Developer Note

Power Macintosh 7500 and Power Macintosh 8500 Computers
Apple Computer, Inc.
© 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical, electronic, photocopying, recording, or otherwise, without prior written permission of Apple Computer, Inc. Printed in the United States of America.
The Apple logo is a trademark of Apple Computer, Inc.
Use of the "keyboard" Apple logo (Option-Shift-K) for commercial purposes without the prior written consent of Apple may constitute trademark infringement and unfair competition in violation of federal and state laws.
No licenses, express or implied, are granted with respect to any of the technology described in this book.
Apple retains all intellectual property rights associated with the technology described in this book. This book is intended to assist application developers to develop applications only for Apple Macintosh computers.
Every effort has been made to ensure that the information in this manual is accurate. Apple is not responsible for printing or clerical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010
Apple, the Apple logo, APDA, AppleTalk, LaserWriter, Macintosh, Macintosh Quadra, MacTCP, PlainTalk, and QuickTime are trademarks of Apple Computer, Inc., registered in the United States and other countries.
AOCE, AppleCD, AppleScript, Disk First Aid, Finder, GeoPort, Power Macintosh, and QuickDraw are trademarks of Apple Computer, Inc.
Adobe Illustrator, Adobe Photoshop, and PostScript are trademarks of Adobe Systems Incorporated, which may be registered in certain jurisdictions.
America Online is a registered service mark of America Online, Inc.
Compuserve is a registered service mark of Compuserve, Inc.
DECnet is a trademark of Digital Equipment Corporation.
Docutek is a trademark of Xerox Corporation.
FrameMaker is a registered trademark of Frame Technology Corporation.
Helvetica and Palatino are registered trademarks of Linotype Company.
Internet is a trademark of Digital Equipment Corporation.
ITC Zapf Dingbats is a registered trademark of International Typeface Corporation.
NuBus is a trademark of Texas Instruments.
Optrotech is a trademark of Orbotech Corporation.
PowerPC is a trademark of International Business Machines Corporation, used under license therefrom.
UNIX is a registered trademark of Novell, Inc. in the United States and other countries, licensed exclusively through X/Open Company, Ltd.
Windows is a trademark of Microsoft Corporation and SoftWindows is a trademark used under license by Insignia from Microsoft Corporation.
Simultaneously published in the United States and Canada.

LIMITED WARRANTY ON MEDIA AND REPLACEMENT
If you discover physical defects in the manual or in the media on which a software product is distributed, APDA will replace the media or manual at no charge to you provided you return the item to be replaced with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS MANUAL, INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED IN DURATION TO NINETY (90) DAYS FROM THE DATE OF THE ORIGINAL RETAIL PURCHASE OF THIS PRODUCT.

Even though Apple has reviewed this manual, APPLE MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL, ITS QUALITY, ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT, THIS MANUAL IS SOLD "AS IS," AND YOU, THE PURCHASER, ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS MANUAL, even if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. No Apple dealer, agent, or employee is authorized to make any modification, extension, or addition to this warranty.

Some states do not allow the exclusion or limitation of implied warranties or liability for incidental or consequential damages, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.
Contents

Figures and Tables vii

Preface

About This Note ix

- Contents of This Note ix
- Supplemental Reference Documents x
 - Apple Publications x
 - Obtaining Information from APDA x
 - Other Publications xi
- Conventions and Abbreviations xii
 - Typographical Conventions xii
 - Abbreviations xii

Chapter 1

Introduction 1

- Power Macintosh Computers at a Glance 2
 - Comparison With Earlier Models 2
 - Comparison of the New Models 4
- Models and Features 6
 - Features of the Power Macintosh 7500 6
 - Features of the Power Macintosh 8500 9
 - Configurations 10
- Compatibility 11
 - Open Transport 11
 - NuBus Expansion Cards 11
 - Slot Manager Compatibility 11
 - PowerPC 604 Compatibility Issues 12
 - POWER-Clean Code 12
 - Emulation for Compatibility 12
 - Code Fragments and Cache Coherency 12

Chapter 2

Architecture 13

- Main Processor 14
 - PowerPC 601 Microprocessor 14
 - PowerPC 604 Microprocessor 16
- Memory Subsystem 16
 - Read-Only Memory 16
 - Random-Access Memory 16
 - Second-Level Cache 17
 - Hammerhead Memory Controller IC 17
Bus Bridge 17
Bandit PCI Bridge IC 18
Big-Endian and Little-Endian Bus Addressing 18
I/O Subsystem 18
Grand Central I/O Subsystem IC 18
Curio I/O Controller IC 19
Cuda Microcontroller IC 19
MESH High-Speed SCSI Interface 19
AWAC Sound IC 19
Video Subsystem 20
Video Subsystem ICs 20
Video Frame Buffer 20
Video Bus 21
Video Input 21
Second Stream Video Output 22

Chapter 3

I/O Features 23

I/O Ports 24
Serial Ports 24
Apple Desktop Bus (ADB) Port 25
Ethernet Port 26
SCSI Port 27
Sound Input Jack 28
Sound Output Jack 29
Video Monitor Connector 29
Disk Drives 31
CD-ROM Drive 31
Internal Hard Disk Drive 31
Floppy Disk Drive 32
Audio and Video Ports 33
S-Video Connectors 33
Composite Video Connectors 34
Audio Input and Output Connectors 34

Chapter 4

Expansion Features 35

RAM DIMMs 36
Installing RAM DIMMs 36
RAM DIMM Connectors 37
RAM DIMM Configurations 41
RAM Address Multiplexing 41
DRAM Devices 43
RAM Refresh 43
RAM DIMM Dimensions 43
Chapter 5

Software Features 55

New Features 56
Large Volume Support 56
64-Bit Volume Addresses 56
System-Level Software 57
Application-Level Software 57
Limitations 58
Drive Setup 58
Open Transport 58
New Features of Open Transport 59
Compatibility 59
Open Firmware Startup 60
Sound & Displays Control Panel 61
Screen Icon 62
Main Window 62
Subwindows 63
Energy Saver Software 64
Performance Enhancements 66
Improved File Sharing 66
Dynamic Recompilation Emulator 66
Resource Manager in Native Code 66
Math Library 67
New BlockMove Extensions 67
Hardware Support Features 69
PCI Bus Support 69
Removal of Slot Manager Dependencies 69
PCI Compatibility 70
Setting Up a VBL Task 70
POWER-Clean Native Code 70
POWER Emulation 71
POWER-Clean Code 71
Emulation and Exception Handling 72
Code Fragments and Cache Coherency 72
Limitations of PowerPC 601 Compatibility 72
QuickDraw Acceleration API 73
Display Manager 73
Support of Native Drivers 74
<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Large Volume Support</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of the Large Volume File System</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>API Changes</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>Allocation Block Size</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>File Size Limits</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Compatibility Requirements</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>The API Modifications Requirements</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Data Structures</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Extended Volume Parameter Block</td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>Extended I/O Parameter Block</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>New Extended Function</td>
<td>81</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Abbreviations</th>
<th>85</th>
</tr>
</thead>
</table>

| | Glossary | 89 |

| | Index | 93 |
Figures and Tables

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>Front view of the Power Macintosh 7500 computer</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1-2</td>
<td>Back view of the Power Macintosh 7500 computer</td>
<td>6</td>
</tr>
<tr>
<td>Figure 1-3</td>
<td>Unlocking the top chassis</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1-4</td>
<td>Top chassis in open position</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1-5</td>
<td>Front view of the Power Macintosh 8500 computer</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1-6</td>
<td>Back view of the Power Macintosh 8500 computer</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1-1	Comparison of new models with earlier models	3
Table 1-2	Video input and output features	4
Table 1-3	Comparison of the new models	5
Table 1-4	Configurations	11

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Architecture</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2-1</td>
<td>Block diagram</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>I/O Features</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3-1</td>
<td>Serial port connector</td>
<td>24</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>ADB connector</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>External video connector</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>A/V panel connectors on the Power Macintosh 8500</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3-5</td>
<td>Seven-pin S-video connector</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 3-1	Pin assignments on the serial connectors	25
Table 3-2	Pin assignments on the ADB connector	26
Table 3-3	Pin assignments on the Apple Ethernet adapter connector	27
Table 3-4	Pin assignments on the SCSI connectors	27
Table 3-5	Pin assignments on the external video connector	29
Table 3-6	Monitor sense codes	30
Table 3-7	Specifications of the AppleCD 600i CD-ROM drive	31
Table 3-8	Pin assignments on the floppy disk connector	32
Table 3-9	Pin assignments for the S-video input and output connectors	34

<table>
<thead>
<tr>
<th>Chapter 4</th>
<th>Expansion Features</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4-1</td>
<td>Dimensions of the RAM DIMM</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 4-1	Pin assignments on the RAM DIMM connectors	37
Table 4-2	Signals on the RAM DIMM connector	40
Table 4-3	Memory sizes and DIMM configurations	41
Table 4-4	Address multiplexing modes for various DRAM devices	42
Table 4-5 Address multiplexing 42
Table 4-6 Pin assignments on the L2 cache SIMM connector 46
Table 4-7 Signals on the L2 cache SIMM connector 49
Table 4-8 PCI signals 50
Table 4-9 Pin assignments on the DAV connector 52

Chapter 5 Software Features 55

Figure 5-1 Sound & Displays screen icon 62
Figure 5-2 Main window of the Sound & Displays control panel 63
Figure 5-3 A subwindow for a standard display monitor 63
Figure 5-4 A subwindow for an AppleVision display 64
Figure 5-5 A subwindow for sound input 64
Figure 5-6 Energy Saver control panel 65

Table 5-1 Summary of BlockMove routines 68
About This Note

This developer note describes the Power Macintosh 7500 and Power Macintosh 8500 computers. It compares those computers with the earlier Power Macintosh models and emphasizes the features that are new or different.

This developer note is intended to help hardware and software developers design products that are compatible with the Macintosh products described in the note. If you are not already familiar with Macintosh computers or if you would simply like more technical information, you may wish to read the supplementary reference documents described in this preface.

This note is published in two forms: an online version on the Apple Developer CD Series and a paper version distributed by APDA. For information about APDA, see “Obtaining Information from APDA” beginning on page x.

Contents of This Note

The information is arranged in six chapters:

- Chapter 1, “Introduction,” gives a summary of the features of the Power Macintosh 7500 and 8500 computers, describes their appearance, and lists the available configurations and options.

- Chapter 2, “Architecture,” describes the internal organization of the computers. It includes a block diagram and descriptions of the main components of the logic board.

- Chapter 3, “I/O Features,” describes the built-in I/O devices and the external I/O ports. It also describes the external video monitors that can be used with the Power Macintosh 7500 and 8500 computers.

- Chapter 4, “Expansion Features,” describes the expansion slots of the Power Macintosh 7500 and 8500 computers. This chapter provides guidelines for designing cards for the I/O expansion slot and brief descriptions of the expansion modules for the other slots.

- Chapter 5, “Software Features,” summarizes the new features of the ROM software and the system software that accompany the Power Macintosh 7500 and 8500 computers.

- Chapter 6, “Large Volume Support,” describes the way the file system software has been modified to support volumes larger than 4 GB.

This developer note also contains an appendix listing abbreviations, a glossary of terms, and an index.
Supplemental Reference Documents

The following documents provide information that complements or extends the information in this developer note.

Apple Publications

For information about the earlier Power Macintosh computers, refer to Macintosh Developer Note Number 8, APDA catalog number R0566LL/A. For information about the enhanced versions of those computers, refer to Macintosh Developer Note Number 11, APDA catalog number R0628LL/A.

For more information about the Macintosh implementation of the PCI bus, including information about writing PCI drivers in native PowerPC code, see Designing PCI Cards and Drivers for Power Macintosh Computers.

For information about the audio-video expansion features of the DAV slot, refer to Power Macintosh DAV Interface for PCI Expansion Cards.

Note

Designing PCI Cards and Drivers for Power Macintosh Computers and Power Macintosh DAV Interface for PCI Expansion Cards are in preparation. Preliminary drafts are available from Apple Developer Support.

For information about the DAV interface in the first generation of Power Macintosh computers, which used the NuBus expansion bus, refer to Macintosh DAV Interface for NuBus Expansion Cards, part of Macintosh Developer Note Number 8.

For information about the implementations of the Apple AV technologies on the Macintosh Quadra 840AV and Macintosh Centris 660AV computers, you may wish to refer to Macintosh Developer Note Number 5.

For information about the ADB and the serial ports, you may wish to refer to the Guide to the Macintosh Family Hardware, second edition.

Developers may also need copies of the appropriate Apple reference books. You should have the relevant books of the Inside Macintosh series, particularly Inside Macintosh: Devices, Inside Macintosh: QuickTime Components, and Inside Macintosh: Operating System Utilities.

Obtaining Information from APDA

The Apple publications listed above are available from APDA. APDA is Apple’s worldwide source for hundreds of development tools, technical resources, training products, and information for anyone interested in developing applications on Apple platforms. Customers receive the APDA
Tools Catalog featuring all current versions of Apple development tools and the most popular third-party development tools. APDA offers convenient payment and shipping options, including site licensing.

To order products or to request a complimentary copy of the APDA Tools Catalog, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA
America Online APDAorder
CompuServe 76666,2405

Internet APDA@applelink.apple.com

Other Publications

For information about programming the PowerPC™ 601 microprocessor, developers should have copies of Motorola’s PowerPC 601 RISC Microprocessor User’s Manual. Information specific to the PowerPC 604 is published in the PowerPC 604 Microprocessor Implementation Definition Book IV.

For information about the digital video interface, refer to the SAA7194/6 Philips Desktop Video Handbook.

For mechanical specifications of the 8-byte DIMM, refer to the MO-161 specification of the JEDEC JC-11 committee. Electrical specifications are defined by the JEDEC JC-42.5 committee; see JEDEC Standard No. 21-C.

For codec standards, refer to the ASCO 2300 Audio-Stereo Codec Specification from IT&T.

For information about the PCI expansion bus, refer to the PCI Local Bus Specification, Revision 2.0, and PCI Bus Binding to IEEE 1275-1994. You can obtain these documents from

PCI Special Interest Group
Intel Corporation
M/S HF3-15A
5200 NE Elam Young Parkway
Hillsboro, Oregon 97124-6497
Telephone 800-433-5177 (U.S.)
503-797-4207 (International)
For information about the Open Firmware startup process, see *1275-1994 Standard for Boot (Initialization, Configuration) Firmware*, IEEE part number DS02683. It is referred to in this developer note as IEEE Standard 1275. You can order a copy from

IEEE Standards Department
445 Hoes Lane, P.O. box 1331
Piscataway, NJ 08855-1331
Telephone 800-678-4333

Conventions and Abbreviations

This developer note uses the following conventions for typography and abbreviations.

Typographical Conventions

Computer-language text—any text that is literally the same as it appears in computer input or output—appears in *Courier* font.

Hexadecimal numbers are preceded by a dollar sign ($). For example, the hexadecimal equivalent of decimal 16 is written as $10.$

Note

A note like this contains information that is interesting but not essential for an understanding of the text. ♦

IMPORTANT

A note like this contains important information that you should read before proceeding. ▲

Abbreviations

When unusual abbreviations appear in this book, the corresponding terms are also spelled out. Standard units of measure and other widely used abbreviations are not spelled out. For a list of the abbreviations used in this book, see the appendix.
Introduction
Introduction

The Power Macintosh 7500 and Power Macintosh 8500 computers are new Macintosh computers that provide greater performance and flexibility than the earlier Power Macintosh 6100, 7100, and 8100 models. The Power Macintosh 7500 and 8500 computers incorporate several new features, which are described in this developer note.

The Power Macintosh 7500 and 8500 computers have some of the same advanced features as the Power Macintosh 9500 computer, described in a separate developer note.

Power Macintosh Computers at a Glance

This section summarizes the features of the new Power Macintosh models and compares them with the features of the earlier models. Later chapters of this developer note describe each feature in more detail.

Comparison With Earlier Models

Besides having many of the same features as the earlier models, the new Power Macintosh models also have several new features. The most important new features are:

- A processor on a replaceable card for an easy upgrade to a more advanced microprocessor or coprocessor
- A memory system using 8-byte DIMMs and a 128-bit memory data bus for higher performance
- Interfaces to I/O devices and expansion cards using the PCI expansion bus, an industry-standard bus with higher performance than the NuBus™
- Support for A/V features built into the main logic board

Table 1-1 compares the main features of the new Power Macintosh computers—including the Power Macintosh 9500—with those of the earlier Power Macintosh models. For features that vary within a group, the table shows the range of variation.
Table 1-1: Comparison of new models with earlier models

<table>
<thead>
<tr>
<th>Feature</th>
<th>Power Macintosh 6100, 7100, and 8100 computers</th>
<th>Power Macintosh 7500, 8500, and 9500 computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor type</td>
<td>PowerPC 601</td>
<td>PowerPC 601 or PowerPC 604</td>
</tr>
<tr>
<td>Processor upgrade</td>
<td>None</td>
<td>By replacing processor card</td>
</tr>
<tr>
<td>Maximum size of second-level cache</td>
<td>Up to 1 MB</td>
<td>Up to 4 MB</td>
</tr>
<tr>
<td>Type of RAM expansion</td>
<td>32-bit SIMM</td>
<td>64-bit DIMM</td>
</tr>
<tr>
<td>Maximum amount of RAM</td>
<td>72–264 MB</td>
<td>1 GB–1.5 GB</td>
</tr>
<tr>
<td>Maximum amount of VRAM</td>
<td>2 or 4 MB</td>
<td>4 MB</td>
</tr>
<tr>
<td>Support for 21-inch monitors</td>
<td>None, 16 bpp, or 24 bpp</td>
<td>16 bpp or 24 bpp</td>
</tr>
<tr>
<td>Video input</td>
<td>Provided by A/V card</td>
<td>Built-in *</td>
</tr>
<tr>
<td>Video output</td>
<td>Provided by A/V card</td>
<td>Built-in †</td>
</tr>
<tr>
<td>DAV connector for video processor?</td>
<td>Yes</td>
<td>Yes *</td>
</tr>
<tr>
<td>Sound</td>
<td>16-bit, 44.1 MHz, stereo input and output</td>
<td>Same</td>
</tr>
<tr>
<td>Internal hard disk</td>
<td>160 MB to 1 GB</td>
<td>500 MB to 2 GB</td>
</tr>
<tr>
<td>Internal drives in addition to hard disk and floppy disk</td>
<td>One 5.25-inch, no or one 3.5-inch</td>
<td>One 5.25-inch, one 3.5-inch</td>
</tr>
<tr>
<td>CD-ROM drive</td>
<td>Built-in on some models</td>
<td>Same</td>
</tr>
<tr>
<td>SCSI buses</td>
<td>1 fast internal, 1 external</td>
<td>Same</td>
</tr>
<tr>
<td>DMA for I/O devices?</td>
<td>Yes</td>
<td>Same</td>
</tr>
<tr>
<td>Network port</td>
<td>Ethernet (AUI)</td>
<td>Ethernet (AUI and 10baseT)</td>
</tr>
<tr>
<td>GeoPort</td>
<td>2 serial ports</td>
<td>same</td>
</tr>
<tr>
<td>Number and types of expansion slots</td>
<td>1–3 NuBus slots; DAV connector in some models</td>
<td>3–6 PCI slots; DAV connector in some models</td>
</tr>
</tbody>
</table>

* Applies to Power Macintosh 7500 and 8500 computers only.
† Applies to Power Macintosh 8500 computer only.
Introduction

The video input and output capabilities of Power Macintosh 7500 and 8500 computers extend those of the AV models in the earlier Power Macintosh computers. Table 1-2 compares the video features of the earlier models and the new models.

Table 1-2 Video input and output features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Power Macintosh 6100, 7100, and 8100 computers</th>
<th>Power Macintosh 7500 and 8500 computers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video input interfaces</td>
<td>Composite and S-video</td>
<td>Composite and S-video</td>
</tr>
<tr>
<td>Video input standards</td>
<td>NTSC, PAL, and SECAM</td>
<td>NTSC, PAL, and SECAM</td>
</tr>
<tr>
<td>Color space conversions</td>
<td>8 bpp grayscale, 16 bpp RGB, 16 bpp YUV</td>
<td>8 bpp grayscale, 16 bpp RGB, 16 bpp YUV, 32 bpp RGB</td>
</tr>
<tr>
<td>Window resizing method</td>
<td>Decimation</td>
<td>Decimation</td>
</tr>
<tr>
<td>Video codec port</td>
<td>DAV connector</td>
<td>DAV connector</td>
</tr>
<tr>
<td>Clipping method</td>
<td>Alpha plane</td>
<td>Clip mask in memory</td>
</tr>
<tr>
<td>Video output interfaces</td>
<td>Composite and S-video</td>
<td>Composite and S-video *</td>
</tr>
<tr>
<td>Video output standards</td>
<td>NTSC and PAL</td>
<td>NTSC and PAL *</td>
</tr>
<tr>
<td>Video output convolution</td>
<td>With pixel depths up to 8 bpp only</td>
<td>With all pixel depths</td>
</tr>
<tr>
<td>Dual stream video out?</td>
<td>No</td>
<td>Yes * (requires 4 MB of VRAM)</td>
</tr>
<tr>
<td>Support for genlock?</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Applies to Power Macintosh 8500 computer only

Note

Dual-stream video output enables the Power Macintosh 7500 and 8500 computers to display computer graphics and transmit video output at the same time. In earlier Power Macintosh AV models, the graphics display goes blank when the computer is transmitting video output.

Comparison of the New Models

Table 1-3 summarizes the main features of the new Power Macintosh computers. The Power Macintosh 9500 is included here because it has many of the same features as the Power Macintosh 7500 and 8500.
Table 1-3 Comparison of the new models

<table>
<thead>
<tr>
<th>Feature</th>
<th>Power Macintosh 7500</th>
<th>Power Macintosh 8500</th>
<th>Power Macintosh 9500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case design</td>
<td>Compact</td>
<td>Tower</td>
<td>Stretched Tower</td>
</tr>
<tr>
<td>Processor and clock speed</td>
<td>PowerPC 601 at 100 MHz</td>
<td>PowerPC 604 at 100 MHz</td>
<td>PowerPC 604 at 120 or 132 MHz</td>
</tr>
<tr>
<td>Processor upgrade</td>
<td>Processor card</td>
<td>same</td>
<td>same</td>
</tr>
<tr>
<td>Size of second-level cache</td>
<td>Optional, 256 KB–4 MB</td>
<td>256 KB; can be expanded up to 4 MB</td>
<td>512 KB</td>
</tr>
<tr>
<td>Number of RAM expansion slots</td>
<td>8</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Minimum amount of RAM</td>
<td>8 MB</td>
<td>16 MB</td>
<td>16 MB</td>
</tr>
<tr>
<td>Maximum amount of RAM</td>
<td>1 GB</td>
<td>1 GB</td>
<td>1.5 GB</td>
</tr>
<tr>
<td>Amount of VRAM</td>
<td>2–4 MB</td>
<td>2–4 MB</td>
<td>2–4 MB (on required PCI display card)</td>
</tr>
<tr>
<td>Pixel depth with 21-inch monitor</td>
<td>16 bpp (2 MB VRAM), 24 bpp (4 MB VRAM)</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Video input</td>
<td>Built-in, 24 bpp</td>
<td>Built-in, 24 bpp</td>
<td>None</td>
</tr>
<tr>
<td>Video output</td>
<td>None</td>
<td>Built-in</td>
<td>None</td>
</tr>
<tr>
<td>Sound</td>
<td>16-bit, 44.1 MHz, stereo input and output</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Internal hard disk</td>
<td>500 MB to 1 GB</td>
<td>1 GB to 2 GB</td>
<td>2 GB</td>
</tr>
<tr>
<td>Floppy disk</td>
<td>One 1.4 MB Apple SuperDrive</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Internal drives in addition to hard disk and floppy disk</td>
<td>One 5.25-inch, one 3.5-inch</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>CD-ROM drive</td>
<td>Optional (internal, 4X speed)</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>SCSI buses</td>
<td>1 fast internal, 1 external</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Network port</td>
<td>Ethernet (AUI and 10baseT connectors)</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>GeoPort</td>
<td>2 serial ports</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Expansion slots</td>
<td>3 PCI slots, 1 DAV connector</td>
<td>3 PCI slots, 1 DAV connector</td>
<td>6 PCI slots</td>
</tr>
</tbody>
</table>
Models and Features

This section summarizes the features of the Power Macintosh 7500 and 8500 computers.

Features of the Power Macintosh 7500

The Power Macintosh 7500 is the smallest of the new models. It has a compact desktop case with room for expansion cards. Figure 1-1 and Figure 1-2 show front and back views.

Figure 1-1 Front view of the Power Macintosh 7500 computer

Figure 1-2 Back view of the Power Macintosh 7500 computer
Introduction

The Power Macintosh 7500 computer has a hinged top chassis that folds out of the way to provide access to the expansion features. Figure 1-3 shows release catches and the support foot. Figure 1-4 shows the top chassis in its open position. The support foot shown in Figure 1-3 holds the weight of the top chassis when it is open; a stabilizing arm, shown in Figure 1-4, keeps the top chassis in its open position.
CHAPTER 1

Introduction

The following list is a summary of the hardware features of the Power Macintosh 7500 computer. Each of these features is described later in this developer note.

- **Processor.** The Power Macintosh 7500 computer has a PowerPC™ 601 microprocessor running at a clock frequency of 100 MHz.
- **Processor upgrade.** The processor subsystem is on a replaceable card for easy upgrading to a PowerPC 604 microprocessor or coprocessor.
- **Cache SIMM.** The computer has a slot for an optional second-level cache SIMM with 256 KB to 4 MB of fast RAM.
- **RAM.** The computer has a minimum of 8 MB of main RAM.
- **RAM expansion.** The computer has eight DIMM slots for RAM expansion up to 1 GB.
- **PCI expansion.** The computer has three expansion slots that conform to PCI V2.0 specifications.
- **Video monitor support.** The built-in video interface has 2 MB of VRAM, which provides up to 24 bpp on a 17-inch monitor and 16 bpp on a 21-inch monitor.
- **VRAM expansion.** Optional VRAM SIMMs expand VRAM to 4 MB, which provides up to 24 bpp on a 21-inch monitor.
- **Video input capability.** The computer accepts video input for display (up to 24 bpp and up to 640 by 480 pixels at 30 frames per second), frame capture, or QuickTime movie capture.
- **DAV slot.** The computer has an internal DAV slot for use by an optional digital video processor in a PCI expansion slot.
- **Standard I/O ports.** The computer has two GeoPort serial ports, an ADB port, stereo sound input and output jacks, a SCSI port, and an Ethernet port.
- **Fast internal SCSI.** The internal SCSI bus supports transfer rates up to 10 MB/second. (The external SCSI bus supports transfer rates up to 5 MB/second.)
- **Hard disk.** The internal hard disk has a capacity of 500 MB or 1 GB.
- **CD-ROM drive.** A built-in 4X speed CD-ROM drive is optional.
- **Space for additional drives.** The computer has space for two additional internal drives: one 5.25-inch drive (optional CD-ROM occupies this space) and one 3.5-inch drive.
- **Floppy disk.** The computer has an internal 1.4 MB Apple SuperDrive.
Features of the Power Macintosh 8500

The Power Macintosh 8500 has a tower case design with room for expansion cards and an additional internal storage device. Figure 1-5 shows a front view and Figure 1-6 shows a back view.

Figure 1-5 Front view of the Power Macintosh 8500 computer

Figure 1-6 Back view of the Power Macintosh 8500 computer
Introduction

The following list is a summary of the hardware features of the Power Macintosh 8500 computer. Each of these features is described later in this developer note.

- **Processor.** The Power Macintosh 8500 computer has a PowerPC 604 microprocessor running at a clock frequency of 100 MHz.
- **Processor upgrade.** The processor subsystem is on a replaceable card for easy upgrading to a more advanced microprocessor or coprocessor.
- **Cache SIMM.** The computer has a slot for a second-level cache SIMM with 256 KB (or up to 4 MB) of fast RAM.
- **RAM.** The computer has a minimum of 16 MB of main RAM.
- **RAM expansion.** The computer has eight DIMM slots for RAM expansion up to 1 GB.
- **PCI expansion.** The computer has three expansion slots that conform to PCI V2.0 specifications.
- **Video monitor support.** The built-in video interface has 2 MB of VRAM, which provides up to 16 bpp on a 21-inch monitor. VRAM is expandable to 4 MB.
- **Video input capability.** The computer accepts video input for display (up to 24 bpp and up to 640 by 480 pixels at 30 frames per second), frame capture, or QuickTime movie capture.
- **Video output capability.** The built-in video output can be connected to a TV monitor or a VCR. The computer can display simultaneous graphics and video output.
- **DAV slot.** The computer has an internal DAV slot for use by an optional digital video processor in a PCI expansion slot.
- **Standard I/O ports.** The computer has two GeoPort serial ports, an ADB port, stereo sound input and output jacks, a SCSI port, and an Ethernet port.
- **Fast internal SCSI.** The internal SCSI bus supports transfer rates up to 10 MB/second. (The external SCSI bus supports transfer rates up to 5 MB/second.)
- **Hard disk.** The internal hard disk has a capacity of 1 or 2 GB.
- **CD-ROM drive.** A built-in 4X speed CD-ROM drive is optional.
- **Space for additional drives.** The computer has space for three additional internal drives: one 5.25-inch drive (optional CD-ROM occupies this space) and two 3.5-inch drives.
- **Floppy disk.** The computer has an internal 1.4 MB Apple SuperDrive.

Configurations

The Power Macintosh 7500 computer is available with 8 or 16 MB of main RAM installed. The size of the internal hard disk can be either 500 MB or 1 GB. Most configurations also include a built-in CD-ROM drive. The Power Macintosh 8500 computer comes with 16 MB of RAM installed; the size of its internal hard disk can be either 1 or 2 GB. Table 1-4 shows the configurations.
Compatibility

Many features of the Power Macintosh 7500 and 8500 computers are different from those of earlier Power Macintosh computers. This section highlights key areas you should investigate to ensure that your hardware and software work properly with the new computers.

Open Transport

To preserve compatibility with older applications, new AppleTalk and TCP/IP stacks accept AppleTalk and TCP/IP networking calls and reroute them to the Open Transport software. See the section “Open Transport” on page 58.

NuBus Expansion Cards

The Power Macintosh 7500 and 8500 computers use PCI cards for expansion and do not have any NuBus expansion slots. For users who must be able to run NuBus expansion cards, an external NuBus expansion chassis with two or three NuBus slots is available. The expansion chassis has a cable that connects it to one of the computer’s PCI slots.

Slot Manager Compatibility

Software that uses the NuBus-specific Slot Manager to get and set information about display cards and drivers should be updated to use the Display Manager. The Display Manager provides a uniform API for display devices regardless of the implementation details of the devices. For more information, see “Removal of Slot Manager Dependencies” on page 69 and “Display Manager” on page 73.

Ordinarily, calls to the Slot Manager in the Power Macintosh 7500 and 8500 computers return an error result; the error code depends on the specific Slot Manager routine being called. If a NuBus expansion chassis is present and if a card occupies the specified slot, Slot Manager calls function normally.

Table 1-4 Configurations

<table>
<thead>
<tr>
<th>Model name</th>
<th>Amount of DRAM</th>
<th>Size of internal hard disk</th>
<th>Internal CD-ROM drive?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Macintosh 7500</td>
<td>8 MB</td>
<td>500 MB</td>
<td>No</td>
</tr>
<tr>
<td>Power Macintosh 7500</td>
<td>8 MB</td>
<td>500 MB</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Macintosh 7500</td>
<td>16 MB</td>
<td>500 MB</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Macintosh 7500</td>
<td>16 MB</td>
<td>1 GB</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Macintosh 8500</td>
<td>16 MB</td>
<td>1 GB</td>
<td>Yes</td>
</tr>
<tr>
<td>Power Macintosh 8500</td>
<td>16 MB</td>
<td>2 GB</td>
<td>Yes</td>
</tr>
</tbody>
</table>
CHAPTER 1

Introduction

PowerPC 604 Compatibility Issues

The Power Macintosh 8500 computer uses the PowerPC 604 microprocessor, which is somewhat different from the PowerPC 601 microprocessor used in the earlier Power Macintosh models. Some of the differences can affect the compatibility of programs developed exclusively for the PowerPC 601.

POWER-Clean Code

Applications for the Power Macintosh 8500 computer should be free of the POWER-only instructions that were included in the PowerPC 601.

The instruction set of the PowerPC 601 microprocessor includes some of the same instructions found in the instruction set of the POWER processor, and some compilers used to generate native code for earlier Power Macintosh models generated some of those POWER-only instructions. However, the PowerPC 604 microprocessor used in the Power Macintosh 8500 computer does not support the POWER-only instructions. When you compile applications for Power Macintosh computers, you should turn off the option that allows the compiler to generate POWER-only instructions.

Emulation for Compatibility

The Power Macintosh 8500 computer includes software emulation of some of the POWER features of the PowerPC 601 microprocessor. Although the term POWER emulation is often used, a more appropriate name for this feature is PowerPC 601 compatibility. Rather than supporting the entire POWER architecture, the goal is to support those features of the POWER architecture that are available to programs running in user mode on the PowerPC 601–based Power Macintosh computers. For more information, see “POWER Emulation” beginning on page 71.

Because the emulation of the POWER-only instructions degrades performance, Apple Computer encourages developers to revise any applications that use those instructions to conform with the PowerPC architecture. Emulation works, but performance is degraded; POWER-clean code is better.

Code Fragments and Cache Coherency

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and data, the PowerPC 604 has separate instruction and data caches. As long as applications deal with executable code by using the Code Fragment Manager, cache coherency is maintained. Applications that bypass the Code Fragment Manager (CFM) and generate executable code in memory, and that do not use the proper cache synchronization instructions or CFM calls, are likely to encounter problems when running on the PowerPC 604.
Architecture
This chapter describes the architecture of the Power Macintosh 7500 and Power Macintosh 8500 computers. It describes each of the major subsystems: the main processor, the memory subsystem, the I/O subsystem, and the video subsystem.

The architecture of the Power Macintosh 7500 and 8500 computers is based on three buses: the processor bus, the PCI bus, and the video bus. The processor bus connects the microprocessor and the memory. The PCI bus connects the expansion slots and the I/O devices. The video bus connects the video RAM and the video input and output devices.

Figure 2-1 is a simplified block diagram of the Power Macintosh 7500 and 8500 computers showing the three buses and the major ICs on the main logic board.

Main Processor

The main processor and its associated clock circuits are on a plug-in card. The processor card provides an upgrade path to a faster or more powerful microprocessor. The main processor in the Power Macintosh 7500 computer is a PowerPC 601 microprocessor; the main processor in the Power Macintosh 8500 computer is a PowerPC 604 microprocessor.

PowerPC 601 Microprocessor

The principal features of the PowerPC 601 microprocessor include

- full RISC processing architecture
- parallel processing units: one integer unit and one floating-point unit
- a branch manager that can usually implement branches by reloading the incoming instruction queue without using any processing time
- an internal memory management unit (MMU)
- a single built-in 32 KB cache for data and instructions

For complete technical details, see *PowerPC 601 RISC Microprocessor User's Manual*.
Architecture

Figure 2-1 Block diagram

Main Processor

15
PowerPC 604 Microprocessor
The principal features of the PowerPC 604 microprocessor include
- full RISC processing architecture
- parallel processing units: one load-store unit, two integer units, one complex integer unit, and one floating-point unit
- a branch manager that can usually implement branches by reloading the incoming instruction queue without using any processing time
- an internal memory management unit (MMU)
- separate built-in caches for data and instructions, 16 KB each, four-way set associative

For complete technical details, see *PowerPC 604 Microprocessor Implementation Definition Book IV.*

Memory Subsystem
The memory subsystem is made up of the ROM, the RAM, the second-level cache, and the Hammerhead memory controller IC.

Read-Only Memory
The Power Macintosh 7500 and 8500 computers use a ROM SIMM like the one in the earlier Power Macintosh computers. The ROM SIMM contains 4 MB of ROM with 100 ns access time.

Random-Access Memory
All RAM in the Power Macintosh 7500 and 8500 computers is provided by DRAM devices on 8-byte DIMMs (Dual Inline Memory Modules). The computers come with either 8 or 16 MB of RAM installed in the form of two DIMMs. The user can add more memory by installing one or more additional DIMMs. When the startup software detects two DIMMs that contain the same amount of memory, it configures their combined memory as a single bank with a memory data bus 128 bits wide.

The Power Macintosh 7500 and 8500 computers have eight DIMM slots that can provide 1 GB of memory if fully populated with DIMMs that use 64-megabit devices. For more information, see “RAM DIMMs” beginning on page 36.
Architecture

Second-Level Cache

The Power Macintosh 7500 and 8500 computers have a slot for a second-level (L2) cache on a SIMM. The Power Macintosh 8500 computer comes with a 256 KB L2 cache SIMM installed.

The user can install a cache SIMM by plugging the SIMM into a connector on the main logic board. The Hammerhead memory controller IC interrogates two pins of this connector during system startup, to determine the size of the memory on the SIMM. If no SIMM is installed, pull-up resistors on these pins cause the Hammerhead IC to disable all external cache operations. The Hammerhead IC is described in the next section.

The L2 cache is organized as a write-back cache; it is direct mapped (single set) with allocate on read or write. The cache data store is implemented with synchronous burst static RAM devices; the cache tag store is implemented with standard static RAM devices.

For pin assignments and mechanical specifications of the cache SIMM, see “Second-Level Cache SIMM” beginning on page 45.

Hammerhead Memory Controller IC

A custom IC called Hammerhead controls the memory subsystem. The components of the Hammerhead IC are

- the system bus controller
- the DRAM controller
- the ROM controller
- the second-level (L2) cache controller

The Hammerhead IC controls a 128-bit-wide DRAM memory array that provides low-latency accesses and improved bandwidth. The Hammerhead IC supports main memory sizes up to 1.5 GB. For more information about memory operation, see “RAM Address Multiplexing” beginning on page 41.

Bus Bridge

As the block diagram shows, the I/O subsystem is connected to the PCI bus. The PCI bus and the processor bus operate asynchronously: the PCI bus at a clock rate of 33 MHz and the processor bus at 50 MHz.

Note

The video subsystem is connected to a separate bus. See “Video Subsystem” beginning on page 20. ♦
Bandit PCI Bridge IC

The interface between the PCI bus and the main processor and memory subsystem is the Bandit PCI bus bridge IC. The Bandit IC provides buffering and address translation between the processor bus and the PCI bus. The Bandit IC supports burst transfers, in both directions, of up to 32 bytes in length—the size of a cache block.

A separate logic device (gate array) provides the priorities for bus arbitration as follows:

1. Grand Central IC (I/O device controller; highest priority)
2. PCI slots and Bandit master, in round-robin sequence: that is, each in turn, with equal priority

The PCI expansion slots are connected directly to the PCI bus. See “PCI Expansion Slots” beginning on page 49.

Big-Endian and Little-Endian Bus Addressing

The Power Macintosh 7500 and 8500 computers support both big-endian and little-endian conventions for addressing bytes in a word. Byte order for addressing on the processor bus is big-endian and byte order on the PCI bus is little-endian. The Bandit IC performs the appropriate byte swapping and address transformations to translate between the two addressing conventions. For more information about the translations between big-endian and little-endian byte order, see Part One, “The PCI Bus,” in Designing PCI Cards and Drivers for Power Macintosh Computers.

I/O Subsystem

The I/O subsystem is made up of the Grand Central IC and several I/O interface ICs, as shown in the block diagram on page 15.

Grand Central I/O Subsystem IC

The Grand Central custom IC provides an interface between the standard Macintosh I/O devices and the PCI bus. A DMA controller in the Grand Central IC supports DMA I/O transfers through that IC’s internal I/O devices and through the Curio IC.

The Grand Central IC performs the following functions:

- support for the Cuda IC (VIA registers)
- central system interrupt collection
- floppy disk interface (SWIM III)

The SWIM III floppy disk drive controller in the Grand Central IC is an extension of the SWIM II design used in earlier Macintosh models. The SWIM III controller supports DMA data transfers and does not require disabling of interrupts during floppy disk accesses.
The Grand Central IC provides bus interfaces for the following I/O devices:

- Curio multipurpose I/O IC
- Cuda microcontroller IC
- MESH controller IC for fast internal SCSI devices
- AWAC sound amplifier and codec IC

The Grand Central IC also provides a 16-bit bus to several other devices, including the nonvolatile RAM and the Sixty6 IC.

The Grand Central IC is connected to the PCI bus and uses the 33 MHz PCI bus clock.

Curio I/O Controller IC

The Curio IC is a multipurpose custom IC that contains a Media Access Controller for Ethernet (MACE), a SCSI controller, and a Serial Communications Controller (SCC).

The SCC section of the Curio includes 8-byte FIFO buffers for both transmit and receive data streams.

The Curio IC supports DMA transfers between its I/O ports and the computer’s main memory.

Cuda Microcontroller IC

The Cuda IC is a custom version of the Motorola MC68HC05 microcontroller. It has several functions, including

- program control of the power supply (soft power)
- management of system resets
- maintenance of parameter RAM
- control of the Apple Desktop Bus (ADB)
- management of the real-time clock

MESH High-Speed SCSI Interface

The MESH IC is a custom IC that controls the SCSI bus to the internal SCSI devices. Because this bus does not have to drive a long external bus, it can operate at higher transfer rates than the external SCSI bus. The internal SCSI bus supports data transfers at up to 10 MB per second; the external SCSI bus operates at up to 5 MB per second.

AWAC Sound IC

The audio waveform amplifier and converter (AWAC) is a custom IC that combines a waveform amplifier with a 16-bit digital sound encoder and decoder (codec). It conforms to the IT&T ASCO 2300 Audio-Stereo Codec Specification and furnishes high-quality sound.
input and output. For a description of the operation of the AWAC IC, see *Power Macintosh DAV Interface for PCI Expansion Cards.*

A PCI expansion card can transmit digital audio to the AWAC IC by way of the DAV connector. See the section “DAV Connector” beginning on page 51.

Video Subsystem

The Power Macintosh 7500 and 8500 have a built-in video subsystem that incorporates the features of the A/V cards used with the earlier Power Macintosh computers and adds a few enhancements. The video subsystem handles video input and output, mixes video with computer graphics, and supports a wide variety of video monitors. In addition, the Power Macintosh 8500 computer supports a second video output stream to television devices such as VCRs and monitors.

The video subsystem is made up of an interface to the processor bus, 2 MB or 4 MB of VRAM, a video stream to the computer monitor, a second video stream to the video output, and an input video stream.

Video Subsystem ICs

The video subsystem is implemented by the following ICs:

- Chaos, a custom IC that provides data bus buffering between the video subsystem and the processor bus
- Control, a custom IC that provides addressing and control for the video subsystem
- RaDACal, a high-performance digital-to-analog converter (DAC) used for the video stream to the monitor
- Sixty6, an RGB-to-YUV converter and convolver for the second video output stream (on the Power Macintosh 8500 computer only)
- a 7187 digital video encoder (DENC) for the second video output stream (on the Power Macintosh 8500 computer only)
- an 8758 analog-to-digital converter (ADC) for the video input stream
- a 7196 digital video decoder and scaler IC (DESC) for the video input stream
- Plan B, a DMA controller for video input data from the 7196 DESC IC

Video Frame Buffer

The video frame buffer is implemented by four VRAM slots, each of which accepts a 1 MB VRAM SIMM. With two SIMMs installed (2 MB VRAM), the video display supports up to 24 bpp on monitors up to 17 inches and 16 bpp on a 21-inch monitor. With all four SIMMs installed (4 MB VRAM), the video display supports up to 24 bpp on all monitors up to 21 inches.
Architecture

The data path through the video PCI to the VRAM is 64 bits wide. The output data path from the VRAMs to the RaDACal high-performance DAC is 128 bits wide. The RaDACal IC provides the analog R, G, and B signals to the monitor. The RaDACal IC also generates the video timing for the monitor and supports the hardware cursor.

The Sixty6 custom IC and the 7187 DENC IC produce the second video output stream, which can either mirror the graphics display or display a separate image.

With the full 4 MB of VRAM installed, the frame buffer can support separate simultaneous displays on the monitor and the second video output stream. With a second video output stream at 24 bpp, the buffer can simultaneously support up to 16 bpp on a 21-inch monitor. With a second video output stream at 16 bpp, the buffer can support up to 24 bpp on a 21-inch monitor.

With only 2 MB of VRAM, the computer can support only one display at a time; when the second video stream is active, the main display shuts off. With the full 4 MB of VRAM, the graphics monitor remains active at all times.

Video Bus

The Control and Chaos ICs provide a separate bus bridge for the video subsystem. The timing on the video bus is synchronous with the main system bus.

Video Input

The video input feature is implemented by the 8758 video ADC IC and the 7196 digital video decoder and scaler (DESC) IC. The video data can be stored either in the video display buffer (VRAM) or in an offscreen pixel map in main memory. Video data transfers are DMA transfers and are controlled by a DBDMA engine in the Plan B IC.

When video input data is sent to the display buffer, it can be clipped with a 1-bit-per-pixel clip mask using the DBDMA read channel. This mode of data transfer provides a video play-through mode with clipping of obscured regions and menus as well as simple titles.

When video input data is stored in a pixel map in main memory, software can perform any required clipping and blending by using the CopyBits routine in QuickDraw when moving the pixel map to a visible region of the display. The video input channel preserves the alpha channel so that software can perform alpha blending.

The Plan B IC provides two DBDMA channels for the 7196 DESC IC: a DBDMA write channel and a DBDMA read channel. The DBDMA write channel takes data from the pixel FIFO buffer in the 7196 IC, attaches an appropriate DMA address, and performs a PCI write operation. The DBDMA read channel reads the 1-bit-per-pixel clip mask from main memory.

The 7196 DESC IC can also accept video input data from the DAV connector. See the section “DAV Connector” beginning on page 51.
Second Stream Video Output

In addition to the main video display, the Power Macintosh 8500 computer provides a second video stream for a television monitor or a VCR. The second video stream can either duplicate the main display (mirror mode) or display an independent image. With the full 4 MB of VRAM, the main monitor remains active while the second video stream is active.

The second video stream is a high-quality interlaced video signal with convolution to reduce interlace flicker. It supports television monitors using either NTSC or PAL format.

The second video stream is generated by the Sixty6 convolver IC and the 7187 video DENC IC. The Sixty6 IC converts the video data from RGB color space to YUV color space and then performs the convolution on the data in YUV color space. The 7187 DENC IC takes square pixels in YUV format from the Sixty6 IC and encodes them into composite video in either NTSC or PAL format.
I/O Features
I/O Features

This chapter describes the I/O features of the Power Macintosh 7500 and Power Macintosh 8500 computers, including the built-in I/O devices and the interfaces for external I/O devices.

I/O Ports

The Power Macintosh 7500 and 8500 computers have the standard I/O ports found on other Macintosh models. Figure 1-2 and Figure 1-6 in Chapter 1 show the location of the I/O ports on the backs of the computers.

This section describes the following I/O ports:

- serial ports
- ADB port
- Ethernet port
- SCSI port
- sound input jack
- sound output jack
- video monitor connector

Note
The Power Macintosh 7500 and 8500 computers also have a set of sound and video input and output connectors grouped together on an A/V panel. Those connectors are described in the section “Audio and Video Ports” beginning on page 33.

Serial Ports

The Power Macintosh 7500 and 8500 computers have two serial ports on the back panel. Both ports use 9-pin circular mini-DIN sockets, as shown in Figure 3-1; the serial port sockets accept either 8-pin or 9-pin plugs.
I/O Features

Either port can be independently programmed for asynchronous or synchronous communication formats including AppleTalk and the full range of Apple GeoPort protocols. With external adapters connected to the serial ports, the computer can communicate with a variety of ISDN and other telephone transmission facilities.

Note
The serial ports support DMA transfers to and from main memory.

Table 3-1 gives the pin assignments for both serial connectors.

Table 3-1: Pin assignments on the serial connectors

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HSKo</td>
<td>Handshake output</td>
</tr>
<tr>
<td>2</td>
<td>HSKi</td>
<td>Handshake input or external clock (up to 920 Kbit/sec.)</td>
</tr>
<tr>
<td>3</td>
<td>TxD–</td>
<td>Transmit data –</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>RxD–</td>
<td>Receive data –</td>
</tr>
<tr>
<td>6</td>
<td>TxD+</td>
<td>Transmit data +</td>
</tr>
<tr>
<td>7</td>
<td>GPi</td>
<td>General-purpose input (wake up CPU or perform DMA handshake)</td>
</tr>
<tr>
<td>8</td>
<td>RxD+</td>
<td>Receive data +</td>
</tr>
<tr>
<td>9</td>
<td>+5 V</td>
<td>Power to external device (500 mA maximum)</td>
</tr>
</tbody>
</table>

Pin 9 on each serial connector provides +5 V power from the power supply for the Apple Desktop Bus (ADB). An external device should draw no more than 100 mA from that pin. The total current available for all devices connected to the +5 V supply for the ADB and the serial ports is 500 mA. Excessive current drain causes a circuit breaker to interrupt the +5 V supply; the breaker automatically resets when the load returns to normal.

Both serial ports include the GPi (general-purpose input) signal on pin 7. The GPi signal for each port connects to the corresponding data carrier detect input on the SCC portion of the Curio custom IC, which is described on page 19. For more information about the serial ports, see Guide to the Macintosh Family Hardware, second edition.

Apple Desktop Bus (ADB) Port

The Apple Desktop Bus (ADB) is an asynchronous communication bus used for relatively slow user-input devices such as the keyboard and the mouse. The Power Macintosh 7500 and 8500 computers have a single ADB port on the back panel. The connector is a 4-pin mini-DIN socket, as shown in Figure 3-2.
The ADB is a single-master, multiple-slave serial communication bus that uses an asynchronous protocol. The custom ADB microcontroller (the Cuda IC) drives the bus and reads the status from the selected external device. Table 3-2 lists the ADB connector pin assignments.

Table 3-2 Pin assignments on the ADB connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADB</td>
<td>Bidirectional data bus</td>
</tr>
<tr>
<td>2</td>
<td>PSW</td>
<td>Power-on signal (generates reset and interrupt key combinations)</td>
</tr>
<tr>
<td>3</td>
<td>+5V</td>
<td>5-volt power to external device</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
</tbody>
</table>

Note
The total current available for all devices connected to the +5V pins on the ADB and the serial ports is 500 mA. Each device should use no more than 100 mA. ♦

For more information about the ADB, see *Guide to the Macintosh Family Hardware*, second edition. The software characteristics of the ADB are described in *Inside Macintosh: Devices*.

Ethernet Port
The Power Macintosh 7500 and 8500 computers have a built-in Ethernet port. The Ethernet port accepts either a 10baseT cable or the Apple Ethernet adapter for thicknet or thinnet cables. The electrical and mechanical characteristics of the Ethernet port are the same as on other current Macintosh computers.

The Ethernet port has two connectors but operates only one of them at a time. If devices are plugged into both connectors, the system defaults to the 10baseT connection.

The pin assignments for the connector for the Apple Ethernet adapter are shown in Table 3-3.
I/O Features

Table 3-3 Pin assignments on the Apple Ethernet adapter connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>5-volt power to external device</td>
<td>8</td>
<td>+5V</td>
<td>5-volt power to external device</td>
</tr>
<tr>
<td>2</td>
<td>DI+</td>
<td>Data input +</td>
<td>9</td>
<td>DO+</td>
<td>Data output +</td>
</tr>
<tr>
<td>3</td>
<td>DI−</td>
<td>Data input −</td>
<td>10</td>
<td>DO−</td>
<td>Data output −</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
<td>11</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>CI+</td>
<td>Control input +</td>
<td>12</td>
<td>n.c.</td>
<td>No connection</td>
</tr>
<tr>
<td>6</td>
<td>CI−</td>
<td>Control input −</td>
<td>13</td>
<td>n.c.</td>
<td>No connection</td>
</tr>
<tr>
<td>7</td>
<td>+5V</td>
<td>5-volt power to external device</td>
<td>14</td>
<td>+5V</td>
<td>5-volt power to external device</td>
</tr>
</tbody>
</table>

SCSI Port

The Power Macintosh 7500 and 8500 computers have a SCSI bus for external SCSI devices and for the internal CD-ROM drive. The external SCSI connector is a 25-pin D-type connector; the internal CD-ROM drive uses a 50-pin connector.

Table 3-4 shows the pin assignments on the internal and external SCSI connectors.

Table 3-4 Pin assignments on the SCSI connectors

<table>
<thead>
<tr>
<th>Pin (internal 50-pin connector)</th>
<th>Pin (external 25-pin connector)</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8</td>
<td>/DB0</td>
<td>Bit 0 of SCSI data bus</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>/DB1</td>
<td>Bit 1 of SCSI data bus</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>/DB2</td>
<td>Bit 2 of SCSI data bus</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>/DB3</td>
<td>Bit 3 of SCSI data bus</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>/DB4</td>
<td>Bit 4 of SCSI data bus</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>/DB5</td>
<td>Bit 5 of SCSI data bus</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>/DB6</td>
<td>Bit 6 of SCSI data bus</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>/DB7</td>
<td>Bit 7 of SCSI data bus</td>
</tr>
<tr>
<td>18</td>
<td>20</td>
<td>/DBP</td>
<td>Parity bit of SCSI data bus</td>
</tr>
<tr>
<td>25</td>
<td>–</td>
<td>n.c.</td>
<td>No connection</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>TPWR</td>
<td>+5 V terminator power</td>
</tr>
<tr>
<td>32</td>
<td>17</td>
<td>/ATN</td>
<td>Attention</td>
</tr>
<tr>
<td>36</td>
<td>6</td>
<td>/BSY</td>
<td>Bus busy</td>
</tr>
</tbody>
</table>

continued
I/O Features

The external SCSI port has automatic termination like that on the earlier Power Macintosh computers. When no external SCSI device is connected, the automatic termination is active. When one or more external SCSI devices are connected, the automatic termination is removed. As usual, the external SCSI device at the end of the SCSI bus requires termination.

The internal end of the SCSI bus is terminated by a 110 Ω passive terminator. The terminator is located on the main logic board near the portion of the internal chassis connector that contains the signals for the internal CD-ROM drive. The internal CD-ROM drive does not include a terminator.

Sound Input Jack

The Power Macintosh 7500 and 8500 computers have a stereo sound input jack for connecting an external microphone or a line-level source. The computers provide sound digitization and recording with 16-bit samples at sample rates of up to 44.1 KHz and support Apple Computer’s speech synthesis and recognition software.

The sound input jack is a 1/8-inch stereo phone jack with an additional contact to supply power to an Apple microphone. The sound input jack accepts either the Apple PlainTalk line-level microphone or a pair of line-level signals by way of a separate adapter.

The sound input jack has the following electrical characteristics:

- input impedance: 8000 Ω
- maximum level: 2 V rms
- maximum gain: 22.5 dB
- signal-to-noise ratio: 82 dB
I/O Features

Note
The Apple PlainTalk microphone requires power from the main computer, which it obtains by way of an extra-long, 4-conductor plug that makes contact with a 5-volt pin inside the sound input jack.

Sound Output Jack
The Power Macintosh 7500 and 8500 computers have a stereo sound output jack for connecting external powered speakers or other line-level devices. Inserting a plug into the jack disconnects the internal speaker.

The sound output jack is a 1/8-inch stereo phone jack; it has the following electrical characteristics:
- output impedance: 37 Ω
- maximum level: 0.9 V rms
- maximum attenuation: 22.5 dB
- frequency response: 20 Hz to 20 kHz, plus or minus 2 dB
- harmonic distortion plus noise: less than 0.05 percent at 1 V rms input
- signal to noise ratio: 85 dB; no audible discrete tones
- channel separation: 80 dB; 32 dB when 32 Ω headphones are connected

Video Monitor Connector
The Power Macintosh 7500 and 8500 computers require an external video monitor for their graphics displays. The video monitor connector is a DB-15 connector. Figure 3-3 shows the pin numbers and Table 3-5 shows the pin assignments.

Figure 3-3 External video connector

Table 3-5 Pin assignments on the external video connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RED.GND</td>
<td>Red video ground</td>
</tr>
<tr>
<td>2</td>
<td>RED.VID</td>
<td>Red video signal</td>
</tr>
<tr>
<td>3</td>
<td>/CSYNC</td>
<td>Composite synchronization signal</td>
</tr>
</tbody>
</table>

continued
To identify the type of monitor connected, the Power Macintosh 7500 and 8500 computers use the Apple monitor sense codes and the extended sense codes. Table 3-6 shows the sense codes for each of the monitors these computers can support. Refer to the Macintosh Technical Note *M.HW.SenseLines* for a description of the sense code system.

Table 3-6 Monitor sense codes

<table>
<thead>
<tr>
<th>Monitor type</th>
<th>Standard sense code (SENSE2–0)</th>
<th>Extended sense code (SENSE1,2)</th>
<th>(SENSE0,2)</th>
<th>(SENSE0,1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-inch RGB</td>
<td>0 1 0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>14-inch RGB</td>
<td>1 1 0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>15-inch multiple scan</td>
<td>1 1 0</td>
<td>0 0</td>
<td>0 0</td>
<td>1 1</td>
</tr>
<tr>
<td>17-inch multiple scan</td>
<td>1 1 0</td>
<td>0 0</td>
<td>1 0</td>
<td>1 1</td>
</tr>
<tr>
<td>20-inch multiple scan</td>
<td>1 1 0</td>
<td>1 0</td>
<td>0 0</td>
<td>1 1</td>
</tr>
<tr>
<td>VGA and SVGA</td>
<td>1 1 1</td>
<td>1 1</td>
<td>1 0</td>
<td>1 0</td>
</tr>
<tr>
<td>16-inch RGB</td>
<td>1 1 1</td>
<td>1 0</td>
<td>1 1</td>
<td>0 1</td>
</tr>
<tr>
<td>No monitor</td>
<td>1 1 1</td>
<td>1 1</td>
<td>1 1</td>
<td>1 1</td>
</tr>
</tbody>
</table>
I/O Features

Note
Both VGA and SVGA monitors have the same sense code. The first time the user starts up with an SVGA monitor, the computer treats it as a VGA monitor and shows a 640-by-480-pixel display. The user can switch to the 800-by-600-pixel SVGA mode from the Monitors control panel; when that happens, the computer changes the display to the 800-by-600-pixel display mode immediately, and continues to use that mode the next time it is started up.

Disk Drives

The Power Macintosh 7500 and 8500 computers have one internal high-density floppy disk drive and one internal hard disk drive. Some models also have an internal CD-ROM drive.

CD-ROM Drive

Some configurations of the Power Macintosh 7500 and 8500 computers have a built-in CD-ROM drive, an AppleCD 600i. The AppleCD 600i supports the worldwide standards and specifications for CD-ROM and CD-digital audio discs described in the Sony/Philips Yellow Book and Red Book. The drive can read CD-ROM, CD-ROM XA, CD-I, and PhotoCD discs as well as play standard audio discs.

The AppleCD 600i CD-ROM drive has a sliding tray to hold the disc. The drive features a quadruple-speed mechanism that supports sustained data transfer rates of 600 KB per second and a data buffer that further enhances performance. Table 3-7 is a summary of the specifications of the CD-ROM drive.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation speed</td>
<td>Approximately 920 to 2120 rpm</td>
</tr>
<tr>
<td>Average access time</td>
<td>Less than 200 ms</td>
</tr>
<tr>
<td>Sustained transfer rate</td>
<td>600 KB per second</td>
</tr>
<tr>
<td>SCSI burst rate</td>
<td>More than 3 MB per second</td>
</tr>
</tbody>
</table>

Table 3-7 Specifications of the AppleCD 600i CD-ROM drive

Internal Hard Disk Drive

The Power Macintosh 7500 and 8500 computers have one internal hard disk drive. The drive capacity is either 500 MB, 1 GB or 2 GB, depending on the model.

The hard disk drive is connected to the internal SCSI bus. For pin assignments on the internal SCSI hard disk connector, see Table 3-4 on page 27.
I/O Features

The internal end of the SCSI bus is terminated by a 110 Ω passive terminator. The terminator is located on the main logic board near the portion of the internal chassis connector that contains the signals for the internal CD-ROM drive. The internal CD-ROM drive does not include a terminator.

Floppy Disk Drive

The Power Macintosh 7500 and 8500 computers have one internal high-density floppy disk drive (Apple SuperDrive). The drive is connected to a 20-pin connector. Table 3-8 shows the pin assignments on the floppy disk connector.

Table 3-8 Pin assignments on the floppy disk connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>2</td>
<td>PH0</td>
<td>Phase 0: state control line</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>PH1</td>
<td>Phase 1: state control line</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>PH2</td>
<td>Phase 2: state control line</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>PH3</td>
<td>Phase 3: register write strobe</td>
</tr>
<tr>
<td>9</td>
<td>n.c.</td>
<td>Not connected</td>
</tr>
<tr>
<td>10</td>
<td>/WRREQ</td>
<td>Write data request</td>
</tr>
<tr>
<td>11</td>
<td>+5V</td>
<td>5-volt power to disk drive</td>
</tr>
<tr>
<td>12</td>
<td>SEL</td>
<td>Head select</td>
</tr>
<tr>
<td>13</td>
<td>+12V</td>
<td>12-volt power to disk drive</td>
</tr>
<tr>
<td>14</td>
<td>/ENBL</td>
<td>Drive enable</td>
</tr>
<tr>
<td>15</td>
<td>+12V</td>
<td>12-volt power to disk drive</td>
</tr>
<tr>
<td>16</td>
<td>RD</td>
<td>Read data</td>
</tr>
<tr>
<td>17</td>
<td>+12V</td>
<td>12-volt power to disk drive</td>
</tr>
<tr>
<td>18</td>
<td>WR</td>
<td>Write data</td>
</tr>
<tr>
<td>19</td>
<td>+12V</td>
<td>12-volt power to disk drive</td>
</tr>
<tr>
<td>20</td>
<td>n.c.</td>
<td>Not connected</td>
</tr>
</tbody>
</table>
Audio and Video Ports

The Power Macintosh 7500 and 8500 computers have the following built-in audio and video ports:

- S-video input port
- S-video output port (Power Macintosh 8500 only)
- Composite video input port
- Composite video output port (Power Macintosh 8500 only)
- Stereo sound input and output ports

The audio and video connectors are grouped together in a small A/V panel on the back of the computer. Figure 3-4 shows the arrangement of the connectors on the A/V panel of the Power Macintosh 8500. The A/V panel on the Power Macintosh 7500 is similar, but it does not have the video output ports.

Figure 3-4 A/V panel connectors on the Power Macintosh 8500

S-Video Connectors

The Power Macintosh 7500 and 8500 computers have S-video (Y/C) connectors for video input and output. The video output connector is a standard 4-pin S-video connector; the video input connector is a 7-pin connector, as shown in Figure 3-5. Table 3-9 shows the signal assignments on the S-video connectors.
I/O Features

Figure 3-5 Seven-pin S-video connector

![Seven-pin S-video connector](image)

Table 3-9 Pin assignments for the S-video input and output connectors

<table>
<thead>
<tr>
<th>Pin number</th>
<th>S-video input connector</th>
<th>S-video output connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog GND</td>
<td>Analog GND</td>
</tr>
<tr>
<td>2</td>
<td>Analog GND</td>
<td>Analog GND</td>
</tr>
<tr>
<td>3</td>
<td>Video Y (luminance)</td>
<td>Video Y (luminance)</td>
</tr>
<tr>
<td>4</td>
<td>Video C (chroma)</td>
<td>Video C (chroma)</td>
</tr>
<tr>
<td>5</td>
<td>I²C clock (Philips serial bus)</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>+12 V at 250 mA maximum*</td>
<td>—</td>
</tr>
<tr>
<td>7</td>
<td>I²C data (Philips serial bus)</td>
<td>—</td>
</tr>
</tbody>
</table>

* Fused at 1.1 A.

Composite Video Connectors

Composite video input and output ports are also available on RCA-type connectors. The video input or output is connected to the center pin and the outer shell is connected to ground.

The composite video output signal is the same as that on pin 5 of the S-video output connector.

Audio Input and Output Connectors

Stereo pairs of audio input and output ports are available on RCA-type connectors. The audio input or output is connected to the center pin and the outer shell is connected to ground.

The audio input and output signals are the same as those described in the sections “Sound Input Jack” on page 28 and “Sound Output Jack” on page 29.
CHAPTER 4

Expansion Features
Expansion Features

This chapter describes the expansion features of the Power Macintosh 7500 and Power Macintosh 8500 computers: the RAM expansion DIMMs, the second-level (L2) cache SIMM, the PCI expansion slots, and the DAV connector.

RAM DIMMs

The Power Macintosh 7500 and 8500 computers have eight RAM expansion slots. The RAM expansion slots accept a new type of memory module: the 8-byte DIMM (Dual Inline Memory Module). As its name implies, the 8-byte DIMM has a 64-bit-wide data bus.

Note
The 8-byte DIMM is also used in the Power Macintosh 9500 computer.

The 8-byte DIMM is an industry standard. Its mechanical design is defined by the MO-161 specification published by the JEDEC JC-11 committee; its electrical characteristics are defined by the JEDEC Standard No. 21-C. The 8-byte DIMM connector used in the Power Macintosh 7500 and 8500 computers is Burndy Corporation’s part number ELF168E5GC-3Z50 or equivalent.

Installing RAM DIMMs

The 8-byte DIMMs can be installed one or more at a time. When more than one DIMM is used, they should be installed in corresponding slot pairs. When the startup software detects two DIMMs that are the same size and type and installed in corresponding slots, it configures them as a single 128-bit-wide data bus for increased performance.

IMPORTANT
The Power Macintosh 7500 and 8500 computers do not have any main memory soldered to the logic board. At least one RAM DIMM must be present for the computer to operate.

For a pair of DIMMs to function as a single 128-bit-wide pair, they must be the same type as well as the same size. That means they must use the same addressing mode, as defined in the section “RAM Address Multiplexing” beginning on page 41; examples are listed in Table 4-4 on page 42.

The eight RAM expansion slots are labelled A1–A4 and B1–B4. Slots with the same number constitute a slot pair, as follows:

Slot pair 1: Slot A1 Slot B1
Slot pair 2: Slot A2 Slot B2
Slot pair 3: Slot A3 Slot B3
Slot pair 4: Slot A4 Slot B4
Expansion Features

RAM DIMM Connectors

Table 4-1 gives the pin assignments for the RAM DIMM connectors.

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal name</th>
<th>Pin number</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VSS</td>
<td>28</td>
<td>/CAS(0)</td>
</tr>
<tr>
<td>2</td>
<td>DQ(0)</td>
<td>29</td>
<td>/CAS(2)</td>
</tr>
<tr>
<td>3</td>
<td>DQ(1)</td>
<td>30</td>
<td>/RAS(0)</td>
</tr>
<tr>
<td>4</td>
<td>DQ(2)</td>
<td>31</td>
<td>/OE(0)</td>
</tr>
<tr>
<td>5</td>
<td>DQ(3)</td>
<td>32</td>
<td>VSS</td>
</tr>
<tr>
<td>6</td>
<td>VCC</td>
<td>33</td>
<td>A(0)</td>
</tr>
<tr>
<td>7</td>
<td>DQ(4)</td>
<td>34</td>
<td>A(2)</td>
</tr>
<tr>
<td>8</td>
<td>DQ(5)</td>
<td>35</td>
<td>A(4)</td>
</tr>
<tr>
<td>9</td>
<td>DQ(6)</td>
<td>36</td>
<td>A(6)</td>
</tr>
<tr>
<td>10</td>
<td>DQ(7)</td>
<td>37</td>
<td>A(8)</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td>38</td>
<td>A(10)</td>
</tr>
<tr>
<td>12</td>
<td>VSS</td>
<td>39</td>
<td>A(12)</td>
</tr>
<tr>
<td>13</td>
<td>DQ(8)</td>
<td>40</td>
<td>VCC</td>
</tr>
<tr>
<td>14</td>
<td>DQ(9)</td>
<td>41</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>DQ(10)</td>
<td>42</td>
<td>Reserved</td>
</tr>
<tr>
<td>16</td>
<td>DQ(11)</td>
<td>43</td>
<td>VSS</td>
</tr>
<tr>
<td>17</td>
<td>DQ(12)</td>
<td>44</td>
<td>/OE(2)</td>
</tr>
<tr>
<td>18</td>
<td>VCC</td>
<td>45</td>
<td>/RAS(2)</td>
</tr>
<tr>
<td>19</td>
<td>DQ(13)</td>
<td>46</td>
<td>/CAS(4)</td>
</tr>
<tr>
<td>20</td>
<td>DQ(14)</td>
<td>47</td>
<td>/CAS(6)</td>
</tr>
<tr>
<td>21</td>
<td>DQ(15)</td>
<td>48</td>
<td>/WE(2)</td>
</tr>
<tr>
<td>22</td>
<td>Reserved</td>
<td>49</td>
<td>VCC</td>
</tr>
<tr>
<td>23</td>
<td>VSS</td>
<td>50</td>
<td>Reserved</td>
</tr>
<tr>
<td>24</td>
<td>Reserved</td>
<td>51</td>
<td>Reserved</td>
</tr>
<tr>
<td>25</td>
<td>Reserved</td>
<td>52</td>
<td>DQ(16)</td>
</tr>
<tr>
<td>26</td>
<td>VCC</td>
<td>53</td>
<td>DQ(17)</td>
</tr>
<tr>
<td>27</td>
<td>/WE(0)</td>
<td>54</td>
<td>VSS</td>
</tr>
</tbody>
</table>

continued
Table 4-1 Pin assignments on the RAM DIMM connectors (continued)

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal name</th>
<th>Pin number</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>DQ(18)</td>
<td>85</td>
<td>VSS</td>
</tr>
<tr>
<td>56</td>
<td>DQ(19)</td>
<td>86</td>
<td>DQ(32)</td>
</tr>
<tr>
<td>57</td>
<td>DQ(20)</td>
<td>87</td>
<td>DQ(33)</td>
</tr>
<tr>
<td>58</td>
<td>DQ(21)</td>
<td>88</td>
<td>DQ(34)</td>
</tr>
<tr>
<td>59</td>
<td>VCC</td>
<td>89</td>
<td>DQ(35)</td>
</tr>
<tr>
<td>60</td>
<td>DQ(22)</td>
<td>90</td>
<td>VCC</td>
</tr>
<tr>
<td>61</td>
<td>Reserved</td>
<td>91</td>
<td>DQ(36)</td>
</tr>
<tr>
<td>62</td>
<td>Reserved</td>
<td>92</td>
<td>DQ(37)</td>
</tr>
<tr>
<td>63</td>
<td>Reserved</td>
<td>93</td>
<td>DQ(38)</td>
</tr>
<tr>
<td>64</td>
<td>Reserved</td>
<td>94</td>
<td>DQ(39)</td>
</tr>
<tr>
<td>65</td>
<td>DQ(23)</td>
<td>95</td>
<td>Reserved</td>
</tr>
<tr>
<td>66</td>
<td>Reserved</td>
<td>96</td>
<td>VSS</td>
</tr>
<tr>
<td>67</td>
<td>DQ(24)</td>
<td>97</td>
<td>DQ(40)</td>
</tr>
<tr>
<td>68</td>
<td>VSS</td>
<td>98</td>
<td>DQ(41)</td>
</tr>
<tr>
<td>69</td>
<td>DQ(25)</td>
<td>99</td>
<td>DQ(42)</td>
</tr>
<tr>
<td>70</td>
<td>DQ(26)</td>
<td>100</td>
<td>DQ(43)</td>
</tr>
<tr>
<td>71</td>
<td>DQ(27)</td>
<td>101</td>
<td>DQ(44)</td>
</tr>
<tr>
<td>72</td>
<td>DQ(28)</td>
<td>102</td>
<td>VCC</td>
</tr>
<tr>
<td>73</td>
<td>VCC</td>
<td>103</td>
<td>DQ(45)</td>
</tr>
<tr>
<td>74</td>
<td>DQ(29)</td>
<td>104</td>
<td>DQ(46)</td>
</tr>
<tr>
<td>75</td>
<td>DQ(30)</td>
<td>105</td>
<td>DQ(47)</td>
</tr>
<tr>
<td>76</td>
<td>DQ(31)</td>
<td>106</td>
<td>Reserved</td>
</tr>
<tr>
<td>77</td>
<td>Reserved</td>
<td>107</td>
<td>VSS</td>
</tr>
<tr>
<td>78</td>
<td>VSS</td>
<td>108</td>
<td>Reserved</td>
</tr>
<tr>
<td>79</td>
<td>PD(1)</td>
<td>109</td>
<td>Reserved</td>
</tr>
<tr>
<td>80</td>
<td>PD(3)</td>
<td>110</td>
<td>VCC</td>
</tr>
<tr>
<td>81</td>
<td>PD(5)</td>
<td>111</td>
<td>Reserved</td>
</tr>
<tr>
<td>82</td>
<td>PD(7)</td>
<td>112</td>
<td>/CAS(1)</td>
</tr>
<tr>
<td>83</td>
<td>ID(0)</td>
<td>113</td>
<td>/CAS(3)</td>
</tr>
<tr>
<td>84</td>
<td>VCC</td>
<td>114</td>
<td>/RAS(1)</td>
</tr>
</tbody>
</table>

continued
Expansion Features

Table 4-1 Pin assignments on the RAM DIMM connectors (continued)

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal name</th>
<th>Pin number</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>Reserved</td>
<td>142</td>
<td>DQ(53)</td>
</tr>
<tr>
<td>116</td>
<td>VSS</td>
<td>143</td>
<td>VCC</td>
</tr>
<tr>
<td>117</td>
<td>A(1)</td>
<td>144</td>
<td>DQ(54)</td>
</tr>
<tr>
<td>118</td>
<td>A(3)</td>
<td>145</td>
<td>Reserved</td>
</tr>
<tr>
<td>119</td>
<td>A(5)</td>
<td>146</td>
<td>Reserved</td>
</tr>
<tr>
<td>120</td>
<td>A(7)</td>
<td>147</td>
<td>Reserved</td>
</tr>
<tr>
<td>121</td>
<td>A(9)</td>
<td>148</td>
<td>Reserved</td>
</tr>
<tr>
<td>122</td>
<td>A(11)</td>
<td>149</td>
<td>DQ(55)</td>
</tr>
<tr>
<td>123</td>
<td>A(13)</td>
<td>150</td>
<td>Reserved</td>
</tr>
<tr>
<td>124</td>
<td>VCC</td>
<td>151</td>
<td>DQ(56)</td>
</tr>
<tr>
<td>125</td>
<td>Reserved</td>
<td>152</td>
<td>VSS</td>
</tr>
<tr>
<td>126</td>
<td>B(0)</td>
<td>153</td>
<td>DQ(57)</td>
</tr>
<tr>
<td>127</td>
<td>VSS</td>
<td>154</td>
<td>DQ(58)</td>
</tr>
<tr>
<td>128</td>
<td>Reserved</td>
<td>155</td>
<td>DQ(59)</td>
</tr>
<tr>
<td>129</td>
<td>/RAS(3)</td>
<td>156</td>
<td>DQ(60)</td>
</tr>
<tr>
<td>130</td>
<td>/CAS(5)</td>
<td>157</td>
<td>VCC</td>
</tr>
<tr>
<td>131</td>
<td>/CAS(7)</td>
<td>158</td>
<td>DQ(61)</td>
</tr>
<tr>
<td>132</td>
<td>/PDE</td>
<td>159</td>
<td>DQ(62)</td>
</tr>
<tr>
<td>133</td>
<td>VCC</td>
<td>160</td>
<td>DQ(63)</td>
</tr>
<tr>
<td>134</td>
<td>Reserved</td>
<td>161</td>
<td>Reserved</td>
</tr>
<tr>
<td>135</td>
<td>Reserved</td>
<td>162</td>
<td>VSS</td>
</tr>
<tr>
<td>136</td>
<td>DQ(48)</td>
<td>163</td>
<td>PD(2)</td>
</tr>
<tr>
<td>137</td>
<td>DQ(49)</td>
<td>164</td>
<td>PD(4)</td>
</tr>
<tr>
<td>138</td>
<td>VSS</td>
<td>165</td>
<td>PD(6)</td>
</tr>
<tr>
<td>139</td>
<td>DQ(50)</td>
<td>166</td>
<td>PD(8)</td>
</tr>
<tr>
<td>140</td>
<td>DQ(51)</td>
<td>167</td>
<td>ID(1)</td>
</tr>
<tr>
<td>141</td>
<td>DQ(52)</td>
<td>168</td>
<td>VCC</td>
</tr>
</tbody>
</table>
Expansion Features

Table 4-8 describes the signals on the RAM DIMM connector.

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(13:0)</td>
<td>Address inputs, buffered</td>
</tr>
<tr>
<td>B(0)</td>
<td>Alternate version of A(0), buffered</td>
</tr>
<tr>
<td>/CAS(7:0)</td>
<td>Column address strobe signals, buffered</td>
</tr>
<tr>
<td>DQ(63:0)</td>
<td>Data input and output signals</td>
</tr>
<tr>
<td>ID(1:0)</td>
<td>Memory module identification (not used)</td>
</tr>
<tr>
<td>/OE(0, 2)</td>
<td>Output enable signals, buffered</td>
</tr>
<tr>
<td>PD(8:1)</td>
<td>Presence detect signals (not used)</td>
</tr>
<tr>
<td>/PDE</td>
<td>Presence detect enable signal (not used)</td>
</tr>
<tr>
<td>/RAS(3:0)</td>
<td>Row address strobe signals</td>
</tr>
<tr>
<td>Reserved</td>
<td>Reserved, don’t use</td>
</tr>
<tr>
<td>VCC</td>
<td>+5 V power</td>
</tr>
<tr>
<td>VSS</td>
<td>Ground</td>
</tr>
<tr>
<td>/WE(0, 2)</td>
<td>Read/write input signals, buffered</td>
</tr>
</tbody>
</table>

B(0) is an alternate addressing signal that allows a DIMM to operate with the 64-bit data bus split into two 32-bit halves. In the Power Macintosh 7500 and 8500 computers, A(0) and B(0) are tied together on the main logic board.

Note
Although they are defined in JEDEC Standard No. 21-C, the presence detect signals PD(8:1) and /PDE and the identification signals ID(1:0) are not used in the Power Macintosh 7500 and 8500 computers. ◆

Note
No +3V power is provided on the RAM DIMM connector. ◆
Expansion Features

RAM DIMM Configurations

The minimum bank size supported by the Hammerhead memory controller IC is 4 MB and the largest is 64 MB; the largest DIMM supported is a two-bank DIMM holding 128 MB. Table 4-3 shows the DIMM configurations and sizes for a range of DRAM device sizes.

<table>
<thead>
<tr>
<th>DRAM Device size</th>
<th>DIMM configuration</th>
<th>DIMM size</th>
<th>Maximum memory size with 8 DIMMs installed</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Mbit</td>
<td>512 Kbits by 64</td>
<td>4 MB</td>
<td>32 MB</td>
</tr>
<tr>
<td>4 Mbit</td>
<td>1 Mbit by 64</td>
<td>8 MB</td>
<td>64 MB</td>
</tr>
<tr>
<td>16 Mbit</td>
<td>1 Mbit by 64</td>
<td>8 MB</td>
<td>64 MB</td>
</tr>
<tr>
<td>16 Mbit</td>
<td>2 Mbits by 64</td>
<td>16 MB</td>
<td>128 MB</td>
</tr>
<tr>
<td>16 Mbit</td>
<td>4 Mbits by 64</td>
<td>32 MB</td>
<td>256 MB</td>
</tr>
<tr>
<td>64 Mbit</td>
<td>4 Mbits by 64</td>
<td>32 MB</td>
<td>256 MB</td>
</tr>
<tr>
<td>64 Mbit</td>
<td>8 Mbits by 64</td>
<td>64 MB</td>
<td>512 MB</td>
</tr>
<tr>
<td>64 Mbit</td>
<td>16 Mbits by 64</td>
<td>128 MB</td>
<td>1 GB</td>
</tr>
</tbody>
</table>

RAM Address Multiplexing

Depending on their internal design and size, different types of DRAM devices require different row and column address multiplexing. The memory controller in the Hammerhead IC supports two addressing modes, selected individually for each bank of DRAM. The system software initializes the address mode bits in the bank base registers as part of the process of determining the amount of RAM installed in the computer.

Signals A(11:0) on each RAM DIMM make up a 12-bit multiplexed address bus that can support several different types of DRAM devices. Table 4-4 on page 42 shows the address multiplexing modes used with several types of DRAM devices. The devices are characterized by their bit dimensions: for example, a 256K by 4-bit device has 256K addresses and stores 4 bits at a time.

Note
The memory controller does not support devices that require more than 12 row address bits. ✶
Expansion Features

Table 4-4 Address multiplexing modes for various DRAM devices

<table>
<thead>
<tr>
<th>DRAM device size</th>
<th>Device type</th>
<th>Size of row address</th>
<th>Size of column address</th>
<th>Address mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Megabits</td>
<td>1 M by 4 bits</td>
<td>10</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>4 Megabits</td>
<td>512K by 8 bits</td>
<td>10</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>4 Megabits</td>
<td>256K by 16 bits</td>
<td>10</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>16 Megabits</td>
<td>4 M by 4 bits</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>16 Megabits</td>
<td>4 M by 4 bits</td>
<td>12</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>16 Megabits</td>
<td>2 M by 8 bits</td>
<td>11</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>16 Megabits</td>
<td>2 M by 8 bits</td>
<td>12</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>16 Megabits</td>
<td>1 M by 16 bits</td>
<td>12</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>64 Megabits</td>
<td>16 M by 4 bits</td>
<td>12</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>64 Megabits</td>
<td>8 M by 8 bits</td>
<td>12</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>64 Megabits</td>
<td>4 M by 16 bits</td>
<td>11</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>64 Megabits</td>
<td>4 M by 16 bits</td>
<td>12</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4-5 shows how the address signals to the RAM devices are multiplexed during the row and column address phases.

Table 4-5 Address multiplexing

<table>
<thead>
<tr>
<th>Individual signals on the DRAM_ADDR bus</th>
</tr>
</thead>
</table>

Address mode = 0

- Row address bits: A22, A21, A20, A19, A18, A17, A16, A15, A14, A13, A12, A11

Address mode = 1

- Row address bits: A24, A23, A22, A21, A20, A19, A18, A17, A16, A15, A14, A13, A12
Expansion Features

DRAM Devices

The memory controller in the Hammerhead IC supports 1 MB, 4 MB, 16 MB, and 64 MB DRAM devices. The access time (T_{RAS}) of the DRAM devices must be 70 ns or less.

IMPORTANT

The number of DRAM devices in a RAM DIMM for the Power Macintosh 7500 and 8500 computers is constrained by the load limits of the unbuffered signals. On each DIMM, a maximum of two devices can be connected to each data line and a maximum of eight devices can be connected to each /RAS line.

RAM Refresh

The Hammerhead IC provides a CAS-before-RAS refresh cycle every 15.6 μs. DRAM devices must be compatible; for example, this cycle will refresh 2K-refresh parts within 32 ms.

RAM DIMM Dimensions

Figure 4-1 on page 44 shows the dimensions of the RAM DIMM.

IMPORTANT

The JEDEC MO-161 specification shows three possible heights for the 8-byte DIMM. The Power Macintosh 7500 and 8500 computers accept only the shorter two of the three specified sizes; the maximum height is 1.255 inches.
Expansion Features

Figure 4-1 Dimensions of the RAM DIMM

Note: dimensions are in millimeters [inches]
Second-Level Cache SIMM

The second-level (L2) cache in the Power Macintosh 7500 and 8500 computers occupies a single SIMM. The size of the L2 cache SIMM can be 256 KB, 512 KB, 1 MB, or 4 MB. The cache data store is implemented with synchronous burst static RAM devices; the cache tag store is implemented with standard static RAM devices. The synchronous burst SRAM devices in the cache data store must have an access time of 11 ns or less.

Note
The same L2 cache SIMM is used in both the Power Macintosh 7500 and the Power Macintosh 8500, but with some differences in operation, as specified in the next section.

L2 Cache Operation

The L2 cache is organized as a write-back cache; it is direct mapped (single set) with allocate on read or write. The L2 cache allocates on read operations from ROM addresses and from main RAM addresses responded to by the Hammerhead memory controller. A cache hit occurs when the contents of the tag store at the given index matches the given address and the tag valid bit is set.

The L2 cache allocates only on burst read and write operations that miss. For nonburst read operations that hit, the data is read from the cache. For nonburst write operations that hit, the specified line is written back to memory before the single cycle of write data is written back to memory.

The cache controller in the Hammerhead IC makes data available early in the timing process by taking advantage of the following system attributes:

- With only one processor, there is only one snooping mode so the ARTRY (address retry) signal is never asserted for a microprocessor access that hits in the L2 cache.
- By using the DBDIS (data bus disable) signal defined for the PowerPC 604, the cache controller is able to assert DBG in the same cycle that TS asserts, so the processor can accept data (DBB) in the very next cycle. The DBDIS signal allows the L2 cache RAM devices to be enabled, driving the data bus before the direction of the access (read or write) has been determined.
- The DRTRY (data retry) signal is never asserted, so the controller can use non-aging mode with the PowerPC 604.

With the PowerPC 604, data is made available, that is, the TA (transfer acknowledge) signal is asserted, in the next clock cycle after the assertion of TS (transfer start). With the PowerPC 601, data is made available as early as the second clock cycle after the assertion of TS.
Expansion Features

L2 Cache SIMM Connector

Table 4-1 gives the pin assignments for the L2 cache SIMM connector. The pins are listed in the table as they appear on the connector, with pin 1 across from pin 81 and pin 80 across from pin 160.

Table 4-6 Pin assignments on the L2 cache SIMM connector

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal name</th>
<th>Pin number</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5V</td>
<td>26</td>
<td>Gnd</td>
</tr>
<tr>
<td>2</td>
<td>Gnd</td>
<td>27</td>
<td>TAG(0)</td>
</tr>
<tr>
<td>3</td>
<td>ArDat(0)</td>
<td>28</td>
<td>TAG(2)</td>
</tr>
<tr>
<td>4</td>
<td>ArDat(2)</td>
<td>29</td>
<td>TAG(4)</td>
</tr>
<tr>
<td>5</td>
<td>ArDat(4)</td>
<td>30</td>
<td>TAG(6)</td>
</tr>
<tr>
<td>6</td>
<td>ArDat(6)</td>
<td>31</td>
<td>Gnd</td>
</tr>
<tr>
<td>7</td>
<td>Gnd</td>
<td>32</td>
<td>TAG(8)</td>
</tr>
<tr>
<td>8</td>
<td>ArDat(8)</td>
<td>33</td>
<td>TAG(10)</td>
</tr>
<tr>
<td>9</td>
<td>ArDat(10)</td>
<td>34</td>
<td>TAG(12)</td>
</tr>
<tr>
<td>10</td>
<td>ArDat(12)</td>
<td>35</td>
<td>TAGVALID</td>
</tr>
<tr>
<td>11</td>
<td>ArDat(14)</td>
<td>36</td>
<td>Gnd</td>
</tr>
<tr>
<td>12</td>
<td>Gnd</td>
<td>37</td>
<td>+5V</td>
</tr>
<tr>
<td>13</td>
<td>+5V</td>
<td>38</td>
<td>Gnd</td>
</tr>
<tr>
<td>14</td>
<td>Gnd</td>
<td>39</td>
<td>CacheSysClk</td>
</tr>
<tr>
<td>15</td>
<td>ArDat(16)</td>
<td>40</td>
<td>Gnd</td>
</tr>
<tr>
<td>16</td>
<td>ArDat(18)</td>
<td>41</td>
<td>TAGWEN</td>
</tr>
<tr>
<td>17</td>
<td>ArDat(20)</td>
<td>42</td>
<td>TAGOEN</td>
</tr>
<tr>
<td>18</td>
<td>ArDat(22)</td>
<td>43</td>
<td>BURSTADV</td>
</tr>
<tr>
<td>19</td>
<td>Gnd</td>
<td>44</td>
<td>BufAdr(12)</td>
</tr>
<tr>
<td>20</td>
<td>ArDat(24)</td>
<td>45</td>
<td>CacheSize(0)</td>
</tr>
<tr>
<td>21</td>
<td>ArDat(26)</td>
<td>46</td>
<td>BufAdr(14)</td>
</tr>
<tr>
<td>22</td>
<td>ArDat(28)</td>
<td>47</td>
<td>BufAdr(16)</td>
</tr>
<tr>
<td>23</td>
<td>ArDat(30)</td>
<td>48</td>
<td>BufAdr(18)</td>
</tr>
<tr>
<td>24</td>
<td>Gnd</td>
<td>49</td>
<td>BufAdr(20)</td>
</tr>
<tr>
<td>25</td>
<td>+5V</td>
<td>50</td>
<td>Gnd</td>
</tr>
</tbody>
</table>

continued
Table 4-6 Pin assignments on the L2 cache SIMM connector (continued)

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal name</th>
<th>Pin number</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>BufAdr(22)</td>
<td>81</td>
<td>+3.3V</td>
</tr>
<tr>
<td>52</td>
<td>BufAdr(24)</td>
<td>82</td>
<td>Gnd</td>
</tr>
<tr>
<td>53</td>
<td>BufAdr(26)</td>
<td>83</td>
<td>ArDat(1)</td>
</tr>
<tr>
<td>54</td>
<td>BufAdr(28)</td>
<td>84</td>
<td>ArDat(3)</td>
</tr>
<tr>
<td>55</td>
<td>Gnd</td>
<td>85</td>
<td>ArDat(5)</td>
</tr>
<tr>
<td>56</td>
<td>+5V</td>
<td>86</td>
<td>ArDat(7)</td>
</tr>
<tr>
<td>57</td>
<td>Gnd</td>
<td>87</td>
<td>Gnd</td>
</tr>
<tr>
<td>58</td>
<td>ArDat(32)</td>
<td>88</td>
<td>ArDat(9)</td>
</tr>
<tr>
<td>59</td>
<td>ArDat(34)</td>
<td>89</td>
<td>ArDat(11)</td>
</tr>
<tr>
<td>60</td>
<td>ArDat(36)</td>
<td>90</td>
<td>ArDat(13)</td>
</tr>
<tr>
<td>61</td>
<td>ArDat(38)</td>
<td>91</td>
<td>ArDat(15)</td>
</tr>
<tr>
<td>62</td>
<td>Gnd</td>
<td>92</td>
<td>Gnd</td>
</tr>
<tr>
<td>63</td>
<td>ArDat(40)</td>
<td>93</td>
<td>+3.3V</td>
</tr>
<tr>
<td>64</td>
<td>ArDat(42)</td>
<td>94</td>
<td>Gnd</td>
</tr>
<tr>
<td>65</td>
<td>ArDat(44)</td>
<td>95</td>
<td>ArDat(17)</td>
</tr>
<tr>
<td>66</td>
<td>ArDat(46)</td>
<td>96</td>
<td>ArDat(19)</td>
</tr>
<tr>
<td>67</td>
<td>Gnd</td>
<td>97</td>
<td>ArDat(21)</td>
</tr>
<tr>
<td>68</td>
<td>+5V</td>
<td>98</td>
<td>ArDat(23)</td>
</tr>
<tr>
<td>69</td>
<td>Gnd</td>
<td>99</td>
<td>Gnd</td>
</tr>
<tr>
<td>70</td>
<td>ArDat(48)</td>
<td>100</td>
<td>ArDat(25)</td>
</tr>
<tr>
<td>71</td>
<td>ArDat(50)</td>
<td>101</td>
<td>ArDat(27)</td>
</tr>
<tr>
<td>72</td>
<td>ArDat(52)</td>
<td>102</td>
<td>ArDat(29)</td>
</tr>
<tr>
<td>73</td>
<td>ArDat(54)</td>
<td>103</td>
<td>ArDat(31)</td>
</tr>
<tr>
<td>74</td>
<td>Gnd</td>
<td>104</td>
<td>Gnd</td>
</tr>
<tr>
<td>75</td>
<td>ArDat(56)</td>
<td>105</td>
<td>+3.3V</td>
</tr>
<tr>
<td>76</td>
<td>ArDat(58)</td>
<td>106</td>
<td>Gnd</td>
</tr>
<tr>
<td>77</td>
<td>ArDat(60)</td>
<td>107</td>
<td>TAG(1)</td>
</tr>
<tr>
<td>78</td>
<td>ArDat(62)</td>
<td>108</td>
<td>TAG(3)</td>
</tr>
<tr>
<td>79</td>
<td>Gnd</td>
<td>109</td>
<td>TAG(5)</td>
</tr>
<tr>
<td>80</td>
<td>+5V</td>
<td>110</td>
<td>TAG(7)</td>
</tr>
</tbody>
</table>

continued
Expansion Features

Table 4-6 Pin assignments on the L2 cache SIMM connector (continued)

<table>
<thead>
<tr>
<th>Pin number</th>
<th>Signal name</th>
<th>Pin number</th>
<th>Signal name</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Gnd</td>
<td>136</td>
<td>+3.3V</td>
</tr>
<tr>
<td>112</td>
<td>TAG(9)</td>
<td>137</td>
<td>Gnd</td>
</tr>
<tr>
<td>113</td>
<td>TAG(11)</td>
<td>138</td>
<td>ArDat(33)</td>
</tr>
<tr>
<td>114</td>
<td>TAG(13)</td>
<td>139</td>
<td>ArDat(35)</td>
</tr>
<tr>
<td>115</td>
<td>TAGDIRTY</td>
<td>140</td>
<td>ArDat(37)</td>
</tr>
<tr>
<td>116</td>
<td>Gnd</td>
<td>141</td>
<td>ArDat(39)</td>
</tr>
<tr>
<td>117</td>
<td>+3.3V</td>
<td>142</td>
<td>Gnd</td>
</tr>
<tr>
<td>118</td>
<td>BufAdr(10)</td>
<td>143</td>
<td>ArDat(41)</td>
</tr>
<tr>
<td>119</td>
<td>CachePrsnt</td>
<td>144</td>
<td>ArDat(43)</td>
</tr>
<tr>
<td>120</td>
<td>BufAdr(11)</td>
<td>145</td>
<td>ArDat(45)</td>
</tr>
<tr>
<td>121</td>
<td>DATAOEN</td>
<td>146</td>
<td>ArDat(47)</td>
</tr>
<tr>
<td>122</td>
<td>DATAWEN</td>
<td>147</td>
<td>Gnd</td>
</tr>
<tr>
<td>123</td>
<td>XFRSTART</td>
<td>148</td>
<td>+3.3V</td>
</tr>
<tr>
<td>124</td>
<td>CacheSize(1)</td>
<td>149</td>
<td>Gnd</td>
</tr>
<tr>
<td>125</td>
<td>Gnd</td>
<td>150</td>
<td>ArDat(49)</td>
</tr>
<tr>
<td>126</td>
<td>BufAdr(13)</td>
<td>151</td>
<td>ArDat(51)</td>
</tr>
<tr>
<td>127</td>
<td>BufAdr(15)</td>
<td>152</td>
<td>ArDat(53)</td>
</tr>
<tr>
<td>128</td>
<td>BufAdr(17)</td>
<td>153</td>
<td>ArDat(55)</td>
</tr>
<tr>
<td>129</td>
<td>BufAdr(19)</td>
<td>154</td>
<td>Gnd</td>
</tr>
<tr>
<td>130</td>
<td>Gnd</td>
<td>155</td>
<td>ArDat(57)</td>
</tr>
<tr>
<td>131</td>
<td>BufAdr(21)</td>
<td>156</td>
<td>ArDat(59)</td>
</tr>
<tr>
<td>132</td>
<td>BufAdr(23)</td>
<td>157</td>
<td>ArDat(61)</td>
</tr>
<tr>
<td>133</td>
<td>BufAdr(25)</td>
<td>158</td>
<td>ArDat(63)</td>
</tr>
<tr>
<td>134</td>
<td>BufAdr(27)</td>
<td>159</td>
<td>Gnd</td>
</tr>
<tr>
<td>135</td>
<td>Gnd</td>
<td>160</td>
<td>+3.3V</td>
</tr>
</tbody>
</table>

Table 4-7 describes the signals on the L2 cache SIMM connector.
Expansion Features

Table 4-7 Signals on the L2 cache SIMM connector

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ArDat(63:0)</td>
<td>Processor data bus</td>
</tr>
<tr>
<td>BufAdr(27:10)</td>
<td>Address bus, buffered</td>
</tr>
<tr>
<td>BURSTADV</td>
<td>Burst advance signal to data store SRAM devices</td>
</tr>
<tr>
<td>CachePrsnt</td>
<td>Active (low) if an L2 cache card is installed</td>
</tr>
<tr>
<td>CacheSize(1:0)</td>
<td>Cache size lines: b00 for 512 KB, b01 for 256 KB, b10 for 1 MB, b11 for 4 MB</td>
</tr>
<tr>
<td>CacheSysClk</td>
<td>System clock</td>
</tr>
<tr>
<td>DATAOEN</td>
<td>Data store output enable</td>
</tr>
<tr>
<td>DATAWEN</td>
<td>Data store write enable</td>
</tr>
<tr>
<td>TAG(13:0)</td>
<td>Tag store value</td>
</tr>
<tr>
<td>TAGDIRTY</td>
<td>Dirty bit from tag store</td>
</tr>
<tr>
<td>TAGOEN</td>
<td>Tag store output enable</td>
</tr>
<tr>
<td>TAGVALID</td>
<td>Valid bit from tag store</td>
</tr>
<tr>
<td>TAGWEN</td>
<td>Tag store write enable</td>
</tr>
<tr>
<td>XFRSTART</td>
<td>Transfer start signal to data store SRAM devices</td>
</tr>
</tbody>
</table>

PCI Expansion Slots

The Power Macintosh 7500 and 8500 computers have three expansion slots using the industry standard PCI bus. The PCI bus is a nonsplit bus with 32-bit multiplexed address and data. The PCI expansion slots in these computers use a 33 MHz system clock.

The Power Macintosh 7500 and 8500 computers accept standard PCI cards as defined by the PCI Local Bus Specification, Revision 2.0. The cards are required to use the 5 V signaling standard and to use the standard ISA fence described in the specification. For more information about the Macintosh implementation of the PCI bus, including information about writing PCI drivers in native PowerPC code, see Designing PCI Cards and Drivers for Power Macintosh Computers.

Each computer provides a total of 50 W of power for its three expansion slots. Both 5 V and 3.3 V are supplied; the total power at both voltages must not exceed the 50 W maximum.
Expansion Features

The PCI slots support all the required PCI signals and certain optional PCI signals. The supported PCI signals are listed in Table 4-8.

Table 4-8 PCI signals

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD (31:0)</td>
<td>Address and data, multiplexed</td>
</tr>
<tr>
<td>C/BE(3:0)</td>
<td>Bus Command and Byte Enable signals, multiplexed</td>
</tr>
<tr>
<td>PAR</td>
<td>Parity; used with AD and C/BE signals</td>
</tr>
<tr>
<td>/FRAME</td>
<td>Cycle Frame; asserted to indicate a bus transaction</td>
</tr>
<tr>
<td>/TRDY</td>
<td>Target Ready; selected device is able to complete the current phase</td>
</tr>
<tr>
<td>/IRDY</td>
<td>Initiator Ready; master device is able to complete the current phase</td>
</tr>
<tr>
<td>/STOP</td>
<td>Stop; indicates the current target device is requesting the master to stop the current transaction</td>
</tr>
<tr>
<td>/DEVSEL</td>
<td>Device Select; indicates that the driving device has decoded its address as the target of the current access</td>
</tr>
<tr>
<td>/IDSEL</td>
<td>Initialization Device Select; used during configuration</td>
</tr>
<tr>
<td>/REQ</td>
<td>Request; indicates to the arbiter that the asserting agent requires use of the bus</td>
</tr>
<tr>
<td>/GNT</td>
<td>Grant; indicates to the agent that access to the bus has been granted</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock; rising edge provides timing for all transactions</td>
</tr>
<tr>
<td>/RST</td>
<td>Reset; used to bring registers and signals to a known state</td>
</tr>
<tr>
<td>/INTA, /INTB, /INTC, /INTD</td>
<td>Interrupt request pins; wired together on each slot</td>
</tr>
</tbody>
</table>

The PCI slots in the Power Macintosh 7500 and 8500 computers do not support the following optional signals:

- 64-bit bus extension signals
- cache support signals
- JTAG (boundary scan) signals
- /LOCK signal
- error reporting signals /PERR and /SERR
DAV Connector

Audio and video signals on the main circuit board are accessible through the DAV connector, which is located near one of the PCI expansion card connectors. A PCI expansion card can pick up the A/V signals by means of a cable and plug for the DAV connector. The user can install one such card in the computer.

Note
In the earlier Power Macintosh computers, part of the A/V circuitry was on an optional plug-in card called the AV card. The new Power Macintosh computers do not have an AV card; instead, all the A/V circuitry is located on the main logic board.

The DAV Interface

The DAV connector taps into the computer’s video and sound data streams, providing access to the 4:2:2 unscaled digital video input signal and the digital audio input signal for the system’s sound encoder/decoder (codec). By using the DAV interface, a PCI expansion card can capture or generate these signals without passing them through the PCI bus.

The DAV interface gives expansion cards greater speed and power in processing video and sound data because cards can access data and perform PCI bus transactions independently. For example, the DAV interface supports high-performance hardware compression and decompression capabilities on an expansion card. A card can obtain raw data through the DAV interface and can transfer compressed data over the PCI bus to and from system memory or disk storage. Because the card transmits raw and compressed data through two separate interfaces, it can achieve high processing rates.

For a complete description of the DAV slot and guidelines for developing a PCI card that uses it, please refer to Power Macintosh DAV Interface for PCI Expansion Cards.

Note
The DAV interface in the earlier of Power Macintosh computers is not the same as the one in the computers that use the PCI bus. The earlier DAV interface is described in Macintosh Developer Note Number 8, listed in “Apple Publications” on page x.
Expansion Features

Signals on the DAV Connector

The DAV connector in the Power Macintosh 7500 and 8500 computers is a 60-pin dual-row type with 0.100-inch pin spacing. The pin assignments are shown in Table 4-9. The pins are numbered as shown in the table, with pin 1 across from pin 31 and pin 30 across from pin 60.

Table 4-9 Pin assignments on the DAV connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal description</th>
<th>Pin</th>
<th>Signal description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ground</td>
<td>26</td>
<td>Y bit 0</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
<td>27</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>Ground</td>
<td>28</td>
<td>Line-locked clock</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>29</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
<td>30</td>
<td>Clock reference qualifier</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td>31</td>
<td>Ground</td>
</tr>
<tr>
<td>7</td>
<td>Ground</td>
<td>32</td>
<td>Vertical sync</td>
</tr>
<tr>
<td>8</td>
<td>Reserved</td>
<td>33</td>
<td>Ground</td>
</tr>
<tr>
<td>9</td>
<td>Ground</td>
<td>34</td>
<td>Reserved</td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td>35</td>
<td>Ground</td>
</tr>
<tr>
<td>11</td>
<td>UV bit 7</td>
<td>36</td>
<td>HRef</td>
</tr>
<tr>
<td>12</td>
<td>UV bit 6</td>
<td>37</td>
<td>Ground</td>
</tr>
<tr>
<td>13</td>
<td>UV bit 5</td>
<td>38</td>
<td>DIR^</td>
</tr>
<tr>
<td>14</td>
<td>UV bit 4</td>
<td>39</td>
<td>IIC Data†</td>
</tr>
<tr>
<td>15</td>
<td>UV bit 3</td>
<td>40</td>
<td>IIC Clock</td>
</tr>
<tr>
<td>16</td>
<td>UV bit 2</td>
<td>41</td>
<td>Ground</td>
</tr>
<tr>
<td>17</td>
<td>UV bit 1</td>
<td>42</td>
<td>Analog audio input left</td>
</tr>
<tr>
<td>18</td>
<td>UV bit 0</td>
<td>43</td>
<td>Analog audio input common</td>
</tr>
<tr>
<td>19</td>
<td>Y bit 7</td>
<td>44</td>
<td>Analog audio input right</td>
</tr>
<tr>
<td>20</td>
<td>Y bit 6</td>
<td>45</td>
<td>Ground</td>
</tr>
<tr>
<td>21</td>
<td>Y bit 5</td>
<td>46</td>
<td>Digital audio input</td>
</tr>
<tr>
<td>22</td>
<td>Y bit 4</td>
<td>47</td>
<td>Ground</td>
</tr>
<tr>
<td>23</td>
<td>Y bit 3</td>
<td>48</td>
<td>Digital audio output</td>
</tr>
<tr>
<td>24</td>
<td>Y bit 2</td>
<td>49</td>
<td>Ground</td>
</tr>
<tr>
<td>25</td>
<td>Y bit 1</td>
<td>50</td>
<td>Digital audio clock</td>
</tr>
</tbody>
</table>

continued
Expansion Features

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal description</th>
<th>Pin</th>
<th>Signal description</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>Ground</td>
<td>56</td>
<td>S video input Y component</td>
</tr>
<tr>
<td>52</td>
<td>Digital audio sync</td>
<td>57</td>
<td>Video input ground</td>
</tr>
<tr>
<td>53</td>
<td>Ground</td>
<td>58</td>
<td>Reserved</td>
</tr>
<tr>
<td>54</td>
<td>S video input C component</td>
<td>59</td>
<td>Reserved</td>
</tr>
<tr>
<td>55</td>
<td>Video input ground</td>
<td>60</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

* Expansion bus input, pulled down by 1 kΩ.
† Inter-IC control signals, a Philips standard.
Software Features
Software Features

The system software for the Power Macintosh 7500 and Power Macintosh 8500 computers is based on System 7.5 and is augmented by several new features.

IMPORTANT
Even though the software for the Power Macintosh 7500 and 8500 computers incorporates significant changes from System 7.5, it is not a reference release: that is, it is not an upgrade for earlier Macintosh models.

The system software includes changes of several kinds, including new features, performance enhancements, and hardware support features.

New Features

The system software for the Power Macintosh 7500 and 8500 computers includes the following new features:

- large volume support
- Drive Setup (replaces HDSC Setup)
- transport-independent networking (Open Transport)
- Open Firmware startup
- Sound & Displays control panel
- Energy Saver software

Large Volume Support

The largest disk volume or partition supported by System 7.5 is 4 GB. The new system software extends that limit to 2 terabytes.

IMPORTANT
The largest possible file is still just under 2 GB.

The changes necessary to support the larger volume size affect many parts of the system software. The affected software includes system-level and application-level components.

64-Bit Volume Addresses

The current disk driver API has a 32-bit volume address limitation. This limitation has been circumvented by the addition of a new 64-bit extended volume function (PBXGetVolInfo) and 64-bit data types (UnsignedWide, Wide, XVolumeParam, and XIOParam).

For the definitions of the new function and data types, please see “The API Modifications” beginning on page 77.
Software Features

System-Level Software
Several system components have been modified to use the 64-bit APIs to correctly calculate true volume sizes and read and write data to and from large disks. The modified system components are

- virtual memory code
- Disk Init file
- FSM file
- Apple disk drivers
- HFS ROM code

Application-Level Software
Current applications do not require modification to gain access to disk space beyond the traditional 4 GB limit as long as they do not require the true size of the large partition. Applications that need to obtain the true partition size must be modified to use the new 64-bit API and data structures. Examples of such applications are utilities for disk formatting, partitioning, initialization, and backup.

The following application-level components of the system software have been modified to use the 64-bit APIs:

- Finder
- Finder extensions (AppleScript, AOCE Mailbox, and AOCE Catalogs)
- Drive Setup
- Disk First Aid

In the past, the sum of the sizes of the files and folders selected in the Finder was limited to the largest value that could be stored in a 32-bit number—that is, 4 GB. By using the new 64-bit APIs and data structures, the Finder can now operate on selections whose total size exceeds that limit. Even with very large volumes, the Finder can display accurate information in folder windows and Get Info windows and obtain the true volume size for calculating available space when copying.

The Finder extensions AppleScript, AOCE Mailbox, and AOCE Catalogs have been modified in the same way as the Finder because their copy-engine code is similar to that in the Finder.

The HDSC Drive Setup replacement application is described in “Drive Setup” on page 58. The Disk First Aid application is not described in this developer note.
Software Features

Limitations
The software modifications that support large partition sizes do not solve all the problems associated with the use of large volumes. In particular, the modifications do not address the following:

- HFS file sizes are still limited to 2 GB or less.
- Large allocation block sizes cause inefficient storage. On a 2 GB volume, the minimum file size is 32 KB; on a 2 terabyte volume, the minimum file size is 32 MB.
- Drives with the new large volume device driver will not mount on computers running older versions of the Macintosh operating system.

Drive Setup
The software for the Power Macintosh 7500 and 8500 computers includes a new disk setup utility named Drive Setup. In addition to the ability to support large volumes, the Drive Setup utility has several other enhancements over the older HDSC Setup utility, including

- an improved user interface
- support for multiple partitions
- the ability to mount volumes from applications
- the ability to start up (boot) from any HFS partition
- support for removable media drives
- the ability to enable write caching for improved performance

Open Transport
Open Transport is the new communications and networking architecture that will become the standard for Macintosh networking and communications. Open Transport provides a mechanism for communications applications to operate independently from underlying networks such as AppleTalk, TCP, or IPX. Open Transport provides a code base and architecture that supports network stacks while eliminating many of the interrupt latency problems associated with AppleTalk.

Note
Open Transport runs native on the PowerPC microprocessors. Open Transport has two major aspects: the client interfaces and the environment for developing protocols and communications modules. The Open Transport client interfaces are a superset of the XTI interface from X/Open, a consortium of UNIX vendors. XTI is a superset of TLI, a UNIX standard interface. By using the Open Transport interfaces, applications (called clients) can operate independently of the transport layer.
Software Features

The environment for developing protocols and communications modules for Open Transport also uses industry standards. These standards are the UNIX standard Streams, and two other standards, Transport Provider Interface (TPI) and Data Link Provider Interface (DLPI).

Open Transport does not use the conventional .ENET-style drivers; instead it uses Streams-based DLPI drivers that are more appropriate for use with PCI devices. In addition to being consistent with industry standards, Streams-based DLPI drivers provide higher performance than .ENET-style drivers.

Apple Computer’s Open Transport software includes new stack implementations for AppleTalk and MacTCP. Apple expects that third parties will provide implementations of DECnet™, IPX, and other network protocols.

The Open Transport implementation of TCP/IP is a replacement for MacTCP. It is designed for use under the Open Transport software interface.

New Features of Open Transport

The new features of Open Transport include

- a new API
- dynamic loading and shared code
- an optional static node number (AppleTalk)
- an optional NBP-to-catalog server (AppleTalk)
- IP multicasting (MacTCP)
- dynamic retransmission timers (MacTCP)

Compatibility

Open Transport is compatible with existing AppleTalk networks and supports existing .ENET clients such as Soft Windows and DECnet. On the PCI-based Power Macintosh computers, this .ENET compatibility is provided by a module that maps .ENET calls to the corresponding DLPI calls.

Open Transport provides compatibility with 680x0-based computers by means of the following features:

- environment options
- 680x0-based APIs and stacks
- Open Transport APIs and stacks
- API compatibility glue
- use of parameter-block APIs with Open Transport stacks for 680x0-based applications
Software Features

Open Transport provides compatibility with Power Macintosh computers by means of the following features:

- environment options
- 680x0-based APIs and stacks run in emulation mode
- Open Transport APIs and stacks run in native mode
- API compatibility glue runs in mixed mode
- 680x0-based applications can use parameter-block APIs with Open Transport stacks
- 680x0-based applications can use Open Transport APIs and stacks
- native applications can use parameter block APIs with 680x0-based stacks
- native applications can use parameter block APIs with Open Transport stacks

Open Firmware Startup

The Open Firmware startup process in PCI-compatible Macintosh computers conforms to the IEEE Standard 1275 for boot firmware and the PCI Bus Binding to IEEE 1275-1994 specification. These specifications are listed in “Supplemental Reference Documents” beginning on page x.

The Open Firmware startup process is driven by startup firmware (also called boot firmware) stored in the Macintosh ROM and in PCI card expansion ROMs. While the startup firmware is running, the Macintosh computer starts up and configures its hardware (including peripheral devices) independently of any operating system. The computer then finds an operating system in ROM or on a mass storage device, loads it into RAM, and terminates the Open Firmware startup process by giving the operating system control of the PowerPC main processor. The operating system may be Mac OS or some other system, provided it uses the PowerPC instruction set.

The Open Firmware startup process includes these specific features:

- Startup firmware is written in the Forth language, as defined by the IEEE Standard 1275. Firmware code is stored in a tokenized representation called FCode, an abbreviated version of Forth in which most Forth words are replaced by single bytes or 2-byte groups. The startup firmware in the Power Macintosh ROM includes an FCode loader that installs FCode in system RAM so that drivers can run on the PowerPC main processor. Expansion card firmware can modify the Open Firmware startup process by supplying FCode that the computer’s startup firmware loads and runs before launching an operating system.

- The startup firmware creates a data structure of nodes called a device tree, in which each PCI device is described by a property list. The device tree is stored in system RAM. The operating system that is ultimately installed and launched can search the device tree to determine what devices are available.

- Device drivers required during system startup (called boot drivers) are also stored in the expansion ROM on the PCI card. Plug-in expansion cards must contain all the driver code required during startup. The boot drivers are native drivers and are embedded in the FCode in the expansion ROM. The startup firmware in the Power Macintosh ROM installs the boot drivers in system RAM and lets them run on the PowerPC main processor.
Software Features

- The startup firmware in the Power Macintosh ROM contains debugging facilities for both FCode and some kinds of operating-system code. These facilities can help expansion card designers develop the firmware for new peripheral devices compatible with Macintosh computers.

You can write PCI expansion ROM code in standard Forth words and then reduce the result to FCode by using an **FCode tokenizer**, a program that translates Forth words into FCodes. The Forth vocabulary that you can use is presented in IEEE Standard 1275.

The burden on developers to provide Forth boot drivers need not be heavy. Developers can choose the level of support that they provide. The following are the three possible levels of support:

- **No driver.** The expansion ROM contains minimal FCode. The Open Firmware startup process recognizes the card and installs a node in the device tree, but no driver code is loaded and no device initialization occurs.

- **Runtime driver.** Only a small amount of Forth code is required to install an OS-dependent runtime driver in the device’s property list. Sample code is provided in *Designing PCI Cards and Drivers for Power Macintosh Computers*.

- **Boot driver.** Expansion cards that need to be used at startup time must contain a boot driver with the required methods for the type of device (typically Open, Close, Read, and Write). Sample code is provided in *Designing PCI Cards and Drivers for Power Macintosh Computers*.

Sound & Displays Control Panel

The Sound & Displays control panel is a new all-in-one control panel for the audio and video features of Macintosh computers. The Sound & Displays control panel combines the functions of three control panels used up until now: the Monitors and Sound control panels found on all Macintosh models, and the Video control panel used with A/V computers.

In addition to consolidating functions that were formerly distributed among three different control panels, the Sound & Displays control panel provides the following improvements:

- gives a graphical view of the way the sound and display devices are connected
- provides a consistent human interface for different devices and functions
- allows configuration changes to take effect immediately
- provides extensibility through the Control Strip
- provides fast access to frequently used settings
- provides user assistance through Macintosh Guide

The Sound & Displays control panel allows a user to configure the sound, video, and display features of a Macintosh computer. By means of the Sound & Displays control panel, the user can activate or deactivate input or output devices, determine the arrangement of components, and adjust level settings.
Software Features

The Sound & Displays control panel is an application that resides in the Control Panels folder. When it is installed, it overrides any Monitors or Sound control panels already there.

Screen Icon

Figure 5-1 shows the Sound & Displays screen icon that appears in the Control Panels folder.

![Sound & Displays screen icon](image)

The user can open the Sound & Displays control panel in several ways, including

- choosing Sound & Displays from the Apple menu
- double-clicking the Sound & Displays icon in the Control Panels folder
- selecting the Sound & Displays icon in the Control Panels folder and choosing Open in the Finder’s File menu

The Sound & Displays control panel consists of a main window, where the user interacts with the A/V system as a whole, and subwindows, where the user interacts with a particular device or category of devices.

Main Window

Figure 5-2 shows the main Sound & Displays window for a system with many sound and display components. On the left is a list view of the system: lists of the devices making up the A/V system. On the right is a map view of the A/V system: a graphical presentation showing the sound and display components and the way they are connected. At the bottom of the main window are the Macintosh Guide button and the option buttons for sound and displays.
Subwindows

The settings for each device are presented in individual subwindows. Figure 5-3 shows an example of a subwindow for a standard display monitor and Figure 5-4 shows a subwindow for an AppleVision display. Figure 5-5 shows a subwindow for sound input settings. The features of each AV device determine the settings that appear in the corresponding subwindow.
Energy Saver Software

The enhanced Energy Saver software in the Power Macintosh 7500 and 8500 computers fully exploits the Energy-Star compliant features in Macintosh computers and peripherals, such as hard disk drives and displays. The Energy Saver software satisfies the EPA requirements for Energy Star compliance.

The Energy Saver software is an application that resides in the Control Panels folder. The Energy Saver control panel provides desktop computer users access to power-saving features previously available only in portable computer power-management software. Figure 5-6 shows the Energy Saver control panel expanded for Sleep preferences.
The Energy Saver power management software allows the user to control the following features:

- **Idle-time energy savings**
 - computer sleep time
 - display sleep time
 - hard disk spin down time

- **Scheduled energy savings**
 - scheduling of startup including bookmarking
 - scheduling of shutdown including document auto-save

- **Wakeup preferences**
 - blink the power-on light when waking up
 - play a user defined sound when waking up
 - wake up when the modem detects a telephone ring

The improved single control panel interface presents a clear conceptual model of the energy saving features of the Macintosh computer that the user can manage. It also delivers a user experience that is as consistent as possible across desktop Macintosh computers and portable Macintosh computers.

For more information about the Energy Saver software, see the user guide and the Macintosh Guide help files that accompany the computer.
Performance Enhancements

The system software for the Power Macintosh 7500 and 8500 computers includes the following performance enhancements:

- improved file sharing
- a new Dynamic Recompilation Emulator
- a Resource Manager completely in native code
- an improved math library
- new BlockMove extensions

Improved File Sharing

Version 7.6 of the file sharing software incorporates many of the features of AppleShare, including an API for servers.

The user can now set up shared files on ejectable media such as cartridge drives and CD-ROM drives. The software keeps track of the status of the shared files when the media are inserted and removed.

Dynamic Recompilation Emulator

The Dynamic Recompilation Emulator (or DR Emulator) is an extension to the current interpretive emulator providing on-the-fly translation of 680x0 instructions into PowerPC instructions for increased performance.

The design of the DR Emulator mimics a hardware instruction cache and employs a variable size translation cache. Each compiled 680x0 instruction requires on average about four PowerPC instructions. In operation, the DR Emulator depends on locality of execution to make up for the extra cycles used in translating the code. The DR Emulator provides a high degree of compatibility for 680x0 code. One area where compatibility will be less than that of the current interpretive emulator is for self-modifying code that does not call the cache flushing routines. Such code also has compatibility problems on Macintosh Quadra models with the cache enabled.

Resource Manager in Native Code

The Resource Manager in the software for the Power Macintosh 7500 and 8500 computers is similar to the one in the earlier Power Macintosh computers except that it is completely in native PowerPC code. Because the Resource Manager is intensively used both by system software and by applications, the native version provides an improvement in system performance.
The Process Manager has been modified to remove patches it formerly made to the Resource Manager.

Math Library

The new math library (MathLib) is an enhanced version of the floating-point library included in the ROM in the earlier Power Macintosh computers.

The new math library is bit compatible in both results and floating-point exceptions with the math library in the earlier ROM. The only difference is in the speed of computation.

The new math library has been improved to better exploit the floating-point features of the PowerPC microprocessor. The math library now includes enhancements that assist the compiler in carrying out its register allocation, branch prediction, and overlapping of integer and floating-point operations.

Compared with the previous version, the new math library provides much improved performance without compromising its accuracy or robustness. It provides performance gains for often-used functions of up to 15 times.

The application interface and header files for the math library have not been changed.

New BlockMove Extensions

The system software for the Power Macintosh 7500 and 8500 computers includes new extensions to the BlockMove routine. The extensions provide improved performance for programs running in native mode.

The new BlockMove extensions provide several benefits for developers.

- They’re optimized for the PowerPC 603 and PowerPC 604 processors, rather than the PowerPC 601.
- They’re compatible with the new Dynamic Recompilation Emulator.
- They provide a way to handle cache-inhibited address spaces.
- They include new high-speed routines for setting memory to zero.

Note

The new BlockMove extensions do not use the string instructions, which are fast on the PowerPC 601 but slow on other PowerPC implementations.

Some of the new BlockMove extensions can be called only from native code; see Table 5-1.

Except for BlockZero and BlockZeroUncached, the new BlockMove extensions use the same parameters as BlockMove. Calls to BlockZero and BlockZeroUncached have only two parameters, a pointer and a length; refer to the header file (Memory.h).

Table 5-1 summarizes the BlockMove routines according to three criteria: whether the routine can be called from 680x0 code, whether it is OK to use for moving 680x0 code, and whether it is OK to use with buffers or other uncacheable destination locations.
Software Features

The fastest way to move data is to use the `BlockMoveData` routine. It is the recommended method whenever you are certain that the data is cacheable and does not contain executable code.

The `BlockMove` routine is slower than the `BlockMoveData` routine only because it has to clear out the software cache used by the DR Emulator. If the DR Emulator is not in use, the `BlockMove` routine and the `BlockMoveData` routine are the same.

IMPORTANT
The versions of `BlockMove` for cacheable data use the `dcbz` instruction to avoid unnecessary pre-fetch of destination cache blocks. For uncachable data, you should avoid using those routines because the `dcbz` instruction causes faults on uncachable or write-through locations on some processors and must be emulated, making execution extremely slow.

IMPORTANT
Driver software cannot call the `BlockMove` routines directly. Instead, drivers must use the `BlockCopy` routine, which is part of the Driver Services Library. The `BlockCopy` routine is an abstraction that allows you to postpone binding the specific type of `BlockMove` operation until implementation time.

The Driver Services Library is a collection of useful routines that Apple Computer provides for developers working with the new Power Macintosh models. For more information, please refer to Designing PCI Cards and Drivers for Power Macintosh Computers.

Table 5-1 Summary of `BlockMove` routines

<table>
<thead>
<tr>
<th><code>BlockMove</code> version</th>
<th>Can be called from 680x0 code</th>
<th>OK to use for moving 680x0 code</th>
<th>OK to use with non-cached buffers</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>BlockMove</code></td>
<td>Yes</td>
<td>Yes</td>
<td>No*</td>
</tr>
<tr>
<td><code>BlockMoveData</code></td>
<td>Yes</td>
<td>No</td>
<td>No*</td>
</tr>
<tr>
<td><code>BlockMoveDataUncached</code></td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td><code>BlockMoveUncached</code></td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td><code>BlockZero</code></td>
<td>No</td>
<td>—</td>
<td>No*</td>
</tr>
<tr>
<td><code>BlockZeroUncached</code></td>
<td>No</td>
<td>—</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* These routines can in fact be used with non-cached buffers, but doing so severely degrades performance on some processors.
Hardware Support Features

The system software for the Power Macintosh 7500 and 8500 computers includes the following features to support the hardware:

- PCI bus support
- POWER-clean native code
- POWER emulation (for PowerPC 601 compatibility)
- QuickDraw acceleration API
- Display Manager
- Support of native drivers

PCI Bus Support

The Power Macintosh 7500 and 8500 computers do not use NuBus™ slots for hardware expansion, but instead use the industry standard PCI bus architecture. To support these computers as well as future Macintosh models that do not use the NuBus architecture, new system software includes a bus-neutral expansion architecture that is used by system software in place of Slot Manager calls that are specific to NuBus.

Removal of Slot Manager Dependencies

The system software that controls NuBus cards in current Macintosh models has many explicit dependencies upon the Slot Manager. The system software for models that use PCI bus slots requires changes to each of those dependencies so that PCI cards can operate with the system in the same fashion as NuBus cards.

The system software that formerly called the Slot Manager has been modified to use other services. The new Display Manager provides the means of obtaining video-specific information that was previously obtained by way of the Slot Manager. For example, QuickDraw currently calls the Slot Manager at startup time to check the consistency of the 'scrn' resource. In the software for the Power Macintosh 7500 and 8500 computers, QuickDraw calls the new Display Manager to check this consistency.

The following components formerly used the Slot Manager; they have been modified to use the services of the Display Manager:

- Monitors control panel (now part of Sound & Displays control panel)
- QuickDraw
- Palette Manager
- Device Manager
Software Features

PCI Compatibility

To support a third-party NuBus-to-PCI expansion chassis for PCI-based computers, it is important to retain Slot Manager capability. Also, several important applications (such as DECnet™ and SoftWindows™) rely on Slot Manager calls to indicate the presence of networking cards. For compatibility, the new expansion architecture supports existing PCI-based cards by way of particular Slot Manager calls.

Ordinarily, calls to the Slot Manager return an error result; the error code depends on the specific Slot Manager routine being called. If a NuBus-to-PCI bridge is present, Slot Manager calls function normally if a card occupies the specified slot.

To maintain compatibility with some networking software, the Power Macintosh 7500 and 8500 computers have a declaration ROM for slot 0. This declaration ROM does not contain any drivers or other data. It is intended as an interim solution and is not to be used by new programs.

For more information about PCI expansion cards, please refer to Designing PCI Cards and Drivers for Power Macintosh Computers.

Setting Up a VBL Task

The SlotVInstall() and SlotVRemove() calls to the Vertical Retrace Manager require a NuBus slot number as a parameter. You make such calls to set up a routine to be executed during the vertical blanking interval of a particular video display (that is, a slot VBL task). The Vertical Retrace Manager in the Power Macintosh 7500 and 8500 computers still supports those calls, but the slot number no longer corresponds to a NuBus slot.

The preferred method of obtaining a slot number to use with the SlotVInstall() and SlotVRemove() routines is to look at the dCtlSlot field of the DCE entry for the driver controlling the card in question. For a NuBus card, that number corresponds to the card’s slot number. In a PCI-based machine, the dCtlSlot field contains a pseudo-slot number that is assigned by the Display Manager during system startup. You can use that number as the theSlot parameter in calls to the SlotVInstall() and SlotVRemove() routines. Note that the number does not correspond to the physical location of the slot.

POWER-Clean Native Code

The instruction set of the PowerPC 601 microprocessor includes some of the same instructions as those found in the instruction set of the POWER processor, and the compiler used to generate native code for the system software in the earlier Power Macintosh models generated some of those POWER-only instructions. However, the PowerPC 604 microprocessor used in the Power Macintosh 8500 computer does not support the POWER-only instructions, so a new POWER-clean version of the compiler is being used to compile the native code fragments.
Software Features

Note
The term **POWER-clean** refers to code that is free of the POWER instructions that would prevent it from running correctly on a PowerPC 603 or PowerPC 604 microprocessor. ♦

Here is a list of the POWER-clean native code fragments in the system software for the Power Macintosh 8500 computer.

- interface library
- private interface library
- native QuickDraw
- MathLib
- Mixed Mode Manager
- Code Fragment Manager
- Font Dispatch
- Memory Manager
- standard text
- the **FMSwapFont** function
- standard C library

POWER Emulation

The earlier Power Macintosh computers included emulation for certain PowerPC 601 instructions that would otherwise cause an exception. The emulation code dealt with memory reference instructions to handle alignment and data storage exceptions. It also handled illegal instruction exceptions caused by some PowerPC instructions that were not implemented in the PowerPC 601. In the Power Macintosh 8500 computer, the emulation code has been revised to include the POWER instructions that are implemented on the PowerPC 601 but not on the PowerPC 604.

Note
Although the term **POWER emulation** is often used, a more appropriate name for this feature is **PowerPC 601 compatibility**. Rather than supporting the entire POWER architecture, the goal is to support those features of the POWER architecture that are available to programs running in user mode on the PowerPC 601–based Power Macintosh computers. ♦

POWER-Clean Code

Because the emulation of the POWER-only instructions degrades performance, Apple Computer recommends that developers revise any applications that use those instructions to conform with the PowerPC architecture. Emulation works, but performance is degraded; POWER-clean code is preferable.
Software Features

Developers need to turn off POWER emulation during testing so that they can verify that they have removed the POWER-only instructions from their applications. They can do that by means of a control panel that is provided as part of the developers’ kit for the PCI-based Power Macintosh computers.

Emulation and Exception Handling

When an exception occurs, the emulation code first checks to see whether the instruction encoding is supported by emulation. If it is not, the code passes the original cause of the exception (illegal instruction or privileged instruction) to the application as a native exception.

If the instruction is supported by emulation, the code then checks a flag bit to see whether emulation has been enabled. If emulation is not enabled at the time, the emulator generates an illegal instruction exception.

Code Fragments and Cache Coherency

Whereas the PowerPC 601 microprocessor has a single cache for both instructions and data, the PowerPC 604 has separate instruction and data caches. As long as applications deal with executable code by using the Code Fragment Manager (CFM), cache coherency is maintained. Applications that bypass the Code Fragment Manager and generate executable code in memory, and that do not use the proper cache synchronization instructions or CFM calls, are likely to encounter problems when running on the PowerPC 604.

IMPORTANT
The emulation software in the Power Macintosh 8500 computer cannot make the separate caches in the PowerPC 604 behave like the combined cache in the PowerPC 601. Applications that generate executable code in memory must be modified to use the Code Fragment Manager or maintain proper cache synchronization by other means.

Limitations of PowerPC 601 Compatibility

The emulation code in the Power Macintosh 8500 computer allows programs compiled for the PowerPC 601 to execute without halting on an exception whenever they use a POWER-only feature. For most of those features, the emulation matches the results that are obtained on a Power Macintosh computer with a PowerPC 601. However, there are a few cases where the emulation is not an exact match; those cases are summarized here.

- **MQ register.** Emulation does not match the undefined state of this register after multiply and divide instructions.
- **div and divo instructions.** Emulation does not match undefined results after an overflow.
- **Real-time clock registers.** Emulation matches the 0.27 percent speed discrepancy of the Power Macintosh models that use the PowerPC 601 microprocessor, but the values of the low-order 7 bits are not 0.
CHAPTER 5

Software Features

- **POWER version of dec register.** Emulation includes the POWER version, but decrementing at a rate determined by the time-base clock, not by the real-time clock.

- **Cache line compute size (clcs) instruction.** Emulation returns values appropriate for the type of PowerPC microprocessor.

- **Undefined special-purpose register (SPR) encodings.** Emulation does not ignore special-purpose register encodings higher than 32.

- **Invalid forms.** Invalid combinations of register operands with certain instructions may produce results that do not match those of the PowerPC 601.

- **Floating-point status and control register (FPSCR).** The FPSCR in the PowerPC 601 does not fully conform to the PowerPC architecture, but the newer PowerPC processors do.

QuickDraw Acceleration API

The native QuickDraw acceleration API makes it easier for third-party card vendors and driver writers to produce video accelerator cards for the Power Macintosh 7500 and 8500 computers.

The QuickDraw acceleration API is the current accelerator interface for the PowerPC version of native QuickDraw. It allows a patch chaining mechanism for decisions on categories of block transfers, and also specifies the format and transport of the data to the accelerator.

IMPORTANT
The interface and design of the QuickDraw acceleration API is intended only for the PCI-based Power Macintosh computers; it does not represent a new standard for all Macintosh models.

Display Manager

Until now, system software has used the NuBus-specific Slot Manager to get and set information about display cards and drivers. New system software removes this explicit software dependency on the architecture of the expansion bus. The Display Manager provides a uniform API for display devices regardless of the implementation details of the devices.

In a computer that uses PCI expansion cards, the Slot Manager is generally not available to provide information about display cards; instead, the Name Registry must be used. The Display Manager makes the actual calls to either the Slot Manager or the Name Registry, as appropriate, thus isolating the bus-specific calls to a single component and avoiding the need to change additional system software in the future. See the section “Removal of Slot Manager Dependencies” on page 69.
Software Features

Support of Native Drivers

The Power Macintosh 7500 and 8500 computers use a new native-driver model for system software and device driver developers. Several components of system software are being modified to support native drivers. The modified components are

- Device Manager
- interrupt tree services
- driver loader library
- driver support library
- Slot Manager stubs
- Macintosh startup code
- interface libraries
- system registry

For more information about device drivers and the native-driver model, refer to Designing PCI Cards and Drivers for Power Macintosh Computers.
Large Volume Support
This chapter describes the large volume file system for the Power Macintosh 7500 and Power Macintosh 8500 computers. The large volume file system is a version of the hierarchical file system (HFS) that has been modified to support volume sizes larger than the previous 4 GB limit.

Overview of the Large Volume File System

The large volume file system includes

- modifications to the HFS ROM code, Disk First Aid, and Disk Init
- a new extended API that allows reporting of volume size information beyond the previous 4 GB limit
- new device drivers and changes to the Device Manager API to support devices that are greater than 4 GB
- a new version of Drive Setup that supports large volumes and chainable drivers (needed to boot large volumes on earlier Macintosh models)

API Changes

The system software on the Power Macintosh 7500 and 8500 computers allows all current applications to work without modifications. Unmodified applications that call the file system still receive incorrect values for large volume sizes. The Finder and other utility programs that need to know the actual size of a volume have been modified to use the new extended `PBXGetVolInfo` function to obtain the correct value.

The existing low-level driver interface does not support I/O to a device with a range of addresses greater than 4 GB because the positioning offset (in bytes) for a read or write operation is a 32-bit value. To correct this problem, a new extended I/O parameter block record has been defined. This extended parameter block has a 64-bit positioning offset. The new parameter block and the extended `PBXGetVolInfo` function are described in “The API Modifications” beginning on page 77.

Allocation Block Size

The format of HFS volumes has not changed. What has changed is the way the HFS software handles the allocation block size. Existing HFS code treats the allocation block as a 16-bit integer. The large volume file system uses the full 32 bits of the allocation block size parameter. In addition, any software that deals directly with the allocation block size from the volume control block must now treat it as a true 32-bit value.

Even for the larger volume sizes, the number of allocation blocks is still defined by a 16-bit integer. As the volume size increases, the size of the allocation block also increases. For a 2 GB volume, the allocation block size is 32 KB and therefore the smallest file on that disk will occupy at least 32 KB of disk space.
Large Volume Support

The maximum number of files will continue to be less than 65,000. This limit is directly related to the fixed number of allocation blocks.

File Size Limits

The HFS has a maximum file size of 2 GB. The large volume file system does not remove that limit because doing so would require a more extensive change to the current API and would incur more compatibility problems.

Compatibility Requirements

The large volume file system requires at least a 68020 microprocessor or a Power Macintosh model that emulates it. In addition, the file system requires a Macintosh IIci or more recent model. On a computer that does not meet both those requirements, the large volume file system driver will not load.

The large volume file system requires System 7.5 or later and a new Finder that supports volumes larger than 4 GB (using the new extended PBXGetVolInfo function).

The API Modifications

The HFS API has been modified to support volume sizes larger than 4 GB. The modifications consist of two extended data structures and a new extended PBXGetVolInfo function.

Data Structures

This section describes the two modified data structures used by the large volume file system:

- the extended volume parameter block
- the extended I/O parameter block

Extended Volume Parameter Block

In the current HVolumeParam record, volume size information is clipped at 2 GB. Because HFS volumes can now exceed 4 GB, a new extended volume parameter block is needed in order to report the larger size information. The XVolumeParam record contains 64-bit integers for reporting the total bytes on the volume and the number of free bytes available (field names ioVTotalBytes and ioVFreeBytes). In addition, several of the fields that were previously signed are now unsigned (field names ioVAtrb, ioVBitMap, ioAllocPtr, ioVALBlkSiz, ioVClpSiz, ioAlBlSt, ioVNxtCNID, ioVWrCnt, ioVFilCnt, ioVFilCnt, and ioVDirCnt).
Large Volume Support

struct XVolumeParam {
 ParamBlockHeader
 ProcPtr ioCompletion // pointer to completion routine
 OSErr ioResult // result code
 StringPtr ioNamePtr // pointer to volume name
 short ioVRefNum // volume specification
 unsigned long ioXVersion; // XVolumeParam version == 0
 short ioVolIndex; // volume index
 unsigned long ioVCrDate; // date & time of creation
 unsigned long ioVLSMod; // date & time of last modification
 unsigned short ioVAtrb; // volume attributes
 unsigned short ioVNmFls; // number of files in root directory
 unsigned short ioVNMAlBlks; // number of allocation blocks
 unsigned long ioVALBlkSiz; // size of allocation blocks
 unsigned long ioVCrlpSiz; // default clump size
 unsigned short ioABlSiz; // first block in volume map
 unsigned long ioVNxtCNID; // next unused node ID
 unsigned short ioVFBlk; // number of free allocation blocks
 short ioVDrvInfo; // drive number
 short ioVDRFNum; // driver reference number
 short ioVFSID; // file-system identifier
 unsigned long ioVBkUp; // date & time of last backup
 unsigned short ioVSeqNum; // used internally
 unsigned long ioVWrCnt; // volume write count
 unsigned long ioVFilCnt; // number of files on volume
 unsigned long ioVDirCnt; // number of directories on volume
 long ioVFndrInfo[8]; // information used by the Finder
 uint64 ioVTotalBytes; // total number of bytes on volume
 uint64 ioVFreeBytes; // number of free bytes on volume
};

Field descriptions
ioCompletion The pointer to the completion routine.
ioResult The result code of the function.
ioNamePtr The pointer to the name of the volume.
ioVRefNum On input, the volume specification; on output, the volume reference number.
ioXVersion The version number of XVolumeParam; defined as 0.
ioVolIndex An index for use with the PBXGetVInfo function.
ioVCrDate The date and time of volume initialization.
Large Volume Support

ioVLsMod The date and time the volume information was last modified. (This field is not changed when information is written to a file and does not necessarily indicate when the volume was flushed.)

ioVAtrb The volume attributes.

ioVNmFls The number of files in the root directory.

ioVBItMap The first block of the volume bitmap.

ioAllocPtr The block at which the next new file starts. Used internally.

ioVNmAlBlks The number of allocation blocks.

ioVA1BlkSiz The size of allocation blocks.

ioVClpSiz The default clump size.

ioA1BlSt The first block in the volume map.

ioVNxtCNID The next unused catalog node ID.

ioVFPrBlk The number of unused allocation blocks.

ioVSigWord A signature word identifying the type of volume; it’s $D2D7 for Macintosh File System (MFS) volumes and $4244 for volumes that support HFS calls.

ioVDrvInfo The drive number of the drive containing the volume.

ioVDRefNum For online volumes, the reference number of the I/O driver for the drive identified by ioVDrvInfo.

ioVFSD The file-system identifier. It indicates which file system is servicing the volume; it’s zero for File Manager volumes and nonzero for volumes handled by an external file system.

ioVBkUp The date and time the volume was last backed up (it’s 0 if never backed up).

ioVSeqNum Used internally.

ioVWrCnt The volume write count.

ioVF11Cnt The total number of files on the volume.

ioVDirCnt The total number of directories (not including the root directory) on the volume.

ioVFndrInfo Information used by the Finder.

Extended I/O Parameter Block

The extended I/O parameter block is needed for low-level access to disk addresses beyond 4 GB. It is used exclusively by PBRead and PBWrite calls when performing I/O operations at offsets greater than 4 GB. To indicate that you are using an XIOParam record, you should set the kUseWidePositioning bit in the ioPosMode field.

Because file sizes are limited to 2 GB, the regular IOParam record should always be used when performing file level I/O operations. The extended parameter block is intended only for Device Manager I/O operations to large block devices at offsets greater than 4 GB.

The only change in the parameter block is the parameter ioWPosOffset, which is of type int64.
The first eight fields are the standard fields for the IOParam structure described in *Inside Macintosh: Files*.

Field descriptions

- **ioRefNum**: The file reference number of an open file.
- **ioVersNum**: A version number. This field is no longer used and you should always set it to 0.
- **ioPermssn**: The access mode.
- **ioMisc**: Depends on the routine called. This field contains either a new logical end-of-file, a new version number, a pointer to an access path buffer, or a pointer to a new path name. Because ioMisc is of type Ptr, you'll need to perform type coercion to interpret the value of ioMisc correctly when it contains an end-of-file (a LongInt value) or version number (a SignedByte value).
- **ioBuffer**: A pointer to a data buffer into which data is written by _Read calls and from which data is read by _Write calls.
- **ioReqCount**: The requested number of bytes to be read, written, or allocated.
- **ioActCount**: The number of bytes actually read, written, or allocated.
- **ioPosMode**: The positioning mode for setting the mark. Bits 0 and 1 of this field indicate how to position the mark; you can use the following predefined constants to set or test their value:

```c
CONST
fsAtMark = 0; // at current mark
fsFromStart = 1; // from beginning of file
fsFromLEOF = 2; // from logical end-of-file
fsFromMark = 3; // relative to current mark
```
Large Volume Support

You can set bit 4 of the ioPosMode field to request that the data be cached, and you can set bit 5 to request that the data not be cached. You can set bit 6 to request that any data written be immediately read; this ensures that the data written to a volume exactly matches the data in memory. To request a read-verify operation, add the following constant to the positioning mode:

```
CONST
rdVerify = 64; {use read-verify mode}
```

You can set bit 7 to read a continuous stream of bytes, and place the ASCII code of a newline character in the high-order byte to terminate a read operation at the end of a line.

ioPosOffset
The offset to be used in conjunction with the positioning mode.

New Extended Function

This section describes the extended PBXGetVolInfo function that provides volume size information for volumes greater than 4 GB.

Before using the new extended call, you should check for availability by calling the Gestalt function. Make your call to Gestalt with the gestaltFSAttr selector to check for new File Manager features. The response parameter has the gestaltFSSupports2TBVolumes bit set if the File Manager supports large volumes and the new extended function is available.

PBXGetVolInfo

You can use the PBXGetVolInfo function to get detailed information about a volume. It can report volume size information for volumes up to 2 terabytes.

```
pascal OSErr PBXGetVolInfo (XVolumeParam paramBlock, 
                           Boolean async);
```

- **paramBlock** A pointer to an extended volume parameter block.
- **async** A Boolean value that specifies asynchronous (true) or synchronous (false) execution.
Large Volume Support

An arrow preceding a parameter indicates whether the parameter is an input parameter, an output parameter, or both:

<table>
<thead>
<tr>
<th>Arrow</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>Input</td>
</tr>
<tr>
<td>←</td>
<td>Output</td>
</tr>
<tr>
<td>↔</td>
<td>Both</td>
</tr>
</tbody>
</table>

Parameter block

- **ioCompletion**: Pointer to a completion routine.
- **ioResult**: Result code of the function.
- **ioNamePtr**: Pointer to the volume’s name.
- **ioVRefNum**: On input, a volume specification; on output, the volume reference number.
- **ioXVersion**: Version of XVolumeParam (value = 0).
- **ioVolIndex**: Index used for indexing through all mounted volumes.
- **ioVCrDate**: Date and time of initialization.
- **ioVLsMod**: Date and time of last modification.
- **ioVAtrb**: Volume attributes.
- **ioVNmFls**: Number of files in the root directory.
- **ioVBitMap**: First block of the volume bitmap.
- **ioVAccPtr**: Block where the next new file starts.
- **ioVNmAlBlks**: Number of allocation blocks.
- **ioVA1BkSiz**: Size of allocation blocks.
- **ioVClpSiz**: Default clump size.
- **ioAlBlSt**: First block in the volume block map.
- **ioVFrBlk**: Next unused catalog node ID.
- **ioVNxtCNID**: Number of unused allocation blocks.
- **ioVSigWord**: Volume signature.
- **ioVDrvInfo**: Drive number.
- **ioVDerfNum**: Driver reference number.
- **ioVFSDID**: File system handling this volume.
- **ioVBkUp**: Date and time of last backup.
- **ioVSeqNum**: Used internally.
- **ioVWrCnt**: Number of write counts.
- **ioVFilCnt**: Number of files on the volume.
- **ioVDirCnt**: Number of directories on the volume.
- **ioVFndrInfo[8]**: Used by the Finder.
- **ioVTotalBytes**: Total number of bytes on the volume.
- **ioVFreeBytes**: Number of free bytes on the volume.
Large Volume Support

DESCRIPTION

The PBXGetVolInfo function returns information about the specified volume. It is similar to the PBHGetVInfo function described in *Inside Macintosh: Files* except that it returns additional volume space information in 64-bit integers.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for PBXGetVolInfo are

<table>
<thead>
<tr>
<th>Trap macro</th>
<th>Selector</th>
</tr>
</thead>
<tbody>
<tr>
<td>_HFSDispatch</td>
<td>$0012</td>
</tr>
</tbody>
</table>

RESULT CODES

<table>
<thead>
<tr>
<th>Error Name</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>noErr</td>
<td>0</td>
<td>Successful completion, no error occurred</td>
</tr>
<tr>
<td>nsvErr</td>
<td>-35</td>
<td>No such volume</td>
</tr>
<tr>
<td>paramErr</td>
<td>-50</td>
<td>No default volume</td>
</tr>
</tbody>
</table>
Abbreviations

Here are the standard units of measure used in this developer note:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>amperes</td>
</tr>
<tr>
<td>dB</td>
<td>decibels</td>
</tr>
<tr>
<td>GB</td>
<td>gigabytes</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
</tr>
<tr>
<td>in.</td>
<td>inches</td>
</tr>
<tr>
<td>k</td>
<td>1000</td>
</tr>
<tr>
<td>K</td>
<td>1024</td>
</tr>
<tr>
<td>KB</td>
<td>kilobytes</td>
</tr>
<tr>
<td>kg</td>
<td>kilograms</td>
</tr>
<tr>
<td>kHz</td>
<td>kilohertz</td>
</tr>
<tr>
<td>kΩ</td>
<td>kilohms</td>
</tr>
<tr>
<td>lb.</td>
<td>pounds</td>
</tr>
<tr>
<td>mA</td>
<td>milliamperes</td>
</tr>
<tr>
<td>μA</td>
<td>microamperes</td>
</tr>
<tr>
<td>M</td>
<td>1,048,576</td>
</tr>
<tr>
<td>MB</td>
<td>megabytes</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
</tr>
<tr>
<td>ms</td>
<td>milliseconds</td>
</tr>
<tr>
<td>μs</td>
<td>microseconds</td>
</tr>
<tr>
<td>ns</td>
<td>nanoseconds</td>
</tr>
<tr>
<td>Ω</td>
<td>ohms</td>
</tr>
<tr>
<td>sec.</td>
<td>seconds</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>W</td>
<td>watts</td>
</tr>
<tr>
<td>n</td>
<td>hexadecimal value n</td>
</tr>
</tbody>
</table>

Other abbreviations used in this note include:

- AC: alternating current
- ADB: Apple Desktop Bus
- A/D: analog to digital
- ADC: analog-to-digital converter
- AGC: automatic gain control
- AGND: analog ground
- API: application programming interface
- AUI: auxiliary unit interface
- A/V: audio and visual
- AWAC: audio waveform amplifier and converter
- bpp: bits per pixel
- CAS: column address strobe (a memory control signal)
- CD-ROM: compact-disc read-only memory
- CISC: complex instruction set computing
- CPU: central processing unit
- DAC: digital-to-analog converter

continued
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAV</td>
<td>digital audio/video</td>
</tr>
<tr>
<td>DBDMA</td>
<td>descriptor-based direct memory access</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DCE</td>
<td>device control entry (a Device Manager data structure)</td>
</tr>
<tr>
<td>DIMM</td>
<td>Dual Inline Memory Module</td>
</tr>
<tr>
<td>DENC</td>
<td>digital encoder</td>
</tr>
<tr>
<td>DESC</td>
<td>decoder and scaler circuit</td>
</tr>
<tr>
<td>DIN</td>
<td>Deutsche Industrie Normal</td>
</tr>
<tr>
<td>DLPI</td>
<td>data link provider interface</td>
</tr>
<tr>
<td>DMA</td>
<td>direct memory access</td>
</tr>
<tr>
<td>DRAM</td>
<td>dynamic RAM</td>
</tr>
<tr>
<td>FIFO</td>
<td>first in, first out</td>
</tr>
<tr>
<td>FPU</td>
<td>floating-point unit</td>
</tr>
<tr>
<td>GND</td>
<td>ground</td>
</tr>
<tr>
<td>HFS</td>
<td>hierarchical file system</td>
</tr>
<tr>
<td>I²C</td>
<td>same as IIC</td>
</tr>
<tr>
<td>IC</td>
<td>integrated circuit</td>
</tr>
<tr>
<td>IIC</td>
<td>inter IC control (Philips IC signal standard)</td>
</tr>
<tr>
<td>I/O</td>
<td>input and output</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>ISA</td>
<td>Industry Standard Architecture</td>
</tr>
<tr>
<td>JEDEC</td>
<td>Joint Electron Device Engineering Council</td>
</tr>
<tr>
<td>LS TTL</td>
<td>low-power Schottky TTL (a standard type of device)</td>
</tr>
<tr>
<td>MACE</td>
<td>Media Access Controller for Ethernet</td>
</tr>
<tr>
<td>MMU</td>
<td>memory management unit</td>
</tr>
<tr>
<td>NBP</td>
<td>Name-Binding Protocol</td>
</tr>
<tr>
<td>NC</td>
<td>no connection</td>
</tr>
<tr>
<td>NMI</td>
<td>nonmaskable interrupt</td>
</tr>
<tr>
<td>NTSC</td>
<td>National Television System Committee (the standard system used for broadcast TV in North America and Japan)</td>
</tr>
<tr>
<td>NVRAM</td>
<td>nonvolatile random-access memory</td>
</tr>
<tr>
<td>PAL</td>
<td>Phase Alternate Lines (the standard for broadcast TV in most of Europe, Africa, South America, and southern Asia)</td>
</tr>
<tr>
<td>PB API</td>
<td>parameter-block application program interface</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect, an industry-standard expansion bus</td>
</tr>
<tr>
<td>POWER</td>
<td>Performance optimized with enhanced RISC</td>
</tr>
<tr>
<td>PRAM</td>
<td>parameter random-access memory</td>
</tr>
</tbody>
</table>

continued
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROM</td>
<td>programmable read-only memory</td>
</tr>
<tr>
<td>PWM</td>
<td>pulse width modulation</td>
</tr>
<tr>
<td>RAM</td>
<td>random-access memory</td>
</tr>
<tr>
<td>RAMDAC</td>
<td>random-access memory, digital-to-analog converter</td>
</tr>
<tr>
<td>RAS</td>
<td>row address strobe</td>
</tr>
<tr>
<td>RGB</td>
<td>red-green-blue, a video signal format with separate red, green, and blue color components</td>
</tr>
<tr>
<td>RISC</td>
<td>reduced instruction set computing</td>
</tr>
<tr>
<td>rms</td>
<td>root-mean-square</td>
</tr>
<tr>
<td>ROM</td>
<td>read-only memory</td>
</tr>
<tr>
<td>SCC</td>
<td>Serial Communications Controller</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer System Interface</td>
</tr>
<tr>
<td>SECAM</td>
<td>the standard system used for broadcast TV in France and the former Soviet countries</td>
</tr>
<tr>
<td>SIMM</td>
<td>Single Inline Memory Module</td>
</tr>
<tr>
<td>SNR</td>
<td>signal to noise ratio</td>
</tr>
<tr>
<td>SRAM</td>
<td>static RAM</td>
</tr>
<tr>
<td>SVGA</td>
<td>super video graphics adapter</td>
</tr>
<tr>
<td>S-video</td>
<td>a type of video interface that keeps luminance and chrominance separate; also called Y/C</td>
</tr>
<tr>
<td>SWIM</td>
<td>Super Woz Integrated Machine (custom IC that controls the floppy disk interface)</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transport Control Protocol/Interface Program</td>
</tr>
<tr>
<td>TTL</td>
<td>transistor-transistor logic (a standard type of device)</td>
</tr>
<tr>
<td>VCC</td>
<td>positive supply voltage (voltage for collectors)</td>
</tr>
<tr>
<td>VCR</td>
<td>video cassette recorder</td>
</tr>
<tr>
<td>VGA</td>
<td>video graphics adapter</td>
</tr>
<tr>
<td>VRAM</td>
<td>video RAM; used for display buffers</td>
</tr>
<tr>
<td>Y/C</td>
<td>a type of video interface that keeps luminance and chrominance separate; also called S-video</td>
</tr>
<tr>
<td>YUV</td>
<td>a video signal format with separate luminance and chrominance components</td>
</tr>
</tbody>
</table>
Glossary

680x0 Generic reference to the 68020, 68030, and 68040 microprocessors.

680x0 code Instructions that can run on a PowerPC processor only by means of an emulator. See also native code.

ADB See Apple Desktop Bus.

APDA Apple’s worldwide direct distribution channel for Apple and third-party development tools and documentation products.

API See application programming interface.

Apple AV technologies A set of advanced I/O features for Macintosh computers that includes video input and output, sophisticated 16-bit stereo sound input and output, and speech recognition and synthesis.

Apple Desktop Bus (ADB) An asynchronous bus used to connect relatively slow user-input devices to Apple computers.

AppleTalk Apple’s local area networking protocol.

application programming interface (API) The calls and data structures that allow application software to use the features of the operating system.

arbitration The process of determining which of several contending subsystems gains control of a bus at any given time.

audio waveform amplifier and converter (AWAC) A custom IC that combines a waveform amplifier with a digital encoder and decoder (codec) for analog sound signals, including speech.

autoconfiguration A method of integrating peripheral devices into a computer system that includes a mechanism for configuring devices during system startup and requires that vendors include expansion ROMs on plug-in cards.

AWAC See audio waveform amplifier and converter.

Bandit A custom IC that provides the interface between the system bus and the PCI bus in Power Macintosh 7500 and 8500 computers.

big-endian Data formatting where fields are addressed by pointers to their most significant bytes or bits. See also little-endian.

block transfer Data transfers of more than one longword at a time.

boot driver A device driver that is used during the Open Firmware startup process. It must be written in FCode and is usually loaded from the expansion ROM on a PCI card.

branch unit The part of a PowerPC microprocessor that handles branch instructions, usually without adding any time to program execution.

Chaos A custom IC that provides the video data path in some Power Macintosh computers. See also Control.

CISC See complex instruction set computing.

codec A digital encoder and decoder.

color depth The number of bits required to encode the color of each pixel in a display.

complex instruction set computing (CISC) A technology of microprocessor design in which machine instructions have nonuniform formats and are executed through different processes.

Control A custom IC that controls the video memory in some Power Macintosh computers. See also Chaos.

convolution The process of smoothing alternate lines of a video signal to be shown in succeeding frames for a line-interlaced display.

CPU bus The bus connected directly to the main processor.
Cuda A microcontroller IC that manages the ADB and real-time clock, maintains parameter RAM, manages power on and reset, and performs other general system functions.

Curio A custom IC that provides I/O interfaces for Ethernet, SCSI, SCC, and LocalTalk.

DAC See digital-to-analog converter.

data burst Multiple longwords of data sent over a bus in a single, uninterrupted stream.

data cache In a PowerPC microprocessor, the internal registers that hold data being processed.

DAV interface See digital audio/video interface.

descriptor-based direct memory access (DBDMA) A DMA technique using DMA descriptor lists that are read from memory by the IC performing the DMA transfers.

device node In a device tree, a node that serves one hardware device.

device tree A software structure, generated during the Open Firmware startup process, that assigns a node to each PCI device available to the system.

digital audio/video (DAV) interface A connector that accepts a ribbon cable from an expansion card and lets the expansion card transfer digital sound and unscaled YUV video data directly to the AV circuits.

digital-to-analog converter (DAC) A device that produces an analog electrical signal in response to digital data.

DIMM See Dual Inline Memory Module.

direct memory access (DMA) A process for transferring data rapidly into or out of RAM without passing it through a processor or buffer. See also descriptor-based direct memory access.

DLPI Abbreviation for Data Link Provider Interface, the standard networking model used in Open Transport.

DMA See direct memory access.

DRAM See dynamic random-access memory.

DR Emulator The Dynamic Recompilation Emulator, an improved 680x0-code emulator for Power Macintosh computers.

Dual Inline Memory Module (DIMM) A plug-in card for memory expansion, containing several RAM ICs and their interconnections; similar to a SIMM.

dynamic random-access memory (DRAM) Random-access memory in which each storage address must be periodically interrogated (“refreshed”) to maintain its value.

Ethernet A high-speed local area network technology that includes both cable standards and a series of communications protocols.

exception An error or other unusual condition detected by a processor during program execution.

Expansion Manager A set of toolbox routines that provides bus-neutral support for expansion devices. The Expansion Manager is a superset of the Slot Manager.

fat binary An execution module that contains native code and 680x0 code for the same program.

FCode A tokenized version of the Forth programming language, used in PCI card expansion ROMs.

FCode tokenizer A utility program that translates Forth source code into FCode.

floating-point format A data format that stores the magnitude, sign, and significant digits of a number separately.

fragment An application, shared library, system extension, or any other block of executable code and its associated data in a Power Macintosh computer.

GeoPort A software and hardware solution for digital telecom and wide-area connectivity using the serial port.

Grand Central A custom IC that provides core I/O services in Power Macintosh 7500 and 8500 computers.

Hammerhead A custom IC that controls the memory and cache system in Power Macintosh 7500 and 8500 computers.
input/output (I/O) Parts of a computer system that transfer data to or from peripheral devices.

instruction queue The part of a PowerPC microprocessor that holds incoming instructions.

I/O See input/output.

large volume support A set of enhancements to the hard drive setup software and the Finder to increase the size limit on hard disk volumes from 4 gigabytes to 2 terabytes.

little-endian Data formatting where fields are addressed by pointers to their least significant bytes or bits. See also big-endian.

LocalTalk The cable terminations and other hardware that Apple supplies for local area networking from Macintosh serial ports.

MACE See Media Access Controller for Ethernet.

Media Access Controller for Ethernet (MACE) Circuitry within Curio that supports Ethernet I/O.

MFM See Modified Frequency Modulation.

mini-DIN An international standard form of cable connector for peripheral devices.

Modified Frequency Modulation (MFM) A recording format for floppy disks used by DOS computers.

native code Instructions that run directly on a PowerPC microprocessor. See also 680x0 code.

nonvolatile RAM RAM that retains its contents even when the computer is turned off; also known as parameter RAM.

NTSC Abbreviation for National Television Systems Committee, the television signal format used for television broadcasts in North America, Japan, parts of South America, and a few other regions.

NuBus A bus architecture in some Apple computers that supports plug-in expansion cards.

Open Firmware startup process The startup process by which PCI-compatible Power Macintosh computers recognize and configure peripheral devices connected to the PCI bus.

Open Transport A networking architecture that allows communications applications to run independently of the underlying network; formerly known as Transport-Independent Interface (TII).

PAL Acronym for Phased Alternate Lines, the television signal format used in western Europe (except France), Australia, parts of South America, most of Africa, and southern Asia.

PCI Abbreviation for Peripheral Component Interconnect, an industry-standard expansion bus architecture.

pipelining The technique of sending instructions through multiple processing units in such a way that each unit handles one instruction per clock cycle.

pixel Contraction of picture element; the smallest dot that can be drawn on a display.

POWER Acronym for performance optimized with enhanced RISC, the architecture used in IBM's RS/6000 family of computers and a precursor of the PowerPC architecture.

POWER-clean Refers to PowerPC code free of instructions that are specific to the PowerPC 601 and POWER instruction sets and are not found on the PowerPC 603 and PowerPC 604 microprocessors.

PowerPC Tradename for a family of RISC microprocessors. The PowerPC 601, 603, and 604 microprocessors are used in Power Macintosh computers.

processing unit The part of a PowerPC microprocessor that executes instructions. A PowerPC can have more than one processing unit.

property list An element of a device tree that contains information about a device on a PCI bus.

RaDACal A high-performance video DAC IC used for graphics output in Power Macintosh 7500 and 8500 computers.

reduced instruction set computing (RISC) A technology of microprocessor design in which all machine instructions are uniformly formatted and are processed through the same steps.
RISC See reduced instruction set computing.

round-robin Attribute of a group of objects having equal priority.

SCC See Serial Communications Controller.

SCSI See Small Computer System Interface.

SECAM A French acronym for sequential color with memory, the television signal format used in France, Eastern Europe, the former Soviet Union, parts of Africa, and many former French colonies.

Serial Communications Controller (SCC) Circuitry on the Curio IC that provides an interface to the serial data ports.

SIMM See Single Inline Memory Module.

Single Inline Memory Module (SIMM) A plug-in card for memory expansion, containing several RAM ICs and their interconnections.

680x0 Generic reference to the 68020, 68030, and 68040 microprocessors.

680x0 code Instructions that can run on a PowerPC processor only by means of an emulator. See also native code.

Sixty6 The custom IC that performs video output digital-to-analog conversion and convolution in Power Macintosh 7500 and 8500 computers.

Small Computer System Interface (SCSI)
An industry standard parallel bus protocol for connecting computers to peripheral devices such as hard disk drives.

Streams The standard UNIX-based networking model used in Open Transport.

S-video A video format in which chroma and luminance are transmitted separately; also called Y/C. It provides higher image quality than composite video.

SWIM III A custom IC that controls the Apple SuperDrive floppy disk drive.

Versatile Interface Adapter (VIA) The interface for system interrupts that is standard on most Apple computers.

VIA See Versatile Interface Adapter.

video RAM (VRAM) Random-access memory used to store both static graphics and video frames.

VRAM See video RAM.

Y/C Same as S-video.

YUV A data format for each pixel of a color display in which color is encoded by luminance (Y) and color-difference (U, V) values calculated from its native red, green, and blue components.
Index

Numerals

10baseT connector 26
7187 digital video encoder (DENC) 20, 21, 22
7196 digital video decoder and scaler IC (DESC) 20, 21
8758 analog-to-digital converter (ADC) 20, 21

A

abbreviations 85–87
ADB connector 26
ADB port 25–26
address multiplexing, RAM 41–42
allocation block size 76
APDA information x
AppleCD 600i CD-ROM drive 31
Apple Desktop Bus. See ADB port
Apple Ethernet adapter 26
Apple GeoPort 25
Apple PlainTalk microphone 28, 29
Apple SuperDrive 32
AppleTalk stack for Open Transport 59
audio input and output connectors 33
A/V panel connectors 33
AWAC custom IC 19

B

Bandit custom IC 18
big-endian addressing 18
BlockCopy routine 68
block diagram 15
BlockMoveData routine 67
BlockMoveDataUncached routine 67
BlockMove extensions 67
BlockMove routine 67
BlockMoveUncached routine 67
BlockZero routine 67
BlockZeroUncached routine 67
boot drivers 60
bus bridge 17–18
bus clock rates 18

cache coherency 12, 72
cache SIMM. See L2 cache SIMM
CD-ROM drive 31
Chaos custom IC 20, 21
Code Fragment Manager 72
comparison with earlier models 2–4
comparison of the new models 4–5
compatibility 11–12
of Open Transport 11, 59
of PCI and NuBus 11, 70
of PowerPC 601 and PowerPC 604 12, 71, 72
composite video connectors 34
compression of audio and video data 51
connectors
ADB 25, 26
audio input and output 33
on the A/V panel 33
composite video 34
DAV 51–53
Ethernet 26–27
floppy disk 32
L2 cache SIMM 46–49
location of 6, 9
RAM DIMM 37–40
SCSI 27
serial port 24–25
sound input 28
sound output 29
S-video 33–34
10baseT 26
video monitor 29
Control custom IC 20, 21
Cuda custom IC 19
Curio custom IC 19
custom ICs
AWAC 19
Bandit 18
Chaos 20, 21
Control 20, 21
Cuda 19
Curio 19
Grand Central 18
Hammerhead 17
MESH 19
Plan B 20, 21
RaDACal 20, 21
Sixty6 20, 21, 22
INDEX

D

data bus 2, 16
data compression, audio and video 51
DAV connector 51–53
 signals on 52
DBDMA (descriptor-based DMA) 21
 dcbz instruction 67, 68
DENC (digital video encoder) 20, 21, 22
DESC (digital video decoder and scaler) 20, 21
descriptor-based DMA (DBDMA) 21
Device Manager 69, 74, 79
device tree 60
digital audio/video (DAV) interface 51
digital video decoder and scaler (DESC) 20, 21
digital video encoder (DENC) 20, 21, 22
DIMM. See RAM DIMMs
direct-memory access. See DMA
disk drives 31–32
Display Manager 73
 components modified for 69
 and Slot Manager compatibility 11, 69
DLPI drivers compared with .ENET drivers 59
DMA
 with floppy disk 18
 with Grand Central IC 18
 with I/O ports 19
 with video data 21
DRAM devices 41–43
DR Emulator 66
Driver Services Library 68
Drive Setup utility 58
Dual Inline Memory Module. See RAM DIMMs
dual-stream video 4, 22
Dynamic Recompilation Emulator 66

F

FCode 60
FCode tokenizer 61
file sharing 66
Finder modifications for large volume support 57, 76
floating-point library 67
floppy disk connector 32
floppy disk drive 32
Forth language 60
 vocabulary reference 61

G

GeoPort 25
Gestalt function 81
GPi (general purpose input) signal 25
Grand Central custom IC 18

H

Hammerhead custom IC 17
hard disk drive 31
HFS volume format 76
high-density floppy disk drive 32

I, J, K

interpretive emulator 66
I/O Ports 24–31
I/O subsystem 18–20

L

large partition support. See large volume support
large volume support 56–58, 76–83
allocation blocks 76
extended API 56
extended data structures 77–81
limitations 58
maximum file size 77
modified applications 57, 76
requirements 77
64-bit addresses 56
level-2 cache. See L2 cache SIMM
little-endian addressing 18
L2 cache SIMM 45–49
corner, signals on 46
introduced 17
signal descriptions 48

M
MacTCP stack for Open Transport 59
main processors. See PowerPC 601 microprocessor;
 PowerPC 604 microprocessor
math library 67
MC68HC05 microcontroller 19
memory management unit (MMU)
 in PowerPC 601 14
 in PowerPC 604 16
memory subsystem 16
MESH custom IC 19
microphone 28–29
microprocessor. See PowerPC 601 microprocessor;
 PowerPC 604 microprocessor
Misc API. See QuickDraw acceleration API
modem port 25
monitor sense codes 30
monitors. See video monitors
multiplexing, RAM addresses 41–42

N
Name Registry 73
native drivers 74
new features 2
NuBus, compatibility with PCI 11, 70
NuBus expansion chassis 11, 70

O
Open Firmware startup process 60–61
 boot drivers 60, 61
device tree 60
property list 60
standards for xii, 60
Open Transport 58–60
 AppleTalk stack for 59
 client interface 58
 compatibility issues 11, 59
development environment 59
 DLPI drivers 59
 features of 59
MacTCP stack for 59

P
PBXGetVolInfo function 81
PCI expansion bus 49
 Slot Manager dependencies 69
 software support for 69
 standards for xi
PCI expansion slots 49–50
pixel depth and VRAM 21
PlainTalk microphone 28, 29
Plan B custom IC 20, 21
power
 on the ADB port 26
 on the Ethernet port 27
 on expansion slots 49
 on the serial ports 25
POWER-clean code 12, 71
POWER-clean native code 70
POWER emulation 12, 71–73
 exception handling 72
POWER instructions 12
 emulation of 71–73
PowerPC 601 microprocessor 71, 72
 compatibility issues 72
 features of 14
PowerPC 604 microprocessor 71
 and cache coherence 72
 features of 16
 and POWER-clean code 70

Q
QuickDraw acceleration API 73

R
RaDACal custom IC 20, 21
RAM 16
RAM DIMMs 16, 36–44
 address multiplexing for 41–42
collectors, signals on 37–40
 connector type 36
device in 41–43
installation of 36
number of slots for 16, 36
signal descriptions 40
 standard specifications 36
reference documents
 from Apple x
 other than Apple xi
Resource Manager in native code 66
ROM 16
S

SCSI bus termination 32
SCSI port 27
second-level cache. See L2 cache SIMM
second stream video 22
serial ports 24–25
7187 digital video encoder (DENC) 20, 21, 22
7196 digital video decoder and scaler IC (DESC) 20, 21
Sixty6 custom IC 20, 21, 22
Slot Manager
 compatibility with existing PCI cards 11, 70
 removal of dependencies on 69, 73
 retaining compatibility with 70
slot VBL tasks 70
software features, new 56–65
sound
 microphone 28–29
 sampling rate 28
Sound & Displays control panel 61–64
sound IC 19
sound input jack 28
sound output jack 29
standard abbreviations 85–87
startup firmware 60
Streams network protocol 59
S-video connectors 33–34
SWIM III floppy disk controller 18
System 7.5 56

V, W

VBL tasks 70
VCI bus 21
Vertical Retrace Manager 70
video, dual-stream 4, 22
video ADC 20, 21
video frame buffer 20
video input 21
video monitors
 connector for 29
 and pixel depth 21
 sense codes 30
 VGA and SVGA 31
video output 22
video PCI bus 21
video ports 33–34
video ram. See VRAM
video subsystem 20–22
 comparison with earlier models 4
 ICs in 20
volume control block, allocation block size from 76
VRAM 20

X

XIOParam data structure 79–81
XTI interface, with Open Transport 58
XVolumeParam parameter block 77–79

Y, Z

Y/C connectors. See S-video connectors
This Apple manual was written, edited, and composed on a desktop publishing system using Apple Macintosh computers and FrameMaker software. Proof pages and final pages were created on an Apple LaserWriter Pro printer. Line art was created using Adobe Illustrator™ and Adobe Photoshop™. PostScript™, the page-description language for the LaserWriter, was developed by Adobe Systems Incorporated.

Text type is Palatino® and display type is Helvetica®. Bullets are ITC Zapf Dingbats®. Some elements, such as program listings, are set in Apple Courier.

WRITER
Allen Watson III

DEVELOPMENTAL EDITOR
Laurel Rezeau

ILLUSTRATORS
Sandee Karr, Shawn Morningstar

Special thanks to Brian Heaney, Jim Kelly, Tom Llewellyn, Greg Mullins, Steve Polzin, Noah Price, Al Scalise, and George Towner.