
A/UX® Toolbox: Macintosh® ROM Interface

.®
A/UX® Toolbox: Macintosh® ROM Interface

030-0787-A

• APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.
Printed in the United States of
America.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the "keyboard" logo (Option
Shift-K) for commercial purposes
without the prior written consent of
Apple may constitute trademark
infringement and unfair competition
in violation of federal and state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, AppleLink,
AppleShare, AppleTalk, A!UX,
LaserWriter, LocalTalk, Macintosh,
MacTCP, MPW, MultiFinder and
SANE are registered trademarks of
Apple Computer, Inc.

APDA, Finder, MacX, QuickDraw,
ResEdit and SuperDrive are
trademarks of Apple Computer, Inc.

Ethernet is a registered trademark of
Xerox Corporation.

ITC Garamond and ITC Zapf Dingbats
are registered trademarks of
International Typeface Corporation.

Microsoft is a registered trademark of
¥icrosoft Corporation.

NuBus is a trademark of Texas
Instruments.

030-0787-A

POSTSCRIPT is a registered trademark,
and Illustrator is a trademark of Adobe
Systems, Incorporated.

UNIX is a registered trademark of
AT&T.

Simultaneously published in the
United States and Canada.

LIMITED WARRAN1Y ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you return
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different; check with your
authorized Apple dealer.

All IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINE1Y
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAn PURCHASE OF
TIDS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABIllTY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
"AS IS," AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
liABlE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTII ABOVE ARE EXCLUSIVE
AND IN LIEU OF All OTHERS, ORAL
OR WRfITEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

030-0787-A

Contents

Figures and tables / xiii

Preface I xv
What's in this guide / xvi
What you need to know / xvii
Conventions used in this guide / xvii

Keys and key combinations / xviii
Terminology / xviii
The Courier font / xix

Font styles / xx
A!UX command syntax / xx
Command reference notation / xxi
Cross-referencing / xxii

1 About the A/UX Toolbox I 1-1
Overview / 1-2
Configuration requirements: none / 1-3
Contents of the A!UX Toolbox / 1-3
Standards compliance of A!UX Release 2.0 / 1-5
New features in A!UX Release 2.0 / 1-5

A/UX Finder user interface / 1-6
Compatibility requirements / 1-6
Increased manager support / 1-7
Additional enhanced support / 1-8
Ease-of-use extensions / 1-9
Connectivity support / 1-9
International character support / 1-10

How the A!UX Toolbox works / 1-11

V

030-0787-A

2 Using the Alux Toolbox / 2-1

Application development environments / 2-2
Your application in the A!UX Finder environment / 2-4

Using the ui_setselect call / 2-5
Porting a Macintosh application to A!UX / 2-6
Developing an A!UX Toolbox application / 2-6

Developing the source code / 2-7
Developing the resource file / 2-10

Building and running the sample programs / 2-11

3 Alux Toolbox Utilities and Extensions / 3-1
Using the utilities / 3-2
fcnvt / 3-3
rez / 3-6
derez / 3-9
A!UX Toolbox variables / 3-14
Additional traps and routines / 3-14

AUXDispatch trap / 3-15
A!UX Toolbox environment variables / 3-17
Making A!UX system calls / 3-18
Using select / 3-20
The MacsBug debugger under A!UX / 3-21

4 Compatibility Checklist / 4-1
Differences in execution environments / 4-2

32-bit address violations / 4-2
Privileged microprocessor instructions / 4-4
Direct hardware access / 4-5
Newline characters / 4-7
File Manager / 4-8
Memory Manager / 4-8

Differences in C compilers / 4-9
Differences in language conventions / 4-10

vi A!UX Toolbox: Macintosh ROM Interface
030-0787-A

5 Inside AlUX Macintosh / 5-1
About the Macintosh interface library / 5-2
32-Bit QuickDraw with Color QuickDraw / 5-4
Apple Desktop Bus / 5-5
AppleTalk Manager / 5-5
Binary-Decimal Conversion Package / 5-5
Color Manager / 5-6
Color Picker Package / 5-6
Control Manager / 5-6
Deferred Task Manager / 5-7
Desk Manager / 5-7
Device Manager / 5-7
Dialog Manager / 5-8
Disk Driver / 5-8
Disk Initialization Package / 5-9
Event Manager, Operating System / 5-9
Event Manager, Toolbox / 5-10
File Manager / 5-11
Floating-Point Arithmetic and Transcendental
Functions Packages / 5-11
Font Manager / 5-12
Gestalt facility / 5-13
International Utilities Package / 5-13
List Manager Package / 5-14
Memory Manager / 5-14
Menu Manager / 5-14
Notification Manager / 5-14
Package Manager / 5-15
Palette Manager / 5-15
Printing Manager / 5-15
Resource Manager / 5-16
Scrap Manager / 5-17
Script Manager / 5-18
SCSI Manager / 5-18

Contents vii
030-07S7-A

Segment Loader / 5-18
Finder information / 5-19
Segment Loader routines / 5-20
The jump table / 5-20
Summary of the Segment Loader / 5-20

Serial Driver / 5-20
Shutdown Manager / 5-22
Slot Manager / 5-22
Sound Manager / 5-25

Support details / 5-26
The raw sound driver / 5-27

Standard File Package / 5-29
System Error Handler / 5-29
TextEdit / 5-29
Time Manager / 5-30
Utilities, Operating System / 5-30

Date and time operations / 5-31
Miscellaneous utilities / 5-31

Utilities, Toolbox / 5-31
Vertical Retrace Manager / 5-32
Window Manager / 5-32

6 File Systems and File Formats / 6-1
File systems / 6-2

Overall file organization / 6-2
Pathnames and filenames / 6-3
Access permissions / 6-4
Extended file attributes / 6-6
Text files / 6-7
Automatic conversion / 6-8
Mounting and unmounting floppy disks / 6-9

Storing files in the Macintosh OS and in A!UX / 6-10
AppleSingle and AppleDouble format internals / 6-15

AppleSingle format / 6-16

viii A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

AppleDouble format / 6-19
Filename conventions / 6-20

AppleSingle format / 6-20
AppleDouble format / 6-20

A Additional Reading / A-I
Information sources / A-2
Required references / A-3
Supplementary references / A-4

B Toolbox Contents / B-1

C Implementation Notes / C-l
The A/UX Finder and Toolbox Applications / C-2
Running an A/UX Toolbox application / C-2

User-interface device driver / C-3
Initialization routine / C-3
A-line traps / C-4
"Not in ROM" routines / C-6
Macintosh global variables / C-6
File type and creator / C-6

Converting between C and Pascal conventions / C-7
Storing strings / C-8
Ordering and storing parameters / C-8
Passing QuickDraw point values / C-9
Returning function results / C-9
Register conventions / C-10

D Low-Memory Global Variables / D-l

Contents ix
030-0787-A

E Resource CompHer and Decompller / E-l
About the resource compiler and decompiler / E-2

Standard type declaration files / E-3
Using rez and derez / E-3

Structure of a resource description file / E-5
Sample resource description file / E-6

Resource description statements / E-7
Syntax notation / E-7
include-include resources from another file / E-9
read-read data as a resource / E-11
data-specify raw data / E-11
t ype-declare resource type / E-12

Syntax / E-12
Description / E-12
Data-type specifications / E-13
Fill and align types / E-18
Array type / E-19
Switch type / E-21
Sample type statement / E-22
Symbol definitions / E-22

delete-delete a resource / E-23
change-change a resource's vital information / E-24
resource-specify resource data / E-25

Syntax / E-25
Description / E-25
Data statements / E-26
Sample resource definition / E-27

Labels / E-29
Syntax / E-29
Description / E-29
Built-in functions that access resource data / E-30
Declaring labels within arrays / E-31
Label limitations / E-32
Using labels: two examples / E-33

x AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Preprocessor directives / E-37
Variable definitions / E-37
incl ude directives / E-38
If-then-else processing / E-38
Print directive / E-39

Resource description syntax / E-40
Numbers and literals / E-40
Expressions / E-42
Variables and functions / E-43
Strings / E-46

F C Interface Library / F-l
Interface library files / F-2
Structures and calls by library / F-5

32-Bit QuickDraw with Color QuickDraw / F-5
Color Picker / F-14
Common Type Definitions / F-14
Control Manager / F-15
Definitions for AUXDispatch / F-17
Definitions for ROM / F-17
Desk Manager / F-17
Device Manager / F-18
Dialog Manager / F-19
Disk Driver / F-21
Disk Initialization Package / F-21
Event Manager, Operating System / F-22
Event Manager, Toolbox / F-22
File Manager / F-23
Font Manager / F-28
Gestalt Facility / F-29
List Manager Package / F-29
List of Macintosh Traps / F-30
Low-memory Equates / F-31
Memory Manager / F-31

Contents xi
030-0787-A

Menu Manager / F-33
Notification Manager / F-35
Package Manager / F-35
Palette Manager / F-37
Printing Manager / F-38
Print Traps / F-39
Resource Manager / F-41
Scrap Manager / F-44
Script Manager / F-44
Segment Loader / F-46
Serial Driver / F-47
Shutdown Manager / F-48
Slot Manager / F-48
Sound Manager / F-50
String Conversion, Pascal-to-and-from C / F-50
System Error Handler / F-51
TextEdit / F-51
Time Manager / F-53
Utilities, Operating System / F-53
Utilities, Toolbox / F-55
Vertical Retrace Manager / F-57
Video Driver / F-57
Window Manager / F-58

Calls in alphabetic order / F-61

Index / IN-I

xii AlUX Toolbox: Macintosh ROM Interface
030-07S7-A

Figures and tables

1 About the AlUX Toolbox / 1-1

Figure 1-1 Interactions among an application, the A/UX Toolbox,
and the ROM code / 1-11

2 Using the AlUX Toolbox / 2-1

Figure 2-1 Application development and execution environments / 2-2
Figure 2-2 Incorporating the A/UX Toolbox

into code file development / 2-9
Figure 2-3 Developing a resource file under A/UX / 2-10

4 Compatibility Checklist / 4-1

Table 4-1 Privileged microprocessor instructions
with the A/UX Toolbox / 4-4

5 Inside AlUX Macintosh / 5-1

Table 5-1 The status of User Interface Toolbox and Macintosh OS
libraries in the A/UX Toolbox / 5-2

6 File Systems and File Formats / 6-1
Figure 6-1 Elements of a file in the native Macintosh

OS environment / 6-10
Figure 6-2 Typical contents of an AppleSingle file / 6-12
Figure 6-3 Typical contents of a pair of AppleDouble files / 6-13
Figure 6-4 Elements of Macintosh data and resource files

in simple A/UX format / 6-14
Figure 6-5 Formats for File Info entries / 6-18

xiii
030-07S7-A

Table 6-1

Table 6-2

Table 6-3
Table 6-4

A/UX permissions mapped to Macintosh as
permissions / 6-5
Macintosh as permissions mapped to A/UX
permissions / 6-6
Automatic conversion of Macintosh files / 6-8
AppleSingle file header / 6-16

C Implementation Notes / C-1

Figure C-1 A-line trap handling in A/UX / C-5

D Low-Memory Global Variables / D-1

Table D-1 General global variables / D-2
Table D-2 Window Manager global variables / D-7
Table D-3 TextEdit global variables / D-8
Table D-4 Resource Manager global variables / D-8

E Resource Compiler and Decompiler / E-1

Figure E-1 rez and derez / E-2
Figure E-2 Creating a resource file / E-4
Figure E-3 Padding of literals / E-42
Figure E-4 Internal representation of a Pascal string / E-47

Table E-1
Table E-2
Table E-3
Table E-4

Numeric constants / E-41
Resource-description expression operators / E-43
Resource compiler escape sequences / E-48
Numeric escape sequences / E-48

F C Interface library / F-1

Table F-1 Interface library files / F-4

xiv AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Preface

This guide describes the A/UX® Toolbox, which gives you access from
within A/UX to the User Interface Toolbox that is part of the Apple®
Macintosh® computer. This guide also provides compatibility guidelines
for programs intended to run under both the A/UX operating system and
the standard Macintosh Operating System (OS),

XV
030-0787-A

What's in this guide

This preface describes the guide and the conventions used in it. Following the Preface,
here's what you'll find inside:

• Chapter 1, "About the A/UX Toolbox," gives an overview of the A/UX Toolbox.

• Chapter 2, "Using the A/UX Toolbox," explains the role of the A/UX Toolbox in program
development and execution and describes the sample programs provided with the
A/UX Toolbox.

• Chapter 3, "A/UX Toolbox Utilities and Extensions," describes the utilities and special
features in the A/UX Toolbox that support program development.

• Chapter 4, "Compatibility Checklist," summarizes the compatibility guidelines you must
follow to write code that runs under both the Macintosh as and A/UX.

• Chapter 5, "Inside A/UX Macintosh," describes in detail the differences between the
standard libraries used in the User Interface Toolbox and Macintosh as and the libraries
provided with the A/UX Toolbox.

• Chapter 6, "File Systems and File Formats," describes the differences of file systems in
A/UX and in the Macintosh as, and how file-system functions are mapped between the two
systems. In addition, the chapter describes the formats used for storing Macintosh files in
A/UX, and the results of automatic conversion of files transferred between the
two systems.

• Appendix A, "Additional Reading," lists books and other information sources that
are helpful.

• Appendix B, "Toolbox Contents," lists all of the files shipped with the A/UX Toolbox and
their functions.

• Appendix C, "Implementation Notes," provides background information about
implementation and compatibility issues.

• Appendix D, "Low-Memory Global Variables," lists the Macintosh low-memory global
variables that are supported in A/UX.

• Appendix E, "Resource Compiler and Decompiler," describes the resource development
tools ported to the A!UX Toolbox from the Macintosh Programmer's Workshop (MPW™).

• Appendix F, "C Interface Library," lists the functions, types, and parameters used by the
A/UX Toolbox libraries.

xvi A!UX Toolbox: Macintosh ROM Interface
030-0787-A

What you need to know

You need this guide if you are porting a Macintosh application to A/UX or developing a
Macintosh-like application under A/UX. This guide assumes:

• You are an experienced C programmer. If not, see the standard C reference manuals listed in
Appendix A, "Additional Reading."

• You are familiar with the standard Macintosh User Interface Toolbox and Operating
System. If not, see Inside Macintosh, Volumes I through V, and the Macintosh programming
guides listed in Appendix A, "Additional Reading."

• You are familiar with the A/UX development environment. If not, see A!UX Essentials and
Road Map to A!UX for an introduction to the A/UX system and the manuals that describe it.

The technical terms used in this guide are defined in the glossaries in Inside Macintosh and
A!UX Essentials.

Conventions used in this guide

A/UX guides follow specific conventions. Words that require special emphasis .appear in
specific fonts or font styles. The following sections describe the conventions used in all
A/UX guides.

Preface xvii
030-07S7-A

Keys and key combinations

Certain keys on the keyboard have special names. These modifier and character keys, often
used in combination with other keys, perform various functions. In this guide, the names of
these keys are in Initial Capital letters followed by SMALL CAPITAL letters.

The key names are

CAPS LOCK
COMMAND
CONTROL

ESCAPE
LEFT ARROW
RETURN

DOWN ARROW RIGHT ARROW

For example, suppose you enter
Applee

instead of
Apple

SHIFT
TAB
UpARROw

To erase the additional e, you would position the cursor (or insertion point) to the right of the
word and press the DELETE key once.

Sometimes you will see two or more names joined by hyphens. The hyphens indicate that you
use two or more keys together to perform a specific function. For example,

Press COMMAND-K

means "Hold down the COMMAND key and press the K key."

Terminology

In A/UX guides, a certain term can represent a specific set of actions. For example, the word
enter indicates that you type an entry and press the RETURN key. The instruction

Enter ls

means "Type ls and press the RETURN key."

xviii A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Here is a list of common terms and the corresponding actions you take.

Tenn

Choose

Click
Drag

Enter
Press

Select
Type

Action

Activate a command in a menu. To choose a command from a pull-down
menu, click once on the menu title while holding down the mouse button,
and drag down until the command is highlighted. Then release the
mouse button.
Press and then immediately release the mouse button.
Position the pointer on an object, then press and hold down the mouse
button while moving the mouse. Release the mouse button when the
object reaches the desired position on the screen.
Type the letter or letters and press the RETURN key.
Type a single key without pressing the RETURN key. Or position the
pointer on an object and hold down the mouse button.
Position the pointer on a selectable object and click the mouse button.
Type an entry without pressing the RETURN key.

The Courier font

Throughout AlUX guides, words that you see on the screen or that you must type exactly as
shown are in the Courier font.

For example, suppose you see the instruction

Type date on the command line and press RETURN.

The word date is in the Courier font to indicate that you must type it.

Suppose you then read this explanation:

Once you type date and press RETURN, you'll see something like this:
Tues Oct 17 17:04:00 PDT 1989

In this case, Courier is used to represent exactly what appears on the screen.

All AlUX manual page names are also shown in the Courier font. For example, the entry ls(1)

indicates that 1 s is the name of a manual page.

Preface xix
030-0787-A

Font styles

Words that you must replace with a value appropriate to a particular set of circumstances
appear in italics. For example, if you see
ca t filename

replace the italicized word with the name of the file you wish to view. If you want to view the
contents of a file named E 1 vis, type the word E 1 vis in place of filename. In other words,
enter
cat Elvis

New terms appear in boldface where they are defined.

Alux command syntax

A/UX commands follow a specific command syntax. A typical A/UX command has this form:
command (flag-option] [argumenrl ...

The following table outlines the elements of an A/UX command.

Element

command

flag-option

argument

[]

Description

The command name.
One or more optional arguments that modify the command. Most flag
options have the form [-opt ...], where opt is a letter representing an option.
Most commands have one or more flag options.
A modification or specification of a command, usually a filename or symbols
representing one or more filenames.
Brackets used to enclose an optional item-that is, an item that is not
essential for execution of the command.
Ellipses used to indicate an argument that can be repeated any number
of times.

xx A!UX Toolbox: Macintosh ROM Interface
030-0787-A

For example, the we command is used to count lines, words, and characters in a file.
Here is the full syntax for that command, including all possible flag options and the optional
argument name.
we [-c1 [-1] [-w] [name .. .]

Thus, you can enter
we -w IPriseilla

to count all of the words in the file IP r iseilla, where we is the name of the command, -w is
the flag option that instructs the command to count all of the words in the file, and the
optional argument IPriseilla is the file to be searched.

Command reference notation

A/UX Command Reference, A/UX Programmer's Reference, and A/UX System Administrator's
Reference contain references for commands, programs, and other related information. Material
is organized within these references by section numbers. The standard AlUX cross-reference
notation is

cmd (sect)

where cmd is the name of the command, file, or other facility; sect is the section number where
the entry resides.

• Items followed by section numbers (IM), (7), or (8) are listed in
A/UX System Administrator's Reference.

• Items followed by section numbers (1), (Ie), (IG), (IN), and (6) are listed in
A/UX Command Reference.

• Items followed by section numbers (2), (3), (4), and (5) are listed in
A/UX Programmer's Reference.

For example,
eat(1)

refers to the command cat, which is described in Section 1 of A/UX Command Reference.

Preface xxi
030-0787-A

References can be also called up on the screen. Use the man command to display pages from
reference manuals, known as manual pages, directly on the screen. For example, enter
the command
man cat

to display the manual page for the cat command, including its description, syntax, options,
and other pertinent information. To exit, press the Space bar until you see a shell prompt, or
type q at any time to return immediately to your shell prompt.

Cross-referencing

An A/UX guide often refers to information discussed in another guide in the suite. The format
for this type of cross-reference is "Chapter Title," Name of Guide.

For a complete description of A/UX guides, see Road Map to A/ux. It contains descriptions of
each A/UX guide, part numbers, and ordering information for all the guides in the A/UX
documentation suite.

xxii A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Chapter 1 About the AlUX Toolbox

The AlUX® Toolbox is a library that enables a program running under AlUX
to make calls to the Macintosh® User Interface Toolbox routines and to
native Macintosh Operating System (aS) routines. With the AiUX
Toolbox, you can take advantage of the standard Macintosh support
tools to write AlUX programs that look and act like Macintosh programs.

For a detailed description of the User Interface Toolbox, see
Inside Macintosh, Volumes I, IV, and V. For a detailed description of the
Macintosh as, see Inside Macintosh, Volumes II, IV, and V.
You must understand how to write a Macintosh application program to use
this manual and the AlUX Toolbox.

This chapter gives a general overview of the functions of the
AlUX Toolbox and specific information about the AlUX Toolbox in
AlUX Release 2.0.

1-1
030-0787-A

Overview

The A!UX Toolbox bridges the Macintosh and A!UX environments and gives you two kinds of
code compatibility:

• You can execute Macintosh binary code (applications compiled in the Macintosh
environment) under A!UX, within the current limitations of the A!UX Toolbox.
(As the section "New Features in Release 2.0" makes clear, the new capabilities of the
A!UX Toolbox remove many prior limitations.)

• You can write common source code that can be separately built (compiled and linked) into
executable code for both environments.

Both the User Interface Toolbox and the Macintosh OS are built into read-only memory
(ROM) on the Macintosh. Because of differences between A!UX and the Macintosh as, not all
Macintosh ROM routines are available through the A!UX Toolbox. Release 2.0 has increased
support for Macintosh ROM routines. Programs that are intended to run in both environments
can use only the ROM routines common to both. Any Macintosh application that runs under
the Macintosh OS MultiFinder™, does not do direct input and output operations, and does
not call routines missing from the A!UX Toolbox, can run under A!UX Release 2.0. Chapter 5,
"Inside NUX Macintosh," gives details about all Macintosh managers and their support under
the A!UX Toolbox; Table 5-1 in that chapter summarizes manager support.

The A!UX software includes the standard desk accessories that come with Macintosh system
software for the Macintosh SE/30 and Macintosh II family of computers. The Chooser and the
Control Panel now support a serial printer.

A!UX Release 2.0 also includes support for AppleTalk® communications software, running on
both LocalTalk™ and Ethernet hardware.

The A!UX Toolbox supports some device drivers, but not those that manipulate
hardware directly.

1-2 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Configuration requirements: none

The A/UX Toolbox is included with the A/UX operating system. To use the A/UX Toolbox, you
need only the standard A/UX distribution.

Prior to Release 2.0, if you were developing an A/UX Toolbox application using the adb or sdb

debuggers, you needed a terminal that could communicate with your computer over either a
serial line or a network. This terminal is no longer necessary when using the MacsBug debugger,
which now is available in a version for use with A/UX. The adb and sdb debuggers require use
of a terminal.

Contents of the A!UX Toolbox

The following list summarizes what types of files are included in the A!UX Toolbox, the
locations of these files, and where you can find more information about some of them.

The /mae directory contains Macintosh-specific material.

• /mae/sys

This directory contains the system folders for startup and login. The System file provided
with Release 2.0 of A/UX is almost identical in functionality to the System file provided
with Release 6.0.5 of the Macintosh system software.

• /mae/bin

This directory contains executables, including a few utilities for use when developing and
running applications with the AlUX Toolbox. See Chapter 3, "AlUX Toolbox Utilities and
Extensions," for descriptions of fenvt, sette, rez, and derez.

• /mae/sre

This directory contains source code for sample applications, including sample, qdsamp,

and the Sound Manager demo, sndDemo. The source material includes associated
makefiles, which demonstrate how to compile and link an application, and includes
Macintosh system resource files for use with the sample programs. For additional
information, see Chapter 2, "Using the AlUX Toolbox."

Chapter 1 About the A/UX Toolbox 1-3
030-0787-A

• /rnae/ lib
This directory contains libraries in three subdirectories. The rineludes directory
contains resource file material. The sessiontypes directory contains session-type
information used at login. The erndo directory contains dialog scripts used to implement
the Commando functions for UNIX® commands.

Outside the / rna e directory are certain other files that should be mentioned:

• /lib
This directory contains library routines used in the implementation of the A/UX Toolbox or
in UNIX program development. An example of the first kind is rnaeert 0 .0, and examples
of the second kind are in libs. a, libposix. a, and terrneap. a.

• /usr/inelude/rnae
The C interface files that define the constants, types, and functions used by the
A/UX Toolbox libraries are in this directory. For additional information, see Appendix F,
"C Interface Library."

• /shlib
This directory contains the shared libraries 1 ib e _ sand 1 ibrna e _ s. Shared libraries are
discussed in AlUX Programming Languages and Tools, Volume 1.

Appendix B, "Toolbox Contents," lists the full pathnames of all files pertaining to the
A/UX Toolbox and describes briefly the function of each file.

1-4 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Standards compliance of A!UX Release 2.0

AlUX Release 2.0 is in compliance with the following standards:

• AT&T SVID, Issue 2-AT&T's System V Interface Definition

• IEEE POSIX 1003.1-1988-the Institute of Electrical and Electronics Engineers' (IEEE)
Standard Portable Operating System Interface for Computer Environments (PO SIX)

• ISO 9945-1-the International Standards Organization's designation that is equivalent to
POSIX 1003.1-1988

• FIPS 151-I-the most current version of the Federal Information Processing Standard

For information about the AlUX POSIX environment and a guide to POSIX conformance, see
Programming Languages and Tools, Volume 1.

New features in A!UX Release 2.0

AlUX Release 2.0 is a major enhancement that brings together a standard UNIX operating
system and programming environment with Macintosh system capabilities, including the
standard Macintosh FinderTM user interface. Macintosh applications with extensive graphics
and sound capabilities, for example, can now run in a full UNIX environment. Macintosh
applications can run together in the AlUX Toolbox environment, and transfer information
between applications by using the clipboard, as in the Macintosh OS. For example, a user can
run a graphics application and a word-processing application, alternately developing graphics
and text and then copying graphics into the text. A user can run a CAD application and a
spreadsheet application, and copy numbers developed for the design into the spreadsheet for
use in cost calculations.

The complete features of A!UX Release 2.0 are listed in the general manuals. This section
presents the major points of interest from a developer viewpoint.

Chapter 1 About the A!UX Toolbox 1·5
030-07S7-A

AlUX Finder user interface

A/UX Release 2.0 supports the Finder user interface, and displays both Macintosh as and
A/UX applications and directories as icons. The A/UX ownership and permission status is
shown in the icon display of files and folders. Icons show as bright or dim according to the
access permissions of the user who logged on. Macintosh floppy disks are accessible from the
A/UX Finder.

Applications of both kinds can be opened by double-clicking, and files can be moved by
dragging. Files moved between the two environments, A!UX and A!UX Toolbox, are
automatically converted. Chapter 6, "File Systems and File Formats," discusses the results of
automatic conversion.

Compatibility requirements

For a Macintosh application binary to run in the A!UX Release 2.0 environment,' it must meet
certain requirements, which are briefly summarized below. For more information, see "Your
Application in the A!UX Finder Environment" in Chapter 2.

• 32-bit clean
Macintosh applications must be 32-bit clean to run in the standard A/UX Toolbox
environment. (In Release 1.1, 29-bit addressing was sufficient.)

• MultiFinder ready

A Macintosh binary that does not run in a Macintosh as multitasking CMultiFinder)
environment will not run under Release 2.0.

• No calls on unsupported commands

An application cannot call on commands that are not supported under the A!UX Toolbox.

• No direct input/output

An application cannot issue instructions for direct control of hardware.

A special 24-bit environment is also furnished that provides a 24-bit test environment for
developers converting applications to 32-bit clean and supports running older applications
that have not been converted and orphan applications that never will be. The 24-bit
environment is accessed by a special login.

1-6 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Increased manager support

The level of support for managers in Release 2.0 of the A/UX Toolbox has been generally
extended to the support provided by Release 6.0.5 of the Macintosh as. Several managers
that were not supported or were partially supported are now fully supported, and two new
managers have been added.

• 32-Bit QuickDraw™ Manager (with Color QuickDraw)

The 32-Bit QuickDraw Manager is fully supported.

• File Manager
The File Manager has increased support. It now supports Toolbox access to the various
AlUX file systems (BSD, SVFS, NFS) as well as those of the Macintosh as (HFS, MFS,
AppleShare®). Now that Release 2.0 supports the BSD file system, names on such volumes
may now be much longer than with SVFS (up to 255 characters).

• Memory Manager

The Memory Manager is fully supported.

• Notification Manager

The new Notification Manager is fully supported.

• Serial Driver

The Serial Driver is partially supported. The driver allows synchronous calls to serial I/O.
This provides support for printer and plotter devices accessed by Toolbox calls and for
applications such as AppleLink®.

• Slot Manager

The Slot Manager is partially supported.

• Sound Manager

The Sound Manager is partially supported. The Sound Manager provides continuous
sampled sound as well as note and wavetable synthesizing. The System 6.0.5 Sound
Manager does not have MIDI capability.

Chapter 1 About the A/UX Toolbox 1-7
030-0787-A

Additional enhanced support

A/UX Release 2.0 supports the following:

• MacsBug
The MacsBug debugger is supported. For information, see "The MacsBug Debugger
Under A/UX" in Chapter 3.

• Shared libraries
Shared libraries are supported. Shared libraries offer the possibility of smaller program size,
with less memory and disk space required. They also help in application maintenance, by
providing the current library version for applications calling on them. A shared version of
the standard C library is provided. For information, see "Shared Libraries" in
AlUX Programming Languages and Tools, Volume 1.

• UNIX Shell windows
UNIX Shell windows are provided in a manner similar to the older term program, but with
enhancements to the user interface. The new program is called CommandShell.

• NFS 3.2 enhancement

The NFS 3.2 enhancement to support byte-locking and special devices is provided.

• SuperDrive
The Apple® SuperDrive peripheral, which supports floppy disks with capacities of 400 or
800 kilobytes, and 1.44 megabytes, is supported. Either HFS or A/UX disk formats may
be used.

• Utility enhancements

With the tighter integration of A/UX Release 2.0 and the Macintosh as, several Release 1.1
utilities have become obsolete. The toolboxdaemon is obsolete in the new
implementation, and so are the rn f sand h f x utilities. These three are no longer furnished.
The fcnvt utility has been enhanced and now supports conversion from and to six file
formats. The resource compiler and decompiler utilities, re z and de re z, have been
enhanced. The fcnvt, rez, and derez utilities are discussed in Chapter 3, "A/UXToolbox
Utilities and Extensions," with more information on the last two in Appendix E, "Resource
Compiler and Decompiler." File formats are discussed in Chapter 6, "File Systems and
File Formats."

1-8 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Ease-of-use extensions

In addition to the standard Macintosh user interface you can use in the A/UX environment,
other extensions make A/UX easier for those not familiar with UNIX. Two of these
enhancements are:

• Macintosh-style text editor

Users may specify this TextEditor as their default editor. This editor is explained in
A/UX Essentials.

• Commando
The optional Commando facility provides a convenient help and prompt tool for using
commands. Commando is taken from MPW™, the Macintosh Programmer's Workshop, and
adapted to the A/UX environment.

Connectivity support

Release 2.0 includes the following enhancements:

• AppleTalk 2.0

Printer access by LocalTalk or EtherTalk™ is supported.

• MacTCp™

Macintosh network applications written to the Macintosh Transmission Control Protocol
(MacTCP) programmer interface are supported.

• AFP client application

The AppleTalk Filing Protocol (AFP) client application allows access to AppleShare
volumes from the A/UX Finder desktop.

• Communications Toolbox

The Communications Toolbox is supported.

Two optional implementations of the X Window system are available for Release 2.0, both
described in Getting Started with X Window System for AlUX.

Chapter 1 About the A/UX Toolbox 1-9
030-07S7-A

• XII is a standard implementation of the X Window System developed at the
Massachusetts Institute of Technology, which combines two releases of Version 11
(Releases 3 and 4). XII provides a complete development environment. Users may switch
between the XII environment and the A/UX Finder environment.

• MacX™ provides a Finder-like environment for XII, with such features as pull-down menus,
dialog boxes, and windows in which users may run X applications. MacX also implements
Version 11. Users have a range of installation choices for the user environment seen within
MacX. At one end, MacX allows the user to switch between either the standard XII look or
a Finder-like environment; at the other end, only a Finder-like environment is displayed;
and in the middle are a variety of tradeoffs, in which portions of both interfaces can be
used. Whatever MacX appearance the user chooses, the user may switch between the
MacX environment and the A/UX Finder environment.

International character support

The use of international characters is supported as follows:

• The kernel can now handle 8-bit characters and alternate character sets.

• Printing of international characters is now supported.

• International keyboards are supported by appropriate character mapping.

A caution applies to use of international characters within the A/UX environment. In brief, if
you have a Macintosh application that supports international characters, the application
should run appropriately under A/UX. However, if you attempt to process international
characters within the A/UX environment, by using UNIX utilities, you are likely to encounter
difficulties. The kernel itself is 8-bit clean, but this is not necessarily true for the hundreds of
utilities and shell scripts furnished as part of A/UX (or any UNIX system), which were
developed over the years by a many different people. Such utilities and scripts may process
characters as though implemented in 7 bits and, when processing text, may make assumptions
that do not hold true for international characters.

1-10 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

How the A!UX Toolbox works

The primary function of the A/UX Toolbox is to make available to programs running under
A/UX the standard Macintosh as support code described in Inside Macintosh. Most of the
support code consists of routines built into the Macintosh ROM, supplemented by other
routines loaded into memory as necessary.

When an A/UX Toolbox application issues a call to one of the ROM-based routines, the A/UX
Toolbox intercepts the call and, as necessary, either passes the call to the ROM routine or to an
alternate A/UX Toolbox support routine.

Figure 1-1 illustrates how the two elements of the A/UX Toolbox library interact with the
application and the ROM code. For a more detailed description of how the A/UX Toolbox
works, see Appendix C, "Implementation Notes."

• Figure 1-1 Interactions among an application, the A/UX Toolbox, and the ROM code

Standard /----r
A/UX Y------J

libraries

I Application running under A/UX I
D D

I A/UX
Macintosh : Macintosh Toolbox

as emulation I User Interface interface
I Toolbox

~----------------~

Macintosh
A-line traps

routines

Macintosh
ROM

Chapter 1 About the A/UX Toolbox 1-11
030-0787-A

Chapter 2 Using the AlUX Toolbox

This chapter describes the procedures for developing and running
programs that use the A/UX Toolbox. It includes four kinds
of information:

• an overview of how you can develop A/UX Toolbox applications
under either the Macintosh as or AlUX

• an outline of the procedures for porting a Macintosh application
toA/UX

• an outline of the procedures for developing an A!UX Toolbox
application under A!UX

• descriptions of the sample programs

For a detailed description of the utilities and special features of the
A!UX Toolbox that support program development, see Chapter 3,
"A!UX Toolbox Utilities and Extensions."

2-1
030-0787-A

Application development environments

You can develop applications under either the Macintosh as or A!UX. Through the
AlUX Toolbox, you can run applications and tools under one environment that were developed
under the other. Figure 2-1 summarizes the four possible application development and
execution paths.

• Figure 2-1 Application development and execution environments

Execution environment
Macintosh AlUX

Develop, debug, and Develop and debug
run program with program with
Macintosh tools Macintosh tools

Double-click or use
launch utility

Develop and debug Develop, debug, and
program with run program with
Aluxtools AlUXtools

Transfer source code
to Macintosh environment

Compile and link to run in
native Macintosh environment

2-2 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Choice of the development environment depends on the preference of the developer.
Generally speaking, a Macintosh application probably would be developed on the Macintosh
side and (if a well-behaved Macintosh application) could be executed under the A/UX Finder
with no changes (or perhaps a few, in certain cases). A typical case for development on the
A/UX side might be that of adapting an existing UNIX application to run on the Macintosh
side as well, and provide a Finder interface when doing so. Although such an application could
be developed in either environment, as convenient, an experienced UNIX programmer might
use the A/UX environment.

A/UX Release 2.0 supports two key phases of application development:

• Transferring a compiled and linked application from the Macintosh as to A/UX and running
it under NUX.

The section "Porting a Macintosh Application to NUX" in this chapter outlines the
procedures for transferring a binary file and running it under A/UX. Chapter 3, "A/UX
Toolbox Utilities and Extensions," describes the utilities that support these procedures.

• Developing an application under A/UX that exploits the Macintosh user interface tools.

The section "Developing an A/UX Toolbox Application" in this chapter outlines the
procedures for developing an A/UX Toolbox program. The section "Building and Running
the Demonstration Programs" in this chapter describes the sample programs and makefiles
provided as examples. Chapter 3, "A/UX Toolbox Utilities and Extensions," describes the
utilities that support these procedures.

Both Macintosh binary files transferred to A/UX and A/UX Toolbox programs developed under
A/UX must meet the A/UX Toolbox compatibility requirements. With Release 2.0, these
requirements are likely to be met by a most applications that meet the standards for current
Macintosh as applications. For details, see Chapter 4, "Compatibility Checklist."

A user can access files in either the A/UX or the A/UX Toolbox environment, and so can an
application. You can transfer files between environments either from within an application or
by dragging on the desktop. Files transferred between the two environments undergo certain
changes that are generally transparent to users, but of interest to programmers. In addition,
because of design differences pertaining to file handling in the two environments (UNIX
persmissions, Macintosh file structure, etc.), transferring a file results in automatic changes in
information relating to that file in its new environment. These topics are described in
Chapter 6, "File systems and File Formats."

Chapter 2 Using the A/UX Toolbox 2-3
030-0787-A

Your application in the A!UX Finder environment

Applications must be 32-bit clean and must be MultiFinder friendly, or at the least, MultiFinder
aware, to run under the A/UX Finder. This section discusses how to insure that an application is
A/UX Finder friendly. Programmer's Guide to MultiFinder, which is available from APDA,
provides detailed information on being Multifinder friendly. The points given here extend that
information with reference to the A/UX environment and how to be A/UX Finder friendly.

There are certain applications that cannot run under A/UX because they violate A/UX
requirements, by doing direct input/output operations, for example, or that rely on Macintosh
calls that are not supported under AlUX. Information on these matters is given elsewhere; in
particular, in Chapter 4, "Compatibility Checklist," and in Chapter 5, "Inside A/UX Macintosh."
The information that follows here is not concerned with these special requirements, but with
how, in general, an application can function well in the A/UX Finder environment.

• Use Wai tNextEvent

Please do not use GetNextEvent, which is very unfriendly to the AlUX kernel scheduler.
Use WaitNextEvent, with timeouts and mouse regions, if at all possible. This allows the
kernel scheduler to put things to sleep, improving the efficiency of CPU usage.
Wai tNextEvent also improves responsiveness to the user, because processes are
penalized for accumulated CPU time.

• Do blocking operations only if unavoidable

The ui _ set select call is helpful on this. See "Using the ui _ set select call," below,
for information.

• Set the's I Z E' resource higher

When setting the s i z e resource, allow slightly more memory than for running under the
Macintosh OS MultiFinder. Running the Macintosh OS memory management under AlUX
requires some additional overhead.

2-4 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Using the ui_setselect call

If you have an application, such as a terminal emulator, that normally blocks on select(2) for
events, you can use the ui_setselect function to block in Wai tNextEvent and allow
other applications their due slices. Usage is similar to select(2).

The call is used before and after Wai tNextEvent, as follows:
ui_setselect(nfds,rdmask,wtmask,excptmask) /*set masks*/
WaitNextEvent (.. . J;
ui_setselect (0, 0, 0, ° 0; /*clear select masks*/

The ui setselect call causes WaitNextEvent to return a null event whenever a
select(2) call would succeed. The old method, used with Release 1.1, which first called
select and then GetNextEvent, will no longer work properly.

When you get a null event, you can call select with a timeout value of 0 to see ifIfO is
pending on any file descriptors.

The reason for calling ui_setselect a second time to clear the masks is that calling it to set
the masks effectively adds another event type to the event mask for the Wai tNextEvent

call. Clearing the select masks prevents a potential problem. If, without the select masks
cleared, the application enters a different event loop that does not handle select (by calling
ModalDialog, for example) the event mask would still request an event. In such a case, a null
event may be returned to indicate that select would break. For the ModalDialog example,
this means the update event for the dialog would not be returned because it has a lower
precedence than the select physical event, and the contents of the dialog would not
be drawn.

The ui _ set select call is similar in function to select(2), as documented in
AlUX Programmer's Reference, except for two differences,

• ui_setselect has no timeout argument

• the masks for ui_setselect are integers; for select, they are pointers to integers

Chapter 2 Using the A!UX Toolbox 2-5
030-07S7-A

Porting a Macintosh application to A!UX

The requirements and recommendations for developing a Macintosh application are given in
Inside Macintosh, Volumes I through V, and are also presented in a less thorough but more
accessible manner in some of the books described in Appendix A, "Additional Reading."

To run under the A!UX Finder, an application

• must be 32-bit clean

• must be at least MultiFinder aware, and preferably MultiFinder friendly

• must not call on Macintosh as routines that are not supported under the A!UX Toolbox

The first two of these requirements are highly recommended for all Macintosh applications.
Guidelines for these three requirments are given in Chapter 4, "Compatibility Checklist."
Chapter 5, "Inside A!UX Macintosh," has details on the level of support for
Macintosh as routines.

Developing an A!UX Toolbox application

This section summarizes the procedures for developing an AlUX Toolbox application under
A!UX. After you read this summary, see Chapter 3, "A!UX Toolbox Utilities and Extensions,"
for information on the special tools provided with the A!UX Toolbox for support of
program development.

You must be familiar with the general Macintosh program-development procedures before you
can write a Macintosh-like application under A!UX. If you have never written an application
under the Macintosh as, see "Additional Reading" at the end of this manual for
suggested references.

Development of an application that uses the Macintosh interface follows two parallel paths:
development of source code and development of resources. This section outlines the tools
provided for developing the two elements.

2-6 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

The sample programs illustrate the procedures for compiling and building an A/UX Toolbox
application, starting with separate files containing the source code and the uncompiled
resources. See the directory /mac/ lib/ examples for the sample programs and the section
"Building and Running the Sample Programs" in this chapter for more information.

6. Important Shared libraries are now implemented in Release 2.0. This provides a
convenient method of supporting future enhancements by using
shared library code for routines subject to change and development.
You can update and ship the library code, and the applications that
call upon the shared library will automatically use the current code
in the library without having to recompile. See "Shared Libraries,
in A/UX Programming Languages and Tools, Volume 1,
for information. 6.

Developing the source code

You can use the standard A/UX C development environment for developing and debugging an
A/UX Toolbox application (see A/UX Programming Languages and Tools, Volumes 1 and 2).
Use the standard C libraries (shared or non-shared) as usual, and incorporate the special A/UX
Toolbox components at each step:

• Writing source code

Include the header file for each Macintosh library you use (see Appendix F, "C Interface
Library," for the available header files), and check the library's entry in Chapter 5, "Inside
A/UX Macintosh," for any warnings about the A/UX implementation of that library.

Follow the general A/UX compatibility guidelines in Chapter 4, "Compatibility Checklist,"
and the general Macintosh programming guidelines in Inside MaCintosh, Volumes I
through V.

Chapter 2 Using the A/UX Toolbox 2-7
030-0787-A

• Building the application

Adapt the sample makefiles to compile and link your application as required by the A!UX
Toolbox (see the sample makefiles in /mac/ src/ examples). The build procedure for an
A!UX Toolbox application differs from the build procedure for a normal C program
because you must call in additional libraries and make provisions for the Macintosh's
memory-use conventions. Your build procedure should include these additional steps:

o specifying the pathname for the include files

o invoking a script to reserve space for the Macintosh global variables

o linking to the files that contain the A!UX Toolbox routines, the symbols for
Macintosh global variables, and the initialization routine

As demonstrated in the sample makefiles, you can also define a constant to allow for
selective compiling of common source code for different execution environments.

For more information on how an application is built and executed, see Appendix C,
"Implementation Notes."

Figure 2-2 illustrates how to incorporate the A!UX Toolbox into an application. appname . c
represents your source file. Use the standard makefile to compile it, using cc(1), and link it,
using ld(1). The output is an executable COFF object file.

2-8 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

• Figure 2-2 Incorporating the A/UX Toolbox into code file development

appname.c--~

C source code
#include <types.h> /* include header files */

InitGraf (&qd.thePort);/* calls to toolbox */

A!UXC
compiler

A!UXC
link editor

appname __ ----....

COFF executable
file

/usr/include/mac/*--------------~

Header files declare functions and data types

/usr/lib/libmac s.a or
/usr / lib/ libmac -:-a----------,.
Library contains entry points for all functions
and variables

/usr/lib/low.ld -----------,..
Script reserves space for global variables

/usr/lib/low.o-------------------,..

File contains symbols for global variables

/usr/lib/maccrtO.o------~

Initialization routine communicates with kernel

Chapter 2 Using the A/UX Toolbox 2-9
030-0787-A

Developing the resource (de

The A/UX Toolbox includes A/UX versions of the rez(1) and dere z(1) tools, ported from
MPW, for compiling and decompiling resources. re z creates an AppleSingle file to hold the
compiled resources. The fcnvt utility can be used to make this an AppleDouble file.

Appendix E, "Resource Compiler and Decompiler," documents rez and derez in detail. The
directory /rnac/lib/rincludes contains the resource type definition files used by rez

and de re z. Figure 2-7 illustrates the resource development path.

• Figure 2-3 Developing a resource file under A/UX

appname.r------....
rez source

code

Resource
compller

D rappnameoresJ
Resource

file

/mac/lib/rincludes/* ---------....

Resource library defines resource tools

2·10 NUX Toolbox: Macintosh ROM Interface
030-0787-A

ResEdit, which allows you to manipulate resources graphically and to copy resources between
applications, now runs under A!UX (version 1.2 or later required). Additional tools and utilities
for development of resources under the Macintosh OS are available from third party
developers. Apple's Macintosh Programmer's Workshop offers several tools. See Macintosh
Programmer's Workshop 3.1 Reference for a description of them. If you develop your
resources in the Macintosh as, you can transfer the compiled resources into a file of
appropriate format for A!UX.

Building and running the sample programs

Source for sample programs is in /mac/src/example. The directory contains a makefile,
and a C source file and a resource file for these applications:

qdsamp.c

qdsamp.r

QuickDraw sample program C source and resource file

sample.c

sample.r

Sample program C source and resource file; generic application

Another example is found in the /mac/ src/ sndDemo directory. The directory contains a
makefile, C source file, resource file, C header file, and a sound demo resource.

The directory /mac/ src/ examples contains the C source files for qdsamp and sample,

the uncompiled resource file for sample, and the makefile that builds those two programs.
(See Inside Macintosh, Volume I, for a detailed description of resource files and Macintosh
application development procedures.)

To build executable code, copy the source files and makefile to the directory you are working
in, then enter the make command with the name of the demonstration program as an
argument. The executable code is put into an executable A!UX COFF file, and the resources
and header information are put into an AppleDouble file. You must explicitly build both. To
build sample, for example, enter this command:
make sample %sample

The A!UX COFF file is sample and the resource information is in %sample.

Chapter 2 Using the A!UX Toolbox 2-11
030-07S7-A

To run one of the sample programs, enter the name of the executable file (sample, in this
case) as you would any other A/UX program, or double-click on the icon. The A/UX Toolbox
automatically looks for the associated resource file, and uses them together so long as they are
in the same directory. .

The make file provided with the demonstration programs illustrates the steps necessary to
compile and link a Macintosh application under A/UX. Examine makefile in the
/mac/ lib/ examples directory. When you are ready to build your own application, you can
copy this make file and adapt it to your program.

2-12 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Chapter 3 AlUX Toolbox Utilities and Extensions

This chapter discusses some special features of the NUX Toolbox
that support program development in NUX. The features fall into
four categories:

• utility programs for controlling the execution environment, converting
file formats and attributes, and compiling and decompiling Macintosh
resource files

• variables defined in the NUX Toolbox interface library that let you
change how an application is executed

• additional traps and routines for use in A/UX Toolbox applications

• environment variables for use during debugging

This chapter also describes strategies for writing applications that use
both the Macintosh OS and A/UX in two ways:

• making A/UX system calls from within an application that is intended
to be run under both the Macintosh as and A/UX

• allowing an application that runs under A/UX to monitor both A/UX I/O
activity and Macintosh events (events that would be handled by the
Event Manager under the Macintosh aS)

3-1
030-0787-A

Using the utilities

The AlUX Toolbox utilities discussed in this chapter are all in /mac/bin, which contains many
other useful utilities and programs. They all have Commando interfaces that present the
choices available when using them. Descriptions of the files in the /mac/bin directory can be
found in /FILES. Some of the facilities available in /mac/bin are described here:

• Two utilities handle the transition between the standard AlUX environment and an
AlUX Toolbox application environment.

startmac provides the standard 32-bit AlUX Toolbox environment

startmac24 provides the 24-bit AlUX Toolbox environment

The 24-bit environment is isolated from the rest of the system, and is provided for testing
when converting 24-bit applications and for running obsolescent 24-bit utilities and tools,
such as orphaned compilers.

• A utility is available for launching a Macintosh binary from the command line of
CommandShell.

launch(l) provides special options and capabilities for a Macintosh binary launched
within the AlUX Finder. This utility is not necessary for ordinary launching, which can be
done by double-clicking or opening an executable Macintosh binary. The utility is
provided for convenience in launching from CommandShell and for use in application
development. The launch utility functions only in the 32-bit environment.

• Three utilities support file conversion and setting of file attributes.

set file sets file creator and type, and other attributes

changesize changes the value of the file's' SIZE' attribute. A slightly higher value than
strictly necessary for the Macintosh MultiFinder environment is suggested for an
application running under the AlUX finder. The additional space allows for overhead that
the Memory Manager uses when dealing with the AlUX virtual memory environment on the
application's behalf.

f cnvt converts files from and to six formats. This utility is described in detail later in the
next section.

• Two utilities are available for compiling and decompiling resources.

re z compiles resources

derez decompiles resources

3-2 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

These two utilities are described in detail later in this chapter, and extensive additional
information is in Appendix E, "Resource Compiler and Decompiler." The descriptions in
this chapter are also in Section 1 of A/UX Command Reference.

Information on utilities is available from many sources, including online and printed man
pages and Commando dialogs. For the utilities fcnvt, rez, and derez, additional
information follows.

fcnvt

Function

Syntax

Description

- i input10rmat

Convert a file from one format to another. The six formats available are
AppleSingle, AppleDouble, Plain Triple, Plain Pair, BinHex 4.0, and
MacBinary.

f cnvt [- i input-format] [-0 output-format] [- f] input-file output-file

fcnvt [-i input-format] -8 [-f] input-file output-file

fcnvt [-i input-format] -d [-f] input-file output-file

fcnvt [-i input-format] -t [-f] input-file output-file

fcnvt [-i input-format] -p [-f] input-file output-file

fcnvt [-i input-format] -b [-f] input-file output-file

fcnvt [-i input-format] -m [-f] input-file output-file

fcnvt converts a file (input-jile) from one file format to another
(output-jile). The command-line options and their meanings are:

Specify the file format of the file to be converted. If an input-file format is not specified,
the AppleSingle format is assumed. Supported formats are:

Chapter 3 AlUX Toolbox Utilities and Extensions 3-3
030-07S7-A

single

AppleSingle (see the - 5 flag option)

double

AppleDouble (see the -d flag option)

triple

Plain Triple (see the -t flag option)

pair

Plain Pair (see the -p flag option)

hex

BinHex 4.0 (see the - b flag option)

bin

MacBinary (see the -m flag option)

- 0 output-format

-5

-d

-t

Specify the output-file format. The formats are the same as the input-file formats
listed above. If an output-file format is not specified, the input file is converted to
AppleSingle format.

Create an AppleSingle-format output file. This format is the default. AppleSingle combines
both the resource and data forks into a single file and is most useful when the resource fork
seldom or never changes or when a file has no data fork. The use of AppleSingle format is
very inefficient when both the resource and data forks are frequently expanded.

Create an AppleDouble-format output file. The AppleDouble format is the same as
AppleSingle format except that the data fork is kept in a separate file. The resource file is
prefixed with a % character.

Convert the input file into Plain Triple file format. This format is used by the macget and
macput public-domain file-transfer programs. Three files are created with descriptive
suffixes attached. The files output-file. in f 0, output-file. da t a, and output-file. r 5 r c

contain the input file's identification information, data fork, and resource fork,
respectiVely.

3-4 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

-p

-b

-m

-f

Convert the input file into Plain Pair file format. This option is the same as the -t option
except that outputjile. in f 0 is not created.

Create a BinHex 4.0-format output file. The input-file is encoded into ASCII characters,
permitting ASCII transfer of a binary file.

Create a MacBinary-format output file. This format is commonly used when transferring
files using XMODEM, XMODEM7, Kermit, and CompuServe A or B protocols.

Allow f envt to overwrite an existing file with the new file of the same name. If you specify
an output filename that is the same as an existing filename without specifying the - f flag
option, fen vt takes no action and returns an error message.

AppleSingle provides a safeguard for executable Macintosh object files, in contrast to
AppleDouble format-the AppleDouble pair must be kept in the same directory in order
to function.

fenvt can also be used to help complete the transfer of a file from the native Macintosh
environment to A/UX. As described in Chapter 6, in the sub-section titled "Automatic
Conversion," when a Macintosh file is placed in the A/UX environment it is automatically
converted to one of three formats: AppleSingle, AppleDouble, or Plain. The resultant format
depends on various conditions. fen vt may then be used to convert to a different format.

If the initial transfer is made using a terminal emulator program, the file created is likely to be
in a text-only format, BinHex 4.0 format, or MacBinary format, if not just a copy of the
resource fork of the Macintosh file. In any of those cases, fen vt can be used to convert the
file to another format, assuming you know the starting format.

Note that file transfers made using terminal emulators are likely to strip away the Macintosh
type and creator attributes for the file. (Each of these attributes is one four-character string.)
These attributes may be restored, once you know what they are supposed to be, by using
set file, which is described in this chapter (and in the man pages).

FILES

/mae/bin/fenvt

Chapter 3 A/UX Toolbox Utilities and Extensions 3-5
030-07S7-A

SEE ALSO

rez

Function

Syntax

Description

Chapter 6, "File Systems and File Formats," has additional details of the
AppleSingle, AppleDouble, and Plain file formats.

Compile resources.

re z [-option .. .1 [resource-descriptionfile .. ']

re z creates a resource file according to a series of statements in the
resource description language developed for Macintosh resources.
Appendix E, "Resource Compiler and Decompiler," describes the resource
description language in detail.

The parameter resource-descriptionfile represents the names of one or
more files containing resource descriptions. If no filenames are specified,
re z accepts keyboard input.

The data used to build the resource file can come directly from one or
more resource description files, from other text files (through #include
and #read directives in the resource description file), and from other
resource files (through the include directive in the resource description
file). The type declarations for standard Macintosh resources are
contained in the files types. rand systypes . r in the directory
/mac/lib/rincludes.

rez includes macro processing, full expression evaluation, and built-in
functions and system variables.

re z never sends output to standard output. By default, re z writes to an
AppleDouble header file named re z . Out in the current directory. You can
specify a different output file with the - 0 option.

3-6 A/UX Toolbox: Macintosh ROM Interface
030-07S7-A

If no errors or warnings are detected, re z runs silently. Errors and warnings
are written to standard error.

re z returns one of the following status values:

o No errors
1 Error in parameters
2 Syntax error in file
3 I/O or program error

You may specify one or more of the following options for -option:
-align (word)

-align (long word)

-a [ppend]

Align resources on word or long word boundaries (without
the -align option, resources are byte-aligned). This may
allow the Resource Manager to load these resources faster.
The -align option is ignored when the -a option is
in effect.

Append the output of re z to the output file instead of
replacing the output file.

• Warning re z overwrites any existing resource of the same
type and ID without a warning message. rez

cannot append resources to a resource file in which
the Read Only bit is set. Also, re z does not
replace a resource file that has a protection bit set
unless the -ov option is specified .•

-dreatorl creator-expr
Set the creator of the output file to crea to r-expr.
The default value is '? ? ? ? ' .

Chapter 3 A/UX Toolbox Utilities and Extensions 3-7
030-0787-A

-d[efine] macro [=data]

- i path name (s)

Define the macro variable macro to have the value
data (see "Preprocessor Directives" in Appendix E
for a description of macro variables). If data is
omitted, then macro is set to the null string (note
that this still means that macro is defined). The
-d option is the same as writing
#define macro [data]

at the beginning of the input. The -d option may be
repeated any number of times.

Search the specified path name (s) for include files.
You may specify more than one pathname. The
paths are searched in the order they appear in the
command line.

Resource include files are provided with the A!UX
Toolbox at this pathname:

/mac/lib/rincludes

-0 outputjile Place the output in outputjile. Specify the name of
the associated data file; re z automatically prefixes
a percent sign to the name of the header file
containing the resources. The default output file is
rez .Out.

-ov

-p[rogre s s]

-rd

Override the protected bit when replacing resources
with the - a option.

Write version and progress information to
diagnostic output.

Suppress warning messages if a resource type
is redeclared.

-ro Set the mapReadOnly flag in the resource map.

-8 path name (s)
Search the specified pathname (s) for resource
include files.

-t[ype] type-expr
Set the type of the output file to type-expr. The

default value is 'AP P L ' .

3-8 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Example

derez

Function

Syntax

Description

-u[nde f] macro 'Vndefine" the macro variable macro to remove the
definition; this is the opposite of the - d option.
(See "Preprocessor Directives" in Appendix E for a
description of macro variables.) This is the same
as writing
#unde f macro
at the beginning of the input. It is meaningful to
"undefine" only the preset macro variables.

rez -i /mac/lib/rincludes -0 sample sample.r

Generate a resource file for sample, based on the descriptions in
sample. r and the include files in /mac/lib/rincludes. Place the
output in an AppleDouble header file named % s amp 1 e.

Decompile a resource file.

de re z [-option .. .] resourcefile [resource-description file .. .]

de re z creates a text representation (resource description) of a compiled
resource file according to the resource type declarations in the resource
description file.

The parameter resourcefile specifies the name of the file containing the
compiled resources. You must specify a file; de re z never reads standard
input. The file may be either an AppleSingle or an AppleDouble file.
(Do not prefix the filename with a percent sign.)

The parameter resource-description file specifies one or more files
containing the type declarations used by the resource file. de re z can
provide more meaningful output if you provide the type declarations.

Chapter 3 AlUX Toolbox Utilities and Extensions 3-9
030-0787-A

The type declarations in the resource description file follow the same
format as that used by the resource compiler, re z. The type declarations
for standard Macintosh resources are contained in the files type s . rand
systypes. r in the directory /mac/ lib/ rincludes. If you do not
specify a resource description file, the output consists of da t a
statements giving the resource data in hexadecimal form, without any
additional format information.

The resource description is written to standard output.

If the output of de re z is used as input to re z, with the same resource
description files, it produces the same resource file that was originally
given to de re z. When de re z does not have the appropriate resource
description information, it is not able to run a declaration backward.
It produces a data statement instead of the appropriate resource
statement.

derez ignores all include (but not #include), read, data, and
resource statements found in the resource description file. (It still
parses these statements for correct syntax.) Appendix E, "Resource
Compiler and Decompiler," describes the format of resource type
declarations.

The resource description consists of resource and data statements
that can be understood by rez (see Appendix E, "Resource Compiler
and Decompiler").

If no errors or warnings are detected, de re z runs silently.
Errors and warnings are written to standard error. See intro(3)
in AlUX Programmer's Reference.

derez returns one of the following status values:

o No errors
1 Error in parameters
2 Syntax error in file
3 I/O or program error

You may specify one or more of the following options for -option:

-c[ompatible] Generate output that is backward compatible
with re z in Release 1.0.

3-10 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

-d[efine] macro [=data]

-e[scape]

- i pathname (s)

Define the macro variable macro to have the value
data (see "Preprocessor Directives" in Appendix E
for a description of macro variables). If data is
omitted, then macro is set to the null string (note
that this still means that macro is defined). The - d
option is the same as writing

4I=define macro [data]
at the beginning of the input. The -d option may be
repeated any number of times.

Do not escape characters that are normally escaped
(such as \ Oxff). Instead, print these characters as
extended Macintosh characters. Normally
characters with values between Ox20 and OxD8 are
printed as Macintosh characters. With the - e
option, however, all characters (except null,
newline, tab, backspace, formfeed, vertical tab,
and rub out) are printed as characters, not as escape
sequences. Note: Not all fonts have defined all
the characters.

Search the specified path name (s) for include files.
You may specify more than one pathname. The
paths are searched in the order they appear on the
command line.

Resource include files are provided with the A/UX
Toolbox at this pathname:

/mac/lib/rincludes

-m[axstringsize] n
Set the maximum string size to n, which must be in
the range 2-120. This setting controls how wide
strings can be in the output.

-dnly] type-expr[(lD1 [: ID2])]
-a[nly] type-expr[(resource-name)]

Read only resources of resource type type-expr. If
ID, a range of ID numbers, or a resource-name is
given, read only those resources for the given type.
This option may be repeated.

Chapter 3 AlUX Toolbox Utilities and Extensions 3-11
030-0787-A

-o[nly] type

-p

-rd

Note: The placeholder type-expr is an expression, so
straight single quotes (,) might be needed. If ID,a
range of ID numbers, or a resource-name is given,
the entire option parameter must be quoted. A
type-expression may have any of these forms:
type
'" type' (ID) "
" 'type' (ID: ID) "
" 'type' (d" named") "
Note: The a character, obtained by pressing
OPTION-D, is necessary for proper interpretation of
the following double quote (,,) character.

This option can be used as shown here:
derez -only" 'MENU' (1: 128)" •.•

See also "Examples" later in this section.
Note: The - 0 n 1 y option cannot be specified
together with the -skip option.

Read only resources specified by type. This is a
simpler version of the preceding option. No quotes
are needed to specify a literal type as long as it
starts with a letter. Do not use escape characters or
other special characters. This option can be used as
shown here:
derez -only MENU ••.

Display progress and version information.

Suppress warning messages if a resource type
is redeclared.

-s[kip] type-expr[(IDl [: ID2J)]
-s[kip] type-expr[(resource-name)]

Skip resources of type type-expr in the resource file.
For example, you can save execution time by
skipping 'CODE' resources. If ID, a range of ID
numbers, or resource-name is given, skip only those
resources for the given type. The -s option may be
repeated any number of times.

3-12 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Examples

Note: The placeholder type-expr is an expression, so
straight single quotes (,) might be needed. If an ID,
a range of ID numbers, or resource-name is given,
the entire option parameter must be quoted.
See the note under -only type-exprearlier in
this section.

-s[kip] type Skip resources specified by type. This is a simpler
version of the - s option. No quotes are needed to
specify a literal as long as it starts with a letter.

-u[ndef] macro
"Undefine" the macro variable macro to remove
definition; it is the opposite of the - d option).
This is the same as writing
#unde f macro
at the beginning of the input file (see "Preprocessor
Directives" in Appendix E for a description of
macro variables). It is meaningful to "undefine"
only the preset macro variables. This option may
be repeated.

derez -i /mac/lib/rincludes sample types.r > sample.r

Decompile the resource file %sample, by using the definitions in the file
/mac/lib/rincludes/types. r and putting the output in the file
s amp 1 e . r. If de re z has access to the type definitions, it generates more
meaningful output.
derez -0 MENU -i /mac:lib:rincludes sample types.r

Display all of the 'MENU' resources in % s amp 1 e. The type definition for
'MENU' resources is in the file types. r.

Chapter 3 A/UX Toolbox Utilities and Extensions 3-13
030-07S7-A

AlUX Toolbox variables

The A!UX Toolbox interface library, in the file /usr / lib/ libmac. a, defines two variables:

• dontForeground

This variable specifies whether or not the program runs in the background. If set to 1, the
program runs in the background.

To set dontForeground to 1, include this line in your program:

int dontForeground =1;

• noCD

This variable sets the current directory. If set to 1 in a program, the current directory is the
directory from which the user ran the program. Otherwise, the current directory is the
directory in which the program resides.

To set noCD to 1, include this line in your program:

int noCD = 1;

Additional traps and routines

The A!UX Toolbox interface library includes one additional trap and one additional routine for
use in AlUX Toolbox applications: the AUXDispatch trap and the select routine. The
first is described below and the second under "Using select to Monitor both A/UX I/O
Activity and Macintosh Events."

3-14 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

AUXDispatch trap

The AUXD i spa t ch trap is a multipurpose call that supports some A!UX-specific extensions to
the A!UX Toolbox. The call should only be invoked after using SysEnviron to determine that
the application is running under A!UX.

The definitions for the AUXDispatch trap are in the header file aux. h, found in
/usr / include/mac. (See "Definitions for A/UXDispatch" in Appendix P.) The header file
provides a syntax compatible with MPW C version 3.0.

AUXDispatch takes this syntax:
AUXDispatch (selector,p)

short selector;
char *p ;

The function of AUXDispatch depends on the placeholder selector, which can be one of
these values:

AUX HIGHEST Return the highest available selector (for support of future releases,
which may provide more selectors).

AUX GET ERRNO

With this selector, the value of the pointer p is not used.

Get a pointer to errno, which is linked to your program through the
standard C library.

AUXDispatch puts the address of errno in the address you specify with
the pointer p.

AUX GET PRINTF - -
Get a pointer to the printf(3S) routine, which is linked to your program
through the standard C library.

AUXDispatch puts the address of printf in the address you specify
with the pointer p.

Chapter 3 A!UX Toolbox Utilities and Extensions 3-15
030-0787-A

AUXGET SIGNAL
- Gets a pointer to the signal(3) routine, which is linked to your program

through the standard C library.

AUXDispatch puts the address of signal in the address you specify
with the pointer p.

AUX GET TIMEOUT
Return a time period, in clock ticks, when the next Macintosh device
driver will need processor time through the SystemTask routine. See
"The Desk Manager" in Inside Macintosh, Volume I, for a description of
SystemTask.

With this selector, the value of the pointer p is not used.

AUX SET SELRECT
Set a rectangle that the user interface device driver will use to monitor
mouse movements for the select(2N) system call. For an explanation of
using the select call, see the section "Using select to Monitor Both
A!UX I/O Activity and Macintosh Events," later in this chapter.

With this selector, the pointer p points to the specified rectangle.

AUX CHECK KIDS
Check for the existence of child processes, returning 1 if child processes
exist for the specified process, 0 if not.

With this selector, you specify the process to be checked for child
processes by passing a pointer to the process ID in the pointer p.

AUX POST MODIFIED
- Post an event, with modifiers. With this selector, pass a pointer to the

Event Record in the pointer p.

AUX FIND EVENT
Searches event queue for an event. With this selector, pass a pointer to a

F indEvent struct (mask and pointer to an Event Record) in the
pointer p.

3-16 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

A/UX Toolbox environment variables

The A!UX Toolbox uses a number of environment variables to modify its actions under
certain circumstances. Most of these variables are useful only during program development
and debugging.

A!UX Toolbox environment variables are set and read like other environment variables
(see environ(S) in A/UX Programmer's Reference). This section lists both the environment
variables used by the A!UX Toolbox and their functions.

TBCORE

TBRAM

TBSYSTEM

TBTRAP

TBWARN

If this variable is set, the A!UX Toolbox causes a core dump if a fatal error
occurs. If this variable is not set, the A!UX Toolbox displays a message and
exits when a fatal error occurs. A typical fatal error during development of
A!UX Toolbox applications is an unimplemented A·line trap.

If this variable is set, the ROM code is copied into a memory segment
when a program is run. This variable lets you set a breakpoint in the ROM
code for debugging.

This variable contains the A!UX path of the directory that contains
Macintosh system files. The default setting is Imac/libl SystemF iles.

If this variable is set, the system writes debugging information to standard
error every time an A-line trap is executed.

If this variable is set, the system writes a warning message to standard
error when certain error conditions are detected. These messages generally
report that something unusual but not fatal has happened. Developers may
wish to set TBWARN in . login or .profile.

Chapter 3 A!UX Toolbox Utilities and Extensions 3-17
030-0787-A

Making A!UX system calls

This section describes a strategy for using NUX system calls in an application that will be built
under the Macintosh OS and result in a binary file that can be executed in both environments.

The strategy described in this section is intended for applications that need to perform
functions available through the Macintosh OS or the User Interface Toolbox but not available
under NUX. You could write an application that uses the required function(s) when running
under the Macintosh OS but uses alternative code, including NUX system calls, when running
under NUX. Use SysEnviron to determine which system the application is running under.

The basic procedure is to translate the NUX system calls into assembly-language routines and
to make those routines available to the compiler under the Macintosh OS.

Specifically, you can use NUX system calls in an application that will run under both
environments by following these steps:

1. Determine the assembly-language sequence that is generated by the A!UX
compHer when it encounters the system call you want to use.

Here is how to do it:

o Write a program that uses the call. If you want to use open(2), for example, you
could start with this program:
main ()
{

int fd;
fd = open("fred",2);

o Compile the program.

o Use the debugger adb(1) to disassemble the program. The open call, for
example, results in this disassembled code:

3-18 NUX Toolbox: Macintosh ROM Interface
030-0787-A

open:
mov.l &Ox5,&dO
trap &OxO
bcc.b noerror
jmp cerror%

noerror:
rts

cerror%:
mov.l %dO,errno
mov.l &-l,%dO
mov.l %dO,%aO
rts

2. In your Macintosh development environment, create an assembly-language
routine that performs the same functions.

Give this routine a unique name (the Macintosh OS equivalent to the open call, for
example, might be auxopen).

3. Insert the call conditionally into your application.

You need to check the value of bit 9 in the global variable HWCfgFlag, a 16-bit
word at memory location OxOB22. See MaCintosh Technical Note #37, available
through APDA, for a description of HWCFgF lag; see "Information Sources" in
Appendix A for the address of APDA).

If bit 9 is 1, your application is running under A/UX. Use the appropriate A/UX code,
including any assembly-language routines that you have created to replace A/UX
system calls.

If bit 9 is 0, your application is running under the Macintosh OS. Use the appropriate
Macintosh OS or User Interface Toolbox calls.

Chapter 3 A/UX Toolbox Utilities and Extensions 3-19
030-0787-A

Using select to monitor both A!UX I/O activity
and Macintosh events

If you are writing an AlUX Toolbox application that will run only under AlUX, you can use
the select(2N) system call to monitor not only standard A!UX I/O activity but also
Macintosh events.

The select call examines a set of file descriptors that you specify through bit masks.
The AlUX Toolbox provides a user interface device driver, / dev /uinterO, to handle
communication between the AlUX Toolbox library and the kernel. The file descriptor udevf d

is opened to /dev/uinterO. To include Macintosh events in the list of I/O activity to be
monitored, simply include udevfd in the masks you pass to select.

You can use a combination of the select system call and the AUXDispatch call to expand
the definition of a Macintosh event to include movement of the mouse outside of a specified
rectangle. (Ordinarily, mouse motion without the pressing or releasing of the mouse button is
not an event.) First, issue the AUXDispatch call, by using the AUX_SET_SELRECT selector
and passing a pointer to the rectangle. AUXDispatch passes the rectangle to the user
interface device driver. In subsequent select calls, include the udevfd descriptor in your
masks. select will then wake up your program if there is a Macintosh or other specified
event pending, if the mouse moves out of the specified rectangle, or if the timer expires.
Once select reports activity through the user interface device driver, you must call
GetNextEvent to retrieve the event.

This sequence (AuxDispatch followed by select) is an alternative for AlUX Toolbox
programs that cannot use the Wai tNextEvent trap (described under "Event Manager,
Toolbox" in Chapter 5).

3-20 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

The MacsBug debugger under A!UX

The MacsBug debugger is available from APDA for use within the A!UX Toolbox environment
(version 6.2 or later required). MacsBug comes with a reference manual. See "Information
sources" in Appendix A for information on APDA.

MacsBug does not underly the entire system, as when used with the Macintosh as. Pressing
the hardware programmer switch when A!UX is running brings you into an A!UX environment.
To get into MacsBug, you use a key command.

To install MacsBug, place it here:
/rnac/sys/Systern Folder/MacsBug

This is the equivalent of placing it in the System folder under the Macintosh as. MacsBug will
automatically install itself at the next login or reboot.

MacsBug will be invoked when the system encounters an exception error. MacsBug can be
accessed from an application whenever desired, by pressing this key command:

Command

Crnd-Cntl-I Interrupt into MacsBug

Once in MacsBug you can use MacsBug commands to examine values, step through code,
attempt recovery, and so forth, as with any debugger.

The following command kills the A!UX Toolbox and reboots into AlUX.

Command Meaning

Crnd-Cntl-E Reboot

This command can be useful to get out of a hung system. It does a general tidying up of the
mess before logging you out. If you press this key combination when MacsBug is not installed,
a similar reboot takes place, but not so tidy.

Chapter 3 A!UX Toolbox Utilities and Extensions 3-21
030-0787-A

When you are in MacsBug, you have many commands available. Here are five:

Command

g

rs

rb

es

dIn curapname

Go; continue from current location

Restart; equivalent to logout

Reboot; equivalent to logout

Exit to shell; kills current application

This is not a good way to exit. Your get out leaving Low-memory
globals in a strange state, and after a while strange thing start to
happen to your other applications.

Display current application name

The current application may not be what you think it is; this
command is worth trying before you kill the current application.

3-22 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Chapter 4 Compatibility Checklist

To run the same code under both the Macintosh as and the
A!UX environments, you must make provisions for a number of
compatibility issues:

• differences between the Macintosh as and A/UX execution
environments

• differences between the C compilers used in A/UX and in other
Macintosh as development environments

• differences between the C language typically used in A!UX and
the Pascal language used by the Macintosh ROM routines

This chapter provides a checklist of the compatibility issues.
For details about the A!UX implementation of the Macintosh ROM
code, see Chapter 5, "Inside A!UX Macintosh," and Appendix C,
"Implementation Notes."

4-1
030-0787-A

Differences in execution environments

The Macintosh as was designed as a single-user system. Individual applications and the
various libraries that support the Macintosh user interface can have much more control over
the system than individual processes are allowed in A/UX.

In A/UX, the kernel arbitrates all access to hardware, including memory allocation. Only the
kernel can use the hardware instructions of the Mc680xO microprocessor. Table 4-1 provides
information on support for privileged instructions.

Unlike the current Macintosh as, system software Release 6.0.5, A/UX uses virtual memory.

This section lists the compatibility problems that result from the differences between the
Macintosh as and A/UX execution environments. This section augments the Macintosh
programming guidelines provided in Inside MaCintosh, Volumes I through V. To ensure that
your code runs under both the Macintosh as and A/UX, follow both the rules outlined here and
the compatibility guidelines in Inside MaCintosh, Volume V.

Sometimes a program must perform differently depending on whether it is running on an
MC68020-based Macintosh or an Mc68030-based Macintosh and whether it is running under the
native Macintosh as or under A/UX. Use SysEnvirons or check the variable CPUF lag,

described in Appendix D, "Low-Memory Global Variables." Eventually, this information will be
available by use of the Gestalt facility.

32-bit address violations

A/UX uses all 32 bits of an address, but the Macintosh as formerly used only the low-order 24
bits of an address. Historically, both the User Interface Toolbox and a number of application
programs used the high-order 8 address bits for storing additional information. For present
and future Macintosh as applications, being 32-bit clean is now required in order to fully use
the system capabilities. In the A/UX system, a Macintosh application must be 32-bit clean to
run under the A/UX Finder. (A special 24-bit environment is provided by means of a special
login so that programmers upgrading an application to 32-bit clean may test in both
environments.)

4-2 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

To have 32-bit clean applications, use the Memory Manager in a safe manner. Programming
according to the brief guidelines below helps you avoid many common problems as well as
ensuring that your applications are 32-bit clean.

• Use Memory Manager operations for Memory Manager functions. Make no assumptions
about the contents of Memory Manager structures. Do not set bits directly in these
structures or manipulate them directly.

• In particular, never make your own Handles; use NewHandle.

• Check every returned handle or pointer to ensure that it is not NIL. A NIL handle may
indicate that a memory allocation failed or that a requested resource could not be found.

• Check that a handle marked purgeable is not empty before using that handle.

As an aid to upgrading old applications, a list of (deplorable) practices once common in
Macintosh applications that violate 32-bit address requirements follows.

• Creating or using fake handles

A fake handle is one that was not made by the Memory Manager (the NewHandle

function), but by the program (a pointer to a pointer). The Memory Manager has its own
style of making handles, and a fake handle can cause trouble.

• Direct access to the flag bits on relocatable blocks

The Macintosh as stores the flag bits, Lock, Purge, and Resource, in the high-order bits
of a block's master pointer. The A/UX Toolbox stores these flags elsewhere. Setting
high-order bits in the master pointer only invalidates the address. If your application uses a
bset instruction or moves bytes to change these flags, change your code to use the
appropriate Memory Manager routines instead. See "Memory Manager" in Chapter 5.

• Application-specific flags

Some applications use the high-order bits of addresses to store their own flags.
This practice invalidates the address in A/UX.

• Direct access to window and control variant codes

The Macintosh as formerly stored the variant code for a window or control in the
high-order bits of the handle to the definition procedure, which is located in the window or
control record. Applications rarely access these codes, but custom definition procedures
sometimes do. In A/UX, the variant codes are stored elsewhere. You can read them with the
GetWVariant and GetCVariant calls (see Inside Macintosh, Volume V).

Chapter 4 Compatibility Checklist 4-3
030-0787-A

Privneged microprocessor instructions

The A/UX Toolbox is run by an A/UX process in Mc680xO User Mode. Therefore, most
privileged processor instructions are not available within an A/UX Toolbox application.
Table 4-1 lists the status of all Mc68020 and Mc68030 privileged instructions.

• Table 4-1 Privileged microprocessor instructions within the A/UX Toolbox

Instruction Register and addressing modes supported

ANDl to SR All

EORl to SR All

FRESTORE

FSAVE

MOVE from SR

MOVE to SR

(An)+
(An)
(d16,An)

-(An)
(An)
(d16,An)

Dn
(An)
(An) +
-(An)
(d16,An)
xxx.16
xxx. 32

Dn
(An)
(An) +
-(An)
(d16,An)
xxx. 16
xxx.32

4-4 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Only null and idle frames
are supported

Only null and idle frames
are supported

[continued]

• Table 4-1 Privileged microprocessor instructions within the A/UX Toolbox [continued]

Instruction Register and addressing modes supported

MOVE USP None

MOVEC CACr supported on a per process basis; other control
registers may be accessed, but no action is taken.

MOVES None

ORl to SR All

RESET None

RTE Only type 0 and type 2 fault frames supported

STOP None

As shown in Table 4-1, the instructions that manipulate the status register are supported. A
special exception handler in the kernel emulates these instructions so that they manipulate a
virtual status register established for each process instead of the processor status register. The
exception handler can accommodate all status-register instructions that are generated by calls
to standard A!UX Toolbox routines. If you are writing assembly code, you can use the AND I,

EORl, and ORl instructions and the simple addressing modes of the MOVE from SR and
MOVE to SR instructions. Table 4-1 lists the supported addressing modes.

You can use assembly-language routines to change any of the bits in the virtual status register,
including the priority bits. When the priority is any value higher than 0, all NUX signals
are blocked.

Hardware processor instructions are available to device drivers and other software in
the kernel.

Direct hardware access

In A!UX, only the kernel is allowed direct access to the hardware. Therefore, applications
cannot bypass the A!UX Toolbox routines and manipulate hardware directly to perform
custom functions or save execution time. This limitation has these implications:

Chapter 4 Compatibility Checklist 4-5
030-07S7-A

• Serial port access
You cannot access the serial port through the Serial Communications Controller (SCC)
registers.

• Disk drive access

Copy-protection schemes that use direct access to the disk drive controller chip do not
work under A/UX.

• Hardware exception vectors

The low-memory CPU exception vectors are not accessible from within an A/UX
user process.

• Macintosh global variables

Not all of the Macintosh low-memory global variables are valid in A/UX. In general, variables
related to hardware are not supported. QuickDraw and Window Manager globals are
accessible, because they are not hardware specific. The screen is directly accessible by an
application. Appendix D, "Low-Memory Global Variables," lists the low-memory global
variables supported in A/UX.

Because all input/output and processor-allocation functions are performed through the A/UX
kernel, the A!UX Toolbox libraries themselves do not have as much control over the system as
their counterparts in the Macintosh environment.

The standard Macintosh environment provides the Vertical Retrace Manager to handle the
scheduling and execution of tasks during the vertical retrace interrupt (see Inside MaCintosh,
Volumes II and V) and the Time Manager to schedule routines that require precise timing
(see Inside MaCintosh, Volume IV). The A!UX Toolbox implementation of these managers is
built on the A!UX signal mechanism. Depending on the activities of other processes, routines
scheduled to be run by either of these managers might be delayed. Even if no other processes
are active, the A!UX Time Manager provides coarser granularity than its Macintosh
counterpart. For more information, see "Vertical Retrace Manager" and "Time Manager" in
Chapter 5.

An application that demands more precise timing probably requires a custom A!UX device
driver. See Building AlUX Device Drivers, available through APDA, for information on writing
device drivers.

4-6 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

You can use standard AlUX device drivers to manage external devices, but programs that use
A!UX device drivers are not portable to the Macintosh as. See Chapter 3, "A!UX Toolbox
Utilities and Extensions," for a strategy on including A!UX system calls in applications that are
intended to run under both the Macintosh as and A!UX.

Newline characters

The A!UX Toolbox supports the transfer of files between the Macintosh OS and A!UX. When a
user or an application transfers an unformatted ASCII text file between the two environments,
certain changes occur automatically. One change may mask a simple, but important,
difference in conventions: how the newline character is defined.

In the Macintosh environment, lines are terminated with a return character, represented by the
ASCII value OxOD. In AlUX, lines are terminated with a line feed, represented by the ASCII
value OxOA.

This difference is often masked by automatic conversion, which changes newline characters
when a file is moved between the environments. A text editor working with a text file in its
own environment will find the appropriate newline character in the file, even if the file
originated in the other environment. An A!UX utility processing a text file that originated in
the Macintosh side of the system and is now on the A!UX side will find the expected
newline characters.

Automatic newline conversion happens for Macintosh as files identified as text files, and for
A!UX files that are determined to be text or shell script files.

See the section, "Text Files," and "Automatic conversion," in Chapter 6, "File Systems and File
Formats," for more detailed information on these topics.

This difference is also masked from the programmer by the C language's newline character
(\n), which is translated differently in the two environments.

When sending multiple line strings to the Dialog Manager or any of the Toolbox managers that
receive strings, remember that these managers require the Macintosh newline termination. As
with the other cases described here, if the file is in the Macintosh side of the environment,
then the correct newline character will be present.

Chapter 4 Compatibility Checklist 4-7
030-0787-A

Why mention this at all, if automatic conversion takes care of it? Because programmers may
encounter subtle difficulties involving the two newline conventions. Automatic conversion of
newline characters occurs only for files known to be text files. A file that is actually a text file
may be transferred between environments without being identified as a text file. A file that is
not a text file, but which contains text, will not have newlines converted. A resource file
contains text and non-text matter. No conversion is done for resource files. A binary file
transferred between the two environments has its original definition of newline when running
in the new environment, which may affect both the output of text and the processing of input
text. An application intended to execute in both environments may need to determine its
execution environment and select the desired newline character accordingly.

File Manager

The AlUX File Manager almost fully supports the Macintosh OS File Manager. For details about
support, see "File Manager" in Chapter 5. Chapter 6, "File Systems and File Formats,"
provides details on what happens when files are transferred between the Macintosh and
AlUX environments.

Memory Manager

The AlUX Memory Manager supports all access routines in the same way as the Macintosh OS
Memory Manager and does it within a virtual memory environment. Virtual memory does have
practical limits and performance limits. In general, performance degrades to an unacceptable
level unless all of the memory that is actively being used fits into physical memory.

4-8 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Differences in C compilers

This section lists the known differences between the A!UX C compiler and the MPW C
compiler. These differences affect you if you are writing source code that you plan to compile
separately in the two environments. If you are using a different C compiler for Macintosh
program development, consult your software vendor.

• Zero-length array warnings

The A!UX C compiler generates warnings when it sees zero-length arrays, which appear
frequently in the A!UX Toolbox header files.

• Newline characters

The newline character is return (ASCII value OxOD) in MPW C and line feed (ASCII value
OxOA) in AlUX c.

• Pascal function types

MPW C has an extern pascal function type used for calling most of the ROM routines.
To use these functions, an A!UX C program must use intermediate assembly-language
"glue," that is, routines that rework the C call into a form understandable by the ROM.

The AlUX Toolbox provides assembly-language transformation routines (glue routines) for
most ROM calls in the files /usr / lib/ libmac. a and /usr / lib/ libmac_s. a. The
second file, 1 ibmac _ s . a, is a shared library version of the first, and can be used on the
compile or link edit command line in exactly the same fashion as libmac_s. a. The shared
library version saves some space in an application binary, and has the advantage of always
referring to the latest version of the file. Shared libraries are discussed in Chapter 7 of
A/UX Programming Languages and Tools, Volume 1.

However, if you want to create your own definition functions or filter functions (see
Inside Macintosh, Volume I, for explanations of definition functions and filter functions),
you must generate your own assembly-language glue.

See Appendix C, "Implementation Notes," for details about the requirements of the Pascal
routines. See A/UX Programming Languages and Tools, Volume 1, for information on the
AlUX assembler.

Chapter 4 Compatibility Checklist 4-9
030-0787-A

• Enumerated types

In MPW C, enumerated types can be 8,16, or 32 bits long, depending on the range of
possible values. In A!UX C, enumerated types are 32 bits long, unless packed in structures
using bitfields. A!UX C does not treat an enumerated type as an int in all cases;
MPW C does.

• Functions returning pointers

MPW C places the return value in register DO; A!UX C places the value in AO and DO.

Differences in language conventions

Most of the Macintosh ROM routines follow Pascal conventions for storing strings, passing
structures, pushing parameters on the stack, and returning function results. These conventions
differ from standard C conventions (see Appendix C, "Implementation Notes," for details
about the differences between Pascal and C conventions).

The A!UX Toolbox interface to the ROM routines includes conversion code that takes care of
most of these incompatibilities. Since Release 1.1, A!UX has provided two versions of all
routines that take parameters of type string or type point or that return values of type string.
One version, spelled as the routine appears in Inside MaCintosh, always uses Pascal-format
strings and Pascal point-passing conventions. The second version, spelled in all lowercase
letters, uses C-format strings and points. The lowercase version converts input parameters
from C format to Pascal format before passing them to the ROM and converts string return
values back to C format.

An alphabetic list of all calls in the C interface libraries, "Calls in Alphabetic Order," is available
in Appendix F. That list can be consulted to determine whether an alternate version of a call is
available, because lowercase and mixed-case versions of a call name sort together.

4-10 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Chapter 5 Inside A/ux Macintosh

This chapter describes the differences between the A!UX Toolbox and the
standard Macintosh User Interface Toolbox and Operating System. For
each chapter in Inside Macintosh that describes a software library
(typically called a "manager" of the feature it supports), this chapter
contains a section describing the A!UX implementation of that library.
The sections in this chapter appear in alphabetical order, however, not
Inside Macintosh order.

For a general description of how each library works, see the corresponding
chapter in Inside Macintosh. For a detailed list of the constants, types, and
functions used by each library, see Appendix F, "C Interface Library."

5-1
030-0787-A

About the Macintosh interface library

Most of the Macintosh User Interface Toolbox libraries, such as the Menu Manager and the
Window Manager, work the same way through the A/UX Toolbox as they work in the standard
Macintosh as. This chapter describes the small differences between the two versions.

Some A/UX Toolbox libraries are different from their Macintosh as counterparts because they
replace parts of the Macintosh as. This chapter provides detailed discussions of the
differences between the two implementations. Appendix C, "Implementation Notes,"
describes some additional implementation details.

Some of the standard Macintosh as libraries, such as the SCSI Driver, are not implemented in
the A/UX Toolbox.

Table 5-1 summarizes the status of the various ROM libraries at the time A/UX Release 2.0 was
distributed.

• Table 5-1 The Status of User Interface Toolbox and Macintosh as libraries in the
A/UXToolbox

ROM library

32-Bit QuickDraw with Color QuickDraw
Apple Desktop Bus
AppleTalk Manager
Binary-Decimal Conversion Package
Color Manager
Color Picker Package
Control Manager
Deferred Task Manager
Desk Manager
Device Manager
Dialog Manager
bisk Driver

5-2 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Supported?

Yes
No
Partially
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes

[continued]

• Table 5-1 The Status of User Interface Toolbox and Macintosh as libraries in the
AlUX Toolbox [continued]

ROM library

Disk Initialization Package
Event Manager, Operating System
Event Manager, Toolbox
File Manager
Floating-Point Arithmetic and

Transcendental Functions Packages
Font Manager
Gestalt facility
International Utilities Package
List Manager Package
Memory Manager
Menu Manager
Notification Manager
Package Manager
Palette Manager
Printing Manager

Resource Manager
Scrap Manager
Script Manager
SCSI Manager
Segment Loader
Serial Driver
Shutdown Manager
Slot Manager
Sound Manager
Startup Manager
Standard File Package
System Error Handler

Implemented?

Yes
Partially
Yes*
Partially

Yes*
Yes
Partially
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Partially
No
Partially
Partially
Yes*
Partially
Partially
Not needed
Yes
Yes*

[continued]

Chapter 5 Inside A/UX Macintosh 5-3
030-07S7-A

• Table 5-1 The Status of User Interface Toolbox and Macintosh OS libraries in the
AlUX Toolbox [continued]

ROM library Implemented?

TextEdit Yes
Time Manager
Utilities, Operating System
Utilities, Toolbox
Vertical Retrace Manager
Window Manager

Yes·
Partially
Yes
Partially
Yes

• All calls are implemented, but functionality is not identical. See the discussions later in this chapter for details.

The C interfaces to the standard Macintosh libraries are defined in a set of header files
shipped in the directory / us r / incl ude /mac. Include the header file for each library you use
in your C program to declare the defines, types, and functions provided by the library.
Appendix F, "C Interface Library," contains an expanded version of the header files, with
comments and function parameters added. Table F-l lists the header filenames together with
their library titles.

32-Bit QuickDraw with Color QuickDraw

The AlUX Toolbox 32-Bit QuickDraw is identical to the Macintosh as 32-Bit QuickDraw.
Color QuickDraw is included in 32-Bit QuickDraw.

See Inside Macintosh, Volumes I, IV, and V, for a description of QuickDraw and Color
QuickDraw, supplemented by the APDA document on 32-Bit QuickDraw. See "32-Bit
QuickDraw" in Appendix F for the A/UX C interface.

5-4 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Apple Desktop Bus

The A/UX Toolbox does not support the Macintosh as Apple Desktop Bus.

AppleTalk Manager

AppleTalk printing operations are supported under A/UX. AppleTalk network calls are
available at the program level, but not fully supported at the network level: there is no session
protocol or data stream.

AppleTalk printing operations are available either through direct AppleTalk calls in Macintosh
binary programs or through calls to the Printing Manager under A/UX. See "Printing Manager" or
"Print traps" in Appendix F for the A/UX C interface.

Other AppleTalk calls are available (at the program level) as Macintosh binary calls. The
equivalent A/UX C header files are in the library /usr / include/ at.

See Inside MaCintosh, Volumes II and V, for a description of the Macintosh as AppleTalk
Manager. See AlUX Network Applications Programming for a description of the A/UX
AppleTalk Manager.

Binary-Decimal Conversion Package

The A/UX Toolbox Binary-Decimal Conversion Package is identical to the Macintosh as
Binary-Decimal Conversion Package.

See Inside MaCintosh, Volumes I and IV, for a description of the package. See "Package
Manager" in Appendix F for the A/UX C interface to the Binary-Decimal Conversion Package.

Chapter 5 Inside A!UX Macintosh 5-5
030-0787-A

Color Manager

The A!UX Color Manager is identical to the Macintosh as Color Manager.

See Inside Macintosh, Volume V, for a description of the Color Manager. See "32-Bit
QuickDraw (With Color QuickDraw)" in Appendix F for the A!UX C interface to the
Color Manager.

Color Picker Package

The A!UX Color Picker Package is identical to the Macintosh as Color Picker Package.

See Inside Macintosh, Volume V, for a description of the Color Picker Package. See "Color
Picker" in Appendix F for the A!UX C interface.

Control Manager

The A!UX Toolbox Control Manager is almost identical to the Macintosh as Control Manager.
The difference in A!UX is that a control's variant code is not stored in the contrlDefProc

field of the control record. To retrieve the variant code, use the Control Manager call
GetCVariant, described in Inside Macintosh, Volume V.

See Inside Macintosh, Volumes I, IV, and V, for a description of the Control Manager. See
"Control Manager" in Appendix F for the A!UX C interface.

5-6 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Deferred Task Manager

The Deferred Task Manager is not implemented in the A!UXToolbox. A call to the
DTlnstall routine generates an unimplemented trap message.

Desk Manager

The A!UX Desk Manager is identical to the Macintosh as Desk Manager.

See Inside Macintosh, Volume I, for a description of the Desk Manager. See "Desk Manager" in
Appendix F for the A!UX C interface.

Device Manager

The A/UX Device Manager is identical to the Macintosh as Device Manager, but A/UX places
the same restrictions on device drivers as on applications. Device drivers outside the kernel
cannot manipulate hardware directly. Therefore, desk accessories are supported, but most
custom NuBuS™ card drivers are not. A!UX currently supports custom video drivers, the
AppleTalk drivers, and AppleTalk-based printer drivers.

If your application needs to control hardware directly, you must use an A!UX device driver.
(For information on writing an A!UX device driver, see Building A/UX Device Drivers.) You can
then write a Macintosh device driver that uses A!UX system calls, such as open(2) and
ioctl(2), to access the A!UX device driver that you have installed in the kernel. A program
that uses an A!UX device driver is not portable to the Macintosh as. See Chapter 3, "A!UX
Toolbox Utilities and Extensions," for a strategy for including A!UX system calls in
applications that are intended to run under both the Macintosh as and A!UX.

Chapter 5 Inside A!UX Macintosh 5-7
030-0787-A

See Inside Macintosh, Volumes II, IV, and V, for a description of the Device Manager.
See "Device Manager" in Appendix F for the AlUX C interface. For an example of driver calls,
see "Video Driver" in Appendix F.

Dialog Manager

The AlUX Dialog Manager is identical to the Macintosh as Dialog Manager.

Because the System Error Handler cannot resume after an error, it ignores the resumeProc
passed to it by the InitDialogs routine.

When using the Dialog Manager under AlUX, remember to make provisions for these common
compatibility problems:

• Newline character

Individual lines in a multiple-line message passed to the Dialog Manager must be separated
by returns (\ r) in C.

• ProcPtr parameters

Any procedure passed as a parameter to a Dialog Manager routine must use Pascal calling
conventions. See Appendix C, "Implementation Notes," for a description of the Pascal
conventions.

See Inside Macintosh, Volumes I and V, for a description of the Dialog Manager. See "Dialog
Manager" in Appendix F for the AlUX C interface.

Disk Driver

The Disk Driver is supported.

See Inside Macintosh, Volumes II and IV, for a description of the Disk Driver. See "Disk Driver"
in Appendix F for the AlUX C interface.

5-8 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Disk Initialization Package

The Disk Initialization Package is supported.

See Inside Macintosh, Volume II, for a description of the Disk Initialization Package. The Disk
Initialization Package is accessed through the Package Manager. See "Package Manager" in
Appendix F for the A/UX C interface.

Event Manager, Operating System

The A/UX Toolbox supports most of the standard Macintosh OS Event Manager routines.
Because the A/UX kernel maintains the event queue, the A/UX Toolbox version of the manager
performs differently. See Inside Macintosh, Volumes II and IV, for a description of the
Operating System Event Manager. See "Event Manager, Operating System" in Appendix F for
the NUX C interface. Also, see "A/UX Dispatch Trap," in Chapter 3, for related information.

The global variable EventQueue always contains the header of an empty queue. Therefore, an
application cannot look directly at the actual queue and must depend on the Operating
System Event Manager routines for manipulating the queue. The AUXDispatch call
AUX _FIND _EVENT may be used to search the event queue for an event.

In the Macintosh OS, all events are put into the queue through the PostEvent routine. In
A/UX, mouse and keyboard events are processed through the kernel, and the system never calls
PostEvent. An application cannot depend on a patch to PostEvent to alert it to mouse
and key keyboard events. The A/UXDispatch call AUX_POST_MODIFIED is the equivalent
A/UXcall.

Chapter 5 Inside A/UX Macintosh 5-9
030-0787-A

Event Manager, Toolbox

The A/UX Toolbox supports all of the routines in the Macintosh as Toolbox Event Manager,
but some of the functions perform differently under A/UX than under the Macintosh as.
See Inside Macintosh, Volumes I and V, for a description of the Toolbox Event Manager.
See "Event Manager, Toolbox" in Appendix F for the A/UX C interface.

The A/UXToolbox supports the Wai tNextEvent call, which allows the system to run more
efficiently in multitasking environments such as the A/UX Finder. Do not use GetNextEvent.

The call takes this syntax:
Boolean WaitNextEvent {mask, *event, sleep,mouseRgn)

unsigned short mask;

struct EventRecord *event;
unsigned long sleep

RgnHandle mouseRgn;

The parameters mask and event are the same as in the GetNextEvent call (described in
Inside Macintosh, Volume O. mouseRgn specifies a screen region. Screen regions are used to
keep track of mouse movements for such purposes as changing cursor appearance as
appropriate for the current location of the cursor. The application receives a mouse-moved
event (one of the App 4 events in the Macintosh aS) only when the mouse strays outside the
specified region. For more information on the Wai tNextEvent call, see Programmer's Guide
to MultiFinder, available through the APDA (see Appendix A "Additional Reading").

When using the Toolbox Event Manager, make provisions for these differences between A/UX
and the Macintosh as:

• The global variable Tick s is not incremented in A/UX. To find out the current tick count,
call the TickCount routine. The -t option to the launch(1) utility creates and maintains
the Ticks variable, but this option absorbs a lot of processor time.

• The GetNextEvent and wai tNextEvent functions do not support FImy resources. This
means they do not perform the special functions tied to COMMAND-SHIFT-numberkey
combinations, such as ejecting the disk in internal drive 0 when the user presses
COMMAND-SHIFT-I.

• Because the global variables KeyThresh and KeyRepThresh are ignored, an application
cannot change key-repeat characteristics.

• Journaling is not supported.

5-10 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

File Manager

The AlUX Toolbox File Manager supports the Macintosh as File Manager.

Files may be accessed across the boundary between the Macintosh OS file environment and
the AlUX file environment. Chapter 6, "File Systems and File Formats," provides information
on how file structure and content change when files move across the boundary. Such changes
include access permissions, file formats, and line-termination codes.

The underlying support for the File Manager is provided by UFS, an implementation of the
BSD 4.2 (Berkeley System Distribution) file system. In addition to being faster than the
System V file system (which is still available), the new file system allows filenames of up to
255 characters. The maximum HFS name is 32 characters, and longer names brought into the
Macintosh as environment are truncated.

For information on the Macintosh as File Manager, see Chapter 19, "The File Manager," in
Inside Macintosh, Volume IV.

See "File Manager" in Appendix F for the AlUX C interface.

Floating-Point Arithmetic and Transcendental Functions
Packages

C programmers rarely, if ever, explicitly call the routines in the Floating-Point Arithmetic and
Transcendental Functions Packages. These packages support the Standard Apple Numeric
Environment (SANE).

Most Macintosh C compilers use SANE. Mathematical functions in the standard C library are
routed through the SANE packages. When a Macintosh binary file that uses SANE is ported to
AlUX, the SANE routines are already in place in the code.

The AlUX C compiler uses the standard AlUX floating-point routines. The SANE packages are
not available to programs compiled under AlUX.

Chapter 5 Inside AlUX Macintosh 5-11
030-0787-A

See Inside Macintosh, Volume II, for a description of the Floating-Point Arithmetic and
Transcendental Functions Packages. See "Package Manager" in Appendix F for the
AlUX C interface to these packages.

Font Manager

The AlUX Toolbox Font Manager is identical to the Macintosh as Font Manager.

See Inside Macintosh, Volumes I, IV, and V, for a description of the Font Manager.
See "Font Manager" in Appendix F for the AlUX C interface.

Gestalt facility

The A!UX Toolbox Gestalt facility provides limited support for the Macintosh as Gestalt.
The Gestalt facility is under development at present, and subject to change. The following
environmental selector is available and may be used to determine if your application is running
under A!UX and, if so, which version.
gestaltAUXVersion = 'a/ux'

Calling Gestalt with this selector returns the version number, with implied decimal points.
If you are not running under AlUX, Gestalt returns a result code of "gestaltUnknownErr,"
value -5550.

To determine if Gestalt is available, use the TrapAvailable function. The Gestalt trap
address is $AIAD. For example, use the following:

5-12 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

FUNCTION GestaltAvailable Boolean;

CONST

_Gestalt = $AIAD;

BEGIN

GestaltAvailable := TrapAvailable(_Gestalt)

END;

Documentation on the Macintosh as Gestalt is in development. See "Gestalt facility" in
Appendix F for the A!UX C interface.

International Utilities Package

The A!UX Toolbox fully supports the Macintosh as International Utilities Package.

See Inside Macintosh, Volumes I and V, for a description of the International Utilities Package.
See "Package Manager" in Appendix F for the A!UX C interface to the International
Utilities Package.

List Manager Package

The A!UX Toolbox fully supports the Macintosh as List Manager Package.

See Inside Macintosh, Volume IV, for a description of the List Manager Package.
See "List Manager Package" in Appendix F for the A!UX C interface.

Chapter 5 Inside A!UX Macintosh 5-13
030-0787-A

Memory Manager

The AlUX Toolbox fully supports the Macintosh as Memory Manager.

The Memory Manager is 32-bit clean and expects to serve applications that are 32-bit clean. If
you need to run an application that uses the older form of 24-bit addressing, there is a special
24-bit environment available in Release 2.0 in which older applications can be run. The special
environment takes care of memory addressing. From within the 24-bit environment, there is
limited access to the standard 32-bit environment.

See Chapter 1, "The Memory Manager," in Inside Macintosh, Volume II, which is intended to be
read in conjunction with related chapters in Volumes I and V. See "Memory Manager" in
Appendix F for the AlUX C interface.

Menu Manager

The AlUX Toolbox Menu Manager is identical to the Macintosh as Menu Manager.

If your application uses custom menu definition functions (see Inside Macintosh, Volume I,
for a description of definition functions), you must provide assembly-language routines to
transform the parameters into Pascal format for compatibility with the ROM (see Chapter 4,
"Compatibility Checklist," and Appendix C, "Implementation Notes").

See Inside Macintosh, Volumes I, IV, and V, for a description of the Menu Manager.
See "Menu Manager" in Appendix F for the AlUX C interface.

Notification Manager

The AlUX Toolbox Notification Manager is identical to the Macintosh as
Notification Manager.

5-14 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

See the Programmer's Guide to MultiFinder for information on the Notification Manager.
See "Notification Manager" in Appendix F for the A!UX C interface.

Package Manager

The A/UX Toolbox supports both Macintosh OS Package Manager routines. The A/UX Package
Manager supports interfacing to the Standard File, Floating-Point Arithmetic, Transcendental
Functions, International Utilities, Disk Initialization, and Binary-Decimal Conversion
Packages. The List Manager Package, available directly as a separate library, is also available
through the Package Manager for historical reasons.

See Inside Macintosh, Volumes I and IV, for a description of the Package Manager. See
"Package Manager" and "List Manager Package" in Appendix F for the A!UX C interface.

Palette Manager

The A/UX Toolbox Palette Manager is identical to the Macintosh OS Palette Manager.

See Inside Macintosh, Volume V, for a description of the Palette Manager. See "Palette
Manager" in Appendix F for the A!UX C interface.

Printing Manager

The A/UX Toolbox Printing Manager is identical to the Macintosh OS Printing Manager.
Release 2.0 supports AppleTalk-based printer drivers (for LocalTalk or Ethernet) and serial
printer drivers.

Chapter 5 Inside A!UX Macintosh 5·15
030-0787-A

See Inside Macintosh, Volumes II and V, for a description of the Printing Manager.
See "Printing Manager" and "Print Traps" in Appendix F for the AlUX C interface.

Resource Manager

The AlUX Toolbox Resource Manager is almost identical to the standard Macintosh OS
Resource Manager. The differences between the two result primarily from differences between
file systems. All Resource Manager calls documented in Inside Macintosh are implemented in
the AlUX Toolbox.

See Inside Macintosh, Volumes I, IV and V, for a description of the Resource Manager. See
"Resource Manager" in Appendix F for the AlUX C interface. Related information on the
resource compiler, rez, and resource decompiler, derez, is available under those titles in
Chapter 3. Appendix E, "Resource Compiler and Decompiler," provides further information.

When using the Resource Manager, you must make provisions for these differences between
the environments:

• Resource files
AlUX files in AppleDouble format store resources and data in separate files. See Chapter 2,
"Using the AlUX Toolbox," and Chapter 6, "File Systems and File Formats," for descriptions
of Macintosh file formats in AlUX. Be careful to keep both files together when copying,
renaming, or otherwise manipulating files.

• Write permission

Your application might not have write permission in the directories containing the System
Folder (typically /mac/lib/System Files) or the application.

• Case-sensitive filenames

Unlike the standard Macintosh OS, AlUX differentiates between uppercase and lowercase
in filenames. Be careful with the filenames in OpenResFile and CreateResFile.

5-16 A/UX Toolbox: Macintosh ROM Interface
030-07B7-A

• Search paths
The standard Macintosh File Manager checks a number of search paths if it cannot find a
file in the specified directory. Because of this feature, the CreateResFile routine can
introduce some subtle inconsistencies in search paths when creating resource files. The
alternative search paths are not supported in NUX. Programs that are intended to run in
both environments should follow the strategies recommended in Macintosh Technical Note
101, even though those strategies are not needed in NUX. Technical notes are available
through APDA, whose address appears in Appendix A, "Additional Readings."

In the absence of the default search paths, an application must explicitly set the default
directory when opening a resource file in the "blessed" folder, usually the System Folder. An
application must first determine the working-directory reference number of the desired
directory, and then set the default directory with the File Manager function Setvol.

See Macintosh Technical Notes#67and # 77 and Inside MaCintosh, Volume IV.

Scrap Manager

The NUX Toolbox Scrap Manager is almost identical to the Macintosh as Scrap Manager.

The only difference between the two Scrap Managers is the way they store material cut to the
Clipboard. The NUX Toolbox Scrap Manager maintains a . clipboard file in your home
directory when you execute an NUX Toolbox application. The contents of the scrap is written
into this file when an application exits, allowing you to cut and paste between applications.

See Inside Macintosh, Volumes I and IV, for a description of the Scrap Manager. See "Scrap
Manager" in Appendix F for the NUX C interface.

Chapter 5 Inside NUX Macintosh 5-17
030-07S7-A

Script Manager

The A/UX Toolbox Script Manager is identical to the Macintosh as Script Manager.

See Inside Macintosh, Volume V, for a description of the Script Manager. See "Script Manager"
in Appendix F for the A/UX C interface.

SCSI Manager

The A/UX Toolbox does not currently support the Macintosh as SCSI Manager functions.
A call to a SCSI Manager routine returns an unimplemented trap message.

You can reproduce the functions of the SCSI Manager in A/UX by writing your own routines
that use A/UX system calls. See Chapter 3, "A/UX Toolbox Utilities and Extensions," for a
strategy for including A/UX system calls in applications that are intended to run under both the
Macintosh as and A/UX.

For an application that is intended to run only under A/UX, you can write an A/UX device
driver. See Building A/UX Device Drivers. A program that uses an A/UX device driver is not
portable to the Macintosh as.

Segment Loader

Applications in the standard Macintosh development environment are written in segments,
which are loaded individually as needed to use memory efficiently. Segments are not used in
the A/UX environment, but the Segment Loader has been implemented to support Macintosh
binary applications launched under A/UX.

See Inside Macintosh, Volumes II and IV, for a description of the Segment Loader.
See "Segment Loader" in Appendix F for the A/UX C interface.

5-18 A/UX Toolbox: Macintosh ROM Interface
030-07B7-A

An application mayor may not contain Segment Loader calls, depending on its format and
intended running environment:

• Standard Macintosh binary files launched under AlUX are loaded by the Segment Loader in
the normal fashion.

• Applications ported to AlUX from Macintosh sources or written to run under both
environments may include calls to Segment Loader routines.

• Applications written to run exclusively under AlUX need not use Segment Loader calls.

Finder information

The format of the file information passed to an application by the AlUX Finder follows
Macintosh as conventions.

When an application is started under AlUX, the application's Finder information is in one of
these states:

• An application developed for AlUX shows no documents selected.

• A Macintosh binary has a Finder document list based on the parameters in the launch(1)
command line.

Segment Loader routines

This section lists the Segment Loader routines that are different in AlUX. The Segment Loader
routines not listed here are implemented exactly as described in Inside Macintosh.

UnloadSeg Performs normally for binary applications that are launched; stubbed out
for native AlUX applications

ExitToShell Issues an exit(2) call

_Chain Not implemented

_Launch Not implemented

Chapter 5 Inside AlUX Macintosh 5-19
030-0787-A

_LoadSeg

The jump table

Performs normally for binary applications that are launched; stubbed out
for native AlUX applications

The jump table works as described in Inside Macintosh for Macintosh applications that are
launched under AlUX; it is not implemented for native AlUX applications.

Summary of the Segment Loader

CurPageOption is always set to 0, meaning there is no alternate screen or sound buffer.

F inderName is always the null string.

Serial Driver

The AlUX Toolbox partially supports the Macintosh OS Serial Driver. The five exceptions to
full support are:

• Asynchronous I/O is not supported.

• Three baud rates are not supported: 3600,7200, and 57600. These rates are mapped to
2400, 4800, and 19200, respectively. This affects control calls 8 (SerReset) and 13
(baudRate).

• Control call 9 (SerSetBuf) has no effect. When called, it just returns.

• Event message posting is not supported. This affects control calls 10 and 14
(SerHShake). If the evts field in the SerShk record is non-zero, an error is returned.

• Status call 8 (SerStatus) will always return ° in the rdPend and wrPend fields.

5-20 NUX Toolbox: Macintosh ROM Interface
030-07S7-A

Eight ioctl calls have been added to the AlUX serial driver to support the Serial Driver running
under AlUX. They are

ioctl(fd,TCRESET,O);
This ioctl causes a reset of the serial line denoted by the file descriptor, fd.

ioctl(jd,TCGETSTAT,&serstat);

This ioctl returns status information for the serial line denoted by fd into the structure
serstat. Ser_frame, ser_ovrun, and ser_parity represent the error counts
that have been tallied since the last call to TCGETSTAT. (These fields are set to 0 when
the call completes.) Ser _ ct s indicates the current status of the CTS signal;
TRUE indicates CTS ON (High). Ser_inflow is TRUE if input is currently blocked
due to flow control. Ser_outflow is TRUE iF output is blocked due to flow control.
The data structure is:

struct sererr

unsigned long ser - frame; /* framing errors */

unsigned long ser_ovrun; /* overrun errors */

unsigned long ser_parity; /* parity errors */

unsigned long ser cts; - /* cts signal */

unsigned long ser inflow; - /* input flow control */

unsigned long ser_outflow; /* output flow control */

ioctl(fd,TCSETDTR,O);
This iocd turns on the DTR line (drives it high) for the serial line denoted by jd.

ioctl(fd,TCCLRDTR,O);
This ioctl turns off the DTR line (drives it low) for the serial line denoted by fd.

ioctl(fd,TCSBRKM,O);
This ioctl sets break mode (starts a line break signal) for the serial line denoted by fd.

ioctl(fd,TCCBRKM,O);
This ioctl clears break mode (terminates a line break signal) for the serial line denoted
byfd.

ioctl(fd,TCSETSTP,&chr);
This ioctl sets the stop character for flow control for the serial line denoted by fd.
chr points to a byte containing the new stop character.

Chapter 5 Inside AlUX Macintosh 5-21
030-0787-A

ioctl(fd,TCSETSTA,&chr);
This iocd sets the start character for flow control for the serial line denoted by fd.
chr points to a byte containing the new start character.

The developer of a driver for a serial board must support these eight calls in the driver's iocd
routine if the Serial Manager is to work properly. The second argument to the iocd routine is
the cmd argument that contains the iocd command, such as TCRESET.

See "Serial Driver" in Appendix F for the AlUX C interface.

Shutdown Manager

The AlUX Toolbox supports all Macintosh as Shutdown Manager routines, but not necessarily
with identical behavior.

ShutDwnlnstall and ShutDwnRemove perform as described in Inside Macintosh,
Volume V. Both ShutDwnPower and ShutDwnStart first execute any routines in the queue
and then exit to the user's login shell.

See Inside Macintosh, Volume V, for a description of the Shutdown Manager. See "Shutdown
Manager" in Appendix F for the AlUX C interface.

Slot Manager

The AlUX Toolbox Slot Manager partially supports the Macintosh as Slot Manager.
Details follow, keyed to the summary in "Slot Manager," in Inside Macintosh, Volume V.

• All principal routines are supported:
SRsrclnfo

SNextRsrc

SNextTypesRsrc

SReadDrvrName

5-22 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

• Specialized routines are supported except for one routine:
SReadByte

SReadWord

SReadLong

SGetcString

SGetBlock

SFindStruct

SReadStruct

SReadInfo

SReadPRAMRec

SPutPRAMRec

SReadFHeader

SCkCardStatus

SFindDevBase
SDeleteSRTRec

SPtrToSlot

Not supported

• Advanced routines are supported as follows:
InitSDeclMgr Not supported
SPrimaryInit Not supported
SCardChanged
SExec

SOffsetData

SReadPBSize

SCalcStep
InitsRsrcTable

InitPRAMRecs

SSearchSRT

SUpdateSRT

SCalcSPointer
SGetDriver

SFindsInfoRecPtr

SFindsRsrcPtr

Not supported

Not supported
Not supported

Not supported
Not supported

Chapter 5 Inside AlUX Macintosh 5-23
030-07S7-A

• Assembly-language routine selectors are supported as follows:
sReadByte

sReadWord

sReadLong

sGetcString

sGetBlock
sFindStruct

sReadStruct

sReadlnfo

sReadPRAMRec

sPutPRAMRec

sReadFHeader

sNextRsrc

sNextTypesRsrc

sRsrclnfo
sDisposePtr

sCkCardStatus

sReadDrvrName

sFindDevBase
InitSDeclMgr

sPrimarylnit

sCardChanged
sExec

sOffsetData
InitPRAMRecs

sReadPBSize

sCalcStep
InitsRsrcTable

sSearchSRT

sUpdateSRT

sCalcsPointer
sGetDriver

sPtrToSlot
sFindslnfoRecPtr

sFindsRsrcPtr
sDeleteSRTRec

Not supported

Not supported
Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

Not supported

5-24 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

See Inside Macintosh, Volume V, for a description of the Slot Manager. See "Slot Manager"
in Appendix F for the AlUX C interface.

Sound Manager

The AlUX Toolbox partially supports the Macintosh OS Sound Manager, as documented in the
Technical Note of October 2, 1988, mentioned below. Operating with the virtual memory
environment of AlUX, the Sound Manager can process files of any desired length. A Raw Sound
Driver is also available for use outside the AlUX Toolbox, as in shell scripts.

The exceptions to full support for the Sound Manager are

• only one sampled channel, instead of two.

• maximum sampling rate is 22K, rather than 44K.

• no tickle commands.

• for the _SndAddModifier trap, no addMod command for synthesizer modules.

The reason for this is synthesizer modules must go in the kernel. Current synthesizers are
supported for noteSynth, waveSynth, and sampledSynth. Modules for new
synthesizers would need to be ported to the kernel.

MIDI synthesizers are not supported in Macintosh OS 6.0.5 or AlUX Release 2.0.

If the system has too heavy a load of other activities, sound production is affected. The
process slows, and the sound begins to have gaps or sputtering. This may happen under the
Macintosh OS or AlUX.

The sample folder contains demonstration and sample programs that use the Sound Manager.

The description of the Sound Manager in Inside MaCintosh, Volume V, has been replaced
by the Technical Note titled "The Sound Manager," by Jim Reekes, dated October 2, 1988.
See "Sound Manager" in Appendix F for the AlUX C interface.

Chapter 5 Inside AlUX Macintosh 5-25
030-0787-A

Support details

Here are the details on trap support.

• Commands sent normally only by the Sound Manager are supported with one exception.
nullCommd
initCmd

freeCmd

quietCmd

flushCmd

Supported for note, wave, and sampled synthesizers

• Sync controls are fully supported.
waitCmd

pauseCmd

resumeCmd

callBackCmd

syncCmd

emptyCmd

• This noteSynths only command is supported.
timbreCmd

• The waveTableSynth only commands are supported.
waveTableCmd

phaseCmd

• The sampledSynth only commands are supported.
soundCmd

bufferCmd

rateCmd

continueCmd

• Synthesizer resource IDs with SndNewChannel are partially supported.
(No Midi commands.)

noteSynth

waveTableSynth

sampledSynth
midiSynthln

midiSynthOut

Not supported
Not supported

5-26 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

• Init options for SndNewChannel, sampled synthesizer only, are partially supported.
initChanLeft Ignored, defaults to mono
initChanRight Ignored
initSRate22k
initSRate44k

initMono
initStereo

Not supported, defaults to 22K

Not supported, defaults to mono

• Init options for SndNewChannel, wave table synthesizer only, are supported.
initChanO

initChanl

initChan2

initChan3

The Raw Sound Driver

The Raw Sound Driver is available to AlUX without calling upon the Sound Manager (for use in
shell scripts, and so forth), as
/dev/snd/raw

To use the Raw Sound Driver, prepare a file of sampled sound resources and send it (via cat,

for instance) to the device. For example, to send a file called sndF ile, use the following:
cat sndFile > /dev/snd/raw

Sending a character to
/dev/snd/reset

resets the synthesizer driver in the kernel, resetting both the Sound Manager and the Raw
Sound Driver. Here is a reset example using the echo command:
echo sndFile 'x' > /dev/snd/reset

Chapter 5 Inside AlUX Macintosh 5-27
030-0787-A

The sampling rate of the Raw Sound Driver is 22K by default. To change the rate, use an iocd to
the same device. The iocd sends a structure to the raw sound driver. The structure, named
rawSndCtl, contains a field called sampleRate, which contains a 4-byte value interpreted
as a fixed-point binary number with an implied binary point between the upper and lower
words. The value is a multiplier used to reduce the 22K maximum rate. The value of
$ 0 0 0 1 0000, meaning $1 . 0000, preserves the default rate. Here is an example setting the
rate to 7K. Calculate the multiplier:

7K!22K = .318 (decimal value)

Multiply by $00001.0000 to adjust for the binary point and convert to hexadecimal
($00001.0000 = 65536).

65536 • .318 = 20852 = $0000.5222

In practice, the value need not be calculated so precisely.

Here is an example C routine that places $00005222 in the rawSndCtl structure and sets the
driver with an ioctl.
#include <mac/sm.h>
#include <sys/types.h>
#include <sys/ssioctl.h>
#include <sys/sys/sm_aux.h>
#include <sys/file.h>
#define SAMPLERATE Ox5222 /* (7k/22k) * 65536 */

main ()

int snd_fd;

struct rawSndCtl rawSndlnfo;

if ({snd_fd = open{If/dev/snd/rawlf,O_WRONLY)) < 0) {
printf("open failed\n");
exit(l);

rawSndlnfo.sampleRate = SAMPLERATE;
rawSndlnfo.flags = 0;
if (ioctl(snd_fd, SND_RAW CTL, &rawSndlnfo) < 0)

printf("ioctl failed\n");
close(snd_fd);

5-28 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Standard File Package

The A/UX Toolbox Standard File Package is almost identical to the Macintosh as Standard
File Package. See Inside Macintosh, Volumes I and IV, for a description of the package.

See "Package Manager" in Appendix F for the A/UX C interface to the Standard File Package.

System Error Handler

The A/UX Toolbox supports the single Macintosh OS System Error Handler routine,
SysError.

When the system issues the SysError call, the System Error handler writes a brief error
message to the program's stderr file and terminates the program, with an exit status of 1.
The error message contains the error number and location from which SysError was called.

See Inside Macintosh, Volumes II, IV, and V, for a description of the System Error Handler.
See "System Error Handler" in Appendix F for the A/UX C interface.

TextEdit

The A/UX Toolbox TextEdit is identical to the Macintosh OS TextEdit. You can set up
low-level routines to perform tasks such as customized word-breaking, but you must provide
assembly-language routines to handle the interface between TextEdit and your custom
routines. The TextEdit interface is based on registers. This interface follows neither Pascal
nor C conventions, and it varies from call to call.

See Inside Macintosh, Volumes I, IV, and V, for a description of TextEdit. See "TextEdit" in
Appendix F for the A/UX C interface.

Chapter 5 Inside A/UX Macintosh 5-29
030-0787-A

Time Manager

The NUX Toolbox provides a less accurate implementation of the standard Macintosh Time
Manager. The NUX Toolbox Time Manager uses the A/UX seti timer(2) system call. Because
of the NUX kernel's processor-allocation strategies, response from the Time Manager may be
delayed an arbitrary amount of time depending on other system activity. Even when it is
operating without interference, the NUX Time Manager provides accuracy to only
one-sixtieth of a second.

When you use the Time Manager in an application, you must observe these limitations:

• You must not make calls to the A/UX C library routines alarm(2), set it imer(2),
and sleep(2).

• You must not use signal(2) to change the status of the SIGALRM signal.

See A/UX Programmer's Reference for more information on set it imer(2).

See Inside Macintosh, Volume IV, for a description of the Time Manager. See "Time Manager"
in Appendix F for the NUX C interface.

Utilities, Operating System

The NUX Toolbox contains some of the Operating System Utilities:

• Routines that manipulate pointers and handles and compare strings are fully functional.

• Routines that read the date and time behave differently (see the next section, "Date and
Time Operations").

• Routines that manipulate parameter RAM are fully functional.

• The queueing and trap vector routines are fully functional.

• The miscellaneous utilities Delay, SysBeep, and Environs are fully functional.

• The StripAddress routine always returns the pointer unchanged in the 32-bit
environment; the routine functions in the 24-bit environment.

5-30 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

See Inside Macintosh, Volumes II, IV, and V, for a description of the Operating System
Utilities. See "Utilities, Operating System" in Appendix F for the A!UX C interface.

Date and time operations

To find out the correct date and time, use the ReadDateTime utility. The global variable
Time is set when a program starts running, and it is not updated. Therefore, GetDateTime

always returns the time when the program started running.

Because setting the system clock through either the da t eO) command or the s t ime(2) call
requires A!UX superuser status, you cannot change the clock setting through A!UX Toolbox
calls. The SetDateTime utility returns the error clkWrEr.

Miscellaneous utilities

Because the Restart routine results in a privileged 680xO instruction not available to
programs running at the user level, it is not supported in AlUX. Instead, use the Shutdown
Manager routines (see "Shutdown Manager" earlier in this chapter).

Delay, SysBeep, and Environs are fully functional.

SetUpA5 and RestoreA5 are dummy routines that return with no action.

The StripAddress routine always returns the pointer unchanged.

Utilities, Toolbox

All Macintosh OS Toolbox Utilities routines are implemented in the A!UX Toolbox.

See Inside Macintosh, Volumes I and IV, for a description of the Toolbox Utilities.
See "Utilities, Toolbox" in Appendix F for the A!UX C interface.

Chapter 5 Inside A!UX Macintosh 5-31
030-0787-A

Vertical Retrace Manager

All of the Vertical Retrace Manager routines described in Inside Macintosh, Volume II,
are implemented in A/UX. None of the Vertical Retrace Manager routines described in
Inside Macintosh, Volume V, are implemented.

The A/UXVertical Retrace Manager routines are implemented using the A/UX setitimer(2)

system call. Because of changes in the Macintosh II ROM that allow for multiple video
options, tasks scheduled by the Vertical Retrace Manager are not necessarily run during the
vertical retrace. Like Time Manager routines, Vertical Retrace Manager routines in A/UX may be
delayed an arbitrary length of time depending on other system activity.

When you use the Vertical Retrace Manager, you must observe these limitations:

• You cannot make calls to the A/UX C library routines alarm(2), setitimer(2), and
sleep(2) .

• You cannot use signal(2) to change the status of the SIGALRM signal.

See AJUX Programmer's Reference for more information on the A/UX calls used by the Vertical
Retrace Manager. See "Vertical Retrace Manager" in Appendix F for the A/UX C interface.

Window Manager

The A/UX Toolbox Window Manager is almost identical to the Macintosh OS Window
Manager. The difference in A/UX is that the window's variant code is not stored in the
windowDefProc field of the window record. To get the variant code, use the new
Window Manager call GetWVariant, described in Inside MaCintosh, Volume V.

See Inside Macintosh, Volumes I, IV, and V, for a description of the Window Manager.
See "Window Manager" in Appendix F for the A!UX C interface.

5-32 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Chapter 6 File Systems and File Formats

This chapter describes how the file systems in A!UX and in the Macintosh
as differ. Users and applications may access files from either the
A!UX environment or from the A!UX Toolbox that supports a Macintosh
as environment, as convenient, and files may be transferred between the
two environments by users and by applications, without any special
requirements. The chapter describes the results of the automatic
conversion that is done when files cross the boundary between the two
environments, and the formats used for storing Macintosh files in A!UX.

6-1
030-0787-A

File systems

The design of file systems in A!UX and in the Macintosh as differ, but file-system functions
are mapped between the two environments so that files may be transferred between the two
or accessed from either environment by A!UX Toolbox programs.

File system, as used in this chapter, refers to general design and implementation. In the UNIX
operating system, the term file system is used for a subset of the general file-handling design.
When this meaning is meant, that is specifically stated.

One theme of these general file systems is high-level functionality. Por A!UX, each file system
mounted under the root hierarchy provides high-level UNIX operations such as open, create,
and delete, regardless of the underlying physical implementation (SVFS, UPS, NFS, and so on).
The Macintosh as file system provides equivalent functionality for files in volumes under its
control. The discussion in this chapter will stay at the high-level view, except for discussion of
the format of Macintosh files and the consequences of that structure for file operations.

Overall ftle organization

The A!UX kernel (or any UNIX kernel) represents external storage to applications as a single,
hierarchical volume having the root designated by slash U), the root directory. The one
volume may contain multiple file systems. A file system, in this technical sense, is a
combination of routines for manipulating files together with associated data structures and
provides support for high-level calls dealing with files (open, create, delete, and so on) that are
under the domain of the file system. An A!UX file (or any UNIX file) is seen by the A!UX system
as a stream of bytes. Any further structure within a file is created and maintained by
applications interested in having such a structure.

In the UNIX design, subordinate file systems may be added to or removed from the one
volume only by formal mount and unmount operations.

6-2 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

The Macintosh File Manager represents external storage to applications as a collection of
volumes, each having an associated file system and driver. Each volume is, or was, associated
with a different physical device. (As the Macintosh as developed in scope, it became
possible to partition a large storage device into more than one volume.) The file system
interprets high-level operations into low-level driver calls; the driver handles device-dependent
requirements. Each volume contains an independent file-system hierarchy, the root of which is
represented by the volume name. Applications call on the File Manager by means of A-line traps
to manipulate the volumes and the files within them. Each file within the volume has a defined
structure, consisting of two "forks," a data fork and a resource fork, and a third element
(a quasi-fork) containing the Finder information.

In the Macintosh design, volumes are independent. The user may add or remove volumes
(floppy disks, for instance) as desired. The system keeps track, in a general way,
of these volumes.

Both designs organize files in a tree structure. Files are grouped into directories (AlUX) or
folders (Macintosh aS). Directories and folders are functionally equivalent. A directory or
folder may hold other directories or folders as well as files.

Pathnames and ftlenames

In both file-system designs the location of any file within the complete file tree can be
specified by a pathname. The pathname lists the sequence of directories or folders in
hierarchical order and ends with the specific filename. (Pathnames for a directory or folder
end with a directory or folder.) In AlUX, the full pathname starts with the root volume CI);
in the Macintosh as, the full pathname starts with a volume name.

Pathnames require a special character as a delimiter between directory or folder names and the
filename. The AlUX pathname uses the slash (/) as a delimiter and the Macintosh as pathname
uses the colon (:). Here is an example of each type:
/users/fred/memos/tripmems AlUX
fred's stuff:memos:trip memos Macintosh

The restrictions for an AlUX filename depend on the type of file system in use where the file
resides physically. The file system may be UFS (a BSD file system), SVFS, or NFS; all are
supported under the AlUX operating system.

Chapter 6 File Systems and File Formats 6-3
030-0787-A

A Macintosh filename consists of any sequence of 1 to 31 eight-bit characters, excluding
colons (the pathname delimiter).

In System V, a filename consists of 1 to 14 seven-bit characters, excluding slashes
(the pathname delimiter). With the Berkeley File System, which is now the default system
accessed via the Toolbox, A/UX filenames may consist of 1 to 255 eight-bit characters
(slashes excluded).

When comparing filenames, the A/UX file system distinguishes between upper-case and
lower-case versions of a character; the Macintosh file system does not distinguish uppercase
and lowercase characters. This fact poses a problem for programs, such as development tools
and utilities, that assume a case-insensitive file-system environment.

Although a space character may be used in an A/UX filename, practical considerations suggest
that a space should never be used. For example, suppose a user saves a text file under the name
my report and attempts to access it under A/UX using the vi editor. When the user enters
vi my report

the editor will not locate the file. The editor will create two new files, called my and report,

or will access a file of either name, if present. To access my report, under A/UX, the user
must quote file name or the space, as follows:
vi "my report"

vi my\ report

Because blanks are used as a practical delimiter between filenames by the shell programs that
provide user interface throughout the A/UX (or any UNIX) system, blanks should not be used in
filenames. However, Macintosh filenames routinely use spaces.

Access permissions

Because UNIX is a multi-user system, every A/UX file has an associated set of access
permissions. There are three categories of user: owner, group, and other. For each category,
there are three types of usage: read, write, and execute.

6-4 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

The Macintosh file system has no set of access permissions for user files. (System files have
restrictions on access.) The AppleShare permission structure was developed for use of files in a
multi-user environment. AppleShare permissions are in three categories; "See Folders,"
"See Files," and "Make Changes." AppleShare permissions apply only to folders (directories)
and do not provide individual file permissions.

What happens to the file permissions when an AlUX file is transferred to the Macintosh as file
system? Conversely, when a file is transferred from the Macintosh as to the AlUX file system,
how are the permissions assigned? In brief, UNIX (AlUX) permissions and AppleShare
permissions are mapped from and to each other, as appropriate.

Table 6-1 shows how AlUX permissions are mapped to Macintosh as.

• Table 6-1 AlUX permissions mapped to Macintosh as permissions

A/QX Permissions Macintosh OS Permissions

Read Write Execute Folders Files Changes

No No No No No No
No No Yes No No No
No Yes No No No No
No Yes Yes No No Yes
Yes No No No No No
Yes No Yes Yes Yes No
Yes Yes No No No No
Yes Yes Yes Yes Yes Yes

Under the AlUX Finder, Macintosh as (AppleShare) permissions may be set. Table 6-2 shows
how these Macintosh permissions are mapped to AlUX. Setting access permissions on the root
(/) volume from the AlUX Finder is not supported.

Chapter 6 File Systems and File Formats 6-5
030-0787-A

• Table 6-2 Macintosh OS permissions mapped to A!UX permissions

Macintosh OS Permissions AlUX Permissions

Folders Files Changes Read Write Execute

No No No No No No
No No Yes No Yes Yes
No Yes No Yes No Yes
No Yes Yes Yes Yes Yes
Yes No No Yes No Yes
Yes No Yes Yes Yes Yes
Yes Yes No Yes No Yes
Yes Yes Yes Yes Yes Yes

Extended ftIe attributes

In the A/UX file system, a file has associated with it a general type-regular, directory,
character or block special, or FIFO-but no special repository of information about the file.
However, the Macintosh OS file system provides each file with a set of extended attributes
used by the Finder and other system tools. These attributes include the file type, which among
other things tells whether or not it is executable; the file creator name; the screen location and
icon ID, which the Finder uses to display the file icon; and the comment field, which is for
display when the user requests file information.

In order to accommodate the Macintosh environment's needs for such attributes, A/UX uses
special file formats when storing a file of Macintosh as origin. These formats preserve the
extended file attributes.

. The details of these file formats are given in later sections. Here is a brief summary:

• Using the AppleSingle format places all the attribute information at various specified
locations within the one new file, which also contains the file's data.

• Using the AppleDouble format creates two files, one containing the attribute information
in specified locations, together with other information. The second file contains the data.

• There are additional special-purpose formats, one of which (the "triple" file) creates a
special file to hold the attribute information.

6-6 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Text ftles

A text file created by a Macintosh application running under the NUX Toolbox has
these attributes:

• Lines are terminated by return characters (ASCII value OxOD).

• The file's data is accompanied by a set of Finder information that includes the file's type
and creator. The file type is 'TEXT' and the creator varies with the application.

A text file created by an NUX program, such as vi(1), has these attributes:

• Lines are terminated by line feeds (ASCII value OxOA).

• The text file has no associated type or creator information. When such a file enters the
NUX Finder environment, it receives a file type and creator based on the rules described in
the next section, "Automatic Conversion." If all goes well, an AlUX text file will get a file
type of 'TEXT' and a creator t~at is user selected.

Line termination characters are translated on the fly when a file is moved between the two
environments. Macintosh text-file return characters become line feeds, and NUX file line feeds
become return characters. Text editors and other programs that handle text find the expected
line-termination character, depending on the environment in which the file is read and not on
the actual termination character used in the file. When an application running under the NUX
Toolbox reads a text file, the lines will be terminated by returns. When that application stores
the file, the line termination character used depends on the environment in which the file is
placed. If the file goes into the NUX environment, the terminations will be line feeds. All this is
essentially transparent to the user.

Chapter 6 File Systems and File Formats 6-7
030-0787-A

Automatic conversion

When a file is transferred from one file system to the other, as by dragging, the file is
automatically converted. When a Macintosh file is placed in the A!UX file system, it goes into
one of three formats: AppleDouble, AppleSingle, or Plain. In brief, the AppleDouble format
produces two files, one containing data and the other containing resource and finder
information; the AppleSingle file contains everything in one file; and the Plain file contains
data only, and corresponds to the data file of an AppleDouble pair. Which format is used
depends on information kept in three fields of the extended-attribute portion of the file:
the type, creator, and flag setting.

The process is summarized in Table 6-3.

• Table 6-3 Automatic conversion of Macintosh files

These attributes:

Type Creator Flag setting Result in this format

APPL [any] No INITs=l AppleDouble
TEXT [any] N/A AppleDouble (or Plain)
A!UX [any] N/A AppleDouble
COFF A!UX N/A Plain
SHEL A!UX N/A Plain
XAPP A!UX N/A Plain
BIN A!UX N/A Plain
All others AppleSingle

As Table 6-3 shows, there are three ways to ensure conversion to Apple Double format.

• Set the type to APPL and set the flag (the No INITs flag is bit #7 of Info. fdFlags)

as shown

• Set the type to 'TEXT'

• Set the creator to 'A/UX'

6-8 A!UX Toolbox: Macintosh ROM Interface
030-07B7-A

The first way allows programs (such as CommandShell) to have their own icon while ensuring
AppleDouble format. The second and third ways allow files that may have INITs to be
AppleDouble. In the second instance, the entry shows a special exception that occurs when
there is no resource fork. When a Macintosh as application processes an A!UX text file, the
file remains a Plain file unless the application creates resource information for that file, in
which case the file system makes a second file to hold that information. The two files
constitute an AppleDouble pair.

An A!UX file transferred into the Macintosh file system simply becomes a standard Macintosh
file. Access permissions are lost. Text files and shell files have their line termination characters
automatically translated from line feed to return characters, as described under "Text files,"
earlier in this chapter.

Mounting and unmounting floppy disks

Under A!UX (or any UNIX system), the file system can recognize a file structure on a floppy
disk and grant appropriate access only if the disk is mounted. The mounting provides, among
other things, a specific location in the file tree for the files on the disk. To remove that file
structure, the disk is unmounted. Mounting and unmounting are system operations, separate
from physically inserting and removing the floppy disk.

Under the Macintosh file system, users are accustomed to inserting and removing floppy disks
as convenient or desirable. To the file system, each physical device (such as a floppy disk) is a
separate volume and can be dealt with as an independent volume. If a disk has a recognizable
file structure, then it is accessible without a formal mount operation; and removing the floppy
does not require an unmount operation.

To prevent grave problems, a Macintosh as file system cannot be mounted under the A!UX file
tree. A Macintosh application cannot use the A!UX Toolbox file system to mount (or
unmount) a Macintosh file volume (such as a floppy disk) as part of the A!UX file tree.
As described in the previous section, "Automatic Conversion," individual Macintosh files
may be placed under A!UX, after which the file becomes some variety of A!UX file.

An application may, via the appropriate A!UX system calls, mount, access, and unmount
floppy disks under the A!UX file system by using A!UX file handling methods. More typically,
an application running under the A!UX Toolbox may deal with any number of floppy disks as
Macintosh volumes in the usual way.

Chapter 6 File Systems and File Formats 6-9
030-0787-A

In short, when an application is running under the A?UX Toolbox, all floppy disk files that it
"sees" (can access) are on Macintosh volumes. It does not "see" any AlUX files on floppy disks
except by access through the AlUX file system.

Storing ftles in the Macintosh OS and in A!UX

In the Macintosh as, a file consists of two forks: a data fork and a resource fork. In general,
the data fork contains user data, such as the text in a word-processing document, and the
resource fork contains resources used by the application. Resources include commonly used
structures such as screen dialogs and icons, as well as the body of an application's code
(see Inside MaCintosh, Volume I, for a description of resources).

Although a file can contain two forks, one of the two forks might be empty. A file that holds a
document created by an application, for example, often contains only a data fork, with an
empty resource fork. Similarly, the file that holds an executable application may contain only
resources, with an empty data fork. Figure 6-1 illustrates the elements of a file in the Macintosh
as. Text in brackets in the figure represents elements that may be absent from the file.

• Figure 6-1 Elements of a file in the native Macintosh as environment

Data Resource
fork fork

[Application- Resources,
specific including

data] 'CODE'
resources

Macintosh application in
Macintosh as

6-10 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

Data Resource
fork fork

User [Document-
data specific

resources]

Document created by Macintosh
application in the Macintosh os

The Macintosh as file system also stores extended file attribute information in a separate
record in the directory. See Inside Macintosh, Volume IV, for a description of the hierarchical
file system (HFS) file directory information. For a description of the obsolete Macintosh flat
file system (MFS) and its file-directory information, see Inside Macintosh, Volume II.

The A!UX file structure makes no distinction between data and resources, and the A!UX
directory structure makes no provision for the Macintosh file attribute information. Apple has
developed two standard file formats that you can use to store Macintosh-style files in A!UX:

• AppleSingle format

All contents and file information are kept in a single file.

• AppleDouble format
The contents of the data fork are stored in one file, known as the data file; resources and
file attribute information are stored in a separate file, known as the header file. The header
file has the same name as the data file, except that the header file is prefixed with a
percent sign (%).

The AppleDouble format is a good choice for text data and data to be shared with UNIX
utilities, because the data fork is available as an isolated file. When moving an AppleDouble
file with UNIX utilities, remember to move both files.

The internal formats of AppleSingle and AppleDouble files are discussed in "AppleSingle and
AppleDouble Format Internals," in the next section of this chapter.

• Note: From the point of view of an application or a user, the distinctions between
the two file formats discussed here are not important. The A!UX Toolbox File
Manager insulates an application from having to consider these details.

An A!UX file, standing alone, remains a Plain file but is recognized as an AppleDouble data file.
(This allows A/UX Toolbox applications to access files created by conventional UNIX utilities,
such as text editors.) An A!UX Toolbox application processing a Plain file may cause the
creation of a header file for that data file in certain circumstances, resulting in an actual
AppleDouble file. The four cases in which the file remains a Plain file are shown in the section
"Automatic conversion," earlier in this chapter. If the combination of file type and creator is
changed to anything other than a type of COFF, SHEL, XAPP, or BIN, with a matching creator
of A!UX, then resource information is generated and written to a header file with the same
name as the data file, except that the header file name is prefixed with a percent sign (%).

Chapter 6 File Systems and File Formats 6-11
030-07S7-A

Like a Macintosh OS file, an A!UX AppleSingle file might contain both data and resources,
data and no resources, or resources and no data. An AppleSingle file always contains file
information entries, although the entries for a newly created file might be undefined.

An AppleDouble data file is accompanied by a header file containing the file attribute
information. The header file can-but need not-contain resources. An AppleDouble header
file can exist without an associated data file.

Figures 6-2 and 6-3 illustrate the typical contents of AppleSingle and AppleDouble files in A!UX.
Text in brackets in the figures represents elements that may be absent from the file.

• Figure 6-2 Typical contents of an AppleSingle file

docname .. .

Header Finder info Resource fork

[Document-specific
resources]

AppleSingle document file

Header Finder info Resource fork

Resources,
including

Data fork

User data

[Data fork]

[Application
specific data]

Macintosh binary application transferred to an A/UX AppleSingle file

6-12 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

• Figure 6-3 Typical contents of a pair of AppleDouble files

Document -
files

Application
files

docname %docname

Data fork Header

User data

Data file Header file

AppleDouble document file

appname

Data fork

[Application
specific data]

lDatafilel

%appname

Header

. Header file

Finder info Resource fork

[Document-
specific

resources]

Finder info Resource fork

Resources,
including
'CODE'

resources
CC Cc

Macintosh binary application transferred to a pair of AppleDouble files

appnanie

COFF
executable CC

fde ·c

A/UX-linked .
code

Data. file Cc CCC

%appnanie

[Header] [Finder info]

A/UX Toolbox application built in A/UX

[Resource fork]

[Resources,
including
'CODE'

resources]

Chapter 6 File Systems and File Formats 6-13
030-0787-A

When you compile and link an application under A!UX, the result is a standard executable
Common Object File Format (COFF) file. The Macintosh as will consider the COFF file to be
an AppleDouble file. As mentioned above, so long as the type remains 'COFF' and the creator
'A/UX' , no unnecessary header file is created.

If you have used a general-purpose utility to transfer files from the Macintosh OS to A!UX, you
might also have Macintosh files stored in a simple A!UX format. The kermit(1C) utility, for
example, transfers the two forks of a Macintosh file separately into a pair of A!UX files that
follow neither AppleSingle nor AppleDouble format. The data fork is placed in one file, and the
resource fork is placed in a file with the same name plus the extension. res. (See Section IC
of A/UX Command Reference for a description of ke rmi t.) For compatibility with other
tools, the A!UX Toolbox file-conversion utility, fcnvt(1), recognizes this structure.

Figure 6-4 illustrates the possible contents of Macintosh files in simple A!UX format. Text in
brackets in the figure represents elements that may be absent from the file.

• Figure 6-4 Elements of Macintosh data and resource files in simple A!UX format

docname

Data fde

User data

docname.res

[Resource fde]

Document
specific

resources

[Resource file)

Document file either created by an A/UX
Toolbox application and converted to simple
AiUX format, or created in Macintosh OS and
transferred to a simple A/UX file

appname

[Data fde]

[Application
specific data]

[Data .. file]

appname.res

Resource rde

[Resources,
including
'CODE'

resources]

ResQurceJile

Macintosh binary application transferred to
a simple A/UX file

When you create a Macintosh-compatible file under A!UX, the A!UX Toolbox uses these
formatting strategies:

6-14 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

• In almost all circumstances, the A/UX File Manager creates AppleSingle files. Therefore,
when an A/UX Toolbox application creates a file through File Manager calls, it creates an
AppleSingle file.

• When the File Manager receives a request to open an AppleDouble data file, it
automatically looks for the associated header file. The application does not specify the
format of the file when issuing the call; the File Manager itself checks the format of the file.

• The A/UX implementation of the resource compiler, re z(1), creates only an AppleSingle
file. See See Chapter 3, "A/UX Toolbox Utilities and Extensions," and Appendix E,
"Resource Compiler and Decompiler," for a description of re z.

The A/UX Toolbox provides utilities for converting files and manipulating their formats:

• The fcnvt(1) utility converts files among AppleSingle format, AppleDouble format, and
four other formats.

• The settc(1) utility adds or changes the file type and creator of an AppleSingle file or an
AppleDouble header file.

See Chapter 3, "A/UX Toolbox Utilities and Extensions," for more details.

AppleSingle and AppleDouble format internals

AppleSingle format stores the data, resources, and attributes of a Macintosh file in a single
A/UX file. AppleDouble format stores a file's data in one file and stores the resources and
attributes in another file.

This section uses these terms:

• Home file system is the file system for which the file's contents were created, not
necessarily the file system in which the file was created. Macintosh is the home file system
for all A/UX Toolbox applications and all documents created with A/UX Toolbox
applications.

• Foreign file system is the other file system that will store or process the file. A/UX is the
foreign file system for all A/UX Toolbox applications and all documents created with
A/UX Toolbox applications.

Chapter 6 File Systems and File Formats 6-15
030-07S7-A

AppleSingle format

In AppleSingle format, all of a file's contents and attributes are stored in a single file in the
foreign file system.

An AppleSingle file consists of a header followed by one or more data entries. The header
consists of several fixed fields and a list of entry descriptors, each pointing to an entry.

Table 6-4 describes the contents of an AppleSingle file header.

• Table 6-4 AppleSingle file header

Fie1d

Magic number
Version number
Home file system
Number of entries
Entry descriptor for each entry:

Entry ID
Offset
Length

Length

4 bytes
4 bytes

16 bytes, ASCII encoded
2 bytes

4 bytes
4 bytes
4 bytes

Byte ordering in the file header fields follows MC68000, MC68020, and MC68030 conventions.
The fields follow these conventions:

• Magic number

This field, modeled after the AlUX magic-number feature, specifies the file's format.
Apple has defined the magic number for AppleSingle format as Ox00051600.

• Version number
This field allows for the evolution of AppleSingle format. This section describes version
Ox00010000.

• Home file system
This field defines the home file system. It contains a 16-byte ASCII string, which is not
preceded by a length byte but which can be padded with spaces. Apple has defined
these strings:

6-16 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Macintosh 'Macintosh' or Ox4D616369 Ox6E746F73 Ox68202020 ...

ProDOS 'ProDOS' or Ox50726F44 Ox4F532020 Ox20202020 ...

MS-DOS 'MS-DOS' or Ox4D532D44 Ox4F532020 Ox20202020 ...
UNIX 'Unix' or Ox556E6978 Ox20202020 Ox20202020 ...
VAX!VMS 'VAX VMS' or Ox56415820 Ox564D5320 Ox20202020 ...

All A/UX Toolbox applications work with files whose home file system is Macintosh.

• Number of entries

This field reports how many different entries are included in the file. It is an unsigned 16-bit
number. If the number of entries is any number other than 0, then that number of entry
descriptors immediately follows .

• Entry ID

This field defines what the entry is. The field holds an unsigned, 32-bit number. Apple has
defined a set of entry IDs and their values:

Data fork 1 Standard Macintosh data fork
Resource fork 2 Standard Macintosh resource fork
Real name 3 File's name in its home file system
Comment 4 Standard Macintosh comment
Icon, B&W 5 Standard Macintosh black-and-white icon
Icon, color 6 Reserved for Macintosh color icon
File Info 7 File information: attributes, and so on
Finder Info 9 Standard Macintosh Finder Info

Apple reserves the range of entry IDs from 0 to Ox7FFFFFFF. The rest of the range is
available for other definitions. Apple does not arbitrate the use of the rest of the range.

Icon entries do not appear in most files because they are typically stored as a bundle in the
resource fork of the application file.

The structure of the File Info entry is different for each home file system. For Macintosh
HFS files, the entry is 16 bytes long and consists of three long integer dates (Create Date,
Last Modification Date, and Last Backup Date) and a long integer containing 32 Boolean
flags. Where 0 is the least significant bit and 31 is the most significant bit, bit 0 of the
Macintosh File Info entry is the Locked bit, and bit 1 is the Protected bit. Figure 6-5
illustrates the formats for Macintosh HFS, A/UX, MS-DOS, and ProDOS File Info entries.

Chapter 6 File Systems and File Formats 6-17
030-0787-A

The Finder Info field consists of 16 bytes of Finder Info followed by 16 bytes of extended
Finder Info (the fields ioF lFndrlnfo followed by ioF lXFndrlnfo, as returned by the
PBGetCatinfo call). These fields contain what we have been calling "extended file
attribute information." See Inside MaCintosh, Volume IV, for a description of the subfields
in these fields. Newly created files contain zeros in all Finder Info fields. When you are
creating a file whose home file system is Macintosh, you can use 0 any sub field whose value
is unknown, except that you should set the fdType and fdCreator subfields. Values
should be set using standard File Manager calls such as SetFInfo and PBSetCat Info.

• Figure 6-5 Formats for File Info entries

Macintosh file info

Create date

Modification date

Last backup date
1--------1' 0

Attributes

MS-DOS file info

- -
- Modification date -- -
- Attributes -

o
o

········· 0

o 0 o 0 o 0 0
o 0 o 0 o 0 0
o 0 o 0 o 0 0
o 0 o 0 0

protecteJ I
Locked

6-18 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

AlUX file info

Create date & time

Last use date & time

Last modification
date & time

ProDOS file info

- -
- Create date & time -
- -
- Modification -
- -- date & time -

- Access -
f- File type -
I- -
f- AlUXtype -
f- -

• Offset: This field, an unsigned 32-bit number, shows the offset of the beginning of the
entry's data from the beginning of the file.

• Length: This field, an unsigned 32-bit number, shows the length of the data in bytes. The
length can be O.

The entry data follows all of the entry descriptors. The data in each entry must be in a single,
contiguous block. You can leave holes in the file for later expansion of data. For example, even
if a file's comment field is only 10 bytes long, you can place the offset of the next field 200
bytes beyond the offset of the comment field, to leave room for the comment to grow to its
maximum length of 200 bytes.

The entries can appear in any order, but you can maximize the efficiency of file access by
following these recommendations:

• Put the data fork entry at the end of the file. The data fork is the most commonly
extended entry, and it is easier to increase its length if it is the last thing in the file.

• Put the entries that are most often read, such as Finder Info, as close as possible to the
header, to increase the probability that a read of the first block or two will retrieve
these entries.

AppleDouble format

In AppleDouble format, the file's data fork is stored in a file called the AppleDouble data file,
and the file's attributes and resources are stored in a separate file called the AppleDouble
header file.

The AppleDouble data file contains the data fork, in exactly the form it appears in a
Macintosh file, with no extra header.

The AppleDouble header file has the same format as an AppleSingle file, except that it
contains no data fork entry. The magic number for an AppleDouble header file is Ox00051607.
The entries in the header file can appear in any order. It is usually more efficient to put the
resource fork at the end of the file because the resource fork is the entry most likely
to expand.

Chapter 6 File Systems and File Formats 6-19
030-0787-A

Filename conventions

Here are the conventions for naming Macintosh files in A/UX. The filename needs are slightly
different for AppleSingle and AppleDouble formats. These considerations apply to both:

• Embedded spaces transfer. Such filenames are legal but cause problems in A/UX because
A/UX commands consider a space to delimit a filename. Getting rid of the embedded
spaces is preferable.

• Use character substitution to replace any illegal characters with an underscore (_).

• Because different UNIX file systems impose different length restrictions, do not explicitly
truncate the name to a specified length; allow the truncation to be done by the '
file-handling functions such as creat(2) and open(2). Remember that A!UX supports
three file systems, one of which (UPS) allows filenames of up to 255 characters.

AppleSingle format

The overall AppleSingle format does not specify an algorithm for deriving the AppleSingle
filename from the file's "real" name as stored on a native Macintosh volume. Applications and
file systems can exercise some discretion in choosing filenames because the file's original
name can be stored as data in the file and retrieved as necessary.

AppleDouble format

The general strategy for AppleDouble format filenames is to derive the data filename from the
file's original Macintosh name and then to derive the header filename from the data filename.
The most important connection is between the two AppleDouble filenames, which must often
be treated as a single unit and therefore must be clearly connected.

• For an AppleDouble data filename, the general considerations apply.

• For an AppleDouble header filename, prefix a single percent sign (%) to the AppleDouble
data filename. If necessary, truncate the last character to keep the filename within the legal
length range. This is the convention followed by A!UX. The result is that the two files are
kept together in a single subdirectory.

6-20 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Appendix A Additional Reading

This appendix lists books and other information sources that will help you
use the A!UX Toolbox. The first section lists information sources, the
second section lists manuals that provide necessary information, and the
third section lists supplementary information that may be useful.

A-l
030-0787-A

Information sources

For programmers and developers who work on Apple equipment, the Apple Programmers and
Developers Association (APDA) provides a wide range of technical products and
documentation from Apple and other suppliers. For information about APDA, contact

Apple Computer, Inc.
Apple Developer Channels
20525 Mariani Avenue, Mailstop 33G
Cupertino, CA 95014-6299
1-800-282-APDA or 1-800-282-2732
Fax: 408-562-3971
Telex: 171-576
AppleLink: DEV.CHANNELS

Apple offers two developer programs, Apple Associates and Apple Partners. The Associates
program is for those who are involved in development, but not engaged in commercial
development, such as researchers, MIS professionals, consultants, and distributors. The
Partners program is for those engaged in commercial development of hardware and software
and in associated endeavors, such as V ARs, developers, book authors, software publishers,
OEMs, DSV ARs, and contract programmers. Both programs provide information and support.
For further information, write to

Apple Developer Programs
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51W
Cupertino, CA 95014-6299

Apple also offers courses at Apple Developer University. You do not need to be in a developer
program to attend. For information, write to

Developer University Registrar
Apple Computer, Inc.
20525 Mariani Avenue, Mailstop 51M
Cupertino, CA 95014-6299

A-2 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Required references

This list contains books that you will need for developing software under the A/UX system or
interfacing hardware to a Macintosh computer running the A/UX system. Road Map to A/ux,
listed below, provides a detailed description of each A/UX book published by
Apple Computer, Inc.

A/UX Command Reference. Apple Computer, Inc., 1990. A collection of reference pages for
A/UX user commands and games. This document corresponds to Sections 1 and 6 of the
traditional UNIX user manual.

AlUX Essentials. Apple Computer, Inc., 1990. A user's introduction to A/UX Release 2.0.

A/UX Programmer's Reference. Apple Computer, Inc., 1990. A collection of reference pages for
A/UX system calls, subroutines, file formats, and miscellaneous facilities. This document
corresponds to Sections 2 through 5 of the traditional UNIX user manual.

A/UX Programming Languages and Tools, Volumes 1 and 2. Apple Computer, Inc., 1987 and
1990. A description of the A/UX C and Fortran languages and the libraries and tools used for
program development and maintenance.

Inside Macintosh, Volumes I through III. Addison-Wesley, 1985. A complete description of the
architecture and operation of the 128K and 512K Macintosh, including the ROM routines.

Inside Macintosh, Volume IV. Addison-Wesley, 1986. An update to the original volumes,
covering the Macintosh 512K enhanced and Macintosh Plus.

Inside Macintosh, Volume V. Addison-Wesley, 1987. An update to Volumes I through IV,
covering the Macintosh SE and Macintosh II.

Programmer's Guide to MultiFinder. APDA, 1988. A guide to writing applications compatible
with MultiFinder; applicable to the A/UX Finder.

Road Map to AlUX. Apple Computer, Inc., 1990. A guide to the features of A/UX and to the
A/UX documentation.

Appendix A Additional Reading A-3
030-0787-A

Supplementary references

This list contains some useful books available for developing software under, or interfacing
hardware to, the A/UX system. The list is not exhaustive. You can find many other excellent
books on various aspects of developing under System V UNIX, developing with shell language,
and making use of BSD features. Similarly, you can find other useful books on developing
under the Macintosh Toolbox and Macintosh as. The Macintosh Programmer's Workshop
(MPW) references document a UNIX-like development environment running under the
Macintosh as.
The Motorola manuals listed are a selection of documentation provided by Motorola, Inc.,
that are useful to hardware developers and software developers working close to the hardware.

Macintosh Technical Notes. Apple Computer, Inc., 1984-1990. A set of technical bulletins
distributed at no charge by Apple Computer, Inc., to all affiliated developers. Available
through APDA at Apple Computer, Inc.

Chernicoff, Stephen. Macintosh Revealed, Volumes I through III. Hayden Book Company,
1985, 1987. A guide to writing programs that use the Macintosh User Interface Toolbox and
as. Later editions have tracked developments of the Macintosh as.

Designing Cards and Drivers for Macintosh II and Macintosh SE. Addison-Wesley, 1987.
A general reference for developing expansion cards and device drivers for the Macintosh II
and Macintosh SE.

Harbison, Samuel P., and Guy 1. Steele, Jr. C: A Reference Manual. Prentice-Hall, Inc., 1984.
A standard reference book for the C language with the Western Electric extensions used in
most UNIX operating system environments.

Hogan, Thorn. The Programmer's Apple Mac Sourcebook. Microsoft Press, 1989. Reference
tables and charts for Macintosh as system software and Macintosh hardware, gathered and
collated from eleven source volumes: Inside Macintosh, Volumes I through V, Programmer's
Introduction to the Macintosh Family, Technical Introduction to the Macintosh Family,
Designing Cards and Drivers for Macintosh II and Macintosh SE, Inside Macintosh X-Ref,
Hypercard Script Language, and several hardware reference books. Includes data formats,
resource formats, data structures, Pascal calls by manager, and much additional
information, conveniently collated.

A-4 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Inside Macintosh X-Ref Addison-Wesley, 1988. A key to eight of the Addison-Wesley books
that document the Macintosh: Inside Macintosh, Volumes I through V, Programmer's
Introduction to the Macintosh Family, Technical Introduction to the Macintosh Family, and
Designing Cards and Drivers for Macintosh II and Macintosh SE. Provides a general index to
these volumes, a list of routines that move or purge memory, a list of system traps, a list of
global variables, and a glossary.

Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language. Prentice-Hall, Inc.,
1984. An update of the original, official C manual, with tutorial information.

Kernighan, Brian W., and Rob Pike. The UNIX Programming Environment. Prentice-Hall, Inc.,
1984. A guide with valuable information, including chapters on shell programming, lex,
yacc, and text formatting.

Knaster, Scott. How to Write Macintosh Software. Hayden Book Company, 1986. A guide to
the oddities of programming the Macintosh (non-NUX), with full discussion of memory,
stack, and pointer concepts.

Knaster, Scott. Macintosh Programming Secrets. Hayden Book Company, 1986. A guide to the
concepts and ideas of (non-A/UX) Macintosh programming, use of color, and sending
PostScript@ commands to a PostScript laser printer.

Macintosh Programmer's Workshop 3.0 Assembler Reference. APDA, 1988. A reference on the
MPW Assembler and its tools.

Macintosh Programmer's Workshop 3.0 C Reference. APDA, 1988. A description of the C
Compiler and tools that let you write C programs that use the Pascal routines in the
Macintosh ROM. The C language for MPW 3.0 and for A/UX are closely linked.

Macintosh Programmer's Workshop 3.0 Pascal Reference. APDA, 1988. A description of the
Pascal Compiler and tools.

Macintosh Programmer's Workshop 3.0 Reference. APDA, 1988. A full description of how to use
the MPW program preparation tools.

Manis, Rod, and Marc H. Meyer. The UNIX Shell Programming Language. Howard W. Sams &
Co., 1986. A clear exposition of shell programming, as of System V, Release 2.

MC68020 32-Bit Microprocessor User's Manual. Motorola, Inc., 1985. A description of the
MC68020 CPU in detail for hardware and software engineers.

MC68030 32-Bit Microprocessor User's Manual. Motorola, Inc., 1987. A description of the
MC68030 CPU in detail for hardware and software engineers.

MC68851 Paged Memory Management Unit User's Manual. Motorola, Inc., 1985. A description
of the PMMU in detail for hardware and software engineers.

Appendix A Additional Reading A-5
030-0787-A

MC68881 Floating-Point Coprocessor User's Manual. Motorola, Inc., 1985. A description of the
instruction set and addressing conventions used by the Mc68881 floating-point
coprocessor, which is used in the Macintosh II.

Programmer's Introduction to the Macintosh Family. Addison-Wesley, 1987. A programmer's
technical overview of the Macintosh system (non-A!UX), introducing the most important
Macintosh Toolbox and Macintosh as features.

Technical Introduction to the Macintosh Family. Addison-Wesley, 1987. An introduction to the
hardware and software design of the Macintosh family of computers.

A-6 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Appendix B Toolbox Contents

This appendix lists selected directories and files that are part of the
A!UX Toolbox or that are of special interest in application development.

The large text file /FILE contains an annotated list of files in A!UX
Release 2.0. This file may be explored for further information about the
contents of directories listed here.

B-1
030-0787-A

The list of files that follows is not exhaustive, but meant to give a general view of directories
and files of interest. To obtain further information, check the /FILES list, use the
Commando facility associated with the utilities, and consult the online and printed
man pages.

/mac

/mac/bin

changesize

rez

derez

fcnvt

launch

set file

startmac

startmac24

TextEditor

/mac/lib

/mac/lib/SystemFiles

/mac/lib/cmdo/*

/mac/lib/rincludes

scripttypes.r
systypes.r

types.r

/mac/lib/sessiontypes

/mac/src

examples

sndDemo

The major directories relating to the A/UX Toolbox

The executables and associated resource files needed by the
A/UX Toolbox and A/UX Finder, which include files for doing
login with the CommandShell and 24-bit CommandShell, files
for executing the Commando function, and several utilities,
some of which are discussed in Chapter 3.

Change' SIZE' attribute (Chapter 3)
Resource compiler (Chapter 3, Appendix E)
Resource decompiler (Chapter 3, App. E)
File conversion (Chapter 3)
Launch a Macintosh binary application
Set file creator and type (Chapter 3)
Provide the A/UX Macintosh environment
Provide the 24-bit A/UX Macintosh environment
Macintosh-style text editor

Specialized Macintosh files
Equivalent to the Macintosh System Folder, with
A/UX Finder equivalents of the system files
Directories of commando dialogs
Contains resource header files (Chapter 3, Appendix E)

Resource header file for Script Managers
Resource header file
Resource header file, generic

Session type description files (see Login documentation)

Sample Macintosh application sources
Example application sources, resource, and makefile
(Chapter 2)
Sound demonstration example application sources,
resource, sound file, and makefile (Chapter 2)

B-2 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

/mac/sys/*

/usr/lib

libmac.a

libmac s.a

libc.a

libc s.a

/shlib

libmac s

libc s

/dev/uinterO

/usr/include/mac

asd.h

aux.h

aux rsrc.h

controls.h

desk.h

devices.h

dialogs.h

errors.h

events .h

files.h

fonts.h

gestalt.h

lists.h

memory.h

menus.h

Macintosh system files and directories relating to the
A!UX Toolbox and A!UX Finder

Libraries for programmer use, some relating to the
A!UX Toolbox

Code for accessing toolbox, nonshared archive
Code for accessing toolbox, shared version (host)
Standard C library, nonshared archive
Standard C library, shared version (host)

Contains shared library executables
Executable shared code (target) for accessing
toolbox, linked by libmac_s. a

Executable shared code (target) for standard
C library, linked by 1 ibc _ s . a

Special file for user interface device used internally by the
A!UX Toolbox

Library of header files that define the constants, types, and
functions used by the A!UX Toolbox C implementation of
the Macintosh ROM routines

Access for Macintosh resource material in
/usr/lib/libmr.a
Definitions for AUXDispatch

UNIX calls for Macintosh resource material in
/usr/lib/libmr.a
Control Manager
Desk Manager
Device Manager
Dialog Manager
System Error Handler
Toolbox Event Manager
File Manager
Font Manager
Gestalt facility
List Manager
Memory Manager
Menu Manager

Appendix B Toolbox Contents B-3
030-07S7-A

notify.h

osevents.h

osutils.h

packages.h

palettes.h

picker.h

printing.h

printtraps.h

quickdraw.h

resources.h

retrace.h

romdefs.h

scrap.h

script.h

segload.h

serial.h

shutdown.h

slots.h

sm.h

strings.h

sysequ.h

textedit.h

timer.h

toolutils.h

traps.h

types .h

video.h

windows.h

/usr/lib/libmr.a

Notification Manager
Operating System Event Manager
Operating System Utilities
Package Manager, including

Binary-Decimal Conversion Package
Disk Initialization Package
International Utilities Package
Standard File Package

Palette Manager
Color Picker
Printing Manager
Print traps
32-Bit QuickDraw with Color QuickDraw
Resource Manager
Vertical Retrace Manager
Definitions for ROMs
Scrap Manager
Script Manager
Segment Loader
Serial Driver
Shutdown Manager
Slot Manager
Sound Manager
String conversion routines
Low-memory equates
TextEdit
Time Manager
Toolbox Utilities
List of Macintosh traps
Type definitions
Video Driver
Window Manager

Declarations and routines for reading Macintosh resources

B-4 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

Appendix C Implementation Notes

This appendix describes how the A/UX Toolbox simulates the Macintosh
environment. You can use the A/UX Toolbox without the information in
this appendix, but you will need it if you are writing an application that
contains assembly-language routines or deviates from recommended
Macintosh programming practices.

This appendix covers three areas:

• setting up the environment to run an A/UX Toolbox application

• running an A/UX Toolbox application

• converting between the Pascal-language conventions used by the
Macintosh ROM and the C-Ianguage conventions typically used in A/UX

C-1
030-0787-A

The A!UX Finder and Toolbox applications

The AlUX Finder must be running to support execution of AlUX Toolbox applications.
A Toolbox application cannot be launched without support of the AlUX Finder.

A "MultiFinder aware" Macintosh OS application will execute, but a "MultiFinder friendly"
application performs better. Developers should aim at that standard. A checklist of
requirements for applications is in Chapter 4, "Compatibility Checklist."

Running an A!UX Toolbox application

The AlUX kernel contains a special user-interface device driver, / dev /uinterO, that handles
communication between an AlUX Toolbox application and the kernel. The driver provides
iocd functions. (The "Serial Driver" discussion in Chapter 5 has an example of iocd functions.)
The AlUX Toolbox library routines make calls to this device driver to provide special control
for the Macintosh environment.

An AlUX Toolbox application uses a special initialization routine that opens the user-interface
device driver and issues a series of setup instructions before starting the program itself.
The initialization routine is in /usr / lib/maccrtO .0. Each AlUX Toolbox application,
including la unch(1), is linked with this file instead of with /1 ib / c rt 0 .0, which is used by
non-Toolbox AlUX applications.

Once an AlUX Toolbox application is running, most AlUX Toolbox functions are called through
an MC6s0xo exception, known as an A-line trap, the same way the ROM code is called in the
Macintosh environment. In the AlUX environment, however, trap handling must be routed
through the kernel.

C-2 NUX Toolbox: Macintosh ROM Interface
030-0787-A

User-interface device driver

The user-interface device driver, / dev /uinterO, performs these functions:

• Memory mapping

When an application is started, the device driver establishes memory mapping for the
screen buffer and ROM code, and memory for the Macintosh environment.

• Event-queue handling

The driver contains its own event-queue handler, similar to the Macintosh OS Event
Manager. The driver's event-queue handler supports the queue-access routines of the OS
Event Manager. The driver posts mouse and keyboard events.

• Cursor tracking

The device driver enables vertical retrace interrupts and tracks the cursor at each interrupt.
The cursor data is shared by the kernel and the application.

• A-line trap dispatching

During startup, the driver installs in shared memory a pointer to the A-line trap handler.
When the kernel identifies an exception as a Macintosh ROM call, it copies the return
address from the kernel stack to the user stack and invokes the trap handler. For more
information on trap dispatching, see "A-Line Traps" later in this appendix.

Initialization routine

The A/UX Toolbox initialization routine in /usr / lib/maccrt 0 .0 performs these steps:

1. Calls set 4 2 s ig(3), which invokes 4.2 BSD signaling conventions.

2. Attaches to the shared data segment.

3. Opens the device driver and invokes the initialization steps described in the preceding
section, "User-Interface Device Driver."

4. Initializes the dispatch tables and the Macintosh global variables.

S. Initializes various A/UX Toolbox modules.

7. Calls the application's main routine.

Appendix C Implementation Notes C-3
030-0787-A

A-line traps

The primary function of the A/UX Toolbox is to make available to programs running in A/UX
the Macintosh support code described in Inside Macintosh. Most of the support code
represents routines built into the Macintosh ROM and available as A-line traps, that is,
MC680xO opcodes in the range OxAOOO to OxAFFF.

Under the standard Macintosh OS, A-line traps are routed by the CPU to an exception handler.
The exception handler uses a pair of dispatch tables (one for User Interface Toolbox routines
and one for Macintosh OS routines) to route the A-line traps either to the ROM or to a ROM
patch. A ROM patch is a change or bug fix to the Macintosh ROM.

In the standard Macintosh OS, the patches are stored in the System file. During startup, the
patches are loaded into memory, and the dispatch tables are updated as necessary to point to
patch routines instead of to ROM code. See Inside Macintosh, Volumes I, II, IV, and V, for
descriptions of the dispatch tables.

Because all exceptions put the CPU into Supervisor Mode, an A-line trap in A/UX must be
handled by the kernel. When the kernel recognizes an exception as a Macintosh A-line trap,
it invokes a trap handler that resides in user process's memory, leaving the processor in
User Mode.

The ROM dispatch tables in A/UX use two sets of ROM patches, the standard set and the
A/UX set. The standard set incorporates the standard Macintosh ROM changes and the
A/UX set accesses native ROM calls directly or provides A/UX alternatives, as appropriate.
As each application is started, startup files build dispatch tables from data in the
A/UX Toolbox libraries and the System file. No action by the application is necessary.
An application may install its own patches to the tables.

Figure C-l illustrates the A-line trap-handling sequence in A/UX. The A/UX trap-dispatch code
uses the application's trap-dispatch tables to route an A-line trap to one of two places:

• ROM

If the trap has no A/UX alternative, the table points to the ROM code .

• UserRAM

If the trap represents has an A/UX alternative, the table points to the alternative routine in
user RAM.

C-4 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

• Figure C-1 A-line trap handling in AlUX

A-line instruction triggers exception

CPU switches to Supervisor Mode and
reads low-memory vector location to find

address of trap handler (in kernel)

Kernel verifies that trap comes from
an A/UX Toolbox process,

adjusts the user stack,
and jumps to trap dispatch code

(in user address space)

CPU returns to User Mode

Trap-dispatch routine looks in program's
dispatch table to route call

D D
ROM User RAM

(unpatched UI (patched UI
Toolbox trap or Toolbox trap or

OS trap) OS trap)

DrawString ("Hi") ;

D
~

AOOO

A884

~
ROM

n Adjust
V stack

Trap
dispatch

code

xxxxxxxx

xxxxxxxx

Trap dispatch
table

RAM

Hi

Low
memory

Appendix C Implementation Notes C-5
030-0787-A

"Not in ROM" routines

The AlUX Toolbox also supports the "not in ROM" calls described in the Inside Macintosh
volumes. ("Not in ROM" is explained at the end of the Preface in each volume of Inside
Macintosh.) There are two versions of code for these glue routines, both in /usr / lib. The
nonshared archive is libmac. a, and the shared version is libmac_s. a. The two are
functionally equivalent. Either version can be used by naming it on the command line for
compiling or link editing, as with any archive file. The shared version saves some space in
applications that use it and has the advantage of always providing the most current routines
to applications that call on it. Shared libraries are discussed in A!UX Programming Languages
and Tools, Volume 1. An AlUX Toolbox application compiled and linked according to the
instructions in Chapter 2, "Using the AlUX Toolbox," will access one of these archives.
Applications compiled in the Macintosh environment must link to the appropriate libraries to
use these calls.

Macintosh global variables

The standard Macintosh environment includes a set of global variables used by different parts
of the system and stored in low memory (see Inside Macintosh, Volumes III, IV, and V). To
make room for these global variables, an AlUX Toolbox application compiled in AlUX is linked
at virtual memory address OxlOOOOOOO. The launch(1) program for executing Macintosh
applications from the shell, itself an AlUX Toolbox application, is linked at this address.

Not all of the global variables listed in Inside Macintosh are supported in AlUX. In general,
variables related to hardware are not supported. Appendix D, "Low-Memory Global Variables,"
lists the supported Macintosh global variables.

Flle type and creator

A set of file information, called the "finder information," which includes a file's type and
creator, is stored in a special entry in both AppleSingle-format and AppleDouble-format files
inAlUX.

e-6 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

The Macintosh Standard File Package, which is supported by A!UX, uses a file's type and
creator to filter the documents presented when the user opens a file from within an
application. When an A!UX file goes into the Macintosh as environment, if no creator is found
then 'AI uX' is assigned as creator. File types are assigned, if feasible. Files known to be text
files receive the' TEXT' type, known shell scripts receive' SHEL' . Chapter 6, "File Systems
and File Formats," provides general information on file handling across the boundary between
the two environments.

converting between C and Pascal conventions

Most of the Macintosh ROM routines use Pascal language conventions, which differ from the
conventions used by the A!UX C compiler.

The C and Pascal conventions differ in six primary ways: how strings are stored, how a
parameter list is evaluated, how the parameter types are stored, how QuickDraw point values
are passed, how function results are returned, and how registers are used. The remaining
sections in this appendix describe the differences.

When necessary, the A!UX Toolbox interface routines convert C program calls to a form usable
by the ROM and then convert the ROM's output to a form usable by the C program. The A!UX
Toolbox routines that perform this conversion have three parts: the entry conversion code,
the A-line trap, and the exit conversion code.

The libraries in this release of the A!UX Toolbox include two versions of all routines that take
strings or QuickDraw point values or return strings. One version, spelled as the routine appears
in Inside Macintosh, uses Pascal string format and point-passing conventions. The second
version, spelled in all lowercase letters, uses C string format and point-passing conventions.
The lowercase version converts input parameters from C format to Pascal format before
passing them to the ROM and converts return values back to C format. Both versions use
interface routines to adjust for other differences in parameter-passing and return-value
conventions.

If you are writing your own procedures that will be called from the ROM code, you must write
assembly-language code to rework the parameters when your procedure is called.

Appendix C Implementation Notes C-7
030-0787-A

Storing strings

In C, strings are normally stored as an array of characters, of any length, terminated by the null
byte (1\01). In Pascal, strings start with a byte that specifies the length of the string, followed
by a maximum of 255 characters. Because the length is specified explicitly, a Pascal string is
not terminated by a null byte.

Because both conventions contain an extra byte of information (the null byte at the end of a
C string and the count at the beginning of a Pascal string), it is possible to transform a string in
place between the two formats. The A!UX Toolbox includes the routines c2pstr and p2cstr

to perform these conversions (see "String Conversion" in Appendix F).

The lowercase versions of all ROM routines that take or return strings perform these
conversions automatically. Use the lowercase version when you are passing a string directly to
a routine. The mixed-case versions perform no conversion. Use the mixed-case version when
you are using a string that is a field of a structure maintained by a ROM routine.

The routine and parameter descriptions in Appendix F, "C Interface Library," follow these
conventions:

• a pointer to a char (printed char *) represents a pointer to a C-format string

• a parameter of type S t r 2 5 5 represents a Pascal-format string

Ordering and storing parameters

Parameters in Pascal functions are evaluated left to right and are pushed onto the stack in the
order they are evaluated. For example, with the function faa (a, b) , a is pushed first and
then b.

Parameters in C functions are evaluated right to left and are pushed onto the stack in the order
they are evaluated. With the function faa (a, b) , b is pushed first and then a.

When necessary, the A/UX Toolbox routines reorder the parameters passed to a function
before calling the ROM.

C-8 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Characters and enumerated types whose literal values fall in the range of types char or
unsigned char are pushed as bytes. (This requires a 16-bit word on the stack. The value is
in the high-order 8 bits; the low-order 8 bits are unused.) short values and enumerated types
whose literal values fall in the range of types short or unsigned short are passed as 16-bit
values. int and long values and the remaining enumerated types are passed as 32-bit values.
Pointers and arrays are passed as 32-bit addresses. SANE types float, double, comp, and
extended are passed as extended SO-bit values.

Structures are also passed by value on the stack. Their size is rounded up to a multiple of 16
bits (2 bytes). If rounding occurs, the unused storage has the highest memory address.
The function being called removes the parameters from the stack.

Passing QuickDraw point values

The QuickDraw point values are are a 4-byte structure, which the Pascal language always passes
by value rather than by pointer, unless the structure is declared as a V AR. (This is a general rule
for Pascal, which passes by value unless V AR is declared.) A!UX library calls with mixed-case
names follow the Pascal convention.

The calls with lowercase names that pass QuickDraw point values put the address of the
structure on the stack.

Returning function results

A!UX C functions return pointer values in register AO and DO and nonpointer values in register
DO. MPW C functions return all values in DO.

Appendix C Implementation Notes C-9
030-0787-A

A Pascal function places its result on the stack. The caller reserves stack space for the function
result before pushing any parameters. Characters and enumerated types whose literal values fall
in the range of types char or unsigned char are returned as bytes. (This requires a 16-bit
word on the stack. The value is in the high-order 8 bits; the low-order 8 bits are unused.)
short values and enumerated types whose literal values fall in the range of types short or
unsigned short are returned as 16-bit values. int and long values and the remaining
enumerated types are returned as 32-bit values. Pointers are returned as 32-bit addresses.
Arrays may not be returned as function results. Results of type float are returned as 32-bit
values. For types double, comp, and extended, the caller pushes the address for a double,

comp, or extended result, respectively, in the function-result location on the stack. The
procedure being called stores the result at this address. The caller removes the function results
from the stack.

For structure results, if the Pascal function returns a structure of greater than 4 bytes, the caller
pushes a pointer to a result space before pushing any parameters. If the structure is 4 bytes or
less, the caller reserves 4 or 2 bytes on the stack for it.

The A/UX Toolbox routines move the results returned by a Pascal-like ROM call to the location
appropriate for a C call.

Register conventions

Pascal treats registers DO, DI, D2, AO, and Al as scratch registers. All other registers are
preserved. Register AS is the global frame pointer, register A6 is the local frame pOinter, and
register A7 is the stack pointer. A/UX C treats only registers DO, DI, AO, and Al as scratch
registers. A6 is the frame pointer, A7 the stack pointer.

An A/UX Toolbox routine automatically saves and restores register D2 when using ROM code.

C-l0 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Appendix D Low-Memory Global Variables

This appendix lists the low-memory global variables that are supported in
the A/UX Toolbox. For the function and memory location of each variable,
see Inside Macintosh, Volumes III, IV, and V, in appendixes titled
"Global Variables."

D-l
030-07S7-A

The low-memory global variables are listed by the name used in the C include file sysequ. h,
available in / lib/ include/mac. The name is follow by the low-memory address, which is
provided only for identification and reference to Macintosh documentation and should never
be used as an address.

The general list is followed by three brief lists of associated global variables for the Window
Manager, TextEdit, and the Resource Manager.

• Table D-l General global variables

Name Reference Description

ABusDCE Ox2DC Pointer to AppleTalk DCE
ABusVars Ox2D8 Pointer to AppleTalk local variables
ApplLimit Ox130 Application limit [pointer]
ApplZone Ox2AA Application heap zone [pointer]
BootDrive Ox210 Drive number of boot drive [word]
BufPtr OxlOC Top of application memory [pointer]
BufTgDate Ox304 Time stamp [word]
BufTgFBkNum Ox302 Logical block number [word]
BufTgFFlg Ox300 Flags [word]
BufTgFNum Ox2FC File number [long]
BusErrVct Ox08 Bus error vector
Caret Time Ox2F4 Caret blink ticks [long]
ColLines OxOC22 Screen vertical pixels[word]
CPUFlag Ox12F $00=68000, $01=68010, $02=68020 Cold ROM in its to $00)
CQDGlobals OxOCCC QuickDraw global extensions [long]
CrsrBusy Ox8CD Cursor locked out? [byte]
CrsrDevice Ox89C Current cursor device [long]
CrsrObscure Ox8D2 Cursor obscure semaphore [byte]
CrsrState Ox8DO Cursor nesting level [word]
CrsrVis Ox8CC Cursor visible? [byte]
CurApName Ox91 0 Name of application [STRING[31]]
CurApRefNum Ox900 Reference number of application's resource file [word]
CurDirStore Ox398 Save directory across calls to Standard File [long]
CurJTOffset Ox934 Current jump table offset [word]

D-2 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

[continued]

• Table D-l General global variables [continued]

Name Reference Description

CurPageOption Ox936 Current page 2 configuration [word]
CurrentAS Ox904 Current value of AS [pointer]
CurStackBase Ox908 Current stack base [pointer]
DefltStack Ox322 Default size of stack [long]
DeviceList Ox8A8 List of display devices [long]
DoubleTime Ox2FO Double-click ticks [long]
DrvQHdr Ox308 Queue header of drives in system [10 bytes]
DSAlertRect Ox3F8 Rectangle for disk-switch alert [8 bytes]
DSAlertTab Ox2BA System error alerts [pointer]
DSDrawProc Ox334 Alternate SysError draw procedure [pointer]
DSErrCode OxAFO Last system error alert ID
DskErr Ox142 Disk routine result code [word]
DSWndUpdate Ox15D GNE not to paint behind DS AlertRect? [byte]
EjectNotify Ox338 Eject notify procedure [pointer]
ExpandMem Ox2B6 Pointer to expanded memory block
GetParam OxlE4 System parameter scratch [20 bytes]
GZMoveHnd Ox330 Moving handle for grow zone [handle]
GZRootHnd Ox328 Root handle for grow zone [handle]
GZRootPtr Ox32C Root pointer for grow zone [pointer]
HeapEnd Oxl14 End of heap [pointer]
HiHeapMark OxBAE Highest address used by a zone below the stack pointer [long]
HiliteMode Ox938 Used for color highlighting
HiliteRGB OxODAO RGB of hilite color [6 bytes]
HpChk Ox316 Heap check RAM code [pointer]
IAZNotify Ox33C World swaps notify procedure [pointer]
IntlSpec OxBAO Pointer to extra international data [long]
JAllocCrsr Ox88C Vector to routine that allocates cursor
JFetch Ox8F4 Fetch-a-byte routine for drivers [pointer]
JGNEFilter Ox29A GetNextEvent filter procedure [pointer]
JIODone Ox8FC IODone entry location [pointer]
JSetCCrsr Ox890 Vector to routine that sets color cursor [long]

[continued]

Appendix D Low-Memory Global Variables D-3
030-0787-A

• Table D-l General global variables [continued]

Name Reference Description

JStash Ox8F8 Stash-a-byte routine for drivers [pointer]
KbdType Ox21E Keyboard model number [byte]
KeylTrans Ox29E Keyboard translator procedure [pointer]
Key2Trans Ox2A2 Numeric keypad translator procedure [pointer]
KeyMap Ox174 Bitmap of the keyboard [2 longs]
KeypaclMap Ox17C Bitmap for numeric pad (18bits) [long]
KeyRepThresh Ox190 Key repeat speed [word]
KeyThresh Ox18E Threshold for key repeat [word]
LastTxGDevice OxODC4 Copy of TheGDevice set up for fast text measuring [long]
Lo3Bytes Ox31A Constant $OOFFFFFF [long]
LoaderPBlock Ox93A Parameter block for ExitToShell [10 bytes]
LoadTrap Ox12D Trap before launch? [byte]
MainDevice Ox8A4 The main screen device [long]
MaskBC Ox31A Memory Manager byte count mask [long]
MaskHandle Ox31A Memory Manager handle mask [long]
MaskPtr Ox31A Memory Manager pointer mask [long]
MBState Ox172 Current mouse button state [byte]
MemErr Ox220 Last Memory Manager error [word]
MemTop Ox108 Top of memory [pointer]
MinStack Ox31E Minimum stack size used in InitApplZone [long]
MinusOne OxA06 Constant $FFFFFFFF [long]
MMDefFlags Ox326 Default zone flags [word]
MMU32bit OxOCB2 Boolean reflecting current machine MMU mode [byte]
MMUFluff OxOCB3 Fluff byte forced by reducing MMU mode to 32 bits [byte]
MonkeyLives Ox100 Monkey lives if >= 0 [word]
Mouse Ox830 Processed mouse coordinates [long]
NewCrsrJTbl Ox88C Location of new cursor jump vectors
NMIFlag OxOC2C Flag for NMI debounce [byte]
OneOne OxA02 Constant $00010001 [long]
PCDeskPat Ox20B Desktop pattern (Top bit only! Others are in use.)
PortAUse Ox290 Bit 7: 1 = Port A not in use, 0 = Port A in use

[continued]

D-4 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

• Table D-1 General global variables [continued]

Name Reference Description

PortBUse Ox291 Port B use, same format as PortAUse

PortList OxOD66 List of gratPorts
QDColors Ox8BO Handle to default colors [long]
QDErr OxoD6E QuickDraw error code [word]
QDExist Ox8F3 QuickDraw is initialized [byte]
RestProc OxA8C Resume procedure (old name for ResumeProc) [pointed
ResumeProc OxA8C Resume procedure from InitDialogs [pointer]
RGBBlack OxOCIO The black field for color [6 bytes]
RGBWhite Oxoc16 The white field for color [6 bytes]
RndSeed Ox156 Random seed/number [long]
ROM8S Ox28E High bit is 0 for ROM version $75 (sic) and later [word]
ROMBase Ox2AE ROM base address [pointer]
ROMMapHndl OxB06 Handle of ROM resource map [long]
RowBits OxOC20 Screen horizontal pixels [word]
SaveSegHandle Ox930 Segment 0 handle [handle]
ScrapCount Ox968 Validation byte [word]
ScrapEnd Ox980 End of scrap variables
ScrapHandle Ox964 Memory scrap [handle]
Scraplnfo Ox960 Scrap length (old name for ScrapSi ze) [long]
ScrapName Ox96C Pointer to scrap name [pointer]
ScrapSize Ox960 Scrap length [long]
ScrapState 0x96A Scrap state [word]
ScrapTag Ox970 Scrap filename [STRING[15]]
ScrapVars Ox960 Scrap Manager variables [32 bytes]
Scratch8 Ox9FA Scratch [8 bytes]
Scratch20 OxlE4 Scratch [20 bytes]
ScrDmpEnb Ox2F8 Screen dump enabled? [byte]
ScrDmpType Ox2F9 FF dumps screen, FE dumps front window [byte]
ScreenBytes OxOC24 Total screen bytes [long]
ScreenRow Oxlo6 RowBytes of screen [word]
ScrHRes OxlO4 Screen horizontal dots/inch [word]

[continued]

Appendix D Low-Memory Global Variables D-5
030-0787-A

• Table D-l General global variables [continued]

Name Reference Description

ScrnBase Ox824 Screen base [pointer]
ScrVRes Ox102 Screen vertical dots/inch [word]
SdVolurne Ox260 Global volume (sound) control [byte]
SegHiEnable OxBB2 o to disable MoveHHi in LoadSeg [byte]
SerialVars Ox2DO Asynchronous driver variables [16 bytes]
SEvtEnb Ox15C Enable SysEvent calls from GNE [byte]
SFSaveDisk Ox214 Last vRe fNurn seen by Standard File [word]
SInfoPtr OxOCBC Pointer to Slot Manager information [long]
SlotQDT OxOD04 Pointer to slot queue table
SounciActive Ox27E Sound is active? [byte]
SPAlarrn Ox200 Alarm time [long]
SPATalkA Ox1F9 AppleTalk node number hint for port A
SPATalkB Ox1FA AppleTalk node number hint for port B
SPClikCaret Ox209 Double-click/caret time in 4/60ths[2 four-bit]
SPConfig Ox1FB Configuration bits: 4-7 A, 0-3 B (see SPPortA, SPPortB)
SPFont Ox204 Default application font number minus 1 [word]
SPKbd Ox206 Keyboard repeat threshold in 4/60ths [2 four-bit]
SPMiscl Ox20A Miscellaneous [1 byte]
SPMisc2 Ox20B Mouse scaling, sys startup disk, menu blink values [1 byte]
SPPortA Ox1FC SCC port A configuration [word]
SPPortB Ox1FE SCC port B configuration [word]
SPPrint Ox207 Print stuff [byte]
SPValid Ox1F8 Validation field [byte]
SPVolCtl Ox208 Volume control [byte]
SrcDevice Ox8AO Source device for stretchBits [long]
StkLowPt Ox 11 0 Lowest stack as measured in VBL task [pointer]
SwitcherTPtr Ox286 Switcher's switch table
SysEvtBuf Ox146 System event queue element buffer [pointer]
SysEvtMask Ox144 System event mask [word]
SysPararn Ox1F8 System parameter memory [20 bytes]
SysVersion Ox15A Version number of RAM-based system [word]

D-6 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

[continued]

• Table D-l General global variables [continued]

Name Reference Description

SysZone Ox2A6 System heap zone [pointer]
TableSeed OxOD20 Seed value for color table ID's [long]
TheGDevice OxOCC8 The current graphics device [long]
TheZone Oxl18 Current heap zone [pointer]
Ticks Oxl6A Tick count, time since boot [long]
Time Ox20C Clock time (extrapolated) [long]
TimeDBRA OxODOO Number of iterations of DBRA per millisecond [word]
TimeSCCDB OxOD02 Number of iterations of SCC access and DBRA [word]
UnitNtryCnt OxlD2 Count of entries in unit table [word]
UTableBase OxllC Unit I/O table [pointer]
VBLQueue Oxl60 VBL queue header [10 bytes]
VidMode OxOC2E Video mode (4=four-bit color) [byte]
VidType OxOC2D Video board type ID [byte]
WMgrCPort OxOD2C Window Manager color port
WWExist Ox8F2 Window Manager initialized? [byte]

• Table D-2 Window Manager global variables

Name Reference Description

CurActivate OxA64 Window slated for activate event [pointer]
CurDeactive OxA68 Window slated for deactivate event [pointer]
DeskHook oxA6C Hook for painting the desk [pointer]
DeskPattern OxA3C Desk pattern [8 bytes]
DragHook Ox9F6 User hook during dragging [pointer]
GhostWindow OxA84 Window hidden from FrontWindow [pointer]
GrayRgn Ox9EE Rounded gray desk region [handle]
PaintWhite Ox9DC Erase newly drawn windows? [word]
WindowList Ox9D6 Z-ordered linked list of windows [pointer]
WMgrPort Ox9DE Window Manager's grafport [pointer]

Appendix D Low-Memory Global Variables D-7
030-07S7-A

• Table 0-3 TextEdit global variables

Name

TEDoText

TERecal

TEScrpHandle

TEScrpLength

TESysJust

TEWdBreak

WordRedraw

Reference Description

OxA70
OxA74
OxAB4
OxABO
OxBAC
OxAF6
OxBA5

TextEdit doText procedure hook [pointer]
TextEdit recal Text procedure hook [pointer]
TextEdit scrap [handle]
TextEdit scrap le~gth [word]
System justification (International TextEdit) [word]
Default word break routine [pointer]
Used by TextEdit RecalDraw [byte]

• Table 0-4 Resource Manager global variables

Name Reference Description

CurMap OxA5A Reference number of current map [word]
ResErr OxA60 Resource error code [word]
ResErrProc OxAF2 Resource error procedure [pointer]
ResLoad OxA5E Autoload feature [word]
ResReadOnly OxA5C Read-only flag [word]
RomMaplnsert OxB9E Necessary to link map to ROM resources? [byte]
SysMap OxA58 Reference number of system map [word]
SysMapHndl OxA54 System map [handle]
SysResName OxAD8 Name of system resource file [string[19]]
TmpResLoad OxB9F Second byte is temporary ResLoad value.
TopMapHndl OxA50 Topmost map in list [handle]

0-8 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Appendix E Resource Compiler and Decompiler

This appendix explains how to build resources with the resource compiler,
rez, and how to use the resource decompiler, derez. See Chapter 3,
"A/UX Toolbox Utilities and Extensions," for the command-line syntax for
rez and derez. See Inside Macintosh, Volume I, for a description
of resources.

E-l
030-07S7-A

About the resource compiler and decompiler

The resource compiler, rez, compiles one or more text files, called resource description files,
and produces a resource file. The resource decompiler, de re z, decompiles a resource file,
producing a new resource description file that can be understood by re z. Figure E-1 illustrates
the complementary relationship between re z and de re z.

• Figure E-1 re z and de re z

Resource ../'---,
file ~

D
Resource
decompiler

~--derez

Resource
description

file

In AlUX, re z always creates an AppleDouble header file. de re z always creates a standard
AlUX text file.

re z can combine resources or resource descriptions from a number of files into a single
resource file. re z can also delete resources or change resource attributes. re z supports
preprocessor directives that allow you to substitute macros, include other files, and use
if-then-else constructs. (See "Preprocessor Directives" later in this appendix.)

E-2 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

de re z creates a text representation of a resource file based on resource type declarations
identical to those used by re z. (If you don't specify any type declarations, the output of
derez is in the form of raw data statements.) The output of derez is a resource description
file that may be used as input to re z. You can edit this file to add comments, translate
resource data into a foreign language, or specify conditional resource compilation by using
the if-then-e1se structures of the preprocessor. You can also use the A/UX di f fO) command
to compare resource description files.

Standard type declaration rues

Four text files, types. r, systypes. r, scripttypes. r, and pict. r, contain resource
declarations for standard resource types. These files are located in the directory
/mac/lib/rincludes. They contain definitions for the following types:

types.r

systypes.r

Type declarations for the most common Macintosh resource types
(, ALRT' 'DITL' 'MENU' and so on) , , ,

Type declarations for' DRVR " 'FOND', 'FONT', 'FWID', 'INTL',

and 'NFMT', plus many others

scripttypes. r Type declarations for resource descriptions specific to the Script Manager

pict.r Type declarations for' P IeT' resources for debugging P IeTS

Using rez and derez

rez and derez are primarily used to create and modify resource files. Figure E-2 illustrates the
process of creating a resource file.

Appendix E Resource Compiler and Decompiler E-3
030-0787-A

• Figure E-2 Creating a resource file

Text editor
or

derez

filename.r

Resource
description

'TEXT'

Resource
compiler

filename

Resource
file

Other
resource

files

E-4 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Structure of a resource description ftle

The resource description file consists of resource type declarations (which can be included
from another file) followed by resource data for the declared types. The resource compiler and
resource decompiler have no built-in resource types. You must either define your own types or
include the appropriate type declaration (. r) files.

A resource description file contains any number of the seven resource statements:

include

read

data

type

delete

change

resource

Include resources from another file.

Read data file and include it as a resource.

Specify raw data.

Declare resource type descriptions for subsequent re source statements.

Delete existing resources.

Change the type, ID, name, or attributes of existing resources.

Specify data for a resource type declared in a previous type statement.

The section "Resource Description Statements" in this appendix describes each of
these statements.

A type declaration provides the pattern for any associated resource data specifications by
indicating data types, alignment, size and placement of strings, and so on. You can intersperse
type declarations and data in the resource description file as long as the declaration for a
given resource precedes any resource statements that refer to it. An error is returned if data
(that is, a resource statement) is given for a type that has not been previously defined.
Whether a type was declared in a resource description file or in an include file, you can
redeclare it by providing a new declaration later in a resource description file.

Appendix E Resource Compiler and Decompiler E-5
030-0787-A

A resource description file can also include comments and preprocessor directives:

• Comments can be included anywhere that white space is allowed in a resource description
file, within the comment delimiters I * and * I. Comments do not nest. For example, this is
one comment:
1* Hello 1* there *1
re z also supports C++ style comments:
type 'tost' { II the rest of this line is ignored

• Preprocessor directives substitute macro definitions and include files and provide if-then
else processing before other re z processing takes place. The syntax of the preprocessor is
similar to that of the C-Ianguage preprocessor. See "Preprocessor Directives" later in
this appendix.

Sample resource description fde

An easy way to learn about the resource description format is to decompile some existing
resources. For example, the following command decompiles only the 'WIND' resources in the
sample application, according to the type declaration in types. r, in the
Imac/lib/rincludes directory:
derez sample -only WIND types.r > derez.out

After this command is run, derez. out contains this text:
resource

} ;

'WIND' (128, "Sample Window")
{64, 60, 314, 460},
documentProc,
visible,
noGoAway,
OxO,
"Sample Window"

Note that this statement is identical to the resource description in the file s amp Ie. r, which
was originally used to build the resource. This resource data corresponds to the following type
declaration, contained in types. r:

E-6 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

type 'WIND' {

} ;

recti

integer

byte

fill byte;

byte

fill byte;

documentProc, dBoxProc, plainDBox,

altDBoxProc, noGrowDocProc,

zoomProc=8, rDocProc=l6;

invisible, visible;

noGoAway, goAway;

unsigned hex longint;

pstring Untitled = "Untitled";

/* boundsRect */

/* procID */

/* visible */

/* goAway */

/* ref Con */

/* title */

type and resource statements are explained in detail in the next section, "Resource
Description Statements."

Resource description statements

This section describes the syntax and use of the seven resource description statements:
include, read, data, type, delete, change, and resource.

Syntax notation

The syntax notation in this appendix follows the conventions given in the Preface, with
these additions:

• Words that are part of the resource description language are shown in Co uri e r to
distinguish them from other text. re z is not sensitive to the case of these words.

• Punctuation characters such as commas (,), semicolons (;), and quotation marks
(, and n) are to be written as shown. If one of the syntax notation characters (for example,
[or]) must be written as a literal, it is shown enclosed by curly quotation marks, like this:
bitstring '[' length'] ,

Appendix E Resource Compiler and Decompiler E-7
030-0787-A

In this case, the brackets are typed literally. They do not mean that the enclosed element
is optional.

• Spaces between syntax elements, constants, and punctuation are optional. They are used
only to make reading code easier.

• Hexadecimal numbers are flagged with a leading dollar sign. Tokens in resource description
statements can be separated by spaces, tabs, newlines, or comments. Note that braces
({ and }) are to be written as shown.

Special terms

The following terms represent a minimal subset of the nonterminal symbols used to describe
the syntax of commands in the resource description language:

Term

resource-type
resource-name
resource-ID
ID-range

Definition

long-expression
string
word-expression
ID[:ID]

• Note: The placeholder expression is defined later in this appendix in "Expressions."

For more information on syntax, see "Resource Description Syntax" later in this appendix.

incl.ude-include resources from another fde

The include statement reads resources from an existing file and includes all or some of them.

Syntax and description

include statements can have the following forms:

include "filename" [, resource-type' [' <' "resource-name" I ID1[: ID2J ') ']];

E-8 NUX Toolbox: Macintosh ROM Interface
030-0787-A

Read the resource of type resource-type with the specified resource-name, ID, or
range of ID numbers in filename. If both the resource name and the resource ID are
omitted, read all resources of the type resource-type in filename. If resource-type is
omitted, read all the resources in filename. These three possibilities are illustrated in
the following examples:
include "otherfile" 'CODE' (128); /* read only CODE resource 128 */

include "otherfile" 'CODE'i /* read only the CODE resources */

include "otherfile"i /* read all resources from the file */

incl ude "filename" not 'resource-type';

Read all resources not of the type resource-type in filename.

in c 1 ude "filename" 'resource-type l' as' resource-type2' ;

Read all resources of type resource-typel and include them as resources of
resourcetype2.

include "filename" 'resource-typel' '(' "resource-namel" I IDI[:ID2] ')'
as' resource-type2' '(' ID [, "resource-name2"] [, attributes .. .J ') , ;

Read the resource of type resource-type1 with the specified resource-name1, ID, or
range of ID numbers in filename, and include it as a resource of resource-type2 with
the specified ID . You can optionally specify a resource-name2 and new resource
attributes. Resource attributes are defined in the next section "Resource Attributes."

The following string variables can be used in the inc 1 ude as resource-description statement
to modify the resource information:

$$Type

$$ID

$$Name

$$Attributes

Type of resource from include file
ID of resource from include file
Name of resource from include file
Attributes of resource from include file

For example, to include all 'DRVR' resources from one file and keep the same information,
but also set the SYSHEAP attribute, you would use a statement like this:
include "file" 'DRVR' (0:40) as

'DRVR' ($$ID, $$Name, $$Attributes I 64);

The $$Type, $$ID, $$Name, and $$Attributes variables are also set and legal within a
normal re source statement. At any other time the values of these variables are undefined.

Appendix E Resource Compiler and Decompiler E-9
030-0787-A

Resource attributes

You can specify attributes as a numeric expression (see the Resource Manager chapters of
Inside Macintosh, Volumes I, IV, and V), or you can set them individually by specifying one of
the keywords from any of the following pairs:

Default

appheap

nonpurgeable

unlocked

unprotected

nonpreload

unchanged

Alternative Meaning

sysheap The keyword specifies whether the
resource is to be loaded into the
application heap or the system heap.This
attribute is meaningless if the resource is
used only in AlUX.

purgeable Purgeable resources can be automatically
purged by the Memory Manager.

locked Locked resources cannot be moved by the
Memory Manager.

protected Protected resources cannot be modified
by the Resource Manager.

preload Preloaded resources are placed in the heap
as soon as the Resource Manager opens the
resource file.

changed The keyword tells the Resource Manager
whether a resource has been changed. rez
does not allow you to set this bit, but
de re z displays it if it is set.

Bits 0 and 7 of the resource attributes are reserved for use by the Resource Manager and
cannot be set by rez, but are displayed by derez.

You can list more than one attribute by separating the keywords with a comma (,). An
example of attribute use is given in the next section, "read-Read Data as a Resource."

E-lO A!UX Toolbox: Macintosh ROM Interface
030-0787-A

read-read data as a resource

The read statement reads a data file or the data entry in a file as a resource.

Syntax

read 'resource-type' '(' ID[, "resource-name"] [, attributes .. .] ')'
"filename" ;

Description

Read filename and write it as a resource with the type resource-type and the resource ID ID,
with the optional resource name resource-name and optional resource attributes (as defined in
the preceding section). For example, the statement
read 'STR ' (-7S9,"Test String",sysheap,preload) "TestS";

reads TestS and writes it as a 'STR 'resource with the resource ID -789, the resource name
Test String, and the resource attributes sysheap and preload.

data-specify raw data

da t a statements specify raw data as a sequence of bits, without any formatting.

Syntax

data 'resource-type' '(' ID[, "resource-name"] [, attributes ...] ')' {
" data-string"

} ;

Description

Read the data found in data-string and write it as a resource with the type resource-type and
the resource ID ID. You can optionally specify a resource name, resource attributes, or both.

Appendix E Resource Compiler and Decompiler E-11
030-0787-A

For example, the statement
da t a 'P I CT ' (128) {

$"4F35FF8790000000"
$"FF234F35FF790000"

} ;

reads the data string shown and writes it as a 'P reT' resource with resource ID 128.

• Note: When de re z generates a resource description, it uses the data statement to
represent any resource type that doesn't have a corresponding type declaration or
cannot be disassembled for some other reason.

t ype-declare resource type

The type declaration provides a template that defines the structure of the resource data for a
single resource type or for individual resources. If more than one type declaration is given for
a resource type, the last one read before the data definition is the one that's used. Therefore,
you can override declarations from include files or previous resource description files.

Syntax

type 'resource-type' ['(' ID1[:ID2] ')'] {
type-specification ...

} ;

Description

Cause any subsequent resource statement for the type resource-type to use the declaration
{ type-specification ... }. The optional ID1[: ID2] specification causes the declaration to apply
only to a given resource ID or range of IDs. The first 12 type specifications listed below are
data types.

E-12 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

type-specification can be one of these options:
bitstring[n]
byte
integer
longint
boolean
char
string
pstring
wstring
cstring
point
rect
fill
align
switch

Zero fill
Zero fill to nibble, byte, word, or long word boundary
Control construct (case statement)

array Array data specification-zero or more instances of data types

These types can be used singly or together in a type statement. Each of these type specifiers
is described in the following sections.

• Note: Several of these types require additional fields. The exact syntax is given in the
following sections.

You can also declare a resource type that uses another resource's type declaration, by using
the following variant of the type statement:_

type' resource-typel' [' (' ID1[: ID2] ') '] as 'resource-type2' [' (' ID') '];

Data-type specifications

A data-type statement declares a field of the given data type. It can also associate symbolic
names or constant values with the data type. Data-type specifications can take three forms,
as shown in this example:
type 'XAMP' { /* declare a resource of type 'XAMP' */

byte;
byte off=O, on=l;
byte = 2;

} ;

Appendix E Resource Compiler and Decompiler E-13
030-07S7-A

• The first b yt e statement declares a byte field; the actual data is supplied in a subsequent
resource statement.

• The second byte statement is identical to the first, except that the two symbolic names
off and on are associated with the values 0 and 1. These symbolic names could be used in
the resource data.

• The third byte statement declares a byte field whose value is always 2. In this case, no
corresponding statement appears in the resource data.

• Note: Numeric expressions and strings can appear in type statements; they are
defined later in this appendix under "Expressions."

Numeric types

The numeric types (bit string, byte, integer, and longint) are fully specified
as follows:

[unsigned] [radix] numeric-type [=expr I symbol-definition .. .];

Explanations of these fields follow. Information on the optional expr and symbol-definition
fields is given with the explanations of various numeric-type designations.

• The unsigned prefix signals derez that the number should be displayed without a sign
that the high-order bit may be used for data and the value of the integer cannot be
negative. The unsigned prefix is ignored by rez but is needed by derez to correctly
represent a decompiled number. re z uses a sign if it is specified in the data. Precede a
signed negative constant with a minus sign C-); $FFFFFF85 and -$7B are equivalent in value.

• radix is one of the following string constants:

hex

decimal

octal

binary

literal

You can supply numeric data as hexadecimal, decimal, octal, binary, or literal data.

E-14 AlUX Toolbox: Macintosh ROM Interface
030-07B7-A

• numeric-type is one of the following:

bi t st ring' [' length'] , Bitstring of length bits (maximum 32).

byte

integer

longint

Byte (8-biO field. This is the same as bi t st ring [8] .

Integer (16-bit) field. This is the same as bit st ring [16] .

Long integer (32-bit) field. This is the same as
bitstring [32].

rez uses integer arithmetic and stores numeric values as integer numbers. rez translates
boolean, byte, integer, and longint values to bitstring equivalents. All
computations are done in 32 bits and truncated.

An error is generated if a value won't fit in the number of bits defined for the type. The byt e,

integer, and longint constants are valid in these ranges:

Type Maximum Mioimun

byte 255 -128
integer 65535 -32768
longint 4294967295 -2147483648

Boolean type

A Boolean type is a single bit with two possible states: 0 (or false) and 1 (or true).

(true and false are global predefined identifiers.) Boolean values are declared as follows:

boolean [= constant I symbolic-value ...];

For example, the Boolean type declaration
type 'DONE' {

boolean = false;
} ;

declares a symbolic-value of FALSE.

Type boolean declares a I-bit field; this is equivalent to
unsigned bitstring[l]

Note that this type is not the same as a Boolean variable as defined by Pascal.

Appendix E Resource Compiler and Decompiler E-15
030-0787-A

Character type

Characters are declared as follows:

char [= string I symbolic-value .. .];

For example:
type 'SYMB'

char dollar = "$",percent "%";
} ;

resource 'SYMB' (128)
dollar

} ;

Type char declares an 8-bit field; this is equivalent to
string [1]

String type

String data types are specified as follows:

string-type [' [' length'] '] [= string I symbol-value .. .];

string-type is one of the following:

[hex] string Plain string (contains no length indicator or termination character).
The optional hex prefix tells de re z to display it as a hex-string.
string [n] contains n characters and is n bytes long. Type char is
shorthand for st ring [1] .

pstring Pascal string (a leading byte contains the length information).
pst ring [n] contains n characters and is n + 1 bytes long. pst ring has
a built-in maximum length of 255 characters, the highest value the length
byte can hold. If the string is too long to fit the field, re z issues a warning
and truncates the string.

wstring Very large pst ring (two leading bytes contain the length information).
A wstring can contain up to 65,535 characters. wstring en] contains
n characters and is n + 2 bytes long.

E-16 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

cstring C string (a trailing null byte marks the end of the string). cst ring [n]

contains n-l characters and is n bytes long. A cstring of length 1 can be
assigned only the value"", because cst ring [1] has room only for the
terminating null.

Each string type can be followed by an optional length indicator in brackets ([n]). length is
an expression indicating the string length in bytes. length is a positive number in the range 1 ~
length ~ 2147483647 for string and cstring, and in the range 1 ~ length ~ 255 for
pstring, and in the range l.s,length.s, 65535 for wstring.

• Note: You cannot assign the value of a literal to a string-type.

If no length indicator is given, pstring, wstring, or cst ring stores the number of
characters in the corresponding data definition. If a length indicator is given, the data may be
truncated on the right or padded on the right. The padding characters for all string types are
nulls. If the data contains more characters than the length indicator provides for, re z issues a
warning message and truncates the string.

... Warning A null byte within a cstring is a termination indicator and may
confuse derez and C programs. However, the full string, including
the explicit null and any text that follows it, is stored by re z

as input. •

Point and rectangle types

Because points and rectangles appear so frequently in resource files, they have their own
simplified syntax:

point [= point-constant I symbolic-value .. .];

rect [= rect-constant I symbolic-value .. '];

where

point-constant = {x-integer-expr, y-integer-expr }

and

Appendix E Resource Compiler and Decompiler E-17
030-07B7-A

rect-constant= {integer-expr, integer-expr, integer-expr, integer-expn

These type statements use integer expressions to declare a point (two 16-bit signed integers)
or a rectangle (four 16-bit signed integers). The integers in a rectangle definition specify the
rectangle's upper-left and lower-right points, respectively.

Fill and align types

The resource created by a resource definition has no implicit alignment. It's treated as a bit
stream, and integers and strings can start at any bit. The fill and align type specifiers are
two ways of padding fields so that they begin on a boundary that corresponds to the field
type. align is automatic, and fill is explicit. Both fill and align generate
zero-filled fields.

Fill specification

The f ~ 11 statement causes re z to add the specified number of bits to the data stream. The
fill is always O. The form of the statement is

fill jill-size ['['length']'];

where jill-size is one of the following strings:
bit

nibble

byte

word

long

These declare a fill of 1, 4, 8, 16, or 32 bits (optionally multiplied by length). length is an
expression whose value is less than or equal to 2147483647.

The following fill statements are equivalent:
fill word[2];

fill long;

fill bit[32];

The full form of a type statement specifying a fill might be as follows:
type 'XRE S' {type-specification; fill bit [2] ; } ;

E-18 A/UX Toolbox: Macintosh ROM Interface
030-07B7-A

• Note: rez supplies zeros as specified by fill and align statements. derez does
not supply any values for fill or ali gn statements; it just skips the specified
number of bits, or skips bits until data is aligned as specified.

Align specification

Alignment causes re z to add fill bits of zero value until the data is aligned at the specified
boundary. An alignment statement takes the following form:

align align-size;

where align-size is one of the following strings:
nibble
byte
word
long

Alignment pads with zeros until data is aligned on a 4-bit, 8-bit, 16-bit, or 32-bit boundary.
This alignment affects all data from the point where it is specified until the next
ali g n statement.

Array type

An array is declared as follows:

[wide] array [array-name I '['length']'] { array-list};

array-list, a list of type specifications, is repeated zero or more times. The wide option
generates the array data in a wide display format (in de re z)-the elements that make up the
array list are separated by a comma and space instead of a comma, newline, and tab. Either
array-name or [length] may be specified. array-name is an identifier.

If the array is named, then a preceding statement must refer to that array in a constant
expression with the $$countof(array-name) function; otherwise, derez is unable to
decompile resources of this type. For example, in the declaration

Appendix E Resource Compiler and Decompiler E-19
030-0787-A

type 'STR#' { /*define a string list resource*1
integer $$Countof(StringArray);
array StringArray {
pstring;
} ;

} ;

the $ $Countof function returns the number of array elements (in this case, the number of
strings) from the resource data.

If [length] is specified, there must be exactly length elements.

Array elements are generated by commas. Commas are element separators. Semicolons (;)
are element terminators. However, semicolons may be used as element separators, as in
this example:
type 'xyzy'

array Increment
integer = $$ArrayIndex(Increment);

} ;

} ;

resource 'xyzy' (1)
1* zero elements *1

} ;

resource 'xyzy' (3) {
1* two elements *1
, ,

} ;

1* The only way to specify one element in an array that has all
constant elements is to use a semicolon terminator.

1*
resource 'xyzy' (4) {

1* one element *1

} ;

E-20 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Switch type

The switch statement specifies a number of case statements for a given field or fields in the
resource. The format is as follows:

sw itch {case-statement ... };

where case-statement has the following form:

case case-name: [case-body;] ...

case-name is an identifier. case-body may contain any number of type specifications and must
include a single constant declaration per case, in the following form:

key data-type = constant

Which case applies is based on the key value, as illustrated in this example:
type 'DITL' {/* dialog item list declaration from types.r */

} ;

type specifications ...

switch {

case Button:

boolean enabled, disabled;

key bitstring[7] = 4;

pstring;

case CheckBox:

} ;

boolean enabled, disabled;

key bitstring[7] = 5;

pstring;

•. • and so on.

/* one of the following */

/* key value */

/* key value */

Appendix E Resource Compiler and Decompiler E-21
030-0787-A

Sample type statement

The following sample type statement is the standard declaration for a 'WIND' resource,
taken from the types. r file:
type 'WIND' {

rect;

integer

byte

fill byte;

byte

fill byte;

/* boundsRect */

documentProc, dBoxProc, plainDBox, /* procID */

altDBoxProc, noGrowDocProc,

zoomProc=8, rDocProc=16;

invisible, visible; /* visible */

noGoAway, goAway; /* has close box*/

unsigned hex longint; /* ref Con */

/* title */ pstring Untitled = "Untitled";

} ;

The type declaration consists of header information followed by a series of statements, each
terminated by a semicolon (;). The header of the sample window declaration is
type 'WIND'

The header begins with the type keyword followed by the name of the resource type being
declared-in this case, a window. You may specify a standard Macintosh resource type, as
listed in the Resource Manager chapters of Inside MaCintosh, Volumes I, IV, and V, or you may
declare a resource type specific to your application.

The left brace (0 introduces the body of the declaration. The declaration continues for as
many lines as necessary and is terminated by a matching right brace (D. You can write more
than one statement on a line, and a statement may be on more than one line (like the integer

statement in the example). Each statement represents a field in the resource data. Comments
may appear anywhere that white space may appear in the resource description file; comments
begin with 1* and end with *1 as in C.

SYnrnDolde~tions

Symbolic names for data-type fields simplify the reading and writing of resource definitions.
Symbol definitions have the form

E-22 AlUX Toolbox: Macintosh ROM Interface
030-07S7-A

name = value [, name = value] ...

For numeric data, the = value part of the statement can be omitted. If a sequence of values
consists of consecutive numbers, the explicit assignment can be left out, and if value is
omitted, it's assumed to be one greater than the previous value. (The value is assumed to be
o if it's the first value in the list.) This is true for bitstrings (and their derivatives, byte,

integer, and longint). For example, in the statement
integer documentProc, dBoxProc, plainDBox,

altDBoxProc, noGrowDocProc,

zoomProc=8, rDocProc=16;

the symbolic names documentProc, dBoxProc, plainDBox, altDBoxProc, and
noGrowDocProc are automatically assigned the numeric values 0, 1,2, 3, and 4.

Memory is the only limit to the number of symbolic values that can be declared for a single
field. There is also no limit other than memory to the number of names you can assign to a
given value; for example, this statement is valid:
integer documentProc=O, dBoxProc=l, plainDBox=2, altDBoxProc=3,

rDocProc=16,

Document=O, Dialog=l, DialogNoShadow=2, ModelessDialog=3,

DeskAccessory=16;

delete-delete a resource

The delete statement deletes a resource. This may be useful, for example, in the process
of translating menu and dialog text in system disks or applications intended for use in
non-English-speaking countries. The delete statement and the change statement
(discussed in the next section) allow you to delete and change resources without switching
to ResEdit.

Syntax

delete 'resource-type' [, (, resource-name I ID1[: ID2J ') ,];

Appendix E Resource Compiler and Decompiler E-23
030-07S7-A

Description

Delete the resource of type resource-type from the output file with the specified
resource-name, ID, or range of ID numbers. If both the resource name and the ID are omitted,
all resources of type resource-type are deleted.

• Note: The delete statement is valid only when the -a (append) option is specified
in the command line. It makes no sense to delete resources when you're creating a
new resource file from scratch.

You can delete resources that have their protected bit set only if you use the -ov option.

Here is an example of a shell command (echo) that calls on re z to delete all resources of type
'ckid' from the file SomeTextFile:

echo "delete 'ckid';" I rez ~a -0 SomeTextFile

change--change a resource's vital information

The change statement changes a resource's vital information. Vital information includes the
resource type, ID, name, attributes, or any combination of these.

Syntax

change'resource-typel' [' ('resource-namell ID1[:ID2]') ']
to' resource-type2 '('ID[, resource-name2] [, attributes . ..]') , ;

Description

Change the resource of type resource-typel in the output file with the specified
resource-namel, ID, or range of ID numbers to a resource of type resource-type-2 with the
specified ID. You can optionally specify resource-name2 and attributes for the new resource.
If neither resource-name2 nor the attributes are specified, the name and attributes are
not changed.

E-24 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

For example, here is a Shell command (echo) that calls on rez to set the protected bit On for
all 'CODE' resources in the file TestDA:

echo "change 'CODE' to $$type ($$Id,$$Attributes I 8);" d
I rez -a -0 TestDA

The d character (obtained by pressing OPTION-D) at the end of the first line of this example
has the effect of continuing the command onto the next line. The d character is used to
escape the character that follows from performing its usual action. In this case, the following
character is a newline, and the line-termination function is escaped.

• Note: The change statement is only valid when the -a (append) option is specified
in the command line. It makes no sense to change resources when you're creating a
new resource file from scratch.

resource-specify resource data

resource statements specify actual resources, based on previous type declarations.

Syntax
resource 'resource-type' '(' ID[, resource-name] [, attributes] ') , {

[data-statement 1[, data-statement21 .. .]
} ;

Description

Specify the data for a resource of type resource-type and ID ID. The latest type declaration
declared for resource-type is used to parse the data specification. The data-statement specifies
the actual data; the data-statement appropriate to each resource type is defined in the
next section.

The resource definition causes an actual resource to be generated. A resource statement
can appear anywhere in the resource description file, or even in a separate file specified on the
command line, or as an include file, as long as it comes after the relevant type declaration.

Appendix E Resource Compiler and Decompiler E-25
030-07S7-A

Data statements

The body of the data specification contains one data statement for each declaration in the
corresponding type declaration. The base type must match the declaration.

Base type Instance types

string string,cstring,pstring,wstring char

bit string boolean,byte,integer,longint,bitstring

rect rect

point point

Switch data

Switch data statements are specified in the following format:

switch-name case-body

For example, the following statement could be specified for the 'D I TL' type declaration
example given in the section "Switch Type" earlier in this appendix. The switch-name example
is CheckBox.

CheckBox { enabled, "Check here" },

The boolean and pstring values defined in the case-body for the CheckBox case are set to
enabled and to "Check here"; the key bitstring term was already set to a constant in
the definition. Now data items are provided for all terms of the case-body.

Array data

Array data statements have the following format:

{[array-element [, array-element] ...]}

An array-element consists of any number of data statements separated by commas.

For example, the following data might be given for the' STR#' type declaration example
given earlier in the section "Array Type":

E-26 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

resource 'STR#' (280)
"this" ,
"is",
"a",
"test"

} ;

Sample resource definition

This section describes a sample resource description file for a window. (See Chapter 9,
"The Window Manager" in Inside Macintosh, Volume I, for information about resources
for windows.)

Once again, here is the type declaration given earlier in this appendix under
"Sample type Statement":
type 'WIND' {

recti
integer

byte
fill byte;
byte
fill byte;
unsigned hex
pstring

} ;

docurnentProc, dBoxProc, plainDBox,
altDBoxProc, noGrowDocProc,
zoomProc=8, rDocProc=16;
invisible, visible;

noGoAway, goAway;

longint;
Untitled = "Untitled";

/*boundsRect*/
/*procID*/

/*visible*/

/*has close box */

/*refCon*/
/*title*/

Here is a typical example of the window data corresponding to this declaration:
resource 'WIND' (128,"My window",appheap,preload) {

{40,80,120,300},

docurnentProc,

Visible,

goAway,

0,

"Status Report"

} ;

/*status report window*/

/*bounding rectangle*/

/*docurnentProc etc.*/

/*Visible or Invisible*/

/*GoAway or NoGoAway*/

/*reference value RefCon*/

/*title*/

Appendix E Resource Compiler and Decompiler E-27
030-07S7-A

This data definition declares a resource of type' WIND' using whatever type declaration was
previously specified for' WIND' . The resource ID is 128; the resource name is My window.

Because the resource name is represented by the Resource Manager as a pstring, it should
not contain more than 255 characters. The resource name may contain any character including
the null character ($00). The resource is placed in the application heap when loaded, and it is
loaded when the resource file is opened.

The first statement in the window type declaration declares a bounding rectangle for the
window and corresponds to
rect;

in the type declaration. The rectangle is described by two points: the upper-left corner and
the lower-right corner. The coordinates for these two points of a rectangle are separated
by commas:

{top, left, bottom, right}

Thus, the values
{40,80,120,300}

correspond to the coordinates top, left, bottom, and right.

Symbolic names

Symbolic names may be associated with particular values of a numeric type. A symbolic name
is given for the data in the second, third, and fourth fields of the window declaration.
For example:
integer documentProc=O, dBoxProc=l, plainDBox=2,

altDBoxProc=3, noGrowDocProc=4,

zoomProc=8, rDocProc=16; /*windowType*/

This statement specifies a Signed 16-bit integer field with symbolic names associated with the
values 0 to 4 and 16. The values 0 through 4 need not be indicated in this case; if no values are
given, symbolic names are automatically given values starting at 0, as explained previously.

The sample window declaration assigned the values true (1) and false (0) to two different
byte variables. For clarity, the window's resource data used the symbolic names
visible,
goAway,

E-28 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

instead of their equivalents
TRUE,
TRUE,

or
1,
1,

Labels

Labels are needed to support some of the more complicated resources such as 'NFNT' and
Color QuickDraw resources. Use labels within a resource type declaration to calculate offsets
and permit accessing of data at the labels.

Syntax

label ~ character {alphanum} * ':'
character ~ '_' I A I B I C ...

number ~ 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
alphanum ~ character I number

Description

Labeled statements are valid only within a resource type declaration. Labels are local to each
type declaration. A single label may appear on any statement.

In expressions, only the identifier portion of the label (that is, everything up to, but excluding,
the colon) may be used. See "Declaring Labels Within Arrays" later in this appendix.

The value of a label is always the offset-in bits-between the beginning of the resource and
the position where the label occurs when mapped to the resource data. In this label
definition example

Appendix E Resource Compiler and Decompiler E-29
030-0787-A

type 'strb' {
cstring;

endOfString:
integer = endOfString;

} ;

the label is defined as a cst r i n 9 followed by an integer containing the bit count of the
particular label.

Here is an example of this label:
resource 'strb' (8) {

"Hello"

The label cst ring is "Hello", followed by an integer containing the value 48. The value is
calculated as follows, based on the definition of cstring (string with an added null byte)
and the bit value of 8 provided for resource 'st rb ' :

(len ("Hello") [5] + null byte [1]) * 8 [bits per byte] = 48

Bunt-in functions that access resource data

In some cases, it is desirable to access the actual resource data that a label points to. Several
built-in functions allow access to that data:

$ $ Bi tF i e I d (label, startingPosition, numberOfBits)
Return the numberOfBits (maximum of 32) bitstring found startingPosition
bits from label.

$ $ B yt e (label) Return the byte found at label.

$ $Word (label) Return the word found at label.

$$Long (label) Return the long word found at label.

For example, the resource type' STR 'could be redefined without using a pst ring. Here is
the definition of 'STR 'from types. r:

type 'STR ' {
pst ring;

E-30 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Here is a redefinition of's TR 'using labels:
type 'STR ' {
len: byte = (stop - len) / 8 - 1;

string[$$Byte(len)];
stop:
} ;

Declaring labels within arrays

Labels declared within arrays may have many values. Each element in the array corresponds to a
value for each label defined within the array. Array subscripts provide access to the individual
values of these labels. Subscript values range from 1 to n where n is the number of elements in
the array. Labels within arrays that are nested in other arrays require multidimensional
subscripts. Each level of nesting adds another subscript. The rightmost subscript varies most
quickly. Here is a label definition example:
type 'test' {

foo:

} ;

integer = $$CountOf(array1);

array array1 {

} ;

integer = $$CountOf(array2);

array array2 {

integer;

} ;

Here is an example of 'test' in use:
resource 'test' (128) {

} ;

{1,2,3},

{4,5}

Appendix E Resource Compiler and Decompiler E-31
030-0787-A

In the above example, the label foo would take on these values:
foo[l,l] 32 $$Word(foo[l,l]) 1

foo[1,2] 48 $$Word(foo[l,2]) 2

foo[l,3] 64 $$Word(foo[l,3]) 3

foo[2,1] 96 $$Word(foo[2,1]) 4

foo[2,2] 112 $$Word(foo[2,2]) 5

A new built-in function may be helpful in using labels within arrays:
$$ArrayIndex (array-name)

This function returns the current array index of the array array-name. An error occurs if this
function is used anywhere outside the scope of the array array-name.

Label limitations

derez is basically a one-pass decompiler. In order for derez to decompile a given type, any
expression within that type must not contain more than one undefined label. Any label that
occurs lexically after the expression is undefined. The use of a label within an expression
defines the label.

The decompiler can keep track of one unknown value at a time, pending definition of the
value. This example demonstrates an expression with more than one undefined label:
type 'test' {

1* In the expression below, start is defined, next is undefined. *1
start: integer = next - start;

1* In the expression below, next is defined because it was used in a
previous expression, but final is undefined. *1

middle: integer = final - next;

next: integer;

final: 1* final is now defined *1

} ;

In the example, if the expression defining middle (middle: integer = final -

next;) had not been encountered while the value for next remained unresolved, then the
decompiler could have correctly processed the other statements. Alternatively, if s tart had
been defined in terms of middle

start: integer = middle - start;

E-32 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

then the entire expression could have been correctly processed.

re z can compile types that have expressions containing more than one undefined label,
but de re z is not able to decompile those resources and simply generates data
resource statements .

• Note: The label specified in $$BitField (label), $$Byte (label), $$Word (label),
and $$Long (label) must occur lexically before the expression; otherwise, an error
is generated.

Using labels: two examples

The first example shows the modified 'ppa t ' declaration using the new re z labels.

• Note: Boldface text in the examples indicates the differences between the prior and
current version of the type definition of 'ppa t ' , that is, where using labels has
changed the definitions.

Without using labels, the whole end section of the resource would have to be combined into a
single hex string (everything below the P ixelData label). Using labels, the complete' ppat '

definition can be expressed in re z language.
type 'ppat' {

/* PixPat record */

integer oldPattern,

newPattern,

ditherPattern;

unsigned longint = PixMap I 8;

unsigned longint = PixelData I 8;

fill long;

fill word;

fill long;

hex string [8];

/* pattern type

/* offset to pixmap

/* offset to data

/* expanded pixel image

/* pattern valid flag

/* expanded pattern

/* old-style pattern

/* PixMap record

Appendix E Resource Compiler and Decompiler E-33
030-0787-A

*/

*/

*/

*/

*/

*/

*/

*/

PixMap:

fill long;

unsigned bitstring[1] 1;

unsigned bitstring[2] 0;

unsigned bitstring[13];

recti

integer;

integer unpacked;

unsigned longint;

unsigned hex longint;

unsigned hex longint;

integerchunky, chunkyPlanar, planar;

integer;

integer;

integer;

unsigned longint;

unsigned longint

fill long;

PixelData:

ColorTable / 8 ;

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

base address

new PixMap flag

must be 0

offset to next row

bitmap bounds

PixMap vers number

packing format

size of pixel data

h. resolution (ppi) (fixed)

v. resolution (ppi) (fixed)

pixel storage format

bits in pixel

components in pixel

bits per field

offset to next plane

offset to color table

reserved

hex string [(ColorTable PixelData) / 8];

ColorTable:

} ;

unsigned hex longint;

integer;

integer $$Countof(ColorSpec)

wide array ColorSpec

integer;

} ;

unsigned integer;

unsigned integer;

unsigned integer;

E-34 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

/* ctSeed

/* trans Index

1;/* ctSize

/* value

/* RGB: red

/* green

/* blue

*/

*/

*/

*/
I

*i'l

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Here is another example of a new resource definition. In this example the $ $ Bit Fie 1 d ()

function is used to access information stored in the resource in order to calculate the size of
the various data areas added at the end of the resource. Without labels, all of the data would
have to be combined into one hex string. As in the prior example, boldface text indicates
changes for the current (label) version.
type 'cicn' {

/* IconPMap (pixMap) record */
fill long;

unsigned bitstring[l] 1;

unsigned bitstring[2] 0;

pMapRowBytes: unsigned bitstring[13];

Bounds:rect;

integer;

integer unpacked;

unsigned longint;

unsigned hex longint;

unsigned hex longint;

integer chunky, chunkyPlanar, planar;

integer;

integer;

integer;

unsigned longint;

unsigned longint;

fill long;

/* IconMask (bitMap) record */

fill long;

maskRowBytes: integer;

recti

/* IconBMap (bitMap) record */
fill long;

iconBMapRowBytes: integer;

recti

fill long;

/* base address

/* new pixMap flag

/* must be 0

/* offset to next row

/* bitmap bounds

/* PixMap vers number

/* Packing format

/* size of pixel data

/* h. resolution (ppi) (fixed)*/

/* v. resolution (ppi) (fixed)*/

/* pixel storage format

/* # bits in pixel

/* # components in pixel

/* # bits per field

/* offset to next plane

/* offset to color table

/* reserved

/* base address

/* rrow bytes

/* bitmap bounds

/* base address

/* Row bytes

/* Bitmap bounds

/* Handle placeholder

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

Appendix E Resource Compiler and Decompiler E-35
030-07B7-A

} ;

1* Mask data */
hex string [$$Word(maskRowBytes) *

($$BitField(Bounds, 32, 16) /*bottom*/
- $$BitField(Bounds, 0, 16 /*top*/)];

/* BitMap data */
hex string [$$Word(iconBMapRowBytes) *

($$BitField(Bounds, 32, 16)
- $$BitField(Bounds, 0, 16)

/* Color Table */
unsigned hex longint;

integer;

integer = $$Countof(ColorSpec) - 1;

wide array ColorSpec {

} ;

integer;

unsigned integer;

unsigned integer;

unsigned integer;

/* PixelMap data */

/*bottom*/
/* top */)];

/* ctSeed

/* trans Index

/* ctSize

/* value

/* RGB: red

/* green

/* blue

hex string [$$BitField(pMapRowBytes, 0, 13) *

($$BitField (Bounds , 32, 16)

- $$BitField(Bounds, 0, 16)

/* bottom

/*top*/)];

E-36 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

*/

*/

*/

*/

*/

*/

*/

*/

Preprocessor directives

Preprocessor directives substitute macro definitions and include files and provide
if-then-else processing before other re z processing takes place. This section describes the
preprocessor directives.

The syntax of the preprocessor is similar to the C-Ianguage preprocessor. Preprocessor
directives must observe these rules and restrictions:

• Each preprocessor statement must be expressed on a single line and placed at the
beginning of the line.

• The pound sign (41=) must be the first character on the line of the preprocessor statement
(except for spaces and tabs).

• The placeholder identiflerCused in macro names) may consist of letters CA-Z, a-z), digits
(0 - 9), or the underscore character (_). Identifiers may not start with a digit, are not case
sensitive, and may be any length.

Variable deftnitions

The 41=define and 41=undef directives let you assign values to identifiers:

41=define macro data
41=unde f macro

The 41=def ine directive causes any occurrence of the identifier macro to be replaced with the
text data. You can extend a macro over several lines by ending the line with the backslash
character C\), which functions as the re z escape character. Quotation marks within strings
must also be escaped, as shown here:
41=define poem "I wander \
thro\' each \
charter\'d street"

41=undef removes the previously defined identifier macro. Macro definitions can also be
removed with the -undef option on the rez command line.

Appendix E Resource Compiler and Decompiler E-37
030-0787-A

The following macros are predefined:

Variable

true
false
rez
derez

Value

1
o
1 if rez is running; 0 if derez is running
1 if derez is running; 0 if rez is running

incl ude directives

The =lfinclude directive reads a text file by using this syntax:

#includejilename

Include the text file filename. The maximum directory nesting is to 10 levels.

Here is an example of an include directive:
#include /mac/lib/rincludes/mytypes.r

Note that the # incl ude preprocessor directive, which includes a file, is different from
the include statement, described earlier in this chapter, which copies resources from
another file.

If-then-else processing

The following directives provide conditional processing:
i f expression
[# eli f expression
[#else]
#endif

E-38 A/UX Toolbox: Macintosh ROM Interface
030-07B7-A

• Note: The placeholder expression is defined in the section "Expressions" later in this
appendix. With the #if and #elif directives, expression may also include the
following expression:

de fined identifier or de fined '(' identifier') ,

The following directives may also be used in place of # if:

#ifdef macro
#ifndef macro

Here is an example of if-then-else processing:
#define Thai
Resource 'STR ' (199) {
#ifdef English

"Hello"
#elif defined (French)

"Bonjour"
#elif defined (Thai)

"Sawati"
#elif defined (Japanese)

#endif
} ;

"Konnichiwa"

Print directive

The #pr int f directive is provided to aid in debugging resource description files:

#printf (format-string, arguments ...)

The format of the #printf statement is exactly the same as the printf statement in the C
language with one exception: there can be no more than 20 arguments (this is the same
restriction that applies to the $ $ Forma t function). The #p r i n t f directive writes its output
to standard error. Note that the #p r i n t f directive does not end with a semicolon.

Appendix E Resource Compiler and Decompiler E-39
030-07S7-A

Here is an example of the use of the print directive:
#define Tuesday 3

#ifdef Monday

#printf("The day is Monday, day #%d\n", Monday)

#elif defined (Tuesday)

#printf("The day is Tuesday, day #%d\n", Tuesday)

#elif defined (Wednesday)

#printf("The day is Wednesday, day #%d\n", Wednesday)

#elif defined (Thursday)

#printf("The day is Thursday, day #%d\n", Thursday)

#else

#printf("DON'T KNOW WHAT DAY IT IS!\n")

#endif

The above file generates the following text:
The day is Tuesday, day #3

Resource description syntax

This section describes the details of the resource description syntax.

Numbers and literals

All arithmetic is performed as 32-bit signed arithmetic. The syntax uses the basic constants
described in Table E-l.

E-40 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

• Table E-l Numeric constants

Numeric type Form

decimal nnn ...

hex oxhhh ...

$hhh ...

octal 0000 ...

binary oBbbb ...

literal 'aaaa'

Meaning

Signed decimal constant between 4294967295 and
-2147483648.

Signed hexadecimal constant between OX7FFFFFFF and
OX80000000.

Alternate form for hexadecimal constants.

Signed octal constant between 017777777777 and
020000000000.

Signed binary constant between
OBllllllllllllllllllllll111111111 and
OB10000000000000000000000000000000.

A literal with one to four characters. Characters are printable
ASCII characters or escape characters (defined below). If
there are fewer than four characters in the literal, then the
characters to the left (high bits) are assumed to be $00.
Characters that are not in the printable character set and are
not the characters \ ' and \ \ (which have special meanings)
can be escaped according to the character escape rules. (See
"Strings" later in this appendix.)

Literals and numbers are treated in the same way by the resource compiler. A literal is a value
within single quotation marks; for instance, 'A' is a number with the value 65 whereas "A" is
the character A expressed as a string. Both are represented in memory by the bitstring
01000001. (Note, however, that "A" is not a valid number and 'A' is not a valid string.)
The following numeric expressions are equivalent:
'B'
66
'A'+l

Literals are padded with nulls on the left side so that the literal 'ABC' is stored as shown in
Figure E-3.

Appendix E Resource Compiler and Decompiler E-41
030-0787-A

• Figure E-3 Padding of literals

'ABC' = I $00 I A B

Expressions

An expression can consist of simply a number or a literal. Expressions may also include numeric
variables and the system functions.

Table E-2 lists the operators in order of precedence with highest precedence first. Groupings
indicate equal precedence. Evaluation is always left to right when the priority is the same.
Variables are defined following the table.

• Table E-2 Resource-description expression operators

Operator Meaning

1. (expr) Parentheses can be used in the normal manner to force
precedence in expression calculation.

2. -expr
-expr
!expr

3. exprl *
exprl /
exprl %

4. exprl +
exprl -

expr2
expr2
expr2
expr2
expr2

Arithmetic (two's complement) negation of expr.
Bitwise (one's complement) negation of expr.
Logical negation of expr.
Multiplication.
Division.
Remainder from dividing exprl by expr2.
Addition.
Subtraction.

E-42 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

[continued]

• Table E-2 Resource-description expression operators [continued]

Operator

5. exprl« expr2
exprl » expr2

6. exprl > expr2
exprl >= expr2
exprl < expr2
exprl <= expr2

7. exprl == expr2
exprl ! = expr2

8. exprl & expr2
9. exprl A expr2
10. exprl I expr2
11. exprl & & expr2
12. exprl I I expr2

Meaning

Shift left-shift exprlleft by expr2 bits.
Shift right-shift exprl right by expr2 bits.
Greater than.
Greater than or equal to.
Less than.
Less than or equal to.
Equal to.
Not equal to.
Bitwise AND.
Bitwise XOR.
Bitwise OR.
Logical AND.
Logical OR.

Note: The logical operators !, >, >=, <, <=, ,! =, &&, I I evaluate to 1 (TRUE) or 0 (FALSE).

Variables and functions

Some resource compiler variables contain commonly used values. All resource compiler
variables start with $ $ followed by an alphanumeric identifier.

String values

The follOWing variables and functions have string values (typical values are given in
parentheses):

$$Date Current date function, which is useful for putting time stamps into the
resource file. The format is generated through the ROM call
IUDateString. ("Thursday, June 21, 1990")

Appendix E Resource Compiler and Decompiler E-43
030-0787-A

$ $Format ("!onnat-string", arguments)

$$Name

Format function, which works just like the #pr int f directive, except
that $ $ Forma t returns a string rather than printing to standard output.
(See "Print Directive" earlier in this appendix.)

Name of resource from the current resource. The current resource is the
resource being generated by a resource statement, being included with
an include statement, being deleted by a delete statement, or being
changed by a change statement. In addition to the $ $Name string
variable, three numeric variables, $$Type, $$ID, and $$Attributes,

refer to the current resource. They are described in the next section
"Numeric Variables."

Here is example showing the use of three of these four variables in an
include statement that includes all 'DRVR' resources from one file and
keeps the same information, while also setting the SYSHEAP attribute:

include "file" 'DRVR' (0: 40) as 'DRVR' ($$ID,
$$Name, $$Attributes I 64) ;

The $$Type, $$ID, $$Name, and $$Attributes variables are
undefined outside of a resource, include, delete,

or change statement.

$$Resource ("filename", 'type' ,ID I "resource-name")

$$Time

$$Version

Resource read function, which reads the resource 'type' with the ID ID or
the name resource-name from the resource file filename and returns
a string.

Current time function, which is useful for time-stamping the resource file.
The format is generated through the ROM call IUTimeString.

("7 :50:54 AM")

Version number of the resource compiler. ("V3. 0")

EM A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Numeric values

The following variables and functions have numeric values:

$$Attributes Attributes of resource from the current resource. See the $$Name

string variable.

$$BitField(label, startingPosition, numberOfBits)

$$Byte (label)

$$Day

$$Hour

$$ID

$$Long (label)

$$Minute

$$Month

Return value of the bitstring of length numberOjBits (maximum 32) found
at startingPosition bits from label.

Return value of the byte found at label.

Current day, range 1-31.

Current hour, range 0-23.

ID of resource from the current resource. See the $ $Name string variable.

Return value of the longword found at label.

Current minute, range 0-59.

Current month, range 1-12.

$$PackedSize(Start, RowBytes, RowCount)
Reference to the current resource (see the $ $Name string variable).
Provided with an offset, Start, into the current resource and two integers,
RowBytes and RowCount, this function calls the Toolbox utility routine
UnpackBi t s for RowCount times, and returns the unpacked size of the
data found at start. Use $$PackedSize () only for decompiling
resource files. An example using this function is found in pict . r.

Appendix E Resource Compiler and Decompiler E-45
030-0787-A

$$ResourceSize

$$Second

$$Type

$$Weekday

$$Word (label)

$$Year

Strings

Current size of resource in bytes. When decompiling, $$ResourceSize

is the actual size of the resource being decompiled. When compiling,
$ $ Re sou r c e S i z e returns the number of bytes that have been compiled
so far for the current resource. (See the' KeRR' resource in systypes. r

for an example.)

Current second, range 0-59.

Type of resource from the current resource. See the $ $ N arne

string variable.

Current day of the week, range 1-7 (that is, Sunday-Saturday).

The word found at label.

Current year.

There are two basic types of strings:

Text string " a ... "

Hex string

The string can contain any printable character except ' " ' and '\'.
These and other characters can be created through escape sequences.
(See Table E-3.) The string "" is a valid string of length O.

$"hh ... "
Spaces and tabs inside a hexadecimal string are ignored. There must be an
even number of hexadecimal digits. The string $"" is a valid hexadecimal
string of length O.

Any two strings (hexadecimal or text) are concatenated if they are placed next to each other
with only white space between. (In this case, newlines and comments are considered
white space.)

E-46 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Figure E-4 shows a Pascal string declared as
pstring [10];

whose data definition is
"Hello"

• Figure E-4 Internal representation of a Pascal string

In the input file, string data is surrounded by quotation marks ("). You can continue a string
on the next line. A separating token (for example, a comma) or brace signifies the end of the
string data. A side effect of string continuation is that a sequence of two quotation marks
(" ,,) is simply ignored. For example,
"Hello ""out "
"there."

is the same string as
"Hello out there."

To place a quotation mark in a string, precede the quotation mark with a backslash (\ ,,).

Escape characters

The backslash character C\) is provided as an escape character to allow you to insert
non printable characters in a string. For example, to include a RETURN in a string, use the
escape sequence \ r. Table E-3 lists the valid escape sequences.

Appendix E Resource Compiler and Decompiler E-47
030-07S7-A

• TableE-3 Resource compiler escape sequences

Escape Hex Printable
sequence Name value equivalent

\t Tab $09 None
\b Backspace $08 None
\r Return $OD None
\n Newline $OA None
\f Form feed $OC None
\v Vertical tab $OB None
\? Rubout $7F None
\\ Backslash $SC \

\ ' Single quote $3A
\" Double quote $22

Note: In the Macintosh as, \ n is treated as a RETURN ($OD). In A!UX, \ n is treated as a LINE FEED ($OA).
re z always follows the Macintosh convention.

You can also use octal, hexadecimal, decimal, and binary escape sequences to specify
characters that do not have predefined escape equivalents. The forms are shown in Table E-4.

• TableE-4 Numeric escape sequences

Number
Base Form of digits Example

2 \ 0 B bbbbbbbb 8 \OBOIOOOOOl

8 \000 3 \101
10 \oDddd 3 \OD065
16 \oxhh 2 \OX41
16 \$hh 2 \$41

Here are some examples of numeric escape sequences:
\077 /* 3 octal digits */
\OxFF /* 'Ox' plus 2 hex digits */
\$Fl\$F2\$F3 /* '$' plus 2 hex digits */
\Od099 /* 'Od' plus 3 decimal digits */

E-48 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

• Note: An octal escape code consists of exactly three digits. For instance, to place an
octal escape code with a value of 7 in the middle of an alphabetic string, write
AB\007CD, not AB\ 7CD.

You can use the derez command line option -e to print characters that would otherwise be
escaped (characters preceded by a backslash, for example). Normally characters with values
between $20 and $D8 are printed as Macintosh characters. With this option, however, all
characters (except null, newline, tab, backspace, form feed, vertical tab, and rubout) are
printed as characters, not as escape sequences.

Appendix E Resource Compiler and Decompiler E-49
030-07S7-A

Appendix F C Interface Library

The Macintosh C interface library, documented in this appendix, contains
the C definitions of the constants, types, and functions defined in Inside
Macintosh and used in the A!UX Toolbox. The information here is the C
equivalent of the Pascal definitions in the summary section at the end of
each chapter of Inside Macintosh. For complete documentation of each of
the constants, types, and functions defined here, see the corresponding
section of Inside Macintosh. For a description of the functional
differences between the standard Macintosh libraries as described
in Inside Macintosh and the A!UX C versions, see Chapter 5,
"Inside A!UX Macintosh."

F-l
030-0787-A

Interface library ftles

Libraries in this section appear in alphabetical order by library name, not in
Inside Macintosh order.

The AlUX C definitions of the Macintosh libraries are provided in the header files in the
directory /usr/include/mac. Include the header file for each software library (typically
called a "manager" in the Macintosh environment) you use in your program.

The material in this appendix is accurate as this manual goes to press, but the header files
provided with your system may contain different information that reflects the most
recent changes.

Many of the routines in the AlUX Toolbox call code that is in the Macintosh ROM. Most of
these ROM routines use Pascal calling conventions, which differ from the C conventions used
by AlUX. Ordinarily, the AlUX Toolbox handles the interface between the two. If you are
writing your own definition functions or filter functions, or if you are making direct use of
data in structures, you must take the differences into account. For more information, see
"Converting Between C and Pascal Conventions" in Appendix C. (For a description of
definition functions and filter functions, see Inside Macintosh, Volume 1.)

The routine and parameter descriptions in the C interface libraries follow these conventions:

• A pointer to a char (printed char *) represents a pointer to a C-format string.

• A parameter of type S t r 255 represents a Pascal-format string.

Table F-llists the libraries described in this section and the name of the header file for each
library. For a list of all libraries described in Inside Macintosh and their status in the
AlUX Toolbox, see Chapter 5, "Inside AlUX Macintosh."

The two following sections, "Structures and Calls by Library" and "Calls in Alphabetic Order,"
provide information selected from the headers files listed in Table F-l.

F-2 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

• Table F-l Interface library files

Library

32-Bit QuickDraw with Color QuickDraw
Color Picker
Common type definitions
Control Manager
Definitions for AUXDispatch

Definitions for ROM

Desk Manager
Device Manager
Dialog Manager
Disk Driver
Disk Initialization Package
Event Manager, Operating System
Event Manager, Toolbox
File Manager
Font Manager
Gestalt facility
List Manager Package
List of Macintosh traps
Low-memory equates
Memory Manager
Menu Manager
Notification Manager
Package Manager

Binary-Decimal Conversion Package
Floating-Point Arithmetic and

Transcendental Functions Packages
International Utilities Package
Standard File Package

Header me

quickdraw.h

picker.h

types.h

controls.h

aux.h

romdefs.h

desk.h

devices.h

dialogs.h

disks.h

diskinit.h

osevents.h

events.h

files.h

fonts.h

gestalt.h

lists.h

traps.h

sysequ.h

memory.h

menus.h

notify.h

packages.h

[continued]

Appendix F C Interface Library F-3
030-07S7-A

• Table F-l Interface library files [continued]

Library

Palette Manager
Printing Manager
Print traps
Resource Manager

Scrap Manager
Script Manager
Segment Loader
Serial Driver
Shutdown Manager
Slot Manager
Sound Manager
String conversion, Pascal-to-and-from C
System Error Handler
TextEdit
Time Manager
Utilities, Operating System
Utilities, Toolbox
Vertical Retrace Manager
Video Driver
Window Manager

Header IDe

palettes.h

printing.h

printtraps.h

resources.h

asd.h

aux rsrc.h

scrap.h

script.h

segload.h

serial.h

shutdown.h

slots.h

sm.h

strings.h

errors.h

textedit.h

timer.h

osutils.h

toolutils.h

retrace.h

video.h

windows.h

Most of these files contain data structures and calls; some contain only definitions or equates.
These header files may be displayed, searched, or printed.

The two sections that follow are "Structures and Calls by Library," which lists the structures and
calls in the header files listed above, and "Calls in Alphabetic Order," which lists all calls in
alphabetical order by name.

F-4 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Structures and calls by library

The names of the structures and the calls that are available in the header files listed in Table F-l
are given here, under the library name given in the table. For instance, the structures and calls
available in picker. h. are under "Color Picker." See the header file itself for
additional information.

Structure names are in alphabetic order. Calls are in alphabetic order by name, followed by the
name of the return type for the call.

Chapter 5 contains additional information about those libraries that support Macintosh
managers and provide other Macintosh support services. Where available, information will be
found under the same library name in that chapter; for instance, information on the serial
driver is under "Serial Driver." Where information is available elsewhere, as with "Low-memory
equates," that reference is given with the information here in Appendix F.

32-Bit QuickDraw with Color QuickDraw

The following structures and calls are available in quickdraw. h.

structure name

BitMap

CCrsr

CGrafPort

Clcon

ColorSpec

ColorTable

CProcRec

CQDProcs

Cursor

FontInfo

GammaTbl

GDevice

Appendix F C Interface Library F-5
030-07S7-A

structure name

GrafPort

GrafVars

ITab

MatchRec

PenState

Picture

PixMap

PixPat

Polygon

QDProcs

qdvar

Region

ReqListRec

RGBColor

SProcRec

Call

AddComp();

AddPt();

addpt();

AddSearch();

AllocCursor();

BackColor();

BackPat();

BackP ixPat () ;

CalcCMask();

CalcMask () ;

CharExtra();

CharWidth () ;

ClipRect();

CloseCPort();

Return type

void

void

void

void

void

void

void

void

void

void

void

short

void

void

F-6 A/UX Toolbox: Macintosh ROM Interface
030-07B7-A

Call Return type

ClosePicture(); void

ClosePoly(); void

ClosePort(); void

CloseRgn(); void

Color2Index(); long

ColorBit () ; void

CopyBi t s () ; void

CopyMask(); void

CopyPixMap(); void

CopyP ixPat () ; void

CopyRgn(); void

DelComp () ; void

DelSearch () ; void

DiffRgn () ; void

DisposCCursor(); void

DisposCIcon(); void

DisposCTable(); void

DisposeRgn(); void

DisposGDevice(); void

DisposP ixMap () ; void

DisposPixPat () ; void

DrawChar(); void

DrawPicture(); void

DrawString(); void

drawstring(); void

DrawText(); void

EmptyRect () ; Boolean

EmptyRgn(); Boolean

EqualPt(); Boolean

equalpt(); Boolean

EqualRect(); Boolean

Appendix F C Interface Library F-7
030-07S7-A

Call Return type

EqualRgn(); Boolean

EraseArc(); void

EraseOval(); void

ErasePoly(); void

EraseRect(); void

EraseRgn(); void

EraseRoundRect(); void

FillArc () ; void

FillCArc () ; void

FillCOval () ; void

FillCPoly () ; void

FillCRect () ; void

FillCRgn () ; void

FillCRoundRect(); void

FillOval () ; void

FillPoly(); void

F illRect () ; void

FillRgn(); void

FillRoundRect () ; void

ForeColor(); void

FrameArc () ; void

FrameOval(); void

FramePoly(); void

FrameRect () ; void

FrameRgn(); void

FrameRoundRect(); void

GetBackColor(); void

GetCCursor(); CCrsrHandle

GetCIcon(); CIconHandle

GetClip(); void

GetCPixel(); void

F-8 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Call

GetCTable();

GetCTSeed();

GetDeviceList();

GetFontInfo () ;

GetForeColor();

GetGDevice();

GetMainDevice();

GetMaskTable();

GetMaxDevice();

GetNextDevice();

GetPen() ;

GetPenState();

GetP ixel () ;

GetP ixPat () ;

GetPort () ;

GetSubTable();

GlobalToLocal();

GrafDevice();

HideCursor();

HidePen();

HiliteColor();

Index2Color();

InitCPort();

InitCursor();

InitGDevice () ;

InitGraf();

InitPort();

InsetRect();

InsetRgn();

InvertArc();

InvertColor();

Return type

CTabHandle

long

GDHandle

void

void

GDHandle

GDHandle

Ptr

GDHandle

GDHandle

void

void

Boolean

PixPatHandle

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

Appendix F C Interface Library F-9
030-0787-A

Call Return type

InvertOval()i void

InvertPoly(); void

InvertRect () ; void

InvertRgn () ; void

InvertRoundRect(); void

KillPicture () ; void

KillPoly(); void

Line () ; void

LineTo(); void

LocalToGlobal(); void

MakeITable(); void

MakeRGBPat () ; void

MapPolY()i void

MapPt(); void

MapRect(); void

MapRgn()i void

MeasureText(); void

Move () ; void

MovePortTo () ; void

MoveTo(); void

NewGDevice(); GDHandle

NewPixMap(); PixMapHandle

NewP ixPat () ; PixPatHandle

NewRgn(); RgnHandle

ObscureCursor(); void

OffsetPoly(); void

OffsetRect () ; void

OffsetRgn () ; void

OpColor(); void

OpenCPort () ; void

OpenPicture () ; PicHandle

F-IO A/UX Toolbox: Macintosh ROM Interface
030-0787-A

can

OpenPoly();

OpenPort();

OpenRgn();

PaintArc();

PaintOval();

PaintPoly();

PaintRect () ;

PaintRgn();

PaintRoundRect();

PenMode () ;

PenNormal();

PenPat();

PenP ixPat () ;

PenSize();

PicComment();

PlotClcon();

PortSize () ;

ProtectEntry () ;

Pt2Rect () ;

pt2rect () ;

PtlnRect () ;

ptinrect();

PtlnRgn () ;

ptinrgn();

PtToAngle () ;

pttoangle();

QDError();

Random();

RealColor();

RectlnRgn () ;

RectRgn ();

Return type

PolyHandle

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

void

Boolean

Boolean

Boolean

Boolean

void

void

short

short

Boolean

Boolean

void

Appendix F C Interface Library F-ll
030-0787-A

can Return type

ReserveEntry(); void

RestoreEntries(); void
RGBBackColor(); void

RGBForeColor(); void

SaveEntries(); void

ScalePt(); void

ScrollRect(); void

SectRect () ; Boolean

SectRgn(); void

SeedCFill () ; void

SeedFill () ; void

SetCCursor(); void

SetClient ID () ; void

SetClip(); void

SetCP ixel () ; void

SetCursor(); void

SetDeviceAttribute(); void

SetEmptyRgn(); void

SetEntries(); void

SetGDevice(); void

SetOrigin () ; void

SetPenState(); void

SetPort(); void

SetPortBits () ; void

SetPortPix(); void

SetPt(); void

SetRect () ; void

SetRectRgn(); void

SetStdCProcs () ; void

SetStdProcs(); void

ShowCursor(); void

F-12 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return type

ShowPen(); void

SpaceExtra(); void

StdArc () ; void

StdBits () ; void

StdCornrnent(); void

StdGetPic(); void

StdLine(); void

stdline(); void

StdOval(); void

StdPoly () ; void

StdPutPic(); void

StdRect () ; void

StdRgn(); void

StdRRect(); void

StdText(); void

stdtext () ; void

StdTxMeas(); short

StringWidth () ; short

stringwidth(); short

Stuff Hex () ; void

stuffhex () ; void

SubPt(); void

subpt(); void

TestDeviceAttribute(); Boolean

TextFace(); void

TextFont(); void

TextMode () ; void

TextSize () ; void

TextWidth(); short

UnionRect(); void

UnionRgn(); void

Appendix F C Interface Library F-13
030-0787-A

Call Return type

XorRgn () ; void

Color Picker

The following structures and calls are available in picker. h.

Structure name

CMYColor

HSLColor

HSVColor

Call

CMY2RGB () ;

Fix2SmallFract();

GetColor()i

HSL2RGB();

HSV2RGB()i

RGB2CMY () ;

RGB2HSL();

RGB2HSV() ;

SmallFract2Fix();

Common type deftnitions

Return type

void

SmallFract

Boolean

void

void

void

void

void

Fixed

The following structures and calls are available in type s . h.

Structure name

comp

Point

Structure name

Rect

F-14 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

Call

Debugger () ;

DebugStr();

debugstr();

Control Manager

Return type

void

void

void

The following structures and calls are available in controls. h.

structure name

AuxCtlRec

ControlRecord

CtlCTab

Call Return type

DisposeControl(); void

DragControl(); void

dragcontrol(); void

DrawlControl(); void

DrawControls(); void

FindControl(); short

findcontrol () ; short

GetAuxCtl(); Boolean

GetCRefCon(); long

GetCTitle(); void

getctitle () ; void

GetCtlAction () ; ProcPtr

GetCtlMax(); short

GetCtlMin(); short

GetCtlValue () ; short

GetCVariant(); short

Appendix F C Interface Library F-15
030-07S7-A

Call Return type

GetNewControl(); ControlHandle

HideControl () ; void

HiliteControl () ; void

KillControls(); void

MoveControl(); void

NewControl(); ControlHandle

newcontrol(); ControlHandle

SetCRefCon(); void

SetCTitle () ; void

setctitle(); void

SetCtlAction(); void

SetCtlColor(); void

SetCtlMax () ; void

SetCtlMin(); void

SetCtl Value () ; void

ShowControl(); void

SizeControl () ; void

TestControl(); short

testcontrol(); short

TrackControl(); short

trackcontrol () ; short

UpdtControl(); void

F-16 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Definitions for AUXDispatch

The following structures and calls are available in aux. h. "AUXDispatch Trap" in Chapter 3
contains additional information, including the selector codes used with this trap.

structure name

AuxSigio

ForkExecRec

GetAnyEventRec

IDToPathRec

TBLaunchRec

Call

AUXDispatch{);

Deftnitions for ROM

Return type

pascal long

No structures or calls are available in romde f s . h, which provides slot declaration values
for ROMs.

Desk Manager

The following calls are available in desk. h, which has no structures.

Call Return type

CloseDeskAcc(); void

OpenDeskAcc{); short

opendeskacc(); short

SystemClick(); void

SystemEdit () ; Boolean

SystemEvent(); Boolean

Appendix F C Interface Library F-17
030-0787-A

Call

SystemMenu{);

SystemTask{);

Device Manager

Return type

void

void

The following structures and calls are available in devices. h.

structure name

AuxDCE

DCtlEntry

Call

CloseDriver{);

Control{);

GetDCtlEntry{);

KillIO{);

OpenDri ver () ;

opendriver () ;

PBControl();

PBKillIO();

PBStatus{);

SetChooserAlert{);

Status () ;

Retum type

OSErr

OSErr

DCtlHandle

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

Boolean

OSErr

F-18 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Dialog Manager

The following structures and calls are available in dialogs. h.

structure name

AlertTemplate

DialogRecord

DialogTemplate

can Return type

Alert () ; short

CautionAlert(); short

CloseDialog(); void

CouldAlert(); void

CouldDialog(); void

DialogSelect(); Boolean

DisposDialog(); void

DlgCopy () ; void

DlgCut () ; void

DlgDelete(); void

DlgPaste(); void

DrawDialog(); void

ErrorSound(); void

FindDItem () ; short

findditem () ; short

FreeAlert(); void

FreeDialog(); void

GetAlrtStage(); short

GetDItem(); void

GetIText () ; void

getitext () ; void

GetNewDialog(); DialogPtr

HideDItem(); void

Appendix F C Interface Library F-19
030-0787-A

Call Return type

InitDialogs(); void

IsDialogEvent(); Boolean

ModalDialog(); void

NewCDialog(); DialogPtr

newcdialog () ; Dialogptr

NewDialog(); DialogPtr

newdialog(); Dialogptr

NoteAlert(); short

ParamText(); void

paramtext(); void

ResetAlrtStage(); void

SelIText () ; void

SetDAFont () ; void

SetDltem(); void

Set IText () ; void

setitext () ; void

ShowDltem(); void

StopAlert(); short

UpdtDialog(); void

F·20 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Disk Driver

The following structures and calls are available in di s k s . h.

structure name

HFSDefaults

can Return type

DIBadMount(); short

dibadmount(); OSErr

DIFormat(); OSErr

DILoad () ; void

DIUnload(); void

DIVerify(); OSErr

DIZero(); OSErr

dizero(); OSErr

Disk Initialization Package

The following structures and calls are available in diskini t. h.

structure name

DrvSts

DrvSts2

can

DiskEject();

DriveStatus () ;

SetTagBuffer();

Return type

OSErr

OSErr

OSErr

Appendix F C Interface Library F-21
030-0787-A

Event Manager, Operating System

The following structures and calls are available in osevents. h.

structure name

EvQEl

Call Return Type

FlushEvents(); void

GetEvQHdr () ; QHdrPtr

GetOSEvent(); Boolean

OSEventAvail(); Boolean

PostEvent(); OSErr

PPostEvent(); OSErr

SetEventMask(); void

Event Manager, Toolbox

The following structures and calls are available in events. h.

structure name

EventRecord

Call Return Type

Button () ; Boolean

EventAvail(); Boolean

GetCaretTime () ; unsigned long

GetDblTime () ; unsigned long

GetKeys(); void

GetMouse(); void

GetNextEvent(); Boolean

StillDown(); Boolean

F-22 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

Call

TickCount () ;

WaitMouseUp () ;

WaitNextEvent();

File Manager

Return type

unsigned long

Boolean

Boolean

The following structures and calls are available in files. h.

structure name

AccessParam

CMovePBRec

CntrlParam

CopyParam

Dlnfo

Dirlnfo

DrvQEl

DXlnfo

FCBPBRec

FileParam

Flnfo

FXlnfo

HFilelnfo

HFileParam

HIOParam

HParamBlockRec

HVolumeParam

IOParam

MultiDevParam

NumVersion

ObjParam

Appendix F C Interface Library F-23
030-0787-A

Structure name

SlotDevParam

VCB

VersRec

VolumeParam

WDParam

WDPBRec

can Return Type

AddDri ve () ; void

Allocate(); OSErr

AllocContig () ; OSErr

CatMove () ; OSErr

CloseWD(); OSErr

Create () ; OSErr

create(); OSErr

DirCreate(); OSErr

Eject(); OSErr

eject () ; OSErr

FInitQueue(); void

FlushVol(); OSErr

flushvol(); OSErr

FSClose(); OSErr

FSDelete(); OSErr

fsdelete () ; OSErr

FSOpen () ; OSErr

fsopen () ; OSErr

FSRead(); OSErr

fsrename(); OSErr

FSWrite () ; OSErr

GetDrvQHdr () ; QHdrPtr

GetEOF () ; OSErr

F-24 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return Type

GetFlnfo(); OSErr

getfinfo () ; OSErr

GetFPos(); OSErr

GetFSQHdr () ; QHdrPtr

GetVCBQHdr(); QHdrPtr

GetVlnfo () ; OSErr

getvinfo(); OSErr

GetVol(); OSErr

getvol () ; OSErr

GetVRefNum(); OSErr

GetWDlnfo () ; OSErr

HCreate(); OSErr

HDelete(); OSErr

HGetFlnfo(); OSErr

HGetVol(); OSErr

HOpen(); OSErr

HOpenRF(); OSErr

HRename(); OSErr

HRstFLock(); OSErr

HSetFlnfo(); OSErr

HSetFLock(); OSErr

HSetVol(); OSErr

OpenRF(); OSErr

openrf(); OSErr

OpenWD(); OSErr

PBAllocate(); OSErr

PBAllocContig(); OSErr

PBCatMove () ; OSErr

PBClose(); OSErr

PBCloseWD(); OSErr

PBCreate(); OSErr

Appendix F C Interface Library F-25
030-07S7-A

can Return Type

PBDelete(); OSErr

PBDirCreate(); OSErr

PBEject () ; OSErr

PBFlushFile () ; OSErr

PBFlushVol(); OSErr

PBGetCatlnfo () ; OSErr

PBGetEOF(); OSErr

PBGetFCBlnfo(); OSErr

PBGetFlnfo(); OSErr

PBGetFPos(); OSErr

PBGetVlnfo(); OSErr

PBGetVol(); OSErr

PBGetWDlnfo(); OSErr

PBHCopyFile () ; OSErr

PBHCreate(); OSErr

PBHDelete(); OSErr

PBHGetDirAccess(); OSErr

PBHGetFlnfo(); OSErr

PBHGetLoglnlnfo(); OSErr

PBHGetVlnfo(); OSErr

PBHGetVol(); OSErr

PBHGetVolParms(); OSErr

PBHMapID () ; OSErr

PBHMapName(); OSErr

PBHMoveRename(); OSErr

PBHOpen(); OSErr

PBHOpenDeny(); OSErr

PBHOpenRF(); OSErr

PBHOpenRFDeny(); OSErr

PBHRename(); OSErr

PBHRstFLock(); OSErr

F-26 NUX Toolbox: Macintosh ROM Interface
030-07B7-A

can Return Type

PBHSetDirAccess(); OSErr

PBHSetFlnfo(); OSErr

PBHSetFLock(); OSErr

PBHSetVol(); OSErr

PBLockRange () ; OSErr

PBMountVol(); OSErr

PBOffLine () ; OSErr

PBOpen(); OSErr

PBOpenRF () ; OSErr

PBOpenWD(); OSErr

PBRead () ; OSErr

PBRename(); OSErr

PBRstFLock(); OSErr

PBSetCatlnfo(); OSErr

PBSetEOF(); OSErr

PBSetFlnfo(); OSErr

PBSetFLock(); OSErr

PBSetFPos(); OSErr

PBSetFVers(); OSErr

PBSetVlnfo(); OSErr

PBSetVol(); OSErr

PBUnlockRange(); OSErr

PBUnmountVol()i OSErr

PBWrite () i OSErr

Rename()i OSErr

RstFLock()i OSErr

rstfLock () ; OSErr

SetEOF () ; OSErr

SetFlnfo(); OSErr

setfinfo () ; OSErr

SetFLock(); OSErr

Appendix F C Interface Library F-27
030-0787-A

can Return Type

setflock () ; OSErr

SetFPos(); OSErr

SetVol(); OSErr

setvol () ; OSErr

UnmountVol(); OSErr

unmountvol(); OSErr

Font Manager

The following structures and calls are available in fonts. h.

structure name

AsscEntry

FamRec

FMetricRec

FMlnput

FMOutput

FontAssoc

FontRec

KernEntry

KernPair

KernTable

NameTable

StyleTable

WidEntry

WidTable

WidthTable

F-28 NUX Toolbox: Macintosh ROM Interface
030-0787-A

can Return Type

FMSwapFont(); FMOutPtr

FontMetrics () ; void

GetFNum(); void

getfnum (); void

GetFontName(); void

get fontname () ; void

InitFonts () ; void

RealFont(); Boolean

SetFontLock(); void

SetFractEnable(); void

SetFScaleDisable(); void

Gestalt facility

No structures or calls are available in gestal t. h.

List Manager Package

The following structures and calls are available in lists. h.

structure name

ListRec

can

LActivate () ;

LAddColumn();

LAddRow();

LAddToCell();

LAutoScroll();

Return Type

void

short

short

void

void

Appendix F C Interface Library F-29
030-07S7-A

can Return Type

LCellSize(); void

lcellsize(); void

LClick(); Boolean

lclick(); Boolean

LClrCell(); void

LDelColumn(); void

LDelRow() ; void

LDispose(); void

LDoDraw () ; void

LDraw () ; void

ldraw () ; void

LFind (); void

LGetCell(); void

LGetSelect(); Boolean

LLastClick(); Cell

LNew () ; ListHandle

lnew () ; ListHandle

LNextCell(); Boolean

LRect () ; void

LScroll(); void

LSearch(); Boolean

LSetCell(); void

LSetSelect(); void

LSize(); void

LUpdate () ; void

List of Macintosh traps

No structures or calls are available in traps. h, which provides a list of definitions for A-line
trap words.

F·30 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Low-memory equates

No structures or calls are available in sysequ. h, which provides definitions for low-memory
global variables. See Appendix D for further information.

Memory Manager

The following structures and calls are available in memory. h.

structure name

Zone

Call Return Type

GetApplLimit(); Ptr

GetZone () ; THz

SystemZone(); THz

ApplicZone(); THz

NewHandle(); Handle

HandleZone(); THz

RecoverHandle(); Handle

NewPtr () ; Ptr

PtrZone(); THz

GZSaveHnd(); Handle

TopMem(); Ptr

MaxBlock(); long

StackSpace(); long

NewEmptyHandle(); Handle

HLock(); void

HUnlock(); void

HPurge(); void

HNoPurge () ; void

StripAddress(); Ptr

Appendix F C Interface Library F-31
030-0787-A

can Return Type

MFMaxMem(); Size

MFFreeMem () ; long

MFTempNewHandle(); Handle

MFTempHLock(); void

MFTempHUnlock(); void

MFTempDisposHandle(); void

MFTopMem(); Ptr

InitApplZone () ; void

Ini t Zone () ; void

SetZone(); void

CompactMem(); Size

PurgeMem(); void

FreeMern(); long

ResrvMem(); void

MaxMem(); Size

SetGrowZone(); void

SetApplLimit(); void

MoveHHi(); void

DisposPtr(); void

GetPtrSize(); Size

SetPtrSize(); void

DisposHandle(); void

GetHandleSize(); Size

SetHandleSize(); void

EmptyHandle () ; void

ReallocHandle(); void

HSetRBit(); void

HClrRBit(); void

MoreMasters () ; void

BlockMove(); void

MemError(); OSErr

F-32 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return Type

PurgeSpace()i void

HGetState()i short

HSetState(); void

SetApplBase()i void

MaxApplZone()i void

Menu Manager

The following structures and calls are available in menus. h.

structure name

MCEntry

Menulnfo

can Return Type

AddResMenu()i void

AppendMenu()i void

appendmenu()i void

CalcMenuSize()i void

Checkltem()i void

ClearMenuBar()i void

CountMltems () i short

DeleteMenu()i void

DelMCEntries()i void

DelMenultem()i void

Disableltem()i void

DispMClnfo () i void

DisposeMenu()i void

DrawMenuBar()i void

Enableltem()i void

Appendix F C Interface Library F-33
030-0787-A

Call Return Type

FlashMenuBar()i void

GetItem()i void

getitem () i void

GetItemCmd()i void

GetItemIcon () i void

Get ItemMark () i void

GetItemStyle()i void

GetMCEntrY()i MCEntryPtr

GetMCInfo()i MCTableHandle

GetMenu()i MenuHandle

GetMenuBar () ; Handle

GetMHandle()i MenuHandle

GetNewMBar()i Handle

HiliteMenu () i void

InitMenus () i void

InitProcMenu () i void

InsertMenu()i void

InsertResMenu()i void

InsMenuItem()i void

insmenuitem()i void

MenuChoice(); long

MenuKeY()i long

MenuSelect()i long

menuselect()i long

NewMenu()i MenuHandle

newrnenu()i MenuHandle

PopUpMenuSelect()i long

SetItem()i void

setitem () ; void

SetItemCmd()i void

SetItemIcon () i void

F-34 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Call Return Type

SetltemMark(); void

SetltemStyle () ; void

SetMCEntries () ; void

SetMClnfo(); void

SetMenuBar(); void

SetMenuFlash(); void

Notification Manager

The following structures and calls are available in notify. h.

Stmcture name

NMRec

Call

NMlnstall();

NMremove();

Package Manager

Return Type

OSErr

OSErr

The following structures and calls are available in packages. h.

Stmcture name

IntlORec

IntllRec

SFReply

Appendix F C Interface Library F-35
030-0787-A

Call Return Type

InitAllPacks () ; void

InitPack () ; void

IUCompString () ; short

iucompstring () ; short

IUDatePString(); void

iudatepstring(); void

IUDateString(); void

iudatestring () ; void

IUEqualString () ; short

iuequalstring(); short

IUGetIntl () ; Handle

IUMagIDString(); short

IUMagString(); short

IUMetric(); Boolean

IUSetIntl () ; void

IUTimePString(); void

iutimepstring(); void

IUTimeString () ; void

IUTimeString () ; void

iutimestring(); void

NumToString(); void

numtostring(); void

SFGetFile(); void

sfgetfile(); void

SFPGetFile(); void

sfpgetfile(); void

SFPPutFile(); void

sfpputfile(); void

SFPutFile(); void

sfputfile () ; void

StringToNum(); void

F-36 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

can Return Type

stringtonum () ; void

Palette Manager

The following structures and calls are available in palettes. h.

structure name

Color Info

Palette

can

ActivatePalette();

AnimateEntry () ;

AnimatePalette();

CopyPalette();

CTab2Palette();

DisposePalette();

GetEntryColor();

GetEntryUsage();

GetNewPalette();

GetPalette();

InitPalettes();

NewPalette();

NSetPalette();

Palette2CTab () ;

PmBackColor();

PmForeColor();

SetEntryColor();

SetEntryUsage();

SetPalette();

Return Type

void

void

void

void

void

void

void

void

PaletteHandle

PaletteHandle

void

PaletteHandle

void

void

void

void

void

void

void

Appendix F C Interface Library F-37
030-0787-A

Printing Manager

The following structures and calls are available in printing. h.

structure name

TDftBitsBlk

TGetRotnBlk

TGetRslBlk

TGnlData

TPfPgDir

TPrDlg

TPrlnfo

TPrint

TPrJob

TPrPort

TPrStatus

TPrStl

TPrXlnfo

TRslRec

TRslRg

TSetRslBlk

can

PrClose () ;

PrCloseDoc();

PrClosePage () ;

PrCtlCall();

PrDlgMain () ;

PrDrvrClose();

PrDrvrDCE () ;

PrDrvrOpen () ;

PrDrvrVers () ;

PrError () ;

Return Type

void

void

void

void

Boolean

void

Handle

void

short

short

F-38 A/UX Toolbox: Macintosh ROM Interface
030·0787·A

Qdl Return Type

P rGeneral () ; void

PrintDefault () ; void

P rJobDialog () ; Boolean

PrJoblnit(); TPPrDlg

PrJobMerge () ; void

PrNoPurge () ; void

PrOpen () ; void

PrOpenDoc(); TPPrPort

PrOpenPage(); void

PrPicFile () ; void

PrPurge(); void

PrSetError(); void

PrStlDialog(); Boolean

PrStllnit(); TPPrDlg

PrValidate(); Boolean

Print traps

The following structures and calls are available in print traps. h.

structure name

TDftBitsBlk

TGetRotnBlk

TGetRslBlk

TGnlData

TPfPgDir

TPrDlg

TPrlnfo

TPrint

TPrJob

Appendix F C Interface Library F-39
030-0787-A

structure name

TPrPort

TPrStatus

TPrStl

TPrXInfo

TRslRec

TRsIRg

TSetRsIBlk

can Return Type

PrClose () ; void

PrCloseDoc(); void

PrClosePage(); void

PrCtlCall(); void

PrDlgMain () ; Boolean

PrDrvrClose()i void

PrDrvrDCE () ; Handle

PrDrvrOpen () ; void

PrDrvrVers(); short

PrError () ; short

PrGeneral () ; void

PrintDefault(); void

PrJobDialog(); Boolean

PrJobInit () ; TPPrDlg

PrJobMerge () ; void

PrNoPurge () ; void

PrOpen () ; void

PrOpenDoc(); TPPrPort

PrOpenPage(); void

PrPicFile () ; void

PrPurge(); void

PrSetError()i void

F-40 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

can

PrStlDialog () ;

PrStllnit();

PrValidate();

Resource Manager

Return Type

Boolean

TPPrDlg

Boolean

Three header files support working with Macintosh resources: resources. h, asd. h,
and aux_rsrc. h. The first two header files provide Macintosh as structures and calls.
The a ux _ r s r c . h header file provides UNIX calls.

The following calls are available in resources. h, which has no structures.

can Return Type

AddResource(); void

addresource(); void

ChangedResource(); void

CloseResFile () ; void

CountlResources() ; short

CountlTypes () ; short

CountResources(); short

CountTypes () ; short

CreateResFile(); void

createresfile(); void

CurResFile () ; short

DetachResource(); void

GetllndResource(); Handle

GetllndType () ; void

GetlNamedResource(); Handle

getlnamedresource(); Handle

GetlResource () ; Handle

GetlndResource(); Handle

Appendix F C Interface Library F-41
030-0787-A

can Return Type

GetlndType(); void

GetNarnedResource(); Handle

getnarnedresource(); Handle

GetResAttrs(); short

GetResFileAttrs(); short

GetReslnfo(); void

getresinfo(); void

GetResource(); Handle

HCreateResFile(); void

HorneResFile () ; short

HOpenResFile () ; short

InitResources(); short

LoadResource(); void

MaxSizeRsrc () ; long

OpenResF ile () ; short

openresfile(); short

OpenRFPerrn(); short

openrfperrn(); short

ReleaseResource(); void

ResError(); short

RGetResource(); Handle

RrnveResource(); void

RsrcMapEntry(); long

RsrcZonelnit(); void

SetResAttrs(); void

SetResFileAttrs(); void

SetReslnfo () ; void

setresinfo(); void

SetResLoad(); void

SetResPurge(); void

SizeResource(); long

F-42 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return Type

UniquelID(); short

UniqueID(); short

UpdateResFile(); void

UseResFile(); void

WriteResource () ; void

The following structures and calls are available in asd. h.

structure name

Filelnfo

Flnfo

can

CloseASD();

OpenASD();

ReadASD();

SeekASD();

WriteASD () ;

Return Type

int

FileHandle

long

long

long

The following calls are available in aux_rsrc. h, which has no structures.

can Return Type

int mrclose();

int mrinfo () ;

ResHandle mropen();

Resource mrget();

Resource mrgetnamed();

short mrattr ();

void mrrel();

Appendix F C Interface Library F-43
030-0787-A

Scrap Manager

The following structures and calls are available in scrap. h.

Structure name

ScrapStuff

can

GetScrap()i

InfoScrap()i

LoadScrap()i

PutScrap()i

UnloadScrap()i

ZeroScrap()i

Script Manager

Return Type

long

PScrapStuff

long

long

long

long

The following structures and calls are available in scr ipt . h.

Structure name

BreakTable

ItlcRecord

ItlbRecord

Location

Token

TokenBlock

UntokenTable

DateCacheRecord

TogglePB

WideCharArr

FormatString

It14Rec

F-44 NUX Toolbox: Macintosh ROM Interface
030-0787-A

structure name

NumberParts

StartLength

FindBlockStatus

can

Char2P ixel () ;

CharByte{);

CharType();

DrawJust();

FindBlock{);

FindWord();

Font2Script();

FontScript();

Form2Str();

FormStr2X();

FormX2Str () ;

GetAppFont();

GetDefFontSize();

GetEnvirons();

GetFormatOrder();

GetMBarHeight();

GetScript{);

GetSysFont () ;

GetSysJust () ;

HiliteText () ;

InitDateCache();

IntlScript();

IULDateString{);

IULTimeString();

KeyScript();

LineBreak();

Return Type

short

short

short

void

struct FindBlockStatus

void

short

short

FormatStatus

FormatStatus

FormatStatus

short

short

long

void

short

long

short

short

void

OSErr

short

void

void

void

LineBreakCode

Appendix F C Interface Library F-45
030-07S7-A

Call

LongDate2Secs();

LongSecs2Date();

LwrText();

MeasureJust();

ParseTable();

P ixe12Char () ;

PortionText();

ReadLocation();

SetEnvirons();

SetScript();

SetSysJust();

Str2Form () ;

String2Date();

String2Time();

ToggleDate();

Tokenize();

Transliterate();

UprText () ;

ValidDate();

VisibleLength();

WriteLocation () ;

Segment Loader

Return Type

void

void

void

void

Boolean

short

Fixed

void

OSErr

OSErr

void

FormatStatus

String2DateStatus

String2DateStatus

ToggleResults

TokenResult

OSErr

void

short

long

void

The following structures and calls are available in segload. h.

structure name

AppFile

F-46 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return Type

ClrAppFiles(); void

CountAppFiles(); void

ExitToShell () ; void

GetAppFiles () ; void

GetAppParrns(); void

getappparrns(); void

UnloadSeg(); void

Serial Driver

The following structures and calls are available in serial. h.

structure name

SerShk

SerStaRec

can Return Type

RarnSDClose(); void

RarnSDOpen(); OSErr

SerClrBrk(); OSErr

SerGetBuf(); OSErr

SerHShake(); OSErr

SerReset(); OSErr

SerSetBrk(); OSErr

SerSetBuf(); OSErr

SerStatus(); OSErr

Appendix F C Interface Library F-47
030-0787-A

Shutdown Manager

No structures and calls are available in shutdown. h.

Slot Manager

The following structures and calls are available in slots. h.

structure name

SlotlntQElement

SpBlock

SInfoRecord

SDMRecord

FHeaderRec

SEBlock

can

InitSDeclMgr () ;

OpenSlot () ;

SCalcSPointer();

SCalcStep() ;

SCardChanged();

SCkCardStat();

SDeleteSRTRec();

SExec();

SFindBigDevBase();

SFindDevBase () ;

SFindSlnfoRecPtr();

SFindSRsrcPtr();

SFindStruct();

SGetBlock();

Return Type

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

OSErr

F-48 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Call Return Type

SGetCString(); OSErr

SGetDriver(); OSErr

SGetsRsrc () ; OSErr

SGetsRsrcInfo(); OSErr

SGet TypesRsrc () ; OSErr

SInitPRAMRecs(); OSErr

SInitSRsrcTable(); OSErr

SInsertSRTRec(); OSErr

SIntInstall () ; OSErr

SIntRemove () ; OSErr

SNextSRsrc(); OSErr

SNextTypeSRsrc(); OSErr

SOffsetData(); OSErr

SPrimaryInit () ; OSErr

SPtrToSlot () ; OSErr

SPutPRAMRec(); OSErr

SReadByte(); OSErr

SReadDrvrName () ; OSErr

SReadFHeader(); OSErr

SReadInfo(); OSErr

SReadLong(); OSErr

SReadPBSize(); OSErr

SReadPRAMRec(); OSErr

SReadPRAMRec(); OSErr

SReadStruct(); OSErr

SReadWord(); OSErr

SRsrcInfo(); OSErr

SSearchSRT(); OSErr

SSetsRsrcState(); OSErr

SUpdateSRT(); OSErr

SVersion(); OSErr

Appendix F C Interface Library F-49
030-0787-A

Sound Manager

The following structures and calls are available in sm. h.

structure name

ModifierStub

SndChannel

SndCommand

SndListResource

SoundHeader

can

aSndAddModifier();

aSndControl () ;

aSndDisposeChannel();

aSndDoCommand();

aSndDoImmediate();

aSndNewChannel();

aSndPlay();

Return Type

short

short

short

short

short

short

short

String conversion, Pascal-to-and-from C

The following calls are available in s t ring s . h, which has no structures.

can

*p2cstr () ;

c2pstr () ;

Return Type

char

StringPtr

F-50 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

System Error Handler

The following calls are available in errors. h, which has no structures.

can Return Type

SysError(); void

TextEdit

The following structures and calls are available in textedi t . h.

structure name

LHElernent

NullStRec

ScrpSTElernent

STElernent

StScrpRec

StyleRun

TERec

TEStyleRec

TextStyle

can

GetStylHandle();

GetStylScrap();

SetClikLoop()i

SetStylHandle();

SetStylScrap();

SetWordBreak();

TEActivate () ;

TEAutoView();

TECalText () ;

Return Type

TEStyleHandle

StScrpHandle

void

void

void

void

void

void

void

Appendix F C Interface Library F-51
030-0787-A

can Return Type

TEClick(); void

teclick(); void

TEContinuousStyle(); Boolean

TECopY()i void

TECustomHook()i void

TECut () ; void

TEDeacti vate () ; void

TEDelete()i void

TEDispose()i void

TEFromScrap(); OSErr

TEGetHeight(); long

TEGetOffset () i short

TEGetPoint(); struct Point

TEGetScrapLen(); long

TEGetStyle()i void

TEGetText(); CharsHandle

TEldle () i void

TElnit () ; void

TElnsert(); void

TEKey (); void

TENew () ; TEHandle

TENumStyles(); long

TEPaste(); void

TEP inScroll () i void

TEReplaceStyle()i void

TEScrapHandle()i Handle

TEScroll(); void

TESelView(); void

TESetJust()i void

TESetScrapLen () ; void

TESetSelect()i void

F-52 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Call Return Type

TESetStyle(); void

TESetText(); void

TEStyllnsert(); void

TEStylNew(); TEHandle

TEStylPaste(); void

TEToScrap(); OSErr

TEUpdate () ; void

TextBox(); void

Time Manager

The following structures and calls are available in time r . h.

Structure name

TMTask

Call Return Type

InsTime(); void

PrimeTime(); void

RmvTime(); void

Utilities, Operating System

The following structures and calls are available in osutils. h.

Structure name

DateTimeRec

QElem

QHdr

Structure name

SysEnvRec

SysParmType

Appendix F C Interface Library F-53
030-0787-A

can Return Type

Date2Secs(); void

Delay(); void

Dequeue(); OSErr

DTInstall(); OSErr

Enqueue(); void

Environs(); void

EqualString () ; Boolean

equalstring () ; Boolean

GetDateTirne(); void

GetMMUMode(); char

Get Time () ; void

GetTrapAddress(); long

HanciAndHand(); OSErr

HandToHand(); OSErr

InitUtil () ; OSErr

KeyTrans(); long

NGetTrapAddress(); long

NSetTrapAddress(); void

PtrAndHand(); OSErr

PtrToHand(); OSErr

PtrToXHand(); OSErr

ReadDateTirne () ; OSErr

RelString(); short

relstring(); short

Restart(); void

Secs2Date(); void

SetA5() ; long

SetCurrentA5(); long

SetDateTirne(); OSErr

Set Time () ; void

SetTrapAddress(); void

F-54 AlUX Toolbox: Macintosh ROM Interface
030-07B7-A

Call Return Type

SwapMMUMode(); void

SysBeep(); void

SysEnvirons{); OSErr

UprString{); void

uprstring{); void

WriteParam(); OSErr

Utilities, Toolbox

The following structures and calls are available in toolutils. h.

structure name

Int64Bit

Call Return Type

AngleFromSlope{); short

BitAnd () ; long

BitClr () ; void

BitNot () ; long

BitOr () ; long

BitSet () ; void

BitShift () ; long

BitTst(); Boolean

BitXor () ; long

DeltaPoint () ; long

deltapoint () ; long

FixMul () ; Fixed

FixRatio () ; Fixed

FixRound{); short

GetCursor () ; Curs Handle

Appendix F C Interface Library F-55
030-07B7-A

can Return Type

Get Icon () ; Handle

GetIndPattern () ; void

GetIndString () ; void

getindstring () ; void

GetPattern () ; PatHandle

GetP icture () ; PicHandle

GetString(); StringHandle

HiWord () ; short

LongMul(); void

LOWord () ; short

Mllnger (); long

NewString(); StringHandle

newstring () ; StringHandle

PackBits () ; void

PlotIcon () ; void

ScreenRes(); void

SetString () ; void

setstring(); void

ShieldCursor(); void

shieldcursor(); void

SlopeFromAngle(); Fixed

UnpackBits(); void

F-56 NUX Toolbox: Macintosh ROM Interface
030-0787-A

Vertical Retrace Manager

The following structures and calls are available in retrace. h.

structure name

VBLTask

can Return Type

AttachVBL(); OSErr

DoVBLTask(); OSErr

GetVBLQHdr () ; QHdrPtr

SlotVlnstall(); OSErr

SlotVRemove () ; OSErr

Vlnstall(); OSErr

VRemove(); OSErr

Video Driver

The following structures are available in video. h, which has no calls.

structure name

CSVidMsg

VDEntryRecord

VDGrayRecord

VDPagelnfo

VDSetEntryRecord

VDSettings

VDSizelnfo

VPBlock

Appendix F C Interface Library F-57
030-0787-A

Window Manager

The following structures and calls are available in windows. h.

structure name

AuxWinRec

CWindowRecord

WinCTab

WindowRecord

WStateData

Call

BeginUpdate();

BringToFront();

CalcVis();

CalcVisBehind();

CheckUpdate();

ClipAbove();

CloseWindow();

DisposeWindow();

DragGrayRgn();

draggrayrgn();

DragWindow();

dragwindow();

DrawGrowlcon();

DrawNew () ;

EndUpdate () ;

FindWindow();

findwindow();

FrontWindow();

GetAuxWin();

GetCWMgrPort();

GetGrayRgn();

Return Type

void

void

void

void

Boolean

void

void

void

long

long

void

void

void

void

void

short

short

Windowptr

Boolean

void

RgnHandle

F-58 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

Call Return Type

GetNewCWindow(); Windowptr

GetNewWindow(); Windowptr

GetWindowP ic () ; PicHandle

GetWMgrPort () ; void

GetWRefCon(); long

GetWTitle () ; void

getwtitle () ; void

GetWVariant(); short

GrowWindow(); long

growwindow(); long

HideWindow()i void

HiliteWindow()i void

InitWindows () i void

InvalRect()i void

InvalRgn()i void

MoveWindow () i void

NewCWindow()i Windowptr

newcwindow()i Windowptr

NewWindow()i Windowptr

newwindow(); Windowptr

PaintBehind()i void

PaintOne()i void

PinRect () i long

pinrect()i long

SaveOld()i void

SelectWindow()i void

SendBehind(); void

SetDeskCPat()i void

SetWinColor()i void

SetWindowPic () i void

SetWRefCon()i void

Appendix F C Interface Library F-59
030-0787-A

Call Return Type

SetWTitle(); void

setwtitle () ; void

ShowHide(); void

ShowWindow(); void

SizeWindow(); void

TrackBox(); Boolean

trackbox(); Boolean

TrackGoAway(); Boolean

trackgoaway(); Boolean

ValidRect(); void

ValidRgn(); void

ZoomWindow(); void

F-60 AlUX Toolbox: Macintosh ROM Interface
030-07B7-A

CaIls in alphabetic order

All calls in the prior section are listed here in alphabetic order by name, followed by the return
type and the name of the header file containing that call. A few calls are available in more than
one header file. The major duplication is in printing. hand printtraps. h.

The names of two calls may differ only in case, one spelled as the name appears in Inside
Macintosh (mixed case) and the other spelled in lowercase only. A call named in mixed case
accepts Pascal-format strings and Pascal point-passing conventions; a call named in lowercase
accepts input parameters in C format and converts them before passing them to the ROM
routines and converts string return values back to C format. For additional information on
these differences, see "Differences in Language Conventions" in Chapter 4.

Call Return type Header file

*p2cstr(); char strings.h

ActivatePalette(); void palettes.h

AddComp () ; void quickdraw.h

AddDri ve () ; void files.h

AddPt(); void quickdraw.h

addpt(); void quickdraw.h

AddResMenu(); void menus.h

AddResource () ; void resources.h

addresource(); void resources.h

AddSearch(); void quickdraw.h

Alert(); short dialogs.h

Allocate(); OSErr files.h

AllocContig(); OSErr files.h

AllocCursor(); void quickdraw.h

AngleFromSlope(); short toolutils.h

AnimateEntry () ; void palettes.h

AnimatePalette(); void palettes.h

AppendMenu(); void menus.h

appendmenu(); void menus.h

Appendix F C Interface Library F-61
030-0787-A

can Return type Header file

ApplicZone{); THz memory.h

aSndAddModifier{); short sm.h

aSndControl(); short sm.h

aSndDisposeChannel{); short sm.h

aSndDoCommand{) ; short sm.h

aSndDolmmediate(); short sm.h

aSndNewChannel{); short sm.h

aSndPlay{); short sm.h

AttachVBL () ; OSErr retrace.h

AUXDispatch{); pascal long aux.h

BackColor{); void quickdraw.h

BackPat () ; void quickdraw.h

BackP ixPat () ; void quickdraw.h

BeginUpdate(); void windows.h

BitAnd () ; long toolutils.h

BitClr () ; void toolutils.h

BitNot () ; long toolutils.h

BitOr () ; long toolutils.h

BitSet () ; void toolutils.h

BitShift () ; long toolutils.h

BitTst(); Boolean toolutils.h

BitXor () ; long toolutils.h

BlockMove{); void memory.h

BringToFront{); void windows.h

Button () ; Boolean events.h

c2pstr () ; StringPtr strings.h

CalcCMask{); void quickdraw.h

CalcMask{); void quickdraw.h

CalcMenuSize(); void menus.h

CalcVis(); void windows.h

CalcVisBehind{); void windows.h

F-62 A!UX Toolbox: Macintosh ROM Interface
030-07B7-A

can Return type Header me

CatMove () ; OSErr files.h

CautionAlert(); short dialogs.h

ChangedResource(); void resources.h

Char2P ixel () ; short script.h

CharByte(); short script.h

CharExtra(); void quickdraw.h

CharType(); short script.h

CharWidth(); short quickdraw.h

CheckItem(); void menus.h

CheckUpdate () ; Boolean windows.h

ClearMenuBar(); void menus.h

ClipAbove(); void windows.h

ClipRect () ; void quickdraw.h

CloseASD(); int asd.h

CloseCPort(); void quickdraw.h

CloseDeskAcc(); void desk.h

CloseDialog(); void dialogs.h

CloseDriver(); OSErr devices.h

ClosePicture () ; void quickdraw.h

ClosePoly(); void quickdraw.h

ClosePort(); void quickdraw.h

CloseResFile(); void resources.h

CloseRgn(); void quickdraw.h

CloseWD(); OSErr files.h

CloseWindow(); void windows.h

ClrAppFiles(); void segload.h

CMY2RGB(); void picker.h

Color2Index () ; long quickdraw.h

ColorBi t () ; void quickdraw.h

CompactMem(); Size memory.h

Control(); OSErr devices.h

Appendix F C Interface Library F-63
030-0787-A

Call Return type Headerffie

CopyBi t s () ; void quickdraw.h

CopyMask(); void quickdraw.h

CopyPalette () ; void palettes.h

CopyPixMap(); void quickdraw.h

CopyP ixPat () ; void quickdraw.h

CopyRgn(); void quickdraw.h

CouldAlert () ; void dialogs.h

CouldDialog(); void dialogs.h

CountlResources(); short resources.h

CountlTypes () ; short resources.h

CountAppFiles(); void segload.h

CountMIterns () ; short menus.h

CountResources(); short resources.h

CountTypes(); short resources.h

Create () ; OSErr files.h

create () ; OSErr files.h

CreateResFile () ; void resources.h

createresfile(); void resources.h

CTab2Palette(); void palettes.h

CurResF ile () ; short resources.h

Date2Secs(); void osutils.h

Debugger(); void types.h

DebugStr(); void types.h

debugstr(); void types.h

Delay () ; void osutils.h

DelComp () ; void quickdraw.h

DeleteMenu(); void menus.h

DelMCEntries(); void menus.h

DelMenultem(); void menus.h

DelSearch(); void quickdraw.h

DeltaPoint () ; long toolutils.h

F-64 A/UX Toolbox: Macintosh ROM Interface
030-07S7-A

Call Return type Header file

deltapoint () ; long toolutils.h

Dequeue(); OSErr osutils.h

DetachResource(); void resources.h

DialogSelect(); Boolean dialogs.h

DIBaciMount(); short disks.h

dibadmount(); OSErr disks.h

DiffRgn () ; void quickdraw.h

DIFormat(); OSErr disks.h

DILoad(); void disks.h

DirCreate(); OSErr files.h

Disableltem(); void menus.h

DiskEject(); OSErr diskinit.h

DispMClnfo () ; void menus.h

DisposCCursor(); void quickdraw.h

DisposClcon(); void quickdraw.h

DisposCTable(); void quickdraw.h

DisposDialog(); void dialogs.h

DisposeControl(); void controls.h

DisposeMenu(); void menus.h

DisposePalette{); void palettes.h

DisposeRgn(); void quickdraw.h

DisposeWindow(); void windows.h

DisposGDevice(); void quickdraw.h

DisposHandle(); void memory.h

DisposP ixMap () ; void quickdraw.h

DisposPixPat () ; void quickdraw.h

DisposPtr(); void memory.h

DIUnload(); void disks.h

DIVerify(); OSErr disks.h

DIZero(); OSErr disks.h

dizero(); OSErr disks.h

Appendix F C Interface Library F-65
030-07B7-A

can Return type Header file

DlgCopy () ; void dialogs.h

DlgCut () ; void dialogs.h

DlgDelete(); void dialogs.h

DlgPaste(); void dialogs.h

DoVBLTask(); OSErr retrace.h

DragControl(); void controls.h

dragcontrol () ; void controls.h

DragGrayRgn(); long windows.h

draggrayrgn(); long windows.h

DragWindow(); void windows.h

dragwindow () ; void windows.h

DrawlControl(); void controls.h

DrawChar(); void quickdraw.h

DrawControls(); void controls.h

DrawDialog(); void dialogs.h

DrawGrowlcon(); void windows.h

DrawJust(); void script.h

DrawMenuBar () ; void menus.h

DrawNew(); void windows.h

DrawPicture(); void quickdraw.h

DrawString () ; void quickdraw.h

drawstring(); void quickdraw.h

DrawText () ; void quickdraw.h

DriveStatus () ; OSErr diskinit.h

DTlnstall(); OSErr osutils.h

Eject (); OSErr files.h

eject () ; OSErr files.h

EmptyHandle () ; void memory.h

EmptyRect () ; Boolean quickdraw.h

EmptyRgn(); Boolean quickdraw.h

Enable Item () ; void menus.h

F-66 AlUX Toolbox: Macintosh ROM Interface
030-07S7-A

Call Return type Headerffie

EndUpdate(); void windows.h

Enqueue(); void osutils.h

Environs(); void osutils.h

EqualPt () ; Boolean quickdraw.h

equalpt(); Boolean quickdraw.h

EqualRect(); Boolean quickdraw.h

EqualRgn(); Boolean quickdraw.h

EqualString() ; Boolean osutils.h

equalstring(); Boolean osutils.h

EraseArc () ; void quickdraw.h

EraseOval(); void quickdraw.h

ErasePoly(); void quickdraw.h

EraseRect(); void quickdraw.h

EraseRgn(); void quickdraw.h

EraseRoundRect(); void quickdraw.h

ErrorSound(); void dialogs.h

EventAvail(); Boolean events.h

ExitToShell () ; void segload.h

FillArc () ; void quickdraw.h

FillCArc () ; void quickdraw.h

F illCOval () ; void quickdraw.h

FillCPoly(); void quickdraw.h

FillCRect () ; void quickdraw.h

F illCRgn () ; void quickdraw.h

FillCRoundRect(); void quickdraw.h

FillOval () ; void quickdraw.h

FillPoly(); void quickdraw.h

FillRect () ; void quickdraw.h

FillRgn () ; void quickdraw.h

FillRoundRect () ; void quickdraw.h

FindBlock(); struct FindBlockStatus script.h

Appendix F C Interface Library F-67
030-0787-A

Call Return type Header file

FindControl(); short controls.h

findcontrol(); short controls.h

FindDltem () ; short dialogs.h

findditem () ; short dialogs.h

FindWindow(); short windows.h

findwindow(); short windows.h

FindWord () ; void script.h

FlnitQueue () ; void files.h

Fix2SmallFract(); SmallFract picker.h

FixMul () ; Fixed toolutils.h

FixRatio () ; Fixed toolutils.h

FixRound(); short toolutils.h

FlashMenuBar(); void menus.h

FlushEvents(); void osevents.h

FlushVol(}; OSErr files.h

flushvol () ; OSErr files.h

FMSwapFont(); FMOutPtr fonts.h

Font2Script(); short script.h

FontMetrics(); void fonts.h

FontScript () ; short script.h

ForeColor(); void quickdraw.h

Form2Str () ; FormatStatus script.h

FormStr2X () ; FormatStatus script.h

FormX2Str(); FormatStatus script.h

FrameArc(); void quickdraw.h

FrameOval(); void quickdraw.h

FramePoly(); void quickdraw.h

FrameRect(); void quickdraw.h

FrameRgn () ; void quickdraw.h

FrameRoundRect(}; void quickdraw.h

FreeAlert(}; void dialogs.h

F-68 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return type Header me

FreeDialog(); void dialogs.h

FreeMem () ; long memory.h

FrontWindow(); WindowPtr windows.h

FSClose () ; OSErr files.h

FSDelete(); OSErr files.h

fsdelete(); OSErr files.h

FSOpen () ; OSErr files.h

fsopen () ; OSErr files.h

FSRead () ; OSErr files.h

fsrename () ; OSErr files.h

FSWrite () ; OSErr files.h

GetllndResource(); Handle resources.h

GetllndType(); void resources.h

GetlNamedResource(); Handle resources.h

getlnamedresource(); Handle resources.h

GetlResource(); Handle resources.h

GetAlrtStage(); short dialogs.h

GetAppFiles () ; void segload.h

GetAppFont(); short script.h

GetApplLimit(); Ptr memory.h

GetAppParms(); void segload.h

getappparms(); void segload.h

GetAuxCtl(); Boolean controls.h

GetAuxWin () ; Boolean windows.h

GetBackColor(); void quickdraw.h

GetCaretTime () ; unsigned long events .h

GetCCursor()i CCrsrHandle quickdraw.h

GetClcon(); ClconHandle quickdraw.h

GetClip(); void quickdraw.h

GetColor(); Boolean picker.h

GetCP ixel () ; void quickdraw.h

Appendix F C Interface Library F-69
030-07S7-A

can Return type

GetCRefCon(); long

GetCTable(); CTabHandle

GetCTitle () ; void

getctitle () ; void

GetCtlAction(); ProcPtr

GetCtlMax(); short

GetCtlMin(); short

GetCtlValue () ; short

GetCTSeed(); long

GetCursor(); CursHandle

GetCVariant(); short

GetCWMgrPort(); void

GetDateTime () ; void

GetDblTime(); unsigned long

GetDCtlEntry(); DCtlHandle

GetDefFontSize(); short

GetDeviceList(); GDHandle

GetDItem(); void

GetDrvQHdr () ; QHdrptr

GetEntryColor(); void

GetEntryUsage(); void

GetEnvirons(); long

GetEOF () ; OSErr

GetEvQHdr(); QHdrPtr

GetFInfo(); OSErr

getfinfo () ; OSErr

GetFNum(); void

getfnum() ; void

GetFontInfo () ; void

GetFontName(); void

get fontname () ; void

F-70 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

Headerffie

controls.h

quickdraw.h

controls.h

controls.h

controls.h

controls.h

controls.h

controls.h

quickdraw.h

toolutils.h

controls.h

windows.h

osutils.h

events .h

devices.h

script.h

quickdraw.h

dialogs.h

files.h

palettes.h

palettes.h

script.h

files.h

osevents.h

files.h

files.h

fonts.h

fonts. h

quickdraw.h

fonts. h

fonts.h

can Return type Header file

GetForeColor(); void quickdraw.h

GetFormatOrder(); void script.h

GetFPos() ; OSErr files.h

GetFSQHdr () ; QHdrPtr files.h

GetGDevice () ; GDHandle quickdraw.h

GetGrayRgn(); RgnHandle windows.h

GetHandleSize(); Size memory.h

GetIcon () ; Handle toolutils.h

GetlndPattern(); void toolutils.h

GetIndResource(); Handle resources.h

GetIndString () ; void toolutils.h

getindstring () ; void toolutils.h

GetIndType(); void resources.h

Get Item () ; void menus.h

getitem () ; void menus.h

GetItemCmd () ; void menus.h

GetItemIcon(); void menus.h

Get IteroMark () ; void menus.h

Get ItemStyle () ; void menus.h

GetIText(); void dialogs.h

getitext () ; void dialogs.h

GetKeys(); void events .h

GetMainDevice(); GDHandle quickdraw.h

GetMaskTable(); Ptr quickdraw.h

GetMaxDevice(); GDHandle quickdraw.h

GetMBarHeight(); short script.h

GetMCEntry () ; MCEntryPtr rnenus.h

GetMCInfo(); MCTableHandle menus.h

GetMenu(); MenuHandle rnenus.h

GetMenuBar(); Handle menus.h

GetMHandle(); MenuHandle menus.h

Appendix F C Interface Library F-71
030-0787-A

Call Return type Headerffie

GetMMUMode(); char osutils.h

GetMouse () ; void events.h

GetNamedResource(); Handle resources.h

getnamedresource(); Handle resources.h

GetNewControl(); ControlHandle controls.h

GetNewCWindow(); Windowptr windows.h

GetNewDialog(); DialogPtr dialogs.h

GetNewMBar(); Handle menus.h

GetNewPalette(); PaletteHandle palettes.h

GetNewWindow(); Windowptr windows.h

GetNextDevice(); GDHandle quickdraw.h

GetNextEvent(); Boolean events.h

GetOSEvent () ; Boolean osevents.h

GetPalette(); PaletteHandle palettes.h

GetPattern () ; PatHandle toolutils.h

GetPen(); void quickdraw.h

GetPenState(); void quickdraw.h

GetPicture(); PicHandle toolutils.h

GetP ixel () ; Boolean quickdraw.h

GetP ixPat () ; PixPatHandle quickdraw.h

GetPort () ; void quickdraw.h

GetPtrSize () ; Size memory.h

GetResAttrs () ; short resources.h

GetResFileAttrs(); short resources.h

GetResInfo(); void resources.h

getresinfo(); void resources.h

GetResource(); Handle resources.h

GetScrap(); long scrap.h

GetScript(); long script.h

GetString () ; StringHandle toolutils.h

GetStylHandle(); TEStyleHandle textedit.h

F-72 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return type Header me

GetStylScrap(); StScrpHandle textedit.h

GetSubTable () ; void quickdraw.h

GetSysFont(); short script.h

GetSysJust(); short script.h

Get Time () ; void osutils.h

GetTrapAddress(); long osutils.h

GetVBLQHdr () ; QHdrPtr retrace.h

GetVCBQHdr () ; QHdrPtr files.h

GetVlnfo(); OSErr files.h

getvinfo(); OSErr files.h

GetVol(); OSErr files.h

getvol(); OSErr files.h

GetVRefNum(); OSErr files.h

GetWDlnfo(); OSErr files.h

GetWindowP ic () ; PicHandle windows.h

GetWMgrPort(); void windows.h

GetWRefCon(); long windows.h

GetWTitle(); void windows.h

getwtitle () ; void windows.h

GetWVariant () ; short windows.h

GetZone () ; THz memory.h

GlobalToLocal () ; void quickdraw.h

GrafDevice(); void quickdraw.h

GrowWindow () ; long windows.h

growwindow(); long windows.h

GZSaveHnd(); Handle memory.h

HandAndHand(); OSErr osutils.h

HandleZone () ; THz memory.h

HandToHand(); OSErr osutils.h

HClrRBi t () ; void memory.h

HCreate () ; OSErr files.h

Appendix F C Interface Library F-73
030-0787-A

Call Return type Header file

HCreateResFile{); void resources.h

HDelete{); OSErr files.h

HGetFlnfo () ; OSErr files.h

HGetState () ; short memory.h

HGetVol () ; OSErr files.h

HideControl{); void controls.h

HideCursor{); void quickdraw.h

HideDltem{); void dialogs.h

HidePen{); void quickdraw.h

HideWindow{); void windows.h

HiliteColor{); void quickdraw.h

HiliteControl{); void controls.h

HiliteMenu{); void menus.h

HiliteText () ; void script.h

HiliteWindow{); void windows.h

HiWord () ; short toolutils.h

HLock () ; void memory.h

HNoPurge () ; void memory.h

HomeResF ile () ; short resources.h

HOpen () ; OSErr files.h

HOpenResFile () ; short resources.h

HOpenRF(); OSErr files.h

HPurge(); void memory.h

HRename(); OSErr files.h

HRstFLock(); OSErr files.h

HSetFlnfo(); OSErr files.h

HSetFLock(); OSErr files.h

HSetRBi t () ; void memory.h

HSetState () ; void mernory.h

HSetVol{)i OSErr files.h

HSL2RGB{)i void picker.h

F-74 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Call Retum type Header file

HSV2RGB{); void picker.h

HUnlock{); void memory.h

Index2Color{) ; void quickdraw.h

InfoScrap{); PScrapStuff scrap.h

InitAIIPacks{); void packages.h

InitApplZone () ; void memory.h

InitCPort(); void quickdraw.h

InitCursor{); void quickdraw.h

InitDateCache{); OSErr script.h

InitDialogs{); void dialogs.h

InitFonts () ; void fonts.h

InitGDevice{); void quickdraw.h

InitGraf{); void quickdraw.h

InitMenus(); void menus .h

InitPack () ; void packages.h

InitPalettes () ; void palettes.h

InitPort{); void quickdraw.h

InitProcMenu () ; void menus .h

InitResources{); short resources.h

InitSDeclMgr () ; OSErr slots.h

InitUtil () ; OSErr osutils.h

InitWindows () ; void windows.h

InitZone(); void memory.h

InsertMenu{); void menus.h

InsertResMenu(); void menus.h

InsetRect(); void quickdraw.h

InsetRgn{); void quickdraw.h

InsMenultem{); void menus.h

insmenuitem{); void menus.h

InsTime{); void timer.h

int mrclose(); aux rsrc.h

Appendix F C Interface Library F-75
030-07S7-A

can Return type Header file

int mrinfo () ; aux rsrc.h

IntlScript(); short script.h

InvalRect(); void windows.h

InvalRgn () ; void windows.h

InvertArc () ; void quickdraw.h

InvertColor(); void quickdraw.h

InvertOval(); void quickdraw.h

InvertPoly(); void quickdraw.h

InvertRect(); void quickdraw.h

InvertRgn () ; void quickdraw.h

InvertRoundRect(); void quickdraw.h

IsDialogEvent(); Boolean dialogs.h

IUCompString(); short packages.h

iucompstring(); short packages.h

IUDatePString () ; void packages.h

iudatepstring(); void packages.h

IUDateString () ; void packages.h

iudatestring(); void packages.h

IUEqualString(); short packages.h

iuequalstring(); short packages.h

IUGetIntl(); Handle packages.h

IULDateString(); void script.h

IULTimeString(); void script.h

IUMagIDString(); short packages.h

IUMagString(); short packages.h

IUMet ric () ; Boolean packages.h

IUSetlntl () ; void packages.h

IUTimePString(); void packages.h

iutimepstring(); void packages.h

IUTimeString () ; void packages.h

IUTimeString () ; void packages.h

F-76 NUX Toolbox: Macintosh ROM Interface
030-0787-A

can Return type Header file

iutimestring(); void packages.h

KeyScript(); void script.h

KeyTrans(); long osutils.h

KiIIControls(); void controls.h

KillIO () ; OSErr devices.h

KillPicture () ; void quickdraw.h

KiIIPoly(); void quickdraw.h

LActi vate () ; void lists.h

LAddColumn () ; short lists.h

LAddRow(); short lists.h

LAddToCell(); void lists.h

LAutoScroll(); void lists.h

LCeIISize(); void lists.h

lcellsize(); void lists.h

LClick(); Boolean lists.h

lclick(); Boolean lists.h

LClrCell(); void lists.h

LDeIColumn(); void lists.h

LDelRow () ; void lists.h

LDispose(); void lists.h

LDoDraw () ; void lists.h

LDraw () ; void lists.h

ldraw(); void lists.h

LFind () ; void lists.h

LGetCell(); void lists.h

LGetSelect(); Boolean lists.h

Line () ; void quickdraw.h

LineBreak(); LineBreakCode script.h

LineTo(); void quickdraw.h

LLastClick(); Cell lists.h

LNew () ; ListHandle lists.h

Appendix F C Interface Library F-77
030-0787-A

Call Return type Header me

lnew () ; ListHandle lists.h

LNextCell(); Boolean lists.h

LoadResource () ; void resources.h

LoadScrap(); long scrap.h

LocalToGlobal(); void quickdraw.h

LongDate2Secs(); void script.h

LongMul(); void toolutils.h

LongSecs2Date(); void script.h

LoWord () ; short toolutils.h

LRect(); void lists.h

LScroll(); void lists.h

LSearch(); Boolean lists.h

LSetCell(); void lists.h

LSetSelect () ; void lists.h

LSize () ; void lists.h

LUpdate(); void lists.h

LwrText(); void script.h

MakeITable () ; void quickdraw.h

MakeRGBPat()i void quickdraw.h

MapPoly(); void quickdraw.h

MapPt(); void quickdraw.h

MapRect(); void quickdraw.h

MapRgn () i void quickdraw.h

MaxApplZone()i void memory.h

MaxBlock()i long memory.h

MaxMem(); Size memory.h

MaxSizeRsrc()i long resources.h

MeasureJust(); void script.h

MeasureText()i void quickdraw.h

MemError()i OSErr memory.h

MenuChoice()i long menus.h

F-78 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

can Retum type Headerffie

MenuKey () ; long menus.h

MenuSelect(); long menus.h

menuselect(); long menus.h

MFFreeMern () ; long mernory.h

MFMaxMem(); Size memory.h

MFTempDisposHandle(); void memory.h

MFTernpHLock(); void memory.h

MFTempHUnlock(); void rnemory.h

MFTernpNewHandle(); Handle memory.h

MFTopMern(); Ptr rnernory.h

ModalDialog(); void dialogs.h

MoreMasters() ; void rnernory.h

Move(); void quickdraw.h

MoveControl(); void controls.h

MoveHHi(); void memory.h

MovePort To () ; void quickdraw.h

MoveTo(); void quickdraw.h

MoveWindow(); void windows.h

Munger () ; long toolutils.h

NewCDialog(); DialogPtr dialogs.h

newcdialog(); DialogPtr dialogs.h

NewControl () ; ControlHandle controls.h

newcontrol(); ControlHandle controls.h

NewCWindow(); Windowptr windows.h

newcwindow(); Windowptr windows.h

NewDialog(); DialogPtr dialogs.h

newdialog(); DialogPtr dialogs.h

NewErnptyHandle(); Handle memory.h

NewGDevice(); GDHandle quickdraw.h

NewHandle(); Handle rnernory.h

NewMenu(); MenuHandle menus.h

Appendix F C Interface Library F-79
030-0787-A

Call Return type Header me

newmenu(); MenuHandle menus.h

NewPalette(); PaletteHandle palettes.h

NewPixMap(); PixMapHandle quickdraw.h

NewPixPat () ; PixPatHandle quickdraw.h

NewPtr () ; Ptr memory.h

NewRgn(); RgnHandle quickdraw.h

NewString () ; StringHandle toolutils.h

newstring () ; StringHandle toolutils.h

NewWindow () ; Windowptr windows.h

newwindow () ; Windowptr windows.h

NGetTrapAddress(); long osutils.h

NMlnstall(); OSErr notify.h

NMremove(); OSErr notify.h

NoteAlert () ; short dialogs.h

NSetPalette(); void palettes.h

NSetTrapAddress(); void osutils.h

NumToString(); void packages.h

numtostring () ; void packages.h

ObscureCursor(); void quickdraw.h

OffsetPoly(); void quickdraw.h

OffsetRect () ; void quickdraw.h

OffsetRgn () ; void quickdraw.h

OpColor(); void quickdraw.h

OpenASD(); FileHandle asd.h

OpenCPort () ; void quickdraw.h

OpenDeskAcc () ; short desk.h

opendeskacc(); short desk.h

OpenDri ver () ; OSErr devices.h

opendri ver () ; OSErr devices.h

OpenPicture(); PicHandle quickdraw.h

OpenPoly(); PolyHandle quickdraw.h

F-80 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

can Return type Header file

OpenPort(); void quickdraw.h

OpenResFile () ; short resources.h

openresfile(); short resources.h

OpenRF(); OSErr files.h

openrf(); OSErr files.h

OpenRFPerm(); short resources.h

openrfperm(); short resources.h

OpenRgn(); void quickdraw.h

OpenSlot(); OSErr slots.h

OpenWD () ; OSErr files.h

OSEventAvail(); Boolean osevents.h

PackBits(); void toolutils.h

PaintArc(); void quickdraw.h

PaintBehind(); void windows.h

PaintOne(); void windows.h

PaintOval(); void quickdraw.h

PaintPoly(); void quickdraw.h

PaintRect(); void quickdraw.h

PaintRgn(); void quickdraw.h

PaintRoundRect(); void quickdraw.h

Palette2CTab(); void palettes.h

ParamText(); void dialogs.h

paramtext(); void dialogs.h

ParseTable(); Boolean script.h

PBAllocate(); OSErr files.h

PBAllocContig(); OSErr files.h

PBCatMove(); OSErr files.h

PBClose(); OSErr files.h

PBCloseWD(); OSErr files.h

PBControl(); OSErr devices.h

PBCreate(); OSErr files.h

Appendix F C Interface Library F-81
030-0787-A

Call Return type Header file

PBDelete(); OSErr files.h

PBDirCreate(); OSErr files.h

PBEject () ; OSErr files.h

PBFlushFile(); OSErr files.h

PBFlushVol () ; OSErr files.h

PBGetCatlnfo(); OSErr files.h

PBGetEOF(); OSErr files.h

PBGetFCBlnfo(); OSErr files.h

PBGetFInfo () ; OSErr files.h

PBGetFPos(); OSErr files.h

PBGetVlnfo()i OSErr files.h

PBGetVol(); OSErr files.h

PBGetWDlnfo () ; OSErr files.h

PBHCopyFile(); OSErr files.h

PBHCreate(); OSErr files.h

PBHDelete(); OSErr files.h

PBHGetDirAccess(); OSErr files.h

PBHGetFlnfo(); OSErr files.h

PBHGetLoglnInfo(); OSErr files.h

PBHGetVlnfo(); OSErr files.h

PBHGetVol(); OSErr files.h

PBHGetVolParms(); OSErr files.h

PBHMapID(); OSErr files.h

PBHMapName(); OSErr files.h

PBHMoveRename(); OSErr files.h

PBHOpen(); OSErr files.h

PBHOpenDeny(); OSErr files.h

PBHOpenRF(); OSErr files.h

PBHOpenRFDeny(); OSErr files.h

PBHRename(); OSErr files.h

PBHRstFLock(); OSErr files.h

F-S2 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

can Retum type Header IDe

PBHSetDirAccess(); OSErr files.h

PBHSetFInfo(); OSErr files.h

PBHSetFLock(); OSErr files.h

PBHSetVol(); OSErr files.h

PBKillIO(); OSErr devices.h

PBLockRange () ; OSErr files.h

PBMountVol(); OSErr files.h

PBOffLine(); OSErr files.h

PBOpen(); OSErr files.h

PBOpenRF () ; OSErr files.h

PBOpenWD(); OSErr files.h

PBRead(); OSErr files.h

PBRename(); OSErr files.h

PBRstFLock(); OSErr files.h

PBSetCatInfo(); OSErr files.h

PBSetEOF(); OSErr files.h

PBSetFInfo(); OSErr files.h

PBSetFLock(); OSErr files.h

PBSetFPos () ; OSErr files.h

PBSetFVers(); OSErr files.h

PBSetVInfo(); OSErr files.h

PBSetVol(); OSErr files.h

PBStatus(); OSErr devices.h

PBUnlockRange(); OSErr files.h

PBUnmountVol(); OSErr files.h

PBWrite () ; OSErr files.h

PenMode(); void quickdraw.h

PenNormal(); void quickdraw.h

PenPat(); void quickdraw.h

PenPixPat () ; void quickdraw.h

PenSize(); void quickdraw.h

Appendix F C Interface Library F-83
030-0787-A

can Return type Header file

P icComment () ; void quickdraw.h

PinRect () ; long windows.h

pinrect(); long windows.h

P ixe12Char () ; short script.h

PlotClcon() ; void quickdraw.h

Plotlcon () ; void toolutils.h

PmBackColor(); void palettes.h

PmForeColor(); void palettes.h

PopUpMenuSelect(); long menus.h

PortionText () ; Fixed script.h

PortSize () ; void quickdraw.h

PostEvent(); OSErr osevents.h

PPostEvent(); OSErr osevents.h

PrClose () ; void printing.h

PrClose () ; void printtraps.h

PrCloseDoc(); void printing.h

PrCloseDoc () ; void printtraps.h

PrClosePage(); void printing.h

PrClosePage(); void printtraps.h

PrCtlCall () ; void printing.h

PrCtlCall(); void printtraps.h

PrDlgMain () ; Boolean printing.h

PrDlgMain () ; Boolean printtraps.h

PrDrvrClose(); void printing.h

PrDrvrClose () ; void printtraps.h

PrDrvrDCE () ; Handle printing.h

PrDrvrDCE () ; Handle printtraps.h

PrDrvrOpen () ; void printing.h

PrDrvrOpen () ; void printtraps.h

PrDrvrVers () ; short printing.h

PrDrvrVers(); short printtraps.h

F-84 A!UX Toolbox: Macintosh ROM Interface
030-07S7-A

Call Return type Header ftle

PrError(); short printing.h

PrError(); short printtraps.h

PrGeneral(); void printing.h

PrGeneral(); void printtraps.h

P r irneT irne () ; void tirner.h

PrintDefault () ; void printing.h

PrintDefault () ; void printtraps.h

PrJobDialog(); Boolean printing.h

PrJobDialog () ; Boolean printtraps.h

PrJoblnit () ; TPPrDlg printing.h

PrJoblnit () ; TPPrDlg printtraps.h

PrJobMerge () ; void printing.h

PrJobMerge () ; void printtraps.h

PrNoPurge () ; void printing.h

PrNoPurge(); void printtraps.h

PrOpen () ; void printing.h

PrOpen () ; void printtraps.h

PrOpenDoc(); TPPrPort printing.h

PrOpenDoc () ; TPPrPort printtraps.h

PrOpenPage() ; void printing.h

PrOpenPage(); void printtraps.h

ProtectEntry () ; void quickdraw.h

PrPicFile () ; void printing.h

PrPicFile () ; void printtraps.h

PrPurge () ; void printing.h

PrPurge(); void printtraps.h

PrSetError(); void printing.h

PrSetError () ; void printtraps.h

PrStlDialog () ; Boolean printing.h

PrStlDialog(); Boolean printtraps.h

PrStllnit () ; TPPrDlg printing.h

Appendix F C Interface Library F-85
030-0787-A

can Return type Header file

PrStlInit(); TPPrDlg printtraps.h

PrValidate(); Boolean printing.h

PrValidate(); Boolean printtraps.h

Pt2Rect(); void quickdraw.h

pt2rect () ; void quickdraw.h

Pt InRect () ; Boolean quickdraw.h

pt inrect () ; Boolean quickdraw.h

PtInRgn () ; Boolean quickdraw.h

ptinrgn () ; Boolean quickdraw.h

PtrAndHand(); OSErr osutils.h

PtrToHand(); OSErr osutils.h

PtrToXHand(); OSErr osutils.h

PtrZone(); THz memory.h

PtToAngle () ; void quickdraw.h

pttoangle () ; void quickdraw.h

PurgeMem(); void memory.h

PurgeSpace(); void memory.h

PutScrap () ; long scrap.h

QDError(); short quickdraw.h

RamSDClose(); void serial.h

RamSDOpen(); OSErr serial.h

Random(); short quickdraw.h

ReadASD(); long asd.h

ReadDateTime(); OSErr osutils.h

ReadLocation(); void script.h

RealColor(); Boolean quickdraw.h

RealFont(); Boolean fonts.h

ReallocHandle(); void memory.h

RecoverHandle(); Handle memory.h

RectInRgn(); Boolean quickdraw.h

RectRgn(); void quickdraw.h

F-86 A!UX Toolbox: Macintosh ROM Interface
030-0787-A

can Retum type Header file

ReleaseResource(); void resources.h

RelString(); short osutils.h

relstring () ; short osutils.h

Rename(); OSErr files.h

ResError(); short resources.h

ReserveEntry () ; void quickdraw.h

ResetAlrtStage(); void dialogs.h

ResHandle mropen(); aux rsrc.h

Resource mrget(); aux rsrc.h

Resource mrgetnamed(); aux rsrc.h

ResrvMem(); void memory.h

Restart (); void osutils.h

RestoreEntries(); void quickdraw.h

RGB2CMY(); void picker.h

RGB2HSL(); void picker.h

RGB2HSV() ; void picker.h

RGBBackColor(); void quickdraw.h

RGBForeColor(); void quickdraw.h

RGetResource(); Handle resources.h

RmveResource(); void resources.h

RmvTime(); void timer.h

RsrcMapEntry(); long resources.h

RsrcZonelnit(); void resources.h

RstFLock(); OSErr files.h

rstfLock () ; OSErr files.h

SaveEntries(); void quickdraw.h

SaveOld () ; void windows.h

SCalcSPointer(); OSErr slots .h

SCalcStep(); OSErr slots .h

ScalePt(); void quickdraw.h

SCardChanged(); OSErr slots.h

Appendix F C Interface Library F-87
030-07S7-A

can Return type Header file

SCkCardStat () ; OSErr slots.h

ScreenRes(); void toolutils.h

ScrollRect(); void quickdraw.h

SDeleteSRTRec(); OSErr slots.h

Secs2Date(); void osutils.h

SectRect(); Boolean quickdraw.h

SectRgn(); void quickdraw.h

SeedCFill () ; void quickdraw.h

SeedFill () ; void quickdraw.h

SeekASD(); long asd.h

SelectWindow(); void windows.h

SelIText () ; void dialogs.h

SendBehind(); void windows.h

SerClrBrk(); OSErr serial.h

SerGetBuf(); OSErr serial.h

SerHShake(); OSErr serial.h

SerReset () ; OSErr serial.h

SerSetBrk(); OSErr serial.h

SerSetBuf(); OSErr serial.h

SerStatus(); OSErr serial.h

SetA5(); long osutils.h

SetApplBase(); void memory.h

SetApplLimit(); void memory.h

SetCCursor(); void quickdraw.h

SetChooserAlert(); Boolean devices.h

SetClientID(); void quickdraw.h

SetClikLoop(); void textedit.h

SetClip(); void quickdraw.h

SetCP ixel () ; void quickdraw.h

SetCRefCon(); void controls.h

SetCTitle(); void controls.h

F-88 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

can Return type Header me

setctitle () ; void controls.h

SetCtlAction () ; void controls.h

SetCtlColor(); void controls.h

SetCtlMax(); void controls.h

SetCtlMin () ; void controls.h

SetCtlValue () ; void controls.h

SetCurrentA5(); long osutils.h

SetCursor(); void quickdraw.h

SetDAFont(); void dialogs.h

SetDateTime(); OSErr osutils.h

SetDeskCPat () ; void windows.h

SetDeviceAttribute(); void quickdraw.h

SetDltem(); void dialogs.h

SetEmptyRgn(); void quickdraw.h

SetEntries(); void quickdraw.h

SetEntryColor(); void palettes.h

SetEntryUsage(); void palettes.h

SetEnvirons(); OSErr script.h

SetEOF(); OSErr files.h

SetEventMask(); void osevents.h

SetFlnfo () ; OSErr files.h

setfinfo(); OSErr files.h

SetFLock(); OSErr files.h

set flock () ; OSErr files.h

SetFontLock(); void fonts.h

SetFPos(); OSErr files.h

SetFractEnable(); void fonts.h

SetFScaleDisable(); void fonts.h

SetGDevice(); void quickdraw.h

SetGrowZone () ; void memory.h

SetHandleSize(); void memory.h

Appendix F C Interface Library F-89
030-0787-A

Call Return type Header file

SetItem(); void menus.h

setitem () ; void menus.h

SetItemCmd(); void menus.h

SetItemIcon(); void menus.h

Set ItemMark () ; void menus.h

SetItemStyle(); void menus.h

Set IText () ; void dialogs.h

set i text () ; void dialogs.h

SetMCEntries () ; void menus.h

SetMClnfo(); void menus.h

SetMenuBar(); void menus.h

SetMenuFlash () ; void menus.h

SetOrigin(); void quickdraw.h

SetPalette(); void palettes.h

SetPenState(); void quickdraw.h

SetPort(); void quickdraw.h

SetPortBits(); void quickdraw.h

SetPortP ix () ; void quickdraw.h

SetPt () ; void quickdraw.h

SetPtrSize(); void memory.h

SetRect(); void quickdraw.h

SetRectRgn(); void quickdraw.h

SetResAttrs () ; void resources.h

SetResFileAttrs(); void resources.h

SetReslnfo(); void resources.h

setresinfo () ; void resources.h

SetResLoad(); void resources.h

SetResPurge(); void resources.h

SetScript(); OSErr script.h

SetStdCProcs () ; void quickdraw.h

SetStdProcs () ; void quickdraw.h

F-90 A!UX Toolbox: Macintosh ROM Interface
030-07B7-A

can Return type Header me

SetString () ; void toolutils.h

setstring () ; void toolutils.h

SetStylHandle () ; void textedit.h

SetStylScrap(); void textedit.h

SetSysJust(); void script.h

SetTagBuffer () ; OSErr diskinit.h

SetTime () ; void osutils.h

SetTrapAddress(); void osutils.h

SetVol(); OSErr files.h

setvol () ; OSErr files.h

SetWinColor(); void windows.h

SetWindowP ic () ; void windows.h

SetWordBreak () i void textedit.h

SetWRefCon(); void windows.h

SetWTitle(); void windows.h

setwtitle () ; void windows.h

SetZone () ; void memory.h

SExec(); OSErr slots.h

SFGetFile () ; void packages.h

sfgetfile(); void packages.h

SFindBigDevBase(); OSErr slots.h

SFindDevBase(); OSErr slots.h

SFindSlnfoRecPtr(); OSErr slots.h

SFindSRsrcPtr(); OSErr slots.h

SFindStruct(); OSErr slots.h

SFPGetFile () ; void packages.h

sfpgetfile () ; void packages.h

SFPPutFile () i void packages.h

sfpputfile()i void packages.h

SFPutFile () ; void packages.h

sfputfile () ; void packages.h

Appendix F C Interface Library F-91
030-0787-A

Call Return type Header file

SGetBlock(); OSErr slots.h

SGetCString(); OSErr slots.h

SGetDriver () ; OSErr slots.h

SGetsRsrc() ; OSErr slots.h

SGetsRsrclnfo(); OSErr slots.h

SGetTypesRsrc(); OSErr slots.h

ShieldCursor(); void toolutils.h

shieldcursor(); void toolutils.h

short mrattr () ; aux rsrc.h

ShowControl () ; void controls.h

ShowCursor(); void quickdraw.h

ShowDltem() ; void dialogs.h

ShowHide(); void windows.h

ShowPen() ; void quickdraw.h

ShowWindow(); void windows.h

SInitPRAMRecs () ; OSErr slots.h

SInitSRsrcTable() ; OSErr slots.h

SInsertSRTRec () ; OSErr slots.h

SIntlnstall () ; OSErr slots.h

SIntRemove(); OSErr slots.h

SizeControl(); void controls.h

SizeResource(); long resources.h

SizeWindow(); void windows.h

SlopeFromAngle(); Fixed toolutils.h

SlotVlnstall(); OSErr retrace.h

SlotVRemove(); OSErr retrace.h

SmallFract2Fix(); Fixed picker.h

SNextSRsrc () ; OSErr slots.h

SNextTypeSRsrc(); OSErr slots.h

SOffsetData(); OSErr slots.h

SpaceExtra(); void quickdraw.h

F-92 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Call Return type Header ftle

SPrimarylnit () ; OSErr slots.h

SPtrToSlot(); OSErr slots.h

SPutPRAMRec(); OSErr slots.h

SReadByte(); OSErr slots.h

SReadDrvrName(); OSErr slots.h

SReadFHeader() ; OSErr slots.h

SReadlnfo(); OSErr slots.h

SReadLong(); OSErr slots.h

SReadPBSize(); OSErr slots.h

SReadPRAMRec(); OSErr slots.h

SReadPRAMRec(); OSErr slots.h

SReadStruct(); OSErr slots.h

SReadWord(); OSErr slots.h

SRsrclnfo(); OSErr slots.h

SSearchSRT(); OSErr slots.h

SSetsRsrcState(); OSErr slots.h

StackSpace(); long memory.h

Status () ; OSErr devices.h

StdArc () ; void quickdraw.h

StdBits () ; void quickdraw.h

StdComment(); void quickdraw.h

StdGetP ic () ; void quickdraw.h

StdLine(); void quickdraw.h

stdline() ; void quickdraw.h

StdOval(); void quickdraw.h

StdPoly () ; void quickdraw.h

StdPutPic(); void quickdraw.h

StdRect () ; void quickdraw.h

StdRgn () ; void quickdraw.h

StdRRect(); void quickdraw.h

StdText() ; void quickdraw.h

Appendix F C Interface Library F-93
030-0787-A

can Return type

stdtext () i void

StdTxMeas{); short

StillDown{); Boolean

StopAlert(); short

Str2Form () ; FormatStatus

String2Date(); String2DateStatus

String2Time(); String2DateStatus

StringToNum{); void

stringtonum () ; void

StringWidth () ; short

stringwidth () ; short

StripAddress{); Ptr

StuffHex{); void

stuffhex () ; void

SubPt () ; void

subpt () ; void

SUpdateSRT(); OSErr

SVersion{); OSErr

SwapMMUMode(); void

SysBeep{); void

SysEnvirons{); OSErr

SysError{); void

SystemClick{); void

SystemEdit () ; Boolean

SystemEvent{); Boolean

SystemMenu{); void

SystemTask{); void

SystemZone()i THz

TEActivate () ; void

TEAutoView () i void

TECalText{); void

F-94 AlUX Toolbox: Macintosh ROM Interface
030-0787-A

Header file

quickdraw.h

quickdraw.h

events.h

dialogs.h

script.h

script.h

script.h

packages.h

packages.h

quickdraw.h

quickdraw.h

memory.h

quickdraw.h

quickdraw.h

quickdraw.h

quickdraw.h

slots.h

slots.h

osutils.h

osutils.h

osutils.h

errors.h

desk.h

desk.h

desk.h

desk.h

desk.h

memory.h

textedit.h

textedit.h

textedit.h

Call Return type Headerf1le

TEClick{); void textedit.h

teclick{); void textedit.h

TEContinuousStyle(); Boolean textedit.h

TECopy{); void textedit.h

TECustomHook(); void textedit.h

TECut{); void textedit.h

TEDeactivate () ; void textedit.h

TEDelete{); void textedit.h

TEDispose(); void textedit.h

TEFromScrap{); OSErr textedit.h

TEGetHeight(); long textedit.h

TEGetOffset(); short textedit.h

TEGetPoint{); struct Point textedit.h

TEGetScrapLen(); long textedit.h

TEGetStyle () ; void textedit.h

TEGetText{); CharsHandle textedit.h

TEldle(); void textedit.h

TElnit () ; void textedit.h

TElnsert(); void textedit.h

TEKey{); void textedit.h

TENew(); TEHandle textedit.h

TENumStyles () ; long textedit.h

TEPaste(); void textedit.h

TEPinScroll () ; void textedit.h

TEReplaceStyle{); void textedit.h

TEScrapHandle() ; Handle textedit.h

TEScroll(); void textedit.h

TESelView{); void textedit.h

TESetJust(); void textedit.h

TESetScrapLen(); void textedit.h

TESetSelect{); void textedit.h

Appendix F C Interface Library F-95
030-0787-A

can Return type Header me

TESetStyle(); void textedit.h

TESetText(); void textedit.h

TestControl(); short controls.h

testcontrol(); short controls.h

TestDeviceAttribute(); Boolean quickdraw.h

TEStylInsert(); void textedit.h

TEStylNew(); TEHandle textedit.h

TEStylPaste(); void textedit.h

TEToScrap(); OSErr textedit.h

TEUpdate(); void textedit.h

TextBox(); void textedit.h

TextFace(); void quickdraw.h

TextFont(); void quickdraw.h

TextMode(); void quickdraw.h

TextSize(); void quickdraw.h

TextWidth(); short quickdraw.h

TickCount(); unsigned long events.h

ToggleDate(); ToggleResults script.h

Tokenize(); TokenResult script.h

TopMern () ; Ptr rnemory.h

TrackBox(); Boolean windows.h

trackbox(); Boolean windows.h

TrackControl () ; short controls.h

trackcontrol(); short controls.h

TrackGoAway(); Boolean windows.h

trackgoaway () ; Boolean windows.h

Transliterate(); OSErr script.h

UnionRect(); void quickdraw.h

UnionRgn(); void quickdraw.h

UniquelID () ; short resources.h

UniqueID(); short resources.h

F-96 NUX Toolbox: Macintosh ROM Interface
030-07B7-A

can Return type Header file

UnloadScrap(); long scrap.h

UnloadSeg(); void segload.h

UnmountVol(); OSErr files.h

unmountvol () ; OSErr files.h

UnpackBits(); void toolutils.h

UpdateResFile(); void resources.h

UpdtControl(); void controls.h

UpdtDialog(); void dialogs.h

UprString () ; void osutils.h

uprstring () ; void osutils.h

UprText(); void script.h

UseResFile(); void resources.h

ValidDate(); short script.h

ValidRect(); void windows.h

ValidRgn(); void windows.h

VInstall(); OSErr retrace.h

VisibleLength(); long script.h

void mrrel(); aux rsrc.h

VRemove(); OSErr retrace.h

WaitMouseUp () ; Boolean events.h

WaitNextEvent(); Boolean events.h

WriteASD () ; long asd.h

WriteLocation(); void script.h

WriteParam () ; OSErr osutils.h

WriteResource(); void resources.h

XorRgn () ; void quickdraw.h

ZeroScrap(); long scrap.h

ZoomWindow(); void windows.h

Appendix F C Interface Library F-97
030-0787-A

Index

\ (backslash) in resource descriptions E-47
{ } (braces) in type declarations E-22
, (comma) in arrays E-20
$$ functions E-30 to E-46
(number sign) in preprocessor directives E-39
; (semicolon) in arrays E-20

A

accessing resource data E-30
access permissions 6-4 to 6-6
alarm routine 5-30
align type E-18 to E-19
A-line traps

C header ftle for F-30
handling C-4

Apple Desktop Bus 5-5
AppleDouble format ftles

ftlename conventions 6-20
magic number for 6-19
maximizing efficiency of 6-19
overview 6-11 to 6-12, 6-19

AppleSingle format ftles 6-16 to 6-19
entry ID field 6-17
mename conventions 6-20
header contents 6-16 to 6-17
home me system field 6-16 to 6-17
length field 6-19
magic number for 6-16
maximizing efficiency of 6-19
number of entries field 6-17
offset field 6-19
overview 6-11 to 6-12
version number for 6-16

AppleTalk (communications software) 1-2
AppleTalk Manager 5-5

application development environments 2-2
array type declaration E-19
AUXDispatch trap 3-15

C header file for F-17
A/UX ftles. See also ftles

ftle structure 6-11
simple A/UX format 6-14

A/UX Finder
developing applications for 2-4
entry ID value for Finder Info field 6-17 to 6-18
ftle information and Segment Loader 5-19

A/UX Release 2.0
additional enhanced support 1-8
connectivity support 1-9
ease-of-use extensions (Macintosh-style text

editor) 1-9
Finder user interface 1-6
increased manager support 1-7
international support 1-10
new features in 1-5 to 1-10
standards compliance of 1-5

A/UX system calls 3-18
A/UX Toolbox

B

access to Macintosh ROM routines 1-2
code compatibility provided by 1-2
configuration requirements 1-3
contents 1-3 to 1-4
initialization C-2 to C-3
overview of functions 1-11
utilities 3-2 to 3-9
variables 3-14, 3-17

backslash (\) in resource descriptions E-47
Binary-Decimal Conversion Package 5-5

IN-1
030-0787-A

binary mes, transferring to NUX 6-12
bitstring type E-15
Boolean type E-15
braces ((}) in type declarations E-22
byte type E-15

c
C and Pascal language conventions compared

C-7 to C-10
C compilers 4-9
C header fIles F-2 to F-4
C interface libraries F-2 to F-4
case-sensitive fIlenames, and Resource Manager

5-16
_Chain routine (Segment Loader) 5-20
change statement E-24
character type E-16
, cicn' resource E-35
Color Manager 5-6
Color Picker Package

C header me for F-14
implementation in NUX Toolbox 5-6

Color QuickDraw 5-4
commands, resource compilation

-e option in derez E-49
comparison of mes E-3
derez E-3, E-6
echo E-25
rez E-2

commas (,) in arrays E-20
comments

entry 10 value 6-17
in resource descriptions E-6

compatibility between NUX and Macintosh OS
4-1 to 4-10

compiler. See re z resource compiler
Control Manager

C header me for F-15
implementation in NUX Toolbox 5-6

cst ring type E-17
CurPageOption (Segment Loader) 5-20

IN-2 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

D

data mes, mename conventions 6-20
data fork, entry 10 value 6-17
data statement E-11
data-type statement E-13
date command 5-31
Deferred Task Manager 5-7
define directive E-37
Delay utility 5-30,5-31
delete statement E-23
derez resource decompiler 3-9, E-2
Desk Manager

C header me for F-17
implementation in NUX Toolbox 5-7

developing applications, summary 2-6 to 2-11
developing the resource file 2-10 to 2-11
writing source code for 2-7 to 2-9

device drivers 5-7
Device Manager

C header me for F-18
implementation in NUX Toolbox 5-7

Dialog Manager
C header me for F-19
implementation in A/UX Toolbox 5-8

Disk Driver 5-8
C header fIle for F-21

Disk Initialization Package 5-9
C header me for F-21

$ $ functions E-30 to E-46

E

entry 10 field CAppleSingle format fIles) 6-17
escape characters in resource descriptions E-47
Event Manager, Operating System

C header me for F-22
implementation in NUX Toolbox 5-9

Event Manager, Toolbox
C header me for F-22
implementation in NUX Toolbox 5-9 to 5-10

examples of resource code
numeric escape sequences E-48
print directive E-39
resource defmition E-27
resource description me E-6
resource type statement E-22
using labels E-33 to E-36

Exi tToShell routine (Segment Loader) 5-20
expressions in resource descriptions E-42

F

f cnvt me utility 3-3, 6-13
File Info

entry ID value 6-17
structure of entries 6-17 to 6-18

File Manager
C header me for F-23
implementation in NUX Toolbox 5-11

filenames
AppleDouble format me conventions 6-20
AppleSingle format me conventions 6-20
case-sensitivity 5-16,6-4

mes
AppleDouble format mes

6-11 to 6-12,6-19,6-20
AppleSingle format mes 6-12,6-16 to 6-19,6-20
NUX 6-14,6-11 to 6-12
formatting strategies of NUX Toolbox

6-14 to 6-15
Macintosh as me structure 6-10 to 6-11
resource 5-16, E-5
simple NUX format 6-14
standard type declaration E-3

me systems
access permissions 6-4 to 6-6
automatic conversion between A!UX and

Macintosh as mes 6-8 to 6-9
defined 6-2
design and implementation in NUX and

Macintosh as 6-2
extended me attributes 6-6
foreign me system defmed 6-15
home me system defmed 6-15

mounting and unmounting floppy disks on to
6-9 to 6-10

overall organization (NUX) 6-2
textmes 6-7

fill type E-18
Finder. See NUX Finder
FinderName (Segment Loader) 5-20
Floating-Point Arithmetic Package 5-11
floppy disks, mounting 6-9
folders, access permissions 6-5 to 6-6
Font Manager

C header me for F-28
implementation in NUX Toolbox 5-12

foreign me system, defmed 6-15
functions in resource descriptions E-43

G

Gestalt facility 5-12
GetDateTime utility 5-31
GetNextEvent function 2-4, 5-10
global variables, Macintosh C-6, D-1 to D-8
glue routines c-6

H

hardware access 4-5 to 4-7
header mes (AppleDouble format)

filename conventions 6-20
magic number in 6-19
overview 6-11 to 6-12, 6-19

home file system
defmed 6-15
field for AppleSingle format files 6-16 to 6-17

I, J
icons, entry ID field 6-17
identifiers in preprocessor directives E-37
if-then-else directives E-38
if de f directive E-39
ifndef directive E-39
include directive E-38
include statement E-8
integer type E-15

Index IN-3
030-0787-A

International Utilities Package 5-13
journaling 5-10
jump table F-30

K

kermi t utility 6-13
KeyRepThresh global variable 5-10
KeyThresh global variable 5-10

L

labels E-29 to E-36
in arrays E-31
built -in functions for E-30
limitations when using E-32

language conventions, differences in 4-10
libraries implemented in A/UX Toolbox 5-2 to 5-4
List Manager Package 5-13

available through Package Manager 5-15
C header ftle for F-29

literals in resource descriptions E-40
_ LoadSeg routine (Segment Loader) 5-20
longint type E-15
low-memory global variables c-6, D-1 to D-8

M

Macintosh OS
me structure 6-10 to 6-11
interface with A/UX Toolbox 1-11
utilities implemented in A/UX Toolbox

5-30 to 5-31
Macintosh traps F-30
/mac/lib/rincludes directory E-3
MacsBug debugger 3-21 to 3-22
magic number

for AppleDouble format mes 6-19
for AppleSingle format ftles 6-16

Memory Manager
C header me for F-31
implementation in A/UX Toolbox 5-14
importance of using 4-3

IN-4 A/UX Toolbox: Macintosh ROM Interface
030-0787-A

Menu Manager
C header me for F-33
implementation in A/UX Toolbox 5-14

N

newline character 4-7
compatibility problems with 5-8

Notification Manager
C header me for F-35
implementation in A/UX Toolbox 5-14

not in ROM routines c-6
number sign (#) in preprocessor directives E-37
numbers in resource descriptions E-40
numeric escape sequences in resource

descriptions E-48

o
Operating System Utilities (Macintosh)

5-30 to 5-31, F-53
operators in resource descriptions E-42
QPTION-D character E-25

P,Q
Package Manager

C header me for F-35
implementation in A/UX Toolbox 5-15

Palette Manager
C header me for F-37
implementation in A/UX Toolbox 5-15

Pascal and C language conventions compared
C-7 to C-10

Pascal function type 4-9
pathnames 6-3
permissions, access 6-4 to 6-6
pict. r fIle E-3
point type E-17
porting applications 2-6
pound sign (#) in preprocessor directives E-37
, ppa t ' resource type E-33

preprocessor directives E-6, E-37 to E-40
for assigning variables E-37
for conditional processing E-38
incl ude E-38
print E-39

print directive E-39
print traps F-39
Printing Manager

C header fIle for F-38
implementation in A!UX Toolbox 5-15

privileged microprocessor instructions 4-4 to 4-5
P rocPt r parameters 5-8
pst ring type E-16
QuickDraw 5-4

R

read statement E-11
ReadDateTime utility 5-31
real name, entry ID value 6-17
rectangle type E-17
resource description fIles E-2 to E-7

comments in E-6
preprocessor directives in E-6
structure of E-5
type declarations in E-5

resource description statements E-7 to E-29
align types E-18
array type declaration E-19
Boolean type E-15
change statement E-24
character type E-16
da t a statement E-11
data-type statement E-13
delete statement E-23
expressions in E-42
fill types E-18
functions in E-43
include statement E-8
literals in E-40
numbers in E-40
numeric escape sequences E-48
numeric types E-14
operators in E-42

point type E-17
read statement E-11
rectang Ie type E-17
resource statement E-25
separators in arrays E-20
special terms E-8
string types E-16
switch statement E-21
syntax E-7, E-40 to E-49
terminators in arrays E-20
type declaration E-12
variables in E-43

resources (Macintosh). See also examples of
resource code 2-10

attributes of E-10
data statements in E-26
type declarations for E-3
preprocessor directives for E-37
symbol definitions in E-22
symbolic names in E-28
types ofE-5

resource fork, entry ID value 6-17
Resource Manager

C header fIles for F-41
differences between environments 5-16
implementation in A!UX Toolbox 5-16

RestoreA5 routine 5-31
re z resource compiler 3-6, E-2. See also resource

description fIles; resource description
statements

s
sample programs, Toolbox 2-11
Scrap Manager

C header fIle for FM
implementation in A!UX Toolbox 5-17

Script Manager
C header fIle for F-44
implementation in A!UX Toolbox 5-18

scripttypes. r me E-3
SCSI Manager 5-18
search paths, compatibility issues with 5-17

IN-5
030-07S7-A

Segment Loader
C header me for F-46
CurPageOption setting 5-20
FinderName 5-20
implementation in AlUX Toolbox 5-18
routines different in AlUX 5-19

select system call 3-20
semicolons (;) in arrays E-20
separators in arrays E-20
Serial Driver

C header me for F-47
differences in AlUX 5-20
implementation in AlUX Toolbox 5-20

SetDateTime utility 5-31
setitimer routine 5-30,5-32
SetUpA5 routine 5-31
Shutdown Manager 5-22
SIGALRM signal 5-30,5-32
'SIZE' resource 2-4
sleep routine 5-30,5-32
Slot Manager

C header me for F-48
declaration values for ROM F-17
implementation in AlUX Toolbox 5-22 to 5-24

Sound Manager
C header me for F-50
implementation in AlUX Toolbox 5-25

Standard Apple Numeric Environment (SANE)
5-11

Standard File Package 5-29
stime call 5-31
strings

converting between Pascal and C F-50
in resource descriptions E-46
types of E-16

switch statement E-21
symbolic names E-28

of AlUX commands xx to xxi
of resource description statements E-7

SysBeep utility 5-30, 5-31
SysError system call 5-29
system calls 3-18

IN-6 A/UX Toolbox: Macintosh ROM Interface
030-07S7-A

System Error Handler
C header me for F-51
implementation in AlUX Toolbox 5-29

systypes. r me E-3

T
terminators in arrays E-20
TextEdit

C header me for F-51
implementation in AlUX Toolbox 5-29

32-bit addressing 4-2
32-bit QuickDraw

C header me for F-5
implementation in AlUX Toolbox 5-4

ticks 5-10
Time Manager

C header me for F-53
implementation in AlUX Toolbox 5-30

Toolbox Utilities (Macintosh) 5-41, F-55
time operations 4-6, 5-31
type declaration (resources) E-12
types. r me E-3

u
uinterO

functions of C-3
use of C-2

ui_setselect call 2-5
unde f directive E-37
UnloadSeg routine (Segment Loader) 5-20
user-interface device driver C-2
utilities, Macintosh 5-30 to 5-31

Delay 5-30
Environs 5-30
fcnvt 6-13
kermit 6-13
SysBeep 5-30

Utilities, Operating System (Macintosh) F-53
C header me for F-53
implementation in AlUX Toolbox 5-30 to 5-31

Utilities, Toolbox (Macintosh)
C header me for F-55
implementation in AlUX Toolbox 5-31

v
variables in resource descriptions E-43
variables, NUX Toolbox 3-14
version number, for AppleSingle format mes 6-16
Vertical Retrace Manager

C header me for F-57
implementation in NUX Toolbox 5-32

Video Driver F-57

w, X, Y, Z
WaitNextEvent function 2-4,5-10
Window Manager
'WIND' resource type E-27

C header me for F-58
implementation in NUX Toolbox 5-32

wstringtype E-16

Index IN-'
030-0787-A

THE APPLE PUBLISHING SYSTEM

This Apple manual was written, edited, and composed
on a desktop publishing system using Apple
Macintosh® computers and Microsoft Word software.
Proof pages were created on Apple LaserWriter®
printers. Final pages were created on the Varityper
VT600w imagesetter. Line art was created using Adobe
Illustrator. POSTSCRIPT®, the page-description
language for the LaserWriter, was developed by Adobe
Systems Incorporated.

Text type and display type are Apple's corporate font, a
condensed version of ITC Garamond®. Bullets are ITC
Zapf Dingbats®. Some elements, such as program
listings, are set in Apple Courier.

Writer: Walt Bryant
Developmental Editor: George Truett
Production Supervisor: Josephine Manuele
Formatter: Teresa Lujan

Special thanks to David Berry, Mike Chow, Rick Daley,
Mike Elola, Sharon Everson, Li Greiner,
Winston Hendrickson, Andy Heninger, Sue Luttner,
Dave Radcliffe, Rob Smith, George Towner, Justin Walker,
and Kathleen Wallace

030-0787-A

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49
	E-50
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	F-25
	F-26
	F-27
	F-28
	F-29
	F-30
	F-31
	F-32
	F-33
	F-34
	F-35
	F-36
	F-37
	F-38
	F-39
	F-40
	F-41
	F-42
	F-43
	F-44
	F-45
	F-46
	F-47
	F-48
	F-49
	F-50
	F-51
	F-52
	F-53
	F-54
	F-55
	F-56
	F-57
	F-58
	F-59
	F-60
	F-61
	F-62
	F-63
	F-64
	F-65
	F-66
	F-67
	F-68
	F-69
	F-70
	F-71
	F-72
	F-73
	F-74
	F-75
	F-76
	F-77
	F-78
	F-79
	F-80
	F-81
	F-82
	F-83
	F-84
	F-85
	F-86
	F-87
	F-88
	F-89
	F-90
	F-91
	F-92
	F-93
	F-94
	F-95
	F-96
	F-97
	F-98
	IN-01
	IN-02
	IN-03
	IN-04
	IN-05
	IN-06
	IN-07
	IN-08

