of get -e is restricted (because a
new delta can be created), causing a check of the sees protection

sees Reference 17-33

mechanisms (user list and protection flags; see "sees Protection
Mechanisms "). sees also checks for pennission to make concurrent
edits (specified by the j flag in the sees file; see "Concurrent Edits of
Same SID' ').

If the pennission checks succeed, get -e creates a g-file with mode
644 (readable by everyone, writable only by the owner) in the current
directory. This mode may be modified by the user's umask.

If a writable g-file already exists, get -e terminates with an error.
This is to prevent inadvertent destruction of a g-file that already exists
and is being edited for the purpose of making a delta.

ID keywords appearing in the g-file are not substituted by get -e
because the generated g-file is subsequently used to create another
delta. Replacement of ID keywords causes them to be pennanently
changed within the sees file.

The following keyletters may be used with get -e:

- r Used to specify a particular version to be retrieved for editing.
If the number specified to - r does not exist, it will be assigned
to the new delta.

-t Specifies that the most recent version in a given release be
retrieved for editing.

- i Used to specify a list of deltas to be included by get.

17-34

Including a delta means forcing the changes that constitute the
particular delta to be included in the retrieved version. This is
useful if you want to apply the same changes to more than one
version of the sees file. When a delta is included, get
checks for possible interference between those deltas and deltas
that are normally used in retrieving the particular version of the
sees file. Two deltas can interfere, for example, when each
one changes the same line of the retrieved g-file. Any
interference is indicated by a warning that shows the range of
lines within the retrieved g-file in which the problem may exist.
The user is expected to examine the g-file to determine whether
a problem actually exists and to do whatever is necessary (for
example, edit the file). The - i keyletter should be used with
extreme care.

NUX Programming Languages and Tools, Volume 2

-x Used to specify a list of deltas to be excluded by get.
Excluding a delta means forcing it not to be applied. This may
be used to undo (in the version of the SCCS file to be created)
the effects of a previous delta. Whenever deltas are excluded,
get checks for possible interference between those deltas and
deltas that are normally used in retrieving the particular version
of the SCCS file. (See the explanation under -i.) The-x
keyletter should be used with extreme care.

- k Facilitates regeneration of a g-file that may have been
accidentally removed or ruined after a get -e command, or
the simple generation of a g-file in which the replacement of ID
keywords has been suppressed. A g-file generated by the - k
keyletter is identical to one produced by get -e except that
no processing related to the p-file takes place (see' 'Temporary
Files").

5.5.3 Concurrent edits of different versions
There is a possibility (in a group project) that several get -e
commands may be executed at the same time on the same file.
However, unless concurrent edits are explicitly allowed (see
"Concurrent Edits of Same SID' '), no two get -e executions can
retrieve the same version of an SCCS file. This protection uses
information from the p-file (see "Temporary Files").

The first execution of get -e causes the creation of the p-file for the
corresponding SCCS file. Subsequent executions only update the p-file
with a line containing the above information. Before updating,
however, get checks to ensure that no entry (already in the p-file)
specifies that the SID (of the version to be retrieved) is already
retrieved, unless multiple concurrent edits are allowed. (See
"Concurrent Edits of Same SID. ")

If both checks succeed, the user is informed that other deltas are in
progress and processing continues. If either check fails, an error
message results. It is important to note that the various executions of
get should be carried out from different directories. Otherwise, only
the first execution succeeds because subsequent executions would
attempt to overwrite a writable g-file, which is an SCCS error
condition. In practice, such multiple executions are performed by
different users so that this problem does not arise (each user normally

sees Reference 17-35

has a different working directory). (See the section "sees Protection
Mechanisms" for a discussion about how different users are permitted
to use sees commands on the same files.)

Figure 17-6 shows a sample sees file retrieved by get -e and the
SID of the version that will subsequently be created by delta, as a
function of the SID specified to get.

In Figure 17-6, R, L, B, and S are release, level, branch, and sequence
components of the SID. m means "maximum." Thus, for example,
R.mL means "the maximum level number within release R";
R.L.(mB+1).1 means "the first sequence number on the (maximum
branch number plus 1) of level L within release R."

Also note that if the SID specified is of the form R.L, R.L.B, or
R.L.B.S, each of the specified components must exist.

The -b keyletter is effective only if the b flag is present in the file (see
admin(l)). In this state, an entry of -i means "irrelevant.'·'

The cases marked * apply if the d (default SID) flag is not present in
the file. If the d flag is present in the file, the SID obtained from the d

flag is interrupted as if it had been specified on the command line.
Thus, one of the other cases in this figure applies.

The case marked with a t is used to force the creation of the first delta
in the new release.

hR is the highest existing release that is lower than the specified,
nonexisting, release R.

17-36 AlUX Programming Languages and Tools, Volume 2

Figure 17-6. Determination of new SID

SID -b Other SID SID of delta
specified key letter conditions retrieved to be created

used

none* no R default mR.mL mR.(mL+1)
tomR

none* yes R default mR.mL mR.mL.(mB+1)
tomR

R no R>mR mR.mL R.1t
R no R==mR mR.mL mR.(mL+1)
R yes R>mR mR.mL mR.mL.(mB+1).1
R yes R==mR mR.mL mR.mL.(mB+ 1).1

R - R<mR hR.mL hR.mL.(mB+1).1
and does
not exist

R - Trunk R.mL R.mL.(mB+1).1
successor
in release >R
andR exists

sees Reference 17-37

Figure 17-6. Determination of new SID (continued)

SID -b Other SID SID of delta
specified keyletter conditions retrieved to be created

used

R.L. no No trunk R.L R.(L+1)

successor

R.L. yes No trunk R.L R.L.(mB+l).l
successor

R.L - Trunk R.L R.L.(mB+1).1

in release

>=R

R.L.B no No branch R.L.B.mS R.L.B.(mS+1)

successor

R.L.B yes No branch R.L.B.mS R.L.(mB+l).l

successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+ 1)
successor

R.L.B.S no No branch R.L.B.S R.L.(mB+l).l

successor

R.L.B.S - Branch R.L.B.S R.L.(mB+l).l
successor

5.5.4 Concurrent edits of same SID
Unless the j flag is set in the sees file (see "sees Flags"), get -e
commands are not permitted to occur concurrently on the same SID.
That is, delta must be executed before another get -e is executed

17-38 NUX Programming Languages and Tools, Volume 2

on the same SID. If the j flag is set in the sees file, two or more
successive executions of get -e on the same SID are allowed. The
command

admin -f j s .filename

sets the j flag. Then, the command

get -e s .filename

may produce

1.1
new delta 1.2
5 lines

which may be immediately followed by the commands

mv filename new-filename
get -e s .filename

The second edit request without an intervening execution of de 1 t a
causes a warning to be generated:

1.1

WARNING: being edited: '1.1 1.2 usernamedate-stamp' (ge18)

new delta 1.1.1.1

5 lines

In this case, a del ta command corresponding to the first get
produces delta 1.2 (assuming 1.1 is the latest (most recent) delta), and
the delta command corresponding to the second get produces delta
1.1.1.1.

5.5.5 Keyletters that affect output
The following keyletters affect output:

-p The retrieved text is written on standard output rather than on a
g-file. In this case, all output normally directed to the standard
output (such as the SID of the version retrieved and the number
of lines retrieved) is directed instead to the standard error output.
The -p key letter is used, for example, to create g-files with
arbitrary names:

get -p s .filename > filename

sees Reference 17-39

-s Suppresses all output that is normally directed to the standard
output (the SID of the retrieved version, the number of lines
retrieved, and so forth, are not written). This does not affect
messages to the standard error output. This key letter is used to
prevent nondiagnostic messages from appearing on the user's
terminal, and is often used in conjunction with the -p key letter
to pipe the output of get. For example,

get -p -s s .filename I nroff

-g Suppresses the actual retrieval of the text of a version of the
sees file. This can be used in a number of ways, for example,
to verify the existence of a particular SID in an sees file:

get -g -r4. 3 s .filename

This prints the given SID if it exists in the sees file or
generates an error message if it does not exist. The -g keyletter
is also used to regenerate a p-file that has been accidentally
destroyed. For example,

get -e -g s .filename

-1 Creates an I-file named by replacing the s. of the sees file
name with 1 .. See' 'Temporary Files. " For example, the
command

get -r2. 3 -1 s .filename

generates an I-file that shows the deltas applied to retrieve
version 2.3 of the sees file. Specifying a value of p with the
-1 key letter

get -lp -r2. 3 s .filename

causes the generated output to be written to the standard output
rather than to the I-file. You can use the -g keyletter with the
-1 key letter to suppress the actual retrieval of the text.

-m Identifies the changes applied to an sees file, line by line.
When you specify this keyletter to the get command, each line
of the generated g-file is preceded by the SID of the delta that
caused that line to be inserted. The SID is separated from the
text of the line by a tab character.

17-40 AlUX Programming Languages and Tools, Volume 2

-n Causes each line of the generated g-file to be preceded by the
value of the %M% ID keyword (the module name) and a tab
character. The -n key letter is most often used in a pipeline with
the grep command. For example,

get -p -n -s directory I grep pattern

searches the latest version of each SCCS file in a directory for
all lines that match a given pattern. If both the -m and -n

key letters are specified, each line of the generated g-file is
preceded by the value of the sees ID keyword and a tab
(caused by the -n keyletter) and shown in the format produced
by the -m key letter.

Because the contents of the g-file are modified when you use the
-m and/or -n keyletters, this g-file cannot be used for creating a
delta, and neither -m nor -n can be used with the -e keyletter.

5.6 Restore a version unchanged: unget
If invoked before a delta, unget undoes a get -e command. The
following keyletters can be used with unget:

-rSID Uniquely identifies the delta that is no longer intended (the
SID for the new delta is included in the p-file). This is
necessary only if two or more get -e commands of the
same SCCS file are in progress.

-s Suppresses the display of the intended SID of the delta on

-n

standard output.

Retains the g-file in the current directory instead of
removing it.

For example, the command

get -e s .filename

followed by

unget s .filename

causes the last version to be unchanged.

sees Reference 17-41

5.7 On-line explanations: help
The help command prints explanations of sees commands and the
messages printed by some of these commands. If you use help
without an argument, it prompts for one. Valid arguments are names of
sees commands or the code numbers that appear in parentheses after
sees messages. Keyletter arguments or file arguments are not valid
arguments to help.

Explanatory information related to a command is a synopsis of the
command. For example, the command

help geS rmdel

produces

geS:
'nonexistent sid'
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name ...

This is printed on standard output by default. If no information is
found, help prints an error message. Note that help processes each
argument independently, and an error resulting from one argument will
not terminate the processing of the other arguments on the command
line.

5.8 Print part(s) of an sees file: prs
The prs command is used to print on the standard output all or partes)
of an sees file in a format you specify. The format is called the
output "data specification." It is a string consisting of sees file data
keywords (not to be confused with get ID keywords), supplied using
the -d keyletter on the prs command line. These keywords can
(optionally) be interspersed with text.

Data keywords specify which parts of an sees file are to be retrieved
and produced. All parts of an sees file (see sccsfile(4)) have an
associated data keyword. Data keywords are an uppercase character,
two uppercase characters, or an uppercase and a lowercase character,

17-42 A/UX Programming Languages and Tools, Volume 2

enclosed by colons. For example,

: I:

is the keyword replaced by the SID of a specified delta. Similarly,

:F:

is the keyword replaced by the sees filename currently being
processed, and

:C:

is replaced by the comment line associated with a specified delta. For a
complete list of the data keywords, see prs(1) inA/UX Command
Reference.

There is no limit to the number of times a data keyword can appear in a
data specification. For example, the command

prs -d":I: this is the top delta for :F: :I:" s.filename

may produce on the standard output (for example)

2.1 this is the top delta for s .filename 2.1

Information can be obtained from a single delta by specifying the SID
of that delta using the -r keyletter. For example,

prs -d": F:: : I: comment line is: : C:" -rI.4 s .filename

may produce the following output:

s .filename: 1.4 comment line is: THIS IS A COMMENT

If the - r key letter is not specified, the value of the SIn defaults to the
most recently created delta.

Information may be obtained from a range of deltas by specifying the
-e or -1 key letters.

The -e keyletter substitutes data keywords for the SIn designated by
the - r key letter and all earlier deltas.

prs -d : I: -rl. 4 -e s .filename

may produce

sees Reference 17-43

1.4
1.3
1.2.1.1
1.2
1.1

The -1 key letter substitutes data keywords for the SID designated by
the - r key letter and all later deltas.

prs -d : I: -rl.4 -1 s .filename

may produce

3.3
3.2
3.1
2.2.1.1
2.2
2.1
1.4

Substitution of data keywords for all deltas of the sees file may be
obtained by specifying both the -e and -1 key letters.

5.9 Remove a specific delta: rmdel. -r
rmde1 removes a delta from an sees file. Normally, you should use
it only if incorrect global changes were incorporated in a delta.

The -r keyletter is required to specify the complete SID of the delta to
be removed.

The delta to be removed must be the most recent delta on its branch or
on the trunk of the sees file tree. In Figure 17-7, only deltas 1.3.1.2,
1.3.2.2, and 2.2 can be removed; once they are removed, then deltas
1.3.2.1 and 2.1 can be removed.

17-44 AlUX Programming Languages and Tools, Volume 2

Figure 17-7. Removing a delta

The command

rmdel -r2. 2 s .filename

specifies that delta 2.2 of the sees file should be removed. Before
removing it, rmdel checks that the release number (R) of the given
SIn satisfies the relation

floor <= R <= ceiling

and that the SID specified is not a version that is being changed (for
which a get -e has been executed and whose associated delta has
not yet been made).

The A/UX and sees protection mechanisms are also checked (see
appropriate sections above). If the checks are not successful,
processing is terminated and the delta is not removed.

If the checks are successful, the delta is removed and its type indicator
in the delta table of the sees file is changed from D ("delta") to R

("removed").

5.10 Account for open sees files: sact
The sact command reports any impending deltas to an sees file. An
impending delta is a change that has not yet been incorporated into the
sees file with the de 1 t a command. This would occur if a get -e
has been executed but an associated de 1 t a has not yet been made.

sees Reference 17-45

sact reports five fields for each named file:

field 1 The SID of the existing sees file being changed

field 2 The SID of the new delta to be created

field 3 The login name of the user who executed the get
command

field 4 The date the get

field 5 The time the get

The command

sact s .filename

produces a display such as

-e command was executed

-e command was executed

1.2 1.3 john 85/06/20 16:15:15

5.11 Compare two SCCS files: sccsdi££

-e

sccsdiff compares two specified versions of one or more sees
files and prints the differences on standard output. The versions to be
compared are specified using the -r keyletter in the same format used
for the get command. For example,

sccsdiff -r3. 4 -r5. 6 s .filename

The two versions must be specified as the first two arguments to this
command in the order in which they were created (the older version is
specified first). Any following key letters are interpreted as arguments
to the pr command (which prints the differences on standard output in
di f f format) and must appear before any filenames.

The sees files to be processed are named last. Directory names and a
name of a single minus sign (-) are not acceptable to sccsdiff.

5.12 Check an SCCS file's characteristics: va1
val is used to determine if a file is an sees file meeting the
characteristics specified by an optional list of key letter arguments. Any
characteristics not met are considered errors.

The val command checks for the existence of a particular delta when
the SID for that delta is explicitly specified via the -r keyletter. The
string following the -y or -m keyletter is used to check the value set by

17-46 NUX Programming Languages and Tools, Volume 2

the t or m flag, respectively (see admin(l) in AIUX Command
Reference for a description of the flags).

The val command treats the special argument - differently than other
sees commands. This argument allows val to read the argument list
from the standard input as opposed to obtaining it from the command
line. The standard input is read until an end-of-file.

This capability allows for one invocation of val with different values
for the key letter and file arguments. For example,

val -
-yc -mabc s .filename
-rnxyz -ypll s.xyz
(EOF)

first checks if the s .filename file has a value c for its type flag and
value filename for the module name flag. Once processing of the first
file is completed, val then processes the remaining files, in this case,
s . xyz, to determine if they meet the characteristics specified by the
keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates the
occurrence of a specific error (see val(l) for a description of possible
errors and the codes). The appropriate diagnostic is also printed unless
suppressed by the -s keyletter. A return code of 0 indicates all named
files met the characteristics specified.

5.13 Find identifying information: what
w ha t is used to find identifying information within any NUX system
file whose name is given as an argument to what. Directory names
and a name of - (a single minus sign) are not treated specially as they
are by other sees commands, and no keyletters are accepted by the
command.

The what command searches the given file(s) for all occurrences of
the string @ (#) (which is the replacement for the @ (#) ID keyword)
and prints (on the standard output) the balance following that string
until the first double quote (n), greater than (», backslash (\), newline,
or (nonprinting) null character. For example, if the sees file
s . prog . c (a e language program) contains the following line:

sees Reference 17-47

char id[]

The command

"@(#)%Z%%M%:%I%";

get -r3.4 s.prog.c

is executed, and the resulting g-file is compiled to produce prog. 0

and a. out. Then the command

what prog.c prog.o a.out

produces

prog.c:
prog.c:3.4

prog.o:
prog.c:3.4

a.out:
prog.c:3.4

The string searched for by what does not need to be inserted in the
sees file via an ID keyword of get; it can be inserted in any
convenient way.

17-48 A/UX Programming Languages and Tools, Volume 2

Chapter 18

awk Reference

Contents

1. awk: a programming language

2. Program structure

3. Invoking awk • •

4. Input: records and fields

5. Input from the command line •

6. Output: printing. •
6.1 print
6.2 NR and NF •

6.3 printf. .
6.4 OFS and ORS

7. Output to different files

8. Output to pipes

9. Comments

10. Patterns • • • •
10.1 BEGIN and END • • • •

10.2 Relational expressions
10.3 Regular expressions
10.4 Combinations of patterns
10.5 Pattern ranges

11. Actions • • • • • • • . •
11.1 Variables, expressions, and assignments
11.2 Initialization of variables •••.•
11.3 Field variables • • • • • .
11.4 String concatenation
11.5 Special variables • • • •

- i -

1

1

2

4

6

7
7
9

10
11

12

13

14

14
14
16
17
19
19

20
20
22
22
23
24

11.6 Type • •
11.7 Arrays

12. Built-in functions

13. Flow of control •

14. Report generation

15. Cooperation with the shell

16. Lexical conventions
16.1 Numeric constants • •
16.2 String constants •••.•••.
16.3 Predefined variables t reserved keywords t and

reserved function names
16.4 Identifiers • • • •
16.5 Operators • • • .
16.6 Record and field tokens
16.7 Separators • • • •

16.7.1 Record separators
16.7.2 Field separators

16.8 Multiline records
16.9 Output record and field separators . • • •
16.10 Separators and braces •

17. Primary expressions
17 .1 Numeric constants •
17.2 String constants
17.3 Variables ••••
17.4 Functions

18. Terms
18.1
18.2
18.3
18.4

Binary terms
Unary terms •
Incremented variables •
Parenthesized terms

19. Expressions • • • • •
19.1 Concatenation of terms
19.2 Assignment expressions

- ii -

24
25

27

29

33

35

36
36
37

37
38
38
40
41
41
41
41
42
42

42
42
43
44
45

45
46
46
46
47

47
47
48

Tables

Table 18-1. Reserved Strings • • •

Table 18-2. Assignment operators

38

39

Table 18-3. Arithmetic operators 39

Table 18-4. Relational operators 40

Table 18-5. Logical operators • 40

Table 18-6. Regular expression pattern-matching
operators • • • • • • • • . • 40

Table 18-7. Values for sample numeric constants 43

Table 18-8. Values for sample string constants . • 44

- iii -

Chapter 18

awk Reference

1. awk: a programming language
The awk programming language is a file-processing language designed
to make many common information retrieval and manipulation tasks
easy to state and perform. The a w k language can be used to

• Generate reports

• Match patterns

• Validate data

• Filter data for transmission

2. Program structure
An awk program is a sequence of statements of the form

BEGIN
pattern

END

action
action }

action

The a w k program is run on a set of input files. The basic operation of
a w k is to scan a set of input lines, in order, one at a time. In each line,
a w k searches for the pattern described; if that pattern is found in the
input line, the corresponding action is performed. An action is a
sequence of action statements separated by new lines or semicolons. A
pattern in front of an action acts as a selector that determines whether
the action executes. When all the patterns are tested, the next input line
is fetched and the a w k program is once again executed from the
beginning.

In an awk program, either the pattern or the action may be omitted, but
not both. If there is no action for a pattern, the matching line is simply

awk Reference 18-1

printed. If there is no pattern for an action, then the action is performed
for every input line. (The null awk program does nothing.) Because
both patterns and actions are optional, actions are enclosed in braces to
dis tinguish them from patterns. For example, the a w k program

Ixl { print }

prints every input line that has the letter x in it, as will

Ixl

The patterns recognized by awk, such as the Ixl just above, include
regular expressions recognized by other NUX utilities such as egrep
or vi. There are also two special patterns, BEGIN and END. The
BEG IN section is run before any input lines are read, and the END

section is run after all the data files are processed.

The action may be quite simple or very complex: a w k provides
conditional execution of statements and full flow-control constructions.
Variables may be created and assigned values in any of the three
sections of an awk program; values may also be assigned from the awk
command line, although the BEG IN section is run before these
assignments are made.

3. Invoking awk
There are three ways in which to present an awk program to awk for
processing:

1. If the program is short (a line or two), it is often easiest to make
the program the first argument on the command line:

awk 'program' files

where files is an optional list of input files and pro gram is your
awk program. Note that there are single quotes around the
program name to make the shell accept the entire string
(program) as the first argument to awk. For example, you may
write the following to the shell:

awk 'lxi' chap.l

to run the awk program Ixl on the input file chap. 1. Ifno
input files are specified, awk takes input from the standard input
stdin. You can also specify that input comes from stdin by

18-2 NUX Programming Languages and Tools, Volume 2

using the hyphen (-) as one of the files. The command

awk 'program' files -

looks for input first from files and then from stdin.

2. Alternatively, if your a w k program is long, it is more convenient
to put the program into a separate file, say awkprog, and then to
tell awk to fetch it from there. This is done by using the-f
option with the awk command, as follows:

awk -f awkprog fiks

where files is an optional list of input files that may include
stdin as indicated by a hyphen (-). For example, suppose that
you put the following text into a file called awkprog:

BEGIN {
print "hello, world"
exit

Then you may give the command

awk -f awkprog

to the shell. This yields

hello, world

on the standard output Recall that the word BEG IN is a special
pattern indicating that the action following in braces is run before
any data is read. print and exit are both discussed in later
sections, but their effects here are obvious.

3. Finally, the awk program may be put into a file together with the
awk invocation for use as a shell script This is most useful if
the input to a w k needs to be processed first by other NUX
utilities such as sort or m4; but a single awk statement will also
work:

awk Reference 18-3

awk ' BEGIN {
print "hello, world"
exit

} ,

If this text is put into a file, for example greet, and made
executable, then typing greet to the shell has the same output
as the previous example.

This method also allows passing command line arguments to
awk. If the following is put instead in the file called greet,

awk ' BEGIN {
print "hello, '$1' "
exit

} ,

you can invoke it from the shell with the command line

greet Jim

and the output will be

hello, Jim

4. Input: records and fields
a wk reads its input one' 'record" at a time, unless you tell it otherwise.
A record is a sequence of characters from the input ending with a
newline character or with an end-of-file. Thus, a record is a line of
input. awk reads in characters until it encounters a newline or an end
of-file. The string of characters, thus read, is assigned to the variable
$ o. You can change the character that indicates the end of a record by
assigning a new character to the special variable RS (the record
separator). Assignment of values to variables and special variables
such as RS is discussed later.

, Once awk has read in a record, it then splits the record into "fields."
A field is a string of characters separated by blanks or tabs, unless you
specify otherwise. You may change field separators from blanks or
tabs to whatever characters you choose in the same way that record
separators are changed. That is, the special variable F S is assigned a
different value.

18-4 AlUX Programming Languages and Tools, Volume 2

As an example, suppose that the file countries contains the area in
thousands of square miles, the population in millions, and the continent
for the ten largest countries in the world. (Figures are from 1978;
Russia is placed in Asia.) The sample input file countries looks
like this:

Russia 8650 262 Asia
Canada 3852 24 N. America
China 3692 866 Asia
USA 3615 219 N. America
Brazil 3286 116 S. America
Australia 2968 14 Australia
India 1269 637 Asia
Argentina 1072 26 S. America
Sudan 968 19 Africa
Algeria 920 18 Africa

The wide spaces are tabs in the original input, while a single blank
separates N. and S. from America. This sample file will be used as
the input for many of the a w k programs in this guide because it is
typical of the kind of material that awk is best at processing (a mixture
of words and numbers separated into fields or columns separated by
blanks and tabs).

Each of the lines in the sample file has either four or five fields if
blanks and/or tabs separate the fields. This is what awk assumes unless
told otherwise. In the above example, the first record is

Russia 8650 262 Asia

When this record is read by a w k, it is stored in the variable $ o. If you
want to refer to this entire record, you do so through the variable $ o.
For example, the following action

{ print $0 }

prints the entire record. Fields within a record are stored in the
variables $1, $2, $ 3, and so forth; that is, the first field of the present
record is referred to as $1 by the a w k program. The second field of
the present record is referred to as $ 2 by the a w k program. The ith
field of the present record is referred to as $i by the awk program.
Thus, in the above example of the file countries, in the first record,

awk Reference 18-5

$1 is equal to the string Russia, $2 is equal to the integer 8650, and
soon.

To print the continent, followed by the name of the country, followed
by its population, use the following awk program:

{ print $4, $5, $1, $3 }

Using $ 4 and $ 5 allows for those countries whose names consist of
two fields (N. America, for example). Note that awk does not require
type declarations.

5. Input from the command line
It is possible to assign values to variables from within an awk program.
Because you do not declare types of variables, a variable is created
simply by referring to it. An example of assigning a value to a variable
is

x=5

This statement in an awk program assigns the value 5 to the variable x.
It is also possible to assign values to variables from the command line.
This provides another way to supply input values to awk programs.
For example,

awk '{ print x }' x=5 -

will print the value 5 on the standard 0ll:tput once for each input line. It
will terminate only when an end-of-file is received. If input from the
keyboard must be given, the minus sign at the end of this command is
necessary to indicate that input is coming from standard input.
Similarly, if the input comes from a file named chap. 1, the command
is

awk '{ print x }' x=5 chap.1

It is not possible to assign values to variables used in the BEG IN
section in this way.

If it is necessary to change the record separator or the field separator, it
is useful to do so from the command line, as in the following example:

awk -f awk.program RS=":" chap.1

18-6 A/UX Programming Languages and Tools, Volume 2

Here, the record separator is changed to the colon (:). This causes
your program in the file awk .program to run with records separated
by the colon instead of the newline character. Also, its input comes
from the file chap.1.

It is similarly useful to change the field separator from the command
line. This operation is so common that there is another way to do it
There is a separate option - F c that is placed directly after the
command awk. This changes the field separator from blank or tab to
the character c. For example,

awk -F: -f awk.program chap.1

changes the field separator FS to the colon. Note that if the field
separator is specifically set to a tab (that is, with the -F option or by
making a direct assignment to F S) then blanks are not recognized as
separating fields. However, even if the field separator is specifically set
to a blank, tabs are still recognized as separating fields. Certain
characters must be quoted to protect them from interpretation by the
shell (for example, blank, tab, asterisk, and so forth).

As an exercise, using the input file countries described earlier,
write an a wk program that prints the name of a country followed by the
continent that it is on. Do this in such a way that continent names
composed of two words (for example, N. America) are processed as
only one field and not two.

6. Output: printing

6.1 pri.nt
An action may have no pattern; in this case, the action is executed for
all lines as in the simple printing program. Consider the awk program

{ print }

This is one of the simplest actions performed by awk. It prints each
line of the input to the output Generally, it is more useful to print one
or more fields from each line. For instance, using the file
countries, the command line

awk '{ print $1, $3 }' countries

awk Reference 18-7

prints the name of the country and the population:

Russia 262
Canada 24
China 866
USA 219
Brazil 116
Australia 14
India 637
Argentina 26
Sudan 19
Algeria 18

If you want to specify two awk actions for the same pattern, a
semicolon must separate each action. For example, if you want the
number 5 printed, you might give the following program:

{ x=5; print x }

or even

{ print 5 }

Note that the use of a semicolon after the final action statement in an
awk program line is optional. awk accepts

print $1 }

and

print $1; }

equally and takes them to mean the same thing. Parentheses are also
optional with the print statement.

print $3, $2

is the same as

print ($3, $2)

Items separated by a comma in a print statement are separated by the
current output field separator (normally a space, even when the input is
separated by tabs) when printed. The output field separator (OFS) is
another special variable that you can change. These special variables
are summarized in a later section.

18-8 A/UX Programming Languages and Tools, Volume 2

As an exercise, using the input file countries, print the continent
followed by the country, followed by the population for each input
record. Then pipe the output to the AlUX command sort so that all
countries from a given continent are printed together.

print also prints strings directly from your programs. Recall the awk
program

{ print "hello, world" }

from an earlier section.

As an exercise, print a header to the output of the previous exercise that
says "Population of Largest Countries" followed by a header to each
column that follows describing what is in that column; for example,
"Country" or "Population" (see "BEGIN and END" for more
information).

6.2 NRand NF
As you have already seen, a wk makes available a number of special
variables with useful values, for example, F S and RS. Two more
special variables are introduced in the next example. NR and NF are
both integers that contain the number of the present record and the
number of fields in the present record, respectively. Thus,

{ print NR, NF, $0 }

prints each record number and the number of fields in each record
followed by the record itself. Using this program on the file
countries yields

1 4 Russia 8650 262 Asia
2 5 Canada 3852 24 N. America
3 4 China 3692 866 Asia
4 5 USA 3615 219 N. America
5 5 Brazil 3286 116 S. America
6 4 Australia 2986 14 Australia
7 4 India 1269 637 Asia
8 5 Argentina 1072 26 S. America
9 4 Sudan 968 19 Africa
10 4 Algeria 920 18 Africa

awk Reference 18-9

And the program

{ print NR, $1 }

yields

1 Russia
2 Canada
3 China
4 USA
5 Brazil
6 Australia
7 India
8 Argentina
9 Sudan
10 Algeria

This is an easy way to supply sequence numbers to a list. By itself,
p r in t prints the entire input record. Use

print ''''

to print an empty line.

6.3 printf
awk also provides the statement printf so that you can format output
as desired. (print uses the default format %. 6g for each variable
printed.)

printf format, expr, expr, ...

formats the expressions in the list according to the specification in the
stringformat, and prints them. Theformat specifier is exactly like that
used with printf in the C library (with the following exceptions: the
format specifiers *, u, X, E, and G are not supported in awk). For
example,

{ printf "%10s %6d %6d\n", $1, $2, $3 }

prints $1 as a string of ten characters (right justified). The second and
third fields (six-digit numbers) make a neatly columned table:

18-10 NUX Programming Languages and Tools, Volume 2

Russia 8650 262
Canada 3852 244

China 3692 866
USA 3615 219

Brazil 3286 116
Australia 2968 14

India 1269 637
Argentina 1072 26

Sudan 968 19
Algeria 920 18

With printf, no output separators or newlines are produced
automatically. You must add them, as in this example. As in the C
library version of printf, the escape characters \n (newline) and \ t
(tab) are valid with the awk printf.

6.4 OFS and ORS
There are two special variables that go with printing, OFS and ORS.
OFS is the output field separator, and ORS is the output record
separator. These are by default set to blank and the newline character,
respectively. The variable OFS is printed on the standard output when
a comma occurs in a print statement such as

{ x="hello"; y="world"; print x, y }

which prints

hello world

However, without the comma in the print statement, as in

{ x="hello"; y="world"; print x y }

you get

helloworld

White space is the awk concatenation operator, so print recognizes
only one argument here.

To get a comma on the output, you can either insert it in the print
statement, as in this case:

{ x="hello"; y="world" ; print x

awk Reference

" " , y }

18-11

or you can change OF S in a BEG IN section as in

BEGIN { OFS=", "}
{ x="hello"; y="world"

Both of these last two programs yield

hello, world

print x, y }

Wherever a comma appears in a print statement, it is replaced by the
output field separator. If you have not defined the output field
separator, the default (a space) is used. If there are no commas, as in

{ print $0 $1}

no output field separator is used. However, in

{ print $0, $0 }

the output field separator is used between the two $Os.

7. Output to different files
The NUX shell programs allow you to redirect the standard output to a
file. awk also lets you direct output to many different files from within
your awk program. For example, with the input file countries, you
might want to print all the data from countries of Asia in a file called
ASIA, all the data from countries in Africa in a file called AFRICA,
and so forth. This is done with the following a w k program:

if ($4 == "Asia") print > "ASIA"
else if ($4 "Europe") print> "EUROPE"
else if ($4 "North") print > "N_AMERICA"
else if ($4 "South") print > "S_AMERICA"
else if ($4 "Australia") print> "AUSTRALIA"
else if ($4 "Africa") print > "AFRICA"
}

The flow-of-control statements (for example, if) are discussed later.

In general, you may direct output into a file after a print or a
printf statement by using a statement of the form

print > "file"

18-12 AlUX Programming Languages and Tools, Volume 2

wherefile is the name of the file receiving the data, and the print
statement may have any legal arguments to it.

Notice that the filenames are quoted strings or variables containing
strings. Without quotes, the filenames are treated as uninitialized
variables and all output then goes to the same file. Also, if the
redirection symbol> is replaced by > >, output is appended to the file
rather than overwriting it.

Note also that there is an upper limit to the number of files that are
written in this way. At present it is ten.

8. Output to pipes
It is also possible to direct printing into a pipe instead of a file. For
example,

{ if ($2 == "XX") print I "mail harry" }

(where harry is someone's login name), any record with the second
field equal to XX is sent to the user harry as mail. But instead of
passing each such record across the pipe to mail individually, awk
waits until the entire print input is processed before passing its
output on to rna i 1. Also,

{ print $1 I "sort" }

takes the first field of each input record, accumulates them until the
input to print is exhausted, and then passes the entire list to sort,
which then generates the sorted list. The command in double quotes
may be any NUX command.

As an exercise, write an a w k program that uses the input file
countries to

• Print the name of the countries

• Print the population of each country

• Sort the data so that countries with the largest population appear
first

• Mail the resulting list to yourself

Here is another example of using a pipe for output, which guarantees
that its output always goes to your terminal:

awk Reference 18-13

{ print ... I "cat -u > /dev/tty" }

cat -u allows output to be displayed as soon as it is produced (that
is, it is unbuffered). Otherwise, you have to wait for a bufferful of data
before you see anything.

Only one output statement to a pipe is permitted in an a w k program. In
all output statements involving redirection of output, the files or pipes
are identified by their names, but they are created and opened only
once in the entire run.

9. Comments
Comments may be placed in awk programs; they begin with the
character :#= and end with the end of the line, as in

print x, y :#= this is a comment

10. Patterns
A pattern in front of an action acts as a selector that determines
whether the action is to be executed. A variety of expressions are used
as patterns:

• The special patterns BEG IN and END

• Regular expressions

• Arithmetic relational expressions

• String-valued expressions

• Combinations of these

10.1 BEGIN and END
The action corresponding to the special pattern BEG IN is executed
before the input is read. The action corresponding to the special
pattern END is executed after all the input has been processed. BEG IN

and END thus provide a way to gain control before processing for
initialization and after processing for wrapping up.

You can use BEG IN to put column headings on the output. For
example, if you put the following awk program in the file awkprog,

18-14 NUX Programming Languages and Tools, Volume 2

BEGIN { print "Country", \
"Area", \
"Population", \
"Continent" }

{ print

and invoked awk with the command line

awk -f awkprog countries

a wk would produce

Country Area Population
Russia 8650 262
Canada 3852 24
China 3692 866
USA 3615 219
Brazil 3286 116
Australia 2986
India 1269 637

Continent
Asia
N. America
Asia
N. America
S. America
14 Australia
Asia

Angentina 1072 26 South Africa
Sudan 968
Algeria 920

19
18

Africa
Africa

Formatting is obviously not very good here; printf would do a better
job and is usually mandatory if you really care about appearance (see
printf(3S) in AIUX Programmer's Reference).

Recall also that the BEG IN section is a good place to change special
variables such as FS or RS. For example,

BEGIN { FS = "\t"
print "Country", \

"Area", \
"Population", \
"Continent"

print
END print "The number of records is", NR

In this program, F S is set to a tab in the BEG IN section; as a result all
records (in the file countries) have exactly four fields.

awk Reference 18-15

If BEG IN is present, it must be the first pattern; END must be the last if
it is used.

10.2 Relational expressions
Any expression involving comparisons between strings of characters or
numbers can be an awk pattern. For example, if you want to print only
countries with more than 100 million population, use

$3 > 100

This tiny awk program is a pattern without an action, so it prints each
line whose third field is greater than 100, as follows:

Russia 8650 262 Asia
China 3692 866 Asia
USA 3615 219 N. America
Brazil 3286 116 S. America
India 1269 637 Asia

To print the names of the countries that are in Asia, type

$4 == "Asia" {print $1}

which produces

Russia
China
India

The conditions tested are <, <=, ==, ! =, >=, and >. In such relational
tests, if both operands are numeric, a numeric comparison is made.
Otherwise, the operands are compared as strings. Thus,

$1 >= "S"

selects lines that begin with S, T, U, and so forth, which in this case is

USA
Sudan

3615
968

219
19

N. America
Africa

In the absence of other information, fields are treated as strings, so the
program

$1 == $4

18-16 AlUX Programming Languages and Tools, Volume 2

compares the first and fourth fields as strings of characters and prints
the single line

Australia 2968 14 Australia

If fields appear as numbers, the comparisons are done numerically.

10.3 Regular expressions
awk provides more powerful capabilities for searching for character
strings than were illustrated in the previous section. These additional
search capabilities make use of regular expressions. The simplest
regular expression is a literal string of characters enclosed in slashes.

/Asia/

This is a complete awk program that prints all lines which contain any
occurrence of the string Asia. If a line contains Asia as part of a
larger word like Asiatic, it is also printed (but there are no such
words in the countries file).

a w k regular expressions include regular expression forms like those
found in the text editor ed and the pattern finder egrep, in which
certain characters have special meanings. For example, you could print
all lines that begin with A using

/AA/

or all lines that begin with A, B, or C using

/A[ABC]/

or all lines that end with ia using

/ia$/

The circumflex (A) means "match the beginning of a line." The dollar
sign ($) means "match the end of the line," and enclosing characters
in brackets ([and]) means "match any of the characters enclosed.' ,
In addition, awk allows parentheses for grouping, the vertical bar (I)
for alternatives, the plus sign (+) for "one or more" occurrences, and
the question mark (?) for "zero or one" occurrences. For example,

/xly/ {print}

prints all records that contain either an x or a y. And

awk Reference 18-17

lax+bl {print}

prints all records that contain an a followed by one or more x's
followed by a b. For example: axb, P axxxxxxxb, QaxxbR.

lax?bl {print}

prints all records that contain an a followed by zero or one x followed
by a b. For example: ab, axb, yaxbPPP, CabD.

The two characters. and * have the same meaning as they have in ed
or grep: namely, . matches any character and * matches zero or
more occurrences of the character preceding it. For example,

la.bl

matches any record that contains an a followed by any character
followed by a b. That is, the record must contain an a and a b
separated by exactly one character. For example, I a . b I matches
axb, aPb, and xxxxaXbxx, but not ab, axxb.

lab*cl

matches a record that contains an a followed by zero or more b' s
followed by a c. For example, it matches ac, abc, and
pqrabbbbbbbbbbc901.

It is possible to tum off the special meaning of metacharacters such as
A and * by preceding these characters with a backslash. An example
of this is the pattern

1\1.*\11

which matches any string of characters enclosed in slashes.

You can also specify that any field or variable must match a regular
expression, or must not match it, by using the operators - or !-,
respectively. For example, with the input file countries as before,
the program

$1 - lia$1 {print $1}

prints all countries whose names end in ia:

18-18 AlUX Programming Languages and Tools, Volume 2

Russia
Australia
India
Algeria

10.4 Combinations of patterns
A pattern is made up of similar patterns combined with the operators
I I (OR), & & (AND), ! (NOn, and parentheses. For example,

$2 >= 3000 && $3 >= 100

selects lines where both area and population are large:

Russia
China
USA
Brazil

The program

8650
3692
3615
3286

262
866
219
116

Asia
Asia
N. America
S. America

$4 == "Asia" I I $4 == "Africa"

selects lines with Asia or Africa as the fourth field. An alternate
way to write this last expression is with a regular expression:

$4 - /(AsiaIAfrica)/

The operators & & and I I guarantee that their operands are evaluated
from left to right; evaluation stops as soon as truth or falsehood is
determined.

10.5 Pattern ranges
The pattern that selects an action may also consist of two patterns
separated by a comma, as in

pattern1, pattern2 {action}

In this case, the action is performed for each line between an
occurrence of pattern1 and the next occurrence of pattern2 (inclusive).
As an example with no action,

/Canada/,/Brazil/

prints all lines between the one containing Canada and the one
containing Brazil. For example,

awk Reference 18-19

Canada 3852
China 3692
USA 3615
Brazil 3286

while

NR == 2, NR == 5

24
866
219
116

{ action

N. America
Asia
N. America
S. America

does the action for lines 2 through 5 of the input Different types of
patterns may be mixed, as in

/Canada/, $4 == "Africa"

which prints all lines from the first line containing Canada up to and
including the next record whose fourth field is Af ric a.

Note that patterns in this form occur outside the action parts of the a w k
programs (outside the braces that define a wk actions). If you need to
check patterns inside an awk action (inside the braces), use a flow-of
control statement such as an if statement or a while statement.
Flow-of-control statements are discussed in the section "Built-in
Functions.' ,

11. Actions
An awk action is a sequence of action statements separated by
newlines or semicolons. These action statements do a variety of
bookkeeping, arithmetic, and string-manipulation tasks.

11.1 Variables, expressions, and assignments
a wk provides the ability to do arithmetic and to store the results in
variables for later use in the program. As an example, consider
printing the population density for each country in the file
countries.

{ print $1, (1000000 * $3)/($2 * 1000)

(Recall that in this file the population is in millions and the area is in
thousands of square miles.) The result is population density in people
per square mile.

18-20 AlUX Programming Languages and Tools, Volume 2

Russia 30.289
Canada 6.23053
China 234.561
USA 60.5809
Brazil 35.3013
Australia 4.71698
India 501.97
Argentina 24.2537
Sudan 19.6281
Algeria 19.5652

The formatting is pretty bad; using printf instead gives the program

{printf "%10s %6.1f\n", $1, \
(1000000 * $3)/($2 * 1000) }

and the output

Russia 30.3
Canada 6.2

China 234.6
USA 60.6

Brazil 35.3
Australia 4.7

India 502.0
Argentina 24.3

Sudan 19.6
Algeria 19.6

Here the output format is much more readable.

Arithmetic is done internally in floating point. The arithmetic operators
are +, -, *, /, and % (mod or remainder).

To compute the total population and number of countries from Asia,
you could write

/Asia/
END

which produces

awk Reference

pop = pop + $3; n = n + 1 } \
print "total population of", n, \

"Asian countries is", pop }

18-21

total population of 3 Asian countries is 1765

Actually, no experienced C programmer would write

{ pop = pop + $3; n = n + 1 }

because both assignments can be written more concisely. A better way
is

{ pop += $3; ++n }

Indeed, the operators ++, --, -=, /=, *=, +=, and %= are available in
awk as they are in C. The statement

x += y

has the same effect as

x = x + y

but += is shorter and runs slightly faster. The same is true of the ++
operator; it adds one to the value of a variable. The increment and
decrement operators ++ and -- (as in C) may be used as prefix or as
postfix operators. These operators are also used in expressions.

11.2 Initialization of variables
In the previous example, neither pop nor n was initialized, yet
everything worked properly. This is because (by default) variables are
initialized to the null string, which has a numeric value of O. This
eliminates the need for mos t initialization of variables in BEG IN
sections. You can use default initialization to advantage in the
following program, which finds the country with the largest population:

maxpop < $3 {
maxpop = $3
country = $1

END print country, maxpop

which produces

China 866

11.3 Field variables
Fields in a w k share essentially all the properties of variables. They are
used in arithmetic and string operations and may be assigned to and

18-22 AlUX Programming Languages and Tools, Volume 2

initialized to the null string. Thus, you can divide the second field by
1000 to convert the area to millions of square miles by

{ $2 /= 1000; print }

or process two fields into a third with

BEGIN { FS = " "}
{ $4 = 1000 * $3 / $2; print }

or assign strings to a field, as in

/USA/ {$1 = "United States" ; print }

which replaces USA by United States and prints the affected line:

United States 3615 219 N. America

Fields are accessed by expressions; thus, $NF is the last field and
$ (NF-1) is the second to the last Note that the parentheses are
needed since $NF-1 is 1 less than the value in the last field

11.4 String concatenation
Variables can also store strings of characters. You cannot do
arithmetic on character strings, but you can join them. Strings are
concatenated by writing them one after the other, as in the following
example:

x = "hello"
x = x ", world"
print x

This prints the usual:

hello, world

With input from the file countries, the program

/AA/ s = s $1 " " }
END {print s }

prints

Australia Argentina Algeria

awk Reference 18-23

Variables, string expressions, and numeric expressions may appear in
concatenations; the numeric expressions are treated as strings in this
case.

11.5 Special variables
Some variables in awk have special meanings. These are

NR Number of the current record.

NF Number of fields in the current record.

F S Input field separator; by default it is set to a blank or a
tab.

RS Input record separator; by default it is set to the newline
character.

$i The ith input field of the current record.

$ 0 The entire current input record.

OFS Output field separator; by default it is set to a blank.

ORS Output record separator; by default it is set to the
newline character.

OFMT The format for printing numbers; with the print
statement, by default it is % • 6g.

FILENAME The name of the input file currently being read. This is
useful because a w k commands often read multiple files,
as in

awk -f programfilel file2file3 ...

11.6 Type

Variables (and fields) take on numeric or string values according to
context. For example, in

pop += $3

pop is presumably a number, while in

country = $1

country is a string. In

18-24 A/UX Programming Languages and Tools, Volume 2

maxpop < $3

the type of maxpop depends on the data found in $ 3. It is determined
when the program is run.

In general, each variable and field is potentially a string or a number or
both at any time. When a variable is set by the assignment

var = expr

its type is set to that of expr. (Assignment also includes +=, ++, -=,
and so forth.) An arithmetic expression is of the type number; a
concatenation of strings is of the type string. If the assignment is a
simple copy, as in

vl = v2

then the type of vl becomes that of v2.

In comparisons, if both operands are numeric, the comparison is made
numerically. Otherwise, operands are coerced to strings if necessary
and the comparison is made on strings.

The type of any expression may be coerced to numeric by maneuvers
such as

expr + 0

and to string by

expr nn

This last expression is a string concatenated with the null string. If a
string cannot be converted to a number without errors, awk converts it
to zero.

11.7 Arrays
awk provides one-dimensional arrays as well as ordinary variables. A
name may not be both a variable and an array, however.

Array elements are not declared; they spring into existence by being
mentioned. Subscripts may have any non-null value, including non
numeric strings. As an example of a conventional numeric subscript,
the statement

awk Reference 18-25

x[NR] = $0

assigns the current input line to the NRth element of the array x. In
fact, it is possible in principle (though perhaps slow) to process the
entire input in arbitrary order with the following awk program:

{ x [NR] = $0 }
END {action}

The first line of this program reads each input line into the array x.

When run on the file countries, the program

{ x[NR] = $1 }

produces an array of elements with

x [1] "Russia"
x[2] = "Canada"
x[3] = "China"

and so forth. Arrays may also be indexed by non-numeric values, thus
giving a w k a capability rather like the associative memory of Snobol
tables. For example, you can write

IAsial
IAfrical
END

which produces

pop["Asia"] += $3 }
pop ["Africa"] += $3
print "Asia=" pop["Asia"] ,

"Africa=" pop["Africa"]

Asia=1765 Africa=37

Notice the concatenation. Also, any expression can be used as a
subscript in an array reference. Thus

area[$l] = $2

uses the first field of a line (as a string) to index the array area.

You can simulate the effect of multidimensional arrays by creating
your own subscripts. For example,

18-26 AlUX Programming Languages and Tools, Volume 2

for (i = 1; i <= 10; i++)
for (j = 1; j <= 10; j++)

mult[i "," j]

creates an array whose subscripts have the form i, j (that is, 1,1;
1, 2; and so forth) and thus simulates a two-dimensional array.

12. Built-in functions
awk's length function computes the length of a string of characters.
If you don't include an argument, length returns the length of the
current input record. The following program prints each record
preceded by its length:

{ print length, $0 }

In this case (the variable) length is equivalent to length ($ 0) , the
length of the present input record. In general, length (x) will return
the length of x as a string. For example, with input taken from the file
countries, the following awk program prints the longest country
name:

length ($1) > max
END

The function

split (s, array)

max=length($1); name=$1 }
print name }

assigns the fields of the string s to successive elements of the array
array. For example,

split ("Now is the time", w)

assigns the value Now to w [1], is to w [2], the to w [3], and time
to w [4]. All other elements of the array w, if any, are set to the null
string. It is possible to have a character other than a blank as the
separator for the elements of w. For this, use s pI it with three
elements:

split (s, array, sep)

This splits the string s into array [1], ... , array [n]. The number of
elements found is returned as the value of split. Thus, you may
write

awk Reference 18-27

var = split (s, array, sep)

if you need to know how many elements the string was split into.

When the sep argument is present, it must be a string enclosed by
double quotes. but only its first character is used as the field separator.
When there is no sep argument present, F S is used. Specifying a sep is
especially useful if in the middle of an awk program it is necessary to
change the record separator for one or more records. For instance, if
you use the following three lines,

{split ("Now is+the time", w, "+")}
{split("This\tis\tnot\tthe\tend", x , "\t")}
{print w[l],x[3], w[2] }

(\ t is the tab character) the output will be

Now is not the time

a wk also provides the following mathematical functions:

sqrt
log
exp
int

They provide the square root function, the base e logarithm function,
and exponential and integer conversion (that is, floating point to
integer) functions. The int function returns the greatest integer less
than or equal to its argument. These functions are the same as those of
the C library (except that int corresponds to the C library floor
function) and return the same errors as those in libc. (See "C Math
Library" inAIUX Programming Languages and Tools. Volume 1.)

The substring function

substr (s,m,n)

produces the substring of s that begins at position m and is at most n
characters long. If the third argument (n in this case) is omitted, the
substring goes to the end of s. For example, you could abbreviate the
country names in the file countries by running the awk program

{ $1 = substr($l, 1, 3); print}

18-28 A/UX Programming Languages and Tools, Volume 2

which produces

Rus 8650 262 Asia
Can 3852 24 N. America
Chi 3692 866 Asia
USA 3615 219 N. America
Bra 3286 116 s. America
Aus 2968 14 Australia
Ind 1269 637 Asia
Arg 1072 26 s. America
Sud 968 19 Africa
Alg 920 18 Africa

If s is a number, substr uses its printed image; for example,
substr (123456789, 3, 4) is 3456.

The function

index (sl, s2)

returns the leftmost position where the string s2 occurs in sl, or zero if
s2 does not occur in si.

The function

sprintf

formats expressions as the printf statement does (X, E, G, * and u
do not apply), but will assign the resulting expression to a variable
instead of sending the results to stdout. For example,

x = sprintf("%10s %6d ", $1, $2)

sets x to the string produced by formatting the values of $1 and $2.
The x may then be used in subsequent computations.

The function getline immediately reads the next input record.
Fields $NR and $ 0 are all set, but control is left at exactly the same
spot in the awk program. getline returns 0 for the end-of-file and 1
for a normal record.

13. Flow of control
The awk language provides the basic flow-of-control statements:

awk Reference 18-29

• if-else

• while

• for

with statement grouping as in the C language.

The if statement is used as follows:

if (condition) statementl [else statement2]

The condition is evaluated; and if it is true, statementl is executed;
otherwise, statement2 is executed. The else part is optional. Several
statements enclosed in braces ({ }) are treated as a single statement.
Rewriting the maximum population computation from the pattern
section with an if statement results in

if (maxpop < $3)
{

maxpop = $3
country = $1

END print country, maxpop

There is also a while statement in awk:

while (condition) statement

The condition is evaluated; if it is true, the statement is executed. The
condition is evaluated again, and if true, the statement is executed. The
cycle repeats as long as the condition is true. For example, the
following action prints all input fields one per line:

18-30

i = 1
while (i <= NF)

{

print $i
++i

A/UX Programming Languages and Tools, Volume 2

Another example is the Euclidean algorithm for finding the greatest
common divisor of $1 and $2:

printf "the greatest common divisor"
printf "of %s and %s is \n", $1, $2"
while ($1 != $2)
{

if ($1 > $2) $1
else $2

printf "%d\n", $1

$1 - $2
$2 - $1

The for statement is like that of C.

for (expression1 ; condition

has the same effect as

expression2) statement

expression1
while (condition

{

statement
expression2

so that the action

{ for (i=1 ; i <= NF; i++) print $i }

is another awk program that prints all input fields one per line. Note
that multiple initializations are not permitted, as in

for (i=1, j=2; ... ; ...)

There is an alternate form of the for statement in a w k that is suited
for accessing the elements of an associative array:

for (var in array) statement

executes statement with the variable var set in turn to each subscript of
array. The subscripts are each accessed once but in no predictable
order. Chaos ensues if the variable var is altered or if any new
elements are created within the loop. You could use the for statement
to print each record preceded by its record number (NR) after the input

awk Reference 18-31

part of the program is executed:

{ x[NR] = $0
END { for(i in x) { print i, x[i] } }

A more practical example is the following use of strings to index arrays
to add the populations of countries by continents:

BEGIN

END

FS="\t" }
population [$4] += $3 }
for (i in population)

print i, population[i]

In this program, the body of the for loop is executed for i equal to the
string Asia, then for i equal to the string N. America, and so forth
until all the possible values of i are exhausted; that is, the program is
repeated until all the strings of names of continents are used. Note,
however, that the order in which the loops are executed is not specified.
If the iteration associated with N. America is executed before the
iteration associated with the string Asia, such a program might
produce

S. America 142
Africa 37
N. America 243
Asia 1765
Australia 14

The expression in the condition part of an if, while, or for
statement can include relational operators (see "Operators").

The condition can also include regular expressions that are used with
the pattern-matching operators and the logical operators (see
"Operators"). Finally, it can include parentheses for grouping.

The break statement (when it occurs within a while or for loop)
causes an immediate exit from the while or for loop.

The continue statement (when it occurs within a while or for
loop) causes the next iteration of the loop to begin.

The next statement in an awk program causes awk to skip
immediately to the next record and begin scanning patterns from the
top of the program. (Note the difference between getline and

18-32 A/UX Programming Languages and Tools, Volume 2

next. getline does not skip to the top of the awk program.)

If an exit statement occurs in the BEG IN section of an a wk program,
the program stops executing and the END section (if there is one) is not
executed.

An exit that occurs in the main body of the a wk program causes
execution of the main body of the awk program to stop. No more
records are read, and the END section is executed.

An exit in the END section causes execution to terminate at that
point.

14. Report generation
The flow-of-control statements in the last section are especially useful
when awk is used as a report generator. awk is useful for tabulating,
summarizing, and formatting information. You have seen an example
of awk tabulating in the last section with the tabulation of populations.
Here is another example of this. Suppose you have a file
prog . usage that contains lines of three fields: name, program, and
usage. For example,

Smith draw 3
Brown eqn 1
Jones nroff 4
Smith nroff 1
Jones spell 5
Brown spell 9
Smith draw 6

The first line indicates that Smith used the dr a w program three times.
If you want to create a program that has the names in alphabetical order
and then shows the total usage, use the following program, called
list. a:

use[$l "\t" $2] += $3 }
END for (np in use) \

awk Reference

print np "\t" use[np] \
I "sort +0 +2nr"

18-33

This program produces the following output when used on the input file
prog. usage:

Brown eqn 1
Brown spell 9
Jones nroff 4
Jones spell 5
Smith draw 9
Smith nroff 1

If you would like to format the previous output so that each name is
printed only once t pipe the output of the previous a wk program into the
following programt called format. a:

if ($1 != prev)
{

print $1 ":"
prev = $1

print "\t" $2 "\t" $3

The variable prev prints the unique values of the first field. The
command

awk -f list.a prog.usage I awk -f format.a

gives the output

Brown:
eqn 1
spell 9

Jones:
nroff 4
spell 5

Smith:
draw 9
nroff 1

It is often useful to combine different awk scripts and other shell
commands such as sortt as was done in the list. a script on the
preceding page.

18-34 AlUX Programming Languages and Tools, Volume 2

15. Cooperation with the shell
Normally, an awk program is either contained in a file (as a shell
script) or enclosed within single quotes, as in

awk '{print $1}' chap.1

Because awk uses many of the same characters that the shell does
(such as $ and the double quote), it may take some work to get
parameters passed from the shell to awk.

If an awk program is invoked from the command line, surrounding the
program by single quotes ensures that the $1 is not interpreted by the
shell. The shell passes the awk program to awk intact

Passing parameters to an awk program contained in a script is slightly
more complicated. Suppose you wanted to write an awk program to
print the nth field of each input record, where n is a parameter
determined when the program is run. That is, you want a program
called field such that

field 5 chap.1

runs the a w k program

awk '{print $5}' chap.1

How does the value of 5 get from the command line into the awk
program? There are several ways to do this. One is to define field
as a shell script, as follows:

field: print the nth field of each record
awk '{print $'$1'}' $2

(This file begins with a colon (:) so that it is interpreted as a Bourne
shell script.) When the shell parses this script, it does not interpret
anything contained within the first pair of single quotes ({print $),
but passes it as input to awk. The shell does recognize the $1, and
substitutes its value, the first argument given on the command line.
The shell then passes the brace within the second set of single quotes to
a wk. When a w k encounters the end of its first argument, it recognizes
that the a w k program specification has ended and that the next
argument is the file in which the input is found.

awk Reference 18-35

Another way to write field relies on the fact that the shell substitutes
for $ parameters within double quotes. So you could rewrite the script
above as

* field: print the nth field of each record
awk "{print \$$1}" $2

Here the trick is to protect the first $ with a \; the $1 is again replaced
by the appropriate number from the command line when field is
invoked.

This kind of trickery can be extended in remarkable ways, but it may
be hard to understand quickly. Experimentation and a playful spirit are
encouraged.

16. Lexical conventions
All awk programs are made up of lexical units called "tokens." In
awk, there are eight token types:

• numeric constants

• string constants

• keywords and built-in variables

• identifiers

• operators

• record and field tokens

• comments (discussed previously)

• separators

Precise specifications of each of these tokens are given in the following
sections.

16.1 Numeric constants
A numeric constant is either a decimal constant or a floating constant.
A decimal constant is a non-null sequence of digits containing at most
one decimal point, as in

18-36 AlUX Programming Languages and Tools, Volume 2

12
12.
1.2
.12

A floating constant is a decimal constant followed by e or E followed
by an optional + or - sign followed by a non-null sequence of digits, as
in

12e3
1.2e3
1.2e-3
1.2E+3

16.2 String constants
A string constant is a sequence of zero or more characters surrounded
by double quotes, as in

"armadillo"
"a"
"ab"
"12"

A double quote may be put into a string by preceding it with the
backslash (\), as in

"He said, \"Sit!\""

A newline is put in a string by using \n in its place. No other
characters need to be escaped except \ itself. Strings can be (almost)
any length.

16.3 Predefined variables, reserved keywords, and
reserved function names

Table 18-1 lists certain character strings which have special meaning to
awk. There are three types of these character strings:

1. Predefined variables are variables defined by awk which have
special meanings. The meaning of these variables is explained in
"Special Variables."

2. Reserved keywords are a special set of character strings used in
a w k statements. Reserved keywords cannot be used as
variables.

awk Reference 18-37

3. Reserved function names are a special set of character strings
used to invoke built-in awk functions. These functions are
discussed in "Built-in Functions."

Table 18-1. Reserved Strings

Predefined Reserved Reserved

Variables Keywords Function Names

BEGIN break exp
END close getline
FILENAME continue index
FS exit int
NF for length
NR if log
OFS in split
ORS next sprintf
OFMT number sqrt
RS print substr
$0 printf
$i string

while

16.4 Identifiers
Identifiers in awk serve to denote variables and arrays. An identifier is
a sequence of letters, digits, and underscores, beginning with a letter or
an underscore. Uppercase and lowercase letters are different.

16.5 Operators
The awk language has assignment, arithmetic, relational, and logical
operators similar to those in the C programming language, and regular
expression pattern matching operators similar to those in the programs
egrep and lex.

18-38 A/UX Programming Languages and Tools, Volume 2

Symbol
=

+=

-=

*=

/=

%=

++

--

Symbol

+

*
/
%
(...)

Table 18-2. Assignment operators

Usage Description
Assignment Assign right side value to

left side
Plus-equals Increment left side by

value of right side
Minus-equals Decrement left side by

value of right side
Times-equals Multiply left side by

value of right side
Divide-equals Divide left side by

value of right side
Mod-equals Take modulus of left side by

value of right side
Prefix/postfix Increment operand by one
increment before/after taking current value
Prefix/postfix Decrement operand by one
decrement before/after taking current value

Table 18-3. Arithmetic operators

Description

Unary and binary plus
Unary and binary minus
Multiplication
Division
Modulus
Grouping

awk Reference 18-39

Symbol

<
<=

!=
>=
>

Table 18-4. Relational operators

Description

Less than
Less than or equal
Equal
Not equal
Greater than or equal
Greater than

Table 18·5. Logical operators

Symbol

II
&&

Description

OR
AND
NOT

Table 18-6. Regular expression pattern-matching operators

Symbol Description

Matches
!- Does not match

16.6 Record and field tokens
$ 0 is a special variable whose value is the current input record. $1,
$2, and so forth are special variables whose values are the first field,
the second field, and so on, respectively, of the current input record.
The keyword NF (number of fields) is a special variable whose value is
the number of fields in the current input record. Thus $NF has, as its
value, the value of the last field of the current input record. Notice that
the first field of each record is numbered 1 and that the number of fields
can vary from record to record. None of these variables is defined in
the action associated with a BEG IN or END pattern, where there is no
current input record

18-40 A/UX Programming Languages and Tools, Volume 2

The keyword NR (number of records) is a variable whose value is the
number of input records read so far. The first input record read is 1. At
END it contains the total number of input lines.

16.7 Separators

16.7.1 Record separators
The keyword RS (record separator) is a variable whose value is the
current record separator. The value of RS is initially set to newline,
indicating that adjacent input records are separated by a newline.
Keyword RS is changed to any character c by including the assignment
statement

RS = "c"

in an action.

16.7.2 Field separators
The keyword F S (field separator) is a variable indicating the current
field separator. Initially, the value of FS is a blank, indicating that
fields are separated by white space, that is, any sequence of blanks and
tabs. Keyword F S may be changed to any single character c by
including the assignment statement

FS = "c"

in an action or by using the flag option -Fc. Two values of c, space
and \ t, have special meaning. The assignment statement

FS = " "

makes white space (blank spaces or tabs) the field separator; and on the
command line, -F\ t makes a tab the field separator.

If the field separator is not a blank, then there is a field in the record on
each side of the separator. For instance, if the field separator is 1, the
record lXXXl has three fields. The first and last are null, and the value
of the second is xxx. If the field separator is blank, then fields are
separated by white space, and none of the NF fields is null, that is,
record lXXXl has one field, not three as above.

16.8 Multiline records
The assignment

awk Reference 18-41

RS = ""

as part of the action associated with a BEG IN pattern makes an empty
line the record separator. It also makes a sequence of blanks, tabs, and
possibly a newline, the field separator. With this setting, none of the
first fields of any record is null, as discussed above.

16.9 Output record and field separators
The value of OFS (output field separator) is the character or string
separating output fields. It is put between fields by print. The value
of ORS (output record separator) is put after each record by print.
Initially, ORS is set to a newline and OFS to a space. These values may
be changed to any string by assignments such as the following two:

ORS = "abc"
OFS = "xyz"

16.10 Separators and braces
Tokens in awk are usually separated by non-null sequences of blanks,
tabs, and newlines, or by other punctuation symbols such as commas
and semicolons. Braces ({ }) surround actions, slashes (I /)
surround regular expression patterns, and double quotes (n n)

surround strings. Braces may also be used to group statements within
actions.

17. Primary expressions
In awk, patterns and actions are made up of expressions. The basic
building blocks of expressions are the primary expressions:

• numeric constants

• string constants

• variables

• functions

Each expression has both a numeric and a string value, and will default
to one or the other, depending on context The rules for determining
the default value of an expression are explained below.

17.1 Numeric constants
A numeric constant is simply a number. The format of a numeric
constant was previously defined in the section "Lexical Conventions."

18-42 AJUX Programming Languages and Tools, Volume 2

The value of a numeric constant is always its numeric value in decimal
unless it is coerced to type string. Table 18-7 shows the result of
coercing various numeric constants to type string. Coercion of a
numeric constant may occur explicitly as defined in "Type" or
implicitly within the context of an expression.

Table 18-7. Values for sample numeric constants

Numeric Numeric String
Constant Value Value

0 0 0
1 1 1

.5 0.5 .5

.5e2 50 50

17.2 String constants
A string constant is simply a series of characters enclosed in double
quotes. The format of a string constant was defined in "Lexical
Conventions.' ,

The value of a string constant is the contents of the string itself unless it
has been coerced to type numeric. The numeric value of a string
coerced to type numeric depends on the contents of the string: If the
string is composed entirely of numbers (either decimal or floating point
format), its numeric value is the number contained in the string. If the
string does not contain a recognizable decimal or floating point
number, its numeric value is zero. Table 18-8 shows the result of
coercing various string constants to type numeric. Coercion of a string
constant may occur explicitly as defined in "Type" or implicitly
within the context of an expression.

awk Reference 18-43

Table 18-8. Values for sample string constants

String Numeric String
constant value value

"" 0 null string
" " 0 space
"a" 0 a
"XYZ" 0 XYZ
"0" 0 0
"1" 1 1
".5" 0.5 .5
".5e2" 50 .5e2

17.3 Variables
A variable or var is in one of the following forms:

identifier
identifier[expression]
$ term

The numeric value of any uninitialized variable is 0, and the string
value is the empty string. An identifier by itself is a simple variable. A
variable of the form

identifier[expression]

represents an element of an associative array named by identifier.

The string value of expression is used as the index into the array. The
default value of identifier or identifier [expression] is determined by
context.

The variable $ 0 refers to the current input record. Its string and
numeric values are those of the current input record. If the current
input record represents a number, then the numeric value of $ 0 is the
number and the string value is the literal string. The default value of
$ 0 is string unless the current input record is a number. $ 0 cannot be
changed by assignment.

The variables $1 and $ 2 refer to fields 1 and 2 of the current input
record. The string and numeric values of $i for l<=i<=NF are those of
the i th field of the current input record. As with $ 0, if the ith field

18-44 AlUX Programming Languages and Tools, Volume 2

represents a number, then the numeric value of $i is the number and
the string value is the literal string. The default value of $i is string
unless the ith field is a number. The $i may be changed by assignment.
The value of $ 0 is then changed accordingly, but the results may not
be apparent unless NF is changed to at least i.

In general, $term refers to the input record if term has the numeric
value ° and to field i if the greatest integer in the numeric value of term
is i. If i<O or if i>=100, then accessing $i causes awk to produce an
error diagnostic. IfNF<i<=100, then $i behaves like an uninitialized
variable. Accessing $i for i > NF does not change the value of NF.

17.4 Functions
The a wk language has a number of built-in functions that perform
common arithmetic and string operations.

exp [(expression)]
int [(expression)]
log [(expression)]
sqrt [(expression)]

These functions (exp, int, log, and sqrt) compute the exponential,
integer part, natural logarithm, and square root, respectively, of the
numeric value of expression. The (expression) may be omitted; then
the function is applied to $ O. The default value of an arithmetic
function is numeric.

get line
index (expression], expression2)
length [(expression)]
s p 1 it (expression, identifier [, " separator"])
sprintf [("format", expression1 [, expression2 ...])]
substr (expression], expression2 [, expressionJ])

These functions (getline, index, length, split, sprintf,
and substr) perform spring operations. See "Built-in Functions"
for more details.

18. Terms
Various arithmetic operators are applied to primary expressions to
produce larger syntactic units called "terms." All arithmetic is done in
floating point A term has one of the following forms:

awk Reference 18-45

primary expression
terml binop term2
unop term
incremented var
(term)

18.1 Binary terms
In a term of the form

terml binop term2

binop can be one of the five binary arithmetic operators + (addition),
- (subtraction), * (multiplication), / (division), or % (modulus). The
binary operator is applied to the numeric value of the operands terml
and term2, and the result is the usual numeric value. This numeric
value is the default value, but it can be interpreted as a string value (see
"Numeric Constants"). The operators *, /, and % have higher
precedence than + and -. All operators are left associative.

18.2 Unary terms
In a term of the form

unop term

unop can be unary + or -. The unary operator is applied to the numeric
value of term, and the resulting numeric value is the default value.
However, it can be interpreted as a string value. Unary + and - have
higher precedence than *, / , and %.

18.3 Incremented variables
An incremented variable has one of the following forms:

++var
--var
var++
var--

That is, it can be either pre- or post-incremented.

The form ++var has the effect of the assignment

var = var + 1

and so has the value var+l before it is further evaluated or assigned.

18-46 NUX Programming Languages and Tools, Volume 2

Similarly, the form --var has the effect of the assignment

var = var - 1

and so has the value var-l before it is further evaluated or assigned.

The form var++ has the same value as var before it is evaluated or
assigned, and after that it has the effect of the assignment

var = var + 1

Similarly, the form var-- has the same value as var before it is
evaluated or assigned, and after that it has the effect of the assignment

var = var - 1

The default value of an incremented var is numeric. You shouldn't use
the ++ or -- operators where the incremented variable is used more
than once (such as a = b++ * b), since the results are
indeterminate.

18.4 Parenthesized terms
Parentheses are used to group terms in the usual manner.

19. Expressions
An awk expression is one of the following:

term
term} term2 ...
var asgnop expression

19.1 Concatenation of terms
In an expression of the form term} term2 the string values of the terms
are concatenated. If the terms are numeric expressions they are first
evaluated and then also treated as strings; that is, the default value of
the resulting expression is a string value that can be interpreted as a
numeric value. Concatenation of terms has lower precedence than
binary + and -. For example, the expression

1+2 3+4

has the string (and numeric) value 37.

awk Reference 18-47

19.2 Assignment expressions
An assignment expression is one of the form

var asgnop expression

where asgnop is one of the six assignment operators (=, +=, -=, *=,
/ =, %=, ++, --) (see "Operators").

The default value of var is the same as that of expression.

In an expression of the form

var = expression

the numeric and string values of var become those of expression.

An expression of the form

var op = expression

is equivalent to

var = var op expression

where op is one of the arithmetic operators (see "Operators").

The asgnops are right associative and have the lowest precedence of
any operator. Thus, the assignment

a += b *= c - 2

is interpreted as

a += (b *= (c - 2))

which is equivalent to the sequence of assignments

b b * (c - 2)
a = a + b

18-48 A/UX Programming Languages and Tools, Volume 2

Chapter 19

lex Reference

Contents

1. l.ex: a lexical analyzer

2. Overview of l.ex usage •

3. l.ex and yacc. .

4. Program syntax • •

5. Character set
5.1 Character classes •• ••••
5.2 Arbitrary characters • • • • • • • • •
5.3 Operators • • • •

6. Definitions • • • • •
6.1 Repetitions and definitions

7. Rules • • • • • • •
7.1 Regular expressions • • • •
7.2 Optional expressions •
7.3 Repeated expressions •
7.4 Alternation and grouping
7.5 Context sensitivity

7.5.1 Left context sensitivity • • • •
7.5.2 Flags
7.5.3 Start conditions

7.6 Ambiguous rules •

8. Actions
8.1 The null statement ••••
8.2 The repetition character •
8.3 printf and ECHO • •

8.4 yyl.eng . . . •
8.5 yymore and yyl.ess

- i -

1

2

3

4

6
6
7
8

9
11

11
11
12
12
12
13
14
15
16
17

18
19
19
19
20
21

8.6 l.ex input and output routines
8.7 yywrap •••.
8.8 REJECT

9. Compilation •

10. Examples

11. Summary

Figures

Figure 19·1. Overview of l.ex

Figure 19·2. l.ex with yacc .

Tables

22
23
24

26

26

28

2

4

Table 19·1. Regu tar expression operators. • • • • • 30

- ii -

Chapter 19

lex Reference

1. lex: a lexical analyzer
lex is a program generator that produces a program in a general
purpose language that recognizes regular expressions. It is designed
for lexical processing of character input streams. It accepts high-level,
problem-oriented specifications for character string matching.

Input to lex is a table of regular expressions and corresponding
program fragments. The table is translated to a program that reads an
input stream, copies the input stream to an output stream, and partitions
the input into strings that match the given expressions. As each such
string is recognized, the corresponding program fragment is executed.

The recognition of the regular expressions is performed by a
deterministic finite automaton generated by lex. The program
fragments are executed in the order in which the corresponding regular
expressions occur in the input stream.

The code written by lex is not itself a complete language, but rather a
generator representing a new language feature that can be added to
different programming languages, called "host languages." For
example, one high-level language may be used for recognizing
patterns, while a more general-purpose language is used for action
statements.

The lex program generator can be used alone for simple
transformations or for analysis and statistics gathering on a lexical
level. The lex generator can also be used with a parser generator (for
example, yacc) to perform the lexical analysis phase.

Just as general-purpose languages can produce code to run on different
computer hardware, lex can write code in different host languages.
The host language is used for the output code generated by lex and
the program fragments that comprise the lex source program.

lex Reference 19-1

Compatible run-time libraries for the different host languages are
provided, making lex adaptable to many environments and users.
However, at present, the only supported host language is the C
language.

2. Overview of lex usage
The program generated by lex is called yy lex. The yy lex program
recognizes expressions in an input stream and performs the specified
actions for each expression as it is detected. See Figure 19-1.

Figure 19-1. Overview of lex

Source ~ lex ~ yy lex ()

Input ~ yy lex ~ Output

For example,

%%
[\t]+$

This sample lex source program is all that is required to generate a
program to delete all blanks or tabs at the ends of the input lines. The
% % delimiter is a lex convention to mark the beginning of the rules,
the pattern-matching expressions. The rule itself,

[\t]+$

matches one or more instances of the characters blank and tab. The
brackets enclose the character class consisting of blank and tab; the +
indicates "one or more instance of the previous character(s) or
character class" and the $ indicates end-of-line. No action is specified,
so the yylex () program (generated by lex) ignores these characters.
Everything else is copied.

Consider this next example:

19-2 A/UX Programming Languages and Tools, Volume 2

%%
[\t]+$
[\t]+ printf(n If);

The coded instructions in yylex scan for both rules at once. Once a
string of blanks or tabs is recognized, yylex determines whether the
string is followed by a newline character. If it is, then the first rule has
been matched so that the corresponding action is performed; yylex
does not copy the string to output. The second rule matches strings of
one or more blanks and tabs not already satisfying the first rule, and
causes yylex to replace a string of one or more blanks and tabs with a
single space.

In yylex, the program generated by lex, the actions to be performed
as each regular expression is found are gathered as cases of a switch.
The automaton interpreter directs the control flow. It is possible to
insert either declarations or additional statements in the routine
containing the actions and to add subroutines outside this action
routine, should you need to do so.

The lex program generator is not limited to one-character look-ahead.
For example, if there are two rules, one looking for ab and another for
abcdefg, and the input stream is abcdefh, lex recognizes ab and
leaves the input pointer just before cdefh.

3. lex and yacc
It is particularly easy to use lex and yacc together. The lex
program recognizes only regular expressions; yacc writes parsers that
accept a large class of context-free grammars but requires a lower level
analyzer to recognize input tokens. Thus, a combination of lex and
yacc is often appropriate. When used as a preprocessor for a later
parser generator, lex is used to partition the input stream; and the
parser generator assigns structure to the resulting pieces. The flow of
control in such a case is shown in Figure 19-2. Additional programs,
written by other generators or by hand, can be added easily to programs
written by lex. The name "yylex" is what yacc expects its lexical
analyzer to be named. If lex uses this name, it simplifies interfacing.

l.ex Reference 19-3

Figure 19-2. lex with yacc

Lexical Grammar
rules rules

J, J,

lex yacc
J, J,

Input ~ yylex ~ yyparse ~ Parsed output

To use lex with yacc, observe that lex writes a function named
yylex, which is the name required by yacc for its analyzer.
Normally, the default main program on the lex library calls the
yylex routine, but if yacc is loaded and its main program is used,
yacc calls yylex. In this case, each lex rule ends with

return (token) ;

where the appropriate token value is returned. An easy way to gain
access to yacc's names for tokens is to compile the lex output file as
part of the yacc output file by placing the line

#include "lex.yy.c"

in the last section of the yacc input. If the grammar is to be named
good and the lexical rules are to be named better, the command
sequence could be

yacc good
lex better
cc y.tab.c -ly -11

The yacc library (-ly) should be loaded before the lex library to
obtain a main program that invokes the yacc parser. The generations
of lex and yacc programs can be done in either order.

4. Prog ram syntax
The general format of lex input is

19-4 AJUX Programming Languages and Tools, Volume 2

{ definitions
%%
{ rules }
%%
{ user subroutines

where the definitions and the user subroutines are often omitted. The
first % % is required to mark the beginning of the rules, but the second
% % is optional. The absolute minimum lex program is

%%

This lex source would generate a program that copies the input to
output unchanged.

In the lex program format shown above, the rules consist of two parts:

• A left column with regular expressions

• A right column with actions and program fragments to be
executed when the expressions in the left column are recognized

For example,

integer printf("found keyword INT");

The sample rule above gives the instructions to look for the string
integer, and, when found, it produces the statement

found keyword INT

In this example, because the host procedural language is C, the C
language library function printf is used to print the string.

The end of the expression is indicated by the first blank or tab
character. If the action is a single C language expression, it can just be
given in the right column, as illustrated in the example. If the action is
compound or requires more than one line, it should be enclosed in
braces.

Consider the following example:

colour
mechanise
petrol

l.ex Reference

printf("color");
printf("mechanize");
printf("gas");

19-5

This lex source segment could be used to generate a program to
change a number of words from British to American spelling. It should
be noted, however, that these rules would have to be changed
somewhat to be really useful. For example, if the word pet roleum
appeared in the input stream, the program generated by this segment
would change it to gaseum.

5. Character set
Internally, a character is represented as a small integer. If the standard
library is used, a character's value is equal to the integer value of the
bit pattern representing the character on the host computer. For
example, the character A has the value \101 (octal) in ASCII.

Of course, you need not use the integer value of a character to access
the value. The character a is represented in the same form as the
character constant ' a'. If this interpretation is changed by providing
I/O routines that translate the characters, lex must be given a
translation table that is in the definitions section of the source, and this
translation table must be bracketed by lines containing only %T. The
translation table, then, contains lines of the form

%T
{ integer } { character string }
%T

which indicate the value associated with each character.

5.1 Character classes
Classes of characters can be specified using the operator pair [and] .
For example, the construction [abc] matches a single character,
which may be a, b, or c.

Within brackets, most operator meanings are ignored. Only three
characters are special:

\

The - character indicates a range. For example,

[a-zO-9<>_]

19-6 AlUX Programming Languages and Tools, Volume 2

specifies the character class containing all the lowercase letters (a to
z), digits (0 through 9), angle brackets « and », and the underline
character (~.

Using - between any pair of characters that are not both uppercase
letters, both lowercase letters, or both digits is sometimes acceptable to
lex, but this is implementation dependent (it works on NUX, but it
may not be portable to other systems.) Therefore, if such a range is
declared, lex issues a warning message. One reason for this is that
[0 - z] matches many more characters in ASCII than in EBCDIC.

If it is necessary to include the character - in a character class, it
should either be first or last within the brackets. For example,

[-+0-9]

matches all digits (0 through 9) and the two symbols - and +.

The \ character acts as an escape character within class brackets. For
example,

[a-z*]

matches all lowercase letters (a to z) and the character *.
If the " operator appears as the first character after the left bracket,
lex ignores the characters within the brackets, therefore matching all
characters except those within the designated character class range. If
an operation is to be performed on recognition of a string expressed
using this construction, it will be done on strings other than those
within the brackets. For example,

["abc]

matches all characters except a, b, or c, including all special and
control characters. Also,

["a-zA-Z]

matches any character that is not a letter (neither in the range a through
z nor in the range A through Z).

5.2 Arbitrary characters
There are several other ways to specify characters to lex. The period
operator (.) instructs lex to match any character except a newline.

lex Reference 19-7

The meaning of the period does not change within brackets.

Also, all characters and ranges can be designated using the octal
representations of those characters. This method, however, is difficult
to read and most likely not portable. Nonetheless, the character class
range

[\40-\176]

can be used to match all printable ASCII characters from octal 40
(blank) to octal 176 (tilde: -).

5.3 Operators
The operator characters are

"\[]"-?*+I ()$/{}%<>

If these are to be used as text characters, an appropriate "escape"
should be used. For example, to get the character \, you must escape
its significance as an operator. You can do so easily with another
backslash: \ \. For more information on escaping, refer to A/UX User
Interface.

The quotation mark operator (") indicates that whatever characters
follow, up to a second II character, are to be taken as text characters
without any "magic" meaning or operator significance. The quotation
mark, then, is another way to escape the special meaning of a character.
For example,

xyzll++"

matches the string xyz++ wherever it appears. Of course, it is
unnecessary, though harmless, to quote an ordinary text character.
Consequently, the expression

"xyz++"

is equivalent to the one that quoted only the ++. However, by quoting
every character being used as a text character, you can avoid
remembering the list of current operator characters, and avoid
problems should further extensions to lex lengthen the list.

Another use of the quoting mechanism is for forcing a blank into an
expression. Normally, as explained above, blanks or tabs end a rule.
Any blank character not contained within brackets must be quoted.

19-8 NUX Programming Languages and Tools, Volume 2

There is also a third way to match the literal value of these operators,
using the \ escape character. You could specify the string discussed
above as

xyz\+\+

Several C language escapes using \ are recognized:

C language escapes

\n Newline
\t Tab
\b Backspace
\ \ Backslash

Since new line is illegal in an expression, \ n must be used.

6. Definitions
Recall that the basic format of a lex source is

{ definitions
%%
{ rules }
%%
{ user subroutines

In addition to the rules (discussed below), lex includes options to
define variables. Variables can occur either in the definitions section or
in the rules section.

Remember, lex is generating the rules into a program, and any source
not intercepted by lex is copied into the generated program. Also,

• Any line not part of a lex rule or action and that begins with a
blank or tab is copied into the lex generated program.

• Any line not part of a lex rule or action that begins with a blank
or tab and is found prior to the first %% delimiter is "external" to
any function in the code.

• Any line not part of a lex rule or action that begins with a blank
or tab and is found immediately after the first % % appears in an
appropriate place for declarations in the function written by lex
that contains the actions. This material must look like program

lex Reference 19-9

fragments and should precede the first lex rule.

• Lines that begin with a blank or tab, and that contain a comment,
are passed through to the generated program. This can be used
to include comments in either the lex source or the generated
code. The comments should follow the host language
convention.

• Anything included between lines containing only % { and %} is
copied to output. The delimiters are discarded. This format
permits entering text-like preprocessor statements that must
begin in column 1, or copying lines that do not look like
programs.

• Anything after the third % % delimiter, regardless of formats, and
so on, is copied to output after the lex output.

Definitions intended for lex are given before the first % % delimiter.
Any line in this section not contained between % { and %} and
beginning in column 1 is assumed to define lex substitution strings.
The format of such lines is

name translation

This facility enables the string given as translation to be associated
with the name. The name and translation must be separated by at least
one blank or tab, and the name must begin with a letter. The
translation can be called by the {name} syntax in a rule. Using {D}

for the digits and {E} for an exponent field, you might have

D

E
%%
{D}+
{D}+"."{D}*({E})?
{D}*"."{D}+({E})?
{D}+{E}

[0-9]
[DEde] [-+]?{D}+

printf("integer");
I
I

printf("real");

This example abbreviates rules to recognize numbers. The first two
rules for real numbers both require a decimal point and contain an
optional exponent field. The first requires at least one digit before the
decimal point ({D } +" . " {D } * ({E }) ?), and the second requires at
least one digit after the decimal point ({D } *" . " {D } + ({E }) ?). To

19-10 A/UX Programming Languages and Tools, Volume 2

correctly handle the the Fortran expression 35. EQ. I, which does not
contain a real number, a context-sensitive rule such as

[O-9]+/"."EQ printf("integer");

could be used, in addition to the normal rule for integers (see "Context
Sensitivity' ').

The definitions section may also contain other commands, including the
selection of a host language, a character set table, a list of start
conditions or adjustments to the default size of arrays within lex itself
for larger source programs.

6.1 Repetitions and definitions
The operators { and } specify either

• repetitions (if they enclose numbers)

• definition expansion (if they enclose a name)

For example,

{digit}

looks for a predefined string named digit and inserts it at that point
in the expression. The definitions are given in the first part of the lex
input, before the rules. On the other hand, the expression

a{1,5}

looks for one to five occurrences of a.

An initial % is not an ordinary character, but has a special meaning to
lex as the the separator for source program segments.

7. Rules

7.1 Regular expressions
The regular expressions in lex function just as do those in the NUX
text editors (vi, ed, and so on). A regular expression specifies a set of
strings to be matched. It contains "text characters" (which match
characters in the input stream) and "operator characters" (which,
together with those' 'text characters," express a string that is to be
recognized before the action in the right column takes place).

lex Reference 19-11

Letters of the alphabet and digits are always text characters. For
example,

integer

matches the string integer wherever it appears, and the expression

a57D

looks for the string as 7D.

7.2 Optional expressions
The question mark operator (?) indicates that what immediately
precedes it is an optional element of an expression. Thus,

ab?c

matches either ac or abc.

7.3 Repeated expressions
Repetitions of classes are indicated by the operators * and +. The
expression

a*

matches zero or more consecutive a characters. The expression

a+

matches one or more instances of a characters. The expression

[a-z]+

matches all strings of lowercase letters. The expression

[A-Za-z] [A-Za-zO-9]*

matches all alphanumeric strings that have a leading alphabetic
character. This is a typical expression for recognizing identifiers in
computer languages.

7.4 Alternation and grouping
The operator I indicates alternation. For example,

(ab I cd)

matches either ab or cd. The parentheses are used here for grouping
only. They are not required in such a simple and clear-cut example,

19-12 A/UX Programming Languages and Tools, Volume 2

but are often used for clarity or to force correct interpretation of more
complex expressions. For example,

(abled+)?(ef)*

matches such strings as

abefef
efefef
edef
eddd

but not

abc
abed
abedef

7.5 Context sensitivity
The lex program recognizes a small amount of surrounding context.
The two simplest operators for this are " and $.

As in the NUX text editors, if the first character of an expression is ",
the expression is matched only if found at the beginning of a line,
either after a newline character or at the beginning of the input stream.
Do not confuse this with the use of the " operator within brackets,
which instructs lex to match any character except those in the
designated character class range. If you want to use lex to find
occurrences of a particular range of characters, but only if they occur
as the first character on a line, you must use the " operator on the
outside of the brackets. For example, the expression

" [0-9]

matches lines whose first character is a digit, 0 through 9. The
expression

"["0-9]

matches lines whose first character is not a digit 0 through 9.

The operator $ is matched only at the end of a line, immediately
followed by newline. This operator is a special case of the / operator
character, which indicates "trailing context." The expression

lex Reference 19-13

ab/ed

matches the string ab only if followed by ed. Therefore, the
expression

ab$

could also be expressed

ab/\n

That is, the use of the $ operator could be interpreted as an instruction
to match the character(s) only when followed by a newline.

Left context is handled in lex by "start conditions." If a rule is only
to be executed when the lex automaton interpreter is in "start
condition" x, the rule should be enclosed within the angle-bracket
operator characters:

<x>

If "being at the beginning of a line" was considered to be start
condition ONE, then the ,. operator would be equivalent to

<ONE>

See the sections entitled "Left Context Sensitivity," "Examples," and
"Summary" for further explanation and illustration of start conditions.

7 .5.1 Left context sensitivity
Sometimes it is desirable to have several sets of lexical rules applied at
different times in the input. For example, a compiler preprocessor
might distinguish preprocessor statements and analyze them differently
from ordinary statements. This requires "sensitivity" to prior context.
There are several ways of handling such occurrences. For example, the
,. operator is a "prior context operator" because it must recognize the
immediately preceding left context in order to discern if a character
appears at the beginning of a line, just as the $ operator must recognize
the immediately following right context in order to discern if a
character appears at the end of a line.

Adjacent left context could be extended to produce a facility similar to
that for adjacent right context. This is likely to be less useful, however,
since often the relevant left context, such as the beginning of a line,
appeared some time earlier.

19-14 AJUX Programming Languages and Tools, Volume 2

There are three basic ways of dealing with different environments so as
to achieve a lexical analysis with a greater degree of context sensitivity.

• A use of flags. This is most useful when only a few rules change
from one environment to another.

• A use of "start conditions" on rules.

• The possibility of making multiple lexical analyzers all run
together. If the sets of rules for the different environments are
very dissimilar, clarity may best be achieved by writing several
distinct lexical analyzers and switching from one to another as
necessary.

In each case, there are rules that recognize the need to change the
environment in which the following input text is analyzed and a
parameter is set to reflect the change. The remainder of this section
describes in greater detail the first two ways of dealing with different
environments.

7.5.2 Flags
The simplest way of changing the environment in which input is
analyzed is by use of a "flag" explicitly tested by the user's action
code. If done in this way, lex is not involved at all.

To illustrate, consider the following program requirements:

• Copy the input to the output

• Change the word magic to first on every line that begins
with the letter a

• Change magic to second on every line that begins with the
letter b

• Change magic to third on every line that begins with the
letter c

All other words and all other lines are left unchanged.

These rules are so simple that the easiest way to do this job is with a
flag. For example,

lex Reference 19-15

%%
"a
"b
"c
\n
magic

int flag.

{flag , a' ; ECHO; }
{flag , b' ; ECHO;}
{flag 'e'; ECHO; }
{flag 0 ; ECHO; }
{

switch (flag)
{

case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;

7.S.3 Start conditions
It may be more convenient to have lex "remember" the flags as
"start conditions" on the rules. Any rule may be associated with a
start condition. That rule, then, would be recognized only when lex is
in that start condition. The current start condition may be changed at
any time. To handle the same problem using start conditions, begin by
introducing each start condition to lex in the definitions section with a
line reading

%Start namel name2 ...

where the conditions (namel, name2, and so on), may be named in any
order. The word Start may be abbreviated to s or S.

Then, to reference the conditions use angle brackets:

<namel> expression

The rule illustrated above will be recognized only when lex is in the
"start condition" namel. To enter that start condition, execute the
following action statement:

BEGIN namel;

The action statement

19-16 AlUX Programming Languages and Tools, Volume 2

BEGIN Oi

resets the initial condition of the lex automaton interpreter.

A rule may be active in several start conditions.

<name} , name2, name3> expression

is a legal expression.

Any rule not beginning with the < prefix operator is always active.

The following example illustrates the use of start conditions:

%START AA BB CC
%%
"'a {ECHOi BEGIN AAi}
"'b {ECHOi BEGIN BBi}
"'c {ECHO; BEGIN CCi}
\n {ECHO; BEGIN 0; }
<AA>magic printf(nfirst n);
<BB>magic printf(nsecondn);
<CC>magic printf(nthirdn);

Obviously, the above is a rewrite of the previous example; the
problem-solving logic is exactly the same. However, in this case, lex
has been instructed to do the work instead of the host language code.

7.6 Ambiguous rules
The lex program can handle ambiguous specifications. When more
than one expression can match the current input, the longest match is
preferred, and among rules that matched the same number of
characters, the rule given first is preferred.

For example, using the rules

integer
[a-z]+

keyword-action
identifier-action ;

(if the input was integers), lex would interpret the input as an
identifier because [a - z] + matches all eight characters (including the
final s), while integer matches only seven characters.

If the input were integer, both rules would match the seven
characters. In that case, lex would select the keyword rule because it

lex Reference 19-17

was given first. If the input were anything shorter (for example, int),
the input would not match the expression integer. It would,
however, match the [a - z] + expression, so the identifier interpretation
would be used.

The principle of preferring the longest match makes rules containing
expressions like . * dangerous. For example,

, . *,

appears to instruct lex to find a match for a string in single quotes.
However, it is an instruction for the program to read far ahead looking
for a distant single quote. For example, if the above expression were
given the following input:

'first' quoted string here, 'second' here

the expression would match almost the entire input line:

'first' quoted string here, 'second'

which is most likely not the desired result. A better rule for matching
strings within single quotes might be

, ["" \n] *,

which, given the same input, will match' first' .

The consequences of errors like this are greatly lessened by the fact
that the period (.) operator does not match newline. Expressions like
. * stop on the current line.

Note: Do not try to defeat the protection of . not matching the
newline character with expressions such as [. \n] + or an
equivalent, because the program generated by lex will then try
to read the entire input file, causing internal buffer overflows.

8. Actions
When an expression written as above is matched, yy lex executes the
corresponding action. The default action for yy lex is to copy input to
output, and is performed on all strings not otherwise matched.
Therefore, a rule that merely copies can be omitted. If you want to
absorb the entire input without producing any output, you must provide

19-18 AlUX Programming Languages and Tools, Volume 2

rules to match everything. (When yylex is being used with yacc,
this is the normal situation.) In other words, by default, a character
combination in input that was omitted from the rules will be printed on
the output.

8.1 The null statement
One of the simplest things that can be done is to ignore the input To
accomplish this, use a semicolon (;) as the action (a semicolon is the C
language "null statement").

The rule

[\t \n]

causes the spacing characters (that is, blank, tab and newline) to be
ignored because it gives the null statement as its associated action.

8.2 The repetition character
The vertical bar character (I) represents the instruction to use the
action designated for the next rule for the current rule as well. For
example,

" "
"\t"
"\n"

This example instructs yy lex to ignore the spacing characters, as did
the previous example. The first line gives the rule "match blank
characters" and instructs the program to perform the action indicated
for the next rule. Then, the second line gives the rule "match \ t
characters" and instructs the program to perform the action indicated
for the next rule. Finally, the third line gives the rule "match \n
characters," and gives the action ;, the null statement. Therefore, the
action for all three rules is the null statement.

8.3 printf and ECHO
In more complex actions, you may often want to know the actual text
that matched a regular expression. The yy lex program leaves this
text in an external character array, named yytext. Consider the
following example:

[a-z]+ printf("%s", yytext);

l.ex Reference 19-19

This example illustrates a way of accessing the characters matching a
regular expression. Using this example, the rule given is to find the
strings matching the regular expression [a - z] + and the action is to
print those strings in the character array yytext using the C language
function p r in t f.

The printf function accepts a format argument and data to be
printed. Still using this example, the format is % s (print string). The %
character indicates data conversion, and s indicates data type string, in
this case the character array, yytext. This places the matched string
on the output.

The action of printing the strings matching the regular expressions is so
common that it may be written simply as ECHO. For example,

[a-z]+ ECHO;

This example accomplishes the same action as the previous one using
the printf statement.

Even though the default action is to copy input to output, the ECHO
facility is included explicitly to provide a more discriminating copy
function. For example, a rule that matches read will normally match
all instances of read, even those contained in other words (bread,
treadmill, and so on). To avoid this, a rule of the form [a-z] + is
needed. This is explained further below.

8.4 yyleng
Sometimes it is necessary to know what is at the end of a matched
pattern. To facilitate this, lex provides a count of the number of
characters matched, yyleng. To count both the number of words in
the input and the number of characters in those words, you might write

[a-zA-Z]+ {words++; chars += yyleng;}

This instruction takes the strings that match the regular expression
[a - zA - Z] + and accumulates the number of characters in these strings
in chars. Then, the action instruction

yytext[yyleng-l]

could be used to access the last character in the string matched.

19-20 AlUX Programming Languages and Tools, Volume 2

8.5 yymore and yyl.ess
Occasionally, a lex action may decide that a rule has not recognized
the correct span of characters. Two routines are provided to aid with
this situation:

yymore () This routine instructs yylex to tack the next input
expression recognized on to the end of this input.
Normally, the next input string would overwrite the
current entry in yytext.

yyless (n) This routine instructs yylex to retain in yytext only
n (a number) of those characters resulting from the
current expression. Further characters previously
matched are returned to the input. This provides the
same sort of look-ahead offered by the / operator,
though in a very different form.

Consider a language that defines a string as a set of characters between
quotation marks ("), and requires that the" character be preceded by a
\ to be included in a string. The regular expression which matches that
is somewhat confusing, so it might be preferable to write the following:

\"["''']* {
if (yytext[yyleng-l] == '\\')

yymore () ;
else

... normal user processing

The above lex segment will, when it finds the string

"abc\"def"

first match the five characters" abc \ and then call the yymore
routine, which will cause the next part of the string, "def, to be tacked
on the end of the input. Note that the final quote terminating the string
should be picked up in the code labeled normal user processing.

The function yyless might be used to reprocess text in various
circumstances. Consider, for example, the problem of disambiguating
a C language statement such as

lex Reference 19-21

s=-a

One way to parse this statement treats the - as part of the operator:

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-l);
action/or =-

This lex segment will print a message, treat the operator as =-, and
return the letter found after the operator to the input stream. However,
you might want to treat this syntax as = -a. In that case

=- [a-zA-Z] {
printf(nOperator (=-) ambiguous\n");
yyless(yyleng-2);
action/or =

will print a message, treat the operator as =, and return -a to the input
stream.

It is possible to avoid the misinterpretation of operators by rewriting
the regular expression. To indicate that the operator is =-, using the
same example, use the following rule:

=-/ [A-Za-z]

To indicate that the operator is =, use the following rule:

=/-[A-Za-z]

No backup is required in the rule action. It is not necessary to
recognize the whole identifier to observe the ambiguity. However, the
possibility of =-3 makes

=_/[A \t\n]

a still better rule.

8.6 1ex input and output routines
The programs generated by lex handle character I/O only through the
routines input, output, and unput. The character representation
provided in these routines is accepted by lex and used to return values

19-22 NUX Programming Languages and Tools, Volume 2

in yytext. These are provided as lex macro definitions:

input () Returns the next input character

output (c) Writes the character c on the output

unput (c) Pushes the character c back onto the input stream to be
read later by input

(As shown previously, you can use printf to generate error
messages.) These routines are provided by default, but you can
override them by providing your own versions. To redefine or override
a lex routine, include your own version in the user subroutines
section. These routines must be standard C and be named according to
the lex routine you want to replace. However, because these routines
define the relationship between external files and internal characters,
they must all be retained and/or modified consistently.

These routines may be redefined to cause input or output to be
transmitted to or from other programs or internal memory. The
character set used must be consistent in all routines and a value of 0
returned by input must mean end-of-file.

The relationship between unput and input must be retained or the
lex look-ahead will not work. The lex program does not look ahead
at all if it does not have to; rules ending in +, *, ?, or $, or those
containing a /, however, will force look-ahead. Look-ahead is
necessary to match an expression that is a prefix of another expression.
The standard lex library imposes a 100-character limit on backup.

8.7 yywrap
Another lex library routine that you may sometimes want to redefine
is yywrap. To redefine or override a lex routine, include your own
version in the user subroutines section. These routines must be
standard C and be named according to the lex routine you want to
replace. This routine is called whenever lex reaches an end-of-file. If
yywrap returns a 1, which it does by default, lex continues with the
normal wrapup on end of input

It is sometimes convenient to arrange for input to continue from a new
source. In this case, yywrap could be redefined to arrange for new
input and return O. This would then instruct lex to continue
processing.

lex Reference 19-23

This routine provides a convenient way to print tables, summaries, and
so on, at the end of a program. It is not possible to write a normal rule
that recognizes end-of-file. The only access to this condition is through
yywrap. In fact, unless a private version of input is supplied, a file
containing nulls cannot be handled because a value of 0 returned by
input is taken to be end-of-file by yywrap.

8.8 REJECT
Note that lex is normally partitioning the input stream, not searching
for all possible matches of each expression. This means that each
character is accounted for once and only once. Consider the following
example:

she s++;
he h++;
\n I

The first rule matches all occurrences of the string she and the action
increments s for each one found. The second matches all occurrences
of the string he and its action increments h for each one found. The
last two rules match newline and everything else and take the action of
ignoring them. Normally, lex would not recognize the instances of
he included in she, because once it has passed a she those characters
are gone. To override this default, the action REJECT could be used to
instruct lex to go do the next alternative. REJECT causes the rule
after the current rule to be executed. The position of the input pointer
is adj usted accordingly.

Suppose you want to count the instances of he included in she. To do
that, use the following rules:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

In this example, after counting each expression, the expression is
"rejected" (whenever appropriate), and the other expression is
evaluated. In this example, because he does not include she the
REJECT action on he could be eliminated. In other cases, it is not
possible to state which input characters are in both classes.

19-24 A/UX Programming Languages and Tools, Volume 2

Consider the following two rules:

a[bc]+
a[cd]+

{ ••. ; REJECT;}
{ .•• ; REJECT;}

• If the input to the rules above were ab, only the first rule would
match.

• If the input to these same rules were ad, only the second would
match.

• If the input were accb, the first rule would match four
characters, and the second rule would match three characters.

• If the input were aced, however, the second rule would match
four characters, and the first rule would match three characters.

In general, REJECT is useful whenever the purpose of lex is to detect
all examples of some items in the input for which the instances of these
items may overlap or include one another, instead of lex's usual
purpose of partitioning the input stream.

Suppose you want a digram of some input Normally, the digrams
overlap, that is, the word the is considered to contain both th and he.
Assuming a two-dimensional array named digram [] to be
incremented, an appropriate lex procedure would be

%%
[a-z] [a-z] {digram[yytext[O]] [yytext[l]]++; REJECT;}

I
\n

In this example, REJECT is used to pick up a letter pair beginning at
every character, rather than at every other character.

The action REJECT does not res can the input. Instead, it
"remembers" the results of the previous scan. Therefore, if yylex is
instructed to find a rule with trailing context and execute REJECT,
unput cannot have been called to change the characters forthcoming
from the input stream. This is the only restriction on the user's ability
to manipulate the not-yet-processed input

lex Reference 19-25

9. Compilation
The following steps are involved in compiling a lex source file:

1. The lex source must be transformed into a program in the host
general-purpose language. The generated program is put into a
file named lex. yy. c.

2. That program must then be compiled and loaded, usually with a
library of lex subroutines. The I/O library is defined in terms of
the C language standard library. On the NUX operating system,
the library is accessed by the loader flag -11. In this case, an
appropriate set of commands is

lex inputfile
cc lex.yy.c -11

The resulting program is placed in the file a . ou t for later
execution.

Although the default lex I/O routines use the C languag~ standard
library, lex routines such as input, output, and unput do not.
Therefore, if your own versions of these routines are given, the library
is avoided.

10. Examples
For the sake of example, consider copying an input file while adding
three to every positive number divisible by 7. A suitable lex source
program follows:

%%
int ki

[0-9]+
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+3);
, else

printf("%d", k);

The rule [0 - 9] + recognizes strings of digits, 0 through 9; at 0 i
converts the digits to binary and stores the result in k. The operator %
(remainder) is used to check whether k is divisible by seven; if it is, k

19-26 NUX Programming Languages and Tools, Volume 2

is incremented by 3 as it is written out It may be objected that this
program alters such input items as 49 . 63 or X7. Furthermore, it
increments the absolute value of all negative numbers divisible by 7.
To avoid this, add a few more rules after the active one. For example,

%%
int k;

-?[0-9]+
k = atoi(yytext);
printf("%d", k%7

-?[0-9.]+ ECHO;
[A-Za-z] [A-Za-zO-9]+ ECHO;

o ? k+3 k) ;

Numeric strings containing a period (.), or preceded by a letter, will be
picked up by one of the last two rules and not changed. The if -e 1 s e
has been replaced by a C language conditional expression to save
space. The expression a ? b : c is evaluated as "if a then b else c."

The following is an example using lex for statistics gathering. This
program reports how many words of various lengths there are. (A
word is defined here as a string of letters.)

%%
[a-z]+

\n
%%
yywrap(
{

int i;

int lengs[lOO];

lengs[yyleng]++;
I

printf("Length No. words\n");
for(i=O; i<lOO; i++)

if (lengs[i] > 0)
printf("%5d%10d\n", i, lengs[i]);

return(l);
}

In the above example, the data is accumulated, but no output is
generated until, at the end of the input, the table is printed. The final

lex Reference 19-27

statement, ret urn (1) ;, indicates that lex is to perform wrapup. If
yywrap returns 0 (false), it implies that further input is available and
the program is to continue reading and processing. Remember,
providing a yywrap that never returns true causes an infinite loop.

11. Summary
The general form of a lex source file is

{ definitions
%%
{ rules }
%%
{ user subroutines

The definitions section contains a combination of the following:

• Definitions in the form

name translation

• Included code in the form

code

where a space (or tab) must precede code

• Included code in the form

%{
code
%}

• Start conditions given in the form

%S name} name2 ...

• Character set tables in the form

%T
number character-string

%T

• Changes to internal array sizes in the form

19-28 A/UX Programming Languages and Tools, Volume 2

%x nnn

where nnn is a decimal integer representing an array size and x
selects the parameter as follows:

Letter Parameter

p Positions
n States
e Tree nodes
a Transitions
k Packed character classes
0 Output array size

Lines in the rules section have the form

expression action

where the action may be continued on succeeding lines by using braces
to delimit it.

Regular expressions in lex use the following operators:

lex Reference 19-29

Table 19-1. Regular expression operators

Expression Meaning
x The character x

"x" An x, even if it is an operator

\x An x, even if it is an operator
[xy] The character x or y
[x-z] The characters x, y, or z
["x] Any character but x

Any character but newline
"x An x at the beginning of a line

<y>x An x when lex is in start condition y

x$ An x at the end of a line
x? An optional x

x* o or more instances of x

x+ 1 or more instances of x

xly Anxoray
(x) Anx

x/y An x, but only if followed by y
{xx} Expands to xx definition in lex definition section
x{m,n} m through n occurrences of x

19-30 AJUX Programming Languages and Tools, Volume 2

Contents

Chapter 20

yacc Reference

1. yacc: a compiler-writing system

2. Basic specifications

3. Actions • • • •

4. Lexical analysis

5. Parser operation ..•••.

6. Ambiguity and conflicts

7. Precedence

8. Error handling

9. The yacc environment

10. Input style

11. Left recursion

12. Lexical considerations

13. Reserved words. •

14. Simulating error and accept in actions

15. Accessing values in enclosing rules •

16. Arbitrary value types

17. Example: a desk calculator

18. Example: yacc input syntax

19. Example: an advanced grammar

20. Backward compatibility

- i -

1

4

7

10

12

18

23

27

30

31

32

33

34

35

35

36

38

42

45

54

Tables

Table 20-1. C language escapes recognized by
yacc

Table 20-2. Arithmetic operators • • . • •

- ii -

5

39

Chapter 20

yacc Reference

1. yacc: a compiler-writing system
The yacc program is a general tool for imposing structure on the input
to a computer program. The first step in using yacc is to create a
specification of the input process, which includes rules describing the
input structure, code to be invoked when these rules are recognized,
and a low-level routine to do the basic input yacc then generates a
function to control the input process. This function, called a "parser,"
calls the user-supplied low-level input routine (the lexical analyzer) to
pick up the basic items (called "tokens") from the input stream.

Tokens are organized according to the input structure rules, called
"grammar rules." When one of these rules has been recognized, the
user code supplied for this rule (that is, an action) is invoked. Actions
have the ability to return values and make use of the values of other
actions.

yacc is written in a portable dialect of the C language, and the actions
and output subroutine are written in the C language as well. Moreover,
many of the syntactic conventions of yacc follow those of the C
language.

The heart of the input specification is a collection of grammar rules.
Each rule describes an allowable structure and gives it a name. For
example, one grammar rule might be

date: month_name day',' year;

where date, month_name, day, and year represent structures of
interest in the input process; presumably, month_name, day, and
year are defined elsewhere.

The comma (,) is enclosed in single quotes. This implies that the
comma is to appear literally in the input The colon and semicolon
serve merely as punctuation in the rule and have no significance in
controlling the input

yacc Reference 20-1

With proper definitions, the following input might be matched by the
rule given above:

July 4, 1776

An important part of the input process is carried out by the lexical
analyzer. This user routine reads the input stream, recognizes the
lower-level structures, and communicates these tokens to the parser.

For historical reasons, a structure recognized by the lexical analyzer is
called a "terminal symbol," while the structure recognized by the
parser is called a "nonterminal symbol." To avoid confusion, terminal
symbols will usually be referred to as "tokens."

There is considerable leeway in deciding whether to recognize
structures using the lexical analyzer or grammar rules. For example,
the following rules might be used in the above example:

month name
month name

month name

'J' 'a' 'n'
'F' 'e' 'b'

'D' 'e' 'e'

The lexical analyzer needs to recognize only individual letters, and
month_name is a nonterminal symbol.

Such low-level rules tend to waste time and space and may complicate
the specification beyond the ability of yaee to deal with it.

Usually, the lexical analyzer recognizes the month names and returns
an indication that a month_name is seen. In this case, month_name
is a token.

Literal characters (such as the comma above) must also be passed
through the lexical analyzer and are also considered tokens.

Specification files are very flexible. If the rule

date: month 'I' day 'I' year;

were added to the above example, entering 7 I 4 I 177 6 would then be
equivalent to July 4, 1776 on input. In most cases, this new rule
could be "slipped in" to a working system with minimal effort and
little danger of disrupting existing input.

20-2 A/UX Programming Languages and Tools, Volume 2

The input being read may not conform to the specifications. These
input errors are detected as early as is theoretically possible with a
left-to-right scan. Thus, not only is the chance of reading and
computing with bad input data substantially reduced, but the bad data
can usually be quickly found. Error handling, provided as part of the
input specifications, permits the reentry of bad data or the continuation
of the input process after skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of
specifications. For example, the specifications may be self
contradictory, or they may require a more powerful recognition
mechanism than that available to yacc. The former cases represent
design errors; the latter cases can often be corrected by making the
lexical analyzer more powerful or by rewriting some of the grammar
rules.

While yacc cannot handle all possible specifications, its power
compares favorably with similar systems. Moreover, the constructions
that are difficult for yacc to handle are also frequently difficult for
human beings to handle. Some users have reported that the discipline
of formulating valid yacc specifications for their input revealed errors
of conception or design early in the program development.

yacc has been used extensively in numerous practical applications on
the A/UX system, including the syntax checker 1 in t, the Portable C
Compiler, and a system for typesetting mathematics.

The remainder of this chapter describes:

• Basic process of preparing a yacc specification

• Parser operation

• Handling ambiguities

• Handling operator precedence in arithmetic expressions

• Error detection and recovery

• The operating environment and special features of the parsers
ya cc produces

• Suggestions to improve the style and efficiency of the
specifications

yacc Reference 20-3

• Advanced topics

In addition, there are four sections that illustrate the earlier material:

• "A Desk Calculator" contains a brief example of using yacc to
design a simple program.

• "yacc Input Syntax" contains a summary of the yacc input
syntax.

• "An Advanced Grammar" contains an example using some of
the more advanced features of yacc.

• "Backward Compatibility" contains a description of the
mechanisms and syntax that, though no longer actively
supported, are provided for historical continuity with older
versions of yacc.

2. Basic specifications
Names refer to either tokens or nonterminal symbols. yacc requires
token names to be declared as such. In addition, it is often desirable to
include the lexical analyzer as part of the specification file. It may be
useful to include other programs as well.

Every specification file consists of three sections:

• Declarations

• Grammar rules

• Programs

These sections are separated by double percent symbols (%%). The
percent symbol is generally used in yacc specifications as an escape
character.

The following is a syntactic description of a yacc specification file:

declarations
%%
rules
%%
programs

20-4 AlUX Programming Languages and Tools, Volume 2

The declarations section may be empty, and, if the pro grams section is
omitted, the second % % mark may also be excluded. The smallest legal
yacc specification is therefore

%%
rules

Blanks, tabs, and new lines are ignored, but they may not appear in
names or multicharacter reserved symbols. Comments may appear
wherever a name is legal. They are enclosed in / * and * / , as in the C
language.

The rules section is made up of one or more grammar rules. A
grammar rule has the following form:

a : body;

In this example, a represents a nonterminal name, and body represents
a sequence of zero or more names and literals. The colon and the
semicolon are yacc punctuation.

Names may be of arbitrary length and may be made up of letters, dots,
underscores, and noninitial digits. Uppercase and lowercase letters are
distinct. The names used in the body of a grammar rule may represent
tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes (' ').

As in the C language, the backslash (\) is an escape character within
literals, and all the C language escapes are recognized.

Table 20-1. C language escapes recognized by yacc

Escape Meaning
\n Newline
\r Return
\' Single quote (')
\ \ Backslash (\)
\t Tab
\ b Backspace
\f Form feed
\xxx xxx in octal

yacc Reference 20-5

For a number of technical reasons, the null character (\ 0 or 0) should
never be used in grammar rules.

If there are several grammar rules with the same left side, the vertical
bar (I) can be used to avoid rewriting the left side. The semicolon at
the end of a rule can be dropped before a vertical bar. Thus the
grammar rules

ABC D;
A : E F;
A : G;

can be given to yacc using the vertical bar:

ABC D
I E F
I G;

It is not necessary that all grammar rules with the same left side appear
together in the grammar rules section, although it makes the input
much easier to read and to change.

If a nonterminal symbol matches the empty string, this can be indicated
by the following:

empty : ;

Names representing tokens must be declared in the declarations
section. For example,

%token name1 name2

Every name not defined in the declarations section is assumed to
represent a nonterminal symbol. Nonterminal symbols must appear on
the left side of at least one rule.

The parser is designed to recognize the nontenninal start symbol.
Thus, this symbol represents the largest, most general structure
described by the grammar rules. By default, the start symbol is taken
to be the left side of the first grammar rule in the rules section.

It is possible and desirable to declare the start symbol explicitly in the
declarations section using the %start keyword. For example,

20-6 AlUX Programming Languages and Tools, Volume 2

%start symbol

The end of the input to the parser is signaled by a special token, called
the "end-marker." If the tokens up to but not including the end
marker form a structure that matches the start symbol, the parser
function returns to its caller after the end-marker is seen and accepts
the input If the end-marker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the end
marker when appropriate. Usually the end-marker represents some
reasonably obvious I/O status, such as end-of-file or end-of-record.

3. Actions
With each grammar rule, the user may associate actions to be
performed each time the rule is recognized in the input process. These
actions may return values and may obtain the values returned by
previous actions. Moreover, the lexical analyzer can return values for
tokens if desired.

An action is an arbitrary C language statement and as such can do input
and output, call subprograms, and alter external vectors and variables.
An action is specified by one or more statements enclosed in braces ({
and}). For example,

A : ' (' B ') ,
{

hello(1, "abc") ;

}

and the following is an example of grammar rules with actions:

xxx : yyy zzz
{

printf(na message\n");
flag = 25;

To facilitate easy communication between the actions and the parser,
the action statements are altered slightly. The dollar sign symbol ($) is
used as a signal to yacc in this context To return a value, the action
normally sets the pseudovariable $ $ to some value.

yacc Reference 20-7

The following action does nothing except return the value of one:

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical
analyzer, the action may use the pseudovariables $1, $2, and so on,
which refer to the values returned by the components of the right side
of a rule, reading from left to right. For example, if the rule is

A : BCD;

then $2 has the value returned by C, and $3 the value returned by D.

With the following rule, the value returned is usually the value of the
expr in parentheses:

expr : '(' expr ')'
{

$$ = $2

By default, the value of a rule is the value of the first element in it ($1).

Grammar rules of the following form frequently need not have an
explicit action:

A : B;

In the examples above, all the actions came at the end of rules.
Sometimes, though, it is desirable to get control before a rule is fully
parsed. The yacc program permits an action to be written in the
middle of a rule as well as at the end.

This kind of rule is assumed to return a value accessible through the
usual $ mechanism by the actions to the right of it. In turn, it may
access the values returned by the symbols to the left of the action. For
example, in the following rule x is set to 1 (the value returned by the
action to its left) and y is set to the value returned by C:

20-8 AlUX Programming Languages and Tools, Volume 2

A : B

{

$$ 1;

C

x = $2;
y $3;

This is because every component of the right side of the rule, including
an action, is associated with a positional pseudovariable, so the $1
refers to B, $2 to the value returned by the action associated with B, $3
to C, and so on.

Actions that do not terminate a rule are actually handled by yacc by
manufacturing a new nonterminal symbol name and a new rule
matching this name to the empty string. The interior action is the
action triggered off by recognizing this added rule.

yacc actually treats the preceding example as if it had been written
like the following ($ACT is an empty action):

$ACT : /* empty */
{

$$ = 1;

A B $ACT C

x = $2;
y $3;

In many applications, output is not produced directly by the actions. A
data structure, such as a parse tree, is constructed in memory and
transformations are applied to it before output is generated. Parse trees
are particularly easy to construct, given routines to build and maintain
the tree structure desired.

yacc Reference 20-9

In the following example, the C function node creates a node with
label 1 and descendants nl and n2 and returns the index of the newly
created node:

node (1, nl, n2)

Then a parse tree is built by supplying the actions following in the yacc
specification file:

expr : expr ' +' expr
{

$$ = node('+', $1, $3);

The user may define other variables to be used by the actions.

Declarations and definitions can appear in the declarations section
enclosed in the marks % { and % }. These declarations and definitions
have global scope, so they are known to the action statements and the
lexical analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable
accessible to all of the actions.

The yacc parser uses only names beginning with yy. The user should
avoid such names. In these examples, all the values are integers. A
discussion of values of other types is found in the section "Arbitrary
Value Types. "

4. Lexical analysis
The user must supply a lexical analyzer to read the input stream and
communicate tokens (with values, if desired) to the parser. The lexical
analyzer is an integer-valued function called yylex. The function
returns an integer, the "token number," representing the kind of token
read. If there is a value associated with that token, it should be
assigned to the external variable yyl val.

The parser and the lexical analyzer must agree on these token numbers
in order for communication between them to take place. The numbers
may be chosen by yacc or by the user. In either case, the #define
mechanism of C language is used to allow the lexical analyzer to return

20-10 AlUX Programming Languages and Tools, Volume 2

these numbers symbolically. For example, suppose that the token
name DIGIT has been defined in the declarations section of the yacc
specification file. The relevant portion of the lexical analyzer might
look like the following:

yylex ()
{

extern int yylval;
int c;

c = getchar () ;

switch (c)
{

case ' 0' :
case '1':

case '9':
yylval = c - '0';
return (DIGIT);

The intent is to return a token number of DIG I T and a value equal to
the numeric value of the digit. Provided that the lexical analyzer code
is placed in the programs section of the specification file, the identifier
DIGIT is defined as the token number associated with the token
DIGIT.

This mechanism leads to clear, easily modified lexical analyzers. The
only pitfall to avoid is using any token names in the grammar that are
reserved or significant in the C language or the parser. For example,
the use of token names if or while will almost certainly cause severe
difficulties when the lexical analyzer is compiled.

The token name error is reserved for error handling and should not
be used naively.

yacc Reference 20-11

As mentioned above, the token numbers may be chosen by yacc or by
the user. In the default situation, the numbers are chosen by yacc.
The default token number for a literal character is the numeric value of
the character in the local character set. Other names are assigned token
numbers starting at 257.

To assign a token number to a token (including literals), the first
appearance of the token name or literal in the declarations section can
be immediately followed by a non-negative integer. This integer is
taken to be the token number of the name or literal. Names and literals
not defined by this mechanism retain their default definitions. It is
important that all token numbers be distinct.

For historical reasons, the end-marker must have token number 0 or be
negative. This token number cannot be redefined by the user. Thus, all
lexical analyzers should be prepared to return 0 or a negative number
as a token upon reaching the end of their input.

The lex program is a very useful tool for constructing lexical
analyzers. These lexical analyzers are designed to work in close
harmony with yacc parsers. The specifications for these lexical
analyzers use regular expressions instead of grammar rules.

lex can easily be used to produce quite complicated lexical analyzers,
but there remain some languages (such as Fortran) that do not fit any
theoretical framework and whose lexical analyzers must be crafted by
hand. See" lex Reference" in this manual for more information on
lex.

5. Parser operation
The yacc program turns the specification file into a C language
program, which parses the input according to the specification given.
The algorithm used to go from the specification to the parser is
complex and will not be discussed here. The parser itself, however, is
relatively simple, and understanding how it works will make treatment
of error recovery and ambiguities much more comprehensible.

The parser produced by yacc consists of a finite-state machine with a
stack. The parser is also capable of reading and remembering the next
input token (called the "look-ahead token"). The current state is
always the one on the top of the stack. The states of the finite-state

20-12 AlUX Programming Languages and Tools, Volume 2

machine are given small integer labels.

Initially, the machine is in state 0 (the stack contains only state 0) and
no look-ahead token has been read. The machine has only four actions
available:

s hi f t Push current state onto stack, go into specified new state.

reduce Pop some number of states from stack, push new state,
execute user code.

accept End of input has been (successfully) reached.

error An unparseable situation has been detected.

A step of the parser is done as follows:

1. Based on its current state, the parser decides if it needs a look
ahead token to choose the action to be taken. If it needs one and
does not have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the
parser decides on its next action and carries it out This may
cause states to be pushed onto the stack or popped off the stack
and the look-ahead token to be processed or left alone.

The shift action is the most common action the parser takes.
Whenever a shift action is taken, there is always a look-ahead token.
In the following example, in state 56, if the look-ahead token is IF, the
current state (56) is pushed down on the stack, and state 34 becomes
the current state (on the top of the stack):

IF shift 34

The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds.
reduce actions are appropriate when the parser has seen the right side
of a grammar rule and is prepared to announce that it has seen an
instance of the rule replacing the right side by the left side.

It may be necessary to consult the look -ahead token to decide whether
to reduce or not (usually it is not necessary). In fact, the default action
(represented by a dot) is often a reduce action.

yacc Reference 20-13

reduce actions are associated with individual grammar rules.
Grammar rules are also given small integer numbers, and this leads to
some confusion. For example, in the following display, the action
refers to grammar rule 18:

. reduce 18

While in this example, the action refers to state 34:

IF shift 34

Suppose the following rule is being reduced:

A : x y z;

The reduce action depends on the left symbol (A in this case) and the
number of symbols on the right side (three in this case). To reduce,
first pop off the top three states from the stack. (In general, the number
of states popped equals the number of symbols on the right side of the
rule.) In effect, these states were the ones put on the stack while
recognizing x, y, and z, and no longer serve any useful purpose.

After popping these states, a state is uncovered that was the state the
parser was in before beginning to process the rule. Using this
uncovered state and the symbol on the left side of the rule, perform
what is in effect a shift of A. A new state is obtained and pushed onto
the stack, and parsing continues.

There are significant differences between the processing of the left
symbol and an ordinary shift of a token, however, so this action is
called a "goto" action. In particular, the look-ahead token is cleared
by a shift but is not affected by a goto. In any case, the uncovered
state contains an entry such as the following, which causes state 20 to
be pushed onto the stack and become the current state:

A goto 20

In effect, the reduce action "turns back the clock" in the parse,
popping the states off the stack to go back to the state where the right
side of the rule was first seen. The parser then behaves as if it had seen
the left side at that time. If the right side of the rule is empty, no states
are popped off the stacks. The uncovered state is in fact the current
state.

20-14 A/UX Programming Languages and Tools, Volume 2

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the code supplied with the
rule is executed before the stack is adjusted. In addition to the stack
holding the states, another stack running in parallel with it holds the
values returned from the lexical analyzer and the actions.

When a shift takes place, the external variable yy 1 val is copied onto
the value stack. After the return from the user code, the reduction is
carried out. When the goto action is done, the external variable
yyval is copied onto the value stack. The pseudovariables $1, $2,
and so on refer to the value stack.

The other two parser actions are conceptually much simpler. The
accept action indicates that the entire input has been seen and that it
matches the specification. This action appears only when the look
ahead token is the end-marker and indicates that the parser has
successfully done its job.

The error action, on the other hand, represents a place where the
parser can no longer continue parsing according to the specification.
The input tokens it has seen (together with the look-ahead token)
cannot be followed by anything that would result in a legal input. The
parser reports an error and attempts to recover the situation and resume
parsing. The error recovery (as opposed to the detection of error) will
be discussed later.

Consider the following example as a yacc specification:

%token DING DONG DELL
%%
rhyme sound place

sound DING DONG

place DELL

When yacc is invoked with the -v option, a file called y. output is
produced with a human-readable description of the parser.

The following example is the y. output file corresponding to the
above grammar (with some statistics stripped off the end). where the

yacc Reference 20-15

actions for each state are specified and there is a description of the
parsing rules being processed in each state:

state 0

state 1

state 2

state 3

state 4

20-16

$accept : _rhyme Send

DING shift 3
error

rhyme goto 1
sound goto 2

$accept: rhyme_Send

Send accept
error

rhyme sound-place

DELL shift 5
error

place goto 4

sound DING DONG

DONG shift 6
error

rhyme: sound place_ (1)

reduce 1

AlUX Programming Languages and Tools, Volume 2

state 5
place: DELL (3)

reduce 3

state 6
sound: DING DONG (2)

reduce 2

The underscore character is used to indicate what has been seen and
what is yet to come in each rule.

The following input can be used to track the operations of the parser:

DING DONG DELL

Initially, the current state is state O. The parser needs to refer to the
input in order to decide between the actions available in state 0, so the
first token (D ING) is read and becomes the look-ahead token.

The action in state 0 on DING is shift 3. State 3 is pushed onto the
stack, and the look-ahead token is cleared. State 3 becomes the current
state. The next token (DONG) is read and becomes the look-ahead
token. The action in state 3 on the token DONG is shift 6. State 6 is
pushed onto the stack, and the look-ahead is cleared.

The stack now contains 0, 3, and 6. In state 6, without even consulting
the look-ahead, the parser reduces by the following, which is rule 2:

sound DING DONG

Two states, 6 and 3, are popped off the stack, uncovering state O.
Consulting the description of state 0 (looking for a goto on sound),
the following is obtained:

sound goto 2

State 2 is pushed onto the stack and becomes the current state. In state
2, the next token (DELL) must be read. The action is shift 5, so
state 5 is pushed onto the stack, which now has 0, 2, and 5 on it, and
the look-ahead token is cleared.

yacc Reference 20-17

In state 5, the only action is to reduce by rule 3. This has one symbol
on the right side, so one state (5) is popped off and state 2 is uncovered.
The goto in state 2 on place (the left side of rule 3) is state 4. Now,
the stack contains 0, 2, and 4.

In state 4, the only action is to reduce by rule 1. There are two symbols
on the right, so the top two states are popped off, uncovering state 0
again. In state 0, there is a goto on rhyme causing the parser to enter
state 1. In state 1, the input is read and the end-marker is obtained
indicated by $end in the y. output file. The action in state 1 (when
the end-marker is seen) successfully ends the parse.

The reader is urged to consider how the parser works when confronted
with such incorrect strings as DING DONG DONG, DING DONG,

DING DONG DELL DELL, and so on. A few minutes spent studying
this and other simple examples will be repaid when problems arise in
more complicated contexts.

6. Ambiguity and conflicts
A set of grammar rules is ambiguous if there is some input string that
can be structured in two or more different ways. For example, the
following grammar rule is a natural way of expressing the fact that one
way of forming an arithmetic expression is to put two other expressions
together with a minus sign between them:

expr : expr ' -' expr

Unfortunately, this grammar rule does not completely specify the way
that all complex inputs should be structured. For example, if the input
is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or

expr - (expr - expr)

(The first is called "left association, " the second "right association. ")
The yacc program detects such ambiguities when it is attempting to
build the parser.

20-18 A/UX Programming Languages and Tools, Volume 2

Consider the problem that confronts the parser when provided with the
following input:

eXl'r - eXl'r - eXl'r

When the parser has read the second eXl'r, the input seen matches the
right side of the grammar rule above:

eXl'r - eXl'r

The parser could reduce the input by applying this rule. After applying
the rule, the input is reduced to eXl'r (the left side of the rule). The
parser would then read the final part of the input (displayed in the
following example) and again reduce:

- eXl'r

The effect of this is to take the left associative interpretation.
Alternatively, if the parser sees the following:

eXl'r - eXl'r

it could defer the immediate application of the rule and continue
reading the input until it sees the following:

eXl'r - eXl'r - eXl'r

It could then apply the rule to the rightmost three symbols, reducing
them to eXl'r, which results in the following being left:

eXl'r - eXl'r

Now the rule can be reduced once more. The effect is to take the right
associative interpretation. The parser can do one of two legal things, a
shift or a reduction. It has no way of deciding between them. This is
called a "shift/reduce conflict."

It may also happen that the parser has a choice of two legal reductions.
This is called a "reduce/reduce conflict. " (Note that there are never
any "shift/shift" conflicts.) When there are shift/reduce or
reduce/reduce conflicts, yacc still produces a parser. It does this by
selecting one of the valid steps wherever it has a choice.

A rule describing the choice to make in a given situation is called a
"disambiguating rule." The yacc program invokes two
disambiguating rules by default:

yacc Reference 20-19

• In a shift/reduce conflict, the default is to do the shift.

• In a reduce/reduce conflict, the default is to reduce by the earlier
grammar rule (in the input sequence).

The first rule implies that reductions are deferred in favor of shifts
when there is a choice. The second rule gives the user rather crude
control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided when possible.

Conflicts may arise because of mistakes in input or logic or because the
grammar rules (while consistent) require a more complex parser than
yacc can construct. The use of actions within rules can also cause
conflicts if the action must be done before the parser can be sure which
rule is being recognized. In these cases, the application of
disambiguating rules is inappropriate and leads to an incorrect parser.
For this reason, yacc always reports the number of shift/reduce and
reduce/reduce conflicts resolved by rule 1 and rule 2.

In general, whenever it is possible to apply disambiguating rules to
produce a correct parser, it is also possible to rewrite the grammar rules
so that the same inputs are read but there are no conflicts. For this
reason, most previous parser generators have considered conflicts to be
fatal errors. Experience has suggested that this rewriting is somewhat
unnatural and produces slower parsers. Thus, yacc will produce
parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider

stat IF' (' cond ')' stat
I IF ' (' cond ')' stat ELSE stat

which is a fragment from a programming language involving an if
then-else statement.

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol
describing conditional (logical) expressions, and stat is a nonterminal
symbol describing statements. The first rule will be called the
"simple-if" rule and the second the "if-else" rule. These two rules
form. an ambiguous construction because input of the following form
can be structured according to these rules in two ways:

20-20 A/UX Programming Languages and Tools, Volume 2

IF (C1) IF (C2) Sl ELSE S2

The input can be structmed as in the following example or as in the
subsequent example, which is the one given in most programming
languages having this construct:

IF (C1
{

IF (C2
Sl

ELSE
S2

or:

IF C1
{

IF C2
Sl

ELSE
S2

Each ELSE is associated with the preceding "un-ELSE'd" IF.

In the following example, consider the situation where the parser has
seen the IF-ELSE construct and is looking at the ELSE.

IF (C1) IF (C2) Sl

It can immediately reduce by the simple-if rule to get

IF (C1) stat

and then read the remaining input

ELSE S2

and reduce by the if-else rule. This leads to the first of the above
groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the
right portion can be reduced by the if-else rule to get the following,
which can be reduced by the simple-if rule:

yacc Reference 20-21

IF (Cl) stat

This leads to the second of the above groupings of the input, which is
usually desired. Once again, the parser can do two valid things-there
is a shift/reduce conflict. The application of disambiguating rule 1 tells
the parser to shift in this case, which leads to the desired grouping.
This shift/reduce conflict arises only when there is a particular current
input symbol, ELSE, and particular inputs, such as have already been
seen:

IF (Cl) IF (C2) S 1

In general, there may be many conflicts, and each one will be
associated with an input symbol and a set of previously read inputs.
The previously read inputs are characterized by the "state" of the
parser. The conflict messages of yacc are best understood by
examining the verbose (-v) option output file. For example, the output
corresponding to the above conflict state might be

23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat (18)
stat ELSE stat

where the first line describes the conflict, giving the "state" and the
input symbol.

The ordinary state description gives the grammar rules active in the
state and the parser actions.

Recall that the underline marks the portion of the grammar rules that
has been seen. Thus, in the example, in state 23 the parser has seen
input corresponding to IF (cond) stat, and the two grammar
rules shown are active at this time.

The parser can do two things:

• If the input symbol is ELSE, it is possible to shift into state 45.
State 45 will have, as part of its description, the following line:

stat IF (cond) stat ELSE stat

20-22 NUX Programming Languages and Tools, Volume 2

because the ELSE will have been shifted in this state. In state
23, the alternative action (describing a dot (.)) is to be done if
the input symbol is not mentioned explicitly in the actions .

• If the input symbol is not ELSE, the parser reduces to

stat : IF '(' cond ')' stat

by grammar rule 18.

Once again, notice that the numbers following shift commands refer
to other states, while the numbers following reduce commands refer
to grammar rule numbers.

In the y. output file, the rule numbers are printed after those rules
which can be reduced. In most states, only one reduce action is
possible, and it will be the default command.

The user who encounters unexpected shift/reduce conflicts will
probably want to look at the verbose output to decide whether the
default actions are appropriate.

7. Precedence
There is one common situation where the rules given above for
resolving conflicts are not sufficient. This is in the parsing of
arithmetic expressions. Most of the commonly used constructions for
arithmetic expressions can be naturally described by the notion of
precedence levels for operators, together with information about left or
right associativity.

It turns out that ambiguous grammars with appropriate disambiguating
rules can be used to create parsers that are faster and easier to write
than parsers constructed from unambiguous grammars. The basic
notion is to write grammar rules of the following two forms for all
binary and unary operators desired:

expr expr OP expr

and

expr UNARY expr

This creates a very ambiguous grammar with many parsing conflicts.
As disambiguating rules, the user specifies the precedence or binding

yacc Reference 20-23

strength of all the operators and the associativity of the binary
operators. This information is sufficient to allow yacc to resolve the
parsing conflicts in accordance with these rules and construct a parser
that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the
declarations section. This is done by a series of lines beginning with
one of the following yacc keywords: %left, %right, or
%nonassoc, followed by a list of tokens. All of the tokens on the
same line are assumed to have the same precedence level and
associativity; the lines are listed in order of increasing precedence or
binding strength. For example,

%left ' +' '-'
%left ,*, , I'

describes the precedence and associativity of the four arithmetic
operators. Plus and minus are left associative and have lower
precedence than star and slash, which are also left associative.

The keyword %right is used to describe right associative operators,
and the keyword %nonassoc is used to describe operators, like the
operator. LT. in Fortran, that may not associate with themselves. For
example, the following is illegal in Fortran and such an operator would
be described with the keyword %nonassoc in yacc:

A • LT . B . LT • C

As an example of the behavior of these declarations, the following
description might be used to structure the subsequent input:

20-24 A/UX Programming Languages and Tools, Volume 2

%right ' ='
%left ' +' , -'
%left ' *, , /'

%%

expr expr ' =' expr
expr ' +' expr
expr ' -' expr
expr ' *, expr
expr ' /' expr
NAME

The following is the input to be structured by the above description in
order to perform the correct precedence of operators:

a = b = c * d - e - f * g

The result of the structuring is as follows:

a = (b = («c*d) -e) - (f*g)))

When this mechanism is used, unary operators must, in general, be
given a precedence. Sometimes a unary operator and a binary operator
have the same symbolic representation but different precedences. An
example is unary and binary minus (-). Unary minus may be given the
same strength as multiplication, or even higher, while binary minus has
a lower strength than multiplication.

The keyword %prec changes the precedence level associated with a
particular grammar rule. %prec appears immediately after the body of
the grammar rule, before the action or closing semicolon, and is
followed by a token name or literal. The keyword causes the
precedence of the grammar rule to become that of the following token
name or literal. For example, the following rules might be used to give
unary minus the same precedence as multiplication:

yacc Reference 20-25

%left ' +' , -'
%left ' *, , /'

%%

expr expr ' +' expr
expr ' -' expr
expr ' *, expr
expr ' /' expr
, -' expr %prec ' *,
NAME

A token declared by %left, %right, and %nonassoc need not be,
but may be, declared by %token as well.

The precedences and associativities are used by yacc to resolve
parsing conflicts. They give rise to disambiguating rules. Fonna1ly,
the rules work as follows:

• The precedences and associativities are recorded for those tokens
and literals that have them.

• A precedence and associativity is associated with each grammar
rule. It is the precedence and associativity of the last token or
literal in the body of the rule. If the %prec construction is used,
it overrides this default. Some grammar rules may have no
precedence and associativity associated with them.

• When there is a reduce/reduce conflict or there is a shift/reduce
conflict and either the input symbol or the grammar rule has no
precedence and associativity, then the two disambiguating rules
given at the beginning of the section are used, and the conflicts
are reported.

• If there is a shift/reduce conflict and both the grammar rule and
the input character have precedence and associativity associated
with them, then the conflict is resolved in favor of the action
(shift or reduce) associated with the higher precedence. If the
precedences are the same, then the associativity is used; left
associative implies reduce, right associative implies shift, and
nonassociating implies error.

20-26 AlUX Programming Languages and Tools, Volume 2

Conflicts resolved by precedence are not counted in the number of
shift/reduce and reduce/reduce conflicts reported by yacc. This
means that mistakes in the specification of precedences may disguise
errors in the input grammar. It is a good idea to be sparing with
precedences and use them in an essentially "cookbook" fashion until
some experience has been gained. The y . out pu t file is very useful
in deciding whether the parser is actually doing what was intended.

8. Error handling
Error handling is an extremely difficult area, and many of the problems
are semantic ones. When an error is found, for example, it may be
necessary to reclaim parse tree storage, delete or alter symbol table
entries, and, typically, set switches to avoid generating any further
output. It is seldom acceptable to stop all processing when an error is
found. It is more useful to continue scanning the input to find further
syntax errors. This leads to the problem of getting the parser
, 'restarted" after an error.

A general class of algorithms to do this involves discarding a number
of tokens from the input string and attempting to adjust the parser so
that input can continue. To allow the user some control over this
process, yacc provides a simple but reasonably general feature. The
token name error is reserved for error handling. This name can be
used in grammar rules. In effect, it suggests places where errors are
expected and recovery might take place.

The parser pops its stack until it enters a state where the token error
is legal. It then behaves as if the token error were the current look
ahead token and performs the action encountered. The look-ahead
token is then reset to the token that caused the error. If no special error
rules have been specified, the processing halts when an error is
detected.

To prevent a cascade of error messages, the parser, after detecting an
error, remains in error state until three tokens have been successfully
read and shifted. If an error is detected when the parser is already in
error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the following form means that on a syntax
error the parser attempts to skip over the statement in which the error is
seen:

yacc Reference 20-27

stat error

More precisely, the parser scans ahead, looking for three tokens that
might legally follow a statement, and starts processing at the first of
these. If the beginnings of statements are not sufficiently distinctive, it
may make a false start in the middle of a statement and end up
reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions
might attempt to reinitialize tables, reclaim symbol table space, and so
on. Error rules such as the above are very general but difficult to
control. Rules such as the following are somewhat easier. Here, when
there is an error, the parser attempts to skip over the statement but does
so by skipping to the next semicolon:

stat error , . , ,

All tokens after the error and before the next semicolon cannot be
shifted and are discarded. When the semicolon is seen, this rule will be
reduced and any "cleanup" action associated with it performed.

Another form of error rule arises in interactive applications where it
may be desirable to permit a line to be reentered after an error. The
following example is one way to do this:

input error ' \n'

printf(nReenter last line: n);

input

$$ = $4;

There is one potential difficulty with this approach. The parser must
correctly process three input tokens before it admits that it has correctly
resyncbronized after the error. If the reentered line contains an error in
the first two tokens, the parser deletes the offending tokens and gives
no message. This is clearly unacceptable. For this reason, there is a
mechanism that can force the parser to believe that error recovery has
been accomplished. The following statement in an action resets the

20-28 AlUX Programming Languages and Tools, Volume 2

parser to its normal mode:

yyerrok ;

The last example can be rewritten, somewhat more usefully, as the
following:

input error '\n'

yyerrok;
printf(nReenter last line: n);

input

$$ = $4;

As previously mentioned, the token seen immediately after the error
symbol is the input token at which the error was discovered.
Sometimes this is inappropriate. For example, an error recovery action
might take upon itself the job of finding the correct place to resume
input. In this case, the previous look-ahead token must be cleared. The
following statement in an action will have this effect:

yyclearin ;

For example, suppose the action after error were to call some
sophisticated resynchronization routine (supplied by the user) that
attempted to advance the input to the beginning of the next valid
statement. After this routine is called, the next token returned by
yy lex is presumably the first token in a legal statement. The old
illegal token must be discarded and the error state reset. A rule similar
to the one following could perform this:

yacc Reference 20-29

stat error

resynch();
yyerrok
yyclearin;

These mechanisms are admittedly crude but do allow for a simple,
fairly effective recovery of the parser from many errors. Also, the user
can get control to deal with the error actions required by other portions
of the program.

9. The yacc environment
When the user enters a specification to yacc, the output is a file of C
language programs, called y. tab. c. The function produced by yacc
is an integer-valued function called yyparse. When it is called, it in
tum repeatedly calls yylex, the lexical analyzer supplied by the user
(see "Lexical Analysis"), to obtain input tokens.

Eventually, if an error is detected, yyparse returns the value 1, and
no error recovery is possible, or the lexical analyzer returns the end
marker token and the parser accepts. In this case, yyparse returns
the value O.

The user must provide a certain amount of environment for this parser
in order to obtain a working program. For example, as with every C
language program, a program called main must be defined that
eventually calls yyparse. Also needed is a routine called yyerror
which prints a message when a syntax error is detected. These two
routines (main and yyerror) must be supplied in one fonn or
another by the user.

To ease the initial effort of using yacc, a library has been provided
with default versions of main and yyerror. Use Id's -ly option to
incorporate these routines into your program. The following source
code examples show the simplicity of these routines:

20-30 NUX Programming Languages and Tools, Volume 2

and

main ()
{

return (yyparse());

#include <stdio.h>

yyerror(s)
char *s;

fprintf(stderr, "%s\n", s);

The argument to yyerror is a string containing an error message,
usually the string syntax error. The average application wants to
do better than this. Ordinarily, the program should keep track of the
input line number and print it along with the message when a syntax
error is detected.

The external integer variable yychar contains the look-ahead token
number at the time the error was detected. This may be of some
interest in giving better diagnostics.

Because the main program is probably supplied by the user (to read
arguments, and so on), the yacc library is useful only in small projects
or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set
to a nonzero value, the parser will send as output a verbose description
of its actions, including a discussion of the input symbols read and
what the parser actions are. Depending on the operating environment,
it may be possible to set yydebug by using a debugging system.

10. Input style
It is difficult to provide rules with substantial actions and still have a
readable specification file. The following are a few style hints:

• Use all uppercase letters for token names and all lowercase
letters for nontenninal names.

yacc Reference 20-31

• Put grammar rules and actions on separate lines. This allows
either to be changed without an automatic need to change the
other.

• Put all rules with the same left side together. Put the left side in
only once and let all following rules begin with a vertical bar.

• Put a semicolon only after the last rule with a given left side and
put the semicolon on a separate line. This allows new rules to be
easily added.

• Indent rule bodies by two tab stops and action bodies by three tab
stops.

The example in "Example: A Desk Calculator" is written following
this style (where space permits). You must make up your own mind
about these stylistic questions. The central problem, however, is to
make the rules visible through the morass of action code.

11. Left recursion
The algorithm used by the yacc parser encourages so called "left
recursive" grammar rules. Rules of the following form match this
algorithm:

name name rest-oj-rule

Rules such as the two following frequently arise when writing
specifications of sequences and lists. In each of these cases, the first
rule will be reduced for the first item only; and the second rule will be
reduced for the second and all succeeding items:

list item
list ',' item

and

seq item
seq item

With right recursive rules, such as the following, the parser is a bit
bigger, and the items are seen and reduced from right to left:

20-32 AlUX Programming Languages and Tools, Volume 2

seq item
item seq

More seriously, an internal stack in the parser is in danger of
overflowing if a very long sequence is read. The user should use left
recursion wherever reasonable.

It is worth considering if a sequence with zero elements has any
meaning; if so, consider writing the sequence specification as in the
following, using an empty rule:

seq /* empty */
seq item

Once again, the first rule would always be reduced exactly once before
the first item was read, and then the second rule would be reduced once
for each item read. Permitting empty sequences often leads to
increased generality. However, conflicts might arise if yacc is asked
to decide which empty sequence it has seen when it hasn't seen enough
to know.

12. Lexical considerations
Some lexical decisions depend on context. For example, the lexical
analyzer might want to delete blanks normally but not within quoted
strings, or names might be entered into a symbol table in declarations
but not in expressions.

One way of handling this situation is to create a global flag that is
examined by the lexical analyzer and set by actions. The following
example specifies a program that consists of zero or more declarations
followed by zero or more statements. The flag dflag is 0 when
reading statements and 1 when reading declarations, except for the first
token in the first statement. This token must be seen by the parser
before it can tell that the declaration section has ended and the
statements have begun. In many cases, this single token exception does
not affect the lexical scan.

yacc Reference 20-33

%{
int dflag;

%}
... other declarations ...

%%

prog decls stats

decls /* empty */

dflag = 1;

decls declaration

stats /* empty */

dflag = 0;

stats statement

. .. other rules . ..

This kind of "back-door" approach can be elaborated to an unpleasant
degree. Nevertheless, it represents a way of doing some things that are
difficult if not impossible to do otherwise.

13. Reserved words
Some programming languages permit you to use words (like i f) that
are normally reserved as label or variable names, provided that such
use does not conflict with the legal use of these names in the
programming language. This is extremely hard to do in the framework
of yacc. It is difficult to pass information to the lexical analyzer
telling it "this instance of if is a keyword and that instance is a
variable. " The user can make a stab at it using the mechanism
described in the last section, but it is difficult. A number of ways of

20-34 A/UX Programming Languages and Tools, Volume 2

making this easier are being studied. For the time being, it is better that
the keywords be reserved, that is, forbidden for use as variable names.

14. Simulating error and accept in actions
The parsing actions of error and accept can be simulated in an action
by use of the macros YYACCEPT and YYERROR. The YYACCEPT
macro causes yyparse to return the value O. YYERRORCauses the
parser to behave as if the current input symbol had been a syntax error.
The function yyerror is called, and error recovery takes place.

These mechanisms can be used to simulate parsers with multiple end
markers or context-sensitive syntax checking.

15. Accessing values in enclosing rules
An action may refer to values returned by actions to the left of the
current rule. The mechanism is the same as with ordinary actions, a
dollar sign followed by a digit.

sent adj noun verb adj noun

look at the sentence . ..

adj THE

$$ THE;

YOUNG

$$ = YOUNG;

noun DOG

$$ DOG;

CRONE

yacc Reference 20-35

if($0 == YOUNG)

{

printf("what?\n");
}

$$ = CRONE;

In this case, the digit may be 0 or negative.

In the action following the word CRONE, a check is made that the
preceding token shifted was not YOUNG. Obviously, this is only
possible when a great deal is known about what might precede the
symbol noun in the input.

There is also a distinctly unstructured flavor about this. Nevertheless,
at times this mechanism prevents a great deal of trouble, especially
when a few combinations are to be excluded from an otherwise regular
structure.

16. Arbitrary val ue types
By default, the values returned by actions and the lexical analyzer are
integers. The yacc program can also support values of other types
including structures. The yacc program keeps track of the types and
inserts appropriate union member names so that the resulting parser is
strictly type checked.

The yacc value stack is declared to be a union of the various types
of values desired. The user declares the union and associates union
member names to each token and nonterminal symbol having a value.
When the value is referenced through a $$ or $n construction, yacc
automatically inserts the appropriate union name so that no unwanted
conversions take place. This makes type-checking commands such as
lint much quieter.

Three mechanisms are used to provide for this typing:

• First, there is a way of defining the union. This must be done by
the user because other programs, notably the lexical analyzer,
must know about the union member names.

20-36 AlUX Programming Languages and Tools, Volume 2

• Second, there is a way of associating a union member name with
tokens and nonterminal symbols .

• Third, there is a mechanism for describing the type of those few
values where yacc cannot easily determine the type.

To declare the union, the user includes the following in the declaration
section:

%union

body of union

This declares the yacc value stack and the external variables yyl val
and yyval to have type equal to this union. If yacc was invoked
with the -d option, the union declaration is copied onto the y. tab. h
file. Alternatively, the union may be declared in a header file, and a
typedef used to define the variable YYSTYPE to represent this
union. Thus, the header file might have said the following, instead:

typedef union
{

body of union

YYSTYPEi

The header file must be included in the declarations section by use of
% { and %}. Once YYSTYPE is defined, the union member names must
be associated with the various terminal and nonterminal names.

The following construction is used to indicate a union member name:

<name>

If this follows one of the keywords %token, %left, %right, or
%nonassoc, the union member name is associated with the tokens
listed. For example, the following causes any reference to values
returned by these two tokens to be tagged with the union member name
optype:

%left <optype> '+' , -'

yacc Reference 20-37

Another keyword, %type, is used to associate union member names
with nonterminals. For example, the following may be used to
associate the union member nodetype with the nonterminal symbols
expr and stat.

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are
insufficient. If there is an action within a rule, the value returned by
this action has no a priori type. Similarly, reference to left context
values (such as $0) leaves yacc with no easy way of knowing the
type. In this case, a type can be imposed on the reference by inserting
a union member name between "<" and ">" immediately after the
first $, as in the following example:

rule aaa

$<intval>$ 3;

bbb

fun ($<intval>2, $<other>O);

This syntax has little to recommend it, but the situation arises rarely. A
sample specification is given in "Example: An Advanced Grammar."
The facilities in this subsection are not triggered until they are used. In
particular, the use of %t ype will turn on these mechanisms. When
they are used, there is a fairly strict level of checking. For example,
use of $n or $$ to refer to something with no defined type is
diagnosed. If these facilities are not triggered, the yacc value stack is
used to hold int's, as was true historically.

17. Example: a desk calculator
This section contains an example that gives the complete yacc
applications for a small desk calculator. The calculator has 26 registers
labeled a through z and accepts arithmetic expressions made up of the
following operators:

20-38 AlUX Programming Languages and Tools, Volume 2

Table 20-2. Arithmetic operators

Symbol Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (Remainder)

& Binary AND

I Binary OR

= Assignment

If an expression at the top level is an assignment, the value is printed.
Otherwise, the expression is printed. As in the C language, an integer
that begins with 0 (zero) is assumed to be octal. Otherwise, it is
assumed to be decimal.

As an example of a yacc specification, the desk calculator does a
reasonable job of showing how precedence and ambiguities are used
and demonstrates simple recovery. The major oversimplifications are
that the lexical analyzer is much simpler than what is necessary for
most applications, and the output is produced immediately line by line.

Note the way that decimal and octal integers are read in by grammar
rules. This job is probably better done by the lexical analyzer.

%{
#include <stdio.h>
#include <ctype.h>

int regs[26];
int base;

%}
%start list
%token DIGIT
%left ' I '
%left ' &'

%left ' +' , -'

LETTER

yacc Reference 20-39

%left '*' 'I' '%'
%left UMINUS 1* precedence for unary minus *1
%% 1* beginning of rule section *1
list 1* empty *1

list stat '\n'
list error '\n'

yyerror:

stat expr

printf("%d\n", $1);

LETTER '=' expr

regs[$l] = $3

expr , (' expr ') ,

$$ = $2;

expr '+, expr

$$ = $1 + $3

expr ' -' expr

$$ = $1 - $3

expr ' *, expr

$$ = $1 * $3:

expr ' I' expr

$$ = $1/$3:

20-40 AlUX Programming Languages and Tools, Volume 2

exp '%' expr

$$ = $1 % $3

expr ' &' expr

$$ = $1 & $3:

expr ' I ' expr

$$ = $1 I $3

'-' expr %prec UMINUS

$$ = - $2:

LETTER

$$ = reg[$l];

number

number DIGIT

$$ = $lj base ($1==0) ? 8

number DIGIT

$$ = base * $1 + $2

%% /* start of program */

/*
* lexical analysis routine
* return LETTER for lowercase letter
* (i.e., yylval = 0 through 25)
* returns DIGIT for digit
* (i.e., yylval = 0 through 9)

10j

* all other characters are returned immediately

yacc Reference 20-41

*
*1

yylex (
{

int c:
while (c=getchar(» == , '} 1* skip blanks *1

if(islower(c »
{

if(
{

yylval = c - 'a':
return(LETTER):

isdigit (c »
yylval = c - '0':

return (DIGIT) ;

return (c);

18. Example: yacc input syntax
This section contains a description of the yacc input syntax as a yacc
specification. Context dependencies, and so forth, are not considered.
Ironically, the yacc input specification language is most naturally
specified as an LR(2) grammar. The sticky part comes when an
identifier is seen in a rule immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule;
otherwise, it is a continuation of the current rule, which just happens to
have an action embedded in it.

As implemented, the lexical analyzer looks ahead after seeing an
identifier and decides whether the next token (skipping blanks,
newlines, comments, and so on) is a colon. If so, it returns the token
C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals
(quoted strings) are also returned as IDENTIFIERs but never as part
ofe IDENTIFIERS.

1* grammar for the input to yacc *1

1* basic entries *1

20-42 AlUX Programming Languages and Tools, Volume 2

/* includes identifiers and literals */
%token IDENTIFIER
/* identifier (but not literal) followed by a colon */
%token C IDENTIFIER
%token NUMBER

/* reserved words:
/* %type -> TYPE,
%token LEFT RIGHT

%token MARK

%token LCURL
%token RCURL

/* [0-9]+ */

*/
%left -> LEFT, etc. */

NONASSOC TOKEN PREC TYPE

/* the %% mark */
/* the %{ mark */
/* the %} mark */

START UNION

/* ASCII character literals stand for themselves */
%token spec

%%

spec

tail

defs

defs

defs MARK rules tail

MARK

In this action, eat up the rest of the file

/* empty: the second MARK is optional */

/* empty */
defs def

START IDENTIFIER
UNION

Copy union definition to output

LCURL

Copy C code to output file
RCURL

yacc Reference 20-43

rword

tag

ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
,<' IDENTIFIER '>'

nlist nmno
nlist nmno

nlist ',' nmno

/* Note: literal illegal with %type */
nrrmo IDENTIFIER

IDENTIFIER NUMBER

/* rule section */

rule

rule

rbody

act

20-44

C IDENTIFIER rbody proc
rule rule

C IDENTIFIER rbody prec
, I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

, { ,

Copy action, translate $ $' s etc.

, } ,

AlUX Programming Languages and Tools, Volume 2

prec 1* empty *1
PREC IDENTIFIER
PREC IDENTIFIER act
prec'i'

19. Example: an advanced grammar
This section gives an example of a grammar using some of the
advanced features. It modifies the example from "Example: A Desk
Calculator" to provide a desk calculator that does floating-point
interval arithmetic.

The calculator understands floating-point constants, as well as the
arithmetic operations +, -, *, / , unary -, and the letters a through z.
The calculator also understands intervals written as is the following
example, where X is less than or equal to Y:

(X, Y)

There are 26 interval valued variables A through z that may also be
used. The usage is similar to that in "Example: A Desk Calculator."
That is, assignments return no value and print nothing while
expressions print the floating or interval value.

Intervals are represented by a structure consisting of the left and right
endpoint values stored as doubles. This structure is given a type name,
INTERVAL, by using typedef. The yacc value stack can also
contain floating-point scalars and integers that are used to index into
the arrays holding the variable values. The entire strategy depends
strongly on being able to assign structures and unions in C language.
In fact, many of the actions call functions that return structures as well.

Note the use of YYERROR to handle error conditions: division by an
interval containing 0 and an intervaI presented in the wrong order. The
error-recovery mechanism of yacc is used to throwaway the rest of
the offending line. In addition to the mixing of types on the value
stack, this grammar also demonstrates an interesting use of syntax to
keep track of the type (for example, scalar or interval) of intermediate
expressions. Scalars can be automatically promoted to an interval if
the context demands an interval value. This causes a large number of
conflicts when the grammar is run through yacc-18 shift/reduce and

yacc Reference 20-45

26 reduce/reduce. The problem can be seen by looking at the
following input lines:

2.5+(3.5-4.)

and

2.5 + (3.5,4)

Notice that the 2.5 is to be used in an interval-value expression in the
second example, but this fact is not known until the comma is read. By
this time 2 . 5 is finished, and the parser cannot go back and change its
mind.

More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval.
This problem is evaded by having two rules for each binary interval
valued operator, one when the left operand is a scalar and one when the
left operand is an interval. In the second case, the right operand must
be an interval, so the conversion is applied automatically.

Despite this evasion, there are still many cases where the conversion
may be applied or not, leading to the above conflicts. They are
resolved by listing the rules that yield scalars first in the specification
file. In this way, the conflict is resolved in the direction of keeping
scalar-valued expressions scalar valued until they are forced to become
intervals. This way of handling multiple types is very instructive, but
not very general. If there were many kinds of expression types instead
of just two, the number of rules needed would increase dramatically
and the conflicts even more dramatically. Thus, while this example is
instructive, it is better practice in a more normal programming
language environment to keep the type information as part of the value
and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is
the treatment of floating-point constants. The C language library
routine at 0 f is used to do the actual conversion from a character
string to a double-precision value. If the lexical analyzer detects an
error, it responds by returning a token that is illegal in the grammar,
provoking a syntax error in the parser and thence error recovery.

%{

20-46 AlUX Programming Languages and Tools, Volume 2

#include<stdio.h>
#include<ctype.h>

typedef struct interval
{

double 10, hi;
INTERVAL;

INTERVAL vmul(), vdiv();

double atof();
double dreg[26];
INTERVAL vreg[26];

%}

%start line

%union

int ivaI;
double dval;
INTERVAL vval;

%token <ivaI> DREG VREG /*indices into dreg, vreg */
%token <dval> CONST /* floating point constant */

%type <dval> dexp
%type <vval> vexp

/* expression */
/* interval expression */

/* precedence information about the operators */

%left
%left
%left

%%
lines

, +' '-'
, *, , /'

UMINUS /* precedence for unary minus */

/* empty */

yacc Reference 20-47

lines line

line dexp '\n'

printf ("%15. 8f\n". $1);

vexp , \n'

printf(" (%15.8f,%15.8f)\n",$1.10,$1.hi);

DREG' =' , \n'

dreg[$l] = $3;

VREG '=' vexp '\n'

vreg[$l] = $3;

error' \n'

yyerrork;

dexp CONST
DREG

$$ = dreg [$1]

dexp '+' dexp

$$ = $1 + $3

dexp '-' dexp

$$ = $1 - $3

dexp ,*, dexp

20-48 AJUX Programming Languages and Tools, Volume 2

$$ = $1 * $3

dexp 'I' dexp

$$ = $1 I $3

'-' dexp %prec UMINUS

$$ =- $2

, (' dexp ')'

$$ = $2

vexpp dexp

$$.hi = $$.10 = $1;

, (' dexp ',' dexp ')'

$$.10 = $2;
$$.hi = $4;

if($$.10 > $$.hi)
{

printf("interval out of order n" };
YYERROR;

VREG

$$ = vreg[$l]

vexp '+' vexp

$$.hi

$$.10

yacc Reference

$1. hi + $ 3 . hi ;

$1.10 + $3.10

20-49

20-50

dexp , +' vexp

$$.hi $1 + $3.hi;
$$.10 $1 + $3.10

vexp , ==' vexp

$$.hi $1.hi - $3.10;
$$.10 $1.10 - $3.hi

dvep , -' vdep

$$.hi $1 - $3.10;
$$.10 $1 - $3.hi

vexp , *, vexp

$$ = vrnu1($1.10,$.hi,$3

dexp ,*, vexp

$$ = vrnu1($1, $1, $3)

vexp , /' vexp

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3

dexp , /' vexp

if(dcheck($3)) YYERROR;
$$ = vdiv($1.10, $1.hi, $3

, -' vexp %prec UMINUS

$$.hi = -$2.10;$$.10 =-$2.hi

, (' vexp ')'

NUX Programming Languages and Tools, Volume 2

$$ $2

%%
1* buffer size for floating point number *1
define BSZ 50

1*
*lexical analysis

*1

yylex (
{

register c;

while «c=getchar(» , ') 1* skip blanks *1

1*

if (isupper (c))
{

yylval.ival

return (VREG) ;

if(islower(c»
{

c - 'A'

yylval.ival c - 'a',

return (DREG) ;

* gobble up digits, points, exponents

*1
if (isdigit (c) I I c == '.')
{

char buf[BSZ+l], *cp = buf;
int dot = 0, exp = 0;

fore; (cp - buf) < BSZ
{

*cp = c;
if (isdigit (c))

continue;
if (c == '.')

++cp,c=getchar(»

yacc Reference 20-51

/*

if (dot++ I I exp)
/* causes syntax error */
return (, ,);

continue;

if (c == ' e')

if(exp++)
/* causes syntax error */
return ('e');

continue;

break; /* end of number */

*cp = '\0';

if «cp - buff) >= BSZ)

else
printf("constant too long truncated\n");

/* push back last char read */
ungetc(c, stdin);

yylval.dval = atof(buf);
return(CONST);

return (c) ;

* returns the smallest interval
* between a, b, c and d
*/

INTERVAL hilo (a, b, c, d)
double a, b, c, d;

INTERVAL v;
if (a>b)

{

v.hi a;
v.lo b;

20-52 NUX Programming Languages and Tools, Volume 2

else

if (
{

else

v.hi b;
v.lo a;

c>d

if(c>v.hi
v.hi = c;

if(d<v.lo)

v.lo = d;

if(d>v.hi)

v.hi = d;
if(c<v.lo)

v.lo = c;

return (v);

INTERVAL vrnuI(a, b, v)
double a, b;
INTERVAL v;
{

return(hilo(a*v.hi, a*v.lo, b*v.hi, b*v.lo));

dcheck(v)
INTERVAL v;
{

if(v.hi >=0.&& v.lo <=0.)
{

printf("divisor internal contains O.\n");
return (1);

return (0);

yacc Reference 20-53

INTERVAL vdiv(a, b, v)
double a, bi

INTERVAL Vi

{

return(hilo(a/v.hi, a/v.lo, b/v.hi, b/v.lo))i

20. Backward compatibility
This section mentions synonyms and features that are supported for
historical continuity but, for various reasons, are not encouraged.

• Literals may also be delimited by double quotes.

• Literals may be more that one character long. If all the
characters are alphabetic, numeric, or _, the type number of the
literal is defined just as if the literal did not have the quotes
around it.

Otherwise, it is difficult to find the value for such a literal.

The use of multicharacter literals is likely to mislead those
unfamiliar with yacc, because it suggests that yacc is doing a
job that must actually be done by the lexical analyzer.

• Most places where (%) is legal, the backslash (\) may be used.
In particular, \ \ is the same as %%, \left the same as %left,
and so on.

• There are a number of other synonyms:

%< is the same as %left

%> is the same as %right

%binary is the same as %nonassoc
%2 is the same as %nonassoc

%0 is the same as %token
%term is the same as %token

%= is the same as %prec

20-54 A/UX Programming Languages and Tools, Volume 2

• Actions may also have the form

= { ... }

and the braces can be dropped if the action is a single C language
statement.

• C language code between % { and %} used to be permitted at the
head of the rules section as well as in the declaration section.

yacc Reference 20-55

Contents

Chapter 21

be Reference

1. be: a basic calculator 1

2. Using be 2
2.1 be command syntax 2
2.2 Entering a program at the terminal 2
2.3 Program files . 3
2.4 Exiting be 3

3. Program syntax 3
3.1 Comments 4
3.2 Constants • . 4
3.3 Keywords. . • . • • . . 4
3.4 Identifiers . . 4
3.5 Defining functions 5

3.5.1 Function calls and function arguments 5
3.5.2 The return statement 6

3.6 Automatic variables. • . • 6
3.7 Global variables • . . . • 7
3.8 Arrays or subscripted variables 7
3.9 Statements 8
3.10 Assignment statements • 9
3.11 Control statements • . . . 11

3.11.1 Relational operators . 11
3.11.2 The if statement 12
3.11.3 The whi1e statement • 12
3.11.4 The for statement • • 13

3.12 Expressions 13
3.13 Input and output bases: ibase and

obase . . . 16
3.13.1 ibase 16
3.13.2 obase 17

- i -

3.14 scale

Tables

Table 21-1. Assignment statements •

Table 21-2. Relationaloperators • •

Table 21-3. Operators and their precedence •

- ii -

17

10

12

14

Chapter 21

be Reference

1. be: a basic calculator
be is a specialized language and compiler for handling arbitrary
precision arithmetic. be calls the de calculator program to do any
actual computations. In fact, be was designed specifically to augment
de routines for manipulating infinitely large numbers, scaled up to 99
decimal places.

Because be is based on a dynamic storage allocator, overflow does not
occur until all available core storage is exhausted. be has a complete
control structure, and can be used either in immediate mode (direct
immediate input/output to and from be) or as an interactive processor
for be programs. Consequently, complex functions can be defined and
saved in a file for later execution. A small library of predefined
functions is also available, among which are the sine, cosine,
arctangent, logarithmic, exponential, and Bessel functions of integer
order.

be contains scaling provisions that permit the use of decimal-point
notation, as well as input and output in bases other than base 10.
Numbers can be converted from decimal to octal simply by setting the
output base to eight. The limit on the number of digits that can be
manipulated depends only on the amount of core storage available.

While be is not intended as a complete programming language, it can
be used effectively to do a number of specific tasks, most notably the
following:

• Compile large integers

• Compute accurately to many decimal places

• Convert numbers from one base to another base

be Reference 21-1

2. Using be
In this chapter we use the tenn "be command" to refer to the
command you type from the shell command line, and the term "be
program" to refer to the set of calculations to be performed by the be
command. These calculations can reside in a be program file.

2.1 be command syntax
The be command has the following syntax:

be [-e] [-1] [file]

The -e compile-only option directs be to output what it would
normally pass as input to de. The output is instructive but
complicated.

The -1 (library) option calls be's own set of math library functions:

Function syntax

s (x)

e (x)

a (x)

1 (x)

e (x)

j (n, x)

Operation

Sine

Cosine

Arctangent

Natural logarithm

Exponential

Bessel function integer order

The library option initially sets the seale (number of available
decimal places after the decimal point) to 20, but this can be reset using
the seale function call. See the section "seale."

The file is an optional be program file which be can read calculations
from.

2.2 Entering a program at the terminal
For the immediate evaluation of simple arithmetic expressions that do
not involve standard be library functions or do not require any user
defined functions, simply enter the be program at the terminal. For
example, to perform a simple operation, first invoke be and then enter
the calculation to be done:

21-2 AlUX Programming Languages and Tools, Volume 2

be
142857 + 285714

be then responds immediately with the result

428571

2.3 Program files
For more complicated calculations, you may find it more efficient to
define the functions or procedures in a program file. You would then
pass the filename as an argument to the be command:

be filename

be then reads and executes the contents of the named file before
accepting further commands from the keyboard.

2.4 Exiting be
To exit from be, even when using a command file, you must issue a
quit or an end-of-file character (see stty(l) in AIUX Command
Reference for more information). Unless you use the syntax "be <
filename," be will not exit when it reaches the end of the program file.
If no quit statement is given, be simply waits for further instructions,
and your shell prompt is not returned.

To exit, you can either place a quit statement at the end of your file or
enter quit or your end-of-file character directly when be has
completed the file. Your end-of-file character can still be used as an
interrupt and terminate signal while the file is being processed.

The quit statement is not treated as an executable statement, and so
cannot be used in a function definition or in an if, for or while
statement.

3. Program syntax
The syntax of a be program is very similar to that of a C language
program. In general, statements and control structures are identical in
be and in C. A good example of this similarity is the manner in which
a be function is defined. The following program defines a function
that computes the approximate value of the exponential function and
prints the result for the first ten integers. The pieces of this example
are discussed in individual sections below.

be Reference 21-3

scale = 10
define e(x)

auto a,b,e,i,s
a 1
b = 1
s = 1
for(i=l; 1==1; i++) {

a = a*x
b = b*i
e = alb
if (e == 0) return(s)
s = s+e

for(i=l; i<=10; i++) e(i)

3.1 Comments
The characters I and * introduce a comment that terminates with the
characters * and I. Anything between the asterisks is ignored by the
be compiler.

3.2 Constants
Constants are primitive expressions and consist of arbitrarily long
numbers with an optional decimal point. The hexadecimal digits A
through F are also recognized as digits with values 10 through 15,
respectively.

3.3 Keywords
The following are reserved as be keywords, and cannot be used other
than for their predefined purposes:

auto
break
define

for
ibase
if

3.4 Identifiers

length
abase
quit

return
scale
sqrt

while

In be, an identifier is a character, or sequence of characters, that names
an expression. The identifier is the "place" where the value of that
expression is stored. Therefore, identifiers are legal on the left side of
an assignment statement.

21-4 NUX Programming Languages and Tools, Volume 2

be has three kinds of identifiers:

• Simple identifiers

• Function calls

• Array, or subscripted, variables

All three types should be indicated with single lowercase letters.
Identifier names do not conflict; a be program may have a simple
variable identifier named x, an array named x, and a function named x,
all of which are separate and distinct

3.5 Defining functions
Functions are specified by a single lowercase letter, followed
immediately by a set of parentheses:

a()

Since function names are permitted to coincide with simple variable
names, the parentheses indicate the difference between a function and a
variable, and provide a means of passing arguments to the function.
Twenty-six different defined functions are permitted in addition to the
26 variable names.

A function is defined in the following manner:

define a(x) {
defining statements
return

The word define initiates the function definition; a (x) names the
function and indicates that the function requires one argument; the left
brace opens the body of the definition and must occur on the same line
as the define keyword; return returns control to the calling
function; and the right brace closes the definition. The body of the
definition must contain one or more statements, and must begin and
close with a left and right brace, respectively.

3.5.1 Function calls and function arguments
A function call consists of the function name followed by parentheses,
which in turn should contain any required arguments to be passed to
the function. Individual arguments should each be separated by

be Reference 21-5

commas. Functions with no arguments are called and defined using
empty parentheses. If a function is called with the wrong number of
arguments, the result is unpredictable.

All function arguments are passed by value, and as a result the values
remain discrete, local to the called function. Therefore, changes made
to the argument values within the called function do not alter the
original parameters outside the function.

3.5.2 The return statement
Return of control from a function occurs when a ret urn statement is
executed, or when the end of the function is reached. The ret urn
statement can take either of the following two forms:

return
return (x)

In the first case, the value returned from the function is 0; in the
second, the value returned from the function is the expression in
parentheses.

3.6 Automatic variables
Automatic variables are allocated space and initialized to 0 on entry to
the function, and thrown away on return (exit). The values of any
similarly named variables outside the function are not disturbed.
Functions may be called recursively and the automatic variables at each
level of call are protected.

It should be noted, however, that automatic variables in be do not work
exactly the same way as they do in the C language. On entry to a
function, the old values of automatic variables or parameters named
previously are pushed onto a stack. Until return is made from the
function, reference to these names refers only to the new values.

Variables used in a function can be declared as automatic by a
statement of the form

auto x,y,z

There can be only one such aut 0 statement in a function, and it must
be the first statement in the definition.

The following is an example of a function definition that uses an
automatic variable:

21-6 A/UX Programming Languages and Tools, Volume 2

define a(x,y)
auto z
z = x*y
return (z)

When called, the value of this function a is the product of its two
arguments, x and y. Consequently, the input

a(7,3.14)

would send the result, 21.98, to the standard output. Using this same
function, the input

z = a(a(3,4),5)

would send the result, 60, to the standard output.

3.7 Global variables
There are only two storage classes in be: automatic variables and
global variables. Unlike automatic variables, global variables retain
their values between function calls, and are available to all functions.
However, both types have initial values of O.

3.8 Arrays or subscripted variables
An array, also referred to as a subscripted variable, is indicated with a
single lowercase letter (the array name) followed by an expression in
brackets (the subscript). For example,

f [expression]

The names of arrays can coincide with simple variable names or
function names without conflicting. The subscript values must be
greater than or equal to 0 and less than or equal to 2047; any fractional
part of a subscript is discarded before use. Only one-dimensional
arrays are permitted.

SUbscripted variables may be used in expressions, function calls, and
return statements. An array name may be used as an argument to a
function or may be declared as automatic in a function definition by the
use of empty brackets. For example,

be Reference 21-7

f (a [])

define f(a[])
auto a []

When an array name is declared automatic, the entire contents of the
array are copied for the use of the function and thrown away on exit
from the function. Such array names, used with empty brackets and
referring to whole arrays, cannot be used in any context other than that
shown above.

3.9 Statements
A statement is any direct instruction. Statements can be grouped
together by surrounding them with braces, as in the body of a function
definition:

define a(x) {
statement
statement; statement
return

When statements are grouped, each individual statement must end with
a semicolon or a newline to distinguish it from the next. Except where
altered by control statements (such as a while loop), execution of
grouped statements is sequential.

When a statement is an expression, the value of the expression is
printed, followed by a new line character, unless the main operator is an
assignment operator.

The following is a basic dictionary of be predefined statements:

"string"
The quote statement prints the string contained within the quotes.

break
The break statement causes termination of a for or while
statement.

auto identifier[, identifier] ...
The auto statement causes the values of one or more identifiers
to be pushed down on the stack. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are specified by

21-8 A/UX Programming Languages and Tools, Volume 2

following the array name with empty brackets. The aut 0

statement must be the first statement in a function definition.

define/unction-name (fparameter[,parameter] ... J) {statements}
The define statement defines a function. The parameters may
be ordinary identifiers or array names. Array names must be
followed by empty brackets.

return
return (expression)

quit

The ret urn statement causes the following:
• Termination of a function
• Popping of the auto variables on the stack
• Specifies the results of the function

The first form is equivalent to ret urn (0). The result of the
function is the result of the expression in parentheses.

The quit statement stops execution of a be program and
returns control to the A/UX system software when it is first
encountered. Because it is not treated as an executable
statement, it cannot be used in a function definition or in an if,
for, or while statement.

sqrt (expression)
The result is the square root of the expression. The result is
truncated in the least significant decimal place. The scale of the
result is the scale of the expression or the value of scale,
whichever is larger.

length (expression)
The result is the total number of significant decimal digits in the
expression. The scale of the result is O.

scale (expression)
The result is the number of available decimal places after the
decimal point in the expression. The scale of the result is o.

3.10 Assignment statements
be assignment statements work in exactly the same manner as they do
in the C programming language. The following table lists the
assignment statement constructs:

be Reference 21-9

Table 21-1. Assignment statements

x=y=z Is the same as x= (y=z)

x =+y Is the same as x = x+y

x =-y Is the same as x = x-y

x = -y Is the same as x = -y

x =*y Is the same as x = x*y

x =/y Is the same as x = x/y

x =%y Is the same as x = x%y

x = y Is the same as x = x"'y

x++ Is the same as (x=x+l)-l

x-- Is the same as (x=x-l)+1

++x Is the same as x = x+l

--x Is the same as x = x-l

Note: In some of these constructs, spaces are significant. There
is an important difference between x=-y and x= -yo The first
replaces x by x-y and the second replaces x by -y.

All assignment operators are interpreted from right to left. The
variables in an assignment statement should have single lowercase
letter names. Ordinary variables are used as internal storage registers
to hold integer values, and have an initial value of O. The statement

x=x+3

has the effect of increasing by three the value of the contents of register
x. In this case, although the increase in value is performed, that value
is not printed. To print the value of x after the assignment, either
explicitly call x, as in the following:

21-10 AlUX Programming Languages and Tools, Volume 2

x=x+3
x

or surround the assignment with parentheses. The latter instructs be to
treat the statement as the value of the result of the operation. The
assignment can then be used anywhere an expression can be used. For
example,

(x=x+3)

In this example, the value of x is incremented and the resulting value is
printed.

The value of an assignment statement can be used even when it is not
placed within parentheses. For example,

x=a [i=i+l]

instructs be to increment i before using it as a subscript and then
assign the resulting value to x.

Since each variable register name must be a unique, single lowercase
letter, there can be only 26.

3.11 Control statements
The if, while, and for control statements are available in be to
alter the flow within programs or to cause iteration. They can be used
individually as a simple statement or grouped to form a compound
statement. A compound statement consists of a collection of
statements enclosed in braces, as in a function definition.

3.11.1 Relational operators
Unlike all other operators, the be relational operators are valid only as
the object of an if or while statement or inside a for statement.
Similarly, all control structures rely at least in part on the evaluation of
a relational statement or expression.

The following table illustrates the six relational operators and their
definitions:

be Reference 21-11

Table 21-2. Relational operators

Operator Definition
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
-- Equal to
!= Not equal to

Note: Do not use = instead of == as a relational operator.
Unfortunately, both of these are legal, so there will be no
diagnostic message, but = will not do a comparison. The =
operator is an assignment operator.

3.11.2 The if statement
The if statement is a conditional statement that causes execution of its
instruction if and only if the relation is true. Then control passes to the
next statement in sequence. The following is the standard format for
an if statement in be:

if (relation) statement

3.11.3 The while statement
while causes repeated execution of its instruction as long as the
relation tests as true. The relation is tested before each execution of its
range; if the result is true, the body of the while statement is
executed, and the loop continues. If the relation is false, control passes
to the next statement beyond the range of the while statement. The
following is the standard format for the while statement in be:

while (relation) {
statement
statement

21-12 A/UX Programming Languages and Tools, Volume 2

3.11.4 The for statement
The typical use of a for statement is for controlled iteration. For
example,

for (expressionl; relation; expression2) statements

The for statement begins by executing expressionl. Then the relation
is tested. If the relation is true, the statements in the body of the for
are executed. Then expression2 is executed. The relation is then
tested, and so forth until the relational test fails.

The following is an example (in immediate mode) of proper use of the
for statement. In this example, the function returns the factorial of the
integer given as input.

define f(n)
auto i, x
x=l
for(i=l; i<=n; i=i+1) x=x*i
return (x)
}

f (5)

120
f(3)
6

3.12 Expressions
The simplest be expression is a single digit. An expression can consist
of any number of operators and operands provided they represent a
value.

The following are important points to remember when using
expressions in be:

• Any term in an expression may be prefixed by a minus sign to
indicate that it is a negative (the unary minus sign).

• The value of an expression is printed unless the main operator is
an assignment.

• Division by 0 produces an error comment.

The following is a table of the operators that can be used in be
expressions, in order of precedence:

be Reference 21-13

Table 21-3. Operators and their precedence

Operator Function
"" Exponentiation

* Multiplication
~
0 Remaindering (integer result

truncated toward 0)
/ Division

+ Addition
- Subtraction

= Assignment

In the above table, operators with the same precedence are grouped
together.

Contents of parentheses are evaluated before items outside the
parentheses. Exponentiations are performed from right to left, while
the other operations are performed from left to right.

a "" b "" e and a "" (b "" e) are equivalent

a-b*e is the same as a- (b*e)

a/b*e is equivalent to (a/b) *e because the expression
is evaluated from left to right.

Following are brief descriptions of the various types of expressions
recognized by be:

-expression The result is the negative of the expression.

++expression The expression is incremented by one. The
result is the value of the expression after
incrementing.

- - expression The expression is decremented by one.
The result is the value of the expression
after decrementing.

expression++ The expression is incremented by one. The
result is the value of the expression before

21-14 AlUX Programming Languages and Tools, Volume 2

expression --

expression'" expression

expression * expression

expression I expression

expression % expression

expression +expression

expression -expression

be Reference

incrementing.

The expression is decremented by one.
The result is the value of the expression
before decrementing.

The result is the first expression raised to
the power of the second expression. The
second expression must be an integer. If a
is the scale of the left expression and b is
the absolute value of the right expression,
then the scale of the result is

min(a*b,max(scale,a»

The result is the product of the two
expressions. If a and b are the scales of the
two expressions, then the scale of the result
is

min(a+b,max(scale,a,b»

The result is the quotient of the two
expressions. The scale of the result is the
value of scale.

The % (modulus) operator produces the
remainder of the division of the two
expressions. More precisely, a%b has the
same value as a-«al b)*b).

The scale of the result is the sum of the
scales of the quotient and the divisor.

The additive operators bind left to right.

The result is the sum of the two
expressions. The scale of the result is the
maximum of the scales of the expressions.

The result is the difference of the two
expressions. The scale of the result is the
maximum of the scales of the expressions.

21-15

3.13 Input and output bases: ibase and obase
be possesses a scaling provision that enables it to work in bases other
than decimal. In addition, input and output can be set to different
bases, for automatic conversion from one base to another. ibase
handles the conversion for input, and obase for output.

ibase and obase have no effect on the course of internal
computation or on the evaluation of expressions. They affect only
input and output conversions, respectively.

3.13.1 ibase
The setting for ibase determines the base used for interpreting input,
and is initially set to 10 (decimal). To set ibase to another base, use
the = assignment operator. For example, the following sets the input
base to base 8:

ibase = 8

Assuming that the output base is set to decimal, with the ibase now
set to octal, the input

11

would automatically produce the following output:

9

If at this point you want to change the input base back to decimal, you
must compensate for the fact that input is now being interpreted as
octal. So, in setting the new base, you must use the correct octal value:

ibase = 12

Because the ibase is still set to octal, it will interpret the 12 as an
octal 10, and reset the base to decimal. Until reset again, ibase will
then interpret all input in decimal.

For handling hexadecimal notation, the characters A through F are
permitted in numbers (regardless of what base is in effect) and are
interpreted as digits having values 10 through 15, respectively. The
statement

ibase = A

changes the base to decimal regardless of the current input base.

21-16 AlUX Programming Languages and Tools, Volume 2

ibase can handle base settings from 1 to 16. If larger or smaller
settings are attempted, ibase disregards them. There is no error
message to this effect, and the last valid setting remains intact.

3.13.2 obase
The setting for abase is used for interpreting the output base, and is
initially set to 10 (decimal). Assuming that ibase is set to 10,

abase = 16
1000

produces the following output:

3E8

thus providing a simple decimal-to-hexadecimal conversion facility.

Very large output bases are permitted and are sometimes useful; for
example, large numbers can be generated in groups of five digits by
setting abase to 100000. Very large numbers are split across lines
with 70 characters per line. To force the continuation of a line, end it
with a backslash (\).

Decimal output conversion is practically instantaneous, but output of
very large numbers (that is, more than 100 digits) with other bases is
rather slow. Nondecimal output conversion of a l00-digit number
takes about 3 seconds.

3.14 scal.e
The number of digits after the decimal point of a number is referred to
as its scale. be can handle numbers possessing up to 99 decimal
places. The initial default setting for scale is O. When the library
option is invoked, however, the default is automatically set to 20. To
set scale to a specific value, use the following statement:

scale = n

where n equals the new value of the scale setting. The contents of
scale must be no greater than 99 and no less than its initial value of
O. However, appropriate scaling can be arranged when more than 99
fraction digits are required.

When two scaled numbers are combined by means of an arithmetic
operation, the scale of the result is determined by the following rules:

be Reference 21-17

Addition and subtraction
The scale of the result is the larger of the scales of the two
operands. In this case, there is never any truncation of the result.

Multiplication
The scale of the result is never less than the maximum of the two
scales of the operands and never more than the sum of the scales
of the operands. Subject to those two restrictions, the scale of
the result is set equal to the contents of the internal quantity
scale.

Division
The scale of a quotient is the contents of the internal quantity
scale. The scale of a remainder is the sum of the scales of the
quotient and the divisor.

Exponentiation
The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an
integer.

Square root
The scale of a square root is set to the maximum of the scale of
the argument and the contents of scale.

All of the internal operations are actually carried out in terms of
integers, with digits being discarded when necessary. In every case
where digits are discarded, truncation (not rounding) is performed.

The value held in scale can be used in expressions just like other
variables. The expression

scale = scale + 1

increases the value of scale by 1, and the statement

scale

causes the current value of scale to be printed.

It should be noted that, regardless of the ibase or abase settings, the
scale setting is always interpreted in decimal base.

21-18 AlUX Programming Languages and Tools, Volume 2

Chapter 22

de Reference

Contents

1. de: a desk calculator

2. Using de
2.1 Command syntax • • • •

2.1.1 Operators. •
2.1.2 Relational operators

2.2 de command set • • • •
2.2.1 Input/output format and base •
2.2.2 Input conversion and base
2.2.3 Output commands
2.2.4 Scale • • • • • • • •
2.2.5 Stack commands
2.2.6 Subroutine definitions and calls
2.2.7 Internal registers ••••
2.2.8 Pushdown registers and arrays
2.2.9 Miscellaneous commands

2.3 de command quick reference

3. Programming de • • • .

Tables

Table 22-1. de operators •

- i -

1

1
2
2
3
3
3
4
4
4
5
5
6
6
7
7

8

3

Chapter 22

de Reference

1. de: a desk calculator
de is an interactive desk calculator program for handling arbitrary
precision integer arithmetic. It has provisions for manipulating scaled
fixed-point numbers and for input and output in bases other than
decimal.

The de program works like a stacking calculator using reverse Polish
notation. Ordinarily, de operates on decimal integers; however, the
input base, output base, and scale can be set according to user
specifications. Because de is based on a dynamic storage allocator,
number size is limited only by available core storage.

de can also be used in conjunction with be, a high-level language and
compiler designed specifically as a front-end for de. Complex
functions can be defined and saved in a file for later execution through
be. When a program is executed, be compiles the input and
automatically pipes it to the de interpreter, which produces the final
result. See "be Reference" in this manual for more information.

2. Using de
To begin using de, simply type its name to the shell:

de

Anything you then enter will be interpreted as de input, up to an end
of-file (CONTROL-d). You can also exit de by using the q command,
discussed later.

For very complex computations, you may find it more efficient to place
the instructions into a file. You can then pass the filename as an
argument to the de command:

de filename

de Reference 22-1

de will read and execute the contents of the filename argument before
accepting further commands from the keyboard.

de operates like a stacking calculator using reverse Polish notation.
Initially, the value of a number is pushed onto the stack. The top two
values on the stack may then be added (+), subtracted (-), multiplied
(*), divided (/), remaindered (%), or exponentiated ("), according to
the current operator. The two entries are popped off the stack, and the
result is pushed on the stack in their place.

Similarly, the top value on the stack may be duplicated, removed,
stored in a register, and so forth. For the full list of operations, see
below.

2.1 Command syntax
You can have any number of commands on a line. Blanks and newline
characters are ignored, except when used to delineate numbers and in
places where a register name is expected. Tabs are not allowed.

A number is an unbroken string of digits 0 through 9 and uppercase
letters A through F (treated as digits with values 10 through 15,
respectively). A negative number can be indicated by preceding a
number with an underscore C), Numbers may also contain decimal
points.

To perform simple operations, you can use the following format:

24.2 56.2 + P

The p command instructs de to print the result of the computation (in
this case, an addition). Here is an example of a more complex
problem, using a variety of commands:

[la 1+ d sa * p la 10 >y] sy
o sa
ly x

This example prints the first ten values of the factorial function (that is,
I! through 10!). To fully understand how it does so, please see
"Programming de."

2.1.1 Operators
Following is a table of the operators that can be used in de
expressions:

22-2 AJUX Programming Languages and Tools, Volume 2

Table 22·1. de operators

Operator Function

A Exponentiation

* Multiplication
% Remaindering modulus

(integer result truncated toward zero)
/ Division
+ Addition
- Subtraction
v Square root

2.1.2 Relational operators
de allows the following relational operators (also referred to as testing
commands):

<x >x =x !<x !>x !=x

These cause the top two elements of the stack to be popped and
compared. Register x is executed if the top two elements of the stack
satisfy the stated relation. The exclamation point indicates negation.

2.2 de command set
The following sections describe the de commands in detail,
categorized by subject. At the end of the categorized sections is a
quick-reference list of all de commands, with brief descriptions of
each.

2.2.1 Input/output format and base
The input and output bases affect only the interpretation of numbers on
input and output. They have no effect on internal arithmetic
computations.

Large numbers are generated with 70 characters per line; a backslash
(\) indicates a continued line. All choices of input and output bases
work correctly, although not all are useful. A particularly useful output
base is 100000, which has the effect of grouping digits in fives. Bases
of 8 and 16 are used for decimal-octal or decimal-hexadecimal
conversions.

de Reference 22-3

2.2.2 Input conversion and base
Numbers are converted to their internal representation as they are read
in to de.

Negative numbers are indicated by preceding the number with an
underscore U.

i The i command can be used to change the base of the input
numbers. This command pops the stack, truncates the resulting
number to an integer, and uses it as the input base for all further
input. The default for input base (ibase) is 10 (decimal) but
may, for example, be changed to 8 or 16 for octal- or
hexadecimal-to-decimal conversions.

I The I command pushes the value of the input base on the stack.

No mechanism has been provided for the input of arbitrary numbers in
bases less than 1 or greater than 16. The hexadecimal digits A through
F correspond to the numbers 10 through 15, regardless of input base.

2.2.3 Output commands

p The p command causes the top of the stack to be printed. It does
not remove the top of the stack.

f The f command prints the contents of all of the stack registers.

o The 0 command is used to change the output base (obase).
This command uses the top of the stack truncated to an integer as
the base for all further output. The default output base is 10
(decimal) .

o The 0 command pushes the value of the output base on the stack.

2.2.4 Scale
de can accommodate scales up to 99 decimal places. The default scale
is o.
k The k command sets the scale to the number on the top of the

stack, truncated to an integer.

K The K command can be used to·push the value of seale on the
stack. The value of seale must be greater than or equal to 0
and less than 100.

22-4 AlUX Programming Languages and Tools, Volume 2

The rules governing how the scale of a result is resolved for the
different operations are as follows:

Operator Scale

" The scale of the result is the sum of the scales of the
two operands. If this exceeds the value of scale it
is truncated to that value.

* The scale of the result is the sum of the scales of the
two operands. If this exceeds the value of scale it
is truncated to that value.

% The scale of the remainder is the maximum of the
dividend scale and quotient scale, plus the divisor
scale.

/ The scale of the result is the value of scale. You
must specify a scale value for any scale to occur.

+ The scale of the result is the larger scale of the two
operands.

- The scale of the result is the larger scale of the two
operands.

v The scale of the result is given the scale of the
operand or the value of scale, whichever is larger.

2.2.5 Stack commands

c The c command clears the stack.

d The d command pushes a duplicate of the top number onto the
stack.

z The z command pushes the stack size onto the stack.

X The X command replaces the number on the top of the stack with
its scale factor.

Z The Z command replaces the top of the stack with its length.

2.2.6 Subroutine definitions and calls

[] Enclosing a string in brackets pushes the ASCII string onto the
stack.

de Reference 22-5

q The q command quits or (when executing a string) pops the
recursion level by two.

2.2.7 Internal registers
Numbers or strings may be stored in internal registers or loaded on the
stack from registers with the commands s and 1:

sx The sx command pops the top of the stack and stores the result
in register x. The x can be any character; even a blank or
newline is considered a valid register name.

Ix The Ix command puts the contents of register x on the top of the
stack. The x can be any character; even a blank or newline is
considered a valid register name.

Note: The 1 command has no effect on the contents of register
x. The s command, however, is destructive.

2.2.8 Pushdown registers and arrays

Note: The following commands are intended for use by a
compiler, rather than for direct use by programmers.

de can be thought of as having individual stacks for each register.
These registers are operated on by the commands sand L:

Sx sx pushes the top value of the main stack onto the stack for the
register x.

Lx Lx pops the stack for register x and puts the result on the main
stack.

sand 1
The s and 1 commands also work on registers, but not as
pushdown stacks. The 1 command does not affect the top of the
register stack, but s destroys what was there before.

The commands that work on arrays are : and ; .

:x The:x command pops the stack and uses this value as an index
into the array x. The next element on the stack is stored at this
index in x. An index must be greater than or equal to 0 and less
than 2048.

22-6 AlUX Programming Languages and Tools, Volume 2

; x The; x command loads the main stack from the array x. The
value on the top of the stack is the index into the array x of the
value to be loaded.

2.2.9 Miscellaneous commands

The ! command interprets the rest of the line as an NUX system
command and passes it to the operating system to execute.

Q The Q command uses the top of the stack as the number of levels
of recursion to skip.

2.3 de command quick reference
The following is a quick-reference list of de command characters and
their functions:

[...] Puts the bracketed character string on top of the stack.

Interprets the rest of the line as an NUX system command.
Control returns to de when the command terminates.

? Takes a line of input from the input source (usually the console)
and executes it.

e Pops all values on the stack; the stack becomes empty.

d Duplicates the top value on the stack.

f Prints all values on the stack and in registers.

i and I
Pops the top value on the stack and uses it as the number radix
for further input. The command I pushes the value of the input
base on the stack.

kandK
Pops the top of the stack and uses that value as a scale factor that
determines the maximum number of decimal places which are
maintained during multiplication, division, and exponentiation.
The scale factor must be greater than or equal to zero and less
than 100. The K command can be used to push the value of
seale on the stack.

lx and Lx

The 1 command puts the contents of register x on top of the

de Reference 22-7

stack. The initial value of a new register is treated as a zero by
the command 1, but treated as an error by the command L. The
Lx command pops the stack for register x and puts the result on
the main stack.

o and 0
The top value on the stack is popped and used as the number
radix for further output. The command 0 pushes the value of the
output base on the stack.

p The top value on the stack is printed. The top value remains
unchanged.

qandQ
Exits the program. If executing a string, the recursion level is
popped by two. If Q is used, the top value on the stack is
popped; and the string execution level is popped by that value.

sxand Sx
The top of the main stack is popped and stored in a register
named x (where x may be any character). The value of register x
is pushed onto the stack. Register x is not altered. Sx pushes the
top value of the main stack onto the stack for the register x.

v Replaces the top element on the stack by its square root. The
square root of an integer is truncated to an integer.

x and x
The x command assumes the top of the stack is a string of de
commands, removes it from the stack, and executes it. The x
command replaces the number on the top of the stack with its
scale factor.

z and Z

The value of the stack level is pushed onto the stack. The
command z replaces the top of the stack with its length.

3. Programming de
By combining a few of the available constructs, such as the load, store,
execute, and print commands (1, s, x, p), the [] construct to store
strings, and the testing commands (relational operators), it is possible to
program de. For example, the following expressions instruct de to

22-8 NUX Programming Languages and Tools, Volume 2

print the numbers 0 through 9:

[li p 1+ si li 10 >a]sa
o si
la x

Consider the first expression in this example:

[li p 1+ si li 10 >a]sa

This first instruction makes use of the [] construct for storing strings.
The entire expression is stored as a character string on top of the stack.
Reading from left to right, this character array holds the following
commands:

• Load the contents of register i on top of the stack, and print it.

Note: Using the print command does not remove the top
of the stack.

• Add (+) 1 to the value found on top of the stack, and place the
result on top of the stack.

• Store the value currently found on top of the stack in register i.

• Load the contents of register i on top of the stack, then load the
number 10 onto the stack. Use the testing operator> on these
top two stack elements to see if 10 is greater than the number that
was loaded from register i. If 10 is greater, then execute register
a. This is the "control element" in this example, because it will
stop the processing of the expressions as soon as the value in
register i is equal to 10.

• Store the character array in register a.

The second and third lines of the example contain the expressions

o si
la x

• The 0 s i instruction clears register i by storing 0 in that
register, thereby clobbering any previous value it may have had.

de Reference 22-9

• The la and x instructions load the contents of register a on top
of the stack and execute it.

Note: The size of numbers in de is limited only by the size of
available memory.

22-10 A/UX Programming Languages and Tools, Volume 2

Contents

Chapter 23

m4 Reference

1. m4: a macro processor

2. Invoking m4

3. Defining macros .••••.
3.1 define
3.2 Quoting. • •
3.3 changequote
3.4 undefine
3.5 ifdef •
3.6 Arguments • •
3.7 ifelse

4. Arithmetic built-ins

5. I/O manipulation • • • •
5.1 include and sinclude. •
5.2 divert, undivert, and divnum
5.3 dnl . • • •

6. String manipulation
6.1 len • • • •
6.2 substr
6.3 indexand translit

7. Printing • • • •
7.1 errprint
7.2 dumpdef • •

8. Executing system commands
8.1 syscmd. and maketemp

9. Interactive use of m4 • • • • •

- i -

1

2

2
2
3
4
4
5
5
7

7

9
9
9

12

13
13
13
13

14
14
14

14
14

15

10. Recursive definitions

11. Built-in macro summary

Tables

Table 23-1. Arithmetic operators

- ii -

15

17

8

Chapter 23

m4 Reference

1. m4: a macro processor
The m4 macro processor is a general-purpose macro-processing utility.
It can also be considered to be an interpreter for the m4 language. The
#def ine statement in the C language is an example of the basic
facility provided by any macro processor: the replacement of some
text by some (other) text For several reasons, m4 is a more powerful
macro processor than the standard C preprocessor, cpp.

The basic operation of m4 is to read every alphanumeric token (string
of letters and digits) in the input and to determine if the token is the
name of a macro. The name of a macro is replaced by its defining text
and the resulting string is pushed back onto the input to be rescanned.

Besides the straightforward replacement of one string of text by
another, the m4 macro processor also provides the following features:

• Arguments to macros

• Arithmetic capabilities

• File manipulation

• Conditional macro expansion

• String and substring functions

• Recursive definitions

When a macro is called with arguments, the arguments are collected
and substituted into the right places in the defining text before the
defining text is rescanned

The m4 macro processor accepts user-defined macros as well as its
"built-in" macros. Both types of macros work exactly the same way,
except that some of the built-in macros have side effects on the state of
the process.

m4 Reference 23-1

2. Invoking m4
To run m4, give the command

m4 files

Each argument file is processed in order. If there are no arguments, or
if an argument is -, the standard input is read at that point

The processed text is written on the standard output. The output may
be redirected for subsequent processing, as follows:

m4 files > outputfile

3. Defining macros

3.1 define
The primary built-in function ofm4 is define. This function is used
to define new macros. The general form is

define (name, replacement)

All subsequent occurrences of name are replaced by replacement. The
name must be alphanumeric and must begin with a letter (the
underscore (_) counts as a letter). The replacement is any text that
contains balanced parentheses. An escaped RETURN or an embedded
newline character allows a multi-line replacement to be specified.

The following is a typical example of the use of define, in which N is
defined to be the string 100 and is then used in a later if statement:

define(N, 100)
if (i > N) echo "number too large"

The left parenthesis must immediately follow the word define to
signal that define has arguments. If a user-defined macro or built-in
name is not followed immediately by this character, the macro call is
assumed to have no arguments.

Macro calls have the following general form:

name (argJ, arg2, ... , argn)

A macro name is recognized as such only if it appears surrounded by
nonalphanumerics. In the following example, the variable NNN is
absolutely unrelated to the defined macro N, even though the variable

23-2 AlUX Programming Languages and Tools, Volume 2

contains a lot of N' s:

define(N, 100)
if (NNN > 100) echo "number too large"

Macros may be defined in terms of other macros. For example, the
following defines both M and N to be 100. If N is redefined and
subsequently changes, M retains the value of 100, not N.

define(N, 100)
define(M, N)

The m4 macro processor expands macro names into their defining text
as soon as possible. The string N is immediately replaced by 10 O. The
string M is then defined to be 100. The overall result is the same as
using the following input in the first place:

define (M, 100)

The order of the definitions can be interchanged, as follows:

define(M, N)
define (N, 100)

Now M is defined to be the string N, so when the value of M is requested
later, the result is the value of N at that time (because the M will be
replaced by N, which will be replaced by 100).

3.2 Quoting
The more general solution to the problem of making sure the correct
strings get substituted is to delay the expansion of the arguments of
def ine by quoting them. The quoting characters initially recognized
by m4 are the left and right single quotes, ' and '. Any text
surrounded by left and right single quotes is not expanded immediately
but has the quotes stripped off. The value of a quoted string is the
string stripped of the quotes. If the input is

define (N, 100)
def ine (M, 'N')

the quotes around the N are stripped off as the argument is being
collected. The result of using quotes is to define M as the string N, not
as 100.

m4 Reference 23-3

The general rule is that m4 always strips off one level of single quotes
whenever it evaluates something. This is true even outside macros.

If the word de fine itself is to appear in the output, the word must be
quoted in the input as follows:

'define' = 1i

Another example of using quotes is to redefine a macro. To redefine N,
the evaluation must be delayed by quoting:

define(N, 100)
define('N', 200)

In m4, it is often wise to quote the first argument of a macro. The
following example, for instance, will not redefine N:

define(N, 100)
define(N, 200)

The N in the second definition is replaced by 10 o. The result is
equivalent to the following statement:

define(100, 200)

This statement is ignored by m4, however, because only names that
begin with an alphanumeric character can be defined.

3.3 changequote
If left and right single quotes are not convenient for some reason, the
quote characters can be changed with the following built-in macro:

changequote([,])

The built-in changequote makes the new quote characters the left
and right brackets. The original characters can be restored by using
cbangequote without arguments, as follows:

changequote

3.4 undefine
The undefine macro removes the definition of some macro or built
in as follows:

undefine ('N')

23-4 NUX Programming Languages and Tools, Volume 2

The macro removes the definition ofN. Built-ins can be removed with
unde fine, as follows:

undefine('define')

Once removed, the definition cannot be reused.

3.5 ifdef
The built-in ifdef provides a way to determine if a macro is currently
defined.

Depending on the system, a definition appropriate for the particular
machine can be made as follows:

ifdef ('pdp11', 'define (wordsize, 16) ')
ifdef('u3b', 'define(wordsize,32)')

Remember to use the quotes.

The ifdef macro actually permits three arguments. lfthe first
argument is defined, the value of ifdef is the second argument. If the
first argument is not defined, the value of ifdef is the third argument.
If there is no third argument, the value of ifdef is null.

If the name is undefined, the value of if de f is then the third
argument, as in

ifdef('unix', on UNIX, not on UNIX)

3.6 Arguments
User-defined macros may also have arguments, so different invocations
can have different results. Within the replacement text for a macro (the
second argument of its de fine), any occurrence of $n is replaced by
the nth argument when the macro is actually used. Thus, the following
macro, bump, generates code to increment its argument by 1:

define (bump, $1 = $1 + 1)

The statement

bump (x)

is equivalent to

x = x + 1

m4 Reference 23-5

A macro can have as many arguments as needed, but only the first nine
are accessible ($1 through $9) (see "Built-In Macro Summary" under
shift for more information). The macro name is $0, although that is
less commonly used. Arguments that are not supplied are replaced by
null strings, so a macro can be defined that simply concatenates its
arguments like this:

define (cat, $1$2$3$4$5$6$7$8$9)

Thus,

cat (x, y, z)

is equivalent to

xyz

Arguments $ 4 through $ 9 are null, because no corresponding
arguments were provided. Leading unquoted blanks, tabs, or newlines
that occur during argument collection are discarded. All other white
space is retained. Thus,

define(a, b c)

defines a to be b c.

Arguments are separated by commas; however, when commas occur
within parentheses, the argument is neither terminated nor separated.
For example,

define (a, (b, c))

has only two arguments. The first argument is a. The second is
literally (b, c). A bare comma or parenthesis can be inserted by
quoting it.

There are three other constructions that are useful in macro definitions:

$=11=

$*
$@

During macro replacement, the construction $ 41= is replaced by the
number of arguments. The $ * construction is replaced by a list of the
arguments separated by commas. The construction $@ is like $ *
except that each argument is quoted (using the current quotes). See the

23-6 A/UX Programming Languages and Tools, Volume 2

section "Recursive Definitions" for examples of the first two
constructions.

3.7 i.fe1se
Arbitrary conditional testing is performed via the built-in macro
ifelse. In the simplest form,

ifelse(a, b, c, d)

compares the two strings a and b. If a and b are identical, ifelse
returns the string c. Otherwise, string d is returned. Thus, a macro
called compare can be defined to compare two strings and return yes
or no if they are the same or different, as follows:

define (compare, 'ifelse($l, $2, yes, no)')

Note the quotes, which prevent evaluation of ifelse occurring too
early. If the fourth argument is missing, it is treated as empty. Thus,

ifelse (a, b, c)

is c if a matches b, and null otherwise.

ifelse can actually have any number of arguments and provides a
limited form of multiway decision capability. In the input

ifelse (a, b, c, d, e, I, g)

if the string a is the same as the string b, the result is c. Otherwise, if d
is the same as e, the result isf. Otherwise, the result is g. If the final
argument is omitted and the specified strings don't match, the result is
null.

4. Arithmetic built-ins
The m4 program provides three built-in functions for doing arithmetic
on integers (only):

incr
decr
eval

The simplest are incr, which increments its numeric argument by 1,
and deer, which decrements by 1. Thus, to handle the common
programming situation where a variable is to be defined as "one more
than N," use the following:

m4 Reference 23-7

define (N, 100)
define (N1, 'incr(N)')

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in function called
eval, which is capable of arbitrary arithmetic on integers. The
operators in decreasing order of precedence are as follows:

Table 23-1. Arithmetic operators

Symbol Meaning

+ - Unary plus and minus

**
A Exponentiation

* / % Multiplication and division
+ - Binary plus and minus
-- != < <= > >= Relational operators
! Logical negation (NOT)
& && Logical multiplication (AND)

I II Logical addition (OR)

Parentheses may be used to group operations where needed. All the
operands of an expression given to eval must ultimately be numeric.
The numeric value of a true relation (like 1>0) is 1 and false is O. The
precision in eval is 32 bits under the NUX operating system.

As a simple example, define M to be 2==N+ 1 using eval as follows:

define(N, 3)
define(M, 'eval(2==N+1)')

First N is defined as 3; then M is defined as 0, since 2 is not equal to
N + 1. If M were defined as

define(M, 'eval(2==N-1)')

then its defined value would be 1, because the result of the comparison
would be true.

The defining text for a macro should be quoted unless the text is very
simple. Quoting the defining text usually gives the desired result and is
a good habit to get into.

23-8 AlUX Programming Languages and Tools, Volume 2

5. 1/0 manipulation

5.1 incl.ude and sincl.ude
A new file can be included in the input at any time by the built-in
function include. For example,

include (filename)

inserts the contents of filename in place of the inc 1 ude command.
The contents of the file is often a set of definitions. The value of
include (include's replacement text) is the contents of the file. If
needed, the contents can be captured in definitions, and so on.

A fatal error occurs if the file named by filename cannot be accessed.
To get some control over this situation, you can use the alternate form,
sinclude, or quote the filename. The built-in sinclude (silent
include) says nothing and continues if the file named cannot be
accessed.

5.2 divert, undi.vert, and divnum
The output of m4 can be diverted to temporary files during processing,
and the collected material can be generated upon command. The m4
program maintains nine of these diversions, numbered 1 through 9. If
the built-in macro

divert (n)

is used, all subsequent output is put onto the end of a temporary file
referred to as n. Diverting to this file is stopped by the divert or
di vert (0) command, which resumes the normal output process.

Diverted text is normally produced all at once at the end of processing
with the diversions produced in ascending numerical order. Diversions
can be brought back at any time by appending the new diversion to the
current diversion. Output diverted to a stream other than 0 through 9 is
discarded. The following code, for example, throws away excess
newlines.

m4 Reference 23-9

divert (-1)
define(N, 100)
define (M, 200)
define(L, 300)
divert

Note: The newline character at the end of each define is
passed to the output, as described in the following section.

The built-in macro undivert, with no arguments, brings back all
diversions in numerical order. With arguments, undi vert brings
back the selected diversions in the order specified by the argument.
undivert discards the diverted text. You can also discard text by
using a diversion number which is not between 0 and 9, inclusive.

The value of undi vert is not the diverted text but rather the number
of the diversion to bring back into the text. Furthermore, the diverted
material is not res canned for macros.

As an example of the interaction between divert, undivert, and
current diversion, consider the following code:

this is current diversion
divert (1)
this is diversion 1
divert (2)
this is diversion 2
divert (3)
this is diversion 3
divert
this is current diversion again
undivert
once again, current diversion

In the above trivial code there are three diversions between the two
lines of current diversion code. The use of di vert at the end of
diversion 3 is needed to inform m4 that what follows is not part of
diversion 3. undi ve rt with no arguments will insert at the current
position all previous diversions, with no rescanning of any macros
there may be there. The output of the above code is

23-10 AJUX Programming Languages and Tools, Volume 2

this is current diversion

this is current diversion again

this is diversion 1

this is diversion 2

this is diversion 3

once again, current diversion

Note that the diverted text is not brought back again at the end of the
output by the normal process; the diverted text has been discarded by
the use of undi vert. Another example can make this clearer:

this is main diversion
divert (1)
this is diversion 1
divert (2)
this is diversion 2
divert (3)
this is diversion 3
divert
this is main diversion again
undivert (3)
once again, main diversion
undivert (2)

The ouput for the above is

m4 Reference 23-11

this is main diversion

this is main diversion again

this is diversion 3

once again, main diversion

this is diversion 2

this is diversion 1

As you can see, only diversion 1 is brought back by the normal process,
because only diversion 1 has not been undiverted and therefore
discarded. Note also that you can change the order of appearance of
the diverted versions.

The built-in macro di vnum returns the number of the currently active
diversion. The current output stream is 0 during normal processing.

5.3 dn~
There is a built-in macro called dn1 that deletes all characters that
follow it, up to and including the next newline. The dnl macro is
useful mainly for throwing away empty lines that otherwise tend to
clutter up m4 output Using input

define (N, 100)
define (M, 200)
define(L, 300)

results in a newline at the end of each line that is not part of the
definition. The newline is copied into the output so that each def ine
statement is followed by a blank line. If the built-in macro dnl is
added to each of these lines, the newlines will disappear.

define(N, 100)dnl
define(M, 200)dnl
define(L, 300)dnl

23-12 AlUX Programming Languages and Tools, Volume 2

6. String manipulation

6.1 l.en
The built-in macro len returns the length of the string (number of
characters) that makes up its argument. Thus,

len (abcdef)

is 6, and

len ((a, b))

is 5 (the parentheses and comma are counted along with a and b).

6.2 substr
The built-in macro substr can be used to produce substrings of
strings. The input

substr (s, i, n)

returns the substring of s that starts at the ith position (origin 0) and is n
characters long. If n is omitted, the rest of the string is returned. For
example,

substr('now is the time',l)

returns the following string:

ow is the time.

If i or n is out of range, various actions occur.

6.3 index and translit
The built-in macro index returns the index (position) in one string
where the first character of another given string occurs, or -1 if it does
not occur. If is written as

index (sl, s2)

where sl is the string to be searched and s2 is the string to be searched
for. As with substr, the origin for strings is O.

The built-in macro translit performs character transliteration and
has the general form

translit (s, /, t)

which modifies s by replacing any character found in/by the

m4 Reference 23-13

corresponding character of t. Using

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than/,
characters that do not have an entry in t are deleted. As a limiting case,
if t is not present at all, characters from/are deleted from s. So,

translit(s, aeiou)

would delete vowels from s.

7. Printing
7.1 errpri.nt
The built-in macro errprint writes its arguments out on the standard
error file. An example would be

errprint('fatal error')

7.2 dumpdef
The built-in macro dumpdef is a debugging aid that dumps the current
names and definitions of items named as arguments. If no arguments
are given, then all current names and definitions are printed.
Remember to quote the names.

8. Executing system commands
8.1 syscmd and maketemp
Any program in the local operating system can be run by using the
built-in macro syscmd. For example,

syscmd(date)

on the NUX system runs the date command. Normally, syscmd
would be used to create a file for a subsequent include.

To facilitate making unique filenames, the built-in macro maketemp
is provided with specifications identical to the system function
mktemp. The make temp macro fills in a string of XXXXX in the
argument with the process ID of the current process.

23-14 A/UX Programming Languages and Tools, Volume 2

9. Interactive use of m4
The input to m4 may come from a file, the standard input, or both.
Thus, it is possible to use m4 interactively, by telling it to take its input
from the standard input. There are several ways to do this. The
simplest is to invoke m4 as follows:

m4

At this point, m4 will read from the standard input.

If you have an existing set of m4 commands stored in a file, you may
instruct m4 to process those commands first by invoking it as

m4 file -

The minus sign is required here to instruct m4 to read file and then the
standard input. Alternatively, if you invoke m4 using just the m4
command with no arguments, you can tell m4 to fetch the set of
commands fromfile by typing the following line:

include (file)

The effect is the same in both cases.

10. Recursive definitions
Since m4 rescans any text that arises from the replacement of a macro
by its defining text, it is possible to construct recursive macro
definitions. That is, it is perfectly legal to define a macro in terms of
itself. As with any well-constructed recursive definition, however, you
must take care that the definition has a well-defined stopping point.
Generally, this is easy to do with the ifelse command.

For instance, suppose that you need a macro that returns its last
argument and discards the rest. You might write the following
definition:

define (last,
'ifelse($#,l,$l, 'last(shift($*))')')

When there are multiple arguments, last drops the first argument and
then calls itself to look for the last argument in the remaining argument
list. This definition is well behaved, because when there is only one
argument, it alone is returned.

m4 Reference 23-15

A more interesting example is the following definition of the factorial
function:

define (fact,
'ifelse($l,l,l, 'eval($l*fact(decr($l)))')')

If you give m 4 the input

The factorial of 1 is fact (1) .
The factorial of 2 is fact(2) .
The factorial of 3 is fact (3) .
The factorial of 4 is fact(4) .
The factorial of 5 is fact(5) .
The factorial of 6 is fact(6) .
The factorial of 7 is fact(7) .
The factorial of 8 is fact (8) .

you get the following output:

The factorial of 1 is 1.
The factorial of 2 is 2.
The factorial of 3 is 6.
The factorial of 4 is 24.
The factorial of 5 is 120.
The factorial of 6 is 720.
The factorial of 7 is 5040.
The factorial of 8 is 40320.

Finally, you may want to define a recursive macro with two arguments.
The standard power function will serve nicely:

define (pow,
'ifelse($2,1,$1, 'eval($1*pow($1,decr($2)))')')

If you then give m4 the input

23-16 NUX Programming Languages and Tools, Volume 2

3 to power 1 is pow (3,1) .
3 to power 2 is pow (3, 2) .
3 to power 3 is pow (3,3) .
3 to power 4 is pow (3,4) .
3 to power 5 is pow (3,5) .
3 to power 6 is pow (3,6) .
3 to power 7 is pow (3, 7) .
3 to power 8 is pow (3,8) .

you get

3 to power 1 is 3.
3 to power 2 is 9.
3 to power 3 is 27.
3 to power 4 is 81.
3 to power 5 is 243.
3 to power 6 is 729.
3 to power 7 is 2187.
3 to power 8 is 6561.

11. Built-in macro summary
The following are m4 built-in macros:

ehangeeom Changes left and right comment markers from the
default "* and newline. With no arguments, the
comment mechanism is disabled. Comment
markers may be up to five characters long.

ehangequote Changes quoting symbols to the first and second
arguments. The symbols may be up to five
characters long. With no arguments, this macro
restores the original quote characters.

deer Returns the value of its argument decremented by 1.

define Defines new macros.

defn Returns the quoted definition of its argument(s).

divert Diverts output to one of ten diversions (named 0
through 9).

m4 Reference 23-17

divnum

dnJ..

dumpdef

errprint

eval

ifdef

ifelse

include

incr

index

len

m4exit

m4wrap

maketemp

popdef

pushdef

shift

sinclude

23-18

Returns the number of the currently active
diversion.

Reads and discards characters up to and including
the next newline.

Dumps the current names and definitions of items
named·as arguments. With no arguments,
definitions of all current macros are dumped.

Prints its arguments on the standard error file.

Performs arbitrary arithmetic on integers.

Determines if a macro is currently defined.

Performs arbitrary conditional testing.

Returns the contents of the file named in the
argument. A fatal error occurs if the file named
cannot be accessed.

Returns the value of its argument incremented by 1.

Returns the position where the second argument
begins in the first argument.

Returns the number of characters that make up its
argument.

Causes immediate exit from m4.

Pushes the exit code back at final EOF.

Facilitates making unique filenames.

Removes current definition of its argument(s),
exposing any previous definitions.

Defines new macros but saves any previous
definition.

Returns all arguments except the first argument.

Returns the contents of the file named in the
arguments. The macro remains silent and continues
if the file is inaccessible.

A/UX Programming Languages and Tools, Volume 2

sub s t r Produces substrings of strings.

syscmd Executes the NUX system command given in the
first argument.

sysval Gives exit value of most recent system command.

traceoff Turns the macro trace off.

traceon Turns the macro trace on.

translit Performs character transliteration.

undefine Removes user-defined or built-in macro definitions.

undi ve rt Discards the diverted text.

unix Null; indicates that the underlying system is derived
from the UNIX operating system.

m4 Reference 23-19

\
\

Chapter 24

curses Reference

Contents

1. curses: terminal-independent screen I/O

2. Overview of curses usage .
2.1 Output. . •
2.2 Input • • . • • •
2.3 Highlighting . • • .
2.4 Multiple windows
2.5 Multiple terminals
2.6 Low-level terminfo usage.
2.7 A larger example

3. List of curses routines • •
3.1 Structure • •
3.2 Initialization • •
3.3 Option setting •••••
3.4 Terminal mode setting .
3.5 Window manipulation .
3.6 Causing output to the tenninal
3.7 Writing on window structures .

3.7.1 Moving the cursor
3.7.2 Writing one character
3.7.3 Writing a string . . .
3.7.4 Clearing areas of the screen
3.7.5 Inserting and deleting text • • .
3.7.6 Formatted output •
3.7.7 Miscellaneous

3.8 Input from a window
3.9 Input from the terminal •
3.10 Video attributes • • •
3.11 Bells and flashing lights
3.12 Portability functions

- i -

1

1
2
4
7
8

10
13
15

18
18
19
20
23
24
25
26
27
27
27
28
28
29
29
29
30
31
32
32

3.13 Delays. • • • • .
3 .14 Lower-level functions

3.14.1 Cursor motion
3.14.2 terminfo level

4. Operation details • . • .
4.1 Insert and delete line and character
4.2 Additional terminals
4.3 Multiple terminals • . • •
4.4 Video attributes
4.5 Special keys .
4.6 Scrolling region
4.7 Mini-curses
4.8 TTY mode functions
4.9 Typeahead check ••••
4.10 getstr • •
4.11 l.ongname • • • • • .
4.12 nodel.ay mode • • • • •
4.13 Portability

5. Example program: scatter

6. Example program: show

7. Example program: highlight

8. Example program: window.

9. Example program: two .
10. Example program: termhl. •

11. Example program: editor.

Figures

Figure 24-1. Framework of a curses program

Figure 24-2. Sending a message to several
terminals • • • • • • •

Figure 24-3. terminfo-Ievel framework • •

- ii -

33
34
34
34

38
38
39
39
40
42
42
43
44
45
45
45
45
45

47

49

51

53

55

58

61

2

12

13

Chapter 24

curses Reference

1. curses: terminal-independent screen 1/0
The curses package is designed to provide a terminal-independent
method of providing screen-oriented input and output. It includes
facilities for taking input from the terminal, sending output to a
terminal, creating and manipulating windows on the screen, and
performing screen updates in an optimal fashion. A program using the
curses routines and functions generally needs to know nothing about
the capabilities of any particular terminal; these characteristics are
determined at execution time and guide the program in taking input and
producing output Thus, programs using this package can interact with
a large variety of terminals and terminal types.

This chapter is an introduction to the curses and terminfo
packages for writing screen-oriented programs. This chapter
documents each curses function and discusses several sample
programs. The sample programs are at the end of this chapter.

We are also providing termcap for backward compatibility, but new
programs should use terminfo.

2. Overview of curses usage
For curses to be able to produce the proper output, it has to know
what kind of terminal you have. curses uses the standard NUX
system convention for this; the name of the terminal is stored in the
environment variable TERM.

A program using curses always starts by calling initscr (see
Figure 24-1). Other modes can then be set as needed by the program.
Possible modes include cbreak and idlok (stdscr, TRUE).
These modes will be explained later.

A curses program follows the framework shown in Figure 24-1.

curses Reference 24-1

Figure 24·1. Framework of a curses program

#include <curses.h>
main ()
{

initscr () ;

cbreak(};
nonl ();
noecho () ;

/* Initialization */

/* Various optional mode settings */

while (!done) { /* Main body of program */

/* Sample calls to draw on screen */
move (row, col);
addch (ch);
printw("Formatted print with value %d\n", value};

endwin();
exit(O);

/* Clean up */

}

2.1 Output
During the execution of the program, output to the screen is done with
routines such as

addch (ch)

and

printw ifmt, args)

which behave just like putchar and printf except that they go
through curses. The cursor can be moved with the call

move (row, col)

These routines generate output only to a data structure called a
"window," not to the actual screen. A window is a representation of a
CRT screen, containing such things as an array of characters to be
displayed on the screen, a cursor, a current set of video attributes, and

24-2 A/UX Programming Languages and Tools, Volume 2

various modes and options. Unless you use more than one of them,
you don't need to worry about windows except to realize that a window
is buffering your requests for output to the screen. For further
information about windows, see the section "Multiple Windows" in
this chapter.

To send all accumulated output, you must call

refresh ()

Finally, before the program exits, it should call

endwin ()

which restores all terminal settings and positions the cursor at the
bottom of the screen.

See the sample program scatter at the end of this chapter. This
program reads a file and displays it in a random order on the screen.
Some programs assume all screens are 24 lines by 80 columns. It is
important to understand that many are not. The variables

LINES

and

eOLS

are defined by initscr with the current screen size. Programs
should use them instead of assuming a 24 by 80 screen.

No output to the terminal actually happens until refresh is called.
Instead, routines such as move and addch draw on a window data
structure called stdscr (standard screen). curses always keeps
track of what is on the physical screen, as well as what is in stdscr.

When refresh is called, curses compares the two screen images
and sends a stream of characters to the terminal that will turn the
current screen into what is desired. curses considers many different
ways to do this, taking into account the various capabilities of the
terminal and similarities between what is on the screen and what is
desired. It usually produces as few characters as is possible. This
function is called "cursor optimization" and is the source of the name
of the curses package.

curses Reference 24-3

Note: Because of the hardware scrolling of terminals, writing
to the lower right character position is impossible.

2.2 Input
curses functions are also provided for input from the keyboard. The
primary function is

getch ()

which is like getchar except that it goes through curses. This
function waits for the user to type a character on the keyboard and then
returns that character. Its use is recommended for programs using the
options

cbreak ()

or

noecho ()

because several terminal- or system-dependent options become
available that are not possible with getchar.

~

Options that you can use with getch include

keypad

which allows extra keys such as arrow keys, function keys, and other
special keys that transmit escape sequences to be treated as just any
other key. (The values returned for these keys are listed below; these
values are over octal 400, so they should be stored in a variable larger
than a char.)

The

nodelay

option causes the value -1 to be returned if there is no input waiting.
Normally, getch waits until a character is typed

Finally, the routine

getstr (str)

can be called, allowing input of an entire line, up to a newline. This
routine handles echoing and the erase and kill characters of the user.

24-4 A/UX Programming Languages and Tools, Volume 2

, Examples of the use of these options are in later sample programs.

The following function keys might be returned by getch, if keypad
has been enabled. Note that not all of these may be supported by a
particular terminal/keyboard, because the key doesn't exist or the
terminal is not transmitting a unique code when the key is pressed.

Name Value

KEY BREAK 0401
KEY DOWN 0402
KEY UP 0403
KEY LEFT 0404
KEY RIGHT 0405
KEY HOME 0406
KEY BACKSPACE 0407

KEY FO 0410

KEY_F(n) (KEY_FO+(n»
KEY DL 0510

KEY IL 0511

KEY DC 0512

KEY IC 0513
KEY EIC 0514
KEY CLEAR 0515
KEY EOS 0516

KEY EOL 0517

KEY SF 0520
KEY SR 0521
KEY NPAGE 0522
KEY PPAGE 0523
KEY STAB 0524

KEY CTAB 0525
KEY CATAB 0526
KEY ENTER 0527
KEY SRESET 0530

curses Reference

Key name

Break key (unreliable)
The four arrow keys ...

Home key (upward + left arrow)
Backspace (unreliable)

Function keys. Space for 64 keys is
reserved (only KFO through KFlO
are currently supported).

Formula for fn
Delete line
Insert line
Delete character
Insert character or enter insert mode

Exit insert character mode
Clear screen
Clear to end of screen

Clear to end of line

Scroll one line forward
Scroll one line backward (reverse)

Next page
Previous page

Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)

Soft (partial) reset (unreliable)

24-5

Name

KEY RESET
KEY PRINT
KEY LL

Value

0531
0532
0533

Key name

Reset or hard reset (unreliable)
Print or copy
Home down or bottom (lower left)

The following keys are not currently supported on the Macintosh™ II:
KEY_BREAK,KEY_ENTER,KEY_SRESET,KEY_RESET,and
KEY PRINT.

See the sample program show at the end of this chapter for an example
of the use of getch. The show program pages through a file,
showing one full screen each time the user presses the space bar. By
creating an input file for show made up of 24-line pages, each segment
varying slightly from the previous page, nearly any exercise for
curses can be created. Such input files are called "show scripts."

In the sample show program,

cbreak
is called so that you can press the space bar without having to
press RETURN.

noecho

non 1

is called to prevent the space from echoing in the middle of a
refresh, messing up the screen.

is called to enable more screen optimization.

idlok
is called to allow insert and delete line, because many show
scripts are constructed to duplicate bugs caused by that feature.

clrtoeol
clears from the cursor to the end of the line.

clrtobot
clears from the cursor to the end of the screen.

24-6 A/UX Programming Languages and Tools, Volume 2

2.3 Highlighting
The function addch always draws two things on a window. In
addition to the character itself, it draws a set of "attributes" associated
with the character. These attributes cover various forms of
highlighting of the character. For example, the character can be put in
reverse video, bold, or underline. You can think of the attributes as the
color of the ink used to draw the character.

A window always has a set of current attributes associated with it. The
current attributes are associated with each character as it is written to
the window. The current attributes can be changed with a call to

at trset (attrs)

(Think of this as dipping the window's pen in a particular color of ink.)
The names of the attributes are

A STANDOUT
A REVERSE
A BOLD
A DIM
A INVIS
A UNDERLINE

For example, to put the word "boldface" in bold, you might use the
following code:

printw("A word in H);
attrset(A_BOLD);
printw{"boldface");
attrset(O);
printw{" really stands out.\n");

refresh () ;

Not all terminals are capable of displaying all attributes. If a particular
terminal cannot display a requested attribute, curses will attempt to
find a substitute attribute. If none is possible, the attribute is ignored.

The A STANDOUT attribute is used to make text attract the attention of
the user. The particular hardware attribute used for A_STANDOUT
varies from terminal to terminal, and is chosen to be the most visually
pleasing attribute the terminal has. A_STANDOUT is typically

curses Reference 24-7

implemented as reverse video or bold. Many programs don't really
need a specific attribute, such as bold or inverse video, but instead just
need to highlight some text. For such applications, the A _ STANDOUT
attribute is recommended. Two convenient functions,

standout ()
standend()

turn this attribute on and off.

Attributes can be turned on in combination. For example, to turn on
blinking bold text, use

attrset(A_BLINKIA_BOLD)

Individual attributes can be turned on and off with at t ron and
at t ro f f without affecting other attributes.

For a sample program using attributes, see the highlight program at
the end of this chapter. The highlight program takes a text file as
input and allows embedded escape sequences to control attributes. In
this sample program,

\ u Turns on underlining

\ B Turns on bold

\N Restores normal text

Note the initial call to scrollok. This allows the terminal to scroll if
the file is longer than one screen. When an attempt is made to draw
past the bottom of the screen, curses automatically scrolls the
terminal up a line and calls refresh.

The highlight program comes about as close to being a filter as is
possible with curses. It is not a true filter, because curses must
"take over" the CRT screen. To determine how to update the screen, .
it must know what is on the screen at all times. This requires curses
to clear the screen in the first call to refresh and to know the cursor
position and screen contents at all times.

2.4 Multiple windows
A window is a data structure representing all or part of the CRT screen.
It has room for a two-dimensional array of characters, attributes for
each character (a total of 16 bits per character: 7 for text and 9 for

24-8 A/UX Programming Languages and Tools, Volume 2

attributes), a cursor, a set of current attributes, and a number of flags.

cur s e s provides a full screen window, called

stdscr

and a set of functions that use stdscr. Another window is provided
called

curser

representing the physical screen.

It is important to understand that a window is only a data structure.
Use of more than one window does not imply use of more than one
terminal, nor does it involve more than one process. A window is
merely an object that can be copied to all or part of the terminal screen.
The current implementation of curses does not allow windows that
are bigger than the screen.

You can create additional windows with the function

newwin (lines, cols, begin-row, begin-col)

which returns a pointer to a newly created window. The window will
be lines by cols, and the upper left corner of the window will be at
screen position (begin-row, begin-col>.

All operations that affect stdscr have corresponding functions that
affect an arbitrary named window. Generally, these functions have
names formed by putting a won the front of the stdscr function and
adding the window name as the first parameter. Thus,

waddch (mywin, c)

would write the character c to window mywin. The wrefresh
function is used to flush the contents of a window to the screen.

Windows are useful for maintaining several different screen images,
among which you can alternate. Also, you can subdivide the screen
into several windows, refreshing each of them as desired. When
windows overlap, the contents of the screen will be copied from the
more recently refreshed window.

In all cases, the non-w version of the function calls the w version of the
function, using stdscr as the additional argument. Thus, a call to

curses Reference 24-9

addch(c)

results in a call to

waddch(stdscr, c)

The sample program window at the end of this chapter shows the use
of multiple windows. The main display is kept in stdscr. When the
user temporarily wants to put something else on the screen, a new
window is created covering part of the screen. A call to wre f re s h on
that window causes the window to be written over stdscr on the
screen. Calling refresh on stdscr causes the original window to
be redrawn on the screen.

In the sample window program, note the calls to

touchwin

before an overlapping window is written out. These are necessary to
defeat an optimization in curses. If you have trouble refreshing a
new window that overlaps an old window, it may be necessary to call
touchwin on the new window to get it completely written out.

For convenience, a set of move functions are also provided for most of
the common functions, which result in a call to move before the other
function. For example,

mvaddch (row, col, c)

is the same as

move (row, col); addch (c)

Combinations also exist, for example,

mvwaddch (row, col, win, c)

2.5 Multiple terminals
curses can produce output on more than one terminal at once. This
is useful for single-process programs that access a common database,
such as multiplayer games. Output to multiple terminals is a difficult
business, and curses does not solve all the problems for the
programmer. The program itself must determine the filename of each
terminal line and what kind of terminal is on each of those lines.

24-10 A/UX Programming Languages and Tools, Volume 2

The standard method (checking $TERM in the environment) does not
work, because each process can examine only its own environment.
Another problem that must be solved is that of multiple programs
reading from one line. This situation produces a race condition and
should be avoided. Nonetheless, a program wishing to take over
another terminal cannot just shut off whatever program is currently
running on that line. (Usually, security considerations would also
make this inappropriate. However, for some applications, such as an
interterminal communication program or a program that takes over
unused TTY lines, it would be appropriate.)

A typical solution requires that the user logged in on each line run a
program that notifies the master program that the user is interested in
joining the master program, telling it the notification program's process
ID, the name of the TTY line, and the type of terminal being used.
Then the program goes to sleep until the master program finishes.
When done, the master program wakes up the notification program, and
all programs exit.

curses handles multiple terminals by always having a "current
terminal." All function calls always affect the current terminal. The
master program should set up each terminal, saving a reference to the
terminals in its own variables. When it wishes to affect a terminal, it
should set the current terminal as desired, and then call ordinary
curses routines.

References to terminals have type struct screen *.
A new terminal is initialized by calling

newterm (type ,fd)

newterm returns a screen reference to the terminal being set up; type
is a character string, naming the kind of terminal being used; and fd is a
stdio file descriptor to be used for input and output to the terminal.
(If only output is needed, the file can be open for output only.)

This call replaces the normal call to initscr, which calls

newterm(getenv("TERM"),stdout)

To change the current terminal, call

curses Reference 24-11

set_term (sp)

where sp is the screen reference to be made current. set term
returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of windows
and options. Each terminal must be initialized separately with
newterm. Options such as cbreak and noecho must be set
separately for each terminal. The functions endwinand refresh
must be called separately for each terminal. See Figure 24-2 for a
typical scenario to send a message to each terminal.

Figure 24·2. Sending a message to several terminals

for (i=O; i<nterm; i++) {
set_term(terms[i]);
mvaddstr(O, 0, "Important message");
refresh();

See the sample program two at the end of this chapter for a full
illustration. The two program pages through a file, showing one page
to the first terminal and the next page to the second terminal. It then
waits for a space to be typed on either terminal, and shows the next
page to the terminal typing the space. Each terminal has to be
separately put into nodelay mode. It is necessary to busy-wait or call
sleep (see sleep(3C) in A/UX Programmer's Reference) between
each check for keyboard input, or use the multiplexor select(2).
This program sleeps for a second between checks.

The two program is just a simple example of two-terminal curses.
It does not handle notification, as described above; instead it requires
the name and type of the second terminal on the command line. As
written, the command

sleep 100000

must be typed on the second terminal to put it to sleep while the
program runs, and the first user must have both read and write
permission on the second terminal.

24-12 A/UX Programming Languages and Tools, Volume 2

2.6 Low-level terminfo usage
Some programs need to use lower-level primitives than those offered
by curses. For such programs, the terminfo-Ievel interface is
offered.

The terni.info-Ievel interface does not manage your CRT screen, but
rather gives you access to strings and capabilities that you can use to
manipulate the terminal. curses takes care of all the glitches and
misfeatures present in physical terminals, but at the terminfo level
you must deal with them yourself. Whenever possible, the higher-level
curses routines should be used. This will make your program more
portable to other A/UX systems and to a wider class of terminals.
Also, it cannot be guaranteed that this part of the interface will not
change or will be upwardly compatible with previous releases.

There are two circumstances in which you should use terminfo.
The first is when you are writing a special-purpose tool that sends a
special-purpose string to the terminal, such as programming a function
key, setting tab stops, sending output to a printer port, or dealing with
the status line. The second situation is when you are writing a filter. A
typical filter does one transformation on the input stream without
clearing the screen or addressing the cursor. If this transformation is
terminal dependent and clearing the screen is inappropriate, use
terminfo.

A program written at the terminfo level uses the framework shown
in Figure 24-3.

Figure 24·3. teJ::minfo-level framework

iinclude <curses.h>
iinclude <term.h>

setupterm(O, 1, 0);

putp(clear_screen);

reset_shell_mode();
exit(O);

curses Reference 24-13

Initialization is done by calling setupterm.

Passing the values 0, 1,0 invokes reasonable defaults. If setupterm
cannot figure out what kind of terminal you are on, it prints an error
message and exits. Your program should call reset_sheIl_mode
before it exits. Global variables with names like clear screen and
cursor_address are initialized by the call to setupterm. They
can be produced using putp or tputs (which allows the programmer
more contro!). These strings should not be directly sent to the terminal
using printf, because they contain padding information. A program
that directly generates strings will fail on terminals that require padding
or that use the xon/xoff flow-control protocol.

In the terminfo level, the higher-level routines described previously
are not available. It is up to the programmer to generate whatever is
needed. For a list of capabilities and a description of what they do, see
terminfo(4).

The termhl sample program at the end of this chapter shows a simple
use of terminfo. It is a version of the highlight sample program
that uses terminfo instead of curses. This version can be used as
a filter. The strings to enter bold and underline mode, and to turn off
all attributes, are used.

This program is more complex than it has to be in order to illustrate
some properties of terminfo. The routine vidattr could have
been used instead of directly generating

enter bold mode - -
enter underline mode - -
exit attribute mode - -

In fact, the program would be more robust if it did so, since there are
several ways to change video attribute modes. However, this program
was written to illustrate typical use of terminfo.

The function

tputs (cap, affcnt, outc)

applies padding information. Some capabilities contain strings like
$<20>. This means to pad for 20 milliseconds. tputs generates
enough pad characters to delay for the appropriate time. The first

24-14 A/UX Programming Languages and Tools, Volume 2

parameter is the string capability to be generated. The second is the
number of lines affected by the capability. Some capabilities may
require padding that depends on the number of lines affected. For
example, insert_line may have to copy a11lines below the current
line, and may require time proportional to the number of lines copied.
By convention, affcnt is 1 if no lines are affected. For safety, the value
1 is used rather than 0 (affcnt is multiplied by the amount of time per
item, and anything multiplied by 0 is 0). The third parameter is a
routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always just calls
put char. For these programs, the routine putp (cap) is a
convenient abbreviation. The termhl sample program could be
simplified by using putp.

Note also in this example the special check for the capability
underline_char. Some terminals, rather than having a code to
start underlining and a code to stop underlining, have a code to
underline the current character. The termhl program keeps track of
the current mode, and if the current character is supposed to be
underlined, will output unde r 1 ine _ cha r if necessary.

Low-level details such as this are precisely why the curses level is
recommended over the terminfo level. curses takes care of
terminals with different methods of underlining and other CRT
functions. Programs at the terminfo level must handle such details
themselves.

2.7 A larger example
For a final example, see the editor sample program at the end of this
chapter.

The editor program illustrates how to use curses to write a screen
editor patterned after the vi editor. This editor keeps the buffer in
stdscr to keep the program simple; a real screen editor would keep a
separate data structure. Many simplifications have been made here.
No provision is made for files of any length other than the size of the
screen, for lines longer than the width of the screen, or for control
characters in the file.

Several points about this program are worth noting. The routine to
write out the file illustrates the use of the mvinch function, which

curses Reference 24-15

returns the character in a window at a given position. The data
structure used here does not have a provision for keeping track of the
number of characters in a line, or the number of lines in the file, so
trailing blanks are eliminated when the file is written out.

The program uses these built-in curses functions:

insch
delch
insertln
deleteln

These functions behave much as the similar functions on intelligent
terminals behave, inserting and deleting a character or a line.

The command interpreter accepts not only ASCII characters, but also
special keys. (Some editors are "modeless," using nonprinting
characters for commands. This is largely a matter of taste; the point
being made here is that both arrow keys and ordinary ASCn characters
should be handled.)

In the editor sample program, note the call to mvaddstr in the
input routine. addstr is roughly like the C fputs function, which
writes out a string of characters. Like fputs, addstr does not add a
trailing newline. It is the same as a series of calls to addch using the
characters in the string. mvaddstr is the mv version of addstr,
which moves to the given location in the window before writing.

The CONTROL-I command illustrates a feature that most programs using
curses should add. Often some program beyond the control of
curses has written something to the screen, or some line noise has
messed up the screen beyond what curses can keep track of. In this
case, the user would type CONTROL-I, causing the screen to be cleared
and redrawn. This is done with the call to

clearok(curscr)

which sets a flag causing the next refresh to first clear the screen.
Then refresh is called to force the redraw.

Note also the call to

flash ()

24-16 AlUX Programming Languages and Tools, Volume 2

which flashes the screen if possible, and otherwise rings the bell.
Flashing the screen is intended as a bell replacement, and is particularly
useful if the bell bothers someone within earshot of the user. The
routine

beep ()

can be called when a real beep is desired. (If for some reason the
terminal is unable to beep, but able to flash, a call to beep will flash
the screen.)

Another important point is that the input command is terminated by
CONlROL-d, not EsCAPE. It is very tempting to use EsCAPE as a
command, because ESCAPE is one of the few special keys that is
available on most keyboards. (RETURN and BREAK are among the
others.) However, using ESCAPE as a separate key introduces an
ambiguity. Most terminals use sequences of characters beginning with
ESCAPE ("escape sequences' ') to control the terminal, and have special
keys that send escape sequences to the computer. If the computer
recognizes an EsCAPE coming from the terminal, it cannot determine
for sure whether the user pressed the EsCAPE key, or whether a special
key was pressed. curses handles the ambiguity by waiting for up to
1 second. If another character is received during this second, and if
that character might be the beginning of a special key, more input is
read (waiting for up to 1 second for each character) until either (1) a
full special key is read, (2) 1 second passes, or (3) a character is
received that could not have been generated by a special key.

While this strategy works most of the time, it is not foolproof. It is
possible for the user to press ESCAPE, then to type another key quickly,
which causes curses to think a special key has been pressed. Also,
there is a I-second pause until the escape can be passed to the user
program, resulting in slower response to the ESCAPE key.

Many existing programs use ESCAPE as a fundamental command, so it
cannot be changed without infuriating a large class of users. Such
programs cannot make use of special keys without dealing with this
ambiguity, and at best must resort to a timeout solution. The message
is clear: When designing your program, avoid the EsCAPE key.

curses Reference 24-17

3. List of curses routines
This section describes all the routines available to the programmer in
the curses package. The routines are organized by function. For an
alphabetical list, see curses(3X).

3.1 Structure
All programs using curses should include the file <curses. h>.
This file defines several curses functions as macros, and defines
several global variables and the datatype WINDOW. References to
windows are always of type WINDOW *.

curses also defines certain windows as constants:

stdscr The standard screen, used as a default to routines expecting a
window

curser The current screen, used only for certain low-level operations
like clearing and redrawing a garbaged screen

Integer variables are declared, containing the size of the screen.

LINES Number of lines on the screen

eOLS Number of columns on the screen

Boolean constants are defined as follows with values 1 and 0:

#define TRUE(l)

#define FALSE(O)
#define ERR (-1)

#define OK(O)

Additional constants are values returned from most curses functions:

ERR Returned if there was some error, such as moving the cursor
outside a window

OK Returned if the function could be properly completed

The include file

<curses.h>

automatically includes <stdio . h> and an appropriate TTY driver
interface file, currently either <sgt ty . h> or <termio . h>.

24-18 A/UX Programming Languages and Tools, Volume 2

Note: The driver interface <sgtty. h> is a TTY driver
interface used in other versions of the UNIX system.

Including <stdio. h> again is harmless but wasteful; including
< s gt t Y • h> again usually results in a fatal error.

A program using curses should include the loader option

-lcurses

in the makefile. This is true both for the terminfo level and the
curses level.

The compilation flag

-DMINICURSES

can be included if you restrict your program to a small subset of
curses concerned primarily with screen output and optimization.
The routines possible with mini-curses are listed in the section
"Mini-curses" below.

3.2 Initialization
The following functions are called when initializing a program.

initscr ()
The first function called should always be ini t s cr. This
determines the terminal type and initializes curses data
structures. in its c r also arranges that the first call to
refresh clears the screen.

endwin ()
A program should always call endwin before exiting. This
function restores TTY modes, moves the cursor to the lower-left
comer of the screen, resets the terminal into the proper nonvisual
mode, and tears down all appropriate data structures.

newterm (type,/d)
A program that generates output to more than one terminal
should use newterm instead of initscr. newterm should
be called once for each terminal. It returns a variable of type
SCREEN * which should be saved as a reference to that
terminal. The arguments are the type of the terminal (a string)

curses Reference 24-19

and a stdio file descriptor (FILE *) for output to the
terminal. The file descriptor should be open for both reading and
writing if input from the terminal is desired. The program should
also call endwin for each terminal being used (see set _term
below). If an error occurs, the value NULL is returned.

set_term (new)

This function is used to switch to a different terminal. The
screen reference new becomes the new current terminal. The
previous terminal is returned by the function. All other calls
affect only the current terminal.

longname ()
This function returns a pointer to a static area containing a
verbose description of the current terminal. It is defined only
after a call to initscr, newterm, or setupterm.

3.3 Option setting
The functions described here set options within curses. In each case,
win is the window affected, and bl is a Boolean flag with value TRUE
or FALSE (indicating whether to enable or disable the option). All
options are initially FALSE. It is not necessary to turn these options
off before calling endwin.

clearok (win, bl>
If set, the next call to wrefresh with this window clears the
screen and redraws the entire screen. If win is curser, the next
call to wrefresh with any window causes the screen to be
cleared. This is useful when the contents of the screen are
uncertain, or in some cases for a more pleasing visual effect.

idlok (win, bl>
If this feature is enabled, curses considers using the hardware
insert/delete line feature of terminals so equipped. If disabled,
curses never uses this feature. The insert/delete character
feature is always considered. Enable this option only if your
application needs insert/delete line, for example, for a screen
editor. It is disabled by default because insert/delete line tends to
be visually annoying when used in applications where it is not
really needed. If insert/delete line cannot be used, curses

24-20 NUX Programming Languages and Tools, Volume 2

redraws the changed portions of all lines that do not match the
desired line.

keypad (win, b/)
This option enables the keypad of the user's terminal. If
enabled, the user can press a function key (such as an arrow key)
and getch will return a single value representing the function
key. If keypad is disabled, curses does not treat function
keys specially. If the keypad in the terminal can be turned on
(made to transmit) and off (made to work locally), turning on this
option turns on the terminal keypad.

leaveok (win, b/)
Normally, the hardware cursor is left at the location of the
window cursor being refreshed. This option allows the cursor to
be left wherever the update happens to leave it. It is useful for
applications where the cursor is not used, because it reduces the
need for cursor motions. If possible, the cursor is made invisible
when this option is enabled.

meta (win, b/)
If enabled, characters returned by getch are transmitted with all
8 bits, instead of stripping the highest bit. The value OK is
returned if the request succeeded; the value ERR is returned if the
terminal or system is not capable of 8-bit input.

meta mode is useful for extending the nontext command set in
applications where the terminal has a meta shift key. curses
takes whatever measures are necessary to arrange for 8-bit input.
On other versions of UNIX systems, raw mode is used. On
NUX systems, the character size is set to 8, parity checking
disabled, and stripping of the 8th bit turned off.

Note that 8-bit input is a fragile mode. Many programs and
networks pass only 7 bits. If any link in the chain from the
terminal to the application program strips the 8th bit, 8-bit input
is impossible.

nodelay (win, b/)
This option causes getch to be a nonblocking call. If no input
is ready, getch returns -1. If disabled, getch hangs until a
key is pressed.

curses Reference 24-21

intrflush (win, bj)
If this option is enabled when an interrupt key is pressed on the
keyboard (interrupt, quit, suspend), all output in the TrY driver
queue is flushed, giving the effect of faster response to the
interrupt but causing curses to have the wrong idea of what is
on the screen. Disabling the option prevents the flush. The
default is for the option to be enabled. This option depends on
support in the underlying teletype driver.

typeahead (fd)
Sets the file descriptor for typeahead check. fd should be an
integer returned from open or fileno. Setting typeahead
to -1 disables typeahead check. By default, file descriptor 0
(stdin) is used. typeahead is checked independently for
each screen, and for multiple interactive terminals it should
probably be set to the appropriate input for each screen. A call to
typeahead always affects only the current screen.

scrollok (win, bj)
This option controls what happens when the cursor of a window
is moved off the edge of the window, either from a newline on
the bottom line or because the last character of the last line was
typed. If disabled, the cursor is left on the bottom line. If
enabled, w re f re s h is called on the window, and then the
physical terminal and window are scrolled up one line. Note that
to get the physical scrolling effect on the terminal, it is also
necessary to call idlok.

setscrreg (t, b)

wsetscrreg (win, t, bj)
These two functions allow the user to set a software scrolling
region in a window win or stdscr. t and b are the line numbers
of the top and bottom margins of the scrolling region. (Line 0 is
the top line of the window.) If this option and scrollok are
enabled, an attempt to move off the bottom margin line causes all
lines in the scrolling region to scroll up one line. Note that this
has nothing to do with use of a physical scrolling region
capability in the terminal, like that in the VT100. Only the text
of the window is scrolled. If idlok is enabled and the terminal

24-22 A/UX Programming Languages and Tools, Volume 2

has either a scrolling region or insert/delete line capability, they
will probably be used by the output routines.

3.4 Terminal mode setting
The functions described here are used to set modes in the TTY driver.
The initial mode usually depends on the setting when the program is
called; the initial modes documented here represent the normal
situation.

cbreak ()
nocbreak ()

These two functions put the terminal into and out of CBREAK

mode. In this mode, characters typed by the user are
immediately available to the program. When out of this mode,
the teletype driver buffers characters typed until newline is
typed. Interrupt and flow-control characters are unaffected by
this mode. Initially the terminal is not in CBREAK mode. Most
interactive programs using curses will set this mode.

echo ()
noecho ()

These functions control whether characters typed by the user are
echoed as typed. Initially, characters typed are echoed by the
teletype driver. Authors of many interactive programs prefer to
do their own echoing in a controlled area of the screen, or not to
echo at all, so they disable echoing.

nlO
nonl ()

These functions control whether newline is translated into
carriage return and line feed on output, and whether return is
translated into newline on input. Initially, the translations do
occur. By disabling these translations, curses is able to make
better use of the line feed capability, resulting in faster cursor
motion.

rawO
noraw ()

The terminal is placed into or out of raw mode. raw mode is
similar to cbreak mode in that characters typed are
immediately passed through to the user program. The

curses Reference 24-23

differences are that in raw mode, the interrupt, quit, and suspend
characters are passed through uninterpreted instead of generating
a signal. raw mode also causes 8-bit input and output. The
behavior of the BREAK key may be different on different
systems.

resetty ()
savetty ()

These functions save and restore the state of the TTY modes.
s a vet t y saves the current state in a buffer; re set t y restores
the state to what it was at the last call to savetty.

3.5 Window manipulation

neww in (num-lines, num-cols, beg-row, beg-col)
Creates a new window with the given number of lines and
columns. The upper-left corner of the window is at line beg-row
column beg-col. If either num-lines or num-cols is 0, they are
defaulted to LINES-beg-row and COLS-beg-coi. A new full
screen window is created by calling newwin (0,0,0,0) .

newpad (num-lines, num-cols)
Creates a new pad data structure. A pad is like a window,
except that it is not restricted by the screen size and is not
associated with a particular part of the screen. Pads can be used
when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads
(for example, from scrolling or echoing of input) do not occur. It
is not legal to call refresh with a pad as an argument; the
routines prefresh or pnoutrefresh should be called
instead. Note that these routines require additional parameters to
specify the part of the pad to be displayed and the location on the
screen to be used for display.

subwin (orig, num-lines, num-cols, begy, begx)
Creates a new window with the given number of lines and
columns. The window is at position (begy, begx) on the screen.
(It is relative to the screen, not orig.) The window is made in the
middle of the window orig, so that changes made to one window
affect both windows. When using this function, often it will be
necessary to call touchwin before calling wrefresh.

24-24 A/UX Programming Languages and Tools, Volume 2

delwin (win)
Deletes the named window, freeing up all memory associated
with it. In the case of overlapping windows, subwindows should
be deleted before the main window.

mvwin (win, br, be)
Moves the window so that the upper-left comer is at position (br,
be). If the move would cause the window to be off the screen, it
is an error and the window is not moved.

touchwin (win)
Throws away all optimization information about which parts of
the window have been touched, by pretending the entire window
has been drawn on. This is sometimes necessary when using
overlapping windows, because a change to one window will
affect the other window, but the records of which lines have been
changed in the other window will not reflect the change.

overlay (win}, win2)
overwrite (win}, win2)

These functions overlay win} on top of win2; that is, all text in
win} is copied into win2. The difference is that overlay is
nondestructive (blanks are not copied) and ove rwr i t e is
destructive.

3.6 Causing output to the terminal

refresh ()
wrefresh (win)

These functions must be called to get any output on the terminal,
as other routines merely manipulate data structures. wrefresh
copies the named window to the physical terminal screen, taking
into account what is already there in order to do optimizations.
refresh is the same, using stdscr as a default screen.
Unless lea veok has been enabled, the physical cursor of the
terminal is left at the location of the window's cursor.

doupdate ()
wnoutrefresh (win)

These two functions allow multiple updates with more efficiency
than wrefresh. To use them, it is important to understand how
curses works. In addition to all the window structures,

curses Reference 24-25

curses keeps two data structures representing the terminal
screen: a "physical" screen, describing what is actually on the
screen, and a "virtual" screen, describing what the programmer
wants to have on the screen. wrefresh works by first copying
the named window to the virtual screen (wnoutrefresh),
and then calling the routine to update the screen (doupda t e) .
If the programmer wishes to produce several windows at once, a
series of calls to wrefresh will result in alternating calls to
wnoutrefresh and doupdate, causing several bursts of
output to the screen. By calling wnoutrefresh for each
window, it is then possible to call doupdate once, resulting in
only one burst of output, with probably fewer total characters
transmitted.

prefresh (pad,pminrow,pmincol
sminrow, smincol
smaxrow, smaxcol)

pnout ref resh (pad, pminrow, pmincol
sminrow, smincol
smaxrow, smaxcol)

These routines are analogous to wref resh and
wnoutrefresh except that pads, instead of windows, are
involved. The additional parameters are needed to indicate what
part of the pad and screen are involved. pminrow and pmincol
specify the upper-left comer, in the pad, of the rectangle to be
displayed. sminrow, smincol, smaxrow, and smaxcol specify the
edges, on the screen, of the rectangle to be displayed in. The
lower-right comer in the pad of the rectangle to be displayed is
calculated from the screen coordinates, because the rectangles
must be the same size. Both rectangles must be entirely
contained within their respective structures.

3.7 Writing on window structures
The routines described here are used to "draw" text on windows. In
all cases, a missing win is taken to be s t ds cr. y and x are the row
and column, respectively. The upper-left comer is always (0,0), not
(1,1). The mv functions imply a call to move before the call to the
other function.

24-26 AlUX Programming Languages and Tools, Volume 2

3.7.1 Moving the cursor

move (y,x)
wmove (win,y,x)

The cursor associated with the window is moved to the given
location. This does not move the physical cursor of the terminal
until refresh is called. The position specified is relative to the
upper-left comer of the window. The position specified is
relative to the screen, not to the individual window. Thus, if you
have a window which is not in the upper-left corner of the
screen, moving to the upper -left comer of the window would
require the screen coordinates of that comer of the window
rather than (0,0) to be passed to move.

3.7.2 Writing one character

addch (ch)
waddch (win, ch)
mvaddch (y,x, ch)
mvwaddch (win, y, x, ch)

The character ch is put in the window at the current cursor
position of the window. If ch is a tab, newline, or backspace, the
cursor is moved appropriately in the window. If ch is a different
control character, it is drawn in the AX notation. The position of
the window cursor is advanced. At the right margin, an
automatic new line is performed. At the bottom of the scrolling
region, if scrollok is enabled, the scrolling region is scrolled
up one line.

The ch parameter is actually an integer, not a character. Video
attributes can be combined with a character by ORing them into
the parameter. This will result in these attributes also being set.
(The intent here is that text, including attributes, can be copied
from one place to another with inch and addch.)

3.7.3 Writing a string

addstr (str)

waddstr (win, str)

mvaddstr(y,x,su)
mvwaddstr (win, y,x, su)

These functions write all the characters of the null terminated

curses Reference 24-27

character string str on the given window. They are identical to a
series of calls to addch.

3.7.4 Clearing areas of the screen

erase ()
werase (win)

These functions copy blanks to every position in the window.

clear ()
wclear (win)

These functions are like erase and werase but they also call
clearok, arranging that the screen will be cleared on the next
call to refresh for that window.

clrtobot ()
wclrtobot (win)

All lines below the cursor in this window are erased. Also, the
current line to the right of the cursor is erased.

clrtoeol ()
wclrtoeol (win)

The current line to the right of the cursor is erased.

3.7.5 Inserting and deleting text

delch ()
wdelch (win)
mvdelch (y,x)
mvwdelch (win,y,x)

The character under the cursor in the window is deleted. All
characters to the right on the same line are moved to the left one
position. This does not imply use of the hardware delete
character feature.

deleteln ()
wdeleteln (win)

The line under the cursor in the window is deleted. Alllines
below the current line are moved up one line. The bottom line of
the window is cleared. This does not imply use of the hardware
delete-line feature.

24-28 AlUX Programming Languages and Tools, Volume 2

insch (c)

winsch (win, c)

mvinsch (y,x, c)

mvwinsch (win, y,x, c)

The character c is inserted before the character under the cursor.
All characters to the right are moved one space to the right,
possibly losing the rightmost character on the line. This does not
imply use of the hardware insert-character feature.

insertln ()
winsertln (win)

A blank line is inserted above the current line. The bottom line
is lost This does not imply use of the hardware insert-line
feature.

3.7.6 Formatted output

printw (fmt, args)
wprintw (win,fmt, args)
mvprintw (y,x,fmt, args)
mvwprintw (win, y,x,fmt, args)

These functions correspond to printf. The characters that
would be produced by printf are instead produced using
waddch on the given window.

3.7.7 Miscellaneous

box (win, vert, hor)
A box is drawn around the edge of the window. vert and hor are
the characters with which the box is to be drawn.

scroll (win)
The window is scrolled up one line. This involves moving the
lines in the window data structure. As an optimization, if the
window is stdscr and the scrolling region is the entire
window, the physical screen is scrolled at the same time.

3.8 Input from a window

getyx (win,y,x)
The cursor position of the window is placed in the two integer
variables y and x. Since this is a macro, no & is necessary for x
ory.

curses Reference 24-29

inch ()
winch (win)
mvinch (y,x)
mvwinch (win,y,x)

The character at the current position in the named window is
returned. If any attributes are set for that position, their values
will be ORed into the value returned. The predefined constants
A ATTRIBUTES and A CHARTEXT can be used with the &

operator to extract the character or attributes alone. For
example:

#include <curses.h>

char Ci

c = inch() & A_CHARTEXTi

3.9 Input from the terminal

getch ()
wgetch (win)
mvgetch (y,x)
mvwgetch (win,y,x)

A character is read from the terminal associated with the
window. In nodelay mode, if there is no input waiting, the
value -1 is returned. In delay mode, the program hangs until
the system passes text through to the program. Depending on the
setting of cbreak , this is after one character, or after the first
newline.

If keypad mode is enabled, and a function key is pressed, the
code for that function key is returned instead of the raw
characters. Possible function keys are defined with integers
beginning with 0401, whose names begin with KEY_. These are
listed in the section "Input" above. If a character is received
that could be the beginning of a function key (such as ESCAPE),

cur s e s sets a I-second timer. If the remainder of the sequence
does not come in within 1 second, the character is passed
through; otherwise the function key value is returned. For this
reason, on many terminals, there will be a I-second delay after a

24-30 AlUX Programming Languages and Tools, Volume 2

user presses the ESCAPE key. (Using the ESCAPE key for a single
character function is discouraged.)

getstr (str)
wgetstr (win, str)
mvgetstr(y,x,su)
mvwgetstr (win, y,x, su)

A series of calls to getch is made, until a newline is received.
The resulting value is placed in the area pointed at by the
character pointer str. The user's erase and kill characters are
interpreted.

scanw <lmt, args)
wscanw (win,fmt, args)
mvscanw (y, x,fmt, args)
mvwscanw (win, y, x,fmt, args)

This function corresponds to scanf. wgetstr is called on the
window, and the resulting line is used as input for the scan.

3.10 Video attributes

attroff (at)
wattroff (win, artrs)
attron (at)
wattron (win, artrs)
attrset (at)
wattrset (win, artrs)
standout ()
standend()
wstandout (win)
wstandend (win)

These functions set the current attributes of the named window.
These attributes can be any combination of A_STANDOUT,
A_REVERSE,A_BOLD,A_DIM, A_BLINK, and
A UNDERLINE. These constants are defined in <curses. h>
and can be combined with the C language OR operator (I).

The current attributes of a window are applied to all characters
that are written into the window with waddch. Attributes are a
property of the character and move with the character through
any scrolling and insert/delete line/character operations. To the

curses Reference 24-31

extent possible on the particular terminal, they are displayed as
the graphic rendition of characters put on the screen.

attrset (at)

sets the current attributes of the given window to at.

attroff (at)

turns off the named attributes without affecting any other
attributes.

attron (at)

turns on the named attributes without affecting any others.

standout

is the same as attron (A_STANDOUT) .

standend

is the same as attrset (0) ; that is, it turns off all attributes.

3.11 Bells and flashing lights

beep ()
flash ()

These functions are used to signal the user. beep sounds the
audible alarm on the terminal, if possible, and, if not, flashes the
screen (visible bell), if that is possible. flash flashes the
screen, and, if that is not possible, sounds the audible signal. If
neither signal is possible, nothing happens. Nearly all terminals
have an audible signal (a bell or beep) but only some can flash
the screen.

3.12 Portability functions
The functions described here do not directly involve terminal
dependent character output but tend to be needed by programs that use
curses. Unfortunately, their implementation varies from one version
of UNIX to another. They have been included here to enhance the
portability of programs using curses.

24-32 AlUX Programming Languages and Tools, Volume 2

baudrate ()
baudrate returns the output speed of the terminal. The
number returned is the integer baud rate, for example, 9600,
rather than a table index such as B 9600.

erasechar ()
The erase character chosen by the user is returned. This is the
character typed by the user to erase the character just typed.

killchar ()
The line-kill character chosen by the user is returned. This is the
character typed by the user to abort the entire line being typed.

flushinp ()
This function throws away any typeahead that has been typed by
the user and has not yet been read by the program.

3.13 Delays
The functions described here are highly unportable, but are often
needed by programs that use curses, especially real-time response
programs. Some of these functions require a particular operating
system or a modification to the operating system to work. In all cases,
the routine compiles and returns an error status if the requested action
is not possible. It is recommended that you avoid use of these
functions if possible.

draino (ms)

The program is suspended until the output queue has drained
enough to complete in ms additional milliseconds. Thus,

draino(50)

at 1200 baud would pause until there are no more than six
characters in the output queue, because it would take 50
milliseconds to output the additional six characters. The purpose
of this routine is to keep the program (and thus the keyboard)
from getting ahead of the screen. If the operating system does
not support the ioctls needed to implement draino, the value
ERR is returned; otherwise, OK is returned.

napms (ms)

This function suspends the program for ms milliseconds. It is
similar to sleep except with higher resolution. The resolution

curses Reference 24-33

actually provided varies with the facilities available in the
operating system, and often a change to the operating system is
necessary to produce good results. If resolution of at least .1
second is not possible, the routine rounds to the next higher
second, calls sleep, and returns ERR. Otherwise, the value OK

is returned. Often the resolution provided is l/60th second.

3.14 Lower-level functions
The functions described here are provided for programs not needing
the screen optimization capabilities of curses. Programs are
discouraged from working at this level, because they must handle
various glitches in certain terminals. However, a program can be
smaller if it only brings in the low-level routines.

3.14.1 Cursor motion

mvcur (oldrow, oldcol, newrow, newcol)
This routine optimally moves the cursor from (oldrow, oldcol) to
(newrow, newcol). The user program is expected to keep track
of the current cursor position. Note that unless a full screen
image is kept, curses will have to make pessimistic
assumptions, sometimes resulting in less than optimal cursor
motion. For example, moving the cursor a few spaces to the
right can be done by transmitting the characters being moved
over, but if curses does not have access to the screen image, it
does not know what these characters are.

3.14.2 terminfo level
These routines are called by low-level programs that need access to
specific capabilities of terminfo. A program working at this level
should include both <curses. h> and <term. h>, in that order.
After a call to set upterm, the capabilities will be available with
macro names defined in <term. h>. See terminfo(4) for a detailed
description of the capabilities.

Boolean-valued capabilities will have the value 1 if the capability is
present, 0 if it is not. Numeric capabilities have the value -1 if the
capability is missing, and have a value at least 0 if it is present. String
capabilities (both those with and those without parameters) have the
value NULL if the capability is missing, and otherwise have type

24-34 AlUX Programming Languages and Tools, Volume 2

char *
and point to a character string containing the capability. The special
character codes involving the \ and ... characters (such as \ r for
RETURN, or ... A for CONfROL-a) are translated into the appropriate
ASCII characters. Padding information (of the fonn $<time» and
parameter information (beginning with %) are left uninterpreted at this
stage. The routine tputs interprets padding information, and tparm
interprets parameter information.

If the program needs to handle only one terminal, the definition
-DS INGLE can be passed to the C compiler, resulting in static
references to capabilities instead of dynamic references. This can
result in smaller code, but prevents use of more than one terminal at a
time. Very few programs use more than one terminal, so almost all
programs can use this flag.

setupterm <term,filenum, errret)
This routine is called to initialize a terminal. term is the
character string representing the name of the terminal being used.
filenum is the NUX file descriptor of the terminal being used for
output. errret is a pointer to an integer, in which a success or
failure indication is returned. The values returned can be 1 (all is
well), ° (no such tenninal), or -1 (some problem locating the
terminfo data base).

The value of term can be given as 0, which causes the value of
TERM in the environment to be used. The errret pointer can also
be given as 0, meaning no error code is wanted. If errret is
defaulted, and something goes wrong, setuptermprints an
appropriate error message and exits, rather than returning. Thus,
a simple program can call set upterm < 0 , 1, 0) and not worry
about initialization errors.

If the variable TERMINFO is set in the environment to a
pathname, set upterm checks for a compiled terminf 0

description of the terminal under that path, before
checking /usr / lib/terminfo. Otherwise, only
/usr / lib/terminfo is checked.

set upterm checks the TTY driver mode bits, usingfilenum,
and changes any that might prevent the correct operation of other

curses Reference 24-35

low-level routines. Currently, the mode that expands tabs into
spaces is disabled, because the tab character is sometimes used
for different functions by different terminals. (Some terminals
use it to move right one space. Others use it to address the cursor
to row or column 9.) If the system is expanding tabs,
setupterm removes the definition of the tab and backtab
functions, making the assumption that because the user is not
using hardware tabs, they may not be properly set in the terminal.
Other system-dependent changes, such as disabling a virtual
terminal driver, may be made here.

As a side effect, set upterm initializes the global variable
ttytype, which is an array of characters, to the value of the list
of names for the terminal. This list comes from the beginning of
the terminfo description.

After the call to setupterm, the global variable cur_term is
set to point to the current structure of terminal capabilities. By
calling setupterm for each terminal, and saving and restoring
cur_term, it is possible for a program to use two or more
terminals at once.

The mode that turns newlines into "carriage return-line feed" on
output is not disabled. Programs that use cu r so r _down or
scroll_forward should avoid these capabilities if their value
is line feed unless they disable this mode. setuptermcalls
reset yrog_ mode after any changes it makes.

defyrog_mode ()
def_shell_mode ()
resetyrog_mode()
reset_shell~ode()

These routines can be used to change the TTY modes between
the two states: shell (the mode they were in before the program
was started) and program (the mode needed by the program).
defyrog_mode saves the current terminal mode as program
mode. setuptermand initscr call def_shell_mode
automatically. resetyrog_mode puts the terminal into
program mode, and reset_sheIl_mode puts the terminal
into normal mode. A typical calling sequence is for a program to
call initscr (or setupterm if a terminfo-Ievel program),

24-36 A/UX Programming Languages and Tools, Volume 2

then to set the desired program mode by calling routines such as
cbreak and noecho, and then to call def yrogyode to
save the current state. Before a shell escape or CONTROL-z
suspension, the program should call reset_shell_mode, to
restore normal mode for the shell. Then, when the program
resumes, it should call reset yrog_ mode. Also, all
programs must call reset_shell_mode before they exit.
(The higher level routine endwin automatically calls
reset _ shell_mode.)

Normal mode is stored in

cur_term->Ottyb,

and program mode is in

cur_term->Nttyb

These structures are both of type SGTTYB (which varies
depending on the system). Currently the possible types are

struct sgttyb

(on some other systems) and

struct termio

(on this version of the A/UX system). def yrog_ mode
should be called to save the current state in Nt t yb.

vidputs (newmode, pute)
newmode is any combination of attributes, defined in
<curses. h>. putc is a putchar-like function. The proper
string to put the terminal in the given video mode is generated.
The previous mode is remembered by this routine. The result
characters are passed through putc.

vidattr (newmode)
The proper string to put the terminal in the given video mode is
output to stdout .

tparm (instring, pJ , p2, p3, p4, p5, p6, p7, pB, p9)
tparm is used to instantiate a parameterized string. The
character string returned has the given parameters applied, and is
suitable for t pu t s. Up to nine parameters can be passed, in

curses Reference 24-37

addition to the parameterized string.

tputs (cp, affcnt, outc)
A string capability, possibly containing padding information, is
processed. Enough padding characters to delay for the specified
time replace the padding specification, and the resulting string is
passed, one character at a time, to the routine outc, which should
expect one character parameter. (This routine often just calls
putchar.) cp is the capability string. affcnt is the number of
units affected by the capability, which varies with the particular
capability. (For example, the affcnt for insert_line is the
number of lines below the inserted line on the screen, that is, the
number of lines that will have to be moved by the terminal.)
affcnt is used by the padding information of some terminals as a
multiplication factor. If the capability does not have a factor, the
value 1 should be passed.

putp (str)

This is a convenient function to output a capability with no
affcnt. The string is output to putchar with an affcnt of 1. It
can be used in simple applications that do not need to process the
output of tputs.

delay_output(~)

A delay is inserted into the output stream for the given number of
milliseconds. The current implementation inserts sufficient pad
characters for the delay. This should not be used in place of a
high-resolution sleep, but rather for delay effects in the output.
Due to buffering in the system, it is unlikely that this call will
result in the process actually sleeping. Because large numbers of
pad characters can be generated, it is recommended that ~ not
exceed 500.

4. Operation details
These paragraphs describe many of the details of how the curses and
terminfo package operates.

4.1 Insert and delete line and character
The algorithm used by curses takes into account insert and delete
line and character functions, if available, in the terminal. Calling the
routine

24-38 AlUX Programming Languages and Tools, Volume 2

idlok(stdscr, TRUE);

enables insert/delete line. By defaultt curses does not use
insert/delete line. This was not done for performance reasonst because
there is no speed penalty involved. Rathert experience has shown that
some programs do not need this facility, and that if curses uses
insert/delete line, the result on the screen can be visually annoying.
Many simple programs using curses do not need this, so the default
is to avoid insert/delete line. Insert/delete character is always
considered.

4.2 Additional terminals
cur s e s will work even if absolute cursor addressing is not possible,
as long as the cursor can be moved from any location to any other
location. It considers local motions, parameterized motions, home, and
carriage return.

curses is aimed at full-duplex, alphanumeric, video terminals. No
attempt is made to handle half-duplex, synchronous, hard copy, or bit
mapped terminals. Bit-mapped terminals can be handled by
programming the bit-mapped terminal to emulate an ordinary
alphanumeric terminal. This does not take advantage of the bit-map
capabilities, but it is the fundamental nature of curses to deal with
alphanumeric terminals.

The curses package handles terminals with the "magic cookie
glitch" in their video attributes. The term "magic cookie" means that
a change in video attributes is implemented by storing a magic cookie
in a location on the screen. This cookie takes up a spacet preventing an
exact implementation of what the programmer wanted. curses takes
the extra space into account, and moves part of the line to the right, as
necessary. Advantage is taken of existing spaces, but in some cases,
this unavoidably results in losing text from the right edge of the screen.

4.3 Multiple terminals
Some applications need to display text on more than one terminal,
controlled by the same process. Even if the terminals are of different
typeSt curses can handle this.

All information about the current terminal is kept in a global variable

curses Reference 24-39

struct screen *SP;

Although the screen structure is hidden from the user, the C compiler
will accept declarations of variables that are pointers. The user
program should declare one screen pointer variable for each terminal it
wishes to handle. The routine

struct screen *newterm (type ,fd)

sets up a new terminal of the given terminal type, which does output on
file descriptorfd. A call to initscr is essentially

newterm(getenv(nTERMn),stdout)

A program wishing to use more than one terminal should use
newterm for each terminal and save the value returned as a reference
to that terminal.

To switch to a different terminal, call

set_term (term)

The old value of SP is returned. The programmer should not assign
directly to SP because certain other global variables must also be
changed.

All curses routines always affect the current terminal. To handle
several terminals, switch to each one in turn with set_term, and then
access it. Each terminal must be set up with newterm, and closed
down with endwin.

4.4 Video attributes
Video attributes can be displayed in any combination on terminals with
this capability. They are treated as an extension of the standout
capability, which is still present.

Each character position on the screen has 16 bits of information
associated with it. Seven of these bits are the character to be displayed,
leaving separate bits for nine video attributes. These bits are used for
standout, underline, reverse video, blink, dim, bold, blank, protect, and
alternate character set. Standout is taken to be whatever highlighting
works best on the terminal, and should be used by any program that
does not need specific or combined attributes. Underlining, reverse
video, blink, dim, and bold are the usual video attributes. Blank means

24-40 AlUX Programming Languages and Tools, Volume 2

that the character is displayed as a space, for security reasons.
Protected and alternate character set depend on the particular terminal.
The use of these last three bits is subject to change and not
recommended. Note also that not all terminals implement all
attributes-in particular, no current terminal implements both dim and
bold.

The routines to use these attributes include

attrset (attrs)

attron (attrs)

attroff (attrs)

standout ()

standend ()

wattrset (win, attrs)

wattron (win, attrs)

wattroff (win, attrs)

wstandout (win)
wstandend (win)

Attributes, if given, can be any combination of

A STANDOUT
A UNDERLINE

A REVERSE

A BLINK
A DIM
A BOLD

A INVIS

A PROTECT

A ALTCHARSET

These constants, defined in curses. h, can be combined with the C
language OR operator (I) to get multiple attributes.

attrset(attrs)

attron (attrs)

attroff (attrs)

standout ()

standend ()

curses Reference

Sets the current attributes to the given attrs

Turns on the given attrs in addition to any
attributes that are already on

Turns off the given attrs, without affecting
any others

Equivalent to

attron(A_STANDOUT)

attrset(A_NORMAL)

24-41

If the particular tenninal does not have the particular attribute or
combination requested, curses will attempt to use some other
attribute in its place. If the tenninal has no highlighting at all, all
attributes will be ignored.

4.5 Special keys
Many tenninals have special keys, such as arrow keys, keys to erase
the screen or insert or delete text, and keys intended for user functions.
The particular sequences these tenninals send differ from tenninal to
terminal. curses allows the programmer to handle these keys.

A program using special keys should tum on the keypad by calling

keypad (stdscr, TRUE)

at initialization. This causes special characters to be passed through to
the program by the function getch. These keys have constants that
are listed in the section on "Input" above. They have values starting
at 0401, so they should not be stored in a char variable, as significant
bits will be lost.

A program using special keys should avoid using the ESCAPE key,
because most sequences start with escape, creating an ambiguity.
curses will set a I-second alarm to deal with this ambiguity, which
will cause delayed response to the ESCAPE key. It is a good idea to
avoid escape in any case, since there is eventually pressure for nearly
any screen-oriented program to accept arrow-key input.

4.6 Scrolling region
There is a programmer-accessible scrolling region. Nonnally, the
scrolling region is set to the entire window, but the calls

setscrreg (top, bot)
wsetscrreg (win, top, bot)

set the scrolling region for stdscr or the given window to any
coinbination of top and bottom margins. When scrolling past the
bottom margin of the scrolling region, the lines in the region move up
one line, destroying the top line of the region. If scrolling has been
enabled with scrollok, scrolling takes place only within that
window. Note that the scrolling region is a software feature, and only
causes a window data structure to scroll. This mayor may not translate
to use of the hardware scrolling-region feature of a tenninal or of

24-42 AlUX Programming Languages and Tools, Volume 2

insert/delete line; some "intelligent" terminals perform these
operations rather than being controlled directly by the software.

4.7 Mini-curses
curses copies from the current window to an internal screen image
for every call to refresh. If the programmer is interested only in
screen output optimization and does not want the windowing or input
functions, an interface to the lower-level routines is available. This
will make the program somewhat smaller and faster. The interface is a
subset of full curses, so that conversion between the levels is not
necessary to switch from mini-curses to full curses.

The following functions of curses and terminfo are available to
the user of mini-curses:

addch (ch) addstr (str) attroff (attrs)

attron (attrs) ttrset (at) clear ()
erase () initscr move (y,x)
mvaddch (y, x, ch) mvaddstr (y, x, str) newterm
refresh () standend() standout ()

The following functions of curses and terminfo are not available
to the user of mini-curses:

box clrtobot clrtoeol
delch deleteln delwin
getch getstrs inch
insch insert In longname
makenew mvdelch mvgetch
mvgetstr mvinch mvinsch
mvprintw mvscanw mvwaddch
mvwaddstr mvwdelch mvwgetch
mvwgetstr mvwin mvwinch
mvwinsch mvwprintw mvwscanw
newwin overlay overwrite
printw putp scanw
scroll setscrreg subwin
touchwin vidattr waddch
waddstr wclear wclrtobot
wclrtoeol wdelch wdeleteln

curses Reference 24-43

werase
winsch
wprintw
wsetscrreg

wgetch
winsertln
wrefresh

wgetstr
wmove
wscanw

The subset mainly requires the programmer to avoid use of more than
the one-window stdscr. Thus, all functions beginning with w are
generally undefined. Certain high-level functions that are convenient
but not essential are also not available, including printw and scanw.
Also, the input routine getch cannot be used with mini-curses.
Features implemented at a low level, such as use of hardware
insert/delete line and video attributes, are available in both versions.
Also, mode setting routines such as crmode and noecho are allowed.

To access mini-curses, add -DMINICURSES to the CFLAGS in the
makefile. If routines are requested that are not in the subset, the loader
will print error messages such as

Undefined:
~getch

m waddch

to tell you that the routines getch and waddch were used but are not
available in the subset. Because the preprocessor is involved in the
implementation of mini-curses, the entire program must be
recompiled when changing from one version to the other.

4.8 TTY mode functions
In addition to the save/restore routines savetty and resetty,
standard routines are available for going into and out of normal TTY
mode. These routines are reset term, which puts the terminal back
in the mode it was in when curses was started; fixterm, which
undoes the effects of resetterm, that is, restores the "current
curses mode"; and saveterm, which saves the current state to be
used by fixterm. endwin automatically calls reset term, and the
routine to handle CONIROL-z (on other systems that have process
control) also uses resettermand fixterm. Programmers should
use these routines before and after shell escapes, and also if they write
their own routine to handle CONTROL-z. These routines are also
available at the terminfo level.

24-44 A/UX Programming Languages and Tools, Volume 2

4.9 Typeahead check
If the user types something during an update, the update stops, pending
a future update. This is useful when the user hits several keys, each of
which causes a good deal of output. For example, in a screen editor, if
the user presses the "forward screen" key, which draws the next
screenful of text, several times rapidly, rather than drawing several
screens of text, the updates are cut short, and only the last screenful is
actually displayed. This feature is automatic and cannot be disabled.

4.10 qetstr
No matter what the setting of the stty echo is, strings typed in here are
echoed at the current cursor location. The user's erase and kill
characters are understood and handled. This makes it unnecessary for
an interactive program to deal with erase, kill, and echoing when the
user is typing a line of text.

4.11 l.onqname
The longname function does not need any arguments. It returns a
pointer to a static area containing the actual long name of the terminal.

4.12 nodelay mode
The call

nodelay(stdscr, TRUE)

puts the terminal in nodelay mode. While in this mode, any call to
ge t ch returns -1 if there is nothing waiting to be read immediately.
This is useful for writing programs requiring "real-time" behavior,
where the users watch action on the screen and press a key when they
want something to happen. For example, the cursor can be moving
across the screen, in real time. When it reaches a certain point, the user
can press an arrow key to change direction at that point.

4.13 Portability
Several useful routines are provided to improve portability. The
implementation of these routines is different from system to system,
and the differences can be isolated from the user program by including
them in curses.

erasechar ()
Returns the character that erases one character.

curses Reference 24-45

killchar ()
Returns the character that kills the entire input line.

baudrate ()
Returns the current baud rate as an integer. (For example, at
9600 baud, the integer 9600 is returned, not the value B 9 60 0

from <sgtty. h>.)

flushinp ()
Causes all typeahead to be thrown away.

24-46 A/UX Programming Languages and Tools, Volume 2

5. Example program: scatter
/*
* scatter: this program takes the first
* screenful of lines from the standard
* input and displays them on the
* VDU screen, in a random manner.
*/

#include <curses.h>

#define MAXLINES 120
#define MAXCOLS 160
char s[MAXLINES] [MAXCOLS]i

main ()
{

register int row, COli

register char Ci
int char_count=Oi
long ti
char buf[BUFSIZ]i

initscr () i

/* Screen array */

for (row=Oirow<MAXLINESi row++)
for (col=Oicol<MAXCOLSicol++)

s [row] [col] =' , i

row = Oi
/* Read screen in */
while ((c=getchar(» != EOF && row < LINES) {

if (c ! = ' \n') {
/* Place char in screen array */
s[row] [col++] = Ci
if(c !=' ')

char_count++i
else {

col=O;
row++i

time(&t)i /* Seed random number generator */

curses Reference 24-47

srand((int) (t&0177777L»;

while (char_count) {
row=rand() % LINES;
col=(rand() »2) % eOLS;
if(s[row] [col] != , ')
{

move (row, col);
addch(s[row] [col]);
s[row] [col]=EOF;
char_count--;
refresh();

endwin () ;
exit(O);

24-48 A/UX Programming Languages and Tools, Volume 2

6. Example program: show
/*
* The show program pages through
* a file, showing one full screen each
* time the user presses the space bar
*/

#include <curses.h>
#include <signal.h>

main (argc, argv)
int argc;
char *argv [] ;
{

FILE *fp;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if(argc != 2)
{

fprintf(stderr,"usage: %s file\n", argv[O]);
exit(l);

if ((fp=fopen (argv [1] , "r"))
{

perror(argv[l]);
exit(2);

signal (SIGINT, done);

initscr () ;
noecho();
cbreak();
nonl () ;
idlok(stdscr, TRUE);

while (1)
{

move(O,O);

NULL)

for(line=O; line<LINES; line++)
{

if (fgets (linebuf, sizeof linebuf, fp)

curses Reference

NULL)

24-49

void
done ()
{

clrtobot () ;
done () ;

move (line, 0);
printw("%s", linebuf);

refresh () ;
if (getch () , q')
done () ;

move (LINES-l, 0);
clrtoeol();
refresh () ;
endwin ();
exit(O);

24-50 A/UX Programming Languages and Tools, Volume 2

7. Example program: highlight
/*

* highlight: a program to turn \U, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <curses.h>

main (argc, argv)
char **argv;
{

FILE *fp;
int c, c2;

if (argc ! = 2) {
fprintf(stderr, "Usage: highlight file\n");
exit(l);

fp = fopen(argv[l] , "r");
if (fp == NULL) {

perror(argv[l]);
exit(2);

initscr 0 ;
scrollok(stdscr, TRUE);

for (;;) {
c = getc(fp);
if (c == EOF)

break;
if (c == '\\')

c2 = getc (fp) ;
switch (c2) {
case'B':

attrset(A_BOLD);
continue;

case 'U':
attrset(A_UNDERLINE);
continue;

curses Reference 24-51

case ' N' :

attrset(O);
continue;

addch(c);
addch(c2);
}

else
addch (c) ;

fclose(fp);
refresh();
endwin();
exit(O);

24-52 A/UX Programming Languages and Tools, Volume 2

8. Example program: window
/*

* This program shows the use of mUltiple windows.
* The main display is kept in stdscr.
* When the user temporarily wants to put
* something else on the screen,
* a new window is created covering
* part of the screen.
*/

#include <curses.h>

WINDOW *cmdwin;

main()
{

int i, c;
char buf[120);

initscr () ;
nonl () ;
noecho () ;
cbreak();

/* top 3 lines */
cmdwin = newwin(3, eOLS, 0, 0);
for (i=O; i<LINES; i++)

mvprintw(i, 0, "This is line %d of stdscr", i);

for (;;) {
refresh () ;
c = getch ();
switch (c) {
case 'c': /* Enter command from keyboard */

werase(cmdwin);
wprintw(cmdwin, "Enter command:");
wmove(cmdwin, 2, 0);
for (i=O; i<eOLS; i++)
waddch(cmdwin, '-');
wmove(cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);
wgetstr(cmdwin, buf};

curses Reference 24-53

24-54

touchwin(stdscr);
/*
* The command is now in buf.
* It should be processed here.
*/
break;

case ' q' :
endwin();
exit(O);

}

A/UX Programming Languages and Tools, Volume 2

9. Example program: two
/*

* The two program pages through a file,
* showing one page to the first terminal and
* the next page to the second terminal
* It then waits for a space to be typed on
* either terminal, and shows the next
* page to the terminal typing the space.
*/

#include <curses.h>
#include <signal.h>

struct screen *me, *you;
struct screen *set_term();

FILE *fp, *fpyou;
char linebuf[512];

main (argc, argv)
char **argv;
{

int done () ;
int c;

if (argc != 4) {
fprintf(stderr,
"Usage: two othertty otherttytype inputfile\n");
exit(l);

fp = fopen(argv[3] , "r");
fpyou = fopen (argv [1], "w+");
signal (SIGINT, done);
/* die gracefully */

me = newterm (getenv (" TERM"), stdout);
/* initialize my tty */
you = newterm(argv[2] , fpyou);
/* Initialize his terminal */

/* Set modes for my terminal */
set_term (me) ;

curses Reference 24-55

noecho (); /* turn off tty echo
cbreak(); /* enter cbreak mode
nonl () ; /* Allow linefeed */
nodelay(stdscr,TRUE); /* No hang on

/* Set modes for other terminal */;
set_term (you)
noecho 0;
cbreak();
nonl () ;
nodelay(stdscr,TRUE);

input

/* Dump first screenful on my terminal */
dump~age(me);

/* Dump second screenful on his terminal */
dump~age(you);

/* for each screenful */
for (;;) {

set_term(me);
c = getch () ;
/* wait for user to read it */)
if (c == ' q'
done () ;
if (c == ' ')
dump_page (me) ;

set_term (you) ;
c = getch ();
/* wait for user to read it */
if (c == 'q')
done () ;
if (c == ' ')
dump_page(you);
sleep(l);

dump_page (term)
struct screen *term;

*/
*/

*/

24-56 A/UX Programming Languages and Tools, Volume 2

int line;

set_term (term) ;
move (0, 0);
for (line=O; line<LINES-l; line++) {

if (fgets(linebuf, sizeof linebuf, fd)
{

clrtobot();
done () ;
}

mvprintw(line, 0, "%S", linebuf);

standout () ;
mvprintw(LINES-l, 0, "--More--");
standend () ;
refresh(); /* sync screen */

NULL)

/*
* Clean up and exit.
*/

done ()
{

/* Clean up first terminal */
set_term (you) ;
move(LINES-l,O);
clrtoeol();
refresh () ;
endwin ();

/*
/*
/*
/*

to lower left corner
clear bottom line */
flush out everything
curses cleanup */

/* Clean up second terminal */
set_term (me) ;
move(LINES-l,O);
clrtoeol();
refresh () ;
endwin();

exit(O);

/*
/*
/*
/*

to lower left corner
clear bottom line */
flush out everything
curses cleanup */

*/

*/

*/

*/

curses Reference 24-57

10. Example program: termhl
/*

* A terminfo-level version of highlight.
*/

#include <curses.h>
#include <term.h>

int ulmode = 0; /* Currently underlining */

main (argc, argv)
char **argv;
{

FILE *fp;
int c, c2;
int outch () ;

if (argc > 2)
fprintf(stderr, "Usage: termhl [file]\n"};
exit(l);

if (argc == 2) {
fp = fopen(argv[l], "r");
if (fp == NULL) {
perror(argv[l]);
exit(2);
}

else {
fp = stdin;

setupterm(O, 1, 0);

for (;;) {
c = getc (fp) ;
if (c == EOF)

break;
if (c == '\ \ ')
c2 = getc (fp) ;
switch (c2) {
case 'B':

tputs(enter_bold_mode, 1, outch);

24-58 NUX Programming Languages and Tools, Volume 2

/*

continue;
case'U':

tputs(enter_underline_mode, 1, outch);
ulmode = 1;
continue;

case'N':
tputs(exit_attribute mode, 1, outch);
ulmode = 0;
continue;

putch (c);
putch(c2);
}

else
putch(c);

fclose(fp);
fflush (stdout) ;
resetterm () ;
exit(O);

* This function is like putchar,
* but it checks for underlining.
*/

putch (c)
int c;

/*

outch(c);
if (ulmode && underline char) {

outch (' \b') ;
tputs(underline_char, 1, outch);

* Out char is a function version
* of putchar that can be passed to
* tputs as a routine to call.
*/

outch (c)

curses Reference 24-59

int c;

putchar (c) ;

24-60 AlUX Programming Languages and Tools, Volume 2

11. Example program: editor
/*

* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr itself to simplify
* the program.
*/

#include <curses.h>

#define CTRL(c} ('c' & 037)

main (argc, argv)
int argci
char **argvi

int i, n, li
int Ci

FILE *fPi

if (argc != 2) {
fprintf(st,derr, "Usage: edit file\n")i
exit(l)i

fp = fopen (argv [1], "r");
if (fp == NULL) {

perror(argv[l])i
exit(2);

initscr () ;
cbreak();
nonl ();
noecho ();
idlok(stdscr, TRUE);
keypad (stdscr, TRUE};

/* Read in the file */
while «c = getc(fp» != EOF)

addch(c};
fclose (fp) ;

curses Reference 24-61

move(O,O);
refresh () ;
edit () ;

/* Write out the file */
fp = fopen (argv[l], "w");
for (1=0; 1<23; 1++) {

n = len(l);
for (i=O; i<n; i++)
putc (mvinch (1, i), fp);
putc (' \n', fp);

fclose(fp);

endwin();
exit(O);

len (lineno)
int lineno;

int line len = COLS-1;

while (linelen >=0
&& mvinch(lineno, linelen) ")

linelen--;
return linelen + 1;

/* Global value of current cursor position */
int row, col;

edit ()
{

int c;

for (;;)
move (row, col);
refresh () ;
c = getch ();
switch (c) { /* Editor commands */

24-62 NUX Programming Languages and Tools, Volume 2

/* hjkl and arrow keys: move cursor */
/* in direction indicated */
case 'h':
case KEY LEFT:
if (col > 0)

col--;
break;

case ' j' :
case KEY DOWN:
if (row < LINES-l)

row++;
break;

case 'k':
case KEY UP:
if (row> 0)

row--;
break;

case ' l' :
case KEY RIGHT:
if (col < COLS-l)

col++;
break;

/* i: enter input mode */
case KEY IC:
case ' i' :
input();
break;

/* x: delete current character */
case KEY DC:
case ' x' :
delch () ;
break;

/* 0: open up a new line and enter input mode */
case KEY IL:
case'o':
move (++row, col=O);

curses Reference 24-63

/*

insertln();
input();
break;

/* d: delete current line */
case KEY DL:
case 'd':
deleteln () ;
break;

/* AL: redraw screen */
case KEY CLEAR:
case CTRL(L) :
clearok(curscr);
refresh () ;
break;

/* w: write and quit */
case 'w':
return;

/* q: quit without writing */
case 'q':
endwin ();
exit (1) ;

default:
flash () ;
break;

* Insert mode: accept characters and insert them.
* End with AD or EIC
*/

input ()
{

int c;

standout () ;
mvaddstr (LINES-l , COLS-20, "INPUT MODE");

24-64 A/UX Programming Languages and Tools, Volume 2

standend () ;
move (row, col):
refresh () ;
for (;;) {

c = getch () ;
if (c == CTRL(D) I I c
break;
insch(c);
move (row, ++col);
refresh () ;

move (LINES-l, COLS-20);
clrtoeol();
move (row, col):
refresh () ;

curses Reference 24-65

Chapter 25

Other Programming Tools

Contents

1. Overview • • • • • • • • • •

2. Maintaining portable archives and libraries: ar

3. Beautifying C programs: cb .• .•..

4. Generating a C ftowgraph: cflow

5. A C language preprocessor: cpp. .

6. Finding a function definition quickly: ctags .

7. Comparing source files • • • • • .

8. Finding files: find.

9. Printing the symbol table for a COFF file: nm • • • • •

10. Obtaining an octal dump of a file: od

11. Displaying profile data: prof

12. Printing the section sizes of COFF files: size

13. Finding the version number of a file: version

14. Sharing strings from C programs: xstr

- i -

1

1

1

2

2

3

3

4

4

4

5

5

5

5

Chapter 25

Other Programming Tools

1. Overview
This chapter provides a brief introduction to some of the other
programming tools available on the NUX system. Some of these
commands group together naturally. For example, if you are creating
an archive library, you probably will want to familiarize yourself with
each of ar, lorder, and tsort. If you need to identify unfamiliar
binary files, you have a choice between using strings and using od
(with the -c option) to isolate the printable portions of these files (see
the section on od for both commands).

2. Maintaining portable archives and libraries: ar
You may use the archive command a r to combine several files into
one archive. An archive consists of a collection of files, plus a table of
contents. They are used mainly as libraries to be searched by the link
editor ld. A library (or library archive) is an archive that contains
object files (plus a table of contents). Putting together your own library
allows you to use locally produced functions (instead of limiting you to
the functions supplied in standard libraries).

a r also provides the facility to append files to and delete files from the
archive. Because the order of files is so important to ld's efficient
operation, you can also move files around within the archive, as well as
extract them, print them, and produce a table of contents. See ar(1) in
AIUX Command Reference for more information.

3. Beautifying C programs: cb
cb is used to improve the legibility and structure of your own or
someone else's C code. It reads C programs either from its arguments
or from the standard input and writes them on the standard output with
spacing and indentation that displays the structure of the code. See
cb(1) in AIUX Command Reference for more information.

Other Programming Tools 25-1

4. Generating a C flowgraph: cflow
cf low generates a C flowgraph. A C flowgraph gives an idea of the
following:

• How the program is put together

• The program's flow of control

• How subroutines are called (that is, by which other routines and
in which order)

This flowgraph shows the order in which routines are called
graphically, by level of indentation. The graph is built of external
references, which include globals and function calls. See cflow(l) in
AIUX Command Reference for more infonnation.

5. A C language preprocessor: cpp
You can use cpp, the C preprocessor, as a simple programming
language that takes less time to compile than more complex languages.
It strips comments, expands macros into their definitions, allows files to
be read in (via,. incl udes), and provides a facility for conditional
command execution. This means that you can intersperse text with
comments. Comments will be stripped; commands will be executed.

Nonnally, cpp is invoked automatically as (the first) part of the cc
command.

You can use m4, instead of cpp, if you need a macro facility. m4 is
generally much more powerful than cpp as a macro processor. (For
instance, m4 allows recursive macro substitutions, while cpp does
not)

cpp is useful for

• Stripping comments

• Standardizing included definitions among many files for one
project

• Debugging (certain commands executed if in this mode, others if
not)

• Minimizing file space, combining many files into one

25-2 AlUX Programming Languages and Tools, Volume 2

(

\:

One of the most useful applications of cpp is as a debugging and
program control tool. Any statement included after an # i f de f
definition is executed only if the definition has actually been defined
previously by means of a #def ine statement (or a -Ddefinition in the
command line). If not, and if there is an #else present, the statements
between it and the #endif are executed. Otherwise, control is
resumed at the level of the statement immediately following #endif.
See cpp(l) in A/UX Command Reference for more information.

6. Finding a function definition quickly: ctags
Programs can rapidly accumulate a large number of functions, either in
one source file or scattered across many files. ctags goes through the
file(s) given as its argument(s) and creates a new file, called tags.
Each line in the file tags contains the following:

• The name of one function

• Where that function is located

• A scanning pattern that can be used to find the above

Unless ctags is used with either the -a (append) or the -u (update)
option, a new tags file is created each time it is invoked.

Once the tag s file is created, it can be accessed (thanks to the
scanning pattern in the last field of each line) from vi (also from ex)
by typing

: t a function-name

This causes the named function to appear on the editor's screen.

ctags may be used on Fortran and Pascal sources as well as C
programs. See ctags(l) inA/UX Command Reference.

7. Comparing source files
NUX includes a number of programs that compare files, including

bdiff Used similarly to diff; its purpose is to allow processing
of files that are too large for di f f.

di f f A differential file comparator. It tells what lines differ in
two files.

Other Programming Tools 25-3

diff3 A three-way differential file comparator, which works only
on files less than or equal to 64K bytes. It compares three
versions of a file and publishes disagreeing ranges of text,
flagged with special codes.

diffmk Marks the differences between files. It compares two
versions of a file and creates a third file that includes
"change mark" commands for the nroff and troff
formatters.

di f f di r Compares the differences in two directories of files.

carom Selects or rejects lines common to two sorted files.

8. Finding files: find
find is a powerful utility that performs a depth-first recursive search
for files of a given characteristic such as name, group, owner name,
time of last modification or access, and so on.

See find(1) in AIUX Command Reference for more information.

9. Printing the symbol table for a COFF file: run
nm writes the symbol table for a COFF file to standard output. This is
useful for debugging. nm lists each symbol and its value, along with
the location at which it is stored in memory. See nm(1) in AIUX
Command Reference for more information.

10. Obtaining an octal dump of a file: od
od provides a means for examining binary files (usually unreadable on
A/UX systems). If you need to know the function and procedure of
some file available only in binary, you can try the od command with
various options to discover what the file contains. The options
correspond to available formats for interpreting either bytes, characters,
or words. If no options are specified, a true octal dump is obtained, as
words are interpreted in octal.

See od(1) in AlUX Command Reference for more information.

You can also use the strings program to write the printable ASCII
strings in a binary file onto standard output. This is useful for
identifying unknown binary files. See strings(l) inAIUX Command
Reference for more information.

25-4 AlUX Programming Languages and Tools, Volume 2

11. Displaying profile data: prof
prof displays profile data on the running of a program to aid in its
optimization. For each function or global, it gives the percentage of
time spent executing it, the number of times it was called, and the time
(in milliseconds) per call. You must compile your program with a
special option to enable profiling (see cc(1) in A/UX Command
Reference for more details). See prof(1) in A/UX Command
Reference for more information.

12. Printing the section sizes of COFF files: size
The size command produces size information for common object
format files. See size(l) inA/UX Command Reference for more
information.

13. Finding the version number of a file:
version

version is useful for determining which version of a program you
are running. ve r s ion takes a list of files and reports the version
number for each. If the file is not a binary, it reports that. If no version
number is associated with the file, it reports that. version also
reports the object file format of each file, that is, either Coff object
file format,orOld a.out object file format.

The user may associate a version number with a file by defining a string
constant at the top of the source code, such as

char *_Version_ = \
"(c) Copyright 1986\
Standard Software Version V.2.1"

See version(l) inA/UX Command Reference for more details.

14. Sharing strings from C programs: xstr
The object of using xs t r is to share one copy of a string among
several files. If you need to modify the string throughout your
program, you can modify it once instead of doing global searches
through all your modules. If you have, in two different files,

char *ptrl "blah";
char *ptr2 = "blah";

Other Programming Tools 25-5

xstr combines this into one string, in its strings file, and replaces
occurrences of the string in the original files with a pointer to this
string. This allows for shared constant strings among several files, or
possibly among several users.

In practice, use of xs t r can save memory space. After making the
xstr array read only, you can arrange to have multiple users share
these strings, thereby saving even more memory space. See xstr(l)
in AIUX Command Reference for more information.

25-6 A/UX Programming Languages and Tools, Volume 2

Appendix A

Additional Reading

Introduction to Compiler Construction with UNIX
Axel T. Schreiner, H. George Friedman, Jr.
Prentice-Hall, 1985
{lex and yacc, practice}

Compilers: Principles, Techniques, and Tools
Alfred V. Abo, Ravi Sethi, Jeffrey D. Ullman
Addison-Wesley, 1986
{lex and yacc, theory}

The UNIX Programming Environment
Brian W. Kernighan, Rob Pike
Prentice-Hall, 1984

Additional Reading A-1

(

