
A/UX® Text Editing Tools 

031-0124' 



• APPLE COMPUTER, INC. 

© 1990, Apple Computer, Inc., and 
UniSoft Corporation. All rights 
reserved. 

Portions of this document have been 
previously copyrighted by AT&T 
Information Systems and the Regents 
of the University of California, and are 
reproduced with permission. Under 
the copyright laws, this manual may 
not be copied, in whole or part, 
without the written consent of Apple 
or UniSoft. The same proprietary and 
copyright notices must be affIxed to 
any permitted copies as were affIXed to 
the original. Under the law, copying 
includes translating into another 
language or format. 

The Apple logo is a registered 
trademark of Apple Computer, Inc. 
Use of the "keyboard" Apple logo 
(Option-Shift-K) for commercial 
purposes without the prior written 
consent of Apple may constitute 
trademark infringement and unfair 
competition in violation of federal and 
state laws. 

Apple Computer, Inc. 
20525 Mariani Ave. 
Cupertino, California 95014 
(408) 996-1010 

Apple, the Apple logo, AlUX, 
ImageWriter, LaserWriter, and 
Macintosh are registered trademarks of 
Apple Computer, Inc. 

MacPaint is a registered trademark of 
Claris Corporation. 

UNIX is a registered trademark of 
AT&T Information Systems. 

Simultaneously published in the 
United States and Canada. 

031-0124 



UMlTED WARRANTY ON MEDIA 
AND REPlACEMENT 

If you discover physical defects in the 
manual or in the media on which a 
software product is distributed, Apple 
will replace the media or manual at 
no charge to you provided you return 
the item to be replaced with proof of 
purchase to Apple or an authorized 
Apple dealer during the 90-day period 
after you purchased the software. In 
addition, Apple will replace damaged 
software media and manuals for as 
long as the software product is 
included in Apple's Media Exchange 
Program. While not an upgrade or 
update method, this program offers 
additional protection for up to two 
years or more from the date of your 
original purchase. See your 
authorized Apple dealer for program 
coverage and details. In some 
countries the replacement period 
may be different, check with your 
authorized Apple dealer. 

AU IMPLIED WARRANTIES ON 
TInS MANUAL, INCLUDING 
IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE, ARE 
LIMITED IN DURATION TO NINETY 
(90) DAYS FROM THE DATE OF THE 
ORIGINAL RETAIL PURCHASE OF 
TInS PRODUCf. 

Even though Apple has reviewed this 
manual, APPLE MAKES NO 
WARRANTY OR REPRESENTATION, 
EITHER EXPRESS OR IMPLIED, 
WITH RESPECf TO TInS MANUAL, 
ITS QUALl1Y, ACCURACY, 
MERCHANTABWTY, OR FITNESS 
FOR A PARTICUlAR PURPOSE. AS A 
RESULT, 11IIS MANUAL IS SOlD 
"AS IS," AND YOU, THE 
PURCHASER, ARE ASSUMING THE 
ENTIRE RISK AS TO ITS QUAllTY 
AND ACCURACY. 

IN NO EVENT WILL APPLE BE 
LIABLE FOR DIRECT, INDIRECf, 
SPECIAL, INCIDENTAL, OR 
CONSEQUENTIAL DAMAGES 
RESULTING FROM ANY DEFECf OR 
INACCURACY IN TInS MANUAL, 
even if advised of the possibility of 
such damages. 

THE WARRANTY AND REMEDIES 
SET FORm ABOVE ARE EXCLUSIVE 
AND IN LIEU OF AU OTHERS, ORAL 
OR WRfiTEN, EXPRESS OR 
IMPLIED. No Apple dealer, agent, or 
employee is authorized to make any 
modification, extension, or addition to 
this warranty. 

Some states do not allow the exclusion 
or limitation of implied warranties or 
liability for incidental or consequential 
damages, so the above limitation or 
exclusion may not apply to you. This 
warranty gives you specific legal rights, 
and you may also have other rights 
which vary from state to state. 

031-0124 





Contents 

Preface 

Chapter 1 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

A1UX Text Editing Tools 

NUX Text Editors: An Overview 

Using ed 

ex and vi: A Text Editing System 

Using vi 

Using ex 

Using sed 





Preface 

Conventions Used in This Manual 
Throughout the NUX manuals, words that must be typed exactly as 
shown or that would actually appear on the screen are in Courier 
type. Words that you must replace with actual values appear in italics 
(for example, user-name might have an actual value of joe). Key 
names appear in CAPS (for example, RETURN). Special terms are in 
bold type when they are introduced; many of these tenns are also 
defined in the glossary in the AIUX System Overview. 

Syntax notation 
All NUX manuals use the following conventions to represent 
command syntax. A typical NUX command has the form 

command (flag-optipnJ [argument] ... 

where: 

command 

flag-option 

argument 

[] 

Command name (the name of an executable file). 

One or more flag options. Historically, flag options 
have the form 

-[opt . .. ] 

where opt is a letter representing an option. The 
form of flag options varies from program to 
program. Note that with respect to flag options, the 
notation 

[-aH -b][ -c] 

means you can select one or more letters from the 
list enclosed in brackets. If you select more than one 
letter you use only one hyphen, for example, -abo 

Represents an argument to the command, in this 
context usually a filename or symbols representing 
one or more filenames. 

Surround an optional item. 



Follows an argument that may be repeated any 
number of times. 

Courier type anywhere in the syntax diagram indicates that 
characters must be typed literally as shown. 

italics for an argument name indicates that a value must be 
supplied for that argument. 

Other conventions used in this manual are: 

<CR> 

AX 

cmd(sect) 

indicates that the RETURN key must be pressed. 

An abbreviation for CONTROL-X, where X may be 
any key. 

A cross-reference to an A/UX reference manual. 
cmd is the name of a command, program, or other 
facility, and sect is the section number where the 
entry resides. For example, cat(l). 



Chapter 1 

AlUX Text Editors: An Overview 

Contents 

1. What a text editor does • • . • • • 
1.1 Using an interactive editor •••• 

1.1.1 Giving editor commands 
1.1.2 Entering text • 

1.2 Using a stream editor • • • 

2. NUX has four text editors 
2.1 ed: a line-oriented text editor 
2.2 vi: a screen-oriented text editor. • 
2.3 ex: a line-oriented text editor 
2.4 sed: a stream editor • • • • • 

- i -

1 
1 
1 
2 
2 

2 
2 
3 
3 
3 





Chapter 1 

A/UX Text Editors: An Overview 

1. What a text editor does 
A text editor is a program designed to accept text you enter at the 
keyboard, store it, and allow you to modify it There are two types of 
editing programs, "interactive" and "stream." An interactive editor 
allows you to enter text and text-editing commands while you are 
viewing the text. A stream editor allows you a single pass over a 
document. Stream editing commands are usually kept in a file and you 
recall them from there, instead of having to enter them from the 
keyboard. Using the stream editor makes the editing process much 
faster, but you don't see your changes until the editor has finished with 
the entire document 

1.1 Using an interactive editor 
To start using an NUX text editor program, type the name of the editor 
program and a filename. If the file you name already exists, the editor 
opens that file in the editing buffer. Otherwise, it opens an empty file. 

The editing buffer is a temporary work space, similar to a blank sheet 
of paper. When you create a file, you insert text into the buffer. When 
you modify a file, you make the changes to a copy of the file in the 
buffer. 

1.1.1 Giving editor commands 
When you begin an editing session, everything you type is interpreted 
as a command. Each NUX editor has its own set of commands, but 
certain commands may be the same in all of them. 

NUX editor commands are usually single characters that stand for a 
function. These characters are mnemonic in almost every case; for 
example, d is the command for delete; w is the command for write, and 
so forth. 

A/UX Text Editors: An Overview 1-1 



1.1.2 Entering text 
When you open a file, the editor copies the file into the editing buffer. 

You can modify the text in the buffer, insert new text, delete text, move 
blocks of text to new locations, make substitutions on a word every 
time it occurs, and so on. Remember that everything you do to the 
buffer contents is temporary until you write the contents back to the 
file. All three interactive NUX text editors use the w command to 
write buffer contents to a permanent file on your disk. 

There are several commands for entering new text into the buffer. The 
most common are i (for insert) and a (for append). After you enter 
one of these commands, everything you type is stored as text in the 
buffer. Each of the NUX editors has a command to end text insertion 
and return to the interpretation of your editing commands. 

1.2 Using a stream editor 
A stream editor typically does not expect input from the keyboard in 
the same way as an interactive editor. Instead, a stream editor must be 
told where to look for its instructions. These are usually provided by 
storing them in a file (called an editing script), or, if they are few and 
simple, by giving them as flag options on the command line. The 
editor then performs the specified actions on the input files and writes 
the result to the standard output 

2. AlUX has four text editors 
Your NUX system has three interactive text editors: ed, vi, and ex. 
It also has a stream editor, sed. These are described briefly in the 
sections that follow. Each of these editors has a separate instruction 
guide and reference section in this manual. Getting Started With AIUX 
contains a tutorial for using vi. 

2.1 ed: a line-oriented text editor 
The ed program provides a single-line window into the text editing 
buffer. ed spends no time or system resources redrawing the screen, 
and can be an efficient way to enter text when you are working at 1200 
baud or lower. It has a limited number of commands, but these can be 
combined to perform most of the tasks you need most frequently. You 
can also use ed commands in a shell program, since it does not operate 
on a full screen of text. 

1-2 NUX Text Editing Tools 



2.2 vi: a screen-oriented text editor 
The vi program provides a full-screen window into the buffer. Every 
change you make to the buffer contents is immediately displayed, and 
the screen image is updated. This is much more convenient than a 
single-line image that does not display your changes. However, it 
requires more system overhead; this may affect you if you are working 
at 1200 baud or lower, or if your system is very busy. 

vi is derived from the ex editor program, and most ex capabilities are 
directly accessible while you are using vi. In addition to the ex 
commands, vi has many motion commands that allow you to move 
around the file by character, word, line, sentence, paragraph, or section 
or move to a particular character string. Most of vi's motion 
commands can be combined with function commands (such as d for 
delete) to define the scope of an operation. 

2.3 ex: a Ii ne-oriented text editor 
The ex program provides a single-line window into the text editing 
buffer and has the advantages of reduced system overhead and 
accessibility from a shell program. 

ex is a powerful editing tool for substitutions and global commands. 
ex can search for a pattern and perform substitutions on any string that 
matches that pattern. This greatly increases the power and flexibility of 
substitution commands. 

ex has options that define the "editing environment" for the ex and 
v i editors (such as the margin for word wraparound on your screen, 
automatic indent following a line that starts with a tab character, 
making line numbers visible, a special environment for editing 
programs, and so on). ex also has macro facilities for "mapping" a 
key to perform a complex editing sequence or abbreviate a long string 
to a short one. 

Remember that all of these ex capabilities are accessible while you are 
using vi and can also be accessed from shell programs using the ex 
editor alone. 

2.4 sed: a stream editor 
sed is a stream editor: it copies the input file(s) to the standard output, 
performing various user-specified editing tasks (such as substituting or 
deleting words) on the file as it "flows" by. These tasks may be 

AJUX Text Editors: An Overview 1-3 



specified on the command line or, more commonly, stored in a file for 
repeated use. 

Because of its batch nature, sed is extremely useful for building 
"filters" to edit or modify text without user supervision. Thus, sed 
may be run in the background, allowing the user to perform other tasks 
while the editing takes place. sed is also useful for editing very large 
files, since no buffer is created. 

The changes specified in the sed script (or on the command line) 
affect only a copy of the file, not the original file itself. The output of 
the sed command is directed to the standard output; this is usually 
your terminal screen, but you may redirect the output into a file. Or, 
you may redirect the output of a sed command into a pipeline to allow 
further filtering by other NUX utilities. 

1-4 AlUX Text Editing Tools 



Contents 

1. Getting started 

Chapter 2 

Using ed 

1.1 Displaying a prompt • •••• 
1.2 Error messages •••••••••• 
1.3 Creating text • • • . 
1.4 Saving text. • • • • • • 
1.5 Leaving ed •.•• 

2. Using ed to modify a file • • • • 
2.1 Printing buffer contents: using line numbers 
2.2 Reading text into the buffer • • 
2.3 Deleting text • • • • • • 
2.4 Inserting text • • • • • • 
2.5 Changing text • 
2.6 Text substitution 
2.7 Global commands • 
2.8 Context searching. • • • • 
2.9 Moving text • • • • • • 

3. Special characters 
3.1 Period 
3.2 Caret 
3.3 Dollar sign 
3.4 Asterisk • 
3.5 Brackets 
3.6 Ampersand 
3.7 Backslash 

4. Command summary • 

- i -

2 
2 
2 
3 
4 
5 

6 
7 
9 

11 
12 
12 
13 
16 
17 
20 

20 
20 
21 
21 
22 
22 
22 
23 

24 





Chapter 2 

Using ed 

ed is an interactive line-oriented text editor that uses your instructions 
to create and modify text files. A line-oriented text editor moves 
through your file one line at a time and allows you to modify that line 
or to change another line or range of lines (indicated by line number). 
The red editor is a restricted version of ed. It is identical to ed 
except you can only edit files in the current directory and you cannot 
access shell commands. 

This chapter summarizes the capabilities of the text editor eel, 
including the following: 

• printing, appending, changing, deleting, moving, and inserting 
text 

• reading from, and writing to, files 

• searching for text 

• making substitutions 

• making global changes throughout a file 

• using special characters for easier editing 

This chapter assumes that you know how to log in to an NUX system 
and understand what a file is. Examples illustrate the techniques 
discussed in the text. 

Note: Except for the command you use to invoke the editor 
program, all commands discussed in this chapter are commands 
to ed. Do not confuse them with NUX shell commands. 

A summary of ed commands appears at the end of the chapter. 

USing eel 2-1 



1. Getting started 
To start ed, type 

ed 

(followed by RETURN). 

Note: Unless explicitly instructed otherwise, conclude all ed 
commands with a RETURN. 

You can also invoke ed with a filename as an argument: 

ed filename 

where filename mayor may not already exist 

If a file by that name does not exist, you see the message 

?filename 

If a file by that name does exist, ed displays the character count on the 
screen. 

1.1 Displaying a prompt 
You can use the P command to display a prompt on your screen. Type 

p 

The following appears on the left side of your screen: 

* 
You type ed commands next to the asterisk (*) in the same way that 
you type shell commands next to the NUX system prompt. (See 
Getting Started With A/UX for a discussion of the shell prompt.) To 
turn off the prompt, type the P command again. 

1.2 Error messages 
If ed doesn't understand something you type, it prints a question mark 
(?) on the screen. 

For assistance in interpreting this error message, type 

H 

2-2 A/UX Text Editing Tools 



The H (help) command explains the current ? and all subsequent ones. 
Typing the H command again turns off this feature. 

Alternatively, you can use the h command. This form of the help 
command explains only the current? . 

1.3 Creating text 
When you start ed, you "open" the editing buffer. The buffer 
corresponds to an empty file. It is a temporary work space, similar to a 
blank piece of paper. When you create a file, you must insert text into 
the buffer or read it in from another file and then save the new or 
modified data. 

When you give the command 

ed filename 

where filename is an existing file, ed makes a copy of this file and 
places it in the editing buffer. Any modifications or additions you 
make to this file are made on the copy, not on the original file. 

The following example begins with inserting text in an empty buffer 
(editing existing files is discussed later). 

To begin creating text, type 

a 

on a line by itself, and press RETURN. (The a command means 
"append" or "add" text lines to the buffer as they are typed in.) 

Type the following text: 

A journey of a 
thousand miles 
begins with a 
single step. 

As shown in the last line of this example, appending is stopped by 
typing a period character ( .) followed by RETURN. The period 
character must be the first and only character on the line. This tells ed 
that you have finished adding text and are ready to give a command. 
Even experienced users sometimes forget to type the period character 
when they have finished adding text. If ed seems to be ignoring your 

Using ed 2-3 



commands, type a period, and then press RETURN. You may find that 
some command lines in your text have to be removed. 

Mter you finish appending, the buffer contains these four lines: 

A journey of a 
thousand miles 
begins with a 
single step. 

To add more text, type 

a 

(RETURN), and continue typing. 

1.4 Saving text 
After you have added text to the buffer, you will want to save it. The w 
(write) command writes the contents of the buffer into a file. For 
example, if you type 

w text 

the buffer's contents are copied into a file named text. 

If you named your file when you began your editing session, or if you 
are editing an existing file, you don't have to repeat that filename when 
you write the file. ed remembers the original filename you designated 
and automatically reuses it. For example, an editing session might look 
like this: 

ed text 
(editing session) 

w 

The file you edited is saved in a file named text when you type w. 

You can also use the w command to save part of a file. The w 
command writes the lines you specify from the buffer to the permanent 
file. If no lines are specified, the w command writes the entire file. For 
example, the command 

1,lOw 

saves the first ten lines of your file. 

2-4 AlUX Text Editing Tools 



In another example, if you are editing your file text, and you give the 
command 

1,10 w another.file 

ed writes the first ten lines of your file text to the file 
another. file. 

Note that when you assign a name to a file from within ed you must 
make sure that you do not have an existing file by that name. The write 
command replaces that file with the current buffer's contents without 
giving you a warning. 

After writing the file, ed responds as follows: 

57 

This represents the number of characters (including blank spaces and 
end-of-line characters) that were written into the file. 

Note: It's a good idea to write your text to a file every 10 or 15 
minutes. If the system crashes or you make a mistake, you may 
lose the text in the buffer, but any text in a file should be safe. 

1.5 Leaving ed 
To leave ed after saving your text with the w (write) command, quit 
your file by typing 

q 

(followed by RETURN). For example, in the editing session described 
above, the following appears on the screen: 

Using ad 2-5 



ed 
a 
A journey of a 
thousand miles 
begins with a 
single step. 

w text 
57 
q 

(start the editor program) 
(append) 
(text) 
(text) 
(text) 
(text) 
(end append) 
(write to a file named text) 
(character-count system response) 
(quit) 

When you leave ed, the buffer is destroyed, and the system responds 
with its usual shell prompt character. 

If you try to quit the editor without writing the buffer contents to a file, 
ed prints 

? 

on your screen. 

If you don't want to save the changes to your file, typing q a second 
time (followed by RETURN) gets you out of ed and back to the shell 
without saving the changes you made since the last w command. If you 
want to save the changes to your file, type w and press RETURN. 

2. Using ed to modify a file 
After you have created and saved a file, you may want to edit it. There 
are two ways to do this. 

To edit a file from the shell, type 

ed filename 

(followed by RETURN). This retrieves a file you previously saved and 
places it in the buffer. 

Another method of editing a file from within ed is by typing 

e filename 

When you use the e command to edit a file, ed replaces the contents of 
the buffer with the new file. If you were already working on a file in 
the buffer and you haven't written it yet, the e command destroys it 

2-6 AlUX Text Editing Tools 



without warning you. 

If you forget the name of the file you have in the buffer, you can find 
out using the f (file) command. From within the editor, type 

f 

and the name of the file appears on the screen. 

2.1 Printing buffer contents: using line numbers 
To display all or part of the buffer on your screen, use the p (print) 
command. You must specify the line numbers where you want printing 
to begin and end. Separate these numbers with a comma in this format: 

line} , line2 p 

Through this chapter, such line addressing is represented with the 
following: 

line}, line2command 

where command is p in this case. line}, line2 indicates a range of 
addresses from line} to line2. 

For example, to print the first ten lines of the buffer (lines 1 through 
10), type: 

1,lOp 

You can also tell ed to display the line numbers of the lines you 
specify with the p command. For example, 

2,4pn 

prints the following: 

2 text of line 2 
3 text of line 3 
4 text of line 4 

Suppose you want to print all the lines in the buffer. If you know the 
exact number of lines in the buffer, such as 30, you could type 1, 30p. 
However, if you don't know how many lines there are in your file, use 
the dollar sign ($). (The dollar sign refers to the last line of the file; see 
the section "Special Characters" in this chapter.) To print all the lines 
in the buffer, type 

Using ed 2-7 



1,$p 

To stop printing, press the interrupt key (usually CONTROL-C). ed 
responds with 

? 

and waits for the next command. 

To print the last line of the buffer, type 

$p 

You can print any single line by typing the line number. For example, 
typing 

1 

prints 

A journey of a 

which is the first line of the buffer. 

In ed, the current line is the most recent line processed (in this case, 
the line last printed). If you type p again, ed prints line 1 again. The 
period character (or "dot") always refers to the current line. It is a 
line number in the same way that $ is. You can use dot in several 
ways-one possibility is to enter 

., $p 

This prints everything from the current line to the last line of the buffer. 
In the example text file, these are lines 1 through 4. 

Some commands move the current line to a new place in the file (that 
is, they change the value of dot); others do not. The p command resets 
dot to the number of the last line printed. For example 

., $p 

sets dot to the last line in the buffer (line 4). 

Dot is most useful in combinations such as 

.+1 (this is equivalent to .+lp) 

2-8 AlUX Text Editing Tools 



This means "print the next line" and is a handy way to step slowly 
through a buffer. You can also type 

.-1 (or. -1p) 

which means "print the line before the current line." This allows you 
to move backward through the buffer. Another useful example is 

.-3,.-1p 

which prints the previous three lines. 

Don't forget that all of these commands change the value of dot You 
can find out what dot is by typing 

This will print the line number of the current line. Pressing RETURN 

once prints the next line. It is equivalent to 

.+1p 

To summarize, you can precede p by zero, one, or two line numbers. If 
you don't specify a line number, p prints the current line (the line that 
dot refers to). If you specify one line number with or without the letter 
p, ed prints that line and makes it the current line. If you specify two 
line numbers separated by a comma and followed by p, ed prints 
everything from the first number to the last number, and sets dot to the 
last line printed. (The first number must be smaller than the second 
number-ed won't print backward.) 

Typing the caret (A) or the minus sign (-) moves the current line back 
one line. These characters can be used in multiples; typing A A A or -
-- moves the current line back three lines. The minus ( -) and caret 
(A) are the same as -1p. 

You can use line numbers with most ed commands, as you will see in 
the sections that follow. 

2.2 Reading text into the buffer 
If you want to add an existing file to the buffer without overwriting 
what is already there, use the r (read) command. The command 

r new.file 

adds the contents of the file new. file to the end of the file already in 

Using ed 2-9 



the buffer. If you type 

e text 
57 
r text 
57 

(system response) 

(system response) 

the buffer now contains two copies of the same file: 

A journey of a 
thousand miles 
begins with a 
single step. 
A journey of a 
thousand miles 
begins with a 
single step. 

Like the w and e commands, r prints the number of characters that it 
read into the buffer. 

If you precede the r command with a line number or a dot ( . ), it reads 
a file and puts it after the specified place in the current buffer . 

. r filename 

reads the contents of filename into the buffer immediately after the 
current line. (In this context, dot is equal to the current line. This is 
different from the period character on a line by itself, which means that 
the text insertion is over.) 

3r filename 

reads the contents offilename into the buffer following line number 3. 

The file in the buffer is not destroyed-it continues after the last line of 
the file you read in. For example, using the original text file 

2-10 AlUX Text Editing Tools 



ed text 
57 
1 
A journey of a 
.r text 
57 
w 
114 
q 

places this in your file: 

A journey of a 
A journey of a 
thousand miles 
begins with a 
single step. 
thousand miles 
begins with a 
single step. 

2.3 Deleting text 

(system response) 
(go to line 1) 
(system response) 

(system response) 

(system response) 

The d (delete) command removes lines of text from the buffer. The d 
command uses the same format as the p command 

line} , line2 d 

For example, the command 

4,$d 

deletes everything from line 4 to the end of the buffer. In the preceding 
example, this deletion leaves us with three lines. We can check these 
lines by typing 

1,$p 

The last line, $, is now line 3. If you delete the last line (as in the 
preceding example), dot is setto $. 

You can use the d (delete) command and the p (print) command 
together. For example, typing 

Using ed 2-11 



dp 

deletes the current line, prints the next line, and sets dot to the line 
printed. 

2.4 Inserting text 
The i (insert) command inserts one or more lines into the buffer. It is 
similar to the a command except that it places the text before rather 
than after the current or specified line-for example, typing 

2i 
one or more lines of text 

inserts the text before the second line. If you don't specify a line 
number, the text is inserted before the current line. Dot is set to the last 
line inserted. 

Experiment with the i and a commands to see how they operate. 
Verify that 

line-spec a 
text 

appends after the given line, while 

line-speci 
text 

inserts before it, where line-spec indicates a single line number or a 
scanning command (such as a context search or regular expression) 
resulting in zero or more lines. If a line number isn't specified, the 
current line is assumed. 

2.5 Changing text 
The c (change) command changes the current line, replacing it with 
one or more lines. For example, to replace everything between the 
current line and the last line, type 

2-12 AlUX Text Editing Tools 



.+l,$c 
one or more lines of text 

The text you type between the c command and the . command will 
overwrite the original text from the . + 1 line to the last line. This 
command is useful when you want to replace one line or several lines. 

If you specify only one line, only that line is replaced. (You can type 
as many replacement lines as you like.) Notice that you end y.our 
changes by typing a period ( .) at the beginning of a line-this is the 
same way you stopped adding text with the a command. 

The c command can also be thought of as a combination of the d 
command followed by the i command. Experiment to verify that 

line} , line2 d 
i 
text 

is the same as 

line} , line2 c 
text 

If you don't specify a line number, c replaces the current line. When 
you finish making changes, dot is set to the last line you inserted. 

2.6 Text substitution 
One of the most important ed commands is the s (substitute) 
command. 

This command changes words or characters and can be used to correct 
spelling mistakes and typing errors. 

Suppose that line 1 is 

A journy of a 

You can change journy to journey by typing 

ls/ny/ney/ 

Using ed 2-13 



This says: in line 1, change ny to ney. Since ed doesn't print the 
change automatically, type 

P 

to make sure the substitution worked. You should see 

A journey of a 

When you include the p command on the same line as the substitute 
command 

s/journy/journey/p 

ed prints the line that just changed. 

The general format of the substitute command is 

line} , line2 s / change this/to this / 

The characters between the first and second slashes (change this) are 
replaced by the characters between the second and third slashes (to 
this). This substitution takes place on all lines between line} and line2. 
However, only the first occurrence on each line is changed. To change 
every occurrence, on each line, add g (global) (see' 'Global 
Commands") to the s command, like this: 

line} , line2 s / something / something-else / g 

The rules for line numbers are the same as those you learned for the p 
(print) command. However, if the s command can't find the characters 
you asked it to change, the cursor stays in the current position. ed tells 
you when this has happened by printing ? on the screen. 

As an example of a substitution, you could type 

1,$s/speling/spelling/ 

to correct the first instance of speling on each line. (This is useful 
for people who make the same mistake consistently.) 

If you don't specify a line number, s assumes you want to make the 
substitution on the current line. For example, you could type 

s / something / something-else / p 

2-14 AJUX Text Editing Tools 



This corrects a mistake on the current line and then prints it to verify 
that the substitution worked. 

You may have noticed that the s command resets the current line. You 
can also type 

s / something / / 

This replaces something with nothing-in other words, it removes 
something. This is useful for deleting extra words in a line or removing 
extra letters from words. 

For example, 

Thisxx is an example of substitution 

can be corrected by typing 

s/xx// 

The line now reads 

This is an example of substitution 

The / / (two adjacent slashes) mean "no characters," not a blank. 

Experiment with the s command. For example, type 

a 
the other side of the coin 

s/the/on the/p 

This produces the following: 

on the other side of the coin 

Remember that the s command changes only the first occurrence. You 
can change all occurrences on a line by adding g. 

Try using characters (except blanks and tabs) other than slashes to set 
off the two sets of characters in the s command. For example, try 
typing 

s'the'other'p 

This works exactly the same as using a slash. 

USing ed 2-15 



However, strange results are produced by using the backslash (\) 
character (see the section "Special Characters" in this chapter). 

2.7 Global commands 
The g (global) command performs an operation on all lines that match 
a specified string or regular expression. See Chapter 5, "Using ex" 
for information on regular expressions; in this chapter we use the word 
"string" to mean a string of characters or a regular expression. For 
example, 

g/speling/p 

prints all lines that contain speling. The command 

g/speling/s//spelling/gp 

replaces speling with spelling each time it occurs (even if it 
occurs more than once in aline), then prints each corrected line. 

Compare this to 

1,$s/speling/spelling/gp 

This prints only the last line substituted. 

You can use several commands at a time with g. lust remember to end 
every line but the last with a backslash (\). For example1 

g/xxx/-ls/abc/def/\ 
.+2s/ghi/jkl/\ 
.-2, .p 

makes changes in the lines before and after each line containing xxx, 
then prints all three lines. 

The G (interactive global) command finds a line that matches a 
specified string, prints the line, and waits to accept a command. After 
executing the command, it searches for the next line that matches the 
specified string, and so on. For example, 

G/speling/ 

prints the first line that contains the string "s pe 1 ing." If you wish to 
change the string at that point, you can enter the command 

2-16 AlUX Text Editing Tools 



s/speling/spelling/p 

which replaces speling with spelling and prints the corrected 
line. After printing the corrected line, ed searches for the next instance 
of" speling." If found, it prints the line that contains this string, 
and waits for you to enter a command. The command you enter does 
not have to be the same command you entered last time; for example, if 
ed finds another instance of speling, you could enter the command 

s/speling/misspelling/p 

or any single ed command other than the a, c, i, g, G, v, or V 

commands. 

The v command is the same as g except that it executes the commands 
on lines that don't match the string or regular expression. For example, 

v/ /d 

deletes every line that does not contain a blank. Similarly, the V 

command is the same as G, but finds and prints lines that don't match 
the specified string or regular expression. 

2.8 Context searchi ng 
When you master the substitute command, you may want to try another 
important feature of ed-context searching. Context searching looks 
for a string of characters and, when it finds it, makes that line the 
current line. 

Suppose you have these three lines in your buffer: 

Little Miss Muffet 
sat on a tuffet 
eating her curds and way. 

If you want to locate the misspelled word way, you could type 3. 
However, if the buffer contained several hundred lines and you had 
been deleting and rearranging lines, you might have a difficult time 
locating this line. Context searching lets you find a line by specifying 
some context (unique text) in it. 

To search for a line that contains a particular string of characters, type 

I string of characters 

Using ed 2-17 



For example, 

/way 

locates the next occurrence of way. It also makes that line the current 
line and prints it for verification. 

"Next occurrence" means ed starts looking for the string at the line 
following the current line ( . + 1) and searches to the end of the buffer. 
Then it searches from line 1 to the line it started searching at (dot). 
That is, the search wraps around from $ to 1. It scans all the lines in 
the buffer until it either finds the desired string or gets back to dot 
again. If ed can't find the characters, it types the error message 

? 

Otherwise, it prints the line it found. 

You can search for the desired line and make a substitution to it in the 
same command, like this: 

/curds/s/way/whey/p 

This tells ed to search for the line with the word curds, substitute 
whey for way, and then print the new line. When it has finished, ed 
prints this: 

eating her curds and whey. 

You can repeat a context search. For example, 

/ string/ 

finds the next occurrence of string. If this is not the line you want, you 
can search for the next occurrence by typing 

/ / or / 

This stands for "the previous context search expression" and differs 
from the use of / / as a null argument in the s command. 

This abbreviation can also be used as the first string of the s command. 
For example, 

/stringl/s//string2/ 

finds the next occurrence of stringl and replaces it with string2. 

2-18 AlUX Text Editing Tools 



Similarly, 

?? or ? 

scans backward for the previous expression. 

You can use context searches instead of line numbers to find a desired 
line or to specify a range of lines to be affected by some other 
command, such as s. 

For example, suppose the buffer contains these four familiar lines: 

A journey of a 
thousand miles 
begins with a 
single step. 

The following context search expressions all refer to the same line 
(line 2): 

/journey/+l 
/thousand/ 
/step/-2 

To make a change in line 2, you can type 

/journey/+ls/thousand/hundred/ 

or 

/thousand/s/thousand/hundred/ 

or 

/step/-2s/thousand/hundred/ 

You could print all four lines by typing either 

/journey/,/single/p 

or 

/journey/,/journey/+3p 

The first of these might be better if you don't know how many lines 
there are. A context search expression is the same as a line number, so 
it can be used wherever you would use a line number. 

Using ed 2-19 



2.9 Movi ng text 
The m (move) command moves lines from one place to another. For 
example, to move the first four lines of the buffer to the end, type 

1,4m$ 

The general case is 

line},line2m lineno 

The text is moved after the specified line number (lineno). You can use 
context searches instead of line numbers. For example, if you have the 
following text in your buffer, 

First paragraph 

end of first paragraph. 
Second paragraph 

end of second paragraph. 

you could reverse the two paragraphs by typing 

/ Second/ , / end of second/m/ First/-1 

The -1 was used because the text is moved after the line specified. 
Dot is set to the last line moved. 

3. Special characters 
You may have noticed that some characters (such as ., *, $) change 
the meaning of context searches and the s command. This is because 
these characters have special meanings for ed. 

The following is a complete list of these special characters: 

• A $ * [ ] & \ 

These are described in the sections that follow. 

3.1 Period 
In a context search or the first string of the substitute command, the 
period (.) signifies any character. 

Although this is the same character as "dot," its meaning is different 
in this context. To avoid confusion, we call it dot when it means 

2-20 AlUX Text Editing Tools 



"current line" or "line most recently changed" and period when it 
means "any character." 

/x.y/ 

means 

/xany-charactery / 

This command will find all instances of x followed by any character 
followed by y, including the following: 

x+y 
x-y 
x y 
x.y 
xAy 

3.2 Caret 
The caret (") signifies the beginning of a line. For example, 

/" string/ 

finds string only if it is at the beginning of a line. That is, it will find 

string 

but not 

the string 

3.3 Dollar sign 
The dollar sign ($) is the opposite of the caret; it means the end of a 
line. 

The expression 

/string$/ 

finds string only at the end of a line. 

/"string$/ 

finds a line containing only string and 

/".$/ 

finds a line containing one character. 

Using ed 2-21 



3.4 Asterisk 
The asterisk (*) is the repetition character. For example, a * means 
"zero or more a's." . * means "any character repeated zero or more 
times." 

For example, 

s/.*/stuff/ 

changes an entire line to stu f f, and 

s/.*,// 

deletes all the characters in the specified line up to, and including, the 
last comma. Note that . * finds the longest possible match, so this 
example matches the last comma rather than the first. 

3.5 Brackets 
The left bracket ( [) is used with the right bracket (] ) to enclose 
"character classes." For example, 

/[0123456789]/ 

searches for any single digit. This can be abbreviated as 

[0-9] 

Brackets can also be used to contain a character class that represents 
the alphabet; for example, 

[A-Z] 

searches for any uppercase character, and 

[a-z] 

searches for any lowercase character. 

3.6 Am persand 
The ampersand (&) means' 'whatever was matched on the left-hand 
side." (The ampersand only has this meaning on the right-hand part of 
a substitute command.) 

Suppose the current line contains 

Now is the time 

and you want to put parentheses around it. You can accomplish this 

2-22 AlUX Text Editing Tools 



using the command 

s/.*/(&)/ 

This says "match the whole line ( . *) and replace it by itself ( &) 
surrounded by parentheses." The ampersand can be used several times 
in a line. Using the preceding sample text, 

s/.*/&? &!!/ 

produces 

Now is the time? Now is the time!! 

You don't have to match the whole line. If the buffer contains 

the end of the world 

you could type 

/world/s//& is at hand/ 

to produce 

the end of the world is at hand 

The sequence /world/ found the desired line; the sequence / / found 
the same word in the line; and the & saved you from typing wor ld 
again. 

The & is a special character only in the replacement text of a substitute 
command. 

3.7 8ackslash 
If you have to use one of the special characters listed above without its 
special meaning in a substitute command, precede it with a backslash 
(\). For example, 

s/\.H// 

replaces the first occurrence of a . H with nothing (! /) on the current 
line (in other words, it deletes it). If the period (.) were not preceded 
by the \, the result would have been that the first instance of H 
preceded by any other character would have been deleted on the 
current line. 

Using ed 2-23 



4. Command summary 
In the following summary, line-spec indicates a single line number or a 
scanning command (such as a context search or regular expression) 
resulting in zero or more lines; line1 ,line2 indicates a range of 
addresses from line} to line2. If you don't specify an address, the 
current line is the default (unless otherwise noted). The <CR> symbol 
indicates that the RETURN key must be pressed. Portions of a command 
enclosed in brackets ([]) are optional. 

Command Description 

[line-spec] a<CR> [text] <CR> . 
Append text after the current line or after 
the line number specified. To stop adding 
text, type a period ( . ) at the beginning of a 
line, and press RETURN. Dot is set to the last 
line appended. 

[line-spec] c<CR>[text] <CR> . 

[line1 , line2]d 

e file 

2-24 

Change the specified lines to the new text 
which follows. To stop replacing text, type 
a period ( .) at the beginning of a line, and 
press RETURN. If you don't specify a line, 
the current line is replaced. Dot is set to the 
last line changed. 

Delete the specified lines. If you don't 
specify a line, the current line is deleted. 
Dot is set to the line after the last deleted 
line. If you delete the last line in the buffer, 
dot is set to the new last line. 

Edit a new file from within ed. The 
previous contents of the buffer are 
destroyed, so save your work before you 
edit a new file with e. 

NUX Text Editing Tools 



Command 

f ffile] 

Description 

Print the current filename. This is the file 
ed assumes you mean if you don't specify a 
file. To change the current filename, type f 
file. 

[line1, line2]g I string I command 
Execute commands globally, on the entire 
file (by default). g I xl command executes 
command on lines containing the string x. 

[line1, line2]GI string[/] Interactive global command. ed first marks 
every line that matches the given regular 
expression or string. Then, for every such 
line, that line is printed, dot is changed to 
that line, and anyone command (other than 
one of the a, c, i, g, G, v, and V 

commands) may be input and is executed. 
After the execution of that command, the 
next marked line is printed, and so on; a 
RETURN acts as a null command (no action 
is performed); an & causes the re-execution 
of the most recent command executed 
within the current invocation of G. Note that 
the commands input as part of the execution 
of the G command may address and affect 
any lines in the buffer. The G command can 
be terminated by an interrupt. A command 
that causes an error terminates the G 

command. 

h The h (help) command gives a short error 
message that explains the reason for the 
most recent ? 

Using ed 2-25 



Command 

H 

Description 

The H (Help) command prints error 
messages for all subsequent? diagnostics. 
This command toggles error message 
printing on and off. 

[line-spec] i<CR> [text] <CR> . 

[line1, line2] j 

[line-spec] kx 

[line1, line2]mlineno 

[line1, line2]n 

[line1, line2]p 

p 

2-26 

Insert text before the specified line or the 
current line. To stop inserting text, type a 
period ( .) at the beginning of a line, and 
press RETURN. Dot is set to the last line 
inserted. 

Join contiguous lines by removing 
appropriate newline characters. 

Mark addressed line with name x, which 
must be a lowercase letter. The address x 
then refers to this line; dot is unchanged. 

Move the text originating between line1 and 
line2 to follow line no. Dot is set to the last 
line moved. 

For the current line or for each line in the 
range specified by "linel, line2," print the 
line number, followed by a tab, followed by 
the text of the line(s). 

Print the specified lines. If you don't 
specify any line number, p prints the current 
line. Pressing RETURN prints the next line. 

Turns prompting on and off. The P 
command alternately turns this mode on and 
off; initially it is off. 

AlUX Text Editing Tools 



Command 

q 

Q 

[line-spec]r file 

Description 

Quit ed. No automatic write of a file is 
done. If changes have been made in the 
buffer since the last w command, ed 
responds with ? If you don't want to save 
your changes, type q <CR> again. 

Quit without checking to see if changes 
have been made in the buffer since the last w 
command. 

Read a copy of file in at the specified 
location. If no line number is specified, it 
reads the file in at the end of the buffer. Dot 
is set to the last line read. 

[line1, line2]sl string1 I string2[/] 

[line1, line2]tlineno 

u 

Using ed 

Substitute one string for another string at a 
specified location. 
1, $ s I string1 I string2 I g substitutes string2 
for every instance of string1 in the file. The 
s command changes only the first 
occurrence of string1 on a line. To change 
all occurrences, type g at the end of the 
command. Dot is set to the last line in 
which a substitution took place; if no 
substitution took place, dot is not changed. 

Put a copy of the addressed lines after 
address lineno (which may be 0); dot is left 
at the last line copied. 

Undo last command; nullifies the effect of 
the most recent command that modified 
anything in the buffer. 

2-27 



Command Description 

[line1 , line2] v / string / command 

[line1, line2] V / string [I] 

[line1, line2]w file 

x 

[ .]= 

! shell-command 

2-28 

Execute command only on lines not 
containing string. By default the v 
command operates on the entire file. 

Interacti ve global command marks each line 
not containing string and then allows you to 
perform commands on each of these lines. 
By default the v command operates on the 
entire file. 

Write the buffer into the specified file. Dot 
is not changed. By default the w command 
writes the entire file. 

Request an encryption key string from the 
standard input. Subsequent e, r, and w 
commands encrypt and decrypt the text with 
this key by the algorithm of crypt(l). An 
explicitly empty key turns off encryption. 

"Dot equals" prints the current line 
number. = by itself prints the line number 
of the last line in the file. 

Temporarily escape to the NUX shell to 
execute the specified command. ! shell
command executes shell-command in the 
shell and then returns you to the editor. 

AlUX Text Editing Tools 



Command 

/ string[/] 

?string[?] 

Using ed 

Description 

Search through the file for string and print 
the line containing it. The search starts at 
the line after the current line, reads to the 
end of the buffer, then wraps around to line 
1 and searches to the original line. If string 
is located, dot is set to the line where the 
string is found. 

Search backward through the file for string 
and print the line containing it. The search 
begins at the line before the current line, 
reads backward to the start of the file, then 
wraps around to the end of the file and 
searches backward to the original line. If 
string is located, dot is set to the line where 
the string is found. 

2-29 





Chapter 3 

ex and vi: 
A Text Editing System 

Contents 

1. What are ex and vi? 

2. In this manual . • 

- i -

1 

2 





Chapter 3 

ex and vi: 

A Text Editing System 

1. What are ex and vi ? 
ex and vi are actually two aspects or modes of the same text-editing 
program. For convenience they are often referred to as two separate 
programs. 

• v i is a screen editor. A screen editor works by displaying the 
contents of a file a full screen at a time. You type commands to 
add or change text anywhere on the screen, and the screen 
changes immediately to show the changes. Most of the time you 
need not know the line numbers of the lines you wish to work on. 
For our purposes, the terms "vi" and "visual mode" both refer 
to the v i screen editor . 

• ex is a line editor. A line editor works by specifying a set of 
lines on which to operate (for example, add text after this line, or 
change these ten lines). You issue commands to add or change 
text in response to a command prompt, and you cannot always 
see the results of changes right away. In most cases, you'll need 
to know the line numbers of the lines you wish to modify or 
otherwise operate on. For our purposes, the terms" ex" and 
"line mode" (which may be accessed within vi) both refer to 
the ex line editor. 

Both modes have commands you use to enter and edit text. Generally, 
the command to perform a given action in one mode is similar to the 
command you would use in the other mode (for example, d to delete 
text). 

You can go back and forth between ex and vi. To go from ex to vi, 
you type 

vi 

at the ex colon prompt. 

ex and vi 3-1 



To use ex from within vi, press the ESCAPE key (if necessary) to enter 
vi command mode and then type the colon character (:). The ex 
command line appears at the bottom of the screen, ready to accept any 
ex command. The current screenful of text remains on the screen. 

ex commands are invaluable in vi for global changes, searching, and 
other operations that involve more than one line in the file. viis 
helpful in ex as well. 

2. In this manual 
The complete reference manual for this text-editing system consists of 
the following two chapters: 

• Chapter 4, "Using vi," discusses vi commands. Where an ex 
command is useful, it is mentioned and you are referred to "Using 
ex." 

• Chapter 5, "Using ex," covers ex commands. It includes a 
command summary in the back. Where an ex command involves or is 
related to a vi command, you are referred to "Using vi." 

These two chapters assume that you've at least tried using vi and ex 
before. If you've never used them, please go through the vi tutorial in 
Getting Started WithAIUX. After you've finished the tutorial, you'll be 
ready for these chapters. 

3-2 NUX Text Editing Tools 



Contents 

Chapter 4 

Using vi 

1. vi basics .••••.•. 
1.1 Starting vi . . . . . . 

1.1.1 vi command-line syntax • 
1.1.2 vi initialization 

1.2 Opening a file .•.•• 
1.2.1 Read-only viewing 
1.2.2 Opening a file for editing 

1.3 vi modes. • • • • 
1.4 Switching to line mode • • • 
1.5 Special keys • • • • • . 

2. Displaying text and moving within the file • 
2.1 Arrow keys 
2.2 Motion commands • . • • • • • . • 
2.3 Moving by text block 
2.4 Go to a specific line. • • • • • • • 
2.5 Marking text • • • 
2.6 Scrolling and paging 

3. Inserting text •• • • 
3.1 Correcting text as you insert 

4. Deleting text 

1 
1 
1 
2 
3 
3 
3 
4 
4 
5 

6 
6 
6 
9 

10 
10 
11 

12 
12 

13 

5. Changing text • • • • • • • • • • . 14 
5.1 Combining operators and motions 15 
5.2 Undoing the last command. • • • • • • 16 
5.3 Repeating the last command • • • • . 16 
5.4 Storing text in named buffers • 17 

6. Copying and moving text • 
6.1 Recovering lost text. • . • 

- i -

17 
18 



7. Regular expressions and searching • 

8. Working with multiple files 

9. Using shell commands in vi . 

10. Setting options • • • . • 

11. Mapping and abbreviations 
11.1 Mapping: map 
11.2 Abbreviations 

12. Other features 
12.1 Escaping nonprinting characters in vi 
12.2 Saving text and exiting • 

13. Error conditions ..•. 
13.1 Redrawing the screen 
13.2 When your system is slow 
13.3 Large files: out of temp filespace • 
13.4 Terminal characteristics unknown: open 

mode . . • • . • • • 
13.5 Recovering lost files • • • . • • 

14. Command summary 
14.1 Editing commands 
14.2 Insert mode commands . 

- ii -

19 

20 

21 

21 

22 
22 
24 

25 
25 
26 

27 
27 
27 
28 

29 
29 

30 
30 
39 



1. vi basics 

Chapter 4 

Using vi 

This chapter describes the visual editor, vi. This chapter assumes 
you've used vi at least once and are ready to learn more about what 
vi has to offer. If you've never used vi, please go through the vi 
tutorial in the Getting Started With AIUX manual. Mter you complete 
the tutorial, you'll be ready for this chapter. 

v i uses the full screen as a window into the file you edit. When you 
make a change, vi immediately displays the change on your screen. 
The view command is similar to vi but protects you from making 
unintended changes by setting read-only permission on the file. The 
vedi t command is identical to v i except that an "INPUT MODE" 
message displays when you are entering text, and vedi t reports the 
number of changes you make with global substitutions (when the 
number of changes is greater than one). The vedi t command is 
intended to be helpful to beginning users. 

1.1 Starting vi 
Usually you start vi with the following command: 

v i filename ... 

where filename is the name of the file(s) to edit 

1.1.1 vi command-line syntax 
The command to invoke vi is 

vi [+command] [-1] [-r [filename]] [-R] [-t [tag]] [-wn] [-x] [filename . .. ] 

You can also use the v iew and vedi t commands with the same flag 
options. 

The options are as follows: 

Using vi 4-1 



+ command 
Move to the line specified by command where command is 
either a regular expression (see "Regular Expressions and 
Searching") or a line number (for example, + 100 starts 
editing at line 100). If you omit command, vi moves the 
cursor to the last line of the first file. 

-1 Set the showmatch and lisp options for editing LISP 
programs. These are described under" Setting Options." 

-r [filename] 
Recover a file after an editor or system crash; if you don't 
specify file, it lists the saved files. 

-R Set the readonly option, making it impossible to write 
the file with the write command. 

-t [tag] Start editing the file at tag (usually a spot marked with the 
ctags program). Equivalent to an initial tag command. 
This is described in Chapter 5, "Using ex.'" 

-wn Set the window size to n lines. 

-x Prompt for a key to encrypt and decrypt the file (see 
crypt(1) in the AIUX Command Reference). The file 
should already be encrypted using the same key. 

filename The file(s) to edit. 

1.1.2 vi initialization 
When you start vi, it sets up your editing environment with the 
following steps: 

• reads the TERM variable to find out what terminal you're using 

• sets any options you've specified in the . exrc file in the current 
directory or your home directory 

• sets any options you've specified in the EXINIT variable 
(usually set in the .profile (or . login) file in your home 
directory) 

You can set the same options with either the . profile, . login, or 
. exrc files. The options are described in "Setting Options" later in 
this chapter. 

4-2 AlUX Text Editing Tools 



1.2 Opening a file 
You can display a file for read-only viewing or to edit and make 
changes. This is the difference between viewing a file and editing it. 

1.2.1 Read-only viewing 
If you want to look at a file and protect the file from unintended 
changes, start the viewing program from the shell by typing 

view filename 

instead of vi filename. view protects the file from accidental 
changes. When you enter a file using view, you can use all of vi's 
commands, but you can only make changes to the file by typing the 
colon character ( : ) to move to line mode and using the command 

:w! 

You can then exit the file by typing the colon character ( :) to move to 
ex line mode and typing 

q 

If you exit view using the vi command 

zz 
You will exit the file without making any permanent changes. If you 
try to exit view using commands that write changes to a file before 
exiting vi (for example, : wq), you'll get an an error message. 

1.2.2 Opening a file for editing 
To create and "open" a new file (or open an existing file) in vi, type 

vi filename 

where filename is the name of the file you're creating (or opening). For 
example, to open the file jumblies from the vi tutorial in Getting 
Started With A/UX, type 

vi jumblies 

When you use v i to create a new file, vi opens some temporary 
storage space that is referred to as "the buffer." 

When you edit an existing file~ vi places a copy of that file in the 
buffer. Changes you make to the text in the buffer (for example, to a 

Using vi 4-3 



copy of the jumblies file mentioned above) are made only to this 
temporary copy. vi does not change the actual contents of the file 
until you save your changes (see "Saving Text and Exiting' '). 

Note: You should periodically write your changes to the file to 
prevent losing material if the system crashes or is interrupted. 

After you've opened an existing file the text is displayed on your 
screen. 

1.3 vi modes 
vi has a number of modes. 

• When you first open a file, you are in command mode. vi 
assumes anything you type is a command and tries to execute it. 
For example, if, after you've created and opened a new, empty 
file you type the letter j, which happens to be a movement 
command (discussed later in this chapter), vi tries to move 
accordingly. But because there is no text in the file, there is no 
place to move. v i signals that it cannot comply with the 
command. 

• To insert text, you must enter insert mode. In insert mode, vi 
assumes anything you type is text (rather than commands). To 
enter insert mode, type i. Anything you type after that appears 
on the screen. vi places what you type in the buffer. It won't be 
written to the file until you return to command mode and save the 
file (see "Saving Text and Exiting"). Other vi commands for 
inserting text include a (append), 0 and 0 (open line). There are 
also several commands, such as c (change) and s (substitute), 
that insert text. For a complete list of vi's insertion commands, 
see "Inserting Text" later in this chapter. You always leave 
insert mode by pressing the ESCAPE key. 

• You can use the ex editor commands by entering line mode. See 
"Switching to Line Mode." 

1.4 Switching to line mode 
When you invoke v i you can switch to line mode by typing the colon 
( : ) in v i command mode. This invokes line mode and places a colon 
prompt on the bottom line of your screen. You can enter ex 

4-4 A/UX Text Editing Tools 



commands at this prompt After a single ex command has executed, 
you will return to vi. 

You can also switch to line mode for a series of ex commands (or a 
multiple-line ex command) by typing 

Q 

in vi command mode. To return to vi when you have entered line 
mode this way, type 

vi 

at the colon prompt on the bottom line of your screen. 

ex commands are invaluable in vi for global changes, searching, and 
other operations that involve more than one line in the file. 

Note: You can also switch to the ex command line to execute 
ex search and global commands by typing the slash 
character (I) or the question mark (?). 

For complete information on using ex commands, refer to Chapter 5, 
"Using ex." 

1.5 Special keys 

ESCAPE 

The EsCAPE key endS all text insertion in vi and returns you to 
command mode. Try pressing this key a few times. On most terminals 
a bell sounds (on some terminals the screen silently flashes instead), 
indicating that you are in command mode. 

RETURN 

The RETURN (carriage return) key terminates all commands given on 
the ex command line. See "Switching to Line Mode." 

Note: You do not need to press RETURN after commands that 
are not given on the ex command line. 

Using vi 4-5 



The interrupt key 

The interrupt key (set to CONfROL-C in the NUX standard distribution) 
sends an interrupt signal to the editor. It gives you a forceful way of 
stopping v i from executing a command it has already started. 

vi occasionally shows your commands on the last line of the screen. 
If the cursor is on the first position of this last line, v i is working on 
something (such as finding a new position in the file after a search or 
reformatting the buffer). When this happens, you can stop vi by 
sending an interrupt. 

2. Displaying text and moving within the file 

2.1 Arrow keys 
The arrow keys on your keyboard move the cursor in vi. The h, j, k, 
and 1 keys also move the cursor. 

horf-

j or j, 

korl 

lor ---7 

Move the cursor left a space. (The system erase 
key, usually DELETE, also works.) 

Move the cursor down a line (in the same column). 

Move the cursor up a line (in the same column). 

Move the cursor right a space. (Space bar also 
works.) 

You use these keys in command mode, and you can precede them with 
a number indicating how many spaces you want to move in the 
direction you want. For example, Sh moves the cursor left 5 spaces. 

2.2 Motion commands 
Motion commands are either mnemonic, single-character commands 
or symbols that move the cursor in a file without affecting the file's 
contents in any way. With the exception of the G command, motion 
commands operate relative to the current cursor position. You can 
combine motion commands with a number (to indicate how many times 
the command executes) or with an operator, such as d for delete (to 
indicate how far the operation extends). 

If preceded by a number n, a motion command moves n motions (for 
example, n spaces or n lines) in that direction. The syntax is then 

4-6 AlUX Text Editing Tools 



[n]motion 

For example, to move the cursor three words forward, you would type 
3w. 

Preceding these commands with an operator, such as d (delete) or c 
(change), indicates how far the operation of deleting or changing text 
extends. In this case, the syntax would be 

[n][opr]motion 

For example, to replace two words of text you would type 2cw. See 
"Combining Operators and Motions" in this chapter for more details. 

[n]-

[n]+ 

[n]$ 

o 

[n] I 

[n]w 

[n]W 

[n]b 

[n]B 

Using vi 

Move the cursor to the beginning of the preceding 
line. Scroll if necessary . 

Move the cursor to the beginning of the next line. 
Scroll if necessary. 

Move the cursor to the end of the current line. 
Preceded by a number it means "move to the end of 
the line n lines forward in the file. " 

(Caret.) Move the cursor to the beginning of the first 
word on the line. 

(Zero.) Move the cursor to the left margin of the 
current line. 

(Vertical bar.) Move the cursor to the beginning of 
the first column or to the column specified by n. 

Move the cursor to the beginning of the next word 
(or nth word). 

Move the cursor to the beginning of the next word 
(or nth word), ignoring punctuation. 

Move the cursor to the beginning of the preceding 
word (or nth word). 

Move the cursor to the beginning of the preceding 
word (or nth word), ignoring punctuation. 

4-7 



[n]e 

[n]E 

fx 

FX 

tx 

Tx 

[n]G 

] ] 

[ [ 

4-8 

Move the cursor to the end of the current word (or 
nth word). 

Move the cursor to the end of the current word (or 
nth word), ignoring punctuation. 

Move the cursor forward to the next instance of x, 
where x is a character. 

Move the cursor backward to the preceding instance 
of x, where x is a character. 

Move the cursor forward to one character position 
before the next instance of x, where x is a character. 

Move the cursor backward to one character position 
after the preceding instance of x, where x is a 
character. 

Move the cursor to the specified line number (Go to 
line number). G alone moves the cursor to the end 
of the file. 1 G moves to the beginning of the file. 

Move the cursor to the beginning of the next 
sentence (defined as ., !, or? followed by two 
spaces or a newline character). 

Move the cursor to the beginning of the current 
sentence. 

Move the cursor to the beginning of the next 
paragraph. See "Moving by Text Block" for 
information on how a paragraph is defined. 

Move the cursor backward to the beginning of a 
paragraph. See "Moving by Text Block" for 
information on how a paragraph is defined. 

(Right bracket, typed twice.) Move the cursor to the 
beginning of a new section. See "Moving by Text 
Block" for information on how a section is defined. 

(Left bracket, typed twice.) Move the cursor 
backward to the beginning of a section. See 
"Moving by Text Block" for information on how a 

AlUX Text Editing Tools 



% 

[n]H 

[n]L 

M 

, , 

section is defined. 

Move the cursor to the matching parenthesis or 
brace. If you type % when the cursor is not on a 
parenthesis or brace, vi searches forward until it 
finds one on the current line and then jumps to the 
matching one. 

Move the cursor to the top-left position on the screen 
(Home) or the nth line from the top of the screen. 

Move the cursor to the bottom-left of the screen 
(Last) or the nth line from the bottom of the screen. 

Move the cursor to the beginning of the middle line 
on the screen (Middle). 

(Back quote key typed twice.) Move the cursor back 
to where it was before the last absolute motion 
command. Absolute motion commands are those 
that move to a precise place (such as a line number 
or the word you searched for), not a place relative to 
the cursor position (such as CONTRoL-d or 12 j). 

Your file may have tab (CON1ROL-i) characters in it. These characters 
are represented as several spaces expanding to a tab stop, where the 
default tab stop is eight spaces. When the cursor is at a tab, it sits on 
the last of the spaces representing that tab. Try moving the cursor back 
and forth over tabs so you understand how this works. 

On rare occasions, your file may have nonprinting characters in it. 
These characters appear as a two-character code, with ... as the first 
character; these two characters are treated as a single character. 

2.3 Moving by text block 
The parentheses, (and), move the cursor to the beginning of the 
previous and next sentences, respectively. A sentence ends with a 
period, question mark, or exclamation mark, followed by either the end 
of the line or two spaces. 

The braces, { and }, move the cursor over paragraphs. A paragraph 
begins after each empty line, at the troff request. bp, or at a 
paragraph macro. By default, this option uses rom's paragraph macros 

USing vi 4-9 



(that is, the . P and. LI macros). You can change this default with the 
set paragraphs command; see Chapter 5, "Using ex," in this 
manual. Each paragraph boundary is also a sentence boundary. You 
can precede the sentence and paragraph commands with a number to 
operate over groups of sentences and paragraphs. 

[ [ and ] ] (left and right brackets, typed twice) move forward and 
backward over sections, respectively. Sections begin after each macro 
set in the sections option (normally. Hand. HU) and each line with 
a form feed (CONTROL-I) in the first column. Section boundaries are 
always line and paragraph boundaries. 

2.4 Go to a specific Ii ne 
Typing G moves you to the end of your file. vi displays a tilde 
character (-) on each line past the last line of your text. 

Type CONlROL-g to find out the current line number. This prints a 
message on the last line of your screen containing the name of the file 
you are editing, the current line number, the total number of lines in the 
buffer, and the percentage of the way through the buffer you are (in 
lines). You can also find your current line number by typing the colon 
character ( : ) to move to the ex command line and typing 

You can get back to the previous position in the file by typing a back 
quote twice (' '). Please refer to "Line Selection" in Chapter 5, 
"Using ex." 

You can also move to a specific word or phrase in a file. To search for 
a particular string in your file, type the slash character (I) to move to 
the ex command line. You will see the slash character on the bottom 
line of your screen, waiting for you to specify the string you want to 
find. Type 

/string 

For more information about searching, please refer to "Regular 
Expressions and Searching" in Chapter 5, "Using ex." 

2.5 Marki ng text 
You can set up a special address with the mx command (where x is a 
letter between a and z) and then use this address anywhere you would 

4-10 AlUX Text Editing Tools 



use a vi address. After you have marked a line, you can refer to it by 
typing 

'x 

where x is the name you gave it 

2.6 Scrolling and paging 
v i has several commands that scroll the text of a file up or down on 
your screen. You cannot combine these commands with other 
commands such as d (delete) or c (change). You can precede them 
with a number n indicating how many lines you want to move. The 
syntax for this is 

[n]scroll-command 

for example, 

3CONTROL-b 

You execute these commands by holding down the key labeled 
CONTROL while pressing the indicated letter. 

[n]CoNTRoL-d Move the cursor down half a screen (or by n lines). 

[n]CoNTRoL-U Move the cursor up half a screen (or by n lines). 

[n]CONTROL-f Move the cursor to the next screenful (or n 
screenfuls forward). 

[n]CONTRoL-b Move the cursor to the previous screenful (or n 
screenfuls backward). 

[n]CONTRoL-e Display another line at the bottom of the screen (or n 
lines). 

[n]CONTROL-y Display another line at the top of the screen (or n 
lines). 

[n]CONTROL-p Move the cursor to the previous line (or n lines 
backward, same column). 

[n]<CR> Move the cursor to the next line (or n lines forward, 
same column). 

[n]z<CR> Display the current full screen (or the full screen 
starting with n). 

Using vi 4-11 



3. Inserting text 
The following commands insert text. Note that you must press the 
ESCAPE key to terminate text insertions. Pressing ESCAPE returns you 
to command mode. You can always undo your last change by typing u 
in command mode. 

Inserted text can contain new lines , but it does not have to. 

a [text]ESCAPE Insert text immediately after the cursor (append). 

A[text]EsCAPE Insert text at the end of the current line. 

i[text]EsCAPE Insert text immediately before the cursor (insert). 

I [text]ESCAPE Insert text at the beginning of the current line. 

o [text]ESCAPE Open a new line after the current line and insert text 
there (open). 

o [text]ESCAPE Open a new line before the current line and insert 
text there. 

i places text to the left of the cursor, and a to the right; I inserts text at 
the beginning of the line, and A at the end of the line. Insert and 
append a few times to make sure you understand how this works. 
Make sure to press ESCAPE to terminate the text you insert. 

You will often want to add new lines. Press 0, which creates (opens) a 
new line after the line you are on. 0 creates a new line before the line 
you are on. Mter you create a new line, everything you type is inserted 
on the new line. Press EsCAPE to stop inserting. 

To type in more than one line of text, press RETURN to end a line. This 
creates a new line and you continue typing. You can also set the 
wrapmargin option, which automatically moves your cursor to the 
following line once you have moved to a certain column. See Chapter 
5, "Using ex," for more information. 

3.1 Correcting text as you In~ert 
The following characters correct text as you insert it (that is, while 
you're still in insert mode): 

erase 

4-12 

The system erase character (often the ASCII 
backspace sequence CONIROL-h, DELETE, or =It). 
Deletes the last input character. 

AlUX Text Editing Tools 



kill 

CONTROL-W 

The system kill character (often CONTROL-U, 
CONTROL-x, or @). Deletes the current input line. 

Delete the last word entered. 

Your system kill character erases all the input on the current line. See 
AlUX User Interface to set your own kill and erase characters at login 
time. 

Pressing CONTROL-h or your own erase character erases the last 
character you typed. Pressing CONTROL-w erases a whole word and 
leaves you after the preceding word. 

4. Deleting text 
The following commands delete text. You can precede most of these 
commands with a number indicating the extent of the command. For 
example, 

3x 

deletes three characters. Undo the last change by typing u, and repeat 
the last command by typing . (dot). 

[n]x 

[n]X 

D 

[n]dmotion 

[n]dd 

Delete the character (or n characters), starting at the 
cursor. 

Delete the character (or n characters), backward 
from the character before the cursor. 

Delete from the cursor to the end of the line. 

Delete one (or n) occurrences of the specified 
motion. You can use any of the true motion 
commands here. (See "Motion Commands" for 
more information.) For example, 3dw deletes three 
words. 

(d typed twice). Delete current line (or n lines 
including the current line). 

You can transpose characters by x'ing the first character that is 
transposed and then typing p. For example, to correct the word 
charcaters, move the cursor to the transposed c, type x and then p. 
This deletes the c and then puts it in the .proper place: characters. 

Using vi 4-13 



You can also delete text by specifying the line numbers you want to 
delete; see "Deleting Text" in Chapter 5, "Using ex." 

See "Recovering Lost Text" if you have deleted some text and want to 
get it back. 

5. Changing text 
The following commands replace text by simultaneously deleting the 
existing text and inserting new text. You can also precede these 
commands with a number, n, to indicate the extent of the command. 
For example, 4 r lets you replace four characters. Type u to undo these 
commands. 

rx Replace the character at the cursor with x. 
This is a one-character replacement. You 
don't need ESCAPE to terminate the 
command. 

R[text]EsCAPE Overwrite the characters on the screen with 
text. After you type R, whatever you type 
overwrites the existing text until you press 
ESCAPE. 

[n]s[text]EscAPE Substitute character (or n characters) 
beginning at the cursor. $ appears at the nth 
position in the text, so you know how much 
you are changing. Terminate with ESCAPE. 

[n]S[text]ESCAPE Substitute the entire current line (or n lines). 
$ appears at end of the current line, or n lines 
are deleted before insertion begins. 
Terminate with EsCAPE. 

[n]cmotion[text]EsCAPE Change motion to text, where motion is a 
motion command, for example, w for 
word(s), } for paragraph(s), ) for 
sentence(s), and so on. You can also precede 
the commands with a number, n, to indicate 
the extent of the command. For example, 
4cwtext lets you change four words and 
replace them with text. Terminate with 
ESCAPE. 

4-14 AlUX Text Editing Tools 



[n]cc[text]ESCAPE 

C[text]ESCAPE 

(c typed twice.) Change entire line (or n 
lines). Terminate with EsCAPE. 

Change from the cursor to the end of the 
line. 

v i prints a message on the last line of the screen telling you how many 
lines you changed. vi also tells you when a change affects text you 
cannot see. 

You can also change text by specifying line numbers on the ex 
command line; see "Changing Text" in Chapter 5, "Using ex." 

5.1 Combining operators and motions 
You make larger changes by combining operators (d for delete, c for 
change, s for substitute, and so on) with the motion commands 
introduced earlier: w for word(s), ) for sentence(s), } for paragraph(s), 
/pattern for context search(es), and so on. The syntax for the general 
case is 

operator motion-command 

Move to the beginning of a word and type dw to delete a word. Now 
try db; this deletes the word to the left of the cursor. The command 

d} 

deletes the text from your current cursor position to the next paragraph 
delimiter-a blank line or an nroff/troff command for list or 
paragraph. 

The command 

d) 

deletes the rest of the current sentence. Similarly, d ( deletes the line to 
the left of the cursor. d ( deletes the preceding sentence if you are at 
the beginning of the current sentence, or the current sentence up to the 
cursor position if you are not at the beginning of the sentence. 

You can also use these operators with the / (or ?) search command to 
change similar phrases in a document For more information, please 
refer to "Regular Expressions and Searching." 

Using vi 4-15 



Another useful operator is c (for change). cw changes a single word to 
the text you insert. Press EsCAPE to tenninate. Move to the beginning 
of a word and type 

cwnew-word 

(followed by ESCAPE). Notice that the end of the text to change was 
marked with the dollar sign character ($). 

f and t are useful with operators like c (change) and d (delete) to 
change a section of text that is not recognized as a delimited word. 

5.2 Undoing the last command 

u 

u 

Undo the last command, including a preceding undo 
command. 

Undo changes to the current line. 

If you make an incorrect change (whether large or small), use the u 
(undo) command to undo it. Notice that u also undoes the previous u. 

The undo command reverses only a single change. After you make 
several changes to a line, you may decide that you would rather have 
the original line back. u restores the current line to the way it was 
before you started changing it, but only if you have not left the line 
before pressing u. 

If you have made several changes deleting text, you can use u to undo 
only your last change. You can still recover deleted text, however, 
even if it is too late to use the u command. See' 'Recovering Lost 
Text" later in this chapter. 

5.3 Repeating the last command 

n 

N 

[n]; 

4-16 

Repeat the last command that changed the buffer. 

Repeat the last / or? search command (next). 

Repeat the last / or? search command in the 
opposite direction. 

Repeat the last f, F, t, or T command (once or n 
times). 

A/UX Text Editing Tools 



[n], 

& 

Repeat the last f, F, t, or T command in the 
opposite direction (once or n times). 

Repeat the last single substitution. 

For more information, please refer to "Changing Text" in Chapter 5, 
"Using ex." 

5.4 Storing text In named buffers 
The editor has a set of buffers named a through z. If you precede any 
delete or replacement command with 

"a 

(where the double quote character indicates "buffer name" and a is 
any single lowercase character), that named buffer will contain the text 
deleted by the command. For example, 

"a3dd 

deletes three lines, starting at the current line, and puts them in 
register a. 

Move the cursor to where you want the lines and type 

"ap 
or 

"aP 

that is, "put contents of register a," to put them back. 

6. Copying and moving text 
The following commands "yank" text (duplicate it in a buffer) and 
"put" it at another location in the text In the following, buf-spec is 
the "a buffer notation. 

[n][bLif-spec]y motion 
Yank the specified object (word, paragraph, and so 
on) or n objects into a buffer. 

[n][bu/-spec]yy Yank the current line (or n lines) into a buffer. 

[n][bLif-spec]Y Equivalent to yy. 

[buj-spec]p 

Using vi 

Put the contents of the buffer in the text after the 
cursor. Lines you yank are placed on new lines 

4-17 



[buf-spec]p 

following the current line. Other objects, such as 
words or paragraphs, are inserted immediately 
following the cursor. 

Put the contents of the buffer in the text before the 
cursor. Lines you yank are placed on new lines 
preceding the current line. Other objects, such as 
words or paragraphs, are inserted immediately 
preceding the cursor. 

vi has a single unnamed buffer where it saves the last text you deleted 
or changed, and a set of named buffers (a through z) where you can 
save copies of text and move text around in your file and between files. 
For more information on these named buffers, see "Storing Text in 
Named Buffers." 

y yanks a copy of the specified object into the unnamed buffer. For 
example, y3w puts three words in the buffer. 

You can then put the text back in the file with the commands p and p; 
p puts the text after or below the cursor, while p puts the text before or 
above the cursor. 

If the text you yank is part of a line or partially spans more than one 
line, the text is put back after the cursor (or before it, if you use p). If 
the yanked text is whole lines, they are put back as whole lines, without 
changing the current line. This acts much like an 0 or 0 command. 

Try YP. This makes a copy of the current line and places it before the 
current line. Y is a convenient abbreviation for yy. Yp copies the 
current line and places it after the current line. You can give Y a count 
of lines to yank and duplicate several lines. Try typing 3 YP . 

You can also copy and move text by specifying line numbers on the ex 
command line; see "Copying and Moving Text" in Chapter 5, "Using 
ex. " 

6.1 Recovering lost text 
In addition to the named buffers (a-z) and the unnamed buffer (the 
"undo" buffer), there are nine numbered buffers where the editor 
places each piece of text you delete (or yank). 

4-18 A/UX Text Editing Tools 



The most recent deletion (or yank) is in the undo buffer and also in 
buffer 1. The next most recent deletion or yank is in buffer 2, and so 
on. Each new deletion pushes down all older deletions; those older 
than 9 disappear. If you delete lines and then regret it, you can get the 
nth previous deleted text back in your file using the command 

nnp 

where n is register 1 through 9. The double quote character (n) here 
means "buffer number," n is the number of the buffer (use the number 
1 for now), and p is the put command, which puts text in the buffer 
after the cursor. If this doesn't bring back the text you wanted, type u 
to undo this, and then a period ( . ) to repeat the put command. In 
general, the period ( .) repeats the last change you made. When the 
last command refers to a numbered text buffer, . increments the 
number of the buffer before repeating the command. For example, 
typing 

nlpu.u.u.u.u.u.u.u. 

shows you all the deleted text that has been saved (nine deletions). 
You can omit the u commands here to gather all this text in the buffer, 
or you can stop after any . command to keep only the text recovered so 
far. You can use P instead of p to put the recovered text before rather 
than after the cursor. 

You can use the ex commands co and m to copy and move text, 
respectively. For more information, please consult Chapter 5, "Using 
ex." 

7. Regular expressions and searching 
You can search for words or phrases in files by typing a slash (I), 
followed by the phrase you want to find, followed by RETURN. For 
example, typing 

/grump<CR> 

takes you to the next instance of grump in the file. This is an ex 
command. When you type the slash, the cursor moves to the ex 
command line. You can also combine searching with commands in a 
file. For more information about this and other aspects of searching, 
please refer to "Regular Expressions and Searching" in Chapter 5" 

Using vi 4-19 



"Using ex," in this manual. 

Regular expressions use special characters and notation to specify a 
set of character strings. For example, the regular expression . (dot) 
matches any single character. Therefore, the search command 

fe.t 

takes you to the next occurrence of all words containing a e followed 
by any character followed by a t (cat, ebt, eet, and so on). 

Regular expressions can be extremely useful when you're editing a file. 
For more information about them, please refer to "Regular Expressions 
and Searching" in Chapter 5, "Using ex," in this manual. 

8. Working with multiple files 
You can edit more than one file at the same time. To open more than 
one file at once, enter v i with the command 

vifilel file2 

filel will be opened first When you write the file, you can move to the 
second file by typing the colon character ( : ) to move to the ex 
command line and typing 

n 

You must write the first file before trying to get into the second file or 
vi won't let you move. 

To return to the first file, type 

CONTROL-A 

(to get this sequence on many terminals you must type CON1ROL
SHIFT-6). 

You can also read the contents of another file into the buffer by typing 
the colon character ( : ) to move to the ex command line and typing 

r filename 

A copy of filename will be inserted after the current line. See 
"Copying Another File to the Current Buffer" in Chapter 5, "Using 
ex," for more information. 

4-20 AlUX Text Editing Tools 



For more information about editing several files at the same time, 
please refer to "Working With Multiple Files" in Chapter 5, "Using 
ex. " 

9. Using shell commands in vi 
There are several ways of interacting with the shell from within vi. 
All of these require that you type the colon character ( :) to move to the 
ex command line and then type the appropriate ex command. Please 
refer to "Using Shell Commands in ex" in Chapter 5, "Using ex." 

10. Setting options 
You can customize your v i environment by setting various ex options. 
To set an option in vi type the colon character ( : ) to move to the ex 
command line and then type the appropriate set command. The ex 
options that are especially useful in vi are described briefly below. 

set wi[ndow]=n 

set scr[oll]=n 

Changes the number of lines in your editing 
window. 

Changes the number of lines you scroll through with 
the CONTRoL-d command. 

set para[graphs]=macro-strings 
Changes the strings v i searches for when you press 
{ or.}. Valid strings are the paragraph and list 
macros from the rom and ms macro packages. 

set sect[ions]=macro-strings 

set redraw 

Changes the strings v i searches for when you press 
[ [ or ] ]. Valid strings are the section macros from 
the rom and ms macro packages. 

Forces a dumb terminal to redraw the characters to 
the right of the cursor as you enter text in vi. 

set w[rap]m[argin]=n 

Using vi 

Sets the column where the cursor automatically 
returns to the left margin. 

4-21 



set nomesg Prevents messages from other people while in vi. 

For more information about setting options and a list of all the available 
options, please refer to "Setting Options" in Chapter 5, "Using ex." 

11. Mapping and abbreviations 
Mapping and abbreviation are available as a joint facility of ex and 
vi. The mapping or abbreviation must be defined on the ex command 
line, but is useful only in visual mode. Since viis required for these to 
work, the examples are structured to work within vi. These 
commands require that you type the colon character ( : ) to move to the 
ex command line before typing the appropriate command. 

11.1 Mapping: map 
In vi you can use the ex command map to create a macro. A macro 
sets a string (usually a single key) equal to a command or sequence of 
commands. 

The general format of the map command in viis 

: map string definition 

(followed by RETURN), where string is usually a single keystroke or 
function key, and definition is the map definition representing a 
command or sequence of commands. 

After you enter a map command, typing string performs the specified 
command. string can't be more than 10 characters and definition can't 
be more than 100 characters. If it takes longer than a second to type 
string, however, vi times you out before recognizing the string (you 
can prevent this by setting the option notimeout; see "Setting 
Options" in Chapter 5, "Using ex"). 

When you set up a map from within vi, it lasts only as long as your 
current editing session. If you're editing several files in one session (by 
entering several names on the command line) and you use the : n 
command to edit them, however, the map definitions hold for all files 
until you quit the editor. To make a more permanent definition, insert 
it in the EXINIT variable in your .profile (or . login) file or in 
$HOMEI • exrc (see "Setting Options"). 

CONfROL-v allows you to insert nonprinting characters «CR>, blanks, 
tabs, control sequences) in your map definition. Pressing RETURN ends 

4-22 NUX Text Editing Tools 



the map command, so to include a <CR>, ESCAPE, or any other 
nonprinting character in definition, you must escape it with CONIROL
v. 

For example, to make the character q write and exit the editor, type the 
command 

: map q : wqCONIROL-v<CR><CR> 

This maps the sequence 

:wq<CR> 

into the character q, so that when you type q in v i command mode, 
the command : wq<CR> executes. Without CONIROL-V, the first 
RETURN would have ended the map command, rather than becoming 
part of the map definition. With CONTROL-V, however, the first 
RETURN is part of the definition, and the second ends the map 
command. 

You can use # in the map command to represent function keys. Some 
terminals don't have function keys, but most terminals do. If the string 
is #0 through #9, it maps to the corresponding function key, not the 
two-character sequence tn. (Note that on the Apple keyboard for the 
Macintosh II, # n refers to the corresponding key on the 10-key pad.) 

You can also use the map command so that one key calls a second key, 
which calls the first one again. This is useful to repeat an editing action 
throughout an entire file. When you're writing these double maps that 
call each other, however, mo.ke sure the pattern you are searching/or 
changes as each command executes. 

When you mapa key to the function, try to choose a key that does not 
already have a function you need to use. For example, if you have a 
file containing names and telephone numbers in one format, and you 
want to change it globally as follows: 

Using vi 4-23 



Initial Format 

Kent, Clark 
123-4567 
Wayne, Bruce 
567-8910 

map the keys g and h as follows: 

New Format 

Kent, Clark 123-4567 
Wayne, Bruce 567-8910 

:map g /A [0-9] /CONTROL-v<CR>kJh 

:map h /A [0-9] /CONTROL-v<CR>kJg 

Then, in vi's command mode, typing g or h executes the command 

/ A [0 - 9] /CONTROL-V <CR> 

That is, the search command looks for a line beginning with a number 
o through 9. You must follow this command by pressing RETURN to 
execute it, and you must escape the RETURN in this definition with 
CONIROL-v. When the cursor is positioned on a line beginning with a 
number 0 through 9, the command 

kJh 

indicates "go up one line" (k), "join this line and the next line" (J), 
and "call h," which repeats this sequence of commands and calls g. 

These commands finish when there are no lines left in the file that 
begin with a number 0 through 9. The number of lines beginning with 
a number is reduced by one each time the J command executes. 
Otherwise, these commands can go into an infinite loop, calling each 
other indefinitely. If this happens, send an interrupt. 

You can delete macros with 

: unmap string 

The undo command reverses the effect of the entire macro as a unit. 

11.2 Abbreviations 
You can define a short string that expands to a longer string in the text. 
The commands to perform this are abbreviate and 

4-24 A/UX Text Editing Tools 



unabbreviate (ab and una) and have the syntax 

: abbreviation-command wd [word] 

(followed by RETURN), where abbreviation-command is 
ab[breviate] or una[bbreviate], wd is the abbreviation you're 
defining, and word (only applicable for abbreviate) is the string it 
represents. Note that the order of the arguments is the reverse of what 
you might expect. 

wd can't be more than 10 characters and word can't be more than 100 
characters. If it takes longer than a second to type wd, however, vi 
times you out before recognizing the string (you can prevent this by 
setting the ex option notimeout; see "Setting Options" in Chapter 
5, "Using ex"). 

After you enter an abbreviate command, typing wd translates it into 
word immediately. For example, after you type the command 

:ab cs Department of Computer Sciences 

enter (in insert mode) the string cs (followed by spaces. a newline 
character. or punctuation marks). This expands immediately to the 
phrase "Department of Computer Sciences," which is entered as part 
of your v i buffer. If you type c s as part of a larger word, however, it 
is left alone. The abbreviation echoes as you type it, and when it 
reaches a delimiter that sets it apart as a single word. it immediately 
expands into the longer string. 

12. Other features 

12.1 Escaping nonprinting characters In vi 
If you need to enter a control character such as the system erase or kill 
character on your screen when you are inserting text, you need to 
"escape" it so vi will not interpret its meaning. You can do this as 
follows: 

\ 

Using vi 

If the character or sequence prints on your screen 
but has a meaning to the editor that you want to 
prevent (for example, $), precede the character with 
a backslash. 

4-25 



CONTROL-v If the character or sequence is invisible on your 
screen (for example, CONIROL-I), you need to 
escape its meaning to the editor by preceding it with 
CONfROL-v. 

For example, to type an EsCAPE character into your file type 
CONIROL-v before you press the ESCAPE key. The CONfROL-v prints a 
caret (") at the current cursor position, indicating that the editor 
expects you to type a control character. When you press the ESCAPE 
key, you will see " [ in your file. After CONfROL-V, you can insert any 
nonprinting character except the null (@) character or the line-feed 
(CONIROL-j) character into the file. Using CONIROL-v is the only way 
to insert CONIROL-S or CONTROL-q. 

12.2 Saving text and exiting 
It is recommended that you periodically save the text you have entered 
in the buffer using the line-mode command 

:w 

This command writes the text into a permanent file, overwriting any 
previous version of the file. See "Saving Text and Exiting" in Chapter 
5, "Using ex." 

You can exit vi by making sure you are in command mode (press the 
ESCAPE key) and giving the command 

zz 

This command writes the changes you made to the buffer back into the 
file you were editing and quits vi. However, if you did not change to 
the buffer, this command does not force a write operation. 

If you want to force a write operation (this is especially recommended 
when recovering a file using vi -r), use the ex com and 

:wq 

There are several ex commands for exiting vi in different ways. To 
use them type the colon character ( : ) to move to the ex command line 
and type the appropriate ex command. For more information see 
"Saving Text and Exiting" in Chapter 5, "Using ex." 

4-26 AlUX Text Editing Tools 



13. Error conditions 
13.1 Redrawing the screen 
Occasionally the screen will need to be refreshed (for example, a 
program can write to the screen, or line noise can jumble up the 
screen). 

Press CONTROL-I to redraw the screen. On certain terminals, 
CONIROL-r works instead. 

You can redraw the screen so that a specified line shows at the top, 
middle, or bottom. To do this, move the cursor to that line and type 

z 

Pressing RETURN after the z command redraws the screen with the line 
at the top; a period ( . ) after the z places the line at the center; a minus 
sign ( -) after the z places it at the bottom. 

13.2 When your system is slow 
You can reduce the overhead of refreshing the screen for each change, 
scroll, and so on, by limiting the window size. You can invoke v i with 
a specific window size with the command 

vi -wn filename 

where n is a number less than 23. For example, 

vi -w3 filename 

This sets the initial size of the window to three lines, and allows the 
window to expand as you add lines. 

You can control the size of the window that vi redraws when the 
screen clears by specifying a window size as an argument to any of the 
following commands: 

/ ? [[ ]] 

If you search for a string in a file, preceding the first search command 
with a small number (for instance, 3) draws three-line windows around 
each instance of the string. 

You can easily expand or contract the window, placing the current line 
where you want, by giving a number after the z command and before 
the following RETURN, period ( .), or minus (-). For example, the 

Using vi 4-27 



command 

z5. 

redraws the screen with the current line in the center of a five-line 
window. The command 5 z. has an entirely different effect, placing 
line 5 in the center of a new window. 

If vi is updating large portions of the display, you can interrupt it by 
sending an interrupt signal (usually DELETE or CONfROL-C). This may 
partially confuse v i about what is displayed on the screen. You can 
clear up the confusion by typing CONfROL-I or by moving or searching 
again, ignoring the current state of the display. 

See "Terminal Characteristics Unknown: Open Mode" for another 
way to use the vi command set on slow terminals. 

13.3 Large files: out of temp filespace 
v i prints the message 

Out of temp filespace 

when it doesn't have enough buffer space (in / tmp) to hold the file. It 
might refuse to open the file when it prints this, or it might open it and 
load only part of the file into the buffer. The latter is dangerous because 
if you write the file when only half of it is in the buffer, you can lose 
the other half. 

The best thing to do when that message prints is to get out of v i by 
typing the colon character ( : ) to move to the ex command line and 
typing 

q! 

Then go up to /tmp and delete any files that aren't necessary. Mter 
you've deleted some files, go back and try opening your document 
again. 

If your file is very large, you may have to use the A/UX split 
command to break. it into smaller text files before you can use vito 
edit it. See split(l) in theA/UX Command Reference for more 
information. 

4-28 A/UX Text Editing Tools 



13.4 Terminal characteristics unknown: open mode 
v i uses the value of the TERM environment variable and the terminal 
description file terminfo to control the screen. If it does not find a 
description of your terminal in terminfo, it displays the message 

I don't know what kind of terminal you are on 
-all I have is 'unknown' 

[Using open mode] 

Sometimes this message indicates an incorrect value in the TERM 
variable. Type 

echo $TERM 

to find out the current value of TERM, and see AIUX User Interface to 
reset this variable. 

In open mode, the editor uses a single-line window into the file and 
displays a new line that is always below the current line. Two vi 
commands, z and CONTRoL-r, work differently in open mode. The z 
command does not take parameters, but rather draws a window of 
context around the current line and then returns you to the current line. 

If you are on a hard-copy terminal, CONTRoL-r prints the current line. 
On these terminals, vi normally uses two lines to represent the current 
line. The first line is a copy of the line as you started to edit it, and the 
second is the copy you are working on. When you delete characters, 
v i prints backslashes through the deleted characters. The editor also 
reprints the current line soon after these changes so that you can see 
what the line looks like again. 

Open mode can be useful on very slow terminals. 

13.5 Recovering lost files 
If the system crashes or you receive a hangup signal on a dial-in line, 
you can recover your work even if you did not write the changes to the 
file. Move to the directory you were in when the system crashed, and 
give the command 

vi -rfilename 

(the -r flag option for recover) where filename is the file you were 
editing when the system went down. vi - r will tell you if there are 

Using vi 4-29 



any files to be recovered. 

In some cases, a few lines of the file may be lost. These lines will 
almost always be the last few you changed. 

Note: It is not advisable to exit a file that you have just 
recovered using the z z command, since z z does not guarantee 
that the file will be written. After you have checked the 
recovered file, you should force a write using : w. 

14. Command summary 

14.1 Editing commands 
The following commands are used in vi's command mode. 

Command 

[n]CON1ROL-b 

[n]CoN1RoL-d 

[n]CON1ROL-e 

[n]CON1ROL-f 

CONlROL-g 

CONlROL-h 

[n]CON1RoL-j 

4-30 

Description 

Move the cursor to the previous screen (or n 
screens backward). 

Move the cursor down half a screen (or by n 
lines). 

Display another line at the bottom of the 
screen (or n lines). 

Move the cursor to the next screen (or n 
screens forward). 

Give current line number and filename and 
the percentage along in the file. 

Move the cursor back one space. 

Move down one line in the same column (or 
n lines). 

AlUX Text Editing Tools 



Command 

CONlROL-I 

[n]CONlROL-m 

[n]<CR> 

[n]CONlROL-p 

CONlROL-r 

[n]CONlROL-U 

[n]CONlROL-y 

CONlROL-
A 

a [text]ESCAPE 

A[text]ESCAPE 

[n]b 

[n]B 

Using vi 

Description 

Redraw screen (certain terminals only -
others use CONlROL-r). 

Same as pressing the RETURN key. 

Move the cursor to the next line (or n lines 
forward, first column). 

Move the cursor to the previous line (or n 
lines backward, same column). 

Redraw screen (most terminals - others use 
CONlROL-I). 

Move the cursor up half a screen (or by n 
lines). 

Display another line at the top of the screen 
(or n lines). 

Edit the alternate file. See "Working With 
Multiple Files" for more information 

Insert text immediately after the cursor 
(append). 

Insert text at the end of the current line. 

Move the cursor to the beginning of the 
preceding word (or nth word). 

Move the cursor to the beginning of the 
preceding word (or nth word), ignoring 
punctuation. 

4-31 



Command Description 

[n]cmotion[text]ESCAPE Change motion to text, where motion is a 
motion command. 

cc[text]ESCAPE (c typed twice.) Change entire line (or n 
lines). 

C[text]ESCAPE Change from the cursor to the end of the 
line. 

[n]dmotion Delete one (or n) occurrences of the 
specified motion. You can use any of the 
true motion commands here. (See' 'Motion 
Commands" for more information.) For 
example, 3dw deletes three words. 

[n]dd (d typed twice.) Delete current line (or n 
lines including current line). 

D Delete from the cursor to the end of the line. 

[n]e Move the cursor to the end of the current 
word (or nth word). 

[n]E Move the cursor to the end of the current 
word (or nth word), ignoring punctuation. 

[n]fx 

[n]Fx 

4-32 

Move the cursor forward to the first instance 
of x (n specifies the nth instance). 

Move the cursor backward to the first 
instance found of x (n specifies the nth 
instance). 

AlUX Text Editing Tools 



Command 

[n]G 

h or f-

[n]H 

i[text]ESCAPE 

I [text]ESCAPE 

[n] j or [n]J, 

[n]J 

[n]k or [n]i 

[n]l or [n]~ 

[n]L 

Using vi 

Description 

Move the cursor to the specified line number 
(Go to line number). G alone moves the 
cursor to the end of the file. 1 G moves to 
the beginning of the file. 

Move the cursor left a space. (BACKSPACE 

also works.) 

Move the cursor to the top-left position on 
the screen (Home). or the nth line from the 
top of the screen. 

Insert text immediately before the cursor 
(insert). 

Insert text at the beginning of the current 
line. 

Move the cursor down a line (in the same 
column) or down n lines. 

Join current line with next line or the next n 
lines. 

Move the cursor up a line (in the same 
column) or up n lines. 

Move the cursor right a space or n spaces 
(Space bar also works). 

Move the cursor to the bottom-left of the 
screen (Last) or the nth line from bottom of 
the screen. 

4-33 



Command 

m 

M 

n 

N 

o [text]ESCAPE 

o [text]ESCAPE 

[buf-spec]p 

[buf-spec]p 

Q 

4-34 

Description 

Mark the current position of the cursor in 
the register specified by the following letter 
(a through z). Return to this position with 
, and the register letter. 

Move the cursor to the beginning of the 
middle line on the screen (Middle). 

Repeat the last / or ? search command 
(next). 

Repeat the last / or? search command in 
the opposite direction. 

Open a new line after the current line and 
insert text there (open). 

Open a new line before the current line and 
insert text there. 

Put the contents of the buffer in the text 
after the cursor. Lines you yank are placed 
on new lines following the current line. 
Other objects, such as words or paragraphs, 
are inserted immediately following the 
cursor. but-spec specifies a buffer" a 
through "z. 

Put the contents of the buffer in the text 
before the cursor. buf-spec specifies a 
buffer "a through "z. 

Quit v i and go to ex command line. (See 
: vi for returning to vi.) 

A/UX Text Editing Tools 



Command 

[n]rx 

R[text]EsCAPE 

[n] s [text]EScAPE 

[n] S [text]EscAPE 

[n]tx 

[n]Tx 

u 

u 

[n]w 

[n]W 

Using vi 

Description 

Replace the character (or n characters) at the 
cursor with x. This is a one-character 
replacement. You don't need ESCAPE to 
terminate the command. 

Overwrite the characters on the screen with 
text. After you type R, whatever you type 
overwrites the existing text until you press 
ESCAPE. 

Substitute character (or n characters) 
beginning at the cursor. $ appears at the nth 
position in the text, so you know how much 
you are changing. 

Substitute the entire current line (or n lines). 
$ appears at the end of the current line, or n 
lines are deleted before insertion begins. 

Move the cursor forward to just before the 
first instance of x (or the nth instance). 

Move the cursor backward to just before the 
first instance of x (or the nth instance). 

Undo the last command, including a 
preceding undo command. 

Undo changes to the current line. 

Move the cursor to the beginning of the next 
word (or nth word). 

Move the cursor to the beginning of the next 
word (or nth word), ignoring punctuation. 

4-35 



Command 

[n]x 

[n]x 

[n][buf-spec]y motion 

[n] [buf-spec ]yy 

[n][buJ-spec]Y 

[n]z 

zz 

4-36 

Description 

Delete the character (or n characters), 
starting at the cursor. 

Delete the character (or n characters), 
backward from the character before the 
cursor. 

Yank the specified object (word, paragraph, 
and so on) or n objects into a buffer. buf
spec specifies a buffer "a through "z. 

Yank the current line (or n lines) into a 
buffer. buf-spec specifies a buffer" a 
through "z. 

Equivalent to yy. buj-spec specifies a 
buffer "a through "z. 

Display the current full screen (or the full 
screen starting with n). Change the 
placement of the current line by following z 
with one of these characters: 

<CR> place current line at the top of the 
screen. 

place current line at the center of 
the screen. 

place current line at the bottom of 
the screen. 

Quit vi, performing a write operation first if 
there were changes made to the file. 

Move the cursor to the beginning of the 
preceding line. Scroll if necessary. 

AlUX Text Editing Tools 



Command 

+ 

[n]$ 

o 

[n] I 

Using vi 

Description 

Move the cursor to the beginning of the next 
line. Scroll if necessary. 

Move the cursor to the end of the current 
line. Preceded by n it means "move to the 
end of the line n lines forward in the file. ' , 

Move the cursor to the beginning of the first 
word on the line. 

(Zero.) Move the cursor to the left margin of 
the current line. 

(pipe or vertical bar.) Move the cursor to 
the beginning of the first column or to the 
column specified by n. 

Move the cursor to the beginning of the next 
sentence (defined as ., !, or? followed by 
two spaces or a newline character). 

Move the cursor to the beginning of the 
current sentence. 

Move the cursor to the beginning of the next 
paragraph (the default definition of a new 
paragraph is . P, • L I, or . bp) or to the next 
blank line. 

Move the cursor backward to the beginning 
of a paragraph (the default definition of a 
new paragraph is . P, . LI, or . bp) or to the 
last blank line. 

4-37 



Command 

] ] 

[ [ 

9-o 

, , 

[n]; 

[n], 

& 

4-38 

Description 

(Right bracket, typed twice.) Move the 
cursor to the beginning of a new section 
(default definition is by . H or . HU). 

(Left bracket, typed twice.) Move the 
cursor backward to the beginning of a 
section (default definition is by . H or . HU). 

Move the cursor to the matching parenthesis 
or brace. If you type % when the cursor is 
not on a parenthesis or brace, vi searches 
forward until it finds one on the current line 
and then jumps to the matching one. 

(Back quote key typed twice.) Move the 
cursor back to where it was before you used 
the last absolute motion command. 
Absolute motion commands are those that 
move to a precise place (such as a line 
number, or the word you searched for), not a 
place relative to the cursor position (such as 
CONTROL-d or 12 j). 

Repeat the last command that changed the 
buffer. 

Repeat the last f, F, t, or T command (once 
or n times). 

Repeat the last f, F, t, or T command in the 
opposite direction (once or n times). 

Repeat the last single substitution. 

A/UX Text Editing Tools 



14.2 Insert mode commands 
The following commands are used in vi's insert mode. 

Command 

CON1ROL-d 

CON1ROL-i 

CON1ROL-q 

CON1ROL-t 

CON1ROL-V 

CON1ROL-W 

erase 

kill 

Using vi 

Description 

During an insert, backtabs over 
autoindent white space at the beginning 
ofa line. 

Input tab. 

Escape a single character or control 
sequence by preceding it with CON1RoL-q. 

Inserts a shiftwidth wide white space if 
pressed at the beginning of a line with 
autoindent set. 

Escape a single character or control 
sequence by preceding it with CON1ROL-v. 

Delete the last word entered. 

The system erase character (often DELETE, 
CON1ROL-h, or #). Deletes the last input 
character. 

The system kill character (often CON1ROL-U, 
CON1ROL-x, or @). Deletes the current input 
line. 

4-39 





Chapter 5 

Using ex 

Contents 

1. ex basics .•••.. 
1.1 Starting ex . . . . 

1.1.1 ex command syntax 
1.1.2 ex initialization 

1.2 Opening a file 
1.3 ex modes. • . . . 
1.4 Switching to visual mode 
1.5 Special keys • • . . 

2. Displaying text and selecting lines 
2.1 Line selection ••••. 
2.2 Motion commands, paging, and scrolling 
2.3 Determining line appearance . . . . 
2.4 Determining where the current line appears 

3. Inserting text 

4. Deleting text 

5. Changing text 

6. Copying and moving text . 

7. Regular expressions and searching • 
7.1 Turning off metacharacters 

8. Working with multiple files 
8.1 The current file 
8.2 The alternate file. • • 
8.3 Specifying multiple files at startup • • • • 

8.3.1 Displaying the argument list. • 
8.3.2 Editing the next file on the argument 

list • • • • • • • • • . 

- i -

1 
1 
1 
2 
2 
3 
4 
4 

4 
4 
7 
8 
9 

9 

10 

10 

13 

14 
16 

17 
17 
17 
18 
18 

18 



8.3.3 Replacing the argument list . • • . . 18 
8.3.4 Returning to the first file on the argument 

list . . . . . • • • • . 19 
8.4 Editing a new file . . . • • . . . 19 
8.5 Copying another file to the current buffer 20 

8.5.1 Finding out more about the file you're 
in . • . • • . • 21 

8.5.2 Changing the current file. . 21 

9 . Using shell commands in ex . . . . 21 
9.1 Running another program from ex 21 
9.2 Directing command output to the buffer . 23 
9.3 Sending the buffer to shell commands 23 
9.4 Writing shell scripts using ex commands 24 

10. Setting options • . • • . 
10.1 Listing options 
10.2 When to set options • . 
10.3 Option descriptions 
10.4 Option summary • 

11. Mapping and abbreviations 

12. Other ex commands . . • . • 
12.1 Marking text . • 
12.2 Recovering lost text • 
12.3 Editing programs 

13. Saving text and exiting 
13.1 Exiting ex 
13.2 Combining the write and quit 

commands .••• 

14. Error conditions ..•• 
14.1 Limitations . . • . 
14.2 Recovering lost files 

15. Command summary 

- ii -

25 
26 
26 
26 
34 

35 

35 
36 
36 
37 

38 
39 

39 

40 
40 
40 

41 



1. ex basics 

Chapter 5 

Using ex 

Once you have invoked ex, you enter commands at ex's prompt, the 
colon (:). ex commands are words (such as write or edit), which 
you can abbreviate. A complete list of commands and their 
abbreviations appears at the end of this chapter. 

1.1 Starting ex 
Usually, you start ex with the following command: 

ex filename ... 

where filename is the name of the file to edit. 

1.1.1 ex command syntax 
The command to invoke ex is 

ex [-][-v][-t [tag]][-r [filename]][-l] [-wn] [-x] [-R] [+command] [filename ... ] 

The options are as follows: 

(Minus sign.) Suppress interactive feedback. This is 
useful when you write shell scripts that use the ex editor. 

-v Equivalentto using vi. 

-t [tag] Start editing the file at tag (usually a spot marked with the 
ctags program). Equivalent to an initial tag command. 
This is described under' 'Editing Programs. ' , 

- r [filename] 
Recover a file after an editor or system crash; if you don't 
specify file, it lists the saved files. 

-1 Set the showrnatch and lisp options for editing LISP 
programs. These are described under" Setting Options. " 

Using ex 5-1 



-wn Set the window size to n lines. 

-x Prompt for a key to encrypt and decrypt the file (see 
crypt(l) inAIUX Command Reference). The file should 
already be encrypted using the same key. 

-R Set the readonly option, making it impossible to write 
the file with the write command. 

+ [command] 
Move to the line specified by command where command is 
either a regular expression (see "Regular Expressions and 
Searching' ') or a line number (for example, + 1 a a starts 
editing at line 100). If you omit command, ex moves the 
cursor to the last line of the first file. 

filename The file(s) to edit. 

1.1.2 ex initialization 
When you start ex, it sets up your editing environment with the 
following steps: 

• reads the TERM variable to find out what terminal you're using 

• sets any options you've specified in the . exrc file in the current 
directory or your home directory 

• sets any options you've specified in the EXINIT variable 
(usually set in the. prof ile (or . login) file in your home 
directory) 

You can set the same options with either the .profile, . login, or 
. exrc files. The options are described in "Setting Options" later in 
this chapter. 

1.2 Opening a file 
To create and "open" a new file (or open an existing file) in ex, type 

ex filename 

where filename is the name of the file you're creating (or opening). For 
example, to open the file sheep, type 

ex sheep 

5-2 AlUX Text Editing Tools 



When you use ex to create a new file, ex opens some temporary 
storage space that is referred to as the buffer. 

When you edit an existing file, ex places a copy of that file in the 
buffer. Changes you make to the text in the buffer (for example, to a 
copy of the sheep file mentioned above) are made only to this 
temporary copy. ex does not change the contents of the file until you 
write the file (see "Saving Text and Exiting"). 

Note: You should periodically write your changes to the file to 
prevent losing material if the system crashes or is interrupted. 

1.3 ex modes 
ex has a number of modes: 

• Command mode is ex's primary mode; that is, when you 
invoke ex you are initially in command mode and everything 
you type is interpreted as a command. In command mode, you 
enter commands at the colon ( : ) prompt and terminate them with 
a RETURN character. 

• In input mode, ex assumes that what you type is text (rather 
than commands), and it doesn't display a prompt. Invoking the 
append, insert, or change commands in command mode 
places you in input mode. Resume command mode by typing a 
period ( .) at the beginning of a line and pressing RETURN. 

• You can also enter open mode from ex using the 0 command. 
open mode allows you to use vi commands, but limits your 
movement to within one line at a time. (It is like visual mode 
with a screen one line long.) This is convenient if you want to 
use vi commands on a dumb terminal. (A smart, or 
addressable-cursor, terminal is required for you to use vi itself.) 
Type Q to return to ex. 

• When you invoke ex with the command ex -v you enter the 
editor in its visual mode. visual mode allows movement and 
editing throughout the displayed screen of text. See "Switching 
to Visual Mode." 

Using ex 5-3 



1.4 Switching to visual mode 
When you invoke ex you can switch to vi by giving the command 

vi 

at the ex colon prompt on the bottom line of your screen. This invokes 
visual mode and places the current line as the first line on the screen. 
To return to ex from visual mode, type 

Q 

1.5 Special keys 

RETURN 

The RETURN (carriage return) key terminates all ex commands. 

The examples in this chapter assume that you press RETURN after all 
commands unless shown otherwise. 

The interrupt key 

The interrupt key (set to CONTROL-C in the NUX standard distribution) 
sends an interrupt signal to the editor. It is a forceful way of stopping 
ex from executing a command after you have pressed RETURN. 

2. Displaying text and selecting lines 
In ex you can display text on the screen by specifying a line number or 
range of line numbers followed by the print command. The next 
section describes how to specify which lines you want to select. 

2.1 Line selection 
You can prefix most commands with addresses. These addresses tell 
ex which lines to perform the command on. For example, lOprint 
prints the tenth line in the buffer. 

Here are a few basic rules to follow when using line addresses in ex . 

5-4 

• Commands that don't require an address (such as the quit 
command to leave ex) regard an address as an error. The 
command summary at the end of this chapter specifies which 
commands need addresses and which don't. 

• For ex commands that require an address, ex assumes a default 
address if you don't supply one. If you give more addresses than 

AlUX Text Editing Tools 



a command requires, ex uses the last one or two, depending on 
the command being attempted . 

• For ex commands requiring two addresses, the second address 
must follow the first address. If you use two addresses, you can 
separate them with a comma (,) or a semicolon (;). Using, 
calculates both addresses relative to the current line. For 
example, if you are on line 1, 

+2,+4print 

prints lines 3 through 5. Using; calculates the second address 
using the first address as the current line. For example, if you are 
on line 1, 

+2;+4print 

prints lines 3 through 7. 

Throughout the rest of this chapter, the term lineno (line number) 
denotes an expression that identifies a single line in a file, numbered 
with lineno. This includes a search for a pattern (see I pattern[!] , 
below). 

Throughout the rest of this chapter, the term line-spec (line specifier) 
denotes an expression that identifies zero or more lines in a file. A 
valid line-spec can be a single line number lineno; a range of line 
numbers line} , line2;- a context search resulting in zero or more lines 
(see' 'Regular Expressions and Searching' '); or a regular expression 
resulting in zero or more lines (see "Regular Expressions and 
Searching"). Commonly used abbreviations include $ (the last line of 
a file) and . (the current line). In the following commands, line-spec 
defaults to the current line unless stated otherwise. 

A line-spec may consist of anyone of the following expressions: 

line} , line2 

Using ex 

Dot ( . ) indicates the current line. This is the 
default address for most commands. Most 
commands leave the current line as the last line 
they affect. 

A range of line numbers beginning with line} 
and ending with line2. 

5-5 



lineno 

$ 

% 

+[n] 

-[n] 

/ pattern[/] 

?pattern[?] 

, , 

5-6 

Move to lineno. You can find out the current line 
number by typing" . =" . 

The last line in the buffer. 

An abbreviation for 1, $; the entire buffer. 

Forward n lines from the current line. + 3 and 
+++ are equivalent; if the current line is line 
100, they address line 103. 

Backward n lines from the current line. - 3 and 
--- are equivalent; if the current line is line 
103, they address line 100. 

Forward to a line containing the regular 
expression pattern (see "Regular Expressions 
and Searching" later in this chapter). ex 

searches forward until it reaches the end of the 
file, then it searches from the first line of the file 
to where you began your search. If you want to 
print the next line containing pattern, you don't 
have to include the trailing /. / is shorthand for 
"search forward for the last pattern you scanned 
for." 

Backward to a line containing the regular 
expression pattern (described under' 'Regular 
Expressions and Searching"). ex searches 
backward until it reaches the beginning of the 
file, then it searches from the last line of the file 
to where you began your search. If you want to 
print the next line containing pattern, you don't 
have to include the trailing ? ? is shorthand for 
"search backward for the last regular expression 
you scanned for." 

(Back quote typed twice.) Refers to your 
position before the last absolute motion (an 
absolute motion specifies the line to move to, 
while a relative motion specifies the distance to 
move from the current line.) 

A/UX Text Editing Tools 



'x (Where x is a letter from a to z.) Refers to a 
location you marked with the mark command. 
This is described in "Marking Text" later in this 
chapter. 

You can also add a number to the end of a command to specify the 
number of lines involved. For example, d5 deletes five lines, starting 
with the current line. If the number specified is larger than the number 
of lines between the current line and the end of the file, ex performs 
the operation to the end of the file. 

2.2 Motion commands, paging, and scrolling 
ex provides a number of ways to move through your file, and these are 
collectively referred to as motion commands. Valid ex motion 
commands are 

lineno 

$ 

+[n] 

-[n] 

Move to lineno. 

Move to the last line in the buffer. 

Move forward from the current line. If followed by n, it 
means to move to the start of the line n lines forward in the 
buffer. 

Move backward from the current line. If followed by n, it 
means to move to the start of the line n lines backward in 
the buffer. 

Ipattern[l] Move forward to a line containing the regular expression 
pattern (described under "Regular Expressions and 
Searching' '). 

I Move forward using the last regular expression scanned 
for. 

I I Move forward using the last regular expression used in a 
substitution (described under "Changing Text"). 

? pattern[?] Move backward to a line containing the regular expression 
pattern (described under "Regular Expressions and 
Searching' '). 

? Move backward using the last regular expression scanned 
fOf. 

Using ex 5-7 



?? 

, , 

'x 

Move backward using the last regular expression used in a 
substitution (described under "Changing Text"). 

(Back quote typed twice.) Move to the location before the 
last absolute motion. 

(A single back quote followed by a lowercase letter a 
through z.) Move to a location you marked with the mark 
command (described in "Marking Text"). 

In addition, you can use 

CONlROL-d Move forward half a screen. You can change this with 
the set scroll option, described under "Setting 
Options." 

<CR> Move to the next line. 

2.3 Determining line appearance 
Three commands control how text displays on the screen: print, 
list, and number. 

The print command sets the default printing style. It displays 
nonprinting characters as A x and delete (octal 177) as A? The format 
of the print command is 

[lines pee] p[rint] [n] 

It prints the current line, the lines specified by linespee, or the next n 
lines. You can also add a p to the end of many commands to print the 
current line after the command completes. 

The list command displays the specified lines with tabs indicated 
with A I and the ends of lines indicated with a $. The format of the 
list command is 

[linespee] l[ist] [n] 

It displays the current line, the lines specified by linespee, or the next n 
lines. You can also add an 1 to the end of many commands to list the 
current line after the command completes. 

The number command prints the line number before each specified 
line. The format of the n umbe r command is 

5-8 AlUX Text Editing Tools 



[lines pee] nU[mber] [n] 

or 

[lines pee] :/I: [n] 

It prints the current line, the lines specified by linespec, or the next n 
lines. You can also add a :/I: to the end of many commands to number 
the current line after the command completes. 

See "Setting Options" for more information. 

2.4 Determining where the current line appears 
The z command determines where the current line appears on the 
screen. (If you prefix the command with a line number lineno, that line 
number becomes the current line.) There are several different forms of 
this command. 

[lineno] z Print the next screenful of lines with the current line at 
the top of the screen. 

[lineno] z + Print the next screenful of lines with the current line at 
the top of the screen. 

[lineno] z - Print the screen with the current line at the bottom. 

[lineno]z. Print the screen with the current line at the center. 

[lineno] z= Print the screen with the current line in the center, 
surrounded with lines of - characters. 

[lineno] z ,. Print the screen two windows before the current line. 

3. Inserting text 
The two basic ex commands for adding text to your file are the 
append and insert commands. 

The append command adds text after the specified line. The 
command syntax is 

[lineno] a [ppend]<CR> [text <CR>] . <CR> 

where lineno is the line number, text is the text you enter, and <CR> is 
RETURN. To append text to the start of the buffer, use the command Oa 
(this appends to line 0). A variant form, the append! command, 
changes the setting of the autoindent option while appending 

Using ex 5-9 



(described under "Setting Options"). 

The insert command adds text before the specified line. The 
command format is 

[lineno]i[nsert]<CR>[text <CR>]. <CR> 

where lineno is the line number, text is the text you enter, and <CR> is 
RETURN. A variant form, the insert! command, changes the setting 
of the autoindent option during an insert (described under "Setting 
Options"). 

4. Deleting text 
The delete command removes the specified lines. You delete a 
specified range of line numbers using the format 

[linespec] d[elete] [n] 

For example, you can delete lines 5 through 20 of your file with the 
command 

5,20d 

You can delete line 5 with the command 

5d 

or you can specify the line you want to delete using a regular 
expression. For example, if the line you want to delete ends in the 
word "f inish," use the command 

/finish$/d 

You can also delete n lines with the command 

d[elete] n 

For example, 

d3 

5. Changing text 
The change command replaces existing text with new text. The 
command format is 

5-10 AlUX Text Editing Tools 



[lineZ [, line2]]c[hange][n]<CR>text<CR>. 

This changes either line}, the range linel through line2 inclusive, or, 
when n is specified, the next n lines. A variant form, the change! 
command, changes the setting of the autoindent option during the 
change. (This option is described under "Setting Options.") The 
command format is 

[linel[, line2]]c[hange] ! [n]<CR>text<CR>. 

You can also change a string with the substitute command. The 
simplest format of this command is 

s / pattern / replacement[ /]<CR> 

This replaces the first instance of pattern with the replacement on the 
current line. Regular expressions are used commonly in substitutions. 
For example, if you had the following line in your file: 

At About Nine Another One Arrived 

and you typed 

s/A./O/ 

it would change your line to 

o About Nine Another One Arrived 

Substitutions are also commonly used when you want to change a word 
throughout your file. The common format for this is 

1, $ s / pattern/replacement/g 

This tells ex to make the replacement on every line of the file (1, $ 
means from the first line to the last line); g tells it to make the 
replacement every time it appears in a line. If you didn't add the g, it 
would make the replacement only once per line, at the first appearance 
of pattern. 

A variation of this format is useful when you want to repeat the same 
change several times within one line. Instead of giving 1, $ for the 
range of the command, you may specify a single line. For example, if 
the above sample line were the current line (or dot, " . ") in your file, 
you could type 

Using ex 5-11 



s/A. /O/g 

to change your line to 

o ~out Nine Oother One Orived 

In general, substitute replaces the first instance of pattern with 
replacement on each specified line. The suffixes are 

g (global.) Substitute pattern with replacement every time it 
appears on the specified lines. To make the substitution 
everywhere in the file, use the format 

1, $ s / pattern/ replacement / g 

You can also use % instead of 1 , $. 

c (confirm.) Print the line before making each substitution, 
marking the string to substitute with A characters. Type y to 
confirm the substitution, and type any other character if you 
don't want to make the substitution. 

r (replace.) Replace the previous replacement pattern from a 
substitution with the most recent search string. 

You can split lines by substituting newline characters into them. You 
must escape the newline in replacement by preceding it with a 
backslash (\). See "Regular Expressions and Searching" for other 
metacharacters available in pattern and replacement. 

Omitting pattern and replacement repeats the last substitution. For 
example, if you subsitute the word test2 for the word test on one 
line using the command 

s/test/test2/ 

you can repeat this substitution on another line by typing 

s 

This is a synonym for the & command, which is described later in this 
chapter. 

Using the r suffix (sr) replaces the previous pattern with the previous 
regular expression. For example, if you make the substitution 

5-12 AlUX Text Editing Tools 



s/test/test2 

then search for a pattern such as my. test, 

/my.test/ 

Then the command 

sr 

Changes my. test to test2. If you omit the r suffix, the s 
command replaces my. test with my. test2. This is a synonym for 
the - command, which is described later in this chapter. See 
"Command Summary" and "Repeating the Last Command" in 
Chapter 4, "Using vi," for more information on repeating 
substitutions. 

6. Copying and moving text 
You can use several commands to copy and move text 

The copy command places a copy of one section of your text after the 
specified line. The most common format of this command is 

line}, line2co[py] lineno 

This copies the lines between line} and line2 and places them after 
lineno. 

The move command moves a section of your text to a new location in 
your file. The format of this command is 

[line} [, line2]]m[ ove] lineno 

This moves the text either from line} or between line} and line2 after 
lineno. 

You can also move text by moving it into ex's buffer and then placing 
it in the text with the put command. 

There are two general forms of commands used for moving text in this 
way. The first is to use the yank or delete commands to place the 
text in ex's unnamed buffer. This happens automatically when you 
use the delete command to delete the text (described under 
"Deleting Text"), or the yank command to copy the text. The 
general forms for the yank command are 

Using ex 5-13 



[line} [, line2]]ya[nk] 

to place a copy of the text either from line1 or between line} and line2 
in ex's unnamed buffer, or 

ya[nk] n 

to place a copy of the next n lines in ex's unnamed buffer. You can 
then place ex's buffer somewhere else in the file with the put 
command (either by moving to where you want the text to appear, or 
by specifying an address before the put command). If you use ex's 
unnamed buffer, you can't make any modifications to your text 
between placing the text in your buffer and putting it in its new 
location. 

The other way to move or copy text is to use one of ex's named 
buffers. ex has 26 buffers named a through z. Use the same general 
format as before, but specify a buffer name with each command. For 
example, 

1,4 d a 

deletes lines 1 through 4 and places them in buffer a. 

10 pu a 

puts the contents of buffer a after line 10. 

You can also specify the buffers as A through z if you want the text 
you are currently deleting or yanking to be appended to the end of the 
buffer rather than overwriting it. 

You can use ex's named buffers to move information from one file to 
another if you have specified both files when you started ex. 

7. Regular expressions and searching 
A regular expression uses metacharacters (special characters that 
stand for other characters) to stand for a set of strings. The regular 
expression is said to match each element in this set of strings. For 
example, if . is a special character standing for any letter and A is an 
ordinary character standing for A, then A. would find all of the 
following words: At, About, Another. 

5-14 A/UX Text Editing Tools 



Regular expressions in ex always appear between the characters / / 
or the characters? ? 

The following characters appear in regular expressions: 

char Any character other than the metacharacters listed below 
matches itself. The characters listed below are 
metacharacters. You have to precede them with a 
backslash (\) to have ex treat them as ordinary characters. 

At the beginning of a pattern, the caret specifies that the 
pattern is at the beginning of a line. For example, ... A 

specifies a line beginning with A. This character has a 
different meaning within square brackets. 

$ At the end of a pattern, the dollar sign specifies that the 
pattern is at the end of a line. For example, a $ specifies a 
line ending with a. 

The period matches any single character except the 
newline character. For example, A. matches A followed 
by any character. 

[pattern] A pattern enclosed in square brackets sequentially matches 
a set of single characters defined by pattern. 

• Ordinary characters in pattern match themselves. 
For example, [ab] specifies either a or b. 

• A pair of ordinary characters separated by - in 
pattern defines a range of characters. For example 
[ a - z] matches any lowercase letter. 

• If ... is the first character within square brackets, it 
specifies characters that are not in the pattern. For 
example, [ ... a - z] matches anything but a lowercase 
letter. 

\ < This matches a pattern at the start of a word (ex defines 
the start of a word as the beginning of a line, or a letter, 
digit, or underline that follows any character other than a 
letter, digit, or underline). 

\ > This matches a pattern at the end of a word (ex defines the 
end of a word as the end of a line, or a letter digit or 
underline followed by any character other than a letter, 

USing ex 5-15 



digit, or underline). 

You can use the preceding regular expressions to construct larger 
regular expressions using the following rules: 

• If you use two regular expressions (for example, [a - z] [A - Z ] ), 

the editor matches the first string it encounters that matches both 
regular expressions in the order they appear. 

• Following a regular expression with an asterisk (*) matches zero 
or more occurrences of the preceding character. Generally, you 
should use this within a longer regular expression, since it 
matches for zero occurrences first. That is, searching for a * 
finds zero occurrences and matches the characters following the 
cursor. This is convenient, however, for longer regular 
expressions. For example, ba *b matches bb, bab, baab, 
baaab, and so on. Within a longer regular expression, if there is 
any choice, it matches the longest leftmost string. In the 
preceding example, it would choose baaab. 

• Enclosing a regular expression in \ ( and \) defines the regular 
expression as a numbered "field," so that you can refer to it 
later. For example, 

\([a-z]\)\([A-Z]\) 

defines two fields, numbered sequentially. Use V(wherefis the 
number of the field) to refer to any of the fields in the regular 
expression. In the previous example \ 1 refers to the field 
matched by the regular expression [a - z] and \ 2 refers to the 
field matched by the regular expression [A - Z ] • 

• The null regular expression (II or ??) is shorthand for the last 
regular expression. 

7.1 Turning off metacharacters 
There are two ways to use ex's metacharacters as ordinary characters 
(if, for example, you want to search for the character .). 

1. You can precede the metacharacter with a backslash (\). 

2. You can set the nomagic option (see "Setting Options"). This 
strips all but the following three metacharacters of their special 
meaning: ... at the beginning of a regular expression (indicating 

5-16 A/UX Text Editing Tools 



the beginning of a line), $ at the end of a regular expression 
(indicating the end of a line), and the backs lash character (\). 
You can restore the special meaning to the other metacharacters 
by preceding them with a backslash (\). 

8. Working with multiple files 
You can work with several files during one editing session. Before 
describing the commands for this, we define the terms that refer to 
these files. 

8.1 The current file 
The file you are editing is the current file. This means that the buffer 
contains the edited version of this file. ex overwrites this file with the 
updated version in the buffer without protest. When ex's current file is 
not the file being modified in the buffer (for example, if you use the 
file command to change the name of the current file without 
changing the buffer) 

f filename 

ex does not overwrite a file with the buffer's contents. See' 'Changing 
the Current File. ' , If the file in the buffer is not the current file, the 
file command displays 

[Not Edited] 

You can use % to refer to the current file anywhere you would use the 
filename. 

8.2 The alternate file 
ex also has an alternate file, which is usually the previous file you 
edited. 

If you haven't previously edited another file, but have read a file into 
the buffer with the read command, this becomes the alternate file. 

You can use =It to refer to the alternate file anywhere you would use the 
filename. This makes it easy to alternate between two files. For 
example, if you are in the current file and want to edit the alternate file, 
type 

e =It 

Using ex 5-17 



This reads the alternate file into the buffer, making it the current file. 
(If you had modified the buffer since you last wrote it to file, ex would 
warn you and would not edit the alternate file.) 

8.3 Specifying multiple files at startup 
You can specify more than one file when you start ex. The format is 

ex filename ... 

ex reads the first file into the buffer and creates an argument list 
containing the names of all the files you specified. 

8.3.1 Displaying the argument list 
The args command displays the current argument list with the current 
file delimited by brackets ([ ]). 

8.3.2 Editing the next file on the argument list 
The next command edits the next file in the argument list. The format 
for this command is 

n[ext] 

You must save any changes you have made before editing a new file or 
you'll get the message 

No write since last change (:next! overrides) 

To edit the next file in the argument list and overwrite the current 
buffer with this file, type 

n! 

The buffer is overwritten with the next file, whether you've saved the 
current buffer or not. 

Typing 

n+cmd 

executes cmd after opening the first file on the argument list. 

8.3.3 Replacing the argument list 
You can replace the list of files in the argument list with another list of 
files by typing 

n filename ... 

5-18 A/UX Text Editing Tools 



ex replaces the list of files in the argument list and edits the first file on 
the new list. 

If you made changes to one or more files on the original argument list 
and you haven't saved the current buffer, you'll get the message 

No write since last change (:n! overrides) 

If you haven't saved the buffer, you can force ex to replace the 
argument list with the new list by typing 

n! filename ... 

The new list of files replaces the original one even if you have not 
saved the current buffer. 

8.3.4 Returning to the first file on the argument list 
The rewind command edits the files on the argument list beginning 
with the first file. The format of the command is 

rew 

If you made changes to one or more files on the original argument list 
and you haven't saved the current buffer, you'll get the message 

No write since last change (:rewind! overrides) 

Typing 

rew! 

forces ex to edit the files on the argument list beginning with the first 
file and discarding any changes you made to the current buffer. 

8.4 Editing a new file 
The edit command reads a new file into the buffer. If you haven't 
saved the current buffer, ex warns you and doesn't edit the new file. If 
you have saved the current buffer, ex deletes the buffer contents, 
makes the specified file the current file, and prints the new filename and 
the number of lines and characters read. 

ex sets the current line to the last line in the new file (in line mode) or 
the first line in the new file (in open or visual mode). 

ex strips the high-order bit from any non-ASCII characters and 
discards any null characters. 

USing ex 5-19 



If the file is a special device (block, character, or TTY), ex tells you 
and allows you to edit the file. If it is a directory, you'll get the 
message "Directory." If it is a binary file, you'll get the message 
"Line too long" or "Incomplete last line." Generally, 
you shouldn't edit these kinds of files. 

The edit! command edits the specified file and overwrites the current 
buffer, whether you've written it or not. The form of this command is 

e! filename 

Typing 

e+lineno filename 

or 

e+ I pattern filename 

begins editing filename at line lineno or at pattern I pattern (pattern 
can't contain spaces). 

8.5 Copying another file to the current buffer 
The read command copies the text offilename to the current buffer 
after the specified line. The format is 

[lineno]r[ead] [filename] 

where lineno is a line number, or an expression resulting in one. If you 
don't specify afilename, it uses the current filename. If there is no 
current filename,filename becomes the current name. If the file buffer 
is empty and there is no current file, ex treats this as an edit 
command. 

read then tells you the filename read in and the number of lines and 
characters read. After a read command, the current line is the last 
line read (in ex) or the first line read (in open or visual mode). 

Typing 

Oread 

reads the file at the beginning of the buffer. 

5-20 AlUX Text Editing Tools 



8.5.1 Finding out more about the file you're in 
The file command tells about the file you are editing. Its syntax is 

f[ile] 

It prints the following information: 

• the current filename 

• whether you have modified the current file since the last wr i te 

• whether the current file is in read-only mode 

• the current line 

• the number of lines in the buffer 

• the current line's position in the buffer, given as a percentage 
from the beginning of the buffer 

It also notes when the current file is "not edited" (the current file is not 
the file in the buffer). In this case, you have to use w! to write to the 
file, since ex does not know if write will destroy a file unrelated to 
the current buffer contents. 

8.5.2 Changing the current file 
The file command changes the current filename tofilename without 
changing the buffer contents. The format of the command is 

f [ile] filename 

The current file is then considered "not edited. ' , 

9. Using shell commands in ex 
There are several ways of interacting with the shell from within ex. 

9.1 Running another program from ex 
The ! character invokes a shell to execute a single command using the 
syntax ! command. This executes command in the shell and returns 
you to the editor when the command completes. 

The command you invoke from the editor using the ! syntax may be a 
simple command such as Is, or it may be an interactive program such 
as de or a shell script. 

Using ex 5-21 



If you enter a simple shell command from the editor, it executes 
immediately and prints ! on the screen when it terminates. You are 
then back in the editor at the same position in the file. For example, 

!ls 

lists the files in your current directory. If you haven't written the buffer 
contents since the last change, ex prints a warning message before 
executing the command. Before returning you to the editor, it prints 
" ! ". 

If you enter an interactive program from the editor, it runs until you 
exit that program. For example, 

!de 

invokes the de calculator program. You can then use de as long as 
you wish. When you terminate dc, you are back in the editor at the 
same position in the file. 

The command 

sh 

invokes your login shell. You may then give as many commands in the 
shell as you wish. When you finish with the shell, type an eo! character 
(CONlROL-d in the NUX standard distribution) or 

exit 

to return to the editor. 

You may escape to a shell different from your login shell. The general 
form for this command is 

!shell 

where shell is the name of the shell you wish to invoke. For instance, if 
your login shell is the Bourne shell (sh(1)), you may invoke the esh 
instead with the following: 

!esh 

This invokes a copy of the C shell, temporarily suspending ex. You 
may then give as many commands in the new shell as you wish. When 
you finish with the shell, type an eo! character (CONTROL-d in the 

5-22 AlUX Text Editing Tools 



NUX standard distribution) or 

exit 

to return to the editor. 

Remember that after you use the sh (or! shell) escape from ex, you 
have invoked a new shell, not the shell from which you initiated ex. If 
you use sh to escape ex and forget that you have suspended your 
editing job, you might invoke a new copy of ex from your new shell 
instead of exiting that shell and going back to the original ex session. 
This can cause problems with inconsistent versions of a file if you 
finally quit ex, and is something to be aware of when using sh or 
! shell from ex. 

9.2 Directing command output to the buffer 
You can read the output of a command into your file with the read 
command. The usual format of this command is 

r[ead] ! command 

(you must type a blank or tab before the !). For example, 

read !ls 

places the directory listing after the current line. 

Note: The shell prompts are also written to the file. 

9.3 Sending the buffer to shell commands 
You can send part of your buffer to a command with the w r it e 
command (you must precede the ! with a blank or a space). The 
format of this command is 

[line2[, line2]]w[rite] !command 

For example, to format the first 20 lines of your file without leaving the 
editor, use the command: 

1,20 w !nroff > new. file 

When you precede this command by a range of line numbers, ex sends 
the specified line(s) to command and replaces the line(s) with the 
output of the command. 

Using ex 5-23 



9.4 Writing shell scripts using ex commands 
You can write shell scripts that use ex commands. You add comments 
to these scripts by starting a line with a double quote (") or by adding a 
double quote and a comment to the end of a command (except when 
they could be read as part of the command-as in shell escapes and the 
substitute and map commands). 

You can place more than one command on a line by separating each 
pair of commands with a I character. If you use a global command, 
comment, or shell escape (!), however, it must be the last command on 
the line. 

You can also write multiple-line commands by ending each line except 
the last line with a backslash (\). 

You can use the - flag option to ex within shell scripts to suppress 
interactive feedback. This permits the script to run without pausing for 
information to be typed in from the terminal. 

The following is an example of a shell script named script. ex. 

for i in $* 
do 
ex - $i «EOF 
g/\\fl/s//\\fR/g 
g/\\f2/s//\\fI/g 
g/\\f3/s//\\fB/g 
wq 
EOF 
done 

"change \fl to \fR 
"change \f2 to \fI 
"change \f3 to \fB 

To run script. ex on a text file, make the script file executable with 
the command 

chmod +x script.ex 

Then type 

script. ex filename 

where filename is a text file. When the script has finished running, all 
instances of "\ f 1 " in your file are changed to " \ fR," and so on. 
See also Chapter 6, "Using sed" for information on making global 
changes to a file using scripts. 

5-24 NUX Text Editing Tools 



10. Setting options 
You control many of the ways ex behaves by setting options. 

ex has three kinds of options: numeric, string, and toggle. Each of 
these options is set in its own way. Numeric options are options that 
take a numeric value and string options are options that take a string 
value. You set numeric and string options with the following command 
format: 

set opt=vaZ 

For example, you set the number of lines to scroll through (a numeric 
option) with the following command: 

set scroll=4 

You set the default shell (a string option), with the following command: 

set sh=/bin/sh 

A toggle option is an option that is either on or off. You set a toggle 
option with one of the following formats: 

set opt 

turns the option on and 

set noopt 

turns the option off. For example, 

set number 

turns on line numbering and 

set nonumber 

turns off line numbering. 

To set options, use the following syntax: 

Option type Syntax Sets opt to 
numeric set opt=number number 
string set opt=string string 
toggle set opt on 

set noopt off 

Using ex 5-25 



You can place multiple options on one line with the format 

set opt opt opt 

Most options can be abbreviated; see "Option Summary" for a list of 
options and their abbreviations. 

10.1 Listing options 
To see option settings, use the following syntax: 

Options listed Syntax 
all set all 
changed ones set 
an opt set opt? 

10.2 When to set options 
You can set these options anytime while editing a file, or you can set 
them as part of your default editing environment by including them in 
the EXINIT variable in your. prof ile file or by creating a . exrc 
file in the current or home directory. If you set them in your 
.profile file, they should all be on one line, separated by vertical 
bar ( I) characters. For example, in your. prof ile file, you could 
have the following: 

EXINIT="set numberlset scroll=20lset terse" 

10.3 Option descriptions 
The following is a complete list of available options: 

autoindent 
Abbreviation: a i 
Default: noautoindent 

Begin new lines of text at the indent level of the previous line. 
This is useful in structured program text. 

When inserting text, CONIROL-d moves the cursor back to the 
previous tab stop. 

Entering a blank line or typing OCONTROL-d erases the autoindent. 
You can type one line at the margin by beginning it with 
~ CONTROL-d; the next line returns to the previous indent. 

autoindent does not work with global commands or when the 
input device is not a terminal. 

5-26 AlUX Text Editing Tools 



autoprint 
Abbreviation: a p 
Default: autoprint 

Print the current line after each delete, copy (or t), join, 
move, s (substitute), undo, <, or > command (if it is the last 
command on the line). This is suppressed during global 
commands. 

autowrite 
Abbreviation: a w 
Default: noautowrite 

Write the modified buffer contents to the current file when you use 
the following ex commands: 

n[ext] edit next file in series 
rew[ind] reedit the list of files from the start 
t a [g] move to a tag location 

escape to the shell 

or the following v i commands: 

CONlROL-" switch files 
CONlROL-] move to a tag location 

You can override the autowrite option, destroying the current 
buffer contents, with the following ex commands: 

e[dit] instead of n[ext] 
rew[ind] ! instead of rew[ind] 
ta[g] ! instead of ta[g] 
sh[ell] instead of ! 

and the following v i commands: 

: e :jf: instead of CONlROL-" 

: t a ! instead of CONTROL-] 

beautify 
Abbreviation: bf 
Default: nobeautify 

Discard all control characters (except tab, newline, and form feed) 
from your input, and print a message the first time it discards a 

Using ex 5-27 



backspace character. This option applies only to text input and not 
to command input. 

directory=dir 
Abbreviation: di r 
Default: directory=/tmp 

Specify the directory where ex places its buffer file. This 
directory must be writable, or ex will exit abruptly. 

edcompatible 
Abbreviation: none 
Default: noedcompa t ible 

Use the suffixes g and c to toggle globally and confirm settings of 
the s (substitute) command. 

errorbells 
Abbreviation: eb 
Default: noerrorbells 

Sound a bell when displaying error messages (you cannot suppress 
this bell in open or visual mode). If possible, ex highlights the 
error message on the screen instead of ringing the bell. 

flash 
Abbreviation: f 1 
Default: flash 

Flash the screen when an error occurs. 

hardtabs=n 
Abbreviation: h t 
Default: hardtabs=8 

Set the length of terminal hardware tabs (or where the system 
expands tabs). 

ignorecase 
Abbreviation: ic 
Default: noignorecase 

Set regular expressions to match both uppercase and lowercase 
patterns, except when you specify a range of uppercase characters 
(for example, [A-Z J). 

5-28 AlUX Text Editing Tools 



insertarrows 
Abbreviation: ia 
Default: insertarrows 

Allow use of arrow keys in insert mode as well as command mode. 

lisp 
Abbreviation: none 
Default: nolisp 

Set autoindent and modify the vi motion commands (), { }, 
[ [, and ] ] to have meaning for LISP. 

list 
Abbreviation: 1 i s t 
Default: nolist 

Print lines showing tabs as "I and the end of the line as $, as 
in the 1 is t command. 

magic 
Abbreviation: none 
Default: magic 

With magic set, ex recognizes all the metacharacters used in 
regular expressions. Setting nomagic uses only the 
following regular-expression metacharacters: \,", and $. It 
treats all other characters (including - and & used in 
substitutions) as normal characters. You can use any of these 
as metacharacters by preceding them with \. 

mesg 
Abbreviation: none 
Default: mesg 

By default, vi allows other users to send you messages while 
you are editing a file. nomesg turns off this permission. 

number 
Abbreviation: n u 

Default: nonumber 

Print lines preceded by their line number and (after RETURN) 
prompt with line numbers for input lines. 

Using ex 5-29 



open 
Abbreviation: none 
Default: open. 

By default, you can enter open and visual mode from ex. 
Setting noopen means you can't use these modes. 

optimize 
Abbreviation: opt 
Default: opt imi ze 

Suppress carriage returns on more than one (logical) line of output. 
This optimizes output on terminals without addressable cursors 
when printing text with leading white space. 

paragraphs=xyz 
Abbreviation: pa r a 
Default: paragraphs=PLlbp 

Specify the paragraph macro searched for in vi and open mode 
when you type { or }. By default, it searches for the rom macros 
.P, .LI, and the nroff/troff request .bp. 

prompt 
Abbreviation: none 
Default: prompt 

By default, ex prints the prompt (:) when it is in command mode. 
Setting noprompt turns off this prompt. 

readonly 
Abbreviation: none 
Default: noreadonly 

Make the file read only (just as if you had started ex with the - r 

flag option). You can override this option and save the file by 
using the write! command. 

redraw 
Abbreviation: none 
Default: noredraw 

Force a dumb terminal to redraw the characters to the right of the 
cursor as you type input in vi. This is useful only at baud rates of 

5-30 AlUX Text Editing Tools 



1200 or higher. 

remap 
Abbreviation: none 
Default: remap 

Repeatedly translate maps until they are unchanged. For example, 
if you map 0 to 0, and ° to I, setting remap maps 0 to I, while 
setting noremap maps 0 to 0. 

report=n 
Abbreviation: none 
Default: report=5 

Print a message when a command modifies more than n lines. For 
example, ex prints 12 lines deleted after a deletion. For 
the following commands, ex reports after completing the entire 
command: global, open, undo, and visual. 

scroll=n 
Abbreviation: none 
Default: scroll=half the value of the window option 

Set how many lines scroll when you press CONTROL-d in vi's 
command mode. By default, it uses half the number of lines set 
with the window option. 

sections=xyz 
Abbreviation: none 
Default: sections=HHU 

Specify the section macro searched for in visual and open 
mode when you type [ [ or ] ]. By default, it searches for rom's 
. Hand . HU macros. 

she I l=pathname 
Abbreviation: sh 
Default: shell=$SHELL 

Set the pathname of the shell used by the shell escape command ! 
. and the shell command. $SHELL is the value in the SHELL 

variable, as set in the . login or . prof ile file. 

shiftwidth=n 
Abbreviation: s w 

Using ex 5-31 



Default: shift width=8 

Set the software tab stop width used when you press CONTROL-d in 
autoindent, and when you use the> and < commands. 

showmatch 
Abbreviation: sm 
Default: noshowmatch 

Move the cursor to the matching ( or { on the screen for one 
second when you type ( or { in vi. Extremely useful with LISP. 

slowopen 
Abbreviation: slow 
Default: nos low 

Don't update the display when you enter text in vi. Useful on a 
very slow line. 

tabstop=n 
Abbreviation: t s 
Default: tabstop=8 

Set tabstops to n. 

taglength=n 
Abbreviation: t 1 
Default: taglength=O 

Tags are not significant beyond n characters. Zero (the default) 
means that all characters are significant. 

t ags=pathname 
Abbreviation: none 
Default tags=/usr / lib/tags 

Search for the requested files sequentially in the specified path 
when using the tag command. You must escape any spaces with 
a backslash (\). By default, it searches in the current directory and 
in /usr / lib (a master file for the entire system). 

t e rm=terminai 
Abbreviation: none 
Default: $ TERM 

5-32 A/UX Text Editing Tools 



Set your tenninal type. The value you specify must exist in a file 
in the appropriate subdirectory of / us r /1 ib / t e rmin f o. 
$TERM is the value of the TERM variable, as set in the . login or 
. profile file. 

terse 
Abbreviation: none 
Default: noterse 

Produce shorter error messages. 

warn 
Abbreviation: none 
Default: warn 

Print [No write since last change] if you use a 
! command escape before you have saved the current buffer. 

window=n 
Abbreviation: None 
Default: speed dependent 

Set the number of lines in vi's text window. By default, this is 
detennined by your baud rate. The default settings are 

8 for 600 baud or lower 

16 for 1200 baud 

23 (or full screen) at higher speeds (w300, w1200, w9600). 

These settings set window only if the speed is slow (300), 
medium (1200), or high (9600), respectively. They are suitable for 
an EXINIT variable. 

wrapmargin=n 
Abbreviation: wm 
Default: wrapmargin=O 

Set the column number where the cursor automatically returns 
when you enter text in visual and open modes. This is detennined 
by setting the wraparound point n columns from the right side of 
the screen. Since there are 80 columns on a typical tenninal 
screen, setting wrapmargin=l 0 would break a long line 10 

Using ex 5-33 



columns to the right of this, in the 70th column. wrapmargin=O 
means that a long line wraps at column 80, but is not broken (that 
is, wrapmargin is off). 

wraps can 
Abbreviation: w s 
Default: wraps can 

Search the entire file for a regular expression by moving from the 
current line, wrapping around the end or beginning of the file 
(depending on the direction you're searching in), and returning to 
the current line. 

writeany 
Abbreviation: wa 
Default: nowriteany 

By default, ex warns you if you try to save your buffer to any file 
other than the current file. Setting nowr i teany allows you to 
write to any file with write permission. 

10.4 Option summary 
The following is a complete list of ex editor options. 

Option Abbreviation Default 

auto indent ai noai 
autoprint ap ap 
autowrite aw noaw 
beautify bf nobf 
directory dir dir=/tmp 
edcompatible noedcompatible 
errorbells eb noeb 
hardtabs ht ht=8 
ignorecase ic noic 
lisp nolisp 
list nolist 
magic magic 
mesg mesg 
number nu nonu 

5-34 AlUX Text Editing Tools 



Option 

open 
optimize 
paragraphs 
prompt 
readonly 
redraw 
remap 
report 
scroll 
sections 
shell 
shiftwidth 
showmatch 
slowopen 
tabstop 
taglength 
tags 
term 
terse 
warn 
window 
wrapmargin 
wrapscan 
writeany 

Abbreviation Default 

open 
opt opt 
para para=PLIbp 

sh 
sw 
sm 
slow 
ts 
tl 

wm 
ws 
wa 

prompt 
noreadonly 
noredraw 
remap 
report=5 
scroll=1/2 window 
sections=HHU 
sh=$SHELL 
sw=8 
nosm 
(terminal dependent) 
ts=8 
tl=O 
tags=/usr/lib/tags 
term=$TERM 
noterse 
warn 
window=(speed dependent) 
wm=O 
ws 
nowa 

11. Mapping and abbreviations 
Mapping and abbreviation are available as a joint facility of ex and 
vi. The mapping or abbreviation must be defined on the ex command 
line, but is useful only in visual mode. See "Mapping and 
Abbreviations" in Chapter 4, "Using vi." 

12. Other ex commands 
This section describes several other ex commands. See' 'Command 
Summary" for a complete list of ex commands and their usage. 

Using ex: 5-35 



12.1 Marking text 
You can set up a special address with the rna r k command and then use 
this address anywhere you would use an ex address. The syntax for 
this command is 

[lineno]rna[rk] x 

where lineno is the line (number) in the file to mark and x is a 
lowercase letter to mark this line. You must precede this letter with a 
blank or a tab. After you have marked a line, you can refer to it by 
typing 

'x 

where x is the name you gave it. 

You can also use the k command to mark a line. The syntax for this 
command is 

[lineno]kx 

where lineno is the line (number) in the file to mark and x is a 
lowercase letter to mark this line. This is the same as the rna r k 
command, except you don't have to precede the letter with a space. 

12.2 Recovering lost text 
There are several ways to recover information in ex. 

The undo command changes the buffer back to the way it was before 
the last editing command. 

If you have deleted several large sections and want to recover them, the 
easiest method is to exit ex without saving your changes by using the 
qui t ! command. The format for this command is 

q[uit] ! 

This restores the buffer you had when you last wrote the file. 

The preserve command is a more drastic way to save your file. You 
should use it only if you can't save your file with a write command. 
It saves your file as though your system had just crashed. You can 
recover this file with the recover command. 

5-36 A/UX Text Editing Tools 



12.3 Editing programs 
ex has several commands for editing programs. 

< shifts text right to the next tabstop and > shifts text left. This is 
useful for changing the indentation of a section of program. 

Using the tag command helps you locate functions that may be spread 
over many files. The tag command starts editing the file at tag, 
moving to another file, if necessary. Since the current file edit may be 
terminated abruptly, you must write the current file, if you modified it, 
before giving a tag command. If you give the tag command without 
specifying a tag, ex uses the previous tag. The syntax is 

ta[g] tag 

Normally, you use this command after uSing the ctags command to 
create a tag file (see ctags(l) in AIUX Command Reference). This 
file consists of several lines with three fields separated by blanks or 
tabs. The first field is the name of the tag, the second is the name of the 
file where the tag resides, and the third is an addressing form used to 
find the tag. Usually, this is a contextual scan in the form Ipatternl, 
performed as if nomagic were set. 

Names in the tag file must be sorted alphabetically. 

For instance, if you wish to have ready access to the functions in a file 
called functions. c of the following form, 

main () 
{ 

} 

fl () 
{ 

Using ex 

fl () ; 
f2 () ; 
f3 () ; 

f2 () ; 

5-37 



f2 () 
{ 

} 

f3 () 
{ 

f3 () ; 

you could run the ctags program on it, as follows: 

ctags functions.c 

This creates a tag file called tag s. 

If you then edit functions. c or even another file with ex, and give 
the command 

ta fl 

you will find yourself in the editor buffer of f unc t ion s . c at the line 

fl () 

ready to edit that function. 

Note: If you had been editing a file other than functions. c 
when you gave the tag command, that other file's edit would 
have been dropped summarily without a wr i teo Always 
write before giving a tag command. 

13. Saving text and exiting 
The write command saves the changes you've made to the buffer in 
the specified file and prints the number of lines and characters written. 
The format of this command is 

[line1 [, line2]]w[rite] [filename] 

By default, ex writes the entire buffer tofilename. Including a starting 
and ending address saves only the lines between line} and line2. 
Including just a starting address saves only line1. If you don't include 

5-38 AlUX Text Editing Tools 



filename, ex writes to the current file. If there is no current file, ex 
creates the file filename and writes the buffer to it. The write 
command also writes to /dev/tty and /dev/null. 

The wr i te! command forces ex to write the buffer. The file must 
already exist. The format of this command is 

[line1[, line2]]w[rite!] [filename] 

The write» filename command appends the buffer to the end ofa 
file (which must already exist). The format of this command is 

[linel[, line2]]w[rite] »filename 

13.1 Exiting ex 
The quit command terminates ex using the syntax 

q[uit]<CR> 

If you haven't written all your changes to a file, ex warns you and does 
not quit. It also tells you if there are additional files in the argument 
list. 

The quit! command allows you to leave ex without saving the 
changes you've made, using the syntax 

q[uit] !<CR> 

See "Saving Text and Exiting" for how to write a file. 

13.2 Combining the write and quit commands 
The following commands save your changes and exit ex. 

The write and quit commands can be used together to save your 
changes in the current file or in a specified file and then exit ex. 

wq 

This is simply a shorthand form of using w r i t e followed by qu it; 
you may also use the long form of these commands as shown in the 
sections above. 

Followed by an exclamation point, 

wq! filename 

forces ex to save your changes in filename and then exits ex. This is a 

Using ex 5-39 



shorthand form of using write! followed by quit. You may also 
use the long form of these commands as shown in the sections above. 

The xi t command saves your buffer only if you have made changes 
since last saving it and then exits ex. You can use this command by 
typing 

x 

The long format of this command is 

x[i t] [filename] 

where filename is the name of the file in which to save your buffer. 

14. Error conditions 
When there is an error, ex sounds the terminal bell and prints an error 
message. If ex receives an interrupt signal, it prints Interrupt and 
returns to command mode. If the primary input is from a file, ex exits. 

14.1 Limitations 
ex's limitations are 

• 1024 characters per line 

• 256 characters per global command list 

• 128 characters per filename 

• 128 characters in the previous inserted and deleted text in open 
or visual mode 

• 100 characters in a shell escape command 

• 63 characters in a string option 

• 30 characters in a tag name 

A limit of 250,000 lines in the file is silently enforced. 

The number of macros defined with map in vi is limited to 32, and the 
total number of characters in macros is limited to fewer than 512. 

14.2 Recovering lost files 
If the system crashes or you accidentally hang up before saving your 
file, ex sends you mail informing you it has saved your file. The - r 
flag option recovers your buffer. The format of this command is 

5-40 NUX Text Editing Tools 



ex -r 

to list the files that ex saved, and 

ex - r filename 

to recover filename (after first moving to the directory you were in). 
You should check the recovered file before overwriting the existing file 
with it. Note that you must use the write command to explicitly 
write the recovered file. The xi t command is a safe way to exit a 
recovered file because it does not guarantee that a write operation will 
occur. 

15. Command summary 
In the following commands, the last line you enter, copy, change, or 
print becomes the current line. If you use an input command, but don't 
enter a new line, the next line becomes the current line. If you delete 
text, the following line become the current line; deleting text at the end 
of the file makes the new last line the current line. 

The following is the standard ex command format: 

[line-spec] command[!] [parameters] [n] rJiags] 

Pressing only RETURN prints the next line. ex ignores a . preceding 
any command. 

In these commands, 

line-spec (for -, 'line-specifier' ') indicates the command 
address (see "Line Selection" for the definition of 
line-spec). In the following commands, line-spec 
defaults to the current line, unless stated otherwise. 

lineno (for "line number") indicates the single-line 
command address (defaulting to the current line). 

flags indicates invoking the printing command :#: 
(number), 1 (list), or p (print) after the 
command. 

command n performs command on the n lines involved, starting 
at the current line. 

Using ex 5-41 



Command 

ab[breviate] wd word 

Description 

(Must be defined in ex, but works in vi 
only.) Abbreviate word to wd in input 
mode. Typing wd in input mode, 
delimited by spaces or punctuation, 
displays word. 

[lineno] a [ppend]<CR>text<CR> . 
Append text after lineno. Specify lineno 
zero (0) to insert text at the beginning of 
the buffer. Default address: current line. 

[lineno] a [ppend] ! <CR>text<CR> . 

ar[gs] 

Same as append, but changes the setting 
for autoindent while appending (see 
"Setting Options"). Default address: 
current line 

Print the list of files to edit, with the 
current file delimited by brackets ([ ]). 

[linel[, line2]]c[hange] [n]<CR>text<CR> . 
Replace line1 , or the lines between line1 
and line2, or n lines, with text. Default 
address: current line. 

[linel[, line2]]c[hange] ! [n]<CR>text<CR>. 

5-42 

Changes the setting of the autoindent 
option while changing the text (see 
"Setting Options"). Default address: 
current line. 

NUX Text Editing Tools 



Command Description 

[linel[, line2]]co[py] lineno [flags] 
Copy the text on linel, or between line1 
and line2, after lineno (if lineno is zero 
(0), the text is copied to the start of the 
file). Including aflag after the command 
(either p for print, 1 for list, or * for 
n umbe r) changes the display to the 
specified format. t is a synonym for 
copy. Default address: current line. 

[linel[, line2]]d[elete] [buffer] [n] [flags] 

e[dit] file 

Using ex 

Delete the specified lines (either linel, 
those lines between line1 and line2, or the 
number of lines specified with n). 
Specifying buffer with a lowercase letter 
(a through z), overwrites that buffer with 
the deleted text, while specifying an 
uppercase letter (A through z) appends the 
deleted text to that buffer. Including aflag 
after the command (eitherp for print, 1 
for 1 i s t, or * for n umbe r) changes the 
display to the specified format. Default 
address: current line. 

Editfile. ex warns you if you haven't 
written your current buffer, and doesn't 
allow you to editfile. Otherwise, ex reads 
file into the buffer, making it the current 
file, and prints the new filename and the 
number of lines and characters read. ex 
strips the high-order bit from any non
ASCII characters and discards any null 
characters. 

5-43 



Command 

e[di t]! file 

e[dit]+lineno file 

f[ile] 

f[ile] file 

5-44 

Description 

The current line is the last line (in ex), or 
the first line (in open or visual mode). 

Iffile is a special device (block, character, 
or TTY), ex mentions this, but allows you 
to edit the file. If it is not a text file, it 
prints the error message Line too 
long (or Directory, if appropriate). 

Same as edit, but ex doesn't warn you if 
you haven't saved the current buffer. 

Begin editing file at line lineno, where 
lineno may be a line number or a pattern 
/pattern (pattern can't contain spaces). 

Print the following information: current 
filename; whether you have saved the 
current buffer; whether the current file is 
in read-only mode; the current line; the 
number of lines in the buffer; the 
percentage of the way through the buffer 
of the current line. It also notes when the 
current file is not the file in the buffer, by 
printing not edited. This happens if 
you change the current file with the file 
file format. In this case, you have to use 
w! to write to the current file. 

Change the current filename to file, 
without changing the buffer. file is then 
considered "not edited." 

A/UX Text Editing Tools 



Command Description 

[linel[, line2]]g[lobal]/ pat[! cmds/] 
global/pat prints lines containing the 
regular expression pat and 
global/pat/ cmds/ perfonns cmds at 
lines containing the regular expression pat. 

cmds can span several lines if you end all 
but the last line with a backslash (\). cmds 
can include append, insert, or 
change. If one of these is the last 
command, you can omit the period that 
tenninates these commands. cmds can 
also include the open or visual 
commands, which take input from the 
tenninal. cmds cannot include global or 
undo, since undo would reverse the 
entire global command. 

global turns off the autoprint and 
autoindent options and sets the 
repo rt option to infinity until executing 
the entire command. ex sets the context 
mark (' ') to the current line, and changes 
it only if you enter open or visual 
mode within the global command. 
Default address: 1,$. 

[linel[, line2]]g[lobal]! Ipatlcmds 

or 
[linel[, line2]]v Ipatlcmds Run cmds globally on each line not 

matching pat. 

[lineno]i[nsert]<CR>[text<CR>] . 

Using ex 

Insert text before lineno. This command 
differs from append only in its 
placement of text. Default address: 
current line. 

5-45 



Command Description 

[lineno]i[nsert] ! <CR>[text<CR>]. 
Same as insert, but changes the 
autoindent option while inserting (see 
"Setting Options"). Default address: 
current line. 

[line1[, line2]] j [oin] [n] (flags] 
Join the specified lines (either the lines 
between line) and line2 or n lines). ex 
ensures that there is at least one blank 
character where the lines joined, two if 
there was a period at the end of the line, or 
none if the first following character is a ) . 
If there is already white space at the end of 
the line, it discards the white space at the 
start of the next line. Including a flag after 
the command (either p for print, 1 for 
list, or #- for number) changes the 
display to the specified format. Default 
address: current line. 

[linel[, line2]] j [oin]! [n] (flags] 

kx 

5-46 

Same as join, but doesn't add or delete 
white space. Default address: current line. 

A synonym for rna r k (described below), 
which does not require a blank or tab 
before the letter. Default address: current 
line. 

A/UX Text Editing Tools 



Command Description 

[linel[, line2]] l[ist] En] [flags] 
Print the specified line(s), displaying tabs 
as '" I and the end of lines as $. Including 
a flag after the command (either p for 
print or :/I: for number) changes the 
display to the specified format. Default 
address: current line. 

map string definition (Must be set via an ex command, but 
works in vi only.) Make typing string 
equivalent to typing definition when 
executing commands in visual mode (vi). 
string can be up to 10 characters long, and 
definition can be up to 100 characters long. 
Default address: none. 

[lineno] ma[rk] x Mark the specified line with x, a lowercase 
letter. You must precede x with a blank or 
a tab. After marking a line, you can refer 
to it with ' x. This command does not 
change the current line. Default address: 
current line. 

[linel[, line2]] m[ove] lineno 

n[ext] 

n[ext] ! 

Using ex 

Move the specified line(s) after lineno. 
The first moved line becomes the current 
line. Default address: current line. 

Edit the next file in the argument list 
specified at startup. Default address: none. 

Move to next file and overwrite the current 
buffer whether you've saved it or not. 
Default address: none. 

5-47 



Command 

n[ ext] file-list 

n [ext] ! file-list 

n[ext]+cmd file-list 

Description 

Replace the current list of files to edit with 
the specified file-list and edit the first file 
on new list. Default address: none. 

Allow editing of new file-list even if you 
have not saved the current buffer. Default 
address: none. 

Execute cmd (which must not have spaces 
in it) after opening the first file infile-list. 
Default address: none. 

[linel[, line2]] nu[mber] [n] [flags] 
Print the specified line(s) (line1, or the 
lines between line} and line2, or the next n 
lines) preceded by its line number. 
Including afiag after the command (either 
p for print or 1 for list) changes the 
display to the specified format. Default 
address: current line. 

[line-spec] o[pen] [lpat][flags] 

5-48 

Use vi commands at each addressed line. 
Specifying pat moves the cursor to the 
beginning of the string matched by the 
pattern. Including afiag after the 
command (either p for print, 1 for 
list, or =It for number) changes the 
display to the specified format. Type Q to 
exit this mode. Default address: current 
line. 

A/UX Text Editing Tools 



Command 

pre[serve] 

[linel[, line2]] p[rint] [n] 

[linel[, line2]] P[rint] [n] 

[lineno] pu[t] [btifJer] 

q[uit] 

Using ex 

Description 

Save the current editor buffer as though 
the system had just crashed. Use this 
command only in emergencies when a 
write command results in an error and 
you do not know how to save your work. 
Use the recover command or ex -r to 
recover after a preserve. Default 
address: none. 

Print the specified line(s) (linel, or the 
lines between linel and line2, or the next n 
lines) displaying nonprinting characters as 
,. x and delete (octal 177) as "? 

Print the specified line(s) (line1, or the 
lines between linel and line2, or the next n 
lines) displaying nonprinting characters as 
,. x and delete (octal 177) as "? 

Put previously deleted or yanked lines 
after lineno. This moves lines with 
delete or copies lines with yank. 
Specifying buffer (a lowercase letter 
between a and z) retrieves text placed in 
that buffer with a delete or yank 
command. Default address: current line. 

Leave ex. If you haven't saved all your 
changes, ex warns you and doesn't allow 
you to leave ex. ex also tells you if there 
are more files in the argument list. 
Normally, you should write your 
changes before doing a quit. Default 
address: none. 

5-49 



Command 

q[uit] ! 

[lineno] r[ead] [file] 

[lineno] r[ead] ! command 

rec[over] file 

rew[ind] 

5-50 

Description 

Same as quit, but ex doesn't warn you if 
you haven't saved the current buffer. 
Default address: none. 

Copy the text offile after lineno in the 
current buffer. If you don't supply file, it 
uses the current filename. If there is no 
current filename,file becomes the current 
name. It will not allow you to read in 
devices, but it will allow you to read in 
binary files. 
If the file buffer is empty and there is no 
current file, ex treats this as an edit 
command. 0 read reads the file at the 
beginning of the buffer. It gives the same 
statistics as the edit command when it 
reads the file in. After a read command, 
the current line is the last line read (in ex) 
or the first line read (in open or visual 
mode). Default address: current line. 

Read the output of command into the 
buffer after lineno. There must be a blank 
or tab before the !. Default address: 
current line. 

Recover file after accidentally hanging up 
the phone, a system crash, or a 
preserve command. Default address: 
none. 

Start editing the files in the argument list, 
beginning with the first file you supplied 
when you started ex. Default address: 
none. 

AlUX Text Editing Tools 



Command 

rew[ind] ! 

se[t] 

sh[ell] 

so[urce] file 

Using ex 

Description 

Same as rewind, but doesn't save the 
current buffer. Default address: none. 

The forms of this command are 
set Print those options you've changed 

from their default settings. 
set all 

Print all the option values. 
set opt=val 

Give the value val (either a number 
or a string) to the option opt. 

set opt 
List the current setting of a string or 
numeric option. 

set opt 
Turn on an option that can be either 
off or on. 

set noopt 
Tum off an option that can be either 
off or on. 

set opt? 
List the current setting of an option 
that can be either off or on. 

You can give more than one parameter to 
set; parameters are interpreted left-to
right. See' 'Option Descriptions" for the 
complete list. Default address: none. 

Create a new shell. Editing resumes when 
you terminate the new shell (using exit). 
Default address: none. 

Readfile and execute the (text
manipulation) commands in it. You can 
nest this command. Default address: none. 

5-51 



Command Description 

[linel[, line2]] s[ubsti tute]lpatlrepl[! suffix] 
s replaces the first instance of pattern 

pat with replacement pattern replan 
each specified line. The suffixes are 

g (global.) Substitute pat with repl 
every time it appears on the 
specified lines. To make the 
substitution everywhere in the file, 
use the format 1, $s/pat/repl/ g. 
You can also use % instead of 1, $. 

c (confirm.) Print the line before 
making each substitution, marking 
the string to substitute with ... 
characters. Type y to confirm the 
substitution, and type any other 
character if you don't want to make 
the substitution. 

r (replace.) Replace the previous 
replacement pattern from a 
substitution with the most recently 
mentioned regular expression; for 
example, from a search command. 

You can split lines by substituting newline 
characters into them. You must escape the 
newline in repl by preceding it with a 
backslash (\). See' 'Regular Expressions 
and Searching" for other metacharacters 
available in pat and repl. Default address: 
current line. 

[linel[,line2]] s[ubstitute] suffix 

5-52 

Omitting pat and repl repeats the last 
substitution. This is a synonym for the & 

command, which is described later in this 
section. 

NUX Text Editing Tools 



Command Description 

Using the r suffix (sr) replaces the 
previous pat with the previous regular 
expression. This is a synonym for the -
command, which is described later in this 
section. Default address: current line. 

[linel[, line2]] t lineno flags 

ta[g] tag 

una[bbreviate] wd 

u[ndo] 

Using ex 

t is a synonym for copy. 

Start editing the file at tag, moving to 
another file, if necessary. You must write 
the current file, if you modified it, before 
giving a tag command. If you give the 
tag command without specifying a tag, it 
uses the previous tag. 

Normally you use this command after 
using the ctags(l) command to create a 
tag file. (See ctags(l) in AIUX 
Command Reference.) Default address: 
none. 

Delete wd from the list of abbreviations. 
When you type wd, it is not expanded. 

undo reverses the changes made by the 
last editing command, except w rite or 
edit. 

undo marks the previous current line with 
". If you restored a line, this becomes the 
current line. If you didn't restore a line, 
the line before the last deleted line 
becomes the current line. 

5-53 



Command 

unm[ap] string 

[line1[, line2]]v /pat/cmds 

ver[sion] 

Description 

Reverse the effect of a previous map 
command, removing the definition 
associated with string. (Note that the map 
command only affects visual mode.) 
Default address: none. -

A synonym for the variant form of a 
global command: runs cmds at each 
line not matching pat. Default address: 
none. 

Give the current version of the editor and 
the last date the editor was changed. 
Default address: none. 

[line-spec] vi[type][n][flags] 
Enter visual mode at the specified line. 
The optional type argument (-" or.) 
specifies where the line is placed on the 
screen. If you omit type, the specified line 
is the first line on the screen. n specifies 
an initial window size; default is the value 
of the option window. Type Q to exit this 
mode. Default address: current line. 

[line1[, line2]] w[ri te] [file] 

5-54 

write writes changes back tofile, 
printing the number of lines and characters 
written. Normally, you omitfile and the 
text goes back where it came from. If you 
specify file, text is written to that file. By 
default, it writes the entire file. 

AlUX Text Editing Tools 



Command Description 

The editor writes to a file only if it is the 
current file, if it is creating the file, or if 
the file is actually a device (! dev / tty, 
/ dev /null). Otherwise, you must give 
the variant form w! to force the write. 

If the file does not exist, ex creates it. 
This command does not change the current 
line. If there is an error while writing the 
current and edited file, the editor considers 
that there has been no write since the last 
change, even if the buffer had not 
previously been modified. Default 
address: current line. 

[linel[, line2]] w[rite] » file 
Append buffer contents to file. Default 
address: current line. 

w[rite] ! file Force a write to a file. This is helpful 
when you want to write to a file that 
already exists. Default address: none. 

[linel[, line2]] w[rite] ! command 
Write the specified line(s) into command. 
Note that this is different from w! because 
a blank or tab must separate the w from the 
!. Default address: current line. 

wq [file] write followed by quit. Default 
address: none 

wq! [file] The variant overrides checking on the 
wr i te command, as w! does. 

Using ex 5-55 



Command Description 

x[i t] [file] Write the buffer if there have been any 
changes, then quit the file. Default 
address: none. 

[linel[, line2]] ya[nk] buffer n 
yank places a copy of the specified line(s) 
in the named buffer. You can retrieve 
them with put. If you don't specify a 
buffer name, the lines go to a more 
volatile place (see the put command 
description). Default address: current 
address. 

[lineno+l] z n z prints the next n lines (default window). 

[line no] ztype n The z command determines where the 
current line appears on the screen. type is 
the character following the command and 
determines the positioning of the display 
on the screen. There are several different 
forms of this command: 

5-56 

[lineno]z or [n]z+ 
Print the next screenful of lines with 
the current (or specified) line at the 
top of the screen. 

[lineno] z-
Print the screen with the current (or 
specified) line at the bottom. 

[lineno] z . 
Print the screen with the current (or 
specified) line at the center. 

[lineno]z= 
Print the screen with the current (or 
specified) line in the center, 
surrounded by lines of - characters. 

A/UX Text Editing Tools 



Command 

!command 

Description 

[lineno] z ~ 
Print the screen two windows before 
the current (or specified) line. 

Default address: current line. 

Send command to the shell to execute. 
Within command, % and #= are expanded as 
in filenames; ! is replaced with the text of 
the previous command. Thus, ! ! repeats 
the last shell escape. If there is any such 
expansion, the expanded line is echoed. 
This command does not change the current 
line. 

If you haven't written the buffer contents 
since the last change, ex prints a warning 
message before executing the command. 
A single ! prints when the command 
completes. Default address: current line. 

[linel[, line2]] ! command Supply the specified address (or address 
range) as standard input to command. The 
output then replaces the input line(s). 
Default address: current line. 

[line-spec] = 

Using ex 

Print the line number of the specified line. 
"Dot equals" (. =) gives the current line 
number. If no line is specified, the line 
number of the last line in the file is given. 
Does not change the current line. Default 
address: last line in file. 

5-57 



Command 

[linel[, line2]] < n flags 
or 

[linel[, line2]] > n flags 

[line-spec ]CON1ROL-d 

[line1 [, line2]] 
or 

<CR> 

[line-spec] &suffix n flags 

Description 

The less-than and greater-than signs « 
and » shift left or right a distance 
specified by the shiftwidth option. 
They shift only blanks and tabs and do not 
discard nonwhite characters in a left shift. 
The current line is the last line that 
changed due to the shifting. Default 
address: current line. 

CON1ROL-d scrolls through the file. You 
can specify the size of the scroll with the 
scroll option. The default is a half 
screen of text. Default address: current 
line. 

Print the addressed line(s). Pressing 
RETURN prints the next line. Default 
address: none. 

The ampersand (&) repeats the previous 
substitute command on the current (or 
specified) line. If you set the 
edcompatible option, it retains the 
suffix; that is, if the previous substitute 
command was global, the ampersand 
repeats the substitution globally on the 
current line. Default address: current line 

[- [line-spec]] -suffix n flags 

5-58 

The tilde (-) replaces the previous 
replacement pattern from a substitution 
with the previous regular expression. 
Default address: current line 

NUX Text Editing Tools 



Command 

[linel[, line2]] # [n] [flags] 

Using ex 

Description 

Print the specified line(s) (line1 , or the 
lines between linel and line2, or the next n 
lines) preceded by its line number. 
Including aflag after the command (either 
p for print or 1 for list) changes the 
display to the specified format. Default 
address: current line. 

5-59 





Chapter 6 

Using sed 

Contents 

1. Introduction 

2. Overall operation •••• 
2.1 Command line options 
2.2 Usage • • . . • 
2.3 Editing command syntax • 
2.4 Command application order 
2.5 Pattern space 

3. Addressing • • • • 
3.1 Line number addresses 
3.2 Context addresses 
3.3 Examples • • • • • 

4. sed editing commands • • 
4.1 Line-oriented commands 
4.2 The substitute command • 
4.3 Input/output commands • . 
4.4 Multiple input line commands 
4.5 Hold and get commands . • • 
4.6 Control-flow commands • 
4.7 Miscellaneous commands 

- i -

1 

1 
2 
3 
5 
5 
5 

6 
6 
6 
9 

9 
10 
13 
16 
17 
18 
19 
21 





1. Introduction 

Chapter 6 

Using sed 

The sed editor is a stream editor. It is especially useful for 

• Editing large files that cannot be contained in a buffer. The size 
of a file to be edited with sed is limited only by the amount of 
secondary storage. Only a few lines of the current input file are 
in physical (volatile) memory at one time, and no temporary files 
(buffers) are used. 

• Performing complicated editing sequences on any size file. The 
sed editor is most commonly used in shell scripts, where 
complicated editing requests can be stored, edited, and applied to 
the input file(s) as a command. 

• Efficiently perfonning multiple global editing commands in one 
pass. The sed program running from a command file is faster 
and more efficient than an interactive editor like ex, even when 
ex is also running from a command file. 

• Performing transformations on a data stream as part of a pipe or 
a shell script. 

Note that sed does not recognize certain commands provided by an 
interactive editor. For example, sed does not provide relative 
addressing. Because it operates on one line at a time, sed cannot 
move backward or forward relative to the current line in a file. In 
addition, sed does not inform you about the effects of your 
commands, or allow you to undo them immediately. 

2. Overall operation 
By default, sed copies standard input to standard output, performing 
zero or more editing actions on each line before writing it to the output. 
Editing actions are specified by sed editing commands, described in 
the next section. You specify the lines to be affected by these 

Using sed 6-1 



commands by addresses, either context addresses or line numbers. 

You never modify an input file directly; instead, changes are written to 

the standard output. If this output is redirected to a file, then the new 
file contains the modifications created by your editing actions. Then 
you may, if you wish, replace the original file with this new file. 

2.1 Command line options 
Command syntax for the sed editor is 

sed [-n] -e ' command-line-script' [-e ' command-line-script' ] ... 
[-f ,¢le] ... [file ... ] 

or 

sed [-n] - f sfile ... [-/ sfile] ... [-e I command-line-script' ] ... [file . .. ] 

sed [-n] , command-line-script' [file ... ] 

sed must be invoked with at least one -e or -f option; however, if 
only" -e ' command-line-script' " is used, the -e may be omitted. 

sed can be invoked in one of the following ways: 

sed ' command-line-script' file 
sed -e ' command-line-script' file 
sed -n -e ' command-line-script' file 
sed -f sfile file 
sed -n - f sfile file 
sed -e ' command-line-script' - f sfile file 

The options are as follows: 

-n (no-copy.) Copy only those lines explicitly specified either by p 
(print), i (insert), or a (append) commands or p arguments after 
s (substitute) commands. 

-e (expression.) The command-line-script argument is an 
, 'expression" (inline sed command(s) using the syntax of 
regular expressions and enclosed in single or double quotes) to 
be run on the input stream. There may be more than one -e 
(with its corresponding expression) on a command line. lfthe 
new lines are escaped, there may be more than one line in an 
expression. The -e itself may be omitted if there is only one 
expression and no - f option is present. 

6-2 A/UX Text Editing Tools 



-f (source file.) The sfile argument is a file containing sed 
commands, one to a line. There may be more than one -f option 
specified on the command line. If multiple - f command file 
arguments are given, the commands they contain are executed in 
the order specified. 

The inputfiles may be omitted; in that case, sed takes its input from 
the standard input Note that sed does not accept the "-" construct 
used in other programs (for example, awk) to indicate the standard 
input. If you must apply a sequence of sed commands to some files 
and then to the standard input, you can use the following command: 

cat files - I sed -f sfile 

2.2 Usage 
Editing commands are specified on the sed command line. They can 
either be embedded inline (with the -e option) or enclosed in a file and 
provided as an argument to the - f option. The following are examples 
of sed usage: 

sort chap.1 I 
sed -e 's/\.dc\./.dec./' -e's/\.3b\./.u3b./' 

This sorts the contents of chap. 1 and performs substitutions on the 
first instance of . dc. and . 3b. in each line; the results are written to 
standard output. 

Note that 

sed -e 's/\.dc\./.dec./' -e's/\.3b\./.u3b./' 

is equivalent to 

sed ' 
s/\.dc\./.dec./ 
s/\.3b\./.u3b./ 

In this chapter, we use the first fonn, which employs the -e option. 
These may be replaced with the second form if you prefer. 

With -e, you may also separate editing commands with a semicolon. 
For example, 

Using sed 6-3 



sed -e 's/\.dc\./.dec./;s/\.3b\./.u3b./' 

is equivalent to the above examples. 

The command form: 

sed -e 's/\.dc\./.dec./ 
s/\.3b\./.u3b./' chap.1 

performs the same substitutions as the preceding command on a file 
named chap .1; the results are written to standard output. 

Note: When using sed in the C shell, newlines must be 
escaped using a backslash even when enclosed in single quotes. 

The command: 

sed -e 's/,/ /g' chap.1 > temp 

replaces every comma (,) in chap.1 with a space; the modified file is 
contained in temp. 

If you put the following sed commands into a file named cmd . file: 

s/\.dc/.dec./g 
s/\.3b\./.u3b./ 
s/,/ /g 

then you can use the following command: 

sed -f cmd.file chap.1 > temp 

This performs substitutions on chap .1; the modified file is contained 
in temp. 

You can also use the command 

sed -n -f cmd.file chap.1 

to perform substitutions on chap. 1 and write the modified chap. 1 
to standard output. 

Before any input file is opened, all editing commands are compiled in 
the order encountered (also the order in which they are attempted at 
execution time) into a form that will be moderately efficient during the 
execution phase. In the execution phase the commands are actually 
applied to lines of the input file. 

6-4 AlUX Text Editing Tools 



2.3 Editing command syntax 
The general editing command syntax is 

[line-spec] command [arguments] 

The line-spec (line specification) and the arguments are optional, 
although either of these may be required according to the command 
given. line-specs may be line number(s) or context addresses in the 
form 

[line] [, line2]] 

or 

[lpattern[l][, /pattern[l]] 

In the first case, if one line number is specified, sed performs the 
editing command on that line; if two line numbers are specified, sed 
performs the editing command on the range of lines between linel and 
line2, inclusive. In the second case, if one context address is specified, 
sed performs the editing command only on lines containing that 
pattern; if two context addresses are specified, sed performs the 
editing command on all lines between the first pattern and the second 
pattern, inclusive. After it recognizes the second pattern, sed searches 
for the first pattern again. If found, it begins performing the editing 
command again until it recognizes the second pattern, and so on. Any 
number of blanks or tabs may separate line-specs from the command; 
blanks and tab characters at the beginning of lines are ignored. 

2.4 Command application order 
Commands are applied one at a time, in the order encountered; the 
input to each command is the output of all previous commands. 

This default linear ordering can be changed by the t (test substitution) 
and b (branch) control-flow commands. When the order of application 
is changed by these commands, it is still true that the input line to any 
command is the output of any previously applied commands. 

2.5 Pattern space 
The pattern space is the buffer the sed commands operate on. 
Ordinarily, pattern space is one line of the input text, but more than one 
line can be read into the pattern space by using the N command or the G 
command. 

Using sed 6-5 



3. Addressing 
Input file lines to be affected by your editing commands are specified 
by line-specs. These line-specs can be either line numbers or context 
addresses. If no line-spec is present, the command is applied to every 
line in the input file. 

Multiple commands can be applied to a single line-spec by grouping 
commands with braces in the following format: 

line-spec { 
command-list 

3.1 Line number addresses 
A line number is a positive decimal integer that is incremented (by an 
internal counter) as each line is read from the input A line number 
address corresponds to the value of the internal line counter. As a 
special case, the $ character matches the last line of the last input file. 

Note: The line counter runs cumulatively through multiple 
input files. It is not reset when a new consecutive input file is 
opened. 

Commands can be preceded by zero, one, or two addresses. It is an 
error when a command has more addresses than allowed. 

If a command has zero addresses, it is applied to every line in the input. 

If a command has one address, it is applied to all lines that match that 
address. 

If a command has two addresses separated by a comma, it is applied to 
the first line that matches the first address and to all subsequent lines up 
to, and including, the first line that matches the second address. An 
attempt is made on subsequent lines to match the first address again, 
and the process is repeated. 

3.2 Context addresses 
A context address is a regular expression enclosed by matching 
delimiters. Any character may be selected as the expression delimiter 
(for example, /pattern/ or %pattern%). sed recognizes regular 
expressions that have the following construction: 

6-6 AlUX Text Editing Tools 



• An ordinary character is a regular expression and matches that 
character. 

• A caret ( ... ) at the beginning of a regular expression matches the 
beginning of a line. 

• A dollar sign ($) at the end of a regular expression matches the 
end of a line. 

• The (\n) character matches an embedded newline character in 
the pattern space but not the newline character at the end of the 
pattern space. Newlines may be embedded by using the N 

command or the G command. 

• A period ( .) matches any character except the terminal newline 
character of the pattern space. 

• A regular expression followed by an asterisk (*) matches any 
number (including zero) of adjacent occurrences of the regular 
expression it follows. 

• A string of characters in square brackets ( [ ] ) matches any 
character in the string and no others. For example, [abc] 
matches the single-character strings a, b, and c. The characters 
may also be specified as a range using the format 

[a-z] 

which will match any lowercase character. If, however, the first 
character of the string is a caret ( ... ), the regular expression 
matches any character except the characters in the string and the 
terminal newline character of the pattern space. The caret is the 
only metacharacter recognized within the square brackets. If (] ) 
needs to be in the string enclosed in square brackets, it should be 
the first non-metacharacter. Thus, for example, 

[] ... ] includes ] 
[ ... ] ... ] does not include ] 

In both cases, a range may be specified by using a hyphen (for 
example, [A-Z] or [0-9]). 

• A concatenation of regular expressions is a regular expression 
that matches the concatenation of strings matched by the 

Using sed 6-7 



6-8 

components of the regular expression . 

• A regular expression between the sequences \ ( and \) is 
identical in effect to the unadorned regular expression, but has 
side effects which are described under the substitute command 
(s) later in this section . 

• The expression \d (where d is a digit, 0 through 9) refers to the 
string of characters found earlier in the same pattern by an 
expression using the \ ( and \) construction. The \ ( and \) 
sequences act just like those in the other A/UX editors, and are 
used to establish "fields" or sections in a line of text (or all lines 
of text) in a file. 

For example, suppose a file contained the following list of 
names: 

Dick Powell 
William Powell 
Eleanor Powell 
Jane Powell 

The following expression reverses the order of the names, while 
placing a comma and a space between each first name and last 
name: 

s/\ ( [A-Z] • * \) \ ( [A-Z] . *\) /\2, \1/ 

This command writes a new list: 

Powell, Dick 
Powell, William 
Powell, Eleanor 
Powell, Jane 

For another example, the following expression matches a line 
beginning with two repeated occurrences of the same string 
separated by a space: 

/"'\(.*\) \1/ 

• A null regular expression standing alone (for example, / I) is 
equivalent to the previous regular expression. 

A/UX Text Editing Tools 



• Special characters", $, *, \, and I, when used as literal 
characters, must be preceded by a backs lash (\) . 

• For a context address to match, the whole pattern within the 
input address must match some portion of the pattern space. 

3.3 Examples 
Let us consider more examples of using sed. First, create a text file 
named poem that contains the following lines: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

Examples in this chapter use this text except where noted. The 
following shows the output of a sed command using line number 
addressing. The command 

sed -e '2q' poem 

copies the first two lines of the input and quits. The output on your 
screen will be 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

On the same input text, the following lists the matches resulting from 
several sed commands using context addressing: 

lanl 
lan.*anl 
I"anl 
1.1 
1\.1 

matches lines 1,3, and 4 
matches line 1 
matches no lines 
matches all lines 
matches line 5 

I r * an I matches lines 3 and 4 
I \ (an \) . *\ II matches line 1 

4. sed editing commands 
In the·following summary, line-spec indicates a single line number or a 
context address. line}, line2 indicates a range of addresses from line} 
to line2. If you don't specify an address, the commands are applied to 

Using sed 6-9 



all lines in the file (unless otherwise noted). 

4.1 Line-oriented commands 
The commands in this section apply to the entire line (or lines) 
currently stored in the pattern space. 

Command 

[line1[, line2]]d 

[line1[, line2]]n 

[line-spec] a \ <CR>text 

6-10 

Description 

(delete.) The d command deletes from the 
file (does not write to the output) those lines 
matched by its addresses. It also has the 
side effect that no further commands are 
attempted on the corpse of a deleted line. 
As soon as the d command is executed, a 
new line is read from the input, and the list 
of editing commands is restarted from the 
beginning on the new line. 

(next.) The n command reads the next line 
from the input, replacing the current line and 
incrementing the intemalline counter. The 
current line is written to standard output. 
The list of editing commands continues 
following the n command. 

(append.) The a command causes the text 
argument to be written to the output after the 
line matched by its address. 
The a command is inherently multiline; a 
must appear at the end of a line, and text 
may contain any number of lines. To 
preserve the one-command-to-a-line fiction, 
interior newline characters must be hidden 
by a backslash character (\) immediately 
preceding the newline character. 

A/UX Text Editing Tools 



Command 

[line-spec] i \ <CR>text 

Using sed 

Description 

The text is terminated by the first newline 
character not immediately preceded by a 
backslash. Once an a command is 
successfully executed, text will be written to 
the output regardless of what later 
commands do to the line that triggered it. 
Even if that line is deleted, text will still be 
written to the output. The text is not 
scanned for address matches, and no editing 
commands are attempted on it. The a 
command does not cause a change in the 
line number counter. 

(insert.) The i command causes the text 
argument to be written to the output before 
the line matched by its address. 
The i command is inherently multiline; i 
must appear at the end of a line, and text 
may contain any number of lines. To 
preserve the one-command-to-a-line fiction, 
interior newline characters must be hidden 
by a backslash character (\) immediately 
preceding the newline character. The text is 
terminated by the first newline character not 
immediately preceded by a backslash. 
Once an i command is successfully 
executed, text will be written to the output 
regardless of what later commands do to the 
line that triggered it. Even if that line is 
deleted, text will still be written to the 
output. The text is not scanned for address 
matches, and no editing commands are 
attempted on it. The i command does not 
cause a change in the line number counter. 

6-11 



Command Description 

[line1 [, line2]]c \ <CR>text (change.) The c command deletes lines 
selected by its addresses and replaces them 
with the lines in the text argument. 
Like a and it c must be followed by a 
newline character hidden by a backslash; 
interior newline characters in text must be 
hidden by backslashes. The c command 
may have two addresses and therefore select 
a range of lines. If it does t a11lines in the 
range are deleted t but only one copy of text 
is written to the outputt not one copy per 
line deleted. 
As with a and it text is not scanned for 
address matches t and no editing commands 
are attempted on it. It does not change the 
line number counter. After a line has been 
deleted by a c command t no further 
commands are attempted on the corpse. 
If text is appended after a line by a or r 
commands and the line is subsequently 
changedt the text inserted by the c 
command will be placed before the text of 
the a or r commands. (The r command is 
described later.) 

Leading blanks and tabs disappear from text inserted in the output by 
the at it and c commands. To get leading blanks and tabs into the 
outputt precede the first desired blank or tab by a backslash. The 
backslash will not appear in the output. 

The following example shows line-oriented sed commands used on 
the standard input example shown in Section 3.3. 

If the file script contains the lines 

6-12 AlUX Text Editing Tools 



n 

a\ 
XXXX 
d 

the command 

sed -f script poem > output.file 

produces an output.file that contains the following lines: 

In Xanadu did Kubla Khan 
XXXX 
Where Alph, the sacred river, ran 
XXXX 
Down to a sunless sea. 

4.2 The substitute command 
The substitute command uses the following syntax: 

[linel[, line2]]s pattern replacementfiags 

The s command replaces the part of a line selected by pattern with 
replacement. It can be read "substitute for pattern, replacement." 
The command arguments are described as follows: 

pattern 
The pattern argument is a regular expression, like the patterns in 
context addresses. The only difference between pattern and a 
context address is that the context address must be delimited by 
slash (/) characters; pattern may be delimited by any character 
other than space or newline. By default, only the first string 
matched by pattern is replaced unless the g flag (below) is 
invoked. 

replacement 
The replacement argument begins immediately after the second 
delimiting character of pattern and must be followed 
immediately by another instance of the delimiting character. 
Thus, there are exactly three instances of the delimiting 
character. The replacement is not a pattern, and the characters 
that are special in patterns do not have special meaning in 
replacement. Instead, the following other characters are special: 

Using sed 6-13 



flags 

6-14 

& is replaced by the string matched by pattern. 

\d is replaced by substring d (d is a single digit), matched by 
parts of pattern, and enclosed in \ ( and \). If nested 
substrings occur in pattern, substring d is determined by 
counting opening delimiters (\ O. As in patterns, special 
characters may be made literal characters by preceding 
them with a backslash (\). 

The flags argument may contain the following: 

g (global.) Substitute replacement for all nonoverlapping 
instances of pattern in the line. After a successful 
substitution, the scan for the next instance of pattern 
begins just after the end of the inserted characters. 
Characters put into the line from replacement are not 
rescanned. 

p (print.) Print the line if a successful replacement was 

w file 

done. The p flag causes the line to be written to the output 
if a substitution was actually made by the s command. If 
several s commands, each followed by a p flag, 
successfully substitute in the same input line, multiple 
copies of the line will be written to the output, one for each 
successful substitution. Note that unless the -n flag option 
is used, each line will be echoed automatically to standard 
output. In addition, each line affected by the p flag will be 
echoed as well, causing multiple copies to be written to 
standard output. 

(write to file.) Write the line to a file if a successful 
replacement was done. A single space must separate w 
and file. The w flag causes lines that are actually 
substituted by the s command to be written to a file named 
by file. Iffile exists before sed is run, it is overwritten; if 
not, it is created. The possibilities of multiple, somewhat 
different copies of one input line being written are the 

AlUX Text Editing Tools 



same as for p. A maximum of ten different filenames may 
be mentioned after w flags and w commands. 

The command 

cat poem I sed -e 's/to/by/w changes' 

produces an output file named changes that contains only these lines 
that were changed: 

Through caverns measureless by man 
Down by a sunless sea. 

If the no-copy option is in effect (using the -n option on the sed 
command line), then the same effect can be achieved with the 
command 

sed -n -e 's/to/by/p' poem> changes 

If your command file script contains the line 

s/[\.,;?:]/*P&*/gp 

then the command 

sed -n -f script poem 

produces the output 

A stately pleasure dome decree*P:* 
Where Alph*P,* the sacred river*P,* ran 
Down to a sunless sea*P.* 

If the g flag is not used, the substitution takes effect only on the first 
instance of the pattern in a given line. For example, the command 

sed -n -e '/X/s/an/AN/p' poem 

causes the substitution to occur only on the first instance of an 

In XANadu did Kubla Khan 

Using sed 6-15 



4.3 Input/output commands 

Command 

[line] [, line2]]p 

[line] [, line2]]w file 

[line-spec] r file 

6-16 

Description 

(print.) The p command writes addressed 
lines to the standard output file. They are 
written at the time the p command is 
encountered, regardless of what succeeding 
editing commands may do to the lines. 

(write to file.) The w command writes 
addressed lines to the file named by file. 
Exactly one space must separate the wand 
file. If the file previously existed, it is 
overwritten; if not, it is created. 
The lines are written exactly as they exist 
when the write command is encountered for 
each line, regardless of what subsequent 
editing commands may do to them. A 
maximum of ten different files may be 
mentioned in write commands and w flags 
after s commands combined. 

(read from file.) The r command reads the 
contents of file and appends them after the 
line matched by the address. Exactly one 
space must separate the rand file. The file 
is read and appended regardless of what 
subsequent editing commands may do to the 
line that matched its address. 
If r and a commands are executed on the 
same line, the text from a commands and r 
commands is written to the output in the 
order that the commands are executed. If a 
file mentioned by an r command cannot be 
opened, it is considered a null file, not an 
error, and no diagnostic is given. 

NUX Text Editing Tools 



Note: Since there is a limit to the number of files that can be 
opened simultaneously, care should be taken that no more than 
ten files be mentioned in w commands or flags. That number is 
reduced by one if any r commands are present (only one read 
file may be opened at a time). 

If the file note 1 has the following contents, 

Note: Kubla Khan (more properly Kublai 'Khan; 
1216-1294) was the grandson and most eminent 
successor of Genghiz (Chingiz) Khan and founder 
of the Mongol dynasty in China. 

then the command 

sed -e '/Kubla/r note1' poem 

produces 

In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 
1216-1294) was the grandson and most eminent 
successor of Genghiz (Chingiz) Khan and founder 
of the Mongol dynasty in China. 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

4.4 Multiple Input line commands 
The following three commands, all spelled with uppercase letters, deal 
with pattern spaces containing embedded newline characters. They are 
intended principally to provide pattern matches across lines in the 
input. The P and D commands are equivalent to their lowercase 
counterparts if there are no embedded newline characters in the pattern 
space. 

Using sed 6-17 



Command 

[linel[, line2]]N 

[linel[, line2]]D 

[linel[, line2]]P 

Description 

Append the next input line to the current 
line in the pattern space. The two input 
lines are separated by an embedded newline 
character. Pattern matches may extend 
across embedded newline characters. 

Delete first part of the pattern space. Delete 
up to, and including, the first newline 
character in the current pattern space. If the 
pattern space becomes empty (the only 
newline character was the terminal newline 
character), read another line from the input. 
In any case, begin the list of editing 
commands again from the beginning. 

Print the first part of the pattern space. Print 
up to, and including, the first newline 
character in the pattern space. 

4.5 Hold and get commands 
The following commands save and retrieve part of the input for 
possible later use. 

Command 

[linel[, line2]]h 

[linel[, line2]]H 

6-18 

Description 

Hold pattern space. The h command copies 
the contents of the pattern space into a hold 
area, destroying the previous contents of the 
hold area. 

Hold pattern space. The H command 
appends contents of the pattern space to 
contents of the hold area. Former and new 
contents are separated by a newline 
character. 

AlUX Text Editing Tools 



Command 

[linel[, line2]]g 

[linel [, line2]]G 

[linel[, line2]]x 

Description 

Get contents of hold area. The g command 
copies contents of the hold area into the 
pattern space, destroying previous contents. 

Get contents of hold area. The G command 
appends contents of the hold area to 
contents of the pattern space. Former and 
new contents are separated by a newline 
character. 

Exchange. The x command interchanges 
contents of the pattern space and the hold 
area. 

For example, if your sed command file contains the commands 

lh 
ls/ did.*// 
Ix 
G 

s/\n/ :/ 

when applied to the file poem, this produces 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

4.6 Control-flow commands 
These commands do no editing on the input lines but control the 
application of commands to the lines selected by the address part. 

USing sed 6-19 



Command 

[line1[, line2]] ! 

[line1 [, line2]] { 

: label 

[line1 [, line2]]b label 

6-20 

Description 

(don't.) The ! command causes the next 
command (written on the same line) to be 
applied to those input lines not selected by 
the address part. 

(grouping.) The { command causes the next 
set of commands to be applied (or not 
applied) as a block to the input lines selected 
by the addresses of the grouping command. 
The first of the commands under control of 
the grouping may appear on the same line as 
the { or on the next line. The group of 
commands is terminated by a matching } 
standing on a line by itself. Groups can be 
nested. 

(place label.) The : command marks a 
place in the list of editing commands that 
may be referred to by b and t commands. 
The label argument may be any sequence of 
eight or fewer characters. If two different 
colon commands have identical labels, a 
compile time diagnostic will be generated 
and no execution attempted. 

(branch to label.) The b command causes 
the sequence of editing commands being 
applied to the current input line to be 
restarted immediately after the place where 
a colon command with the same label was 
encountered. The space between the b 
command and the label is optional. If no 
colon command with the same label can be 
found after all editing commands have been 
compiled, a compile time diagnostic is 
produced and no execution is attempted. 

NUX Text Editing Tools 



Command 

[linel[, line2]]tlabel 

Description 

A b command with no label is a branch to 
the end of the list of editing commands. 
Whatever should be done with the current 
input line is done, and another input line is 
read. The list of editing commands is 
restarted from the beginning on the new 
line. 

(test substitutions.) The t command tests 
whether any successful substitutions have 
been made on the current input line; if so, it 
branches to label; if not, it does nothing. 
The flag which indicates that a successful 
substitution has been executed is reset by 
reading a new input line or by executing a t 
command. 

4.7 Miscellaneous commands 

Command 

[line-spec] = 

[line-spec]q 

Using sed 

Description 

The = command writes the line number of 
the line matched by its address to the 
standard output. 

The q command causes the current line to 
be written to the output (if it should be), any 
appended or read text to be written, and 
execution to be terminated. 

6-21 



10 b? 


