.
A/UX. Programmer’s Reference
Sections 3(M-Z), 4, and 5

030-0785

& APPLE COMPUTER, INC.

© 1990, Apple Computer, Inc., and
UniSoft Corporation. All rights
reserved.

Portions of this document have been
previously copyrighted by AT&T
Information Systems and the Regents
of the University of California, and are
reproduced with permission. Under
the copyright laws, this manual may
not be copied, in whole or part,
without the written consent of Apple
or UniSoft. The same proprietary and
copyright notices must be affixed to
any permitted copies as were affixed to
the original. Under the law, copying
includes translating into another
language or format.

The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.

Apple Computer, Inc.
20525 Mariani Ave.
Cupertino, California 95014
(408) 996-1010

Apple, the Apple logo, A/UX,
ImageWriter, LaserWriter, and
Macintosh are registered trademarks of
Apple Computer, Inc.

B-NET is a registered trademark of
UniSoft Corporation,

DEC is a trademark of Digital
Equipment Corporation.

Diablo and Ethernet are registered
trademarks of Xerox Corporation.

Hewlett-Packard 2631 is a trademark of
Hewlett-Packard.

030-0785

MacPaint is a registered trademark of
Claris Corporation.

POSTSCRIPT is a registered trademark,
and TRANSCRIPT is a trademark, of
Adobe Systems, Incorporated.

UNIX is a registered trademark of
AT&T Information Systems.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, Apple
will replace the media or manual at
no charge to you provided you retumn
the item to be replaced with proof of
purchase to Apple or an authorized
Apple dealer during the 90-day period
after you purchased the software. In
addition, Apple will replace damaged
software media and manuals for as
long as the software product is
included in Apple's Media Exchange
Program. While not an upgrade or
update method, this program offers
additional protection for up to two
years or more from the date of your
original purchase. See your
authorized Apple dealer for program
coverage and details. In some
countries the replacement period
may be different, check with your
authorized Apple dealer.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCI.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
'WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

030-0785

A/UX Programmer’s Reference

Contents

Preface

Introduction

Section 3 Subroutines (M-Z)
Section 4 File Formats

Section 5 Miscellaneous Facilities

Revision C

Preface

Conventions Used in This Manual

A/UX® manuals follow certain conventions regarding presentation of
information. Words or terms that require special emphasis appear in
specific fonts within the text of the manual. The following sections
explain the conventions used in this manual.

Significant fonts
Words that you see on the screen or that you must type exactly as
shown appear in Courier font. For example, when you begin an
A/UX work session, you sce the following on the screen:

login:
The text shows login: in Courier typeface to indicate that it
appears on the screen. If the next step in the manual is

Enter start

start appears in Courier to indicate that you must type in the
word. Words that you must replace with a value appropriate to a
particular set of circumstances appear in italics. Using the example just
described, if the next step in the manual is

login: username
you type in your name—Laura, for example— so the screen shows:
login: Laura

Key presses

Certain keys are identified with names on the keyboard. These modifier
and character keys perform functions, often in combination with other
keys. In the manuals, the names of these keys appear in the format of
an Initial Capital letter followed by SMALL CAPITAL letters.

The list that follows provides the most common keynames.

RETURN DELETE SHIFT ESCAPE
OPTION CAPS LOCK CONTROL

For example, if you enter

- Vii -
Revision C

Applee
instead of
Apple

you would position the cursor to the right of the word and press the
DELETE key once to erase the additional e.

For cases in which you use two or more keys together to perform a
specific function, the keynames are shown connected with hyphens.
For example, if you see

Press CONTROL-C

you must press CONTROL and C simultaneously (CONTROL-C normally
cancels the execution of the current command).

Terminology

In A/UX manuals, a certain term can represent a specific set of actions.
For example, the word Enter indicates that you type in an entry and
press the RETURN key. If you were to see

Enter the following command: whoami

you would type whoami and press the RETURN key. The system
would then respond by identifying your login name.

Here is a list of common terms and their corresponding actions.

Term Action

Enter Type in the entry and press the RETURN key

Press Press a single letter or key without pressing the
RETURN key

Type Type in the letter or letters without pressing the
RETURN key

Click Press and then immediately release the mouse button

- Viii -
RevisionC

Term Action

Select Position the pointer on an item and click the mouse
button
Drag Position the pointer on an icon, press and hold down

the mouse button while moving the mouse. Release
the mouse button when you reach the desired
position.

Choose Activate a command title in the menu bar. While
holding down the mouse button, drag the pointer to a
command name in the menu and then release the
mouse button. An example is to drag the File menu
down until the command name Open appears
highlighted and then release the mouse button.

Syntax notation
A/UX commands follow a specific order of entry. A typical A/UX
command has this form:

command [flag-option] [argument] . ..

The elements of a command have the following meanings.

Element Description
command Is the command name.
flag-option Is one or more optional arguments that modify the
command. Most flag-options have the form
[-opt...]

where opt is a letter representing an option.
Commands can take one or more options.

argument Is a modification or specification of the command;
usually a filename or symbols representing one or
more filenames.

-ix -
Revision C

Element Description

brackets ([]) Surround an optional item—that is, an item that you
do not need to include for the command to execute.

ellipses (...) Follow an argument that may be repeated any
number of times.

For example, the command to list the contents of a directory (1s) is
followed below by its possible flag options and the optional argument
names.

1s [-R] [-a] [-d] [-C] [-x] [-m] [-1] [-L]
[(-n] [-o] [-g] [-r] [-t] [-u] [-c] [-p] [-F]
[-b] [-q] [-i] [-s] [names]

You can enter
ls ~a /users

to list all entries of the directory /users, where

1s Represents the command name
-a Indicates that all entries of the directory be listed
/users Names which directory is to be listed

Command reference notation
Reference material is organized by section numbers. The standard
AJUX cross-reference notation is

cmd(sect)

where c¢md is the name of the command, file, or other facility; sect is
the section number where the entry resides.

O Commands followed by section numbers (1M), (7), or (8) are listed
in A/UX System Administrator’s Reference.

00 Commands followed by section numbers (1), (1C), (1G), (1N), and
(6) are listed in A/UX Command Reference.

O Commands followed by section numbers (2), (3), (4), and (5) are
listed in A/UX Programmer’s Reference.

Revision C

For example,
cat(l)

refers to the command cat, which is described in Section 1 of A/UX
Command Reference. References can also be called up on the screen.
The man command or the apropos command displays pages from
the reference manuals directly on the screen. For example, enter the
command

man cat

In this example, the manual page for the cat command including its
description, syntax, options, and other pertinent information appears on
the screen. To exit, continue pressing the space bar until you see a
command prompt, or press Q at any time to return immediately to your
command prompt. The manuals often refer to information discussed in
another guide in the suite. The format for this type of cross reference is
*‘Chapter Title,”” Name of Guide. For a complete description of A/UX
guides, see Road Map to AIUX Documentation. This guide contains
descriptions of each A/UX guide, the part numbers, and the ordering
information for all the guides in the A/UX documentation suite.

-Xj -
Revision C

Introduction

to the A/UX Reference Manuals

1. How to use the reference manuals

A/UX Command Reference, AIUX Programmer’s Reference, and A/UX
System Administrator’s Reference are reference manuals for all the pro-
grams, utilities, and standard file formats included with your A/UX®
system.

The reference manuals constitute a compact encyclopedia of A/UX
information. They are not intended to be tutorials or learning guides.
If you are new to A/UX or are unfamiliar with a specific functional
area (such as the shells or the text formatting programs), you should
first read A/UX Essentials and the other A/UX user guides. After you
have worked with A/UX, the reference manuals help you understand
new features or refresh your memory about command features you
already know,

2. Information contained in the reference manuals
A/UX reference manuals are divided into three volumes:

o The two-part A/lUX Command Reference contains information
for the general user. It describes commands you type at the
A/UX prompt that list your files, compile programs, format text,
change your shell, and so on. It also includes programs used in
scripts and command language procedures. The commands in
this manual generally reside in the directories /bin,
/usr/binand /usr/uch.

o The two-part A/UX Programmer’s Reference contains informa-
tion for the programmer. It describes utilities for programming,
such as system calls, file formats of subroutines, and miscellane-
ous programming facilities.

o A/UX System Administrator’s Reference contains information for
the system administrator. It describes commands you type at the
A/UX prompt to control your machine, such as accounting

Introduction 1

Revision C

commands, backing up your system, and charting your system’s
activity. These commands generally reside in the directories
/etc, /usr/etc,and /usr/lib.

These areas can overlap. For example, if you are the only person using
your machine, then you are both the general user and the system
administrator.

To help direct you to the correct manual, you may refer to A/UX Refer-
ence Summary and Index, which is a separate volume. This manual
summarizes information contained in the other A/UX reference manu-
als. The three parts of this manual are a classification of commands by
function, a listing of command synopses, and an index.

3. How the reference manuals are organized

All manual pages are grouped by section. The sections are grouped by
general function and are numbered according to standard conventions
as follows:

1 User commands

IM System maintenance commands
System calls

Subroutines

File formats

Miscellaneous facilities

Games

Drivers and interfaces for devices
A/UX Startup shell commands

Manual pages are collated alphabetically by the primary name associ-
ated with each. For the individual sections, a table of contents is pro-
vided to show the sequence of manual pages. A notable exception to
the alphabetical sequence of manual pages is the first entry at the start
of each section. As a representative example, intro.1l appears at
the start of Section 1. These intro.section-number manual pages
are brought to the front of each section because they introduce the

0 N N L AW N

2 A/UX Programmer's Reference
Revision C

other man pages in the same section, rather than describe a command
or similar provision of A/UX.

Each of the reference manuals includes at least one complete section of
man pages. For example, the A/UX Command Reference contains sec-
tions 1 and 6. However, since Section 1 (User Commands) is so large,
this manual is divided into two volumes, the first containing Section 1
commands that begin with letters A through L, and the second contain-
ing Section 6 commands and Section 1 commands that begin with
letters M through Z. The sections included in each volume are as fol-
lows.

A/UX Command Reference contains sections 1 and 6. Note that both of
these sections describe commands and programs available to the gen-
eral user.

¢ Section 1—User Commands
The commands in Section 1 may also belong to a special
category. Where applicable, these categories are indicated by the
letter designation that follows the section number. For example,
the N in ypcat(IN) indicates networking as described follow-
ing.

1C Communications commands, such as cu and
tip.

1G Graphics commands, such as graph and
tplot.

IN Networking commands, such as those which help
support various networking subsystems, including
the Network File System (NFS), Remote Process
Control (RPC), and Internet subsystem.

« Section 6—User Commands
This section contains all the games, such as cribbage and
worms.

Introduction 3

Revision C

AlUX Programmér’s Reference contains sections 2 through 5.

o Section 2—System Calls
This section describes the services provided by the A/UX system
kernel, including the C language interface. It includes two spe-
cial categories. Where applicable, these categories are indicated
by the letter designation that follows the section number. For
example, the N in connect(2N) indicates networking as
described following.

2N Networking system calls
2P POSIX system calls

o Section 3—Subroutines
This section describes the available subroutines. The binary ver-
sions are in the system libraries in the /1ib and /usr/lib
directories. The section includes six special categories. Where
applicable, these categories are indicated by the letter designa-
tion that follows the section number. For example, the N in
mount (3N) indicates networking as described following.

3C C and assembler library routines
3F Fortran library routines

3M Mathematical library routines
3N Networking routines

2P POSIX routines

3S Standard I/O library routines
3X Miscellaneous routines

Section 4—File Formats

This section describes the structure of some files, but does not
include files that are used by only one command (such as the
assembler’s intermediate files). The C language struct
declarations corresponding to these formats are in the
/usr/include and /usr/include/sys directories.
There is one special category in this section. Where applicable,
these categories are indicated by the letter designation that fol-
lows the section number. For example, the N in

4 A/UX Programmer's Reference
RevisionC

protocols(4N) indicates networking as described following.
4N Networking formats

» Section 5—Miiscellaneous facilities
This section contains various character sets, macro packages, and
other miscellaneous formats. There are two special categories in
this section. Where applicable, these categories are indicated by
the letter designation that follows the section number. For exam-
ple, the P in tcp(1P) indicates a protocol as described follow-
ing. by the letter designation in parenthesis at the top of the
page:
S5F Protocol families

5P Protocol descriptions

A/UX System Administrator’ s Reference contains sections 1M, 7 and 8.

¢ Section IM—System Maintenance Commands
This section contains system maintenance programs such as
fsckand mkfs.

o Section 7—Drivers and Interfaces for Devices

This section discusses the drivers and interfaces through which
devices are normally accessed. While access to one or more disk
devices is fairly transparent when you are working with files, the
provision of device files permits you more explicit modes with
which to access particular disks or disk partitions, as well as
other types of devices such as tape drives and modems. For
example, a tape device may be accessed in automatic-rewind
mode through one or more of the device file names in the
/dev/rmt directory (see tc(7)). The FILES sections of these
manual pages identify all the device files supplied with the sys-
tem as well as those that are automatically generated by certain
A/UX configuration utilities. The names of the man pages gen-
erally refer to device names or device driver names, rather than
the names of the device files themselves.

» Section 8—A/UX Startup Shell Commands
This section describes the commands that are available from
within the A/UX Startup Shell, including detailed descriptions of

Introduction 5
Revision C

those that contribute to the boot process and those that help with
the maintenance of file systems.

4. How a manual entry is organized

The name for a manual page entry normally appears twice, once in
each upper corner of a page. Like dictionary guide words, these names
appear at the top of every physical page. After each name is the sec-
tion number and, if applicable, a category letter enclosed in
parenthesis, such as (1) or (2N).

Some entries describe several routines or commands. For example,
chown and chgrp share a page with the name chown(l) at the
upper corners. If you turn to the page chgrp(l), you find a reference
to chown(l). (These cross-reference pages are only included in A/UX
Command Reference and A/UX System Administrator’ s Reference.)

All of the entries have a common format, and may include any of the
following parts:

NAME
is the name or names and a brief description.

SYNOPSIS
describes the syntax for using the command or routine.

DESCRIPTION
discusses what the program does.

FLAG OPTIONS
discusses the flag options.

EXAMPLES
gives an example or examples of usage.

RETURN VALUE
describes the value returned by a function.

ERRORS
describes the possible error conditions.

FILES
lists the filenames that are used by the program.

6 A/UX Programmer’s Reference
Revision C

SEE ALSO
provides pointers to related information.

DIAGNOSTICS
discusses the diagnostic messages that may be produced. Self-
explanatory messages are not listed.

WARNINGS
points out potential pitfalls.

BUGS

gives known bugs and sometimes deficiencies. Occasionally, it
describes the suggested fix.

5. Locating information in the reference manuals

The directory for the reference manuals, A/UX Reference Summary and
Index, can help you locate information through its index and sum-
maries. The tables of contents within each of the reference manuals
can be used also.

5.1 Table of contents

Each reference manual contains an overall table of contents and indivi-
dual section contents. The general table of contents lists the overall
contents of each volume. The more detailed section contents lists the
manual pages contained in each section and a brief description of their
function. For the most part, entries appear in alphabetic order within
each section.

5.2 Commands by function

This summary classifies the A/UX user and administration commands
by the general, or most important function they perform. The complete
descriptions of these commands are found in A/UX Command Refer-
ence and A/UX System Administrator’s Reference. Each is mentioned
just once in this listing.

The summary gives you a broader view of the commands that are avail-
able and the context in which they are most often used.

Introduction 7

Revision C

5.3 Command synopses

This section is a compact collection of syntax descriptions for all the
commands in A/UX Command Reference and A/UX System
Administrator’s Reference. It may help you find the syntax of com-
mands more quickly when the syntax is all you need.

5.4 Index

The index lists key terms associated with A/UX subroutines and com-
mands. These key terms allow you to locate an entry when you don’t
know the command or subroutine name.

The key terms were constructed by examining the meaning and usage
of the A/UX manual pages. It is designed to be more discriminating
and easier to use than the traditional permuted index, which lists nearly
all words found in the manual page NAME sections.

Most manual pages are indexed under more than one entry; for exam-
ple, lorder(l) is included under ‘‘archive files,”” *‘sorting,”” and
‘“‘cross-references.’” This way you are more likely to find the reference
you are looking for on the first try.

5.5 Online documentation

Besides the paper documentation in the reference manuals, A/UX pro-
vides several ways to search and read the contents of each reference
from your A/UX system.

To see a manual page displayed on your screen, enter the man(1)
command followed by the name of the entry you want to see. For
example,

man passwd

To see the description phrase from the NAME section of any manual
page, enter the whatis command followed by the name of the entry
you want to see. For example,

whatis apropos

8 A/UX Programmer’s Reference
Revision C

To see a list of all manual pages whose descriptions contain a given
keyword or string, enter the apropos command followed by the
word or string. For example,

apropos remove

These online documentation commands are described more fully in the
manual pages man(l), whatis(l), and apropos(l) in A/lUX Com-
mand Reference.

Introduction 9

Revision C

Table of Contents

Section 3: Subroutines (M-2Z)

mallinfo(3X) ..oiiiiiiiii s see malloc(3X)
Mmalloc(BC) .coocviniiniiiiiiii e main memory allocator
MAalloc(3X) .o s fast main memory allocator
MAallopt(3X) .o see malloc(3X)
matherr(BM) ..o, error-handling function
max(F) oo Fortran maximum-value functions
max0(BF) .o, see max(3F)
MAXL(3F) o see max(3F)
mclock(BF) i return Fortran time accounting
MemMCCPY(3C) .ttt see memory(3C)
memchr(3C) ... see memory(3C)
mememp(3C) ..o see memory(3C)
MemEPY(3C) cniri i see memory(3C)
memory(3C) ..ooviiiiiii e memory operations
memSet(3C) ..o see memory(3C)
minBE) oo Fortran minimum-value functions
MiNnO(BF) cuiui i e see min(3F)
MANL(BF) e s see min(3F)
mKELiFOBP) oo make a FIFO special file
mKEemMP(3C) .o make a unique filename
MKEIME(3) .o eaas see ct ime(3)
modBF) ..o Fortran remaindering intrinsic functions
MOAE(3C) ceninii s see frexp(3C)
monitor(3C) ..oooiiiiiii prepare execution profile
MOUNTE(3) Lviriiiii i mount a file system
mount(3N) ..., keep track of remotely mounted file systems
mrandd8(3C) ... see drand48(3C)
nbp(3N) ...l AppleTalk Name Binding Protocol (NBP) interface.
nbp confirmBN) ... see nbp(3N)
nbp 10okup(3N) ..o see nbp(3N)
nbp_make entity(3N) ... see nbp(3N)
nbp_parse entity(BN) ... see nbp(3N)
nbp_register(3N) ... see nbp(3N)
nbp_remove(3N) ... see nbp(3N)
nextkey(3X) ... e see dbm(3X)
NInt(3F) (i see round(3F)
NList(3C) i get entries from name list

Section 3 i

oY A) o) PP see bool(3F)

Nrandd8(3C)coiiiiiiiiiiiiie e, see drand48(3C)
NEOhLIBN) (i see byteorder(3N)
NtohsSBBN) .o see byteorder(3N)
numbptabent(3)cciiiiiiiiii see getptabent(3)
opendir(3) . .ciiiiiiiiii e see directory(3)
opendir(3P)coiviiiii e see directory(3P)
o3 <] 25 T see bool(3F)
PaPBN) ..o, AppleTalk Printer Access Protocol (PAP) interface
paps_close(BN)coviiiiiiiiiiiiii see pap(3N)
paps_get_next_ job(3N) ..., see pap(3N)
pPaps_open(BN) ..ot see pap(3N)
paps_status(BN)ccooiiiiiiiii see pap(3N)
Pap_cloSeBN) ...cooiimiiiiiiiiii e see pap(3N)
pap_open(3N)cooiiiiiiiiiii see pap(3N)
pap_read(BN)cccoiiiiiiiiiii see pap(3N)
pap_read ignore(BN) ... see pap(3N)
pap_status(BN)cooiiiiiiiii see pap(3N)
pap_write(BN) ... see pap(3N)
pathconf(3P)ccovvvveviiiniininneniann. get configurable pathname variables
PCLOSE(3S) ittt e e see popen(3S)
Perror(3C) oottt system error messages
PLOEBX) .t graphics interface subroutines
popen(38) ...oooiiiiiiiiii initiate pipe to/from a process
POWBM) o see exp(3M)
print£(3S) . v format and output string and numeric data
PUte(3S) i put character or word on a stream
PUtChar(38) ..ot e see putc(3S)
putenv(3C) . ..o change or add value to environment
putpwent(3C) ..o write password file entry
PUES(3S) e put a string on a stream
pututline(BC) ... s see getut(3C)
PUEW(3S) o e see putc(3S)
GSOLE(3C) ot s quicker sort
rand(3C) ..ocooiiiiiii simple random-number generator
randBF)coooiiiiiii Fortran uniform random-number generator
remd(BN) ..., routines for returning a stream to a remote command
readdir(3) ..oiiiiii e see directory(3)
readdir(BP) ..o see directory(3P)
T@AL(BF) e e see ftype(3F)
realloc(3C) ..o seemalloc(3C)
realloc(3X) i see malloc(3X)
regemp3X) ooviiiiiiia compile and execute a regular expression

ii Subroutines (M-2Z)

regex(3X) ..iviii e e see regemp(3X)

remque(3N) o see insque(3N)
TeS0lVer(BN) ..ot resolver routines
res_init@N) ... see resolver(3N)
res_mkquery(BN)ccooviiiiiiiiiiii see resolver(3N)
res 8end(BN)ooooiiiiiiiiiiiii e, see resolver(3N)
rewind(3S) ..o e see fseek(3S)
rewinddir(3) ...cocoiiiiiiiii see directory(3)
rewinddir(3P) ... see directory(3P)
rexec(3N) .o, return stream to a remote command
rnusers(3N) return information about users on remote machines
round(BF) .. Fortran nearest integer functions
IPC(BN) i, library routines for remote procedure calls
rresvVPOIXt(3N) .o see recmd(3N)
EShift(BF) (o see bool(3F)
rtmp(AN) ..o identify AppleTalk node and bridge addresses
rtmp_netinfo(3N) ..., see rtmp(3N)
TUSEXOK(BN) Lot see remd(3N)
rusers(3N) oo see rnusers(3N)
Wall(BN) i, write to specified remote machines
scandir(3) co.iiiiiii e scan a directory
8canf(3S) oo convert formatted input
8€€348(3C) ittt s see drand48(3C)
Seekdir(3) . it e see directory(3)
seekdir(3P)coiiriiii s see directory(3P)
8etd428ig(3) it set 4.2 BSD signal interface
8etbuf(38) ...coiiiiiiiiii e assign buffering to a stream
SEEGIA(3) c ot see setuid(3)
setgrent(3C)ccoiiiiiiiiiii e see getgrent(3C)
SetIMP(BC) Lirniiiii i e non-local goto
setmntent(3) ..o see getmntent(3)
setnetent(3N)c.oooiiiiiiiiiii e see getnetent(3N)
setnetgrent(3N) ...t see getnetgrent(3N)
8etposix(3P) ..o set POSIX compatibility flags
setprotoent(3N)cooiiiiiiiiiiiiiin see getprotoent(3N)
setptabent(3).....ociiiiiiiiiii e see getptabent(3)
setpwent(3C) ...ooiiiiiii e see get pwent(3C)
setrpcent(BN) ... see getrpcent(3N)
setservent(BN)ocooviiiiiiiiiieeeeee e, see get servent(3N)
SetULA(3) i s set user and group IDs
setutent(3C) ... see getut(3C)
SetVbUF(3S) ..o see setbuf(3S)
SGEEL(3X) ittt e e e en see sputl1(3X)

Section 3 iii

sigaction(3@P)cocoeiiiiiiiiiiiiniiiann. examine or change signal action

sigaddset(3P)cccoeviiiiiiiiiiiii s see sigsetops(3P)
51gdelset(3P) ...coiiiiiiiiiiiiii s see sigsetops(?P)
Sigfillset(3P) cooovrriiiiiiiiiiiiiiiee e see sigsetops(3P)
8iginitSet(BP) oo, see sigsetops(3P)
sigismember(3P)cooiiiiiiiiii see sigsetops(3P)
siglongImp(3P) ..ot see sigset jmp(3P)
sign@F) cooiiiiiiiii Fortran transfer-of-sign intrinsic function
signal(3) ...ccocieiiniiiiiiiinennnns specify what to do upon receipt of a signal
signal(@F)................. specify Fortran action on receipt of a system signal
sigprocmask@3P)coiiiiiiinn. examine and change blocked signals
sigsetImPBP) v non-local jumps
8igsetopPSBP) .o manipulate signal sets
sigsuspend(3P).......ccioiiiiiiiiiiiiii e wait for a signal
SinEBF) oo, Fortran sine intrinsic function
SAN(BM) .t see trig(3M)
SinhQBF) v Fortran hyperbolic sine intrinsic function
sinh(BM) ..ooociiiiii hyperbolic functions
81€eP(B3C) .iiriiii e suspend execution for interval
S10tS(3X) eeiiii e ROM library functions
SAGLBF) ceiiiiiii e see ftype(3F)
spray(BN) covviiiiiii scatter data in order to check the network
SPrintE(3S) .ot e see print £(3S)
sputl(3X).......... access long integer data in a machine independent fashion
SsQrt(3F) .o Fortran square root intrinsic function
SQLEBM) it see exp(3M)
SXand(3C) .o e see rand(3C)
STANABE) et see rand(3F)
Sxandd8(3C) ..o see drand48(3C)
SSCANE(3S) ittt e e ens see scanf(3S)
SSIGNAL(3C) ciuiiiiiiii s software signals
store(3X) ...ccovveennnn P see dbm(3X)
SEXCAL(BC) cuinieiiiiiii e see string(3C)
SEECRI(BC) i see st ring(3C)
SEremp(3C) cniniriiii see st ring(3C)
SELCPY(BC) ittt e see st ring(3C)
Strespn(3C) oo see st ring(3C)
SEEING(BC) it string operations
SErLen(3C) (i see st ring(3C)
strncat(3C) v see st ring(3C)
Strnemp(3C) o see st ring(3C)
SEXNCPY(BC) iriiiiniii i e see string(3C)
SEEPLIK(3C) .ot e see string(3C)

iv Subroutines (M-2)

SErrchr(3C) (oo see string(3C)

SEYSPN(3C) coiiiiii e see string(3C)
strtod(3C) ..oovviiiiiiiiiiiiiin convert string to double-precision number
SELEOK(C) wiiiiiii e, see string(3C)
SEXEOl(BC) .ot convert string to integer
SWAB(3C) .ouiiiiiiiii e e e e swap bytes
sysconf(3P)ccooviiiiiiiiiiiiiii, get configurable system variables
system(3F)cocoiiiiiiiiii issue a shell command from Fortran
SYStem(38) ..o issue a shell command
sys_errlist(3C)cooiiiiiiiiiiiiiii see perror(3C)
8ys nerr(3C)cooiiiiiiii e see perror(3C)
tan(F) o Fortran tangent intrinsic function
tAN(BM) Lo see trig(3M)
tanh(3F)cocoevviiiiiinn. Fortran hyperbolic tangent intrinsic function
tanh(BM) ... s see sinh(3M)
tedrain@BP) ... line control functions
tCELOWEP) s see tcdrain(3P)
teflushBP) (oo see tcdrain(3P)
tegetattr(3P) oo, get and set the terminal state
tegetpgrp(P) v get distinguished process group ID
tcsendbreak(BP) oo see tcdrain(3P)
tesetattr(3P) oo see tcgetattr(3P)
tesetpgrp(3P) i set distinguished process group ID
tdelete(3C) .o see tsearch(3C)
tellAir(3) et see directory(3)
telldir(BP) .o see directory(3P)
tempnam(3S) ... s see tmpnam(3S)
termcap(3X) ...oooiiiiiiiiiii terminal independent operation routines
tEind(BC) i see tsearch(3C)
tgetent(3X) .ot see termcap(3X)
tgetflagBX) .ooiiiiii e see termcap(3X)
tgetnum(3X) ..o see termcap(3X)
tget str(3X) it e see termcap(3X)
GOt O(3X) .o s see termcap(3X)
tmPEile(3S) i create a temporary file
tmpnam3S)oociiiiii e, create a name for a temporary file
£0aSCLI(3C) it see conv(3C)
£01oWeX(3C) ..o see conv(3C)
toUuPPeX(3C) .o see conv(3C)
tPULS(BX) oo see termcap(3X)
tLig(BM) o trigonometric functions
tsearch(3C) ..ocooiiiiiiiii e manage binary search trees
ttyname(3C) ..o find name of a terminal

Section 3 v

ttyslot(3C) . covereiennnnnnn find the slot in the utmp file of the current user

EWALK(3BC) tovniiiiiiiiiii e et e e see t search(3C)
Lo 271 1) PPN see ctime(3)
t2SetWall(3) .oririiiiiiie e see ctime(3)
UMOUNE(3) ceiiiiiiiiiiiiiiiiire e e e unmount a file system
ungete(38) v push character back into input stream
utmpname(3C) ... e see getut(3C)
varargs(3X) ..oovvriiiiininier s handle variable argument list
VEPTINEE(3S) (vt see vprint £(3S)
vprint£(3S) format and output data from a variable-length argument list
VSPrint£(3S) .ooiniiiii e see vprint £(3S)
xdr(3N) .o library routines for external data representation
KOT(3F) e e see bool(3F)
FOBM) oo see bessel(3M)
FIBM) oo e e see bessel(3M)
YOBM) e e see bessel(3M)
YPCINtBN) (oo yellow pages client interface
yperr_string(BN)c.coooiiiiiiii see ypclnt(3N)
yppasswd(3N)coiiiiiiiiiis update user password in yellow pages
ypprot_err(3N) ... see ypclnt(3N)
YP_al1BN) oo see ypclnt(3N)
yp bind(BN) ..o see ypclnt(3N)
yp_first(BN) oo see ypclnt(3N)
yp_get_default_domain(BN)............ccooiininnd see ypclnt(3N)
yp master(3N) ..., see ypclnt(3N)
yp_matchBN) ... see ypclnt(3N)
yp Next(BN) ...ooiiiiiiiiiiii see ypclnt(3N)
yp_order(BN) ...oooiiiiiiiii see ypclnt(3N)
yp_unbind(BN) ... see ypclnt(3N)
ZabSBF) ...t e see abs(3F)
Zip(BN) .o AppleTalk Zone Information Protocol (ZIP) interface
zip getlocalzones(3N)cocviiiiniiniiiiniiiinnennee, see zip(3N)
zip getmyzone(BN)ccoociiiiiiiiiiiiiiiii e see zip(3N)
zip_getzonelist(BN) ..., see zip(3N)
_£01owex(3C) ..ot see conv(3C)
_touppex(3C) ..ot see conv(3C)

vi Subroutines (M-2Z)

malloc(3C) malloc(3C)

NAME
malloc, free, realloc, calloc, cfree — main
memory allocator

SYNOPSIS

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (pir, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

void cfree (ptr, nelem, elsize)
char *ptr;
unsigned nelem, elsize;

DESCRIPTION
malloc and free provide a simple general-purpose memory al-
location package. malloc retumns a pointer to a block of at least
size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated
by malloc; after free is performed, this space is made avail-
able for further allocation, but its contents are left undisturbed.

Undefined results occur if the space assigned by malloc is over-
run or if some random number is handed to free.

malloc allocates the first contiguous reach of free space of
sufficient size found in a circular search from the last block allo-
cated or freed; it coalesces adjacent free blocks as it searches. It
calls sbrk (see brk(2)) to get more memory from the system
when there is no suitable space already free.

realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents are unchanged up to the lesser of the new and old sizes.
If no free block of size bytes is available in the storage arena,
realloc asks malloc to enlarge the arena by size bytes and
then moves the data to the new space.

February, 1990 1

Revision C

malloc(3C) malloc(3C)

realloc also works if ptr points to a block freed since the last
call of malloc, realloc, or calloc; thus sequences of free,
malloc, and realloc can exploit the search strategy of mal-~
loc to do storage compaction.

calloc allocates space for an array of nelem elements of size el-
size. The space is initialized to zeros.

The arguments to cfree are the pointer to a block previously al-
located by calloc plus the parameters to calloc.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.
RETURN VALUE

malloc, realloc, and calloc return a NULL pointer if there
is no available memory or if the arena is deteected to have been
corrupted by storing outside the bounds of a block. When this
happens the block pointed to by ptr may be destroyed.

NOTES
Search time increases when many objects have been allocated;
that is, if a program allocates space but never frees it, each succes-
sive allocation takes longer.

SEE ALSO
brk(2), malloc(3X).

2 February, 1990

RevisionC

malloc(3X) malloc(3X)

NAME
malloc, free, realloc, calloc, mallopt,
mallinfo — fast main memory allocator

SYNOPSIS
#include <malloc.h>

char *malloc (size)
unsigned size;

void free (ptr)
char *ptr;

char *realloc (ptr, size)
char *ptr;
unsigned size;

char *calloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)
int max;

DESCRIPTION
malloc and free provide a simple general-purpose memory al-
location package, which runs considerably faster than the
malloc(3C) package. Itis found in the library ““malloc’’, and
is loaded if the option “‘~1malloc” is used with cc(1) or 14(1).

malloc returns a pointer to a block of at least size bytes suitably
aligned for any use.

The argument to free is a pointer to a block previously allocated
by malloc; after free is performed this space is made available
for further allocation, and its contents have been destroyed (but
see mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloc is
overrun or if some random number is handed to £ree.

realloc changes the size of the block pointed to by ptr to size
bytes and returns a pointer to the (possibly moved) block. The
contents will be unchanged up to the lesser of the new and old
sizes.

February, 1990 1

Revision C

malloc(3X)

malloc(3X)

calloc allocates space for an array of nelem elements of size el-
size. The space is initialized to zeros.

mallopt provides for control over the allocation algorithm. The
available values for cmd are:

M MXFAST

M_NLBLKS

M_GRAIN

M_KEEP

Set maxfast to value. The algorithm allocates
all blocks below the size of maxfast in large
groups and then doles them out very quickly. The
default value for maxfast is 0.

Set numlblks to value. The above mentioned
‘‘large groups’’ each contain numlblks blocks.
numlblks must be greater than 0. The default
value for numlblks is 100,

Set grain to value. The sizes of all blocks
smaller than maxfast are considered to be
rounded up to the nearest multiple of grain.
grain must be greater than 0. The default value
of grain is the smallest number of bytes which
will allow alignment of any data type. Value will
be rounded up to a multiple of the default when
grain is set.

Preserve data in a freed block until the next mal-
loc, realloc, or calloc. This option is pro-
vided only for compatibility with the old version
of malloc and is not recommended.

These values are defined in the <malloc.h> header file.

mallopt may be called repeatedly, but may not be called after
the first small block is allocated.

mallinfo provides instrumentation describing space usage. It
returns the structure:

struct mallinfo {

int arena; /* total space in arena */

int ordblks; /* number of ordinary blocks */

int smblks; /* number of small blocks */

int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */

int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */

int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */

February, 1990

Revision C

malloc(3X) malloc(3X)

int keepcost; /* space penalty if keep option */
/* is used */

}
This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.
RETURN VALUE

malloc, realloc and calloc return a NULL pointer if there
is not enough available memory. When realloc returns NULL,
the block pointed to by ptr is left intact. If mallopt is called
after any allocation or if cmd or value are invalid, non-zero is re-
turned. Otherwise, it returns zero.

SEE ALSO
brk(2), malloc(30).

WARNINGS
This package usually uses more data space than malloc(3C).
The code size is also bigger than malloc(3C).
Note that unlike malloc(3C), this package does not preserve the
contents of a block when it is freed, unless the M_KEEP option of
mallopt isused.
Undocumented features of malloc(3C) have not been duplicat-
ed.

February, 1990 3

Revision C

matherr(3M) matherr(3M)

NAME
matherr — error-handling function

SYNOPSIS
#include <math.h>

int matherr (x)
struct exception *x;

DESCRIPTION

matherr is invoked by functions in the Math Library when er-
rors are detected. Users may define their own procedures for han-
dling errors, by including a function named matherr in their
programs. matherr must be of the form described above. When
an error occurs, a pointer to the exception structure x will be
passed to the user-supplied matherr function. This structure,
which is defined in the <math . h> header file, is as follows:
struct exception {

int type;

char *name;

double argl;

double arg2;

double retval;

};

The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the
header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the
function that incurred the error. The variables arg/ and arg2 are
the arguments with which the function was invoked. retval is set
to the default value that will be returned by the function unless the
user’s matherr sets it to a different value.

If the user’s mat herr function returns nonzero, no error message
will be printed, and errno will not be set.

If matherr is not supplied by the user, the default error-handling
procedures, described with the math functions involved, will be
invoked upon error. These procedures are also summarized in the

1 February, 1990

Revision C

matherr(3M) matherr(3M)

table below. In every case, errno is set to EDOM or ERANGE and
the program continues.

EXAMPLES
#include <math.h>

int
matherr (x)
register struct exception *x;
{
switch (x->type) {
case DOMAIN:
/* change sqrt to return sqrt(-argl), not 0 */
if (!strcmp(x—>name, "sqrt")) {
x—->retval = sgrt (-x->argl);
return (0); /* print message and set errno */
}
case SING:
/* all other domain or sing errors,
print message and abort */
fprintf (stderr, "domain error in %s\n", x—>name);
abort(),
case PLOSS:
/* print detailed error message */
fprintf(stderr, "loss of significance in %s(%g) = %g\n",
x—>name, x->argl, x->retval);
return (1); /* take no other action */

return (0); /* all other errors,
execute default procedure */

February, 1990 2

Revision C

matherr(3M)

matherr(3M)

DEFAULT ERROR HANDLING PROCEDURES

Types of Errors
type DOMAIN | SING | OVERFLOW | UNDERFLOW | TLOSS | PLOSS
errno EDOM | EDOM [ERANGE ERANGE ERANGE | ERANGE
BESSEL: - - - - M,0 *
yO,yl,yn (arg<0) | M,-H - - - - -
EXP: - - H 0 - -
LOG, LOG10:
(arg <0) M, ~-H - - - - -
(arg =0) - M,-H - - -
POW: - - +H 0 - -
neg ** nonint M, 0 - - - -
0 ** nonpos
SQRT: M, 0 - - - - -
GAMMA: - M, H H - - -
HYPOT: - - H - - -
SINH: = = H - - -
COSH: - . H - - -
SIN, COS, TAN: - - - - M, 0 *
ASIN, ACOS, ATAN2] M, 0 - - ks - -
ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.
-H -HUGE is returned.
+H HUGE or -HUGE is returned.
0 0 is returned.
3 February, 1990

Revision C

max (3F) max (3F)

NAME
max, max0, amax0, maxl, amaxl, dmaxl — Fortran
maximum-value functions

SYNOPSIS

integer i, j, k, 1
real a, b, ¢, d
double precision dpl, dp2, dp3

l=max (i, j, k)
c=max (a, b)
d=max (a, b, c)
k=max0 (i, j)
a=amax0 (i, j, k)
i=max1 (a, b)
d=amaxl(a, b, c)
dp3=dmaxl (dpl, dp2)

DESCRIPTION
The maximum-value functions return the largest of their argu-
ments; there may be any number of arguments. max is the generic
form which can be used for all data types and takes its return type
from that of its arguments. All arguments must be of the same
type. max0 returns the integer form of the maximum value of its
integer arguments; amax0, the real form of its integer arguments;
max1, the integer form of its real arguments; amax1, the real
form of its real arguments; and dmax1, the double-precision form
of its double-precision arguments.

SEE ALSO
min(3F).

February, 1990 1

Revision C

mclock(3F) mclock(3F)

NAME
mclock — return Fortran time accounting

SYNOPSIS
integer i
i=mclock ()

DESCRIPTION
mclock returns time accounting information about the current
process and its child processes. The value returned is the sum of
the current process’s user time and the user and system times of
all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

1 February, 1990

Revision C

memory(3C) memory (3C)

NAME
memccpy, memchr, memcmp, memcpy, memset —
memory operations

SYNOPSIS

#include <memory.h>

char *memccpy (sl, 52, ¢, n)
char *slI, *s2;
int ¢, n;

char *memchr (s, ¢, n)
char *s;
int ¢, n;

int memcmp (sI, s2, n)
char *sl, *s2;
int n;

char *memcpy (sl, 52, n)
char *sl, *s2;
int n;

char *memset (s, ¢, n)
char *s;
int ¢, n;

DESCRIPTION
These functions operate efficiently on memory areas (arrays of
characters bounded by a count, not terminated by a null charac-
ter). They do not check for the overflow of any receiving memory
area.

memccpy copies characters from memory area s2 into si, stop-
ping after the first occurrence of character ¢ has been copied or
after n characters have been copied, whichever comes first. It re-
turns either a pointer to the character after the copy of cins/ ora
NULL pointer if ¢ was not found in the first n characters of s2.

memchr returns either a pointer to the first occurrence of charac-
ter ¢ in the first n characters of memory area s or a NULL pointer
if ¢ does not occur.

memcmp compares its arguments, looking at the first n characters
only. It returns an integer less than, equal to, or greater than 0,
depending on whether s is lexicographically less than, equal to,
or greater than s2.

February, 1990 1

Revision C

memory (3C) memory(3C)

memcpy copies n characters from memory area s2 to si. It re-
turns s1.

memset sets the first n characters in memory area s to the value
of character ¢. It returns s .

NOTES
For user convenience, all these functions are declared in the op-
tional <memory . h> header file.

BUGS
memcmp uses native character comparison.
Because character movement is performed differently in different

implementations, overlapping moves may yield unexpected
results.

2 February, 1990

RevisionC

min(3F) min(3F)

NAME
min, min0, amin0, minl, aminl, dminl — Fortran
minimum-value functions

SYNOPSIS

integer i, j, k, 1
real a, b, ¢, d
double precision dpl, dp2, dp3

I=min (i, j, k)
c=min{(a, b)
d=min(a, b, c¢)
k=min0 (i, j)
a=amin0 (i, j, k)
i=minl (a, b)
d=aminl (a, b, c)
dp3=dminl (dpl, dp2)

DESCRIPTION

The minimum-value functions return the minimum of their argu-
ments. There may be any number of arguments. min is the gen-
eric form which can be used for all data types. It takes its return
type from that of its arguments, which must all be of the same
type. minO returns the integer form of the minimum value of its
integer arguments; amin0, the real form of its integer arguments;
minl, the integer form of its real arguments; aminl, the real
form of its real arguments; and dmin1, the double-precision form
of its double-precision arguments.

SEE ALSO
max(3F).

February, 1990 1

Revision C

mkfifo(3P) mkfifo(3P)

NAME
mk £1fo — make a FIFO special file

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo (path, mode)
char *path;
mode_t mode;

DESCRIPTION
mkfifo creates a new FIFO special file named by the pathname
pointed to by path. The mode of the new FIFO is initialized from
mode. The file permission bits of mode are modified by the file
creation mask of the process. If bits in mode other than file per-
missions are set, the permissions on the FIFO will be undefined.

For the POSIX environment, the following constants for mode are
defined in <sys/stat.h> :

S_IRUSR read permission, owner
S_IWUSER writer permission, owner
S_IXUSR execute/search permission, owner
S_IRGRP read permission, group

S_IWGRP writer permission, group
S_IXGRP execute/search permission, group
S_IROTH read permission, others
S_IWOTH writer permission, others
S_IXOTH execute/search permission, others

The owner ID of the FIFO is set to the effective user ID of the
process. The group ID of the FIFO is set to the effective group ID
of the process.

On successful completion, mkfifo marks for update the
st_atime, st_ctime, and st_mtime fields for the file. The
st_ctime and st_mtime fields of the directory that contains
the new entry are also marked for update.

RETURN VALUE
On successful completion, mkf£i fo returns a value of 0. Other-

wise, a value of —1 is returned, no FIFO is created, and errno is
set to indicate the error.

1 February, 1990

RevisionC

mkfifo(3P)

ERRORS

mk£ifo(3P)

mkfifo will fail and the new FIFO will not be created if one or
more of the following are true:

[ENAMETOOLONG]

[ELOOP]
[ENOTDIR]
[ENOENT]
[EROFS]
[EEXIST)
[EFAULT]

SEE ALSO
mknod(2), umask(2).

February, 1990

Revision C

A component of a pathname exceeded
NAME_MAX characters, or an entire path-
name exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

A component of the path prefix is not a
directory.

A component of the path prefix does not
exist.

The directory in which the FIFO is to be
created is located on a read-only file sys-
tem.

The named FIFO exists.

path points outside the allocated address
space of the process.

mktemp(3C) mktemp(3C)

NAME
mktemp — make a unique filename

SYNOPSIS
char *mktemp (template)
char *template;

DESCRIPTION
The function mktemp alters the contents of the string referenced
by *template so that it becomes a unique filename. The string at
*template should be initialized to a filenamed with six trailing X
characters; mktemp replaces the Xs with a letter and the current
process ID. The letter is selected so that the resulting name is not
a duplicate an existing file.

RETURN VALUE
mktemp returns the address of the unique (altered) filename. If a
unique name cannot be created, template will point to a null
(empty) string.

SEE ALSO
getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

1 February, 1990

RevisionC

mod(3F) mod(3F)

NAME
mod, amod, dmod — Fortran remaindering intrinsic functions

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3

k=mod (i, J)

r3=amod(rl, r2)
r3=mod (rl, r2)

dp3=dmod (dpl, dp2)
dp3=mod (dpl, dp2)

DESCRIPTION
mod returns the integer remainder of its first argument divided by
its second argument. amod and dmod return, respectively, the
real and double-precision whole number remainder of the integer
division of their two arguments. The generic version mod returns
the data type of its arguments.

February, 1990 1

Revision C

monitor(3C) monitor(3C)

NAME
monitor — prepare execution profile

SYNOPSIS
#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc) (), (*highpc) () ;

WORD *buffer;

int bufsize, nfunc;

DESCRIPTION
An executable program created by cc —p automatically includes
calls for monitor with default parameters; monitor needn’t be
called explicitly except to gain fine control over profiling.

monitor is an interface to profil(2). lowpc and highpc are
the addresses of two functions; buffer is the address of a (user sup-
plied) array of bufsize elements of type WORD (defined in the
<mon . h> header file). monitor arranges to record a histogram
in the buffer. This histogram shows periodically sampled values
of the program counter and counts of calls of certain functions.
The lowest address sampled is that of lowpc; the highest address is
just below highpc. lowpc may not equal 0 for this use of moni-
tor. nfunc is the maximum number of call counts that can be
kept; only calls of functions compiled with the profiling option —p
of cc(1) are recorded. (The C Library and Math Library supplied
when cc —p is used also have call counts recorded.) For the
results to be significant, especially where there are small, heavily
used routines, it is suggested that the buffer be no more than a few
times smaller than the range of locations sampled.

To profile the entire program, it is sufficient to use:

extern etext;
monitor ((int (*) ())2, etext, buf, bufsize, nfunc);

etext lies just above all the program text; see end(3C).

To stop execution monitoring and write the results on the file
mon.out, use

monitor ({(int (*) ())0, 0, 0, 0, 0);
prof(1) can then be used to examine the results.

1 February, 1990

Revision C

monitor(3C) monitor(3C)

FILES
mon.out
/1ib/libp/libc.a
/1ib/libp/libm.a

SEE ALSO
cc(l), prof(l), profil(2), end(3C).

February, 1990 2

Revision C

mount(3) mount(3)

NAME
mount — mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;

DESCRIPTION
mount requests that a removable file system contained on the
block special file identified by spec be mounted on the directory
identified by dir. spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to
the root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on
the mounted file system; if 1, writing is forbidden, otherwise writ-
ing is permitted according to individual file accessibility. Physi-
cally write-protected and magnetic tape file systems must be
mounted read-only or errors will occur when access times are up-
dated, whether or not any explicit write is attempted.

mount may be invoked only by the superuser.

ERRORS
mount will fail if one or more of the following are true:

[EPERM] The effective user ID is not superuser.

(ENOENT] Any of the named files does not exist.

[ENOTDIR] A component of a path prefix is not a
directory.

[ENOTBLK] spec is not a block special device.

[ENXIO] The device associated with spec does not
exist.

[ENOTDIR] dir is not a directory.

[EFAULT] spec or dir points outside the allocated
address space of the process.

[EBUSY] dir is currently mounted on, is someone’s
current working directory, or is otherwise
busy.

[EPERM] A pathname contains a character with the

high-order bit set.

1 February, 1990

RevisionC

mount (3) mount (3)

[ENAMETOOLONG] A component of a pathname exceeded
NAME_MAX characters, or an entire path-
name exceeded PATH_MAX.

[ELOOP] Too many symbolic links were encoun-
tered in translating a pathname.
[EBUSY] The device associated with spec is
currently mounted.
[EBUSY] There are no more mount table entries.
RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
fsmount(2), unmount(2), umount(3), £stab(4).

February, 1990 2

Revision C

mount (3N) mount (3N)

NAME
mount — keep track of remotely mounted file systems

SYNOPSIS
#include <rpcsve/mount.h>

DESCRIPTION
RPC INFO
Program number: MOUNTPROG

xdr routines:

xdr_exportbody (xdrs, ex)

XDR *xdrs;

struct exports *ex;
xdr_exports (xdrs, ex);

XDR *xdrs;

struct exports **ex;
xdr_fhandle (xdrs, fh);

XDR *xdrs;

fhandle_t *fp;
xdr_fhstatus (xdrs, fhs);

XDR *xdrs;

struct fhstatus *fhs;
xdr_groups (xdrs, gr);

XDR *xdrs;

struct groups *gr;
xdr_mountbody (xdrs, ml)

XDR *xdrs;

struct mountlist *mi;
xdr_mountlist (xdrs, ml);

XDR *xdrs;

struct mountlist **mi;
xdr_path (xdrs, path) ;

XDR *xdrs;

char **path;

Procs:

MOUNTPROC_MNT
Argument of xdr_path; retuns fhstatus. Requires
UNIX authentication.

MOUNTPROC_DUMP
No arguments; returns structure mountlist.

1 February, 1990

Revision C

mount (3N) mount (3N)

MOUNTPROC_UMNT

Argument of xdr_path; no results. Requires UNIX au-
thentication.

MOUNTPROC_UMNTALL
No arguments; no results. Requires UNIX authentication.
Unmounts all remote mounts of sender.

MOUNTPROC_EXPORT
MOUNTPROC_EXPORTALL
No arguments; returns structure exports.

Versions: MOUNTVERS_ORIG
Structures:

struct mountlist { /* what is mounted */
char *ml_name;
char *ml_path;
struct mountlist *ml_nxt;
}:
struct fhstatus ({
int fhs_status;
fhandle_t fhs_fh;

N~

* % O * N

List of exported directories
An export entry with ex groups NULL
indicates an entry which is exported
* to the world.
*x/
struct exports ({
dev_t ex _dev; /* dev of directory */
char *ex name; /* name of directory */
struct groups *ex groups;
/* groups allowed to mount this entry */
struct exports *ex next;
};
struct groups {
char *g name;
struct groups *g_next;

};

SEE ALSO
mount(IM), mountd(1M), showmount(1M). NFS Protocol
Spec, Section 3, in A/lUX Network Applications Programming.

February, 1990 2

Revision C

nbp(3N) nbp(3N)

NAME —
nbp parse_entity, nbp_make_entity,
nbp_confirm, nbp lookup, nbp register,
nbp remove — AppleTalk Name Binding Protocol (NBP)
interface.

SYNOPSIS
#include <at/appletalk.h>
#include <at/nbp.h>
cc [flags] files -1at [libraries]

int nbp_parse_entity (entity, str);
at_entity t *entity;
char *sir;

int nbp_make_entity (entity, object, type, zone);
at_entity t *entity;
char *object, *type, *zone;

int nbp_confirm/(entity, dest, retry);
at_entity t *entity;

at_inet_t *dest;

at_retry t *retry;

int nbp_lookup (entity, buf, max, retry);
at_entity_t *entity;

at_nbptuple t *buf;

int max;

at_retry t *retry;

int nbp_register (entity, fd, retry);
at_entity_t *entity;

int fd;

at_retry_ t *retry;

int nbp_remove (entity, fd) ;
at_entity_ t *entity;
int fd;

DESCRIPTION
The NBP interface provides applications with access to the NBP
operations. The routines use these structures (defined in
<at/appletalk.h>):

typedef struct at_inet {
at_net net;
at_node node;

1 February, 1990

Revision C

nbp(3N) nbp(3N)

at_socket socket;
} at_inet_t;

typedef struct at_retry {
short interval;
short retries;
u_char backoff;

} at_retry t;

The AppleTalk NBP operations also use these structures (defined
in <at/nbp.h>):

typedef struct at _nvestr {

char len;

char str[NBP_NVE_STR SIZE]:
} at_nvestr_t;

typedef struct at_entity {
at_nvestr_t obiject;
at_nvestr_t type;
at_nvestr t zone;

} at_entity t;

typedef struct at_nbptuple {
at_inet_t enu_addr;
u_char enu_enum;
at_entity_t enu_entity;
} at_nbptuple_t;

The at_inet_t structure specifies the AppleTalk internet ad-
dress of a DDP socket endpoint.

The at_retry_ t structure specifies the retry interval and max-
imum count for a transaction. The members of this structure are

interval The interval in seconds before NBP retries a request.
retries The maximum number of retries for this NBP request.
backoff Not used by NBP.

The at_nvestr_t structure specifies an NBP entity string. The
members of this structure are:

len The length of the string in bytes.

February, 1990 2

Revision C

nbp(3N) nbp (3N)

str The character data for this string.

The at_entity t structure describes an entity name, which
consists of three NBP entity strings: object, type, and zone.

All NBP routines work with the at_entity_t structure. Two
utility routines, nbp_parse_entity, and
nbp_make_entity, are provided to aid in creating
at_entity t structures from C strings.

The nbp_parse_entity structure constructs an NBP entity
name from a NULL-terminated C string of the form object,
object:type, or object:type@zone. The entity name is placed in the
at_entity_t structure entity. This routine returns O on success.

The nbp_make_ entity structure constructs an NBP entity
name from object, type, and zone strings. The strings are NULL-
terminated C strings. The entity name is placed into the
at_entity t structure entity. Use the object, type, and zone
character strings to construct the entity name. This routine returns
0 on success.

The nbp_confirm structure sends a confirmation request to the
specified node to see if an entity name is still registered at the
specified AppleTalk internet address.

entity A pointer to the at_entity_t structure containing
the entity name. No wildcards are allowed in the enti-
ty name strings, but an asterisk (*) for zone is accept-
able.

dest The AppleTalk internet address to confirm. If the
name is still registered on the node but at a different
socket number, the socket number in dest is updated.

retry A pointer to the structure that specifies the NBP re-
quest retry interval in seconds and the maximum retry
count. If retry is NULL, the system uses the default
values: a 1-second interval and eight retries.

On success, nbp_confirm returns 1. It returns 0 when the
name is not confirmed, and —1 on error.

The nbp_lookup structure returns a list of registered name-
address pairs via an NBP lookup. The parameters are

entity A pointer to the at_entity_ t structure containing
the entity name to be looked up.

3 February, 1990

RevisionC

nbp(3N) nbp(3N)

buf An array of at_nbptuple_t to receive entity tu-
ples.
max The maximum number of entity tuples to accept. If

max or more distinct tuples are received before the
lookup retry is exceeded, the lookup terminates.

retry The pointer to the structure that specifies the NBP re-
quest retry interval in seconds and the maximum retry
count. If retry is NULL, the system uses the default
values: a one-second interval and eight retries.

On success, nbp_lookup returns the number of entity tuples ac-
tually received.

The nbp_register structure adds the specified name-socket
pair to the list of registered names on this node. The parameters

are

entity A pointer to the at_entity_t structure containing
the entity name to be registered. The zone field of en-
tity is always ignored. No wildcards are allowed in
the entity strings.

fd An AppleTalk file descriptor to be registered with the
given name.

retry A pointer to the structure that specifies the NBP re-

quest retry interval in seconds and the maximum retry
count. If retry is NULL, the system uses the default
values: a 1-second interval and eight retries.

The nbp_remove structure removes the specified entity name
from the list of registered names on this node. The parameters are

entity A pointer to the at_entity_t structure containing
the entity name to be removed. The zone ficld of enti-
ty is always ignored. No wildcards are allowed in the
entity strings.

fd The AppleTalk file descriptor that is registered with
the given name,

WARNINGS
Strings in entity names and entity tuples are not NULL terminated.

All characters in NVE names are significant, including trailing
blanks.

February, 1990 4

Revision C

nbp(3N) nbp(3N)

See Inside AppleTalk for a description of NVE names.

DIAGNOSTICS
All routines return —1 on error with a detailed error code in errno:
[EINVAL] The entity name is invalid.

[ETIMEDOUT] The request exceeded maximum retry count.

SEE ALSO
ddp (3n), Inside AppleTalk.

5 February, 1990

RevisionC

nlist(3C) nlist(3C)

NAME ,
nlist — get entries from name list

SYNOPSIS
#include <a.out.h>

int nlist (filename, ni)
char *filename;
struct nlist *nl;

DESCRIPTION

nlist examines the name list in the executable file whose name
is pointed to by filename; it selectively extracts a list of values and
puts them in the array of nlist structures pointed to by nl. The
name list n/ consists of an array of structures containing names of
variables, types, and values. The list is terminated with a null
name; i.e., a null string is in the name position of the structure.
Each variable name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted in the
next two fields. The type filed will be set to O unless the file was
compiled with the —g option. If the name is not found, both en-
tries are set to 0. See a.out(4) for a discussion of the symbol
table structure.

This function is useful for examining the system name list kept in
the file /unix. In this way programs can obtain system addresses
that are up to date.

RETURN VALUE
nlist returns —1 upon error; otherwise it returns 0.
All value entries are set to 0 if the file cannot be read or if it does
not contain a valid name list.

SEE ALSO
a.out(d).

February, 1990 1

Revision C

pap(3N) pap(3N)

NAME
paps_open, paps_get next_job, paps_status,
paps_close, pap_open, pap_read,
pap_read_ignore, pap_status, pap_write,
pap_close — AppleTalk Printer Access Protocol (PAP)
interface

SYNOPSIS
#include <at/appletalk.h>
#include <at/pap.h>
#include <at/nbp.h>
cc [flags] files -1at [libraries]

int paps_open{)

int paps_get next job (fd)
int fd;

int paps_status (fd, status)
int fd;
char *status;

int paps_close (fd)
int fd;

int pap_open (tuple)
at_nbptuple t *tuple;

int pap_read(fd, data, len)
int fd, len;
char *data;

int pap read ignore (fd)
int fd;

char *pap status (tuple)
at_nbptuple_t *tuple;

int pap_write(fd, data, len, eof, flush)
int fd, len;

int eof, flush;

char *data;

int pap close (fd)
int fd;

1 February, 1990

Revision C

pap(3N) pap(3N)

DESCRIPTION
The PAP interface provides applications with access to the Ap-
pleTalk Printer Access Protocol operations. The interface routines
can be divided into two sets: One set provides services for a PAP
client, the other for a PAP server. The routines for the PAP server
are

paps_open
pap_read
paps_get next_ job
paps_status
paps_close

The routines for the PAP client are:

pap_open
pap_read
pap_read_ignore
pap_status
pap_write
pap_close

The paps_open routine opens a PAP server AppleTalk file
descriptor for a PAP server. The caller may then use
nbp_register (see nbp(3N)) to register a network-visible en-
tity (NVE) on the socket and paps_status to post a status
string on it. The paps_open routine returns an AppleTalk file
descriptor on success, —1 on failure.

The paps_get_next_job routine is called by a server when it
is ready to respond to a new PAP client. It returns a PAP server
AppleTalk file descriptor that is set up for PAP reading from the
client that has been waiting the longest. The parameter is

fd A PAP server AppleTalk file descriptor from a previ-
ous paps_open.

Upon successful completion a PAP server AppleTalk file descrip-

tor is returned.

The paps_status routine changes the status string associat-
ed with an open PAP server AppleTalk file descriptor. This is the
string returned to a PAP client from a pap status call. The
parameters are

February, 1990 2

Revision C

pap(3N) pap(3N)

fd An open PAP server AppleTalk file descriptor re-
turned from a paps_open call.
status A pointer to a null-terminated character string con-

taining the status string being posted. Strings
longer than 255 characters are truncated.

Upon successful completion a value of 0 is returned.

The paps_close routine closes an open PAP server file descrip-
tor. The parameter is

fd The file descriptor to be closed.
It returns 0 upon successful completion.

The pap_open routine opens a PAP client file descriptor to a
server. It attempts to connect to the server whose name and ad-
dress are contained in the tuple parameter. The command
nbp_lookup (see nbp(3N)) may be used to obtain a valid name
and address for the desired PAP server.

Upon successful completion, this routine returns a PAP client file
descriptor connected to the server requested.

The pap_read routine reads data from a server PAP file descrip-
tor opened by a paps_open, followed by a
paps_get_next_job call. The parameters are

fd A PAP server file descriptor.

data A pointer to the buffer containing the data to be re-
turned. The maximum data length specified by the
length parameter is 512 bytes.

length The maximum length to be read.

Upon successful completion, the number of bytes read is returned.
A value of 0 is returned when an end-of-file is reached.

The pap_read_ignore routine issues a PAP read request and
ignores any returned data. This is used to allow LaserWriters to
function when they want to return status messages. The parameter
is

fd A PAP client file descriptor returned by an earlier
pap_open.

The pap_status routine locates a PAP server and returns a

pointer to its status string. The parameter is

3 February, 1990

Revision C

pap(3N) pap(3N)

tuple A pointer to a tuple structure containing the name and
address of a PAP server entity. The routine
nbp_lookup (See nbp(3N)) may be used to get a
valid tuple.

Upon successful completion, a pointer to the string containing the
PAP server’s status is returned. If the printer’s status cannot be
recovered, NULL is returned.

The pap_write routine sends the data passed to it to the other
end of a PAP server session. The parameters are

fd A PAP client AppleTalk file descriptor.

data A pointer to the data being written.

len The length of the data being written; this must not
exceed 512 bytes.

eof A Boolean flag indicating whethere EOF indication is to

be sent to the other end of the PAP session (after the
data has been sent) to indicate that no more data will be
sent. Setting eof to true also implies flush.

flush A Boolean flag indicating whether data for all waiting
PAP writes is to be sent to the remote end. Because
PAP runs on top of ATP, PAP writes are queued until
either a complete ATP response is available (about 4
KB) or an end-of-message is sent. This call sends an
ATP end-of-message, which causes all waiting PAP
writes to be sent to the other end. This should be done if
a higher level protocol (for example, a handshake with a
LaserWriter) needs to do a write followed by a read.

Upon successful completion, a value of 0 is returned.

The pap_close routine closes an open PAP client file descrip-
tor. The parameter is

fd The file descriptor to be closed.

It returns 0 upon successful completion. If the file descriptor is no
longer open, it returns —1.

ERRORS
All routines except pap_status return —1 on error with a de-
tailed error code in errno:

[EINVAL] An invalid argument was passed.

February, 1990 4

Revision C

pap(3N) pap(3N)

[ENETDOWN] The network interface is down.

[ESHUTDOWN] The PAP file descriptor has already been
closed.

[ETIMEDOUT] The connection is timed out.

See open(2), close(2), ioct1(2), read(2), and write(2) for

additional error codes; see also errors returned by the underlying

NBP, ATP, and DDP modules.

SEE ALSO
atp(3N), ddp(3N), nbp(3N), rtmp(3N), Inside AppleTaik.

5 February, 1990

Revision C

pathconf(3P) pathconf (3P)

NAME
pathconf, fpathconf — get configurable pathname
variables

SYNOPSIS
#include <unistd.h>

long pathconf (path, name)
char *path;
int name;

long fpathconf (fildes, name)
int fildes, name;

DESCRIPTION
pathconf and fpathconf£ provide a method for an application
to determine the current value of a configurable limit or option
that is associated with a file or directory.

For fpathconf, path points to a pathname of a file or directory.
For fpathconf, fildes is an open file descriptor. name is the
variable to be queried relative to the file or directory. The follow-
ing variables can be queried:

_PC_LINK_MAX
_PC_MAX_CANON
_PC_MAX_INPUT
_PC_NAME_MAX
_PC_PATH_MAX
_PC_PIPE_BUF
_PC_CHOWN_RESTRICTED
_PC_CHOWN_SUP_GRP
_PC_DIR DOTS
_PC_GROUP_PARENT
_PC_LINK DIR
_PC_NO_TRUNC
_PC_UTIME_OWNER
_PC_VDISABLE

RETURN VALUE
If the named variable is not defined on the system, or if name is
not a valid variable name, or if the variable cannot be associated
with the specified file or directory, or if the process does not have
permission to query the file specified by path, or if path does not
exist, pathconf returns —1.

February, 1990 1

Revision C

pathconf (3P)

pathconf(3P)

If the named variable is not defined on the system, or if name is
not a valid variable name, or if the variable cannot be associated
with the specified file or directory, fpathconf returns —1.

If none of the above are true, pathconf and fpathconf return
the current value associated with the variable for the file or direc-

tory.
ERRORS

pathconf and fpathconf will fail if one or more of the fol-

lowing are true:
[ENOTDIR]

[ENAMETOOLONG]

[ELOCP]

[ENOENT]
[EACCES]

[EFAULT]
[EINVAL]

A component of the path prefix is not a
directory.

A component of a pathname exceeded
NAME_MAX characters, or an entire path-
name exceeded PATH_MAX.

Too many symbolic links were encoun-
tered in translating a pathname.

The named file does not exist.

Search permission is denied for a com-
ponent of the path prefix.

path points to an invalid address.

The value of the name is invalid, or the
variable name is not associated with the
specified file.

fpathconf will also fail if the following condition occurs:

[EBADF]

SEE ALSO
sysconf(3P).

The open file descriptor, fildes, is not valid.

February, 1990

Revision C

perror(3C) perror(3C)

NAME

perror, errno, Sys_errlist, sys_nerr — system
CITOr MESsages

SYNOPSIS

void perror(s)
char *s;

extern int errno;
extern char *sys errlist[];

extern int sys_nerr;

DESCRIPTION

perror produces a message on the standard error output,
describing the last error encountered during a call to a system or
library function. The argument string s is printed first, then a
colon and a blank, then the message and a newline. To be of most
use, the argument string should include the name of the program
that incurred the error. The error number is taken from the exter-
nal variable errno, which is set when errors occur but not
cleared when nonerroneous calls are made.

To simplify variant formatting of messages, the array of message
strings sys_errlist is provided; errno can be used as an in-
dex in this table to get the message string without the newline.
sys_nerr is the largest message number provided for in the
table; it should be checked because new error codes may be added
to the system before they are added to the table.

SEE ALSO

intro(2).

February, 1990 1

Revision C

plot(3X) plot (3X)

NAME
plot — graphics interface subroutines
SYNOPSIS
int openpl ()
int erase()
int label (s)
char *gs;
int line(xl, yl, x2, y2)
int xI, yl, x2, y2;
int circle(x, y, r)
int x, y, r;
int arc(x, y, x0, y0, xI, yl)
int x, y, x0, y0, xI, yl;
int move(x, y)
int x, y;
int cont(x, y)
int x, y;
int point(x, y)
int x, y;
int linemod (s)
char *s;
int space (x0, y0, xI, yl)
int x0, Y0, x1, yl;
int closepl()
DESCRIPTION
These subroutines generate graphic output in a relatively device-
independent manner. space must be used before any of these
functions to declare the amount of space necessary; see plot(4).

openpl must be used before any of the others to open the device
for writing. closepl flushes the output.

circle draws a circle of radius r with center at the point (x,y).

arc draws an arc of a circle with center at the point (x,y) between
the points (x0,y0) and (x1,yI).

String arguments to 1abel and 1inemod are terminated by nulls
and do not contain newlines.

1 February, 1990

Revision C

plot(3X) plot(3X)

See plot.(4) for a description of the effect of the remaining func-

tions.
The library files listed below provide several variations of these
routines.
FILES
/usr/lib/libplot.a produces output for tplot(lG)

filters
/usr/1ib/1ib300.a for DASI 300
/usr/1ib/1ib300s.a for DASI 300s
/usr/lib/1ib450.a for DASI 450
/usr/1ib/1ib4014.a for Tektronix 4014
WARNINGS
To compile a program containing these functions in file.c, use

cc file.c -lplot

To execute it, use
a.out | tplo

The above routines use <stdio.h>. Therefore, the size of pro-
grams not otherwise using standard I/O is increased more than
might be expected.

SEE ALSO
tplot(1G), plot(4).

February, 1990 2

Revision C

popen(3S) popen(3S)

NAME
popen, pclose — initiate pipe to/from a process

SYNOPSIS
#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings;
one string contains a shell command line and the other contains an
I/0 mode. The mode may be either ‘“x’’ for reading or ‘‘w’’ for
writing. popen creates a pipe between the calling program and
the command to be executed. The value returned is a stream
pointer. If the I/O mode is w, one can write to the standard input
of the command by writing to the file stream; if the I/O mode is r,
one can read from the standard output of the command, by reading
from the file stream.

A stream opened by popen should be closed by pclose, which
waits for the associated process to terminate and returns the exit
status of the command.

Because open files are shared, a type ‘‘r’’ command may be used

[P E]

as an input filter and a type ‘‘w’’ as an output filter.

RETURN VALUE
popen returns a NULL pointer if files or processes cannot be
created.

pclose returns -1 if stream is not associated with a command
opened by popen.

SEE ALSO
pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

BUGS
If the original processes and processes opened by popen con-
currently read or write a common file, neither should use buffered
I/O, because the buffering gets all mixed up. Problems with an
output filter may be forestalled by careful buffer flushing, for ex-
ample, by using ££1ush (see £close(3S)).

1 February, 1990

Revision C

popen(3S) popen(3S)

If an illegal type is passed, popen will fork and exec the com-
mand line passed to it before it discovers that the type was illegal.
This will result in a NULL pointer being returned and a broken
pipe (with the command executing in the background).

February, 1990

Revision C

print£(3S) print£(3S)

NAME
printf, fprintf, sprintf — format and output string and
numeric data

SYNOPSIS

#include <stdio.h>

int printf (format{,argl...)
char *format;

int fprintf (stream, format[,argl...)
FILE *stream;
char *format;

int sprintf (s, format[,arg]...)
char *s, format;

DESCRIPTION
printf places output on the standard output stream stdout.
fprint£ places output on the named output stream. sprintf
places output, followed by the null character (\0) in consecutive
bytes starting at *s; it is the user’s responsibility to ensure that
enough storage is available.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string that
contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of
which results in fetching zero or more args. The results are
undefined if there are insufficient args for the format. If the for-
mat is exhausted while args remain, the excess args are simply ig-
nored.

Each conversion specification is introduced by the character %.
After the %, the following appear in sequence:

Zero or more flags, which modify the meaning of the conver-
sion specification.

An optional decimal digit string specifying a minimum field
width. If the converted value has fewer characters than the
field width, it will be padded to the field width on the left (de-
fault) or right (if the left-adjustment flag - has been given);
see below for flag specification. If the field width for an s
conversion is preceded by a 0, the string is right adjusted
with zero padding on the left.

1 February, 1990

RevisionC

print£(3S) print£(3S)

A precision that gives the minimum number of digits to ap-
pear for the d, o, u, x, or X conversions, the number of digits
to appear after the decimal point for the e and £ conversions,
the maximum number of significant digits for the g conver-
sion, or the maximum number of characters to be printed
from a string in the s conversion. The format of the preci-
sion is a period (.) followed by a decimal digit string; a null
digit string is treated as zero.

An optional 1 (ell) specifying that a following d, o, u, x, or
X conversion character applies to a long integer arg. An 1
before any other conversion character is ignored.

A character that indicates the type of conversion to be ap-
plied.

A field width or precision may be indicated by an asterisk (*) in-
stead of a digit string. In this case, an integer arg supplies the
field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen; therefore, the args
specifying field width or precision must appear before the arg (if
any) to be converted.

The flag characters and their meanings are:

The result of the conversion will be left-justified
within the field.

The result of a signed conversion will always begin
with a sign (+ or —).

blank If the first character of a signed conversion is not a

sign, a blank will be prefixed to the result. This im-
plies that if the blank and + flags both appear, the
blank flag will be ignored.

This flag specifies that the value is to be converted to
an ‘‘alternate form.”” For c, d, s, and u conversions,
the flag has no effect. For o conversion, it increases
the precision to force the first digit of the result to be
a zero. For x (X) conversion, a non-zero result will
have 0x (0X) prefixed to it. For e, E, £, g, and G
conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a
decimal point appears in the result of these conver-
sions only if a digit follows it). For g and G conver-

February, 1990 2

Revision C

print£(3S) print£(3S)

sions, trailing zeroes will not be removed from the
result (which they normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, un-
signed octal, decimal, or hexadecimal notation (x and
X), respectively; the letters abcdef are used for x
conversion and the letters ABCDEF for X conversion.
The precision specifies the minimum number of digits
to appear; if the value being converted can be
represented in fewer digits, it will be expanded with
leading zeroes. (For compatibility with older ver-
sions, padding with leading zeroes may alternatively
be specified by prefixing a zero to the field width.)
This does not imply an octal value for the field width.
The default precision is 1. The result of converting a
zero value with a precision of zero is a null string.

£ The float or double arg is converted to decimal nota-
tion in the style [-]ddd . ddd, where the number of di-
gits after the decimal point is equal to the precision
specification. If the precision is missing, 6 digits are
output; if the precision is explicitly 0, no decimal
point appears.

e,E The float or double arg is converted in the style [-
1d.dddetdd, where there is one digit before the de-
cimal point and the number of digits after it is equal
to the precision; when the precision is missing, 6 di-
gits are produced; if the precision is zero, no decimal
point appears. The E format code produces a number
with E instead of e introducing the exponent. The ex-
ponent always contains at least two digits.

g,G The float or double arg is printed in style £ or e (or in
style E in the case of a G format code), with the preci-
sion specifying the number of significant digits. The
style used depends on the value converted: style e is
used only if the exponent resulting from the conver-
sion is less than —4 or greater than the precision.
Trailing zeroes are removed from the result; a de-
cimal point appears only if it is followed by a digit.

c The character arg is printed.

3 February, 1990

Revision C

print£(3S) print£(3S)

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null char-
acter (\0) is encountered or the number of characters
indicated by the precision specification is reached. If
the precision is missing, it is taken to be infinite, so all
characters up to the first null character are printed. A
NULL value for arg yiclds undefined results.

% Print a %; no argument is converted.

In no case does a non-existent or small field width cause trunca-
tion of a field; if the result of a conversion is wider than the field
width, the field is simply expanded to contain the conversion
result. Characters generated by printf and fprintf are print-
ed as if putc(3S) had been called.

RETURN VALUE
Each function returns the number of characters transmitted (not
including the \ 0 in the case of sprint£), or a negative value if
an output error was encountered.

EXAMPLES
To print a date and time in the form ‘‘Sunday, July 3, 10:02"’,
where wkday and mnth are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d", wkday, mnth, day, hr, min);
To print pi to 5 decimal places:
printf ("pi=%.5f", 4*atan(1.0));

SEE ALSO
ecvt(3C), intro(3), putc(3S), scanf(3S).

February, 1990 4

Revision C

putc(3S) putc(3S)

NAME
putc, putchar, fputc, putw — put character or word on a
stream

SYNOPSIS
#include <stdio.h>

int putc(c, stream)
int c;
FILE *stream;

int putchar(c)
int c;

int fputc(c, stream)
int ¢;
FILE *stream;

int putw(w, stream)
int w;
FILE *stream;

DESCRIPTION
The putc macro writes the character ¢ onto the output stream at
the position where the file pointer, if defined, is pointing. The
putchar macro is defined as putc (¢, stdout) .

fputc behaves like putc, but is a function rather than a macro.
fputc runs more slowly than putc, but it takes less space per
invocation and its name can be passed as an argument to a func-
tion.

putw writes the word (32-bit integer on the Macintosh II) w to the
output stream at the position at which the file pointer, if defined, is
pointing. putw neither assumes nor causes special alignment in
the file.

Output streams, with the exception of the standard error stream
stderr, are by default buffered if the output refers to a file and
line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of
freopen (see fopen(3S)) causes it to become buffered or line-
buffered. When an output stream is unbuffered information, it is
queued for writing on the destination file or terminal as soon as
written; when it is buffered, many characters are saved up and
written as a block; when it is line-buffered, each line of output is
queued for writing on the destination terminal as soon as the line
is completed (i.e., as soon as a newline character is written or ter-

1 February, 1990

Revision C

putc(3S) putc(3S)

minal input is requested). setbuf(3S) may be used to change
the stream’s buffering strategy.

RETURN VALUE
On success, these functions each return the value they have writ-
ten. On failure, they return the constant EOF. This occurs if the
file stream is not open for writing or if the output file cannot be
grown. Because EOF is a valid integer, ferror(3S) should be
used to detect putw errors.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3s),
getc(3S), print£(3S), puts(3S), setbuf(3S).

BUGS
Because it is implemented as a macro, putc treats incorrectly a
stream argument with side effects. In particular, putc(c,
*f++) ; doesn’t work sensibly. £putc should be used instead.
Because of possible differences in word length and byte ordering,
files written using putw are machine-dependent and may not be
read using getw on a different processor.

February, 1990 2

Revision C

putenv(3C) putenv(3C)

NAME
putenv — change or add value to environment

SYNOPSIS
int putenv (string)
char *string;

DESCRIPTION
string points to a string of the form ‘‘name=value’’. putenv
makes the value of the environment variable name equal to value
by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environ-
ment, so altering the string will change the environment. The
space used by string is no longer used once a new string-defining
name is passed to putenv.

RETURN VALUE
putenv returns nonzero if it was unable to obtain enough space
via malloc for an expanded environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(s).

WARNINGS
putenv manipulates the environment pointed to by environ,
and can be used in conjunction with getenv. However, envp
(the third argument to main) is not changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alpha-
betical order.
A potential error is to call putenv with an automatic variable as
the argument, then exit the calling function while string is still part
of the environment.

1 February, 1990

RevisionC

putpwent (3C) putpwent (3C)

NAME
putpwent — write password file entry

SYNOPSIS
#include <pwd.h>

int putpwent {p, f)
struct passwd *p;
FILE *f;

DESCRIPTION
putpwent is the inverse of getpwent (3C). Given a pointer to
a passwd structure created by getpwent (or getpwuid or
getpwnam), putpwuid writes a line on the stream f which
matches the format of /etc/passwd.

The <pwd.h> header file is described in getpwent(3C).

RETURN VALUE
putpwent returns nonzero if an error was detected during its
operation; otherwise it returns zero.

SEE ALSO
getpwent(3C).

WARNINGS
The above routine uses <stdio.h>. Therefore, the size of pro-
grams not otherwise using standard I/O is increased more than
might be expected.

February, 1990 1

Revision C

puts(3S) puts(3S)

NAME
puts, fputs — puta string on a stream

SYNOPSIS
#include <stdio.h>
int puts(s)
char *s;
int fputs (s, stream)
char *s;
FILE *stream;
DESCRIPTION
puts writes the null-terminated string referenced by s, followed
by a newline character, to the standard output stream stdout.

fputs writes the null-terminated string pointed to by s to the
named output stream.

Neither function writes the terminating null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), print£(3S),
putc(3S).

RETURN VALUE
On success, both routines return the number of characters written.

Both functions return EOF on error. This occurs if the routines try
to write on a file that has not been opened for writing.

NOTES
puts appends a newline character while fputs does not.

1 February, 1990

Revision C

gsort(3C) gsort(3C)

NAME
gsort — quicker sort

SYNOPSIS
void gsort (base, nel, width, compar)
char *base;
unsigned nel, width;
int (*compar) () ;

DESCRIPTION
gsort is an implementation of the quicker-sort algorithm. It
sorts a table of data in place.

base points to the element at the base of the table. nel is the
number of elements in the table. width is the width of an element
in bytes. compar is the name of the comparison function, which is
called with two arguments that point to the elements being com-
pared. The function must return an integer less than, equal to, or
greater than zero according as the first argument is to be con-
sidered less than, equal to, or greater than the second.

NOTES
The pointer to the base of the table should be of type pointer-to-
element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbi-
trary data may be contained in the elements in addition to the
values being compared. The order in the output of the two items
which compare as equal is unpredictable.

EXAMPLES
struct entry {
char *name;
int flags;

}:
main ()

struct entry hp[100];
int entemp();
int i, count;

for (i = 0; i < (count = 100); i++) {
/* fill the structure with the name
and flags */

}
gsort ((char *) hp, count, sizeof (hp[0]), entcmp);

February, 1990 1

Revision C

gsort(3C) gsort(3C)

entcmp (ep, ep2)
struct entry *ep, *ep2;

{

return (strcmp(ep->name, ep2->name));

}

will sort a set of names with associated flags in ASCII order.
SEE ALSO

sort(l), bsearch(3C), 1search(3C), st ring(3C).

February, 1990

Revision C

rand(3C) rand(3C)

NAME
rand, srand — simple random-number generator

SYNOPSIS
int rand()

void srand (seed)
unsigned seed;

DESCRIPTION
rand uses a multiplicative congruential random-number genera-
tor with period 2 power of 32 that returns successive pseudo-
random numbers in the range from 0 to 32767.

srand can be called at any time to reset the random-number gen-
erator to a random starting point. The generator is initially seeded
with a value of 1.

NOTES
The spectral properties of rand leave a great deal to be desired.
drand48(3C) provides a much better, though more elaborate,
random-number generator.

SEE ALSO
drand48(3C).

February, 1990 1

Revision C

rand(3F) rand(3F)

NAME
irand, srand, rand — Fortran uniform random-number
generator

SYNOPSIS
call srand (iseed)
i=irand()
x=rand ()
DESCRIPTION
irand generates successive pseudo-random numbers in the range
from 0 to 2**15-1. rand generates pseudo-random numbers dis-

tributed in (0, 1.0). srand uses its integer argument to reinitial-
ize the seed for successive invocations of i rand and rand.

SEE ALSO
rand(3C).

1 February, 1990

Revision C

rcmd(3N) remd(3N)

NAME
rcmd, rresvport, ruserok — routines for returning a
stream to a remote command

SYNOPSIS

int rcmd (ahost, inport, locuser, remuser, cmd, fd2p)
char **aghost;

u_short inport;

char *locuser, *remuser, *cmd;

int *fd2p;

int rresvport (port)
int *port;

int ruserok (rhost, superuser, user, user)
char *rhost;

int superuser;

char *ruser, *luser;

DESCRIPTION

rcmd is a routine used by the superuser to execute a command on
a remote machine using an authentication scheme based on
reserved port numbers. rresvport is a routine which returns a
descriptor to a socket with an address in the privileged port space.
ruserok is a routine used by servers to authenticate clients re-
questing service with remd. All three functions are present in the
same file and are used by the remshd(1M) server, as well as oth-
ers.

rcmd looks up the host *ahost, returning —1 if the host does not
exist. Otherwise *ahost is set to the standard name of the host and
a connection is established to a server residing at the well-known
Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned
to the caller, and given to the remote command as stdin and
stdout. If fd2p is nonzero, then an auxiliary channel to a con-
trol process will be set up, and a descriptor for it will be placed in
*fd2p. The control process will return the stderr (descriptor 2
of the remote(1M) command) on this channel and will accept
bytes on this channel as A/UX signal numbers to be forwarded to
the process group of the command. If fd2p is 0, then the stderr
(descriptor 2 of the remote(1M) command) will be made the
same as stdout; no provision will be made for sending arbitrary
signals to the remote process, although you may be able to get its
attention by using out-of-band data.

February, 1990 1

Revision C

rcmd (3N) rcmd (3N)

The protocol is described in detail in remshd(1M).

The rresvport routine is used to obtain a socket with a
privileged address bound to it. This socket is suitable for use by
rcmd and several other routines. Privileged addresses consist of a
port in the range 0 to 1023. Only the superuser is allowed to bind
an address of this sort to a socket.

ruserok takes a remote host’s name, two user names, and a flag
indicating if the local user’s name is the superuser. It then checks
the files /etc/hosts.equiv and, possibly, . rhosts in the
current working directory (normally the local user’s home directo-
ry) to see if the request for service is allowed. A O is returned if
the machine name is listed in the hosts. equiv file or the host
and remote user name are found in the . rhosts file; otherwise
ruserok returns —1. If the superuser flag is 1, the checking of
the host . equiv file is bypassed.

SEE ALSO
remsh(IN), rlogin(IN), remshd(1M), rexecd(IM),
rlogind(1M), rexec(3N).

BUGS

There is no way to specify options to the socket call which
rcmd makes.

2 ' February, 1990

Revision C

regemp(3X) regcemp(3X)

NAME
regcmp, regex — compile and execute a regular expression

SYNOPSIS
char *regcmp (stringl [, string2, ...], (char *)0))
char *stringl, *string2, ...;

char *regex (re, subject[, ret0, ...])
char *re, *subject, *ret0, ...;

extern char *locl;

DESCRIPTION
regcmp compiles a regular expression and returns a pointer to
the compiled form. malloc(3C) is used to create space for the
vector. It is the user’s responsibility to free unneeded space that
has been allocated by malloc. A NULL return from regcmp
indicates an incorrect argument. regcmp(1) has been written to
generally preclude the need for this routine at execution time.

regex executes a compiled pattern against the subject string.
Additional arguments are passed to receive values back. regex
returns NULL on failure or a pointer to the next unmatched char-
acter on success. A global character pointer locl points to
where the match began. regemp and regex were mostly bor-
rowed from the editor, ed(1); however, the syntax and semantics
have been changed slightly. The following are the valid symbols
and their associated meanings.

[1*.~ These symbols retain their current meaning,.

$ This symbol matches the end of the string; \n
matches the newline,

- Within brackets the minus means *‘through.”” For
example, [a—z] is equivalent to [abcd . . .xyz].
The - can appear as itself only if used as the last or
first character. For example, the character class ex-
pression []1-1 matches the characters] and -.

+ A regular expression followed by + means ‘‘one or
more times.”” For example, [0-9] + is equivalent to
[0-9] [0-9]*.

{m} {m,} {mu} Integer values enclosed in {} indicate the
number of times the preceding regular expression is
to be applied. The minimum number is m and the
maximum number is ¥, which must be less than 256.

February, 1990 1

Revision C

regcmp(3X) regcmp(3X)

If only m is present (e.g., {m}), it indicates the ex-
act number of times the regular expression is to be
applied. {m,} is analogous to {m,infinity}.
The plus (+) and star (*) operations are equivalent to
{1,}and {0, },respectively.
(...)%n

The value of the enclosed regular expression is to be
returned. The value will be stored in the (n+1)th ar-
gument following the subject argument. At present,
at most 10 enclosed regular expressions are allowed.
regex makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator (e.g.,
*, +, { })can work on a single character or a regu-
lar expression enclosed in parentheses. For example,
(a*(cb+)*)$0.

By necessity, all the above defined symbols are special. They
must, therefore, be escaped to be used as themselves.

EXAMPLES
Example 1:

char *cursor, *newcursor, *ptr;

newcursor = regex ((ptr = regcmp ("“\n", 0)), cursor);
free (ptr) ;

This example will match a leading newline in the subject string
pointed at by cursor.

Example 2:

char ret0[9];
char *newcursor, *name;

name = regcmp (" ([A-Za-z] [A-za-2z0-9_]{0,7})$0", 0);
newcursor = regex (name, "123Testing321", retO);

This example will match through the string ““Testing3’’ and
will return the address of the character after the last matched char-
acter (cursor+11). The string ““Testing3’’ will be copied to the
character array ret0.

2 February, 1990

Revision C

regcmp(3X) regemp(3X)

Example 3:

#include "file.i"
char *string, *newcursor;

newcursor = regex (name, string) ;

This example applies a precompiled regular expression in
file. i (see regcmp(l)) against string.
This routine is kept in /1ib/1ibPW.a.

SEE ALSO
ed(1), regcmp(1), malloc(3C).

BUGS
The user program may run out of memory if regcmp is called
iteratively without freeing the vectors no longer required. The fol-
lowing user-supplied replacement for malloc(3C) reuses the
same vector, saving time and space:

/* user’s program */

char *
malloc(n)
unsigned n;
{
static char rebuf([512];
return (n <= sizeof rebuf) ? rebuf : NULL;

February, 1990 3

Revision C

. resolver(3N) resolver(3N)

NAME
res_mkquery, res_send, res_init, dn_comp,
dn_expand — resolver routines

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

res_mkquery (op, dname, class, type, data, datalen,
newrr, buf, buflen)

int op;

char *dname;

int class, type;

char *data;

int datalen;

struct rrec *newrr;

char *buf;

int buflen;

res_send(msg, msglen, answer, anslen)
char *msg;

int msglen;

char *answer;

int anslen;

res_init ()

dn_comp (exp_dn, comp_dn, length, dnptrs, lastdnptr)
char *exp dn, *comp_dn;

int length;

char *x*dnptrs, **lastdnptr;

dn_expand (msg, eomorig, comp_dn, exp _dn, length)
char *msg, *eomorig, *comp_dn, exp_dn;
int length;

DESCRIPTION
These routines are used for making, sending, and interpreting
packets to Internet domain name servers. Global information that
is used by the resolver routines is kept in the variable _res.
Most of the values have reasonable defaults and can be ignored.
Options stored in _res . options are defined in resolv.h and
are as follows. Options are a simple bit mask.

1 February, 1990

Revision C

resolver(3N) resolver(3N)

RES_INIT
True if the initial name server address and default domain
name are initialized (for example, res init has been
called).

RES_DEBUG
Print debugging messages.

RES_AAONLY
Accept authoritative answers only. res_send will continue
until it finds an authoritative answer or finds an error.
Currently this is not implemented.

RES_USEVC
Use TCP connections for queries instead of UDP.

RES_STAYOPEN
Used with RES_USEVC to keep the TCP connection open
between queries. This is useful only in programs that regu-
larly do many queries. UDP should be the normal mode
used.

RES_IGNTC
Unused currently (ignore truncation errors—don’t retry with
TCP).

RES_RECURSE
Set the recursion desired bit in queries. This is the default.
(res_send does not do iterative queries and expects the
name server to handle recursion.)

RES_DEFNAMES
Append the default domain name to single label queries. This
is the default.
res_init
reads the initialization file to get the default domain name and the
Internet address of the initial hosts running the name server, If
this line does not exist, the host running the resolver is tried.
res_mkquery makes a standard query message and places it in
buf. res_mkquery will return the size of the query or —1 if the
query is larger than buflen. op is usually QUERY but can be any
of the query types defined in nameser.h. dname is the domain
name. If dname consists of a single label and the
RES_DEFNAMES flag is enabled (the default), dname will be ap-
pended with the current domain name. The current domain name
is defined in a system file and can be overridden by the environ-

February, 1990 2

Revision C

resolver(3N) resolver(3N)

ment variable LOCALDOMAIN. newrr is currently unused but is
intended for making update messages.

res_send sends a query to name servers and returns an answer.
It will call res_init if RES_INIT is not set, send the query to
the local name server, and handle timeouts and retries. The length
of the message is returned or -1 if there were errors.

dn_expand expands the compressed domain name comp_dn to
a full domain name. Expanded names are converted to uppercase.
msg is a pointer to the beginning of the message, exp dn is a
pointer to a buffer of size length for the result. The size of
compressed name is returned or —1 if there was an error.

dn_comp compresses the domain name exp dn and stores it in
comp_dn. The size of the compressed name is returned or —1 if
there were errors. length is the size of the array pointed to by
comp_dn. dnptrs is a list of pointers to previously compressed
names in the current message. The first pointer points to to the be-
ginning of the message and the list ends with NULL. lastdnptr is
a pointer to the end of the array pointed to dnptrs. A side effect is
to update the list of pointers for labels inserted into the message
by dn_comp as the name is compressed. If dnptr is NULL, we
don’t try to compress names. If lastdnptr is NULL, we don’t up-
date the list.

FILES
/etc/resolv.conf

SEE ALSO
named(1M), resolver(4).

3 February, 1990

Revision C

rexec(3N) rexec(3N)

NAME
rexec — return stream to a remote command

SYNOPSIS
int rexec (ahost, inport, user, passwd, cmd, fd2p) ;
char **ghost;
u_short inport;
char *user, *passwd, *cmd;
int *fd2p;

DESCRIPTION
rexec looks up the host referenced by *ahost using
gethostbyname(3N), returning —1 if the host does not exist.
Otherwise *ahost is set to the standard name of the host. If a
username and password are both specified, then these are used to
authenticate to the foreign host; otherwise the environment and
then the user’s . net rc file in his home directory are searched for
appropriate information. If all this fails, the user is prompted for
the information.

The port inport specifies which well-known DARPA Internet port
to use for the connection; it will normally be the value returned
from the call

getservbyname ("exec", "tcp™)

(see getservent(3N)). The protocol for connection is
described in detail in rexecd(1M).

If the call succeeds, a socket of type SOCK_STREAM is returned
to the caller, and given to the remote command as stdin and
stdout. If fd2p is nonzero, then a auxiliary channel to a control
process will be setup and a descriptor for it will be placed in
*fd2p. The control process will return diagnostic output from the
command (unit 2) on this channel, and will also accept bytes on
this channel as being A/UX signal numbers, to be forwarded to the
process group of the command. If fd2p is O, then the stderr
(unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to
the remote process, although you may be able to get its attention
by using out-of-band data.

SEE ALSO
rcmd(3N), rexecd(IM).

February, 1990 1
Revision C

rexec(3N) rexec(3N)

BUGS
There is no way to specify options to the socket call which
rexec makes.

2 February, 1990

RevisionC

rnusers(3N) rnusers(3N)

NAME
rnusers, rusers — retumn information about users on remote
machines

SYNOPSIS
#include <rpcsvc/rusers.h>

rnusers (host)
char *host;

rusers (host, up)
char *host;
struct utmpidlearr *up;

DESCRIPTION
rnusers returns the number of users logged on to host (or -1 if
it cannot determine that number). rusers fills the structure
utmpidlearr with data about host, and returns O if successful.
The relevant structures are

struct utmparr { /* RUSERSVERS_ORIG */
struct utmp **uta arr;
int uta_cnt

}:

struct utmpidle {
struct utmp ui_utmp;
unsigned ui_idle;

}:

struct utmpidlearr { /* RUSERSVERS_IDLE */
struct utmpidle **uia_arr;
int uia_cnt

}:

RPC INFO
Program number: RUSERSPROG

xdr routines:

int xdr_utmp (xdrs, up)
XDR *xdrs;
struct utmp *up;
int xdr utmpidle (xdrs, ui);
XDR *xdrs;
struct utmpidle *ui;
int xdr_utmpptr (xdrs, up);
XDR *xdrs;
struct utmp **up;

February, 1990 1

Revision C

rnusers(3N) rnusers(3N)

int xdr_utmpidleptr (xdrs, up);
XDR *xdrs;
struct utmpidle **up;

int xdr_utmparr (xdrs, up);
XDR *xdrs;
struct utmparr *up;

int xdr_utmpidlearr (xdrs, up);
XDR *xdrs;
struct utmpidlearr *up;

Procs:

RUSERSPROC_NUM
No arguments; returns number of users as an unsigned
long.

RUSERSPROC_NAMES
No arguments; returns utmparr or utmpidlearr,
depending on version number.

RUSERSPROC_ALLNAMES
No arguments; returns utmparr or utmpidlearr,
depending on version number. Returns listing even for utmp
entries satisfying nonuser () inutmp.h.

Versions:

RUSERSVERS_ORIG, RUSERSVERS_IDLE

SEE ALSO
rusers(l), rusersd(IM).

2 February, 1990

Revision C

round(3F) round(3F)

NAME
anint, dnint, nint, idnint — Fortran nearest integer
functions

SYNOPSIS
integer i
real rl, 2
double precision dpl, dp2

r2=anint (rl)
i=nint (rl)

dp2=anint (dpl)
dp2=dnint (dpl)

i=nint (dpl)
i=idnint (dpl)

DESCRIPTION
anint returns the nearest whole real number to its real argument
(ie., int(a+0.5) if a > 0, int(a—-0.5) otherwise).
dnint does the same for its double-precision argument. nint
returns the nearest integer to its real argument. idnint is the
double-precision version. anint is the generic form of anint
and dnint, performing the same operation and returning the data
type of its argument. nint is also the generic form of idnint.

February, 1990 1

Revision C

rpc(3N)

NAME

rpc(3N)

rpc — library routines for remote procedure calls

DESCRIPTION

These routines allow C programs to make procedure calls on other
machines across the network. First, the client calls a procedure to
send a data packet to the server. Upon receipt of the packet, the
server calls a dispatch routine to perform the requested service,
and then sends back a reply. Finally, the procedure call returns to

the client.

FUNCTIONS

auth_destroy ()
authnone _create()

authunix create()

authunix create_default ()

callrpc()

clnt_broadcast ()
clnt_call()

clnt_destroy()
clnt_freeres()

clnt_geterr()

clnt_pcreateerror ()

destroy authentication in-
formation handle

return RPC authentication
handle with no checking

return RPC authentication
handle with A/UX permis-
sions

return default A/UX au-
thentication handle

call remote procedure,
given
[prognum.versnum procnum]

broadcast remote procedure
call everywhere

call remote procedure asso-
ciated with client handle

destroy client’s RPC handle

free data allocated by
RPC/XDR system when
decoding results

copy error information
from client handle to error
structure

print message to stderr
about why client handle
creation failed

February, 1990

RevisionC

rpc(3N)

clnt_perrno()

clnt_perror()
clnt_sperrno ()
clnt_sperror ()
clntraw_create()
clnttcp_create()
clntudp_create ()
get_myaddress ()
pmap_getmaps ()

pmap_getport ()

pmap_rmtcall ()

pmap_set ()

pmap_unset ()

registerrpc ()

rpc_createerr

February, 1990

Revision C

rpc(3N)

print message to stderr
corresponing to condition
given

print message to stderr
about why RPC call failed

print message to a string
corresponding to condition
given

print message to a string

create toy RPC client for
simulation

create RPC client using
TCP transport

create RPC client using
UDP transport

get the machine’s IP ad-
dress

return list of RPC
program-to-port mappings
return port number on
which waits supporting ser-
vice

instructs portmapper to
make an RPC call

establish mapping between
[prognum,versnum,procnum}
and port

destroy mapping between
[prognum.versnum procnum]
and port

register procedure with
RPC service package

global variable indicating

reason why client creation
failed

rpc(3N)

svc_destroy ()
svc_£fds

svc_freeargs()

svc_getargs ()
svc_getcaller()
svc_getreq()

svc_register()

svc_run()

svc_sendreply ()

svc_unregister ()

svcerr_auth()

svcerr_ decode ()

svcerr_noproc()

svcerr_noprog ()

svcerr_progvers ()

rpc(3N)

destroy RPC service tran-
sport handle

global variable with RPC
service file descriptor mask

free data allocated by
RPC/XDR system when
decoding arguments

decodes the arguments of
an RPC request

get the network address of
the caller of a procedure

returns when all associated
sockets have been serviced

associates prognum and
versnum with service
dispatch procedure

wait for RPC requests to
arrive and call appropriate
service

send back results of a re-

mote procedure call

remove mapping of
[prognum,versnum] to
dispatch routines

called when refusing ser-
vice because of authentica-
tion error

called when service cannot
decode its parameters

called when service hasn’t
implemented the desired
procedure

called when program is not
registered with RPC pack-
age

called when version is not
registered with RPC pack-

February, 1990

Revision C

rpc(3N)

svcerr_systemerr ()

svcerr_weakauth ()

svcraw_create ()
svctcp_create ()
svcudp_create ()
xdr_accepted_reply ()
xdr_authunix parms ()

xdr_callhdr()

xdr_callmsg()

xdr opaque_auth ()

xdr pmap ()

xdr_pmaplist ()

xdr_rejected reply()

xdr_replymsg ()

xprt_register|()

February, 1990

Revision C

rpc(3N)

age

called when service detects
system error

called when refusing ser-
vice because of insufficient
authentication

creates a toy RPC service
transport for testing

creates an RPC service
based on TCP transport

creates an RPC service
based on UDP transport

gencrates RPC-style replies
without using RPC package

generates A/UX credentials
without using RPC package
generates RPC-style
headers without using RPC
package

generates RPC-style mes-
sages without using RPC
package

describecs RPC messages,
externally

describes parameters for
portmap procedures, exter-
nally

describes a list of port map-
pings, externally

generates RPC-style rejec-
tions without using RPC
package

generates RPC-style replies
without using RPC package
registers RPC service tran-
sport with RPC package

rpc(3N) rpc(3N)

xprt_unregister() unregisters RPC service
transport from RPC pack-
age
SEE ALSO

A/UX Network Applications Programming.

5 February, 1990

Revision C

rtmp(3N) rtmp(3N)

NAME
rtmp netinfo — identify AppleTalk node and bridge
addresses
SYNOPSIS
#include <at/appletalk.h>
cc [flags] files ~1at [libraries]

int rtmp_netinfo (fd, addr, bridge)

int fd;
at_inet_t *addr, *bridge;
DESCRIPTION
This routine allows the caller to determine node addresses. It
uses the structure at_inet_t defined in

<at/appletalk.h>:

typedef struct at_inet {

at_net net;
at_node node;
at_socket socket;

} at_inet_t;

The at_inet_t structure specifies AppleTalk socket internet
address. The parameters are

fd An AppleTalk socket descriptor. If this parameter is
-1, it is ignored; otherwise, upon return, the socket
field in addr contains the socket number correspond-
ing to fd.

addr Pointer to an at_inet_t structure. If this pointer is
non-NULL, the AppleTalk network and node ad-
dresses are returned in the structure to which it points.
If fd is not —1, the socket field of this structure is
filled, otherwise it is zero. This parameter is ignored
if it is NULL.,

bridge Pointer to an at_inet_t structure. If this pointer is
non-NULL, the AppleTalk network and addresses of
a bridge known to DDP are returned in the structure
to which it points. This parameter is ignored if it is
NULL. The socket field is meaningless and always
contains zero on return,

February, 1990 1

Revision C

rtmp(3N) rtmp(3N)

Either addr or bridge must be non-NULL. rtmp netinfo re-
turns an error if both are NULL.

The function returns zero if successful; otherwise, —1 is returned
with a detailed error code inerrno.

DIAGNOSTICS
rtmp_netinfo retumns —1 on error with a detailed error code in
errno:
[EINVAL] Both addr and bridge are NULL

See also the errors returned by the underlying DDP module.

SEE ALSO
ddp(3N), Inside AppleTalk; ‘*AppleTalk Programming Guide,’’
in A/UX Network Applications Programming.

2 February, 1990

RevisionC

rwall(3N) rwall(3N)

NAME
rwall — write to specified remote machines

SYNOPSIS
#include <rpcsvc/rwall.h>
rwall (host, msg) ;
char *host, *msg;

DESCRIPTION
rwall causes host to print the string msg to all its users. It re-
turns O if successful.

RPC INFO
Program number: WALLPROG

Procs:

WALLPROC_WALL
Takes string as argument (wrapstring); returns no arguments.
Executes wall on remote host with string.

Versions: RSTATVERS_ORIG

SEE ALSO
rwall(lM), shutdown(8), rwalld(1M).

February, 1990 1
Revision C

scandir(3) scandir(3)

NAME
scandir — scan a directory

SYNOPSIS
#include <sys/types.h>
#include <sys/dir.h>

scandir (dirname, namelist, select, compar)
char *dirname;

struct direct * (*namelist[]);

int (*select) () ;

int (*compar) () ;

alphasort (dl, d2)
struct direct **dl, **d2;

DESCRIPTION
scandir reads the directory dirname and builds an array of
pointers to directory entries using malloc(3). It returns the
number of entries in the array and a pointer to the array through
namelist,

The select parameter is a pointer to a user supplied subroutine
which is called by scandir to select which entries are to be in-
cluded in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory
entry is to be included in the array. If select is null, then all the
directory entries will be included.

The compar parameter is a pointer to a user supplied subroutine
which is passed to gsort(3) to sort the completed array. If this
pointer is null, the array is not sorted. alphasort is a routine
which can be used for the compar parameter to sort the array al-
phabetically.
The memory allocated for the array can be deallocated with free
(see malloc(3)) by freeing each pointer in the array and the ar-
ray itself.

RETURN VALUE
Returns -1 if the directory cannot be opened for reading or if can-
not allocate enough memory to hold all the data structures.

SEE ALSO

directory(3),malloc(3C), malloc(3X), gsort(3C),
dir(4).

1 February, 1990

Revision C

scanf(3S) scanf(3S)

NAME
scanf, fscanf, sscanf — convert formatted input

SYNOPSIS
#include <stdio.h>

int scanf (format[, pointer]...)
char *format;

int fscanf (stream, format [, pointer]...)
FILE *stream;
char *format;

int sscanf (s, format [, pointer]...)
char *s, *format;

DESCRIPTION

scanf reads from the standard input stream stdin. fscanf
reads from the named input stream. sscanf reads from the char-
acter string at *xs. Each function reads characters, interprets them
according to format, and stores the results in the location specified
by the pointer arguments. Each function expects as arguments: a
control string format (described below) and a set of pointer argu-
ments indicating where the converted input should be stored.

The control string usually contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain;

1. White-space characters (blanks and tabs) which, except in two
cases described below, cause input to be read up to the next
nonwhite-space character.

2. An ordinary character (not %), which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an op-
tional assignment suppression character *, an optional numeri-
cal maximum field width, an optional letter 1 or h indicating
the size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input
field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression has been
indicated by *. The suppression of assignment provides a way of
describing an input field which is to be skipped. An input field is
defined as a string of nonwhite-space characters; it extends to the
next inappropriate character or until the field width, if specified, is
exhausted. For all descriptors except ‘[’ and “‘c’’, white space

February, 1990 1

Revision C

scanf(3S) scanf(3S)

leading an input field is ignored.

The conversion code indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted
type. For a suppressed field, no pointer argument should be given.
The following conversion codes are legal:

%

d

e,fg

A single % is expected in the input at this point; no assign-
ment is done.

A decimal integer is expected; the corresponding argument
should be an integer pointer.

An unsigned decimal integer is expected; the correspond-
ing argument should be an unsigned integer pointer.

An octal integer is expected; the corresponding argument
should be an integer pointer.

A hexadecimal integer is expected; the corresponding argu-
ment should be an integer pointer.

A floating point number is expected; the next field is con-
verted accordingly and stored through the corresponding
argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed
string of digits, possibly containing a decimal point, fol-
lowed by an optional exponent field consisting of an E or
an e, followed by an optional +, —, or space followed by an
integer.

A character string is expected; the corresponding argument
should be a character pointer to an array of characters large
enough to accept the string and a terminating \ 0, which
will be added automatically. The input field is terminated
by a white-space character.

A character is expected; the corresponding argument
should be a character pointer. The normal skip over white
space is suppressed in this case; to read the next nonspace
character, use %1s. If a field width is given, the
corresponding argument should refer to a character array;
the indicated number of characters is read.

String data and the normal skip over leading white space is
suppressed. The left bracket is followed by a set of charac-
ters (the scanset) and a right bracket; the input field is the
maximal sequence of input characters consisting entirely of

February, 1990

Revision C

scanf(3S) scanf(3S)

characters in the scanset. The caret, (), when it appears as
the first character in the scanset, serves as a complement
operator and redefines the scanset as the set of all charac-
ters not contained in the remainder of the scanset string.
There are some conventions used in the construction of the
scanset. A range of characters may be represented by the
construct first-last; thus, [0123456789] may be ex-
pressed [0-9]. Using this convention, first must be lexi-
cally less than or equal to last, or else the dash will stand
for itself. The dash will also stand for itself whenever it is
the first or the last character in the scanset. To include the
right square bracket as an element of the scanset, it must
appear as the first character (possibly preceded by a
circumflex) of the scanset; otherwise it will be interpreted
syntactically as the closing bracket. The corresponding ar-
gument must point to a character array large enough to hold
the data field and the terminating \ 0, which will be added
automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, o, and x may be preceded by 1 or
h to indicate that a pointer to 1ong or short, rather than int, is
in the argument list. Similarly, the conversion characters e, f,
and g may be preceded by 1 to indicate that a pointer to double,
rather than f1loat, is in the argument list.

The 1 or h modifier is ignored for other conversion characters.
scanf conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control string.
In the latter case, the offending character is left unread in the input
stream.

scanf returns the number of successfully matched and assigned
input items; this number can be zero when an early conflict
between an input character and the control string occurs. If the in-
put ends before the first conflict or conversion, EOF is returned.

EXAMPLES
The call:

int i; n; float x; char name[50];
n = scanf ("%d%£%s", &i, &x, name);

with the input line
25 54.32E-1 thompson

February, 1990 3

Revision C

scanf(3S) scanf(35)

will assign the value 3 to n, the value 25 to i, and the value
5.432 to x; name will contain thompson\0.

The call

int i; float x; char name[50];
(void) scanf ("$%$24%f%*d %[0-9]", &i, &x,
name) ;

with input
56789 0123 56a72
will assign 56 to i, 789.0 to x, skip 0123, and place the string

56\0 in name. The next call to getchar (see getc(3S)) will
return a.

RETURN VALUE
These functions return EOF on end of input and a short count for
missing or illegal data items.

NOTES
Trailing white space is left unread unless matched in the control
string.

BUGS

The success of literal matches and suppressed assignments is not
directly determinable.

SEE ALSO
getc(3S), print £(3S), strtod(3C), st rtol(3C).

4 February, 1990

RevisionC

set42sig(3) set42sig(3)

NAME

set42sig— set 4.2 BSD signal interface
SYNOPSIS

int set42sig()
DESCRIPTION

set 42sig changes the signal interface to one closely resembling
BSD 4.2 systems. This call is similar to the setcompat system
call. Unlike setcompat(2), set42sig arranges for the current
compatibility flags to be logically OR’ed with the new flags.
set42sig is functionally equivalent to the following C code
fragment:

#include <compat.h>

return (setcompat (getcompat () | COMPAT BSDSIGNALS |
COMPAT_BSDTTY] COMPAT___BSDSYSCALLS));

For the process calling it, it enables reliable signal delivery, the
job control tty signals, and restarting of system calls when an in-
terrupt is received.

If the COMPAT_SVID flag is set before calling set42sig, both
BSD 4.2 and System V modes are set and 4.2 BSD mode will
have precedence. COMPAT_SVID can be set in two ways, by cal-
ling setcompat(2) and by compiling the program with the —zS
flag option (see cc(1).

All aspects of 4.2 signals are inherited across fork system calls.
4.2 job control group membership is inherited across exec sys-
tem calls. When exec is invoked, the inherited 4.2 signals are
lost and the signal-handling mechanism returns to System V style.
See setcompat(2) for more information.

ERRORS
[EINVAL] The process has already arranged to catch
signals. Normally set42sig is called pri-
or to any other signal activity.
SEE ALSO

cc(l), setcompat(2), sigvec(2), signal(3), ter-
mio(7).

February, 1990 1

Revision C

setbuf(3S) setbuf(3S)

NAME
setbuf, setvbuf — assign buffering to a stream

SYNOPSIS
#include <stdio.h>

void setbuf (stream, buf)
FILE *stream;
char *buf;
int setvbuf (stream, buf, type, size)
FILE *stream;
char *buf;
int type, size;
DESCRIPTION
setbuf may be used after a stream has been opened but before it
is read or written. It causes the array pointed to by buf to be used
instead of an automatically allocated buffer. If buf is the NULL
pointer input/output will be completely unbuffered.

A constant BUFSIZ, defined in the <stdio.h> header file, tells
how big an array is needed:

char buf[BUFSIZ];

setvbuf may be used after a stream has been opened but before
it is read or written. type determines how stream will be buffered.
Legal values for type (defined in stdio. h) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be
flushed when a newline is written, the buffer is full,
or input is requested.

_IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used
for buffering, instead of an automatically allocated buffer. size
specifies the size of the buffer to be used. The constant BUFSIZ
in <stdio.h> is suggested as a good buffer size. If input/output
is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other
input/output is fully buffered.

1 February, 1990

Revision C

setbuf(3S) setbuf(3S)

RETURN VALUE
If an illegal value for type or size is provided, setvbuf retums a
nonzero value. Otherwise, the value returned will be zero.

SEE ALSO
fopen(3S), getc(3S), intro(3), malloc(3C), putc(3S).

NOTES
A common source of error is allocating buffer space as an ‘‘au-
tomatic’’ variable in a code block, and then failing to close the
stream in the same block.

setbuf allows assignment of a new I/O buffer after the stream
has been read (written), and if unflushed data remains in the origi-
nal buffer. This could lead to a loss of data error.

February, 1990 2

Revision C

setjmp(3C) set jmp(3C)

NAME
setjmp, longjmp — non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

setjmp saves its stack environment in env for later use by
longjmp. The environment type jmp buf is defined in the
<set jmp.h> header file.

RETURN VALUE
When set jmp has been called by the calling process, returns 0.

longjmp restores the environment saved by the last call of
set jmp with the corresponding env argument. After longjmp
is completed, program execution continues as if the corresponding
call of set jmp (which must not itself have returned in the inter-
im) had just returned the value val. longjmp cannot cause
set jmp to return the value 0. If longjmp is invoked with a
second argument of 0, set jmp will return 1. All accessible data
have values as of the time 1ongjmp was called.

SEE ALSO
signal(3).
WARNINGS
longjmp fails if it is called when env was never primed by a call

to set jmp or when the last such call is in a function which has
since returned.

1 February, 1990

Revision C

setposix(3P) setposix(3P)

NAME

setposix — set POSIX compatibility flags
SYNOPSIS

int setposix()
DESCRIPTION

setposix is equivalent to the following code fragment:

#include <compat.h>
setcompat (COMPAT_POSIX) ;

COMPAT_POSIX is equivalent to all of the following:

COMPAT_BSDGROUPS
COMPAT_BSDCHOWN
COMPAT BSDSIGNALS
COMPAT_BSDTTY
COMPAT_SYSCALLS
COMPAT_POSIXPATHTRUNC
COMPAT_EXEC

Any non-POSIX compatibility flags that were set prior to the call
10 setposix are reset.

RETURN VALUE
Upon successful completion, setposix returns the previous
compatibility mask. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
setposix will return the following error code:

[EINVAL] setposix results in a change in the state of
the COMPAT BSDSIGNALS bit and a signal is
currently pending, caught, or held.

SEE ALSO
setcompat(2).

February, 1990 1

Revision C

setuid(3) setuid(3)

NAME
setuid, setgid — setuser and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid(gid)
int gid;
DESCRIPTION

setuid (setgid) is used to set the real user (group) ID and ef-
fective user (group) ID of the calling process.

If the effective user ID of the calling process is superuser, the real
user (group) ID and effective user (group) ID are set to uid (gid).

If the effective user ID of the calling process is not superuser, but
its real user (group) ID is equal to uid (gid), the effective user
(group) ID is set to uid (gid).

If the effective user ID of the calling process is not superuser, but
the saved set-user (group) ID from exec(2) is equal to uid (gid),
the effective user (group) ID is set to uid(gid).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise,
a value of —1 is returned and exrrno is set to indicate the error.

ERRORS
setuid (setgid) will fail if one of the following is true:
[EPERM] the real user (group) ID of the calling process is
not equal to uid (gid) and its effective user ID is
not superuser.
[(EINVAL] The uid (gid) is out of range.
SEE ALSO

getuid(2), intro(2), setregid(2), setreuid(2).

1 February, 1990

RevisionC

sigaction(3P) sigaction(3P)

NAME
sigaction — examine or change signal action

SYNOPSIS
#include <signal.h>

int sigaction (sig,act,oact)
int sig;
struct sigaction *act, *oact;

DESCRIPTION
The system defines a set of signals that may be delivered to a pro-
cess. Signal delivery resembles the occurrence of a hardware in-
terrupt: the signal is blocked from further occurrence, the current
process context is saved, and a new one is built. A process may
specify a handler to which a signal is delivered, or specify that a
signal is to be blocked or ignored. A process may also specify
that a default action is to be taken by the system when a signal oc-
curs. Normally, signal handlers execute on the current stack of
the process. This may be changed, on a per-handler basis, so that
signals are taken on a special ‘‘signal stack.”

All signals have the same priority. Signal routines execute with
the signal that caused their invocation but other signals may yet
occur. A global “‘signal mask’’ defines the set of signals currently
blocked from delivery to a process. The signal mask for a process
is initialized from that of its parent (normally 0). It may be
changed with a sigprocmask(3P) call, or when a signal is
delivered to the process.

‘When a signal condition arises for a process, the signal is added to
a set of signals pending for the process. If the signal is not
currently blocked by the process then it is delivered to the process.
When a signal is delivered, the current state of the process is
saved, a new signal mask is calculated (as described below), and
the signal handler is invoked. The call to the handler is arranged
so that if the signal handling routine returns normally, the process
resumes execution in the context from before the signal’s delivery.
If the process wishes to resume in a different context, then it must
arrange to restore the previous context itself (see
sigset jmp(3P).

sigaction allows the calling process to examine or specify the
action to be taken on delivery of a signal. sig specifies the signal

February, 1990 1

Revision C

sigaction(3P) sigaction(3P)

number.

The sigaction structure is defined in <signal.h>:

struct sigaction {
void (*sa_handler) ();
sigset_t sa_mask;
int sa_flags;

}:

If act is not NULL, it points to a structure specifying the action to
be taken when the signal is delivered. If oact is not NULL, the ac-
tion previously associated with the signal is stored in the location
pointed to by oact. If act is NULL, signal handling is unchanged.
When act is NULL, sigaction can be used to inquire about the
current handling of a given signal.

The sa_flags field of act can be used to modify the delivery of
a specific signal. If sig is SIGCHLD and the SA_NOCLDSTOP
flag is not set in sa_flags, a SIGCHLD signal is generated for
the calling process if any of its child processes stop. If sig is
SIGCHLD and the SA_NOCLDSTOP flag is set in sa_flags, a
SIGCHLD signal is not generated for stopped child processes. If
the SA_ONSTACK bit is set in sa_flags, the system delivers
the signal to the process on a signal stack specified by sig-
stack(2). If the SA_INTERRUPT bit is set in sa_flags, sys-
tem calls interrupted by a signal are not restarted.

When a signal is caught by a signal-catching function, a new sig-
nal mask is calculated and installed for the duration of the signal-
catching function or until sigprocmask() or sigsuspend() is
called. This mask is formed by taking the union of the current sig-
nal mask and the set associated with the action for the signal being
delivered, such as sa_mask, and then including the signal being
delivered. If and when the user’s signal handler returns normally,
the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed
until another action is explicitly requested by another call to
sigaction or until one of the exec functions is called.

SIGKILL and SIGSTOP cannot be caught or ignored. The set of
signals specified by sa_mask is not allowed to block these sig-
nals. This is silently enforced.

2 February, 1990

RevisionC

sigaction(3P)

sigaction(3P)

If sigaction fails, no new signal handler is installed.
A/UX POSIX defines the following signals:

SIGHUP

SIGINT

SIGQUIT
SIGILL

SIGABRT
SIGFPE

SIGKILL
SIGSEGV
SIGPIPE
SIGALRM
SIGTERM
SIGUSR1
SIGUSR2
SIGCLD

SIGTSTP
SIGTTIN
SIGTTOU
SIGSTOP
SIGXCPU
SIGXFSZ
SIGCONT

1

2
3*
4*
6*
8*
9
11*
13
14
15
16
17
18e
20t
21t
22t
23t
4
25
25

hangup

interrupt

quit

illegal instruction

aborted

floating-point exception

kill (cannot be caught, blocked, or ignored)
segmentation violation

write on a pipe with no one to read it

alarm clock

software termination signal

user defined signal 1

user defined signal 2

child status has changed

stop signal generated from keyboard
background read attempted from control terminal
background write attempted to control terminal
stop (cannot be caught, blocked, or ignored)
cpu time limit exceeded

file size limit exceeded

continue after stop (cannot be blocked)

The following signals are also defined:

SIGTRAP 5* trace trap

SIGIOT 6* abort

SIGEMT 7* EMT instruction

SIGBUS 10* bus error

SIGSYS 12* bad argument to system call

SIGPWR 19 power-fail restart

SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see setitimer(2))
SIGWINCH 28e window size change

SIGURG 30e urgent condition present on socket

SIGIO 31e 1/O possible on a descriptor (see fcnt1(2))

The starred signals (*) in the list above cause a core image if not
caught or ignored.

The default action for a signal may be reinstated by setting
sv_handler to SIG_DFL; this default is termination (with a
core image for starred signals) except for signals marked with e or

February, 1990

Revision C

sigaction(3P) sigaction(3P)

t. Signals marked with e are discarded if the action is SIG_DFL;
signals marked with t cause the process to stop. If sv_handler
is SIG_IGN, the signal is subsequently ignored, and pending in-
stances of the signal are discarded.

If a caught signal occurs during certain system calls, the call is
normally restarted. The affected system calls are read(2) or
write(2) on a slow device such as a terminal, but not a file. This
behavior may be inhibited by setting the SA_INTERRUPT bit in
sa_flags.

After a fork(2), the child inherits all signals, the signal mask,
and the signal stack.

execve(2) resets all caught signals to default action and resets all
signals to be caught on the user stack. Ignored signals remain ig-
nored; the signal mask remains the same.

RETURN VALUE
On successful completion, a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

ERRORS

If any of the following conditions occur, sigaction returns —1
and sets errno to the corresponding value:

(EINVAL] The value of sig is not a valid signal
number, or an attempt was made to sup-
ply an action for a signal that cannot be
caught or ignored.

[EFAULT] act or oact is an invalid address. Or both
are invalid addresses.

SEE ALSO
exec(2), kill(2), sigsetops(3P), sigprocmask(2P),
sigsuspend(3P), sigvec(2).

4 February, 1990

Revision C

sign(3F) sign(3F)

NAME
sign, isign, dsign — Fortran transfer-of-sign intrinsic
function

SYNOPSIS
integer i, j, k
real rl, r2, r3
double precision dpl, dp2, dp3
k=isign (i, j)
k=sign (i, j)
r3=sign(rl, r2)

dp3=dsign (dpl, dp2)
dp3=sign(dpl, dp2)

DESCRIPTION
isign returns the magnitude of its first argument with the sign of
its second argument. sign and dsign are its real and double-
precision counterparts, respectively. The generic version is sign,
which devolves to the appropriate type depending on its argu-
ments.

February, 1990 1

Revision C

signal(3) signal(3)

NAME
signal — specify what to do upon receipt of a signal
SYNOPSIS
#include <signal.h>
int (*signal (sig, func)) ()
int sig;
void (*func) ();
DESCRIPTION
signal allows the calling process to choose one of three ways in

which it is possible to handle the receipt of a specific signal. sig
specifies the signal and func specifies the choice.

sig can be assigned any one of the following except SIGKILL:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3* quit

SIGILL 4* illegal instruction

SIGTRAP 5% trace trap

SIGIOT 6* JOT instruction

SIGEMT 7* EMT instruction

SIGFPE 8* floating point exception

SIGKILL 9 Kkill (cannot be caught, blocked, or ignored)
SIGBUS 10* bus error

SIGSEGV 11* segmentation violation

SIGSYS 12* bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it

SIGALRM 14 alarm clock

SIGTERM 15 software termination signal

SIGUSR1 16 user defined signal 1

SIGUSR2 17 user defined signal 2

SIGCLD 18e child status has changed

SIGPWR 19 power-fail restart

SIGTSTP 201 stop signal generated from keyboard
SIGTTIN 211 background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGSTOP 231 stop (cannot be caught, blocked, or ignored)
SIGXCPU 24 cpu time limit exceeded

SIGXFSZ 25 file size limit exceeded

SIGVTALRM 26 virtual time alarm (see setitimer(2))
SIGPROF 27 profiling timer alarm (see set it imer(2))
SIGWINCH 28e window size change

1 February, 1990

Revision C

signal(3) signal(3)

SIGCONT 29e continue after stop (cannot be blocked)
SIGURG 30e urgent condition present on socket
SIGIO 31e I/Ois possible on a descriptor (see fcnt 1(2))

The starred signals in the above list cause a core image if not
caught or ignored (see below).

Signals marked with e are discarded if the action is SIG_DFL;
signals marked with 1 cause the process to stop if the process is
part of 4.2 job control.

Jfunc is assigned one of three values: SIG DFL, SIG_IGN, or a
Junction-address. The actions prescribed by these values are as
follows:

SIG_DFL— terminate process upon receipt of a signal
Upon receipt of the signal sig, the receiving process is to be
terminated with the following consequences:

All of the receiving process’s open file descriptors will
be closed.

If the parent process of the receiving process is execut-
ing a wait, it will be notified of the termination of the
receiving process and the terminating signal’s number
will be made available to the parent process; see
wait(2).

If the parent process of the receiving process is not exe-
cuting a wait, the receiving process will be
transformed into a zombie process (see exit(2) for
definition of zombie process).

The parent process ID of each of the receiving
process’s existing child processes and zombie processes
will be set to 1. This means the initialization process
(see int ro(2)) inherits each of these processes.

Each attached shared memory segment is detached and
the value of shm_nattach in the data structure asso-
ciated with its shared memory identifier is decremented
by 1.

For each semaphore for which the receiving process
has set a semadj value (see semop(2)), that semadj
value is added to the semval of the specified sema-
phore.

February, 1990 2

Revision C

signal(3)

signal(3)

If the process has a process, text, or data lock, an un-
lock is performed (see plock(2)).

An accounting record will be written on the accounting
file if the system’s accounting routine is enabled; see
acct(2).

If the receiving process’s process ID, tty group ID, and
process group ID are equal, the signal STIGHUP will be
sent to all of the processes that have a process group ID
equal to the process group ID of the receiving process.

A “‘core image’ will be made in the current working
directory of the receiving process if sig is one for which
an asterisk appears in the above list and the following
conditions are met:

The effective user ID and the real user ID of the
receiving process are equal.

An ordinary file named core exists and is writ-
able or can be created. If the file must be created,
it will have the following properties:

a mode of 0666 modified by the file creation
mask (see umask(2))

a file owner ID that is the same as the effec-
tive user ID of the receiving process

a file group ID that is the same as the effec-
tive group ID of the receiving process

SIG_IGN - ignore signal
The signal sig is to be ignored.

Note: The signal SIGKILL cannot be ignored.

function-address — catch signal

Upon receipt of the signal sig, the receiving process is to ex-
ecute the signal-catching function pointed to by func. The
signal number sig will be passed as the only argument to the
signal-catching function. Additional arguments are passed to
the signal-catching function for hardware-generated signals.
Before entering the signal-catching function, the value of
Jfunc for the caught signal will be set to SIG_DFL unless the
signal is SIGILL, SIGTRAP, or SIGPWR,

February, 1990

RevisionC

signal(3) signal(3)

Upon return from the signal-catching function, the receiving
process will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a
write,an open,oran ioctl system call on a slow dev-
ice (like a terminal; but not a file), during a pause system
call, or during a wait system call that does not return im-
mediately due to the existence of a previously stopped or
zombie process, the signal-catching function will be execut-
ed and then the interrupted system call may return a —1 to the
calling process with errno set to EINTR. This behavior is
the default for 5.2 systems and it may be modified by the
setcompat(2) system call.

Note: The signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pend-
ing SIGKILL signal.

RETURN VALUE
Upon successful completion, signal returns the previous value
of func for the specified signal sig. Otherwise, a value of -1 is re-
turned and errno is set to indicate the error.

ERRORS
signal will fail if:
[EINVAL] sig is an illegal signal number, including SIG-
KILL.
WARNINGS

Two other signals that behave differently than the signals
described above exist in this release of the system; they are:

SIGCLD 18 death of a child (reset when caught)
SIGPWR 19 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX system,
these signals will continue to behave as described below; they are
included only for compatibility with other versions of the UNIX
system. Their use in new programs is strongly discouraged.

For these signals, func is assigned one of three values: SIG_DFL,
SIG_IGN, or afunction-address. The actions prescribed by these
values of are as follows:

February, 1990 4

Revision C

signal(3) signal(3)

SIG_DFL - ignore signal
The signal is to be ignored.

SIG_IGN -ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the cal-
ling process’s child processes will not create zombie
processes when they terminate; see exit(2).

function-address - catch signal

If the signal is SIGPWR, the action to be taken is the same as
that described above for func equal to function-address. The
same is true if the signal is SIGCLD except, that while the
process is executing the signal-catching function, any re-
ceived SIGCLD signals will be queued and the signal-
catching function will be continually reentered until the
queue is empty.

The SIGCLD affects two other system calls (wait(2), and
exit(2)) in the following ways:

wait If the func value of SIGCLD is set to SIG_IGN and
a wait is executed, the wait will block until all of
the calling process’s child processes terminate; it
will then return a value of —1 with errno set to
ECHILD.

exit If in the exiting process’s parent process the func
value of SIGCLD is set to SIG_IGN, the exiting
process will not create a zombie process.

‘When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that
may be piped into in this manner (and thus become the parent of
other processes) should take care not to set STGCLD to be caught.

SEE ALSO
kill(l), kill(2), pause(2), ptrace(2), setcompat(2),
sigvec(2), wait(2), set42sig(3), set jmp(3C).

BUGS
If a repeated signal arrives before the last one can be reset, there is

no chance to catch it. However, se¢ the setcompat flag
COMPAT_BSDSIGNALS.

The type specification of the routine and its func argument are
problematical.

5 February, 1990

Revision C

signal(3) signal(3)

The symbols sighnd and sigtrap are globally defined sym-
bols used by signal and are reserved words.

February, 1990 6

Revision C

signal(3F) signal(3F)

NAME
signal — specify Fortran action on receipt of a system signal

SYNOPSIS
integer i
external integer inifnc

call signal (i, intfnc)

DESCRIPTION
signal allows a process to specify a function to be invoked
upon receipt of a specific signal. The first argument specifies a
fault or exception; the second argument specifies the function to
be invoked.

SEE ALSO
kill(2), signal(3).

1 February, 1990

Revision C

sigprocmask(3P) sigprocmask(3P)

NAME
sigprocmask — examine and change blocked signals

SYNOPSIS
#include <signal.h>

int sigprocmask (how, set, oset)
int how;
sigset_t *set, oset;

DESCRIPTION
sigprocmask allows the calling process to examine or change
its signal mask. If the value of set is not NULL, it points to a set
of signals to be used to change the currently blocked set.

The value of how indicates the manner in which the set is
changed. The permitted values for how are:

SIG_BLOCK The resulting set will be the union of the
current set and the signal set pointed to
by set.

SIG_UNBLOCK The resulting set will be the intersection
of the current set and the complement of
the signal set pointed to by set.

SIG_SETMASK The resulting set will be the signal set
pointed to by set.

If oset is not NULL, the previous mask is stored at the location
pointed to by set. If the value of set is NULL, the value of how is
ignored and the process’s signal mask is unchanged. When set is
NULL, sigprocmask can be used to enquire about currently
blocked signals.

If there are any pending unblocked signals after the call to sig-
procmask, at least one of those signals will be delivered before
sigprocmask retumns.

SIGKILL and SIGSTOP cannot be caught or ignored. SIGCONT
cannot be ignored. It is not possible to block these signals. This is
silently enforced.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, —1 is re-

February, 1990 1

Revision C

sigprocmask(3P) sigprocmask(3P)

turned and errno is set to indicate the error.

ERRORS
If the following condition occurs, sigprocmask will return —1
and set errno to the corresponding value.

[EINVAL] The value of how is invalid.

SEE ALSO
sigaction(3P), sigpending(3P), sigsetops(3P),
sigsuspend(3P).

2 February, 1990

RevisionC

sigset jmp(3P) sigset jmp(3P)

NAME

sigsetjmp, siglongjmp — non-local jumps
SYNOPSIS

#include <setjmp.h>

int sigsetjmp (env, savemask)
sigjmp_buf env;
int savemask;

void siglongjmp (env, val)
sigjmp_buf env;
int val;

DESCRIPTION
These functions are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

sigset jmp saves its stack environment in env for later use by
siglongjmp. If the value of savemask is not zero, sig-
set jmp also saves the process’s current signal mask as part of
the calling environment. The environment type sigjmp_buf is
defined in the <set jmp. h> header file.

siglongjmp restores the environment saved by the last call of
sigsetjmp with the corresponding env argument. If env was
initialized by a call to sigsetjmp with a non-zero value for
savemask, siglongjmp also restores the saved signal mask.

RETURN VALUE
When sigset jmp has been invoked by the calling process, zero
is returned.

After siglongjmp is completed, program execution continues
as if the corresponding call of sigset jmp (Which must not itself
have returned in the interim) had just returned the value val.
siglongjmp cannot cause sigsetjmp to return the value
zero. If val is zero, sigset jmp returns 1. All accessible data
have values as of the time siglongjmp was called.

WARNINGS
siglongjmp fails if env was never initialized by a call to sig-
setjmp or when the last such call is in a function which has
since returned.

February, 1990 1

Revision C

sigsetjmp(3P) sigset jmp(3P)

SEE ALSO
sigaction(3P), sigprocmask(3P), sigsuspend(3P).

2 February, 1990

Revision C

sigsetops(3P) sigsetops(3P)

NAME
sigaddset, sigdelset, sigismember, sigfillset,
siginitset — manipulate signal sets

SYNOPSIS
#include <signal.h>

int sigaddset (set, signo)
sigset_t *set;

int signo;

int sigdelset (set, signo)
sigset_t *set;

int signo;

int sigismember (set, signo)
sigset_t *set;

int signo;

int sigfillset (set)
sigset_t *set;

int sigemptyset (set)
sigset_t *set;

DESCRIPTION
These routines manipulate sets of signals. They operate on data
objects addressable by the application, not on any set of signals
known to the system. The signal set modified by these rountines
may be used as a parameter to sigagction(3P),
sigprocmask(3P), sigpending(3P), or
sigsispend(3P). sigaddset adds the signal
specified by pointed to by set.

sigdelset deletes the signal specified by signo from the set
pointed to by set.

POSIX defines the following signals:

SIGABRT SIGPIPE SIGCLD

SIGALRM SIGQUIT SIGCONT
SIGFPE SIGSEGV SIGSTOP
SIGHUP SIGTERM SIGTSTP
SIGILL SIGUSR1 SIGTTIN
SIGINT SIGUSR2 SIGTTOU
SIGKILL

February, 1990 1

Revision C

sigsetops(3P) sigsetops(3P)

sigfillset initializes the signal set pointed to by set so that all
POSIX-defined signals are included.

sigemptyset initializes the signal set pointed to by set so that
all the POSIX-defined signals are excluded. Applications must
call sigemptyset for each object of type sigset_t before
any other use of the object.

sigismember tests whether the signal specified by signo is a
member of the set pointed to by set.

RETURN VALUE
On successful completion, sigismember returns 1 if the
specified signal is a member of the specified set and returns O if it
is not. On successful completion, each of the other functions re-
turns 0. For all the functions listed, if an error is detected,
sigaddset, sigdelset, and sigismember returns —1 and
set errno to indicate the error.

ERRORS
If any of the following conditions occur, the function returns —1
and sets errno to the corresponding value:

[EINVAL] The value of signo is not a valid signal
number.
[EFAULT] set is an invalid address.
SEE ALSO
sigaction(3P), sigpending(3P), sigprocmask(2P),
sigsuspend(3P).
2 February, 1990

Revision C

sigsuspend(3P) sigsuspend(3P)

NAME
sigsuspend — wait for a signal

SYNOPSIS
#include <signal.h>

int sigsuspend (sigmask)
sigset_t *sigmask;
DESCRIPTION
sigsuspend replaces the process’s signal mask with the set of
signals pointed to by sigmask and then suspends the process un-

til delivery of a signal whose action is either to execute a signal-
catching function or to terminate the process.

If the action is to terminate the process, sigsuspend will not re-
turn. If the action is to execute a signal-catching function, sig-
suspend will return after the signal-catching function returns,
with the signal mask restored to the set that existed prior to the
sigsuspend call.

SIGKILL and SIGSTOP cannot be caught or ignored. SIGCONT
cannot be ignored. It is not possible to block these signals. This is
silently enforced.

RETURN VALUE
Since sigsuspend suspends process execution indefinitely,
there is no successful completion return value. If sigsuspend
returns, it will return —1 and errno will be set to indicate the er-
TOr.

ERRORS
If the following condition occurs, sigsuspend will return —1
and set errno to the corresponding value.

[EINTR] A signal is caught by the calling process
and control is returned from the signal-
catching function.

SEE ALSO

pause(2), sigaction(3P), sigpending(3P),
sigprocmask(2P), sigsetops(3P).

February, 1990 1

Revision C

sin(3F) sin(3F)

NAME
sin, dsin, csin — Fortran sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxl, cx2

r2=sin(rl)
dp2=dsin (dpl)
dp2=sin (dpl)
cx2=csin (cxl)
cx2=sin (cxl)

DESCRIPTION
sin returns the real sine of its real argument. dsin returns the
double-precision sine of its double-precision argument. csin re-
turns the complex sine of its complex argument. The generic sin
function becomes dsin or csin as required by argument type.

SEE ALSO
trig(3M).

1 February, 1990

RevisionC

sinh(3F) sinh(3F)

NAME
sinh, dsinh — Fortran hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2=sinh (rl)

dp2=dsinh (dpl)
dp2=sinh (dpl)

DESCRIPTION
sinh returns the real hyperbolic sine of its real argument.
dsinh returns the double-precision hyperbolic sine of its
double-precision argument. The generic form sinh may be used
to return a double-precision value given a double-precision argu-
ment.

SEE ALSO
sinh(3M).

February, 1990 1

Revision C

sinh(3M) sinh(3M)

NAME
sinh, cosh, tanh — hyperbolic functions

SYNOPSIS
#include <math.h>

double sinh (x)
double x;

double cosh(x)
double x;

double tanh (x)
double x;

DESCRIPTION
sinh, cosh, and tanh return, respectively, the hyperbolic sine,
cosine, and tangent of their argument.

RETURN VALUE
sinh and cosh return HUGE (and sinh may return ~HUGE for
negative x) when the correct value would overflow and set errno

to ERANGE.
These error-handling procedures may be changed with the func-
tion matherr(3M).
SEE ALSO
matherr(3M).
1 February, 1990

RevisionC

sleep(3C) sleep(3C)

NAME
sleep — suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

sleep suspends the current process from execution for the
number of seconds specified by the argument. The actual suspen-
sion time may be less than that requested for two reasons: (1)
scheduled wakeups occur at fixed 1-second intervals, (on the
second, according to an internal clock) and (2) any caught signal
will terminate sleep following execution of the signal catching
routine. The suspension time may be longer than requested by an
arbitrary amount, due to the scheduling of other activity in the sys-
tem. The value returned by sleep is the ‘‘unslept’’ amount (the
requested time minus the time actually slept) in case the caller had
an alarm set to go off earlier than the end of the requested sleep
time or in case there is premature arousal due to another caught
signal.

The routine is implemented by setting an alarm signal and pausing
until it (or some other signal) occurs. The previous state of the
alarm signal is saved and restored. The calling program may have
set up an alarm signal before calling sleep. If the sleep time
exceeds the time before the alarm signal, the process sleeps only
until the alarm signal would have occurred and the caller’s alarm
catch routine is executed just before the sleep routine returns. If
the sleep time is less than the time before the calling program’s
alarm, the prior alarm time is reset to go off at the same time it
would have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(3).

February, 1990 1

Revision C

slots(3X) slots(3X)

NAME
slots — ROM library functions

SYNOPSIS
cc [flags] files ~1slots [libraries)

DESCRIPTION
The routines in the slots library provide access to board slot ROM
from either user or kernel processes. Calls to library routines do
not require knowledge of either the board ROM configuration or
the ROM addressing requirements.

USER FUNCTIONS
slot_PRAM init (slot, data)
Read the PRAM init structure for slot into the buffer pointed
to by data.

slot_board_flags (slot)
Read and return the board flags for siot.

slot_board id (slot)
Read and return the board ID number for siot.

slot_board name (slot, data, size)
Read up to size bytes of the board name string for slot into
the buffer pointed to by data.

slot_board type (slot, data)
Read and return the unsigned 64 bit or 8 byte board type for
slot into the buffer pointed to by data.

slot_ether_ addr (slot, data)
For slot read 6 bytes of ethernet address into the buffer point-
ed to by data.

slot_primary_ init (slot, data)
For slot read the primary init structure into the buffer pointed
to by data.

slot_part_num(slot, data, size)
For slot get size bytes of the part number string into the
buffer pointed to by data.

slot_rev_level (slot, data, size)
For slot get size bytes of the revision level of the ROM into
the buffer pointed to by data.

slot_serial number (slot, data, size)
For slot get size bytes of serial number string into the buffer

1 February, 1990

Revision C

slots(3X) slots(3X)

pointed to by data.

slot_vendor_id (slot, data, size)
For slot read size bytes of vendor ID string into the buffer
pointed to by data.

UTILITY FUNCTIONS
slot_board_vendor_info (kind, slot, data, size)
For slot get size bytes of the vendor information string of
type kind into the buffer pointed to by data.

slot_byte (address)
Retumn the byte located at address.

slot_data (slot, kind, request, data, size)
For slotflot, read size BITS of data for resource of type kind
from the resource list item of type request and put it into the
location pointed to by data.

slot_directory (slot, data, size)
For slot read the resource directory into the buffer of size en-
tries pointed to by data.

slot_long (address, data)
Return 32 bits of data from address offset by data.

slot_resource (address, kind, request, data, size)
For ROM starting at base address read size bytes of the re-
quest resource item from the kind resource into the buffer
pointed to by data.

slot_resource_list (address, kind, data, size)
For ROM starting at base address read size entries of
resource list of kind into the buffer pointed to by data.

slot_structure (address, from, data, size)
From ROM starting at address plus the offset in parameter
from read size bytes of data into the buffer pointed to by daza.

slot_woxd (address)
Return 16 bits of data located at address.

LOW LEVEL FUNCTIONS
slot_seg violation()
This routine is passed to slot_catch to handle bus errors.

slot_catch (kind, routine)
Setup routine to handle interrupts of type kind.

February, 1990 2

Revision C

slots(3X) slots(3X)

slot_ignore (kind)
Return the system to default handling of interrupts of type
kind.

slot_address (slot)
Returns a computed ROM base address for slot.

slot_bytelane (address, bytelane)
Return the ROM bytelane byte into bytelane for ROM start-
ing at address.

slot_calc_pointer (current, offset)
Return a ROM pointer offset bytes from current.

slot_rom_data (address, width, data)
Starting with address fill the buffer pointed to by data with
width bytes of data.

slot_check_crc (top, fhp, bytelane)
Check the CRC for the ROM with base address fop using the
format header information pointed to by fAp and the byte lane
information in bytelane.

slot_header (address, format_hdrp)
Read the ROM format header into the buffer pointed to by
Jormat_hdrp for the ROM starting at base address address.
SEE ALSO
Building AIUX Device Drivers
NOTE

The slots library is only accessible to processes with superuser
privileges due to the required phys call to access board ROM.

3 February, 1990

RevisionC

spray(3N) spray(3N)

NAME
spray — scatter data in order to check the network

SYNOPSIS
#include <rpcsvc/spray.h>

DESCRIPTION
RPC INFO
Program number: SPRAYPROG
xdr routines:
xdr_sprayarr (xdrs, arr);
XDR *xdrs;
struct sprayarr *arr;
xdr_spraycumul (xdrs, cumul);
XDR *xdrs;
struct spraycumul *cwnul;
Procs:

SPRAYPROC_SPRAY
Takes no arguments; returns no value. Increments a counter
in server daecmon. The server does not return this call, so the
caller should have a timeout of 0.

SPRAYPROC_GET
Takes no arguments; returns structure spraycumul with
value of counter and clock.

SPRAYPROC_CLEAR
Takes no arguments and returns no value. Zeros out counter
and clock.

Versions:
SPRAYVERS_ORIG

Structures:

struct spraycumul {
unsigned counter;
struct timeval clock;
};
struct sprayarr
int *data,
int 1lnth

February, 1990 1

Revision C

spray(3N) spray(3N)

SEE ALSO
spray(1M), sprayd(1M).

2 February, 1990

Revision C

sputl1(3X) sputl(3X)

NAME
sputl, sgetl — access long integer data in a machine
independent fashion

SYNOPSIS
void sputl (value, buffer)
long value;
char *buffer;

long sgetl (buffer)
char *buffer;
DESCRIPTION
sputl takes the 4 bytes of the long integer value and places them

in memory, starting at the address pointed to by buffer. The order-
ing of the bytes is the same across all machines.

sgetl retrieves the 4 bytes in memory, starting at the address
pointed to by buffer, and returns the long integer value in the byte
ordering of the host machine.

Use of sputl and sgetl provide a machine independent way of
storing long numeric data in a file in binary form without conver-
sion to characters.

A program that uses these functions must be loaded with the ob-
ject file access routine library 1ibld. a.

SEE ALSO
ar(4).

February, 1990 1

RevisionC

sqrt (3F) sqrt (3F)

NAME
sqrt, dsqgrt, csqgrt — Fortran square root intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cxI, cx2

r2=sqrt (rl)
dp2=dsqrt (dpl)
dp2=sqrt (dpl)
cx2=csqrt (cx1)
cx2=sqgrt (cx1)

DESCRIPTION
sqrt returns the real square root of its real argument. dsqgrt re-
turns the double-precision square root of its double-precision ar-
gument. csqrt returns the complex square root of its complex
argument. sqrt, the generic form, will become dsgrt or
csqrt as required by its argument type.

SEE ALSO
exp(3M).

1 February, 1990

Revision C

ssignal(3C) ssignal(3C)

NAME
ssignal, gsignal — software signals

SYNOPSIS
#include <signal.h>

int (*ssignal (sig, action)) ()
int sig, (*action) () ;

int gsignal (sig)
int sig;

DESCRIPTION
ssignal and gsignal implement a software facility similar to
signal(3). This facility is used by the Standard C Library to en-
able users to indicate the disposition of error conditions; it is also
made available to users for their own purposes.

Software signals made available to users are associated with in-
tegers in the inclusive range 1 through 15. A call to ssignal as-
sociates a procedure, action, with the software signal, sig; the
software signal, sig, is raised by a call to gsignal. Raising a
software signal causes the action established for that signal to be
taken.

The first argument to ssignal is a number identifying the type
of signal for which an action is to be established. The second ar-
gument defines the action; it is either the name of a user-defined
action function or one of the manifest constants SIG_DFL (de-
fault) or SIG_IGN (ignore). ssignal returns the action previ-
ously established for that signal type; if no action has been esta-
blished or the signal number (sig) is illegal, ssignal returns
SIG DFL.

gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that
action is reset to SIG_DFL and the action function is en-
tered with argument sig. gsignal returns the value re-
turned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the
value 1 and takes no other action.

If the action for sig is SIG_DFL, gsignal returns the
value 0 and takes no other action.

February, 1990 1

Revision C

ssignal(3C) ssignal(3C)

If sig has an illegal value or no action was ever specified for
sig, gsignal returns the value 0 and takes no other action.

SEE ALSO
sigvec(2), signal(3).

NOTES
There are some additional signals with numbers outside the range
1 through 15 which are used by the Standard C Library to indicate
error conditions. Thus, some signal numbers outside the range 1
through 15 are legal, although their use may interfere with the
operation of the Standard C Library.

2 February, 1990

RevisionC

string(3C) string(3C)

NAME
strcat, strncat, strcmp, strncmp, strcpy,
strncpy, strlen, strchr, strrchr, strpbrk,
strspn, strcspn, strtok — string operations

SYNOPSIS
#include <string.h>

char *strcat (sl, s2)
char *sl, *s2;

char *strncat(sl, s2, n)
char *sl, *s2;
int n;

int strcmp(sl, s2)
char *sl, *s2;

int strncmp(sl, s2, n)
char *sl, *s2;
int n;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl, *s2;
int n;

int strlen(s)
char *gs;

char *strchr(s, c¢)
char *s;
int ¢;

char *strrchr(s, c¢)
char *s;

int ¢;

char *strpbrk(sl, s2)
char *sl, *s2;

int strspn(sl, s2)
char *sl, *s2;

int strecspn(sl, s2)
char *sl, *s2;

February, 1990 1

Revision C

string(3C) string(3C)

char *strtok(sl,s2)
char *sl, *s2;

DESCRIPTION
The arguments s/, 52, and s point to strings (arrays of characters
terminated by a null character). The functions strcat,
strncat, strcpy, and strncpy all alter sI. These functions
do not check for overflow of the array pointed to by s1.

strcat appends a copy of string s2 to the end of string sl.
strncat appends at most n characters. Each function returns a
pointer to the null-terminated result.

strcmp performs a lexicographical comparison of its arguments
and returns an integer less than, equal to, or greater than 0, when
sl is less than, equal to, or greater than s2, respectively.
strncmp makes the same comparison but looks at a maximum of
n characters.

strcpy copies string s2 to string 51, stopping after the null char-
acter has been copied. strncpy copies exactly n characters,
truncating s2 or adding null characters to s/ if necessary. The
result is not null-terminated if the length of s2 is n or more. Each
function returns s1.

strlen returns the number of characters in s, not including the
terminating null character.

strchr (strrchr) returns a pointer to the first (last) oc-
currence of character ¢ in string s, or a NULL pointer if ¢ does not
occur in the string. The null character terminating a string is con-
sidered to be part of the string.

strpbrk returns a pointer to the first occurrence in string s of
any character from string s2, or a NULL pointer if no character
from s2 exists in s1.

strspn (strcspn) returns the length of the initial segment of
string s! which consists entirely of characters from (not from)
string s2.

st rtok considers the string s/ to consist of a sequence of zero or
more text tokens separated by spans of one or more characters
from the scparator string s2. The first call (with pointer s/
specified) returns a pointer to the first character of the first token,
and writes a null character into s/ immediately following the re-
turned token. The function keeps track of its position in the string
between separate calls, so that on subsequent calls (which must be

2 February, 1990

RevisionC

string(3C) string(3C)

made with a NULL pointer as the first argument) it works through
the string s/ immediately following that token. This can be con-
tinued until no tokens remain. The separator string s2 may be dif-
ferent from call to call. When no token remains in s/, a NULL
pointer is returned.

NOTES
For user convenience, some of these functions are declared in the
optional <string.h> header file.

BUGS
strcmp uses native character comparison. Thus the sign of the
value returned when one of the characters has its high-order bit set
is implementation-dependent.

All string movement is performed character by character starting
at the left. Thus overlapping moves toward the left will work as
expected, but overlapping moves to the right may yield surprises.

February, 1990 3

Revision C

strtod(3C) strtod(3C)

NAME
strtod — convert string to double-precision number

SYNOPSIS
double strtod(str, pir)
char *str, **pir;

DESCRIPTION
strtod returns as a double-precision floating-point number, the
value represented by the character string pointed to by str. The
string is scanned up to the first unrecognized character.

strtod recognizes an optional string of ‘‘white-space’’ charac-
ters (as defined by isspace in ctype(3C)), then an optional
sign, then a string of digits optionally containing a decimal point,
then an optional e or E followed by an optional sign or space, fol-
lowed by an integer.

If the value of ptr is not (char **)NULL, a pointer to the char-
acter terminating the scan is returned in the location pointed to by
ptr. 1f no number can be formed, *pir is set to str, and zero is re-
turned.

SEE ALSO
bstring(3), ato£(3C), ctype(3C), memcpy(3C),
scanf(3S), string(3C). strtol(3C).

DIAGNOSTICS
If the correct value would cause overflow, £tHUGE is returned (ac-
cording to the sign of the value), and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and
errno is set to ERANGE.

1 February, 1990

Revision C

strtol(3C) strtol(3C)

NAME
strtol, atol, atoi — convert string to integer

SYNOPSIS
long strtol (str, pir, base)
char *str, **ptr;
int base;

long atol (str)
char *str;

int atoi (str)
char *str;

DESCRIPTION
strtol returns as a long integer the value represented by the
character string pointed to by str. The string is scanned up to the
first character inconsistent with the base. Leading white-space
characters (blanks and tabs) are ignored.

If the value of ptris not (char **)NULL, a pointer to the char-
acter terminating the scan is returned in the location pointed to by
ptr. If no integer can be formed, zero is returned.

If base is positive (and not greater than 36), it is used as the base
for conversion. After an optional leading sign, leading zeros are
ignored; a leading Ox or 0X is ignored if base is 16.

If base is zero, the string itself determines the base. After an op-
tional leading sign, a leading zero indicates octal conversion and a
leading Ox or 0X indicates hexadecimal conversion; otherwise, de-
cimal conversion is used.

Truncation from long to int can take place upon assignment or
by an explicit cast.

atol (str) is equivalent to:

strtol (str, (char **)NULL, 10)
atoi (str) is equivalent to:

(int)strtol (str, (char **)NULL, 10)

SEE ALSO
ctype(3C), scanf(3S), st rtod(3C).

February, 1990 1

Revision C

strtol(3C) strtol(3C)

BUGS
Overflow conditions are ignored.

2 February, 1990

RevisionC

swab(3C) swab(3C)

NAME
swab — swap bytes
SYNOPSIS
void swab (from, to, nbytes)
char *from, *to;
int nbytes;

DESCRIPTION
swab copies nbytes bytes referenced by from to the array refer-
enced by to, exchanging adjacent even and odd bytes. It is useful
for carrying binary data between PDP-11s and other machines.
nbytes should be even and non-negative. If nbytes is odd and po-
sitive, swab uses nbytes—1 instead. If nbytes is negative, swab
does nothing.

February, 1990 1

Revision C

sysconf(3P) sysconf(3P)

NAME
sysconf — get configurable system variables

SYNOPSIS
#include <unistd.h>

long sysconf (name)
int name;

DESCRIPTION
sysconf allows an application to determine the current value of
a configurable system variable.

name represents the system variable to be queried. Allowable
values for name are:

_SC_ARG_MAX
_SC_CHILD_MAX
_SC_CLK_TCK
_SC_NGROUPS_MAX
_SC_OPEN_MAX
_SC_PASS_MAX
_SC_PID_MAX
_SC_UID_MAX
_SC_EXIT_ SIGHUP
_SC_JOB_CONTROL
_SC_KILL PID NEG1
_SC_KILIL_SAVED
_SC_PGID CLEAR
_SC_SAVED_IDS
_SC_VERSION

RETURN VALUE
sysconf returns the current value of the specified variable. The
value returned will not be more restrictive than the value
described to the application when it was compiled with
<limits.h> or <unistd.h>. The value will not change dur-
ing the lifetime of the calling process.

ERRORS
If name is not defined on the system or name is invalid, sysconf
will return —1.

1 February, 1990

Revision C

sysconf(3P) sysconf(3P)

SEE ALSO
pathconf(3P).

February, 1990 2

Revision C

system(3F) system(3F)

NAME
system — issue a shell command from Fortran

SYNOPSIS
character *N ¢

call system(c)

DESCRIPTION
system causes its character argument to be given to sh(l) as in-
put, as if the string had been typed at a terminal. The current pro-
cess waits until the shell has completed.

SEE ALSO
sh(l), exec(2), system(3S).

1 February, 1990

RevisionC

system(3S) system(3S)

NAME
system — issue a shell command

SYNOPSIS
#include <stdio.h>

int system(string)
char *string;

DESCRIPTION
system causes string to be given to sh(l) input, as if the string
had been typed as a command at a terminal. The current process
waits until the shell has completed and then returns the exit status
of the shell.

RETURN VALUE
system forks to create a child process that in turn performs
exec(2) on /bin/sh in order to execute string. If fork or
exec fails, system returns a negative value and sets errno. If
fork and exec succeed, the exit status of the shell is returned.

FILES
/bin/sh

SEE ALSO
sh(l), exec(2).

February, 1990 1

Revision C

tan(3F) tan(3F)

NAME
tan, dtan — Fortran tangent intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
r2=tan(rl)

dp2=dtan (dpl)
dp2=ftan (dpl)

DESCRIPTION
tan returns the real tangent of its real argument. dtan returns
the double-precision tangent of its double-precision argument.
The generic tan function becomes dtan as required with a
double-precision argument.

SEE ALSO
trig(3M).

February, 1990 1

Revision C

tanh(3F) tanh(3F)

NAME
tanh, dtanh — Fortran hyperbolic tangent intrinsic function
SYNOPSIS
real rl, r2
double precision dpl, dp2
r2=tanh (rl)
dp2=dtanh (dpl)
dp2=tanh (dpl)
DESCRIPTION
tanh returns the real hyperbolic tangent of its real argument.
dtanh returns the double-precision hyperbolic tangent of its dou-
ble precision argument. The generic form tanh may be used to
return a double-precision value given a double-precision argu-

ment.
SEE ALSO
sinh(3M).
1 February, 1990

Revision C

tcdrain(3P) tcdrain(3P)

NAME
tcdrain, tcflow, tcflush, tcsendbreak — line
control functions

SYNOPSIS

#include <termios.h>

int tcdrain (fildes)
int fildes;

int tcflow (fildes, action)
int fildes, action;

int tcflush (fildes, queue_selector)
int fildes, queue_selector;

int tcsendbreak (fildes, duration)
int fildes, duration;

DESCRIPTION
tcdrain causes the process to wait until all output written to the
object indicated by fildes has been transmitted.

tcflow will suspend transmission or reception of data on the ob-
ject indicated by fildes, depending on the value of action. If ac-
tion is TCOOFF, output will be suspended. If action is TCOON,
suspended output will be restarted. If action is TCIOF, input will
be suspended. If action is TCION, suspended input will be restart-
ed.

tcflush will discard data written to the object indicated by
fildes but not transmitted, or data received but not read, depending
on the value of queue_selector. If queue_selector is TCIFLUSH
data received, but not read, will be flushed. If queue selector is
TCOFLUSH data written, but not transmitted, will be flushed. If
queue_selector is TCIOFLUSH both data received, but not read,
and data written, but not transmitted, will be flushed.

tcsendbreak will assert a break condition on the serial line as-
sociated with fildes depending on the value of duration. If dura-
tion is zero, the break condition will be asserted for 0.25 seconds.
If duration is not zero, no break will be sent.

RETURN VALUE
Upon successful completion, zero is returned. Otherwise, —1 is
returned and errno is set to indicate the error.

February, 1990 1

Revision C

tcdrain(3P) tcdrain(3P)

ERRORS
If any of the following conditions occur, —1 will be returned and
errno will be set to the corresponding value.
[EBADF] fildes is not a valid file descriptor.

[EINVAL] The device does not support the function
or if the function called was tcflush,
queue_selector is invalid.

[ENOTTY] The file associated with fildes is not a ter-
minal.
In addition to those listed already, tcdrain will report the fol-
lowing error.
[EINTR] tcdrain was interrupted by a signal.
SEE ALSO
termios(7P).
2 February, 1990

Revision C

tcgetattr(3P) tcgetattr(3P)

NAME
tcgetattr, tcsetattr — getand set the terminal state

SYNOPSIS
#include <termios.h>

int tcgetattr (fildes, termios-p)
int fildes;
struct termio *termio-p;

int tcsetattr (fildes, optional-actions, termio-p)
int fildes, optional-actions;
struct termio *fermio-p;

DESCRIPTION
tcgetattr retrieves the parameters associated with the device
indicated by fildes and stores them in the termios structure indi-
cated by termios-p.

tcsetattr sets the parameters associated with the terminal us-
ing the information in the termios structure pointed to by
termios-p. The action taken is dependent on the value of
optional-actions. If optional-actions is TCSANOW, the change oc-
curs immediately. If optional-actions is TCSADRAIN, the change
occurs after all output written to fildes has been transmitted.
TCSADRAIN should be used when changing parameters that af-
fect output. If optional-actions is TCSAFLUSH, the change occurs
after all output written to the object indicated by fildes has been
transmitted; all input that has been received but not read is dis-
carded before the change is made.

tcgettattr is allowed from a background process; however,
the terminal attributes may be changed later by a foreground pro-
cess.

RETURN VALUE
On successful completion, a value of 0 is returned. Otherwise, —1
is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, tcgetattr and
tcsetattr return -1 and set errno to the corresponding

value:
[EBADF] The file descriptor fildes is not valid.
[EINVAL] The device does not support the function
called, or if the function called was
February, 1990 1

Revision C

tcgetattr(3P) tcgetattr(3P)

tcsetattr, optional-actions is an in-
valid value.

[ENOTTY] The file associated with fildes is not a ter-
minal.

SEE ALSO
cfgetospeed(3P), termios(7P).

2 February, 1990

Revision C

tcgetpgrp(3P) tcgetpgrp(3P)

NAME

tcgetpgrp — get distinguished process group ID
SYNOPSIS

#include <sys/types.h>

pid_t tcgetpgrp (fildes)
int fildes;

DESCRIPTION
tcgetpgrp is part of the POSIX Job Control option.

tcgetpgrp returns the value of the process group ID of the
foreground process group associated with the terminal.
tcgetpgrp may be called from a process that is a member of a
background process group; however, the information may be sub-
sequently changed by a process that is a member of a foreground
process group.
RETURN VALUE

On successful completion, t cgetpgrp returns the process group
ID of the foreground process group associated with the terminal.
Otherwise, —1 is returned and errno is set to indicate the error.

ERRORS
If any of the following conditions occur, tcgetpgrp will return
—1 and set errno to the corresponding value.

(EBADF] The file descriptor fildes is not valid.

[EINVAL] tcgetpgrp is not pemitted for the
device associated with fildes.

[ENOTTY] The calling process does not have a con-
trolling terminal, or the file is not the
controlling terminal.

SEE ALSO

setsid(2P), setpgid(2P), tcsetpgrp(3P).

February, 1990 1

Revision C

tcsetpgrp(3P)

NAME

tcsetpgrp(3P)

tcsetpgrp — set distinguished process group ID

SYNOPSIS

#include <sys/types.h>

int tcsetpgrp (fildes, pgrp-id)

int fildes;
pid _t pgrp-id;
DESCRIPTION

tcsetpgrp is part of the POSIX Job Control Option.

If the process has a controlling terminal, t csetpgrp sets the dis-
tinguished process group ID associated with the terminal to pgrp-
id. The file associated with fildes must be the controlling terminal
of the calling process, and the controlling terminal must be
currently associated with the session of the calling process. The
pgrp-id must match a process group ID of a process in the same
session as the calling process.

RETURN VALUE

On successful completion, tcsetpgrp returns 0. Otherwise, —1
is returned and errno is set to indicate the error.

ERRORS
[EBADF]

[EINVAL]

[ENOTTY]

[EPERM]

SEE ALSO

The file descriptor fildes is not valid.

tcsetpgrp is not permitted for the
device associated with fildes, or the value
of pgrp-id is less than or equal to 0 or
exceeds PID_MAX.

The calling process does.not have a con-
trolling terminal, or the file is not the
controlling terminal.

pgrp-id is greater than 0 and less than or
equal to PID_ MAX, and there is no pro-
cess in the process group indicated by
pgrp-id that has the same controlling ter-
minal as the calling process.

setsid(2P), setpgid(2P), tcgetpgrp(3P).

February, 1990

Revision C

termcap(3X) termcap(3X)

NAME .
tgetent, tgetnum, tgetflag, tgetstr, tgoto,
tputs — terminal independent operation routines

SYNOPSIS
char PC;
char *BC;
char *UP;
short ospeed;

int tgetent (bp, name)
char *bp, *name;

int tgetnum/(id)

char *id;

int tgetflag (id)

char *id;

char *tgetstr (id, area)
char *id, **area;

char *tgoto(cm, destcol, destline)
char *cm;

int destcol;

int destline;

int tputs{cp, dffcnt, outc)
char *c¢p;
int dffcnt;
int (*outc) () ;

DESCRIPTION
These functions extract and use capabilities from the terminal ca-
pability database termcap(4). Note that these are low-level rou-
tines.
tgetent extracts the entry for terminal name into the buffer at
bp. bp should be a character buffer of size 1024 and must be re-
tained through all subsequent calls to tgetnum, tgetflag, and
tgetstr. tgetent returns —1 if it cannot open the termcap
file, 0 if the terminal name given does not have an entry, and 1 if
successful. It looks in the environment for a TERMCAP variable.
If a variable is found whose value does not begin with a slash and
the terminal type name is the same as the environment string
TERM, the TERMCAP string is used instead of reading the
termcap file. If the value does begin with a slash, the string is
used as a pathname rather than /etc/termcap. This can speed

February, 1990 1

Revision C

termcap(3X) termcap(3X)

up entry into programs that call tgetent. It can also help debug
new terminal descriptions or be used to make one for your termi-
nal if you can’t write the file /etc/termcap.

tgetnum gets the numeric value of capability id, returning —1 if
is not given for the terminal. tgetflag returns 1 if the specified
capability is present in the terminal’s entry, O if it is not.
tgetstr gets the string value of capability id, placing it in the
buffer at area, advancing the area pointer. It decodes the abbrevi-
ations for this field described in termcap(4), except for cursor
addressing and padding information.

tgoto returns a cursor addressing string decoded from cm to go
to column destcol in line destline. It uses the external variables
UP (from the up capability) and BC (if bc is given rather than bs)
if necessary to avoid placing \n, "D, or @ in the returned string.
(Programs that call tgoto should be sure to turn off the XTABS
bit(s), since tgoto may now output a tab. Note that programs
using termcap should in general turn off XTABS anyway since
some terminals use CONTROL-I for other functions, such as non-
destructive space.) If a % sequence is given which is not under-
stood, then tgoto returns ‘‘O0OPS”’.

tputs decodes the leading padding information of the string cp;
affent gives the number of lines affected by the operation, or 1
if this is not applicable; outc is a routine that is called with each
character in turn. The external variable ospeed should contain
the output speed of the terminal as encoded by stty (1) . The
external variable PC should contain a pad character to be used
(from the pc capability) if a null (~ @) is inappropriate.

FILES
/1lib/libtermcap.a
/etc/termcap

SEE ALSO
ex(1), termcap(4).

2 February, 1990

RevisionC

tmpfile(3S) tmpfile(3S)

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>

FILE *tmpfile()

DESCRIPTION
tmpfile creates a temporary file using a name generated by
tmpnam(3S), and returns a corresponding FILE pointer. The file
is automatically deleted when the process using it terminates. The
file is opened for update (‘‘w+’’). tmpfile calls fopen and so
returns any error code passed to it from fopen.

RETURN VALUE

If the temporary file cannot be opened, an error message is printed
using perror(3C), and a NULL pointer is returned.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C),
perror(3C), tmpnam(3S).

February, 1990 1

Revision C

tmpnam(3S) tmpnam(3S)

NAME
tmpnam, tempnam— create a name for a temporary file

SYNOPSIS
#include <stdio.h>

char *tmpnam/(s)
char *s;

char *tempnam/(dir, pfx)
char *dir, *pfx;
DESCRIPTION

These functions generate filenames that can safely be used for a
temporary file.

tmpnam always generates a filename using the pathname defined
as p_tmpdir in the <stdio.h> header file. If s is NULL,
tmpnam leaves its result in an internal static area and returns a
pointer to that area. The next call to tmpnam will destroy the
contents of the area. If s is not NULL, it is assumed to be the ad-
dress of an array of at least 1 _tmpnam bytes, where 1_tmpnam
is a constant defined in <stdio.h>; tmpnam places its result in
that array and returns s.

tempnam allows the user to control the choice of a directory.
The argument dir points to the pathname of the directory in which
the file is to be created. If dir is NULL or points to a string which
is not a pathname for an appropriate directory, the pathname
defined as p_tmpdir in the <stdio.h> header file is used. If
that pathname is not accessible, /tmp will be used as a last resort.
This entire sequence can be upstaged by providing an environ-
ment variable TMPDIR in the user’s environment, whose value is
a pathname for the desired temporary-file directory.

Many applications prefer that names of temporary files contain
favorite initial letter sequences. Use the pfx argument for this.
This argument may be NULL or point to a string of up to 5 char-
acters to be used as the first few characters of the name of the tem-
porary file.

tempnam uses malloc(3C) to get space for the constructed
filename and returns a pointer to this area. Thus, any pointer
value returned from tempnam may serve as an argument to free
(see malloc(3C)). If tempnam cannot return the expected
result for any reason (i.e., malloc failed or attempts to find an
appropriate directory were unsuccessful), a NULL pointer will be

1 February, 1990

RevisionC

tmpnam(3S) tmpnam(3S)

returned.

NOTES

These functions generate a different filename each time they are
called.

Files created using these functions and either fopen(3S) or
creat(2) are temporary only in the sense that they reside in a
directory intended for temporary use and their names are unique.
It is the user’s responsibility to use unlink(2) to remove the file
when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), malloc(3C),
mktemp(3C), tmpfile(3S).

BUGS
If called more than 17,576 times in a single process, tmpnam and
tempnam will start recycling previously used names.
Between the time a filename is created and the file is opened, it is
possible for some other process to create a file with the same
name. This can never happen if that other process is using
tmpnam, tempnam, or mktemp(3C) and the ﬁlenames are
chosen carefully to avoid duplication by other means.

February, 1990 2

Revision C

trig(3M) trig(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 —
trigonometric functions

SYNOPSIS

#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan (x)
double x;

double atan2(y, x)
double x, y:

DESCRIPTION
sin, cos, and tan return, respectively, the sine, cosine, and
tangent of their argument, which is in radians.

asin retumns the arcsine of x, in the range —m/2 to 7t/2.
acos returns the arccosine of x, in the range 0 to 7.
atan returns the arctangent of x, in the range —n/2 to /2.

atan?2 returns the arctangent of y/x, in the range —x to =, using
the signs of both arguments to determine the quadrant of the return
value.

RETURN VALUE

sin, cos, and tan lose accuracy when their argument is far
from zero. For arguments sufficiently large, these functions return
0 when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the
standard error output. For less extreme arguments, a PLOSS error
is generated but no message is printed. In both cases, errno is
set to ERANGE.

1 February, 1990

Revision C

trig(3M) trig(3M)

If the magnitude of the argument of asin or acos is greater than
one, or if both arguments of atan2 are zero, zero is returned and
errno is set to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output.

These error-handling procedures may be changed with the func-
tion matherr(3M).

SEE ALSO
matherr(3M).

February, 1990 2

Revision C

tsearch(3C) tsearch(3C)

NAME

tsearch, tfind, tdelete, twalk — manage binary
search trees

SYNOPSIS
#include <search.h>

char *tsearch (key, rootp, compar)
char *key;

char **rootp;

int (*compar) () ;

char *tfind(key, rootp, compar) ;
char *key;

char **rootp;

int (*compar) () ;

char *tdelete (key, rootp, compar) ;
char *key;

char **rootp;

int (*compar) () ;

void twalk (root, action)
char *root;
void (*action) () ;

DESCRIPTION

tsearch, tfind, tdelete, and twalk are routines for mani-
pulating binary search trees. They are generalized from Knuth
(6.2.2) Algorithms T and D. All comparisons are done with a
user-supplied routine. This routine is called with two arguments,
the pointers to the elements being compared. It returns an integer
less than, equal to, or greater than 0, according to whether the first
argument is o be considered less than, equal to or greater than the
second argument. The comparison function need not compare
every byte, so arbitrary data may be contained in the elements in
addition to the values being compared.

tsearch is used to build and access the tree. key is a pointer to
a datum to be accessed or stored. If there is a datum in the tree
equal to *key (the value referenced by key), a pointer to this found
datum is returned. Otherwise, *key is inserted, and a pointer to it
returned. Only pointers are copied, so the calling routine must
store the data. roofp points to a variable that points to the root of
the tree. A NULL value for the variable referenced by rootp
denotes an empty tree; in this case, the variable will be set to point

1 February, 1990

Revision C

tsearch(3C) tsearch(3C)

to the datum which will be at the root of the new tree.

Like t search, t £ind will search for a datum in the tree, return-
ing a pointer to it if found. However, if it is not found, tfind
will return a NULL pointer. The arguments for t £ind are the
same as for t search.

tdelete deletes a node from a binary search tree. The argu-
ments are the same as for tsearch. The variable pointed to by
rootp will be changed if the deleted node was the root of the tree.
tdelete returns a pointer to the parent of the deleted node, or a
NULL pointer if the node is not found.

twalk traverses a binary search tree. root is the root of the tree
to be traversed. (Any node in a tree may be used as the root for a
walk below that node.) action is the name of a routine to be in-
voked at each node. This routine is, in turn, called with three ar-
guments. The first argument is the address of the node being visit-
ed. The second argument is a value from an enumeration data

type
typedef enum{preorder,postorder, endorder,leaf } VISIT;

(defined in the <search.h> header file), depending on whether
this is the first, second or third time that the node has been visited
(during a depth-first, left-to-right traversal of the tree), or whether
the node is a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character. Similar-
ly, although declared as type pointer-to-character, the value re-
turned should be cast into type pointer-to-element.

EXAMPLES
The following code reads in strings and stores structures contain-
ing a pointer to each string and a count of its length. It then walks
the tree, printing out the stored strings and their lengths in alpha-
betical order.

#include <search.h>
#include <stdio.h>

struct node { /*pointers to these are
char * string; stored in the tree*/
int length;

February, 1990 2

Revision C

tsearch(30) tsearch(3C)

char string space[10000}; /*space to store

strings*/
struct node nodes([500]; /*nodes to store*/
struct node *root = NULL; /*this points to the
root*/
main()
{
char *strptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare{(};
while (gets(strptr) != NULL && i++ < 500) {
/* set node */
nodeptr~>string = strptr;
nodeptr->length = strlen(strptr);

/* put node into the tree */
(void) tsearch((char *)nodeptr, &root,
node_compare) ;
/* adjust pointers, so we
don’t overwrite tree */
strptr += nodeptr->length + 1;
nodeptr++;
}

twalk (root, print_node);

/*
This routine compares two nodes, based on an
alphabetical ordering of the string field.
*/
int

node_compare (nodel, node2)
struct node *nodel, *node2;
{
return strcmp(nodel->string, node2->string);

}

/*
This routine prints out a node, the
first time twalk encounters it.
*/
void
3 February, 1990

Revision C

tsearch(3C) tsearch(3C)

print_node(node, order, level)
struct node **node;
VISIT order;
int level;
{
if (order == preorder || order == leaf) {
(void)printf("string = %20s, length = %d\n",
(*node)->string, (*node)—>length);

}

RETURN VALUE
A NULL pointer is returned by tsearch if there is not
enough space available to create a new node.

A NULL pointer is returned by tsearch, tfind and
tdelete if rootp is NULL on entry.

If the datum is found, both tsearch and tfind return a
pointer to it. If not, tfind returns NULL, and tsearch re-
turns a pointer to the inserted item.

SEE ALSO
bsearch(3C), hsearch(3C), lsearch(3C).

WARNINGS

The root argument to twalk is one level of indirection less
than the rootp arguments to tsearch and tdelete.

There are two nomenclatures used to refer to the order in
which tree nodes are visited. tsearch uses preorder, postord-
er and endorder to respectively refer to visting a node before
any of its children, after its left child and before its right, and
after both its children. The alternate nomenclature uses preord-
er, inorder and postorder to refer to the same visits, which
could result in some confusion over the meaning of postorder.

BUGS
If the calling function alters the pointer to the root, results are
unpredictable.

February, 1990 4

Revision C

ttyname(3C) ttyname(3C)

NAME
ttyname, isatty — find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;
int isatty (fildes)
int fildes:
DESCRIPTION
ttyname returns a pointer to a string containing the null-

terminated pathname of the terminal device associated with file
descriptor fildes.

RETURN VALUE
ttyname returns a NULL pointer if fildes does not describe a ter-
minal device in directory /dev.

isatty returns 1 if fildes is associated with a terminal device;
otherwise, it returns 0.

FILES
/dev/*

BUGS

The return value points to static data whose content is overwritten
by each call.

1 February, 1990

RevisionC

ttyslot(3C) ttyslot(3C)

NAME

ttyslot — find the slot in the utmp file of the current user
SYNOPSIS

int ttyslot()
DESCRIPTION

ttyslot returns the index of the current user’s entry in the
/etc/utmp file. This is accomplished by scanning the file
/etc/inittab for the name of the terminal device associated
with the standard input, the standard output, or the error output (0,
1,0r2).

SEE ALSO
getut(3C), ttyname(3C).

FILES
/etc/inittab
/etc/utmp

RETURN VALUE
A value of 0 is returned if an error is encountered while searching

for the terminal name or if none of the above file descriptors is as-
sociated with a terminal device.

February, 1990 1

Revision C

umount (3) umount (3)

NAME
umount — unmount a file system

SYNOPSIS
int umount (spec)
char *spec;

DESCRIPTION
umount requests that a previously mounted file system contained
on the block special device identified by spec be unmounted. spec
is a pointer to a path name. After unmounting the file system, the
directory upon which the file system was mounted reverts to its or-
dinary interpretation.
umount may be invoked only by the superuser.

ERRORS
umount will fail if one or more of the following are true:

[EPERM] The process’s effective user ID is not su-
peruser.
[ENXIO] spec does not exist.
[ENOTBLK] spec is not a block special device.
[EINVAL] spec is not mounted.
[EBUSY] A file on spec is busy.
[EFAULT] spec points to an illegal address.
RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a
value of —1 is returned and errno is set to indicate the error.

SEE ALSO
fsmount(2), unmount(2), mount(3).

1 February, 1990

Revision C

ungetc(3S) ungetc(3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
#include <stdio.h>

int ungetc(c, stream)
char c;
FILE *stream;

DESCRIPTION
ungetc inserts the character ¢ into the buffer associated with an
input stream. That character, ¢, will be returned by the next getc
call on that stream. ungetc returns ¢ and leaves the file stream
unchanged.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered. In
the case that stream is stdin, one character may be pushed back
onto the buffer without a previous read statement.

If ¢ equals EOF, ungetc does nothing to the buffer and returns
EOF.

fseek(3S) erases all memory of inserted characters.

RETURN VALUE
ungetc returns EOF if it can’t insert the character,

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

February, 1990 1
Revision C

varargs(3X) varargs(3X)

NAME
varargs — handle variable argument list

SYNOPSIS
#include <varargs.h>
va_alist
va_dcl

void va_start (pvar)
va_list pvar;
type va_arg(pvar, type)
va_list pvar;
void va_end (pvar)
va_list pvar;
DESCRIPTION
This set of macros allows portable procedures that accept variable
argument lists to be written. Routines that have variable argument
lists (such as print £(3S)) but do not use varargs are inherent-

ly nonportable, as different machines use different argument-
passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should
follow va_dc1l.

va_list is a type defined for the variable used to traverse the
list,

va_start is called to initialize pvar to the beginning of the list.
va_arg will return the next argument in the list referenced by
pvar. type is the type the argument is expected to be. Different

types can be mixed, but it is up to the routine to know what type of
argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start .. va_end,
are possible.

EXAMPLES
This example is a possible implementation of exec1(2).

#include <varargs.h>
#define MAXARGS 100

1 February, 1990

Revision C

varargs(3X) varargs(3X)

/*execl is called by
execl (file, argl, arg2, ..., (char *)0);
*x/
execl (va_alist)
va_dcl
{
va_list ap;
char *file;
char *args[MAXARGS];
int argno = 0;

va_start (ap);
file = va_arg(ap, char *);
while ((args{argno++] = va_arg(ap, char *)) != (char *)0)
va_end (ap);
return execv(file, args);

}

SEE ALSO
exec(2), print£(3S).

BUGS

It is up to the calling routine to specify how many arguments there
are, since it is not always possible to determine this from the stack
frame. For example, execl is passed a zero pointer to signal the
end of the list. printf can tell how many arguments are there
by the format.

It is non-portable to specify a second argument of char, short,
or float to va_arg, since arguments seen by the called func-
tion are not char, short, or float. C converts char and
short arguments to int and converts float arguments to
double before passing them to a function.

February, 1990 2

Revision C

vprint £(3S) vprint£(3S)

NAME
vprintf, vfprintf, vsprintf — format and output data
from a variable-length argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)

char *format;

va_list ap;

int vfprintf (stream, format, ap)
FILE *stream;

char *format;

va_list ap;

int vsprintf (s, format, ap)
char *s, *format;
va_list ap;

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as
printf, fprintf, and sprintf respectively, except that in-
stead of being called with a variable number of arguments, they
are called with an argument list as defined by varargs(5).

EXAMPLES
The following demonstrates how vfprintf could be used to
write an error routine.

#include <stdio.h>
#include <varargs.h>

/%
* error should be called like
* error (function_name, format, argl, arg2...);
*x/

/*VARARGSO*/

void

error(va_alist)

/* Note that the function name and format arguments
* cannot be separately declared because of the
*/definition of varargs.

va_dcl

{

va_list args;
char *fmt;

1 February, 1990

Revision C

vprint £(3S) vprint£(3S)

}

va_start (args);

/* print out name of function causing error */

(void) fprintf (stderr, "ERROR in %s: ",
va_arg{args, char *));

fmt = va_arg(args, char *);

/* print out remainder of message */

(void) vfprintf (fmt, args);

va_end (args);

(void)abort();

SEE ALSO
varargs(5).

February, 1990 2

Revision C

xdr(3N)

NAME

xdr(3N)

xdr — library routines for external data representation

DESCRIPTION

These routines allow C programmers to describe arbitrary data
structures in a machine-independent fashion. Data for remote pro-
cedure calls are transmitted using these routines.

FUNCTIONS
xdr_array ()

xdr_bool()
xdr_bytes ()
xdr destroy ()
xdr double()
xdr_enum()
xdr float ()
xdr_getpos()
xdr_inline()
xdr_int ()
xdr_long ()
xdr_opaque ()

xdr_reference()
xdr_setpos ()

xdr_short ()
xdr_string()

xdr_u_int ()

translate arrays toffrom external
representation

translate Booleans to/from exter-
nal representation

translate counted byte strings
to/from external representation
destroy XDR stream and free as-
sociated memory

translate double precision to/from
external representation

translate enumerations to/from
external representation

translate floating point to/from
external representation

return current position in XDR
stream

invoke the in-line routines associ-
ated with XDR stream

translate integers to/from external
representation

translate long integers to/from
external representation

translate fixed-size opaque data
to/from external representation
chase pointers within structures
change current position in XDR
stream

translate short integers to/from
external representation

translate null-terminated strings
to/from external representation
translate unsigned integers
to/from external representation

February, 1990

Revision C

xdr(3N)

xdr_u long()
xdr u_short ()
xdr_union()

xdr_void()
xdr_wrapstring()

xdrmem create ()
xdrrec_create ()

xdrrec_endofrecord()
xdrrec_eof ()

xdrrec_skiprecord()

xdrstdio_create()

SEE ALSO

xdr(3N)

translate unsigned long integers
to/from external representation
translate unsigned short integers
to/from external representation
translate discriminated unions
to/from external representation
always return one (1)

package RPC routine for XDR
routine, or vice-versa

initialize an XDR stream
initialize an XDR stream with
record boundaries

mark XDR record stream with an
end-of-record

mark XDR record stream with an
end-of-file

skip remaining record in XDR
record stream

initialize an XDR stream as stan-
dard I/O FILE stream

A/UX Network Applications Programming.

February, 1990

Revision C

ypclnt (3N) ypclnt (3N)

NAME
yp_bind, yp_unbind, yp_get_default_domain,
yp_match, yp first, yp next, yp_all, yp_ order,

yp_master, yperr_ string, ypprot_err — yellow
pages client interface
SYNOPSIS

#include <rpcsve/ypclnt.h>

yp_bind (indomain) ;
char *indomain;

void yp_unbind (indomain)
char *indomain;

yp_get_default_domain (outdomain) ;
char **outdomain;

yp_match (indomain, inmap, inkey, inkeylen, outval,
outvallen)

char *indomain;

char *inmap;

char *inkey;

int inkeylen;

char **outval;

int *outvallen;

yp_£first (indomain, inmap, outkey, outkeylen, outval,
outvallen)

char *indomain;

char *inmap;

char **outkey;

int *outkeylen;

char **outval;

int *outvallen;

yp_next (indomain, inmap, inkey, inkeylen, outkey,
outkeylen, outval, outvallen) ;

char *indomain;

char *inmap;

char xinkey;

int inkeylen;

char **outkey;

int *outkeylen;

char **outval;

int *outvallen;

1 February, 1990

Revision C

ypclnt (3N) ypclnt (3N)

yp_all (indomain, inmap, incallback) ;
char *indomain;

char *inmap;

struct ypall callback incallback;

yp_order (indomain, inmap, outorder) ;
char *indomain;

char *inmap;

int *outorder;

yp_master (indomain, inmap, outname) ;
char *indomain;

char *inmap;

char **outname;

char *yperr_ string (incode)
int incode;

ypprot_err (incode)
unsigned int incode;

DESCRIPTION
This package of functions provides an interface to the yellow
pages (YP) network lookup service. The package can be loaded
from the standard library /1ib/1libc.a. Refer to ypfiles(4)
and ypserv(1M) for an overview of the yellow pages, including
the definitions of map and domain, and a description of the vari-
ous servers, databases, and commands that comprise the YP.

All input parameters names begin with ““in’’. Output parameters
begin with ‘‘out’’. Output parameters of type ‘‘char **”’
should be addresses of uninitialized character pointers. Memory
is allocated by the YP client package using malloc(3), and may
be freed if the user code has no continuing need for it. For each
outkey and outval, two extra bytes of memory are allocated at the
end that contain NEWLINE and NULL, respectively, but these
two bytes are not reflected in outkeylen or outvallen.

indomain and inmap strings must be non-null and null-terminated.
String parameters which are accompanied by a count parameter
may not be null, but may point to null strings, with the count
parameter indicating this. Counted strings need not be null-
terminated.

All functions in this package of type “‘int”’ return O if they
succeed, and a failure code (YPERR xxxx) otherwise. Failure
codes are described under ERRORS below.

February, 1990 2

Revision C

ypclnt (3N) ypclnt (3N)

The YP lookup calls require a map name and a domain name, at
minimum. It is assumed that the client process knows the name of
the map of interest. Client processes should fetch the node’s de-
fault domain by calling yp_get_default_domain(), and
use the returned outdomain as the indomain parameter to succes-
sive YP calls.

To use the YP services, the client process must be ‘‘bound’’ to a
YP server that serves the appropriate domain using yp_bind.
Binding need not be done explicitly by user code; this is done au-
tomatically whenever a YP lookup function is called. yp_bind
can be called directly for processes that make use of a backup

strategy (e.g., a local file) in cases when YP services are not avail-
able.

Each binding allocates (uses up) one client process socket descrip-
tor; each bound domain costs one socket descriptor. However,
multiple requests to the same domain use that same descriptor.
yp_unbind () is available at the client interface for processes
that explicitly manage their socket descriptors while accessing
multiple domains. The call to yp_unbind () make the domain
‘‘unbound,”’ and free all per-process and per-node resources used
to bind it.

If an RPC failure results upon use of a binding, that domain will
be unbound automatically. At that point, the ypclnt layer will
retry forever or until the operation succeeds, provided that yp-
bind is running, and either

the client process can’t bind a server for the proper domain,
or
RPC requests to the server fail.

If an error is not RPC-related, or if ypbind is not running, or if a
bound ypserv process returns any answer (success or failure),
the ypclnt layer will return control to the user code, either with
an error code, or a success code and any results.

yp_match returns the value associated with a passed key. This
key must be exact; no pattern matching is available.

yp_first retums the first key-value pair from the named map in
the named domain.

3 February, 1990

RevisionC

ypclnt(3N) ypclnt (3N)

yp_next () returns the next key-value pair in a named map.
The inkey parameter should be the outkey returned from an initial
calltoyp first () (to get the second key-value pair) or the one
returned from the nth call to yp_next () (to get the ath + second
key-value pair).

The concept of first (and, for that matter, of next) is particular to
the structure of the YP map being processing; there is no relation
in retrieval order to either the lexical order within any original
(non-YP) data base, or to any obvious numerical sorting order on
the keys, values, or key-value pairs. The only ordering guarantee
‘made is that if the yp_first () function is called on a particular
map, and then the yp_next () function is repeatedly called on
the same map at the same server until the call fails with a reason
of YPERR_NOMORE, every entry in the data base will be seen ex-
actly once. Further, if the same sequence of operations is per-
formed on the same map at the same server, the entries will be
seen in the same order.

Under conditions of heavy server load or server failure, it is possi-
ble for the domain to become unbound, then bound once again
(perhaps to a different server) while a client is running. This can
cause a break in one of the enumeration rules; specific entries may
be seen twice by the client, or not at all. This approach protects
the client from error messages that would otherwise be returned in
the midst of the enumeration. The next paragraph describes a
better solution to enumerating all entries in a map.

yp_all provides a way to transfer an entire map from server to
client in a single request using TCP (rather than UDP as with oth-
er functions in this package). The entire transaction take place as
a single RPC request and response. You can use yp_all just
like any other YP procedure, identify the map in the normal
manner, and supply the name of a function which will be called to
process each key-value pair within the map. You return from the
call to yp_all only when the transaction is completed (success-
fully or unsuccessfully), or your ‘‘foreach” function decides
that it doesn’t want to see any more key-value pairs.

The third parameter to yp_all is
struct ypall callback *incallback {
int (*foreach) ();

char *data;
}:

February, 1990 4

Revision C

ypclnt (3N) ypclnt (3N)

The function foreach is called

foreach (instatus, inkey, inkeylen, inval, invallen, indata) ;
int instatus;
char *inkey;
int inkeylen;
char *inval;
int invallen;
char *indata;

The instatus parameter will hold one of the return status values
defined in <rpcsvc/yp_prot.h>; either YP_TRUE or an error
code. (See ypprot_err, below, for a function which converts a
YP protocol error code to a ypclnt layer error code.)

The key and value parameters are somewhat different than defined
in the synopsis section above. First, the memory pointed to by the
inkey and inval parameters is private to the yp_all function, and
is overwritten with the arrival of each new key-value pair. It is the
responsibility of the foreach function to do something useful
with the contents of that memory, but it does not own the memory
itself. Key and value objects presented to the foreach function
look exactly as they do in the server’s map; if they were not
newline-terminated or null-terminated in the map, they won’t be
here either.

The indata parameter is the contents of the incallback->data ele-
ment passed to yp_all. The data element of the callback struc-
ture may be used to share state information between the
foreach function and the mainline code. Its use is optional, and
no part of the YP client package inspects its contents; cast it to
something useful, or ignore it as you see fit.

The foreach function is a Boolean. It should return zero to in-
dicate that it wants to be called again for further received key-
value pairs, or non-zero to stop the flow of key-value pairs. If
foreach returns a non-zero value, it is not called again; the
functional value of yp_all is then 0.

yp_order returns the order number