

Addison-Wesley Publishing Company

Reading, Massachusetts Menlo Park, California New York
Don Mills, Ontario Harlow, England Amsterdam Bonn
Sydney Singapore Tokyo Madrid San Juan
Paris Seoul Milan Mexico City Taipei

Newton Programmer’s Guide

For Newton 2.0

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM. Printed in the United
States of America.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications
only for licensed Newton platforms.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, AppleTalk, Espy,
LaserWriter, the light bulb logo,
Macintosh, MessagePad, Newton,
Newton Connection Kit, and New York
are trademarks of Apple Computer, Inc.,
registered in the United States and other
countries.

Apple Press, the Apple Press Signature,
eWorld, Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are trademarks
of Apple Computer, Inc.
Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may be
registered in certain jurisdictions.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Microsoft is a registered trademark of
Microsoft Corporation. Windows is a
trademark of Microsoft Corporation.
QuickView™ is licensed from Altura
Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

iii

Table of Contents

Figures and Tables xxxiii

Preface

About This Book

xliii

Who Should Read This Book xliii
Related Books xliii
Newton Programmer’s Reference CD-ROM xliv
Sample Code xlv
Conventions Used in This Book xlv

Special Fonts xlv
Tap Versus Click xlvi
Frame Code xlvi

Developer Products and Support xlvii
Undocumented System Software Objects xlviii

Chapter 1

Overview

1-1

Operating System 1-1
Memory 1-3
Packages 1-4

System Services 1-4
Object Storage System 1-5
View System 1-6
Text Input and Recognition 1-7
Stationery 1-8
Intelligent Assistant 1-8
Imaging and Printing 1-9
Sound 1-9
Book Reader 1-10
Find 1-10
Filing 1-11

iv

Communications Services 1-11
NewtonScript Application Communications 1-13

Routing Through the In/Out Box 1-13
Endpoint Interface 1-14

Low-Level Communications 1-14
Transport Interface 1-14
Communication Tool Interface 1-15

Application Components 1-15
Using System Software 1-17
The NewtonScript Language 1-18
What’s New in Newton 2.0 1-18

NewtApp 1-18
Stationery 1-19
Views 1-19
Protos 1-20
Data Storage 1-20
Text Input 1-20
Graphics and Drawing 1-21
System Services 1-21
Recognition 1-22
Sound 1-22
Built-in Applications 1-22
Routing and Transports 1-23
Endpoint Communication 1-23
Utilities 1-24
Books 1-24

Chapter 2

Getting Started

2-1

Choosing an Application Structure 2-1
Minimal Structure 2-1
NewtApp Framework 2-2
Digital Books 2-3
Other Kinds of Software 2-4

Package Loading, Activation, and Deactivation 2-4
Loading 2-5
Activation 2-5
Deactivation 2-6

v

Effects of System Resets on Application Data 2-7
Flow of Control 2-8
Using Memory 2-8
Localization 2-9
Developer Signature Guidelines 2-9

Signature 2-9
How to Register 2-10
Application Name 2-10
Application Symbol 2-11
Package Name 2-11

Summary 2-12
View Classes and Protos 2-12
Functions 2-12

Chapter 3

Views

3-1

About Views 3-1
Templates 3-2
Views 3-4
Coordinate System 3-6
Defining View Characteristics 3-8

Class 3-9
Behavior 3-9
Location, Size, and Alignment 3-10
Appearance 3-20
Opening and Closing Animation Effects 3-23
Other Characteristics 3-24
Inheritance Links 3-24

Application-Defined Methods 3-26
View Instantiation 3-26

Declaring a View 3-27
Creating a View 3-28
Closing a View 3-29

View Compatibility 3-30
New Drag and Drop API 3-30
New Functions and Methods 3-30
New Messages 3-30
New Alignment Flags 3-31

vi

Changes to Existing Functions and Methods 3-31
New Warning Messages 3-32
Obsolete Functions and Methods 3-32

Using Views 3-32
Getting References to Views 3-32
Displaying, Hiding, and Redrawing Views 3-33
Dynamically Adding Views 3-33

Showing a Hidden View 3-34
Adding to the stepChildren Array 3-34
Using the AddStepView Function 3-35
Using the BuildContext Function 3-36
Creating Templates 3-36
Making a Picker View 3-37

Changing the Values in viewFormat 3-37
Determining Which View Item Is Selected 3-37
Complex View Effects 3-38
Making Modal Views 3-38
Finding the Bounds of Views 3-39
Animating Views 3-40
Dragging a View 3-40
Dragging and Dropping with Views 3-40
Scrolling View Contents 3-41
Redirecting Scrolling Messages 3-42
Working With View Highlighting 3-42
Creating View Dependencies 3-43
View Synchronization 3-43
Laying Out Multiple Child Views 3-43
Optimizing View Performance 3-44

Using Drawing Functions 3-44
View Fill 3-44
Redrawing Views 3-44
Memory Usage 3-45
Scrolling 3-46

Summary of Views 3-47
Constants 3-47
Functions and Methods 3-51

vii

Chapter 4

NewtApp Applications

4-1

About the NewtApp Framework 4-1
The NewtApp Protos 4-2

About newtApplication 4-4
About newtSoup 4-5
The Layout Protos 4-5
The Entry View Protos 4-8
About the Slot View Protos 4-9

Stationery 4-11
NewtApp Compatibility 4-11

Using NewtApp 4-12
Constructing a NewtApp Application 4-12

Using Application Globals 4-13
Using newtApplication 4-14
Using the Layout Protos 4-16
Using Entry Views 4-19
Using the Required NewtApp Install and Remove Scripts 4-21

Using Slot Views in Non-NewtApp Applications 4-22
Modifying the Base View 4-22
Using a False Entry View 4-23

Creating a Custom Labelled Input-Line Slot View 4-24
Summary of the NewtApp Framework 4-25

Required Code 4-25
Protos 4-25

Chapter 5

Stationery

5-1

About Stationery 5-1
The Stationery Buttons 5-2
Stationery Registration 5-4

Getting Information about Stationery 5-5
Compatibility Information 5-5

Using Stationery 5-5
Designing Stationery 5-5

Using FillNewEntry 5-6
Extending the Notes Application 5-7

Determining the SuperSymbol of the Host 5-7

viii

Creating a DataDef 5-8
Defining DataDef Methods 5-9
Creating ViewDefs 5-11
Registering Stationery for an Auto Part 5-13

Using the MinimalBounds ViewDef Method 5-14
Stationery Summary 5-15

Data Structures 5-15
Protos 5-15
Functions 5-17

Chapter 6

Pickers, Pop-up Views, and Overviews

6-1

About Pickers and Pop-up Views 6-1
Pickers and Pop-up View Compatibility 6-2

New Pickers and Pop-up Views 6-2
Obsolete Function 6-4

Picker Categories 6-4
General-Purpose Pickers 6-4

Using protoGeneralPopup 6-7
Map Pickers 6-8
Text Pickers 6-10
Date, Time, and Location Pop-up Views 6-17
Number Pickers 6-21
Picture Picker 6-21
Overview Protos 6-22

Using protoOverview 6-24
Using protoListPicker 6-26

Using the Data Definitions Frame in a List Picker 6-29
Specifying Columns 6-29
Having a Single Selection in a List Picker 6-30
Having Preselected Items in a List Picker 6-30
Validation and Editing in protoListPicker 6-31
Changing the Font of protoListPicker 6-33

Using protoSoupOverview 6-33
Determining Which protoSoupOverview Item Is Hit 6-33

Displaying the protoSoupOverview Vertical Divider 6-34
Roll Protos 6-35
View Classes 6-36

ix

Specifying the List of Items for a Popup 6-37
Summary 6-41

General Picker Protos 6-41
Map Pickers 6-45
Text Picker Protos 6-46
Date, Time, and Location Pop-up Views 6-50
Number Pickers 6-53
Picture Picker 6-53
Overview Protos 6-54
Roll Protos 6-57
View Classes 6-58
Functions 6-59

Chapter 7

Controls and Other Protos

7-1

Controls Compatibility 7-1
Scroller Protos 7-2

Implementing a Minimal Scroller 7-3
Automatic Arrow Feedback 7-3
Scrolling Examples 7-4

Scrolling Lines of Text 7-4
Scrolling in the Dates Application 7-5
Scrolling In a Graphics Application 7-5

Scroll Amounts 7-5
Advanced Usage 7-6

Button and Box Protos 7-6
Implementing a Simple Button 7-10

Selection Tab Protos 7-11
Gauge and Slider Protos 7-12

Implementing a Simple Slider 7-13
Time Protos 7-14

Implementing a Simple Time Setter 7-15
Special View Protos 7-16
View Appearance Protos 7-18
Status Bar Protos 7-19
Summary 7-20

Scroller Protos 7-20
Button and Box Protos 7-22

x

Selection Tab Protos 7-25
Gauges and Slider Protos 7-25
Time Protos 7-27
Special View Protos 7-28
View Appearance Protos 7-30
Status Bar Protos 7-31

Chapter 8

Text and Ink Input and Display

8-1

About Text 8-1
About Text and Ink 8-1

Written Input Formats 8-2
Caret Insertion Writing Mode 8-3
Fonts for Text and Ink Display 8-3

About Text Views and Protos 8-3
About Keyboard Text Input 8-4

The Keyboard Registry 8-5
The Punctuation Pop-up Menu 8-5

Compatibility 8-6
Using Text 8-6

Using Views and Protos for Text Input and Display 8-6
General Input Views 8-6
Paragraph Views 8-10
Lightweight Paragraph Views 8-11
Using Input Line Protos 8-12

Displaying Text and Ink 8-14
Text and Ink in Views 8-14
Using Fonts for Text and Ink Display 8-17
Rich Strings 8-22
Text and Styles 8-25

Setting the Caret Insertion Point 8-26
Using Keyboards 8-26

Keyboard Views 8-26
Using Keyboard Protos 8-28
Defining Keys in a Keyboard View 8-30
Using the Keyboard Registry 8-36
Defining Tabbing Orders 8-36
The Caret Pop-up Menu 8-38

xi

Handling Input Events 8-38
Testing for a Selection Hit 8-38

Summary of Text 8-39
Text Constants and Data Structures 8-39
Views 8-42
Protos 8-43
Text and Ink Display Functions and Methods 8-47
Keyboard Functions and Methods 8-49
Input Event Functions and Methods 8-50

Chapter 9

Recognition

9-1

About the Recognition System 9-1
Classifying Strokes 9-3

Gestures 9-4
Shapes 9-5
Text 9-6
Unrecognized Strokes 9-7

Enabling Recognizers 9-8
View Flags 9-9
Recognition Configuration Frames 9-9
View Flags vs. RecConfig Frames 9-10

Where to Go From Here 9-10
Recognition Failure 9-11
System Dictionaries 9-11
Correction and Learning 9-13
User Preferences for Recognition 9-14

Handwriting Recognition Preferences 9-15
RecToggle Views 9-18
Flag-Naming Conventions 9-19
Recognition Compatibility 9-20

Using the Recognition System 9-21
Types of Views 9-21
Configuring the Recognition System 9-22

Obtaining Optimum Recognition Performance 9-23
Accepting Pen Input 9-24

Taps and Overlapping Views 9-24
Recognizing Shapes 9-25

xii

Recognizing Standard Gestures 9-25
Combining View Flags 9-26
Recognizing Text 9-27

Recognizing Punctuation 9-28
Suppressing Spaces Between Words 9-28
Forcing Capitalization 9-29
Justifying to Width of Parent View 9-29
Restricting Input to Single Lines or Single Words 9-29
Validating Clipboard and Keyboard Input 9-29

Using the vAnythingAllowed Mask 9-30
Summary 9-31

Constants 9-31
Data Structures 9-33

Chapter 10

Recognition: Advanced Topics

10-1

About Advanced Topics in Recognition 10-1
How the System Uses Recognition Settings 10-1
ProtoCharEdit Views 10-4

Ambiguous Characters in protoCharEdit Views 10-5
Deferred Recognition 10-5

User Interface to Deferred Recognition 10-5
Programmer’s Overview of Deferred Recognition 10-6

Compatibility Information 10-7
Using Advanced Topics in Recognition 10-7

Using recConfig Frames 10-8
Creating a recConfig Frame 10-9
Using RecConfig Frames to Enable Recognizers 10-10
Returning Text, Ink Text or Sketch Ink 10-10
Fine-Tuning Text Recognition 10-12
Manipulating Dictionaries 10-13
Single-Character Input Views 10-13
Creating Single-Letter Input Views 10-15

Changing Recognition Behavior Dynamically 10-17
Using protoRecToggle Views 10-19

Creating the recToggle View 10-19
Configuring Recognizers and Dictionaries for recToggle

Views 10-20
Creating the _recogSettings Slot 10-20

xiii

Providing the _recogPopup Slot 10-22
Accessing Correction Information 10-23
Using Custom Dictionaries 10-24

Creating a Custom Enumerated Dictionary 10-24
Creating the Blank Dictionary 10-25
Adding Words to RAM-Based Dictionaries 10-26
Removing Words From RAM-Based Dictionaries 10-27
Saving Dictionary Data to a Soup 10-27
Restoring Dictionary Data From a Soup 10-28
Using Your RAM-Based Custom Dictionary 10-28
Removing Your RAM-Based Custom Dictionary 10-30
Using System Dictionaries Individually 10-30

Working With the Review Dictionary 10-30
Retrieving the Review Dictionary 10-31
Displaying Review Dictionary Browsers 10-31
Adding Words to the User Dictionary 10-32
Removing Words From the User Dictionary 10-32
Adding Words to the Expand Dictionary 10-33
Removing Words From the Expand Dictionary 10-34
Retrieving Word Expansions 10-34
Retrieving the Auto-Add Dictionary 10-34
Disabling the Auto-Add Mechanism 10-35
Adding Words to the Auto-Add Dictionary 10-35
Removing Words From the Auto-Add Dictionary 10-36

Using protoCharEdit Views 10-36
Positioning protoCharEdit Views 10-36
Manipulating Text in protoCharEdit Views 10-37
Restricting Characters Returned by protoCharEdit Views 10-38

Customized Processing of Input Strokes 10-40
Customized Processing of Double Taps 10-41
Changing User Preferences for Recognition 10-41
Modifying or Replacing the Correction Picker 10-42
Using Stroke Bundles 10-42

Stroke Bundles Example 10-42
Summary of Advanced Topics in Recognition 10-44

Constants 10-44
Data Structures 10-45
Recognition System Prototypes 10-49
Additional Recognition Functions and Methods 10-54

xiv

Chapter 11

Data Storage and Retrieval

11-1

About Data Storage on Newton Devices 11-1
Introduction to Data Storage Objects 11-2
Where to Go From Here 11-6
Stores 11-6
Packages 11-7
Soups 11-7

Indexes 11-8
Saving User Preference Data in the System Soup 11-10

Queries 11-10
Querying for Indexed Values 11-10
Begin Keys and End Keys 11-12
Tag-based Queries 11-14
Customized Tests 11-14
Text Queries 11-15

Cursors 11-16
Entries 11-17
Alternatives to Soup-Based Storage 11-18

Dynamic Data 11-18
Static Data 11-19

Compatibility Information 11-20
Obsolete Store Functions and Methods 11-20
Soup Compatibility Information 11-20
Query Compatibility Information 11-23
Obsolete Entry Functions 11-24
Obsolete Data Backup and Restore Functions 11-24

Using Newton Data Storage Objects 11-25
Programmer’s Overview 11-25
Using Stores 11-28

Store Object Size Limits 11-29
Referencing Stores 11-29
Retrieving Packages From Stores 11-29
Testing Stores for Write-Protection 11-30
Getting or Setting the Default Store 11-30
Getting and Setting the Store Name 11-30
Accessing the Store Information Frame 11-31

Using Soups 11-31
Naming Soups 11-31
Registering and Unregistering Soup Definitions 11-32

xv

Retrieving Existing Soups 11-33
Adding Entries to Soups 11-34
Adding an Index to an Existing Soup 11-35
Removing Soups 11-36
Using Built-in Soups 11-36
Making Changes to Other Applications’ Soups 11-37
Adding Tags to an Existing Soup 11-37

Using Queries 11-37
Querying Multiple Soups 11-38
Querying on Single-Slot Indexes 11-38
Querying for Tags 11-41
Querying for Text 11-43
Internationalized Sorting Order for Text Queries 11-44
Queries on Descending Indexes 11-45
Querying on Multiple-Slot Indexes 11-47
Limitations of Index Keys 11-51

Using Cursors 11-53
Getting a Cursor 11-53
Testing Validity of the Cursor 11-53
Getting the Entry Currently Referenced by the Cursor 11-54
Moving the Cursor 11-54
Counting the Number of Entries in Cursor Data 11-56
Getting the Current Entry’s Index Key 11-56
Copying Cursors 11-56

Using Entries 11-57
Saving Frames as Soup Entries 11-57
Removing Entries From Soups 11-58
Modifying Entries 11-59
Moving Entries 11-60
Copying Entries 11-60
Sharing Entry Data 11-61
Using the Entry Cache Efficiently 11-61

Using Soup Change Notification 11-63
Registering Your Application for Change Notification 11-63
Unregistering Your Application for Change Notification 11-65
Responding to Notifications 11-65
Sending Notifications 11-66

Summary of Data Storage 11-68
Data Structures 11-68
Data Storage Functions and Methods 11-71

xvi

Special-Purpose Objects for

Chapter 12

Data Storage and Retrieval

12-1

About Special-Purpose Storage Objects 12-1
Entry Aliases 12-1
Virtual Binary Objects 12-2
Parts 12-3

Store Parts 12-4
Mock Entries 12-4

Mock Stores, Mock Soups, and Mock Cursors 12-6
Using Special-Purpose Data Storage Objects 12-7

Using Entry Aliases 12-7
Using Virtual Binary Objects 12-8

Creating Virtual Binary Objects 12-8
Modifying VBO Data 12-10
VBOs and String Data 12-12

Using Store Parts 12-12
Creating a Store Part 12-13
Getting the Store Part 12-14
Accessing Data in Store Parts 12-14

Using Mock Entries 12-14
Implementing the EntryAccess Method 12-15
Creating a New Mock Entry 12-15
Testing the Validity of a Mock Entry 12-16
Getting Mock Entry Data 12-16
Changing the Mock Entry’s Handler 12-16
Getting the Mock Entry’s Handler 12-16
Implementing Additional Handler Methods 12-16

Summary of Special-Purpose Data Storage Objects 12-17
Data Structures 12-17
Functions and Methods 12-17

Chapter 13

Drawing and Graphics

13-1

About Drawing 13-1
Shape-Based Graphics 13-2
Manipulating Shapes 13-7
The Style Frame 13-7

xvii

Drawing Compatibility 13-8
New Functions 13-8
New Style Attribute Slots 13-8
Changes to Bitmaps 13-8
Changes to the HitShape Method 13-8
Changes to View Classes 13-9

Using the Drawing Interface 13-9
How to Draw 13-9

Responding to the ViewDrawScript Message 13-9
Drawing Immediately 13-10

Using Nested Arrays of Shapes 13-10
The Transform Slot in Nested Shape Arrays 13-11
Default Transfer Mode 13-12
Transfer Modes at Print Time 13-12

Controlling Clipping 13-12
Transforming a Shape 13-13
Using Drawing View Classes and Protos 13-14

Displaying Graphics Shapes and Ink 13-14
Displaying Bitmaps, Pictures, and Graphics Shapes 13-15
Displaying Pictures in a clEditView 13-15
Displaying Scaled Images of Other Views 13-15

Translating Data Shapes 13-16
Finding Points Within a Shape 13-16
Using Bitmaps 13-17
Making CopyBits Scale Its Output Bitmap 13-18
Storing Compressed Pictures and Bitmaps 13-18
Capturing a Portion of a View Into a Bitmap 13-18
Rotating or Flipping a Bitmap 13-19
Importing Macintosh PICT Resources 13-20
Drawing Non-Default Fonts 13-20
PICT Swapping During Run-Time Operations 13-21
Optimizing Drawing Performance 13-22

Summary of Drawing 13-23
Data Structure 13-23
View Classes 13-23
Protos 13-24
Functions and Methods 13-26

xviii

Chapter 14

Sound

14-1

About Newton Sound 14-1
Event-related Sounds 14-2

Sounds in ROM 14-2
Sounds for Predefined Events 14-2

Sound Data Structures 14-3
Compatibility 14-3

Using Sound 14-4
Creating and Using Custom Sound Frames 14-4
Creating Sound Frames Procedurally 14-5

Cloning Sound Frames 14-5
Playing Sound 14-5

Using a Sound Channel to Play Sound 14-5
Playing Sound Programmatically 14-6

Synchronous and Asynchronous Sound 14-7
Advanced Sound Techniques 14-8

Pitch Shifting 14-9
Manipulating Sample Data 14-10

Summary of Sound 14-11
Data Structures 14-11
Protos 14-11
Functions and Methods 14-12
Sound Resources 14-12

Chapter 15

Filing

15-1

About Filing 15-1
Filing Compatibility Information 15-9

Using the Filing Service 15-10
Overview of Filing Support 15-10

Creating the Labels Slot 15-11
Creating the appName Slot 15-11
Creating the appAll Slot 15-12
Creating the appObjectFileThisIn Slot 15-12
Creating the appObjectFileThisOn Slot 15-12
Creating the appObjectUnfiled Slot 15-12
Specifying the Target 15-13

xix

Creating the labelsFilter slot 15-14
Creating the storesFilter slot 15-14
Adding the Filing Button 15-14
Adding the Folder Tab View 15-14
Customizing Folder Tab Views 15-15
Defining a TitleClickScript Method 15-15
Implementing the FileThis Method 15-15
Implementing the NewFilingFilter Method 15-16
Using the Folder Change Notification Service 15-18
Creating the doCardRouting slot 15-18
Using Local or Global Folders Only 15-19
Adding and Removing Filing Categories

Programmatically 15-19
Interface to User-Visible Folder Names 15-19

Summary 15-20
Data Structures for Filing 15-20

Application Base View Slots 15-20
Filing Protos 15-21
Filing Functions and Methods 15-22
Application-Defined Filing Functions and Methods 15-22

Chapter 16

Find

16-1

About the Find Service 16-1
Compatibility Information 16-6

Using the Find Service 16-6
Technical Overview 16-6

Global and Selected Finds 16-9
Checklist for Adding Find Support 16-10

Creating the title Slot 16-11
Creating the appName Slot 16-11

Using the Finder Protos 16-11
Implementing Search Methods 16-14

Using the StandardFind Method 16-15
Using Your Own Text-Searching Method 16-16
Finding Text With a ROM_CompatibleFinder 16-17
Implementing the DateFind Method 16-18
Adding Application Data Sets to Selected Finds 16-19
Returning Search Results 16-21

xx

Implementing Find Overview Support 16-21
The FindSoupExcerpt Method 16-21
The ShowFoundItem Method 16-22

Replacing the Built-in Find Slip 16-24
Reporting Progress to the User 16-24
Registering for Finds 16-25

Summary 16-26
Finder Protos 16-26
Functions and Methods 16-28
Application-Defined Methods 16-28

Chapter 17

Additional System Services

17-1

About Additional System Services 17-1
Undo 17-1

Undo Compatibility 17-2
Idler Objects 17-2
Change Notifications 17-2
Online Help 17-3
Alerts and Alarms 17-3

User Alerts 17-3
User Alarms 17-3
Periodic Alarms 17-4
Alarms Compatibility 17-5

Progress Indicators 17-5
Automatic Busy Cursor 17-5
Notify Icon 17-5
Status Slips With Progress Indicators 17-6

Power Registry 17-7
Power Compatibility Information 17-7

Using Additional System Services 17-7
Using Undo Actions 17-8

The Various Undo Methods 17-8
Avoiding Undo-Related “Bad Package” Errors 17-9

Using Idler Objects 17-9
Using Change Notification 17-10
Using Online Help 17-10

xxi

Using Alerts and Alarms 17-11
Using the Notify Method to Display User Alerts 17-11
Creating Alarms 17-11
Obtaining Information about Alarms 17-12
Retrieving Alarm Keys 17-12
Removing Installed Alarms 17-13
Common Problems With Alarms 17-13
Using the Periodic Alarm Editor 17-14

Using Progress Indicators 17-15
Using the Automatic Busy Cursor 17-15
Using the Notify Icon 17-15
Using the DoProgress Function 17-16
Using DoProgress or Creating Your Own

protoStatusTemplate 17-18
Using protoStatusTemplate Views 17-18

Using the Power Registry 17-24
Registering Power-On Functions 17-24
Registering Login Screen Functions 17-25
Registering Power-Off Functions 17-25
Using the Battery Information Functions 17-26

Summary of Additional System Services 17-27
Undo 17-27
Idlers 17-27
Notification and Alarms 17-27
Reporting Progress 17-28
Power Registry 17-29

Chapter 18

Intelligent Assistant

18-1

About the Assistant 18-1
Introduction 18-1

Input Strings 18-2
No Verb in Input String 18-2
Ambiguous or Missing Information 18-4
The Task Slip 18-4

Programmer’s Overview 18-5
Matching Words With Templates 18-8
The Signature and PreConditions Slots 18-10

xxii

The Task Frame 18-11
The Entries Slot 18-11
The Phrases Slot 18-11
The OrigPhrase Slot 18-12
The Value Slot 18-12

Resolving Template-Matching Conflicts 18-13
Compatibility Information 18-14

Using the Assistant 18-15
Making Behavior Available From the Assistant 18-15

Defining Action and Target Templates 18-15
Defining Your Own Frame Types to the Assistant 18-16
Implementing the PostParse Method 18-17
Defining the Task Template 18-18
Registering and Unregistering the Task Template 18-19

Displaying Online Help From the Assistant 18-19
Routing Items From the Assistant 18-20

Summary 18-21
Data Structures 18-21
Templates 18-21

Developer-Supplied Task Template 18-22
Developer-Supplied Action Templates 18-25
Developer-Supplied Target Templates 18-27

Assistant Functions and Methods 18-27
Developer-Supplied Functions and Methods 18-28
Application Base View Slots 18-28

Chapter 19

Built-in Applications and System Data

19-1

Names 19-2
About the Names Application 19-2

Names Compatibility 19-3
Using the Names Application 19-4

Adding a New Type of Card 19-4
Adding a New Data Item 19-4
Adding a New Card Layout Style 19-5
Adding New Layouts to the Names Application 19-6
Using the Names Methods and Functions 19-6
Using the Names Soup 19-7
Using the Names Protos 19-7

xxiii

Dates 19-8
About the Dates Application 19-8

Dates Compatibility 19-9
Using the Dates Application 19-10

Adding Meetings or Events 19-11
Deleting Meetings and Events 19-12
Finding Meetings or Events 19-13
Moving Meetings and Events 19-14
Getting and Setting Information for Meetings or Events 19-15
Creating a New Meeting Type 19-17
Examples of Creating New Meeting Types 19-19
Miscellaneous Operations 19-20
Controlling the Dates Display 19-21
Using the Dates Soups 19-22

To Do List 19-22
About the To Do List Application 19-22

To Do List Compatibility 19-23
Using the To Do List Application 19-23

Creating and Removing Tasks 19-24
Accessing Tasks 19-24
Checking-Off a Task 19-25
Miscellaneous To Do List Methods 19-26
Using the To Do List Soup 19-26

Time Zones 19-27
About the Time Zones Application 19-27

Time Zone Compatibility 19-27
Using the Time Zone Application 19-28

Obtaining Information About a City or Country 19-28
Adding a City to a Newton Device 19-29
Using Longitude and Latitude Values 19-30
Setting the Home City 19-30

Notes 19-30
About the Notes Application 19-31

Notes Compatibility 19-31
Using the Notes Application 19-32

Creating New Notes 19-32
Adding Stationery to the Notes Application 19-33
Using the Notes Soup 19-33

xxiv

Fax Soup Entries 19-34
About Fax Soup Entries 19-34
Using Fax Soup Entries 19-34

Prefs and Formulas Rolls 19-35
About the Prefs and Formulas Rolls 19-35

Prefs and Formulas Compatibility 19-36
Using the Prefs and Formulas Interfaces 19-36

Adding a Prefs Roll Item 19-36
Adding a Formulas Roll Item 19-36

Auxiliary Buttons 19-36
About Auxiliary Buttons 19-36

Auxiliary Buttons Compatibility 19-36
Using Auxiliary Buttons 19-37

Icons and the Extras Drawer 19-38
About Icons and the Extras Drawer 19-38

Extras Drawer Compatibility 19-39
Using the Extras Drawer’s Interface for Icon Management 19-39

Using Extras Drawer Cursors 19-40
Changing Icon Information 19-40
Adding a Soup Icon 19-40
Removing a Soup Icon 19-41
Creating a Script Icon 19-42
Using the Soupervisor Mechanism 19-43

System Data 19-44
About System Data 19-44
Using System Data 19-44

Functions for Accessing User Configuration Data 19-45
Storing Application Preferences in the System Soup 19-45

Summary 19-46
Constants and Variables 19-46

User Configuration Variables 19-47
Protos 19-48
Soup Formats 19-49
Functions and Methods 19-53

xxv

Chapter 20

Localizing Newton Applications

20-1

About Localization 20-1
The Locale Panel and the International Frame 20-1

Locale and ROM Version 20-2
How Locale Affects Recognition 20-2

Using the Localization Features of the Newton 20-3
Defining Language at Compile Time 20-3

Defining a Localization Frame 20-4
Using LocObj to Reference Localized Objects 20-4
Use ParamStr Rather Than “&” and “&&” Concatenation 20-5
Measuring String Widths at Compile Time 20-6

Determining Language at Run Time 20-6
Examining the Active Locale Bundle 20-6
Changing Locale Settings 20-7
Creating a Custom Locale Bundle 20-7
Adding a New Bundle to the System 20-8
Removing a Locale Bundle 20-8
Changing the Active Locale 20-9
Using a Localized Country Name 20-9
Summary: Customizing Locale 20-9

Localized Output 20-10
Date and Time Values 20-10
Currency Values 20-13

Summary of Localization Functions 20-14
Compile-Time Functions 20-14
Locale Functions 20-14
Date and Time Functions 20-14
Utility Functions 20-15

Chapter 21

Routing Interface

21-1

About Routing 21-1
The In/Out Box 21-1

The In Box 21-2
The Out Box 21-3

Action Picker 21-3

xxvi

Routing Formats 21-5
Current Format 21-8

Routing Compatibility 21-8
Print Formats 21-8

Using Routing 21-8
Providing Transport-Based Routing Actions 21-9

Getting and Verifying the Target Object 21-10
Getting and Setting the Current Format 21-11
Supplying the Target Object 21-12
Storing an Alias to the Target Object 21-13
Storing Multiple Items 21-14
Using the Built-in Overview Data Class 21-14
Displaying an Auxiliary View 21-15
Registering Routing Formats 21-16

Creating a Print Format 21-18
Page Layout 21-18
Printing and Faxing 21-19

Creating a Frame Format 21-21
Creating a New Type of Format 21-22
Providing Application-Specific Routing Actions 21-22

Performing the Routing Action 21-24
Handling Multiple Items 21-24
Handling No Target Item 21-25

Sending Items Programmatically 21-26
Creating a Name Reference 21-27
Specifying a Printer 21-28

Opening a Routing Slip Programmatically 21-29
Supporting the Intelligent Assistant 21-30
Receiving Data 21-31

Automatically Putting Away Items 21-31
Manually Putting Away Items 21-33
Registering to Receive Foreign Data 21-34
Filing Items That Are Put Away 21-34

Viewing Items in the In/Out Box 21-34
View Definition Slots 21-35

Advanced Alias Handling 21-36
Summary of the Routing Interface 21-37

Constants 21-37
Data Structures 21-37

xxvii

Protos 21-38
Functions and Methods 21-39
Application-Defined Methods 21-40

Chapter 22

Transport Interface

22-1

About Transports 22-1
Transport Parts 22-2
Item Frame 22-2

Using the Transport Interface 22-5
Providing a Transport Object 22-5

Installing the Transport 22-5
Setting the Address Class 22-6
Grouping Transports 22-7
Sending Data 22-8
Sending All Items 22-9
Converting an E-Mail Address to an Internet Address 22-9
Receiving Data 22-9
Handling Requests When the Transport Is Active 22-12
Canceling an Operation 22-13
Obtaining an Item Frame 22-13
Completion and Logging 22-16
Storing Transport Preferences and Configuration

Information 22-17
Extending the In/Out Box Interface 22-17
Application Messages 22-19
Error Handling 22-20
Power-Off Handling 22-20

Providing a Status Template 22-21
Controlling the Status View 22-23

Providing a Routing Information Template 22-25
Providing a Routing Slip Template 22-26

Using protoFullRouteSlip 22-27
Using protoAddressPicker 22-31

Providing a Preferences Template 22-33
Summary of the Transport Interface 22-36

Constants 22-36
Protos 22-36
Functions and Methods 22-39

xxviii

Chapter 23

Endpoint Interface

23-1

About the Endpoint Interface 23-1
Asynchronous Operation 23-2
Synchronous Operation 23-3
Input 23-3
Data Forms 23-4

Template Data Form 23-5
Endpoint Options 23-7
Compatibility 23-7

Using the Endpoint Interface 23-8
Setting Endpoint Options 23-8
Initialization and Termination 23-10
Establishing a Connection 23-11
Sending Data 23-11
Receiving Data Using Input Specs 23-12

Specifying the Data Form and Target 23-13
Specifying Data Termination Conditions 23-14
Specifying Flags for Receiving 23-15
Specifying an Input Time-Out 23-16
Specifying Data Filter Options 23-16
Specifying Receive Options 23-17
Handling Normal Termination of Input 23-17
Periodically Sampling Incoming Data 23-18
Handling Unexpected Completion 23-18
Special Considerations 23-18

Receiving Data Using Alternative Methods 23-19
Streaming Data In and Out 23-20
Working With Binary Data 23-20
Canceling Operations 23-21

Asynchronous Cancellation 23-21
Synchronous Cancellation 23-22

Other Operations 23-22
Error Handling 23-23
Power-Off Handling 23-23
Linking the Endpoint With an Application 23-24

Summary of the Endpoint Interface 23-25
Constants and Symbols 23-25
Data Structures 23-26
Protos 23-28
Functions and Methods 23-30

xxix

Chapter 24

Built-in Communications Tools

24-1

Serial Tool 24-1
Standard Asynchronous Serial Tool 24-1
Serial Tool with MNP Compression 24-4
Framed Asynchronous Serial Tool 24-4

Modem Tool 24-6
Infrared Tool 24-8
AppleTalk Tool 24-9
Resource Arbitration Options 24-10
AppleTalk Functions 24-12

The Net Chooser 24-13
Summary 24-16

Built-in Communications Tool Service Option Labels 24-16
Options 24-16
Constants 24-18
Functions and Methods 24-21

Chapter 25

Modem Setup Service

25-1

About the Modem Setup Service 25-1
The Modem Setup User Interface 25-2
The Modem Setup Process 25-3
Modem Communication Tool Requirements 25-4

Defining a Modem Setup 25-5
Setting Up General Information 25-5
Setting the Modem Preferences Option 25-5
Setting the Modem Profile Option 25-6
Setting the Fax Profile Option 25-7

Summary of the Modem Setup Service 25-9
Constants 25-9

xxx

Chapter 26

Utility Functions

26-1

Compatibility 26-2
New Functions 26-2

New Object System Functions 26-2
New String Functions 26-3
New Array Functions 26-3
New Sorted Array Functions 26-3
New Integer Math Functions 26-4
New Financial Functions 26-4
New Exception Handling Functions 26-4
New Message Sending Functions 26-4
New Deferred Message Sending Functions 26-4
New Data Stuffing Functions 26-5
New Functions to Get and Set Globals 26-5
New Debugging Functions 26-5
New Miscellaneous Functions 26-5

Enhanced Functions 26-6
Obsolete Functions 26-6

Summary of Functions and Methods 26-7
Object System Functions 26-7
String Functions 26-8
Bitwise Functions 26-9
Array Functions 26-9
Sorted Array Functions 26-9
Integer Math Functions 26-10
Floating Point Math Functions 26-10
Financial Functions 26-12
Exception Functions 26-12
Message Sending Functions 26-12
Deferred Message Sending Functions 26-12
Data Extraction Functions 26-13
Data Stuffing Functions 26-13
Getting and Setting Global Variables and Functions 26-13
Debugging Functions 26-13
Miscellaneous Functions 26-14

xxxi

Appendix

The Inside Story on Declare

A-1

Compile-Time Results A-1
Run-Time Results A-2

Glossary

GL-1

Index

IN-1

xxxiii

Figures and Tables

Chapter 1

Overview

1-1

Figure 1-1

System software overview 1-2

Figure 1-2

Communications architecture 1-12

Figure 1-3

Using components 1-16

Chapter 3

Views

3-1

Figure 3-1 Template hierarchy 3-3
Figure 3-2 View hierarchy 3-5
Figure 3-3 Screen representation of view hierarchy 3-6
Figure 3-4 View system coordinate plane 3-7
Figure 3-5 Points and pixels 3-7
Figure 3-6 Bounds parameters 3-11
Figure 3-7 View alignment effects 3-18
Figure 3-8 Transfer modes 3-22

Table 3-1 viewJustify constants 3-14

Chapter 4 NewtApp Applications 4-1

Figure 4-1 The main protos in a NewtApp-based application 4-3
Figure 4-2 A roll-based application (left) versus a card-based

application 4-6
Figure 4-3 Calls is an example of a page-based application 4-7
Figure 4-4 Multiple entries visible simultaneously 4-8
Figure 4-5 An Information slip 4-9
Figure 4-6 The smart name view and system-provided

people picker 4-11
Figure 4-7 The message resulting from a nil value for

forceNewEntry 4-17
Figure 4-8 The overview slots 4-17
Figure 4-9 The information button and picker. 4-20

xxxiv

Chapter 5 Stationery 5-1

Figure 5-1 The IOU extension in the New picker 5-3
Figure 5-2 The IOU extension to the Notes application 5-3
Figure 5-3 The Show menu presents different views of

application data 5-4
Figure 5-4 The default viewDef view template 5-12

Chapter 6 Pickers, Pop-up Views, and Overviews 6-1

Figure 6-1 A protoPopupButton example 6-5
Figure 6-2 A protoPopInPlace example 6-5
Figure 6-3 A protoLabelPicker example 6-5
Figure 6-4 A protoPicker example 6-6
Figure 6-5 A protoGeneralPopup example 6-6
Figure 6-6 A protoTextList example 6-7
Figure 6-7 A protoTable example 6-7
Figure 6-8 A protoCountryPicker example 6-9
Figure 6-9 A protoProvincePicker example 6-9
Figure 6-10 A protoStatePicker example 6-9
Figure 6-11 A protoWorldPicker example 6-10
Figure 6-12 A protoTextPicker example 6-10
Figure 6-13 A protoDateTextPicker example 6-11
Figure 6-14 A protoDateDurationTextPicker example 6-12
Figure 6-15 A protoDateNTimeTextPicker example 6-13
Figure 6-16 A protoTimeTextPicker example 6-13
Figure 6-17 A protoDurationTextPicker example 6-14
Figure 6-18 A protoTimeDeltaTextPicker example 6-14
Figure 6-19 A protoMapTextPicker example 6-15
Figure 6-20 A protoUSstatesTextPicker example 6-15
Figure 6-21 A protoCitiesTextPicker example 6-16
Figure 6-22 A protoLongLatTextPicker example 6-16
Figure 6-23 A protoDatePopup example 6-17
Figure 6-24 A protoDatePicker example 6-17
Figure 6-25 A protoDateNTimePopup example 6-18
Figure 6-26 A protoDateIntervalPopup example 6-18
Figure 6-27 A protoMultiDatePopup example 6-19
Figure 6-28 A protoYearPopup example 6-19
Figure 6-29 A protoTimePopup example 6-19
Figure 6-30 A protoAnalogTimePopup example 6-20
Figure 6-31 A protoTimeDeltaPopup example 6-20
Figure 6-32 A protoTimeIntervalPopup example 6-20
Figure 6-33 A protoNumberPicker example 6-21
Figure 6-34 A protoPictIndexer example 6-21

xxxv

Figure 6-35 A protoOverview example 6-22
Figure 6-36 A protoSoupOverview example 6-23
Figure 6-37 A protoListPicker example 6-24
Figure 6-38 A ProtoListPicker example 6-26
Figure 6-39 Creating a new name entry 6-27
Figure 6-40 Highlighted row 6-27
Figure 6-41 Selected row 6-27
Figure 6-42 Pop-up view displayed over list 6-28
Figure 6-43 Slip displayed for gathering input 6-28
Figure 6-44 A protoRoll example 6-35
Figure 6-45 A protoRollBrowser example 6-36
Figure 6-46 Example of an expandable text outline 6-36
Figure 6-47 Example of a month view 6-37
Figure 6-48 Cell highlighting example for protoPicker 6-40

Table 6-1 Item frame for strings and bitmaps 6-38
Table 6-2 Item frame for string with icon 6-38
Table 6-3 Item frame for two-dimensional grid 6-39

Chapter 7 Controls and Other Protos 7-1

Figure 7-1 A protoHorizontal2DScroller view 7-2
Figure 7-2 A protoLeftRightScroller view 7-2
Figure 7-3 A protoUpDownScroller view 7-3
Figure 7-4 A protoHorizontalUpDownScroller view 7-3
Figure 7-5 A protoTextButton view 7-6
Figure 7-6 A protoPictureButton view 7-7
Figure 7-7 A protoInfoButton view 7-7
Figure 7-8 A protoOrientation view 7-7
Figure 7-9 A cluster of protoRadioButtons 7-8
Figure 7-10 A cluster of protoPictRadioButtons 7-8
Figure 7-11 A protoCloseBox view 7-8
Figure 7-12 A protoLargeCloseBox view 7-9
Figure 7-13 A protoCheckBox view 7-9
Figure 7-14 A protoRCheckBox view 7-9
Figure 7-15 A protoAZTabs view 7-11
Figure 7-16 A protoAZVertTabs view 7-11
Figure 7-17 A protoSlider view 7-12
Figure 7-18 A protoGauge view 7-12
Figure 7-19 A protoLabeledBatteryGauge view 7-12
Figure 7-20 A clGaugeView view 7-13
Figure 7-21 A protoDigitalClock view 7-14
Figure 7-22 A protoNewSetClock view 7-15

xxxvi

Figure 7-23 A protoAMPMCluster view 7-15
Figure 7-24 A protoDragger view 7-16
Figure 7-25 A protoDragNGo view 7-16
Figure 7-26 A protoGlance view 7-17
Figure 7-27 A protoStaticText view 7-17
Figure 7-28 A protoBorder view 7-18
Figure 7-29 A protoDivider view 7-18
Figure 7-30 A protoTitle view 7-18
Figure 7-31 A protoStatus view 7-19
Figure 7-32 A protoStatusBar view 7-19

Table 7-1 Scroller bounds frame slots 7-4

Chapter 8 Text and Ink Input and Display 8-1

Figure 8-1 The Punctuation pop-up menu 8-5
Figure 8-2 An example of a protoLabelInputLine 8-13
Figure 8-3 The Recognition menu 8-15
Figure 8-4 Resized and recognized ink 8-16
Figure 8-5 A paragraph view containing an ink word

and text 8-25
Figure 8-6 The built-in alphanumeric keyboard 8-26
Figure 8-7 The built-in numeric keyboard 8-27
Figure 8-8 The built-in phone keyboard 8-27
Figure 8-9 The built-in time and date keyboard 8-27
Figure 8-10 An example of a protoKeyboard 8-29
Figure 8-11 The keyboard button 8-29
Figure 8-12 The small keyboard button 8-30
Figure 8-13 A generic keyboard view 8-31
Figure 8-14 Keyboard codes 8-34
Figure 8-15 Independent tabbing orders within a parent view 8-37

Table 8-1 Views and protos for text input and display 8-4
Table 8-2 viewStationery slot value for clEditView

children 8-9
Table 8-3 Font family symbols 8-18
Table 8-4 Font style (face) values 8-18
Table 8-5 Built-in font constants 8-19
Table 8-6 Font packing constants 8-21
Table 8-7 Rich string functions 8-24
Table 8-8 Key descriptor constants 8-34

xxxvii

Chapter 9 Recognition 9-1

Figure 9-1 Recognizers create units from input strokes 9-5
Figure 9-2 Recognition-related view flags 9-9
Figure 9-3 Text-corrector picker 9-14
Figure 9-4 Handwriting Recognition preferences 9-16
Figure 9-5 Text Editing Settings slip 9-17
Figure 9-6 Fine Tuning handwriting preferences slips 9-17
Figure 9-7 Handwriting Settings slip 9-18
Figure 9-8 Use of protoRecToggle view in the Notes

application 9-19

Chapter 10 Recognition: Advanced Topics 10-1

Figure 10-1 Example of protoCharEdit view 10-4
Figure 10-2 User interface to deferred recognition, with

inverted ink 10-6
Figure 10-3 Single-character editing box specified by rcBaseInfo

frame 10-13
Figure 10-4 Two-dimensional array of input boxes specified by

rcGridInfo frame 10-14
Figure 10-5 One recToggle controls all views 10-21
Figure 10-6 Each recToggle view controls a single input

view 10-21
Figure 10-7 Example of a protoCharEdit view 10-36

Table 10-1 Recognition failure in paragraph or edit view controlled
by recToggle 10-12

Table 10-2 Symbols appearing in the _recogPopup slot 10-22

Chapter 11 Data Storage and Retrieval 11-1

Figure 11-1 Stores, soups and union soups 11-4
Figure 11-2 An index provides random access and imposes

order 11-11
Figure 11-3 Using beginKey and endKey values to specify an

index subrange 11-12
Figure 11-4 Using beginExclKey and endExclKey values to

specify a subrange 11-13
Figure 11-5 Cursor presents discontiguous index key values

contiguously 11-16
Figure 11-6 Cursor operations on descending index 11-46
Figure 11-7 Specifying ends of a descending index 11-47

Table 11-1 Effect of functions and methods on entry cache 11-63

xxxviii

Chapter 12 Special-Purpose Objects for Data Storage and Retrieval 12-1

Table 12-1 Parts and type identifiers 12-4

Chapter 13 Drawing and Graphics 13-1

Figure 13-1 A line drawn with different bit patterns and
pen sizes 13-3

Figure 13-2 A rectangle 13-3
Figure 13-3 An oval 13-4
Figure 13-4 An arc and a wedge 13-4
Figure 13-5 A rounded rectangle 13-5
Figure 13-6 A polygon 13-6
Figure 13-7 A region 13-6
Figure 13-8 A simple picture 13-7
Figure 13-9 Example of nested shape arrays 13-11
Figure 13-10 Example of ViewIntoBitmap method 13-19
Figure 13-11 Example of MungeBitmap method 13-19

Table 13-1 Summary of drawing results 13-11

Chapter 15 Filing 15-1

Figure 15-1 Two examples of filing button views 15-2
Figure 15-2 Filing slip 15-3
Figure 15-3 Creating a local folder 15-4
Figure 15-4 Filing slip without external store 15-5
Figure 15-5 Filing slip for 'onlyCardRouting 15-5
Figure 15-6 A protoNewFolderTab view 15-6
Figure 15-7 A protoClockFolderTab view 15-7
Figure 15-8 Choosing a filing filter 15-8

Chapter 16 Find 16-1

Figure 16-1 The system-supplied Find slip 16-2
Figure 16-2 Specifying text or date searches in the Find slip 16-2
Figure 16-3 A local Find operation 16-3
Figure 16-4 Searching selected applications 16-3
Figure 16-5 Progress slip 16-4
Figure 16-6 The Find overview 16-5
Figure 16-7 Find status message 16-5
Figure 16-8 Strings used in a Find overview 16-8

xxxix

Figure 16-9 The ShowFoundItem method displays the view of an
overview item 16-9

Figure 16-10 Typical status message 16-24

Table 16-1 Overview of ROM_SoupFinder methods 16-13

Chapter 17 Additional System Services 17-1

Figure 17-1 User alert 17-3
Figure 17-2 Alarm slip with Snooze button 17-4
Figure 17-3 A view based on protoPeriodicAlarmEditor 17-4
Figure 17-4 Busy cursor 17-5
Figure 17-5 Notify icon 17-5
Figure 17-6 Progress slip with barber pole gauge 17-6
Figure 17-7 A user alert 17-11
Figure 17-8 Built-in status view configurations 17-20

Chapter 18 Intelligent Assistant 18-1

Figure 18-1 Assist slip 18-3
Figure 18-2 The Please picker 18-3
Figure 18-3 Calling task slip 18-4
Figure 18-4 Simplified overview of the Assistant’s matching

process 18-7

Chapter 19 Built-in Applications and System Data 19-1

Figure 19-1 Names application Card and All Info views 19-3
Figure 19-2 Dates application Day and Day’s Agenda views 19-9
Figure 19-3 The To Do List application 19-23
Figure 19-4 The Time Zones application 19-27
Figure 19-5 Time Zones application’s All Info view 19-28
Figure 19-6 Notes note and Checklist views 19-31
Figure 19-7 Note added using NewNote method 19-33
Figure 19-8 Custom Prefs and Formulas Panels 19-35
Figure 19-9 The Notes application with and without an auxiliary

button 19-37
Figure 19-10 The information slips for an application’s soup that do

and do not support the soupervisor mechanism (note
extra filing button) 19-39

xl

Chapter 20 Localizing Newton Applications 20-1

Figure 20-1 The Locale settings in Preferences 20-2

Table 20-1 Using the kIncludeAllElements constant 20-13

Chapter 21 Routing Interface 21-1

Figure 21-1 In Box and Out Box overviews 21-2
Figure 21-2 Action picker 21-3
Figure 21-3 Transport selection mechanism for action picker 21-6
Figure 21-4 Format picker in routing slip 21-7
Figure 21-5 Auxiliary view example 21-15

Table 21-1 Routing data types 21-7

Chapter 22 Transport Interface 22-1

Figure 22-1 Status view subtypes 22-22
Figure 22-2 Routing information view 22-26
Figure 22-3 protoFullRouteSlip view 22-27
Figure 22-4 Complete routing slip 22-29
Figure 22-5 protoPeoplePicker view 22-31
Figure 22-6 Address picker with remembered names 22-32
Figure 22-7 Address picker set up by Intelligent Assistant 22-32
Figure 22-8 Information picker and preferences view 22-33
Figure 22-9 protoTransportPrefs view 22-34
Figure 22-10 Print preferences 22-35

Table 22-1 Status view subtypes 22-21

Chapter 23 Endpoint Interface 23-1

Table 23-1 Data form applicability 23-5
Table 23-2 Input spec slot applicability 23-13

xli

Chapter 24 Built-in Communications Tools 24-1

Figure 24-1 Default serial framing 24-5
Figure 24-2 NetChooser view while searching 24-14
Figure 24-3 NetChooser view displaying printers 24-14

Table 24-1 Summary of serial options 24-2
Table 24-2 Summary of serial tool with MNP options 24-4
Table 24-3 Summary of framed serial options 24-5
Table 24-4 Summary of modem options 24-7
Table 24-5 Summary of Infrared Options 24-8
Table 24-6 Summary of AppleTalk options 24-10
Table 24-7 Resource arbitration options 24-11
Table 24-8 AppleTalk functions 24-13

Chapter 25 Modem Setup Service 25-1

Figure 25-1 Modem preferences view 25-3

Table 25-1 Summary of configuration string usage 25-7

Chapter 26 Utility Functions 26-1

Table 26-1 Summary of copying functions 26-2

Appendix The Inside Story on Declare A-1

Figure A-1 Declare example A-3

xliii

P R E F A C E

About This Book

This book, Newton Programmer’s Guide, is the definitive guide to Newton
programming, providing conceptual information and instructions for using the
Newton application programming interfaces.

This book is a companion to Newton Programmer’s Reference, which provides
comprehensive reference documentation for the routines, system prototypes, data
structures, constants, and error codes defined by the Newton system. Newton
Programmer’s Reference is included on the CD-ROM that accompanies this book.

Who Should Read This Book 0

This guide is for anyone who wants to write NewtonScript programs for the
Newton family of products.

Before using this guide, you should read Newton Toolkit User’s Guide to learn how
to install and use Newton Toolkit, which is the development environment for
writing NewtonScript programs for Newton. You may also want to read The
NewtonScript Programming Language either before or concurrently with this
book. That book describes the NewtonScript language, which is used throughout
the Newton Programmer’s Guide.

To make best use of this guide, you should already have a good understanding of
object-oriented programming concepts and have had experience using a high-level
programming language such as C or Pascal. It is helpful, but not necessary, to have
some experience programming for a graphic user interface (like the Macintosh
desktop or Windows). At the very least, you should already have extensive
experience using one or more applications with a graphic user interface.

Related Books 0

This book is one in a set of books available for Newton programmers. You’ll also
need to refer to these other books in the set:

■ Newton Toolkit User’s Guide. This book comes with the Newton Toolkit
development environment. It introduces the Newton development environment
and shows how to develop applications using Newton Toolkit. You should read
this book first if you are a new Newton application developer.

xliv

P R E F A C E

■ The NewtonScript Programming Language. This book comes with the Newton
Toolkit development environment. It describes the NewtonScript programming
language.

■ Newton Book Maker User’s Guide. This book comes with the Newton Toolkit
development environment. It describes how to use Newton Book Maker and
Newton Toolkit to make Newton digital books and to add online help to Newton
applications.

■ Newton 2.0 User Interface Guidelines. This book contains guidelines to help
you design Newton applications that optimize the interaction between people
and Newton devices.

Newton Programmer’s Reference CD-ROM 0

This book is accompanied by a CD-ROM disc that contains the complete text of
Newton Programmer’s Reference. Newton Programmer’s Reference is the
comprehensive reference to the Newton programming interface. It documents all
routines, prototypes, data structures, constants, and error codes defined by the
Newton system for use by NewtonScript developers.

The companion CD-ROM includes three electronic versions of Newton
Programmer’s Reference. The CD-ROM contains these items, among others:

■ The complete Newton Programmer’s Reference in QuickView format for the
Mac OS — the same format used by the Macintosh Programmer’s Toolbox
Assistant. In this format, you can use the extremely fast full-text searching
capabilities and ubiquitous hypertext jumps to find reference information quickly.

■ The complete Newton Programmer’s Reference in Windows Help format. This
format provides quick and convenient access to the reference information for
developers working on Windows platforms.

■ The complete Newton Programmer’s Reference in Adobe Acrobat format. This
format provides a fully formatted book with page-numbered table of contents,
index, and cross-references. You can print all or portions of the book, and you can
also view it online. When viewing online, you can use the indexed search facilities
of Adobe Acrobat Reader 2.1 for fast lookup of any information in the book.

The companion CD-ROM also includes an Adobe Acrobat version of this book,
Newton Programmer’s Guide, and a demo version of the Newton Toolkit
development environment for the Mac OS.

xlv

P R E F A C E

Sample Code 0

The Newton Toolkit development environment, from Apple Computer, includes
many sample code projects. You can examine these samples, learn from them, and
experiment with them. These sample code projects illustrate most of the topics
covered in this book. They are an invaluable resource for understanding the topics
discussed in this book and for making your journey into the world of Newton
programming an easier one.

The Newton Developer Technical Support team continually revises the existing
samples and creates new sample code. The latest sample code is included each
quarter on the Newton Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly mailing. Sample
code is updated on the Newton Development side on the World Wide Web (http:/
/dev.info.apple.com/newton) shortly after it is released on the Newton
Developer CD. For information about how to contact Apple Computer regarding
the Newton Developer Program, see the section “Developer Products and Support,”
on page xlvii.

The code samples in this book show methods of using various routines and
illustrate techniques for accomplishing particular tasks. All code samples have been
compiled and, in most cases, tested. However, Apple Computer does not intend that
you use these code samples in your application.

To make the code samples in this book more readable, only limited error handling
is shown. You need to develop your own techniques for detecting and handling errors.

Conventions Used in This Book 0

This book uses the following conventions to present various kinds of information.

Special Fonts 0
This book uses the following special fonts:

■ Boldface. Key terms and concepts appear in boldface on first use. These terms
are also defined in the Glossary.

■ Courier typeface. Code listings, code snippets, and special identifiers in
the text such as predefined system frame names, slot names, function names,
method names, symbols, and constants are shown in the Courier typeface to
distinguish them from regular body text. If you are programming, items that
appear in Courier should be typed exactly as shown.

xlvi

P R E F A C E

■ Italic typeface. Italic typeface is used in code to indicate replace-
able items, such as the names of function parameters, which you must replace
with your own names. The names of other books are also shown in italic type,
and rarely, this style is used for emphasis.

Tap Versus Click 0
Throughout the Newton software system and in this book, the word “click”
sometimes appears as part of the name of a method or variable, as in
ViewClickScript or ButtonClickScript. This may lead you to believe that
the text refers to mouse clicks. It does not. Wherever you see the word
“click” used this way, it refers to a tap of the pen on the Newton screen (which is
somewhat similar to the click of a mouse on a desktop computer).

Frame Code 0
If you are using the Newton Toolkit (NTK) development environment in conjunction
with this book, you may notice that this book displays the code for a frame (such as
a view) differently than NTK does.

In NTK, you can see the code for only a single frame slot at a time. In this book,
the code for a frame is presented all at once, so you can see all of the slots in the
frame, like this:

{ viewClass: clView,
viewBounds: RelBounds(20, 50, 94, 142),
viewFlags: vNoFlags,
viewFormat: vfFillWhite+vfFrameBlack+vfPen(1),
viewJustify: vjCenterH,

ViewSetupDoneScript: func()
:UpdateDisplay(),

UpdateDisplay: func()
SetValue(display, 'text, value);

};

If while working in NTK, you want to create a frame that you see in the book,
follow these steps:

1. On the NTK template palette, find the view class or proto shown in the book.
Draw out a view using that template. If the frame shown in the book contains a
_proto slot, use the corresponding proto from the NTK template palette. If the
frame shown in the book contains a viewClass slot instead of a _proto slot,
use the corresponding view class from the NTK template palette.

xlvii

P R E F A C E

2. Edit the viewBounds slot to match the values shown in the book.

3. Add each of the other slots you see listed in the frame, setting their values to the
values shown in the book. Slots that have values are attribute slots, and those
that contain functions are method slots.

Developer Products and Support 0

The Apple Developer Catalog (ADC) is Apple Computer’s worldwide source for
hundreds of development tools, technical resources, training products, and
information for anyone interested in developing applications on Apple computer
platforms. Customers receive the Apple Developer Catalog featuring all current
versions of Apple development tools and the most popular third-party development
tools. ADC offers convenient payment and shipping options, including site
licensing.

To order products or to request a complimentary copy of the Apple Developer
Catalog, contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call 408-974-4897 for
information on the developer support programs available from Apple.

For Newton-specific information, see the Newton developer World Wide Web page
at: http://dev.info.apple.com/newton

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com

World Wide Web http://www.devcatalog.apple.com

xlviii

P R E F A C E

Undocumented System Software Objects 0

When browsing in the NTK Inspector window, you may see functions, methods,
and data objects that are not documented in this book. Undocumented functions,
methods, and data objects are not supported, nor are they guaranteed to work in
future Newton devices. Using them may produce undesirable effects on current
and future Newton devices.

Operating System 1-1

C H A P T E R 1

Overview 1Figure 1-0
Table 1-0

This chapter describes the general architecture of the Newton system software,
which is divided into three levels, as shown in Figure 1-1 (page 1-2).

The lowest level includes the operating system and the low-level communications
system. These parts of the system interact directly with the hardware and perform
basic operations such as memory management, input and output, and task switching.
NewtonScript applications have no direct access to system services at this level.

The middle level consists of system services that NewtonScript applications can
directly access and interact with to accomplish tasks. The system provides
hundreds of routines that applications can use to take advantage of these services.

At the highest level are components that applications can use to construct their user
interfaces. These reusable components neatly package commonly needed user
interface objects such as buttons, lists, tables, input fields, and so on. These
components incorporate NewtonScript code that makes use of the system services
in the middle level, and that an application can override to customize an object.

Operating System 1

The Newton platform incorporates a sophisticated preemptive, multitasking
operating system. The operating system is a modular set of tasks performing
functions such as memory management, task management, scheduling, task to task
communications, input and output, power management, and other low-level
functions. The operating system manages and interacts directly with the hardware.

A significant part of the operating system is concerned with low-level communication
functions. The communication subsystem runs as a separate task. It manages the
hardware communication resources available in the system. These include serial,
fax modem, AppleTalk networking, and infrared. The communication architecture
is extensible, and new communication protocols can be installed and removed at
run time, to support additional services and external devices that may be added.

C H A P T E R 1

Overview

1-2 Operating System

Figure 1-1 System software overview

Newton Hardware

Operating System

Operating
System

System Services

Find

Filing

Sound

Book Reader

Routing and Transport

Endpoint Communications

Imaging and Printing

Intelligent Assistant

Text Input and Recognition

View System

Object Storage System

Application Components

NewtonScript Application Program

User Interface Components

Low-level
Communications

 System

Stationery

C H A P T E R 1

Overview

Operating System 1-3

Another operating system task of interest is the Inker. The Inker task is responsible
for gathering and displaying input from the electronic tablet overlaying the screen
when the user writes on the Newton. The Inker exists as a separate task so that the
Newton can gather input and display electronic ink at the same time as other
operations are occurring.

All Newton applications, including the recognition system, built-in applications,
and applications you develop, run in a single operating system task, called the
Application task.

NewtonScript applications have no direct access to the operating system level of
software. Access to certain low-level resources, such as communications, is
provided by higher-level interfaces.

Memory 1
It is helpful to understand the use of random access memory (RAM) in the system,
since this resource is shared by the operating system and all applications. Newton
RAM is divided into separate domains, or sections, that have controlled access.
Each domain has its own heap and stack. It is important to know about three of
these domains:

■ The operating system domain. This portion of memory is reserved for use by the
operating system. Only operating system tasks have access to this domain.

■ The storage domain. This portion of memory is reserved for permanent,
protected storage of user data. All soups, which store the data, reside here, as
well as any packages that have been downloaded into the Newton. To protect the
data in the storage domain from inadvertent damage, it can only be accessed
through the object storage system interface, described in Chapter 11, “Data
Storage and Retrieval.” If the user adds a PCMCIA card containing RAM, Flash
RAM, or read-only memory (ROM) devices, the memory on the card is used to
extend the size of the storage domain.

The storage domain occupies special persistent memory; that is, this memory is
maintained even during a system reset. This protects user data, system software
updates, and downloaded packages from being lost during system resets. The
used and free space in the storage domain is reported to the user in the Memory
Info slip in the Extras Drawer.

■ The application domain. This portion of memory is used for dynamic memory
allocation by the handwriting recognizers and all Newton applications. A fixed
part of this domain is allocated to the NewtonScript heap. The NewtonScript
heap is important because most objects allocated as a result of your NewtonScript
application code are allocated from the NewtonScript heap. These are the only
memory objects to which you have direct access. The NewtonScript heap is
shared by all applications.

C H A P T E R 1

Overview

1-4 System Services

The system performs automatic memory management of the NewtonScript heap.
You don’t need to worry about memory allocation or disposal in an application.
The system automatically allocates memory when you create a new object in
NewtonScript. When references to an object no longer exist, it is freed during the
next garbage collection cycle. The system performs garbage collection
automatically when it needs additional memory.

The Newton operating system optimizes use of memory by using compression.
Various parts of memory are compressed and decompressed dynamically and
transparently, as needed. This occurs at a low level, and applications don’t need to
be concerned with these operations.

Packages 1
A package is the unit in which software is installed on and removed from the
Newton. Packages can combine multiple pieces of software into a single unit. The
operating system manages packages, which can be installed from PCMCIA cards,
from a serial connection to a desktop computer, a network connection, or via
modem. When a package comes into the Newton system, the system automatically
opens it and dispatches its parts to appropriate handlers in the system.

A package consists of a header, which contains the package name and other
information, and one or more parts, which contain the software. Parts can include
applications, communication drivers, fonts, and system updates (system software
code loaded into RAM that overrides or extends the built-in ROM code). A
package can also export objects for use by other packages in the system, and can
import (use) objects that are exported by other packages.

Packages are optionally stored compressed on the Newton. Compressed packages
occupy much less space (roughly half of their uncompressed size), but applications
in compressed packages may execute somewhat slower and use slightly more
battery power, because of the extra work required to decompress them when they
are executed.

For more information about packages, refer to Chapter 11, “Data Storage and
Retrieval.”

System Services 1

The Newton system software contains hundreds of routines organized into
functional groups of services. Your application can use these routines to accomplish
specific tasks such as opening and closing views, storing and retrieving data,
playing sounds, drawing shapes, and so on. This section includes brief descriptions
of the more important system services with which your application will need to
interact. Note that communications services are described in a separate section
following this one.

C H A P T E R 1

Overview

System Services 1-5

Object Storage System 1
This system is key to the Newton information architecture. The object storage
system provides persistent storage for data.

Newton uses a unified data model. This means that all data stored by all applications
uses a common format. Data can easily be shared among different applications,
with no translation necessary. This allows seamless integration of applications with
each other and with system services.

Data is stored using a database-like model. Objects are stored as frames, which are
like database records. A frame contains named slots, which hold individual pieces
of data, like database fields. For example, an address card in the Names application
is stored as a frame that contains a slot for each item on the card: name, address,
city, state, zip code, phone number, and so on.

Frames are flexible and can represent a wide variety of structures. Slots in a single
frame can contain any kind of NewtonScript object, including other frames, and
slots can be added or removed from frames dynamically. For a description of
NewtonScript objects, refer to The NewtonScript Programming Language.

Groups of related frames are stored in soups, which are like databases. For example,
all the address cards used by the Names application are stored in the Names soup,
and all the notes on the Notepad are stored in the Notes soup. All the frames stored
in a soup need not contain identical slots. For example, some frames representing
address cards may contain a phone number slot and others may not.

Soups are automatically indexed, and applications can create additional indexes on
slots that will be used as keys to find data items. You retrieve items from a soup by
performing a query on the soup. Queries can be based on an index value or can
search for a string, and can include additional constraints. A query results in a
cursor—an object representing a position in the set of soup entries that satisfy the
query. The cursor can be moved back and forth, and can return the current entry.

Soups are stored in physical repositories, called stores. Stores are akin to disk
volumes on personal computers. The Newton always has at least one store—the
internal store. Additional stores reside on PCMCIA cards.

The object storage system interface seamlessly merges soups that have the same
name on internal and external stores in a union soup. This is a virtual soup that
provides an interface similar to a real soup. For example, some of the address cards
on a Newton may be stored in the internal Names soup and some may be stored in
another Names soup on a PCMCIA card. When the card is installed, those names
in the card soup are automatically merged with the existing internal names so the
user, or an application, need not do any extra work to access those additional
names. When the card is removed, the names simply disappear from the card file
union soup.

C H A P T E R 1

Overview

1-6 System Services

The object storage system is optimized for small chunks of data and is designed to
operate in tight memory constraints. Soups are compressed, and retrieved entries
are not allocated on the NewtonScript heap until a slot in the entry is accessed.

You can find information about the object storage system interface in Chapter 11,
“Data Storage and Retrieval.”

View System 1
Views are the basic building blocks of most applications. A view is simply a
rectangular area mapped onto the screen. Nearly every individual visual item you
see on the screen is a view. Views display information to the user in the form of
text and graphics, and the user interacts with views by tapping them, writing in
them, dragging them, and so on. A view is defined by a frame that contains slots
specifying view attributes such as its bounds, fill color, alignment relative to other
views, and so on.

The view system is what you work with to manipulate views. There are routines to
open, close, animate, scroll, highlight, and lay out views, to name just a few
operations you can do. For basic information about views and descriptions of all
the routines you can use to interact with the view system, refer to Chapter 3, “Views.”

An application consists of a collection of views all working together. Each application
has an application base view from which all other views in the application
typically descend hierarchically. In turn, the base view of each application installed
in the Newton descends from the system root view. (Think of the hierarchy as a
tree structure turned upside down, with the root at the top.) Thus, each application
base view is a child of the root view. We call a view in which child views exist the
parent view of those child views. Note that occasionally, an application may also
include views that don’t descend from the base view but are themselves children of
the root view.

The system includes several different primitive view classes from which all views
are ultimately constructed. Each of these view classes has inherently different
behavior and attributes. For example, there are view classes for views that contain
text, shapes, pictures, keyboards, analog gauges, and so on.

As an application executes, its view frames receive messages from the system and
exchange messages with each other. System messages provide an opportunity for a
view to respond appropriately to particular events that are occurring. For example,
the view system performs default initialization operations when a view is opened.
It also sends the view a ViewSetupFormScript message. If the view includes a
method to handle this message, it can perform its own initialization operations in
that method. Handling system messages in your application is optional since the
system performs default behaviors for most events.

C H A P T E R 1

Overview

System Services 1-7

Text Input and Recognition 1
The Newton recognition system uses a sophisticated multiple-recognizer
architecture. There are recognizers for text, shapes, and gestures, which can be
simultaneously active (this is application-dependent). An arbitrator examines the
results from simultaneously active recognizers and returns the recognition match
that has the highest confidence.

Recognition is modeless. That is, the user does not need to put the system in a
special mode or use a special dialog box in order to write, but can write in any
input field at any time.

The text recognizers can handle printed, cursive, or mixed handwriting. They can
work together with built-in dictionaries to choose words that accurately match what
the user has written. The user can also add new words to a personal dictionary.

Depending on whether or not a text handwriting recognizer is enabled, users can
enter handwritten text that is recognized or not. Unrecognized text is known as ink
text. Ink text can still be manipulated like recognized text—words can be inserted,
deleted, moved around, and reformatted—and ink words can be intermixed with
recognized words in a single paragraph. Ink words can be recognized later using
the deferred recognition capability of the system.

The shape recognizer recognizes both simple and complex geometric objects,
cleaning up rough drawings into shapes with straight lines and smooth curves. The
shape recognizer also recognizes symmetry, using that property, if present, to help
it recognize and display objects.

For each view in an application, you can specify which recognizers are enabled and
how they are configured. For example, the text recognizer can be set to recognize
only names, or names and phone numbers, or only words in a custom dictionary
that you supply, among other choices.

Most recognition events are handled automatically by the system view classes, so
you don’t need to do anything in your application to handle recognition events,
unless you want to do something special. For example, when a user writes a word
in a text view, that view automatically passes the strokes to the recognizer, accepts
the recognized word back, and displays the word. In addition, the view automatically
handles corrections for you. The user can double-tap a word to pop up a list of
other possible matches for it, or to use the keyboard to correct it.

For information on methods for accepting and working with text input, refer to
Chapter 8, “Text and Ink Input and Display.” For information on controlling
recognition in views and working with dictionaries, refer to Chapter 9, “Recognition.”

C H A P T E R 1

Overview

1-8 System Services

Stationery 1
Stationery is a capability of the system that allows applications to be extended by
other developers. The word “stationery” refers to the capability of having different
kinds of data within a single application (such as plain notes and outlines in the
Notepad) and/or to the capability of having different ways of viewing the same data
(such as the Card and All Info views in the Names file). An application that supports
stationery can be extended either by adding a new type of data to it (for example,
adding recipe cards to the Notepad), or by adding a new type of viewer for existing
data (a new way of viewing Names file entries or a new print format, for example).

To support stationery, an application must register with the system a frame, called a
data definition, that describes the data with which it works. The different data
definitions available to an application are listed on the pop-up menu attached to the
New button. In addition, an application must register one or more view definitions,
which describe how the data is to be viewed or printed. View definitions can
include simple read-only views, editor-type views, or print formats. The different
view definitions available in an application (not including print formats) are listed
on the pop-up menu attached to the Show button.

Stationery is well integrated into the NewtApp framework, so if you use that frame-
work for your application, using stationery is easy. The printing architecture also
uses stationery, so all application print formats are registered as a kind of stationery.

For more information about using stationery, see Chapter 5, “Stationery.”

Intelligent Assistant 1
A key part of the Newton information architecture is the Intelligent Assistant. The
Intelligent Assistant is a system service that attempts to complete actions for the
user according to deductions it makes about the task that the user is currently
performing. The Assistant is always instantly available to the user through the
Assist button, yet remains nonintrusive.

The Assistant knows how to complete several built-in tasks; they are Scheduling
(adding meetings), Finding, Reminding (adding To Do items), Mailing, Faxing,
Printing, Calling, and getting time information from the Time Zones map. Each of
these tasks has several synonyms; for example, the user can write “call,” “phone,”
“ring,” or “dial” to make a phone call.

Applications can add new tasks so that the Assistant supports their special capabilities
and services. The Newton unified data model makes it possible for the Assistant to
access data stored by any application, thus allowing the Assistant to be well integrated
in the system.

For details on using the Intelligent Assistant and integrating support for it into your
application, see Chapter 18, “Intelligent Assistant.”

C H A P T E R 1

Overview

System Services 1-9

Imaging and Printing 1
At the operating system level, the Newton imaging and printing software is based
on an object-oriented, device-independent imaging model. The imaging model is
monochrome since the current Newton screen is a black-and-white screen.

NewtonScript application programs don’t call low-level imaging routines directly
to do drawing or image manipulation. In fact, most drawing is handled for
applications by the user interface components they incorporate, or when they call
other routines that display information. However, there is a versatile set of
high-level drawing routines that you can call directly to create and draw shapes,
pictures, bitmaps, and text. When drawing, you can vary the pen thickness, pen
pattern, fill pattern, and other attributes. For details on drawing, refer to Chapter 13,
“Drawing and Graphics.”

The Newton text imaging facility supports Unicode directly, so the system can be
easily localized to display languages using different script systems. The system is
extensible, so it’s possible to add additional fonts, font engines, and printer drivers.

The high-level interface to printing on the Newton uses a model identical to that
used for views. Essentially, you design a special kind of view called a print format
to specify how printed information is to be laid out on the page. Print formats use a
unique view template that automatically adjusts its size to the page size of the
printer chosen by the user. When the user prints, the system handles all the details
of rendering the views on the printer according to the layout you specified.

The Newton offers the feature of deferred printing. The user can print even though
he or she is not connected to a printer at the moment. An object describing the print
job is stored in the Newton Out Box application, and when a printer is connected
later, the user can then select that print job for printing. Again, this feature is
handled automatically by the system and requires no additional application
programming work.

For information on how to add printing capabilities to an application, refer to
Chapter 21, “Routing Interface.”

Sound 1
The Newton includes a monophonic speaker and can play sounds sampled at rates
up to 22 kHz. You can attach sounds to particular events associated with a view,
such as showing it, hiding it, and scrolling it. You can also use sound routines to
play sounds synchronously or asynchronously at any other time.

Newton can serve as a phone dialer by dialing phone numbers through the speaker.
The dialing tones are built into the system ROM, along with several other sounds
that can be used in applications.

C H A P T E R 1

Overview

1-10 System Services

Besides the sounds that are built into the system ROM, you can import external
sound resources into an application through the Newton Toolkit development
environment.

For information about using sound in an application, see Chapter 14, “Sound.”

Book Reader 1
Book Reader is a system service that displays interactive digital books on the
Newton screen. Digital books can include multiple-font text, bitmap and vector
graphics, and on-screen controls for content navigation. Newton digital books
allow the user to scroll pages, mark pages with bookmarks, access data directly by
page number or subject, mark up pages using digital ink, and perform text searches.
Of course, the user can copy and paste text from digital books, as well as print text
and graphics from them.

Newton Press and Newton Book Maker are two different development tools that
you use to create digital books for the Newton. Nonprogrammers can easily create
books using Newton Press. Newton Book Maker is a more sophisticated tool that
uses a text-based command language allowing you to provide additional services to
the user or exercise greater control over page layout. Also, using Book Maker, you
can attach data, methods, and view templates to book content to provide customized
behavior or work with the Intelligent Assistant.

The Book Maker application can also be used to create on-line help for an
application. The installation of on-line help in an application package requires
some rudimentary NewtonScript programming ability; however, nonprogrammers
can create on-line help content, again using only a word processor and some basic
Book Maker commands.

Refer to the book Newton Book Maker User’s Guide for information on Book
Reader, the Book Maker command language, and the use of Newton Toolkit to
create digital book packages and on-line help. Refer to the Newton Press User’s
Guide for information on using Newton Press.

Find 1
Find is a system service that allows users to search one or all applications in the
system for occurrences of a particular string. Alternatively, the user can search for
data time-stamped before or after a specified date. When the search is completed,
the Find service displays an overview list of items found that match the search
criteria. The user can tap an item in the list and the system opens the corresponding
application and displays the data containing the selected string. Users access the
Find service by tapping the Find button.

C H A P T E R 1

Overview

Communications Services 1-11

If you want to allow the user to search for data stored by your application, you
need to implement certain methods that respond to find messages sent by the
system. You’ll need to supply one method that searches your application’s soup(s)
for data and returns the results in a particular format, and another method that
locates and displays the found data in your application if the user taps on it in the
find overview. The system software includes routines and templates that help you
support find in your application. For details on supporting the Find service, refer to
Chapter 16, “Find.”

Filing 1
The Filing service allows users to tag soup-based data in your application with
labels used to store, retrieve, and display the data by category. The labels used to
tag entries are represented as folders in the user interface; however, no true
hierarchical filing exists—the tagged entries still reside in the soup. Users access
the filing service through a standard user interface element called the file folder
button, which looks like a small file folder.

When the user chooses a category for an item, the system notifies your application
that filing has changed. Your application must perform the appropriate application-
specific tasks and redraw the current view, providing to the user the illusion that the
item has been placed in a folder. When the user chooses to display data from a
category other than the currently displayed one, the system also notifies your
application, which must retrieve and display data in the selected category.

The system software includes templates that help your application implement the
filing button and the selector that allows the user to choose which category of data
to display. Your application must provide methods that respond to filing messages
sent by the system in response to user actions such as filing an item, changing the
category of items to display, and changing the list of filing categories. For details
on supporting the Filing service, refer to Chapter 15, “Filing.”

Communications Services 1

This section provides an overview of the communications services in Newton
system software 2.0.

The Newton communications architecture is application-oriented, rather than
protocol-oriented. This means that you can focus your programming efforts on
what your application needs to do, rather than on communication protocol details.
A simple high-level NewtonScript interface encapsulates all protocol details, which
are handled in the same way regardless of which communication transport tool you
are using.

C H A P T E R 1

Overview

1-12 Communications Services

The communication architecture is flexible, supporting complex communication
needs. The architecture is also extensible, allowing new communication transport
tools to be added dynamically and accessed through the same interface as existing
transports. In this way, new communication hardware devices can be supported.

The Newton communications architecture is illustrated in Figure 1-2.

Figure 1-2 Communications architecture

Figure 1-2 shows four unique communications interfaces available for you to use:

■ routing interface

■ endpoint interface

Hardware devices

Communication tools

NewtonScript

Transport

Application

Routing interface

In/out box

Transport interface

Endpoint object

Endpoint interface

Low-level communications system

Serial Modem MNP IR FAX ATalk ...

Modem Radio Keybd GSM CDPD

C H A P T E R 1

Overview

Communications Services 1-13

■ transport interface

■ communication tool interface

The first two, routing and endpoint interfaces, are available for NewtonScript
applications to use directly.

The transport interface is a NewtonScript interface, but it isn’t used directly by appli-
cations. A transport consists of a special kind of application of its own that is installed
on a Newton device and that provides new communication services to the system.

The communication tool interface is a low-level C++ interface.

These interfaces are described in more detail in the following sections.

NewtonScript Application Communications 1
There are two basic types of NewtonScript communications an application can do.
The most common type of communication that most applications do is routing
through the In/Out Box. As an alternative, applications can use the endpoint interface
to control endpoint objects.

Typically, an application uses only one of these types of communication, but
sometimes both are needed. These two types of communication are described in
the following sections.

Routing Through the In/Out Box 1

The routing interface is the highest-level NewtonScript communication interface.
The routing interface allows an application to communicate with the In/Out Box
and lets users send data and receive data from outside the system. In applications,
users access routing services through a standard user interface element called the
Action button, which looks like a small envelope. Users access the In/Out Box
application through icons in the Newton Extras Drawer. The In/Out Box provides a
common user interface for all incoming and outgoing data in the system.

The routing interface is best suited for user-controlled messaging and transaction-
based communications. For example, the Newton built-in applications use this
interface for e-mail, beaming, printing, and faxing. Outgoing items can be stored in
the Out Box until a physical connection is available, when the user can choose to
transmit the items, or they can be sent immediately. Incoming items are received in
the In Box, where the user can get new mail and beamed items, for example.

For information on the routing interface, refer to Chapter 21, “Routing Interface.”

The In/Out Box makes use of the transport and endpoint interfaces internally to
perform its operations.

If you are writing an application that takes advantage of only the transports
currently installed in the Newton system, you need to use only the routing

C H A P T E R 1

Overview

1-14 Communications Services

interface. You need to use the transport or endpoint interfaces only when writing
custom communication tools.

Endpoint Interface 1

The endpoint interface is a somewhat lower-level NewtonScript interface; it has no
visible representation to the Newton user. The endpoint interface is suited for
real-time communication needs such as database access and terminal emulation. It
uses an asynchronous, state-driven communications model.

The endpoint interface is based on a single proto—protoBasicEndpoint—that
provides a standard interface to all communication tools (serial, fax modem,
infrared, AppleTalk, and so on). The endpoint object created from this proto
encapsulates and maintains the details of the specific connection. This proto
provides methods for

■ interacting with the underlying communication tool

■ setting communication tool options

■ opening and closing connections

■ sending and receiving data

The basic endpoint interface is described in Chapter 23, “Endpoint Interface.”

Low-Level Communications 1
There are two lower-level communication interfaces that are not used directly by
applications. The transport and communication tool interfaces are typically used
together (along with the endpoint interface) to provide a new communication
service to the system.

These two interfaces are described in the following sections.

Transport Interface 1

If you are providing a new communication service through the use of endpoints
and lower-level communication tools, you may need to use the transport interface.
The transport interface allows your communication service to talk to the In/Out
Box and to make itself available to users through the Action button (envelope icon)
in most applications.

When the user taps the Action button in an application, the Action picker appears.
Built-in transports available on the Action picker include printing, faxing, and
beaming. Any new transports that you provide are added to this list.

For more information, refer to Chapter 22, “Transport Interface.”

C H A P T E R 1

Overview

Application Components 1-15

Communication Tool Interface 1

Underlying the NewtonScript interface is the low-level communications system.
This system consists of a communications manager module and several code
components known as communication tools. These communication tools interact
directly with the communication hardware devices installed in the system. The
communication tools are written in C++ and are not directly accessible from
NewtonScript—they are accessed indirectly through an endpoint object.

The built-in communication tools include:

■ Synchronous and asynchronous serial

■ Fax/data modem (data is V.34 with MNP/V.42 and fax is V.17 with Class 1, 2,
and 2.0 support)

■ Point-to-point infrared—called beaming (Sharp 9600 and Apple IR-enhanced
protocols)

■ AppleTalk ADSP protocol

For information about configuring the built-in communication tools through the
endpoint interface, refer to Chapter 24, “Built-in Communications Tools.”

Note that the communications manager module, and each of the individual
communication tools, runs as a separate operating system task. All NewtonScript
code is in a different task, called the Application task.

The system is extensible—additional communication tools can be installed at run
time. Installed tools are made available to NewtonScript client applications through
the same endpoint interface as the built-in tools.

At some point, Apple Computer, Inc. may release the tools and interfaces that
allow C++ communication tool development.

Application Components 1

At the highest level of system software are dozens of components that applications
can use to construct their user interfaces and other nonvisible objects. These
reusable components neatly package commonly needed user interface objects such
as buttons, lists, tables, input fields, and so on. These components incorporate
NewtonScript code that makes use of other system services, and which an
application can override to customize an object.

These components are built into the Newton ROM. When you reference one of
these components in your application, the code isn’t copied into your application—
your application simply makes a reference to the component in the ROM. This
conserves memory at run time and still allows your application to easily override
any attributes of the built-in component. Because you can build much of your

C H A P T E R 1

Overview

1-16 Application Components

application using these components, Newton applications tend to be much smaller
in size than similar applications on desktop computers.

A simple example of how you can construct much of an application using
components is illustrated in Figure 1-3. This simple application accepts names and
phone numbers and saves them into a soup. It was constructed in just a few minutes
using three different components.

The application base view is implemented by a single component that includes the
title bar at the top, the status bar at the bottom, the clock and the close box, and the
outer frame of the application. The Name and Phone input lines are each created
from the same component that implements a simple text input line; the two buttons
are created from the same button component. The only code you must write to
make this application fully functional is to make the buttons perform their actions.
That is, make the Clear button clear the input lines and make the Save button get
the text from the input lines and save it to a soup.

Figure 1-3 Using components

The components available for use by applications are shown on the layout palette
in Newton Toolkit. These components are known as protos, which is short for
“prototypes.” In addition to the built-in components, Newton Toolkit lets you create
your own reusable components, called user protos. The various built-in components
are documented throughout the book in the chapter containing information related
to each proto. For example, text input protos are described in Chapter 8, “Text and
Ink Input and Display;” protos that implement pickers and lists are described in
Chapter 6, “Pickers, Pop-up Views, and Overviews;” and protos that implement
controls and other miscellaneous protos are described in Chapter 7, “Controls and
Other Protos.”

C H A P T E R 1

Overview

Using System Software 1-17

The NewtApp framework consists of a special collection of protos that are designed
to be used together in a layered hierarchy to build a complete application. For more
information about the NewtApp protos, refer to Chapter 4, “NewtApp Applications.”

Using System Software 1

Most of the routines and application components that comprise the Newton system
software reside in ROM, provided in special chips contained in every Newton
device. When your application calls a system routine, the operating system executes
the appropriate code contained in ROM.

This is different from traditional programming environments where system
software routines are accessed by linking a subroutine library with the application
code. That approach results in much larger applications and makes it harder to
provide new features and fix bugs in the system software.

The ROM-based model used in the Newton provides a simple way for the
operating system to substitute the code that is executed in response to a particular
system software routine, or to substitute an application component. Instead of
executing the ROM-based code for some routine, the operating system might
choose to load some substitute code into RAM; when your application calls the
routine, the operating system intercepts the call and executes the RAM-based code.

RAM-based code that substitutes for ROM-based code is called a system update.
Newton system updates are stored in the storage memory domain, which is
persistent storage.

Besides application components, the Newton ROM contains many other objects
such as fonts, sounds, pictures, and strings that might be useful to applications.
Applications can access these objects by using special references called magic
pointers. Magic pointers provide a mechanism for code written in a development
system separate from the Newton to reference objects in the Newton ROM or in
other packages. Magic pointer references are resolved at run time by the operating
system, which substitutes the actual address of the ROM or package object for the
magic pointer reference.

Magic pointers are constants defined in Newton Toolkit. For example, the names of
all the application components, or protos, are actually magic pointer constants. You
can find a list of all the ROM magic pointer constants in the Newton 2.0 Defs file,
included with Newton Toolkit.

C H A P T E R 1

Overview

1-18 The NewtonScript Language

The NewtonScript Language 1

You write Newton applications in NewtonScript, a dynamic object-oriented
language developed especially for the Newton platform, though the language is
highly portable. NewtonScript is designed to operate within tight memory
constraints, so is well suited to small hand-held devices like Newton.

NewtonScript is used to define, access, and manipulate objects in the Newton
system. NewtonScript frame objects provide the basis for object-oriented features
such as inheritance and message sending.

Newton Toolkit normally compiles NewtonScript into byte codes. The Newton
system software contains a byte code interpreter that interprets the byte codes at
run time. This has two advantages: byte codes are much smaller than native code,
and Newton applications are easily portable to other processors, since the
interpreter is portable. Newton Toolkit can also compile NewtonScript into native
code. Native code occupies much more space than interpreted code, but in certain
circumstances it can execute much faster.

For a complete reference to NewtonScript, refer to The NewtonScript Programming
Language.

What’s New in Newton 2.0 1

Version 2.0 of the Newton System Software brings many changes to all areas.
Some programming interfaces have been extended; others have been completely
replaced with new interfaces; and still other interfaces are brand new. For those
readers familiar with previous versions of system software, this section gives a
brief overview of what is new and what has changed in Newton 2.0, focusing on
those programming interfaces that you will be most interested in as a developer.

NewtApp 1
NewtApp is a new application framework designed to help you build a complete,
full-featured Newton application more quickly. The NewtApp framework consists
of a collection of protos that are designed to be used together in a layered hierarchy.
The NewtApp framework links together soup-based data with the display and
editing of that data in an application. For many types of applications, using the
NewtApp framework can significantly reduce development time because the protos
automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

C H A P T E R 1

Overview

What’s New in Newton 2.0 1-19

The NewtApp framework is not suited for all Newton applications. If your
application stores data as individual entries in a soup, displays that data to the user
in views, and allows the user to edit some or all of the data, then it is a potential
candidate for using the NewtApp framework. NewtApp is well suited to “classic”
form-based applications. Some of the built-in applications constructed using the
NewtApp framework include the Notepad and the Names file.

Stationery 1
Stationery is a new capability of Newton 2.0 that allows applications to be extended
by other developers. If your application supports stationery, then it can be extended by
others. Similarly, you can extend another developer’s application that supports
stationery. You should also note that the printing architecture now uses stationery,
so all application print formats are registered as a kind of stationery.

Stationery is a powerful capability that makes applications much more extensible
than in the past. Stationery is also well integrated into the NewtApp framework, so
if you use that framework for your application, using stationery is easy. For more
information about stationery, see the section “Stationery” (page 1-8).

Views 1
New features for the view system include a drag-and-drop interface that allows you
to provide users with a drag-and-drop capability between views. There are hooks to
provide for custom feedback to the user during the drag process and to handle
copying or moving the item.

The system now includes the capability for the user to view the display in portrait
or landscape orientation, so the screen orientation can be changed (rotated) at any
time. Applications can support this new capability by supporting the new
ReorientToScreen message, which the system uses to alert all applications to
re-layout their views.

Several new view methods provide features such as bringing a view to the front or
sending it to the back, automatically sizing buttons, finding the view bounds
including the view frame, and displaying modal dialogs to the user.

There is a new message, ViewPostQuitScript, that is sent to a view (only on
request) when it is closing, after all of the view’s child views have been destroyed.
This allows you to do additional clean-up, if necessary. And, you’ll be pleased to
know that the order in which child views receive the ViewQuitScript message
is now well defined: it is top-down.

Additionally, there are some new viewJustify constants that allow you to
specify that a view is sized proportionally to its sibling or parent view, horizontally
and/or vertically.

C H A P T E R 1

Overview

1-20 What’s New in Newton 2.0

Protos 1
There are many new protos supplied in the new system ROM. There are new
pop-up button pickers, map-type pickers, and several new time, date, and duration
pickers. There are new protos that support the display of overviews and lists based
on soup entries. There are new protos that support the input of rich strings (strings
that contain either recognized characters or ink text). There are a variety of new
scroller protos. There is an integrated set of protos designed to make it easy for you
to display status messages to the user during lengthy or complex operations.

Generic list pickers, available in system 1.0, have been extended to support bitmap
items that can be hit-tested as two-dimensional grids. For example, a phone keypad
can be included as a single item in a picker. Additionally, list pickers can now
scroll if all the items can’t fit on the screen.

Data Storage 1
There are many enhancements to the data storage system for system software 2.0.
General soup performance is significantly improved. A tagging mechanism for
soup entries makes changing folders much faster for the user. You can use the
tagging mechanism to greatly speed access to subsets of entries in a soup. Queries
support more features, including the use of multiple slot indexes, and the query
interface is cleaner. Entry aliases make it easy to save unique references to soup
entries for fast access later without holding onto the actual entry.

A new construct, the virtual binary object, supports the creation and manipulation
of very large objects that could not be accommodated in the NewtonScript heap.
There is a new, improved soup change-notification mechanism that gives applications
more control over notification and how they respond to soup changes. More precise
information about exactly what changed is communicated to applications. Soup
data can now be built directly into packages in the form of a store part. Additionally,
packages can contain protos and other objects that can be exported through magic
pointer references, and applications can import such objects from available packages.

Text Input 1
The main change to text input involves the use of ink text. The user can choose to
leave written text unrecognized and still manipulate the text by inserting, deleting,
reformatting, and moving the words around, just as with recognized text. Ink words
and recognized words can be intermixed within a single paragraph. A new string
format, called a rich string, handles both ink and recognized text in the same string.

There are new protos, protoRichInputLine and
protoRichLabelInputLine, that you can use in your application to allow
users to enter ink text in fields. In addition, the view classes clEditView and

C H A P T E R 1

Overview

What’s New in Newton 2.0 1-21

clParagraphView now support ink text. There are several new functions that
allow you to manipulate and convert between regular strings and rich strings. Other
functions provide access to ink and stroke data, allow conversion between strokes,
points, and ink, and allow certain kinds of ink and stroke manipulations.

There are several new functions that allow you to access and manipulate the
attributes of font specifications, making changing the font attributes of text much
easier. A new font called the handwriting font is built in. This font looks similar to
handwritten characters and is used throughout the system for all entered text. You
should use it for displaying all text the user enters.

The use of on-screen keyboards for text input is also improved. There are new
proto buttons that your application can use to give users access to the available
keyboards. It’s easier to include custom keyboards for your application. Several
new methods allow you to track and manage the insertion caret, which the system
displays when a keyboard is open. Note also that a real hardware keyboard is
available for the Newton system, and users may use it anywhere to enter text. The
system automatically supports its use in all text fields.

Graphics and Drawing 1
Style frames for drawing shapes can now include a custom clipping region other
than the whole destination view, and can specify a scaling or offset transformation
to apply to the shape being drawn.

Several new functions allow you to create, flip, rotate, and draw into bitmap
shapes. Also, you can capture all or part of a view into a bitmap. There are new
protos that support the display, manipulation, and annotation of large bitmaps such
as received faxes. A new function, InvertRect, inverts a rectangle in a view.

Views of the class clPictureView can now contain graphic shapes in addition to
bitmap or picture objects.

System Services 1
System-supplied Filing services have been extended; applications can now filter the
display of items according to the store on which they reside, route items directly to
a specified store from the filing slip, and provide their own unique folders. In
addition, registration for notification of changes to folder names has been simplified.

Two new global functions can be used to register or unregister an application with
the Find service. In addition, Find now maintains its state between uses, performs
“date equal” finds, and returns to the user more quickly.

Applications can now register callback functions to be executed when the Newton
powers on or off. Applications can register a view to be added to the user preferences
roll. Similarly, applications can register a view to be added to the formulas roll.

C H A P T E R 1

Overview

1-22 What’s New in Newton 2.0

The implementation of undo has changed to an undo/redo model instead of two
levels of undo, so applications must support this new model.

Recognition 1
Recognition enhancements include the addition of an alternate high-quality
recognizer for printed text and significant improvements in the cursive recognizer.
While this doesn’t directly affect applications, it does significantly improve
recognition performance in the system, leading to a better user experience. Other
enhancements that make the recognition system much easier to use include a new
correction picker, a new punctuation picker, and the caret insertion writing mode
(new writing anywhere is inserted at the caret position).

Specific enhancements of interest to developers include the addition of a
recConfig frame, which allows more flexible and precise control over
recognition in individual input views. A new proto, protoCharEdit, provides a
comb-style entry view in which you can precisely control recognition and restrict
entries to match a predefined character template.

Additionally, there are new functions that allow you to pass ink text, strokes, and
shapes to the recognizer to implement your own deferred recognition. Detailed
recognition corrector information (alternate words and scores) is now available
to applications.

Sound 1
The interface for playing sounds is enhanced in Newton 2.0. In addition to the
existing sound functions, there is a new function to play a sound at a particular
volume and there is a new protoSoundChannel object. The
protoSoundChannel object encapsulates sounds and methods that operate on
them. Using a sound channel object, sound playback is much more flexible—the
interface supports starting, stopping, pausing, and playing sounds simultaneously
through multiple sound channels.

Built-in Applications 1
Unlike in previous versions, the built-in applications are all more extensible in
version 2.0. The Notepad supports stationery, so you can easily extend it by adding
new “paper” types to the New pop-up menu. The Names file also supports stationery,
so it’s easy to add new card types, new card layout styles, and new data items to
existing cards by registering new data definitions and view definitions for the
Names application. There’s also a method that adds a new card to the Names soup.

C H A P T E R 1

Overview

What’s New in Newton 2.0 1-23

The Dates application includes a comprehensive interface that gives you the ability
to add, find, move, and delete meetings and events. You can get and set various
kinds of information related to meetings, and you can create new meeting types for
the Dates application. You can programmatically control what day is displayed as
the first day of the week, and you can control the display of a week number in the
Calendar view.

The To Do List application also includes a new interface that supports creating new
to do items, retrieving items for a particular date or range, removing old items, and
other operations.

Routing and Transports 1
The Routing interface is significantly changed in Newton 2.0. The system builds
the list of routing actions dynamically, when the user taps the Action button. This
allows all applications to take advantage of new transports that are added to the
system at any time. Many hooks are provided for your application to perform
custom operations at every point during the routing operation. You register routing
formats with the system as view definitions. A new function allows you to send
items programmatically.

Your application has much more flexibility with incoming items. You can choose to
automatically put away items and to receive foreign data (items from different
applications or from a non-Newton source).

The Transport interface is entirely new. This interface provides several new protos
and functions that allow you to build a custom communication service and make it
available to all applications through the Action button and the In/Out Box. Features
include a logging capability, a system for displaying progress and status information
to the user, support for custom routing slips, and support for transport preferences.

Endpoint Communication 1
The Endpoint communication interface is new but very similar to the 1.0 interface.
There is a new proto, protoBasicEndpoint, that encapsulates the connection
and provides methods to manage the connection and send and receive data.
Additionally, a derivative endpoint, protoStreamingEndpoint, provides the
capability to send and receive very large frame objects.

Specific enhancements introduced by the new endpoint protos include the ability to
handle and identify many more types of data by tagging the data using data forms
specified in the form slot of an endpoint option. Most endpoint methods can now
be called asynchronously, and asynchronous operation is the recommended way to
do endpoint-based communication. Support is also included for time-outs and
multiple termination sequences. Error handling is improved.

C H A P T E R 1

Overview

1-24 What’s New in Newton 2.0

There have been significant changes in the handling of binary (raw) data. For input,
you can now target a direct data input object, resulting in significantly faster
performance. For output, you can specify offsets and lengths, allowing you to send
the data in chunks.

Additionally, there is now support for multiple simultaneous communication
sessions.

Utilities 1
Many new utility functions are available in Newton 2.0. There are several new
deferred, delayed, and conditional message-sending functions. New array functions
provide ways to insert elements, search for elements, and sort arrays. Additionally,
there’s a new set of functions that operate on sorted arrays using binary search
algorithms. New and enhanced string functions support rich strings, perform
conditional substring substitution, tokenize strings, and perform case-sensitive
string compares. A new group of functions gets, sets, and checks for the existence
of global variables and functions.

Books 1
New Book Reader features include better browser behavior (configurable
auto-closing), expanded off-line bookkeeping abilities, persistent bookmarks, the
ability to remove bookmarks, and more efficient use of memory.

New interfaces provide additional ways to navigate in books, customize Find
behavior, customize bookmarks, and add help books. Book Reader also supports
interaction with new system messages related to scrolling, turning pages, installing
books, and removing books. Additional interfaces are provided for adding items to
the status bar and the Action menu.

Choosing an Application Structure 2-1

C H A P T E R 2

Getting Started 2Figure 2-0
Table 2-0

This chapter describes where to begin when you’re thinking about developing a
Newton application. It describes the different kinds of software you can develop
and install on the Newton and the advantages and disadvantages of using different
application structures.

Additionally, this chapter describes how to create and register your developer
signature.

Before you read this chapter, you should be familiar with the information described
in Chapter 1, “Overview.”

Choosing an Application Structure 2

When you create an application program for the Newton platform, you can use one
of the following basic types of application structures:

■ minimal predefined structure, by basing the application on a view class of
clView or the protoApp proto

■ highly structured, by basing the application on the NewtApp framework of protos

■ highly structured and specialized for text, by building a digital book

Alternatively, you might want to develop software that is not accessed through an
icon in the Extras Drawer. For example, you might want to install stationery, a
transport, or some other kind of specialized software that does something like
creating a soup and then removing itself.

These various approaches to software development are discussed in the following
sections.

Minimal Structure 2
The minimalist approach for designing a Newton application starts with an empty
or nearly empty container that provides little or no built-in functionality—thus the
“minimalist” name. This approach is best suited for specialized applications that

C H A P T E R 2

Getting Started

2-2 Choosing an Application Structure

don’t follow the “classic” form-based model. For example, some types of
applications that might use this approach include games, utilities, calculators, and
graphics applications.

The advantage of using the minimalist approach is that it’s simple and small.
Usually you’d choose this approach because you don’t need or want a lot of
built-in support from a comprehensive application framework, along with the extra
size and overhead that such support brings.

The disadvantage of the minimalist approach is that it doesn’t provide any support
from built-in features, like the NewtApp framework does. You get just a simple
container in which to construct your application.

To construct an application using the minimalist approach, you can use the view
class clView or the proto protoApp as your application base view. The view
class clView is the bare minimum you can start with. This is the most basic of the
primitive view classes. It provides nothing except an empty container. The
protoApp provides a little bit more, it includes a framed border, a title at the top,
and a close box so the user can close it. For details on these objects, see clView
(page 1-1) and protoApp (page 1-2) in Newton Programmer’s Reference.

Neither of these basic containers provide much built-in functionality. You must add
functionality yourself by adding other application components to your application.
There are dozens of built-in protos that you can use, or you can create your own
protos using NTK. Most of the built-in protos are documented in these two chapters:
Chapter 6, “Pickers, Pop-up Views, and Overviews,”and Chapter 7, “Controls and
Other Protos.” Note also that certain protos in the NewtApp framework can be
used outside of a NewtApp application. For information on NewtApp protos, see
Chapter 4, “NewtApp Applications.”

NewtApp Framework 2
NewtApp is an application framework that is well suited to “classic” form-based
applications. Such applications typically gather and store data in soups, display
individual soup entries to users in views, and allow the user to edit some or all of
the data. For example, some types of applications that might use NewtApp include
surveys and other data gathering applications, personal information managers, and
record-keeping applications. Some of the built-in applications constructed using
NewtApp include the Notepad, Names file, In/Out Box, Calls, and Time Zones.

The advantage of NewtApp is that it provides a framework of protos designed to
help you build a complete, full-featured Newton application more quickly than if
you started from scratch. The NewtApp protos are designed to be used together in a
layered hierarchy that links together soup-based data with the display and editing
of that data in an application. For many types of applications, using the NewtApp
framework can significantly reduce development time because the protos

C H A P T E R 2

Getting Started

Choosing an Application Structure 2-3

automatically manage many routine programming tasks. For example, some of the
tasks the protos support include filing, finding, routing, scrolling, displaying an
overview, and soup management.

The disadvantage of NewtApp is that it is structured to support a particular kind of
application—one that allows the creation, editing, and display of soup data. And
particularly, it supports applications structured so that there is one data element
(card, note, and so on) per soup entry. If your application doesn’t lend itself to that
structure or doesn’t need much of the support that NewtApp provides, then it
would be better to use a different approach to application design.

For details on using the NewtApp framework to construct an application, see
Chapter 4, “NewtApp Applications.”

Digital Books 2
If you want to develop an application that displays a large amount of text, handles
multiple pages, or needs to precisely layout text, you may want to consider making
a digital book instead of a traditional application. In fact, if you are dealing with a
really large amount of text, like more than a few dozen screens full, then you could
make your job much easier by using the digital book development tools.

Digital books are designed to display and manipulate large amounts of text and
graphics. Digital books can include all the functionality of an application—they
can include views, protos, and methods that are executed as a result of user actions.
In fact, you can do almost everything in a digital book that you can do in a more
traditional application, except a traditional application doesn’t include the text
layout abilities.

The advantage of using a digital book structure is that you gain the automatic text
layout and display abilities of Book Reader, the built-in digital book reading appli-
cation. Additionally, the book-making tools are easy to use and allow you to quickly
turn large amounts of text and graphics into Newton books with minimal effort.

The disadvantage of using a digital book is that it is designed to support a
particular kind of application—one that is like a book. If your application doesn’t
lend itself to that structure or doesn’t need much of the text-handling support that
Book Reader provides, then it would be better to use a different approach to
application design.

For information on creating digital books using the Book Maker command
language and/or incorporating NewtonScript code and objects into digital books,
see Newton Book Maker User’s Guide. For information on creating simpler digital
books see Newton Press User’s Guide.

C H A P T E R 2

Getting Started

2-4 Package Loading, Activation, and Deactivation

Other Kinds of Software 2
There are other kinds of software you can develop for the Newton platform that are
not accessed by the user through an icon in the Extras drawer. These might include
new types of stationery that extend existing applications, new panels for the
Preferences or Formulas applications, new routing or print formats, communication
transports, and other kinds of invisible applications. Such software is installed in a
kind of part called an auto part (because its part code is auto).

You can also install a special kind of auto part that is automatically removed after it
is installed. The InstallScript function in the auto part is executed, and then it
is removed. (For more information about the InstallScript function, see the
section “Package Loading, Activation, and Deactivation” beginning on page 2-4.)
This kind of auto part is useful to execute some code on the Newton, for example,
to create a soup, and then to remove the code. This could be used to write an installer
application that installs just a portion of the data supplied with an application. For
example, you might have a game or some other application that uses various data
sets, and the installer could let the user choose which data sets to install (as soups)
to save storage space.

Any changes made by an automatically removed auto part are lost when the
Newton is reset, except for changes made to soups, which are persistent.

For additional information about creating auto parts and other kinds of parts such
as font, dictionary, and store parts, refer to Newton Toolkit User’s Guide.

Package Loading, Activation, and Deactivation 2

When a package is first loaded onto the Newton store from some external source,
the system executes the DoNotInstallScript function in each frame part in
the package. This function gives the parts in the package a chance to prevent
installation of the package. If the package is not prevented from being installed,
next it is activated.

When a package containing an application or auto part is activated on the Newton,
the system executes a special function in those parts: the InstallScript
function. A package is normally activated as a result of installing it—by inserting a
storage card containing it, by moving it from one store to another, by downloading
it from a desktop computer, by downloading it via modem or some other communi-
cation device, or by soft resetting the Newton device. Packages can also exist in an
inactive state on a Newton store, and such a package can be activated by the user at
a later time.

When a package is deactivated, the system executes another special function in
each of the application and auto parts in the package: the RemoveScript
function. A package is normally deactivated when the card it resides on is removed,

C H A P T E R 2

Getting Started

Package Loading, Activation, and Deactivation 2-5

when it is moved to another store (it is deactivated then reactivated), or when the
user deletes the application icon in the Extras Drawer. Packages can also be
deactivated without removing them from the store.

When a package is removed as a result of the user deleting it from the Extras
Drawer, the system also executes the DeletionScript function in each of the
package frame parts. This occurs before the RemoveScript function is executed.

The following sections describe how to use these functions.

Loading 2
The DoNotInstallScript function in a package part is executed when a
package is first loaded onto a Newton store from some external source (this does
not include inserting a storage card containing the package or moving it between
stores). This function applies to all types of frame parts (for example, not store parts).

This method gives the parts in the package a chance to prevent installation of the
entire package. If any of the package parts returns a non-nil value from this
function, the package is not installed and is discarded.

You should provide the user with some kind of feedback if package installation is
prevented, rather than silently failing. For example, to ensure that a package is
installed only on the internal store you could write a DoNotInstallScript
function like the following:

func()
begin

if GetStores()[0] <> GetVBOStore(ObjectPkgRef('foo)) then
begin
GetRoot():Notify(kNotifyAlert, kAppName,

"This package was not installed.
It can be installed only onto the internal store.");

true;
end;

end

Activation 2
The InstallScript function in a package part is executed when an application
or auto part is activated on the Newton or whenever the Newton is reset.

This function lets you perform any special installation operations that you need to
do, any initialization, and any registration for system services.

C H A P T E R 2

Getting Started

2-6 Package Loading, Activation, and Deactivation

IMPORTANT

Any changes that you make to the system in the
InstallScript function must be reversed in the
RemoveScript function. For example, if you register your
application for certain system services or install print formats,
stationery, or other objects in the system, you must reverse
these changes and remove or unregister these objects in the
RemoveScript function. If you fail to do this, such changes
cannot be removed by the user, and if your application is on a
card, they won’t be able to remove the card without getting a
warning message to put the card back. ▲

Only applications and auto parts use the InstallScript function. Note that the
InstallScript function takes one extra argument when used for an auto part.
Applications built using the NewtApp framework require special
InstallScript and RemoveScript functions. For details, see Chapter 4,
“NewtApp Applications.”

Deactivation 2
The RemoveScript function in a package part is executed when an application or
auto part is deactivated.

This function lets you perform any special deinstallation operations that you need
to do, any clean-up, and any unregistration for system services that you registered
for in the InstallScript function.

Note that automatically removed auto parts do not use the RemoveScript
function since such auto parts are removed immediately after the
InstallScript is executed—the RemoveScript is not executed.

In addition to the RemoveScript function, another function, DeletionScript,
is executed when the user removes a package by deleting it from the Extras
Drawer. This function applies to all types of frame parts, and is actually executed
before the RemoveScript function.

The DeletionScript function is optional. It lets you do different clean-up
based on the assumption that the user is permanently deleting a package, rather
than simply ejecting the card on which it happens to reside. For example, in the
DeletionScript function, you might want to delete all the soups created by the
application—checking with the user, of course, before performing such an
irreversible operation.

C H A P T E R 2

Getting Started

Effects of System Resets on Application Data 2-7

Effects of System Resets on Application Data 2

Two kinds of reset operations—hard resets and soft resets—can occur on Newton
devices. All data in working RAM (the NewtonScript heap and the operating
system domain) is erased when a hard or soft reset occurs.

Unless a hard reset occurs, soups remain in RAM until they are removed explicitly,
even if the Newton device is powered down. Soups are not affected by soft resets,
as they are stored in the protected storage domain. The remainder of this section
describes reset operations in more detail and suggests ways to ensure that your
application can deal with resets appropriately.

A hard reset occurs at least once in the life of any Newton device—when it is
initially powered on. The hard reset returns all internal RAM to a known state: all
soups are erased, all caches are purged, all application packages are erased from
the internal store, application RAM is reinitialized, the NewtonScript heap is
reinitialized, and the operating system restarts itself. It’s the end (or beginning) of
the world as your application knows it.

Note
Data on external stores is not affected by a hard reset. ◆

A hard reset is initiated only in hardware by the user. Extreme precautions have
been taken to ensure that this action is deliberate. On the MessagePad, the user
must simultaneously manipulate the power and reset switches to initiate the
hardware reset. After this is accomplished, the hardware reset displays two dialog
boxes warning the user that all data is about to be erased; the user must confirm
this action in both dialog boxes before the hard reset takes place.

It is extremely unlikely that misbehaving application software would cause a hard
reset. However, a state similar to hardware reset may be achieved if the battery that
backs up internal RAM is removed or fails completely.

It’s advisable to test your application’s ability to install itself and run on a system
that has been initialized with a hard reset. The exact sequence of steps required to
hard reset a Newton device is documented in its user guide.

Newton devices may also perform a soft reset operation. A soft reset erases all data
stored by applications in the NewtonScript heap, for example all data stored in
slots in views or other frames in memory. A soft reset also reinitializes the data
storage system frames cache, while leaving soup data intact. Any frames in the
cache are lost, such as new or modified entries that have not been written back to
the soup. A soft reset can be initiated in software by the operating system or from
hardware by the user.

C H A P T E R 2

Getting Started

2-8 Flow of Control

When the operating system cannot obtain enough memory to complete a requested
operation, it may display a dialog box advising the user to reset the Newton device.
The user can tap the Reset button displayed in the dialog box to reset the system, or
can tap the Cancel button and continue working.

The user may also initiate a soft reset by pressing a hardware button provided for
this purpose. This button is designed to prevent its accidental use. On the
MessagePad, for example, it is recessed inside the battery compartment and must
be pressed with the Newton pen or similarly-shaped instrument.

A soft reset may also be caused by misbehaving application software. One way to
minimize the occurrence of unexpected resets is to utilize exception-handling code
where appropriate.

The only way applications can minimize the consequences of a soft reset is to be
prepared for one to happen at any time. Applications need to store all permanent
data in a soup and write changed entries back to the soup as soon as is feasible.

It’s advisable to test your application’s ability to recover from a soft reset. The
exact sequence of steps required to soft-reset a particular Newton device is
documented in its user guide.

Flow of Control 2

The Newton system is an event-driven, object-oriented system. Code is executed in
response to messages sent to objects (for example, views). Messages are sent as a
result of user events, such as a tap on the screen, or internal system events, such as
an idle loop triggering. The flow of control in a typical application begins when the
user taps on the application icon in the Extras Drawer. As a result of this event, the
system performs several actions such as reading the values of certain slots in your
application base view and sending a particular sequence of messages to it.

For a detailed discussion of the flow of control and the order of execution when an
application “starts up,” see the section “View Instantiation” beginning on page 3-26.

Using Memory 2

The tightly-constrained Newton environment requires that applications avoid
wasting memory space on unused references. As soon as possible, applications
should set to nil any object reference that is no longer needed, thereby allowing
the system to reclaim the memory used by that object. For example, when an
application closes, it needs to clean up after itself as much as possible, removing its
references to soups, entries, cursors, and any other objects. This means you should
set to nil any application base view slots that refer to objects in RAM.

C H A P T E R 2

Getting Started

Localization 2-9

IMPORTANT

If you don't remove references to unused soups, entries, cursors,
and other objects, the objects will not be garbage collected,
reducing the amount of RAM available to the system and
other applications. ▲

Localization 2

If your application displays strings, and you want your application to run on
localized Newton products, you should consider localizing your application. This
involves translating strings to other languages and using other formats for dates,
times, and monetary values.

There are some features of NTK that make string localization simple, allowing you
to define the language at compile time to build versions in different languages
without changing the source files. Refer to Newton Toolkit User’s Guide for more
information.

For details on localizing an application, see Chapter 20, “Localizing Newton
Applications.”

Developer Signature Guidelines 2

To avoid name conflicts with other Newton application, you need to register a
single developer signature with Newton DTS. You can then use this signature as
the basis for creating unique application symbols, soup names and other global
symbols and strings according to the guidelines described in this section.

Signature 2
A signature is an arbitrary sequence of approximately 4 to 10 characters. Any
characters except colons (:) and vertical bars(|) can be used in a signature. Case is
not significant.

Like a handwritten signature, the developer signature uniquely identifies a Newton
application developer. The most important characteristic of a signature is that it is
unique to a single developer, which is why Newton DTS maintains a registry of
developer signatures. Once you have registered a signature with Newton DTS it is
yours, and will not be assigned to any other developer.

C H A P T E R 2

Getting Started

2-10 Developer Signature Guidelines

Examples of valid signatures include

NEWTONDTS
Joe’s Cool Apps
1NEWTON2DTS
What the #$*? SW

How to Register 2
To register your signature, you need to provide the following information to the
Newton Development Information Group at Apple.

Company Name:
Contact Person:
Mailing Address:
Phone:
Email Address:
Desired Signature 1st choice:
Desired Signature 2nd choice:

Send this information to the e-mail address

NEWTONDEV@applelink.apple.com

or send it via US Mail to:

NewtonSysOp
c/o: Apple Computer, Inc.
1 Infinite Loop, M/S: 305-2A
Cupertino, CA 95014
USA

Application Name 2
The application name is the string displayed under your application's icon in the
Extras drawer. Because it is a string, any characters are allowed.

This name does not need to be unique, because the system does not use it to
identify the application. For example, it is possible for there to be two applications
named Chess on the market. The application name is used only to identify the
application to the user. If there were in fact two applications named Chess
installed on the same Newton device, hopefully the user could distinguish one from
the other by some other means, perhaps by the display of different icons in the
Extras drawer.

C H A P T E R 2

Getting Started

Developer Signature Guidelines 2-11

Examples of valid application names include

Llama
Good Form
2 Fun 4 U
Chess

Note
It’s recommended that you keep your application
names short so that they don’t crowd the names
of other applications in the Extras drawer. ◆

Application Symbol 2
The application symbol is created by concatenating the application name, a
colon (:), and your registered developer signature. This symbol is not normally
visible to the end user. It is used to uniquely identify an application in the system.
Because application symbols contain a colon (:), they must be enclosed by vertical
bars (|) where they appear explicitly in NewtonScript code.

Examples of valid application symbols include:

'|Llama:NEWTONDTS|
'|2 Fun 4 U:Joe’s Cool Apps|

You specify the application symbol in the Output Settings dialog of NTK. At the
beginning of a project build, NTK 1.5 or newer defines a constant for your project
with the name kAppSymbol and sets it to the symbol you specify as the
application symbol. Use of this constant throughout your code makes it easier to
maintain your code.

At the end of the project build, if you’ve not created a slot with the name
appSymbol in the application base view of your project, NTK creates such a slot
and places in it the application symbol. If the slot exists already, NTK doesn’t
overwrite it.

Package Name 2
The package name is usually a string version of the application symbol. The
package name may be visible to the user if no application name is provided.
Package names are limited to 26 characters, so this places a practical limit on the
combined length of application names and signatures.

C H A P T E R 2

Getting Started

2-12 Summary

Summary 2

View Classes and Protos 2

clView 2

aView := {
viewClass: clView, // base view class
viewBounds: boundsFrame, // location and size
viewJustify: integer, // viewJustify flags
viewFlags: integer, // viewFlags flags
viewFormat: integer, // viewFormat flags
...
}

protoApp 2

anApp := {
_proto: protoApp, // proto application
title: string, // application name
viewBounds: boundsFrame, // location and size
viewJustify: integer, // viewJustify flags
viewFlags: integer, // viewFlags flags
viewFormat: integer, // viewFormat flags
declareSelf: 'base, // do not change
...
}

Functions 2

Application-Defined Functions 2

InstallScript(partFrame) // for application parts
InstallScript(partFrame, removeFrame) // for auto parts
DeletionScript()
DoNotInstallScript()
RemoveScript(frame)

About Views 3-1

C H A P T E R 3

Views 3Figure 3-0
Table 3-0

This chapter provides the basic information you need to know about views and how
to use them in your application.

You should start with this chapter if you are creating an application for Newton
devices, as views are the basic building blocks for most applications. Before
reading this chapter, you should be familiar with the information in Newton Toolkit
User’s Guide and The NewtonScript Programming Language.

This chapter introduces you to views and related items, describing

■ views, templates, the view coordinate system, and the instantiation process for
creating a view

■ common tasks, such as creating a template, redrawing a view, creating special
view effects, and optimizing a view’s performance

■ view constants, methods, and functions

About Views 3

Views are the basic building blocks of most applications. Nearly every individual
visual item you see on the screen—for example, a radio button, or a checkbox—is
a view, and there may even be views that are not visible. Views display information
to the user in the form of text and graphics, and the user interacts with views by
tapping them, writing in them, dragging them, and so on.

Different types of views have inherently different behavior, and you can include
your own methods in views to further enhance their behavior. The primitive view
classes provided in the Newton system are described in detail in Table 2-2 (page 2-4)
in the Newton Programmer’s Reference.

You create or lay out a view with the Newton Toolkit’s graphic editor. The Newton
Toolkit creates a template; that is, a data object that describes how the view will
look and act on the Newton. Views are then created from templates when the
application runs on the Newton.

C H A P T E R 3

Views

3-2 About Views

This section provides detailed conceptual information on views and other items
related to views. Specifically, it covers the following:

■ templates and views and how they relate to each other

■ the coordinate system used in placing views

■ components used to define views

■ application-defined methods that the system sends to views

■ the programmatic process used to create a view

■ new functions, methods, and messages added for 2.0 as well as modifications to
existing view code

Templates 3
A template is a frame containing a description of an object. (In this chapter the
objects referred to are views that can appear on the screen.) Templates contain data
descriptions of such items as fields for the user to write into, graphic objects,
buttons, and other interactive objects used to collect and display information.
Additionally, templates can include methods, which are functions that give the
view behavior.

Note
A template can also describe nongraphic objects like
communication objects. Such objects have no visual
representation and exist only as logical objects. ◆

An application exists as a collection of templates, not just a single template. There
is a parent template that defines the application window and its most basic
features. From this parent template springs a hierarchical collection of child
templates, each defining a small piece of the larger whole. Each graphic object,
button, text field, and so on is defined by a separate template. Each child template
exists within the context of its parent template and inherits characteristics from its
parent template, though it can override these inherited characteristics.

Within the Newton object system, a template for a view exists as a special kind of
frame; that is, a frame containing or inheriting a particular group of slots
(viewClass, viewBounds, viewFlags, and some other optional slots) that
define the template’s class, dimensions, appearance, and other characteristics.
Templates are no different from any other frames, except that they contain or
inherit these particular slots (in addition to others). For more information about
frames, slots, and the NewtonScript language, see The NewtonScript Programming
Language.

C H A P T E R 3

Views

About Views 3-3

Figure 3-1 shows a collection of template frames that might make up an application.
The frame at the top represents the highest-level parent template. Each template
that has children contains a viewChildren (or stepChildren) slot whose
value is an array of references to its child templates.

Figure 3-1 Template hierarchy

Arrows indicate
a reference to objects

Child Template

{Slot: data
Slot: data
.
.
.
}

Child Template

{Slot: data
Slot: data
.
.
.
}

Child Template

{Slot: data
Slot: data
.
.
.
}

Child Template

{Slot: data
Slot: data
.
.
.

viewChildren:
[frameRef, frameRef]}

Parent Template

{Slot: data
Slot: data
.
.
.

viewChildren:
[frameRef, frameRef]}

C H A P T E R 3

Views

3-4 About Views

Views 3
A template is a data description of an object. A view is the visual representation of
the object that is created when the template is instantiated. The system reads the
stored description in the template and creates a view on the screen—for example, a
framed rectangle containing a title.

Besides the graphic representation you see on the screen, a view consists of a
memory object (a frame) that contains a reference to its template and also contains
transient data used to create the graphic object. Any changes to view data that occur
during run time are stored in the view, not in its template. This is an important point—
after an application has started up (that is, once the views are instantiated from their
templates), all changes to slots occur in the view; the template is never changed.

This distinction between templates and views with respect to changing slot values
occurs because of the NewtonScript inheritance mechanism. During run time,
templates, containing static data, are prototypes for views, which contain dynamic
data. To understand this concept, it is imperative that you have a thorough
understanding of the inheritance mechanism as described in The NewtonScript
Programming Language.

You can think of a template as a computer program stored on a disk. When the
program starts up, the disk copy (the template) serves as a template; it is copied
into dynamic memory, where it begins execution. Any changes to program
variables and data occur in the copy of the program in memory (the view), not in
the original disk version.

However, the Newton system diverges from this metaphor in that the view is not
actually a copy of the template. To save RAM use, the view contains only a reference
to the template. Operations involving the reading of data are directed by reference
to the template if the data is not first found in the view. In operations in which data
is written or changed, the data is written into the view.

Because views are transient and data is disposed of when the view is closed, any
data written into a view that needs to be saved permanently must be saved elsewhere
before the view disappears.

A view is linked with its template through a _proto slot in the view. The value of
this slot is a reference to the template. Through this reference, the view can access
slots in its template. Templates may themselves contain _proto slots which
reference other templates, called protos, on which they are built.

Views are also linked to other views in a parent-child relationship. Each view
contains a _parent slot whose value is a reference to its parent view; that is, the
view that encloses it. The top-level parent view of your application is called the

C H A P T E R 3

Views

About Views 3-5

application base view. (Think of the view hierarchy as a tree structure in which
the tree is turned upside down with its root at the top. The top-level parent view is
the root view.)

Figure 3-2 shows the set of views instantiated from the templates shown in
Figure 3-1. Note that this example is simplified in that it shows a separate template
for each view. In practice, multiple views often share a single template. Also, this
example doesn’t show templates that are built on other protos.

Figure 3-2 View hierarchy

Arrows indicate a
reference to parent/child

Templates
(permanent, read-only)

Views
(transient, writable)

Arrows indicate a
reference to protos

Parent View

{_proto:
.
.
.
}

Child Template C

{
.
.
.
}

Child Template B

{
.
.
.
}

Child Template D

{
.
.
.
}

Parent Template

{
.
.
.
viewChildren:[]
}

Child Template A

{
.
.
.
viewChildren:[]
}

Child View B

{
.
_parent:
_proto:
.
}

Child View A

{_parent:
_proto:
.
.
.
}

Child View D

{
.
_parent:
_proto:
.
}

Child View C

{_parent:
_proto:
.
.
.
}

C H A P T E R 3

Views

3-6 About Views

Figure 3-3 shows an example of what this view hierarchy might represent on
the screen.

Figure 3-3 Screen representation of view hierarchy

The application base view of each application exists as a child of the system root
view. The root view is essentially the blank screen that exists before any other
views are drawn. It is the ancestor of all other views that are instantiated.

Coordinate System 3
The view coordinate system is a two-dimensional plane. The (0, 0) origin point of
the plane is assigned to the upper-left corner of the Newton screen, and coordinate
values increase to the right and (unlike a Cartesian plane) down. Any pixel on the
screen can be specified by a vertical coordinate and a horizontal coordinate.
Figure 3-4 (page 3-7) illustrates the view system coordinate plane.

Views are defined by rectangular areas that are usually subsets of the screen. The
origin of a view is usually its upper-left corner, though the origin can be changed.
The coordinates of a view are relative to the origin of its parent view—they are not
screen coordinates.

It is helpful to conceptualize the coordinate plane as a two-dimensional grid.
The intersection of a horizontal and vertical grid line marks a point on the
coordinate plane.

Note the distinction between points on the coordinate grid and pixels, the dots
that make up a visible image on the screen. Figure 3-5 illustrates the relationship
between the two: the pixel is down and to the right of the point by which it
is addressed.

 Parent
View

Child B

Child A
Child C

Child D

C H A P T E R 3

Views

About Views 3-7

Figure 3-4 View system coordinate plane

Figure 3-5 Points and pixels

–6

6

5

4

3

2

1

–1–2–3–4–5–6

654321

–5

–4

–3

–2

–1 h

v

Grid lines

Point

Pixel

C H A P T E R 3

Views

3-8 About Views

As the grid lines are infinitely thin, so a point is infinitely small. Pixels, by contrast,
lie between the lines of the coordinate grid, not at their intersections.

This relationship gives them a definite physical extent, so that they can be seen on
the screen.

Defining View Characteristics 3
A template that describes a view is stored as a frame that has slots for view
characteristics. Here is a NewtonScript example of a template that describes a view:

{viewClass: clView,
viewBounds: RelBounds(20, 50, 94, 142),
viewFlags: vNoFlags,
viewFormat:vfFillWhite+vfFrameBlack+vfPen(1),
viewJustify: vjCenterH,
viewFont: simpleFont10,
declareSelf: 'base,
debug: "dialer",
};

Briefly, the syntax for defining a frame is:

{slotName: slotValue,
 slotName: slotValue,
...};

where slotName is the name of a slot, and slotValue is the value of a slot. For more
details on NewtonScript syntax, refer to The NewtonScript Programming Language.

Frames serving as view templates have slots that define the following kinds of view
characteristics:

Class The viewClass slot defines the class of graphic object from
which the view is constructed.

Behavior The viewFlags slot defines other primary view behaviors
and controls recognition behavior.

Location, size, and alignment
The viewBounds and viewJustify slots define the
location, size, and alignment of the view and its contents.

Appearance The viewFormat slot defines the frame and fill
characteristics. The viewFillPattern and
viewFramePattern slots control custom patterns.
Transfer modes used in drawing the view are controlled
by the viewTransferMode slot.

C H A P T E R 3

Views

About Views 3-9

Opening and closing animation effects
The viewEffect slot defines an animation to be performed
when the view is displayed or hidden.

Other attributes Some other slots define view characteristics such as font,
copy protection, and so on.

Inheritance links The _proto, _parent, viewChildren, and
stepChildren slots contain links to a view’s template,
parent view, and child views.

These different categories of view characteristics are described in the following
sections.

Class 3

The viewClass slot defines the view class. This information is used by the
system when creating a view from its template. The view class describes the type
of graphic object to be used to display the data described in the template. The view
classes built into the system serve as the primitive building blocks from which all
visible objects are constructed. The view classes are listed and described in Table 2-2
(page 2-4) in the Newton Programmer’s Reference.

Behavior 3

The viewFlags slot defines behavioral attributes of a view other than those that
are derived from the view class. Each attribute is represented by a constant defined
as a bit flag. Multiple attributes are specified by adding them together, like this:

vVisible+vFramed

Note that in the NTK viewFlags editor, multiple attributes are specified simply by
checking the appropriate boxes.

Some of the viewFlags constants are listed and described in Table 2-4 (page 2-11)
in the Newton Programmer’s Reference. There are also several additional constants
you can specify in the viewFlags slot that control what kinds of pen input (taps,
strokes, words, letters, numbers, and so on) are recognized and handled by the view.
These other constants are described in “Recognition” (page 9-1).

View behavior is also controlled through methods in the view that handle system
messages. As an application executes, its views receive messages from the system,
triggered by various events, usually the result of a user action. Views can handle
system messages by having methods that are named after the messages. You
control the behavior of views by providing such methods and including code that
operates on the receiving view or other views.

For a detailed description of the messages that views can receive, and information
on how to handle them, see “Application-Defined Methods” (page 3-26).”

C H A P T E R 3

Views

3-10 About Views

Handling Pen Input 3

The use of the vClickable viewFlags constant to control pen input is
important to understand, so it is worth covering here, even though it is discussed in
more detail in “Recognition” (page 9-1). The vClickable flag must be set for a
view to receive input. If this flag is not set for a view, that view cannot accept any
pen input.

If you have a view whose vClickable flag is not set, pen events, such as a tap,
will “fall through” that view and be registered in a background view that does
accept pen input. This can cause unexpected results if you are not careful. You
can prevent pen events from registering in the wrong view by setting the
vClickable flag for a view and providing a ViewClickScript method in the
view that returns non-nil. This causes the view to capture all pen input within
itself, instead of letting it “fall through” to a different view. If you want to capture
pen events in a view but still prevent input (and electronic ink), do not specify any
other recognition flags besides vClickable.

If you want strokes or gestures but want to prevent clicks from falling through up
the parent chain, return the symbol 'skip. This symbol tells the view system not
to allow the stroke to be processed by the parent chain, but instead allows the
stroke to be processed by the view itself for recognition behavior.

Several other viewFlags constants are used to control and constrain the recognition
of text, the recognition of shapes, the use of dictionaries, and other input-related
features of views. For more information, refer to “Recognition” (page 9-1).

Location, Size, and Alignment 3

The location and size of a view are specified in the viewBounds slot of the view
template. The viewJustify slot affects the location of a view relative to other
views. The viewJustify slot also controls how text and pictures within the view
are aligned and limits how much text can appear in the view (one line, one word,
and so on).

The viewOriginX and viewOriginY slots control the offset of child views
within a view.

View Bounds 3

The viewBounds slot defines the size and location of the view on the screen. The
value of the viewBounds slot is a frame that contains four slots giving the view
coordinates (all distances are in pixels). For example:

{left: leftValue,
 top: topValue,
 right: rightValue,
 bottom: bottomValue
}

C H A P T E R 3

Views

About Views 3-11

leftValue The distance from the left origin of the parent view to the left
edge of the view.

topValue The distance from the top origin of the parent view to the top
edge of the view.

rightValue The distance from the left origin of the parent view to the
right edge of the view.

bottomValue The distance from the top origin of the parent view to the
bottom edge of the view.

Note
The values in the viewBounds frame are interpreted as
described here only if the view alignment is set to the default
values. Otherwise, the view alignment setting changes the way
viewBounds values are used. For more information, see “View
Alignment” (page 3-13). ◆

As shown in Figure 3-6, all coordinates are relative to a view’s parent, they are not
actual screen coordinates.

Figure 3-6 Bounds parameters

When you are using the Newton Toolkit (NTK) to lay out views for your applica-
tion, the viewBounds slot is set automatically when you drag out a view in the
layout window. If you are writing code in which you need to specify a viewBounds
slot, you can use one of the global functions such as SetBounds or RelBounds,
which are described in “Finding the Bounds of Views” (page 3-39).

View

Parent View
Top

Bottom

Left

Right

C H A P T E R 3

Views

3-12 About Views

View Size Relative to Parent Size 3

A view is normally entirely enclosed by its parent view. You shouldn’t create a
view whose bounds extend outside its parent’s bounds. If you do create such a view,
for example containing a picture that you want to show just part of, you need to set
the vClipping flag in the viewFlags slot of the parent view.

If you do not set the vClipping flag for the parent view, the behavior is
unpredictable. The portions of the view outside the parent’s bounds may or may
not draw properly. All pen input is clipped to the parent’s bounds.

Note that the base views of all applications (all root view children, in fact) are
automatically clipped, whether or not the vClipping flag is set.

If your application base view is very small and you need to create a larger floating
child view, for example, a slip, you should use the BuildContext function. This
function creates a special view that is a child of the root view. To open the view,
you send the Open message to it.

Using Screen-Relative Bounds 3

Newton is a family of products with varying screen sizes. If you want your
application to be compatible with a variety of individual Newton products, you
should design your application so that it sizes itself dynamically (that is, at run
time), accounting for the size of the screen on which it is running, which could be
smaller or larger than the original Newton MessagePad screen.

You may want to dynamically size the base view of your application so that it
changes for different screen sizes, or you may want it to remain a fixed size on all
platforms. In the latter case, you should still check the actual screen size at run
time to make sure there is enough room for your application.

You can use the global function GetAppParams to check the size of the screen at
run time. This function returns a frame containing the coordinates of the drawable
area of the screen, as well as other information (see “Utility Functions Reference”
(page 23-1) in the Newton Programmer’s Reference for a description). The frame
returned looks like this:

{appAreaLeft: 0,
 appAreaTop: 0,
 appAreaWidth: 240,
 appAreaHeight: 320,
...}

The following example shows how to use the ViewSetupFormScript method in
your application base view to make the application a fixed size, but no larger than
the size of the screen:

C H A P T E R 3

Views

About Views 3-13

viewSetupFormScript: func()
begin
local b := GetAppParams();
self.viewbounds := RelBounds(

b.appAreaLeft,
b.appAreaTop,
min(200, b.appAreaWidth), // 200 pixels wide max
min(300, b.appAreaHeight)); // 300 pixels high max

end

Don’t blindly size your application to the full extents of the screen. This might look
odd if your application runs on a system with a much larger screen.

Do include a border around your application base view. That way, if the application
runs on a screen that is larger than the size of your application, the user will be able
to clearly see its boundaries.

The important point is to correctly size the application base view. Child views are
positioned relative to the application base view. If you have a dynamically sizing
application base view, make sure that the child views also are sized dynamically, so
that they are laid out correctly no matter how the dimensions of the base view
change. You can ensure correct layout by using parent-relative and sibling-relative
view alignment, as explained in the next section, “View Alignment.”

One additional consideration you should note is that on a larger screen, it may be
possible for the user to move applications around. You should not rely on the
top-left coordinate of your application base view being fixed. To prevent this from
happening check your application’s current location when you work with global
coordinates. To do this, send the GlobalBox message to your application base view.

View Alignment 3

The viewJustify slot is used to set the view alignment and is closely linked in
its usage and effects with the viewBounds slot.

The viewJustify slot specifies how text and graphics are aligned within the
view and how the bounds of the view are aligned relative to its parent or sibling
views. (Sibling views are child views that have a common parent view.)

In the viewJustify slot, you can specify one or more alignment attributes,
which are represented by constants defined as bit flags. You can specify one
alignment attribute from each of the following groups:

■ horizontal alignment of view contents (applies to views of class
clParagraphView and clPictureView only)

■ vertical alignment of view contents (applies to views of class
clParagraphView and clPictureView only)

C H A P T E R 3

Views

3-14 About Views

■ horizontal alignment of the view relative to its parent or sibling view

■ vertical alignment of the view relative to its parent or sibling view

■ text limits

For example, you could specify these alignment attributes for a button view that has
its text centered within the view and is placed relative to its parent and sibling views:

vjCenterH+vjCenterV+vjSiblingRightH+vjParentBottomV+oneLineOnly

If you don’t specify an attribute from a group, the default attribute for that group
is used.

The view alignment attributes and the defaults are listed and described in Table 3-1.
The effects of these attributes are illustrated in Figure 3-7, following the table.

Sibling setting are not used if the view has not previous setting, instead the parent
settings are used.

Table 3-1 viewJustify constants

Constant Value Description

Horizontal alignment of view contents

vjLeftH 0 Left alignment (default).

vjCenterH 2 Center alignment (default for clPictureView only).

vjRightH 1 Right alignment.

vjFullH 3 Stretches the view contents to fill the entire view width.

Vertical alignment of view contents1

vjTopV 0 Top alignment (default).

vjCenterV 4 Center alignment (default for clPictureView only).

vjBottomV 8 Bottom alignment.

vjFullV 12 For views of the clPictureView class only;
stretches the picture to fill the entire view height.

Horizontal alignment of the view relative to its parent or sibling view2

vjParentLeftH 0 The left and right view bounds are relative to the
parent’s left side (default).

continued

C H A P T E R 3

Views

About Views 3-15

vjParentCenterH 16 The difference between the left and right view bounds
is used as the width of the view. If you specify zero
for left, the view is centered in the parent view. If you
specify any other number for left, the view is offset
by that much from a centered position (for example,
specifying left = 10 and right = width+10 offsets the
view 10 pixels to the right from a centered position).

vjParentRightH 32 The left and right view bounds are relative to the
parent’s right side, and will usually be negative.

vjParentFullH 48 The left bounds value is used as an offset from the left
edge of the parent and the right bounds value as an
offset from the right edge of the parent (for example,
specifying left = 10 and right = –10 leaves a 10-pixel
margin on each side).

vjSiblingNoH 0 (Default) Do not use sibling horizontal alignment.

vjSiblingLeftH 2048 The left and right view bounds are relative to the
sibling’s left side.

vjSiblingCenterH 512 The difference between the left and right view bounds
is used as the width of the view. If you specify zero
for left, the view is centered in relation to the sibling
view. If you specify any other number for left,
the view is offset by that much from a centered
position (for example, specifying left = 10 and
right = width+10 offsets the view 10 pixels to the
right from a centered position).

vjSiblingRightH 1024 The left and right view bounds are relative to the
sibling’s right side.

vjSiblingFullH 1536 The left bounds value is used as an offset from the left
edge of the sibling and the right bounds value as an
offset from the right edge of the sibling (for example,
specifying left = 10 and right = –10 indents the view
10 pixels on each side relative to its sibling).

Vertical alignment of the view relative to its parent or sibling view3

vjParentTopV 0 The top and bottom view bounds are relative to the
parent’s top side (default).

continued

Table 3-1 viewJustify constants (continued)

Constant Value Description

C H A P T E R 3

Views

3-16 About Views

vjParentCenterV 64 The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in the parent
view. If you specify any other number for top,
the view is offset by that much from a centered
position (for example, specifying top = –10 and
bottom = height–10 offsets the view 10 pixels above
a centered position).

vjParentBottomV 128 The top and bottom view bounds are relative to the
parent’s bottom side.

vjParentFullV 192 The top bounds value is used as an offset from the top
edge of the parent and the bottom bounds value as an
offset from the bottom edge of the parent (for
example, specifying top = 10 and bottom = –10 leaves
a 10-pixel margin on both the top and the bottom).

vjSiblingNoV 0 (Default) Do not use sibling vertical alignment.

vjSiblingTopV 16384 The top and bottom view bounds are relative to the
sibling’s top side.

vjSiblingCenterV 4096 The difference between the top and bottom view
bounds is used as the height of the view. If you
specify zero for top, the view is centered in relation to
the sibling view. If you specify any other number for
top, the view is offset by that much from a centered
position (for example, specifying top = –10 and
bottom = height–10 offsets the view 10 pixels above a
centered position).

vjSiblingBottomV 8192 The top and bottom view bounds are relative to the
sibling’s bottom side.

vjSiblingFullV 12288 The top bounds value is used as an offset from the top
edge of the sibling and the bottom bounds value as an
offset from the bottom edge of the sibling (for
example, specifying top = 10 and bottom = –10
indents the view 10 pixels on both the top and the
bottom sides relative to its sibling).

continued

Table 3-1 viewJustify constants (continued)

Constant Value Description

C H A P T E R 3

Views

About Views 3-17

1 For views of the clParagraphView class, the vertical alignment constants vjTopV, vjCenterV, and
vjBottomV apply only to paragraphs that also have the oneLineOnly viewJustify flag set.

2 If you are applying horizontal sibling-relative alignment and the view is the first child, it is positioned according
to the horizontal parent-relative alignment setting.

3 If you are applying vertical sibling-relative alignment and the view is the first child, it is positioned according to
the vertical parent-relative alignment setting.

Text limits

noLineLimits 0 (Default) No limits, text wraps to next line.

oneLineOnly 8388608 Allows only a single line of text, with no wrapping.

oneWordOnly 16777216 Allows only a single word. (If the user writes another
word, it replaces the first.)

Indicate that a bounds value is a ratio

vjNoRatio 0 (Default) Do not use proportional alignment.

vjLeftRatio 67108864 The value of the slot viewBounds.left is
interpreted as a percentage of the width of the parent
or sibling view to which this view is horizontally
justified.

vjRightRatio 134217728 The value of the slot viewBounds.right is
interpreted as a percentage of the width of the parent
or sibling view to which this view is horizontally
justified.

vjTopRatio 268435456 The value of the slot viewBounds.top is
interpreted as a percentage of the height of the parent
or sibling view to which this view is vertically
justified.

vjBottomRatio –536870912 The value of the slot viewBounds.bottom is
interpreted as a percentage of the height of the parent
or sibling view to which this view is vertically
justified.

vjParentAnchored 256 The view is anchored at its location in its parent view,
even if the origin of the parent view is changed. Other
sibling views will be offset, but not child views with
this flag set.

Table 3-1 viewJustify constants (continued)

Constant Value Description

C H A P T E R 3

Views

3-18 About Views

Figure 3-7 View alignment effects

Horizontal alignment of view contents Vertical alignment of view contents

Justify v jFullV

C H A P T E R 3

Views

About Views 3-19

Figure 3-7 View alignment effects (continued)

View Alignment effects2
Figure 3-7 continued
Basic Views / Newton Programmer's Guide
Frame size 410 points wide, 200 points deep.

Apple Computer Inc.
Peggy Kunz, Illustrator
Adobe Illustrator 5.0

Horizontal alignment of the view
relative to its parent view

Horizontal alignment of the view
relative to its sibling view

Parent

viewBounds:
{left:0. Top:25,
Right:175,
Bottom:75}

viewBounds:
{left:0. Top:100,
Right:175,
Bottom:150}

viewBounds:
{left:175.
Top:175, Right:0,
Bottom:225}

viewBounds:
{left:0. Top:250,
Right:0,
Bottom:300}

Sibling View

Each of the
paragraph views
has the same
viewBounds:
{Left:0,
Top:23,
Right:185,
Bottom:43}

Vertical alignment of the view
relative to its parent view

Vertical alignment of the view
relative to its sibling view

Parent View

vjParentTopV
viewBounds:
{left:5. Top:0,
Right:45,
Bottom:40}

vjParentCenterV
viewBounds:
{left:0. Top:100,
Right:175,
Bottom:150}

vjParentBottomV
viewBounds:
{left:105.
Top:40,
Right:145,
Bottom:0}

vjParentFullV
viewBounds:
{left:165.
Top:40,
Right:205,
Bottom:40}

Sibling View

Each of the
paragraph views
has the same
viewBounds:
{Left:31,
Top:0,
Right:215,
Bottom:20}

C H A P T E R 3

Views

3-20 About Views

viewOriginX and viewOriginY Slots 3

These slots can be read but not written or set. Instead, use Setorigin to set the
origin offset for a view. For more information, see “Scrolling View Contents”
(page 3-41).

If you use these slots to specify an offset, the point you specify becomes the new
origin. Child views are drawn offset by this amount. This is useful for displaying
different portions of a view whose content area is larger than its visible area.

Appearance 3

The viewFormat slot defines view attributes such as its fill pattern, frame pattern,
frame type, and so on. Custom fill and frame patterns are defined using the
viewFillPattern and viewFramePattern slots.

The viewTransferMode slot controls the appearance of the view when it is drawn
on the screen; that is, how the bits being drawn interact with bits on the screen.

View Format 3

The viewFormat slot defines visible attributes of a view such as its fill pattern,
frame type, and so on. In the viewFormat slot, you can specify one or more
format attributes, which are represented by constants defined as bit flags. You can
specify one format attribute from each of the following groups:

■ view fill pattern

■ view frame pattern

■ view frame thickness

■ view frame roundness

■ view frame inset (this is the white space between the view bounds and view frame)

■ view shadow style

■ view line style (these are solid or dotted lines drawn in the view to make it look
like lined paper)

Multiple attributes are specified by adding them together like this:

vfFillWhite+vfFrameBlack+vfPen(2)+vfLinesGray

Note that the frame of a view is drawn just outside of the view bounding box, not
within it.

The fill for a view is drawn before the view contents and the frame is drawn after
the contents.

C H A P T E R 3

Views

About Views 3-21

IMPORTANT

Many views need no fill pattern, so you may be inclined to set the
fill pattern to “none” when you create such a view. However, it’s
best to fill the view with white, if the view may be explicitly
dirtied (in need of redrawing) and if you don’t need a transparent
view. This increases the performance of your application because
when the system is redrawing the screen, it doesn’t have to update
views behind those filled with a solid color such as white.
However, don’t fill all views with white, since there is some small
overhead associated with fills; only use this technique if the view
is one that is usually dirtied.

Also, note that the application base view always appears opaque,
as do all child views of the root view. That is, if no fill is set for
the application base view, it automatically appears to be filled
with white. ▲

The view format attributes are listed and described in Table 2-5 (page 2-13) in the
Newton Programmer’s Reference.

Custom Fill and Frame Patterns 3

Custom fill and custom view frame patterns are set for a view by using the
vfCustom flag, as shown in Table 2-5 (page 2-13) in the Newton Programmer’s
Reference, and by using following two slots:

viewFillPattern
Sets a custom fill pattern that is used to fill the view.

viewFramePattern
Sets a custom pattern that is used to draw the frame lines
around the view, if the view has a frame.

You can use custom fill and frame patterns by setting the value of the
viewFillPattern and viewFramePattern slots to a binary data structure
containing a custom pattern. A pattern is simply an eight-byte binary data structure
with the class 'pattern.

You can use this NewtonScript trick to create binary pattern data structures “on
the fly”:

DefineGlobalConstant('myPat,SetLength(SetClass(Clone
 ("\uAAAAAAAAAAAAAAAA"),'pattern), 8));

This code clones a string, which is already a binary object, and changes its class to
'pattern. The string is specified with hexadecimal character codes whose binary
representation is used to create the pattern. Each two-digit hex code creates one
byte of the pattern.

C H A P T E R 3

Views

3-22 About Views

Drawing Transfer Mode for Views 3

The viewTransferMode slot specifies the transfer mode to be used for
drawing in the view. The transfer mode controls how bits being drawn are placed
over existing bits on the screen. The constants that you can specify for the
viewTransferMode slot are listed and described in Table 2-6 (page 2-14) in
the Newton Programmer’s Reference.

The transfer mode is used to specify how bits are copied onto the screen when
something is drawn in a view. For each bit in the item to be drawn, the system finds
the existing bit on the screen, performs a Boolean operation on the pair of bits, and
displays the resulting bit.

The first eight transfer modes are illustrated in Figure 3-8. The last transfer mode,
in addition to those shown, modeMask, is a special one, and its effects are
dependent on the particular picture being drawn and its mask.

Figure 3-8 Transfer modes

In Figure 3-8, the Source item represents something being drawn on the screen.
The Destination item represents the existing bits on the screen. The eight patterns
below these two represent the results for each of the standard transfer modes.

modesNotCopy modesNotOr modesNotXor modesNotBic

Source

modeCopy modeOr modeXor modeBic

Destination (Screen)

C H A P T E R 3

Views

About Views 3-23

Opening and Closing Animation Effects 3

Another attribute of a view that you can specify is an animation that occurs when
the view is opened or closed on the screen. If an effect is defined for a view, it occurs
whenever the view is sent an Open, Close, Show, Hide, or Toggle message.

Use the viewEffect slot to give the view an opening or closing animation.
Alternately, you can perform one-time effects on a view by sending it one of these
view messages: Effect, SlideEffect, RevealEffect, or Delete. These
methods are described in “Animating Views” (page 3-40).

The viewEffect slot specifies an animation that occurs when a view is shown or
hidden. If this slot is not present, the view will not animate at these times. There
are several predefined animation types. You can also create a custom effect using a
combination of viewEffect flags from Table 2-7 (page 2-86) in Newton
Programmer’s Reference. To use one of the predefined animation types, specify the
number of animation steps, the time per step, and the animation type, with the
following values:

fxSteps(x) In x specify the number of steps you want, from 1 to 15.

fxStepTime(x) In x specify the number of ticks that you want each step to
take, from zero to 15 (there are 60 ticks per second).

Specify one of the following values to select the type of animation effect desired:

■ fxCheckerboardEffect—reveals a view using a checkerboard effect, where
adjoining squares move in opposite (up and down) directions.

■ fxBarnDoorOpenEffect—reveals a view from center towards left and right
edges, like a barn door opening where the view is the inside of the barn.

■ fxBarnDoorCloseEffect—reveals a view from left and right edges towards
the center, like a barn door closing where the view is painted on the doors.

■ fxVenetianBlindsEffect—reveals a view so that it appears behind
venetian blinds that open.

■ fxIrisOpenEffect—changes the size of an invisible “aperture” covering the
view, revealing an ever-increasing portion of the full-size view as the aperture
opens.

■ fxIrisCloseEffect—like fxIrisOpenEffect, except that it decreases
the size of an invisible “aperture” covering the view, as the aperture closes.

■ fxPopDownEffect—reveals a view as it slides down from its top boundary.

■ fxDrawerEffect—reveals a view as it slides up from its bottom boundary.

■ fxZoomOpenEffect—expands the image of the view from a point in the
center until it fills the screen; that is, the entire view appears to grow from a
point in the center of the screen.

C H A P T E R 3

Views

3-24 About Views

■ fxZoomCloseEffect—opposite of fxZoomOpenEffect. This value
shrinks the image of the view from a point in the center until it disappears or
closes on the screen.

■ fxZoomVerticalEffect—the view expands out from a horizontal line in the
center of its bounds. The top half moves upward and lower half moves
downward.

A complete viewEffect specification might look like this:

fxVenetianBlindsEffect+fxSteps(6)+fxStepTime(8)

You can omit the fxSteps and fxStepTime constants and appropriate defaults
will be used, depending on the type of the effect.

Table 2-7 (page 2-86) in Newton Programmer’s Reference lists the constants that
you can use in the viewEffect slot to create custom animation effects. You
combine these constants in different ways to create different effects. For example,
the predefined animation type fxCheckerboardEffect is defined as:

fxColumns(8)+fxRows(8)+fxColAltPhase+fxRowAltPhase+fxDown

It is difficult to envision what the different effects will look like in combination, so it
is best to experiment with various combinations until you achieve the effect you want.

Other Characteristics 3

Other view characteristics are controlled by the following slots:

viewFont Specifies the font used in the view. This slot applies only to
views that hold text, that is, views of the class
clParagraphView. For more information about how to
specify the font, see the section “Using Fonts for Text and
Ink Display” (page 8-17) in “Text and Ink Input and Display”

declareSelf When the template is instantiated, a slot named with the
value of this slot is added to the view. Its value is a reference
to itself. For example, if you specify declareSelf:'base,
a slot named base is added to the view and its value is set to
a reference to itself. Note that this slot is not inherited by the
children of a view; it applies only to the view within which
it exists.

Inheritance Links 3

These slots describe the template’s location in the inheritance chain, including
references to its proto, parent, and children. The following slots are not inherited
by children of the template.

_proto Contains a reference to a proto template. This slot is created
when the view opens.

C H A P T E R 3

Views

About Views 3-25

_parent Contains a reference to the parent template. This slot is
created when the view opens. Note that it’s best to use the
Parent function to access the parent view at run time, rather
than directly referencing the _parent slot.

stepChildren Contains an array that holds references to each of the
template’s child templates. This slot is created and set
automatically when you graphically create child views in
NTK. This slot is for children that you add to a template.

viewChildren Contains an array that holds references to each of a system
proto’s child templates. Because this slot is used by system
protos, you should never modify it or create a new one with
this name. If you do so, you may be inadvertently overriding
the children of a system proto. An exception to this rule
occurs for clEditView; you might want to edit the
viewChildren slot of a clEditView. See Table 2-1, “View
class constants,” (page 2-2) in Newton Programmer’s Guide
for details.

The reason for the dual child view slots is that the viewChildren slot is used by
the system protos to store their child templates. If you create a view derived from
one of the system protos and change the viewChildren slot (for example, to add
your own child templates programmatically), you would actually be creating a new
viewChildren slot that would override the one in the proto, and the child
templates of the proto would be ignored.

The stepChildren slot has been provided instead as a place for you to put your
child templates, if you need to do so from within a method. By adding your
templates to this slot, the viewChildren slot of the proto is not overridden. Both
groups of child views are created when the parent view is instantiated.

If you are only creating views graphically using the Newton Toolkit palette, you don’t
need to worry about these internal details. The Newton Toolkit always uses the
stepChildren slot for you.

You may see either viewChildren, stepChildren, or both slots when you
examine a template at run time in the Newton Toolkit Inspector window. Child
templates can be listed in either slot, or both. When a view is instantiated, all the
child views from both of these two slots are also created. Note that the templates in
the viewChildren slot are instantiated first, followed by the templates in the
stepChildren slot.

If you are adding child views in a method that will not be executed until run time,
you need to use the stepChildren slot to do this. If there isn’t a
stepChildren slot, create one and put your views there.

C H A P T E R 3

Views

3-26 About Views

IMPORTANT

Remember that the viewChildren and stepChildren arrays
contain templates, not views. If you try to send a message like
Hide to one of the objects listed in this array, the system will
probably throw an exception because it is not a view.

During run time, if you want to obtain references to the child
views of a particular view, you must use the ChildViewFrames
method. This method returns views from both the
viewChildren and stepChildren slots. This method is
described in “Getting References to Views” (page 3-32). ▲

Application-Defined Methods 3
As your application executes, it receives messages from the system that you can
choose to handle by providing methods that are named after the messages. These
messages give you a chance to perform your own processing as particular events
are occurring.

For example, with views, the system performs default initialization operations
when a view is instantiated. It also sends a view a ViewSetupFormScript
message. If you provide a method to handle this message, you can perform your
own initialization operations in the method. However, handling system messages in
your application is optional.

The system usually performs its own actions to handle each event for which it
sends your view messages. Your system message-handling methods do not override
these system actions. You cannot change, delete, or substitute for the default system
event-handling actions. Your system message-handling methods augment the
system actions.

For example, when the view system receives a Show command for a view, it
displays the view. It also sends the view the ViewShowScript message. If you
have provided a ViewShowScript method, you can perform any special
processing that you need to do when the view is displayed.

The system sends messages to your application at specific times during its handling
of an event. Some messages are sent before the system does anything to respond to
the event, and some are sent after the system has already performed its actions. The
timing is explained in each of the message descriptions in “Application–Defined
Methods” (page 2-65) in the Newton Programmer’s Reference.

View Instantiation 3
View instantiation refers to the act of creating a view from its template. The process
of view instantiation includes several steps and it is important to understand when
and in what order the steps occur.

C H A P T E R 3

Views

About Views 3-27

Declaring a View 3

Before diving into the discussion of view instantiation, it is important to understand
the term declaring. Declaring a view is something you do during the application
development process using the Newton Toolkit (NTK). Declaring a view allows it
to be accessed symbolically from another view.

In NTK, you declare a view using the Template Info command. (Although the
phrase “declaring a view” is being used here, at development time, you’re really
just dealing with the view template.) In the Template Info dialog, you declare a
view by checking the box entitled “Declare To,” and then choosing another view in
which to declare the selected view. The name you give your view must be a valid
symbol, and not a reserved word or the name of a system method.

You always declare a view in its parent or in some other view farther up the parent
chain. It’s best, for efficiency and speed, to declare a view in the lowest level
possible in the view hierarchy; that is, in its parent view or as close to it as possible.
If you declare a view in a view other than the parent view, it may get the wrong
parent view. Because the view’s parent is wrong, its coordinates will be wrong as
well, so it will show up at the wrong position on screen.

Declaring a view simply puts the declared view in the named slot. See Appendix A,
“The Inside Story on Declare,” for a complete description. The slot name is the
name of the view you are declaring. The slot value, at run time, will hold a
reference to the declared view.

The base view of your application is always declared in the system root view. Note
that the application base view is declared in a slot named with its application symbol,
specified in the Application Symbol field of the Project Settings slip in NTK.

Why would you want to declare a view? When a view is declared in another view,
it can be accessed symbolically from that other view. The NewtonScript inheritance
rules already allow access from a view to its parent view, but there is no direct
access from a parent view to its child views, or between child views of a common
parent. Declaring a view provides this access.

For example, if you have two child views of a common parent, and they need to
send messages to each other, you need to declare each of them in the common
parent view. Or, if a parent view needs to send messages to one of its child views,
the child view must be declared in the parent view.

One key situation requiring a declared view is when you want to send the Open
message to show a nonvisible view. The Open message can only be sent to a
declared view.

Declaring a view has a small amount of system overhead associated with it. This is
why the system doesn’t just automatically declare every view you create. You
should only declare views that you need to access from other views.

C H A P T E R 3

Views

3-28 About Views

For a more detailed technical description of the inner workings of declaring a view,
see Appendix A, “The Inside Story on Declare.”

Creating a View 3

A view is created in two stages. First, a view memory object (a frame) is created in
RAM. This view memory object contains a reference to its template, along with
other transient run-time information. In the following discussion, the phrase,
“creating the view” is used to describe just this part of the process. Second, the
graphic representation of the view is created and shown on the screen. In the
following discussion, the phrase, “showing the view” is used to describe just this
part of the process.

A view is created and shown at different times, depending on whether or not it is a
declared view.

■ If the view is declared in another open (shown) view, it is created when the view
in which it is declared is sent the Open message. For example, a child view
declared in the parent of its parent view is created when that “grandparent” view
is opened. Note, however, that the child view is not necessarily shown at the
same time it is created.

■ If the view is not declared in any view, it is created and also shown when its
immediate parent view is sent the Open message. (Note that if a nondeclared
view’s vVisible flag is not set, that view can never be created.)

Here is the view creation sequence for a typical application installed in the Newton
Extras Drawer and declared in the system root view:

1. When your application is installed on the Newton device, its base view is
automatically created, but not shown.

2. When the user taps on the icon representing your application in the Extras
Drawer, the system sends the ButtonToggleScript message to the
application’s base view.

3. When the application is launched from the Extras Drawer, a view is created (but
not shown yet) for each template declared in the base view. Slots with the names
of these views are created in the base view. These slots contain references to
their corresponding views.

4. The ViewSetupFormScript message is sent to the base view, viewFlags,
viewFormat, viewBounds, viewJustify, and declareSelf slots, and so
on, are read from the view template. The global bounds of the view are adjusted
to reflect the effects of the viewJustifyflags, but the viewBounds values
are not changed, and the ViewSetupChildrenScript message is sent to
the base view.

C H A P T E R 3

Views

About Views 3-29

5. The viewChildren and stepChildren slots are read and the child views
are instantiated using this same process. As part of the process, the following
messages are sent to each child view, in this order: ViewSetupFormScript,
ViewSetupChildrenScript, and ViewSetupDoneScript.

6. The ViewSetupDoneScript message is sent to the view.

7. The view is displayed if its vVisible viewFlags bit is set.

8. The ViewShowScript message is sent to the view and then the
ViewDrawScript message is sent to the view. (Note that the
ViewShowScript message is not sent to any child views, however.)

9. Each of the child views is drawn, in hierarchical order, and the
ViewDrawScript message is sent to each of these views, immediately
after it is drawn.

As you can see from step 5, when a view is opened, all child views in the hierarchy
under it are also shown (as long as they are flagged as visible). A nonvisible child
view can be subsequently shown by sending it the Open message—as long as it
has been declared.

Closing a View 3

When you send a view the Close message, the graphic representation of the view
(and of all of its child views) is destroyed, but the view memory object is not
necessarily destroyed. There are two possibilities:

■ If the view was declared, and the view in which it was declared is still open, the
frame is preserved. You can send the view another Open or Toggle message to
reopen it at a later time.

A view memory object is finally destroyed when the view in which it was
declared is closed. That is, when a view is closed, all views declared in it are
made available for garbage collection.

■ If the view being closed was not declared, both its graphic representation and its
view memory object are made available for garbage collection when it is closed.

When a view is closed, the following steps occur:

1. If the view is closing because it was directly sent the Close or Toggle
message, the system sends it the ViewHideScript message. (If the view
is closing because it is a child of a view being closed directly, the
ViewHideScript message is not sent to it.)

2. The graphic representation of the view is removed from the screen.

3. The view is sent the ViewQuitScript message.

The view itself may or may not be marked for garbage collection, depending on
whether or not it was declared.

C H A P T E R 3

Views

3-30 About Views

View Compatibility 3
The following new functionality has been added for the 2.0 release of Newton
System Software. See the Newton Programmer’s Reference for complete
descriptions on each new function and method.

New Drag and Drop API 3

A drag and drop API has been added. This API now lets users drag a view, or part
of a view, and drop it into another view. See “Dragging and Dropping with Views”
(page 3-40) for details.

New Functions and Methods 3

The following functions and methods have been added.

■ AsyncConfirm creates and displays a slip that the user must dismiss before
continuing.

■ ButtonToggleScript lets the application perform special handling when its
icon is tapped in the Extras Drawer.

■ DirtyBox marks a portion of a view (or views) as needing redrawing.

■ GetDrawBox returns the bounds of the area on the screen that needs redrawing.

■ GlobalOuterBox returns the rectangle, in global coordinates, of the specified
view, including any frame that is drawn around the view.

■ ModalConfirm creates and displays a slip.

■ MoveBehind moves a view behind another view, redrawing the screen as
appropriate.

■ StdButtonWidth returns the size that a button needs to be in order to fit some
specified text.

New Messages 3

The following messages have been added.

■ ReorientToScreen is sent to each child of the root view when the screen
orientation is changed.

■ ViewPostQuitScript is sent to a view following the ViewQuitScript
message and after all of the view’s child views have been destroyed.

C H A P T E R 3

Views

About Views 3-31

New Alignment Flags 3

The viewJustify slot contains new constants that allow you to specify that a
view is sized proportionally to its sibling or parent view, both horizontally and/or
vertically.

A change to the way existing viewJustify constants work is that when you are
using sibling-relative alignment, the first sibling uses the parent alignment settings
(since it has no sibling to which to justify itself).

Changes to Existing Functions and Methods 3

The following changes have been made to existing functions and methods for 2.0.

■ RemoveStepView. This function now removes the view template from the
stepChildren array of the parent view. You do not need to remove the
template yourself.

■ SetValue. You can now use this global function to change the recognition
behavior of a view at run time by setting new recognition flags in the
viewFlags slot. The new recognition behavior takes effect immediately
following the SetValue call.

■ GlobalBox. This method now works properly when called from the
ViewSetupFormScript method of a view. If called from the
ViewSetupFormScript method, GlobalBox gets the viewBounds and
ViewJustify slots from the view, calculates the effects of the sibling and
parent alignment on the view bounds, and then returns the resulting bounds
frame in global coordinates.

■ LocalBox. This method now works properly when called from
the ViewSetupFormScript method of a view. If called from the
ViewSetupFormScript method, LocalBox gets the viewBounds and
ViewJustify slots from the view, calculates the effects of the sibling and
parent alignment on the view bounds, and then returns the resulting bounds
frame in local coordinates.

■ ViewQuitScript. When this message is sent to a view, it propagates down to
child views of that view. In system software version 1.0, the order in which child
views received this message and were closed was undefined.

In system software version 2.0, the order in which this message is sent to
child views is top-down. Also, each view has the option of having
ViewPostQuitScript called in child-first order. The return value of
the ViewQuitScript method determines whether or not the
ViewPostQuitScript message is sent.

C H A P T E R 3

Views

3-32 Using Views

New Warning Messages 3

Warning messages are now printed to the inspector when a NewtonScript
application calls a view method in situations where the requested operation is
unwise, unnecessary, ambiguous, invalid, or just a bad idea.

Obsolete Functions and Methods 3

The following functions and methods are obsolete with version 2.0 of the Newton
System Software:

■ Confirm, which created and displayed an OK/Cancel slip. Use
AsyncConfirm instead.

■ DeferredConfirmedCall and DeferredConfirmedSend have both been
replaced by AsyncConfirm.

Using Views 3

This section describes how to use the view functions and methods to perform
specific tasks. See “Summary of Views” (page 3-47) for descriptions of the
functions and methods discussed in this section.

Getting References to Views 3
Frequently, when performing view operations, you need access to the child or
parent views of a view, or to the root view in the system. You need to use the
ChildViewFrames and Parent methods as well as the GetRoot and GetView
functions to return references to these “related” views.

To test whether an application is open or not, for example, you can use the
GetRoot function and the application’s signature, together with the global
function kViewIsOpenFunc:

call kViewIsOpenFunc with (GetRoot().appsignature)

The ChildViewFrames method is an important method you must use if you need
access to the child views of a view. It returns the views in the same order in which
they appear in the view hierarchy, from back to front. The most recently opened
views (which appear on top of the hierarchy) will appear later in the list. Views
with the vFloating flag (which always appear above nonfloating views) will be
at the end of the array.

C H A P T E R 3

Views

Using Views 3-33

Displaying, Hiding, and Redrawing Views 3
To display a view (and its visible child views), send it one of the following
view messages:

■ Open—to open the view

■ Toggle—to open or close the view

■ Show—to show the view if it had previously been opened, then hidden

■ To hide a view (and its child views), send it one of the following view messages:

■ Close—to hide and possibly delete it from memory

■ Toggle—to close or open the view

■ Hide—to hide it temporarily

You can cause a view (and its child views) to be redrawn by using one of the
following view messages or global functions:

■ Dirty—flags the view as “dirty” so it is redrawn during the next system
idle loop

■ RefreshViews—redraws all dirty views immediately

■ SetValue—sets the value of a slot and possibly dirties the view

■ SyncView—redraws the view if its bounds have changed

Dynamically Adding Views 3
Creating a view dynamically (that is, at run time) is a complex issue that has
multiple solutions. Depending on what you really need to do, you can use one of
the following solutions:

■ Don’t create the view dynamically because it’s easier to accomplish what you
want by creating an invisible view and opening it later.

■ Create the view by adding a new template to its parent view’s stepChildren
array in the ViewSetupChildrenScript method.

■ Create the template and the view at run time by using the AddStepView
function.

■ Create the template and the view at run time by using the BuildContext
function.

■ If you want a pop-up list view, called a picker, use the PopupMenu function to
create and manage the view.

These techniques are discussed in the following sections. The first four techniques
are listed in order from easiest to most complex (and error prone). You should use
the easiest solution that accomplishes what you want. The last technique, for
creating a picker view, should be used if you want that kind of view.

C H A P T E R 3

Views

3-34 Using Views

Showing a Hidden View 3

In many cases, you might think that you need to create a view dynamically. However,
if the template can be defined at compile time, it’s easier to do that and flag the
view as not visible. At the appropriate time, send it the Open message to show it.

The typical example of this is a slip, which you can usually define at compile time.
Using the Newton Toolkit (NTK), simply do not check the vVisible flag in the
viewFlags slot of the view template. This will keep the view hidden when the
application is opened.

Also, it is important to declare this view in your application base view. For
information on declaring a view, see the section “View Instantiation” (page 3-26).

When you need to display the view, send it the Open message using the name
under which you have declared it (for example, myView:Open()).

This solution even works in cases where some template slots cannot be set until run
time. You can dynamically set slot values during view instantiation in any of the
following view methods: ViewSetupFormScript,
ViewSetupChildrenScript, and ViewSetupDoneScript. You can also set
values in a declared view before sending it the Open message.

Adding to the stepChildren Array 3

If it is not possible to define the template for a view at compile time, the next best
solution is to create the template (either at compile time or run time) and add it to
the stepChildren array of the parent view using the
ViewSetupChildrenScript method. This way, the view system takes care of
creating the view at the appropriate time (when the child views are shown).

For example, if you want to dynamically create a child view, you first define the
view template as a frame. Then, in the ViewSetupChildrenScript method of
its parent view, you add this frame to the stepChildren array of the parent view.
To ensure that the stepChildren array is in RAM, use this code:

if not HasSlot(self, 'stepChildren) then
self.stepChildren := Clone(self.stepChildren);

AddArraySlot(self.stepChildren, myDynamicTemplate);

The if statement checks whether the stepChildren slot already exists in the
current view (in RAM). If it does not, it is copied out of the template (in ROM)
into RAM. Then the new template is appended to the array.

All of this takes place in the ViewSetupChildrenScript method of the parent
view, which is before the stepChildren array is read and the child views are
created.

C H A P T E R 3

Views

Using Views 3-35

If at some point after the child views have been created you want to modify the
contents of the stepChildren array and build new child views from it, you can
use the RedoChildren view method. First, make any changes you desire to the
stepChildren array, then send your view the RedoChildren message. All of
the view’s current children will be closed and removed. A new set of child views
will then be recreated from the stepChildren array.

Also, note that reordering the stepChildren array and then calling
RedoChildren or MoveBehind is the way to reorder the child views of a
view dynamically.

For details on an easy way to create a template dynamically, see “Creating
Templates” (page 3-36).

Using the AddStepView Function 3

If you need to create a template and add a view yourself at run time, use the
function AddStepView. This function takes two parameters: the parent view to
which you want to add a view, and the template for the view you want to create.
The function returns a reference to the view it creates. Be sure to save this return
value so you can access the view later.

The AddStepView function also adds the template to the parent’s
stepChildren array. This means that the stepChildren array needs to be
modifiable, or AddStepView will fail. See the code in the previous section for an
example of how to ensure that the stepChildren array is modifiable.

The AddStepView function doesn’t force a redraw when the view is created, so
you must take one of the following actions yourself:

■ Send the new view a Dirty message.

■ Send the new view’s parent view a Dirty message. This is useful if you’re
using AddStepView to create several views and you want to show them all at
the same time.

■ If you created the view template with the vVisible bit cleared, the new view
will remain hidden and you must send it the Show message to make it visible.
This technique is useful if you want the view to appear with an animation effect
(specified in the viewEffect slot in the template).

Do not use the AddStepView function in a ViewSetupFormScript method or
a ViewSetupChildrenScript method—it won’t work because that’s too early
in the view creation process of the parent for child views to be created. If you are
tempted to do this, you should instead use the second method of dynamic view
creation, in which you add your template to the stepChildren array and let the
view system create the view for you.

C H A P T E R 3

Views

3-36 Using Views

To remove a view created by AddStepView, use the RemoveStepView function.
This function takes two parameters: the parent view from which you want to
remove the child view, and the view (not its template) that you want to remove.

For details on an easy way to create a template dynamically, see “Creating
Templates” (page 3-36).

Using the BuildContext Function 3

Another function that is occasionally useful is BuildContext. It takes one
parameter, a template. It makes a view from the template and returns it. The view’s
parent is the root view. The template is not added to any viewChildren or
stepChildren array. Basically, you get a free-agent view.

Normally, you won’t need to use BuildContext. It’s useful when you need to
create a view from code that isn’t part of an application (that is, there’s no base
view to use as a parent). For instance, if your InstallScript or
RemoveScript needs to prompt the user with a slip, you use BuildContext to
create the slip.

BuildContext is also useful for creating a view, such as a slip, that is larger than
your application base view.

For details on an easy way to create a template dynamically, see the next section,
“Creating Templates”

Creating Templates 3

The three immediately preceding techniques require you to create templates. You
can do this using NewtonScript to define a frame, but then you have to remember
which slots to include and what kinds of values they can have. It’s easy to make
a mistake.

A simple way of creating a template is to make a user proto in NTK and then use it
as a template. That allows you to take advantage of the slot editors in NTK.

If there are slots whose values you can’t compute ahead of time, it doesn’t matter.
Leave them out of the user proto, and then at run time, create a frame with those
slots set properly and include a _proto slot pointing to the user proto. A typical
example might be needing to compute the bounds of a view at run time. If you
defined all the static slots in a user proto in the file called dynoTemplate, you
could create the template you need using code like this:

template := {viewBounds: RelBounds(x, y, width, height),
_proto: GetLayout("DynoTemplate"),
}

This really shows off the advantage of a prototype-based object system. You create
a small object “on the fly” and the system uses inheritance to get the rest of the

C H A P T E R 3

Views

Using Views 3-37

needed values. Your template is only a two-slot object in RAM. The user proto
resides in the package with the rest of your application. The conventional, RAM-
wasting alternative would have been:

template := Clone(PT_dynoTemplate);
template.viewBounds := RelBounds(x, y, width, height);

Note that for creating views arranged in a table, there is a function called
LayoutTable that calculates all the bounds. It returns an array of templates.

Making a Picker View 3

To create a transient pop-up list view, or picker, you can use the function
PopupMenu. This kind of view pops up on the screen and is a list from which the
user can make a choice by tapping it. As soon as the user chooses an item, the
picker view is closed.

You can also create a picker view by defining a template using the protoPicker
view proto. See “Pickers, Pop-up Views, and Overviews” (page 6-1) for
information on protoPicker and PopupMenu.

Changing the Values in viewFormat 3
You can change the values in the viewFormat slot of a view without closing and
reopening a view. Use the SetValue function to update the view with new
settings. For example:

SetValue(myView, ‘viewFormat, 337)
// 337 = vfFillWhite + vfFrameBlack+vfPen(1)

SetValue, among other things, calls Dirty if necessary, so you don’t need to
call it to do a task that the view system already knows about, such as changing
viewBounds or text slots in a view.

Determining Which View Item Is Selected 3
To determine which view item is selected in a view call GetHiliteOffsets.
You must call this function in combination with the HiliteOwner function.
When you call GetHiliteOffsets, it returns an array of arrays. Each item in
the outer array represents selected subviews, as in the following example:

x:= gethiliteoffsets()
#440CA69 [[{#4414991}, 0, 2],
 [{#4417B01}, 0, 5],
 [{#4418029}, 1, 3]}

C H A P T E R 3

Views

3-38 Using Views

Each of the three return values contains three elements:

■ Element 0: the subview that is highlighted. This subview is usually
a clParagraphView, but you need to check to make sure. A
clPolygonView is not returned here even if HiliteOwner returns a
clEditView when a clPolygonView child is highlighted.

■ Element 1: the start position of the text found in the text slot of a
clParagraphView.

■ Element 2: the end position of the text found in the text slot of a
clParagraphView.

To verify that your view is a clParagraphView, check the viewClass slot of
the view. The value returned (dynamically) sometimes has a high bit set so you
need to take it into consideration using a mask constant, vcClassMask:

theviews.viewClass=clParagraphView OR
theView.viewClass - vcClassMask=clParagraphView
BAnd(thViews.viewClass, BNot(vcClassMask))=clParagraphView

If a graphic is highlighted and HiliteOwner returns a clEditView, check its
view children for non-nil values of the 'hilites slot (the 'hilites slot is for
use in any view but its contents are private).

Complex View Effects 3
If you have an application that uses ViewQuitScript in numerous places, your
view may close immediately, but to the user the Newton may appear to be hung
during the long calculations. A way to avoid this is to have the view appear open
until the close completes.

You can accomplish this effect in one of two ways. First, put your code in
ViewHideScript instead of ViewCloseScript. Second, remove the view’s
ViewEffect and manually force the effect at the end of ViewQuitScript
using the Effect method.

Making Modal Views 3
A modal view is one that primarily restricts the user to interacting with that view.
All taps outside the modal view are ignored while the modal view is open.

In the interest of good user interface design, you should avoid using modal views
unless they are absolutely necessary. However, there are occasions when you may
need one.

C H A P T E R 3

Views

Using Views 3-39

Typically, modal views are used for slips. For example, if the user was going to
delete some data in your application, you might want to display a slip asking them
to confirm or cancel the operation. The slip would prevent them from going to
another operation until they provide an answer.

Use AsyncConfirm to create and display a slip that the user must dismiss before
continuing. The slip is created at a deferred time, so the call to AsyncConfirm
returns immediately, allowing the currently executing NewtonScript code to finish.
You can also use ModalConfirm but this method causes a separate OS task to be
created and doesn’t return until after the slip is closed. It is less efficient and takes
more system overhead.

Once you’ve created a modal view, you can use the FilterDialog or
ModalDialog to open it. Using FilterDialog is the preferred method as it
returns immediately. As with ModalConfirm, ModalDialog causes a separate
OS task to be created.

Finding the Bounds of Views 3
The following functions and view methods calculate and return a viewBounds
frame.

Run-time functions:

■ RelBounds— calculates the right and bottom values of a view and returns a
bounds frame.

■ SetBounds—returns a frame when the left, top, right, and bottom coordinates
are given.

■ GlobalBox—returns the rectangle, in coordinates, of a specified view.

■ GlobalOuterBox—returns the rectangle, in coordinates, of a specified view
including any frame that is drawn around a view.

■ LocalBox—returns a frame containing the view bounds relative to the view itself.

■ MoveBehind— moves a view behind another view.

■ DirtyBox— marks a portion of a view as needing redrawing.

■ GetDrawBox— returns the bounds of an area on the screen that needs redrawing.

Compile-time functions:

■ ButtonBounds—returns a frame when supplied with the width of a button to
be placed in the status bar.

■ PictBounds— finds the width and height of a picture and returns the proper
bounds frame.

C H A P T E R 3

Views

3-40 Using Views

Animating Views 3
There are four view methods that perform special animation effects on views. They
are summarized here:

■ Effect—performs any animation that can be specified in the viewEffect slot.

■ SlideEffect—slides a whole view or its contents up or down.

■ RevealEffect—slides part of a view up or down.

■ Delete—crumples a view and tosses it into a trash can.

Note that these animation methods only move bits around on the screen. They do
not change the actual bounds of a view, or do anything to a view that would change
its contents. When you use any of these methods, you are responsible for supplying
another method that actually changes the view bounds or contents. Your method is
called just before the animation occurs.

Dragging a View 3
Dragging a view means allowing the user to move the view by tapping on it,
holding the pen down, and dragging it to a new location on the screen. To drag a
view, send the view a Drag message.

Dragging and Dropping with Views 3
Dragging and dropping a view means allowing a user to drag an item and drop it
into another view.

To enable dragging and dropping capability, you must first create a frame that
contains slots that specify how the drop will behave. For example, you specify the
types of objects that can be dropped into a view, if any. Examples include 'text
or 'picture. See the dragInfo parameter to the DragAndDrop method
(page 2-46) in the Newton Programmer’s Reference for a complete description
of the slots.

You must set up code to handle a drag and drop in one of two ways: either add
code to create a frame and code to call DragAndDrop’s view method in each
source and destination view that accepts a drag and drop message, or you can
create a proto and use it as a template for each view.

Each view must also have the following methods. The system calls these methods
in the order listed.

■ ViewGetDropTypesScript— is sent to the destination view. It is called
repeatedly while the pen is down. ViewGetDropTypesScript is passed the
current location as the dragged item is moved from its source location to its
destination location. An array of object types is also returned. In this method,
you must return an array of object types that can be accepted by that location.

C H A P T E R 3

Views

Using Views 3-41

■ GetDropDataScript— is sent to the source view when the destination view
is found.

■ ViewDropScript— is sent to the destination view. You must add the object to
the destination view.

■ ViewDropMoveScript— is sent to the source view. It is used when dragging
an object within the same view. ViewDropRemoveScript and
ViewDropScript are not called in this case.

■ ViewDropRemoveScript — is sent to the source view. It is used when
dragging an object from one view to another. You must delete the original from
the source view when the drag completes.

Additional optional methods can also be added. If you do not include these, the
default behavior occurs.

■ ViewDrawDragDataScript — is sent to the source view. It draws the image
that will be dragged. If you don’t specify an image, the area inside the rectangle
specified by the DragAndDrop bounds parameter is used.

■ ViewDrawDragBackgroundScript— is sent to the source view. It draws
the image that will appear behind the dragged image.

■ ViewFindTargetScript— is sent to the destination view. It lets the
destination view change the drop point to a different view.

■ ViewDragFeedbackScript— is sent to the destination view. It provides
visual feedback while items are dragged.

■ ViewDropDoneScript— is sent to the destination view to tell it that the
object has been dropped.

Scrolling View Contents 3
There are different methods of scrolling a view, supported by view methods you
call to do the work. Both methods described here operate on the child views of the
view to which you send a scroll message.

One method is used to scroll all the children of a view any incremental amount in
any direction, within the parent view. Use the SetOrigin method to perform this
kind of scrolling. This method changes the view origin by setting the values of the
viewOriginX and viewOriginY slots in the view.

Another kind of scrolling is used for a situation in which there is a parent view
containing a number of child views positioned vertically, one below the other. The
SyncScroll method provides the ability to scroll the child views up or down the
height of one of the views. This is the kind of scrolling you see on the built-in
Notepad application.

C H A P T E R 3

Views

3-42 Using Views

In the latter kind of scrolling, the child views are moved within the parent view by
changing their view bounds. Newly visible views will be opened for the first time,
and views which have scrolled completely out-of-view will be closed. The
viewOriginX and viewOriginY slots are not used.

For information about techniques you can use to optimize scrolling so that it
happens as fast as possible, see “Scrolling” (page 3-46), and “Optimizing View
Performance” (page 3-44).

Redirecting Scrolling Messages 3
You can redirect scrolling messages from the base view to another view. Scrolling
and overview messages are sent to the frontmost view; this is the same view that is
returned if you call GetView('viewFrontMost).

The viewFrontMost view is found by looking recursively at views that have
both the vVisible and vApplication bits set in their viewFlags. This
means that you can set the vApplication bit in a descendant of your base view,
and as long as vApplication is set in all of the views in the parent chain for that
view, the scrolling messages will go directly to that view. The vApplication bit
is not just for base views, despite what the name might suggest.

If your situation is more complex, where the view that needs to be scrolled cannot
have vApplication set or is not a descendant of your base view, you can have the
base view’s scrolling scripts call the appropriate scripts in the view you wish scrolled.

Working With View Highlighting 3
A highlighted view is identified visually by being inverted. That is, black and white
are reversed.

To highlight or unhighlight a view, send the view the Hilite message.

To highlight or unhighlight a single view from a group, send the view the
HiliteUnique message. (The group is defined as all of the child views of one
parent view.)

To highlight a view when the current pen position is within it, send the view the
TrackHilite message. The view is unhighlighted when the pen moves outside
the view bounds. If the view is a button, you can send the view the TrackButton
message to accomplish the same task.

To get the view containing highlighted data, you can call the global function
HiliteOwner; to get the highlighted text use GetHiliteOffsets.

To highlight some or all of the text in a paragraph, you can use the SetHilite
method.

C H A P T E R 3

Views

Using Views 3-43

To determine if a given view is highlighted, check the vSelected bit in the
viewFlags. vSelected should not be set by your application, but you can test it
to see if a view is currently selected (that is, highlighted.) If
BAND(viewflags,vSelected) <> 0 is non-nil, the view is selected.

Creating View Dependencies 3
You can make one view dependent upon another by using the global function
TieViews. The dependent view is notified whenever the view it is dependent
on changes.

This dependency relationship is set up outside the normal inheritance hierarchy.
That is, the views don’t have to be related to each other in any particular way in the
hierarchy. The views must be able to access each other, and so need references to
each other. Declaring them to a common parent view is one way to accomplish this.

View Synchronization 3
View synchronization refers to the process of synchronizing the graphic representa-
tion of the view with its internal data description. You need to do this when you
add, delete, or modify the children of a view, in order to update the screen.

Typically you would add or remove elements from the stepChildren array of a
parent view, and then call one of the view synchronization functions to cause the
child views to be redrawn, created, or closed, as appropriate. Remember that if you
need to modify the stepChildren array of a view, the array must be copied into
RAM; you can’t modify the array in the view template, since that is usually stored
in ROM or in a package. To ensure that the stepChildren array is in RAM, use
this code:

if not HasSlot(self, 'stepChildren) then
self.stepChildren := Clone(self.stepChildren);

To redraw all the child views of a view, you can send two different messages to a
view: RedoChildren or SyncChildren. These work similarly, except that
RedoChildren closes and reopens all child views, while SyncChildren only
closes obsolete child views and opens new child views.

Laying Out Multiple Child Views 3
Two different methods are provided to help lay out a view that is a table or consists
of some other group of child views.

To lay out a view containing a table in which each cell is a child view, send the
view the message LayoutTable.

C H A P T E R 3

Views

3-44 Using Views

To lay out a view containing a vertical column of child views, send the view the
message LayoutColumn.

Optimizing View Performance 3
Drawing, updating, scrolling, and performing other view operations can account
for a significant amount of time used during the execution of your application.
Here are some techniques that can help speed up the view performance of your
application.

Using Drawing Functions 3

Use the drawing functions to draw lines, rectangles, polygons, and even text in a
single view, rather than creating these objects as several separate specialized views.
This technique increases drawing performance and reduces the system overhead
used for each view you create. The drawing functions are described in “Drawing
and Graphics” (page 13-1)

View Fill 3

Many views need no fill color, so you may be inclined to set the fill color to “none”
when you create such a view. However, it’s best to fill the view with white, if it
may be individually dirtied and you don’t need a transparent view. This increases
the performance of your application because when the system is redrawing the
screen, it doesn’t have to update views behind those filled with a solid color such as
white. However, don’t fill all views with white, since there is some small overhead
associated with fills; use this technique only if the view is one that is usually dirtied.

Redrawing Views 3

A view is flagged as dirty (needing redrawing) if you send it the Dirty message,
or as a result of some other operation, such as calling the SetValue function for a
view. All dirty views are redrawn the next time the system event loop executes.
Often this redrawing speed is sufficient since the system event loop usually
executes several times a second (unless a lengthy or slow method is executing).

However, sometimes you want to be able to redraw a view immediately. The fastest
way to update a single view immediately is to send it the Dirty message and then
call the global function RefreshViews. In most cases, only the view you dirtied
will be redrawn.

If you call RefreshViews and there are multiple dirty views, performance can be
significantly slower, depending on where the dirty views are on the screen and how
many other views are between them. In this case, what is redrawn is the rectangle
that is the union of all the dirty views (which might include many other nondirty

C H A P T E R 3

Views

Using Views 3-45

views). Also, if there are multiple dirty views that are in different view hierarchies,
their closest common ancestor view is redrawn, potentially causing many other
views to be redrawn needlessly.

If you want to dirty and redraw more than one view at a time, it may be faster to
send the Dirty message to the first view, then call RefreshViews, send the
Dirty message to the second view, then call RefreshViews, and so on, rather
than just calling RefreshViews once after all views are dirtied. The performance
is highly dependent on the number of views visible on the screen, the location of
the dirty views, and their positions in the view hierarchy, so it’s best to experiment
to find the solution that gives you the best performance.

Memory Usage 3

Each view that you create has a certain amount of system overhead associated with
it. This overhead exists in the form of frame objects allocated in a reserved area of
system memory called the NewtonScript heap. The amount of space that a frame
occupies is entirely dependent on the complexity and content of the view to which
it corresponds. As more and more views are created, more of the NewtonScript
heap is used, and overall system performance may begin to suffer as a result.

This is not usually an issue with relatively simple applications. However, complex
applications that have dozens of views open simultaneously may cause the system
to slow down. If your application fits this description, try to combine and eliminate
views wherever possible. Try to design your application so that it has as few views
as possible open at once. This can increase system performance.

You should also be aware of some important information regarding hidden and
closed views and the use of memory. This information applies to any view that is
hidden, it has been sent the Hide message, or to any declared view that is closed
but where the view it is declared in is still open. In these cases, the view memory
object for the view still exists, even though the view is not visible on the screen. If
the hidden or closed view contains large data objects, these objects continue to
occupy space in the NewtonScript heap.

You can reduce memory usage in the NewtonScript heap by setting to nil those
slots that contain large objects and that you don’t need when the view is hidden or
closed. You can do this in the ViewHideScript or ViewQuitScript methods,
and then reload these slots with data when the view is shown or opened again,
using the ViewShowScript or ViewSetupFormScript methods. Again, the
performance impact of these techniques is highly application-dependent and you
should experiment to see what works best.

Note that this information applies to the base view of your application, since it is
automatically declared in the system root view. As long as it is installed in the
Newton, slots that you set in the base view of your application will continue to
exist, even after the application is closed. If you store large data objects in the base

C H A P T E R 3

Views

3-46 Using Views

view of your application, you should set to nil those slots that aren’t needed when
the application is closed, since they are wasting space in the NewtonScript heap. It
is especially important to set to nil slots that reference soups and cursors, if they
are not needed, since they use relatively much space.

If your application is gathering data from the user that needs to be stored, store the
data in a soup, rather than in slots in one of the application views. Data stored in
soups is protected, while slots in views are transient and will be lost during a
system restart.

For information on declaring views, see “View Instantiation” (page 3-26). For
information on storing data in soups, see Chapter 11, “Data Storage and Retrieval.”

Scrolling 3

Scrolling the contents of a view can sometimes seem slow. Here are some techniques
you can use to improve the speed:

■ Scroll multiple lines at a time, rather than just a single line at a time, when the
user taps a scroll arrow.

■ In general, reduce the number of child views that need to be redrawn, if
possible. For example, make a list that is implemented as several paragraphs
(separate views) into a single paragraph.

■ Set the view fill to white. For more information, see “View Fill” (page 3-44).

C H A P T E R 3

Views

Summary of Views 3-47

Summary of Views 3

Constants 3
Class Constants

viewFlags Constants

Constant Value
clView 74

clPictureView 76

clEditView 77

clKeyboardView 79

clMonthView 80

clParagraphView 81

clPolygonView 82

clRemoteView 88

clPickView 91

clGaugeView 92

clOutline 105

Constant Value
vNoFlags 0

vVisible 1

vReadOnly 2

vApplication 4

vCalculateBounds 8

vClipping 32

vFloating 64

vWriteProtected 128

vClickable 512

vNoScripts 134217728

C H A P T E R 3

Views

3-48 Summary of Views

viewFormat Constants

Constant Value
vfNone 0

vfFillWhite 1

vfFillLtGray 2

vfFillGray 3

vfFillDkGray 4

vfFillBlack 5

vfFillCustom 14

vfFrameWhite 16

vfFrameLtGray 32

vfFrameGray 48

vfFrameDkGray 64

vfFrameBlack 80

vfFrameDragger 208

vfFrameCustom 224

vfFrameMatte 240

vfPen(pixels) pixels
256

vfLinesWhite 4096

vfLinesLtGray 8192

vfLinesGray 12288

vfLinesDkGray 16384

vfLinesBlack 20480

vfInset(pixels) pixels
65536

vfLinesCustom 57344

vfShadow(pixels) pixels
262144

vfRound(pixels) pixels
16777216

C H A P T E R 3

Views

Summary of Views 3-49

viewTransferMode Constants

viewEffect Constants

Constant Value
modeCopy 0

modeOr 1

modeXor 2

modeBic 3

modeNotCopy 4

modeNotOr 5

modeNotXor 6

modeNotBic 7

modeMask 8

Constant Bit Flag Integer Value
fxColumns(x) ((x-1) << fxColumnsShift) x-1

fxRows(x) ((x-1) << fxRowsShift) (x-1)*32

fxHStartPhase (1 << fxHStartPhaseShift) 1024

fxVStartPhase (1 << fxVStartPhaseShift) 2048

fxColAltHPhase (1 << fxColAltHPhaseShift) 4096

fxColAltVPhase (1 << fxColAltVPhaseShift) 8192

fxRowAltHPhase (1 << fxRowAltHPhaseShift) 16384

fxRowAltVPhase (1 << fxRowAltVPhaseShift) 32768

fxMoveH (1 << fxMoveHShift) 65536

fxRight fxMoveH 65536

fxLeft fxHStartPhase+fxMoveH 66560

fxUp fxVStartPhase+fxMoveV 133120

fxDown fxMoveV 131072

fxMoveV (1 << fxMoveVShift) 131072

fxVenetianBlindsEffect

fxRows(8)+fxDown 131296

fxDrawerEffect fxUp 133120

continued

C H A P T E R 3

Views

3-50 Summary of Views

fxCheckerboardEffect

fxColumns(8)+fxRows(8)+fxColAltVPhase+
fxRowAltHPhase+fxDown

155879

fxZoomVerticalEffect

fxColumns(1)+fxRows(2)+fxUp+
fxRowAltVPhase

165920

fxZoomCloseEffect

fxColumns(2)+fxRows(2)+fxUp+fxLeft 199713

fxZoomOpenEffect

fxColumns(2)+fxRows(2)+fxUp+fxLeft+
fxColAltHPhase+fxRowAltVPhase

236577

fxRevealLine (1 << fxRevealLineShift) 262144

fxPopDownEffect

fxDown+fxRevealLine 393216

fxWipe 1 << fxWipeShift) 524288

fxBarnDoorCloseEffect

fxColumns(2)+fxColAltHPhase+
fxRowAltVPhase+fxRight+fxWipe

626689

fxBarnDoorOpenEffect

fxColumns(2)+fxColAltHPhase+
fxRowAltVPhase+fxLeft+fxWipe

627713

fxIrisCloseEffect

fxColumns(2)+fxRows(2)+fxUp+fxLeft+
fxRevealLine+fxWipe

986145

fxIrisOpenEffect

fxColumns(2)+fxRows(2)+fxUp+fxLeft+
fxColAltHPhase+fxRowAltVPhase+
fxRevealLine+fxWipe

1023009

fxFromEdge (1 << fxFromEdgeShift) 1048576

fxSteps(x) ((num-1) << fxStepsShift) (x-1)*
2097152

fxStepTime(x) ((num) << fxStepTimeShift) x*33554432

Constant Bit Flag Integer Value

C H A P T E R 3

Views

Summary of Views 3-51

Functions and Methods 3
Getting References to Views
view:ChildViewFrames()
view:Parent()
GetRoot()
GetView(symbol)

Displaying, Hiding, and Redrawing Views
view:Open()
view:Close()
view:Toggle()
view:Show()
view:Hide()
view:Dirty()
RefreshViews()
SetValue(view, slotSymbol, value)
view:SyncView()
viewToMove:MoveBehind(view)

Dynamically Adding Views
AddStepView(parentView, childTemplate)
RemoveStepView(parentView, childView)
AddView(parentView, childTemplate)
BuildContext(template)

Making Modal Views
AsyncConfirm(confirmMessage, buttonList, fn)
ModalConfirm(confirmMessage, buttonList)
view:ModalDialog()
view:FilterDialog()

Setting the Bounds of Views
RelBounds(left, top, width, height)
SetBounds(left, top, right, bottom)
view:GlobalBox()
view:GlobalOuterBox()
view:LocalBox()
viewToMove:MoveBehind(view)
view:DirtyBox(boundsFrame)
view:GetDrawBox()
ButtonBounds(width)
PictBounds(name, left, top)

Animating Views
view:Effect(effect, offScreen, sound, methodName, methodParameters)
view:SlideEffect(contentOffset, viewOffset, sound, methodName,
 methodParameters)

C H A P T E R 3

Views

3-52 Summary of Views

view:RevealEffect(distance, bounds, sound, methodName,
 methodParameters)
view:Delete(methodName, methodParameters)

Dragging a View
view:Drag(unit, dragBounds)

Dragging and Dropping an Item
view:DragAndDrop(unit, bounds, limitBounds, copy, dragInfo)

Scrolling View Contents
view:SetOrigin(originX, originY)
view:SyncScroll(What, index, upDown)

Working With View Highlighting
view:Hilite(on)
view:HiliteUnique(on)
view:TrackHilite(unit)
view:TrackButton(unit)
HiliteOwner()
GetHiliteOffsets()
view:SetHilite(start, end, unique)

Creating View Dependencies
TieViews(mainView, dependentView, methodName)

Synchronizing Views
view:RedoChildren()
view:SyncChildren()

Laying Out Multiple Child Views
view:LayoutTable(tableDefinition, columnStart, rowStart)
view:LayoutColumn(childViews, index)

Miscellaneous View Operations
view:SetPopup()
GetViewFlags(template)
Visible(view)
ViewIsOpen(view) //platform file function

Application-Defined Methods
ViewSetupFormScript()
ViewSetupChildrenScript()
ViewSetupDoneScript()
ViewQuitScript()
ViewPostQuitScript()
ViewShowScript()
ViewHideScript()
ViewDrawScript()
ViewHiliteScript(on)
ViewScrollDownScript()

C H A P T E R 3

Views

Summary of Views 3-53

ViewScrollUpScript()
ViewOverviewScript()
ViewAddChildScript(child)
ViewChangedScript(slot, view)
ViewDropChildScript(child)
ViewIdleScript()
sourceView:ViewDrawDragDataScript(bounds)
sourceView:ViewDrawDragBackgroundScript(bounds, copy)
destView:ViewGetDropTypesScript(currentPoint)
src: ViewGetDropDataScript(dragType, dragRef)
destView:ViewDragFeedbackScript(dragInfo, currentPoint, show)
sourceView:ViewDropApproveScript(destView)
sourceView:ViewGetDropDataScript(dragType, dragRef)
destView:ViewDropScript(dropType, dropData, dropPt)
sourceView:ViewDropMoveScript(dragRef, offset, lastDragPt, copy)
destView:ViewFindTargetScript(dragInfo)
sourceView:ViewDropRemoveScript(dragRef)
destView:ViewDropDoneScript()

About the NewtApp Framework 4-1

C H A P T E R 4

NewtApp Applications 4Figure 4-0
Table 4-0

NewtApp is a collection of prototypes that work together in an application frame-
work. Using these protos you can quickly construct a full-featured application that
includes functionality like finding and filing.

Whether or not you have written an application for the Newton platform before,
you should read this chapter. If you’re new at writing Newton applications, you’ll
find that using NewtApp is the best way to start programming for the Newton
platform. If you’ve created Newton applications before, the process of putting
together a NewtApp application will be familiar, though you’ll find the time
required is significantly less.

Newton applications can be created with the NewtApp framework protos, which
are described in this chapter, or by constructing them from protos described in
almost every other chapter of this book. Chapter 2, “Getting Started,” gives you an
overview of the process.

Before reading this chapter you should be familiar with the concepts of views,
templates, protos, soups, and stores. However, you don’t need to know the details
of the interfaces to these objects before proceeding with NewtApp. Simply read the
first part of the appropriate chapters to get a good overview of the information. These
subjects are covered in Chapter 3, “Views,” Chapter 11, “Data Storage and Retrieval,”
Chapter 16, “Find,” Chapter 15, “Filing,” and Chapter 21, “Routing Interface.”

To work with the examples in this chapter, you should also be familiar with
Newton Toolkit (NTK) which is described in the Newton Toolkit User’s Guide.

About the NewtApp Framework 4

You can construct an entire application by using the protos in the NewtApp frame-
work, without recreating a lot of support code; that is, the code necessary for
providing date and text searching, filing, setting up and registering soups, flushing
entries, notifying the system of soup changes, formatting data for display, displaying
views, and handling write-protected cards. You set the values of a prescribed set of
slots, and the framework does the rest.

C H A P T E R 4

NewtApp Applications

4-2 About the NewtApp Framework

You can create most kinds of applications with the NewtApp framework. If your
application is similar to a data browser or editor, or if it implements an automated
form, you can save yourself a significant amount of time by using the NewtApp
framework.

If you’re creating a specialized application (for example, a calculator) or if you
need to display more than one soup at a time, you shouldn’t construct it with
NewtApp, but should use the protos described in other chapters of this book. These
chapters include Chapter 3, “Views,” Chapter 6, “Pickers, Pop-up Views, and
Overviews,” Chapter 7, “Controls and Other Protos,” Chapter 8, “Text and Ink
Input and Display,” Chapter 13, “Drawing and Graphics,” Chapter 16, “Find,” and
Chapter 15, “Filing.”

Some NewtApp protos work in nonframework applications. For example, you may
want to update an existing application to take advantage of the functionality
provided by the NewtApp slot view protos. Updating requires a bit of retrofitting,
but it can be done. See “Using Slot Views in Non-NewtApp Applications”
(page 4-22) for an example.

When you use the NewtApp framework protos, your user interface is updated as
the protos change with new system software releases, thereby staying consistent
with the latest system changes. In addition, the built-in code that manages system
services for these protos is also automatically updated and maintained as the
system software advances.

A NewtApp-based application can present many different views of your data. For
example, the Show button displays different views of information; the New button
creates new formats for data input.

NewtApp applications use a programming device known as stationery—a
collective term for data definitions (known as dataDefs) and view definitions
(known as viewDefs)—to enable this feature. You should use viewDefs to add
different views of your data and dataDefs to create different data formats. Stationery
is documented in Chapter 5; its use in a NewtApp application is demonstrated in
this chapter.

The NewtApp Protos 4
When you put the application protos together in a programming environment like
Newton Toolkit and set the values of slots, the framework takes care of the rest.
Your applications automatically take advantage of extensive system management
functionality with little additional work on your part. For example, to include your
application in system-wide date searches, just set a slot in the base view of your
application called dateFindSlot. (See “newtApplication” (page 3-8) in Newton
Programmer’s Reference.)

C H A P T E R 4

NewtApp Applications

About the NewtApp Framework 4-3

The parts of the NewtApp framework are designed to fit together using the
two-part NewtonScript inheritance scheme. Generally speaking, the framework is
constructed so the user interface components of your application (such as views
and buttons) use proto inheritance to make methods and application-state variables,
which are provided by NewtApp (and transparent to you), available to your
application. Parent inheritance implements slots that keep track of system details.

Because the NewtApp framework structure is dependent on both the parent and
proto structure of your application, it requires applications to be constructed in a
fairly predictable way. Children of certain NewtApp framework protos are required
to be particular protos; for example, the application base view must be a
newtApplication proto.

▲ W A R N I N G

When you override system service methods and functions be
careful to use the conditional message send operator (:?) to avoid
inadvertently overriding built-in functionality; otherwise, your
code will break.

There may also be alternate ways to construct a NewtApp
application, other than those recommended in this chapter and in
Chapter 5, “Stationery.” Be forewarned that applications using
alternate construction methods are not guaranteed to work in
the future. ▲

Figure 4-1 shows the four conceptual layers of NewtApp protos that you use to
construct an application: the application base view, the layout view, the entry view,
and the slot views.

Figure 4-1 The main protos in a NewtApp-based application

_proto: newtStatusBar

_proto: newtApplication
title: "MyApp",

_proto: newtLayout

_proto: newtEntryView

_proto: newtLabelInputLine
path: 'name.first,
label: "First",

_proto: newtLabelInputLine
path: 'name.last,
label: "Last",

Layout View

Base View

Entry View

Slot View

_proto: newtClockShowBar

C H A P T E R 4

NewtApp Applications

4-4 About the NewtApp Framework

Note
This drawing does not depict the protos as they would appear in a
Newton Toolkit layout window. ◆

The basic NewtApp protos are defined here in very general terms. Note that unlike
Figure 4-1, this list includes the proto for storing data, which does not have a visual
representation in a layout file.

■ The newtApplication proto is the application’s base view. As in
nonframework applications, the base view proto either contains or has
references to all the other application parts.

■ The newtSoup proto is used to create and manage the data storage soup for
your application; it is not displayed.

■ The newtLayout protos govern the overall look of your data.

■ The newtEntryView protos is the view associated with current soup entry and
is contained in the default layout view. A newtEntryView proto does not
display on the screen, but instead manages operations on a soup.

■ The slot views are a category of protos used to edit and/or display data from the
slots in your application’s soup entry frames.

About newtApplication 4

The newtApplication proto serves as the base view for your application; it
contains all other application protos. The allSoups slot of this proto is where you
set up the application soup (based on the newtSoup proto).

The functionality defined in this proto layer manages application-wide functions,
events, and globals. For example, the functionality for opening and registering
soups, dispatching events, and maintaining state information and application
globals is implemented in this proto layer.

Also managed by this proto layer are the application-wide user interface elements.

Application-wide Controls 4

Several control protos affect the entire application. Because of this, the protos are
generally placed in the newtApplication base view layer. The buttons include
the standard Information and Action buttons, as well as the New and Show
stationery buttons. Stationery buttons, which you can use to tie viewDefs and
dataDefs into your application, are defined in Chapter 5, “Stationery.” The
NewtApp controls that should be in the newtApplication base view include the
standard status bar, the folder tab, and the A-Z alphabet tabs.

C H A P T E R 4

NewtApp Applications

About the NewtApp Framework 4-5

About newtSoup 4

Application data is stored in persistent structures known as soups in any Newton
application. In a NewtApp application, soup definitions, written in the
newtApplication.allSoups slot, must be based on the newtSoup proto.

Within a soup, data is stored in frames known as entries. In turn, entries contain the
individual slots in which you store your application’s data. The data in these slots is
accessed by using a programming construct known as a cursor.

The newtSoup proto defines its own version of a set of the data storage objects
and methods. If you are not already familiar with these concepts and objects, you
should read the introductory parts of Chapter 11, “Data Storage and Retrieval,”
before trying to use the newtSoup proto.

The Layout Protos 4

Each NewtApp application must have two basic views of the application data,
known as layouts, which are:

■ an overview—seen when the Overview button is tapped

■ a default view—seen when the application is first opened

Three kinds of layouts correspond to three basic application styles:

■ the card (see newtLayout)

■ the continuous roll (see newtRollLayout)

■ the page (see newtPageLayout)

Card-based and roll-based applications differ in the number of entries each may
have visible at one time. The built-in Names application is a card-based application.
For this type of application, only one entry is displayed at a time. In contrast, the
built-in Notes application, which is a roll-based application, can have multiple
entries visible at once. They must be separated by a header, that incorporates Action
and Filing buttons to make it obvious to which entry a button action should apply.
Examples of card-based and a roll-based applications are shown in Figure 4-2.

C H A P T E R 4

NewtApp Applications

4-6 About the NewtApp Framework

Figure 4-2 A roll-based application (left) versus a card-based application

The page-based application is a hybrid of the card-based and roll-based applications.
Like the card-based application, the page-based application shows only one entry
at a time. However, unlike the card-based application but like the roll-based
application, an entry may be longer than a screen’s length. The built-in Calls
application, shown in Figure 4-3, is an example of a page-based application.

C H A P T E R 4

NewtApp Applications

About the NewtApp Framework 4-7

Figure 4-3 Calls is an example of a page-based application

The overview protos are also layouts; they include the newtOverLayout and
newtRollOverLayout protos.

The NewtApp framework code that governs soups, scrolling, and all the standard
view functionality, is implemented in the layout protos. A main (default) view
layout and an overview layout must be declared in the allLayouts slot of the
newtApplication base view. See “newtApplication” (page 3-8) in Newton
Programmer’s Reference for details.

Your layout can also control which buttons show on the status bar; you can set the
menuLeftButtons and menuRightButtons slots of the layout proto, along
with the statusBarSlot of the base view (newtApplication proto). This
control becomes important when more than one entry is shown on the screen, as in
a roll-style application. For example, when multiple entries are showing on one
screen, the Action and Filing buttons would not be on the status bar. Instead, they
would be on the header of each entry, so the entry on which to perform an action is
unambiguous.

C H A P T E R 4

NewtApp Applications

4-8 About the NewtApp Framework

The Entry View Protos 4

The entry view is the focal point for operations that happen on one soup entry
frame at a time. These include functions such as displaying and updating data
stored in the entry’s slots.

The NewtApp framework has three entry view protos: newtEntryView,
newtRollEntryView, and newtFalseEntryView. The newtEntryView
and newtRollEntryView protos are used within a NewtApp application, while
the newtFalseEntryView and newtRollEntryView protos allows you to use
the framework’s slot views in an application that is not based on the NewtApp
framework.

The entry view also contains the user interface components that perform operations
on one entry at a time. These components include the header bars, which are used
as divider bars to separate multiple entries displayed simultaneously. This behavior
happens in the Notes application. An example of the Notes application with multiple
entries and header bars is shown in Figure 4-4.

Figure 4-4 Multiple entries visible simultaneously

C H A P T E R 4

NewtApp Applications

About the NewtApp Framework 4-9

Note that the header bar contains the Action and Filing buttons on its right side.
These buttons appear on the header bar to prevent any ambiguity regarding the
entry to be acted upon by those buttons.

In addition, the header bar contains a Title and icon on the left. When the icon is
tapped, the Information slip appears, as shown in Figure 4-5. This slip is created
from a newtInfoBox proto and displays an informational string, which it obtains
from the description slot of the dataDef. See Chapter 5, “Stationery,” for more
information about dataDefs.

Figure 4-5 An Information slip

It is at the entry view level of your application that the specific slots for accessing
and displaying data in your application soup are set up. The target entry, which is
the entry to be acted on, is set in the entry view. The target view is then created by
the entry view; the view in which the data in that entry appears. Finally, the data
cursor is created by the entry view and is used to access the entries.

The entry view protos also contain important methods that act on individual
entries. These methods include functionality for managing and changing existing
data in the soup, such as the FlushData method.

About the Slot View Protos 4

The slot view protos retrieve, display, edit, and save changes to any type of data
stored in the slots of your application soup’s entry frame.

Unless they are contained by either a newtEntryView or a
newtFalseEntryView, the slot views do not work. This is because the
entry views are responsible for setting references to a specific entry. These
references are used by the slot view to display data.

Slot views exist in two varieties: simple slot views and labelled input-line slot
views. Both kinds of slot views are tailored to display and edit a particular kind of

C H A P T E R 4

NewtApp Applications

4-10 About the NewtApp Framework

data which they format appropriately. For example, the number views
(newtNumberView and newtRONumberView) format number data (according to
the value of a format slot you set).

The labelled input-line slot view protos provide you with a label, which you may
specify, for the input line. Additionally, the label may include a picker (pop-up menu).

These views also format a particular kind of data. To do this they use a special
NewtApp object known as a filter to specify a value for the flavor slot of the
labelled input-line slot views.

The filter object essentially acts as a translator between the target data frame (or
more typically, a slot in that frame) and the text field visible to the user. For
example, in the newtDateInputLine proto, a filter translates the time from a
time-in-minutes value to a string, which is displayed. The filter then translates the
string back to a time-in-minutes value, which is saved in the soup.

You can create custom filters by basing them on the proto newtFilter or on the
other filters documented in Table 3-1 (page 3-60) in the Newton Programmer’s
Reference. You can also create custom labelled input-line slot views. See the example
in “Creating a Custom Labelled Input-Line Slot View,” beginning on page 4-24.

You can have your label input-line protos remember a list of recent items. To do so,
all you need do is assign a symbol to the 'memory slot of your template. This
symbol must incorporate your developer signature. The system automatically
maintains the list of recent items for your input line. To use the list, you need to
use the same symbol with the AddMemoryItem, AddMemoryItemUnique,
GetMemoryItems, and GetMemorySlot functions, which are described in
Chapter 26, “Utility Functions.”

In addition, one special slot view, called the newtSmartNameView proto, allows
the user to choose a name from the soup belonging to the built-in Names application.
It adds the pop-up menu item, Other, to the picker; when the user chooses Other
from the newtSmartNameView proto, it displays the names in the Names
application soup in a system-provided people picker.

After you choose a name and close the view displaying the Names soup, that
name is displayed on the input line. The name is also put into the Picker menu.
A newtSmartNameView proto is shown in Figure 4-6.

C H A P T E R 4

NewtApp Applications

About the NewtApp Framework 4-11

Figure 4-6 The smart name view and system-provided people picker

Stationery 4
Stationery, an extension you can add to any NewtApp application, is tightly
integrated with the NewtApp framework.

Stationery consists of two components that work together: a data definition (dataDef)
and a view definition (viewDef). The dataDef provides a definition of the data to be
used in the stationery. It is registered in conjunction with its display component,
which is a viewDef.

These extensions are available to the user through the New and Show stationery
buttons in the NewtApp application. The names of the viewDefs are displayed in
the Show menu. The New button is used either to propagate the new entry defined
in the dataDef or to display the names of the dataDefs. For more detailed
information, see Chapter 5, “Stationery.”

NewtApp Compatibility 4
The NewtApp framework did not exist prior to version 2.0 of Newton system
software. Applications created with NewtApp protos will not run on previous
versions of the Newton system.

C H A P T E R 4

NewtApp Applications

4-12 Using NewtApp

Some NewtApp protos are usable in your non-NewtApp applications. For example,
there is a newtStatusBarNoClose proto, see page 3-29 in the Newton
Programmer’s Reference, that is unique to NewtApp, which may be used, without
special provision, in a non-NewtApp application.

Other NewtApp protos—specifically the slot views—can function only within a
simulated NewtApp environment. The mechanism for creating this setup is the
newtFalseEntryView proto, described on page 3-44 in the Newton
Programmer’s Reference.

The slot views, documented in “Slot View Protos” (page 3-49) in Newton
Programmer’s Reference, provide convenient display and data manipulation
functionality that you can use to your advantage in an existing application.

Using NewtApp 4

The protos in the NewtApp application framework can be used to

■ create an application that has one data soup and can be built as a data viewer
or editor

■ add functionality to non-NewtApp applications

■ create and incorporate stationery extensions

When you use the set of protos that make up the NewtApp application framework,
you can quickly create an application that takes full advantage of the Newton
system services.

In addition, many of the protos may be used in applications built without the
framework. In particular, the slot views, used to display data, have built-in
functionality you may wish to use.

The framework works best when used with stationery to present different views of
and formats for the application’s data. The sample application, described in the
following sections uses a single piece of stationery, which consists of a dataDef
with two viewDefs. Stationery is documented fully in Chapter 5, “Stationery.”

The sample application is built using the Newton Toolkit (NTK) development envi-
ronment. See Newton Toolkit User’s Guide for more information about using NTK.

Constructing a NewtApp Application 4
The sample “starter” application presented here shows how to get a NewtApp
application underway quickly. You may incorporate this sample code into your
applications without restriction. Although every reasonable effort has been made to
make sure the application is operable, the code is provided “as is.” The

C H A P T E R 4

NewtApp Applications

Using NewtApp 4-13

responsibility for its operation is 100% yours. If you are going to redistribute it,
you must make it clear in your source files that the code descended from
Apple-provided sample code and you have made changes.

The sample is an application for gathering data that supports the system services
routing, filing, and finding. It presents two views of the data to be collected: a
required default view; “IOU Info” (and an alternate “IOU Notes” view); and a
required overview. IOU Info and IOU Notes are stationery and appear as items in
the Show button’s picker. In addition, it shows how to implement the application in
the three styles of NewtApp applications: card, page, and roll. See the DTS sample
code for details.

The application starts with three basic NTK layout files:

■ The application base view—a newtApplication proto.

■ A default layout—one of the layout protos.

■ An overview layout—either the newtOverLayout or
newtRollOverLayout proto.

The application also contains the NTK layout files for the stationery, a dataDef,
and its two corresponding viewDefs:

■ iouDataDef

■ iouDefaultViewDef

■ iouNotesViewDef

The creation of these files is shown in Chapter 5, “Stationery.”

A NewtApp application must include standard InstallScript and
RemoveScript functions. Any icons must be included with a resource file; the
example uses CardStarter.rsrc. In the example, there is also a text file,
Definitions.f, in which application globals are defined. Neither the resource
file nor the text file is required.

The basic view slots, viewBounds, viewFlags, and viewJustify,
are discussed in Chapter 3, “Views,” and are called out in the samples only
when there is something unusual about them.

Using Application Globals 4

These samples use several application globals. When you use NTK as your
development system, they are defined in a definitions file, which we named
Definitions.f.

The values of the constants kSuperSymbol and kDataSymbol are set to the
application symbol. They are used to set slots that must have unique identifying
symbols. You are not required to use the application symbol for this purpose, but it
is a good idea, because the application symbol is known to be unique.

C H A P T E R 4

NewtApp Applications

4-14 Using NewtApp

One other global, unique to this application, is set. It is the constant kAppTitle,
set to the string "Card Starter".

Using newtApplication 4

This proto serves as the template for the application base view. This section shows
you how to use it to set up the

■ application base view

■ application soup

■ status bar; for layout-level control of the appearance and disappearance of
its buttons.

■ layout slots

■ stationery slots

Setting Up the Application Base View 4

The application base view template, newtApplication, should contain the basic
application element protos. When you use NTK to create the layout for the
newtApplication proto, you add to it a newtStatusBar proto (the status bar
at the bottom of the application) and a newtClockShowBar (the folder tab across
the top of the application).

Follow these steps to create the application base view:

1. Create a new layout and draw a newtApplication proto in it.

2. Place a newtStatusBar across the bottom of the layout.

3. Name the newtStatusBar proto status.

4. Place a newtClockShowBar proto across the top of the layout.

5. Save the layout file as baseView.t.

6. Name the layout frame baseView.

There are more than a dozen slots that need to be set in a newtApplication
proto. Several of the newtApplication slots can be set quickly. Set these slots
as follows:

■ Set the title slot to kAppTitle. Note that you must define this constant.

■ Set the appSymbol slot to kAppSymbol. This constant is automatically
defined by NTK.

■ Set the appObject slot to ["Item", "Items"].

■ Set the appAll slot to "All Items". Note that you’ll see this displayed on a
folder tab.

C H A P T E R 4

NewtApp Applications

Using NewtApp 4-15

■ Optional. Set the statusBarSlot to contain the declared name of the status
bar so layouts can use it to control the buttons displayed on it. Use the symbol
'status to set it.

If you wish to override a system message like ViewSetupFormScript, which is
called before a view is displayed on the screen, make sure to call the inherited
method at the end of your own ViewSetupFormScript method. Also, you may
wish to add a ReOrientToScreen method to the newtApplication base
view so your application can rotate to a landscape display. This message is sent to
each child of the root view when the screen orientation is changed. See
ReOrientToScreen (page 2-73) in Newton Programmer’s Reference for details.

Finally, be sure to add the layout file baseView.t to your project and mark it as
the application base view.

Tying Layouts Into the Main Application 4

The allLayouts slot in the newtApplication proto is a frame that contains
symbols for the application’s layout files. It must contain two slots, named
default and overview, that refer to the two layout files used for those
respective views.

The section “Using the Layout Protos,” beginning on page 4-16, shows how to use
the NewtApp layout protos to construct these files. Assume they are named Default
Layout and Overview Layout for the purpose of setting the references to them in
the allLayouts slot. The following code segment sets the allLayouts slot
appropriately:

allLayouts:= {
default: GetLayout("Default Layout"),
overview: GetLayout("Overview Layout"),
}

Setting Up the Application Soup 4

The newtApplication proto uses the values in its allSoups slot to set up and
register your soup with the system.

The framework also looks in the allSoups slot to get the appropriate
soup information for each layout. It does this by matching the value of
the layout’s masterSoupSlot to the name of a frame contained in the
newtApplication.allSoups slot. See the section “Using the Layout Protos,”
following this one.

This application contains only one soup, though a NewtApp application can
contain more than one. Each soup defined for a NewtApp application must be
based on the newtSoup proto. The slots soupName, soupIndices, and
soupQuery must be defined within the allSoups soup definition frame.

C H A P T E R 4

NewtApp Applications

4-16 Using NewtApp

Use code similar to the following example to set the allSoups slot:

allSoups:=
{ IOUSoup: {_proto: newtSoup,

soupName: "IOU:PIEDTS",
soupIndices: [

{structure: 'slot,
path: 'title,
type: 'string},

{structure: 'slot,
path: 'timeStamp,
type: 'int},

{ structure: 'slot,
path: 'labels,
type: 'tags }
],

soupQuery: {type: 'index, indexPath:
'timeStamp},

soupDescr: "The IOU soup.",
defaultDataType: '|BasicCard:sig|,}

}

Using the Layout Protos 4

Each NewtApp Application requires exactly two layouts: a default layout,
displayed when the application is opened, and an overview layout, displayed when
the Overview button is tapped.

The NewtApp framework layout proto you choose for your default view, sets up
your application as either a card-, roll-, or page-style application.

Unique slots in the layout protos include:

■ masterSoupSlot

■ forceNewEntry

The masterSoupSlot is the most important. It contains a reference to the
application soup in the newtApplication.allSoups slot, from which the
layout gets its data.

■ The forceNewEntry slot allows your application to deal gracefully with
the situation created when someone opens a folder that is empty. If the
forceNewEntry slot is set to true in that situation, an entry is automatically
created. Otherwise, an alert slip announces that there are no items in this list,

C H A P T E R 4

NewtApp Applications

Using NewtApp 4-17

where items is replaced by the value of the appObject slot set in the
newtApplication base view. An example of this message from the Names
application is shown in Figure 4-7.

Figure 4-7 The message resulting from a nil value for forceNewEntry

Using newtOverLayout 4

The slots you must set for an overview are shown in the Overview Layout browser
in Figure 4-8.

Figure 4-8 The overview slots

Follow these steps to create the required overview layout:

1. Open a new layout window and drag out a newtOverLayout proto.

2. Name it Overview Layout.

C H A P T E R 4

NewtApp Applications

4-18 Using NewtApp

3. Set the masterSoupSlot to the symbol 'IOUSoup. This correlates to the
name of the soup as it is set up in the newtApplication.allSoups slot.
See “Setting Up the Application Soup,” beginning on page 4-15.

4. Add the forceNewEntry slot. Leave it with the default value true.
This causes a new entry to be created if a user tries to open an empty folder.

5. Add a viewFormat slot and set the Fill value to White. This makes the data
it displays look better and keeps anything from inadvertently showing through.
In addition, the white fill improves the speed of the display and enhances view
performance.

6. Set the name slot to a string like “Overview”.

7. Add a centerTarget slot and set it to true. This assures that the entries are
centered for display in the Overview.

Controlling Menu Buttons From Layouts 4

Once the name of the status bar is declared to the application base view (in the
newtApplication.statusBarSlot), you may control the appearance and
disappearance of buttons on the status bar, from the layout view, as needed.

To do this, you must specify which buttons should appear on the status bar by
using the slots menuLeftButtons and menuRightButtons. Each of these is
an array that must contain the name of the button proto(s) that you wish to appear
on the menu bar’s left and right sides. When you use these arrays, the button protos
listed in them are automatically placed correctly on the status bar, according to the
current human interface guidelines.

To appropriately set up the appearance of the status bar for display in the Overview,
first add the optional slots menuLeftButtons and menuRightButtons. The
buttons you name in these slots replace the menu bar buttons from the main layout,
since the statusBarSlot is set there.

Set the menuLeftButtons slot to an array that includes the protos for the
Information and New buttons. These buttons are automatically laid out on the
status bar, going from left to right.

menuLeftButtons:=[
newtInfoButton,
newtNewStationeryButton,
]

Set the menuRightButtons slot to an array that includes the protos for the
Action and Filing buttons. These buttons are automatically laid out on the status
bar from right to left.

C H A P T E R 4

NewtApp Applications

Using NewtApp 4-19

menuRightButtons:=[
newtActionButton,
newtFilingButton,
]

Be sure to add the Overview Layout template file to your NTK Project window.

Creating the Default Layout 4

This is the view you see upon opening the application. Since it will eventually
contain views that display the data, it needs to know about the application soup.

The masterSoupSlot identifies the application soup to the layout proto. The
symbol in this slot must match the name of a soup declared in the allSoups slot
of the newtApplication base view, which was IOUSoup. In the layout it is
used as a symbol to set the value of the masterSoupSlot.

Follow these steps to create the required default layout:

1. Open a new layout window in NTK and drag out a newtLayout proto.

2. Name it default.

3. Set the masterSoupSlot to the symbol 'IOUSoup. This correlates to the
name of the soup as it is set up in the newtApplication.allSoups slot.
See “Setting Up the Application Soup,” beginning on page 4-15.

4. Add a forceNewEntry slot.Leave the default value true. This causes a new
entry to be created when a user tries to open an empty folder.

5. Set the viewFormat slot’s Fill value to White. This makes the data it displays
look better and keeps anything from inadvertently showing through. In addition,
the white fill improves the speed of the display and enhances view performance.

Be sure to add the default template file to your NTK Project window.

Using Entry Views 4

Entry views are used as containers for the slot views that display data from the
slots in the target entry of the application soup. They are also the containers for the
different header bars. Note that entry views are not necessary in the overview
layout, since the overview layout displays items as shapes.

The entry view sets values needed to locate the data to be displayed in the slot
views it will contain. These values include references to the data cursor (the
dataCursor slot), the soup entry that contains the stored data (the target slot),
and the view to display data (the targetView slot).

C H A P T E R 4

NewtApp Applications

4-20 Using NewtApp

Follow these steps to ready your application for the slot views:

1. Drag out a newtEntryView proto on top of the newtLayout proto.

2. Optional. Name it theEntry.

There are no unusual slots to set in an entry view. Therefore, you are ready to add
the header and slot view protos.

3. Drag out a newtEntryPageHeader across the top of the newtEntryView.

4. Under the header, drag out a newtStationeryView proto that covers the rest
of the entry view. This special view is not be visible; its function is to provide a
bounding box for the viewDef that will eventually be displayed.

The layout should look like the screen shot shown in Figure 4-9.

Figure 4-9 The information button and picker.

Registering DataDefs and ViewDefs 4

Several slots in the newtApplication base view enable you to identify the
stationery in your application. These slots include the allViewDefs,
allDataDefs, and superSymbol slots.

Note
To see how to create the stationery used as part of this application,
consult Chapter 5, “Stationery.” The allDataDefs and
allViewDefs slots, which are discussed here, contain
references to those dataDefs and viewDefs. ◆

The allDataDefs and allViewDefs slots are assigned references to the NTK
layout files containing your dataDefs and viewDefs. Once this is done, the
NewtApp framework automatically registers your stationery with the Newton
system registry when your application is installed on a Newton device.

Each allDataDefs and allViewDefs slot contains frames that are required to
contain slots with identical names, to indicate the dataDefs and viewDefs that work
together. (A dataDef must be registered with its set of viewDefs because dataDefs
use viewDefs to display their data.)

In the allDataDefs slot is a frame containing a reference to the NTK layout
template for a single dataDef. In the frame within the allViewDefs slot is the

C H A P T E R 4

NewtApp Applications

Using NewtApp 4-21

frame containing slots with references to all the viewDef layout templates that
work with that dataDef.

The recommended way to name the corresponding allDataDefs and
allViewDefs slots is to set the slot names to the data symbol constant,
as shown in the following code examples.

Set the allDataDefs slot to return a frame with references to all the application’s
dataDefs, as follows:

result := {};

result.(kDataSymbol) := GetLayout("IOUDataDef");
// result.(kData2Symbol) := ... to add a 2nd DataDef
result;

Set the allViewDefs slot to return a frame with references to all the application’s
viewDefs, in a parallel manner, as shown in the following code:

result := {};

result.(kDataSymbol) := {
default: GetLayout("IOUDefaultViewDef"),
notes: GetLayout("IOUNotesViewDef"),
iouPrintFormat: GetLayout("IOUPrintFormat"),
// Use for routing (beaming, mailing, transports):
frameFormat: {_proto: protoFrameFormat},

};
// Use to add a 2nd DataDef:
// result.(kData2Symbol) := {...}

result;

A NewtApp application only accepts stationery when a dataDef has a
superSymbol with a value matching the value of the newtApplication
base view’s superSymbol slot. For this reason you want the value of the
superSymbol slot to be a unique symbol. This sample application uses
the constant kSuperSymbol, which is set to the application symbol
'|IOU:PIEDTS|, to set the superSymbol slot.

Using the Required NewtApp Install and Remove Scripts 4

An InstallScript function and RemoveScript function are required to
register your NewtApp application with the system for the various system services.
These scripts are boilerplate functions you should copy unaltered.

C H A P T E R 4

NewtApp Applications

4-22 Using NewtApp

You should create a text file, which you save as Install&Remove.f, into which
to copy the functions:

InstallScript := func(partFrame)
begin

partFrame.removeFrame :=
(partFrame.theForm):NewtInstallScript(partFrame.theForm);

end;

RemoveScript := func(partFrame)
begin

(partFrame.removeFrame):NewtRemoveScript(removeFrame);
end;

This file should be the last one processed when your application is built. (In NTK
this means that it should appear at the bottom of the Project file list.)

If you have included the stationery files built in Chapter 5, “Stationery,” you may
now build, download, and run your NewtApp application.

Using Slot Views in Non-NewtApp Applications 4
The NewtApp slot view protos have a lot of functionality built into them which you
may want to use in a non-NewtApp application. You can do this by keeping your
existing application base view, removing the existing entry view layer and its
contents, replacing it with a newtFalseEntryView proto, and placing the slot
views in the newtFalseEntryView.

The following requirements must be satisfied for slot views to work outside a
NewtApp application:

■ The parent of the newtFalseEntryView must have the following slots:

n target

n targetView

■ The slot views must be contained in a newtFalseEntryView proto.

■ The newtFalseEntryView must receive a Retarget message whenever
entries are changed.

Modifying the Base View 4

This discussion assumes that you already have a base view set up as part of your
NTK project and that a newtFalseEntryView will be added to it later. If that is
the case, you already have slots set with specifications for a soup name, soup
indices, a soup query, and a soup cursor (among numerous others.)

C H A P T E R 4

NewtApp Applications

Using NewtApp 4-23

Certain slots must be added to these base view slots for your application to be able
to utilize the false entry view and the slot views. First, you must be sure to add a
target slot and targetView slot, so that the false entry view can set them when
an entry is changed. Second, you should include a method that sends the
Retarget message to the false entry view when an entry is changed. As an
example, you may wish to implement the following method, or one like it:

baseView.DoReTargeting := func()
theFalseEntryView:Retarget()

There are several places in your code where this message could be sent. For
instance, if your application scrolls through entries, you should send the
DoReTargeting message, defined above, to ViewScrollUpScript
and ViewScrollDownScript. Following is an example of a
ViewScrollUpScript method that scrolls through soup entries:

func()
begin

EntryChange(target);
cardSoupCursor:Prev();
:ResetTarget();
:DoRetargeting();

end

Other places where you may want to send the Retarget message include a
delete action method, a ViewSetupDoneScript method (which executes
immediately before a view is displayed or redisplayed), or even the
ButtonClickScript method of a button that generates new entries and
thus changes the soup and its display.

Using a False Entry View 4

The example used here, in which the newtFalseEntryView is implemented, is
a non-NewtApp application that supports the use of slot views. If you want to adopt
slot views into an existing application, you must use newtFalseEntryView.

Once you have an application base view set up, you may add the following slots to
your newtFalseEntryView:

■ Add a dataCursorSlot and set it to the symbol 'cardSoupCursor. This
symbol should match a slot defined in your application base view. The slot may
be omitted if your base application view’s cursor slot is set to the default name
dataCursor.

■ Add a dataSoupSlot and set it to the symbol 'cardSoup. This symbol
should match a slot defined in your application base view. The slot may be

C H A P T E R 4

NewtApp Applications

4-24 Using NewtApp

omitted if your base application view’s soup slot is set to the default name
dataSoup.

■ Add a soupQuerySlot and set it to the symbol 'cardSoupQuerySpec.
This symbol should match a slot defined in your application base view. The slot
may be omitted if your base application view’s soup query slot is set to the
default name soupQuery.

Finally, you should make sure to declare the newtFalseEntryView to the
application base view so the base view can send Retarget messages to the false
entry view when data is changed.

For more information about the newtFalseEntryView see the Newton
Programmer’s Reference.

Creating a Custom Labelled Input-Line Slot View 4
You may find situations in which you need to create a custom slot view to get one
that does exactly what your application requires. For example, the NewtApp
framework does not yet contain a slot view that can display a picture. This is
possible after you know more about how the slot views work.

In general, a slot view performs the following functions:

■ Target data; that is, updates a soup entry from its contents and vice versa.

■ Format data by using a filter.

■ Allow you to place (“jam”) the data from another soup entry in this slot view. Of
the built-in slot views, the newtSmartName proto does this.

All slot views assume a soup entry has been set by the parent view as the value of
the target slot. The target slot contains a reference to the soup entry. The soup
entry contains the slot with the data to be displayed in a given slot view and stores
the new data.

Slot views also require a path slot which refers to the specific slot within the
target entry. The path expression must lead to a slot that holds the correct
kind of data for a given slot view. For instance, the path slot of a
newtROTextDateView proto must refer to a slot in an entry that contain a
integer date.

In the label input-line slot view protos, formatting is accomplished by selecting the
correct NewtApp data filter as the value of the slot view’s flavor slot. Note that
some of the NewtApp data filters also specify a particular system picker which will
be available when you use the popup option for your slot view. See the DTS
sample code to see how to create a new newt proto.

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-25

Summary of the NewtApp Framework 4

Required Code 4

Required InstallScript 4

InstallScript := func(partFrame)
begin

partFrame.removeFrame := (partFrame.theForm):
NewtInstallScript(partFrame.theForm);

end;

Required RemoveScript 4

RemoveScript := func(partFrame)
begin

(partFrame.removeFrame):NewtRemoveScript(removeFrame);
end;

Protos 4

newtSoup 4

myNewtSoup := {
_proto: newtSoup, // NewtApp soup proto
soupName: "MyApp:SIG", // a string unique to your app.

soupIndices: [//soup particulars, may vary
{structure: 'slot, //describing a slot
path: 'title, // named “title” which
type: 'string}, //contains a string

...], // more descriptions may follow

soupQuery: { // a soup query
type: 'index,
indexPath:'timeStamp}, // slot to use as index

soupDescr:"The Widget soup."//string describing the soup
defaultDataType:'soupType , //type for your soup entry

C H A P T E R 4

NewtApp Applications

4-26 Summary of the NewtApp Framework

AddEntry: //Adds the entry to the specified store
func(entry, store) ...

AdoptEntry: // Adds entry to the application soup while
func(entry, type)... // preserving dataDef entry slots

CreateBlankEntry: // Returns a blank entry
func() ...

DeleteEntry: // Removes an entry from its soup
func(entry) ...

DuplicateEntry: // Clones and returns entry
func(entry) ...

DoneWithSoup: // Unregisters soup changes and soup
func(appSymbol) ...

FillNewSoup: // Called by MakeSoup to add soup
func() ...// values to a new soup

MakeSoup: // Used by the newtApplication proto
func(appSymbol)... // to return and register a new soup

GetCursor: // Returns the cursor
func() ...

SetupCursor: // Sets the cursor to an entry in the
func(querySpec) ... // master soup

Query: // Performs a query on a newtSoup
func(querySpec) ...

GetAlias: // Returns an entry alias.
func(entry)...

GetCursorPosition: // Returns an entry alias.
func() ...

GoToAlias: // Returns entry referenced by the alias.
func(alias)...

}

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-27

newtApplication 4

myNewtAppBaseView := {
_proto: newtapplication, // Application base view proto

appSymbol: '|IOU:DTS| //Unique application symbol
title: "Roll Starter" // A string naming the app
appObject: ["Ox", "Oxen"]// Array with singular and

// plural strings describing application’s data
appAll: "All Notes" // Displayed in folder tab picker

allSoups: { //Frame defining all known soups for app
mySoup: {

 _proto: newtSoup,
 ... }

}

allLayouts: {
// Frame with references to layout files;
// both default and overview required.

default:GetLayout("DefaultLayoutFile"),
 overview:GetLayout("OverviewLayoutFile"),

 }

scrollingEndBehavior:'beepAndWrap // How scrolling is
// handled at end of view; can also be 'wrap, 'stop, or
// 'beepAndStop.

scrollingUpBehavior: 'bottom //Either 'top or 'bottom

statusBarSlot: 'myStatusBar //Declare name to base so
//layouts may send messages

allDataDefs: {'|appName:SIG|:GetLayout("yourDataDef")}
//Frame with dataDef symbols as slot names. Slot
// values are references to dataDef layout files.

allViewDefs:
{'|appName:SIG|: {default:GetLayout("yourViewDef")}}

// Frame with dataDef symbols as slot names. Slot
// values are references to frames of viewDef
// layout files.

superSymbol: '|appName:SIG| //Unique symbol identifying
//superSet of application’s soups

doCardRouting:true or 'onlyCardRouting //Enables
// filing and routing

C H A P T E R 4

NewtApp Applications

4-28 Summary of the NewtApp Framework

dateFindSlot: pathExpression // Enables dateFind for your
// app. Path must lead to a slot containing a date.
routeScripts: //Contains default Delete and Duplicate

//route scripts.
labelsFilter: //Set dynamically for filing settings
layout: // Set to the current layout
newtAppBase: //Set dynamically to identify, for

//instance, view to be closed when close box tapped
retargetChain: // Dynamically set array of views

// to update.
targetView: // Dynamically set to the view where

// target soup entry is displayed
target: // Set to the soup entry to be displayed

AddEntryFromStationery: //Returns blank entry with class
func(stationerySymbol)....// slot set to stationerySymbol

AdoptEntryFromStationery: // Returns entry with all slots
func(adoptee, stationerySymbol, store)...// from adopted frame

//and class slot set to stationerySymbol

AdoptSoupEntryFromStationery: //Same as above plus
func(adoptee, stationerySymbol, store, soup)... // you specify

//soup & store

FolderChanged: //Changes folder tab to new value
func(soupName, oldFolder, newFolder)....

FilterChanged: //Updates folder labels for each soup
func() //in the allSoups frame.

ChainIn: //Adds views needing to be notified for
func(chainSymbol) //retargeting to chainSymbol array.

ChainOut: //Removes views from
func(chainSymbol) //chainSymbol array.

GetTarget: //Returns current soup entry.
func()

GetTargetView: //Returns view in which the
func() // target entry is displayed.

DateFind: // Default DateFind method defined in framework.
 // Set dateFindSlot in base view to enable it.

func(date, findType, results, scope, findContext)....

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-29

Find: // Default Find method as defined in framework.
func(text, results, scope, findContext)...

ShowLayout:// Switches display to specified layout.
func(layout)...

NewtDeleteScript:// Deletes entry.
func(entry, view)... // Referenced in routeScripts array

NewtDuplicateScript:// Duplicates entry.
func(entry, view)... // Referenced in routeScripts array

GetAppState:// Gets app preferences, sets app, & returns
func()... // prefs. Override to add own app prefs.

GetDefaultState:// Sets default app preferences.
func()... // Override to add own app prefs.

SaveAppState:// Sets default app preferences.
func()... // Override to add own app prefs.

newtInfoButton 4

infoButton := { // The standard “i” info button
_proto: newtInfoButton,// Place proto in menuLeftButtons
DoInfoHelp: //Opens online help book

func()...,
DoInfoAbout: //Either opens or closes an

func()..., // About view
DoInfoPrefs: //Either opens or closes a

func()...,} // Preferences view

newtActionButton 4

actionButton := { // the standard action button
_proto: newtActionButton } // place in menuRightButtons

newtFilingButton 4

filingButton := { // the standard filing button
_proto: newtFilingButton } // place in menuRightButtons

C H A P T E R 4

NewtApp Applications

4-30 Summary of the NewtApp Framework

newtAZTabs 4

myAZTab:= { // the standard A-Z tabs
_proto: newtAZTabs,
PickActionScript: //Default definition keys to

func(letter)...} // 'indexPath of allSoups soup query

newtFolderTab 4

myFolderTab:= { // the plain folder tab
_proto: newtFolderTab }

newtClockFolderTab 4

myClockFolderTab:= { // digital clock and folder tabs
_proto: newtClockFolderTab }

newtStatusBarNoClose 4

aStatusBarNoClose:= { // status bar with no close box
_proto: newtStatusBarNoClose,
menuLeftButtons: [], //array of button protos

// laid out left to right
menuRightButtons: [], // array of button protos laid out

// right to left

newtStatusBar 4

aStatusBar:= { // status bar with close box
_proto: newtStatusBar
menuLeftButtons: [], //array of button protos

// laid out left to right
menuRightButtons: [], // array of button protos laid out

// right to left }

newtFloatingBar 4

aFloatingBar:= { // status bar with close box
_proto: newtFloatingBar,
menuButtons: [], // array of button protos }

newtAboutView 4

anAboutView:= { // The about view
_proto: newtAboutView }

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-31

newtPrefsView 4

aPrefsView:= { // The preferences view
_proto: newtPrefsView }

newtLayout 4

aBasicLayout:= { // The basic layout view
_proto: newtLayout,

name: "", // Optional.
masterSoupSlot: 'mainSoup, // Required.

// Symbol referring to soup from allSoups slot
forceNewEntry: true, //Forces new entry when empty

//folder opened.
menuRightButtons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
dataSoup: 'soupSymbol,//Set to soup for this layout
dataCursor: ,// Set to top visible entry; main cursor

FlushData: //Flushes all children’s entries
func(),

NewTarget: //Utility resets origin and
func(), // resets screen

ReTarget: //Sets the dataCursor slot and resets
func(setViews),// screen if setViews is true

ScrollCursor: //Moves cursor delta entries and resets it.
func(delta),

SetUpCursor: //Sets cursor and returns entry.
func(),

Scroller: //Moves numAndDirection entries. Scrolls
func(numAndDirection)...,//up if numAndDirection <0.

ViewScrollDownScript: // Calls scroller with the
func()..., //value of 1.

ViewScrollUpScript: // Calls scroller with the
func()..., //value of -1.

DoRetarget(): // Calls the “right” retarget
func()...,

}

C H A P T E R 4

NewtApp Applications

4-32 Summary of the NewtApp Framework

newtRollLayout 4

myRollLayout:= { // Dynamically lays out child views
_proto: newtRollLayout, // using protoChild as default

protoChild: GetLayout("DefaultEntryView"), // Default view
name: "", // Optional.
masterSoupSlot: 'mainSoup, // Required.

// Symbol referring to soup from allSoups slot
forceNewEntry: true, //Forces new entry when empty

//folder opened.
menuRightButtons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
dataSoup: 'soupSymbol,//Set to soup for this layout
dataCursor: ,// Set to top visible entry; main cursor

// All newtLayout methods are inherited.
}

newtPageLayout 4

myPageLayout:= { // Dynamically lays out child views
_proto: newtPageLayout, // using protoChild as default

protoChild: GetLayout("DefaultEntryView"), // Default view
name: "", // Optional.
masterSoupSlot: 'mainSoup, // Required.

// Symbol referring to soup from allSoups slot
forceNewEntry: true, //Forces new entry when empty

//folder opened.
menuRightButtons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
dataSoup: 'soupSymbol,//Set to soup for this layout
dataCursor: ,// Set to top visible entry; main cursor

// All newtLayout methods are inherited.
}

newtOverLayout 4

myOverLayout:= { // Overview for page and card type layout
_proto: newtOverLayout

centerTarget: nil, // True centers entry in overview
masterSoupSlot: 'mainSoup, // Required.

// Symbol referring to soup from allSoups slot
name: "", // Required but not used.

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-33

forceNewEntry: true, //Creates blank entry for layout
menuRightButtons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
nothingCheckable: nil, //True suppresses checkboxes

Abstract: //Returns shapes for items in overviews
func(targetEntry, bbox)..., //Override to extract text

GetTargetInfo: //Returns frame with target information
func(targetType)...,

HitItem: //Called when overview item is tapped.
func(index, x, y)...,

// All newtLayout methods are inherited.
}

newtRollOverLayout 4

myOverLayout:= { // Overview for roll-type application
_proto: newtRollOverLayout //Same as newtOverLayout

centerTarget: nil, // True centers entry in overview
masterSoupSlot: 'mainSoup, // Required.

// Symbol referring to soup from allSoups slot
name: "", // Required but not used.
menuRightButtons:[], //Replaces slot in status bar
menuLeftButtons:[], //Replaces slot in status bar
forceNewEntry: true, //Creates blank entry for layout
nothingCheckable: nil, //True suppresses checkboxes

Abstract: //Returns shapes for items in overviews
func(targetEntry, bbox)..., //Override to extract text

GetTargetInfo: //Returns frame with target information
func(targetType)...,

HitItem: //Called when overview item is tapped.
func(index, x, y)...,

// All newtLayout methods are inherited.
}

newtEntryView 4

anEntryView:= { // Invisible container for slot views
_proto: newtEntryView

entryChanged: //Set to true for flushing
entryDirtied: //Set to true if flush occurred
target: //Set to entry for display
currentDataDef: //Set to current dataDef

C H A P T E R 4

NewtApp Applications

4-34 Summary of the NewtApp Framework

currentViewDef: //Set to current viewDef
currentStatView: //Set to current context of viewDef

StartFlush: // Starts timer that flushes entry
func()...,

EndFlush: // Called when flush timer fires
func()...,

EntryCool: // Is target read-only? True report
func(report)..., //displays write-protected message

JamFromEntry: // Finds children’s jamFromEntry and sends
func(otherEntry)..., // message if found, then retargets

Retarget: // Changes stationery’s display then sends
func()...,//message on to child views

DoRetarget: // Calls the “right” retarget
func()...,//

}

newtFalseEntryView 4

aFalseEntryView:= {// Use as container for slot views in
_proto: newtFalseEntryView, // non-NewtApp applications.

targetSlot: 'target, //Parent needs to have slots
dataCursorSlot: 'dataCursor, //with names
targetSlot: 'dataSoup, //that match each of
dataSoup: 'soupQuery // these symbols.

// newtFalseEntryView inherits all newtEntryView methods.
}

newtRollEntryView 4

aRollEntryView:= { // Entry view for paper roll-style apps
_proto: newtRollEntryView, //stationery required.

bottomlessHeight: kEntryViewHeight, //Optional
// Inherits slots and methods from newtEntryView.

}

newtEntryPageHeader 4

aPageHeader:= { // Header bar for card or page-style apps
_proto: newtEntryPageHeader,

// contains no additional slots or methods
}

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-35

newtEntryRollHeader 4

aRollHeader:= { // Header/divider bar for page or
// roll-style apps

_proto: newtEntryRollHeader,
hasFiling: true // Nil is no filing or action buttons
isResizable: true // Nil is no drag resizing

}

newtEntryViewActionButton 4

anEntryActionButton:= {// Action button to use on headers
// and within entry views

_proto: newtEntryViewActionButton
}

newtEntryViewFilingButton 4

anEntryFilingButton:= {// Filing button to use on headers
// and within entry views

_proto: newtEntryViewFilingButton
}

newtInfoBox 4

anInfoBox:= { // Floating view displayed when header
_proto: newtInfoBox, //icon tapped

icon: ,// Optional, default provided.
description: "",// Displayed in view next to icon.

}

newtROTextView 4

readOnlyTextView:= {// All simple slot views based on this
_proto: newtROTextView,

path: 'pathExpr,// Text stored and retrieved from here
styles: nil,// Plain text.
tabs: nil,// Tabs not enabled.
jamSlot: 'jamPathExpr,// New path for JamFromEntry.

TextScript: // Returns a text representation of data
func()..., //

JamFromEntry: // Retargets to jamPathExpr if not nil
func(jamPathExpr)..., //

}

C H A P T E R 4

NewtApp Applications

4-36 Summary of the NewtApp Framework

newtTextView 4

editableTextView:= {// This is the editable text view
_proto: newtTextView,

path: 'pathExpr,// Text stored/retrieved from here
styles: nil,// Plain text.
tabs: nil,// Tabs not enabled.
jamSlot: 'jamPathExpr,// New path for JamFromEntry.

TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

newtRONumView 4

readOnlyNumberView:= {// Read-only number view
_proto: newtRONumView,

path: 'pathExpr,// Numbers stored/retrieved from here
format: %.10g,// For 10-place decimal; you may change
integerOnly: true,// Text to num conversion is int

TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

newtNumView 4

editableNumberView:= {// Editable number view
_proto: newtNumView,

path: 'pathExpr,// Numbers stored/retrieved from here
format: %.10g,// For 10-place decimal; you may change
integerOnly: true,// Text to num conversion is int

TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

newtROTextDateView 4

readOnlyTextDateView:= {// Read-only text and date view. One
_proto: newtROTextDateView, //format slot must be non-nil

path: 'pathExpr,// Data stored/retrieved from here

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-37

longFormat: yearMonthDayStrSpec,// for LongDateStr
shortFormat: nil, // for ShortDateStr function

TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

newtTextDateView 4

editableTextDateView:= {// Editable text and date view. One
_proto: newtTextDateView, //format slot must be non-nil

path: 'pathExpr,// Data stored/retrieved from here
longFormat: yearMonthDayStrSpec,// for LongDateStr
shortFormat: nil, // for ShortDateStr function

TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

newtROTextTimeView 4

readOnlyTextTimeView:= {// Displays and formats time text
_proto: newtROTextTimeView,

path: 'pathExpr,// Data stored/retrieved from here
format: ShortTimeStrSpec,// for TimeStr function

TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

newtTextTimeView 4

editableTextTimeView:= {// Editable time text
_proto: newtTextTimeView,

path: 'pathExpr,// Data stored/retrieved from here
format: ShortTimeStrSpec,// for TimeStr function

TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

C H A P T E R 4

NewtApp Applications

4-38 Summary of the NewtApp Framework

newtROTextPhoneView 4

readOnlyTextPhoneView:= {// Displays phone numbers
_proto: newtROTextPhoneView,

path: 'pathExpr,// Data stored/retrieved from here
TextScript: // Returns a text representation of data
func()..., //
JamFromEntry: // Retargets to jamPathExpr if not nil

func(jamPathExpr)..., //
}

newtTextPhoneView 4

EditableTextPhoneView:= {// Displays editable phone numbers
_proto: newtTextPhoneView,

path: 'pathExpr,// Data stored/retrieved from here
TextScript: // Returns a text representation of data
func()..., //

JamFromEntry: // Retargets to jamPathExpr if not nil
func(jamPathExpr)..., //

}

newtAreaCodeLine 4

protonewtAreaCodeLine : = {
_proto: protonewtAreaCodeLine,

flavor: newtPhoneFilter

access: 'query

label: string //text to display in the highlight window
path: 'pathExpr,// Data stored/retrieved from here
}

newtAreaCodePhoneLine 4

protonewtAreaCodeLine : = {
_proto: protonewtAreaCodeLine,

flavor: newtPhoneFilter

access: 'query

label: string //text to display in the highlight window
path: 'pathExpr,// Data stored/retrieved from here
}

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-39

newtROEditView 4

readOnlyEditView:= { // A text display view, which
// may have scrollers

_proto: newtROEditView,
optionFlags: kNoOptions, // disables scroller

//kHasScrollersOption enables scroller
doCaret: true, //caret is autoset
viewLineSpacing: 28,
path: 'pathExpr,// Data stored/retrieved from here

ScrolltoWord: // Finds words, scrolls to it, and high-
func(words, hilite)..., // lights it (if hilite is true)

}

newteditView 4

editView:= { // A text edit view, which
// may have scrollers

_proto: newtEditView,
optionFlags: kNoOptions, // disables scroller

//kHasScrollersOption enables scroller
doCaret: true, //caret is autoset
viewLineSpacing: 28,
path: 'pathExpr,// Data stored/retrieved from here

ScrolltoWord: // Finds words, scrolls to it, and high-
func(words, hilite)..., // lights it (if hilite is true)

}

newtCheckBox 4

checkBoxView:= { // A checkbox
_proto: newtCheckBox

assert: true,// Data stored/retrieved from here
negate: nil,// Data stored/retrieved from here
path: 'pathExpr,// Data stored/retrieved from here

ViewSetupForm: // Is target.(path)= assert?
func()..., //

ValueChanged: // Changes target.(path) value to its
func()..., // opposite either true or false

}

C H A P T E R 4

NewtApp Applications

4-40 Summary of the NewtApp Framework

newtStationeryView 4

stationeryView:= { // Used as bounding box and container
// view for viewDef

_proto: newtStationeryView
}

newtEntryLockedIcon 4

entryLockedIcon:= { //Shows lock if slot is on locked media
_proto: newtEntryLockedIcon

icon: nil,// Can also be: lockedIcon
Retarget : // displays either lock or unlocked icon

func()...,
SetIcon: // Changes target.(path) value to its

func()..., // opposite either true or false
}

newtProtoLine 4

basicInputLine:= { // Base for input line protos
_proto: newtProtoLine,

label: "",// Text for input line label
labelCommands: ["", "",],// Picker options
curLabelCommand: 1,// Integer for current command
usePopup: true,// When true with labelCommands array

// picker is enabled
path: 'pathExpr,// Data stored/retrieved from here
access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtFilter,// Don’t change
memory: nil, // most recent picker choices

ChangePopup: // change picker items before they display
func(item, entry)..., //

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtLabelInputLine 4

aLabelInputLine:= { // Labelled input line for text
_proto: newtLabelInputLine,

label: "",// Text for input line label
labelCommands: ["", "",],// Picker options
curLabelCommand: integer,// Integer for current command

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-41

usePopup: true,// When true with labelCommands array
// picker is enabled

access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtTextFilter,//
memory: nil, // most recent picker choices
path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display
func(item, entry)..., //

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtROLabelInputLine 4

aLabelInputLine:= { // Labelled display line for text
_proto: newtROLabelInputLine,

label: "",// Text for input line label
flavor: newtTextFilter,//

memory: nil, // most recent picker choices
path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display
func(item, entry)..., //

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtLabelNumInputLine 4

aLabelNumberInputLine:= { // Labelled number input line
_proto: newtLabelNumInputLine,

label: "",// Text for input line label
labelCommands: ["", "",],// Picker options
curLabelCommand: integer,// Integer for current command
usePopup: true,// When true with labelCommands array

// picker is enabled
access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtNumberFilter,//
memory: nil, // most recent picker choices
path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display
func(item, entry)..., //

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

C H A P T E R 4

NewtApp Applications

4-42 Summary of the NewtApp Framework

newtROLabelNumInputLine 4

aDisplayLabelNumberInputLine:= {// Labelled number display line
_proto: newtROLabelNumInputLine,

label: "",// Text for input line label
flavor: newtNumberFilter,//
path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtLabelDateInputLine 4

editableLabelNumberInputLine:= {// Labelled date input line
_proto: newtLabelDateInputLine,

label: "",// Text for input line label
labelCommands: ["", "",],// Picker options
curLabelCommand: integer,// Integer for current command
memory: nil, // most recent picker choices
usePopup: true,// When true with labelCommands array

// picker is enabled
access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtDateFilter,//
path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display
func(item, entry)..., //

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtROLabelDateInputLine 4

displayLabelDateLine:= { // Labelled number display line
_proto: newtROLabelDateInputLine,

label: "",// Text for input line label
flavor: newtDateFilter,// Don’t change
path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtLabelSimpleDateInputLine 4

editableLabelSimpleDateLine:= {// Labelled date display line
// accepts dates like 9/15 or 9/15/95

C H A P T E R 4

NewtApp Applications

Summary of the NewtApp Framework 4-43

_proto: newtLabelSimpleDateInputLine,
label: "",// Text for input line label
access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtSimpleDateFilter,//
path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtNRLabelDateInputLine 4

pickerLabelDateInputLine:= { // Input through DatePopup picker
_proto: newtNRLabelDateInputLine,

label: "",// Text for input line label
access: 'pickOnly,// Could be 'readOnly
flavor: newtDateFilter,//
path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtROLabelTimeInputLine 4

displayLabelTimeLine:= { // Labelled time display line
_proto: newtROLabelTimeInputLine,

label: "",// Text for input line label
flavor: newtTimeFilter,// Don’t change
path: 'pathExpr,// Data stored/retrieved from here

}

newtLabelTimeInputLine 4

aLabelTimeInputLine:= { // Labelled time input line
_proto: newtLabelTimeInputLine,

label: "",// Text for input line label
labelCommands: ["", "",],// Picker options
curLabelCommand: integer,// Integer for current command
usePopup: true,// When true with labelCommands array

// picker is enabled
access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtTimeFilter,// Don’t change
memory: nil, // most recent picker choices
path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display
func(item, entry)..., //

C H A P T E R 4

NewtApp Applications

4-44 Summary of the NewtApp Framework

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtNRLabelTimeInputLine 4

pickerLabelTimeInputLine:= { // Input through TimePopup picker
_proto: newtNRLabelTimeInputLine,

label: "",// Text for input line label
access: 'pickOnly,// Could be 'readOnly
flavor: newtTimeFilter,// Don’t change
path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtLabelPhoneInputLine 4

aLabelPhoneInputLine:= { // Labelled phone input line
_proto: newtLabelPhoneInputLine,

label: "",// Text for input line label
usePopup: true,// When true with labelCommands array

// picker is enabled
access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtPhoneFilter,// Don’t change
memory: nil, // most recent picker choices
path: 'pathExpr,// Data stored/retrieved from here

ChangePopup: // change picker items before they display
func(item, entry)..., //

UpdateText: // Used with Undo to update text to new text
func(newText)..., //

}

newtSmartNameView 4

smartNameLine:= { // protoPeoplePicker Input
_proto: newtSmartNameView, // from Names soup

label: "",// Text for input line label
access: 'readWrite,// Could be 'readOnly or 'pickOnly
flavor: newtSmartNameFilter,// Don’t change
path: 'pathExpr,// Data stored/retrieved from here

UpdateText: // Used with Undo to update text to new text
func(newText)...,

}

About Stationery 5-1

C H A P T E R 5

Stationery 5Figure 5-0
Table 5-0

Stationery, which consists of new data formats and different views of your data,
may be built into an application or added as an extension. Once incorporated, these
data formats and views are available through the pickers (pop-up menus) of the
New and Show buttons.

Stationery works best when incorporated into a NewtApp application. It is part of the
NewtApp framework and is tightly integrated into its structures. If you are building
applications using the NewtApp framework, you’ll probably want to read this chapter.

Before you begin you should already be familiar with the concepts documented in
Chapter 4, “NewtApp Applications,” as well as the concepts of views and templates,
soups and stores, and system services like finding, filing, and routing. These subjects
are covered in Chapter 3, “Views,” Chapter 11, “Data Storage and Retrieval,”
Chapter 16, “Find,” Chapter 15, “Filing,” and Chapter 21, “Routing Interface.”

The examples in this chapter use the Newton Toolkit (NTK) development
environment. Therefore, you should also be familiar with NTK before you try the
examples. Consult Newton Toolkit User’s Guide for information about NTK.

This chapter describes:

■ how to create stationery and tie it into an application

■ how to create, register, and install an extension

■ the stationery protos, methods, and global functions

About Stationery 5

Stationery application extensions provide different ways of structuring data and
various ways to view that data. To add stationery to your application, you must
create a data definition, also called a dataDef, and an adjunct view definition, also
called a viewDef. Both of the stationery components are created as view templates,
though only the viewDef displays as a view at run time. Stationery always consists
of at least one dataDef which has one or more viewDefs associated with it.

C H A P T E R 5

Stationery

5-2 About Stationery

A dataDef is based on the newtStationery proto and is used to create
alternative data structures. The dataDef contains slots that define, describe, and
identify its data structures. It also contains a slot, called superSymbol, that
identifies the application into which its data entries are to be subsumed. It also
contains a name slot where the string that names the dataDef is placed. This is the
name that appears in the New picker. Note that each of the items shown in the New
menu of the Notes application in Figure 5-1 is a dataDef name.

The viewDef is based on any general view proto, depending upon the
characteristics you wish to impart, but must have a specified set of slots added to it.
(For more information about the slots required in viewDefs and dataDefs, see the
“Stationery Reference” chapter in Newton Programmer’s Reference.) The viewDef
is the view template you design as the input and display device for your data. It is
the component of stationery that imparts the “look and feel” for that part of the
application. Each dataDef must have at least one viewDef defined to display it,
though it can have several.

You may include or add stationery to any NewtApp application or any application
that already uses stationery. The stationery components you create appear as items
in the pickers (pop-up menus) of the New and Show buttons.

The Stationery Buttons 5
The stationery buttons are necessary to integrate stationery definitions with
an application. They must be in the application which is to display your
stationery components. They are defined as part of the NewtApp framework
and work only when included in a NewtApp application. (You can use the
newtStationeryPopupButton proto to create your own non-
NewtApp buttons.)

The New button offers new data formats generated from dataDefs. For example,
the New button in the built-in Calls application creates one new data entry form by
default; if it contained more dataDefs there would be a New picker available. The
New button of the built-in Notes application offers a picker whose choices create a
new Note, Checklist, or Outline format for entering notes. The example used in this
chapter extends the built-in Notes application by adding the dataDef item IOU to
the New menu, as shown in Figure 5-1.

C H A P T E R 5

Stationery

About Stationery 5-3

Figure 5-1 The IOU extension in the New picker

When you choose IOU from the New picker, an IOU entry is displayed, as shown
in Figure 5-2.

Figure 5-2 The IOU extension to the Notes application

The Show button offers different views for the display of application data. These
are generated by the viewDefs defined for an application. For example, the choices
in the Show button of the built-in Names application include a Card and All Info
view of the data. These views appear as shown in Figure 5-3.

C H A P T E R 5

Stationery

5-4 About Stationery

Figure 5-3 The Show menu presents different views of application data

Stationery Registration 5
Your stationery, which may be built as part of an application or outside of an
application (as an NTK auto part), must be registered with the system when an
application is installed and unregistered when an application is uninstalled.
DataDef and viewDef registry functions coordinate those stationery parts by
registering the viewDef with its dataDef symbol, as well as its view template. The
dataDef registry function adds its view templates to the system registry.

When it is part of a NewtApp application, stationery registration is done
automatically–after you set slots with the necessary symbols. If you create your
stationery outside of a NewtApp application, you must register (and unregister)
your stationery manually by using the global functions provided for that
purpose (RegDataDef, UnRegDataDef, RegisterViewDef, and
UnRegisterViewDef) in the InstallScript and RemoveScript functions
in your application part.

Once stationery is registered, applications can make use of those dataDefs whose
superSymbol slot matches the application’s superSymbol slot.

C H A P T E R 5

Stationery

Using Stationery 5-5

Getting Information about Stationery 5

By using the appropriate global function, you can get information about all the
dataDefs and viewDefs that have been registered and thus are part of the system
registry. These functions include GetDefs, GetDataDefs, GetAppDataDefs,
GetViewDefs, and so on. For details on these functions, see Newton
Programmer’s Reference.

You can also obtain application-specific stationery information. This enables
applications that are registered for stationery to be extended by other developers.

Compatibility Information 5
The stationery feature and programming interface is new in Newton OS version
2.0. It is not supported on earlier system versions.

Using Stationery 5

Stationery allows you to:

■ Create discrete data definitions and view definitions.

■ Extend your own and other applications.

■ Create print formats.

Designing Stationery 5
Whether you use stationery in an application or an auto part, it is important to keep
the data and view definitions as discrete as possible. Encapsulating them, by
keeping all references confined to the code in the data or view definition, will make
them maximally reusable.

You should keep in mind that these extensions may be used in any number of
future programming situations that you cannot foresee. If your stationery was
created for an application (which you may have written at the same time), resist
any and all urges to make references to structures contained in that application,
thereby “hard-wiring” it to depend on that application. In addition, you should
provide public interfaces to any values you want to share outside the dataDef.

If your stationery is designed for a NewtApp, the stationery soup entries, which are
defined in the dataDef component of stationery, are adopted into the soup of a
NewtApp application (via the AdoptEntry method) so that your stationery’s slots
are added to those already defined in the main application. This allows the
stationery and the host application to have discrete soup structures. See the
description of AdoptEntry (page 3-5) in Newton Programmer’s Reference.

C H A P T E R 5

Stationery

5-6 Using Stationery

The dataDef component of your stationery should use a FillNewEntry method
to define its own discrete soup entry structure. Note that it is your responsibility to
set a class slot within each entry. The value of the class slot must match the
dataDef symbol and is used by the system when routing the entry (via faxing,
mailing, beaming, printing, and so on). An example of how to use FillNewEntry
follows.

Using FillNewEntry 5

You use the FillNewEntry method in your dataDef to create an entry structure
that is tailored to your data. This approach is recommended when your stationery is
implemented as part of a NewtApp application.

The FillNewEntry method works in conjunction with the NewtApp
framework’s newtSoup.CreateBlankEntry method. The FillNewEntry
method takes a new entry, as returned by the CreateBlankEntry method, as a
parameter. This is done with a CreateBlankEntry implementation put in the
newtApplication.allSoups slot of your NewtApp application, as shown in
the following example:

CreateBlankEntry: func()
begin
local newEntry := Clone({class:nil,

viewStationery: nil,
title: nil,
timeStamp: nil,
height: 176});

newEntry.title := ShortDate(time());
newEntry.timeStamp := time();
newEntry;
end;

This new entry contains an entry template. In the following code example, that
new entry is passed as a parameter to the FillNewEntry method, which is
implemented in the stationery’s dataDef. FillNewEntry adds a slot named
kDataSymbol, which contains an entry template for the stationery’s data
definition. It then adds a class slot to the new entry, which is set to the same
constant (kDataSymbol). A viewStationery slot is then added and set to the
same constant (only needed for vestigial compatibility with the Notes application).
Finally, it adds a value to the dueDate slot of the kDataSymbol entry.

FillNewEntry: func(newEntry)
begin
newEntry.(kDataSymbol) :=

Clone({who: "A Name",
howMuch: 42,
dueDate: nil});

C H A P T E R 5

Stationery

Using Stationery 5-7

newEntry.class := kDataSymbol;
newEntry.viewStationery := kDataSymbol;
newEntry.(kDataSymbol).dueDate:=time();
newEntry;
end;

Extending the Notes Application 5
You may extend an existing application, such as the built-in Notes application, by
adding your own stationery. This is done by building and downloading an NTK
auto part that defines your stationery extensions.

The sample project used to illustrate many of the following sections consists of
these files, in the processing order shown:

■ ExtendNotes.rsrc

■ ExtendNotes Definitions.f

■ iouDataDef

■ iouDefaultViewDef

■ iouPrintFormat

■ ExtendNotes Install & Remove.f

Of these, the iouDataDef, iouDefaultViewDef, and ExtendNotes
Install & Remove.f files are used in the examples in this chapter. The
resource file (ExtendNotes.rsrc) contains the icon that is displayed next to the
dataDef name in the New menu (as shown in Figure 5-1). The definitions file
(ExtendNotes Definitions.f) is the file in which the constants, some of
which are used in examples, are defined. Finally, the iouPrintFormat file
defines a print format for the stationery.

Determining the SuperSymbol of the Host 5

Using stationery requires the presence of a matching superSymbol slot in both
the host application and the dataDef component of your stationery. The value in the
superSymbol slot is used to link a dataDef to an application.

If you do not know the value of the superSymbol slot for an application that is
installed on your Newton device, you may use the global function GetDefs to see
all the dataDefs that are registered by the system.

C H A P T E R 5

Stationery

5-8 Using Stationery

A call to the global function GetDefs in the NTK Inspector window returns a
series of frames describing dataDefs that have been registered with the system. An
excerpt of the output from a call made in the Inspector window follows.

GetDefs('dataDef,nil,nil)

#44150A9 [{_proto: {@451},
 symbol: paperroll,
 name: "Note",
 superSymbol: notes,
 description: "Note",
 icon: {@717},
 version: 1,
 metadata: NIL,
 MakeNewEntry: <function, 0 arg(s) #46938D>,
 StringExtract: <function, 2 arg(s) #4693AD>,
 textScript: <function, 2 arg(s) #4693CD>},
 {_proto: {@451},
 symbol: calllog,
 name: "Calls",
 superSymbol: callapp,
 description: "Phone Message",
 icon: {@718},
 version: 1,
 metadata: NIL,
 taskSlip: |PhoneHome:Newton|,
 MakeNewEntry: <function, 0 arg(s) #47F9A9>,
 StringExtract: <function, 2 arg(s) #47F969>,
 textScript: <function, 2 arg(s) #47F989>},
 ...]

GetDefs and other stationery functions are documented in Newton Programmer’s
Reference.

Creating a DataDef 5

You create a dataDef by basing it on a newtStationery proto. In NTK it is
created as a layout file, even though it is never displayed. The following steps lead
you through the creation of the dataDef that is used to extend the built-in Notes
application.

Note again that the data definition is adopted into an application’s soup only when
the application and dataDef have matching values in their superSymbol slots.
For instance, when you are building a dataDef as an extension to the Notes
application, as we are in this example, your dataDef must have 'notes as the
value of its superSymbol slot.

C H A P T E R 5

Stationery

Using Stationery 5-9

The following example uses the constant kSuperSymbol as the value of the
superSymbol slot. It is defined as follows in the Extend Notes
Definition.f file:

constant kSuperSymbol := 'notes;// Note's SuperSymbol

Once you have created an NTK layout, named the template iouDataDef, and
saved the file under the name iouDataDef, you may set the slots of the
iouDataDef as follows:

■ Set name to "IOU". This shows up in the New button’s picker.

■ Set superSymbol to the constant kSuperSymbol. This stationery can
only be used by an application that has a matching value in the
newtApplication base view’s superSymbol slot.

■ Set description to "An IOU entry". This string shows up in the
information box that appears when the user taps the icon on the left side of
the header, as shown in Figure 4-5 (page 4-9).

■ Set symbol to kDataSymbol.

■ Set version to 1. This is an arbitrary stationery version number set at your
discretion.

■ Remove the viewBounds slot; it’s not needed since this object is not a view.

There are a number of methods defined within the newtStationery proto that
you should override for your data type.

Defining DataDef Methods 5

The three methods MakeNewEntry, StringExtract, and TextScript are
illustrated in this section. You use the method MakeNewEntry to define the soup
entries for your dataDef; the method StringExtract is required by NewtApp
overview scripts to return text for display in the overview; and TextScript is
called by the routing interface to return a text description of your data.

The MakeNewEntry method returns a complete entry frame which will be added
to some (possibly unknown) application soup. You should use MakeNewEntry,
instead of the FillNewEntry method (which works in conjunction with the
NewtApp framework’s newtSoup.CreateBlankEntry), when your stationery
is being defined as an auto part.

The example of MakeNewEntry used here defines the constant
kEntryTemplate as a frame in which to define all the generic parts of the entry.

All the specific parts of the data definition are kept in a nested frame that has the
name of the data class symbol, kDataSymbol. By keeping the specific definitions
of your data grouped in a single nested frame and accessible by the class of the
data, you are assuring that your code will be reusable in other applications.

C H A P T E R 5

Stationery

5-10 Using Stationery

// Generic entry definition:
DefConst('kEntryTemplate, {

class: kDataSymbol,
viewStationery: kDataSymbol,// vestigial; for Notes

 // compatibility
title: nil,
timeStamp: nil,
height: 176, // For page and paper roll-type apps

// this should be the same as height
// slot in dataDef and viewDefHeight
// slot in viewDef (if present)

});

// This facilitates writing viewDefs that can be reused
kEntryTemplate.(kDataSymbol) := {

who: nil,
howMuch: 0,
dueDate: nil,

};

MakeNewEntry: func()
begin
local theNewEntry := DeepClone(kEntryTemplate);
theNewEntry.title := ShortDate(time());
theNewEntry.timeStamp := time();
theNewEntry.(kDataSymbol).dueDate := time();
theNewEntry;
end;

The StringExtract method is called when an overview is generated and is
expected to return a one or two-line description of the data. Here is an example of a
StringExtract implementation:

StringExtract: func(item,numLines)
begin
if numLines = 1 then

return item.title
else

return item.title&&item.(kDataSymbol).who;
end;

The TextScript method is called by the routing interface to get a text version of
an entire entry. It differs from StringExtract in that it returns the text of the
item, rather than a description.

C H A P T E R 5

Stationery

Using Stationery 5-11

Here is an example:

TextScript: func(item,target)
begin
item.text := "IOU\n" & target.(kDataSymbol).who

&& "owes me" &&
NumberStr(target.(kDataSymbol).howMuch);

item.text;
end;

Creating ViewDefs 5

ViewDefs may be based on any of the generic view protos. You could use, for
instance, a clView, which has very little functionality. Or, if you wanted a picture
to display behind your data, you could base your viewDef on a clPictureView.

Routing and printing formats are also implemented as viewDefs. You can learn
more about using special protos to create routing and printing formats in Chapter 21,
“Routing Interface.”

Note that these are just a few examples of views you may use as a base view in
your viewDef. Your viewDef will function as expected, so long as the required slots
are set and the resulting view template is registered, either in the allviewDefs
slot of the newtApplication base view or through the InstallScript
function of an auto part.

You may create the viewDef for the auto part that extends the Notes application by
using a clView as the base view. Create an NTK view template, named
iouDefaultViewDef, in which a clView fills the entire drawing area. Then
save the view template file (using the Save As menu item) as
iouDefaultViewDef.

You can now set the slots as follows:

■ Set the name slot to "IOU Info". This string appears in the Show button, if
there is one.

■ Set the symbol slot to 'default. At least one of the viewDefs associated with
a dataDef must have 'default as the value of its symbol slot.

■ Set the type slot to 'viewer. The three system-defined types for viewDefs are
'editor, 'viewer, and 'routeFormat. You may define others as you wish.

■ Set the viewDefHeight slot to 176 (of the four slot views that will be added
to this viewDef, each is 34 pixels high plus an 8-pixel separation between them
and an 8-pixel border at the bottom).

■ Set the viewBounds slot to 0, 0, 0, 0.

■ Set the viewJustify slot to horizontal parent full relative and vertical parent
full relative.

C H A P T E R 5

Stationery

5-12 Using Stationery

Add the protos that will display the data and labels to the working application. The
protos used here include:

■ newtSmartNameView

■ newtLabelNumInputLine

■ newtLabelDateInputLine

■ newtLabelTimeInputLine

You can read more about these protos in Chapter 4, “NewtApp Applications.” They
should be aligned as shown in Figure 5-4.

Figure 5-4 The default viewDef view template

Set the slots of the newtSmartNameView as follows:

■ Set the label slot to "Who".

■ Set the path slot to [pathExpr: kDataSymbol, 'who]. The path slot
must evaluate to a slot in your data entry frame that contains a name (or a place
to store one).

■ Set the usePopup slot to true.

C H A P T E R 5

Stationery

Using Stationery 5-13

Set the slots of the newtLabelNumInputLine as follows:

■ Set the label slot to "How Much".

■ Set the path slot to [pathExpr: kDataSymbol, 'howMuch]. This path
slot must evaluate to a slot in your data entry frame that contains a number (or a
place to store one).

Add a newtLabelDateInputLine at the top of the default template so that it
is aligned as shown. Then set the slots as follows:

■ Set the label slot to "Date Due".

■ Set the path slot to [pathExpr: kDataSymbol, 'dueDate]. This path
slot must evaluate to a slot in your data entry frame that contains a date (or a
place to store one).

Add a newtLabelTimeInputLine at the top of the default template so that it
is aligned as shown. Then set the slots as follows:

■ Set the label slot to "Due Time".

■ Set the path slot to [pathExpr: kDataSymbol, 'dueDate]. This path
must evaluate to a slot in your data entry frame that contains a time (or a place
to store one).

Registering Stationery for an Auto Part 5

When your stationery is implemented in an auto part, you are responsible for
registering and removing it. The following code samples show InstallScript
and RemoveScript functions that use the appropriate global functions to register
and unregister the viewDef and dataDef files in your auto part as it is installed and
removed, respectively. Note that the print format file is also registered as a viewDef
with the system.

InstallScript: func(partFrame,removeFrame)
begin
RegDataDef(kDataSymbol, GetLayout("iouDataDef"));
RegisterViewDef(GetLayout("iouDefaultViewDef"),

kDataSymbol);
RegisterViewDef(GetLayout("iouPrintFormat"),

kDataSymbol);
end;

RemoveScript: func(removeFrame)
begin
UnRegisterViewDef('default, kDataSymbol);
UnRegisterViewDef('iouPrintFormat, kDataSymbol);
UnRegDataDef(kDataSymbol);
end;

C H A P T E R 5

Stationery

5-14 Using Stationery

Using the MinimalBounds ViewDef Method 5
The MinimalBounds method must be used in a viewDef when the size of the
entry is dynamic, as it is in a paper-roll-style or page-style application. It’s not
necessary for a card-style application, which has a fixed height; in that case you
should set a static height for your viewDef in the viewDefHeight slot.

The MinimalBounds method is used to compute the minimal size for the
enclosing bounding box for the viewDef at run time. The following is an
example of a MinimalBounds implementation where the viewDef contains
a newtEditView whose path slot is set to
[pathExpr:kDataSymbol,'notes]:

MinimalBounds: func(entry)
begin
local result := {left: 0, top: 0, right: 0,

bottom: viewDefHeight};

// For an editView, make the bounds big enough to
// contain all the child views.
if entry.(kDataSymbol).notes then

foreach item in entry.(kDataSymbol).notes do
result := UnionRect(result, item.viewBounds);

result;
end;

C H A P T E R 5

Stationery

Stationery Summary 5-15

Stationery Summary 5

Data Structures 5

ViewDef Frame 5

myViewDef := {
_proto: anyGenericView,
type: 'editor, // could also be 'viewer or a custom type
symbol: 'default, // required; identifies the view
name: string, // required; name of viewDef
version: integer, // required; should match dataDef
viewDefHeight: integer, // required, except in card-style
MinimalBounds: // returns the minimal enclosing

func(entry)..., // bounding box for data
SetupForm: // called by ViewSetupFormScript;

func(entry, entryView)..., // use to massage data
}

Protos 5

newtStationery 5

myDataDef := { // use to build a dataDef
_proto: newtStationery,
description: string, , // describes dataDef entries
height: integer, // required, except in card-style; should

// match viewDefHeight
icon: resource, // optional; used in header & New menu
name: string, // required; appears in New button picker
symbol: kAppSymbol, // required unique symbol
superSymbol: aSymbol, // identifies “owning” application
version: integer, // required; should match viewDef’s version
FillNewEntry: // returns a modified entry

func(newEntry)...,
MakeNewEntry: // used if FillNewEntry does not exist

func()...,
StringExtract: // creates string description

func(entry, nLines)...,
TextScript: // extracts data as text for routing

func(fields, target)...,
}

C H A P T E R 5

Stationery

5-16 Stationery Summary

newtStationeryPopupButton 5

aStatPopup := { // used to construct New and Show buttons
_proto: newtStationeryPopupButton,
form: symbol, // 'viewDef or 'dataDef
symbols: nil, // gathers all or specify:[uniqueSym,…]
text: string, // text displayed in picker
types: [typeSym,…],// type slots of viewDefs
sorter: '|str<|,// sorted alphabetically by Sort function
shortCircuit: Boolean, // controls picker behavior
StatScript: // called when picker item chosen

func(stationeryItem)..., // define actions in this method
SetUpStatArray:// override to intercept picker items to

func()..., // be displayed
}

newtNewStationeryButton 5

aNewButton := { // the New button collects dataDefs
_proto: newtNewStationeryButton,
sorter: '|str<|,// sorted alphabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func(stationeryItem)..., // define actions in this method
SetUpStatArray:// override to intercept picker items to

func()..., // be displayed
}

newtShowStationeryButton 5

aShowButton := { // the Show button collects viewDefs
_proto: newtShowStationeryButton,
types: [typeSym,…],// can specify type slots of viewDefs
sorter: '|str<|,// sorted alphabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func(stationeryItem)..., // define actions in this method
SetUpStatArray:// override to intercept picker items to

func()..., // be displayed
}

C H A P T E R 5

Stationery

Stationery Summary 5-17

newtRollShowStationeryButton 5

aRollShowButton := { // the Show button in paper roll apps
_proto: newtRollShowStationeryButton,
types: [typeSym,…],// can specify type slots of viewDefs
sorter: '|str<|,// sorted alphabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func(stationeryItem)..., // define actions in this method
SetUpStatArray:// override to intercept picker items to

func()..., // be displayed
}

newtRollShowStationeryButton 5

anEntryShowButton := { // Show button in paperroll apps
_proto: newtEntryShowStationeryButton,
types: [typeSym,…],// can specify type slots of viewDefs
sorter: '|str<|,// sorted alphabetically by Sort function
shortCircuit: Boolean,// controls picker behavior
StatScript: // called when picker item chosen

func(stationeryItem)..., // define actions in this method
SetUpStatArray:// override to change entry displayed

func()..., // can display different view for each
}

Functions 5

RegDataDef(dataDefSym, newDefTemplate) // register dataDef
UnRegDataDef(dataDefSym) // unregister dataDef
RegisterViewDef(viewDef, dataDefSym)// register viewDef
UnRegisterViewDef(viewDefSym, dataDefSym)//unregister viewDef
GetDefs(form, symbols, types)// returns view or data defs array
GetDataDefs(dataDefSym)// returns dataDef
GetAppDataDefs(superSymbol)// returns an app’s dataDefs
GetEntryDataDef(soupEntry) // returns the entry’s dataDef
GetEntryDataView(soupEntry, viewDefSym)// returns the entry’s

// viewDef
GetViewDefs (dataDefSym) // returns viewDefs registered

// with the dataDef
GetDataView (dataDefSym, viewDefSym) // returns a specific

// viewDef of the dataDef

About Pickers and Pop-up Views 6-1

C H A P T E R 6

Pickers, Pop-up Views, and
Overviews 6

Figure 6-0
Table 6-0

This chapter describes how to use pickers and pop-up views to present information
and choices to the user. You should read this chapter if you are

■ creating your own pickers and pop-up views

■ taking advantage of built-in picker and pop-up protos

■ presenting outlines and overviews of data

Before reading this chapter, you should be familiar with the information in
Chapter 3, “Views.”

This chapter contains:

■ an overview of pickers and pop-up views

■ descriptions of the pickers and pop-up views used to perform specific tasks

■ a summary of picker and pop-up view reference information

About Pickers and Pop-up Views 6

A picker or pop-up view is a view that pops up and presents a list of items from
which the user can make selections. The view pops up in response to a user action
such as a pen tap.

The distinction between a picker and a pop-up view is not important and has not
been maintained in naming the protos, so the terms are used somewhat
interchangeably. In the discussion that follows, picker is used for both terms.

The simplest picker protos handle the triggering and closing of the picker; for these
protos, all you need to do is provide the items in the list. When the user taps a
button, a label, or a hot spot in a picture, the picker view opens automatically.
When the user makes a selection, the view closes automatically and sends a
message with the index of the chosen item. If the user taps outside the picker, the
view closes, with no selection having been made.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-2 About Pickers and Pop-up Views

More sophisticated picker protos allow multiple selections and use a close box to
dispatch the view.

With some picker protos, you must determine when and how the picker is displayed.
You open a picker view by sending the Open message to the view, or by calling the
PopupMenu function.

Your picker views can display

■ simple text

■ bitmaps

■ icons with strings

■ separator lines

■ two-dimensional grids

The most sophisticated picker protos let you access built-in system soups as well as
your own soups. Much of the behavior of these protos is provided by data
definitions that iterate through soup entries, display a list, allow the user to see and
modify the data, and add new entries to the soup.

Pickers and Pop-up View Compatibility 6
The 2.0 release of Newton system software contains a number of new picker protos
and a replacement for the DoPopup global function.

New Pickers and Pop-up Views 6

Two new picker protos, protoPopupButton and protoPopInPlace, define
text buttons that display pickers.

A new set of map pickers allows you to display various maps from which a user
can select a location and receive information about it. The map pickers include
the following:

■ protoCountryPicker

■ protoProvincePicker

■ protoStatePicker

■ protoWorldPicker

A set of new text pickers lets you display pop-up views that show text that the
user can change by tapping the string and entering a new string. The
protoDateTextPicker, for example, lets the user change a date. The text-
picker protos include the following:

■ protoTextPicker

■ protoDateTextPicker

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

About Pickers and Pop-up Views 6-3

■ protoDateDurationTextPicker

■ protoRepeatDateDurationTextPicker

■ protoDateNTimeTextPicker

■ protoTimeTextPicker

■ protoDurationTextPicker

■ protoTimeDeltaTimePicker

■ protoMapTextPicker

■ protoCountryTextPicker

■ protoUSstatesTextPicker

■ protoCitiesTextPicker

■ protoLongLatTextPicker

New date, time, and location pop-up views let the user specify new information in
a graphical view—changing the date on a calendar, for example. These protos
include the following:

■ protoDatePopup

■ protoDatePicker

■ protoDateNTimePopup

■ protoDateIntervalPopup

■ protoMultiDatePopup

■ protoYearPopup

■ protoTimePopup

■ protoAnalogTimePopup

■ protoTimeDeltaPopup

■ protoTimeIntervalPopup

A new number picker displays pickers from which a user can select a number. The
new number picker is

■ protoNumberPicker

A set of new overview protos allows you to create overviews of data; some of the
protos are designed to display data from the Names soup. The data picker protos
include the following:

■ protoOverview

■ protoSoupOverview

■ protoListPicker

■ protoPeoplePicker

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-4 General-Purpose Pickers

■ protoPeoplePopup

The following two protos are data types that support the protoListPicker:

■ protoNameRefDataDef

■ protoPeopleDataDef

Obsolete Function 6

The DoPopup global function used in system software version 1.x is obsolete; it is
supported in version 2.0, but support is not guaranteed in future releases. Use the
new PopupMenu function instead.

Picker Categories 6
The remainder of this chapter divides the pickers into a number of categories. The
protos within each category operate in a related manner. General-purpose protos
are used to create simple, general-purpose pickers and pop-up views. The remaining
protos in the list are triggered by specific user actions or by events that you define:

■ general-purpose pickers

■ map pickers

■ text pickers

■ date, time, and location pickers

■ number pickers

■ picture picker

■ overview protos

■ roll protos

There is also a section discussing the view classes used with pickers.

General-Purpose Pickers 6

You use the protos described in this section to create simple, general-purpose
pickers and pop-up views. Some of the following protos are triggered by specific
user actions, while others are triggered by events that you define:

■ The protoPopupButton picker is a text button that displays a picker when
tapped. The button is highlighted while the picker is open. For information
about the slots and methods for this picker, see “protoPopupButton” (page 5-4)
in Newton Programmer’s Reference. Figure 6-1 shows an example of a
protoPopupButton.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

General-Purpose Pickers 6-5

Figure 6-1 A protoPopupButton example

■ The protoPopInPlace picker is a text button that displays a picker when
tapped. When the user chooses an item from the picker, the text of the chosen
item appears in the button. For information about the slots and methods for this
picker, see “protoPopInPlace” (page 5-6) in Newton Programmer’s Reference.
Figure 6-2 shows an example of a protoPopInPlace.

Figure 6-2 A protoPopInPlace example

■ The protoLabelPicker is a label that displays a picker when tapped. The
currently selected item in the list is displayed next to the label. For information
about the slots and methods for this picker, see “protoLabelPicker” (page 5-8) in
Newton Programmer’s Reference. Figure 6-3 shows an example of a
protoLabelPicker.

Figure 6-3 A protoLabelPicker example

■ The protoPicker is a picker that displays anything from a simple text list to a
two-dimensional grid containing shapes and text. For information about the slots
and methods for this picker, see “protoPicker” (page 5-13) in Newton

Button After button is tapped, it is highlighted
and picker is shown to the right of it.

Button After item is chosen from
picker, it is shown in button

After button is tapped,
picker is shown on top of it.

Current choice
shown next to
label (optionally
includes icon, if
used in picker list)

Menu of choices
pops up

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-6 General-Purpose Pickers

Programmer’s Reference. Figure 6-4 shows the types of objects you can display
in a protoPicker.

Figure 6-4 A protoPicker example

■ The protoGeneralPopup is a pop-up view that has a close box. The view
cancels if the user taps outside it. This can use this proto to construct more
complex pickers. It is used, for example, as the basis for the duration
pickers. For information about the slots and methods for this proto, see
“protoGeneralPopup” (page 5-19) in Newton Programmer’s Reference.
Figure 6-5 shows an example of a protoGeneralPopup.

Figure 6-5 A protoGeneralPopup example

Simple string

Thin
separator line

Thick
separator line

Two-
dimensional grid

Bitmap
Icon with string

protoGeneralPopup view

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

General-Purpose Pickers 6-7

■ The protoTextList picker is a scrollable list of items. The user can scroll the
list by dragging or scrolling with the optional scroll arrows and can choose one
or more items in the list by tapping them. The scrollable list can include shapes
or text. For information about the slots and methods for this picker, see
“protoTextList” (page 5-20) in Newton Programmer’s Reference. Figure 6-6
shows an example of a protoTextList.

Figure 6-6 A protoTextList example

■ The protoTable picker is a simple one-column table of text. The user can tap
any item in the list to select it. For information about the slots and methods for
this picker, see “protoTable” (page 5-24) in Newton Programmer’s Reference.
Figure 6-7 shows an example of a protoTableList picker.

Figure 6-7 A protoTable example

You define the format of the table using a protoTableDef object; see
“protoTableDef” (page 5-27) in Newton Programmer’s Reference for
information. You define the format of each row using a protoTableEntry
object; see “protoTableEntry” (page 5-29) in Newton Programmer’s Reference
for information.

Using protoGeneralPopup 6
As with most protos, you create a protoGeneralPopup object by using the
NTK palette to draw one in your layout. After creating the object, you should
remove the context and cancelled slots. The viewBounds should be (0,
0, width, height) for the box. The New method tries to set the bounds
correctly, based on the recommended bounds passed to the call.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-8 Map Pickers

The protoGeneralPopup sends a pickCancelledScript to the
callbackContext specified in the New method. However, it does not send a
pickActionScript back; instead, it sends an Affirmative message to itself.
You supply the method and decide what call to make to the context and what
information to send back.

To put other objects in the protoGeneralPopup, just drag them out in NTK. For
example, if you want a checkbox in your pop-up view, drag out a
protoCheckbox. You can put anything in the pop-up view, including your
own protos.

Since you have to assemble the information to send on an affirmative, you will
likely end up declaring your content to the general pop-up.

The only slots you really need to set are Affirmative and viewBounds.

Affirmative is a function. Here’s an example:

func()
begin
// Notify the context that the user has accepted the
// changes made in the popup
if context then
 context:?pickActionScript(changeData) ;
end

Map Pickers 6

You can use the pickers described in this section to display maps and allow the user
to select countries, U.S. states, Canadian provinces, and cities. The Newton system
software provides the following map picker protos:

■ The protoCountryPicker displays a map of the world. When the user taps a
country, the PickWorld message is sent to your view. For information about
the slots and methods for this picker, see “protoCountryPicker” (page 5-30) in
Newton Programmer’s Reference. Figure 6-8 shows an example of a
protoCountryPicker.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Map Pickers 6-9

Figure 6-8 A protoCountryPicker example

■ The protoProvincePicker displays a map of North America. When
the user taps a province, the PickWorld message is sent to your view.
For information about the slots and methods for this picker, see
“protoProvincePicker” (page 5-31) in Newton Programmer’s Reference.
Figure 6-9 shows an example of a protoProvincePicker.

Figure 6-9 A protoProvincePicker example

■ The protoStatePicker displays a map of North America. When the user
taps a state, the PickWorld message is sent to your view. For information
about the slots and methods for this picker, see “protoStatePicker” (page 5-32)
in Newton Programmer’s Reference. Figure 6-10 shows an example of a
protoStatePicker.

Figure 6-10 A protoStatePicker example

■ The protoWorldPicker displays a map of the world. When the user taps a
continent, the PickWorld message is sent to your view. For information about

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-10 Text Pickers

the slots and methods for this picker, see “protoWorldPicker” (page 5-34) in
Newton Programmer’s Reference. Figure 6-11 shows an example of a
protoWorldPicker.

Figure 6-11 A protoWorldPicker example

Text Pickers 6

Text picker protos allow the user to specify various kinds of information by
picking text representations. Each of these protos displays a label picker with
a string that shows the currently selected data value. For example,
protoDurationTextPicker, which lets the user set a duration, might have a
label of “When” followed by a duration in the form “8:26 A.M. – 10:36 P.M.”

When the user taps a text picker, the picker displays a pop-up view in which the
user can enter new information. The Newton system software provides the
following text picker protos:

■ The protoTextPicker is a label picker with a text representation of an entry.
When the user taps the picker, a customized picker is displayed. For information
about the slots and methods for this picker, see “protoTextPicker” (page 5-35) in
Newton Programmer’s Reference. Figure 6-12 shows an example of a
protoTextPicker.

Figure 6-12 A protoTextPicker example

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Text Pickers 6-11

■ The protoDateTextPicker is a label picker with a text representation of a
date. When the user taps the picker, a protoDatePopup is displayed, which
allows the user to specify a different date. For information about the slots and
methods for this picker, see “protoDateTextPicker” (page 5-37) in Newton
Programmer’s Reference. Figure 6-13 shows an example of a
protoDateTextPicker.

Figure 6-13 A protoDateTextPicker example

■ The protoDateDurationTextPicker is a label picker with a text
representation of a range of dates. When the user taps the picker, a
protoDateIntervalPopup is displayed, which allows the user to
specify a different range. For information about the slots and methods for
this picker, see “protoDateDurationTextPicker” (page 5-40) in Newton
Programmer’s Reference. Figure 6-14 shows an example of a
protoDateDurationTextPicker.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-12 Text Pickers

Figure 6-14 A protoDateDurationTextPicker example

■ The protoRepeatDateDurationTextPicker is a label picker
with a text representation of a range of dates. When the user taps the
picker, a protoDateIntervalPopup is displayed, which allows the
user to specify a different range. This proto differs from the
protoDateDurationTextPicker in that the
protoRepeatDateDurationDatePicker presents choices that are
appropriate for the repeatType slot, and the duration displayed when the user
taps a duration or stop date is given in units of the repeatType. Otherwise, it
looks like the protoDateDurationTextPicker and popup shown in Appendix
Figure 6-14. For information about the slots and methods for this picker,
see “protoRepeatDateDurationTextPicker” (page 5-43) in Newton Programmer’s
Reference.

■ The protoDateNTimeTextPicker is a label picker with a text
representation of a date and time. When the user taps the picker, a
protoDateNTimePopup is displayed, which allows the user to specify a
different date and time. For information about the slots and methods for this
picker, see “protoDateNTimeTextPicker” (page 5-46) in Newton Programmer’s
Reference. Figure 6-15 shows an example of a
protoDateNTimeTextPicker.

Before tap After tap

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Text Pickers 6-13

Figure 6-15 A protoDateNTimeTextPicker example

■ The protoTimeTextPicker is a label picker with a text representation of a
time. When the user taps the picker, a protoTimePopup is displayed, which
allows the user to specify a different time. For information about the slots and
methods for this picker, see “A protoTimeTextPicker example”
(page 6-13) in Newton Programmer’s Reference. Figure 6-16 shows an example
of a protoTimeTextPicker.

Figure 6-16 A protoTimeTextPicker example

■ The protoDurationTextPicker is a label picker with a text representation
of a time range. When the user taps the picker, a protoTimeIntervalPopup
is displayed, which allows the user to specify a different time range. For
information about the slots and methods for this picker, see
“protoDurationTextPicker” (page 5-51) in Newton Programmer’s Reference.
Figure 6-17 shows an example of a protoDurationTextPicker.

Before tap

After tap

Before tap

After tap

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-14 Text Pickers

Figure 6-17 A protoDurationTextPicker example

■ The protoTimeDeltaTextPicker is a label picker with a text
representation of a time delta. When the user taps the picker, a
protoTimeDeltaPopup is displayed, which allows the user to specify a
different time delta. For information about the slots and methods for this picker,
see “protoTimeDeltaTextPicker” (page 5-53) in Newton Programmer’s
Reference. Figure 6-18 shows an example of a
protoTimeDeltaTextPicker.

Figure 6-18 A protoTimeDeltaTextPicker example

■ The protoMapTextPicker is a label picker with a text representation of a
country. When the user taps the picker, a popup displays that allows the user to
select a new country from an alphabetical list. For information about the slots
and methods for this picker, see “protoMapTextPicker” (page 5-54) in Newton
Programmer’s Reference. Figure 6-19 shows an example of a
protoMapTextPicker.

Before tap

After tap

Before tap

After tap

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Text Pickers 6-15

Figure 6-19 A protoMapTextPicker example

■ The protoCountryTextPicker is the same as protoMapTextPicker.

■ The protoUSstatesTextPicker is a label picker with a text representa-
tion of a U.S. state. When the user taps the picker, a popup displays that allows
the user to select a new state from an alphabetical list. For information about the
slots and methods for this picker, see “protoUSstatesTextPicker” (page 5-56) in
Newton Programmer’s Reference. Figure 6-20 shows an example of a
protoUSstatesTextPicker.

Figure 6-20 A protoUSstatesTextPicker example

Before tap

After tap

Before tap

After tap

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-16 Text Pickers

■ The protoCitiesTextPicker is a label picker with a text representation of
a city. When the user taps the picker, a popup displays that allows the user to
select a new city from an alphabetical list. For information about the slots and
methods for this picker, see “protoCitiesTextPicker” (page 5-58) in Newton
Programmer’s Reference. Figure 6-21 shows an example of a
protoCitiesTextPicker.

Figure 6-21 A protoCitiesTextPicker example

■ The protoLongLatTextPicker is a label picker with a text representation
of longitude and latitude values. When the user taps the picker, a
longLatPicker is displayed, which allows the user to select new longitude
and latitude values. For information about the slots and methods for this picker,
see “protoLongLatTextPicker” (page 5-61) in Newton Programmer’s Reference.
Figure 6-22 shows an example of a protoLongLatTextPicker.

Figure 6-22 A protoLongLatTextPicker example

Before tap

After tap

Before tap

After tap

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Date, Time, and Location Pop-up Views 6-17

Date, Time, and Location Pop-up Views 6

You can use the protos described in this section to present pop-up views to the user
for setting or choosing specific types of values. The Newton System Software
provides the following pop-up protos for date, time, and location values:

■ The protoDatePopup allows the user to choose a single date. For information
about the slots and methods for this proto, see “protoDatePopup” (page 5-63) in
Newton Programmer’s Reference. Figure 6-23 shows an example of a
protoDatePopup.

Figure 6-23 A protoDatePopup example

■ The protoDatePicker allows the user to choose a single date when the date
is likely to be relatively close to the current date. Changing the year is not easily
done with this proto. For information about the slots and methods for this proto,
see “protoDatePicker” (page 5-64) in Newton Programmer’s Reference.
Figure 6-24 shows an example of a protoDatePicker.

Figure 6-24 A protoDatePicker example

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-18 Date, Time, and Location Pop-up Views

■ The protoDateNTimePopup allows the user to choose a single date and time.
For information about the slots and methods for this proto, see
“protoDateNTimePopup” (page 5-67) in Newton Programmer’s Reference.
Figure 6-25 shows an example of a protoDateNTimePopup.

Figure 6-25 A protoDateNTimePopup example

■ The protoDateIntervalPopup allows the user to choose an interval of
dates by specifying the start and stop dates. For information about the slots and
methods for this proto, see “protoDateIntervalPopup” (page 5-69) in Newton
Programmer’s Reference. Figure 6-26 shows an example of a
protoDateIntervalPopup.

Figure 6-26 A protoDateIntervalPopup example

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Date, Time, and Location Pop-up Views 6-19

■ The protoMultiDatePopup allows the user to specify a range of dates. For
information about the slots and methods for this proto, see “protoMultiDatePopup”
(page 5-72) in Newton Programmer’s Reference. Figure 6-27 shows an example
of a protoMultiDatePopup.

Figure 6-27 A protoMultiDatePopup example

■ The protoYearPopup allows the user to choose a year. For information about
the slots and methods for this proto, see “protoYearPopup” (page 5-73) in
Newton Programmer’s Reference. Figure 6-28 shows an example of a
protoYearPopup.

Figure 6-28 A protoYearPopup example

■ The protoTimePopup allows the user to choose a time with a digital clock.
For information about the slots and methods for this proto, see
“protoTimePopup” (page 5-74) in Newton Programmer’s Reference.
Figure 6-29 shows an example of a protoTimePopup.

Figure 6-29 A protoTimePopup example

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-20 Date, Time, and Location Pop-up Views

■ The protoAnalogTimePopup allows the user to choose a time with an
analog clock. For information about the slots and methods for this proto, see
“protoAnalogTimePopup” (page 5-76) in Newton Programmer’s Reference.
Figure 6-30 shows an example of a protoAnalogTimePopup.

Figure 6-30 A protoAnalogTimePopup example

■ The protoTimeDeltaPopup allows the user to choose a time period (a delta).
For information about the slots and methods for this proto, see
“protoTimeDeltaPopup” (page 5-78) in Newton Programmer’s Reference.
Figure 6-31 shows an example of a protoTimeDeltaPopup.

Figure 6-31 A protoTimeDeltaPopup example

■ The protoTimeIntervalPopup allows the user to choose a time interval by
specifying the start and stop times. For information about the slots and methods
for this proto, see “protoTimeIntervalPopup” (page 5-79) in Newton
Programmer’s Reference. Figure 6-32 shows an example of a
protoTimeIntervalPopup.

Figure 6-32 A protoTimeIntervalPopup example

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Number Pickers 6-21

Number Pickers 6

This section describes the protos available to allow users to pick numbers. The
Newton system software provides the following protos for picking numbers:

■ The protoNumberPicker displays a picker from which the user can select a
number. For information about the slots and methods for this picker, see
“protoNumberPicker” (page 5-81) in Newton Programmer’s Reference.
Figure 6-33 shows an example of a protoNumberPicker.

Figure 6-33 A protoNumberPicker example

Picture Picker 6

This section describes the proto you can use to create a picture as a picker.

■ The protoPictIndexer picker displays a horizontal array of pictures, from
which the user can choose. For information about the slots and methods for this
picker, see “protoPictIndexer” (page 5-82) in Newton Programmer’s Reference.
Figure 6-34 shows an example of a protoPictIndexer.

Figure 6-34 A protoPictIndexer example

protoPictIndexer view

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-22 Overview Protos

Overview Protos 6

You can use the protos described in this section to create overviews of data. An over-
view allows the user to see all of data in a soup or an array scrolling list. The user
can select individual items and open them to see the detail. Overview protos include:

■ The protoOverview provides a framework for displaying an overview of the
data in your application. Each overview item occupies one line, and the user can
scroll the list and pick individual or multiple items. “Using protoOverview”
(page 6-24) has information on using this proto. For further information about
the slots and methods of protoOverview, see “protoOverview” (page 5-85) in
Newton Programmer’s Reference. Figure 6-35 shows an example of a
protoOverview.

Figure 6-35 A protoOverview example

■ The protoSoupOverview provides a framework for displaying an overview
of soup entries in your application. For information about the slots and methods
for this proto, see “protoSoupOverview” (page 5-90) in Newton Programmer’s
Reference. Figure 6-36 shows an example of a protoSoupOverview.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Overview Protos 6-23

Figure 6-36 A protoSoupOverview example

■ The protoListPicker provides a scrollable list of items. Items can be from a
soup, an array, or both. The user can select any number of items in the list. For
information about the slots and methods for this proto, see “protoListPicker”
(page 5-93) in Newton Programmer’s Reference. “Using protoListPicker”
(page 6-26) has a more extensive example and discusses how to use this proto.
Figure 6-37 shows an example of a protoListPicker.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-24 Overview Protos

Figure 6-37 A protoListPicker example

■ The protoPeoplePicker displays a list of names and associated information
from the Names application. For information about the slots and methods for
this proto, see “protoPeoplePicker” (page 5-110) in Newton Programmer’s
Reference.

■ The protoPeoplePopup is similar to the protoPeoplePicker, except that
protoPeoplePopup displays the picker in a pop-up view. For information
about the slots and methods for this proto, see “protoPeoplePopup” (page 5-111)
in Newton Programmer’s Reference.

Using protoOverview 6
The protoOverview was set up primarily to be the basis
for protoSoupOverview. Because of that, you need to do some extra
work to use just the protoOverview.

You need to define Abstract, HitItem, IsSelected, SelectItem, and
viewSetupChildrenScript methods in your protoOverview. See
“protoOverview” (page 5-85) in Newton Programmer’s Reference for details.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Overview Protos 6-25

You also need to define the following slot in your protoOverview:

cursor This should be a cursor-like object.

You use the object stored in this slot to encapsulate your data. The cursor-like
object must support the methods Entry, Next, Move, and Clone. An example is
given below.

In addition, you must provide a mechanism to find an actual data item given an
index of a displayed item. In general, you need some sort of saved index that
corresponds to the first displayed item. See the example code in “HitItem”
(page 5-88) in Newton Programmer’s Reference for an example of how this is used.

You also should provide a mechanism to track the currently highlighted item,
which is distinct from a selected item.

Since your data is probably in an array, you can use a “cursor” object like this:

{ items: nil,
index: 0,

Entry:func()
begin
if index < Length(items) then

items[index];
end,

Next: func()
if index < Length(items)-1 then
begin

index := index + 1;
items[index];

end,

Move: func(delta)
begin

index := Min(Max(index + delta, 0),
kNumItems-1) ;

items[index];
end,

Clone:func()
Clone(self)}

The methods that you need to have in the cursor-like object are:

■ Entry, which returns the item pointed to by the “cursor.”

■ Next, which moves the “cursor” to the next item and returns that item or, if
there is no next item, nil.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-26 Overview Protos

■ Move, which moves the “cursor” a given number of entries and returns that
entry or, if there is no item in that place, nil.

■ Clone, which returns a copy of the “cursor” that is modifiable independent of
the original “cursor.”

Using protoListPicker 6
The protoListPicker proto—documented in Newton Programmer’s Reference
(page 5-93)—provides a number of controls for finding specific entries, including
folder tabs, alphabet tabs (azTabs), and scrolling arrows; any of these controls can
be suppressed.

Like protoOverview, this proto manages an array of selected items. Any soup
that can be queried by a cursor can be displayed, or elements from an array can
be displayed.

Figure 6-38 shows a full-featured example of protoListPicker that displays a
two-column list. The first column is used to select or deselect members, and the
second column provides additional information that can be edited in place.

Figure 6-38 A ProtoListPicker example

The checkbox at the bottom-left of the slip is used to either show every eligible
item or to trim all unselected elements from the list. The New button at the bottom
allows the immediate creation of another entry to be displayed. See Figure 6-39.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Overview Protos 6-27

Figure 6-39 Creating a new name entry

When the pen comes down in any column, the row/column cell inverts as shown in
Figure 6-40.

Figure 6-40 Highlighted row

When the pen is released, if it is within the first column, the item is either checked
to show that it is selected or unchecked to show that it is not. See Figure 6-41.

Figure 6-41 Selected row

When the pen tap is released within the second column, what happens next
depends on the underlying data. If there are many options already available, a

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-28 Overview Protos

pop-up view is displayed to allow the user to select any option or enter a new one.
See Figure 6-42.

Figure 6-42 Pop-up view displayed over list

If the user selects “Add new price” (or if there were one or no options already
available to them), the user can enter a new price as shown in Figure 6-43.

Figure 6-43 Slip displayed for gathering input

The proto is driven by a frame contained in the pickerDef slot. This picker
definition frame may or may not come from the data definition registry. The
functionality it provides, however, is similar to that of any data definition: it offers
all the hooks the proto needs to interpret and display the data without the proto
itself knowing what the data is.

The chosen items are collected into an array, as described in “Name References”
(page 5-1) in Newton Programmer’s Reference, which can be stored separately
from the original entries. Each selection is represented in the array by a name
reference that contains all information needed to display or operate on the entries.
The name reference is stored as part of the selection, along with an entry alias that
refers to the original entry, if there is an original entry. (See “Entry Aliases”
beginning on page 12-1 for basic information on these objects.)

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Overview Protos 6-29

The picker definition (described in the next section) is a data definition frame that
is provides the routines to create a name reference from an entry, an entry alias,
another name reference, a straight frame, or just to create a canonical empty name
reference (if no data is provided). It also retrieves the data from a name reference.
Finally, it provides some information about the name reference to support actions
like tapping and highlighting.

You also need to define the soup to query. Both this and the query specification can
be defined either in the data definition or in the list picker.

Using the Data Definitions Frame in a List Picker 6

The pickerDef slot of the list picker holds a data definition frame that determines
the overall behavior of the list picker. This frame should be based on
protoNameRefDataDef or protoPeopleDataDef, or at should least support
the required slots.

Here is an example:

pickerDef:= {
_proto: protoNameRefDataDef,
name: "Widgets",
class: '|nameRef.widget|,
entryType: 'widget,
soupToQuery:"Widgets",
querySpec: {indexPath: 'name},
columns: kColumns,

};

Specifying Columns 6

The columns slot hold an array that determines how the columns in the list picker
are displayed. Here’s an example of column specification array:

columns:= [{
fieldPath:'name,// path for field to display in column
optional:true,// not required -- unnamed widget

tapWidth:155},// width for checkbox & name combined

{
fieldPath:'price,// path for field to display

 in column
optional:nil,// price is required

tapWidth:0}];// width -- to right end of view

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-30 Overview Protos

See “Column Specifications” (page 5-3) in Newton Programmer’s Reference for
details of the slots.

Having a Single Selection in a List Picker 6

The key to getting single selection is that single selection is part of the picker
definition and not an option of protoListPicker. That means the particular
class of nameRef you use must include single selection. In general, this requires
creating your own subclass of the particular name reference class.

The basic solution is to create a data definition that is a subclass of the particular
class your protoListPicker variant will view. That data definition will include
the singleSelect slot. As an example, suppose you want to use a
protoPeoplePopup that just picks individual people. You could use the
following code to bring up a protoPeoplePopup that allows selecting only one
individual at a time:

// register the modified data definition
RegDataDef('|nameref.people.single:SIG|,
 {_proto: GetDataDefs('|nameRef.people|), singleSelect:
true});

// then pop the thing
protoPeoplePopup:New('|nameref.people.single:SIG|,[],self,[
]);

// sometime later
UnRegDataDef('|nameref.people.single:SIG|);

For other types of protoListPickers and classes, create the appropriate
subclass. For example, a transport that uses protoAddressPicker for e-mail
messages might create a subclass of '|nameRef.email| and put that subclass
symbol in the class slot of the protoAddressPicker.

Since many applications are likely to do this, you may cut down on code in your
installScript and removeScript by registering your dataDef only for the
duration of the picker. That would mean registering the class just before you pop
the picker and unregistering after the picker has closed. You can use the
pickActionScript and pickCanceledScript methods to be notified when
to unregister the dataDef.

Having Preselected Items in a List Picker 6

If you want to have items that are initially selected in a list picker, use the
viewSetupDoneScript to set up the selected array, rather than setting up
the selected array in your viewSetupFormScript or
viewSetupChildrenScript, then send the Update message to
protoListPicker to tell it to update the display.

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Overview Protos 6-31

Validation and Editing in protoListPicker 6

The built-in validation mechanism is not designed to deal with nested soup
information. In general, you gain more flexibility by not using a
validationFrame in your pickerDef, even if you have no nested entries.
Instead, you can provide your own validation mechanism and editors:

■ define a Validate method in your picker definition

■ define an OpenEditor method in your picker definition

■ draw a layout for each editor you require

Here is how your Validate method should work. The following example
assumes that pickerDef.ValidateName and pickerDef.ValidatePager have
been implemented:

pickerDef.Validate := func(nameRef, pathArray)
begin

// keep track of any paths that fail
local failedPaths := [];

for each index, path in pathArray do
begin

if path = 'name then
begin

// check if name validation fails
if NOT :ValidateName(nameRef) then

// if so, add it to array of failures
AddArraySlot(failedPaths, path);

end;
else begin

if NOT :ValidatePager(nameRef) then
AddArraySlot(failedPaths, path);

end;
end;
// return failed paths or empty array
failedPaths;

end;

Here is how your OpenEditor method should work:

pickerDef.OpenEditor := func(tapInfo, context, why)
begin
 local valid = :Validate(tapInfo.nameRef,
tapInfo.editPaths) ;

if (Length(valid) > 0) then
// if not valid, open the editor

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-32 Overview Protos

// NOTE: returns the edit slip that is opened
GetLayout("editor.t"):new(tapInfo.nameRef,

tapInfo.editPaths, why, self, 'EditDone, context);
else
begin

// the item is valid, so just toggle the selection
context:Tapped('toggle);
nil; // Return <nil>.

end;..
end;

The example above assumes that the base view of the layout editor.t has a New
method that opens the editor and returns the associated view.

The editor can be designed to fit your data. However, we suggest that you use a
protoFloatNGo that is attached to the root view using BuildContext. You are
also likely to need a callback to the pickderDef so it can appropriately update
the edited or new item. Finally, your editor needs to update your data soup using an
Xmit soup method so that the list picker updates.

In the OpenEditor example above, the last three arguments are used by the editor
to send a callback to the pickerDef from the viewQuitScript. The design of
the callback function is up to you. Here is an example:

pickerDef.EditDone := func(nameRef, context)
begin
 local valid = :Validate(tapInfo.nameRef, tapInfo.editPaths) ;

if (Length(valid) > 0) then
begin

// Something failed. Try and revert back to original
if NOT :ValidatePager(nameRef) AND

self.('[pathExpr: savedPagerValue, nameRef]) = nameRef then
nameRef.pager := savedPagerValue.pager;

context:Tapped(nil);// Remove the checkmark
end;
else

// The nameRef is valid, so select it.
context:Tapped('select);

// Clear the saved value for next time.
savedPagerValue := nil;

end;

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Overview Protos 6-33

Changing the Font of protoListPicker 6

The mechanism described here will probably change in the future. Eventually you
may be able to set a viewFont slot in the list picker itself, just as you can set
viewLineSpacing now. In the meantime, you need a piece of workaround code.
You must set the viewFont of the list picker and also include this workaround
code.

Give the list picker the following viewSetupDoneScript:

func()
begin
 if listBase then
 SetValue(listBase, 'viewFont, viewFont) ;

 inherited:?viewSetupDoneScript();
end;

This sets the viewFont of the listbase view to the view font of the list picker.
You cannot rely on the listbase view always being there (hence the test).

Using protoSoupOverview 6
For the most part, you use this proto like protoOverview, except that it is set up
to use a soup cursor, and, so, is easier to use. See “Using protoOverview” (page 6-24)
for information.

Determining Which protoSoupOverview Item Is Hit 6

There is a method of protoSoupOverview called HitItem that is called
whenever an item is tapped. The method is defined by the overview and you should
call the inherited method. Also note that HitItem gets called regardless of where
in the line a tap occurs. If the tap occurs in the checkbox (that is, if x is less than
selectIndent), you should do nothing other than calling the inherited functions,
because the inherited function will handle the tap, otherwise you should do
something appropriate.

The method is passed the index of the item that is hit. The index is relative to the
item displayed at the top of the displayed list. This item is always the current entry
of the cursor used by protoSoupOverview, so you can find the actual soup entry
by cloning the cursor and moving it.

func(itemIndex, x, y)
begin

// MUST call the inherited method for bookkeeping
inherited:HitItem(itemIndex, x, y);

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-34 Overview Protos

if x > selectIndent then
begin

 // get a temporary cursor based on the cursor used
 // by soup overview

local tCursor := cursor:Clone();

 // move it to the selected item
tCursor:Move(itemIndex) ;

 // move the application’s detail cursor to the
 // selected entry

myBaseApp.detailCursor:Goto(tCursor:Entry());

 // usually you will close the overview and switch to
 // some other view

self:Close();
end;
// otherwise, just let them check/uncheck
// which is the default behavior

end

Displaying the protoSoupOverview Vertical Divider 6
The mechanism for bringing up the vertical divider line was not correctly
implemented in protoSoupOverview. You can draw one in as follows:

// set up a cached shape for efficiency
mySoupOverview.cachedLine := nil;

mySoupOverview.viewSetupDoneScript := func()
begin
 inherited:?viewSetupDoneScript();

 local bounds := :LocalBox();
 cachedLine := MakeRect(selectIndent - 2, 0,
 selectIndent - 1, bounds.bottom);
end;

mySoupOverview.viewDrawScript := func()
begin
 // MUST call inherited script
 inherited:?viewDrawScript();

 :DrawShape(cachedLine,
{penPattern: vfNone, fillPattern: vfGray});

end;

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Roll Protos 6-35

Roll Protos 6

You can use the protos described in this section to present roll views in your
applications. A roll view is one that contains several discrete subviews that are
arranged vertically. The roll can be viewed in overview mode, in which each
subview is represented by a one-line description. Any or all of the subviews can be
expanded to full size. The individual subviews are contained in objects based on
protoRollItem.

The Newton system software provides the following roll protos:

■ The protoRoll provides a roll-like view that includes a series of individual
items. The user can see the items either as a collapsed list of one-line overviews
or as full-size views. When the user taps an overview line, all the full-size views
are displayed, with the tapped view shown at the top of the roll. For information
about the slots and methods for this proto, see “protoRoll” (page 5-112) in
Newton Programmer’s Reference. Figure 6-44 shows an example of a
protoRoll.

Figure 6-44 A protoRoll example

■ The protoRollBrowser is similar to protoRoll, except that
protoRollBrowser creates a self-contained application based on the
protoApp, described in “protoApp” (page 1-2) in Newton Programmer’s
Reference. See “protoRollBrowser” (page 5-116) in Newton Programmer’s
Reference for information about the slots and methods for this proto.
Figure 6-45 shows an example of a protoRollBrowser:

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-36 View Classes

Figure 6-45 A protoRollBrowser example

View Classes 6

There are two view classes that you use for pickers:

■ The clOutline view class displays an expandable text outline. Figure 6-46
shows an example.

Figure 6-46 Example of an expandable text outline

Collapsed View Expanded View

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Specifying the List of Items for a Popup 6-37

■ The clMonthView view class displays a monthly calendar. Figure 6-47 shows
an example.

Figure 6-47 Example of a month view

Specifying the List of Items for a Popup 6

You specify the item list for protoPicker, protoTextList,
protoPopUpButton, proptoPopupInPlace, and PopUpMenu in
an array. In the simplest case, this is an array of strings, but it can contain
different kinds of items:

simple string A string. You can control the pickability of a text item or add
a mark to the display by specifying the text in a frame, as
described in Table 6-1 (page 6-38).

bitmap A bitmap frame or a NewtonScript frame, as returned from
the GetPictAsBits compile-time function. You can
control the pickability of the item or add a mark to the
display by placing the bitmap in a frame, as described in
Table 6-1 (page 6-38).

icon with string A frame that specifies both a string and an icon, as described
in Table 6-2 (page 6-38).

separator line An instruction to display a line that runs the width of the
picker. To display a dashed gray line, specify the symbol
'pickSeparator. For a solid black line, specify the
symbol 'pickSolidSeparator.

two-dimensional grid
A frame describing the grid item, as described in Table 6-3
(page 6-39).

If all the items in the picker list cannot fit into the view, the user can scroll the list
to see more items.

Table 6-1 describes the frame used to specify simple string and bitmap items in the
picker list.

Current day

Selected day

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-38 Specifying the List of Items for a Popup

Table 6-2 describes the frame used to specify a string with an icon in the picker list.

Table 6-1 Item frame for strings and bitmaps

Slot name Description

item The item string or bitmap reference.

pickable A flag that determines whether the item is pickable.
Specify non-nil if you want the item to be pickable, or
nil if you don’t want the item pickable. Not-pickable
items appear in the list but are not highlighted and can’t be
selected.

mark A character displayed next to an item when it’s chosen.
Specify a dollar sign followed by the character you want to
use to mark this item if it is chosen. For example,

$\uFC0B

specifies the check mark symbol. (You can use the constant
kCheckMarkChar to specify the check mark character.)

fixedHeight When you give a bitmap, you can give this slot for the first
item in order to force all items to be the same size. If you
use bitmaps in a list that can become large enough to
scroll, you should specify the fixedHeight slot for
every item. You can also use slot this for any item to
specify a height different from other items.

Table 6-2 Item frame for string with icon

Slot name Description

item The item string.

icon A bitmap frame, as returned from the compile-time function
GetPictAsBits. The bitmap is displayed to the left of the
text, and the text is drawn flush against it, unless the
indent slot is specified.

continued

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Specifying the List of Items for a Popup 6-39

Table 6-3 describes the frame required to specify a two-dimensional grid item in
the picker list.

indent An integer that defines a text indent to use for this item and
subsequent icon/string items. This integer specifies the
number of pixels to indent the text from the left side of the
picker view. You can use it to line up a number of text items
that may have icons of varying width. Specify –1 to cancel
the indent effect for the current and subsequent text items.
The icon is always centered within the indent width.

fixedHeight You can give this slot for the first item in order to force all
items to be the same size. If you use icons in a list that can
become large enough to scroll, you should specify the
fixedHeight slot for every item. You can also use this
slot for any item to specify a height different from other
items. (When you use PopupMenu, you must specify a
fixedHeight slot for the first item, because PopupMenu
ignores the height of the icon.)

Table 6-3 Item frame for two-dimensional grid

Slot Name Description

bits A binary object representing the bitmap of the grid item. A
bitmap is returned in the bits slot in the frame returned by
the compile-time function GetPictAsBits.

The bitmap is a complete picture of the grid item, including
the lines between cells and the border around the outside of the
cells. There must be no extra white space outside the border.
Each cell must be the same size and must be symmetrical.

bounds The bitmap bounds frame, from the bounds slot in the frame
returned by GetPictAsBits.

width The number of columns in the grid (must be non-zero).

height The number of rows in the grid (must be non-zero).

continued

Table 6-2 Item frame for string with icon (continued)

Slot name Description

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-40 Specifying the List of Items for a Popup

Note
Picker items can include 1.x bitmaps but not 2.0 shapes. ◆

When a cell is highlighted in a two-dimensional picker item, only the part of the
cell inside the cell frame lines is inverted. You can vary the highlighting effect by
changing the values of the cellFrame and outerFrame slots, which control
how much unhighlighted space to leave for the cell frame lines. An example of how
these values affect cell highlighting is shown in Figure 6-48.

Figure 6-48 Cell highlighting example for protoPicker

cellFrame Optional. The width of the separator line between cells, used
for highlighting purposes. If you don’t specify this slot, the
default is 1 pixel.

outerFrame Optional. The width of the border line around the cells, used
for highlighting purposes. If you don’t specify this slot, the
default is 2 pixels.

mask Optional. A binary object representing the bits for a bitmap
mask. This mask is used to restrict highlighting, or for special
hit-testing. The mask must be exactly the same size as the
bitmap. Cells in the grid are highlighted only if the position
tapped is “black” in the mask.

Table 6-3 Item frame for two-dimensional grid (continued)

Slot Name Description

cellFrame=1
outerFrame=2

cellFrame=3
outerFrame=3

cellFrame=0
outerFrame=0

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-41

Summary 6

The following sections summarize the reference information in this chapter.

General Picker Protos 6

protoPopupButton 6

aProtoPopupButton := {
_proto: protoPopupButton,
viewFlags: flags,
viewBounds: boundsFrame,
viewJustify: justificationFlags,
text: string, // text inside button
popup: array, // items in list
ButtonClickScript: function, // called on button tap
PickActionScript: function, // returns item selected
PickCancelledScript: function, // user cancelled
...
}

protoPopInPlace 6

aProtoPopInPlace := {
_proto: protoPopInPlace,
viewBounds: boundsFrame,
viewFlags: constant,
viewJustify: justificationFlags,
text: string, // text inside button
popup: array, // items in list
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled
...
}

protoLabelPicker 6

aProtoLabelPicker := {
_proto: protoLabelPicker,
viewBounds: boundsFrame,
viewFont: fontSpec,

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-42 Summary

iconSetup: icon frame,
labelCommands: array, // items in list
iconBounds: boundsFrame, // bounds of largest icon
iconIndent: integer, // indent of text from icon
checkCurrentItem: Boolean, // true to check selected item
indent: integer, // indent of picker from label
textIndent: integer, // indent of text
LabelActionScript:function, // returns selected item
TextSetup: function, // gets initial item
TextChanged: function, // called upon item value change
UpdateText: function, // call to change selected item
PickerSetup: function, // called when user taps label
Popit: function, // call to programmatically

// pop up picker
...
}

protoPicker 6

aProtoPicker := {
_proto: protoPicker,
bounds: boundsFrame,
viewBounds: boundsFrame, // ignored
viewFlags: constant,
viewFormat: formatFlags,
viewJustify: justificationFlags,
viewFont: fontSpec,
viewEffect: effectFlag,
pickItems: array, // items in list
pickTextItemHeight:integer, // height reserved for items
pickLeftMargin: integer, // margin from left of view
pickRightMargin: integer, // margin from right of view
pickTopMargin: integer, // margin above each item in

 // list
pickAutoClose: Boolean, // true to close list after pick
pickItemsMarkable:Boolean, // true to reserve space for

 // check mark before item
pickMarkWidth: integer, // space to reserve for marks
callbackContext: view, // view with pick scripts
PickActionScript: function, // returns selected item
PickCancelledScript:function, // user cancelled
SetItemMark: function, // sets char for check marks
GetItemMark: function, // gets char for check marks
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-43

protoGeneralPopup 6

aProtoGeneralPopup := {
_proto: protoGeneralPopup,
viewBounds: boundsFrame,
viewFlags: constant,
cancelled: Boolean, // true if user cancelled

// pop-up view
context: view, // view with pick scripts
New: // open pop-up view
Affirmative: function, // user taps pop-up view
PickCancelledScript:function, // called in pop-up view

// cancelled
...
}

protoTextList 6

aProtoTextList := {
_proto: protoTextList,
viewBounds: boundsFrame,
viewFont: fontSpec,
viewFormat: formatFlags,
viewLines: integer, // number of lines to show
selection: integer, // index of selected item
selectedItems: arrary, // items in list
listItems: array, // strings or shapes in list
lineHeight: array, // height of lines in list
isShapeList: Boolean, // true if picts instead of text
useMultipleSelections:

Boolean, // true for multiple select
useScroller: Boolean, // true to include scrollers
scrollAmounts: array, // units to scroll
DoScrollScript: function, // scrolls list by offset
ViewSetupFormScript: function, // set up list
ButtonClickScript: function, // returns selected item
...
}

protoTable 6

aProtoTable := {
_proto: protoTable,
viewBounds: boundsFrame,

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-44 Summary

viewFormat: formatFlags,
def: frame, // protoTableDef table

// definition frame
scrollAmount: integer, // number of rows to scroll
currentSelection: string, // text of selected item
selectedCells: array, // selected cell indexes
declareSelf: symbol, // 'tabbase; do not change
ViewSetupFormScript: function, // set up table
SelectThisCell: function, // called when cell is
selected
...
}

protoTableDef 6

aProtoTableDef := {
_proto: protoTableDef,
tabAcross: integer, // number of columns - must be 1
tabDown: integer, // number of rows in table
tabWidths: integer, // width of table
tabHeight: integer, // height of rows
tabProtos: frame, // references to row templates
tabValues: integer/array, // value/array of values for

// rows
tabValueSlot: symbol, // slot to store tabValues in
tabUniqueSelection:Boolean, // true for single selection
indentX: integer, // do not change: used internally
TabSetUp: function, // called before each row set up
...
}

protoTableEntry 6

aProtoTableEntry := {
_proto: protoTableEntry,
viewClass: clTextView,
viewFlags: flags,
viewJustify: justificationFlags,
viewTransferMode: modeOr,
text: string, // text inside table
ViewClickScript: function, // sets current selection
ViewHiliteScript: function, // highlights selection
...

}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-45

Map Pickers 6

protoCountryPicker 6

aProtoCountryPicker := {
_proto: protoCountryPicker,
viewBounds: boundsFrame,
autoClose: Boolean, // true to close picker on selection
listLimit: integer, // maximum items listed
PickWorld: function, // called when selection is made
...
}

protoProvincePicker 6

aProtoProvincePicker := {
_proto: protoProvincePicker,
viewFlags: constant,
autoClose: Boolean, // true to close picker on selection
listLimit: integer, // maximum items listed
PickWorld: function, // called when selection is made
...
}

protoStatePicker 6

aProtoStatePicker := {
_proto: protoStatePicker,
viewFlags: constant,
autoClose: Boolean, // true to close picker on selection
PickWorld: function, // called when selection is made
listLimit: integer, // maximum items listed
...
}

protoWorldPicker 6

aProtoWorldPicker := {
_proto: protoWorldPicker,
viewBounds: boundsFrame,
autoClose: Boolean, // true to close picker on selection
listLimit: integer, // maximum items listed
PickWorld: function, // called when selection is made
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-46 Summary

Text Picker Protos 6

protoTextPicker 6

aProtoTextPicker := {
_proto: protoTextPicker,
label: string, // picker label
indent: integer, // indent
labelFont: fontSpec, // font for label
entryFont: fontSpec, // font for picker line
Popit: function, // user tapped picker
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
TextSetup: function, // returns text string
...
}

protoDateTextPicker 6

aProtoDateTextPicker := {
_proto: protoDateTextPicker,
label: string, // picker label
date: integer, // initial and currently

// selected date
longFormat: symbol, // format to display date
shortFormat: symbol, // format to display date
PickActionScript: function, // returns selected item
PickCancelledScript:function, // user cancelled picker
...
}

protoDateDurationTextPicker 6

aProtoDateDurationTextPicker := {
_proto: protoDateDurationTextPicker,
label: string, // picker label
labelFont: fontSpec, // display font
entryFont: fontSpec, // picked entry font
startTime: integer, // initial start date
stopTime: integer, // initial end date
longFormat: symbol, // format to display date
shortFormat: symbol, // format to display date

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-47

PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoRepeatDateDurationTextPicker 6

aProtoRepeatDateDurationTextPicker := {
_proto: protoRepeatDateDurationTextPicker,
label: string, // picker label
startTime: integer, // initial start date
stopTime: integer, // initial end date
longFormat: symbol, // format to display date
shortFormat: symbol, // format to display date
repeatType: constant, // how often meeting meets
mtgInfo: constant, // repeating meetings
PickActionScript: function, // returns selected item
PickCancelledScript:function, // user cancelled picker
...

}

protoDateNTimeTextPicker 6

aProtoDateNTimeTextPicker := {
_proto: protoDateNTimeTextPicker,
label: string, // picker label
date: integer, // initial date/time
format: symbol, // format to display time
longFormat: symbol, // format to display date
shortFormat: symbol, // format to display date
increment: integer // amount to change time
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoTimeTextPicker 6

aProtoTimeTextPicker := {
_proto: protoTimeTextPicker,
label: string, // picker label
labelFont: fontSpec, // label display font
entryFont: fontSpec, // picked entry font
indent: integer, // amount to indent text

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-48 Summary

time: integer, // initial start time
format: symbol, // format to display time
increment: integer, // increment to change

// time for taps
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoDurationTextPicker 6

aProtoDurationTextPicker := {
_proto: protoDurationTextPicker,
label: string, // picker label
startTime: integer, // initial start time
stopTime: integer, // initial end time
format: symbol, // format to display time
increment: integer, // increment to change

// time for taps
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoTimeDeltaTextPicker 6

aProtoTimeDeltaTextPicker := {
_proto: protoTimeDeltaTextPicker,
label: string, // picker label
time: integer, // initial time
labelFont: fontSpec, // label display font
entryFont: fontSpec, // picked entry font
indent: integer, //amount to indent text
increment: integer, // increment to change

// time for taps
minValue: integer, // minimum delta value
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-49

protoMapTextPicker 6

aProtoMapTextPicker := {
_proto: protoMapTextPicker,
label: string, // picker label
labelFont: fontSpec, // label display font
entryFont: fontSpec, // picked entry font
indent: integer, // amount to indent text
params: frame,
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoCountryTextPicker 6

aProtoCountryTextPicker := {
_proto: protoCountryTextPicker,
label: string, // picker label
labelFont: fontSpec, // label display font
entryFont: fontSpec, // picked entry font
indent: integer, // amount to indent text
params: frame,
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoUSstatesTextPicker 6

aProtoUSstatesTextPicker := {
_proto: protoUSstatesTextPicker,
label: string, // picker label
labelFont: fontSpec, // label display font
entryFont: fontSpec, // picked entry font
indent: integer, // amount to indent text
params: frame,
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-50 Summary

protoCitiesTextPicker 6

aProtoCitiesTextPicker := {
_proto: protoCitiesTextPicker,
label: string, // picker label
labelFont: fontSpec, // label display font
entryFont: fontSpec, // picked entry font
indent: integer, // amount to indent text
params: frame,
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoLongLatTextPicker 6

aProtoLongLatTextPicker := {
_proto: protoLongLatTextPicker,
label: string, // picker label
latitude: integer, // initial latitude
longitude: integer, // initial longitude
labelFont: fontSpec, // label display font
entryFont: fontSpec, // picked entry font
indent: integer, // amount to indent text
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
worldClock: boolean // do not change
...
}

Date, Time, and Location Pop-up Views 6

protoDatePopup 6

aProtoDatePopup := {
_proto: protoDatePopup,
New: function, // creates pop-up view
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-51

protoDatePicker 6

aProtoDatePicker := {
_proto: protoDatePicker,
selectedDates: array, // selected date
DateChanged: function, // called when date is selected
Refresh: function, // update view with new dates
...
}

protoDateNTimePopup 6

protoDateNTimePopup := {
_proto: protoDateNTimePopup,
New: function, // creates pop-up view
NewTime: function, // called when time changes
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoDateIntervalPopup 6

protoDateIntervalPopup := {
_proto: protoDateIntervalPopup,
New: function, // creates pop-up view
NewTime: function, // called when time changes
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoMultiDatePopup 6

protoMultiDatePopup := {
_proto: protoMultiDatePopup,
New: function, // creates pop-up view
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-52 Summary

protoYearPopup 6

protoYearPopup := {
_proto: protoYearPopup,
New: function, // creates pop-up view
NewYear: function, // called when year changes
DoneYear: function, // called on close box tap
PickCancelledScript: function, // user cancelled picker
...
}

protoTimePopup 6

protoTimePopup := {
_proto: protoTimePopup,
New: function, // creates pop-up view
NewTime: function, // called when time changes
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoAnalogTimePopup 6

protoAnalogTimePopup := {
_proto: protoAnalogTimePopup,
New: function, // creates pop-up view
NewTime: function, // called when time changes
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

protoTimeDeltaPopup 6

protoTimeDeltaPopup := {
_proto: protoTimeDeltaPopup,
New: function, // creates pop-up view
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-53

protoTimeIntervalPopup 6

protoTimeIntervalPopup := {
_proto: protoTimeIntervalPopup,
New: function, // creates pop-up view
PickActionScript: function, // returns selected item
PickCancelledScript: function, // user cancelled picker
...
}

Number Pickers 6

protoNumberPicker 6

aProtoNumberPicker := {
_proto: protoNumberPicker,
minValue: integer, // minimum value in list
maxValue: integer, // maximum value in list
value: integer, // currently selected value
showLeadingZeros: Boolean, // true to show leading zeros
prepareForClick: function, // called after click is

// processed
ClickDone: function, // called after click is

// processed
...
}

Picture Picker 6

protoPictIndexer 6

aProtoPictIndexer := {
_proto: protoPictIndexer,
viewBounds : boundsFrame,
viewJustify: justificationFlags,
viewFormat : formatFlags,
icon: bitmap, // bitmap with objects

// arranged vertically
iconBBox: boundsFrame, // bitmap bounds within view
numIndices: integer, // # of objects in bitmap
curIndex: integer, // index of current item
IndexClickScript: function, // user taps bitmap
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-54 Summary

Overview Protos 6

protoOverview 6

aProtoOverview := {
_proto: protoOverview,
viewBounds : boundsFrame,
viewFlags : constant,
viewFont : fontSpec,
lineHeight: integer, // height of items in pixels
selectIndent: integer, // specifies left margin
nothingCheckable: Boolean, // true for no checkboxes
SelectItem: function, // to record selected items
SetupAbstracts: function, // set up entry
Abstract: function, // return shape given entry
HitItem: function, // called when item is tapped
IsSelected: function // Return true if the item is

// selected
cursor: cursor, // cursor for the items
CheckState: function, // determines if selectable
Scroller: function, // implement scrolling here
SelectItem: function, // records selected items
viewSetupChildrenScript:

function, // Calls SetupAbstracts
...
}

protoSoupOverview 6

aProtoSoupOverview := {
_proto: protoSoupOverview,
autoDeselect: Boolean, // whether to deselect when

// the pen leaves an item
cursor: cursor, // cursor for the entries
Scroller: function, // implement scrolling here
SelectItem: function, // records selected items
Abstract: function, // return shape given entry
IsSelected: function, // returns true if selected
ForEachSelected: function, // called for each selected

// item
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-55

protoListPicker 6

aProtoListPicker := {
_proto: protoListPicker,
declareSelf : symbol, // Set to 'pickBase
defaultJustification :constant,
viewFlags : constant,
viewBounds : boundsFrame,
lineHeight: integer, // height of items in pixels
listFormat: formatFlags,
pickerDef: frame, // defines list behavior
selected: array, // references to selected items
soupToQuery: string, // union soup to query
querySpec: frame, // query to use
selected: array, // modified as user selects

// and deselects item
singleSelect: Boolean, // single selection if non-nil
suppressNew: Boolean, // suppress New button if non-nil
suppressScrollers:Boolean, // suppress scroller if

// non-nil
suppressAZTabs: Boolean, // suppress tabs if non-nil
suppressFolderTabs:Boolean, // suppress if non-nil
suppressSelOnlyCheckbox:Boolean,// suppress if non-nil
suppressCloseBox: Boolean, // suppress if non-nil
suppressCounter: Boolean, // suppress if non-nil
reviewSelections: Boolean, // Selected Only if non-nil
readOnly: Boolean, // items are read-only if

// non-nil
dontPurge: Boolean, // keep unselected refs if

// non-nil
soupChangeSymbol: symbol, // for RegSoupChange method
SoupEnters: function, // syncs up changed soup
SoupLeaves: function, // syncs up changed soup
SetNowShowing: function, // set Selected Only
AddFakeItem: function, // add item to array; update

// screen
GetSelected: function, // returns clone of selected

// array
...
}

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-56 Summary

protoNameRefDataDef 6

aProtoNameRefDataDef := {
_proto: protoNameRefDataDef,
name: string, // name to identify picker in

// top left corner
class: symbol, // specify class for new name

// references
entryType: symbol, // class for new soup entries
columns: array, // column specifications
singleSelect: Boolean, // single selection if non-nil
soupToQuery: string, // union soup to query
querySpec: frame, // query to use
validationFrame:frame, // checks validity of entry
MakeCanonicalNameRef:function,// make blank name ref
MakeNameRef: function, // make name reference
Get: function, // returns data from specified

// object
GetPrimaryValue:function, // retrieves data from object
HitItem: function, // called when item tapped
MakePopup: function, // called before making pop-up

// view
Tapped: function, // called when tap has been

// handled
New: function, // called when tap on New button
DefaultOpenEditor:function,// open an edit view
OpenEditor: function, // open an custom edit view
NewEntry: function, // returns a new soup entry
ModifyEntry: function, // returns a modified soup entry
Validate: function, // validates paths
...
}

protoPeopleDataDef 6

aProtoPeopleDataDef := {
_proto: protoPeopleDataDef,
entryType: symbol, // class for new soup entries
soupToQuery: string, // union soup to query
primaryPath: symbol, // the primary path column
primaryPathMapper:frame, // maps entry class to data
Equivalent: function, // compares two name refs

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-57

Validate: function, // returns array of invalid
// refs

ModifyEntryPath: function, // entry modification of Names
GetRoutingInfo: function, // retrieves routing info
GetItemRoutingFrame:function, // converts routing info
GetRoutingTitle: function, // creates target string
PrepareForRouting:function, // strips extra info
...
}

protoPeoplePicker 6

aProtoPeoplePicker := {
_proto: protoPeoplePicker,
class: symbol, // type of data to display
selected: array, // references to selected items
...
}

protoPeoplePopup 6

aProtoPeoplePicker := {
_proto: protoPeoplePicker,
class: symbol, // type of data to display
selected: array, // references to selected items
context: symbol, // view with PickActionScript

// method
options: array, // options for protoListPicker
PickActionScript: function,

// called when pop-up is closed
...
}

Roll Protos 6

protoRoll 6

aProtoRoll := {
_proto: protoRoll,
viewFlags: constant,
viewBounds: boundsFrame,
items: array, // templates for roll items

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

6-58 Summary

allCollapsed: Boolean, // roll collapsed if non-nil
index: integer, // index of item to start

// display at
declareSelf: symbol, // 'roll — do not change
...
}

protoRollBrowser 6

aProtoRollBrowser := {
_proto: protoRollBrowser,
viewBounds: boundsFrame,
viewJustify: justificationFlags,
viewFormat: formatFlags,
title: string, // text for title at top of roll
rollItems: array, // templates for roll items
rollCollapsed: Boolean, // roll collapsed if non-nil
rollIndex: integer, // index of item to start

// display at
declareSelf: symbol, // 'base — do not change
...
}

protoRollItem 6

aProtoRollItem := {
_proto: protoRollItem,
viewBounds: boundsFrame,
viewJustify: justificationFlags,
viewFormat: formatFlags,
overview: string, // text for one-line overview
height: integer, // height of the view in pixels
stepChildren: Boolean, // child views for this roll item
...
}

View Classes 6

clOutlineView 6

myOutline:= {...
viewClass: clOutline,
viewBounds: boundsFrame,

C H A P T E R 6

Pickers, Pop-up Views, and Overviews

Summary 6-59

browsers: array, // frame with array of outline
// items

viewFont: fontSpec,
viewFlags : constant,
viewFormat: formatFlags,
clickSound: frame, // sound frame for taps
OutlineClickScript:function, //called when user taps item
...
}

clMonthView 6

theMonth := {...
viewclass: clMonthView,
viewBounds: boundsFrame,
viewflags: constant,
labelFont: fontSpec,
dateFont: fontSpec,
selectedDates: array,
viewSetupFormScript: function,
...
}

Functions 6

PopupMenu(list, options)
IsNameRef(item)
AliasFromObj(item)
EntryFromObj(item)
ObjEntryClass(item)

7-1

C H A P T E R 7

Controls and Other Protos 7Figure 7-0
Table 7-0

Controls are software objects that provide various user interface capabilities,
including scrolling, selection buttons, and sliders. You use the controls and other
protos described in this chapter to add these features to your NewtonScript
applications.

This chapter gives a general description of the controls and related protos provided
in Newton System Software. For a detailed description of these protos, including
the slots that you use to set to implement each, see “Controls Reference”
(page 6-1) in Newton Programmer’s Reference.

This chapter provides information about the following controls and protos:

■ horizontal and vertical scrollers

■ boxes and buttons

■ alphabetical selection tabs

■ gauges and sliders

■ time-setting displays

■ special views

■ view appearance enhancements

■ status bars

Controls Compatibility 7
The 2.0 release of Newton System Software includes a number of new protos,
including:

■ four new scroller protos: protoHorizontal2DScroller,
protoLeftRightScroller, protoUpDownScroller, and
protoHorizontalUpDownScroller

■ two new buttons: protoInfoButton and protoOrientation

■ two selection tab protos: protoAZTabs and protoAZVertTabs

C H A P T E R 7

Controls and Other Protos

7-2 Scroller Protos

■ four new date and time protos: protoDigitalClock, protoSetClock,
protoNewSetClock, and protoAMPMCluster

■ two special view protos: protoDragger and protoDragNGo

Scroller Protos 7

Scrollers allow the user to move vertically or horizontally through a display that is
bigger than the view. The Newton System Software provides a number of scrollers
to allow users to scroll their views.

All scroller protos are implemented in the same way; that is, they use the same
methods and slots. These scrollers are not linked or related to the scroll arrows on
the built-in button bar. For individual descriptions of the scroller protos, see
“Scroller Protos” (page 7-2) in Newton Programmer’s Reference. This section
describes how to implement scrollers in your applications.

The scroller protos do not perform the actual scrolling of data in a view; they
simply display and maintain the arrows as the user taps them. To scroll data in a
view, you can use the following protos in your applications:

■ The protoHorizontal2DScroller is centered at the bottom of a view and
provides both horizontal and vertical scroll arrows. For more information about
the slots and methods for this scroller, see “protoHorizontal2DScroller”
(page 6-2) in Newton Programmer’s Reference. Figure 7-1 shows an example
of a protoHorizontal2DScroller view.

Figure 7-1 A protoHorizontal2DScroller view

■ The protoLeftRightScroller is centered at the bottom of a view and
provides horizontal scroll arrows. For more information about the slots and
methods for this scroller, see “protoLeftRightScroller” (page 6-5) in Newton
Programmer’s Reference. Figure 7-2 shows an example of a
protoLeftRightScroller view.

Figure 7-2 A protoLeftRightScroller view

C H A P T E R 7

Controls and Other Protos

Scroller Protos 7-3

■ The protoUpDownScroller is centered on the right side of a view and
provides vertical scroll arrows. For more information about the slots and
methods for this scroller, see “protoUpDownScroller” (page 6-5) in Newton
Programmer’s Reference. Figure 7-3 shows an example of a
protoHorizontal2DScroller view.

Figure 7-3 A protoUpDownScroller view

■ The protoHorizontalUpDownScroller is centered at the bottom of a
view and provides vertical scroll arrows. For more information about the slots
and methods for this scroller, see “protoHorizontalUpDownScroller” (page 6-6)
in Newton Programmer’s Reference. Figure 7-4 shows an example of a
protoHorizontalUpDownScroller view.

Figure 7-4 A protoHorizontalUpDownScroller view

Implementing a Minimal Scroller 7
To implement a minimal scroller, all that you have to define is a
ViewScroll2DScript method in your scroller template. This method is
called whenever the user taps one of the scroll arrows in the scroller view. Your
ViewScroll2DScript method must perform the actual scrolling of the contents
of some other view, which you usually do by calling the SetOrigin method.

For more information on the ViewScroll2DScript method, see
“ViewScroll2DScript” (page 6-3) in Newton Programmer’s Reference. For
more information on the SetOrigin method, see “SetOrigin” (page 2-48) in
Newton Programmer’s Reference.

Automatic Arrow Feedback 7
All of the scroller protos can provide visual feedback to the user indicating that
there is more information to see. This feedback is handled automatically for your if
you provide three additional slots in your scroller template: scrollRect,

C H A P T E R 7

Controls and Other Protos

7-4 Scroller Protos

viewRect, and dataRect. Each of these slots is a bounds frame with the
following form:

{left: 0, top: 0, right: 10, bottom: 10}

You usually create these bounds frame slots with the utility function SetBounds,
which is described in “SetBounds” (page 2-34) in Newton Programmer’s Reference.

When you use these slots, the scroller protos highlight the scrolling arrows
automatically to indicate to the user that more data can be viewed by tapping on the
highlighted arrows.

Each of the bounds frame slots serves a specific purpose in the scroller, as shown in
Table 7-1. The next section provides several examples of setting the values of these
slots for different scrolling effects.

Scrolling Examples 7
This section presents several simple examples of setting the bounds frame slots in
your scroller to allow scrolling.

Scrolling Lines of Text 7

To scroll lines of text, you set the values of the three scroller bounds frames as
required for your application. For example, if you have 20 text items in a vertical
list and you want to show 6 of the items at a time, you need to set the slot values
as follows:

scrollRect: SetBounds(0, 0, 0, 20) // 20 possible lines
viewRect: SetBounds(0, 0, 0, 6) // show 6 at a time
dataRect: SetBounds(0, 0, 0, 20)

Table 7-1 Scroller bounds frame slots

Slot name Description

scrollRect Specifies the scrollable area, which is the total area that the
user can see, or scroll over, with the scroller.

viewRect Specifies the part of the scrollable area that the user can
see at any one time. This is usually smaller than the area
specified by scrollRect.

dataRect Specifies the portion of the scrollRect that contains
data. In simple cases, this is the same as scrollRect.

C H A P T E R 7

Controls and Other Protos

Scroller Protos 7-5

Scrolling in the Dates Application 7

Scrolling in the Dates application allows the user to see the 24 hours in a day, 7
hours at a time. When there is only interesting data in a certain range of the day,
the application sets the dataRect for that time frame. This tells the scroller to
blacken a scroll arrow when the data time frame is not displayed in the viewRect,
providing additional visual feedback to the user.

scrollRect: SetBounds(0, 0, 0, 24) // 24 hours per day
viewRect: SetBounds(0, 0, 0, 7) // show 7 at a time
dataRect: SetBounds(0, 0, 0, 10) // meeting from 9-10

Scrolling In a Graphics Application 7

A final example shows scrolling in a graphics application. This example shows a
total scrollable area of 200 pixels by 200 pixels, of which a 50 pixel by 50 pixel
area is shown at any one time. In this example, an object of interest (data) is
located at (100,100).

// total area is 200 by 200
scrollRect: SetBounds(0, 0, 200, 200)

// show a 50 by 50 area at a time
viewRect: SetBounds(0, 0, 50, 50)

// there’s something at location (100,100)
dataRect: SetBounds(100, 100, 110, 110)

Scroll Amounts 7
Whenever the ViewScroll2DScript method is called, the scroller proto
increments the viewRect by 1. For example, in the Dates application example,
each time the user taps an arrow, the viewRect is moved up or down by 1 hour.

In the graphics application example, each time the user taps an arrow, the viewRect
is moved up or down by 1 pixel. Since scrolling by 1 pixel at a time is too slow,
you need to be able to adjust the scrolling amount for certain applications. To do
so, you change the value of the scrollAmounts slot, which is an array of three
values. The default value of this slot is:

[1, 1, 1]

The first value in the scrollAmounts array specifies the amount to scroll for a
single tap. The second value specifies the amount to scroll when the user holds
down on the arrow (accelerated scrolling), and the third value specifies the amount
to scroll for a double tap. For a typical graphics application, you can use values like
the following:

[10, 50, 50]

C H A P T E R 7

Controls and Other Protos

7-6 Button and Box Protos

Keep in mind that if you set scrollAmounts to values other than the default,
your method must check the value passed to it and scroll that amount.

Note
In general, you should discourage double-tapping, since
inadvertently tapping twice can cause a double-tap action
to occur. ◆

Advanced Usage 7
If you want more control over the arrow feedback, don’t use the scrollRect,
viewRect, or dataRect slots at all; instead, use the SetArrow and GetArrow
methods.

For more information about the SetArrow method, see “SetArrow” (page 6-4) in
Newton Programmer’s Reference; for more on the GetArrow method, see
“GetArrow” (page 6-4) in Newton Programmer’s Reference.

Button and Box Protos 7

You use the protos described in this section to display text and picture buttons,
checkboxes, and radio buttons. The Newton System Software provides a variety of
button and box types for use in your applications.

Each of these protos uses specific methods to control its behavior. For many of the
protos, the Newton System Software calls the ButtonClickScript when the
button is tapped. You can define or redefine this method to generate the actions that
you want associated with the button.

The Newton System Software calls certain methods for each of the protos described
here. For information about which methods you need to define for each proto, see
“Button and Box Protos” (page 6-6) in Newton Programmer’s Reference.

For information about sizing and placement recommendations for your button and
box protos, see Newton 2.0 User Interface Guidelines.

The following are the button and box protos that you can use in your applications:

■ The protoTextButton creates a rounded text button with text centered
vertically and horizontally inside it. For more information about the slots and
methods for this button, see “protoTextButton” (page 6-7) in Newton Programmer’s
Reference. Figure 7-5 shows an example of a protoTextButton view.

Figure 7-5 A protoTextButton view

C H A P T E R 7

Controls and Other Protos

Button and Box Protos 7-7

■ The protoPictureButton creates a picture that is a button. For more
information about the slots and methods for this button, see “protoPictureButton”
(page 6-9) in Newton Programmer’s Reference. Figure 7-6 shows an example of
a protoPictureButton view.

Figure 7-6 A protoPictureButton view

■ The protoInfoButton includes an information button in a view. When the
user taps this button, a picker containing information items appears. The picker
includes the About, Help, and Prefs items. For more information about the slots
and methods for this button, see “protoInfoButton” (page 6-10) in Newton
Programmer’s Reference. Figure 7-7 shows an example of a
protoInfoButton view.

Figure 7-7 A protoInfoButton view

■ The protoOrientation is a text button that changes the screen orientation so
that data on the screen can be displayed facing different directions. This proto is
available only on Newton platforms that support changing the screen
orientation. For more information about the slots and methods for this button,
see “protoOrientation” (page 6-13) in Newton Programmer’s Reference.
Figure 7-8 shows an example of a protoOrientation view.

Figure 7-8 A protoOrientation view

■ The protoRadioCluster groups a series of radio buttons into a cluster in
which only one can be “on” at a time. For more information about the slots and
methods for this proto, see “protoRadioCluster” (page 6-14) in Newton
Programmer’s Reference. This proto has no visual representation.

Picture Buttons

Information
Button

Picker displayed when
button is tapped

C H A P T E R 7

Controls and Other Protos

7-8 Button and Box Protos

■ The protoRadioButton creates a radio button child view of a radio button
cluster (based on protoRadioCluster). Each radio button is a small oval
bitmap that is labeled with text. For more information about the slots and
methods for this button, see “protoPictRadioButton” (page 6-18) in Newton
Programmer’s Reference. Figure 7-9 shows an example of several radio buttons
in a cluster.

Figure 7-9 A cluster of protoRadioButtons

■ The protoPictRadioButton creates a child view of a radio button cluster
(based on protoRadioCluster). For more information about the slots
and methods for this button, see “protoPictureButton” (page 6-9) in Newton
Programmer’s Reference. Figure 7-10 shows a cluster of
protoPictRadioButtons.

Figure 7-10 A cluster of protoPictRadioButtons

■ The protoCloseBox allows the user to close the view. For more information
about the slots and methods for this box, see “protoCloseBox” (page 6-20) in
Newton Programmer’s Reference. Figure 7-11 shows an example of a
protoCloseBox view.

Figure 7-11 A protoCloseBox view

C H A P T E R 7

Controls and Other Protos

Button and Box Protos 7-9

■ The protoLargeCloseBox creates a picture button with an “X” icon that is
used to close the view. For more information about the slots and methods for
this box, see “protoLargeCloseBox” (page 6-22) in Newton Programmer’s
Reference. Figure 7-12 shows an example of a protoLargeCloseBox view.

Figure 7-12 A protoLargeCloseBox view

Note
See Newton 2.0 User Interface Guidelines for information about
when to use protoCloseBox and when to use
protoLargeCloseBox. ◆

■ The protoCheckBox creates a labeled checkbox with the label text to the right
of the box. When the user taps the checkbox, a checkmark is drawn in it. For
more information about the slots and methods for this box, see
“protoCheckbox” (page 6-24) in Newton Programmer’s Reference. Figure 7-13
shows an example of a protoCheckBox view.

Figure 7-13 A protoCheckBox view

■ The protoRCheckBox creates a labeled checkbox with the text to the left of
the checkbox. When the user taps the checkbox, a checkmark is drawn in it. For
more information about the slots and methods for this box, see “protoRCheckbox”
(page 6-26) in Newton Programmer’s Reference. Figure 7-14 shows an example
of a protoRCheckBox view.

Figure 7-14 A protoRCheckBox view

Large Close Box

C H A P T E R 7

Controls and Other Protos

7-10 Button and Box Protos

Implementing a Simple Button 7
To provide a simple button in your application, pick a button proto to use, set the
appropriate slots in the button object, and (in most cases) define one or more
scripts for the button.

The following is an example of a template that includes protoTextButton:

aButton := {...
_proto: protoTextButton,
viewFont: ROM_fontSystem12Bold,
text: "My Button",

ButtonClickScript: func()
Print("ouch!");

// a handy way to fit a button around a string
ViewSetupFormScript: func()

viewbounds := RelBounds(10, 60,
StdButtonWidth(self.text), 13);

...}

The above example creates the following button on the Newton screen:

When the user taps this button in the Inspector, “ouch” is printed to the Inspector.

You implement a picture button with a similar template, as shown in the
following example:

pictButton := {...
_proto: protoPictureButton,
icon: namesBitmap,
viewBounds: SetBounds(2, 8, 34, 40),

ButtonClickScript: func()
cardfile:Toggle()

...}

For more information on implementing specific button and box protos, see “Button
and Box Protos” (page 7-6) in Newton Programmer’s Reference.

C H A P T E R 7

Controls and Other Protos

Selection Tab Protos 7-11

Selection Tab Protos 7

You can use the protos described in this section to display alphabetic selection tabs
on the screen. There are two tab protos that you can use:

■ The protoAZTabs displays alphabetical tabs arranged horizontally in a view.
For more information about the slots and methods for this proto, see
“protoAZTabs” (page 6-28) in Newton Programmer’s Reference. Figure 7-15
shows an example of a protoAZTabs view.

Figure 7-15 A protoAZTabs view

■ The protoAZVertTabs displays alphabetical tabs arranged vertically in a
view. For more information about the slots and methods for this proto, see
“protoAZVertTabs” (page 6-29) in Newton Programmer’s Reference.
Figure 7-16 shows an example of a protoAZVertTabs view.

Figure 7-16 A protoAZVertTabs view

When the user taps in either of the tab protos, the proto calls the
PickLetterScript method, passing in the letter that was tapped. The tabs
protos and the PickLetterScript method are described in “Selection Tab
Protos” (page 6-28) in Newton Programmer’s Reference.

C H A P T E R 7

Controls and Other Protos

7-12 Gauge and Slider Protos

Gauge and Slider Protos 7

You can use the gauge and slider protos described in this section to display gauges.
Each slider presents a gauge view that indicates the current progress in relation to
the entire operation. There are three protos and one view class available for
defining sliders:

■ The protoSlider creates a user-settable gauge view, which looks like an
analog bar gauge with a draggable diamond-shaped knob. For more information
about the slots and methods for this proto, see “protoSlider” (page 6-33) in
Newton Programmer’s Reference. Figure 7-17 shows an example of a
protoSlider view.

Figure 7-17 A protoSlider view

■ The protoGauge creates a read-only gauge view. For more information about
the slots and methods for this proto, see “protoGauge” (page 6-35) in Newton
Programmer’s Reference. Figure 7-18 shows an example of a protoGauge
view.

Figure 7-18 A protoGauge view

■ The protoLabeledBatteryGauge creates a read-only gauge view that
periodically samples the system battery and graphically shows the amount of
power left. For more information about the slots and methods for this proto, see
“protoLabeledBatteryGauge” (page 6-37) in Newton Programmer’s Reference.
Figure 7-19 shows an example of a protoLabeledBatteryGauge view.

Figure 7-19 A protoLabeledBatteryGauge view

Large Close Box

Battery gauge Battery charging

C H A P T E R 7

Controls and Other Protos

Gauge and Slider Protos 7-13

■ The clGaugeView class is used to display objects that look like analog bar
gauges. Although the clGaugeView class is available, you should use the
protoGauge to display bar gauges. purpose as is the protoGauge proto. For
more information about the slots and methods for the protoGauge proto, see
“protoGauge” (page 6-35) in Newton Programmer’s Reference.

Figure 7-20 A clGaugeView view

Implementing a Simple Slider 7
The clGaugeView class and the slider protos all have several slots to define the
appearance and range of the slider:

■ The viewBounds slot specifies the size and location of the slider.

■ The viewValue slot specifies the current value of the slider.

■ The minValue slot specifies the minimum value of the slider, with a default
value of 0.

■ The maxValue slot specifies the maximum value of the slider, with a default
value of 100.

You can specify the initial value of a slider in the viewValue slot. However, you
often need to look up the initial value; when this is the case, set the initial value of
the slider in the ViewSetupFormScript method.

To implement a slider, define your template with the proto that you want to use,
specify the appearance and range slots, and (optionally) assign an initial value in
the ViewSetupFormScript method of the proto. For some protos, you need to
define additional methods that respond to the user modifying the slider.

The following example is a template that uses protoSlider to allow adjustment
of the current system volume:

SoundSetter := {...
_proto: protoSlider,
viewBounds: RelBounds(12, -21, 65, 9),
viewJustify: vjParentBottomV,
maxValue: 4,

ViewSetupFormScript: func()
self.viewValue := GetUserConfig('soundVolume);

Knob

C H A P T E R 7

Controls and Other Protos

7-14 Time Protos

ChangedSlider: func()
begin
SetVolume(viewValue);
:SysBeep();
end,

...}

The example above initializes the slider gauge to indicate the current system
volume, which it retrieves from the user configuration that is maintained by the
Newton System Software. The range of allowable volume values is from 0
(the default for minValue) to 4.

Whenever the user moves the slider and lifts the pen, the viewValue slot is
updated and the ChangedSlider method is called. In the example, the
ChangedSlider method resets the system volume to the new value chosen by
the user and sounds a beep to provide the user with audible feedback.

For more information on the protoSlider and the ChangedSlider method,
see “protoSlider” (page 6-33) in Newton Programmer’s Reference.

Time Protos 7

You can use the time protos to allow the user to set time and date values. There are
four time protos:

■ The protoDigitalClock time proto displays a digital clock with which the
user can set a time value. For more information about the slots and methods for
this proto, see “protoDigitalClock” (page 6-38) in Newton Programmer’s
Reference. Figure 7-21 shows an example of a protoDigitalClock view.

Figure 7-21 A protoDigitalClock view

■ The protoNewSetClock time proto displays an analog clock with which the
user can set a time value. For more information about the slots and methods for
this proto, see “protoNewSetClock” (page 6-40) in Newton Programmer’s
Reference. Figure 7-22 shows an example of a protoNewSetClock view.

C H A P T E R 7

Controls and Other Protos

Time Protos 7-15

Figure 7-22 A protoNewSetClock view

■ The protoSetClock time proto also displays an analog clock with which the
user can set a time value. Although this proto is still available for use, it has
been updated to the protoNewSetClock, which you should use instead.

■ The protoAMPMCluster time proto displays A.M. and P.M. radio buttons in a
protoNewSetClock view. For more information about the slots and methods
for this proto, see “protoAMPMCluster” (page 6-44) in Newton Programmer’s
Reference. Figure 7-23 shows an example of a protoAMPMCluster view.

Figure 7-23 A protoAMPMCluster view

Implementing a Simple Time Setter 7
To implement a time setter, define your template with the proto that you want
to use, specify the initial time value to show in the clock, and define the
TimeChanged method. You might also need to define additional slots or messages,
as described in “Time Protos” (page 6-38) in Newton Programmer’s Reference.

The following example is a template that uses protoDigitalClock to allow the
user to specify a time:

clock := {...
 _proto: protoDigitalClock,

time: 0,

TimeChanged: func()
begin

// add your code to respond to time change
print(time);
end,

C H A P T E R 7

Controls and Other Protos

7-16 Special View Protos

// initialize with current time
ViewSetupFormScript: func()

begin
time := time();
end,

...};

Special View Protos 7

You can use the protos described in this section to provide special-purpose views in
your applications. There are seven special view protos:

■ The protoDragger creates a view that can be dragged around the screen with
the pen. For more information about the slots and methods for this proto, see
“protoDragger” (page 6-45) in Newton Programmer’s Reference. Figure 7-22
shows an example of a protoDragger view.

Figure 7-24 A protoDragger view

■ The protoDragNGo creates a view that can be dragged around the screen with
the pen. This is identical to protoDragger, except that protoDragNGo
includes a close box in the lower-right corner of the view. For more information
about the slots and methods for this proto, see “protoDragNGo” (page 6-47) in
Newton Programmer’s Reference. Figure 7-25 shows an example of a
protoDragNGo view.

Figure 7-25 A protoDragNGo view

C H A P T E R 7

Controls and Other Protos

Special View Protos 7-17

■ The protoDrawer creates a view that looks and acts like the base view of the
Extras Drawer. For more information about the slots and methods for this proto,
see “protoDrawer” (page 6-49) in Newton Programmer’s Reference.

■ The protoFloater creates a draggable view that is horizontally centered
within its parent view and floats above all other nonfloating sibling views within
an application. For more information about the slots and methods for this proto,
see “protoFloater” (page 6-49) in Newton Programmer’s Reference.

■ The protoFloatNGo creates a draggable view that is horizontally centered
within its parent view and floats above all other nonfloating sibling views
within an application. This is identical to protoFloater, except that
protoFloatNGo includes a close box in the lower-right corner of the view. For
more information about the slots and methods for this proto, see
“protoFloatNGo” (page 6-51) in Newton Programmer’s Reference.

■ The protoGlance creates a text view that automatically closes itself after
displaying for a brief period. For more information about the slots and methods
for this proto, see “protoGlance” (page 6-52) in Newton Programmer’s
Reference. Figure 7-26 shows an example of a protoGlance view.

Figure 7-26 A protoGlance view

■ The protoStaticText creates a one-line paragraph view that is read-only
and left-justified. For more information about the slots and methods for this, see
“protoStaticText” (page 6-54) in Newton Programmer’s Reference. Figure 7-22
shows an example of a protoStaticText view.

Figure 7-27 A protoStaticText view

Static text

C H A P T E R 7

Controls and Other Protos

7-18 View Appearance Protos

View Appearance Protos 7

You can use the protos described in this section to add to the appearance of your
views in certain ways. There are three view appearance protos:

■ The protoBorder is a view filled with black. You can use this proto as a
border, a line, or a black rectangle. For more information about the slots and
methods for this proto, see “protoBorder” (page 6-56) in Newton Programmer’s
Reference. Figure 7-28 shows an example of a protoBorder view.

Figure 7-28 A protoBorder view

■ The protoDivider creates a divider bar that extends the whole width of
its parent view. This proto also includes a text label. For more information
about the slots and methods for this proto, see “protoDivider” (page 6-56) in
Newton Programmer’s Reference. Figure 7-29 shows an example of a
protoDivider view.

Figure 7-29 A protoDivider view

■ The protoTitle creates a title centered above a heavy black line at the top of
a view. You can optionally include an icon that appears to the left of the title
text. For more information about the slots and methods for this proto, see
“protoTitle” (page 6-58) in Newton Programmer’s Reference. Figure 7-30
shows an example of a protoTitle view.

Figure 7-30 A protoTitle view

Icon Title

C H A P T E R 7

Controls and Other Protos

Status Bar Protos 7-19

Status Bar Protos 7

You can use the protos described in this section to display a status bar at the bottom
of a view. There are two status bar protos:

■ The protoStatus creates a status bar, which includes a close button and an
analog clock, at the bottom of a view. For more information about the slots and
methods for this proto, see “protoStatus” (page 6-59) in Newton Programmer’s
Reference. Figure 7-31 shows an example of a protoStatus view.

Figure 7-31 A protoStatus view

■ The protoStatusBar creates a status bar, which includes an analog clock,
at the bottom of a view. This is identical to protoStatus, except that
protoStatusBar does not include a close button. For more information about
the slots and methods for this proto, see “protoStatusBar” (page 6-60) in Newton
Programmer’s Reference. Figure 7-32 shows an example of a
protoStatusBar view.

Figure 7-32 A protoStatusBar view

Note
The new status bar protos newtStatusBarNoClose and
newtStatusBar, are the preferred way to add a status bar to
your applications. These protos, which are described in
“NewtApp Applications” (page 4-1), simplify adding buttons and
automate hiding the close box when your application is moved
into the background. ◆

C H A P T E R 7

Controls and Other Protos

7-20 Summary

Summary 7

Scroller Protos 7

protoLeftRightScroller 7

aProtoLeftRightScroller := {
_proto: protoLeftRightScroller,
scrollView: viewTemplate,
scrollRect: boundsFrame, // extent of scrollable area
dataRect: boundsFrame, // extent of data in the view
viewRect: boundsFrame, // extent of visible area
xPos: integer, // initial x-coord in scrollRect
yPos: integer, // initial y-coord in scrollRect
scrollAmounts: array, // line, page, dbl-click values
pageThreshhold:integer, // lines before page scrolling
ViewScroll2DScript: function, // called when arrows tapped
ViewScrollDoneScript:function, // called when scroll done
SetArrow: function, // set scroll direction
GetArrow: function, // returns scroll direction
...
}

protoUpDownScroller 7

aProtoUpDownScroller := {
_proto: protoUpDownScroller,
scrollView: viewTemplate,
scrollRect: boundsFrame,// extent of scrollable area
dataRect: boundsFrame,// extent of data in the view
viewRect: boundsFrame,// extent of visible area
xPos: integer, // initial x-coord in scrollRect
yPos: integer, // initial y-coord in scrollRect
scrollAmounts: array, // line, page, dbl-click values
pageThreshhold:integer, // lines before page scrolling
ViewScroll2DScript: function, // called when arrows tapped
ViewScrollDoneScript:function, // called when scroll done
SetArrow: function, // set scroll direction
GetArrow: function, // returns scroll direction
...
}

C H A P T E R 7

Controls and Other Protos

Summary 7-21

protoHorizontal2DScroller 7

aProtoHorizontal2DScroller := {
_proto: protoHorizontal2DScroller,
scrollView: viewTemplate,
scrollRect: boundsFrame,// extent of scrollable area
dataRect: boundsFrame,// extent of data in the view
viewRect: boundsFrame,// extent of visible area
xPos: integer, // initial x-coord in scrollRect
yPos: integer, // initial y-coord in scrollRect
scrollAmounts: array, // line, page, dbl-click values
pageThreshhold:integer, // lines before page scrolling
ViewScroll2DScript: function, // called when arrows tapped
ViewScrollDoneScript:function, // called when scroll done
SetArrow: function, // set scroll direction
GetArrow: function, // returns scroll direction
...
}

protoHorizontalUpDownScroller 7

aProtoHorizontalUpDownScroller := {
_proto: protoHorizontalUpDownScroller,
scrollView: viewTemplate,
scrollRect: boundsFrame,// extent of scrollable area
dataRect: boundsFrame,// extent of data in the view
viewRect: boundsFrame,// extent of visible area
xPos: integer, // initial x-coord in scrollRect
yPos: integer, // initial y-coord in scrollRect
scrollAmounts: array, // line, page, dbl-click values
pageThreshhold:integer, // lines before page scrolling
ViewScroll2DScript: function, // called when arrows tapped
ViewScrollDoneScript:function, // called when scroll done
SetArrow: function, // set scroll direction
GetArrow: function, // returns scroll direction
...
}

C H A P T E R 7

Controls and Other Protos

7-22 Summary

Button and Box Protos 7

protoTextButton 7

aProtoTextButton := {
_proto: protoTextButton,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
text: string, // text inside the button
viewFont: fontFlags,
viewFormat: formatFlags,
viewJustify: justificationFlags,
viewTransferMode: integer, // view transfer constants
ButtonClickScript: function, // when button is tapped
ButtonPressedScript: function, // while button is pressed
...
}

protoPictureButton 7

aProtoTextButton := {
_proto: protoPictureButton,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
icon: bitmap, // bitmap to use for button
viewFormat: formatFlags,
viewJustify: justificationFlags,
ButtonClickScript: function, // when button is tapped
ButtonPressedScript: function, // while button is pressed
...
}

protoInfoButton 7

aProtoInfoButton := {
_proto: protoInfoButton,
viewFlags: integer, // viewFlags constants
viewBounds: boundsFrame,
viewJustify: justificationFlags,
...
}

C H A P T E R 7

Controls and Other Protos

Summary 7-23

protoOrientation 7

aProtoOrientation := {
_proto: protoOrientation,
viewFlags: integer, // viewFlags constants
viewBounds: boundsFrame,
viewJustify: justificationFlags,
...
}

protoRadioCluster 7

aProtoRadioCluster := {
_proto: protoRadioCluster,
viewBounds: boundsFrame,
clusterValue: integer, // value of selected button
InitClusterValue: function, // initialize cluster
ViewSetupFormScript: function, // set initial button
ClusterChanged: function, // called upon value change
SetClusterValue: function, // change selected button
...
}

protoRadioButton 7

aProtoRadioButton := {
_proto: protoRadioButton,
viewBounds: boundsFrame,
viewFormat: formatFlags,
text: string, // radio button text label
buttonValue: integer, // identifies button
viewValue: integer, // current value of radio button
...
}

protoPictRadioButton 7

aProtoPictRadioButton := {
_proto: protoPictRadioButton,
viewBounds: boundsFrame,
viewFormat: formatFlags,
viewJustify: justificationFlags,
icon: bitmap, // bitmap for picture button
buttonValue: integer, // identifies button

C H A P T E R 7

Controls and Other Protos

7-24 Summary

viewValue: integer, // current value of radio button
ViewDrawScript:function, // to highlight button
...
}

protoCloseBox 7

aProtoCloseBox := {
_proto: protoCloseBox,
viewFlags: integer, // viewFlags constants
viewBounds: boundsFrame,
viewJustify: justificationFlags,
viewFormat: formatFlags,
ButtonClickScript:function, // called before closing
...
}

protoLargeCloseBox 7

aProtoLargeCloseBox := {
_proto: protoLargeCloseBox,
viewFlags: integer, // viewFlags constants
viewBounds: boundsFrame,
viewJustify: justificationFlags,
viewFormat: formatFlags,
ButtonClickScript:function, // called before closing
...
}

protoCheckbox 7

aProtoCheckbox := {
_proto: protoCheckbox,
viewBounds: boundsFrame,
viewFormat: formatFlags,
viewFont: fontFlags, // font for text label
text: string, // the checkbox label
buttonValue: value, // value when box is checked
viewValue: value, // current value (nil=unchecked)
ValueChanged: function, // checkbox value changed
ToggleCheck: function, // toggles checkbox state
...
}

C H A P T E R 7

Controls and Other Protos

Summary 7-25

protoRCheckbox 7

aProtoRCheckbox := {
_proto: protoRCheckbox,
viewBounds: boundsFrame,
viewFormat: formatFlags,
viewFont: fontFlags, // font for text label
text: string, // the checkbox label
indent: integer, // pixels to indent box
buttonValue: value, // value when box is checked
viewValue: value, // current value (nil=unchecked)
ValueChanged: function, // checkbox value changed
ToggleCheck: function, // toggles checkbox state
...
}

Selection Tab Protos 7

protoAZTabs 7

aProtoAZTabs := {
_proto: protoAZTabs,
PickLetterScript: function, // tab is tapped
SetLetter: function, // sets tab letter
...
}

protoAZVertTabs 7

aProtoAZVertTabs := {
_proto: protoAZVertTabs,
PickLetterScript: function, // tab is tapped
SetLetter: function, // sets tab letter
...
}

Gauges and Slider Protos 7

protoSlider 7

aProtoSlider := {
_proto: protoSlider,
viewBounds: boundsFrame,

C H A P T E R 7

Controls and Other Protos

7-26 Summary

viewValue: integer, // gauge value
minValue: integer, // minimum gauge value
maxValue: integer, // maximum gauge value
ViewSetupFormScript: function, // set initial gauge value
ChangedSlider: function, // slider moved
TrackSlider: function, // viewValue changed
...
}

protoGauge 7

aProtoGauge := {
_proto: protoGauge,
viewBounds: boundsFrame,
viewValue: integer, // gauge value
minValue: integer, // minimum gauge value
maxValue: integer, // maximum gauge value
gaugeDrawLimits: Boolean, // non-nil for gray bg
ViewSetupFormScript: function, // set initial gauge value
...
}

protoLabeledBatteryGauge 7

aProtoLabeledBatteryGauge:= {
_proto: protoLabeledBatteryGauge,
viewBounds: boundsFrame,
...
}

clGaugeView 7

aClGaugeView:= {
viewBounds: boundsFrame,
viewClass: clGaugeView,
viewValue: integer, // value of gauge
viewFlags: integer, // viewFlags constants
viewFormat: formatFlags,
minValue: integer, // min value of gauge
maxValue: integer, // max value of gauge
gaugeDrawLimits: Boolean, // non-nil for gray bg
ViewChangedScript: function, // gauge dragged
ViewFinalChangeScript: function, // gauge changed
...
}

C H A P T E R 7

Controls and Other Protos

Summary 7-27

Time Protos 7

protoDigitalClock 7

aProtoDigitalClock := {
_proto: protoDigitalClock,
viewFlags: integer, // viewFlags constants
viewBounds: boundsFrame,
viewJustify: justificationFlags,
increment: integer, // minutes to change on tap
time: integer, // initial or current time
wrapping: Boolean, // non-nil to wrap around day

// boundaries
midnite: Boolean, // non-nil if 0 means midnight

// tomorrow
Refresh: function, // update clock
TimeChanged: function, // called when time is changed
...
}

protoSetClock 7

aProtoSetClock := {
_proto: protoSetClock,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
viewFormat: formatFlags,
hours: integer, // value set by hour hand
minutes: integer, // value set by minute hand
TimeChanged: function, // called when time is changed
...
}

protoNewSetClock 7

aProtoNewSetClock := {
_proto: protoNewSetClock,
viewBounds: boundsFrame,
viewJustify: justificationFlags,
time: integer, // initial or current time
annotations: array, // four strings to annotate

// the clock face
supressAnnotations:Boolean, // if slot exists, suppress
exactHour: Boolean, // adjust hour markers

C H A P T E R 7

Controls and Other Protos

7-28 Summary

Refresh: function, // update clock
TimeChanged: function, // called when time is changed
...
}

protoAMPMCluster 7

aProtoAMPMCluster := {
_proto: protoAMPMCluster,
viewBounds: boundsFrame,
viewJustify: justificationFlags,
time: integer, // specify time--required
...
}

Special View Protos 7

protoDragger 7

aProtoDragger := {
_proto: protoDragger,
viewBounds : boundsFrame,
viewFlags: integer, // viewFlags constants
viewFormat: formatFlags,
noScroll: string, // msg to display if no scrolling
noOverview: string, // msg to display if no overview
...
}

protoDragNGo 7

aProtoDragNGo := {
_proto: protoDragNGo,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
viewJustify: justificationFlags,
viewFormat: formatFlags,
noScroll: string, // msg to display if no scrolling
noOverview: string, // msg to display if no overview
...
}

C H A P T E R 7

Controls and Other Protos

Summary 7-29

protoDrawer 7

aProtoDrawer := {
_proto: protoDrawer,
viewFlags: integer, // viewFlags constants
viewBounds: boundsFrame,
viewFormat: formatFlags,
viewEffect: effectFlags,
showSound: soundFrame,// sound when drawer opens
hideSound: soundFrame,// sound when drawer closes
...
}

protoFloater 7

aProtoFloater := {
_proto: protoFloater,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
viewJustify:justificationFlags,
viewFormat: formatFlags,
viewEffect: effectFlags,
noScroll: string, // msg to display if no scrolling
noOverview: string, // msg to display if no overview
...
}

protoFloatNGo 7

aProtoFloatNGo := {
_proto: protoFloatNGo,
viewFlags: integer, // viewFlags constants
viewBounds: boundsFrame,
viewJustify: justificationFlags,
viewFormat: formatFlags,
viewEffect: effectFlags,
noScroll: string, // msg to display if no scrolling
noOverview: string, // msg to display if no overview
...
}

C H A P T E R 7

Controls and Other Protos

7-30 Summary

protoGlance 7

aProtoGlance := {
_proto: protoGlance,
viewBounds: boundsFrame,
viewJustify: justificationFlags,
viewFormat: formatFlags,
viewFont: fontFlags, // font for text
viewEffect: effectFlags,
viewIdleFrequency: integer, // time view to remain open
text: string, // text to appear in view
...
}

protoStaticText 7

aProtoStaticText:= {
_proto: protoStaticText,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
text: string, // text to display
viewFont: fontFlags,
viewJustify: justificationFlags,
viewFormat: formatFlags,
viewTransferMode: integer, // view transfer constants
tabs: array, // up to eight tab-stop positions
styles: array, // font information
...
}

View Appearance Protos 7

protoBorder 7

aProtoBorder := {
_proto: protoBorder,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
viewFormat: formatFlags,
...
}

C H A P T E R 7

Controls and Other Protos

Summary 7-31

protoDivider 7

aProtoDivider:= {
_proto: protoDivider,
viewBounds: boundsFrame,
viewFlags: integer, // viewFlags constants
viewFont: fontFlags, // font for text
viewJustify: justificationFlags,
viewFormat: formatFlags,
title: string, // text on divider bar
titleHeight: integer, // height of divider
...
}

protoTitle 7

aProtoTitle := {
_proto: protoTitle,
viewJustify: justificationFlags,
viewFormat: formatFlags,
viewFont: fontFlags,
title: string, // text of title
titleIcon: bitMapFrame,
titleHeight: integer, // height of title
viewTransferMode: integer, // view transfer constants
...
}

Status Bar Protos 7

protoStatus 7

aProtoStatus := {
_proto: protoStatus,
...
}

protoStatusBar 7

aProtoStatusBar := {
_proto: protoStatusBar,
...
}

About Text 8-1

C H A P T E R 8

Text and Ink Input and Display 8Figure 8-0
Table 8-0

This chapter describes how the Newton system handles text and presents interfaces
you can use to work with text in NewtonScript applications.

The material covers the following components of Newton text handling:

■ handwritten text input

■ keyboard text input

■ views for text display

■ fonts for text display

The first section of this chapter, “About Text,” describes the basic terms and
concepts needed to understand text processing on the Newton.

The second section, “Using Text,” describes how to use the various input and
display components to handle text in your applications.

For comprehensive reference information about the text-related constants, data
structures, views, methods, and functions, see “Text and Ink Input and Display
Reference” (page 7-1) in Newton Programmer’s Reference.

About Text 8

This section describes the basic concepts, terms, and processes you need to
understand to work with text in your applications.

About Text and Ink 8
The Newton allows you to process two forms of text input: ink text and
recognized text. This section describes both forms of text input.

C H A P T E R 8

Text and Ink Input and Display

8-2 About Text

When the user writes a line of text on the Newton screen, the Newton system
software performs a series of operations, as follows:

■ The raw data for the input is captured as ink, which is also known as sketch ink
or raw ink.

■ Raw ink is stored as a sequence of strokes or stroke data.

■ If the view in which the ink was drawn is configured for ink text, the recognition
system groups the stroke data into a series of ink words, based on the timing
and spacing of the user’s handwriting. A user can insert, delete, and move ink
words in the same way as recognized text. Ink words can be scaled to various
sizes for display and printing. They can also be recognized at a later time, by a
process known as deferred recognition.

■ If the view in which the ink was drawn supports or is configured for text
recognition, the ink words are processed by the recognition system into
recognized text and displayed in a typeface.

The data describing the handwriting strokes of the ink word are stored as compressed
data in a binary object. This stroke data can be accessed programmatically, using
the stroke bundle methods described in “Recognition” (page 9-1) in Newton
Programmer’s Guide.

The recognition system and deferred recognition are described in “Recognition”
(page 9-1).

Note
To provide maximum user flexibility for your applications, you
are encouraged to allow ink text in all of your input views. ◆

Written Input Formats 8

Ink words can be intermixed with recognized text. This data, normally represented
as rich strings, can be used anywhere that you might expect a standard string.
Each ink word is encoded as a single character in a rich string, as described in
“Rich Strings” (page 8-22).

You should use the rich string format to store data in a soup, because of its
compact representation. You can safely use rich strings with all functions, including
the string functions, which are documented in “Utility Functions” (page 26-1).
Another data format, described in “Text and Styles” (page 8-25), pairs text strings
with style data for viewing in text views.

C H A P T E R 8

Text and Ink Input and Display

About Text 8-3

Caret Insertion Writing Mode 8

Caret insertion writing mode is a text input mode that the user can enable or
disable. When caret insertion mode is disabled, handwritten text is inserted into the
view at the location where it is written. When caret insertion writing mode is
enabled, handwritten text is inserted at the location indicated by the insertion caret,
regardless of where on the screen it is drawn. Caret insertion writing mode is used
automatically for keyboard text entry.

To enable or disable caret insertion writing mode, the user selects or deselects the
“Insert new words at caret” option from the Text Editing Settings slip. You can
display this slip by tapping the Options button in the Recognition Preferences slip.

Applications do not normally need to be aware of whether caret insertion writing
mode is enabled or disabled. The one exception to this is at application startup
time, when you might want to set the initial location of the insertion point. This is
described in “Setting the Caret Insertion Point” (page 8-26).

There are a few caret insertion writing mode routines you can use to implement
your own version of this mode. They are described in “Caret Insertion Writing
Mode Functions and Methods” (page 7-47) in Newton Programmer’s Reference.

Fonts for Text and Ink Display 8

The Newton system software allows you to specify the font characteristics for
displaying text and ink in a paragraph view on the screen. The font information is
stored in a font specification structure known as a font spec. The font specification
for built-in ROM fonts can also be represented in a frame as a packed integer. Both
of these representations are described in “Using Fonts for Text and Ink Display”
(page 8-17).

The system provides a number of functions you can use to access and modify font
attributes. These are described in “Text and Styles” (page 8-25).

About Text Views and Protos 8
There are a number of views and protos to use for displaying text and for receiving
text input. For basic information about views, see “Views” (page 3-1).

C H A P T E R 8

Text and Ink Input and Display

8-4 About Text

The views and protos that you use for text are listed in Table 8-1.

About Keyboard Text Input 8
Your application can provide keyboards and keypads for user text input by creating
an object from one of the keyboard view classes or protos:

■ The clKeyboardView class provides a keyboard-like array of buttons that the
user can tap with the pen to perform an action. This class is described in
“Keyboard Views” (page 8-26).

Table 8-1 Views and protos for text input and display

View or Proto Description

edit view Use the clEditView class for basic text input and display.
Objects of this class can display and/or accept text and
graphic data. The clEditView automatically creates child
clParagraphView views for text input and display and
clPolygonView views for graphic input and display. You
can also include clPictureView views in your
clEditViews.

For more information about this class, see “General Input
Views” (page 8-6).

paragraph views Use the clParagraphView class to display text or to accept
text input.

For more information about this class, see “Paragraph Views”
(page 8-10).

lightweight
paragraph views

If your paragraph view template meets certain criteria, the
Newton system automatically creates a lightweight paragraph
view for you. Lightweight paragraph views are read-only
and use only one font, although they can contain ink. These
views require significantly less memory than do standard
paragraph views.

For more information about lightweight paragraph views, see
“Lightweight Paragraph Views” (page 8-11).

input line protos You can use one of the input line protos to allow the user to
enter a single line of text, as described in “Using Input Line
Protos” (page 8-12).

C H A P T E R 8

Text and Ink Input and Display

About Text 8-5

■ Use one of the keyboard protos to create keyboard views in your applications.
These protos include the protoKeyboard, which creates a keyboard view that
floats above all other views. The keyboard protos are also described in
“Keyboard Views.”

The Keyboard Registry 8

You need to register any custom keyboards or keypads that you create with the
Newton system’s keyboard registry. Caret insertion writing mode is used whenever
the user enters text from a keyboard or keypad. When a registered keyboard or keypad
is opened, the system knows to display the insertion caret at the proper location.

The Newton system also allows you to customize the behavior of the insertion
caret and key presses by calling your application-defined methods whenever an
action occurs in a registered keyboard or keypad.

For more information about the keyboard registry, see “Using the Keyboard
Registry” (page 8-36).

The Punctuation Pop-up Menu 8

The user can tap the insertion caret to display a Punctuation pop-up menu. This
menu, shown in Figure 8-1, provides an easy way to add punctuation when writing
with the stylus.

Figure 8-1 The Punctuation pop-up menu

Choosing any item on the Punctuation pop-up menu inserts the appropriate
character into the text, at the insertion caret. The bent arrow, at the top left, is a
carriage return, and the blank box at the bottom indicates a space.

You can override this menu with your own caret pop-up menu, as described in
“The Caret Pop-up Menu” (page 8-38).

C H A P T E R 8

Text and Ink Input and Display

8-6 Using Text

Compatibility 8
One of the significant advances in software functionality in the Newton 2.0 system
is the capacity to process ink in most views, which includes deferred recognition
and the ability to mix text and ink together in rich string. This expands the behavior
provided by Newton 1.x machines, which generally process written input
immediately for recognition and display the resulting word in a typeface.

These additional capabilities made it necessary to extend the Recognition menu.
The Newton 2.0 Recognition menu adds more input options and replaces the
toggling Recognizer buttons of the Newton 1.x status bar.

The Newton 2.0 system also behaves slightly differently when merging text into
paragraph views. When caret insertion writing mode is disabled, paragraphs no
longer automatically insert carriage returns or tabs. This is true regardless of
whether the user is entering text or ink words.

With Newton System 2.0, you can include images in your edit views. Edit views
(clEditView) can now contain picture views (clPictureView) as child views

Any ink written on a 1.x machine can be dragged into a Newton System 2.0
paragraph and automatically converted into an ink word.

Notes, text, or ink moved from a Newton 1.x to a Newton with the 2.0 system
works correctly without any intervention. However, the reverse is not true: you
cannot insert a a card with 2.0 or later data into a 1.x machine.

The expando protos have become obsolete. These are protoExpandoShell,
protoDateExpando, protoPhoneExpando, and protoTextExpando.
These protos are still supported for 1.x application compatibility, but should not be
used in new applications.

Using Text 8

This section describes how to use various features of text input and display on the
Newton and provides examples of some of these features.

Using Views and Protos for Text Input and Display 8
This section describes the different views and protos to use in your applications for
text input and display.

General Input Views 8

The clEditView view class is used for a view that can display and/or accept text
and graphic data. Views of the clEditView class contain no data directly;

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-7

instead, they have child views that contain the individual data items. Text items
are contained in child views of the class clParagraphView and graphics are
contained in child views of the class clPolygonView.

A view of the clEditView class includes the following features:

■ Automatic creation of clParagraphView or clPolygonView children as
the user writes or draws in the view. These child views hold the data the user writes.

■ Support for inclusion of clPictureView views, which are used for images.

■ Text and shape recognition, selection, and gestures such as scrubbing, copying
to clipboard, pasting from clipboard, duplicating, and others, as controlled by
the setting of the viewFlags slot. The initial recognition is handled by the
clEditView. A child clParagraphView or clPolygonView is created
and that child view handles subsequent editing of the data.

■ Drag and drop handling. A child view can be dragged (moved or copied) out of
the clEditView and dropped into another clEditView, whose child it then
becomes. Other views can be configured to handle data dragged from a
clEditView, as described in “Views” (page 3-1).

■ Clipboard support. A clParagraphView or clPolygonView child view can
be dragged (moved or copied) to the clipboard, from which it can be pasted into
another clEditView or clView, whose child it becomes.

■ Automatic resizing of clParagraphView child views to accommodate added
input. This feature is controlled by the vCalculateBounds flag in the
viewFlags slot of those child views.

■ Automatic addition of new words to existing paragraphs when caret insertion
writing mode is disabled.

Views of the class clEditView are intended for user input of text, shape, image,
and ink data. Consequently, views of this class expect that any child views have
been defined and created at run time, not predefined by templates created in NTK.

If you need to include predefined child views in a clEditView, use the
ViewSetupChildrenScript method of the clEditView to define the child
views and set up the stepChildren array. You might need to do this, for
example, if you store the data for child views in a soup, and you need to retrieve
the data and rebuild the child views at run time. For more information, see
“Including Editable Child Views in an Input View” (page 8-9).

The default font for a clParagraphView created by a clEditView is the font
selected by the user on the Styles palette in the system.

The default pen width for a clPolygonView created by a clEditView is the
width set by the user on the Styles palette.

The slots of clEditView are described in “General Input View (clEditView)”
(page 7-12) in Newton Programmer’s Reference.

C H A P T E R 8

Text and Ink Input and Display

8-8 Using Text

Here is an example of a template defining a view of the clEditView class:

editor := {...
viewClass: clEditView,
viewBounds: {left:0, top:0, right:200, bottom:200},
viewFlags: vVisible+vAnythingAllowed,
viewFormat: vfFillWhite+vfFrameBlack+vfPen(1)+

vfLinesLtGray,
viewLineSpacing: 20,
// methods and other view-specific slots
viewSetupFormScript: func()...

...}

System Messages in Automatically Created Views 8

When a child view is automatically created by a clEditView, the vNoScripts
flag is set in the viewFlags slot of the child view. This flag prevents system
messages from being sent to a view.

This behavior is normally desirable for automatically created views, because they
have no system message-handling methods and the system saves time by not
sending the messages to them.

If you want to use one of these views in a manner that requires it to receive system
messages, you need to remove the vNoScripts flag from the viewFlags slot of
the view.

Creating the Lined Paper Effect in a Text View 8

A view of the clEditView class can appear simply as a blank area in which the
user writes information. However, this type of view usually contains a series of
horizontal dotted lines, like lined writing paper. The lines indicate to the user that
the view accepts input. To create the lined paper effect, you must set the following
slots appropriately:

viewFormat Must include one of the vfLines… flags. This activates the
line display.

viewLineSpacing
Sets the spacing between the lines, in pixels.

viewLinePattern
Optional. Sets a custom pattern that is used to draw the lines
in the view. In the viewFormat slot editor in NTK, you
must also set the Lines item to Custom to signal that
you are using a custom pattern. (This sets the
vfCustom<<vfLinesShift flag in the viewFormat
slot.)

Patterns are binary data structures, which are described in the
next section.

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-9

Defining a Line Pattern 8

You can define a custom line pattern for drawing the horizontal lines in a paragraph
view. A line pattern is an eight-byte binary data structure with the class 'pattern.

To create a binary pattern data structure on the fly, use the following
NewtonScript trick:

myPattern := SetClass(Clone("\uAAAAAAAAAAAAAAAA"),
'pattern);

This code clones a string, which is already a binary object, and changes its class to
'pattern. The string is specified with hex character codes whose binary represen-
tation creates the pattern. Each two-digit hex code creates one byte of the pattern.

Including Editable Child Views in an Input View 8

For a child view of a clEditView to be editable, you need to follow certain rules:

■ The child view must reside in the viewChildren slot of the clEditView.
You cannot store a child view’s template in the stepChildren slot, as NTK
normally does.

■ The child view must contain a viewStationery slot with an appropriate
value, depending on the view class and data type. The acceptable values are
shown in Table 8-2:

■ Add the child view templates to the viewChildren array of the edit view and
open the view or send it the RedoChildren message. Alternatively, you can
add the child view with the AddView method and then send the Dirty message
to the edit view.

Table 8-2 viewStationery slot value for clEditView children

View class View data type
Value of
viewStationery slot

clParagraphView text 'para

clPolygonView recognized
graphics

'poly

clPolygonView ink 'ink

clPictureView bitmap or
picture object

'pict

C H A P T E R 8

Text and Ink Input and Display

8-10 Using Text

IMPORTANT

You store view templates (not view objects) in the
viewChildren array of an edit view. ▲

Paragraph Views 8

The clParagraphView class displays text or accepts text input. It includes the
following features:

■ Text recognition

■ Text correction

■ Text editing, including scrubbing, selection, copying to the clipboard, pasting
from the clipboard, and other gestures, including duplicating, as controlled by
the setting of the viewFlags slot.

■ Automatic word-wrapping.

■ Support for the caret gesture, which adds a space or splits a word.

■ Clipping of text that won’t fit in the view. (An ellipsis is shown to indicate text
beyond what is visible.)

■ Use of ink and different text fonts (styles) within the same paragraph.

■ Tab-stop alignment of text.

■ Automatic resizing to accommodate added text (when this view is enclosed in a
clEditView). This feature is controlled by the vCalculateBounds flag in
the viewFlags slot.

■ Automatic addition of new words written near the view when this view is
enclosed in a clEditView and caret insertion writing mode is disabled.

The slots of clParagraphView are described in “Paragraph View
(clParagraphView)” (page 7-15) in Newton Programmer’s Reference.

Note that you don’t need to create paragraph views yourself if you are accepting
user input inside a clEditView. Just provide a clEditView and when the user
writes in it, the view automatically creates paragraph views to hold text.

The following is an example of a template defining a view of the
clParagraphView class:

dateSample := {...
viewClass: clParagraphView,
viewBounds: {left:50, top:50, right:200, bottom:70},
viewFlags: vVisible+vReadOnly,
viewFormat: vfFillWhite,
viewJustify: oneLineOnly,
text: "January 24, 1994",

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-11

// 8 chars of one font, 3 chars of another, 5 chars
// of another
styles: [8, 18434, 3, 12290, 5, 1060865],

...}

Paragraph views are normally lined to convey to the user that the view accepts text
input. To add the lined paper effect to paragraph views, see “Creating the Lined
Paper Effect in a Text View” (page 8-8).

Lightweight Paragraph Views 8

When you create a template using the clParagraphView class, and that
template is instantiated into a view at run time, the system may create a specialized
kind of paragraph view object, called a lightweight paragraph view. Lightweight
paragraph views have the advantage of requiring much less memory than do
standard paragraph views.

The system automatically creates a lightweight paragraph view instead of a
standard paragraph view if your template meets the following conditions:

■ The view must be read-only, which means that its viewFlags slot contains the
vReadOnly flag.

■ The view must not include any tabs, which means that the template does not
contain the tabs slot.

■ The view must not include multiple font styles, which means that the template
does not contain the styles slot; however, the view can contain a rich string in
its text slot. For information about rich strings, see “Rich Strings” (page 8-22).

■ The viewFlags slot of the view must not contain the following flags:
vGesturesAllowed, vCalculateBounds.

Note
Lightweight paragraph views can contain ink. ◆

Most paragraph views look the same after they are instantiated; that is, there is
not normally a way to tell whether a particular paragraph view is a standard or a
lightweight view. However, ink displayed in a lightweight paragraph view is
displayed in a fixed font size.

Note
When laying out text in a lightweight paragraph view, the
viewLineSpacing value is ignored. This is not generally a
problem, since the line spacing dotted lines are normally used to
indicate that the text can be edited, and text in a lightweight
paragraph cannot be edited. ◆

C H A P T E R 8

Text and Ink Input and Display

8-12 Using Text

Once a lightweight paragraph view has been instantiated, you cannot dynamically
change the view flags to make it an editable view, or add multistyled text by
providing a styles slot, since this type of view object doesn’t support these
features. If you need this functionality for an existing lightweight paragraph view,
you’ll have to copy the text out of it into an editable paragraph view.

Using Input Line Protos 8

Input line protos provide the user with single lines in which to enter data. There are
four input line protos available:

■ protoInputLine is a one-line input field that defines a simple paragraph
view in which the text input is left-justified.

■ protoRichInputLine is the text and ink equivalent of protoInputLine.

■ protoLabelInputLine is a one-line input field that includes a text label and
can optionally include a pop-up menu known as a picker.

■ protoRichLabelInputLine is the text and ink equivalent of
protoLabelInputLine.

protoInputLine 8

This proto defines a view that accepts any kind of text input and is left-justified.
Below is an example of a what a protoInputLine looks like on the
Newton screen:

The protoInputLine is based on a view of the clParagraphView class. It
has no child views.

The following is an example of a template using protoInputLine:

myInput := {...
_proto: protoInputLine,
viewJustify: vjParentRightH+vjParentBottomV,
viewLineSpacing: 24,
viewBounds: SetBounds(-55, -33, -3, -3),
...}

The slots of the protoInputLine are described in “protoInputLine” (page 7-17)
in Newton Programmer’s Reference.

protoRichInputLine 8

This proto works exactly like protoInputLine. The only difference is that
protoRichInputLine allows mixed ink and text input, as determined by the
current user recognition preferences.

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-13

The slots of protoRichInputLine are described in “protoRichInputLine”
(page 7-19) in Newton Programmer’s Reference.

protoLabelInputLine 8

This proto defines a view that features a label, accepts any kind of input, and is
left-justified. The protoLabelInputLine can optionally include a picker.

When the protoLabelInputLine does include a picker, the user selects a
choice from the picker. That choice is entered as the text in the input line, and is
marked with a check mark in the picker.

Figure 8-2 shows an example of a protoLabelInputLine with and without the
picker option:

Figure 8-2 An example of a protoLabelInputLine

The protoLabelInputLine is based on a view of the clParagraphView
class. It has two child views:

■ The labelLine child view uses the protoStaticText proto to create the
static text label and to activate the picker if the proto includes one.

■ The entryLine child view uses the protoInputLine proto to create the
input field into which the user writes text. The text value entered into this field is
stored in the text slot of this view.

You can have your label input line protos remember a list of recent items. To do
this, assign a symbol that incorporates your developer signature to the 'memory
slot of your prototype. The system automatically maintains the list of recent
items for your input line. To access the list, use the same symbol with the
AddMemoryItem, AddMemoryItemUnique, GetMemoryItems, and
GetMemorySlot functions, which are described in “Utility Functions” (page 26-1).

Picker option
indicated by
diamond

Example of a picker displayed after lable is tapped.
Check mark indicates the currently selected choice.

Simple protLableInputLine (no picker option)

C H A P T E R 8

Text and Ink Input and Display

8-14 Using Text

IMPORTANT

You can programmatically access the value of the text slot for
the protoLabelInputLine with the expression
entryLine.text. If you update the text slot programmati-
cally, you need to call the SetValue function to ensure that the
view is updated. Below is an example:

SetValue(entryLine, 'text, "new text")]
▲

The following is an example of a template using protoLabelInputLine:

labelLine := {...
_proto: protoLabelInputLine,
viewBounds: {top: 90, left: 42, right: 194, bottom: 114},
label: "Who",
labelCommands: ["Me", "You", "Us", 'pickseparator,

 "Them", "No one"],
curLabelCommand: 0,
...}

The slots of the protoLabelInputLine are described in “protoLabelInputLine”
(page 7-19) in Newton Programmer’s Reference.

protoRichLabelInputLine 8

This proto works exactly like protoLabelInputLine. The only difference is
that protoRichLabelInputLine allows mixed ink and text input, as
determined by the current user recognition preferences.

The slots of the protoRichLabelInputLine are described in
“protoRichLabelInputLine” (page 7-22) in Newton Programmer’s Reference.

Displaying Text and Ink 8
In addition to knowing about the views and protos that you can use for displaying
text and ink, you should understand how text and ink are displayed. This involves
the use of fonts, text styles, and rich strings. This section describes these objects
and how you can use them in your applications to control the display of text and ink.

Text and Ink in Views 8

When the user draws with the pen on the Newton screen, pen input data is captured
as ink, which is also known as sketch ink or raw ink.

What happens with the raw ink depends upon the configuration of the view in
which the input action was performed and the choices that the user made in the

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-15

Recognition menu. The view configuration is defined by the view flags and the
(optional) recognition configuration (recConfig) frame of the view. The
Recognition menu is shown in Figure 8-3.

Figure 8-3 The Recognition menu

When the viewFlags input flags and the recConfig frame of the view are set to
accept both text and ink, the Recognition menu choices control what kind of data is
inserted into the paragraph view.

Note that you can limit the choices that are available in the Recognition menu of
your application, though this is rarely necessary or advisable.

The Recognition menu, recognition view flags, and the recognition configuration
frame are described in “Recognition” (page 9-1).

Mixing Text and Ink in Views 8

Some views require textual input and cannot accept ink words. The recognition
controls are not used by these text-only views, in which writing is always
recognized and inserted as text. If the user drops an ink word into a text-only field,
the ink word is automatically recognized before control returns to the user.

Edit views can handle both ink words and sketch ink. If an edit view receives an
ink word, it either merges that word into an existing paragraph view or creates a
new view for the ink word. If an edit view receives sketch ink, it creates a polygon
view for the ink drawing.

You can also create fields that accepts only ink words. However, if the user types or
drops recognized text into such a field, the recognized text remains recognized text.

You can set a paragraph view to accept either text or ink input with the
following settings:

viewClass: clParagraphView,
viewFlags: vVisible + vClipping + vClickable +

vGesturesAllowed + vCharsAllowed +
vNumbersAllowed,

recConfig: rcInkOrText

C H A P T E R 8

Text and Ink Input and Display

8-16 Using Text

Note
The view flags are described in “Views” (page 3-1). The
recognition view flags are described in “Recognition”
(page 9-1). ◆

Although raw ink is intended mostly for drawing, the user can still write with raw
ink by choosing “Sketches” from the Recognition menu. The recognizer
automatically segments raw ink into ink words. The raw ink can subsequently be
recognized, using deferred recognition. Unlike ink text, raw ink is not moved or
resized after it is written.

When raw ink from a 1.x system is dragged into a paragraph view, each piece of
ink is automatically converted into an ink word. This conversion is not reversible.

Note
You can use one of two representations for text and ink that are
mixed together. The first and more common representation is as a
rich string, as described in “Rich Strings” (page 8-22). The second
representation, used in paragraph views, is as a text string with a
corresponding series of matching style runs. This representation,
which is used for editing operations in paragraph views, is
described in “Text and Styles” (page 8-25). ◆

Ink Word Scaling and Styling 8

Ink words are drawn using the pen thickness that the user specifies in the Styles
menu. After the ink words are drawn, they are scaled by the system software. The
scaling value is specified in the Text Editing Settings menu, which the user can
access by choosing Preferences from the Recognition menu.

The standard values for scaling ink words are 50 percent, 75 percent, and 100 percent.
After the system performs scaling, it assigns a font style and size to the ink word.
The initial style is plain. The initial size is proportional to the x-height of the ink
word, as estimated by the recognizer. This size is defined so that an ink word of a
certain size will be roughly the same size as a text word displayed in a font of that
size. For example, an ink word of size 12 is drawn at roughly the same size as a
text word in a typical 12-point font, as shown in Figure 8-4. The ink words in
Figure 8-4 were first scaled to 50 percent of their written size.

Figure 8-4 Resized and recognized ink

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-17

You can modify the size at which ink words are displayed in two ways: by
changing the scaling percentage or the font size. For example, suppose that you
draw an ink word and the system calculates its font size, as written, at 36 point. If
your ink text scaling is set to 50 percent, the ink word is displayed at half of the
written size, which makes its font size 18 point. If you subsequently change the
scaling of that ink word to 100 percent, its font size changes to 36 point.

If the user applies deferred recognition to the ink words, the recognized text is
displayed in the current font family, size, and style, as specified in the Styles menu.

Note
There is a maximum ink word size. Ink words are scaled to the
smaller of what would be produced by the selected scaling
percentage or the maximum size. ◆

Constraining Font Style in Views 8

You can override the use of styles in a paragraph view so that all of the text in the
paragraph is displayed with a certain font specification. To do this, use the
viewFont slot of the paragraph view along with two of the text view flags.

If you include vFixedTextStyle in the text flags for a paragraph view, all
recognized text in the view is displayed using the font family, point size, and
character style specified for viewFont. This is the normal behavior for input fields.

If you include vFixedInkTextStyle in the text flags for a paragraph view, all
ink words in the view are displayed using the point size and character style
specified for viewFont. Note that the font family does not affect the display of
ink words.

Note
Using the vFixedTextStyle or vFixedInkTextStyle flags
does not modify the 'styles slot of the view. However, if you
use either of these flags, the system does not allow the user to
change the text style for your paragraph view. ◆

The text view flags are described in “Text Flags” (page 7-2) in Newton
Programmer’s Reference.

Using Fonts for Text and Ink Display 8

Whenever recognized text is drawn on the Newton screen, the system software
examines the font specification associated with the text to determine how to draw
the text. The font specification includes the font family name, the font style, and
the point size for the text. You can specify a font with a font frame or with a packed
integer; both of these formats are described in this section.

C H A P T E R 8

Text and Ink Input and Display

8-18 Using Text

The constants you can use in font specifications are shown in “Font Constants for
Packed Font Integer Specifications” (page 7-4) in Newton Programmer’s Reference.

The Font Frame 8

A font frame has the following format:

{family: familyName, face: faceNumber, size: pointSize}

For familyName, you can specify a symbol corresponding to one of the available
built-in fonts, which are shown in Table 8-3.

For faceNumber, you can specify a combination of the values shown in Table 8-4:

Table 8-3 Font family symbols

Symbol Font Family

'espy Espy (system) font

'geneva Geneva font

'newYork New York font

'handwriting Casual (handwriting) font

Table 8-4 Font style (face) values

Constant Value Font face

kFaceNormal 0x000 Normal font

kFaceBold 0x001 Bold font

kFaceItalic 0x002 Italic font

kFaceUnderline 0x004 Underline font

kFaceOutline 0x008 Outline font

kFaceSuperScript 0x080 Superscript font

kFaceSubscript 0x100 Subscript font

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-19

Note
Apple recommending using the normal, bold, and underline font
styles. The other styles do not necessarily display well on
Newton screens. ◆

For pointSize, use an integer that specifies the point size value.

The Packed Integer Font Specification 8

You can specify a font in one 30-bit integer. A packed integer font specification
uses the lower 10 bits for the font family, the middle 10 bits for the font size, and
the upper 10 bits for the font style. Since only the ROM fonts have predefined font
family number constants, you can only specify ROM fonts in a packed value.

Using the Built-in Fonts 8

The system provides several constants you can use to specify one of the built-in fonts.
These constants are listed in Table 8-5. The fonts shown in the table can be specified
by the constant (usable at compile time only), by their font frame, or by an integer
value that packs all of the font information into an integer (sometimes this is what
you see at run time if you examine a viewFont slot in the NTK Inspector).

Table 8-5 Built-in font constants

Constant Font frame Integer value

ROM_fontsystem9 {family:'espy,
face:0, size:9}

9216

ROM_fontsystem9bold {family:'espy,
face:1, size:9}

1057792

ROM_fontsystem9underline {family:'espy,
face:4, size:9}

4203520

ROM_fontsystem10 {family:'espy,
face:0, size:10}

10240

ROM_fontsystem10bold {family:'espy,
face:1, size:10}

1058816

ROM_fontsystem10underline {family:'espy,
face:4, size:10}

4204544

ROM_fontsystem12 {family:'espy,
face:0, size:12}

12288

ROM_fontsystem12bold {family:'espy,
face:1, size:12}

1060864

continued

C H A P T E R 8

Text and Ink Input and Display

8-20 Using Text

ROM_fontsystem12underline {family:'espy,
face:4, size:12}

4206592

ROM_fontsystem14 {family:'espy,
face:0, size:14}

14336

ROM_fontsystem14bold {family:'espy,
face:1, size:14}

1062912

ROM_fontsystem14underline {family:'espy,
face:4, size:14}

4208640

ROM_fontsystem18 {family:'espy,
face:0, size:18}

18432

ROM_fontsystem18bold {family:'espy,
face:1, size:18}

1067008

ROM_fontsystem18underline {family:'espy,
face:4, size:18}

4212736

simpleFont9 {family:'geneva,
face:0, size:9}

9218

simpleFont10 {family:'geneva,
face:0, size:10}

10242

simpleFont12 {family:'geneva,
face:0, size:12}

12290

simpleFont18 {family:'geneva,
face:0, size:18}

18434

fancyFont9 or
userFont9

{family:'newYork,
face:0, size:9}

9217

fancyFont10 or
userFont10

{family:'newYork,
face:0, size:10}

10241

fancyFont12 or
userFont12

{family:'newYork,
face:0, size:12}

12289

fancyFont18 or
userFont18

{family:'newYork,
face:0, size:18}

18433

continued

Table 8-5 Built-in font constants (continued)

Constant Font frame Integer value

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-21

The integers in Table 8-5 are derived by packing font family, face, and size
information into a single integer value. Each NewtonScript integer is 30 bits in
length. In packed font specifications, the lower 10 bits hold the font family, the
middle 10 bits hold the font size, and the upper 10 bits hold the font style.

These three parts added together specify a single font in one integer value. You can
use the constants listed in Table 8-6 at compile time to specify all of the needed infor-
mation. To do this, add one constant from each category together to yield a complete
font specification. At run time, of course, you’ll need to use the integer values.

editFont10 {family:'handwriting,
 face:0, size:10}

10243

editFont12 {family:'handwriting,
 face:0, size:12}

12291

editFont18 {family:'handwriting,
 face:0, size:18}

18435

Table 8-6 Font packing constants

Constant Value Description

Font Family

(none defined) 0 Identifies the System font (Espy)

tsFancy 1 Identifies the New York font

tsSimple 2 Identifies the Geneva font

tsHWFont 3 Identifies the Casual (Handwriting)
font

Font Size

tsSize(pointSize) pointSize << 10 Specify the point size of the font in
pointSize

Font Face

tsPlain 0 Normal font

tsBold 1048576 Bold font

continued

Table 8-5 Built-in font constants (continued)

Constant Font frame Integer value

C H A P T E R 8

Text and Ink Input and Display

8-22 Using Text

Note that the “Casual” font uses the symbol 'handwriting for its font family.

You can use the MakeCompactFont function at runtime to create a packed
integer value from a specification of the font family, font size, and font face. You
can only specify ROM fonts with the packed integer format. Here is an example:

fontValue := MakeCompactFont('tsSimple, 12, tsItalic)

If the font specified by the three parameters does not belong to a ROM font family,
MakeCompactFont returns a font frame instead.

The MakeCompactFont function is described in “MakeCompactFont”
(page 7-28) in Newton Programmer’s Reference.

Rich Strings 8

Rich strings store text strings and ink in a single string. If you application supports
user-input text or ink, you can use rich strings to represent all user data. You can
convert between the text and styles pairs in paragraph views and rich strings. Text
and styles pair are described in “Text and Styles” (page 8-25).

Rich strings are especially useful for storing text with embedded ink in a soup. You
can use the rich string functions, described in “Rich String Functions” (page 8-24),
to work with rich strings.

The system software automatically handles rich strings properly, including their
use in performing the following operations:

■ screen display

■ sorting and indexing

■ concatenation with standard functions such as StrConcat and ParamStr,
described in “Utility Functions” (page 26-1)

■ measuring

tsItalic 2097152 Italic font

tsUnderline 4194304 Underlined normal font

tsOutline 8388608 Outline font

tsSuperScript 134217728 Superscript font

tsSubScript 268435456 Subscript font

Table 8-6 Font packing constants (continued)

Constant Value Description

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-23

Important Rich String Considerations 8

Although the Newton system software allows you to use rich strings anywhere that
plain strings are used, there are certain considerations to be aware of when using
rich strings. These include:

■ Do not use functions that are not rich-string-aware. These include the Length,
SetLength, BinaryMunger, and StuffXXX functions.

■ Use the StrLen function to find the length of a string.

■ Use the StrMunger function to perform operations that modify the length of a
string, such as appending or deleting characters.

■ Do not assume that the rich string terminator character is the last character in a
rich string object.

■ Do not truncate a rich string by inserting a string terminator character into
the string.

■ Do not assign characters into a rich string, due to the presence of ink place-
holder characters. Use the SetChar function instead of direct assignment.

■ Do not use undocumented string functions, which are not guaranteed to work
with rich strings.

Using the Rich String Storage Format 8

Ink data is embedded in rich strings by inserting a placeholder character in the
string for each ink word. Data for each ink word is stored following the string
terminator character.

Each ink word is represented in the text portion of the rich string by the special
character kInkChar (0xF700), which is a reserved Unicode character value.

The ink data for all ink words in the string follows the string terminator character.
The final 32 bits in a rich string encode information about the rich string.

Note
The string in the 'text slot of a paragraph view uses the
kParaInkChar (0xF701) character as a placeholder character
instead of the kInkChar code. The 'text slot string is not a
rich string but might contain ink word placeholders. See “Text and
Styles” (page 8-25) for more information. ◆

Automatic Conversion of Rich Strings 8

Text is automatically converted from the rich string format to a text/styles pair when-
ever a paragraph is opened and the SetValue function is called with a rich string.

When a paragraph view is opened, the 'text slot is first examined to determine
whether or not the text contains any embedded ink. If so, new versions of the

C H A P T E R 8

Text and Ink Input and Display

8-24 Using Text

view’s 'text and 'styles slots are generated and placed in the context frame of
the view.

When SetValue is called with a string parameter that is a rich string, it is
automatically decoded into a text and style pair. The result is stored in the view
frame of the paragraph view.

Rich String Functions 8

You can use the rich string functions to convert and work with rich strings. Each of
these functions, shown in Table 8-7, is described in “Rich String Functions and
Methods” (page 7-31) in Newton Programmer’s Reference.

Table 8-7 Rich string functions

Function or method name Description

MakeRichString Converts the data from two slots into a rich
string. MakeRichString uses the text
from the 'text slot of the view and the
styles array from the 'styles slot of the
view.

DecodeRichString Converts a rich string into a frame containing
a 'text slot and a 'styles slot. These
slots can be placed in a paragraph view for
editing or viewing.

ExtractRangeAsRichString Returns a rich string for a range of text
from a paragraph view.

IsRichString Determines if a string is a rich string
(i.e., contains ink).

view:GetRichString Returns the text from a paragraph view as a
rich string or plain string, depending on
whether the paragraph view contains
any ink.

StripInk Strips any ink from a rich string. Either
removes the ink words or replaces each
with a specified replacement character
or string.

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-25

Text and Styles 8

Within a paragraph view, text is represented in two slots: the 'text slot and the
'styles slot. The 'text slot contains the sequence of text characters in the
paragraph, including an instance of the kParaInkChar placeholder character
(0xF701) for each ink word.

The 'styles slot specifies how each text run is displayed in the paragraph. A
text run is a sequence of characters that are all displayed with the same font
specification. The 'styles slot consists of an array of alternating length and style
information: one length value and one style specification for each text run. For ink
words, the length value is always 1, and the style specification is a binary object
that contains the ink data.

For example, consider the paragraph text shown in Figure 8-5.

Figure 8-5 A paragraph view containing an ink word and text

In the paragraph view shown in Figure 8-5, the 'text slot contains the following
sequence of Unicode characters:

'T' 'r' 'y' ' ' 0xF701 'o' 'n' 'e'

The 'styles slot for this paragraph consists of the following array:

styles: [4, 12289, 1, <inkData, length 42>, 4, 12289]

The first pair of values in the array, (4, 12289), covers the word “Try” and the
space that follows it. The length value, 4, specifies that the text run consists of four
characters. The packed integer font specification value 12289 specifies plain,
12-point, New York.

The second pair of values in the array, (1, inkData), covers the ink word. The
length value is 1, which is always the case for ink words. The value inkData is a
binary object that contains the compressed data for the handwritten “this” that is
part of the text in the paragraph view. The data is automatically extracted from the
tablet data as part of a preliminary recognition process that precedes word recognition.

The third and final pair of values in the 'styles slot array, (4, 12289), covers
the word “one” and the space that precedes it. This text run is 4 characters long and
is displayed 12 points high in the plain version of the New York font family.

Note
The packed integer font specification values
are shown in Table 8-6 (page 8-21). ◆

C H A P T E R 8

Text and Ink Input and Display

8-26 Using Text

Setting the Caret Insertion Point 8
When you application starts up, you might want to establish the insertion point for
keyboard entry in caret insertion writing mode. There are three functions that you
can use for this purpose:

■ to establish the insertion point in an input field, use the SetKeyView function,
which is described in “SetKeyView” (page 7-43) in Newton Programmer’s
Reference.

■ to establish the insertion point in an edit view, use the PositionCaret
function, which is described in “PositionCaret” (page 7-49) in Newton
Programmer’s Reference.

■ to establish the insertion point in an edit view or paragraph, you can use the
SetCaretInfo function, which is described in “SetCaretInfo” (page 7-50) in
Newton Programmer’s Reference.

Using Keyboards 8
You can provide the user with on-screen keyboard input in your applications using
the built-in keyboard views. You can also define new keyboard views and register
them with the system, which will activate caret input when these views are opened.

Keyboard Views 8

There are four different floating keyboards built into the system root view. Each of
the built-in keyboards can be accessed as a child of the root with a symbol.

To use the full alphanumeric keyboard, which is shown in Figure 8-6, use the
symbol 'alphaKeyboard.

Figure 8-6 The built-in alphanumeric keyboard

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-27

To use the numeric keyboard, which is shown in Figure 8-7, use the symbol
'numericKeyboard.

Figure 8-7 The built-in numeric keyboard

To use the phone keyboard, which is shown in Figure 8-8, use the symbol
'phoneKeyboard.

Figure 8-8 The built-in phone keyboard

To use the time and date keyboard, which is shown in Figure 8-9, use the symbol
'dateKeyboard.

Figure 8-9 The built-in time and date keyboard

An on-screen keyboard can be opened by the user with a double tap on an input
field. The kind of keyboard displayed is determined by what type of input field is
recognized. For example, a field in which only numbers are recognized would use
the numeric keyboard. The user can also open a keyboard from the corrector
pop-up list, which appears when you correct a recognized word.

C H A P T E R 8

Text and Ink Input and Display

8-28 Using Text

If you want to open one of these keyboards programmatically, use code like the
following to send it the Open message:

Getroot().alphaKeyboard:Open()

The keystrokes entered by the user are sent to the current key receiver view.
There can be only one key receiver at a time, and only views of the classes
clParagraphView and clEditView can be key receiver views. When a
keyboard is open, a caret is shown in the key receiver view at the location where
characters will be inserted.

The keyboard views are based on clKeyboardView, which is described in
“Keyboard View (clKeyboardView)” (page 7-35) in Newton Programmer’s
Reference.

Using Keyboard Protos 8

The keyboard protos to provide users of your applications with on-screen
keyboards with which to enter text. The following keyboard protos are available:

■ protoKeyboard provides a standard keyboard view that floats above all
other views.

■ protoKeypad allows you to define a customized floating keyboard.

■ protoKeyboardButton includes a keyboard button in a view.

■ protoSmallKeyboardButton includes a small keyboard button
in a view.

■ protoAlphaKeyboard provides an alphanumeric keyboard that you can
include in a view.

■ protoNumericKeyboard provides a numeric keyboard that you can include
in a view.

■ protoPhoneKeyboard provides a phone keyboard that you can include in
a view.

■ protoDateKeyboardButton provides a time and date keyboard that you can
include in a view.

protoKeyboard 8

This proto creates a keyboard view that floats above all other views. It is centered
within its parent view and appears in a location that won’t obscure the
key-receiving view (normally, the view to which the keystrokes from the keyboard
are to be sent). The user can drag the keyboard view by its drag-dot to a different
location, if desired. Figure 8-10 shows an example of what a protoKeyboard
looks like on the screen.

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-29

Figure 8-10 An example of a protoKeyboard

This proto enables the caret (if it is not already visible) in the key-receiving view
while the keyboard is displayed. Characters corresponding to tapped keys are
inserted in the key-receiving view at the insertion bar location. The caret is disabled
when the keyboard view is closed.

This proto is used in conjunction with protoKeypad to implement a floating
keyboard. The protoKeyboard proto defines the parent view, and
protoKeypad is a child view that defines the key characteristics.

protoKeypad 8

This proto defines key characteristics for a keyboard view (clKeyboardView
class). It also contains functionality that automatically registers an open keyboard
view with the system. If you want to get this behavior in your custom keyboard,
use protoKeypad.

You use this proto along with protoKeyboard to implement a floating keyboard.
The view using the protoKeypad proto should be a child of the view using the
protoKeyboard proto.

protoKeyboardButton 8

This proto is used to include the keyboard button in a view. This is the same keyboard
button shown on the status bar in the notepad. Tapping the button causes the on-
screen keyboard to appear. If the keyboard is already displayed, a picker listing
available keyboard types is displayed. The user can tap one to open that keyboard.

Figure 8-11 shows an example of the keyboard button.

Figure 8-11 The keyboard button

C H A P T E R 8

Text and Ink Input and Display

8-30 Using Text

protoSmallKeyboardButton 8

This proto is used to include a small keyboard button in a view. Tapping the button
causes the on-screen keyboard to appear. If the keyboard is already displayed, a
picker listing available keyboard types is displayed. The user can tap one to open
that keyboard.

Figure 8-12 shows an example of the small keyboard button.

Figure 8-12 The small keyboard button

protoAlphaKeyboard 8

This proto is used to include an alphanumeric keyboard in a view. This is the same
as the 'alphaKeyboard keyboard view provided in the root view, as described in
“Keyboard Views” (page 8-26). An example of protoAlphaKeyboard is shown
in Figure 8-6 (page 8-26).

protoNumericKeyboard 8

This proto is used to include a numeric keyboard in a view. This is the same as the
'numericKeyboard keyboard view provided in the root view, as described in
“Keyboard Views” (page 8-26). An example of protoNumericKeyboard is
shown in Figure 8-7 (page 8-27).

protoPhoneKeyboard 8

This proto is used to include a phone keyboard in a view. This is the same as the
'phoneKeyboard keyboard view provided in the root view, as described in
“Keyboard Views” (page 8-26). An example of protoPhoneKeyboard is shown
in Figure 8-8 (page 8-27).

protoDateKeyboard 8

This proto is used to include a time and date keyboard in a view. This is the same
as the 'dateKeyboard keyboard view provided in the root view, as described in
“Keyboard Views” (page 8-26). An example of protoDateKeyboard is shown
in Figure 8-9 (page 8-27).

Defining Keys in a Keyboard View 8

When you define a keyboard view, you need to specify the appearance and behavior
of each key in the keyboard. This section presents the definition of an example
keyboard view, which is shown in Figure 8-13 (page 8-31).

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-31

The Key Definitions Array 8

Each keyboard view contains a key definitions array, which determines the layout
of the individual keys in the keyboard. The key definitions array is an array of rows.
Each row is an array of values that looks like this:

row0 := [rowHeight, rowMaxKeyHeight,
 key0Legend, key0result, key0Descriptor,
 key1Legend, key1result, key1Descriptor,
 key2Legend, key2result, key2Descriptor,
 ...
]

The first two elements describe the height to allot for the row (rowHeight) and the
height of the tallest key in the row (rowMaxKeyHeight), in key units. These two
measurements are often the same, but they may differ. Key units are described in
“Key Dimensions” (page 8-35).

Next in the row array is a series of three elements for each key in the row:

■ keyLegend

■ keyResult

■ keyDescriptor

These values are described in the following sections.

Figure 8-13 shows the example keyboard view that is used to explain key definition
in this section.

Figure 8-13 A generic keyboard view

The following is the view definition of the keyboard shown in Figure 8-13. The
values in the row arrays are explained in the remainder of this section.

row0 := [keyVUnit, keyVUnit,
 "1",1, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,
 "2",2, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite
 "3",3, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

C H A P T E R 8

Text and Ink Input and Display

8-32 Using Text

row1 := [keyVUnit, keyVUnit,
 "4",4, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,
 "5",5, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,
 "6",6, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

row2 := [keyVUnit, keyVUnit,
 "7",7, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,
 "8",8, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,
 "9",9, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

row3 := [keyVUnit, keyVUnit,
 "*",$*, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,
 "0",0, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite,
 "#",$#, keyHUnit+keyVUnit+keyFramed+2*keyInsetUnit+keyAutoHilite];

keypad := {...
viewClass: clKeyboardView,
viewBounds: {left:65, top:65, right:153, bottom:145},
viewFlags: vVisible+vClickable+vFloating,
viewFormat: vfFrameBlack+vfFillWhite+vfPen(1),
keyDefinitions: [row0, row1, row2, row3], // defined above
keyPressScript: func (key)

begin
Print("You pressed " & key);
end,

...}

The Key Legend 8

The key legend specifies what appears on the keycap. It can be one of the following
types of data:

■ nil, in which case the key result is used as the legend.

■ A string, which is displayed centered in the keycap.

■ A character constant, which is displayed centered in the keycap.

■ A bitmap object, which is displayed centered in the keycap.

■ An integer. The number is displayed centered in the keycap and is used directly
as the key result, unless the keyResultsAreKeycodes slot is set to true, as
described in the next section.

■ A method. The method is evaluated and its result is treated as if it had been
specified as the legend.

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-33

■ An array. An element of the array is selected and treated as one of the above
data types. The index of the array element is determined by the value of the
keyArrayIndex slot (which can be changed dynamically). Note that arrays of
arrays are not allowed here, but an array can include any combination of other
data types.

The Key Result 8

The key result is the value returned when the key is pressed. This value is passed as
a parameter to the keyPressScript method. If this method doesn’t exist, the
result is converted (if possible) into a sequence of characters that are posted as key
events to the key receiver view.

The key result element can be one of the following types of data:

■ A string, character constant, or bitmap object, which is simply returned.

■ An integer, which is returned. Alternately, if the keyResultsAreKeycodes
slot is set to true, the integer is treated as a key code. In this case, the character
corresponding to the specified key code is returned. If you are using keycodes,
make sure to register your keyboard by including the kKbdUsesKeycodes
view flag.

See Figure 8-14 (page 8-34) for the numeric key codes returned by each of the
keys on a keyboard.

■ A method. The method is evaluated and its result is treated as if it had been
specified as the result.

■ An array. An element of the array is selected and treated as one of the above
data types. The index of the array element is determined by the value of the
keyArrayIndex slot (which can be changed dynamically). Note that arrays of
arrays are not allowed, but an array can include any combination of other
data types.

C H A P T E R 8

Text and Ink Input and Display

8-34 Using Text

Figure 8-14 Keyboard codes

The Key Descriptor 8

The appearance of each key in a keyboard is determined by its key descriptor. The
key descriptor is a 30-bit value that determines the key size, framing, and other
characteristics. The descriptor is specified by combining any of the constants
shown in Table 8-8.

Table 8-8 Key descriptor constants

keySpacer Nothing is drawn in this space; it is a spacer, not a key.

keyAutoHilite Highlight this key when it is pressed.

keyInsetUnit Inset this key’s frame a certain number of pixels within its
space. Multiply this constant by the number of pixels you
want to inset, from 0–7 (for example, keyInsetUnit*3).

continued

F13 F14 F15 num
lock

caps
lock

scroll
lock

= /

7 8 9

4 5 6

1 2 3

0 .

_

+

num
lock

del

help

ins

home
page
up

end
page
down

enter

esc F6 F7 F8F5F1 F2 F3 F4 F9 F10 F11 F12

alt alt

2 3 4 5 6 7 8 9 0
+@ # % ^ & ()

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M

$

control

{
[]

}

?
/.,

=

: "
; '

control

shift

caps
lock

tab

option option

shift

delete

return

clear1`

35 7A 78 63 76

72 73 74

75 77 79

7B 7D 7C

7E

51 4B 4347

5B 5C 4E59

57 58 4556

54

41

4C

52

53 55

37 37

12 13 14 15 17 16 1A 1C 19 1D

0C 0D

0E 0F 11 10 20 22 1F 23

00 01 02 03 05 04 26 28 25

07 08 09 0B 2D 2E 2B

21 1E

382C2F

29

1B 331832

30

39 27 24

0638

31 3A

2A

3B 3A

7F7F60 61 62 64 65 6D 67 6F 69 6B 71

3B

!~

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-35

Key Dimensions 8

The width and height of keys are specified in units, not pixels. A key unit is not a
fixed size, but is used to specify the size of a key relative to other keys. The width
of a unit depends on the total width of all keys in the view and on the width of the
view itself. Key widths and heights can be specified in whole units, half units,
quarter units, and eighth units.

When it is displayed, the whole keyboard is scaled to fit entirely within whatever
size view bounds you specify for it.

To fit the whole keyboard within the width of a view, the total unit widths are
summed for each row, and the scaling is determined based on the widest row. This
row is scaled to fit within the view width, giving an equal pixel width to each
whole key unit. A similar process is used to scale keys vertically to fit within the
height of a view.

Fractional key units (half, quarter, eighth), when scaled, must be rounded to an
integer number of pixels, and thus may not be exactly the indicated fraction of a
whole key unit. For example, if the keys are scaled to fit in the view bounds,
a whole key unit ends up to be 13 pixels wide. This means that a key specified to
have a width of 1 3/8 units (keyHUnit+keyHEighth*3) is rounded to 13 + 5, or
18 pixels, which is not exactly 1 3/8 *13.

keyFramed Specify the thickness of the frame around the key. Multiply
this constant by the number of pixels that you want to use
for the frame thickness, from 0-3.

keyRoundingUnit Specify the roundedness of the frame corners. Multiply this
constant by the number of pixels that you want to use for
the corner radius, from 0-15, zero being square.

keyLeftOpen No frame line is drawn along the left side of this key.

keyTopOpen No frame line is drawn along the top side of this key.

keyRightOpen No frame line is drawn along the right side of this key.

keyBottomOpen No frame line is drawn along the bottom side of this key.

keyHUnit
keyHHalf
keyHQuarter
keyHEighth

A combination of these four constants specifies the
horizontal dimension of the key in units. For details,
see the next section.

keyVUnit
keyVHalf
keyVQuarter
keyVEighth

A combination of these four constants specifies the
vertical dimension of the key in units. For details, see
the next section.

Table 8-8 Key descriptor constants (continued)

C H A P T E R 8

Text and Ink Input and Display

8-36 Using Text

Key dimensions are specified by summing a combination of horizontal and vertical
key unit constants within the keyDescriptor. For example, to specify a key that
is 2 3/4 units wide by 1 1/2 units high, specify these constants for
keyDescriptor:

keyHUnit*2 + keyHQuarter*3 + keyVUnit + keyVHalf

Using the Keyboard Registry 8

If your application includes its own keyboard, you need to register it with the system
keyboard registry. This makes it possible for the system to call any keyboard-related
functions that you have defined and to handle the insertion caret properly.

The RegisterOpenKeyboard method of a view is for registering a keyboard for
use with that view.

Use the UnregisterOpenKeyboard method of a view to remove the keyboard
view from the registry. If the insertion caret is visible, calling this method hides it.

Note
The system automatically unregisters the keyboard when the
registered view is hidden or closed. The protokeypad proto
also automatically handles registration for you in its
viewSetupDoneScript. You do not need to call the
UnregisterOpenKeyboard method in these cases. ◆

You can use the OpenKeypadFor function to open a context-sensitive keyboard
for a view. This function first attempts to open the keyboard defined in the view’s
_keyboard slot. If the view does not define a keyboard in that slot,
OpenKeypadFor determines if the view allows only a single type of input, such
as date, time, phone number, or numbers. If so, OpenKeypadFor opens the
appropriate built-in keyboard for that input type. If none of these other conditions
is met, OpenKeypadFor opens the alphaKeyboard keyboard for the view.

Note
The Newton System Software uses the OpenKeypadFor
function to open a context-sensitive keyboard when the user
double-taps on a view in which a _keyboard slot is defined. ◆

Theses methods and functions, as well as several others you can use with the
keyboard registry in your applications, are described in “Keyboard Registry
Functions and Methods” (page 7-44) in Newton Programmer’s Reference.

Defining Tabbing Orders 8

You can define the tabbing order for an input view with the _tabChildren slot,
which contains an array of view paths.

C H A P T E R 8

Text and Ink Input and Display

Using Text 8-37

Each view path must specify the actual view that accepts the input. An example of
a suitable path is shown here:

'myInputLine, 'myLabelInputLine.entryLine

When the user tabs through this list, it loops from end to beginning and, with
reverse-tabbing, from beginning to end.

You can use the _tabParent slot to inform the system that you want tabbing in a
view restricted to that view. Each view in which _tabParent is non-nil defines a
tabbing context. This makes it possible to have several views on the screen at once
with independent tabbing within each view. In this case, the user must tap in
another view to access the tabbing order in that view.

For example, in Figure 8-15, there are two independent tabbing orders. The first
consists of the input lines that contain the text “One,” “Two,” “Three,” and “Four”.
The second tabbing order consists of the input lines that contain the text “Five”
and “Six.”

Figure 8-15 Independent tabbing orders within a parent view

The user taps in any of the top four slots; thereafter, pressing the tab key on a keypad
or external keyboard moves among the four slots in that tabbing order. If the user
taps one of the bottom two slots, the tab key jumps between those two slots.

The slots _tabParent and _tabChildren can coexist in a view, but the
_tabChildren slot takes precedence in specifying the next key view. If the
current view does not define the _tabParent slot, the search moves upward from
the current view until one of the following conditions is met:

■ a view descended from protoInputLine with a _tabParent slot is found.

■ a protofloater view is found

C H A P T E R 8

Text and Ink Input and Display

8-38 Using Text

■ a view descended from protoInputLine with the vApplication flag set in
the viewFlags slot

The Caret Pop-up Menu 8

Normally, when the user taps the insertion caret, the system-provided Punctuation
pop-up Menu opens. However, you can override this with a pop-up menu of your
own creation.

When the user taps the insertion caret, the system starts searching for a slot named
_caretPopup. The search begins in the view owning the caret, and follows both
the proto and parent inheritance paths. The default Punctuation pop-up is stored in
the root view.

The _caretPopup slot must hold a frame containing two slots. The first slot,
pop, defines a list of pop-up items suitable for passing to DoPopup. The second
slot must contain a pickActionScript. If not, control passes to the punctuation
pop-up, which has its own version of the pickActionScript. This routine then
inserts a string, corresponding to the selected character at the caret, by using the
function PostKeyString.

Handling Input Events 8
You sometimes need to respond to input events that occur in text views. This
section describes how to test for a selection hit and respond to keystrokes and
insertion events.

Testing for a Selection Hit 8

After the user taps the screen, you can determine if the point “hits” a specific
character or word in a paragraph view.

The view:PointToCharOffset method returns the offset within the paragraph
that is closest to the point (x, y). This method is described in “PointToCharOffset”
(page 7-51) in Newton Programmer’s Reference.

The view:PointToWord method returns a frame that indicates the position of
the word within the paragraph that is closest to the point (x, y). This method is
described in “PointToWord” (page 7-52) in Newton Programmer’s Reference.

Note
Both of these functions return nil if the view is not a paragraph
view. Also, the point you are testing must correspond to a visible
position within the paragraph view; you cannot hit-test on
off-screen portions of a view. ◆

C H A P T E R 8

Text and Ink Input and Display

Summary of Text 8-39

Summary of Text 8

Text Constants and Data Structures 8

Text Flags 8

vWidthIsParentWidth (1 << 0)

vNoSpaces (1 << 1)

vWidthGrowsWithText (1 << 2)

vFixedTextStyle (1 << 3)

vFixedInkTextSTyle (1 << 4)

vExpectingNumbers (1 << 9)

Font Family Constants for Use in Frames 8

'espy
'geneva
'newYork
'handwriting

Font Face Constants for Use in Frames 8

kFaceNormal 0x000

kFaceBold 0x001

kFaceItalic 0x002

kFaceUnderline 0x004

kFaceOutline 0x008

kFaceSuperScript 0x0080

kFaceSubScript 0x100

Built-in Font Constants 8

ROM_fontsystem9 9216

ROM_fontsystem9bold 1057792

ROM_fontsystem9underline 4203520

ROM_fontsystem10 10240

ROM_fontsystem10bold 1058816

C H A P T E R 8

Text and Ink Input and Display

8-40 Summary of Text

ROM_fontsystem10underline 4204544

ROM_fontsystem12 12288

ROM_fontsystem12bold 1060864

ROM_fontsystem12underline 4206592

ROM_fontsystem14 14336

ROM_fontsystem14bold 1062912

ROM_fontsystem14underline 4208640

ROM_fontsystem18 18432

ROM_fontsystem18bold 1067008

ROM_fontsystem18underline 4212736

simpleFont9 9218

simpleFont10 10242

simpleFont12 12290

simpleFont18 18434

fancyFont9 or

userFont9 9217

fancyFont10 or

userFont10 10241

fancyFont12 or

userFont12 12289

fancyFont18 or

userFont18 18433

editFont10 10243

editFont12 12291

editFont18 18435

Font Family Constants for Packed Integer Font Specifications 8

tsFancy 1

tsSimple 2

tsHWFont 3

C H A P T E R 8

Text and Ink Input and Display

Summary of Text 8-41

Font Face Constants for Packed Integer Font Specifications 8

tsPlain 0

tsBold 1048576

tsItalic 2097152

tsUnderline 4194304

tsOutline 8388608

tsSuperScript 134217728

tsSubScript 268435456

Keyboard Registration Constants 8

kKbdUsesKeyCodes 1

kKbdTracksCaret 2

kKbdforInput 4

Key Descriptor Constants 8

keySpacer (1 << 29)

keyAutoHilite (1 << 28)

keyInsetUnit (1 << 25)

keyFramed (1 << 23)

keyRoundingUnit (1 << 20)

keyLeftOpen (1 << 19)

keyTopOpen (1 << 18)

keyRightOpen (1 << 17)

keyBottomOpen (1 << 16)

keyHUnit (1 << 11)

keyHHalf (1 << 10)

keyHQuarter (1 << 9)

keyHEighth (1 << 8)

keyVUnit (1 << 3)

keyVHalf (1 << 2)

keyVQuarter (1 << 1)

keyVEighth (1 << 0)

C H A P T E R 8

Text and Ink Input and Display

8-42 Summary of Text

Keyboard Modifier Keys 8

kIsSoftKeyboard (1 << 24)

kCommandModifier (1 << 25)

kShiftModifier (1 << 26)

kCapsLockModifier (1 << 27)

kOptionsModifier (1 << 28)

kControlModifier (1 << 29)

Views 8

clEditView 8

aClEditView:= {
viewBounds: boundsFrame,
viewFlags: constant,
viewFormat: formatFlags,
viewLineSpacing: integer,
viewLinePattern: integer,

view:EditAddWordScript(form, bounds)
NotesText(childArray)
...
}

clParagraphView 8

aClEditView:= {
viewBounds: boundsFrame,
viewFont: fontFrame,
text: string,
viewFlags: constant,
viewFormat: formatFlags,
viewJustify: constant,
tabs: array, // tab stops
styles: array, // style runs
textFlags: constant,
copyProtection: constant,
...
}

C H A P T E R 8

Text and Ink Input and Display

Summary of Text 8-43

clKeyboardView 8

aClEditView:= {
_noRepeat: constant,
viewBounds: boundsFrame,
keyDefinitions: array, // defines key layout
viewFlags: constant,
viewFormat: constant,
keyArrayIndex: array, // key legends
keyHighlightKeys: array, // keys to highlight
keyResultsAreKeycodes: Boolean,
keyReceiverView: view, // view for keystrokes
keySound: soundFrame,
keyPressScript: function
...
}

Protos 8

protoInputLine 8

aprotoInputLine:= {
_proto : protoInputLine,
viewBounds: boundsFrame,
viewFlags: constant,
text: string,
viewFont: constant,
viewJustify: constant,
viewFormat: constant,
viewTransferMode: constant,
viewLineSpacing: integer,
viewLinePattern: binary, // 8-byte pattern
memory: symbol,

viewChangedScript: function.
...
}

protoRichInputLine 8

aprotoRichInputLine:= {
_proto : protoRichInputLine,
viewBounds: boundsFrame,
viewFlags: constant,

C H A P T E R 8

Text and Ink Input and Display

8-44 Summary of Text

text: string,
viewFont: constant,
viewJustify: constant,
viewFormat: constant,
viewTransferMode: constant,
viewLineSpacing: integer,
viewLinePattern: binary, // 8-byte pattern
memory: symbol,

viewChangedScript: function,
...
}

protoLabelInputLine 8

aprotoLabelInputLine:= {
_proto : protoLabelInputLine,
viewBounds: boundsFrame,
entryFlags: constant,
label: string,
labelFont: constant,
labelCommands: array, // strings for list
curLabelCommand: integer,
indent: integer,
viewLineSpacing: integer,
viewLinePattern: binary, // 8-byte pattern

textSetup: function,
updateText: function,
textChanged: function,
setLabelText: function,
setLabelCommands: function,
labelClick: function,
labelActionScript: function,
...
}

protoRichLabelInputLine 8

aprotoRichLabelInputLine:= {
_proto : protoRichLabelInputLine,
viewBounds: boundsFrame,
entryFlags: constant,
label: string,

C H A P T E R 8

Text and Ink Input and Display

Summary of Text 8-45

labelFont: constant,
labelCommands: array, // strings for list
curLabelCommand: integer,
indent: integer,
viewLineSpacing: integer,
viewLinePattern: binary, // 8-byte pattern

textSetup: function,
updateText: function,
textChanged: function,
setLabelText: function,
setLabelCommands: function,
labelClick: function,
labelActionScript: function,
...
}

protoKeyboard 8

aprotoKeyboard:= {
_proto : protoKeyboard,
saveBounds: boundsFrame,
freeze: Boolean,
...
}

protoKeypad 8

aprotoKeypad:= {
_proto : protoKeypad,
keyDefinitions: array, // defines key layout
viewFont: constant,
viewFormat: constant,
keyArrayIndex: integer,
keyHighlightKeys: Boolean,
keyResultsAreKeycodes: Boolean,
keyReceiverView: constant,
keySound: constant,
keyPressScript: function,
...
}

C H A P T E R 8

Text and Ink Input and Display

8-46 Summary of Text

protoKeyboardButton 8

aprotoKeyboardButton:= {
_proto : protoKeyboardButton,
viewFlags: constant,
viewBounds: boundsFrame,
viewJustify: constant,
defaultKeyboard symbol,
...
}

protoSmallKeyboardButton 8

aprotoSmallKeyboardButton:= {
_proto : protoSmallKeyboardButton,
viewFlags: constant,
viewBounds: boundsFrame,
viewJustify: constant,
current: symbol,
...
}

protoAlphaKeyboard 8

aprotoAlphaKeyboard:= {
_proto : protoAlphaKeyboard,
viewBounds: boundsFrame,
viewJustify: constant,
...
}

protoNumericKeyboard 8

aprotoNumericKeyboard:= {
_proto : protoNumericKeyboard,
viewBounds: boundsFrame,
viewJustify: constant,
...
}

C H A P T E R 8

Text and Ink Input and Display

Summary of Text 8-47

protoPhoneKeyboard 8

aprotoPhoneKeyboard:= {
_proto : protoPhoneKeyboard,
viewBounds: boundsFrame,
viewJustify: constant,
...
}

protoDateKeyboard 8

aprotoDateKeyboard:= {
_proto : protoDateKeyboard,
viewBounds: boundsFrame,
viewJustify: constant,
...
}

Text and Ink Display Functions and Methods 8
This section summarizes the functions and methods you can use to work with text
and ink in your applications.

Functions and Methods for Edit Views 8

view:EditAddWordScript(form, bounds)
NotesText(childArray)

Functions and Methods for Measuring Text Views 8

TextBounds(rStr, fontSpec, viewBounds)
TotalTextBounds(paraSpec, editSpec)

Functions and Methods for Determining View Ink Types 8

AddInk(edit, poly)
ViewAllowsInk(view)
ViewAllowsInkWords(view)

C H A P T E R 8

Text and Ink Input and Display

8-48 Summary of Text

Font Attribute Functions and Methods 8

FontAscent(fontSpec)
FontDescent(fontSpec)
FontHeight(fontSpec)
FontLeading(fontSpec)
GetFontFace(fontSpec)
GetFontFamilyNum(fontSpec)
GetFontFamilySym(fontSpec)
GetFontSize(fontSpec)
MakeCompactFont(family, size, face)
SetFontFace(fontSpec, newFace)
SetFontFamily(fontSpec, newFamily)
SetFontParms (fontSpec, whichParms)
SetFontSize(fontSpec, newSize)

Rich String Functions and Methods 8

DecodeRichString(richString, defaultFontSpec)
view:ExtractRangeAsRichString(offset, length)
view:GetRichString()
IsRichString(testString)
MakeRichString(text, styleArray)
StripInk(richString, replaceString)

Functions and Methods for Accessing Ink in Views 8

GetInkAt(para, index)
NextInkIndex(para, index)
ParaContainsInk(para)
PolyContainsInk(poly)

C H A P T E R 8

Text and Ink Input and Display

Summary of Text 8-49

Keyboard Functions and Methods 8
This section summarizes the functions and methods that you can use to work with
keyboards in your applications.

General Keyboard Functions and Methods 8

GetCaretBox()
view:KeyboardInput()
KeyIn(keyCode, down)
PostKeyString(view, keyString)
SetKeyView(view, offset)

Keyboard Registry Functions and Methods 8

KeyboardConnected()
OpenKeyPadFor(view)
RegGlobalKeyboard(kbdSymbol, kbdTemplate)
view:RegisterOpenKeyboard(flags)
UnRegGlobalKeyboard(kbdSymbol)
view:UnregisterOpenKeyboard()

Caret Insertion Writing Mode Functions and Methods 8

GetRemoteWriting()
SetRemoteWriting(newSetting)

Insertion Caret Functions and Methods 8

GetCaretInfo()
GetKeyView()
view:PositionCaret(x, y, playSound)
SetCaretInfo(view, info)

Application-Defined Methods for Keyboards 8

ViewCaretChangedScript(view, offset, length)

C H A P T E R 8

Text and Ink Input and Display

8-50 Summary of Text

Input Event Functions and Methods 8
This section summarizes the functions and methods that you can use to work with
input events in your applications.

Functions and Methods for Hit-Testing 8

view:PointToCharOffset(x,y)
view:PointToWord(x,y)

Functions and Methods for Handling Insertions 8

view:HandleInsertItems(insertSpec)
InsertItemsAtCaret(insertSpec)

Functions and Methods for Handling Ink Words 8

GetInkWordInfo(inkWord)
view:HandleInkWord(strokeBundle)
view:HandleRawInk(strokeBundle)

Application-Defined Methods for Handling Ink in a View 8

view:ViewInkWordScript(strokeBundle)
view:ViewRawInkScript(strokeBundle)

About the Recognition System 9-1

C H A P T E R 9

Recognition 9Figure 9-0
Listing 1-0
Table 9-0

This chapter and Chapter 10, “Recognition: Advanced Topics,” describe the use of
the Newton recognition system. The recognition system accepts written input from
views and returns text, ink text, graphical objects, or sketch ink to them.

This chapter describes how to use view flags to enable the recognition of text,
shapes and gestures in views. If you are developing an application that must derive
text or graphical data from pen input, you should become familiar with the contents
of this chapter. Before reading this chapter, you should be familiar with NewtonScript
message passing among views and the use of view flags to specify the characteristics
of views, as described in Chapter 3, “Views.”

You need not read Chapter 10, “Recognition: Advanced Topics,” unless you need to
provide unusual input views or specialized recognition behavior. (See that chapter’s
first page for a complete list of its topics.)

About the Recognition System 9

The Newton recognition system enables views to convert handwritten input into
text or graphical shapes, and to take action in response to system-defined gestures
such as taps and scrubs.

Any type of view can accept pen input, and different types of views provide
different amounts of system-supplied behavior. Views based on the system-supplied
clEditView and clParagraphView classes handle most forms of pen input
automatically. Applications need not handle recognition events in these types of
views explicitly unless they need to do something unusual. The clView class, on
the other hand, provides no built-in recognition behavior. Views of this type must
provide all recognition behavior themselves.

The system provides recognizer engines (also called recognizers) that classify
pen input as clicks, strokes, gestures, shapes, or words. Each view can specify
independently which recognizers it uses and how the recognition system is to process
pen input that occurs within its boundaries. For example, you could configure a view
to recognize text and shapes, or you might enable only text recognition in a view
not intended to accept graphical input.

C H A P T E R 9

Recognition

9-2 About the Recognition System

Although no recognizers are associated with clicks and strokes, they do pass
through the recognition system, allowing your view to respond to them by means
of optional ViewClickScript and ViewStrokeScript methods that you
supply as necessary. The ViewClickScript method of a view that accepts pen
input takes application-specific action when the pen contacts or leaves the surface
of the screen within the view’s boundaries. The ViewStrokeScript method
performs application-specific processing of input strokes before they are passed on
to the gesture, shape, or text recognizers.

The gesture recognizer identifies system-defined gestures such as scrubbing items
on the screen, adding spaces to words, selecting items on the screen, and so on.
Views based on the clEditView and clParagraphView classes (edit views
and paragraph views, respectively) respond automatically to standard system-
defined gestures; other kinds of views do not. Your view can provide an optional
ViewGestureScript method to perform application-specific processing of
system-defined gestures. You cannot define new gestures to the system.

Only views based on the clEditView class can recognize shapes. The shape
recognizer uses symmetry found in input strokes to classify them as shapes. The
shape recognizer may make the original shape more symmetrical, straighten its
curves, or close the shape. There is no developer interface to shape recognition.

The system provides two text recognizers—one optimized for a printed handwriting
style and another optimized for a cursive handwriting style. The printed text
recognizer (also called the printed recognizer) requires that the user lift the pen
from the screen between letters. The cursive text recognizer (also called the cursive
recognizer) accepts cursive input (letters connected within a single word), printed
input (disconnected letters within a single word), or any combination of these two
kinds of input.

In views that recognize text, the system enables the printed recognizer by default
unless the cursive recognizer is enabled explicitly. The user can specify the use of a
particular text recognizer from within the Handwriting Recognition preferences
slip. This user preference slip and others that affect recognition behavior are
discussed in “User Preferences for Recognition” beginning on page 9-14.

Only one text recognizer can be active at a time—all views on the screen share the
same text recognizer—but individual views can specify options that customize its
behavior for a particular view. Individual views can also use any combination of
other recognizers in addition to the specified text recognizer. Regardless of which
text recognizer is in use, the recognition system limits the size of individual input
strings to 32 characters—longer words may not be recognized correctly.

Although the Newton platform currently supports only its built-in recognizers,
future versions of the system may permit the use of third-party recognizer engines.

The next section describes how the recognition system classifies input as text,
shapes, or gestures.

C H A P T E R 9

Recognition

About the Recognition System 9-3

Classifying Strokes 9
Recognition is an iterative process that compares raw input strokes with various
system-defined models to identify the best matches for further processing. When
the user writes or draws in an edit view or paragraph view that accepts user input,
the system

■ notifies the view that a pen event occurred within its boundaries.

■ provides user feedback, in the form of electronic ink drawn on the screen as the
pen moves across its surface.

■ attempts to group strokes meaningfully according to temporal and spatial data.

A view that accepts pen input is notified of pen events within its boundaries by
ViewClickScript messages that are sent when the pen contacts the screen
and when it is lifted from the screen. Views based on the clEditView and
clParagraphView classes handle these events automatically; other views may
not, depending on the type of view in which the pen event occurred. Your view can
supply an optional ViewClickScript method to take application-specific action
in response to these events as necessary.

The electronic ink displayed as the pen moves across the screen is called raw ink.
Raw ink is drawn in the same place on the screen as the original input strokes.
Views based on the clParagraphView view class can be configured to replace
the raw ink with another representation of the input strokes called ink text. Ink text
is a version of the original strokes that has been scaled for display and formatted
into paragraphs: spaces between groups of strokes are made uniform and groups of
strokes are wrapped to the margins of the screen. The size to which ink text is
scaled is specified by the user from the Text Editing Settings user preference slip.
This user preference slip and others that affect recognition behavior are discussed
in “User Preferences for Recognition” beginning on page 9-14.

The recognition system encapsulates raw input strokes in an object called a stroke
unit. Stroke units cannot be examined directly from NewtonScript; however, you
can pass them to functions that construct useful objects from them or perform
recognition using the stroke data they contain.

Views configured to image input as ink text display a scaled representation of the
original input strokes without performing any further processing; that is, they
circumvent the remainder of the recognition process described here.

When stroke units are made available to a view that performs recognition, all of
the recognizers enabled for the view compete equally to classify the input. Each
recognizer compares the input to a system-defined model; if there is a match,
the recognizer involved claims the stroke unit as its own.

Once a stroke unit is claimed by one of the recognizers, it is not returned to the
other recognizers for additional classification; however, recognizers may combine

C H A P T E R 9

Recognition

9-4 About the Recognition System

multiple stroke units into meaningful groups. For example, certain letters (such as
an uppercase E) might be composed of multiple strokes. The process of grouping
input strokes is influenced by the user preference settings for handwriting style and
letter styles.

The recognizer that claimed one or more stroke units returns to the view one or
more interpretations of the strokes. The gesture and shape recognizers return
only one interpretation to the view. The text recognizer usually returns multiple
interpretations to the view.

Associated with each interpretation is a value, called the score, which indicates
how well the input matched the system-defined model used by the recognizer that
interpreted it. When multiple recognizers are enabled, the system selects the best
interpretations based on their scores and the application of appropriate heuristics.
For example, the text recognizer might choose between interpreting a stroke as a
zero or as the letter O based on whether you have specified that the view accepts
numeric or alphabetic input.

The recognizer that claimed the strokes places its best interpretations in another
kind of unit that is returned to the view. The text recognizer returns word units, the
shape recognizer returns shape units, and the gesture recognizer returns gesture
units. Each of these units contains data representing one or more strokes. A word
unit represents a single recognized word, a shape unit represents a single
recognized shape, and a gesture unit represents a single recognized gesture, as
shown in Figure 9-1. The next several sections describe how the system handles
each of these units.

Gestures 9

When the recognition system returns a gesture unit to the view, the view performs
the action associated with that gesture automatically. The action taken is dependent
on the kind of view that received the gesture unit.

Edit views and paragraph views respond automatically to system-defined gestures
such as scrubbing items on the screen, adding spaces to words, selecting items on
the screen, and so on. Other kinds of views may do nothing in response to a
particular gesture.

You can provide an optional ViewGestureScript method to take action in
response to any standard gesture. For example, you can use this method to respond
to gestures in views that are not paragraph views or edit views. You can also use
this method to override or augment the standard behavior of a particular view in
response to system-defined gestures. At present, you cannot define custom gestures
to the system.

C H A P T E R 9

Recognition

About the Recognition System 9-5

Figure 9-1 Recognizers create units from input strokes

Shapes 9

When the recognition system returns a shape unit to the view, the shape is displayed
as the clPolygonView child view of a clEditView view. The shape unit contains
a single, cleaned-up version of the original strokes. The shape recognizer may
make the original shape more symmetrical, straighten its curves, or close the shape.

There is no developer interface to shape recognition. To manipulate shapes
returned by the recognition system, you must extract polygon view children from
edit views yourself. You can do so from within an optional
ViewAddChildScript method that you supply. The system invokes this method
for each clPolygonView or clParagraphView child added to an edit view.

Pen on tablet

Stroke units

Shape
unit

Word
unit

Gesture
unit

Ink textText Ink

Recognizers

ABC

C H A P T E R 9

Recognition

9-6 About the Recognition System

Text 9

When the recognition system returns a word unit to a view based on the
clParagraphView or clEditView classes, the view displays or uses the best
interpretation of the original input strokes. Paragraph views display words directly;
edit views create a clParagraphView child automatically to display text that the
recognition system returns. Additionally, the recognition system constructs a
correction information frame from the word unit and saves learning data as
appropriate. For more information, see “Correction and Learning” (page 9-13)
and “Accessing Correction Information”(page 10-23). Your view can provide an
optional ViewWordScript method to perform application-specific processing of
the word unit.

The set of possible interpretations that the text recognizer returns to a view is
affected by

■ the text recognizer that the view uses to interpret the input strokes

■ options you have specified for the text recognizer in use

■ the dictionaries that are available to the view for recognition use

A dictionary is a system construct against which the user’s input strings are
matched, as a means of ensuring the validity of the text recognizer’s output. The
system supplies dictionaries that define names, places, dates, times, phone numbers,
and commonly used words to the text recognizers. The user can expand the
system’s built-in vocabulary by adding new words to a RAM-based user dictionary
accessed from the Personal Word List slip. In addition, you can provide custom
dictionaries for the recognition system’s use. For example, you might create a
custom dictionary to supply specialized vocabulary, such as medical or legal
terminology. The section “System Dictionaries” beginning on page 9-11 describes
the system-supplied dictionaries in more detail. The use of custom dictionaries for
recognition is described in “Using Custom Dictionaries” beginning on page 10-24.

Although the interpretations returned by the printed recognizer are never limited to
dictionary words, its output is influenced strongly by the set of dictionaries
available for its use. The interpretations returned by the cursive recognizer can be
restricted to those words appearing in the set of dictionaries available for its use;
however its default behavior is to return non-dictionary words in addition to words
appearing in available dictionaries.

Options specified for the currently enabled recognizer may also influence the
interpretations it returns to the view. For example, the cursive recognizer’s default
settings enable its letter-by-letter recognition option, to increase the likelihood of
its returning strings not in the currently available set of dictionaries. The user can
control this option and others from within the Handwriting Settings preferences slip.

Note that even when the cursive and printed recognizers are configured similarly,
the results they return for the same input may differ. For example, using the cursive

C H A P T E R 9

Recognition

About the Recognition System 9-7

recognizer’s letter-by-letter option may produce different results than using the
printed recognizer (which always provides letter-by-letter recognition.) Options
for both recognizers are described throughout this chapter and in Chapter 10,
“Recognition: Advanced Topics.”

Unrecognized Strokes 9

If the input strokes are not recognized, the system encapsulates them in an object
known as a stroke bundle. A stroke bundle is a NewtonScript object that
encapsulates stroke data for multiple strokes. The strokes in the bundle have been
grouped by the system according to temporal and spatial data gathered when the
user first entered them on the screen. You can access the information in stroke
bundles to provide your own form of deferred recognition, or to examine or modify
stroke data before it is recognized. For information on using stroke bundles, see
Chapter 10, “Recognition: Advanced Topics.”

Stroke bundles may be returned to the view under any of the following circumstances:

■ No recognizers are enabled for the view.

■ Recognizers are enabled for the view but recognition fails.

■ The view is configured to image input as ink text.

■ The view’s vStrokesAllowed flag is set and a ViewStrokeScript method
is provided.

When the system passes a stroke bundle to a clEditView view, the view images
the strokes in the bundle as ink text or sketch ink. Other kinds of views may require
you to provide code that displays the strokes.

When no recognizers are enabled for a clEditView view, it displays input as
sketch ink. Input views for which no recognizers are enabled are not as unusual as
they might seem at first; for example, you might provide a view that accepts stroke
input without performing recognition as a means of capturing the user’s handwritten
signature. And some views, such as those used in the built-in Notepad application,
allow the user to enable and disable recognizers at will.

When recognizers are enabled for the view but recognition fails, the view may
return ink text or sketch ink. Recognition may fail if input strokes are too sloppy to
classify or if the view is not configured correctly for the intended input. For more
information, see “Recognition Failure” beginning on page 9-11.

When the view is configured to display input as ink text, the system skips the
remainder of the recognition process—it does not attempt to further classify the input
strokes as letters or words. Instead, the view simply images the strokes as ink text.

The most important difference between ink text and sketch ink has to do with how
these two forms of ink are represented. Ink text is inserted into existing text in
paragraph views in the same way as recognized words are: as the contents of a

C H A P T E R 9

Recognition

9-8 About the Recognition System

clParagraphView view child. Ink text automatically wraps to the paragraph
boundaries, just as recognized text does. Ink text is also usually reduced in size
when it is drawn, according to the user preference specified by the Ink Text Scaling
item in the Text Editing preferences slip. Sketch ink, on the other hand, is treated as
a graphic: it is inserted into the view as a clPolygonView view child. Sketch ink
is always drawn at full size, and in the position at which it was written on the screen.

Thus, stroke bundles are normally returned only to views that do not perform
recognition. To cause the system to always return stroke bundles to the view (in
addition to any word units, gesture units or shape units that may be passed to the
view), set the view’s vStrokesAllowed flag and provide a ViewStrokeScript
method, as described in “Customized Processing of Input Strokes” beginning on
page 10-40.

The recognition system’s classification of user input is essentially a process of
elimination. Enabling and configuring only the recognizers and dictionaries
appropriate to a particular context is the primary means by which you optimize the
recognition system’s performance within your application.

Enabling Recognizers 9
Each view has a viewFlags slot that contains a bit field. The bits in this field
specify characteristics that the view does not inherit from its view class, such as its
recognition behavior. When you set a view flag, it sets bits in this field to enable
combinations of recognizers and dictionaries suited to the input you anticipate the
view to receive.

Not all of the bits in this field affect recognition; some are used to set other
characteristics, such as the view’s placement on the screen. The bits in this field
that affect the recognition system are referred to as the view’s input mask. When
the view is constructed at run time, the system copies the input mask bits and other
view flags’ bits into the view’s viewFlags slot. shows the relationship of
recognition-related view flags to bits in the viewFlags slot.

You can set bits in the viewFlags slot from within the graphical view editor in
Newton Toolkit or you can set them programmatically from within your own
NewtonScript code. Either approach allows you to set combinations of bits to
produce a variety of behaviors.

This book uses the NewtonScript approach for all examples. For information on
using the graphical view editor in Newton Toolkit, see Newton Toolkit User’s Guide.

C H A P T E R 9

Recognition

About the Recognition System 9-9

Figure 9-2 Recognition-related view flags

View Flags 9

The system supplies a number of constants, called view flags, which are used to set
bits in a view’s viewFlags slot programmatically. In general, each of these flags
activates a combination of recognizers and dictionaries suited to recognizing a
particular kind of input. Thus, a view’s view flags specify the kinds of data it is
likely to recognize successfully. For a summary of the view flags that affect
recognition, see “Constants” (page 9-31).

There are two ways to set view flags from NewtonScript: you can place view flag
constants in your view template’s viewFlags slot or you can supply a recognition
configuration (recConfig) frame for the view. Occasionally, the use of both
techniques is appropriate, but in most cases you’ll use only one or the other.

Recognition Configuration Frames 9

Recognition configuration frames (recConfig frames) provide an alternate
programmatic interface to the recognition system. They can be used to provide any
behavior that view flags provide, and can also be used to provide specialized
recognition behaviors that view flags cannot. For example, view flags generally set

vTimeField
vDateField
vPhoneField
Reserved for system use
vShapesAllowed

5 010152024

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

vAnythingAllowed vSingleUnit

vCustomDictionaries

vCharsAllowed
vNumbersAllowed
vLettersAllowed
vPunctuationAllowed

vClickable
vStrokesAllowed
vGesturesAllowed

vAddressField
vNameField
vCapsRequired

vNothingAllowed

C H A P T E R 9

Recognition

9-10 About the Recognition System

multiple bits in the input mask to produce a particular behavior. You can use a
recConfig frame to set individual bits in the input mask, allowing you to control
aspects of recognition behavior that view flags do not.

Some features of the recognition system require the use of a recConfig frame.
For example, to create a view that provides single-letter input areas suitable for
accepting pen input in a crossword puzzle application, you must supply a
recConfig frame that provides an rcGridInfo frame. The system-supplied
rcGridInfo frame is used to specify the location of one or more single-letter
input views.

This chapter focuses on the use of view flags to configure recognition. The use of
recConfig frames is described in Chapter 10, “Recognition: Advanced Topics.”
System-supplied recConfig frames are described in “System-Supplied recConfig
Frames” (page 8-18) in Newton Programmer’s Reference.

View Flags vs. RecConfig Frames 9

In most cases, view flags provide the easiest and most efficient way to configure
the recognition system. Although recConfig frames provide more flexible and
precise control over the configuration of recognition behavior, they require more
effort to use correctly.

It is recommended that you use view flags to configure recognition unless you need
some special recognition behavior that they cannot provide. Examples of such
behavior include constraining recognition on a character-by-character basis,
implementing customized forms of deferred recognition, and defining baseline or
grid information.

The rest of this chapter discusses configuration of the recognition system only in
terms of the view flag model. You need to read this material even if you plan to use
recConfig frames in your application, because the description of recConfig
frames in Chapter 10, “Recognition: Advanced Topics,” assumes an understanding
of the view flag model upon which these frames are based.

Where to Go From Here 9
If you’re anxious to begin experimenting with view flags, you can skip ahead to
“Using the Recognition System” beginning on page 9-21 and test the effects of
various flags using the viewFlags sample application provided with Newton
Toolkit. However, it is recommended that you read the rest of this section before
attempting to work with the recognition system.

C H A P T E R 9

Recognition

About the Recognition System 9-11

Recognition Failure 9
Recognition may fail when the handwritten input is too sloppy for the system to
make a good match against its internal handwriting model, when the view is not con-
figured correctly for the intended input, or (in the case of dictionary-based recognition
only) when none of the interpretations of the input strokes match a dictionary entry.
In such cases, the recognition system may return sketch ink or ink text.

Ink text looks similar to sketch ink; however, ink text is scaled and placed in a
clParagraphView view as text. Sketch ink is not placed in a paragraph but
drawn in a clPolygonView view on top of anything else that appears in the
polygon view’s clEditView parent. Both ink text and sketch ink hold stroke data
that can be used to recognize the strokes at another time. Deferred recognition—
the process of recognizing saved ink at a later time—is described in more detail in
“Deferred Recognition” (page 10-5), in Chapter 10, “Recognition: Advanced
Topics.”

System Dictionaries 9
The system supplies a variety of dictionaries against which names, places, dates,
times, phone numbers, and commonly used words are matched. There are two
kinds of dictionaries used for text recognition: enumerated and lexical. An
enumerated dictionary is simply a list of strings that can be matched. A lexical
dictionary specifies a grammar or syntax that is used to classify user input. The
kind of dictionary used for a particular task is dependent upon task-specific
requirements. For example, it would be impractical to create an enumerated
dictionary of phone numbers; however, the clearly defined format imposed on these
numbers makes them ideal candidates for definition in a lexical dictionary.

The specific set of dictionaries that the system provides for a particular purpose
generally varies according to the user’s locale. For example, because currency
formats vary from country to country, the particular lexical dictionary that the
system uses for matching monetary values may change according to the current
locale. However, you usually need not be concerned with the specific set of
dictionaries used by a particular locale. For more information, see Chapter 20,
“Localizing Newton Applications.”

Dictionaries can be in ROM or in RAM (internal or card-based). Most of the system-
supplied dictionaries are in ROM; however, the user dictionary resides in RAM.

Applications must never add items to the user dictionary without the user’s
consent. The user dictionary is intended to be solely in the user’s control—adding
items to it is akin to changing the user’s handwriting preferences or Names entries.
It’s also important to leave room for users to store their own items.

C H A P T E R 9

Recognition

9-12 About the Recognition System

IMPORTANT

An excessively large user dictionary can slow the system when
performing searches that are not related to your application. It is
therefore recommended that applications do not add items to the
user dictionary at all. ▲

The system supports a total of about 1,000 items in the RAM-based user dictionary
(also known as the review dictionary). Note that this number may change in future
Newton devices. A persistent copy of the user word list is kept on the internal store
in the system soup. The user dictionary is loaded into system memory (not the
NewtonScript heap or store memory) when the system restarts and saved when the
user closes the Personal Word List slip. For more information, see “Working With
the Review Dictionary” (page 10-30).

A separate dictionary called the expand dictionary allows you or the user to
define word expansions that are substituted for abbreviations automatically. The
substitution takes place after the abbreviation has been recognized, but before it has
been displayed. For example, you could specify that the string w/ be expanded to
the string with, or the string appt expand to appointment. In addition to permitting
the substitution of an entirely different string for the one recognized, the expand
dictionary can be used to correct recurring recognition mistakes or misspellings
automatically.

The expand dictionary is not used directly by the recognition system. Instead, each
word to be expanded is added to both the user dictionary and the expand dictionary.
Then the user dictionary and any appropriate additional dictionaries are used to
perform stroke recognition. Before the recognizer returns the list of recognized
words to the view, it determines whether any of the items in the list are present in
the expand dictionary. If so, the expanded version of the word is inserted into the
list of recognized words before the original version of the word. The original version
is also included in the list, just in case the user doesn’t want to expand the word.

As words not present in any of the currently enabled dictionaries are recognized, the
auto-add mechanism may add them to the user dictionary automatically. This
feature is enabled when the cursive recognizer is active, but not when the printed
recognizer is active. (Although both recognizers use dictionaries to improve
accuracy, the use of dictionaries does not benefit the printed recognizer enough to
justify default use of the auto-add mechanism.) You can improve the printed
recognizer’s treatment of problematic words by making them available from a
dictionary, but it is recommended that you create a custom dictionary that provides
those words; the user dictionary is intended to be under the user’s control.

The auto-add dictionary is a list of words that have been added to the user
dictionary automatically. If the auto-add dictionary is not empty, the Recently
Written Words slip displays its contents when the user opens the Personal Word
List slip. The Recently Written Words slip prompts the user to indicate whether
each of the words it displays should remain in the user dictionary. To encourage the

C H A P T E R 9

Recognition

About the Recognition System 9-13

user to make individual decisions about each word in the list, this slip does not
permit selection.

Although the Recently Written Words slip asks the user whether to add words to
the Personal Word List, the words have already been added to both the user
dictionary and the auto-add dictionary by the time they are displayed in this slip if
the cursive recognizer is in use. Rather than actually adding words to any
dictionaries, this slip actually removes those words that the user does not confirm
as candidates for addition to the user and auto-add dictionaries.

Note
When the printed text recognizer is in use, the automatic
addition of words to the user dictionary and the auto-add
dictionary is disabled. ◆

The size of the auto-add dictionary is limited to 100 words. A persistent copy of the
auto-add dictionary is kept on the internal store in the system soup. The auto-add
dictionary is loaded in system memory (not the NewtonScript heap or store
memory) when the system restarts and saved when the user opens or edits the
Recently Written Words slip. For more information, see “Working With the Review
Dictionary” beginning on page 10-30.

Another dictionary, the symbols dictionary, is always enabled for any view that
performs text recognition. This dictionary includes alphabetic characters, numerals,
and some punctuation marks. Use of this dictionary permits the user to correct
single characters by writing over them on the screen.

Correction and Learning 9
When the recognition system returns a word unit to the view, it constructs a
correction information frame from the word unit and may save learning data as
well. The correction information frame holds information used to correct
misrecognized words. Learning data is used by the system to improve the cursive
recognizer’s accuracy.

The system provides a developer interface to the information in the correction
information frame, as well as a user interface to a subset of this data. For complete
descriptions of the protoCorrectInfo, protoWordInfo and
protoWordInterp system prototypes that provide access to correction
information, see “Recognition System Prototypes” (page 8-31) in Newton
Programmer’s Reference

The picker (popup menu) shown in Figure 9-3 provides the user interface to
correction information. This picker is displayed automatically when the user
double-taps a previously recognized word. This picker’s items include

■ the five best interpretations returned by the recognizer.

■ the alternative capitalization of the most highly scored interpretation.

C H A P T E R 9

Recognition

9-14 About the Recognition System

■ the expansions of words that match entries in the expansion dictionary.

■ a graphical representation of the original input strokes as ink.

■ buttons for the soft keyboard and text-corrector views.

■ a Try Letters button when the cursive recognizer is active.

Figure 9-3 Text-corrector picker

The words in this list are one example of correction information stored by the
system as it recognizes words. In addition to word lists, correction information
includes the original stroke data and information known as learning data.

Learning data is information gathered as the user corrects misrecognized words. It
is used to modify the system’s internal handwriting model to more closely match
the way the user actually writes. This information is called learning data because
the system can be said to learn various characteristics of the user’s handwriting
style, with a resulting increase in recognition accuracy. Not all recognizers return
learning data.

User Preferences for Recognition 9
The user can specify several preferences that affect the overall configuration of the
recognition system. This information is provided for reference purposes only;
generally, you should not change the user’s recognition preferences settings.

C H A P T E R 9

Recognition

About the Recognition System 9-15

This section describes only those user preferences for which the system provides a
NewtonScript interface. It does not provide a comprehensive summary of the user
interface to recognition, which may vary on different Newton devices. For a
description of the user interface to a particular Newton device, see the user manual
for that device.

The user preference settings for recognition that this section describes are stored as
the values of slots in a system-maintained frame that holds user configuration data.
These slots are described in “System-Wide Settings” (page 8-2) in Newton
Programmer’s Reference.

The user preference settings described here may be affected by the setting of a
protoRecToggle view associated with the view performing recognition. For a
description of this view, see “RecToggle Views” beginning on page 9-18.

Recognition-oriented user preference settings may also be overridden by a
recConfig frame associated with the view performing recognition. For complete
information on recConfig frames, see Chapter 10, “Recognition: Advanced
Topics.”

Handwriting Recognition Preferences 9

The Handwriting Recognition preferences slip shown in Figure 9-4 specifies the
overall characteristics of the user’s handwriting. In general, you should not override
the user settings specified in this slip.

The Printing and Cursive radio buttons specify whether a printed or cursive style
of lettering is used. This system-wide setting enables either the printed or cursive
recognizer by setting the value of the letterSetSelection slot in the system’s
user configuration data. It is strongly recommended that you do not change
this setting.

The user can also specify the amount of blank space the recognizer may find
between words; this setting influences the recognition system’s initial grouping of
stroke data. The value returned by the slider control in this slip is kept in the
letterSpaceCursiveOption slot in the system’s user configuration data. This
value may be overridden by views that perform recognition.

C H A P T E R 9

Recognition

9-16 About the Recognition System

Figure 9-4 Handwriting Recognition preferences

Checking the “Configure for guest user” checkbox causes the system to

■ save all current recognition system settings.

■ save the owner’s learning data.

■ temporarily reset all recognition system preferences to their default values.

■ learn the guest user’s writing style as misrecognized words are corrected if the
cursive recognizer is in use. (The printed recognizer does not use learning data.)

When the user deselects the “Configure for guest user” checkbox, the guest user’s
learning data is discarded and the original user’s learning data, preferences, and
other settings are restored. Note that the system’s use of the auto-add mechanism is
not affected by the setting of this checkbox—when the cursive recognizer is
enabled, the system always adds new words to the auto-add dictionary.

The Options button displays a picker from which the user can access options for
various preferences. The items included in this picker vary according to whether
the printed or cursive recognizer is enabled. When the cursive recognizer is enabled,
this picker provides the Text Editing Settings, Handwriting Settings, Letter Shapes,
and Fine Tuning items. When the printed recognizer is enabled, this picker provides
only the Text Editing Settings and Fine Tuning items. Because the system provides
no developer interface to the Letter Shapes slip, it is not discussed here.

Figure 9-5 shows the Text Editing Settings slip that is displayed for both the
printed and cursive recognizers. Of the adjustments available from the Text Editing
Settings slip, the “Add new words to Personal Word List” checkbox is of interest to
developers. The cursive recognizer adds new words to the RAM-based user
dictionary automatically when this checkbox is selected. The printed recognizer
never adds new words automatically, regardless of the setting of this checkbox. You

Options
Button

letterSpaceCursiveOption

letterSetSelection

C H A P T E R 9

Recognition

About the Recognition System 9-17

can always add new words to the user dictionary programmatically, regardless of
which recognizer is enabled. To display or edit the personal word list, the user taps
the book icon on the soft keyboard.

Figure 9-5 Text Editing Settings slip

The system provides two versions of the Fine Tuning slip, one for each of the
cursive and printed text recognizers, as shown in Figure 9-6. Both slips provide a
“Transform my handwriting” slider control that allows the user to fine-tune the
system’s use of temporal cues to determine when a group of strokes is complete.
This slider sets the value of the timeoutCursiveOption slot in the system’s
user configuration data.

Figure 9-6 Fine Tuning handwriting preferences slips

The Fine Tuning slip used by the cursive recognizer includes an additional slider
that allows the user to trade some measure of accuracy for a faster response from
the recognizer. The “Recognize my handwriting” slider sets the value of the
speedCursiveOption slot in the system’s user configuration data.

When the cursive recognizer is enabled, the Options button in the Handwriting
Recognition preferences slip provides access to the Handwriting Settings slip
shown in Figure 9-7.

timeoutCursiveOption

speedCursiveOption

For cursive recognizer For printed recognizer

C H A P T E R 9

Recognition

9-18 About the Recognition System

Figure 9-7 Handwriting Settings slip

When the “Learn my handwriting” checkbox is selected, the system sets the value
of the learningEnabledOption slot in its user configuration data to true.
When this slot holds the value true, the system modifies its internal handwriting
model as the user corrects misrecognized words when the cursive recognizer is
enabled. The printed recognizer does not provide or use learning data.

The user can cause the cursive recognizer to perform character-based recognition
(rather than dictionary-based recognition) in certain kinds of views by selecting the
“Letter-by-letter in fields” or “Letter-by-letter in notes” checkboxes in the
Handwriting Settings slip. (The printed recognizer can always return character
combinations that do not appear in dictionaries.)

The “Letter-by-letter in fields” checkbox enables the cursive recognizer’s letter-by-
letter option in protoLabelInputLine views that use this recognizer. The
intended use of this flag is to permit the user to enable letter-by-letter recognition
automatically for views that are unlikely to find user input in dictionaries. For
example, an application that restricts the cursive recognizer to returning dictionary
words might enable this recognizer’s letter-by-letter option selectively for views
intended to accept surnames. When the “Letter-by-letter in fields” box is selected,
the value of the letterInFieldsOption slot in the system’s user configuration
data is set to true. For more information, see the description of this slot in
“System-Wide Settings” (page 8-2) in Newton Programmer’s Reference.

The “Letter-by-letter in notes” checkbox enables letter-by-letter recognition for
views based on the clEditView class that use the cursive recognizer. When the
“Letter-by-letter in notes” box is selected, the lettersCursiveOption slot in
the system’s user configuration data is set to true. The built-in Notes application
and notes associated with items in the Names and Dates applications demonstrate
this behavior. For more information, see the lettersCursiveOption description
in “System-Wide Settings” (page 8-2) in Newton Programmer’s Reference.

RecToggle Views 9
The protoRecToggle view is a button that allows the user to control the
recognition behavior of one or more views easily. This button is usually provided
as a child of your application’s status bar. When the user taps this button, it

letterInFieldsOption

lettersCursiveOption

learningEnabledOption

C H A P T E R 9

Recognition

About the Recognition System 9-19

displays a picker from which the user can choose recognition behaviors that you
specify. When this picker is collapsed, the appearance of the button indicates the
current recognition settings for the view or views that it controls. Figure 9-8 shows
the appearance of typical protoRecToggle view when it is collapsed and when
it is expanded to display the pick list of recognizers it can enable.

Figure 9-8 Use of protoRecToggle view in the Notes application

The default picker provides all of the items shown in Figure 9-8 in the order
illustrated. You can specify that this picker display a subset of these items in the
order you specify.

The topmost item in the picker indicates the recognizer that the recToggle view
enables by default; unless you specify otherwise, the recToggle view enables the
text recognizer by default, as shown in the figure.

You can also provide code that restores the user’s most recent recToggle setting
or initializes the recToggle to a predetermined setting each time your
application opens.

The picker’s Preferences item opens the Handwriting Recognition user preferences
slip by default.

For more information on protoRecToggle views, see Chapter 10, “Recognition:
Advanced Topics,” as well as the description of this prototype in Newton
Programmer’s Reference.

Flag-Naming Conventions 9
This section describes conventions used to name recognition-related view flags, as
well as the significance of the use of the words Field and Allowed in flag names.

The Entry Flags area of the Newton Toolkit (NTK) view editor actually sets view
flags. The distinction that Newton Toolkit makes between “view flags” and “entry
flags” is an artifact of the way certain views create child views dynamically at
run time.

For example, when the user taps a protoLabelInputLine view, it creates and
opens a clParagraphView child that is the input line view in which text

Collapsed

Expanded

C H A P T E R 9

Recognition

9-20 About the Recognition System

recognition takes place. The Entry Flags area of the NTK screen specifies the view
flags for this dynamically created child view separately from the view flags for the
container view in which it appears. When the system creates the child view, it
copies the Entry Flags bits into the child view’s viewFlags slot.

For simplicity’s sake, this chapter refers to all recognition-oriented flags as “view
flags.” This chapter and its corresponding section of the Newton Programmer’s
Reference document all such flags as view flags.

Although the NTK view editor describes vAnythingAllowed as a “flag” it is
actually a mask that sets all bits in a clEditView view’s input mask. This chapter
refers to this construct as the “vAnythingAllowed mask.” See (page 9-8) for a
graphical depiction of the relationships between bits in the input mask and
recognition-related view flags.

The use of Field in the names of some flags and Allowed in others is meant to
reflect these flags’ intended use, rather than a functional difference.

The “field” flags are intended for setting up input views that accept a single kind of
input, such as dates. For example, setting the vDateField flag specifies that the
view accepts numeric input in a format commonly used for dates in the current
locale. Setting this flag enables the set of dictionaries appropriate for recognizing
such input.

On the other hand, the more inclusive “allowed” flags are intended for use with
views that must recognize several kinds of input; for example, setting the
vNumbersAllowed flag specifies that the view accepts a wide range of numeric
input, such as currency values, times, and dates. Setting the vNumbersAllowed
flag alone, then, enables a more inclusive set of dictionaries than obtained by
setting the vDateField flag alone.

Despite differences in naming conventions (and despite the fact that the Field Type
popup menu in the NTK view editor considers these flags mutually exclusive), the
“field” and “allowed” flags can be mixed in any combination. Keep in mind,
though, that the more choices the recognizer has, the more opportunity it has to
make the wrong choice.

Recognition Compatibility 9
In addition to the cursive recognizer available in previous systems, version 2.0 of
system software adds a recognizer optimized for printed characters. This recognizer,
represented by the Printed radio button in the Handwriting Recognition preferences
slip, is the default text recognizer used when you or the user do not specify otherwise.

Selecting the Cursive radio button in the Handwriting Recognition preferences slip
equates to selecting the Mixed Cursive and Printed radio button available in
previous versions of this slip: the cursive recognizer is enabled, all printed and

C H A P T E R 9

Recognition

Using the Recognition System 9-21

cursive letter styles in the system’s handwriting model are enabled, and the system
disables unused letter styles over time as the user corrects misrecognized words.

The default settings of the cursive recognizer in version 2.0 enable this recognizer’s
letter-by-letter recognition option. Previous versions of the system disabled this
option by default, causing the cursive recognizer to return only words appearing in
the set of dictionaries available to the view performing recognition.

The protoLetterByLetter prototype, which appears at the lower-left corner
of the screen in the Notepad application on the MessagePad 100 and MessagePad
110, is obsolete. It has been replaced by the protoRecToggle prototype. For
more information, see “RecToggle Views” (page 9-18).

Prior to version 2.0 of Newton system software, correction information was not
accessible from NewtonScript. Version 2.0 of Newton system software makes this
information available as frame data. For more information, see “Correction and
Learning” (page 9-13).

Combining the vLettersAllowed flag with flags used to specify recognition of
numeric values (such as vPhoneField, vNumbersAllowed, vDateField,
vTimeField, and vAddressField) produced undesirable results in system
software prior to version 2.0. System software version 2.0 supports these kinds of
view flag combinations.

Deferred recognition—the ability to convert strokes to text at some time other than
when the strokes are first entered on the screen—was introduced in Newton system
software version 1.3 with no application programming interface. Version 2.0 of
Newton system software provides a NewtonScript interface to this feature.

Using the Recognition System 9

This section describes how to use view flags to enable recognition in views. This
chapter discusses only those view flags that interact with the recognition system.
For a summary of these view flags, see “Constants” (page 9-31). For information
on other kinds of view flags, see Chapter 3, “Views.” For complete descriptions of
all view flags, see Newton Programmer’s Reference.

For information on the use of recToggle views, recConfig frames and advanced
features of the recognition system, see Chapter 10, “Recognition: Advanced
Topics.”

Types of Views 9
The kind of view that you use to recognize input affects the amount of work you’ll
have to do to support recognition. Views based on the clEditView class handle
most recognition events automatically once you’ve specified their intended

C H A P T E R 9

Recognition

9-22 Using the Recognition System

recognition behavior by setting view flags or providing a recConfig frame.
Specifically, clEditView views create clParagraphView or
clPolygonView child views automatically as required to display output from the
recognition system. To use other kinds of views for recognition, you may need to
provide viewXxxScript methods that create these child views and respond in
other ways to recognition system events.

Configuring the Recognition System 9
You can take the following approaches to configuring the recognition system:

■ Set view flags only. This approach works well for most applications and is
described in this chapter.

■ Set view flags and allow the user to configure recognition from a
protoRecToggle view that you provide. The easiest way to do this is by
setting the vAnythingAllowed mask, which is described in this chapter.
This approach supports the use of ink text in clEditView views. Use of
the protoRecToggle view is described in Chapter 10, “Recognition:
Advanced Topics.”

■ Set view flags and supply a recognition configuration frame based on
ROM_rcInkOrText. This approach supports ink text in clEditView views.
You should provide a protoRecToggle view as well, to allow the user to
switch easily between text and ink text.

■ Supply a recognition configuration frame of some other kind. This approach
offers you the most control and flexibility, but also requires the most work to
implement. The difficulty of enabling ink text according to the value of a
protoRecToggle view depends on the particular implementation of your
recConfig frame. Recognition configuration frames are described in
Chapter 10, “Recognition: Advanced Topics.”

■ Use the RecogSettingsChanged message sent by the protoRecToggle
view to enable recognition behaviors dynamically. This technique is described in
Chapter 10, “Recognition: Advanced Topics.”

Except where noted otherwise, all of the flags described in this chapter are set in
the view’s viewFlags slot. When setting the values of viewFlags slots,
remember that in order to produce useful behavior you may need to set other bits in
addition to the recognition-oriented ones that this chapter describes. To preserve
settings that your view’s viewFlags slot inherits from its view class, you should
logically OR changes to bits in this slot.

For information on non-recognition view flags provided by the system, see
Chapter 3, “Views.”

C H A P T E R 9

Recognition

Using the Recognition System 9-23

Obtaining Optimum Recognition Performance 9

To obtain the most accurate results from the recognition system, you must define as
precisely as possible the type of input that the view is to recognize. Aside from
potentially introducing errors, enabling superfluous recognizers may slow the
recognition system’s performance.

The view flags that enable text recognition also enable dictionaries suited to
recognizing particular kinds of input, such as dates, phone numbers, and so on.
Some view flags activate multiple dictionaries, and the sets of dictionaries activated
by various flags may overlap. The system shows no preference towards any single
dictionary in a set except for a slight weighting of results in favor of words found
in the user dictionary, which most view flags enable.

The specific dictionaries that a particular flag enables varies according to the user’s
locale and the ROM version of the Newton device. You usually need not be
concerned with this implementation detail, nor should you rely on the presence of a
particular dictionary when setting view flags.

When you need to control precisely which dictionaries a view uses for recognition,
you can set its vCustomDictionaries flag and use a dictionaries slot to
specify explicitly which dictionaries are to be used. For information about custom
dictionaries, see “Using Your RAM-Based Custom Dictionary” (page 10-28), in
Chapter 10, “Recognition: Advanced Topics.” For information about locale and the
recognition system, see “How Locale Affects Recognition” (page 20-2), in
Chapter 20, “Localizing Newton Applications.”

For best performance, you need to specify the minimum combination of recognizers
and dictionaries required to process the kind of input you expect the view to receive.
This equates to enabling the minimum set of view flags that allow the view to
recognize appropriate input correctly. By restricting the possible interpretations
returned by the recognition system to only those that are appropriate for a particular
view, you increase the system’s chances of interpreting the input correctly. For
example, when configuring a view for the entry of numeric data, you would not
specify that the recognition system return alphabetic characters to that view.

The printed and cursive text recognizers appear nearly identical to NewtonScript
applications. The main difference between them is that while the cursive recognizer
can be made to use the value of the viewFlags slot as a strict definition of what it
can recognize, the printed recognizer uses this value as only a hint—that is, it can
always return values not specified by the input view’s view flags. When configuring
views for text recognition, you should set view flags that describe the input you
anticipate the view to receive and then verify that you obtain acceptable results
from both text recognizers.

Because the printed recognizer lets you write anything in the input view, it may be
difficult to determine whether your viewFlags settings are appropriate when this
recognizer is enabled; the cursive recognizer usually provides better feedback in

C H A P T E R 9

Recognition

9-24 Using the Recognition System

this regard. If necessary, you can provide a ViewWordScript or
ViewChangedScript method that validates the recognizer’s output; this method
can be especially useful when working with the printed recognizer.

Accepting Pen Input 9
When setting up any view, you must specify whether it accepts pen input at all. If
you set the vNothingAllowed flag (or turn off all recognition-oriented flags), the
view does not accept pen input. If you want the view to accept pen input, you must
set the vClickable flag in its viewFlags slot. Setting this flag only causes the
view to accept pen taps and send ViewClickScript messages; it does not
enable ink handling or send messages to any of the unit-handling methods that
provide recognition behavior.

Setting the vClickable flag specifies that the view system is to send the
ViewClickScript message to the view once for each pen tap that occurs within
the view. Note that this is the case only when vClickable is the only flag set for
the view—other flags, such as the vCustomDictionaries flag, set the
vClickable bit in the view’s input mask also.

When this flag is set, the system sends additional messages to the view to signal
taps, strokes, gestures, and words. All pen input is signaled by the
ViewClickScript message, which indicates that the pen contacted the screen
or was lifted from it within the boundaries of the view. If you supply a
ViewClickScript method, it should return true to indicate that the message
was handled, or nil to pass the message on to another view. If this message is not
handled by the view and additional recognition flags are set, other messages may
be sent to the view, depending on what was written. These other messages include
ViewStrokeScript, ViewGestureScript, and ViewWordScript—in that
order, if all are sent.

Each of the corresponding input-related view methods accept as an argument a unit
object passed to it by the system. The unit contains information about the pen
input. You cannot examine the unit directly from NewtonScript, but you can pass it
to other system-supplied functions that extract information from it such as the
beginning and ending points of the stroke, an array of stroke points, the stroke
bounds, and so on.

Taps and Overlapping Views 9

When views overlap, taps can “fall through” from the top view to the one beneath,
causing unexpected results. For example, when the user taps in an area of the top
view that doesn’t handle taps, and the view beneath provides a button in the
vicinity of the tap, the button may be activated unintentionally.

C H A P T E R 9

Recognition

Using the Recognition System 9-25

You can solve this problem by setting the top view’s vClickable flag without
providing a ViewClickScript method. (The top view need not handle the taps,
only prevent them from being passed on to the other view.)

Recognizing Shapes 9
The vShapesAllowed flag enables the recognition of geometric shapes such as
circles, straight lines, polygons, and so on. Do not set this flag for views that
handle text input only. This flag is intended for use only in views based on the
clEditView class. The clEditView class provides the built-in Notepad
application’s note stationery with much of its recognition behavior.

The shapes displayed on the screen are clPolygon views returned as the children
of the clEditView that accepted the input strokes. There is no developer
interface to shape recognition; to manipulate shapes returned by the recognition
system, you must extract the polygon views from the edit view yourself. In some
cases, you may find the ViewAddChildScript method useful for this purpose.
The ViewAddChildScript message is sent when a child view is added to a view.

When multiple shapes are returned to an edit view, its ViewAddChildScript
method is called once for each shape.

When multiple ink text words are returned to an edit view, the
ViewAddChildScript method is invoked when the clParagraphView that
holds the ink text is added as the child of the edit view, but this method is not
invoked as ink text words are added to the paragraph view.

In views not based on the clEditView class, the arrival of each ink word is
signalled by a ViewInkWordScript message.

Recognizing Standard Gestures 9
Setting the vGesturesAllowed flag supplies system-defined behavior for the
gestures tap, double tap, highlight, scrub, line, caret, and caret-drag. Most input
views set the vGesturesAllowed flag, as they need to respond to standard
gestures such as scrubbing to delete text or ink. At present, you cannot define new
gestures to the system.

When the vGesturesAllowed flag is set, the gesture recognizer invokes the
view’s ViewGestureScript method before handling the gesture. Normally,
you don’t need to supply a ViewGestureScript method for clEditView or
clParagraphView views. These views handle all system-defined gestures
automatically.

Your ViewGestureScript method is invoked only for gestures that the view
system does not handle automatically. For information on intercepting standard
gestures before the view system handles them, see “Customized Processing of

C H A P T E R 9

Recognition

9-26 Using the Recognition System

Double Taps” beginning on page 10-41. See also “ViewGestureScript” (page 8-71)
in Newton Programmer’s Reference.

Combining View Flags 9
Generally, you must combine multiple view flags to produce useful recognition
behavior. For example, most views that accept user input set the vClickable flag
to enable pen input and the vGesturesAllowed flag to enable recognition of
standard gestures such scrubbing and inserting spaces.

Except where noted otherwise, the NewtonScript “plus” operator (+) is used to
combine view flags, as in the following code fragment.

myViewTemplate :=
{
// recognize taps, gestures, and shapes
viewFlags: vClickable+vGesturesAllowed+vShapesAllowed,
…}

Note
Most combinations of view flags include the vClickable flag.
If you do not set the vClickable flag, the view does not accept
pen input at all. ◆

Sometimes a particular combination of view flags produces results that seem
incorrect. For example, you might be surprised to discover that a view setting only
the flags vClickable+vLettersAllowed can occasionally recognize numeric
values. (The vLettersAllowed flag enables the recognition of single text
characters by the cursive recognizer.) This behavior is caused by the presence of
the symbols dictionary in the set of dictionaries available to the view. The symbols
dictionary includes alphabetic characters, numerals and some punctuation marks.
Most view flags enable this dictionary to support the correction of single letters or
numerals by overwriting. As a side effect, it becomes possible to recognize
extraneous characters or numerals in fields that ostensibly should not support such
input. This behavior is rarely a problem, however, because the recognition system
is designed to show a strong preference for “appropriate” interpretations of input as
defined by the view flags set for the view.

Although you might expect that the presence of the symbols dictionary would
allow a view setting only the flags vClickable+vNumbersAllowed to return
alphabetic characters, this behavior is quite difficult to produce. Views that set the
vNumbersAllowed flag show a much stronger preference for single-digit
numbers than single alphabetic characters. However, letters that do not look similar
to numeric values—for example, the letter W—may produce this particular form of
misrecognition.

C H A P T E R 9

Recognition

Using the Recognition System 9-27

When troubleshooting recognition errors, remember that view flags may enable
multiple dictionaries and that the sets of dictionaries enabled by various flags
may overlap.

As a general rule, the fastest and most accurate recognition occurs when the fewest
recognizers and dictionaries necessary to successfully analyze the input are
enabled. Enabling unnecessary recognizers and dictionaries may decrease the
speed and accuracy with which recognition is performed.

Recognizing Text 9
The vCharsAllowed and vLettersAllowed flags enable text recognition in
views that accept pen input. Either flag enables the text recognizer specified by the
Handwriting Recognition preferences slip.

Each of these flags specifies different recognition options and dictionary sets. The
unique behaviors associated with each flag are demonstrated most clearly by the
cursive recognizer. The cursive recognizer can be made to return only words
present in the set of dictionaries available to the view performing recognition. In
contrast, the printed recognizer can always return words or letter combinations that
are not present in dictionaries.

The vCharsAllowed flag enables a default set of dictionaries that provide
vocabulary used in common speech, names of days, names of months, proper
names, and words in the user dictionary. When the vCharsAllowed flag is set
and the vLettersAllowed flag is not, the cursive recognizer returns only words
that appear in the set of dictionaries available to the view performing recognition.

Note that the complete set of dictionaries available to the view may include those
enabled by other flags. For example, the NTK view editor provides a Field Type
popup menu that allows you to specify whether the view is to accept phone, date,
time, address or name data. The choices in this menu set the vPhoneField,
vDateField, vTimeField, vAddressField and vNameField flags,
respectively. Each of these flags enables one or more dictionaries suited to
recognizing the specified input data. Custom dictionaries may also be made
available to the view performing recognition by setting the
vCustomDictionaries flag and providing a valid dictionaries slot in the
view that performs recognition.

The vLettersAllowed flag enables the cursive recognizer’s letter-by-letter
recognition option. When the vLettersAllowed flag is set, the cursive recognizer
may return words not appearing in dictionaries as well as nonword letter
combinations. Note that this configuration increases the cursive recognizer’s chances
of misrecognizing words that appear in the set of dictionaries available to it.

Although both text recognizers provide a letter-based recognition feature, the two
recognition engines are completely distinct. Consequently, the results produced by

C H A P T E R 9

Recognition

9-28 Using the Recognition System

the cursive recognizer’s letter-by-letter option may be different from those returned
by the printed recognizer for the same input data.

Although the printed recognizer can always return non-dictionary words, it does
make extensive use of the dictionaries available to the view for recognition. Users
may improve the printed recognizer’s accuracy for problematic non-dictionary
words by adding them to the user dictionary. You can supply custom dictionaries to
improve the recognition of specialized vocabulary. It is recommended that
applications do not add words to the user dictionary.

Recognizing Punctuation 9

The vPunctuationAllowed flag permits the cursive recognizer to return
common punctuation marks such as the period (.); comma (,); question mark (?);
single quotation marks (‘ and ’); double quotation marks (“ and ”); and so on. The
printed recognizer can always return these characters, regardless of whether this
flag is set.

Views restricted to the entry of phone numbers, dates, or times need not set the
vPunctuationAllowed flag because the vPhoneField, vDateField, and
vTimeField flags already allow the entry of appropriate punctuation.

The cursive recognizer can also apply some simple rules when deciphering
ambiguous input; for example, it can make use of the fact that most punctuation
marks follow rather than precede words.

Suppressing Spaces Between Words 9

Setting the vSingleUnit flag causes the recognition system to ignore spatial
information when grouping input strokes as words; instead, the system relies on
temporal cues to determine when the user has finished writing a word. When this
flag is set, the recognizer ignores short delays, such as those that occur between
writing the individual characters in a word. Longer delays cue the recognizer to group
the most recently completed set of strokes as a word. The amount of time considered
to be a longer delay is a function of the speed of the processor and the recognition
system, as well as the value of the timeoutCursiveOption user preference.

The vSingleUnit flag is useful for views in which the presence of gratuitous
spaces may confuse the recognizer; for example, phone number entry fields usually
suppress the recognition of spaces. If you want to suppress all spaces in the displayed
text, you can use the vNoSpaces flag in conjunction with the vSingleUnit flag.

Rather than suppressing the input of spatial cues, the vNoSpaces flag suppresses
the insertion of spaces between groups of strokes or recognized text in views based
on the clParagraphView class. This post-processing flag does not restrict the
interpretation of the input strokes or affect word segmentation, as the vSingleUnit
flag does.

C H A P T E R 9

Recognition

Using the Recognition System 9-29

The vNoSpaces flag must appear in an evaluate slot named textFlags that you
create in the view. The vSingleUnit flag appears in the view’s viewFlags slot,
as usual.

Forcing Capitalization 9

The vCapsRequired flag directs the system to capitalize the first letter of each
word returned by the recognizer before displaying the text in the view.

Setting the vCapsRequired flag does not affect the recognizer’s behavior—it
affects post-processing performed on the recognizer’s output before it is returned to
the view.

Justifying to Width of Parent View 9

Setting the vWidthIsParentWidth flag for a view based on the
clParagraphView class causes the view to extend its right boundary to match
that of its parent automatically.

The vWidthIsParentWidth flag must appear in an evaluate slot named
textFlags that you create in the view.

Like other flags set in the textFlags slot, the vWidthIsParentWidth flag
does not affect the recognizer’s behavior—it affects post-processing performed on
the recognizer’s output before it is returned to the view.

Restricting Input to Single Lines or Single Words 9

Including the oneLineOnly flag in your view’s viewJustify slot causes the
view to accept only a single line of text input, with no word wrapping provided.

You can restrict input to a single word by including the oneWordOnly flag in the
view’s viewJustify slot. If this flag is set, the view replaces the currently
displayed word with the new one when the user writes in the view. You can also
restrict input to single characters by using this flag in conjunction with a custom
dictionary of single letters.

For more information on these flags, see their descriptions in Chapter 3, “Views.”
For information on the use of custom dictionaries, see “Using Custom
Dictionaries” beginning on page 10-24.

Validating Clipboard and Keyboard Input 9

It is possible for the user to enter invalid values in fields by dragging text from the
Clipboard or by using a keyboard to type in the field. For example, setting the
vPhoneField flag normally restricts input to numeric values in phone number
formats; however, the user can still enter invalid values in such a field by dragging

C H A P T E R 9

Recognition

9-30 Using the Recognition System

or typing them. To prevent invalid input by these means, you can implement a
ViewChangedScript method that validates its view’s input.

Using the vAnythingAllowed Mask 9
The vAnythingAllowed mask can be used only with views based on the
clEditView class. When used by itself, this mask sets all of the bits in the view’s
input mask, potentially enabling all of the system-supplied recognizers and
dictionaries. However, the actual recognition behavior of views that use this mask
varies according to current user preference settings.

For a view that sets the vAnythingAllowed mask, the recognition system
replaces the set of view flags you’ve specified with a set of flags derived from the
current settings of user preferences that affect recognition.The actual set of
recognizers enabled for the view is controlled by

■ user preferences specified in the system’s user configuration data.

■ the application’s protoRecToggle view, if it has one.

■ the view’s recConfig frame, if it has one.

Slots in the system’s user configuration data specify recognition behaviors that all
views inherit. However, an optional protoRecToggle view can specify different
behaviors for individual views by overriding values inherited from user configuration
data. Similarly, each view can provide a recConfig frame that overrides settings
specified by the protoRecToggle view or the system’s user configuration data.

Thus, in practice, the vAnythingAllowed mask usually is not what its name
implies: if any bit in this mask is turned off (by another flag, or by a recToggle
view, for example), the input mask is no longer vAnythingAllowed.

The built-in Notepad application provides a good example of the behavior of views
that use the vAnythingAllowed mask, including the use of a
protoRecToggle view to change recognition settings.

C H A P T E R 9

Recognition

Summary 9-31

Summary 9

Constants 9

Text Recognition View Flags 9

Constant Value Description

vCharsAllowed 1 << 12
or
0x01000

Enables default text recognizer and default
dictionary set.

vLettersAllowed 1 << 14
or
0x04000

Enables letter-by-letter text recognition.

vAddressField 1 << 21
or
0x0200000

Enables recognizers and dictionaries suitable for
the input of address data in the current locale.

vNumbersAllowed 1 << 13
or
0x02000

Enables the recognition of numeric characters,
monetary values (for example, $12.25), decimal
points, and signs (+ or –).

vNameField 1 << 22
or
0x0400000

Enables text recognition optimized for name
data; usually combined w/ vCapsRequired.

vCustomDictionaries 1 << 24
or
0x01000000

Enables text recognition using dictionaries
specified by the view’s dictionaries slot.

vPunctuationAllowed 1 << 15
or
0x08000

Enables recognition of punctuation marks by the
cursive recognizer. (Printed recognizer always
recognizes punctuation marks.)

vCapsRequired 1 << 23
or
0x0800000

Forces capitalization of the first character of
each recognized word.

C H A P T E R 9

Recognition

9-32 Summary

Non-Text Recognition View Flags 9

Constant Value Description

vNothingAllowed 0x00000000
or
0x0000

The view accepts no handwritten or keyboard input.

vAnythingAllowed 65535 << 9
or
0x01FFFE00

Recognize any input. Use only for views based on
the clEditView class.

vClickable 1 << 9
or
0x0200

Accept taps and send ViewClickScript
message to the view once for each tap that
occurs within the view.

vStrokesAllowed 1 << 10
or
0x0400

Accept stroke input and send the
ViewStrokeScript message at the end
of each stroke.

vGesturesAllowed 1 << 11
or
0x0800

Recognize gesture strokes such as scrub, highlight,
tap, double tap, caret, caret-drag, and line. Send
the ViewGestureScript message when the
view recognizes a gesture that it does not handle
automatically.

vShapesAllowed 1 << 16
or
0x010000

Enables shape recognition. Use only for views
based on the clEditView class.

vSingleUnit 1 << 8
or
0x0100

Disable the use of spatial cues (distance between
strokes). Meaningful for text recognizers only.

vNoSpaces 1 << 1
or
0x0002

Directs a view based on the clParagraphView
class to not insert spaces between existing text and
new text.

vWidthIsParentWidth 1 << 0
or
0x0001

Extend right boundary of clParagraphView
view to match that of its parent.

C H A P T E R 9

Recognition

Summary 9-33

View Flags Enabling Lexical Dictionaries 9

Data Structures 9

Recognition-Related User Configuration Slots 9

Use the GetUserConfig and SetUserConfig global functions to access
these slots.

Constant Value Description

vNumbersAllowed 1 << 13
or
0x02000

Enables recognition of numbers, monetary values (for
example, $12.25), decimal points, and mathematical
signs (+ and –).

vPhoneField 1 << 18
or
0x040000

Enables recognition of phone numbers. Note that the
set of lexical dictionaries enabled by this flag varies
with the text recognizer currently in use.

vDateField 1 << 19
or
0x080000

Enables recognition of date formats (such as March
3-95), names of months, and names of days.

vTimeField 1 << 20
or
0x0100000

Enables recognition of times.

Slot name Notes

letterSetSelection Text recognizer in use.

learningEnabledOption true enables cursive learning.

letterSpaceCursiveOption Space between stroke groups.

timeoutCursiveOption Time between individual strokes.

speedCursiveOption Time spent analyzing input.

letterInFieldsOption true enables cursive recognizer’s
letter-by-letter option in
protoLabelInputLine views.

lettersCursiveOption true enables cursive recognizer’s
letter-by-letter option in built-in Names
and Dates applications’
protoLabelInputLine views.

doAutoAdd true adds new words to user dictionary and
auto-add dictionary automatically.

continued

C H A P T E R 9

Recognition

9-34 Summary

doTextRecognition true enables text recognition
unconditionally.

doShapeRecognition true enables shape recognition
unconditionally.

doInkWordRecognition true causes text recognizer to return ink
text rather than sketch ink.

Slot name Notes

About Advanced Topics in Recognition 10-1

C H A P T E R 1 0

Recognition:
Advanced Topics 10

Figure 10-0
Listing 2-0
Table 10-0

This chapter describes advanced uses of the Newton recognition system. If you are
developing an application that supports ink text, implements specialized recognition
system behavior, or provides unusual input views, you’ll need to understand one or
more topics presented here. This chapter describes

■ the use of recConfig frames. An individual view can use a recConfig frame
to specify its own recognition behavior, support ink text, specify baseline
information, support deferred recognition, and define input areas for single letters.

■ the use of text-corrector views and text-correction information.

■ the programmatic manipulation of system dictionaries and custom dictionaries.

Before reading this chapter, you should understand the contents of Chapter 9,
“Recognition,” which provides an overview of the recognition system and
describes how to implement its most common behaviors. Depending on your
application development goals, you may also find it helpful to be familiar with
soups, as described in Chapter 11, “Data Storage and Retrieval.”

About Advanced Topics in Recognition 10

This section provides conceptual information regarding

■ how views configure recognizers and dictionaries based on the interaction of
view flags, recConfig frames, recToggle views, and recognition-related
user preferences.

■ the use of protoCharEdit views.

■ deferred recognition.

How the System Uses Recognition Settings 10
A number of settings that control the behavior of the various recognizers are
specified by the system’s user configuration data. All views that perform recognition
inherit behavior from these values, which is why it’s rarely appropriate for individual

C H A P T E R 1 0

Recognition: Advanced Topics

10-2 About Advanced Topics in Recognition

applications to change these system-wide settings. Instead, individual views can
customize their own recognition behavior by using a recConfig frame or
recToggle view to override these inherited values locally.

In practice, most views’ recognition behavior is defined by a combination of
inherited and overridden values. For example, because most users tend not to
change the speed at which they write, it’s common for views to use inherited values
for the timeoutCursiveOption slot, which specifies the relative delay required
to consider a group of input strokes complete. At the same time, individual views
may customize certain recognition settings by overriding values that would
otherwise be inherited from the system’s user configuration data. For example, a
view can use a recConfig frame to disable the automatic addition of new words
to the user dictionary.

A view based on the protoRecToggle system prototype provides another way to
override inherited recognition settings. This view provides a picker that allows the
user to change recognition settings easily. Each view controlled by this picker must
provide a _recogSettings slot that the picker sets according to the user’s
current choice of recognition settings. The value in the _recogSettings slot
overrides values inherited from the system’s user configuration data.

Your application supplies only one _recogSettings slot for each recToggle
view it provides. Because views use parent inheritance to find a _recogSettings
slot, a single recToggle view and a single _recogSettings slot can control
the recognition behavior of one view or multiple views, depending on the
_recogSettings slot’s position in the view hierarchy. For more information, see
“Creating the _recogSettings Slot” beginning on page 10-20.

You can also provide an optional RecogSettingsChanged method in the
_parent chain of any view controlled by the recToggle view. If a
RecogSettingsChanged method is provided, the recToggle view sends this
message to self when the user chooses an item in the recToggle picker.Your
RecogSettingsChanged method can perform any application-specific task that
is appropriate; typically, this method reconfigures recognition settings in response
to the change in the recToggle view’s state.

Finally, any view can provide an optional recConfig frame that specifies the
view’s recognition behavior at the local level.

Although recConfig frames have thus far been presented as simply an alternate
interface to the recognition system, they are actually used internally by the system
to represent the recognition behavior of each view. When the user writes, draws, or
gestures in a view, the system builds a recConfig frame that specifies the precise
settings of all the recognizers needed for the view. If you supply a recConfig
frame for the view, the recConfig frame that the system builds is based on the
recConfig frame you have supplied and any recognition-related user preferences
that may apply.

C H A P T E R 1 0

Recognition: Advanced Topics

About Advanced Topics in Recognition 10-3

On the other hand, if the view does not supply a recConfig frame, the recognition
system builds one based on the set of view flags enabled for that view, the contents
of its dictionaries slot (if present) and any recognition-related user preferences
that may apply. Thus, every view that performs recognition is eventually associated
with a recConfig frame that the system uses to perform setup tasks when the
view is opened.

Note that the recConfig frame actually used to configure recognition is the one
that the system builds, not the one that you supply. The recConfig frame that
you supply is referenced by the _proto slot of the recConfig frame that the
system builds.

The recConfig frame built by the system is passed to a recognition area, which is
an object used internally by the system to describe the recognition characteristics
of one or more views. Because similar views can share an area, the use of
recognition areas minimizes the reconfiguration of the recognition system required
to respond to changes in views on the screen.

A small number of recognition areas are kept in a cache. You can change the
recognition behavior of a view dynamically by specifying new recognition settings
and invalidating the area cache. The next time the view accepts input, the system
builds a new recognition area reflecting its currently-specified recognition behavior
and the dictionaries it is to use for recognition.

In addition to providing an efficient and flexible means of configuring the
recognition system programmatically, recConfig frames provide support for
future expansion of the recognition system. The recConfig frame allows
applications to specify recognition configurations in a uniform way that is not
dependent on the use of any particular recognizer engine. Although the Newton
platform currently supports only its built-in recognizers, future versions of the
system may permit the use of third-party recognizer engines.

The system provides several standard recConfig frames that can be placed in your
view’s recConfig slot or used as a starting point for building your own
recConfig frames. For descriptions of system-supplied recConfig frames, see
“System-Supplied recConfig Frames” (page 8-18) in Newton Programmer’s
Reference.

In summary, the recognition behavior that a view exhibits is ultimately determined
by a combination of the following values:

■ values inherited from the system’s user configuration data.

■ values in the view’s viewFlags and entryFlags slots.

■ values in the view’s dictionaries slot when the vCustomDictionaries
flag is set.

■ values specified by an optional recToggle view, which may override values
inherited from user configuration data or supply additional values.

C H A P T E R 1 0

Recognition: Advanced Topics

10-4 About Advanced Topics in Recognition

■ values specified by an optional recConfig frame, which may override values
inherited from user configuration data, override values specified by a
recToggle view, or supply additional values.

ProtoCharEdit Views 10
The protoCharEdit system prototype provides a comb-style entry view (or
comb view) that allows the user to edit individual characters in words easily.

Figure 10-1 Example of protoCharEdit view

Individual character positions (or cells) in the comb view are delimited by vertical
dotted lines. Each cell that can be edited has a dotted line beneath it to indicate that
it can be changed. The user can edit a character by writing a new character over
one currently occupying a cell; the recognized value of the character is displayed in
the cell. When the user taps a cell, it displays a picker containing the best
interpretations of the input strokes. The user can correct the character in that
position by choosing an item from the picker.

The user can delete an individual character by tapping it and then selecting
“Delete” from the picker that is displayed. Alternatively, the user can delete one or
more characters by writing the scrub gesture over one or more cells.

The user can insert a space by tapping on the cell at the position that the new space
is to occupy and choosing Insert from the picker that is displayed.

Alternatively, the user can enter the caret gesture in a cell to perform the same
operation. When an insertion takes place in a cell already occupied by a character,
the comb view shifts that character and those comprising the rest of the word to
the right.

Tapping a blank cell before or after a word in the comb view displays a list of
punctuation characters that may be appropriate for that position.

The recognition behavior of a protoCharEdit view is controlled by values you
supply in an optional template slot. If this slot’s value is nil, the comb view is
said to be unformatted because input is not restricted in any way. The recognition
behavior of an unformatted comb view is similar to that of the text-corrector view
provided by the built-in Notepad application: all characters are allowed, insertion
and deletion are supported fully, and spaces are added at the ends of words to allow
them to be extended.

C H A P T E R 1 0

Recognition: Advanced Topics

About Advanced Topics in Recognition 10-5

A formatted comb view utilizes a template you define which specifies characteristics
of the view’s behavior or appearance. A comb view’s template may specify an
initial value for the string that the view displays, the editing characteristics for each
position in the comb view, and filters that restrict the values recognized in each of
these positions. The template may also define methods for initializing and post-
processing the string displayed by the comb view. These methods may be useful
when the string displayed in the comb needs to be different from the input string or
when an externally-displayed string must differ from its internal representation.

When the user taps a character in a formatted comb view, it displays the list of
characters specified by its template, if that list contains ten or fewer items. (Note
that this value may change in future platforms.) Otherwise, it displays the list of
top-ranking alternate interpretations returned by the text recognizer.

Ambiguous Characters in protoCharEdit Views 10

Because there are several characters that are ambiguous in appearance—for
example, the value zero (0) and the letter O, or the value one (1) and the letter L—
the built-in system fonts provide enhanced versions of these characters that
improve their readability. However, continuous use of these characters can be
distracting to the user. Thus, these fonts contain character codes that map to
alternate versions of the ambiguous characters, and the system provides functions
for mapping between the codes for the normal and enhanced characters. For more
information, see the descriptions of the MapAmbiguousCharacters and
UnMapAmbiguousCharacters functions under “protoCharEdit Functions and
Methods” (page 8-47) in Newton Programmer’s Reference.

Deferred Recognition 10
Deferred recognition is the ability to convert strokes to text at some time other
than when the strokes are first entered on the screen. Views that are to perform
deferred recognition must be capable of capturing ink text or ink. For example, a
view that bases its recConfig frame on the system-supplied ROM_InkOrText
frame and uses a protoRecToggle view to configure the recognition system
need not do anything more to provide the deferred recognition feature.

This section describes the user interface to deferred recognition and then provides a
programmer’s overview of this feature.

User Interface to Deferred Recognition 10

A view that performs deferred recognition uses the same settings as it would for
real-time text recognition: a combination of settings specified by user preferences
and settings specified by the view flags or recConfig frame associated with the
view in which recognition takes place.

C H A P T E R 1 0

Recognition: Advanced Topics

10-6 About Advanced Topics in Recognition

The user can enter unrecognized ink by enabling ink text or sketch ink. In this
mode, strokes appear as ink. To convert the ink to text, the user double-taps the ink
word; the user can cause multiple words to be recognized by selecting them
beforehand and then double-tapping the selection. The recognition system responds
by inverting the ink word or selection, as shown in Figure 10-2, and returning the
recognized text, which replaces the selection.

Figure 10-2 User interface to deferred recognition, with inverted ink

Programmer’s Overview of Deferred Recognition 10

Deferred recognition is available in views based on the clEditView class or
clParagraphView views that support ink text. This feature works with any
amount of input, from a single letter to a full page of text.

To initiate deferred recognition, the user double-taps the child views that display
the ink to be recognized. The recognized text is added to an edit view as if the user
had just written it. That is, a new clParagraphView child is added, or the
recognized text is appended to a nearby clParagraphView. After the recognized
text has been added, the original view containing the sketch ink or the ink text is
removed from its edit view parent.

Deferred recognition also invokes the ViewAddChildScript and
ViewDropChildScript methods of the recognized text and unrecognized ink
views. Words added to nearby paragraphs invoke ViewChangedScript
methods for those paragraphs, updating the text slot in those views; for some
paragraph views, the viewBounds slot is updated as well.

You can pass recConfig frames to the global functions Recognize,
RecognizePara, and RecognizePoly to implement your own form of
deferred recognition. For more information, see “Deferred Recognition Functions”
(page 8-89) in Newton Programmer’s Reference.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-7

Compatibility Information 10
The ReadDomainOptions function is obsolete. It has been replaced by the
ReadCursiveOptions function.

The AddToUserDictionary function is obsolete. It has been replaced by the
AddWord method of the review dictionary.

Two new dictionary constants, kMoneyOnlyDictionary and
kNumbersOnlyDictionary, provide access to new lexical dictionaries used for
recognizing monetary and numeric values, respectively.

Most lexical dictionaries are no longer locale-specific—aside from a few exceptions,
each lexical dictionary is used for all locales. For detailed information, see
“System-Supplied Dictionaries” (page 8-16) in Newton Programmer’s Reference.

All of the dictionary information provided by previous versions of system software
is still present in version 2.0; however, certain dictionary constants now provide a
superset of the information they previously referenced, as follows:

■ The kLastNamesDictionary is obsolete. This information is now included
in the kSharedPropersDictionary dictionary.

■ The kLocalCompaniesDictionary constant is obsolete.This information is
now included in the kSharedPropersDictionary dictionary.

■ The kLocalStatesAbbrevsDictionary constant is obsolete.This
information is now included in the kSharedPropersDictionary dictionary.

■ The kDateLexDictionary constant is obsolete. It has been replaced by the
kLocalDateDictionary constant.

■ The kTimeLexDictionary constant is obsolete. It has been replaced by the
kLocalTimeDictionary constant.

■ The kMoneyLexDictionary constant is obsolete. This information is now
included in the kLocalNumberDictionary dictionary.

■ The kNumberLexDictionary constant is obsolete. This information is now
included in the kLocalNumberDictionary dictionary.

Using Advanced Topics in Recognition 10

This section describes how to provide advanced recognition behaviors. It presumes
understanding of conceptual material provided in this and other chapters. Topics
discussed here include

■ using recConfig frames to specify recognition behavior

■ changing the recognition behavior of views dynamically

C H A P T E R 1 0

Recognition: Advanced Topics

10-8 Using Advanced Topics in Recognition

■ using protoRecToggle views to specify recognition behavior

■ defining single-letter input areas within a view

■ accessing text correction information

■ using custom dictionaries for recognition

■ manipulating the review dictionary (includes the user dictionary, expand
dictionary, and auto-add dictionary)

■ using protoCharEdit views for correcting text

■ using stroke bundles

Using recConfig Frames 10
This section describes how to use a recConfig frame to specify a view’s
recognition behavior. Note that the use of view flags is generally the best (and
simplest) way to configure views to recognize common input such as words and
shapes. You need not use a recConfig frame unless you require some recognition
behavior that cannot be provided using the view’s viewFlags and
dictionaries slots. For example, the use of a recConfig frame is required for
views that restrict recognition of individual characters to a specified set, or
implement customized forms of deferred recognition.

This section describes the use of recConfig frames for

■ enabling recognizers

■ supporting ink text

■ fine-tuning recognition options

■ specifying the dictionaries used for recognition

A recConfig frame can be used to specify any set of recognizers and
dictionaries, including combinations not supported by the view flag model;
however, views controlled by recConfig frames are subject to the same
limitations as all views that perform recognition:

■ The text recognizer (printed or cursive) made available to all views is determined
by the value of the letterSetSelection slot in the system’s user
configuration data. Individual views cannot override this system-wide setting.

■ The system’s ability to save learning data is enabled by the value of the
learningEnabledOption slot in the system’s user configuration data.
Individual views cannot override this system-wide setting.

Do not include letterSetSelection or learningEnabledOption slots in
your recConfig frame.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-9

Creating a recConfig Frame 10

For any view that is to use a recConfig frame, you must supply a recConfig
slot, usually by defining it in your view’s template. The frame in your view’s
recConfig slot must be modifiable; that is, it must be RAM-based. When your
view template supplies a recConfig frame, the view system builds a RAM-based
recConfig frame along with the view—you need not do anything more to cause
the view to use the recConfig frame.

To create your own recConfig frame at run time, you need to call the
PrepRecConfig function to create a RAM-based recConfig frame that the
system can use. Although you could obtain similar results by cloning a
recConfig frame that your view template defines, using the PrepRecConfig
function is more efficient:

■ The PrepRecConfig function creates a smaller frame than that obtained by
cloning your view template’s recConfig frame.

■ The frame that the PrepRecConfig function returns can be used as it is by the
recognition system. Any other frame that you place in the view’s recConfig
slot is used by the system to create the recConfig frame actually used by the
view, with the result being the creation of two frames in RAM rather than just one.

■ Consistent use of this function to create recConfig frames saves RAM by
permitting similar recConfig frames to share the same frame map.

A function similar to the PrepRecConfig function, the BuildRecConfig
function, is provided for debugging use. Do not use the BuildRecConfig
function to create your RAM-based recConfig frame. The argument to the
BuildRecConfig function is the view itself, rather than its recConfig frame.
This function builds an appropriate recConfig frame for the specified view,
regardless of whether the view defines one. The system does not use the
recConfig frame that this function returns, however—as stated previously, this
frame is for debugging use only.

IMPORTANT

The contents of the inputMask slot in the view’s recConfig
frame must match the input mask (the recognition-related bits)
provided by the view’s viewFlags slot. For more information on
this slot and others that the recConfig frame may contain, see
“protoRecConfig” (page 8-36) in Newton Programmer’s
Reference. ▲

You can base your recConfig frame on one of the system-supplied recConfig
frames by simply placing the appropriate constant in your view template’s
recConfig slot. Alternatively, you can place in this slot a frame that uses its
_proto slot to reference one of the system-supplied recConfig frames. A third
way to define a recConfig frame is to supply all necessary values yourself. The

C H A P T E R 1 0

Recognition: Advanced Topics

10-10 Using Advanced Topics in Recognition

exact complement of slots and values required is determined by the recognition
features your recConfig frame is intended to supply; for more information,
including complete descriptions of the system-supplied recConfig frames, see
“System-Supplied recConfig Frames” (page 8-18) in Newton Programmer’s
Reference.

Once you’ve created a RAM-based recConfig frame, you must cause the
recognition system to use it. This process is described in “Changing Recognition
Behavior Dynamically” beginning on page 10-17. For a code example showing
how to create a recConfig frame based on one of the system-supplied
prototypes, see “Creating Single-Letter Input Views” beginning on page 10-15.

Using RecConfig Frames to Enable Recognizers 10

To enable or disable recognizers unconditionally, supply appropriate values
for the doTextRecognition, doShapeRecognition, or
doInkWordRecognition slots your view’s recConfig frame provides. For
descriptions of these slots, see “protoRecConfig” (page 8-36) in Newton
Programmer’s Reference.

For some operations, you may wish to restrict the recognizers that the user can
enable in a view while still respecting the rest of the preferences indicated in the
system’s user configuration data. The optional slots allowTextRecognition
and allowShapeRecognition in the view’s recConfig frame are intended
for use with views having an input mask that is vAnythingAllowed. For
complete descriptions of these slots, see “protoRecConfig” (page 8-36) in Newton
Programmer’s Reference. Note that you can also allow the user to set the values of
these slots from a protoRecToggle view instead of setting them yourself in the
recConfig frame.

Views that use the allowSomethingRecognition slots allow the user to turn on
only the recognizers that you specify while respecting all other user preferences.
Any subset of allowSomethingRecognition slots can be specified to allow
the user to enable any appropriate combination of recognizers from the
protoRecToggle view or user preferences.

For example, setting the value of the allowTextRecognition slot to true
allows the user to enable the text recognizer in the view controlled by the
recConfig frame while the doTextRecognition slot in the system’s user
configuration data holds a non-nil value.

Returning Text, Ink Text or Sketch Ink 10

This section discusses the use of recToggle views with system-supplied view
classes and recConfig frames to provide views that can display text, ink text, or
sketch ink.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-11

Sketch ink, like shapes, is displayed only in views based on the clEditView
class. As a rule of thumb, consider sketch ink and ink text to be mutually exclusive
when configuring recognition in views; for best results, configure your input view
to recognize only one of these two data types.

Views based on the clEditView class handle sketch ink and ink text automatically.
For other views, the system invokes the view’s ViewInkWordScript or
ViewRawInkScript method when ink arrives. For more details, see the
descriptions of these methods in Newton Programmer’s Reference.

The system-supplied ROM_rcInkOrText constant provides a ready-to-use
recConfig frame that allows views based on the clParagraphView class to
contain ink text in addition to normal text. To use this recConfig frame to create
a view that supports ink text, you’ll need to take the following steps:

■ Create a view template that protos from the clParagraphView class.

■ In your view template, create a recConfig slot that holds the
ROM_rcInkOrText constant. For more information, see “Creating a recConfig
Frame” beginning on page 10-9.

■ Provide a protoRecToggle view that allows the user to choose text or ink
text settings; if your application provides a status bar, you need to provide the
recToggle view as one of its children. For more information, see “Creating
the recToggle View” beginning on page 10-19.

■ Provide a _recogSettings slot at an appropriate position in the recToggle
view’s _parent chain. For more information see “Creating the _recogSettings
Slot” beginning on page 10-20.

Normally, the input view tries to recognize input using all currently enabled
recognizers. If no recognizers are enabled or if recognition fails for some reason—
for example, due to messy input or some sort of error—then the view system
converts the input strokes into ink. The doInkWordRecognition slot in the
input view’s recConfig frame specifies the kind of ink that the system creates
from the input strokes.

When the doInkWordRecognition slot holds a non-nil value, the system
returns ink text; when this slot holds the nil value, the system returns sketch ink.
This slot is described fully in “protoRecConfig” (page 8-36) in Newton
Programmer’s Reference. Table 10-1 on page 10-12 summarizes the kinds of data
returned by the recognition system when recognition fails in an edit view or
paragraph view that is controlled by a recToggle view.

Note that when the input view is set to recognize shapes, the smoothed and cleaned
up ink that is returned may be ink text but is more likely to be a curve shape. Aside
from the failure of shape recognition, the only time raw ink is returned to the view
is when its associated recToggle is set to “Sketches”.

C H A P T E R 1 0

Recognition: Advanced Topics

10-12 Using Advanced Topics in Recognition

As an alternative to using a recConfig frame to provide support for ink text, you
can set your clParagraphView view’s vAnythingAllowed mask. Although
this is truly the easiest way to support ink text, it is less-preferred because it
provides you the least control over the view’s recognition behavior. A variation on
this approach that may provide better performance is to enable an appropriate set
of view flags rather than setting the vAnythingAllowed mask. The best way to
support ink text, however, is through the use of a recConfig frame that provides
appropriate values.

Regardless of the approach you take to provide ink text support, you should test
your view’s recognition behavior under both text recognizers, and under any other
configurations your recToggle view provides.

To support both ink text and sketch ink in a single view, or to take other application-
specific action in response to changes in the state of a recToggle view, your view
can provide a RecogSettingsChanged method that reconfigures the its
recognition behavior dynamically. For more information, see “Changing
Recognition Behavior Dynamically” beginning on page 10-17.

For more information on protoRecToggle views, see “Using protoRecToggle
Views” beginning on page 10-19. For detailed descriptions of recConfig frames,
see “protoRecConfig” (page 8-36) and “System-Supplied recConfig Frames”
(page 8-18) in Newton Programmer’s Reference.

Fine-Tuning Text Recognition 10

To fine-tune either text recognizer’s interpretation of input strokes, you can add the
optional speedCursiveOption, timeoutCursiveOption, and
letterSpaceCursiveOption slots to the recConfig frame. These
mechanisms for controlling recognizer behavior may affect various recognizers
differently. For more information, see “protoRecConfig” (page 8-36) in Newton
Programmer’s Reference. For a discussion of the dictionaries slot, see “Using
Your RAM-Based Custom Dictionary” beginning on page 10-28.

Table 10-1 Recognition failure in paragraph or edit view controlled by recToggle

Recognizer enabled
by recToggle view Returns on failure

Text Ink text

Ink text Ink text (does not fail)

Shapes Sketch ink, smoothed

Sketch ink Nothing (occurs rarely)

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-13

Manipulating Dictionaries 10

You can control the view’s use of dictionaries by including in your recConfig
frame the dictionaries, rcSingleLetters, or
inhibitSymbolsDictionary slots as appropriate. These slots are described in
“protoRecConfig” (page 8-36) in Newton Programmer’s Reference.

Single-Character Input Views 10

When recognizing single characters, the recognizer sometimes has difficulty
determining individual characters’ baseline or size; for example, it can be difficult
to distinguish between an upper case P and a lower case p when relying strictly on
user input. If you know where the user will be writing with respect to a
well-defined baseline, you can provide an rcBaseInfo or rcGridInfo frame to
specify to the recognition system precisely where characters are written.

The rcBaseInfo Frame 10

 The rcBaseInfo frame is especially valuable in improving the recognition of
single characters, for which it is sometimes difficult to derive baseline or letter-size
values from user input.

Figure 10-3 depicts the editing box that an rcBaseInfo frame defines.

Figure 10-3 Single-character editing box specified by rcBaseInfo frame

The NewtonScript code used to create the baseline information for the editing box
shown in Figure 10-3 looks like the following example.

rcBaseInfo := {
base: 140,// global y-coordinate of baseline
smallHeight:15,// height of a lower case x
bigHeight:30,// height of an upper case X
descent:15,// size of descender below baseline
};

base
descent

smallHeight

bigHeight

C H A P T E R 1 0

Recognition: Advanced Topics

10-14 Using Advanced Topics in Recognition

To obtain the best performance and to conserve available memory, create your
rcBaseInfo frame by cloning the frame provided by the
ROM_canonicalBaseInfo constant. Store your frame in a slot named
rcBaseInfo in your input view’s recConfig frame.

For a detailed description of the rcBaseInfo frame, see “Data Structures Used in
recConfig Frames” (page 8-24) in Newton Programmer’s Reference.

The rcGridInfo Frame 10

The rcGridInfo frame allows you to define the position of one or more single-
letter input areas within a single input view. Its purpose is to facilitate the creation
of views having multiple single-letter input areas, such as might be used by a
crossword puzzle application. Providing a separate view for each single letter input
area would be extremely inefficient; the use of an rcGridInfo frame allows you
to draw one view that provides the illusion of many input views, by defining to the
recognizer the size of an individual input area and the spacing between input areas.

Figure 10-4 depicts an example of the grid that an rcGridInfo frame defines.
The boxes shown in this figure are not views themselves, just lines on the screen
that indicate the location of the input areas to the user. The recognition behavior is
provided by the view that draws these boxes; the rcGridInfo frame helps the
recognizer determine the precise location of user input, and, consequently, where to
display its output. By providing the proper slots, you can use an rcGridInfo
frame to define a row, column, or matrix (as shown in the figure) of single-letter
input areas within a view.

Figure 10-4 Two-dimensional array of input boxes specified by rcGridInfo frame

boxRight

boxBottom

boxTop

xSpace

ySpace

boxLeft

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-15

If you provide a grid in which the user is to write characters or words, you need to
use an rcGridInfo frame to define the grid to the text recognizer. For example,
the protoCharEdit system prototype uses an rcGridInfo frame internally to
define the input areas (cells) in the comb view it provides.

The recognizer uses the information in an rcGridInfo frame to make character-
segmentation decisions. You can use the rcGridInfo frame in conjunction with
an rcBaseInfo frame to provide more accurate recognition within boxes in a
single view. Recognition in the most recently used grid box begins as soon as the
user writes in a new box in the grid.

The NewtonScript code used to create the grid shown in Figure 10-4 looks like the
following example.

rcGridInfo := {
boxLeft: 100,// x coordinate of left of top-left box
boxRight:145,// x coordinate of right of top-left box
xSpace:55,// x distance from boxLeft to boxLeft
boxTop: 50,// y coordinate of top of top-left box
boxBottom:95,// y coordinate of bottom of top-left box
ySpace:55// y distance from boxTop to boxTop
};

To obtain the best performance and to conserve available memory, create your
rcGridInfo frame by cloning the frame provided by the
ROM_canonicalCharGrid constant. Store your frame in a slot named
rcGridInfo in your view’s recConfig frame.

For a detailed description of the rcGridInfo frame, see “Data Structures Used in
recConfig Frames” (page 8-24) in Newton Programmer’s Reference

Creating Single-Letter Input Views 10

The following code fragment creates a single-letter input view’s recConfig
frame. This frame, which includes rcBaseInfo and rcGridInfo frames, is
based on the ROM_rcSingleCharacterConfig frame supplied by the system.

// specify box (or horizontal array of boxes)
// into which character(s) are written.

myView := {
recConfig: ROM_rcsinglecharacterconfig,

…}

// height of a lowercase letter
constant kSmallHeight := 11;

C H A P T E R 1 0

Recognition: Advanced Topics

10-16 Using Advanced Topics in Recognition

// indent from left of view to first letter
constant kBoxIndent := 4;
// width of a single box in the grid
constant kCellWidth := 24;

// create editable recConfig frame and set initial values
myView.ViewSetupDoneScript := func()

begin
// prebuild RAM copy that we can change
recConfig := PrepRecConfig(recConfig);

// set these same flags in myView.viewFlags
recConfig.inputMask :=

vClickable+vGesturesAllowed+vCustomDictionaries;

// get global bounds of enclosing view
local box := :GlobalBox();
// calc left edge of boxes in grid
local leftX := box.left + kBoxIndent;

// specify baseline and expected letter height
recConfig.rcBaseInfo :=

{
// baseline for writing
base: box.top + viewLineSpacing,
// height of a small letter
smallHeight: kSmallHeight,
};

// specify horizontal info for an array of boxes
recConfig.rcGridInfo :=

{
// left edge of first box
boxLeft: leftX,
// right edge of first box
boxRight: leftX + kCellWidth,
// width to left edge of next box
xSpace: kCellWidth,
};

// use new settings
PurgeAreaCache();

end;

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-17

The PurgeAreaCache function causes the recognition system to adopt the
settings that the recConfig frame specifies. This function is explained in more
detail in the next section, “Changing Recognition Behavior Dynamically.”

Normally, you need not call the PurgeAreaCache function when specifying a
recConfig frame as part of a view’s template. However, you must call this
function to change a recConfig frame at run time. For example, the previous
code fragment calculates values determining the size and location of the grid view
according to the size of the enclosing parent view; thus, the parent view must
already exist before the grid view’s recConfig frame can be constructed.
Therefore, the grid view’s recConfig frame is constructed from within the
ViewSetupDoneScript method of the parent view that encloses the grid view.
At the time the viewSetupDoneScript method is executed, the system has
already used the recConfig frame supplied by the enclosing view’s template. In
order to cause the system to use the new recConfig frame—the one that defines
the grid view—the ViewSetupDoneScript method must call the
PurgeAreaCache function.

Changing Recognition Behavior Dynamically 10
To change a view’s recognition behavior dynamically, you must indicate the view’s
new configuration (by setting view flags, changing the view’s dictionaries
slot, or defining a recConfig frame) and make the recognition system use the
new settings. The system supplies three functions that you can use to make the
system adopt new recognition settings; each is appropriate for a particular situation.

The function you use to adopt new settings depends on whether you are changing
the recognition behavior of all views or just changing the behavior of individual
views. Changes to user preferences for recognition affect the recognition behavior
of all views. On the other hand, changing the value of a single view’s viewFlags
or recConfig slot affects that view only.

Note
It is recommended that you do not change any user settings
without confirmation from the user. ◆

To change the recognition behavior of a single view dynamically, use the global
function SetValue to change the value of the view’s viewFlags slot or
recConfig slot. In addition to setting the new value, the SetValue function
invalidates the area cache, which is a buffer that stores a small number of
recognition areas. Your changes to recognition behavior are incorporated when the
recognition area for your view is rebuilt.

C H A P T E R 1 0

Recognition: Advanced Topics

10-18 Using Advanced Topics in Recognition

▲ W A R N I N G

The SetValue function may not be appropriate for
setting the entryFlags slot in views that do not
have a viewFlags slot. In these kinds of views, set the
value of the entryFlags slot directly and then call the
PurgeAreaCache function to invalidate the area cache. If you
have changed values in the system’s user configuration data, call
the ReadCursiveOptions function instead of the
PurgeAreaCache function. ▲

You can also use the PurgeAreaCache function to invalidate the area cache. This
function provides an efficient way to force the reconstruction of recognition areas
after you’ve changed the values of slots in multiple views. Note, however, that this
function does not resynchronize the recognition system with changes in the
system’s user configuration data. Do not call PurgeAreaCache to effect changes
in user preferences for recognition.

User preferences that affect recognition behavior are saved as slot values in the
system’s user configuration data. Some of these values, such as that of the
timeoutCursiveOption slot, affect all views; others affect only views that set
the vAnythingAllowed mask. For detailed information about the slot you need
to set, see its description in “System-Wide Settings” (page 8-2) in Newton
Programmer’s Reference.

When setting user preferences for recognition, do not modify the system’s user
configuration data directly. Instead, use the GetUserConfig and
SetUserConfig global functions to manipulate user configuration values.

After calling the SetUserConfig function to set one or more new values, you
must call the ReadCursiveOptions function to cause the recognition system to
use the new values. Do not call the PurgeAreaCache function after changing
values in the system’s user configuration data—this function does not even test for
changes to user preferences. Because the ReadCursiveOptions function
invalidates the area cache, you need not call the PurgeAreaCache function after
calling the ReadCursiveOptions function.

IMPORTANT

The view’s viewFlags slot must contain the same recognition
flags as the inputMask slot in its recConfig frame. Certain
view system operations depend on the viewFlags slot being set
up properly. ▲

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-19

Using protoRecToggle Views 10
A protoRecToggle view changes the recognition behavior of views by overriding
values inherited from the system’s user configuration data. Note that values in the
view’s recConfig frame override settings specified by the protoRecToggle view.

The protoRecToggle view is usually used with clEditView views that set the
vAnythingAllowed mask or clParagraphView views that support ink text.

Take the following steps to use a protoRecToggle view.

■ Create the recToggle view in NTK. If your application has a status bar, you
need to provide the recToggle view as a child of the status bar.

■ Configure input views appropriately to support the choices your recToggle
view provides. To do so, you need to provide an appropriate recConfig frame
or set the vAnythingAllowed mask for each view that is to be controlled by
the recToggle view.

■ Provide a _recogSettings slot at a place in the _parent chain that allows
each view controlled by the recToggle view to inherit this slot.

You can take the following optional steps to customize your recToggle view’s
appearance or behavior:

■ Provide a _recogPopup slot specifying the items to be included in the
protoRecToggle picker.

■ Implement a RecogSettingsChanged method in the _parent chain of any
view controlled by the recToggle view.

The next several sections describes these steps in detail.

Creating the recToggle View 10

To create a recToggle view, you’ll first need to sketch it out in the NTK layout
editor. When you do so, you’ll notice that regardless of where you draw it, the view
will appear in the upper-left corner of the layout. This is because the recToggle
view is intended to be displayed as a child of the status bar in applications that
have one.

When a recToggle view is a child of your application’s status bar, the view system
positions the recToggle view on the status bar automatically, ignoring the value
of the recToggle view template’s viewBounds slot in the process. When the
recToggle view is not a child of the status bar, you must create a viewBounds
slot for it and set appropriate values for this slot.

C H A P T E R 1 0

Recognition: Advanced Topics

10-20 Using Advanced Topics in Recognition

Configuring Recognizers and Dictionaries for recToggle Views 10

Regardless of whether you use a recConfig frame or view flags to specify your
view’s recognition behavior, the view must be capable of enabling recognizers and
dictionaries appropriate for each choice in the recToggle picker. If your view
does not support all of the recognition settings provided by the default recToggle
view, you need to provide a _recogPopup slot that restricts the choices appearing
in the picker that the recToggle view displays. For more information, see
“Providing the _recogPopup Slot” beginning on page 10-22.

If you are using a recConfig frame to specify your view’s recognition behavior,
you can place the ROM_rcPrefsConfig constant in your recConfig frame’s
_proto slot to provide a general-purpose recConfig frame that allows
recognition of all forms of pen input. Note that you must also enable recognition
behavior and dictionaries as appropriate in order to produce useful behavior.

Creating the _recogSettings Slot 10

Applications that use a recToggle view must provide a _recogSettings slot
in a view that is a parent to both the recToggle view and the input view it
controls. Your view template should specify an initial value of nil for this slot.
Each time the user chooses an item from the recToggle picker, it saves a value
representing its current setting in this slot. You can preserve the user’s recognition
settings by saving the contents of this slot when your application closes and
restoring this slot’s value when your application reopens.

When a single recToggle view controls recognition for all of your application’s
views, the _recogSettings slot can reside in the application’s base view, as
shown in Figure 10-5.

This approach can be used to synchronize the recognition behavior of multiple
views; for example, the built-in Notes application uses a single recToggle view
to control the recognition behavior of all currently visible notes. All of the views
controlled by a single recToggle view must provide the same set of recognizers
and dictionaries.

When each of several recToggle views must control individual input views, you
must provide a _recogSettings slot for each recToggle view at an
appropriate place in the _parent chain of each view that performs recognition, as
shown in Figure 10-6.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-21

Figure 10-5 One recToggle controls all views

Figure 10-6 Each recToggle view controls a single input view

Input Strokes

recognized as

recognized as

recognized as

appBase
myRecToggle

Input Strokes

recognized as

recognized as

recognized as

appBase

recToggle3

recToggle2

recToggle1

C H A P T E R 1 0

Recognition: Advanced Topics

10-22 Using Advanced Topics in Recognition

When the view receives input, it uses parent inheritance to find configuration
information. If a _recogSettings slot exists in the view’s _parent chain, the
view uses the value of this slot, along with values supplied by an optional
recConfig frame and values inherited from the system’s user configuration data.

The recToggle view’s ViewSetupFormScript method uses the value of the
_recogSettings slot to set the state of the recToggle view. To restore the
recognition settings that were in effect the last time your application was used, you
can save the value of the _recogSettings slot when the application closes and
restore the value of this slot when the application reopens. If you prefer that the
recToggle view always open to a default setting, rather than a saved one, you
can place the value nil in the _recogSettings slot when your application opens.

Providing the _recogPopup Slot 10

You can customize the appearance and behavior of your recToggle view by
providing a _recogPopup slot in its view template. This slot contains an array of
symbols corresponding to items included in the picker that the recToggle view
displays. The first item in the array appears at the top of the picker and specifies the
default recognizer enabled by the recToggle view. The picker includes subsequent
items in the order in which they appear in the array.

Table 10-2 summarizes the symbols that may appear in the _recogPopup slot,
along with the corresponding item each produces in the recToggle picker.

To specify that the recToggle view enable a default recognizer other than the one
specified by the first symbol in the _recogPopup array, your recToggle view’s
template can provide a defaultItem slot. This slot holds an integer value
specifying the array element to be used as the default.

Table 10-2 Symbols appearing in the _recogPopup slot

Symbol Represents Picker item

'recogText Text recognizer Text

'recogInkText Ink text Ink Text

'recogShapes Shape recognizer Shapes

'recogSketches Raw ink Sketches

'recToggleSettings Handwriting Recognition
preferences slip

Preferences

'pickSeparator No selection Dashed line

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-23

Avoid including inappropriate items in the recToggle popup, such as an ink text
item for a view that does not support ink text. It is your responsibility to ensure that
the _recogPopup array includes only symbols representing valid choices for the
view that the recToggle configures.

Accessing Correction Information 10
As words are recognized, the system saves correction information that includes

■ the stroke bundle. (See “Unrecognized Strokes” on page 9-7.)

■ alternate interpretations returned by the recognizer. (See “Classifying Strokes”
on page 9-3.)

■ learning data. (See “Correction and Learning” on page 9-13.)

You can call the GetCorrectInfo global function at any time to obtain
correction information for recently-recognized words. This function returns a
correctInfo frame based on the protoCorrectInfo system prototype.

The info slot in the correctInfo frame holds an array of wordInfo frames
based on the protoWordInfo system prototype. Each wordInfo frame
represents a single written word.

The max slot in the correctInfo frame specifies the maximum number of words
for which it holds correction information. When adding a new element to the info
array will cause this array to exceed the size specified by the max slot, the system
removes the first element of the info array, uses its learning data if necessary, and
adds the new wordInfo frame to the info array.

The correctInfo frame provides a number of methods that you can use to
manipulate its contents; for more information, see “CorrectInfo Functions and
Methods” (page 8-54) in Newton Programmer’s Reference.

Each wordInfo frame specifies the following information:

■ the view that contains the word.

■ the position of the word within the clParagraphView view that displays it.

■ the list of alternate interpretations of the input strokes.

■ an identifier specifying the recognizer that interpreted the input.

■ a stroke bundle (optional).

■ learning data (optional).

As an alternative to obtaining wordInfo frames from the correctInfo frame,
you can extract these frames from the word unit passed to an optional
ViewWordScript method that your view provides. For a description of this
method, see “Application-Defined Recognition Methods” (page 8-66) in Newton
Programmer’s Reference.

C H A P T E R 1 0

Recognition: Advanced Topics

10-24 Using Advanced Topics in Recognition

The wordInfo frame provides methods that you can use to manipulate its
contents; for more information, see “WordInfo Methods” (page 8-62) in Newton
Programmer’s Reference.

The alternate interpretations of a recognized word are provided as wordInterp
frames based on the protoWordInterp system prototype. An array of
wordInterp frames resides in the wordInfo frame’s words slot.

Each wordInterp frame contains the following information:

■ a string that is one interpretation of the original input strokes.

■ a score indicating the recognizer’s confidence in the accuracy of the interpretation.

■ the dictionary identifier of the recognized word (for internal use only).

■ the position occupied by this word in the original list of interpretations returned
by the recognizer.

For more information, see the descriptions of the protoCorrectInfo,
protoWordInterp, and protoWordInfo prototypes in Newton Programmer’s
Reference.

You can provide an optional ViewCorrectionPopupScript method that
modifies or replaces the picker that displays correction information when a word is
double-tapped. For a description of this method, see “Application-Defined
Recognition Methods” (page 8-66) in Newton Programmer’s Reference.

Using Custom Dictionaries 10
In addition to the system-supplied dictionaries, your application can use custom
dictionaries to facilitate the recognition of specialized vocabulary such as medical
or legal terms. It’s relatively easy to create a RAM-based enumerated dictionary at
run time; however, this approach is not recommended for dictionaries containing
more than a few words.

Note that you cannot cause the built-in applications (Names, Dates and so on) to
use custom dictionaries. The only way to enable these applications to recognize
specialized terminology is to add words to the user dictionary. However, you are
strongly discouraged from doing so, because each entry added to the user dictionary
reduces the amount of system RAM available to the user. For more information,
see “System Dictionaries” beginning on page 9-11.

Creating a Custom Enumerated Dictionary 10

To create a custom enumerated dictionary, you must populate a blank RAM-based
dictionary with your dictionary items. Dictionary items can come from a number of
places: they might be elements of your own array of strings stored in the application’s
NTK project data; they might be represented as binary resource data in your

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-25

application’s NTK project; they might be supplied by the user in an input line
view; they might even arrive as serial data. Because dictionary items can originate
from a number of sources, the example here presumes that you know how to store
your word strings and pass them, one at a time, to the AddWordToDictionary
function. This function adds its argument to the specified custom dictionary.

The AddWordToDictionary function does not place any restrictions on the
strings to be entered in the dictionary; however, your intended use of the dictionary
entry may influence its content. For nonrecognition purposes, such as validating
input to a field, any string is a valid dictionary entry. For use in stroke recognition,
strings in enumerated dictionaries must not include spaces. The printed recognizer
accepts the full set of ASCII characters; the cursive recognizer does not. Digits
or non-alphabetic characters in dictionary entries used by the cursive recognizer
must appear in the input string in order to be recognized. Do not use the
AddWordToDictionary function to add items to the review dictionary; use the
appropriate reviewDict methods instead.

You can take the following steps to create a RAM-based enumerated dictionary at
run time:

1. Use the global function NewDictionary to create a new empty dictionary.

2. Use the global function AddWordToDictionary to add dictionary items to
the new dictionary.

3. Use the global function GetDictionaryData to create a binary
representation of the completed dictionary, which can then be stored in a soup.

Another way to do this is to create a new dictionary and restore its data from a soup.

The next several sections describe the numbered steps in greater detail. Following
this discussion, the section “Restoring Dictionary Data From a Soup” (page 10-28),
describes how to restore an existing dictionary from soup data.

Creating the Blank Dictionary 10

You can create a blank RAM-based dictionary anywhere in your application that
makes sense; a common approach is to take care of this in the
ViewSetupFormScript method of the application’s base view. You must also
create a slot in which to store the RAM-based dictionary. The following code
fragment creates a dictionary in the mySpecialDictionary slot.

ViewSetupFormScript := func()
begin

mySpecialDictionary := NewDictionary('custom);
end

This code example uses the NewDictionary function to create a blank dictionary
in the mySpecialDictionary slot. The NewDictionary function accepts the

C H A P T E R 1 0

Recognition: Advanced Topics

10-26 Using Advanced Topics in Recognition

symbol 'custom as its argument, which specifies that the new dictionary is for
this application’s use only.

Note
Although the token returned by the NewDictionary function
currently evaluates to an integer in the NTK Inspector, the type of
value returned by this function may change on future Newton
devices. Do not rely on the NewDictionary function returning
an integer. ◆

Adding Words to RAM-Based Dictionaries 10

Once you have created a blank dictionary, you need to populate it with your
dictionary items. You can use the AddWordToDictionary function to add a
specified string to a specified RAM-based dictionary.

The first argument to this function is the identifier of the dictionary to which the
string is to be added; this identifier is returned by the NewDictionary function. The
previous code example stored this identifier in the mySpecialDictionary slot.

The second argument to this function is the string to be added to the dictionary. If
this argument is not a string, the AddWordToDictionary function throws an
exception. If the word is added successfully, this function returns true. If the
specified word cannot be added, this function returns nil.

The AddWordToDictionary function may return nil when the word to be
added is already present in the specified dictionary, or it may return nil because of
resource limitations. It is possible to run out of system memory for dictionaries,
with potentially serious consequences. Do not rely on a specific number of
dictionary entries as the maximum amount that may be added safely. It is strongly
recommended that you use custom dictionaries sparingly and keep them as small as
possible, taking into account the possibility that other applications may require
system memory for their own dictionaries or for other uses.

To populate the dictionary, you need to call the AddWordToDictionary
function once for each item to be added. There are many ways to call a function
iteratively; the best approach for your needs is an application-specific detail that
cannot be anticipated here. The following code example shows one way to populate
a blank dictionary.

myAdder:= func()
begin

local element;
// items slot contains an array of dictionary strings
foreach element in items do

AddWordToDictionary(mySpecialDictionary, element);
end

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-27

This approach works well for small dictionaries; for most large dictionaries,
however, it is far more efficient to populate the dictionary from saved soup data.
You should store custom dictionary data in a soup so that it is safely stored and
persistent across soft resets.

IMPORTANT

Do not use the AddWordToDictionary global function to add
words to the review dictionary; instead, use the appropriate review
dictionary methods. ▲

Removing Words From RAM-Based Dictionaries 10

You can use the DeleteWordFromDictionary function to remove a specified
word from a specified RAM-based dictionary. Note that this function does not
make permanent changes to soups. After calling this function you must write your
changes to the appropriate soup.

IMPORTANT

Do not use the DeleteWordFromDictionary function to
remove words from the review dictionary; instead, use the
appropriate review dictionary methods. ▲

Saving Dictionary Data to a Soup 10

Once you have added all of your dictionary entries, your RAM-based custom
dictionary is ready for use. However, it would be inefficient to build it from scratch
each time you need it, especially if it is large. Instead, you can store a binary
representation of the dictionary data in a soup and use this soup data to restore the
custom dictionary.

The NewDictionary function returns an identifier used to reference the
dictionary; in the previous example, this identifier was stored in the
mySpecialDictionary slot defined in the base view of the application. You can
pass this identifier as the GetDictionaryData function’s argument. This
function returns a binary representation of the dictionary data (the words or items).
You can then place this binary object in a slot in a frame and add the frame to a
soup. The following code fragment assumes that the soup kSoupName is a valid
soup created according to the Newton DTS soup-creation guidelines.

// get a soup in which to save the data
mySoup := GetUnionSoupAlways (kSoupName);
// create binary representation of dictionary data
local dict := GetRoot().appSym.mySpecialDictionary;
local theObj:= GetDictionaryData(dict);

C H A P T E R 1 0

Recognition: Advanced Topics

10-28 Using Advanced Topics in Recognition

// store the dictionary data
dictData := {data:theObj};
mySoup:AddXmit(dictData, nil);

Restoring Dictionary Data From a Soup 10

To use the dictionary, your application needs to retrieve the dictionary data object
from the soup and use the global function SetDictionaryData to install the
data in an empty dictionary. This is typically done in the application part’s
InstallScript function or in the ViewSetupFormScript method of the
view that uses the custom dictionary, as shown in the following code example:

// make new blank dictionary
mySpecialDictionary := NewDictionary('custom);
// get the dictionary data from the soup
// structure of query depends on how you store data
dataCursor:= dictDataSoup:Query(querySpec);
// how you get entry depends on how you store data
myBinaryData := dataCursor:entry();
// put data in dictionary
SetDictionaryData(mySpecialDictionary, myBinaryData);

Note that RAM-based dictionaries are lost when the system resets. However, the
system calls your application part's InstallScript function after a reset. This
function can determine whether the dictionary exists and recreate it if necessary.
Because this function is also called when a card with your application on it is
inserted, as well as when the application is installed initially, it provides an ideal
place from which to install your custom dictionary.

Using Your RAM-Based Custom Dictionary 10

Take the following steps to make your RAM-based dictionary available to each
view that is to use it for recognition:

1. Set the view’s vCustomDictionaries flag.

2. Create a dictionaries slot. You can create this slot in the view itself or in its
recConfig frame.

3. Place your dictionary’s identifier in the dictionaries slot.

To enable the use of custom dictionaries, you must set the vCustomDictionaries
flag for the view that is to use the custom dictionary. This flag indicates that the
view has access to a slot named dictionaries that specifies dictionaries to be
used for recognition. The dictionaries specified in this slot are used in conjunction
with any other dictionaries that may be specified for this view’s use.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-29

In addition to setting the view’s vCustomDictionaries flag, you need to create
a dictionaries slot in either the view or its recConfig frame. The
dictionaries slot stores a single dictionary identifier or an array of dictionary
identifiers. You need to install the custom dictionary in this slot using code similar
to the following example.

// vCustomDictionaries flag already set
dictionaries := mySpecialDictionary;

To use system-supplied dictionaries in addition to your custom dictionary, you can
enable additional view flags in the Entry Flags editor in NTK or set these
additional flags procedurally. If you prefer to set view flags procedurally, you must
use the Bor function to bitwise OR the vCustomDictionaries flag with any
bits already set in the viewFlags slot. In either case, your custom dictionary must
still be specified in the dictionaries slot.

Note that some view flags enable combinations of system dictionaries. If you want
to specify explicitly which system dictionaries the view can use, set no dictionary-
enabling flags other than the vCustomDictionaries flag and use system-
supplied dictionary ID constants to add specific dictionaries to the dictionaries
slot. For descriptions of the system-supplied dictionary ID constants, see
“System-Supplied Dictionaries” (page 8-16) in Newton Programmer’s Reference.

The following code fragment shows how you can specify dictionaries explicitly
by including the appropriate constants as elements of the array in the
dictionaries slot.

dictionaries :=[mySpecialDictionary, kUserDictionary,
 kCommonDictionary]

Regardless of the order of elements in the dictionaries array, the system
always searches the user dictionary first. The system then searches all of the
specified dictionaries in the order that they appear in the dictionaries array. In
general, the order in which this array’s items appear is not critical, except in the
case of conflicting capitalization information for representations of the same word
in multiple dictionaries. When multiple dictionary entries match the input, the
system uses the first dictionary entry that was matched.

Note that the printed recognizer can always return words not present in
dictionaries. Only the cursive recognizer may be restricted to returning only words
present in dictionaries (and then only when letter-by-letter recognition is not
enabled). To test your dictionary settings, use the cursive recognizer while its
letter-by-letter option is disabled.

C H A P T E R 1 0

Recognition: Advanced Topics

10-30 Using Advanced Topics in Recognition

Removing Your RAM-Based Custom Dictionary 10

It is recommended that you remove your custom dictionary when it is no longer
needed, such as when your application is removed. The DisposeDictionary
function removes a specified RAM-based dictionary.

The DisposeDictionary function accepts one argument, the dictionary identifier
returned by NewDictionary. If this identifier was stored in a slot named
mySpecialDictionary, a line of code similar to the following example would
be used to remove the custom dictionary.

DisposeDictionary(mySpecialDictionary);

Using System Dictionaries Individually 10

The system provides several constants that you can use to refer to system
dictionaries conveniently; see “System-Supplied Dictionaries” (page 8-16) in
Newton Programmer’s Reference. You can set the vCustomDictionaries flag
and place one or more of these constants in your view’s dictionaries slot to
specify explicitly the vocabulary it can recognize, such as first names only or
names of days and months only. Note that a single constant may represent multiple
dictionaries; for example, when the kCommonDictionary constant is specified,
the system may actually add several dictionaries to the set that the view uses for
recognition. The rest of this section describes the use of individual system dictionaries.

The vNumbersAllowed flag enables both the numeric lexical dictionary and the
monetary lexical dictionary. To create a view that recognizes numeric values but
not monetary values, set the vCustomDictionaries flag and place the
kNumbersOnlyDictionary constant in the view’s dictionaries slot.

Note that both the vCustomDictionaries and vCharsAllowed flags enable
text recognition. The difference between these flags is in the set of dictionaries they
enable. The vCustomDictionaries flag enables only those dictionaries specified
by the dictionaries slot of the view performing recognition. The
vCharsAllowed flag, on the other hand, enables several system-supplied
dictionaries. To avoid unexpected results when working with custom dictionaries,
be aware that setting other flags may enable additional dictionaries. Remember,
also, that the printed recognizer can always return words not appearing in dictionaries.

Working With the Review Dictionary 10
The review dictionary object provides methods for manipulating the contents of the
user dictionary (personal word list), and the expand dictionary. Although the
auto-add dictionary is also part of the review dictionary, the auto-add dictionary
has its own interface.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-31

Do not use the global functions AddWordToDictionary and
RemoveWordFromDictionary to make changes to the review dictionary;
instead, use the appropriate review dictionary methods.

The dictionaries themselves are stored as entries in the system soup. This section
describes how to manipulate these dictionaries programmatically. All of the
functions and methods named in this section are described completely in “User
Dictionary Functions and Methods” beginning on page 10-54.

Retrieving the Review Dictionary 10

To manipulate the contents of the user dictionary or expand dictionary, you send
messages to the reviewDict object, which resides in the root view.

To obtain a reference to the reviewDict object, you can use code similar to the
following example.

local reviewDict := GetRoot().reviewDict;

Note
Future versions of the system are not guaranteed to have the
ReviewDict slot. You must verify that the returned value is
non-nil before using it. ◆

You usually do not need to load the review dictionary into RAM yourself—the
system does so automatically when it is reset and most flags that enable text
recognition include the user dictionary automatically in the set of dictionaries they
enable. You usually do not need to load the auto-add or expand dictionaries explicitly,
either—the user dictionary consults these additional dictionaries automatically.
However, the LoadUserDictionary, LoadExpandDictionary, and
LoadAutoAddDictionary functions are provided for your convenience.

For general information about the user dictionary, expand dictionary and auto-add
dictionary, see “System Dictionaries” beginning on page 9-11.

Displaying Review Dictionary Browsers 10

You can send the Open message to the reviewDict object to display the Personal
Word List slip. If words have been added to the auto-add dictionary, this function
displays the Recently Written Words slip automatically as well.

To display the Recently Written Words slip alone, send the Open message to
the autoAdd object residing in the system’s root view, as shown in the
following example.

local auto := GetRoot().autoAdd:Open();
if auto then auto:Open();

C H A P T E R 1 0

Recognition: Advanced Topics

10-32 Using Advanced Topics in Recognition

Note
Future versions of the system are not guaranteed to have the
autoAdd slot. You must verify that the returned value is non-nil
before using it. ◆

Adding Words to the User Dictionary 10

The following code fragment uses the AddWord method of the reviewDict
object to add words to the user dictionary. After adding one or more words, you
must call the SaveUserDictionary function to make your changes to the user
dictionary’s system soup entry persistent.

local reviewDict := GetRoot().reviewDict;
if reviewDict then

begin
reviewDict:AddWord("myWord");
reviewDict:AddWord("myOtherWord");
SaveUserDictionary();

end;

The AddWord method returns true if the word was added successfully and
returns nil if the word was not added; however, this function may also return nil
due to resource limitations.

It is possible to run out of system memory for dictionaries, with potentially serious
consequences. Do not rely on a specific number as the maximum amount of
dictionary entries that may be added safely.

If the Personal Word List slip is open when you add words to the user dictionary,
its display is updated automatically. An undo action is posted for this update.

IMPORTANT

Do not use the AddWordToDictionary global function to add
words to the review dictionary. ▲

Removing Words From the User Dictionary 10

The following code fragment uses the RemoveWord method of the reviewDict
object to remove a word from the user dictionary. After deleting the word, you
must call the SaveUserDictionary function to write the changes to the user
dictionary’s system soup entry.

local reviewDict := GetRoot().ReviewDict;
if reviewDict then

begin
reviewDict:RemoveWord("myWord");
reviewDict:RemoveWord("myOtherWord");
SaveUserDictionary();

end;

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-33

The RemoveWord method returns true if the word was removed successfully and
returns nil if the word was not removed. This method returns nil and does not
remove the specified word if there are differences in case between the word in the
dictionary and the word passed as the argument to the RemoveWord method. This
method also returns nil when the word to be removed is not present in the
review dictionary.

IMPORTANT

Do not use the RemoveWordFromDictionary global function
to make changes to the review dictionary; instead, use the
appropriate review dictionary methods. ▲

Adding Words to the Expand Dictionary 10

The expand dictionary (the dictionary that defines word expansions) is kept in RAM,
and its size is limited to 256 words. To manipulate the expand dictionary, you send
messages to the reviewDict object residing in the root view. The system provides
methods for adding words and their associated expansions to this dictionary;
retrieving the expansions associated with words; removing words and expansions
from this dictionary; and saving expansion dictionary changes to the system soup.

To add a word and its expansion to the expand dictionary, you must send the
AddExpandWord message to the reviewDict object. Words added to the
expand dictionary must first be recognized and present in the user dictionary. If
necessary, you can use the AddWord method of the reviewDict object to add
the word to the user dictionary before adding it to the expand dictionary. After
adding one or more words to the expand dictionary, you must call the
SaveExpandDictionary function to write your changes to the system soup, as
the following code fragment illustrates.

local reviewDict := GetRoot().ReviewDict;
// word must be present in user dict before adding to expand dict
if reviewDict then

begin
if not LookupWordInDictionary(reviewDict, “BTW”) then

begin
reviewDict:AddWord(“BTW”);
SaveUserDictionary();

end;
reviewDict:AddExpandWord(“BTW”, “by the way”);
// write changes to system soup
SaveExpandDictionary();

end;

C H A P T E R 1 0

Recognition: Advanced Topics

10-34 Using Advanced Topics in Recognition

Removing Words From the Expand Dictionary 10

Normally, words are added to both the expand dictionary and the user dictionary
simultaneously. As a result, words removed from the expand dictionary generally
must also be removed from the user dictionary. The following code fragment uses
the RemoveWord method to remove a word from both the expand and the user
dictionaries. After deleting the word, you must call the SaveUserDictionary
function to write the changes to the system soup.

local reviewDict := GetRoot().ReviewDict;
if reviewDict then

begin
// remove word & expansion from dictionaries
reviewDict:RemoveWord("BTW");
SaveUserDictionary();

end;

Retrieving Word Expansions 10

The following code fragment uses the GetExpandedWord method of the
reviewDict object to retrieve the expansion associated with a specified word.
This method returns nil if the specified word is not found in the expand dictionary.

local reviewDict := GetRoot().ReviewDict;
if reviewDict then

local theExpansion := reviewDict:GetExpandedWord("BTW");

Retrieving the Auto-Add Dictionary 10

The auto-add dictionary (the list of new words to add to the user dictionary
automatically) resides in RAM and its size is limited to 100 words. The system
adds new words to this dictionary automatically when the cursive recognizer is
enabled and the Add New Words to Personal Word List checkbox in the Text
Editing Settings preferences slip is selected.

The Recently Added Words slip provides the NewtonScript interface to the
auto-add dictionary. You can use code similar to the following example to obtain a
reference to the RecentlyAdded Words slip.

local autoAddDict := GetRoot().AutoAdd;

Note
Future versions of the system are not guaranteed to have this
slot. You must verify that the returned value is non-nil before
using it. ◆

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-35

Usually, you do not need to load the auto-add dictionary into RAM yourself—the
system does so automatically whenever the Personal Word List slip is opened or
the system is reset. However, the system provides the LoadAutoAddDictionary
function for your convenience.

Disabling the Auto-Add Mechanism 10

When the cursive recognizer is enabled, words not appearing in any of the
currently enabled dictionaries are added to the auto-add and user dictionaries
automatically as they are recognized or corrected. The value of the doAutoAdd
slot in the system’s user configuration data controls this default behavior.

However, not all input to a view is appropriate to add to dictionaries; for example,
consider a spreadsheet that allows the user to select cells by entering row and
column numbers—you wouldn’t want to add these strings to the dictionaries as
they are recognized. To disable the automatic addition of new words to the user and
auto-add dictionaries, you can use either of the following techniques:

■ Set the _noautoadd slot in the view or its recConfig frame to a
non-nil value.

■ Set the _noautoadd slot in the word’s wordInfo frame to a non-nil
value. You can get a word’s wordInfo frame by calling the
GetCorrectionWordInfo function from within the view’s
ViewWordScript method.

Alternatively, you can set the value of the doAutoAdd slot in the system’s user
configuration data to nil and call the ReadCursiveOptions function; however,
it is not recommended that you change user configuration settings without first
obtaining confirmation from the user.

Adding Words to the Auto-Add Dictionary 10

The AddAutoAdd function adds a specified word to both the user and auto-add
dictionaries. This function returns the value true after adding the word
successfully. The word is not added if its unpunctuated form is present in the
standard set of dictionaries enabled by the vCharsAllowed flag.

If the auto-add dictionary already contains its maximum of 100 words, this
function does not add the new word but displays the notify icon instead. When the
user taps the notify icon, it posts a notify action that displays the Recently Written
Words slip. The user can then edit the Recently Written Words slip before
attempting to add more words; if the user responds immediately, no new words are
lost. For more information on the notify icon and notify actions, see Chapter 17,
“Additional System Services.”

C H A P T E R 1 0

Recognition: Advanced Topics

10-36 Using Advanced Topics in Recognition

Removing Words From the Auto-Add Dictionary 10

The RemoveAutoAdd function deletes a specified word from both the user and
auto-add dictionaries. This function returns true if the word was removed and
returns nil if the word was not removed. This method does not remove the word if
it is not present in the auto-add dictionary or if there are case inconsistencies
between the argument to this function and the word actually found in the dictionary.

Using protoCharEdit Views 10
The protoCharEdit proto provides a comb-style view that facilitates the
correction of individual characters in misrecognized words. The view provided by
this proto uses an rcGridInfo frame internally to provide a horizontal row of
single-character input areas. The system-supplied corrector available from the
picker displayed when the user taps a recognized word makes use of this view.
Figure 10-7 illustrates a typical protoCharEdit view.

Figure 10-7 Example of a protoCharEdit view

This section describes how to position a protoCharEdit view, how to manipulate
the text string it displays, and how to restrict its input to a specified set of characters.

Positioning protoCharEdit Views 10

There are two ways to position a protoCharEdit view within its parent view.
You can set the values of its top and left slots to values that position it at the top
left corner of the view, or you can provide a similar value for its viewBounds slot.

If you specify the values of the top and left slots, then the
ViewSetupFormScript method of the protoCharEdit view supplies an
appropriate value for the viewBounds slot based on the values of the
cellHeight, cellWidth, and maxChars slots. On the other hand, if you
provide the values of the viewBounds and cellWidth slots, then this view
supplies appropriate values for the maxChars and cellHeight slots for you.
This proto provides useful default values for the cellWidth and cellHeight
slots; it is recommended that you do not change these values.

The technique you use depends on how you want to set the slots that this proto
provides. For detailed information, see “protoCharEdit” (page 8-41) in Newton
Programmer’s Reference.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-37

Manipulating Text in protoCharEdit Views 10

The default view provided by the protoCharEdit proto is an unformatted comb
view (see page 10-4). You can provide an optional template that customizes this
view’s appearance and behavior. The template itself is a frame residing in the view’s
template slot. This frame may provide the following slots and methods:

■ The template’s filter slot defines a set of permissible input values. For
example, a view for correcting phone numbers might restrict the set of
permissible characters to numerals.

■ The template’s format slot can specify the length of the comb view and the
editing characteristics of its entry fields. For example, the phone number
correction view might use a format template to restrict input to a fixed number
of characters and make certain entry fields non-editable. When the comb view
erases invalid characters it displays the animated cloud and plays the ROM_poof
sound that normally accompanies the scrub gesture.

■ The template’s text slot supplies a string to be displayed initially when the
comb view opens. The comb view retrieves this value when its
ViewSetupFormScript is executed.

■ You can also supply optional SetupString and CleanupString functions
that manipulate the string in the text slot.

For complete descriptions of these slots, see “Template Used by ProtoCharEdit
Views”(page 8-45) and “Application-Defined protoCharEdit Template Methods”
(page 8-52) in Newton Programmer’s Reference.

The system also provides several global functions that are useful for manipulating
protoCharEdit views and the strings they display.

To change the comb view’s text string or template dynamically, call the
UseTextAndTemplate function after setting appropriate values for the
text or template slots. Alternatively, you can use the SetNewWord or
SetNewTemplate and UseNewWord or UseNewTemplate functions to perform
the same operations; in fact, calling these functions yourself is faster than calling
the UseTextAndTemplate function.

To get the current value of the text in the comb view, you can send the
CurrentWord message to the view. You must not use the value of the text slot
directly, because unformatted comb views may add extra spaces to the string in this
slot. To get a special version of the text that is formatted for display in a view other
than the comb view, use the GetWordForDisplay function. If you are using a
template, this function may return the string in a more standardized format,
because it calls the template’s optional CleanupString function before returning
the string.

C H A P T E R 1 0

Recognition: Advanced Topics

10-38 Using Advanced Topics in Recognition

You may also need to know the boundaries of the word in the text slot when
working with certain protoCharEdit methods and functions. The
protoCharEdit view’s wordLeft and wordRight slots provide indexes into
the text string that you can use to determine the boundaries of a substring suitable
for external display or for use as an argument to these routines. The wordLeft
slot contains the index of the first externally-displayed character in the text slot.
The wordRight slot contains the index of the position immediately following the
last externally-displayed character in the text slot. For example, when the text
slot holds the "one "string, 1 is the value of the wordLeft slot and 4 is the value
of the wordRight slot. The dispLeft slot contains the index of the first
character in the text slot that is displayed—this character occupies the leftmost
position in the comb view. The dispLeft slot normally has the value 0, but after
scrolling it may have values greater than 0. The dispIndent slot is the offset
from the leftmost edge of the view to the leftmost edge of the first character displayed.

For more information, see “protoCharEdit Functions and Methods” (page 8-47) in
Newton Programmer’s Reference.

Restricting Characters Returned by protoCharEdit Views 10

This section provides code examples illustrating the use of templates to restrict the
set of characters that may appear in a comb view. Note that templates post-process
the characters returned by the recognition system before the view displays them,
rather than limiting the set of characters that the view can recognize.

The templates defined by the following code fragments are intended to serve as
examples only. The system provides templates that handle formatting conventions
for dates, times, phone numbers, and numeric values properly according to the
user’s locale. For complete descriptions of these templates, see “System-Supplied
protoCharEdit Templates” (page 8-46) in Newton Programmer’s Reference.

The following code example defines a template for a date field:

digits := "0123456789";// filters[0]
digits1 := "01"; // filters[1]
digits3 := "0123"; // filters[2]

dateTemplate := {
string:" / / ",// slashes locked by "_" in format
format:"10_20_00",// indexes into filters array
filters:[digits, digits1, digits3],
};

This example template is used in a protoCharEdit view that specifies a value of
8 or more for its maxChars slot; hence, the eight-character strings in the format
and string slots.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-39

The cells in this example template use filters defined by the format and filters
slots to restrict input to valid values.

The format slot specifies the valid input for each position in the comb view. Each
character in the format string is an index into the filters array. In this example,
the first position in the comb view is filtered by the element 1 of the filters
array, which is the digits1 template; the second position is filtered by element 0
of the filters array, which is the digits template.

You can write-protect any position in the comb view by placing an underscore (_)
in the appropriate position in the format string. In this example, the string positions
that display slashes between the digits of the date field do not allow input. These
are indicated by the underscores at corresponding positions in the format string.

The text slot is not used by protoCharEdit views, but may be used as a
default value by optional SetupString and CleanupString methods that your
template supplies.

Note that the template itself does not restrict any values unnecessarily. For example,
it is not wise to restrict date values according to the value of the month, because the
user might enter the date before the month or the month value might not be
recognized correctly. Instead, you can define a CleanupString function that
examines the input string and indicates an error condition or modifies the string.

The following code fragment provides examples of typical SetupString and
CleanupString functions.

myTemplate := {
format:"0000001",
string:" 0",
filters: [kMyDigitsOrSpace, kMyDigits],

SetupString: func(str) begin
// pad string to 5 digits
if StrLen(str) < 7 then

StrMunger(str,0,0,string,0,7-StrLen(str));
str;

end,

CleanupString: func(str) begin
// replace spaces with zeros
StrReplace(str, " ", "0", nil);
// trim leading zeros
str := NumberStr(StringToNumber(str));
str;

end,
};

C H A P T E R 1 0

Recognition: Advanced Topics

10-40 Using Advanced Topics in Recognition

Customized Processing of Input Strokes 10
Setting the vStrokesAllowed flag provides the view with a means of intercepting
raw input data for application-specific processing. If this flag is set, strokes are
passed one at a time as the argument to the view’s ViewStrokeScript method.
Your ViewStrokeScript method can then process the strokes in any manner
that is appropriate. The view’s ViewStrokeScript method is invoked when the
user lifts the pen from the screen at the end of each input stroke.

Both the vGesturesAllowed and vStrokesAllowed flags invoke methods
that can be used to provide application-specific handling of gestures. However, the
vGesturesAllowed flag supplies system-defined behavior for the gestures tap,
double-tap, highlight, and scrub in clEditView and clParagraphView views,
while the vStrokesAllowed flag does not provide any behavior that you don’t
implement yourself, regardless of the kind of view performing recognition.

For example, clEditView and clParagraphView views handle system-
defined gestures automatically. Thus, scrubbing in a clParagraphView view that
sets the vGesturesAllowed flag does not invoke the ViewGestureScript
method because the view handles this gesture automatically. On the other hand, a
clView view would need to supply a ViewGestureScript method to process
the scrub gesture because this kind of view does not provide any gesture-handling
behavior of its own. Finally, remember that any view setting the vStrokesAllowed
flag must also supply a ViewStrokeScript method.

Setting these flags causes the recognition system to send messages such as
ViewClickScript or ViewStrokeScript, passing a unit (an object that
describes the interaction of the pen with the tablet) as the argument to the
corresponding methods. Units are only valid when accessed from within the
methods invoked during the recognition process—you cannot save them for later
use. However, you can distribute the processing of unit data as appropriate; for
example, you might call the GetPointsArray function from within your
ViewClickScript method and use the result later in your ViewIdleScript
method.

IMPORTANT

Do not save units for later use—they are valid only during the
recognition process. After the user interaction is complete and the
various scripts utilizing a particular unit have returned, the
memory allocated for that unit is freed explicitly. Subsequent use
of the unit may produce bus errors or loss of significant data. ▲

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-41

Customized Processing of Double Taps 10
To process double taps reliably, your view’s ViewGestureScript method can
test for the presence of the aeDoubleTap gesture. The gesture recognizer
measures time between pen events reliably even when the main NewtonScript
thread is busy.

The recognition system considers a second tap to be part of a double tap when it
occurs within a specified amount of time and distance relative to the first tap.

The second tap must be within 6 pixels of the first to be considered part of a double
tap. Any stroke longer than 6 pixels is not recognized as a tap (or as the second
tap). Measurement of the distance between taps is based on the midpoint of the
start and end points of the stroke.

The amount of time that determines whether a second tap is considered part of a
double tap is specified by the value of the timeoutCursiveOption slot in the
system’s user configuration data. This value ranges between 15 and 60 ticks, with a
default value of 45 ticks. The user sets the value of this slot by moving the
“Transform my handwriting” slider in the Fine Tuning slip. The Fine Tuning slip is
available from the picker displayed by the Options button in the Handwriting
Recognition preferences slip.

Your ViewGestureScript method is called only if the view does not handle the
gesture automatically. Your ViewGestureScript method should return the
value true to avoid passing the gesture unit to other ViewGestureScript
methods, such as those supplied by views in the _parent chain. If you do want to
pass the gesture unit to other views, your method should return the value nil.

Changing User Preferences for Recognition 10
When you must make system-wide changes in recognition behavior, you can set
the values of slots in the system’s user configuration data to do so. However, in
most cases it is more appropriate to change the behavior of individual views, rather
than system-wide settings. For information on using recConfig frames to specify
the recognition behavior of individual views, see “Using recConfig Frames”
beginning on page 10-8.

Take the following steps to change recognition settings used by all views:

1. Call the SetUserConfig function to set the values of one or more slots in the
system’s user configuration data. For a complete listing of the recognition-
related slots, see “System-Wide Settings” (page 8-2) in Newton Programmer’s
Reference.

2. Call the ReadCursiveOptions function to cause the system to use the
new settings.

C H A P T E R 1 0

Recognition: Advanced Topics

10-42 Using Advanced Topics in Recognition

Note
Normally, slot values in the system’s user configuration
data are set by the user from various preference slips.
It is strongly recommended that you do not change any
user preferences without first obtaining confirmation from
the user. ◆

Modifying or Replacing the Correction Picker 10
Views that recognize text can provide an optional ViewCorrectionPopupScript
method that modifies or replaces the picker displayed when a recognized word is
double-tapped. For more information, see “ViewCorrectionPopupScript” (page 8-75)
in Newton Programmer’s Reference.

Using Stroke Bundles 10
The system provides functions that allow you to retrieve or manipulate stroke data,
such as the tablet points from each stroke. You can access these points in one of
two resolutions: screen resolution or tablet resolution. In screen resolution, each
coordinate value is rounded to the nearest screen pixel. In tablet resolution, each
coordinate has an additional three bits of data.

To access the ink in a view, use one of the functions documented in “Text and Ink
Input and Display Reference” (page 7-1) in Newton Programmer’s Reference.
Functions that allow you to manipulate ink include the ParaContainsInk,
PolyContainsInk, and GetInkAt functions.

To perform deferred recognition on the strokes in a stroke bundle, pass the stroke
bundle to one of the Recognize, RecognizePara or RecognizePoly
functions. For more information, see “Deferred Recognition” on page 10-5.

The system software provides a number of functions for working with stroke
bundles. These functions allow you to extract information from a stroke bundle and
convert the information in stroke bundles into other forms. The stroke bundle
functions are documented in “Stroke Bundle Functions and Methods” (page 8-83)
in Newton Programmer’s Reference.

Stroke Bundles Example 10

This section shows an example of working with stroke bundles before they are
passed to the view performing recognition. One way to do this, as shown in the
following code fragment, is to implement the ViewInkWordScript method
of an input view. The ViewInkWordScript method is described in
“ViewInkWordScript” (page 7-56) in Newton Programmer’s Reference.

C H A P T E R 1 0

Recognition: Advanced Topics

Using Advanced Topics in Recognition 10-43

GetKeyView().viewInkWordScript := func(strokeBundle) begin
// convert the stroke bundle into an ink word

local inkPoly := CompressStrokes(strokeBundle);
local inkWord := inkPoly.ink;
local textSlot := "\uF701";
local stylesSlot := [1, inkWord];
local root := GetRoot();

// create a rich string with the ink word in it
local appendString := MakeRichString(textSlot,

stylesSlot);
// append the rich string to myRichString

if root.myRichString then
root.myRichString := root.myRichString && appendString;
else
root.myRichString := appendString;

// return nil so default handling still happens
nil;
end;

This implementation converts the stroke bundle into an ink word, creates a rich
string that includes the ink word, and appends that rich string to a rich string that is
stored in the root (myRichString). The method then returns nil, which allows
the built-in handling of the stroke bundle to occur.

C H A P T E R 1 0

Recognition: Advanced Topics

10-44 Summary of Advanced Topics in Recognition

Summary of Advanced Topics in Recognition 10

See also “Summary” beginning on page 9-31 in Chapter 9, “Recognition.”

Constants 10
See also Chapter 9, “Recognition,” which includes the following summaries: “Text
Recognition View Flags” on page 9-31; “Non-Text Recognition View Flags” on
page 9-32; and “View Flags Enabling Lexical Dictionaries” on page 9-33.

kStandardCharSetInfo // cursive recognizer
kUCBlockCharSetInfo // printed recognizer
ROM_canonicalBaseInfo // System-supplied rcBaseInfo frame
ROM_canonicalCharGrid // System-supplied rcGridInfo frame

Enumerated Dictionaries 10

1 Locale-specific dictionary

Dictionary ID Constant Value Contents
kUserDictionary 31 Words added by the user.

kCommonDictionary 0 Commonly-used words.

kCountriesDictionary 8 Names of countries.

kDaysMonthsDictionary 34 Names of days and months.

kFirstNamesDictionary 48 First names.

kLocalCitiesDictionary 41 Names of cities.

kLocalPropersDictionary1 2 Proper names.

kLocalStatesDictionary 43 Names of states, provinces, etc.

kSharedPropersDictionary 1 Proper names, company names, state or
province names and abbreviations.

C H A P T E R 1 0

Recognition: Advanced Topics

Summary of Advanced Topics in Recognition 10-45

Lexical Dictionaries 10

System-Supplied RecConfig Frames 10

Data Structures 10
See also Chapter 9, “Recognition,” which includes the following summaries:
“Recognition-Related User Configuration Slots” on page 9-33;

RecConfig Frame 10

See protoRecConfig in “Recognition System Prototypes” beginning on
page 10-49.

1 Locale-specific dictionary

Dictionary ID Constant Value Contents
kLocalDateDictionary 110 Date formats.

kLocalNumberDictionary1 113 Currency and numeric formats.

kLocalPhoneDictionary 112 Phone number formats.

kLocalTimeDictionary 111 Time formats.

kMoneyOnlyDictionary1 118 Currency values and formats.

kNumbersOnlyDictionary1 117 Numeric values and formats.

kPostalCodeDictionary 116 Postal code formats.

RecConfig Constant Behavior of recConfig frame

ROM_rcInkOrText Recognize ink text or text.

ROM_rcPrefsConfig Recognize according to user settings.

ROM_rcDefaultConfig None; you supply slot values.

ROM_rcSingleCharacterConfig Recognize single characters.

ROM_rcTryLettersConfig Recognize letter-by-letter.

ROM_rcRerecognizeConfig Deferred recognition.

rcBaseInfo Defines baseline.

rcGridInfo Defines single-letter input view.

C H A P T E R 1 0

Recognition: Advanced Topics

10-46 Summary of Advanced Topics in Recognition

System-Supplied RecConfig Frames 10

// recognize ink or text
ROM_rcInkOrText :=

{
// allow user to enable text recog from recToggle
allowTextRecognition: true, // default
// return ink text when text recognizer disabled
doInkWordRecognition: true, // default
…}

// recognize according to user prefs
ROM_rcPrefsConfig :=

{
// allow user to enable text recog from recToggle
allowTextRecognition: true, // default
// allow user to enable shape recog from recToggle
allowShapeRecognition: true, // default
…}

// generic recConfig frame - you supply useful values
ROM_rcDefaultConfig :=

{
// true enables recognition of punctuation marks
punctuationCursiveOption: nil, // default
// list of dictionaries used for recognition
dictionaries: nil, // default
// true enables letter-by-letter option
rcSingleLetters: nil, // default
// Holds an rcBaseInfo frame
rcBaseInfo: nil, // default
// bitfield specifying recognition configuration
inputMask: 0x0000, // default
…}

// use as-is to configure single-character input views
ROM_rcSingleCharacterConfig :=

{
// do not change value of this slot
_proto: ROM_rcDefaultConfig, // default
//interpret all input strokes as a single word
letterSpaceCursiveOption: nil, // default
// enable letter-by-letter option
rcSingleLetters: true, // default

C H A P T E R 1 0

Recognition: Advanced Topics

Summary of Advanced Topics in Recognition 10-47

// use custom dictionaries only
inputMask: vCustomDictionaries, // default
// dictionaries to use for recognition
dictionaries: kSymbolsDictionary, // default
// don’t enable symbols dictionary twice
inhibitSymbolsDictionary: true // default
…}

// recognize letter-by-letter instead of w/ dictionaries
ROM_rcTryLettersConfig :=

{
// do not change value of this slot
_proto: ROM_rcDefaultConfig, // default
//interpret all input strokes as a single word
letterSpaceCursiveOption: nil, // default
// recognize non-dictionary words and numbers
inputMask: vLettersAllowed+vNumbersAllowed, // default
…}

// use as-is to implement your own form of deferred recog
ROM_rcRerecognizeConfig :=

{
// use value of doTextRecognition slot
allowTextRecognition: true, // default
// text recognition enabled
doTextRecognition: true, // default
// amount of time to spend analyzing input
speedCursiveOption: 2, // default
// do not segment strokes
letterSpaceCursiveOption: nil, // default
…}

Supporting Frames Used In RecConfig Frames 10

// specifies baseline info to recognizer
rcBaseInfo :=

{
// y-coordinate of the view’s baseline
// in screen coords (global coords).
base: int,
// Positive offset (in pixels) from base
// to the top of a lowercase “x”
smallHeight: int,

C H A P T E R 1 0

Recognition: Advanced Topics

10-48 Summary of Advanced Topics in Recognition

// Positive offset (in pixels) from base
// to the top of an uppercase “X”
bigHeight: int,
// Positive offset (in pixels) from base
// to the bottom of a lowercase “g”
descent: int,
…}

// use w/ rcBaseInfo to define grids of input cells
rcGridInfo :=

{// all coordinates are global (screen) coordinates
// coord of left edge of upper-left box in grid
boxLeft: int,
// coord of right edge of upper-left box in grid
boxRight: int,
// distance in pixels from one boxLeft to next boxLeft
xSpace: int,
// coord of topmost edge of upper-left box in grid
boxTop: int,
// coord of bottom edge of upper-left box in grid
boxBottom: int,
// distance in pixels from one boxTop to next boxTop
ySpace: int
}

ProtoCharEdit Template 10

aCharEditTemplate :=
{
format: string, // string array indexes or underscores
filters: [str1, str2, … strN], // valid input values
string: string // initial string to display
// optional method you supply
// sets value of charEditView.text slot
SetupString: func (str) begin … end,
// optional method you supply
// formats charEditView.text string for ext display
CleanupString: func (str)begin … end
}

C H A P T E R 1 0

Recognition: Advanced Topics

Summary of Advanced Topics in Recognition 10-49

System-Supplied ProtoCharEdit Templates 10

GetLocale().phoneFilter // phone number template
GetLocale().dateFilter // date template
GetLocale().timeFilter // time template
ROM_numberFilter // general-purpose integer template

Stroke Bundle Frame 10

aStrokeBundle :=
{
//bounding rectangle of ink strokes
bounds: {top, left, right, bottom},
// strokes in the bundle
strokes: [binaryObj1, binaryObj2, … binaryObjN]
}

Recognition System Prototypes 10

protoRecConfig 10

aRecConfigFrame := {
// enabled recognizers and dicts
inputMask: bitField,
// true enables text recog if doTextRecognition
// is also true
allowTextRecognition: Boolean,
// true enables shape recog if doShapeRecognition
// is also true
allowShapeRecognition:Boolean,
// true enables text recognition unconditionally
doTextRecognition:Boolean,
// true enables shape recognition unconditionally
doShapeRecognition:Boolean,
// true enables ink text unconditionally
doInkWordRecognition:Boolean,
// amount of time to spend recognizing input
speedCursiveOption:int,
// relative amount of time between distinct strokes
timeoutCursiveOption:int,
// true enables letter-by-letter option
letterSpaceCursiveOption:Boolean,

C H A P T E R 1 0

Recognition: Advanced Topics

10-50 Summary of Advanced Topics in Recognition

// dictionaries to use when vCustomDictionaries is set
// single values need not reside in an array
dictionaries: [dictId1, dictID2, … dictIdN],
// optional baseline info
rcGridInfo: frame,
// optional single-letter input view info
rcSingleLetters: frame,
// true disables symbols dictionary
inhibitSymbolsDictionary: Boolean,
…}

protoRecToggle 10

aRecToggleView :=
{
// current setting of recToggle view
// this slot may be provided by _parent chain
_recogSettings: systemSuppliedValue,
// order of items in recToggle picker
_recogPopup: [sym1, sym2 … symN],
// optional index into _recogPopup array
defaultItem: int,
…}

protoCharEdit 10

aCharEditView :=
{
// screen coordinates of top edge of comb view
top:int, // Required when viewBounds not provided
// screen coordinates of left edge of comb view
left: int, // Required when viewBounds not provided
// dimensions & placement of comb view
viewBounds: frame, // Required when top & left not provided
// maximum number of cells in comb view; default value is 8
maxChars: int, // Required; sys provides if you provide viewBounds
// true causes comb view to display divider lines between cells
frameCells: Boolean,// Optional; default value is nil
// width of a cell in pixels; must be even number; default is 12
cellWidth: int, // system calculates from your top & left values
// pixels of blank space between cells in comb view
cellGap: int, // system-provided default value is 6
// pixels from top of viewBounds to dotted line at bottom of comb
viewLineSpacing: int, // system-provided default is 30

C H A P T E R 1 0

Recognition: Advanced Topics

Summary of Advanced Topics in Recognition 10-51

// height of cells in pixels
cellHeight: int, // system-provided default is 50
// recConfig frame specifying this view’s recog behavior
recConfig: frame, // system provides default
// specifies appearance & behavior of formatted comb view
template: frame, // optional protoCharEdit template
// string displayed when view opens; arg to SetupString method
text: string, // optional
// index of leftmost non-space character in comb view
wordLeft: int, // system-provided value
// index of cell to the right of rightmost non-space character
wordRight: int, // system-provided value
// index into text slot of character occupying leftmost cell
dispLeft: int, // system-provided value; changes after scrolling
// offset in pixels from leftmost edge of comb view
// to leftmost edge of first cell displayed
dispIndent: int,
// return word from comb view w/out leading/trailing spaces
CurrentWord: function,
// return cleaned-up version of word suitable for ext display
GetWordForDisplay: function, // calls CleanupString if provided
// deletes specified text from comb view
DeleteText: function,
// scrolls contents of comb view left or right as specified
Scroll: function,
// makes comb view use current values of text & template slots
UseTextAndTemplate: function,
// Sets the string displayed by the comb view
SetNewWord: function,
// performs internal initialization using current values of
// text and template slot; call after calling SetNewWord
UseNewWord: function,
// Returns true when template’s format slot is non-nil
FixedWord: function,
// Returns number of chars residing in templates format slot
FixedWordLength: function,
// optional app-defined methods
// you supply optional fn to update external display
DisplayExternal: function, // message sent when comb view changes
// you supply optional fn to save your undo info
SaveUndoState: function, // message sent when comb view changes
// you supply optional fn to do app-specific tasks for undo
RestoreUndoState: function, // msg sent to undo comb view changes
…}

C H A P T E R 1 0

Recognition: Advanced Topics

10-52 Summary of Advanced Topics in Recognition

protoCharEdit Templates 10

ROM_numberFilter // general-purpose numeric template
GetLocale().timeFilter // time template
GetLocale().dateFilter// date template
GetLocale().phoneFilter // phone numnber template

ProtoCharEdit Functions 10

MapAmbiguousCharacters(str)
UnmapAmbiguousCharacters(str)

ProtoCorrectInfo 10

aCorrectInfoFrame :=
{
info: [frame1, frame2 … frameMax] // wordInfo frames
// maximum number of frames in info array
max: 10, // default value
// system-supplied methods
Offset: function, // move, merge or delete wordInfo
// remove view’s wordInfo from correctInfo
RemoveView: function,
// return wordInfo frame at specified offset
Find: function,
// return wordInfo frame at specified offset,
// creating one if none found
FindNew: function,
// extract wordInfo from unit & add to correctInfo
AddUnit: function,
// add specified wordInfo to correctInfo
AddWord: function,
// delete range of wordInfo frames from correctInfo
Clear: function,
// copy range of wordInfo frames from view
// into a new correctInfo frame
Extract: function,
// copy range of wordInfo frames from source
// correctInfo frame into dest correctInfo frame
Insert: function,
…}

C H A P T E R 1 0

Recognition: Advanced Topics

Summary of Advanced Topics in Recognition 10-53

ProtoWordInfo 10

aWordInfoFrame :=
{
// ID of view that owns this data; returned by GetViewID
id: int,
// first char’s offset into clParagraphView view
Start: int,
// last char’s offset into clParagraphView view
Stop: int,
flags: forSystemUseOnly, // do not use this slot
unitID: forSystemUseOnly, // do not use this slot
// array of wordInterp frames; see page 10-53
words: [wordInterp1, wordInterp2, … wordInterpN]
// stroke data from original input
strokes: strokeBundleFrame, // see page 10-49
unitData: forSystemUseOnly, // do not use this slot
// sets list of words held by this wordInfo frame
SetWords: function,
// returns array of strings held by wordInterp frames
GetWords: function,
// Adds first word in this word list to auto-add and user dicts
AutoAdd: function,
// Removes first word in this list from auto-add and user dicts
AutoRemove: function,
}

protoWordInterp 10

aWordInterpFrame :=
{
// one interpretation of input strokes
word: string,
// recognizer’s confidence in this interpretation
score: int, // 0 is good score, 1000 is bad score
// dictionary id of recognized word
label: int, // internal use only
// this word’s rank in orig list of interpretations
index:int, // internal use only

}

C H A P T E R 1 0

Recognition: Advanced Topics

10-54 Summary of Advanced Topics in Recognition

Additional Recognition Functions and Methods 10

Dictionary Functions 10

AddWordToDictionary(dictionary, wordString)
DeleteWordFromDictionary(dictID,word)
DisposeDictionary(dictionary)
GetDictionaryData(dictionary)
GetRandomWord(minLength, maxLength)
LookupWordInDictionary(dictID,word)
NewDictionary(dictionaryKind)
SaveUserDictionary()
SetDictionaryData(dictionary, binaryObject)

User Dictionary Functions and Methods 10

AddAutoAdd(word)
RemoveAutoAdd(word)
reviewDict:AddWord(word)
reviewDict:RemoveWord(word)
LoadUserDictionary()
SaveUserDictionary()
reviewDict:AddExpandWord(word, expandedWord)
reviewDict:GetExpandedWord(word)
reviewDict:RemoveExpandedWord(word)
LoadExpandDictionary()
SaveExpandDictionary()

Recognition Functions 10

BuildRecConfig(viewRef)
GetPoint(selector, unit)
GetPointsArray(unit)
GetScoreArray(unit)
GetViewID(viewRef)
GetWordArray(unit)
StrokeBounds(unit)
StrokeDone(unit)
PurgeAreaCache()

C H A P T E R 1 0

Recognition: Advanced Topics

Summary of Advanced Topics in Recognition 10-55

Deferred Recognition Functions 10

Recognize(strokes, config, doGroup)
RecognizePara(para, start, end, hilite, config)
RecognizePoly(poly, hilite, config)

Application-Defined Methods 10

view:ViewClickScript(stroke)
view:ViewStrokeScript(stroke)
view:ViewGestureScript(stroke, gesture)
view:ViewWordScript(stroke)

CorrectInfo Functions 10

GetCorrectInfo() // return correctInfo frame
// return view identifier for use w/ correctInfo methods
GetViewID(view)
// extract wordInfo from word unit
GetCorrectionWordInfo(wordUnit) // call in ViewWordScript

Inker Functions 10

InkOff(unit)
InkOffUnHobbled(unit)
SetInkerPenSize(size)

Stroke Bundle Functions and Methods 10

CompressStrokes(strokeBundle)
CountPoints(stroke)
CountStrokes(strokeBundle)
ExpandInk(poly, format)
ExpandUnit(unit)
GetStroke(strokeBundle, index)
GetStrokeBounds(stroke)
GetStrokePoint(stroke, index, point, format)
GetStrokePointsArray(stroke, format)
InkConvert(ink, outputFormat)
MakeStrokeBundle(strokes, format)
MergeInk(poly1, poly2)
PointsArrayToStroke(pointsArray, format)
SplitInkAt(poly, x, slop)
StrokeBundleToInkWord(strokeBundle)

About Data Storage on Newton Devices 11-1

C H A P T E R 1 1

Data Storage and Retrieval 11Figure 11-0
Table 11-0

The Newton operating system supplies a suite of objects that interact with each
other to provide data storage and retrieval services. This chapter describes the use
of these objects—stores, soups, cursors, and entries—to save and retrieve data. If
you are developing an application that saves data, retrieves data, or provides
preexisting data, you should familiarize yourself with the contents of this chapter.

Before reading this chapter, you should understand the following sections in
Chapter 1, “Overview.”

■ “Memory” on page 1-3 describes the use of random access memory (RAM) by
the operating system and applications.

■ “Packages” on page 1-4 describes the object that encapsulates code, scripts, and
resources as a Newton application.

■ “Object Storage System” on page 1-5 provides a brief introduction to the most
important data storage objects provided by the Newton operating system.

About Data Storage on Newton Devices 11

This section introduces Newton data storage objects and describes their interaction
and use. Additional special-purpose data storage objects are described in Chapter 12,
“Special-Purpose Objects for Data Storage and Retrieval.”

C H A P T E R 1 1

Data Storage and Retrieval

11-2 About Data Storage on Newton Devices

Introduction to Data Storage Objects 11
Newton devices represent data as objects. The NewtonScript programming
language provides four basic object types that applications can use to
represent data:

Because immediates, binaries, and arrays are object representations of data types
common to many programming languages, they are not discussed further here. For
complete descriptions of these objects, see The NewtonScript Programming
Language.

The frame is of particular interest, however, as it can contain any of the other
objects and is the only NewtonScript object to which you can send messages. In
addition, the following characteristics of frames make them a particularly flexible
and efficient way to store data:

■ Frames are sized dynamically—they grow and shrink as necessary.

■ All frames support a common set of predefined NewtonScript data types that
allows them to share most data virtually transparently.

■ Dissimilar data types can be stored in a single frame.

Like a database record, a frame stores data items. An individual data item in the
frame is held in a slot, which may be thought of as a field in the database record.
Unlike database records, however, frames need not contain the same complement
of slots.

Any slot can hold any NewtonScript data type, including strings, numeric formats,
arrays, and binary objects. Note that NewtonScript does not require that slots
declare a datatype. Slots are untyped because every NewtonScript object stores
datatype information as part of the object itself. (NewtonScript variables need not
declare a type, either, for the same reason.)

Slots can also hold other frames, as well as references to frames, slots, and
NewtonScript objects. A frame’s ability to reference other frames from its slots
allows it to inherit attributes and behaviors from ROM-based objects known as
system prototypes or “protos.” This feature of the object system also provides
dynamic slot lookup and message-passing between frames. For detailed
descriptions of NewtonScript syntax, system-supplied data types, dynamic slot

Immediate A small, immutable object such as a character, integer or
Boolean value.

Binary Raw binary data.

Array A collection of object references accessed from a
numerical index.

Frame A collection of object references accessed by name.

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-3

lookup, message-passing, and inheritance in NewtonScript, see The NewtonScript
Programming Language.

Other than the requirement that data must reside in a slot, frames don’t impose any
structure on their data. In practical use, though, the slots in a frame tend to be
related in some way, usually holding related data and methods which operate on
that data. In this way, the frame exemplifies the classic object-oriented
programming definition of an “object.” Frames do not implement data-hiding,
however, nor do they necessarily encapsulate their data.

RAM-based frames are not persistent until they are saved in a data structure called
a soup, which is an opaque object that provides a persistent, dynamic repository
for data. Unless removed intentionally, soups remain resident on the Newton device
even when the application that owns them is removed.

The only NewtonScript object you can save in a soup is a frame; recall, however,
that any slot in the frame can hold any NewtonScript data type and multiple data
types can reside in a single frame. The object system does not impose any
limitations on the number of frames or the kinds of data that may reside in a soup.
In practical use, though, the items in a soup generally have some relationship to
one another.

Soups are made available to the system in a variety of ways. Applications may
create them on demand, they may be installed along with an application, or the user
may introduce them by inserting a storage card in the Newton device.

The soup resides on a store, which is a logical data repository on a physical storage
device. A store may be likened to a disk partition or volume on a conventional
computer system; just as a disk can be divided logically into multiple partitions, a
physical storage device can house multiple stores. The Newton platform supports a
single internal store and one or more external stores on PCMCIA devices.
Applications can use as many soups as they need, subject to the availability of
memory space on stores and in the NewtonScript heap.

Each store is identified by a name, which is not necessarily unique, though each
store has a nearly unique random number identifier called a signature. The store’s
signature is assigned by the system when the store is created.

Soups can reside on internal or external stores; a special kind of object, the union
soup, represents multiple soups as a single entity, regardless of their locations on
various physical stores. For example, when a PCMCIA card is installed, application
data may be distributed between the internal and card-based soups. The union soup
object provides a way to address multiple soups having the same name as a single
“virtual” soup. Figure 11-1 illustrates the concept of a union soup graphically.

It’s important to understand that there is only one kind of soup object in the
system; a union soup object simply represents the logical association of multiple
soup objects. In other words, aside from their logical association with other soups
in the union, a union soup’s constituent soups (also called member soups) are no

C H A P T E R 1 1

Data Storage and Retrieval

11-4 About Data Storage on Newton Devices

different from soups that are not part of a union. Unless specifically noted
otherwise, anything said about soups in this text applies equally to union soups.

Figure 11-1 Stores, soups and union soups

In general, you’ll want to use union soups for most purposes, especially for saving
most data the user creates with your application. Applications must allow the user
to choose whether to save new data on the internal or external store; using union
soups makes this easy to do.

An application creates a union soup by registering a soup definition frame with the
system; registering the soup definition causes the system to return a union soup
object to which the application can send messages that save and retrieve data. This
object may represent a new soup, one created previously, or no soups (if, for some
reason, all of the union’s member soups are unavailable). For a detailed discussion
of soup creation, see “Soups” beginning on page 11-7.

All soups save frame data as objects called entries. An entry is a frame that has
been added to a soup by means of any of several system-supplied methods
provided for this purpose. Note that you cannot create a valid entry by simply
adding certain slots and values to a frame—the system must create the entry for
you from a frame presented as an argument to one of the entry-creation methods.

Returning to the database analogy, you can think of entries as individual records in
the database, and you can think of the soup as the database itself. Like a database, a
soup is opaque—you retrieve data by requesting it, rather than by examining its
records directly.

Your request for soup data takes the form of a Query message sent to the soup or
union soup object. The Query method accepts as its argument a frame known as

Internal Store

Entries

External Store
aSoup

aSoup

Union Soup

{theNum:121088, ...}

{myFn:<code block>, ...}

{aSlot:"some string data", ...}

{data: , ...}

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-5

the query specification or query spec. The query spec describes the kind of
information the query returns. The order in which soups return data items is
imposed by an index you define for a specified soup.

If you’ve ever used an array, you are already familiar with the concept of an index.
Each element of the array is associated with a unique numeric value called a key.
These key values can be sorted, thus imposing order on their associated data items
(the elements of the array). In the case of a common array, a single numeric index
sorts the array elements in ascending key order.

Key values can also be used to reference or retrieve an indexed item. For example,
arrays allow you to reference or retrieve the data at a particular position in the array
without regard to the actual content stored at that position. Soup indexes provide
similar capabilities for soup data: they allow you to find and sort soup entries
associated with specified key values without specific knowledge of the data associated
with a particular key value.

You can index soup entries on any slot value you need to use as a key for extracting
them from the soup. For example, you could retrieve entries having a certain
creation date, or entries in which a particular string is present, and so on. Soups can
be created with a set of default indexes you specify and you can also add new
indexes to existing soups. Indexes are discussed in more detail in “Indexes”
beginning on page 11-8.

A soup responds to a query by returning a cursor object that iterates over the set of
entries meeting the criteria defined by the query spec. Cursors are updated
dynamically: if soup entries meeting the search criteria are added or deleted after
the original query is made, these changes are reflected automatically in the set of
entries that the cursor returns.

The cursor responds to messages that position it within the set of entries it
references and extract individual entries from this set. Until an entry is extracted
from the cursor, its data resides in the soup that was queried to generate the cursor.

The first time a slot in the entry is referenced—whether to read its value, set its
value, or to print its value in the Inspector—the system creates a normal frame
from it that is referenced by a special area of the NewtonScript heap known as the
entry cache. Changes to the entry’s soup data are actually made in the cached
frame, not the permanent store; hence, changes to a soup entry are not persistent
until the cached frame is written back to a soup. This scheme makes it simple to
undo the changes to a soup entry—the system simply throws away the cached
frame and restores references to the original, unmodified soup entry.

Because the frame-based storage model facilitates the sharing of data, the system
provides a soup change notification mechanism that you can use to advise other
objects of changes to soups or soup data. All the methods that add, modify, or
delete soups or soup entries provide the option to execute registered callback
functions in response to changes in specified soups. Soup changes for which

C H A P T E R 1 1

Data Storage and Retrieval

11-6 About Data Storage on Newton Devices

applications might require notification include creating soups; deleting soups; and
adding, removing, or changing individual soup entries. The soup change
notification mechanism is discussed in more detail in “Using Soup Change
Notification” beginning on page 11-63.

In summary, most applications that work with dynamic data perform the following
operations, which are described in this chapter:

■ creating and using frames

■ storing frames as soup entries

■ querying soups to retrieve sets of entries

■ using cursor objects to work with sets of soup entries

■ extracting individual entries from cursor objects

■ manipulating individual soup entries as frame objects

■ returning modified entries to the soup from which they came

■ notifying other applications of changes to soups

Where to Go From Here 11
You should now have a general understanding of how stores, soups, queries,
cursors, and entries interact. It is strongly recommended that you read the remainder
of this section now—it provides important details you’ll need to know in order to
work with the Newton data storage system. However, if you are anxious to begin
experimenting with Newton data storage objects, you can skip ahead to
“Programmer’s Overview” on page 11-25 and read the remainder of this section at
another time.

Stores 11
Although soups and packages reside on stores, the occasions on which you’ll need
to interact with stores directly are rare—the system manages hardware interaction
for you, creates union soups automatically as needed, and provides a programming
interface that allows you to perform most union soup operations without
manipulating the stores on which individual member soups reside. Occasionally,
you may need to message a store directly in order to create or retrieve a soup that is
not part of a union, or you may need to pass a store object as an argument to certain
methods; otherwise, most applications’ direct interaction with stores is limited.

In general, only specialized applications that back up and restore soup data need to
manipulate stores directly. However, the system provides a complete developer
interface to stores, as documented in “Data Storage and Retrieval Reference”
(page 9-1) in Newton Programmer’s Reference.

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-7

For information on using store objects, see “Using Stores” beginning on page 11-29.

Packages 11
A package is the basic unit of downloadable Newton software: it provides a means
of loading code, resources, objects, and scripts into a Newton device. Most Newton
applications are shipped as packages that can be installed on a Newton device by
applications such as Newton Package Installer or Newton Backup Utility.

Packages can be read from a data stream or directly from memory. For example,
Newton Connection Utility uses a data stream protocol to load a package into the
Newton system from a MacOS or Windows computer. However, it is much more
common to use packages directly from memory, as the user does after the package
has been installed on the Newton device.

For a more detailed discussion of packages, see “Parts” on page 12-3 in
Chapter 12, “Special-Purpose Objects for Data Storage and Retrieval.”

Soups 11
This section provides important background information about soup objects. Topics
discussed here include

■ soups vs. union soups

■ related data structures such as soup definitions, indexes, index specification
frames, and tags

■ automatic creation of soups

■ saving user preferences in the system soup

Applications using soup-based data storage must respect the user’s default store
preferences for writing soup entries and create soups only as necessary. The use of
union soups makes it easy to observe these requirements. Union soups provide
methods that respect the user’s default store preferences automatically when adding
new entries. These ROM-based methods are also much faster than equivalent
NewtonScript code. Union soups also provide methods you can use on those
occasions when you must specify the store on which to save soup entries.

Another good reason to use union soups is that applications almost never need to
create them explicitly. Once a soup definition is registered with the system, individual
members of the union soup it defines are created automatically as needed.

A soup definition is a frame that provides information about a particular union
soup. The soup definition supplies descriptive information about the union soup
and information required to create its member soups.

C H A P T E R 1 1

Data Storage and Retrieval

11-8 About Data Storage on Newton Devices

The soup definition frame specifies a name that identifies the soup to the system, a
user-visible name for the soup, a symbol identifying the application that “owns”
the soup, a user-visible string that describes the soup, and an array of index
specification frames defining the default set of indexes with which the soup is
created. For a complete description of the slots in the soup definition frame, see the
section “Soup Definition Frame” (page 9-2) in Newton Programmer’s Reference.

Methods that add an entry to a union soup use the information in its soup definition
to create a member soup to hold the new entry if the member soup is not present on
the appropriate store at the time the entry is added. If a member of the union is
present on the specified store, the new entry is added to the existing member soup
and a new soup is not created. In most cases, the store in question is specified by
the user’s preferences for the default storage of new data items; if necessary,
however, you can specify by store the member soup in which the new entry is to
reside. Note also that you can create union soup members explicitly, if necessary.

If no frames have ever been added to a particular union soup, the union’s member
soups may not exist at all. You can add entries to a union soup in this state
(member soups are created automatically), but you cannot query a union soup that
has no members.

Member soups may be unavailable for other reasons, as well. For example, the
user might have removed a member soup temporarily by ejecting the card on
which it resides or might have removed the soup permanently by scrubbing it in
the Extras Drawer.

The descriptive information in a soup definition frame can be used to supply
information about a soup for use by the system, applications, or the user. For
example, this information can be used to make the user aware of a particular soup’s
owner and function before allowing the user to delete the soup.

To make a soup definition available for use, you must first register it with the
system. For information on registering and unregistering soup definitions, see the
section “Registering and Unregistering Soup Definitions” beginning on page 11-33.

NewtApp applications also make use of soup definitions; for more information, see
Chapter 4, “NewtApp Applications.”

Indexes 11

An index is a data structure that provides random access to the entries in a soup as
well as a means of ordering those entries. A designated value extracted from each
soup entry is stored separately in the soup’s index as the index key for that entry.
Because the system can retrieve and sort index key values without reading their
associated soup entries into memory, indexes provide a fast and efficient means of
finding soup entries.

The system maintains all indexes automatically as soup entries are added, deleted,
or changed. Thus, index data is always up-to-date and readily available.

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-9

You can create your own specialized indexes for any soup. You need to create an
index for each slot or set of slots on which the soup will be searched frequently. It
is preferable to define your indexes in the appropriate soup definition, but you can
add indexes to an existing soup if necessary.

An index generated against a single key value is called a single-slot index. A
single-slot index selects and sorts soup entries according to the value of a single
slot specified when the index is created. An index generated against multiple key
values is called a multiple-slot index. A multiple-slot index can select and sort
soup entries according to the values of multiple slots. A multiple-slot index can
associate up to a total of six key values with each entry it indexes. You can create
multiple indexes for any soup.

The characteristics of an index are specified by an index specification frame or
index spec. The values in the index spec frame indicate the kind of index to build,
which slot values to use as index data, and the kind of data stored in the indexed
slots. The precise format of the index spec frame varies according to whether it
defines a single-slot index or a multiple-slot index. For complete descriptions of
index specs, see “Single-Slot Index Specification Frame” on page 9-5 and
“Multiple-Slot Index Specification Frame” (page 9-6) in Newton Programmer’s
Reference.

A tag is an optional developer-defined symbol used to mark one or more soup
entries. Tags reside in a developer-specified slot that can be indexed, with the
results stored in a special index called the tags index.

The tags index is used to select soup entries according to their associated symbolic
values without reading the entries into memory; for example, one could select the
subset of entries tagged 'business from the ROM_CardFileSoupName soup
used by the built-in Names application. In fact, “filing” Newton data items in
“folders” is a user-interface illusion—the data really resides in soup entries and its
display is filtered for the user according to the tags associated with each soup entry.

Note that the system allows only one tags index per soup. Each soup can contain a
maximum of 624 tags. The system treats missing tags as nil values. For more
information, see “Tag-based Queries” on page 11-14.

A tags index specification frame, or tags index spec, defines the characteristics of
a soup’s tags index. Like an index spec, a tags index spec can be used to create a
default tags index on a new soup or add a tags index to an existing soup. For a
complete description of the slots in a tags index spec frame, see the section “Tags
Index Specification Frame” (page 9-8) in Newton Programmer’s Reference.

To better support the use of languages other than English, soup indexes and queries
can be made sensitive to case and diacritical marks in string values. (Normally,
string comparison in NewtonScript is insensitive to case and diacritics.) This
behavior is intended to allow applications to support the introduction of non-
English data easily; for example, the user might insert a PCMCIA card containing

C H A P T E R 1 1

Data Storage and Retrieval

11-10 About Data Storage on Newton Devices

data from a different locale. To take advantage of this behavior, the application
must create an internationalized index for the soup and the query must request the
alternate sorting behavior explicitly in its query spec. For more information, see
“Internationalized Sorting Order for Text Queries” on page 11-45.

Saving User Preference Data in the System Soup 11

Most of the time you’ll want to store data in union soups, but one task for which
union soups are not suitable is the storage of your application’s user preferences
data. There are several good reasons for always saving user preferences data on the
internal store:

■ If your application is on a card that is moved from one Newton device to another,
it acts the way the users of the respective Newton devices think it should.

■ It rarely makes sense to distribute preferences data among several storage cards.

■ It’s difficult to guarantee that your application will always have access to any
particular card.

■ If your application is on the internal store and it simply adds preference data to
the default store, the preference data could be saved on an external store that
becomes unavailable to the application when a card is ejected.

Hence, the built-in ROM_SystemSoupName soup on the internal store is usually
the ideal place to keep your application’s preference data. The GetAppPrefs
function allows you to get and set your application’s preferences frame in this
soup. For more information, see the description of this function in Chapter 26,
“Utility Functions.” For more information about the ROM_SystemSoupName soup
itself, see Chapter 19, “Built-in Applications and System Data.”

Queries 11
To retrieve entries from a soup or union soup, you perform a query by sending the
Query message to the soup or union soup. The Query method accepts as its
argument a frame known as a query specification or query spec. The query spec
defines criteria for the inclusion of entries in the query result. You can think of the
query spec as a filter that the Query method uses to select a subset of the soup’s
data. Queries can test index key values or string values and perform customized
tests that you define.

A single query spec can specify multiple criteria that entries must meet in order to
be included in the result of the query. For example, you can specify that your query
return all entries created after a certain date that are tagged 'business but do not
contain the "paid" string. For instructional purposes, this chapter discusses
separately each test that a query spec may include.

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-11

Querying for Indexed Values 11

Queries can retrieve items according to the presence of one or more index keys and
can test key values as well. A query that tests for the presence or value of an index
key is called an index query.

Soups that have single-slot indexes allow queries to use a single index key to select
soup entries. Detailed information is provided in “Querying on Single-Slot
Indexes” beginning on page 11-39.

Soups that have multiple-slot indexes allow queries to use multiple index keys to
select soup entries. Detailed information is provided in “Querying on Multiple-Slot
Indexes” beginning on page 11-47.

Index queries can be based only on slot names for which an index has been generated.
For example, to select entries according to the presence of the foo slot, the soup
that receives the Query message must be indexed on the foo slot. Entries not
having a foo slot are not included in the set of entries referenced by the foo index.

Although the entries in the soup are not actually in any particular order themselves,
the index keys associated with them can be sorted in a specific order that is defined
for each NewtonScript data type. Thus, you can envision the contents of an index
as a sequence of entries arranged in key order, as shown in Figure 11-2.

Figure 11-2 An index provides random access and imposes order

The aSoup soup shown in Figure 11-2 is indexed on the foo slot, which means
that the value of each entry’s foo slot is used as its index key. Only those entries
containing a foo slot are included in this index. By sorting key values, the index
imposes order on their corresponding soup entries, which are otherwise unordered.

2 3 4 5

Ascending key order

Descending key order

Index on foo slot

Store

Soup

14
2

3

5

6

{foo: , ...}

{foo: , ...}

{foo: , ...}

{foo: , ...}

{bar: , ...}

{bar: , ...}

C H A P T E R 1 1

Data Storage and Retrieval

11-12 About Data Storage on Newton Devices

Indexes sort key values in ascending order unless the index spec frame used to
create a particular index specifies descending order.

Begin Keys and End Keys 11

Because index keys are sorted by value, you can improve the speed of an index
query significantly by limiting the range of index key values it tests. One way to do
this is to eliminate from the search any index key values that fall outside specified
minimum or maximum values. For example, you can specify a minimum index key
value used to select the first entry to be tested, causing the query to “skip over” all
lesser-valued index keys. A minimum value used in this way is defined in the query
spec as a beginKey value.

Similarly, you can specify a maximum index key value to be used in selecting the
last entry to be tested, causing the query to ignore entries having index keys of
greater value. A maximum value used in this way is defined in the query spec as an
endKey value.

You can use these optional beginKey and endKey values together to specify a
subrange of index key values, as shown in Figure 11-3. Note that if an endrange
value is not specified, it is unbounded; for example, if you don’t specify an endKey
value the query result potentially includes all entries through the end of the index.

Figure 11-3 Using beginKey and endKey values to specify an index subrange

You can also define a special kind of key that is itself excluded from the valid
subrange of index values. These keys are defined as beginExclKey and
endExclKey values in the query spec. Figure 11-4 depicts the use of
beginExclKey and endExclKey values to define the same index subrange
shown in Figure 11-3. Note that you cannot specify both the inclusive and

Ascending key order

Descending key order

beginKey endKey

subrange of index key values

 3 4 5

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-13

exclusive forms of the same endrange selector; for example, a single query spec
cannot specify both a beginKey value and a beginExclKey value.

Another important point to understand is that there is only one beginKey or
beginExclKey value, and only one endKey or endExclKey value associated
with any query and the cursor it returns.

Figure 11-4 Using beginExclKey and endExclKey values to specify
a subrange

Each beginKey, beginExclKey, endKey, or endExclKey specification
evaluates to a single value that has a unique position in the sorted index key data.
This position marks one end of the range over which the cursor iterates. The cursor
never moves to a position outside the range specified by these keys.

If any endrange selectors are defined for a query, the relationship of the cursor’s
entries to the endrange selectors may be summarized as follows:

entry > beginExclKey
entry ≥ beginKey
entry ≤ endKey
entry < endExclKey

You can think of these values as being used by the system in an inequality
expression to specify the range of the cursor; for example,

beginKey ≥ entry < endExclKey

Note that if a valid entry is not found at the key value specified for an endrange
selector, the cursor is positioned on the nearest entry in index key order that falls
within the range specified by the endrange selectors. For example, if a valid entry is
not found at the key value specified for a beginKey or beginExclKey value, the

Ascending key order

Descending key order

subrange of index key values

 3 4 5

beginExclKey endExclKey

C H A P T E R 1 1

Data Storage and Retrieval

11-14 About Data Storage on Newton Devices

cursor is positioned on the next valid entry in index key order. Similarly, if a valid
entry is not found at the key value specified for an endKey or endExclKey value,
the cursor is positioned on the previous valid entry in index key order. (The cursor
is never positioned beyond the endKey value or before the beginKey value.)

For information on using index queries, see “Querying on Single-Slot Indexes”
beginning on page 11-39 and “Querying on Multiple-Slot Indexes” beginning on
page 11-47.

Tag-based Queries 11

Index queries can also include or exclude entries according to the presence of one
or more tags. A tag is an optional developer-defined symbol that resides in a
specified slot in the soup entry.

The symbols used as tags are stored as the key values in the soup’s tags index. As
with any other index, the system maintains the tags index automatically and queries
can test values in this index without reading soup entries into memory. Thus, tag-
based queries are quick and efficient.

Unlike other indexes, the tags index alone cannot be used as the basis of an index
query—it does not sort entries (as other indexes do), it only selects or eliminates
entries according to their associated tag values. However, you need not specify an
additional index in order to query on tag values; when a separate index is not
specified, queries on tags test all entries in the soup.

The tags for which the query tests are specified by a tags query specification
frame or tags query spec supplied as part of the query spec. The tags query spec
can specify set operators such as not, any, equal, and all to create complex
filters based on tag values. For example, you could use these operators to query for
entries having the 'USA or 'west tags that do not have the 'California tag.

The set operators used by tags query specs are described in greater detail in “Tag-
based Queries” beginning on page 11-14 of this book and “Tags Query
Specification Frame” (page 9-13) in Newton Programmer’s Reference.

Customized Tests 11

The use of indexes, begin keys, end keys, and tags provides sufficient control over
query results for most uses; however, you can specify additional customized tests
when necessary. These tests take the form of an indexValidTest or
validTest function that you define in the query spec.

The indexValidTest function tests the index key values associated with each
entry in the range of values over which the cursor iterates. This function returns
nil for an entry that is to be rejected, and returns any non-nil value for an entry
that is to be included in the results of the query. Like all tests that manipulate index

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-15

key values, indexValidTest functions are fast and efficient because index key
values are always kept in memory.

Another kind of customized test, the validTest function, works like the
indexValidTest function but tests the soup entry itself rather than its associated
index key value. To perform this test, the query must actually read the soup entry
into the NewtonScript heap, which takes more time and uses more memory than
tests which operate on index key values only. Thus, for performance reasons,
validTest functions should be used only when absolutely necessary. It is
strongly suggested that you use index-based approaches to limit the range of
entries passed to the validTest function.

For information on using indexValidTest and validTest functions, see
“Querying on Single-Slot Indexes” beginning on page 11-39.

Text Queries 11

Queries can also select entries according to the presence of one or more specified
strings. For instructional purposes, this section describes separately each of the text
searches that queries can perform—remember, though, that a single query spec can
specify multiple tests for the query to perform on each soup entry it examines.

A words query tests all strings in each soup entry for a word beginning or for an
entire word. A text query is similar to a words query but its test is not limited to
word boundaries.

The default behavior for a words query is to test for word beginnings. For example,
a words query on the string "smith" would find the words "smithe" and
"smithereens". The word "blacksmith" would not be included in the results
of the search because the string "smith" is not at a word beginning. Because
words queries are not case sensitive, the word "Smithsonian" would also be
found by this query.

If you specify that the words query match only entire words, it returns only entries
containing the entire word "smith" or "Smith" and does not return any other
variations. You can also specify explicitly that the query be sensitive to case and
diacritics, causing it to return only the "smith" entry.

A words query is slower than a similar index query because it takes some time to
test all the string values in a soup entry. For information about performing words
queries, see “Querying for Text” beginning on page 11-43.

A text query is similar to a words query but its test is not limited to word
boundaries; that is, it tests all strings in each soup entry for one or more specified
strings, regardless of where they appear in the word. For example, a words query
on the string "smith" would find the words "smithe" and "smithereens" as
well as the word "blacksmith". Because text queries are not case sensitive

C H A P T E R 1 1

Data Storage and Retrieval

11-16 About Data Storage on Newton Devices

unless this behavior is requested explicitly, the words "blackSmith" and
"Smithsonian" would also be found by this query.

A text query is slower than its words query counterpart. Text queries do not require
significantly more heap space than other kinds of queries.

For more information about performing text queries, see “Querying for Text”
beginning on page 11-43.

Cursors 11
The Query method returns a cursor, which is an object that iterates over the set of
entries satisfying the query spec and returns entries in response to the messages it
receives. Cursors return entries in index key order. As entries in the soup are added,
deleted, and changed, the set of entries the cursor references is updated
dynamically, even after the original query has been performed.

Recall that after selecting a subrange of all entries in the soup, a query can use
various tests to eliminate certain entries within that range. If viewed within the
context of the entire soup index, the final set of valid entries is discontiguous—that
is, it includes gaps occupied by entries that did not meet the criteria established by
the query spec. However, the cursor presents this subset as a continuous range of
entries, as depicted in Figure 11-5.

Initially, the cursor points to the first entry in index order that satisfies the query.
The cursor supplies methods that allow you to determine its current position, retrieve
the entry referenced by its current position, or specify a new position. The cursor
may be moved incrementally, moved to the position occupied by a specified entry
or key, or reset to an initial position that is not necessarily the first entry in the valid
set. Note that it is possible to move the cursor incrementally to a position outside
the valid range of entries, in which case the cursor returns nil instead of an entry.

For information about using cursors, see “Using Cursors” beginning on page 11-53.

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-17

Figure 11-5 Cursor presents discontiguous index key values contiguously

Entries 11
An entry is a special kind of frame that resides in a soup. Valid entries can be
created only by system-supplied methods provided for this purpose—you cannot
create an entry by creating a frame having certain slots and values. The entry that
these methods create consists of the frame presented to the entry-creation method,
along with copies of any data structures the frame references, as well as copies of
any data structures those structures reference, and so on. An exception to this rule
is that _proto slots are not saved in soup entries. Circular references within an
entry are allowed.

1 2 3 4 5 6 7 8 9

2 4 6

2 4 6

beginKey

Indexed entries

Eliminate more
entries

Valid entries
in black

Valid entries as
presented by
cursor

Select subrange
of valid entries

endExclKey

indexValidTest: func (key)
		 begin
		 (key MOD 2 = 0)�
		 end

subrange of index key values

 2 3 4 5 6 7

C H A P T E R 1 1

Data Storage and Retrieval

11-18 About Data Storage on Newton Devices

All frames are compressed automatically when they are stored as soup entries and
all soup entries are decompressed when they are referenced. The automatic
compression and decompression of soup data reduces the amount of storage space
and run-time memory required by Newton applications.

If you add a frame that references another entry, the referenced entry is copied as a
frame into the new soup entry that is created. Similarly, if you move that entry to
another store, any data it references is moved to the new store as well.

The only way to retrieve an entry is to send the Query message to the soup or
union soup in which the entry resides. This method returns a cursor, which is an
object that returns entries in response to messages it receives.

As first returned by the cursor, the entry is a frame that holds references to the
entry’s data. Soup data referenced by this frame is not decompressed until it is
referenced—for example, to get or set the value of one of the entry’s slots. When a
slot in the entry is referenced, the system constructs the entire entry frame in the
NewtonScript heap.

Decompressed entries are cached in RAM until they are written back to the soup.
Applications can modify these cached entry frames directly. The system supplies
functions for modifying entries, writing them back to the soup, and manipulating
them in other ways.

For information about using entries, see the section “Using Entries” beginning on
page 11-57.

Alternatives to Soup-Based Storage 11
Although soup-based data storage offers many advantages, you may improve
your application’s performance or reduce its RAM requirements by storing data
in other formats.

There are a wide variety of trade-offs to consider when choosing a structure to
represent your application data. You are strongly advised to conduct realistic tests
with the actual data set your application uses before committing to the use of a
particular data structure. It’s also recommended that you design your application in
a way that allows you to experiment with the use of various data structures at any
point in its development.

When choosing schemes for storing your application’s data, you need to consider
factors such as:

■ the kind of data to be saved

■ the quantity of data to be saved

■ how the application accesses the data

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-19

The most important factor to consider with respect to the kind of data is whether
the data is static or dynamic. You must use soups to store dynamic data, but a
number of options are available for storing static data. You will probably find that
certain structures lend themselves more naturally than others to working with your
particular data set.

Especially for large data sets, space-efficiency may influence your choice of one
data structure over another. In some cases, you may need to consider trade-offs
between space requirements and speed or ease of access.

Data access issues include questions such as whether the data structure under
consideration facilitates searching or sorting the data. For example, soups provide
powerful and flexible mechanisms for searching and sorting soup entry data.

Dynamic Data 11

Data your application gathers from the user must be stored in soups. Within
individual soup entries, you are free to store data in whatever manner best suits
your application’s needs.

Because each entry in a soup is a frame, the price you pay for using soup-based
storage can be measured in terms of

■ the time required to find slots at run time

■ the memory space required to expand soup entries

■ the memory space required to store the expanded entry frames on the
NewtonScript heap

For many uses, the benefits offered by soups outweigh these costs; however, other
approaches may be more suitable for certain data sets, especially large sets of read-
only data.

For example, a large, read-only list of provinces and postal codes is saved most
compactly as a single array, frame, or binary object residing in a slot in the
application base view’s template or in the application package itself. Information
stored in this way is compressed along with your application package and is not
brought into the NewtonScript heap when it is accessed. The primary disadvantages
of this scheme are that the data set is read-only and the conveniences provided by
soup queries are not available.

Static Data 11

Read-only or static data can be stored in packages held in protected memory on the
Newton. There are a variety of reasons you might store data in a package rather
than in a soup:

■ Storing static data in a compressed package rather than in a soup helps to
conserve store space and NewtonScript heap space.

C H A P T E R 1 1

Data Storage and Retrieval

11-20 About Data Storage on Newton Devices

■ Although the user might enter data dynamically, there might be a large initial set
of data your application needs to provide. Again, it’s more efficient to supply
this as package data rather than as soup data.

■ You can supply multiple static data sets as separate packages to allow the user to
load some subset of that data. For example, a travel guide application might
keep data for individual countries in separate packages.

If your application makes use of a large initial data set to which the user can make
additions, you might consider a hybrid approach: keep the initial data set in your
base view’s template and use a soup only for the user’s additions.

A special-purpose object called a store part allows you to provide read-only soups
as package data; however, a soup residing on a store part cannot participate in a
union. For information about store parts, see Chapter 12, “Special-Purpose Objects
for Data Storage and Retrieval.”

If you decide not to store your data in a soup, consider the following points:

■ Don’t be too quick to discount frames as your data structure of choice—slot
lookup is very fast.

■ Storing data as a binary object can help you avoid some of the overhead associated
with array and frame data structures. In general, binary objects may let you store
your data more compactly, but make it more difficult to access: you’ll need to
use the various ExtractDataType functions to retrieve items. Note that the
ExtractCString and ExtractPString functions create a string object in
the NewtonScript heap for each string extracted from a binary object.

■ Consider storing symbols for repeated strings rather than storing the strings
themselves. When you define a symbol for an object (such as a string or frame),
only one instance of the object is stored in the application package, and all the
symbols reference that instance. Remember that symbols are limited to 7-bit
ASCII values. Symbols (slot names) can include nonalphanumeric ASCII
characters if the name is enclosed by vertical bars; for example, the space in the
symbol '|Chicken Little| would normally be illegal syntax, but the
vertical bars suppress the usual evaluation of all characters they enclose.

Compatibility Information 11
This section provides version 2.0 compatibility information for applications that
use earlier versions of the data storage and retrieval interface.

Obsolete Store Functions and Methods 11

The following store methods and functions are obsolete:

store:CreateSoup (soupName, indexArray) // use CreateSoupFromSoupDef
RemovePackage(pkgFrmOrID) // use SafeRemovePackage instead
store:RestorePackage(packageObject) // use SuckPackageFromBinary instead

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-21

Soup Compatibility Information 11

This section contains compatibility information regarding

■ the new soup format introduced with version 2.0 of the Newton operating system

■ obsolete soup functions and methods

■ the new soup change notification mechanism introduced in version 2.0 of the
Newton operating system

■ soup information frame changes

■ null union soups on Newton 1.x devices

New Soup Format 11

Because 2.0 soup formats are incompatible with earlier versions of the Newton
data storage model, the system implements the following soup-conversion strategy:

■ When a 1.x data set is introduced to a Newton 2.0 system, the system allows the
user to choose read-only access or permanent conversion of the 1.x soup data to
the Newton 2.0 format.

■ Older systems display a slip that says “This card is too new. Do you want to
erase it?” when a Newton 2.0 soup is introduced to the system.

Obsolete Soup Methods and Functions 11

The system’s approach to creating soups automatically has changed with version
2.0 of Newton system software. In previous versions of the system, any soup
registered by the RegCardSoups method was created automatically on any
PCMCIA card lacking that soup, even when the user specified that new items be
written by default to the internal store. The result was a proliferation of unused,
“empty” soups on any PCMCIA card introduced to the system.

Version 2.0 of Newton system software creates the members of union soups
automatically only when they are actually needed to store data. Thus, the
RegCardSoups, SetupCardSoups, RegisterCardSoup, and
UnRegisterCardSoup functions have been made obsolete by the
RegUnionSoup and UnRegUnionSoup functions. Similarly, the CreateSoup
store method has been made obsolete by the RegUnionSoup function. For more
information, see “Soups” beginning on page 11-7.

C H A P T E R 1 1

Data Storage and Retrieval

11-22 About Data Storage on Newton Devices

The following soup methods and functions are obsolete:

SetupCardSoups() // use RegUnionSoup instead
RegisterCardSoup(soupName,indexArray,

appSymbol,appObject) // useRegUnionSoup instead
UnRegisterCardSoup(soupName)// use UnRegUnionSoup instead
BroadcastSoupChange(soupNameString) // use -xmit methods or

// XmitSoupChange fn instead
UnionSoupIsNull(unionSoup)// no null uSoups from GetUnionSoupAlways
GetUnionSoup(soupNameString)// use GetUnionSoupAlways instead
soup:Add(frame) // use -xmit version instead
soup:AddIndex(indexSpec) // use -xmit version instead
soupOrUSoup:AddTags(tagsToAdd)// use -xmit version instead
unionSoup:AddToDefaultStore(frame)// use -xmit version instead
soup:AddWithUniqueId(frame)// use -xmit version instead
sourceSoup:CopyEntries(destSoup)// use -xmit version instead
soup:RemoveAllEntries() // use -xmit version instead
soup:RemoveFromStore() // use -xmit version instead
soup:RemoveIndex(indexPath) // use -xmit version instead
soupOrUSoup:RemoveTags(tagsToRemove)// use -xmit version instead
soup:SetInfo(slotSymbol) // use -xmit version instead

New Soup Change Notification Mechanism 11

Applications no longer modify system data structures directly to register and
unregister with the soup change notification mechanism. Instead, they use the
RegSoupChange and UnRegSoupChange global functions provided for
this purpose.

In addition to the new registration and unregistration functions, the soup change
mechanism provides additional information about the nature of the change and
allows applications to register callback functions to be executed whenever a particular
soup changes. Consequently, the global function BroadcastSoupChange
is obsolete.

For more details, see the section “Using Soup Change Notification” beginning on
page 11-63.

Soup Information Frame 11

Soups created from a soup definition frame carry a default soup information frame
that holds a copy of the soup definition frame. Soups created by the obsolete global
function RegisterCardSoup have a default soup information frame that
contains only the slots applications and itemNames.

Soups created by the obsolete store method CreateSoup do not contain a default
soup information frame.

C H A P T E R 1 1

Data Storage and Retrieval

About Data Storage on Newton Devices 11-23

Null Union Soups 11

Under unusual circumstances a 1.x application may encounter a union soup that
doesn’t contain any member soups. A soup in this state is referred to as a null
union soup. Queries on a null union soup fail. Attempts to add entries to a missing
member soup also fail if a soup definition for that soup has not been registered.
Null union soups should not normally occur with 1.x applications and cannot occur
with applications that use the 2.0 union soup interface correctly.

Null union soups are most often found in the aftermath of a debugging session—
for example, if in the NTK Inspector you have deleted various soups (to test the
cases in which your application needs to create its own soups) and neglected to
restore things to their normal state.

Null union soups can also occur as a result of the application soup not being
created properly. Normally, when a card is ejected, the internal store member of a
union soup is left behind or a soup definition for creating that soup is available.
When this is not the case, the union soup reference to the internal store member is
null when the card is ejected. If you follow the guidelines outlined in “Registering
and Unregistering Soup Definitions” on page 11-33 this problem does not occur.

Null union soups can also occur when another application deletes one or more
soups that your application uses. Any application that deletes soups should at least
transmit a soup change notification, thereby allowing your application to deal with
the change appropriately.

When your application is running on a 1.x unit or when no soup definition exists
for a union soup, it is appropriate to test for a constituent soup’s validity before
trying to add an entry to it. Simply loop through the array of stores returned by the
GetStores function, sending the IsValid message to each of the constituent
soups in the union.

Query Compatibility Information 11

Version 2.0 of Newton system software provides a more powerful query mechanism
while at the same time simplifying the syntax of queries. Although old-style query
syntax is still supported, you’ll probably want to revise your application code to
take advantage of the features new-style queries provide. The following list
summarizes changes to queries. The remainder of this section explores query
compatibility issues in more detail.

Query (soupOrUSoup, querySpec) // use soupOrUSoup:Query(querySpec) instead

querySpec := {type : symbol, // obsolete, do not use
startKey: keyValue, // use beginKey or beginExclKey
endTest: keyValue, // endKey or endExclKey instead
… }

C H A P T E R 1 1

Data Storage and Retrieval

11-24 About Data Storage on Newton Devices

Query Global Function Is Obsolete 11

Queries are now performed by the Query method of soups or union soups;
however, the Query global function still exists for compatibility with applications
using version 1.x of the Newton application programming interface. The Query
method accepts the same query specification frame argument that the Query
global function did; however, version 2.0 query specs provide additional features
that 1.x queries do not. For examples of the use of the Query method, see “Using
Queries” beginning on page 11-38. For a complete description of the query spec
frame and its slots, see “Query Specification Frame” (page 9-9) in Newton
Programmer’s Reference.

Query Types Obsolete 11

Query specs no longer require a type slot; if this slot is present, it is ignored.

StartKey and EndTest Obsolete 11

Because the order in which the cursor returns entries is determined entirely by
index values, specifying key values is sufficient to determine a range. Hence, the
use of an endTest function in a query spec is always unnecessary. Instead, your
query spec should specify an endKey or endExclKey value.

The endTest function was sometimes used for other purposes, such as stopping
the cursor after the visible portion of a list had been filled; however, this sort of test
is best performed outside the cursor to optimize performance. The caller of the
cursor’s Next method should be able to determine when to stop retrieving soup
entries without resorting to the use of an endTest function.

When a cursor is generated initially and when it is reset, it references the entry
having the lowest index value in the set of entries in the selected subset. Thus, it is
usually unnecessary to use a start key, although this operation still works as in
earlier versions of system software. For those occasions when it is necessary to
start the cursor somewhere in the middle of the range, the use of a start key can be
simulated easily by invoking the cursor’s GotoKey method immediately after
generating or resetting the cursor.

Queries on Nil-Value Slots Unsupported 11

In Newton system software prior to version 1.05, storing a value of nil in the
indexed slot of an entry returns nil to the query for that entry; that is, the query
fails to find the entry. To work around this problem in older Newton systems, make
sure your indexed slots store appropriate values.

In Newton system software version 2.0, the behavior of queries on nil-value slots
is unspecified. For best performance, make sure your indexed slots store
appropriate values.

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-25

Heap Space Requirements of Words and Text Queries 11

On systems prior to version 2.0, words and text queries generally require more
memory than index queries, because each entry to be tested must first be read into
the NewtonScript heap. System software version 2.0 uses virtual binary objects to
reduce the memory requirements of words and text queries significantly; however,
you need not be familiar with these objects yourself in order to query on string
values. Virtual binary objects are described in Chapter 12, “Special-Purpose
Objects for Data Storage and Retrieval.”

Obsolete Entry Functions 11

The following entry functions are obsolete:

EntryChange(entry) // use -xmit version instead
EntryCopy(entry, newSoup) // use -xmit version instead
EntryMove(entry, newSoup)// use -xmit version instead
EntryRemoveFromSoup(entry)// use -xmit version instead
EntryReplace(oldEntry, newEntry)// use -xmit version instead
EntryUndoChanges(entry)// use -xmit version instead

Obsolete Data Backup and Restore Functions 11

The utility functions and methods in the following list are obsolete. Note that these
functions and methods are intended for use only by utility programs that back up
and restore Newton data.

soup:AddWithUniqueId (entry)// use -xmit version instead
soup:SetAllInfo (frame)// use -xmit version instead
EntryChangeWithModTime(entry)// use -xmit version instead
EntryReplaceWithModTime(original, replacement)// use -xmit version

Using Newton Data Storage Objects 11

This section describes how to use the most common Newton data storage objects
and methods. It presumes knowledge of the material in preceding sections. This
section begins with a programmer’s overview, which is followed by sections
providing detailed explanations of the use of stores, soups, queries, cursors,
and entries.

Programmer’s Overview 11
This section provides a code-level overview of common objects, methods, and
functions that provide data storage and retrieval services to Newton applications.

C H A P T E R 1 1

Data Storage and Retrieval

11-26 Using Newton Data Storage Objects

This section presumes understanding of the material in “About Data Storage on
Newton Devices” beginning on page 11-1.

Most applications store data as frames that reside in soup entries. You can create a
frame by simply defining it and saving it in a variable, a constant, or a slot in
another frame. For example, the following code fragment defines a frame
containing the aSlot and otherSlot slots. The frame itself is stored in the
myFrame variable. For all practical purposes you can treat variables that hold
NewtonScript objects as the objects themselves; hence, the following discussion
refers to the frame saved in the myFrame variable as the myFrame frame.

myFrame := {aSlot: "some string data", otherSlot: 9258};

The myFrame frame contains two slots: the aSlot slot stores the "some
string data" string and the otherSlot slot stores the 9258 integer value.
Because every NewtonScript object encapsulates its own class data, you need not
declare types for NewtonScript data structures, including slots.

Frames are not persistent unless stored as soup entries. To add the myFrame frame
to a soup, you must send a message to the appropriate soup object. You can obtain
a soup or union soup object by creating a new one or by retrieving a reference to
one that is already present.

To create a new union soup, use the RegUnionSoup function to register its soup
definition with the system. The system uses this definition to create the union’s
member soups as needed to store soup entries.

The following code fragment saves the union soup object RegUnionSoup returns
in the myUSoup local variable. You might place code like this example in your
application (form) part’s InstallScript function or your application base
view’s ViewSetupFormScript method:

local aSlotIndexSpec := {structure: 'slot, path: 'aSlot,
type: 'string};

local otherSlotIndexSpec := {structure: 'slot, path: 'otherSlot,
type: 'int};

local mySoupDef := {name: "mySoup:mySig",
userName: "My Soup",
ownerApp: '|MyApp:MySig|,
ownerAppName : "My Application",
userDescr: "This is the My Application soup.",
indexes: [aSlotIndexSpec,otherSlotIndexSpec]
};

local myUsoup := RegUnionSoup('|MyApp:MySig|,mySoupDef);

Note the use of the mySig developer signature as a suffix to ensure the uniqueness
of the values of the name and ownerApp slots. For more information regarding
developer signatures, see Chapter 2, “Getting Started.”

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-27

When creating soups from within your application (form) part’s InstallScript
function, remember that this function calls the EnsureInternal function on
all values it uses. Thus, instead of passing references such as
partFrame.theForm.myMainSoupDef to the RegUnionSoup function, paste
a local copy of your soup definition into your application part’s InstallScript
function for its use.

The RegUnionSoup function uses the value of your soup definition’s name slot to
determine whether a particular soup definition has already been registered. You
need not be concerned with registering a soup definition twice as long as you don’t
register different soup definitions that have the same name. An application that
registers a soup definition when it opens can always use the union soup object
returned by the RegUnionSoup function—if the union soup named by the soup
definition exists, this function returns it; otherwise, this function uses the specified
soup definition to create and return a new union soup.

The next code fragment uses the AddToDefaultStoreXmit function to add the
myFrame frame to the myUSoup union soup. This function creates a new member
soup to hold the entry if necessary. The soup is created on the store indicated by the
user preference specifying where new items are kept.

myUSoup:AddToDefaultStoreXmit(myFrame, '|MyApp:MySig|);

At this point, we have created a soup on the store specified by the user and added
an entry to that soup without ever manipulating the store directly.

Because you’ll often need to notify other applications—or even your own
application—when you make changes to soups, all the methods that modify
soups or soup entries are capable of broadcasting an appropriate soup change
notification message automatically. In the preceding example, the
AddToDefaultStoreXmit method notifies applications registered for changes
to the myUSoup union soup that the '|MyApp:MySig| application added an
entry to this union soup. For more information, see “Callback Functions for Soup
Change Notification” (page 9-14) in Newton Programmer’s Reference.

Most of the time, your application needs to work with existing soups rather than
create new ones. You can use the GetUnionSoupAlways function to retrieve an
existing soup by name.

Once you have a valid soup object, you can send the Query message to it to
retrieve soup entries. The Query method accepts a query specification frame as its
argument. This frame defines the criteria soup entries must meet in order to be
retrieved by this query. Although you can pass nil as the query spec in order to
retrieve all the entries in a soup, usually you’ll want to retrieve some useful subset
of all entries. For example, the following code fragment retrieves from myUsoup
all entries having an aSlot slot. For an overview of the use of query specifications,
see “Using Queries” beginning on page 11-38.

C H A P T E R 1 1

Data Storage and Retrieval

11-28 Using Newton Data Storage Objects

// get from myUSoup all entries having an aSlot slot
local myCursor := myUSoup:Query({indexPath: 'aSlot});

The Query method returns a cursor object that iterates over the set of soup entries
satisfying the query specification passed as its argument. You can send messages to
the cursor to change its position and to retrieve specified entries, as shown in the
following example. For an overview of cursor-manipulation functions, see
“Moving the Cursor” beginning on page 11-55.

// move the cursor two positions ahead in index order
myCursor:Move(2);
// retrieve the entry at the cursor’s current position
local myEntry := myCursor:Entry();

For the purposes of discussion, assume that the cursor returned the entry holding
the myFrame frame. When accessing this frame, use the NewtonScript dot
operator (.) to dereference any of its slots. In the current example, the expression
myEntry.aSlot evaluates to the "some string data" value and the
expression myEntry.otherSlot evaluates to the 9258 value.

As soon as any slot in the entry is referenced, the system reads entry data into a
cache in memory and sets the myEntry variable to reference the cache, rather than
the soup entry. This is important to understand for the following reasons:

■ Referencing a single slot in an entry costs you time and memory space, even if
you only examine or print the slot’s value without modifying it.

■ Changing the value of a slot in the entry really changes the cached entry frame,
not the original soup entry; changes to the soup entry are not persistent until the
cached entry frame is written back to the soup, where it takes the place of the
original entry.

You can treat the cached entry frame as the myFrame frame and assign a new
value to the aSlot slot directly, as shown in the following code fragment:

myEntry.aSlot := "new and improved string data";

To make the changes permanent, you must use EntryChangeXmit or a similar
function to write the cached entry frame back to the soup, as in the following example:

EntryChangeXmit(myEntry, '|MyApp:MySig|);

Like the other functions and methods that make changes to soups, the
EntryChangeXmit function transmits an appropriate soup change notification
message after writing the entry back to its soup; in this case, the notification
specifies that the '|MyApp:MySig| application made an 'entryChanged
change to the soup. (All entries store a reference to the soup in which they reside,
which is how the EntryChangeXmit method determines which soup changed.)

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-29

You can use the EntryUndoChangesXmit function to undo the changes to the
soup entry if you have not yet written the cached entry back to the soup. Because
this function throws away the contents of the entry cache, referencing a slot in the
entry after calling the EntryUndoChangesXmit function causes entry data to be
read into the cache again.

Most applications unregister their soup definitions when they are closed or
removed. To facilitate the automatic creation of soups when the user files or moves
soup entries in the Extras drawer, you may want your soup definition to remain
registered while your application is closed—to unregister only when your
application is removed, call the UnRegUnionSoup function from your application
(form) part’s DeletionScript function.

The following code example uses the UnRegUnionSoup function to unregister a
soup definition. Because a single application can create multiple soups and soup
definitions, soup definitions are unregistered by name and application symbol:

// usually in your app part’s DeletionScript fn
UnRegUnionSoup("mySoup:mySig",'|MyApp:MySig|);

Using Stores 11
Because the system manages stores automatically, most NewtonScript applications’
direct interaction with store objects is limited. This section describes the use of
system-supplied functions and methods for

■ getting store objects

■ retrieving packages from stores

■ testing stores for write protection

■ getting and setting store information

Procedures for manipulating other objects that reside on stores (such as soups,
store parts and virtual binary objects) are described in “Using” sections for each of
these objects; for detailed information, see “Using Soups” on page 11-32; “Using
Virtual Binary Objects” on page 12-8; and “Using Store Parts” on page 12-12.

Store Object Size Limits 11

The system imposes a hard upper limit of 64 KB on store object sizes for any kind
of store. SRAM-based stores impose a further limitation of 32 KB on block size.
Trying to create an entry larger than 32 KB causes the system to throw
|evt.ex.fr.store| exceptions. These limits apply to the encoded form the
data takes when written to a soup, which varies from the object’s size in the
NewtonScript heap.

C H A P T E R 1 1

Data Storage and Retrieval

11-30 Using Newton Data Storage Objects

Referencing Stores 11

The GetStores global function returns an array of references to all currently
available stores. You can send the messages described in this section to any of the
store objects in this array.

local allStores := GetStores();

▲ W A R N I N G

Do not modify the array that the GetStores
function returns. ▲

You can reference individual stores in the array by appending an array index value
to the GetStores call, as in the following code example:

local internalStore := GetStores()[0];

The first element of the array returned by the GetStores function is always the
internal store; however, the ordering of subsequent elements in this array cannot be
relied upon, as it may vary on different Newton devices.

IMPORTANT

Don’t call the GetStores function from your application’s
RemoveScript method, or you may find yourself looking at the
“Newton needs the card…” slip. You can avoid this situation by
using the IsValid store method to test the validity of a store
object before sending messages to it. ▲

Retrieving Packages From Stores 11

The GetPackages global function returns an array of packages currently available
to the system; this array contains packages that reside on any currently available store.

To determine the store on which a specified package resides, test the value of the
store slot in the package reference information frame associated with the
package. This frame is returned by the GetPkgRefInfo function.

To load a package procedurally, use either of the store methods
SuckPackageFromBinary or SuckPackageFromEndpoint. For more
information, see the descriptions of these methods in “Data Storage and Retrieval
Reference” (page 9-1) in Newton Programmer’s Reference.

Testing Stores for Write-Protection 11

The store methods CheckWriteProtect and IsReadOnly determine whether a
store is write-protected. The former throws an exception when it is passed a
reference to a write-protected store, while the latter simply returns the value nil

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-31

for such stores. Do not use the global function IsReadOnly to test store objects;
use only the IsReadOnly store method for this purpose.

Getting or Setting the Default Store 11

The default store is that store designated by the user as the one on which new data
items are created. Normally, applications using union soups do not need to get or
set the default store. The system-supplied functions that accept union-soup
arguments handle the details of saving and retrieving soup data according to
preferences specified by the user.

If for some reason you need to get or set the default store yourself, you can utilize
the GetDefaultStore and SetDefaultStore global functions.

Note
Do not change the default store without
first notifying the user. ◆

Getting and Setting the Store Name 11

Normal NewtonScript applications rarely need to get or set store names. A store’s
name is the string that identifies the store in slips displayed to the user. The default
name for the internal store is “Internal” and a PCMCIA store is named “Card” by
default. The store methods GetName and SetName are used to get and set the
names of stores.

The following example uses the GetName method to obtain a string that is the
name of the internal store:

//returns the string "Internal"
GetStores()[0]:GetName();

Before attempting to set the store’s name or write any other data to it, you can use
the store methods IsReadOnly or CheckWriteProtect to determine whether
the store can be written.

▲ W A R N I N G

Renaming a store renders invalid all aliases to entries residing on
that store. See “Using Entry Aliases” on page 12-7. ▲

Accessing the Store Information Frame 11

Each store may hold an optional information frame that applications can use to
save information associated with the store itself. Note that unless an application
stores data in this frame, it may not exist on every store.

The GetInfo and SetInfo store methods are intended for use by backup/restore
applications only; most applications need not use them at all. The GetInfo store

C H A P T E R 1 1

Data Storage and Retrieval

11-32 Using Newton Data Storage Objects

method retrieves the value of a specified slot in the store information frame. Its
corollary, the SetInfo store method, writes the value of a specified slot in this frame.

Using Soups 11
This section discusses the functions and methods used to work with soup objects.
Individual entries in soups and union soups are manipulated by means of queries,
cursors, and entry functions, as described in subsequent sections of this chapter.
This section describes procedures for

■ creating soups and indexes

■ retrieving existing soups

■ indexing existing soups

■ reading and writing soup data

■ accessing information about the soup itself and the store on which it resides

■ removing soups

Naming Soups 11

When creating soups, you need to follow certain naming conventions in order to
avoid name collisions with other applications’ soups. Following these conventions
also makes your own soups more easily identifiable.

If your application creates only one soup, you can use your package name as the
name of its soup. Your package name is created by using a colon (:) to append
your package’s Extras Drawer name to your unique developer signature. For
example, if your developer signature is "myCompany" and you are creating a
package that appears in the Extras Drawer with the name "foo", concatenating
these two values produces the "foo:myCompany" package name.

If your application creates multiple soups, use another colon, followed by your
package name, as a suffix to a descriptive soup name. For example,
"soup1:foo:myCompany" and "soup2:foo:myCompany" would be
acceptable soup names unlikely to duplicate those used by other applications.

Normally, each soup appears under its own icon in the Extras Drawer. If your
application creates multiple soups, it is recommended that you group them under a
single Extras Drawer icon. For more information, see “About Icons and the Extras
Drawer” on page 19-38 in Chapter 19, “Built-in Applications and System Data.”

For additional information regarding naming conventions for your developer
signature and other items, see “Developer Signature Guidelines” on page 2-9 in
Chapter 2, “Getting Started.”

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-33

Registering and Unregistering Soup Definitions 11

The RegUnionSoup global function registers a soup definition with the system
and returns a union soup object to which you can send messages. Once the soup
definition is registered, various union soup methods create the union’s member
soups as needed to save entries. A corollary function, UnRegUnionSoup,
unregisters a specified soup definition.

You can register a soup definition with the system any time before your application
needs to access the soup it defines. If your application is the only one using your
soup, you need only ensure that its definition is registered while the application is
actually open. Normally, code that registers soup definitions is provided by your
application part’s InstallScript function or your application base view’s
ViewSetupFormScript method. You need not be concerned with registering a
soup definition twice as long as you don’t register different soup definitions that
have the same name.

Code to unregister soup definitions is usually provided either by your application
base view’s ViewQuitScript method (to unregister when the application closes)
or your application part’s DeletionScript function (to unregister only when the
application is removed.) An application that allows the user to file or move data
items from the Extras Drawer should allow its soup definitions to remain registered
while the application is closed, unregistering them only when the application is
removed. For more information on manipulating soup entries from the Extras
Drawer, see “About Icons and the Extras Drawer” on page 19-38 in Chapter 19,
“Built-in Applications and System Data.”

Your application can also call the RegUnionSoup function to retrieve its own
union soups that already exist. If you call RegUnionSoup on a soup definition
that is already registered, this function replaces the currently registered soup
definition with the new one and returns the union soup named by the soup
definition passed as its argument; if that union soup does not exist, this method
uses the soup definition passed as its argument to create a new union soup that it
returns. Alternatively, you can call the GetUnionSoupAlways global function to
retrieve any extant union soup, not just those your application registers. For more
information, see “Retrieving Existing Soups” beginning on page 11-34.

To use the RegUnionSoup function, you might put code like the following
example in the ViewSetupFormScript method of your application’s base view:

local mySoupDef := {name: "mySoup:mySig",
userName: "My Soup",
ownerApp: '|MyApp:MySig|,
ownerAppName : "My Application",
userDescr: "This is the My Application soup.",

C H A P T E R 1 1

Data Storage and Retrieval

11-34 Using Newton Data Storage Objects

indexes: [{structure: 'slot, path: 'aSlot,
type: 'string}]

};

// register soup or retrieve already-registered soup
local myUsoup := RegUnionSoup('|myApp:mySig|, mySoupDef);

You can unregister a soup definition whenever you no longer need to create the
soup it defines. If your application is the only one that uses your soup, you need
only ensure that its definition is registered while the application is actually open. If
other applications use your soup, you may wish to leave its definition registered
even after your application is closed or removed; however, most applications
unregister their soup definitions at one of these times, if only to make that much
more memory available to other applications.

The following code fragment illustrates the use of the UnRegUnionSoup function:

// unregister my soup def
UnRegUnionSoup (mySoupDef.Name, '|myApp:mySig|);

// don’t forget to set all unused references to nil
myUsoup := nil;

Retrieving Existing Soups 11

To retrieve your own union soups, you can use the RegUnionSoup function as
described in “Registering and Unregistering Soup Definitions” beginning on
page 11-33. Alternatively, you can call the GetUnionSoupAlways global
function to retrieve any union soup by name.

Use of the GetUnionSoupAlways global function is straightforward, as the
following example shows. Note that you can pass system-supplied constants to this
function to retrieve soups used by the system and the built-in applications. For
more information, see Chapter 19, “Built-in Applications and System Data.”

// retrieve "mySoup:mySig" union soup by name
local myUSoup := GetUnionSoupAlways("mySoup:mySig");
// retrieve soup used by built-in Names application
local names := GetUnionSoupAlways(ROM_CardFileSoupName);

Note that you can use the IsInstance utility function to determine whether a
specified soup is a union soup. Pass either of the symbols 'PlainSoup or
'UnionSoup as the value of the class parameter to this function, as shown in the
following code fragment.

IsInstance(mySoup, 'UnionSoup);

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-35

Adding Entries to Soups 11

This section describes how to add a frame to a union soup or a specified member
soup in a union. For information on creating union soups, see “Registering and
Unregistering Soup Definitions” on page 11-33. For information on retrieving
union soups, see “Retrieving Existing Soups” on page 11-34.

You can use either of the AddToDefaultStoreXmit or AddToStoreXmit
methods to save frames as soup entries. Both of these methods create a single soup
in which to save the new entry when the appropriate member of the union is not
already present on the store. The AddToDefaultStoreXmit method adds its
entry to the member soup on the store specified by the user as the destination for
new entries. The AddToStoreXmit method allows you to specify according to
store the member soup to which it adds the new entry.

Methods that create soup entries—such as the AddToDefaultStoreXmit,
AddToStoreXmit, and AddXmit methods—destructively modify the frame
presented as their argument to transform it into a soup entry. Thus, any frame
passed to these methods must allow write access. If the original frame must remain
unmodified, pass a copy of it to these methods.

The following code fragment saves a frame in the default store member of the
myUsoup union by sending the AddToDefaultStoreXmit message to the
union soup object that the RegUnionSoup function returns:

// register soup def’n or get reference to already registered soup
local myUsoup := RegUnionSoup('|myApp:mySig|, mySoupDef);

// add the entry and transmit notification
local myEntry := myUSoup:AddToDefaultStoreXmit(

{aSlot:"my data"}, // frame to add to soup
'|myApp:mySig|); // app that changed soup

The following code fragment saves a frame in the internal store member of the
myUsoup union by sending the AddToStoreXmit message to the union soup
object that the GetUnionSoupAlways function returns:

// get pre-existing uSoup by name
local myUSoup := GetUnionSoupAlways("mySoup:mySig");

// add entry to member on internal store and transmit notification
local myEntry := myUSoup:AddToStoreXmit(

{aSlot:"my data"}, // frame to add to soup
(GetStores()[0]), // add to member on internal store
'|myApp:mySig|); // app that changed soup

C H A P T E R 1 1

Data Storage and Retrieval

11-36 Using Newton Data Storage Objects

After creating the new soup entry, these methods transmit a soup change
notification message. To suppress the soup change notification message that -Xmit
functions and methods transmit, pass nil as the value of their changeSym
argument. For more information, see “Using Soup Change Notification” beginning
on page 11-63; also see the descriptions of the AddToDefaultStoreXmit and
AddToStoreXmit methods in “Soup Functions and Methods” (page 9-35) in
Newton Programmer’s Reference.

Normally the member soups in a union are created automatically by the system as
needed to save frames as soup entries. If you need to force the creation of a union
soup member on a specified store without adding an entry to the new member soup,
use the GetMember union soup method to do so. For more information, see the
description of this method in “Soup Functions and Methods” (page 9-35) in
Newton Programmer’s Reference.

Adding an Index to an Existing Soup 11

Normally, applications create an index for each slot or set of slots on which a soup
may be searched frequently. Although the soup’s indexes are usually created along
with the soup itself, you may occasionally need to use the AddIndexXmit method
to add an index to an already existing soup and transmit a soup change notification
message. Indexes must be added individually—you can’t pass arrays of index specs
to the AddIndexXmit method.

▲ W A R N I N G

You cannot query a union soup on an index that is not present in
all its member soups. Sending the AddIndexXmit message to a
union soup adds the specified index to all soups currently
available to the union; however, any soup introduced to the union
subsequently has only its original complement of indexes, which
may not include the index this method added. Similarly, any
member soup created by the system has only the indexes specified
by its soup definition, which may not include the index this
method added. ▲

The following code fragment adds an index to the "mySoup:myApp" union soup,
enabling queries to search for integer data in that soup’s mySlot slot:

// get my union soup
local myUSoup := GetUnionSoupAlways("mySoup:mySig");

// add a new single-slot index on the'mySlot slot
local myISpec := {structure:'slot, path:'mySlot, type:'int};
local myUSoup:AddIndexXmit(myISpec,'|myApp:mySig|);

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-37

▲ W A R N I N G

Each soup has only one tags index; if you add a tags index to a
soup that already has one, it replaces the original tags index. For
more information, see the description of the AddIndexXmit
method (page 9-42) in Newton Programmer’s Reference. ▲

Removing Soups 11

When the user scrubs your application’s icon in the Extras Drawer, the system
sends a DeletionScript message to your application. The DeletionScript
function is an optional function that you supply in your application’s form part.
This function accepts no arguments. You can remove your application’s soups from
within this function by invoking the RemoveFromStoreXmit soup method. The
RemoveFromStoreXmit method is defined only for single soups; in other words,
you must remove each member of a union soup separately.

For more information on the DeletionScript method, see the Newton Toolkit
User’s Guide. See also “RemoveFromStoreXmit” (page 9-47) in Newton
Programmer’s Reference.

Do not delete soups from within your application’s viewQuitScript method—
user data needs to be preserved until the next time the application is run. For
similar reasons, do not remove soups from within your application’s
RemoveScript method. This method does not distinguish between removing
software permanently (scrubbing its icon in the Extras Drawer) and removing
software temporarily (ejecting the PCMCIA card.)

Using Built-in Soups 11

The soup-based data storage model makes it easy for applications to reuse existing
system-supplied soups for their own needs and to share their own soups with other
applications. Refer to Chapter 19, “Built-in Applications and System Data,” to see
descriptions of the soups used by the applications built into the Newton ROM. You
can also use these descriptions as a model for documenting the structure of your
application’s shared soups.

Making Changes to Other Applications’ Soups 11

You should avoid changing other applications’ soups if at all possible. If you must
make changes to another application’s soup, be sure to respect the format of that
soup as documented by its creator. When possible, confine your changes to a single
slot that you create in any soup entry you modify.

When naming slots you add to other applications’ soups, exercise the same caution
you would in naming soups themselves—use your application name and developer
signature in the slot name to avoid name-space conflicts.

C H A P T E R 1 1

Data Storage and Retrieval

11-38 Using Newton Data Storage Objects

This approach provides the following benefits:

■ It prevents your application from inadvertently damaging another
application’s data.

■ It helps your application avoid name conflicts with other applications’ slots.

■ It prevents soups from becoming cluttered with excessive numbers of entries.

■ It facilitates removal of your application’s data.

Note that when you makes changes to other applications’ soups you should
transmit notification of the changes by means of the mechanism described in
“Using Soup Change Notification” beginning on page 11-63.

Adding Tags to an Existing Soup 11

You can add tags only to a soup that has a tags index. To add new tags to a soup
that already has a tags index, simply add to the soup an entry that uses the new
tags—the tags index is updated automatically to include the new tags.

Adding a tags index to an existing soup is like adding any other kind of index:
simply pass the appropriate index spec to the soup’s AddIndexXmit method.
Remember, however, that the system allows only one tags index per soup. If you try
to add another tags index to that soup, you’ll replace the original tags index. It’s
quite easy to add new tags to a soup that already has a tags index, so you’ll rarely
need to replace a soup’s tags index.

Using Queries 11
To retrieve soup entries, you need to query a soup or union soup object by sending
the Query message to it. The Query method accepts a query specification frame,
or query spec, as its argument. The query spec specifies the characteristics that
soup entries must have in order to be included in the query result.

Note
For instructional purposes, this section describes each item that
may appear in a query specification separately. Normally, a single
query spec defines multiple criteria that soup entries must meet to
be included in the results of the query; for example, you can
create a single query spec that specifies tests of index key values,
string values, and tags. ◆

This section describes how to perform various queries to retrieve soup data. It
includes examples of

■ simple queries on index values, tags, or text

■ the use of ascending and descending indexes

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-39

■ the use of internationalized sorting order

■ queries on multiple-slot indexes

Querying Multiple Soups 11

Soups having the same name can be associated logically by a union soup object. To
retrieve entries from all the available soups in a union, just send the Query
message to the union soup object.

You must query differently named soups separately, however. For example, before
scheduling a meeting, you might send the Query message to the
ROM_CardfileSoup soup for information regarding its participants, and send
another Query message to the ROM_CalendarSoupName soup to determine
whether you have conflicting appointments at the proposed meeting time.

Entry aliases provide a handy way to save references to soup entries. You can use
entry aliases to reference entries from different soups more easily. For more
information, see “Using Entry Aliases” on page 12-7.

Querying on Single-Slot Indexes 11

This section provides code examples illustrating a variety of queries on single-slot
indexes. For more information on indexes, see “Introduction to Data Storage
Objects” on page 11-2 and “Indexes” on page 11-8.

The following code fragment presents an example of the simplest kind of index
query—it returns all entries in the soup:

local myUSoup := GetUnionSoupAlways("mySoup:mySig");
local allEntriesCursor := myUSoup:Query(nil);

When nil is passed as the query spec, as in the example above, the query result
potentially includes all entries in the soup. The cursor generated by such a query
returns entries in roughly the same order that they were added to the soup;
however, this sorting order is not guaranteed because the system recycles the values
it uses to identify entries internally. The only way to guarantee that entries are
sorted in the order they were added to a soup is to index them on your own time
stamp slot.

Most situations will require that you query for a subset of a soup’s entries, rather
than for all of its entries. That is, you’ll want to include or exclude entries
according to criteria you define. For example, you might want to find only entries
that have a certain slot, or entries in which the value of a specified slot falls within
a certain range. The next several examples illustrate the use of single-slot index
queries for these kinds of operations.

To find all entries that have a particular slot, specify a path to that slot as the query
spec’s indexPath value. Note that in order to query on the presence of a

C H A P T E R 1 1

Data Storage and Retrieval

11-40 Using Newton Data Storage Objects

particular slot, the soup must be indexed on that slot. For example, the following
example of a query returns a cursor to all soup entries that have a name slot. The
cursor sorts the entries according to the value of this slot. As first returned by the
query, the cursor points to the first entry in index order.

// mySoup is a valid soup indexed on the 'name slot
nameCursor:= mySoup:Query({indexPath:'name});

You can also use the cursor method GoToKey to go directly to the first entry
holding a specified name or value in an indexed slot. For examples of the use of
this method, see “Moving the Cursor” beginning on page 11-55.

Using beginKey and endKey values to limit your search can improve query
performance significantly. The following example is an index query that uses
a beginKey value and an endKey value to return entries for which
(11 ≥ entry.number ≤ 27).

// mySoup is indexed on the 'number slot
local numCursor := mySoup:Query({indexPath: 'number,

beginKey: 11,
endKey: 27});

The index on the number slot potentially includes all entries that have a number
slot. The index sorts entries on their index key values; unless otherwise specified,
the default index order is ascending. Thus, the query can use a beginKey value of
11 to skip over entries holding a value less than 11 in the number slot. The test
can be concluded quickly by specifying a maximum value beyond which the cursor
generated by this query does not proceed. In this case, the endKey value specifies
that the query result does not include entries having values greater than 27 in the
number slot. When multiple entries hold a specified endrange value, all of them
are included in the result of a query that specifies that endrange value; for example,
if multiple entries in the mySoup soup hold the value 27 in their number slot, the
previous example includes all of these entries in its result.

The beginKey specification evaluates to a value that occupies a unique position in
the sorted index data for the soup. If no entry is associated with this value, the
cursor is positioned at the next valid entry in index order. For example, if the mySoup
soup in the previous code fragment does not contain an entry having a number slot
that holds the value 11, the next valid entry in index order is the first entry in the
range over which the cursor iterates.

Similarly, the endKey specification evaluates to a value that occupies a unique
position in the sorted index data for the soup. If no entry is associated with this
value, the cursor stops on the first valid entry in index order before the endKey
value. For example, if the mySoup soup in the previous code fragment does not
contain an entry having a number slot that holds the value 27, the last valid entry

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-41

at or before the position that would be occupied by 27 in the index is the last entry
in the range over which the cursor iterates.

To conduct the same query while excluding the endrange values, specify a
beginExclKey value instead of a beginKey value, and specify an endExclKey
value instead of an endKey value, as shown in the following code fragment:

// mySoup is indexed on the 'number slot
// return entries for which (11 > entry.number < 27)
local numCursor := mySoup:Query({indexPath: 'number,

beginExclKey: 11,
endExclKey: 27});

Note that a query spec cannot include both the inclusive and exclusive forms of the
same endrange selector; for example, you cannot specify beginKey and a
beginExclKey values in the same query spec. However, you can specify, for
example, a beginKey value and an endExclKey value in the same query spec.

Because the index sorts entries according to key values, a beginKey on a soup
indexed in descending key order may appear to act like an endKey on a soup
indexed in ascending order, and vice versa. For more information, see “Queries on
Descending Indexes” beginning on page 11-46.

Another way to find all entries having a particular value in a specified slot is to use
an indexValidTest method, which can test any index key value without reading
its corresponding entry into the NewtonScript heap. The system passes index key
values to this function as the cursor moves. Your indexValidTest must return a
non-nil value if the entry associated with the key value should be included in the
query result. For example, you could use an indexValidTest method to select
entries that hold even-number values in a specified slot, as shown in the following
code fragment:

// mySoup indexed on 'number slot
// select entries having a 'number slot that holds
// an even value between 19 and 58
local myCursor :=

mySoup:Query({ beginKey: 19, endExclKey: 58,
indexValidTest: func (key)

(key MOD 2 = 0)});

A less-preferred way to test entries is to provide a validTest function to test
entries individually. The use of a validTest increases the memory requirements
of the search because the system must read soup entries into the NewtonScript heap
in order to pass them to the validTest function. Whenever possible, you should
avoid using validTest methods in favor of using indexValidTest methods.
Generally, you need not use a validTest method unless you must read the
entry’s data to determine whether to include it in the query result.

C H A P T E R 1 1

Data Storage and Retrieval

11-42 Using Newton Data Storage Objects

The query passes the entire entry to the validTest method, rather than just the
value of the indexed slot. The next code example reads the entry’s aSlot and
otherSlot slots in order to compare their values:

// select entries for which aSlot > otherSlot
local myCursor :=

mySoup:Query({endKey: aKeyValue,
validTest: func (entry)
begin

entry.aSlot > entry.otherSlot
end});

Querying for Tags 11

In order to select soup entries according to their associated tag values, you need to
include a tags query spec frame in the tagSpec slot of the query specification
frame passed to the Query method. In addition to specifying one or more tags used
to select entries, the tags query spec can specify set operators such as not, any,
equal, and all to create complex filters based on tag values. For a complete
description of the tags query spec frame, see “Tags Query Specification Frame”
(page 9-13) in Newton Programmer’s Reference.

You cannot query for tags on a soup that does not have a tags index. This index is
usually specified by your soup definition and created along with the soup, but it can
be added to an existing soup if necessary. Note that each soup or union soup has
only one tags index; if you add a tags index to a soup that already has one, it
replaces the original tags index. For more information, see “Tags Index
Specification Frame” (page 9-8) in Newton Programmer’s Reference.

The next several examples presume that the mySoup soup has a tags index on the
labels slot. Note that queries need not specify the path to the slot from which tag
values are extracted—in this case, the labels slot—because each soup has only
one tags index and its index path is specified when the tags index is created.
However, because a soup or union soup is allowed to have multiple soup indexes,
queries must specify a path to the indexed slot; hence, these examples also presume
that the mySoup soup has a soup index on the name slot.

The presence of any tag specified by the any set operator is sufficient to include its
entry in the results of the query that uses this operator. For example, the following
query selects entries having either the symbol 'flower or 'tall in the labels
slot. Entries not marked with at least one of these symbols are not included in the
query result.

local myCurs := mySoup:Query({indexPath:'name,
tagSpec: {any:['tall, 'flower]}});

The equal set operator specifies a set of tags an entry must match exactly to be
included in the query result. The query in the following example uses the equal

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-43

set operator to select entries marked with only the 'flower and 'tall tags; this
query does not select entries missing either tag, nor does it select entries marked
with additional tags:

local myCurs := mySoup:Query({indexPath:'name,
tagSpec: {equal: ['tall, 'flower]}});

Like the equal set operator, the all set operator specifies a set of tags that entries
must have to be selected; however, the all set operator does not exclude entries
marked with additional tags. For example, the query in the following example uses
the all set operator to select entries marked with both the 'flower and 'tall
tags. This query excludes entries missing either of these tags but includes entries
marked with a superset of the 'flower and 'tall tags:

local myCurs := mySoup:Query({indexPath:'name,
tagSpec: {all: ['tall, 'flower]}});

The presence of any tag specified by the none set operator is sufficient to exclude
that entry from the query result. For example, the following query matches entries
having both of the tags 'flower and 'tall but excludes any entry marked with
the 'thorns tag:

local myCurs := mySoup:Query({indexPath:'name,
tagSpec: {all:['flower, 'tall],

none:['thorns]}});

The following exceptions may be thrown when attempting to query using a tag
spec. If the soup does not have a tags index, a “no tags” exception
|evt.ex.fr.store| -48027 is thrown. If the tag spec passed as an argument to
the Query method has none of the slots equal, any, all, or none, an “invalid
tag spec” exception |evt.ex.fr.store| -48028 is thrown.

Querying for Text 11

This section describes how to select entries according to the presence of one or
more strings in any slot. The current system allows you to search entries for string
beginnings, entire strings, or substrings of larger strings.

To select entries according to the presence of one or more specified string
beginnings, add to your query spec a words slot containing an array of string
beginnings to be matched. For example, the following code fragment illustrates a
query that returns entries having strings beginning with "bob":

// find words beginning with "bob"
local myCurs := mySoup:Query({words: ["bob"]});

C H A P T E R 1 1

Data Storage and Retrieval

11-44 Using Newton Data Storage Objects

This query finds entries containing the words "Bob", "Bobby", and so forth, but
not words such as "JoeBob". Text queries are not case sensitive—even though the
original query spec is all lower case, this query finds entries such as "Bob" or "BOB".

Because the words slot contains an array, it can be used to search for multiple
string beginnings. For example, the following code fragment returns entries that
contain both of the string beginnings "Bob" and "Apple". Thus, an entry
containing the strings "Bobby" and "Applegate" would be included in the
results of the search, but an entry missing either of the word beginnings "Bob" or
"Apple" is not included.

// find entries holding "bob" and "apple" word beginnings
// won’t find entries having only one of these beginnings
local myCurs := mySoup:Query({words: ["bob", "apple"]});

Because each element in the array is a string, each “word” to be matched can
actually contain multiple words and punctuation. For example, the following code
fragment returns entries that contain both of the string beginnings "Bob" and
"Apple Computer, Inc.":

// find word beginnings "bob" and "Apple Computer, Inc."
local myCursor := mySoup:Query({words: ["bob",

"Apple Computer, Inc."]});

Note
The more unique the search string is, the more quickly a words
search proceeds. Thus, words queries are slow for search words
that have only one or two characters in them. ◆

To search for entire strings, rather than string beginnings, the query spec must
include an entireWords slot that holds the value true, as shown in the
following code fragment:

// return entries holding entire words "bob" and "Apple Computer"
local myCursor := mySoup:Query({words: ["bob", "Apple Computer"],

entireWords: true });

This query returns entries that contain both of the strings "Bob" and "Apple
Computer". Because the entireWords slot holds the value true, this query
does not match strings such as "Apple Computer, Inc." or "Bobby".
Entries containing only one of the specified words are not included in the results of
the search.

To conduct a text search that is not constrained by word boundaries, add to your
query spec a text slot containing a single string to be matched. For example, the

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-45

following code fragment illustrates a query that returns entries having strings that
contain the substring "Bob":

// find strings containing the substring "Bob"
local myCursor := mySoup:Query({text: "bob"});

This query finds entries containing words such as "JoeBob", as well as those
containing words such as "bob" and "Bobby".

Internationalized Sorting Order for Text Queries 11

Indexes are not normally sensitive to case, diacritical marks, or ligatures in string
values; however, index and query specifications can request this behavior
specifically. When internationalized index ordering is used, uppercase letters sort
first, followed by lowercase letters, diacritical marks, and ligatures. Thus, the letter
A sorts before the letter a, which sorts before the letter å, which sorts before the
letter á, which sorts before the ligature æ.

To index string values in internationalized order, include an optional sortID slot
holding the value 1 in the index specification frame used to build a soup’s index. A
cursor subsequently generated against that soup returns entries holding the
following strings in the order listed here:

"AA", "aa", "åå", "EE", "ÉÉ", "ee"

This internationalized indexing order is available only for indexes on string values.
When the sortID slot is missing from the index spec or this slot’s value is nil,
the index generated is not sensitive to case, diacritics, or ligatures; in other words,
the index may not necessarily sort "AA" before "aa", and so on.

If an index has internationalized ordering, find operations performed by cursors
generated against that index can be made sensitive to case and diacritics. To request
this behavior, include a non-nil secOrder slot in the query spec passed to the
Query method of an internationally-indexed soup.

The value of the secOrder slot affects the use of the beginKey, beginExclKey,
endKey, and endExclKey slots, as well as the GoToKey cursor method. For
example, sending the GoToKey("åå") message to the cursor generated by this
query returns the first entry found at or after the "åå" index value but does not
return entries holding values that vary in case, diacritics, and so on.

When the secOrder slot is missing or holds the value nil, find operations
carried out by cursor methods such as GoToKey ignore case and diacritics; that is,
they may return entries holding case and diacritic variations on the requested value.
For example, sending the myCursor:GoToKey("åå") message returns the first
entry found that holds any of the "AA", "aa", or "åå" values. However, the
cursor generated by this query still uses the sorting order provided by the

C H A P T E R 1 1

Data Storage and Retrieval

11-46 Using Newton Data Storage Objects

internationalized index: cursor methods such as Next and Prev return entries in
the internationally-indexed order.

Queries on Descending Indexes 11

Even though queries and cursors based on descending order indexes work just like
normal queries and cursors, their behavior can seem confusing if you forget that it
is a function of index order. It is always helpful to remember the following points
when working with queries and cursors—especially when using descending indexes:

■ The “beginning” and “end” of a range of index values is a function of index
key order.

■ The cursor navigates entries in index key order.

This section provides examples of the behavior of cursors that use descending
indexes. These examples are based on a soup containing the entries shown in the
following code fragment; although this example uses string values, any kind of
index key value may be sorted in descending order.

{data: "able", …};
{data: "axe", …};
{data: "name", …};
{data: "noun", …};

Soup indexes normally sort string data in ascending alphabetical order; for example,
"able", "axe", "name", "noun". A descending index sorts the same data in
reverse alphabetical order; for example, "noun", "name", "axe", "able".

Figure 11-6 depicts the reversed ordering that a descending index provides, with
examples of cursor behavior that is a function of index ordering.

Figure 11-6 Cursor operations on descending index

Descending key order

cursor:Reset(); cursor:GoToKey("az"); cursor:GoToKey("a");

Valid subrange

Z "noun" "name" "az" "axe" "able" A

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-47

Sending the Reset message to the cursor positions it at the first valid entry in
index order. In this case, the first entry is "noun" because the entries are sorted in
descending alphabetical order.

The GoToKey cursor method steps through the set of valid entries in index order
until it finds the first entry having a specified key value. If the specified key value is
not found, this method returns the next valid entry found after the specified index
position. Thus, sending the GotoKey("az") message to this cursor returns the
value "axe" because it’s the first valid entry that appears in the index after the
unoccupied "az" position.

Sending the GotoKey("a") message to this cursor returns the value nil because
this message positions the cursor beyond the end of the range of valid entries
defined by the query that generated the cursor.

Figure 11-7 illustrates that specifying a beginExclKey value of "b" excludes
from consideration every entry beginning with a letter that comes after "b" in the
reverse alphabet; that is, this beginExclKey value causes the valid range of
entries to include only entries beginning with "a". As a result, sending the
GotoKey("n") message causes this cursor to return the value "axe" because it
is the first valid entry appearing in the index after the "n" position.

Note
The sort order for symbol-based indexes is the ASCII order of the
symbol’s lexical form. This sorting behavior is made available in
NewtonScript by the SymbolCompareLex global function. ◆

Figure 11-7 Specifying ends of a descending index

Querying on Multiple-Slot Indexes 11

Before reading this section, you should understand the contents of “Querying on
Single-Slot Indexes” beginning on page 11-39.

Descending key order

beginExclKey cursor:GoToKey("n");

Valid subrange

Z "noun" "name" BN "axe" "able" A

C H A P T E R 1 1

Data Storage and Retrieval

11-48 Using Newton Data Storage Objects

A multiple-slot query can be performed only on a soup that has a multiple-slot
index generated against the same set of keys in the same order as the query spec.
For information on creating an index, see “Registering and Unregistering Soup
Definitions” beginning on page 11-33 and “Adding an Index to an Existing Soup”
beginning on page 11-36. For a description of the data structure that defines a
multiple-slot index, see “Multiple-Slot Index Specification Frame” (page 9-6) in
Newton Programmer’s Reference.

In a general sense, queries on multiple-slot indexes are specified like queries on
single-slot indexes and behave the same way. The “differences” you’ll encounter
are usually the result of misunderstanding how multiple index keys are used to sort
and select indexed entries.

For purposes of discussion, assume that you have a soup containing the entries in
the following code fragment, and that you want to sort these entries alphabetically
by last name and then by first name:

// entries used for all examples in this section
{last: "Perry", first: "Bruce", num: 1}
{last: "Perry", first: "Ralph", num: 2}
{last: "Perry", first: "Barbara", num: 3}
{last: "Perry", first: "John", num: 4}
{last: "Bates", first: "Carol", num: 5}
{last: "Perry", first: "Daphne", num: 7}

A single-slot index sorts entries according to the value held in a single slot that you
specify when the index is created. In contrast, a multiple-slot index may consider
the values of multiple slots when sorting entries. It’s important to understand that
either kind of index imposes only one sort order on the indexed data, regardless of
the number of slots examined to arrive at that order. A query on index values
evaluates its associated entries in this order, and the cursor generated by this query
iterates over its entries in this order, as well.

The first example illustrates how the entries in the example data could be sorted by
a single-slot index. For purposes of discussion, assume that these entries are
indexed on the value that each holds in its last slot, as specified by the single-slot
index spec in the following code fragment:

// single-slot index on string data from 'last slot
{structure:'slot, path: 'last, type:'string}

Sorting the entries according to the value each holds in its last slot isn’t very
useful because all of the entries except one hold an identical value in this slot.
Unfortunately, sorting the entries on the value of another slot does not produce a
useful ordering, either: an index on any other single slot sorts the "Bates" entry
in the midst of all the "Perry" entries.

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-49

A multiple-slot index solves this problem by sorting entries according to multiple
key values. The key values are extracted from up to six index paths specified by the
path array of the index specification frame. For example, the following code
fragment specifies a multiple-slot index that sorts entries according to the values
each holds in its 'last, 'first, and 'num slots:

// multiple-slot index on data from three slots
myMultiSlotSpec :=

{structure:'multiSlot,
path: ['last,'first,'num],
type: ['string, 'string, 'int }

The first key in the path array is called the primary key; subsequent lower-order
keys, if they are present, are the secondary key, tertiary key, and so on, up to a total
of six keys per array.

The primary key specifies a minimum criterion for inclusion in the index and
provides a value used to sort the indexed entries initially. In the example, only
entries having a last slot are indexed, and the value of the last slot is used to
impose an initial ordering on the indexed entries. Thus, the multiple-slot index in
the previous example sorts the "Bates" entry before all of the "Perry" entries.

The secondary key, if it is present, is used to sort entries having identical primary
keys. In the previous example, the multiple-slot index imposes a secondary
ordering on all "Perry" entries, according to the value each holds in its first
slot. Similarly, the tertiary key, if present, is used to sort further any entries having
identical secondary key values. Because none of the entries in the example have
identical secondary key values (none of the first slots hold identical values), the
value of each entry’s num slot has no effect on how the index sorts the entries.

Thus, the multiple-slot index shown previously sorts the set of sample entries in the
following order:

{last: "Bates", first: "Carol", num: 5}
{last: "Perry", first: "Barbara", num: 3}
{last: "Perry", first: "Bruce", num: 1}
{last: "Perry", first: "Daphne", num: 7}
{last: "Perry", first: "John", num: 4}
{last: "Perry", first: "Ralph", num: 2}

Now that you’re familiar with the manner in which multiple-slot indexes sort entries,
let’s look at the way the Query method uses a multiple-slot index to select entries.

Missing slots in a multiple-slot query spec are treated as nil values, just as they
are when querying on single-slot indexes. For example, if the query spec is missing
an endKey slot, the upper end of the range of entries examined by the query is
unbounded, just as it would be for a query on a single-slot index.

C H A P T E R 1 1

Data Storage and Retrieval

11-50 Using Newton Data Storage Objects

Instead of using single values for the indexPath, beginKey, beginExclKey,
endKey, and endExclKey slots in the query spec, the Query method accepts
arrays of keys or values as these arguments when it works with a soup having a
multiple-slot index. The first key in the array is the primary key; subsequent lower-
order keys, if they are present, are the secondary key, tertiary key, and so on, up to
a total of six keys per array.

To get a better idea of how queries evaluate multiple-slot key selectors, consider
how the beginKey value in the following code fragment would work with the
example data:

myQSpec := {indexPath: ['last,'first,'num],
beginKey:["Perry","Bruce",5]}

Querying the example data using this specification returns a cursor that initially
references the following entry:

{last: "Perry", first: "Daphne", num: 7}

First, the query finds the primary key value of "Perry" in the index, skipping
over the "Bates" entry in the process of doing so. Next, the query searches for an
index value identical to the secondary key "Bruce", skipping over the
"Barbara" entry in the process of doing so. Finally, the query searches for an
index value identical to the tertiary key value 5. Because an entry having this value
is not found, the cursor is positioned on the next valid entry in index order, which
has the tertiary key value 7.

When specifying strings as bounding values for queries, don’t forget that the
beginKey, beginExclKey, endKey, and endExclKey slots in a query spec
specify identical matches only. For example, the key value "P" is not identical to
the key value "Perry".

When an identical index value cannot be found for a key specification, subordinate
key values have no effect. For example, if the primary key value is not matched, the
secondary and tertiary key values have no effect.

To demonstrate these points, imagine that you wrote the query spec in the previous
example a bit differently. Instead of specifying a value of "Perry" for the primary
element in the beginKey array, assume you specified a value of "P". This change
would make the query spec look like the following code fragment:

myQSpec := {indexPath: ['last,'first,'num],
beginKey:["P","Bruce",5]}

Querying our example data using this specification returns a cursor that initially
references the following entry:

{last: "Perry", first: "Barbara", num: 3}

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-51

This time around, the query again skips over the "Bates" entry in the process of
positioning the cursor at index value "P". However, because no entry holds a
primary index key value of "P", the cursor stops at the next valid entry in index
order. Further, because an identical index value was not found for the primary key
specification, the secondary and tertiary key selectors have no effect at all. Thus
the cursor stops on the first index value found after the position that
["P","Bruce",5] would occupy if it were present in the index data.

When an element of an array in a query spec is missing or nil, the Query method
does not test subordinate key values specified by the array. For example, the
presence of the nil value in the endKey specification {endKey : ["bob",
nil, 55]} makes it equivalent to the {endKey : ["bob"]} specification.

One result of this behavior is that it is impossible to make a query ignore higher-
order sort keys while still testing on lower-order keys. For example, it is meaningless
to specify a value such as [nil, validKey, …] for the beginKey, beginExclKey,
endKey, or endExclKey slot in a query spec—the nil-value primary element
specifies that the query is to ignore subsequent elements of the array.

If you want to be able to ignore key specifiers in a query spec selectively, you need
to define for your entries a default “nil-equivalent” value that does have a position
in index order. For example, you could use the empty string ("") for string key
values, either of the values 0 or MININT for integer key values, and the null
symbol ('||) for symbolic key values.

Further, the presence of a nil-value index key in an entry suppresses the
evaluation of lower-order keys in that entry for sorting in the multiple-slot index.
For example, the entries in the following code fragment sort to the same position in
the multiple-slot index because as soon as the system encounters the nil key value
in each entry’s secondary slot, it does not attempt to sort that entry any further:

{primary: "foo", secondary: nil, tertiary: "bar"}
{primary: "foo", secondary: nil, tertiary: "qux"}

Querying explicitly for nil key values (nil-value slots) is not supported. Your
entries’ indexed slots must hold non-nil values to participate in queries.

For cursors generated against multiple-slot indexes, the cursor method GoToKey
accepts arrays of keys as its argument. You can use this method to experiment with
multiple-slot key specifications.

Similarly, for queries on multiple-slot indexes, the input passed to the
indexValidTest function is an array of key values, with the first key in the
array being the primary key, followed by any subordinate key values held by the
entry being tested.

C H A P T E R 1 1

Data Storage and Retrieval

11-52 Using Newton Data Storage Objects

▲ W A R N I N G

Index keys are limited to a total of 39 unicode characters (80
bytes, 2 of which are used internally) per soup entry. Keys that
exceed this limit may be truncated when passed to an
indexValidTest function. This 80-byte limit applies to the
entire key space allocated for an entry, not for individual keys. As
a result, subordinate keys in multiple-slot indexes may be
truncated or missing when the total key size for the entry is
greater than 80 bytes. For more information, see the description of
the indexValidTest function in “Query Specification Frame”
(page 9-9) in Newton Programmer’s Reference. See also the
description of the MakeKey method (page 9-45) in Newton
Programmer’s Reference. ▲

Limitations of Index Keys 11

Under the following conditions, a string may not match its index key exactly:

■ Keys of type 'string are truncated after 39 unicode characters.

■ Ink data is stripped from 'string keys.

■ Subkeys in multiple-slot indexes may be truncated or missing when the total key
size is greater than 80 bytes.

You can use the MakeKey function to determine precisely the index key that the
system generates for a particular string. The interface to this function looks like the
following code fragment:

soup:MakeKey(string, indexPath)

The following examples presume that mySoup is a valid soup (not a union soup)
having the multiple-slot index specified by the following code fragment:

myMultiSlotIndexSpec := {structure: ' multislot,
path: ['name.first,

'cardType,
'name.last],

type : ['string, 'int, 'string]};

Each of the soup’s entries has a name slot and a cardType slot. The name slot
holds a frame containing the slots first and last, which contain string data. The
cardType slot holds integer data.

The first example illustrates the truncation of string keys longer than 39 characters.
Evaluating the following code fragment in the Inspector

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-53

mySoup:MakeKey(["12345678901234567890", 3,
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"],
['name.first, 'cardType, 'name.last])

returns the key value

["12345678901234567890", 3, "ABCDEFGHIJKLMNO"]

The next example illustrates the truncation of subkeys when the total key size is
greater than 80 bytes. In this example, the first string in the string array is so long
that it uses up the entire 80 bytes allocated for the key, with the result that the first
string is truncated and the remaining key values are nil. Evaluating the following
code fragment in the Inspector

mySoup:MakeKey(["12345678901234567890abcdefghijjlmnopqrstuvwxyz",
3, "ABCDEFGHIJKLMNOPQRSTUVWXYZ12345678901234567890"],
['name.first, 'cardType, 'name.last])

returns the key value

["12345678901234567890abcdefghijjlmnopqr", NIL, NIL]

Missing elements in the string array are treated as nil values. For example, the
following code fragment is missing the second two elements of the string array:

mySoup:MakeKey(["12345678901234567890],
['name.first, 'cardType, 'name.last])

Evaluating this code fragment in the Inspector returns the key value

["12345678901234567890", NIL, NIL]

On the other hand, missing index paths cause this method to throw an exception. If
one of the index paths in a multiple-slot index is missing from the array passed as
the value of the indexPath parameter, the MakeKey method throws a “soup index
does not exist” evt.ex.fr.store -48013 exception.

Using Cursors 11
This section discusses the functions and methods used to work with cursor objects
returned by the Query method of soups or union soups. Individual entries in soups
and union soups are manipulated by the entry functions described in the section
“Using Entries,” later in this chapter. This section describes

■ getting the cursor

■ testing validity of the cursor

■ getting the currently referenced soup entry from the cursor

■ moving the cursor

C H A P T E R 1 1

Data Storage and Retrieval

11-54 Using Newton Data Storage Objects

■ getting the number of entries in cursor data

■ getting an index key from the cursor

■ copying the cursor

Getting a Cursor 11

Cursor objects are returned by the Query method. For more information, see
“Using Queries” beginning on page 11-38.

Testing Validity of the Cursor 11

When a storage card is inserted or a soup is created, union soups include new soups
in the union automatically as is appropriate. A cursor on a union soup may not be
able to include a new soup when the new soup’s indexes do not match those present
for the other soups in the union. In particular, this situation can occur when

■ The new soup does not have the index specified in the indexPath of the query
spec used to generate the cursor.

■ The query spec used to generate the cursor included a tagSpec and the new
soup does not have the correct tags index.

In such cases, the cursor becomes invalid. An invalid cursor returns nil when sent
messages such as Next, Prev, Entry, and so on. Note that a valid cursor returns
nil when it receives a message that positions it outside of the range of valid
entries. (For an example, see the text accompanying Figure 11-6 on page 11-46.)

You can test the cursor’s validity by invoking the Status cursor method. This
method returns the 'valid symbol for cursors that are valid and returns the
'missingIndex symbol when a soup referenced by the cursor is missing an
index. Your application needs to call this method when it receives either of the
'soupEnters or 'soupCreated soup change notification messages. If the
Status method does not return the 'valid symbol, the application must correct
the situation and recreate the cursor.

For a detailed description of the Status cursor method, see the section “Query
and Cursor Methods” (page 9-60) in Newton Programmer’s Reference. For a
discussion of soup change notification messages, see the section “Callback
Functions for Soup Change Notification” (page 9-14) in Newton Programmer’s
Reference.

Getting the Entry Currently Referenced by the Cursor 11

To obtain the entry currently referenced by the cursor, send the Entry message to
the cursor, as shown in the following code fragment:

// assume myCursor is valid cursor returned from a query
local theEntry := myCursor:Entry();

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-55

Moving the Cursor 11

This section describes various ways to position the cursor within the range of
entries it references.

Sometimes the following discussion refers to the “first” entry in a cursor. As you
know, the order imposed on cursor data is defined by the soup index used by the
query that generated the cursor. When you see mentions of the “first” entry in a
cursor, be aware that this phrasing really means “the first entry as defined by index
order (ascending or descending order).”

When first returned by a query, the cursor points to the first entry in the data set
that satisfies the query. Thus, to obtain the first entry in the data set referenced by a
newly created cursor, just send the Entry message to the cursor.

You can also position the cursor on the first entry in its data set by sending the
Reset message. The Reset method moves the cursor to the first valid entry in the
query result and returns that entry. For example:

local cursor := mySoup:Query(nil);
// move the cursor ahead a bit
local anEntry := cursor:Move(3);
// go back to first entry
local firstEntry := cursor:Reset();

Note that if the query spec includes a beginKey value, the Reset method returns
the first valid entry at or after the beginKey value in index order.

To obtain the last entry in the set of entries referenced by the cursor, send the
ResetToEnd cursor message, as shown in the following example:

local cursor := mySoup: Query({indexPath: 'name,
endKey: "ZZ"});

local lastCursorEntry := cursor:ResetToEnd();

Note that if the query spec includes an endKey value, the ResetToEnd method
positions the cursor on the last valid entry in index order at or before the specified
endKey value. For example, if you specify an endKey value of "Z" but the last
valid entry previous to that in index order has the key value "gardenia", the
entry associated with the "gardenia" key value is returned.

The cursor can be advanced to the next entry in index order or moved back to the
previous entry by the Next and Prev methods, respectively. After these methods
move the cursor, they return the current entry. If sending either of these messages
positions the cursor outside of the range of valid entries, it returns nil.

C H A P T E R 1 1

Data Storage and Retrieval

11-56 Using Newton Data Storage Objects

You can use the Move method to move the cursor multiple positions. For example,
instead of coding incremental cursor movement as in the following example,

for i := 1 to 5 do myCursor:Next();

you can obtain faster results by using the Move method. The following code
fragment depicts a typical call to this method. After positioning the cursor, the
Move method returns the current entry.

// skip next four entries and return the fifth one or nil
local theEntry := myCursor:Move(5);

To move the cursor in large increments, it’s faster to use the GoTo and GoToKey
methods to position the cursor directly. You can use the GoToKey method to go
directly to the first indexed slot that has a particular value and return the entry
containing that slot, as shown in the following example:

// index spec for soup that generated myCursor
indxSpec: {structure: 'slot, path: 'name, type: 'string};

// go to the first entry that has
// the value "Nige" in the name slot
local theEntry := myCursor:GotoKey("Nige");

If the argument to the GoToKey method is not of the type specified by the soup’s
index spec, this method throws an exception. For example, the index spec in the
previous example specifies that the name slot holds string data. If you pass a
symbol to the GoToKey method, it signals an error because this soup’s index holds
string data:

// throws exception - arg doesn’t match index data type
myCursor:GotoKey('name);

Counting the Number of Entries in Cursor Data 11

Because the user can add or delete entries at any time, it’s difficult to determine
with absolute certainty the number of entries referenced by a cursor. With that in
mind, you can use the CountEntries cursor method to discover the number of
entries present in the set referenced by the cursor at the time the CountEntries
method executes.

To discover the number of entries in the entire soup, you can execute a very broad
query that includes all soup entries in the set referenced by the cursor and then
send a CountEntries message to that cursor. For example:

local allEntriesCursor := mySoup:Query(nil);
local numEntries := allEntriesCursor:CountEntries();

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-57

Note that if the query used to generate the cursor specifies a beginKey value, the
CountEntries method starts counting at the first valid entry having an index key
value equal to or greater than the beginKey value. Similarly, if the query that
generated the cursor used an endKey value, the CountEntries method stops
counting at the last valid entry having an index key value equal to or less than the
endKey value.

Note that the use of the CountEntries method is somewhat time-consuming and
may increase your application’s heap space requirements; for performance reasons,
use this method only when necessary.

Getting the Current Entry’s Index Key 11

The EntryKey cursor method returns the index key data associated with the
current cursor entry without reading the entry into the NewtonScript heap. Note,
however, that under certain circumstances the value returned by this method does
not match the entry’s index key data exactly. For more information, see “Limitations
of Index Keys” on page 11-52.

Copying Cursors 11

You can clone a cursor to use for browsing soup entries without disturbing the
original cursor. Do not use the global functions Clone or DeepClone to clone
cursors. Instead, use the Clone method of the cursor to be copied, as shown in the
following code fragment:

local namesUSoup:= GetUnionSoupAlways(ROM_CardFileSoupName);
local namesCursor := namesUSoup:Query(nil);
local cursorCopy:= namesCursor:Clone();

Using Entries 11
This section discusses the functions and methods that work with soup entry objects
returned by cursors. This section describes

■ adding entries to soups

■ removing entries from soups

■ saving references to entries

■ modifying entries

■ replacing entries

■ sharing entry data

■ copying entry data

■ using the entry cache effectively

C H A P T E R 1 1

Data Storage and Retrieval

11-58 Using Newton Data Storage Objects

Saving Frames as Soup Entries 11

To save a frame as a soup entry, pass the frame to either of the union soup methods
AddToDefaultStoreXmit or AddToStoreXmit, or pass it to the AddXmit
soup method. Each of these methods transforms the frame presented as its
argument into a soup entry, returns the entry, and transmits a change notification
message. The following code example illustrates the use of the
AddToDefaultStoreXmit method:

local myFrame := {text: "Some info", color: 'blue};
// assume mySoupDef is a valid soup definition
local myUSoup := RegUnionSoup(mySoupDef)
myUSoup:AddToDefaultStoreXmit(myFrame,'|MyApp:MySig|);

The new soup entry that these methods create consists of the frame presented to the
entry-creation method, along with copies of any data structures the frame
references, as well as copies of any data structures those structures reference, and
so on. Thus, you must be very cautious about making soup entries out of frames
that include references to other data structures. In general, this practice is to be
avoided—it can result in the creation of extremely large entries or entries missing
slots that were present in the original frame.

For example, the presence of a _parent slot in the frame presented as an
argument to these methods causes the whole _parent frame (and its parent, and
so on) to be stored in the resulting entry, potentially making it extremely large. An
alternative approach is to store a key symbol in the data and find the parent object
in a frame of templates at run time.

Do not include _proto slots in frames presented to methods that create soup
entries. These slots are not written to the soup entry and are missing when the entry
is read from the soup.

Do not save magic pointers in soup entries. Because the objects they reference are
always available in ROM, saving magic pointers is unnecessary and may cause the
entries to exceed the maximum permissible size.

Circular pointers within an entry are supported, and an entry can refer to another
by using an entry alias.

The size of an individual entry is not limited by the NewtonScript language; however,
due to various practical limitations, entries larger than about 16 KB can impact
application performance significantly. For best performance, it is recommended
that you limit the size of individual entries to 8 KB or less. Note that this total does
not include data held by virtual binary objects that the entry references; virtual
binary objects save their data separately on a store specified when the virtual binary
object is created. For more information, see “Virtual Binary Objects” on page 12-2
in Chapter 12, “Special-Purpose Objects for Data Storage and Retrieval.”

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-59

No more than 32 KB of text (total of all strings, keeping in mind that one character
is 2 bytes) can reside in any soup entry. Another practical limitation is that there
must be space in the NewtonScript heap to hold the entire soup entry. You should
also be aware that Newton Backup Utility and Newton Connection Kit do not
support entries larger than 32K.

Keeping these limitations in mind, you can put any slots you need into your soup
entries. Entries within the same soup need not have the same set of slots. The only
slots to which you must pay special attention are those that are indexed. When you
create a soup, you specify which of its entries’ slots to index. Indexed slots must
contain data of the type specified by the index. For example, if you specify that an
index is to be built on slot foo and that foo contains a text string, it’s important
that every foo slot in every entry in the indexed soup contains a text string or nil.
Entries that do not have a foo slot will not be found in queries on the foo index.
Entries having a foo slot that contains data of some type other than text cause
various exceptions. For example, if you should try to add this kind of frame to an
indexed soup, the method that attempts to add the frame throws an exception; if
you try to add a new index on a slot that varies in data type from entry to entry, the
AddIndex method throws an exception, and so on. Soup entries can contain nil-
value slots, but querying for such slots is not supported; that is, you can query only
for slots that hold non-nil values.

Removing Entries From Soups 11

To remove an entry, pass it to the EntryRemoveFromSoupXmit function, as
shown in the following code fragment. If you try to remove an invalid entry, this
function throws an exception. An entry can become invalid when, for example, the
user ejects the storage card on which it resides.

local myCursor := Query(nil);
local theEntry := myCursor:Entry();
if theEntry then

EntryRemoveFromSoup(theEntry, '|MyApp:MySig|);

Modifying Entries 11

Only one instance of a particular entry exists at any time, regardless of how the
entry was obtained. That is, if two cursors from two different queries on a
particular soup happen to be pointing at identical entries, they are actually both
pointing at the same entry.

When first retrieved from a soup, an entry is just an identifier. When the entry is
accessed as a frame (by getting or setting one of its slots), the complete entry frame
is constructed in the NewtonScript heap. The frame is marked to identify it as a
member of the soup from which it came.

C H A P T E R 1 1

Data Storage and Retrieval

11-60 Using Newton Data Storage Objects

When the frame is constructed from the entry, it is cached in memory. At this point,
you can add, modify, and delete slots just as you would in any other frame;
however, the changes do not persist until the EntryChangeXmit function is
called for that particular entry. The EntryChangeXmit function writes the cached
entry frame back to the soup, replacing the original entry with the changed one.

If the EntryUndoChangesXmit function is called, the changes are thrown out
and the entry is restored to its original state. This function disposes of the cached
entry frame and restores the reference to the original uncached entry, just as if the
original entry was never referenced. Note that you can use the FrameDirty
function to determine whether a cached entry has been modified since it was read
into the NewtonScript heap; however, this function does not detect changes to
individual characters in a string (a common operation for clParagraphView
views). For more information, see “FrameDirty” (page 9-69) in Newton
Programmer’s Reference.

The following code example gets an entry from the namesUSoup union soup,
changes it, and writes the changed entry back to the soup:

local namesUSoup := GetUnionSoupAlways(ROM_CardFileSoupName);
local namesCursor := namesUSoup:Query(nil);
local theEntry := namesCursor:Entry();
if theEntry then

begin
theEntry.cardType := 4;
EntryChangeXmit(theEntry, '|MyApp:MySig|);

end;

It’s not always easy to determine the best time to write a cached entry back to its
soup. For example, it would be inappropriate to call a function like
EntryChangeXmit from the ViewChangedScript method of a
protoLabelInputLine view. When the user enters data on the input line with
the keyboard, the ViewChangedScript is called after every key press. Calling
the EntryChangeXmit function for every key press would be noticeably slow.

In some situations, the appropriate time to call EntryChangeXmit is more
obvious. For example, a natural time to call EntryChangeXmit would be when
the user dismisses an input slip.

Moving Entries 11

You can use the MoveTarget method of the root view to move (not copy) an
entry into the same-named soup on another store. For example, you would use
this method to move entries from one union soup member to another. For more
information, see “System-Supplied Filing Methods” (page 12-11) in Newton
Programmer’s Reference.

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-61

Copying Entries 11

The EntryCopyXmit global function and the CopyEntriesXmit soup method
enable you to copy entries from one soup to another and transmit appropriate
change notifications.

The following code fragment uses the CopyEntriesXmit soup method to copy
all the entries from a specified source soup into a specified destination soup. Note
that this method is defined only for soups, not for union soups. The following code
fragment uses the GetMember union soup method to retrieve the plain soup
constituent of a union soup from a specified store. The GetMember method never
returns nil; instead, it creates an empty member soup on the specified store if one
does not already exist:

// myUsoup member on internal store is the source soup
local myUSoup := GetUnionSoupAlways("myUSoup:mySig");
local sourceSoup := myUSoup:GetMember(GetStores()[0])
// myUsoup member on another store is the destination soup
local destSoup := myUSoup:GetMember(GetStores()[1]);
// copy all entries from source soup to dest soup
local cursor := sourceSoup:Query(nil);
if (cursor:CountEntries() <> 0) then

sourceSoup:CopyEntriesXmit(destSoup, '|MyApp:MySig|);

You can use the EntryCopyXmit function to copy an entry from a specified
source soup to a specified destination soup and transmit a soup change notification
message. Note that this function is defined only for soups, not for union soups. The
following code fragment uses the GetSoup store method to retrieve a specified
soup from its store. Because the GetSoup method returns nil when the soup to
be retrieved is not available, you must at least ensure that this result is non-nil
before using it. The following code fragment actually goes one step further and
uses the IsValid soup method to test the validity of the destSoup soup in
additional ways:

local myUSoup := GetUnionSoupAlways("myUSoup:mySig");
// get all entries having 'hot in 'temperature slot
local cursor := myUSoup:Query({indexPath: 'temperature,

beginKey: 'hot
endKey: 'hot});

local destSoup := GetStores()[0]:GetSoup("mySoup:mySig");
// make sure we actually got a valid soup
if destSoup:IsValid() then

begin
// xmit a single notification after all changes are made
while e := cursor:Entry() do EntryCopyXmit(e,destSoup,nil);
XmitSoupChange(destSoup, '|MyApp:MySig|, 'whatThe, nil);

end;

C H A P T E R 1 1

Data Storage and Retrieval

11-62 Using Newton Data Storage Objects

Note
The EntryCopyXmit method copies the cached entry—not the
original soup entry—into the destination soup. ◆

Sharing Entry Data 11

Shared soups and shared entries need to be in a well-documented format to allow
other applications to use them. For an example of how to document the structure of
your soup entries, refer to Chapter 19, “Built-in Applications and System Data.”
There you will see descriptions of the soups used by the built-in applications on
Newton devices produced by Apple Computer, Inc.

Using the Entry Cache Efficiently 11

Whenever you access a slot in a soup entry, the system reads the entire entry into
the NewtonScript heap if it is not already present. That is, simply testing or
printing the value of a single slot causes the entire soup entry in which it resides to
be read into the entry cache. For best performance, avoid creating cached entries
when you don’t need them, and flush the entry cache as soon as is appropriate. This
section describes how you can avoid unnecessary caching and how you can reclaim
cache memory explicitly. Table 11-1 on page 11-63 summarizes the use of the
entry cache by the functions and methods described in this discussion.

Reading a soup entry into memory requires more heap space than testing tag or
index values does. Whenever possible, work with index keys and tags rather than
the contents of soup entries. Some suggested techniques for doing so include
the following:

■ Avoid using validTest functions in favor of using indexValidTest
functions in your queries, as the latter can be performed without reading soup
entries into memory.

■ Query on index key values or tag values rather than on values that require
reading soup entries into the NewtonScript heap.

■ Use the cursor method EntryKey to retrieve an entry’s key value without
reading the entry into the NewtonScript heap.

Normally, adding or changing a soup entry creates a cached entry. If you do not
plan on working further with an entry’s data after you’ve added or modified it, you
can reclaim heap space by releasing the memory used by the entry cache. You can
use the AddFlushedXmit soup method to add a soup entry without creating a
cached entry at all; in addition to saving heap space, this method saves you the time
normally required to create the cached entry. When working with a cached entry,
you can use the EntryFlushXmit function to write it back to its soup and clear
the entry cache.

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-63

In contrast, the EntryUndoChanges function clears the entry cache without writing
the cached entry to the soup. This function makes references to the entry point to
the original, unmodified entry residing in the soup, instead of the cached entry.

Note that reading, printing, or modifying any slot in the entry after calling
EntryFlushXmit, EntryUndoChanges, or AddFlushedXmit causes the
entire entry to be read back into the NewtonScript heap; thus, use these functions
only when you’re sure you won’t need to access the entry in the near future.

If you do need to work with the entry data after you’ve written it to the soup, you’ll
want to use functions and methods that don’t clear the entry cache after writing the
soup entry. The AddToDefaultStoreXmit and AddToStoreXmit union soup
methods save frames as soup entries without clearing the entry cache afterward.
When adding frames to single soups, you can use the AddXmit soup method for
the same purpose. The EntryChangeXmit function also writes the cached entry
back to its soup without flushing the cache afterward. Contrast this function with
the EntryFlushXmit function, which clears the entry cache after writing the
cached entry back to its soup. Table 11-1 summarizes the caching behavior of all
methods that write entries to soups or union soups.

Using Soup Change Notification 11
When your application changes an entry in a shared soup, the system executes
callback functions registered by applications using that soup, allowing them to take
action in response to the change. The system-supplied soup change notification
service allows applications to

■ notify each other when they make changes to soup entries

■ respond to notifications precisely

Table 11-1 Effect of functions and methods on entry cache

Function or method Cached entry

uSoup:AddToDefaultStoreXmit(frame, changeSym) Creates and returns

uSoup:AddToStoreXmit(frame, changeSym) Creates and returns

soup:AddXmit(frame, changeSym) Creates and returns

soup:AddFlushedXmit(frame, changeSym) Does not create or return

EntryFlushXmit(entry) Returns existing

EntryChangeXmit(entry) Returns existing

EntryUndoChanges(entry) Throws away existing

C H A P T E R 1 1

Data Storage and Retrieval

11-64 Using Newton Data Storage Objects

■ control how and when notifications are sent

The first part of this section describes how to register and unregister a callback
function for execution in response to changes in a particular soup. The next part
describes the various notifications that may be sent. The last part of this section
describes how applications send soup change notifications.

Registering Your Application for Change Notification 11

The RegSoupChange global function registers a callback function for execution
in response to changes in a particular soup. Note that this callback function must
not call either of the RegSoupChange or UnRegSoupChange functions.

If your application needs to respond to changes in more than one soup, you’ll need
to call the RegSoupChange function once on each soup for which your
application requires change notification. This approach is valid for any system-
supplied soup except that used by the built-in Preferences application. For
notification of changes to user preferences, you must call the
RegUserConfigChange function.

You can call the RegSoupChange function at any time that makes sense for your
application. For example, you might do so from within your base view’s
viewSetupDoneScript method; however, this is only a suggested guideline. In
order to conserve available memory, your application should minimize the amount
of time callback functions remain registered.

The following code example shows how to register your application for notification
of changes to the soup used by the built-in Names application:

local myFn := func (soupName, appSym, changeType, changeData)
begin

if (changeType) then
begin
if (changeType <> 'whatThe) then

print (changeType && "in the" && soupName &&
"soup by the" && GetAppName(appSym) &&
"application.");

 else
print ("Unspecified changes occurred in the" &&

soupName && "soup.");
end;

end;
// register for changes to soup used by built-in "Names" app
RegSoupChange(ROM_CardFileSoupName, '|myFn1:MyApp:MySig|, myFn);

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-65

▲ W A R N I N G

Any callback function registered by the RegSoupChange
function must not call either of the RegSoupChange or
UnRegSoupChange functions. ▲

The second argument to the RegSoupChange function can be any unique symbol
that identifies the callback to be registered. If your application registers only one
callback function, you can just use your application symbol as the callback
identifier (ID). A callback ID need only be unique within the registry that uses it.
For example, no two power registry callback functions can share the same callback
ID; on the other hand, your application’s power registry callback can use the same
ID as your application’s login screen callback. Thus, if your application only
registers one callback function with each of the various registries, all of your
callback functions can use your application symbol (with developer signature) as
their callback ID.

To generate unique identifiers for multiple callbacks within the same registry, you
can prefix an additional identifier to your application symbol. For example, the
symbol '|myFn1:MyApp:MySig| could be used to identify one of several
callback functions registered by the MyApp:MySig application.

Unregistering Your Application for Change Notification 11

When your application no longer needs to be notified of changes to a particular
soup, it needs to call the UnRegSoupChange function to unregister its callback
function for that soup.

// unregister my app’s Names soup callback
UnRegSoupChange(ROM_CardFileSoupName, '|myFn1:MyApp:MySig|);

Normally, you can unregister your soup change callbacks in the viewQuitScript
method of your application’s base view.

Responding to Notifications 11

When a soup changes in some way, the system executes the callback functions
registered for that soup. Note that the system does not consider the soup to have
changed until an entry is written to the soup. Thus, changing a cached entry is not
considered a change to the soup until the EntryChangeXmit function writes the
cached entry back to the soup.

Note
The system-supplied Preferences application sends
soup change notifications only if your application
uses the RegUserConfigChange function to register
for such notifications. ◆

C H A P T E R 1 1

Data Storage and Retrieval

11-66 Using Newton Data Storage Objects

Your callback function must take any action that is appropriate to respond to the
change. Most applications have no need to respond to soup changes unless they are
open, which is why it is recommended that you register your callbacks when your
application opens and unregister them when it closes.

The arguments passed to your callback function include the name of the soup that
changed, the symbol identifying the callback function to execute, the kind of
change that occurred, and optional data such as changed soup entries. For a simple
code example, see “Registering Your Application for Change Notification”
beginning on page 11-64. For a complete description of the callback function and
its parameters, see the section “Callback Functions for Soup Change Notification”
(page 9-14) in Newton Programmer’s Reference.

▲ W A R N I N G

The 'soupEnters and 'soupLeaves messages are guaranteed
to be sent only when a reference to the changed soup exists. These
messages may not be sent for soups that are not in use. For
example, if no cursor object references the soup, this message
may not be sent. ▲

Sending Notifications 11

When your application alters a soup, it may need to notify other applications that
the soup has changed. The best means of doing so depends on the exact nature
of the change.

The system provides functions and methods that transmit change notification
messages automatically after altering soups, union soups, or entries. The names of
these auto-transmit routines end with the -Xmit suffix. They are described
throughout this chapter in sections pertaining to the main behaviors they provide,
such as adding frames to soups as entries, changing entries, and so on.

The auto-transmit (fnOrMethodNameXmit) routines provide the easiest and best
way to send notifications when making a limited number of changes to a soup. For
example, to save a frame in a union soup and transmit an appropriate notification
message, use the AddToDefaultStoreXmit method as shown in the following
code fragment:

// get soup in which to save the new entry
local myUSoup := GetUnionSoupAlways("myUSoup:mySig");
// frame to add as new entry
local myFrame := {name: Daphne, color: tabby};
// add the entry and transmit change notification
local ent := myUSoup:AddToDefaultStoreXmit(myFrame,'|MyApp:MySig|);

The auto-transmit methods and functions accept a changeSym parameter identifying
the application that changed the soup. If you pass nil for the value of the

C H A P T E R 1 1

Data Storage and Retrieval

Using Newton Data Storage Objects 11-67

changeSym parameter, the change notification is not sent, but the function or
method does everything else its description specifies.

Sometimes it may not be not desirable to send notifications immediately after
making each change to a soup; for example, when changing a large number of soup
entries, you might want to wait until after you’ve finished making all the changes to
transmit notification messages. You can use the XmitSoupChange global function
to send soup change notifications explicitly, as shown in the following code example:

// assume cursor and destSoup are valid
// xmit a single notification after all changes are made
while e := cursor:Entry() do EntryCopyXmit(e,destSoup,nil);
XmitSoupChange("mySoup:mySig", '|MyApp:MySig|, 'whatThe, nil);

The first argument to the XmitSoupChange function specifies the name of the
soup that has changed and the second argument specifies the application making
the change. The third argument is a predefined symbol specifying the kind of
change that was made, such as whether an entry was added, deleted, or changed.
Where appropriate, the final argument is change data, such as the new version of
the entry that was changed. Because this particular example makes multiple
changes to the destSoup soup, it passes the 'whatThe symbol to indicate
unspecified changes, and passes nil as the change data. For a more detailed
discussion of change type and change data, see the section “Callback Functions for
Soup Change Notification” (page 9-14) in Newton Programmer’s Reference.

Soup change notification messages are sent on a deferred basis. In most situations,
this implementation detail has no practical impact; however, you should be aware
that soup change messages are not sent until after the method that sends them
returns. For example, if your ButtonClickScript method causes a soup
change, the change notification message is not sent until after the
ButtonClickScript method returns.

C H A P T E R 1 1

Data Storage and Retrieval

11-68 Summary of Data Storage

Summary of Data Storage 11

This section summarizes data structures, functions, objects and methods used for
data storage on Newton devices.

Data Structures 11

Soup Definition Frame 11

mySoupDef :=
{ // string that identifies this soup to the system

name: "

appName

:

appSym

",
// string that is user visible name
userName: "My Application soup",
// application symbol
ownerApp: '|myApp:mySig|,
// user-visible name of app that owns this soup
ownerAppName: "My Application",
// user-visible string describing soup
userDescr: "This soup is used by

My Application.",
// array of indexSpecs - default indexes
indexes: [

anIndexSpec

,

anotherIndexSpec

]
// optional function used to initialize the soup
initHook:

symbolOrCallBackFn

}

Single-Slot Index Specification Frame 11

{
// must use this value - index keys are slot values
structure:'slot,
// entries indexed on this slot
path:

pathExpr

,
// data type found in the indexed slot
type:

symbol

,
// optional. 'ascending or 'descending
order:

symbol

,
// optional. pass 1 to use alternate sort table
sortID: nil

}

C H A P T E R 1 1

Data Storage and Retrieval

Summary of Data Storage

11-69

Multiple-Slot Index Specification Frame 11

{
// index keys may be multiple slot values
structure: 'multiSlot, // must use this value
// up to six path expressions specifying indexed slots
path:[

pathExpr1

,

pathExpr2

, … ,

pathExpr6

],
// data type found in each indexed slot
type:[

sym1

,

sym2

, …

sym6

]
// optional. 'ascending or 'descending
order: [

sym1

,

sym2

, …

sym6

]
// optional. pass 1 to use alternate sort table
sortID: nil

}

Tags Index Specification Frame 11

{
// must use this value - tags are slot values
structure:'slot,
// index values (tags) extracted from this slot
path:'

slotName

,
// must use this value
type:'tags,

}

Query Specification Frame 11

// pass nil instead of a query spec frame
// to retrieve all entries in the soup

// this frame used for queries on single-slot indexes
// see next example for multiple-slot query spec frame
{
// use the specified single-slot index for this query
// required when querying for index values
indexPath : '

pathExpr

,
// minimum index key value examined by this query
// for all entries, (beginKey

≤

 entry.indexPath)
beginKey :

keyValue

, // optional
// excluded lower boundary of key range examined by query
// for all entries, (beginExclKey < entry.indexPath)
beginExclKey :

keyValue

, // optional

C H A P T E R 1 1

Data Storage and Retrieval

11-70

Summary of Data Storage

// maximum index key value examined by this query
// for all entries, (entry.indexPath

≤

 endKey)
endKey:

keyValue

, // optional
// excluded upper boundary of key range examined by query
// for all entries, (beginExclKey < entry.indexPath)
endExclKey :

keyValue

, // optional
// returns non-nil to include entry in result
indexValidTest: func (

keyValue

) begin … end;, // optional
// returns non-nil to include entry in result
validTest: func (

entry

) begin … end; // optional
// optional tags query spec frame; see page 11-71
tagSpec: {equal:[

t1, t2, …tN

], all:[

t1, t2, …tN

],
any:[

t1, t2, …tN

],none:[

t1, t2, …tN

]},
// when non-nil, match entire string in 'words slot
entireWords:

Boolean

, // optional
// string(s) to match w/ word beginnings in entries
words:

string

|[

str1

,

str2

, … ,

strN

], // optional
// string to match w/ any substring in entries
text:

string

, // optional
}

// this frame used for queries on multiple-slot indexes
// see previous example for single-slot query spec frame
{
// use the specified multiple-slot index for this query
indexPath : ['

pathExpr1,

'

pathExpr2,

 …'

pathExpr6

], // required
// minimum index key value examined by this query
// for all entries, (beginKey

≤

 entry.indexPath)
beginKey : [

keyValue1

,

keyValue2

 …

keyValue6

], // optional
// excluded lower boundary of key range examined by query
// for all entries, (beginExclKey < entry.indexPath)
beginExclKey : [

keyValue1

,

keyValue2

 …

keyValue6

], // optional
// maximum index key value examined by this query
// for all entries, (entry.indexPath

≤

 endKey)
endKey: [

keyValue1

,

keyValue2

 …

keyValue6

], // optional
// excluded upper boundary of key range examined by query
// for all entries, (beginExclKey < entry.indexPath)
endExclKey : [

keyValue1

,

keyValue2

 …

keyValue6

], // optional
// optional; returns non-nil to include entry in result
indexValidTest: func ([

keyValue1

,

keyValue2

 …

keyValue6

])
begin … end;,

// optional; returns non-nil to include entry in result
validTest: func (

entry

) begin … end;

C H A P T E R 1 1

Data Storage and Retrieval

Summary of Data Storage

11-71

// optional tags query spec frame; see page 11-71
tagSpec: {equal:[

t1, t2, …tN

], all:[

t1, t2, …tN

],
any:[t1, t2, …tN],none:[t1, t2, …tN]},

// when non-nil, match entire string in 'words slot
entireWords: Boolean, // optional
// string(s) to match w/ word beginnings in entries
words: string|[str1, str2, … , strN], // optional
// string to match w/ any substring in entries
text: string, // optional
}

Tags Query Specification Frame 11

// this frame resides in tagSpec slot of query spec frame
// at least one of these slots must appear
// select only entries having identical set of tags
{equal:[t1, t2, …tN],
// select only entries having identical tags or superset
all:[t1, t2, …tN],
// select entries having any of these tags
any:[t1, t2, …tN],
// select entries having none of these tags
none:[t1, t2, …tN]}

Callback Functions for Soup Change Notification 11

func(soupNameString,appSymbol,changeTypeSymbol,changeData);

Data Storage Functions and Methods 11

Stores 11

store:AtomicAction(function)
store:BusyAction(appSymbol, appName, action)
store:CheckWriteProtect()
GetDefaultStore()
store:GetInfo(slotSymbol)
store:GetName()
store:GetSoup(soupNameString)
store:GetSoupNames()
GetStores()
store:HasSoup(soupName)
store:IsReadOnly()

C H A P T E R 1 1

Data Storage and Retrieval

11-72 Summary of Data Storage

store:IsValid()
SetDefaultStore(newDefaultStore)
store:SetInfo(slotSymbol,value)
store:TotalSize()
store:UsedSize()

Soups 11

These functions and methods allow you to work with soup-level data such as
frames, soup indexes, soup information frames, and soup signatures.

Creating Soups
RegUnionSoup(appSymbol, soupDef);
UnRegUnionSoup(name, appSymbol);
store:CreateSoupXmit(soupName, indexArray, changeSym)
CreateSoupFromSoupDef(soupDef, store, changeSym)
uSoup:GetMember(store)

Adding and Copying Entries
uSoup:AddToDefaultStoreXmit(frame, changeSym)
uSoup:AddToStoreXmit(frame, store, changeSym)
soupOrUsoup:AddFlushedXmit(frameOrEntry, changeSym)
soup:AddXmit(frame, changeSym)
soup:CopyEntriesXmit(destSoup, changeSym)

Retrieving Entries
soupOrUSoup:Query(querySpec)

Change Notification
RegSoupChange(soupName,callbackID,callBackFn)
UnRegSoupChange(soupName,callbackID)
XmitSoupChange(soupName,appSymbol,changeType,changeData)

Manipulating Tags
soup:HasTags()
soup:GetTags()
soupOrUsoup:ModifyTagXmit(oldTag, newTag, changeSym)
soupOrUsoup:RemoveTagsXmit(tags, changeSym)
soupOrUsoup:AddTagsXmit(tags, changeSym)

Additional Functions and Methods
soupOrUsoup:AddIndexXmit(indexSpec, changeSym)
soup:GetIndexes()
soup:GetInfo(slotSymbol)
soupOrUsoup:GetName()
soup:GetSignature()

C H A P T E R 1 1

Data Storage and Retrieval

Summary of Data Storage 11-73

soupOrUsoup:GetSize()
uSoup:GetSoupList()
soup:GetStore()
GetUnionSoupAlways(soupNameString)
soup:MakeKey(string, indexPath)
IsSoupEntry(object)
soup:IsValid()
soup:RemoveAllEntriesXmit(changeSym)
soup:RemoveFromStoreXmit(changeSym)
soupOrUsoup:RemoveIndexXmit(indexPath, changeSym)
soup:SetInfoXmit(slotSymbol, value, changeSym)
soup:SetName(soupNameString)

Cursors 11

These functions and methods work with the cursor object returned by the
Query method.

Cursor Validity
cursor:Status()

Retrieving Entries and Manipulating the Cursor
cursor:Entry()
cursor:Next()
cursor:Prev()
cursor:Move(n)
cursor:EntryKey()
cursor:GoToKey(key)
cursor:GoTo(entry)
cursor:Reset()
cursor:ResetToEnd()
cursor:WhichEnd()

Additional Functions and Methods
MapCursor(cursor, function)
cursor:CountEntries()
cursor:Clone()

Entries 11

These functions allow you to work with individual soup entries returned by the
cursor object.

EntryChangeXmit(entry, changeSym)
EntryCopyXmit(entry, newSoup, changeSym)
EntryFlushXmit(entry, changeSym)

C H A P T E R 1 1

Data Storage and Retrieval

11-74 Summary of Data Storage

EntryIsResident(entry)
EntryModTime(entry)
EntryMoveXmit(entry, newSoup, changeSym)
EntryRemoveFromSoupXmit(entry, changeSym)
EntryReplaceXmit(original, replacement, changeSym)
EntrySize(entry)
EntrySoup(entry)
EntryStore(entry)
EntryTextSize(entry)
EntryUndoChangesXmit(entry, changeSym)
EntryUniqueId(entry)
FrameDirty(frame)
IsSameEntry(entryOralias1, entryOralias2)

Data Backup and Restore Functions 11

These functions are intended for use by special-purpose data backup and
restoration programs only. Many of them intentionally defeat the error-
checking features upon which the system relies to maintain values that identify
entries to the system and specify when they were last modified.

store:Erase()
store:GetAllInfo()
store:GetSignature()
store:SetName(storeNameString)

soup:AddWithUniqueIdXmit(entry, changeSym)
soup:GetAllInfo()
soup:GetIndexesModTime()
soup:GetInfoModTime()
soup:GetNextUid()
soup:SetSignature(signature)
soup:SetAllInfoXmit (frame, changeSym)
EntryChangeWithModTimeXmit(entry, changeSym)
EntryReplaceWithModTimeXmit (original, replacement, changeSym)

About Special-Purpose Storage Objects 12-1

C H A P T E R 1 2

Special-Purpose Objects for Data
Storage and Retrieval 12

Figure 12-0
Table 12-0

This chapter describes the use of special-purpose objects to augment or replace
the behavior of the system-supplied store, soup, cursor, and entry objects. This
chapter describes

■ the use of entry alias objects to save references to soup entries

■ the use of virtual binary objects to store large amounts of binary data

■ the use of store parts to build read-only soup data into packages

■ the use of mock entry objects to implement your own suite of objects that
provide access to nonsoup data in the same manner as the system-provided
store, soup, cursor, and entry objects.

Before reading this chapter, you should understand the contents of Chapter 11,
“Data Storage and Retrieval,” which provides an overview of the Newton data
storage system and describes how to use stores, soups, queries, cursors, and entries
to meet most applications’ data storage needs.

About Special-Purpose Storage Objects 12

The special-purpose data storage objects described here can be used to augment or
replace the behavior of stores, soups, cursors, and entries.

Entry Aliases 12
An entry alias is an object that provides a standard way to save a reference to a
soup entry. Unless it uses an entry alias to do so, a soup entry cannot save a
reference to an entry in another soup—the referenced entry is copied into the host
entry when the host entry is written back to its soup. However, entry aliases may be
saved in soup entries without causing this problem.

Entry aliases are also useful for providing convenient access to entries from
multiple soups. For example, the built-in Find service uses entry aliases to present
entries from multiple soups in a single overview view.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-2 About Special-Purpose Storage Objects

Virtual Binary Objects 12
The size of any NewtonScript object is limited by the amount of memory available
in the NewtonScript heap. As a result, you cannot create binary objects larger than
the amount of available NewtonScript heap space. For similar reasons, the amount
of data that can be stored in a single soup entry is limited as well. (See “Saving
Frames as Soup Entries” beginning on page 11-58 for details.) You can use virtual
binary objects to work around these restrictions.

A virtual binary object or VBO is a special kind of object that is useful for
holding binary data larger than the available space in the NewtonScript heap. VBOs
can be used to store large amounts of raw binary data, such as large bitmaps, the
samples of large digitized sounds, fax data, packages, or application-specific binary
data. A package is actually a special kind of virtual binary object; however, a package
is read-only and is created in a slightly different manner than a normal VBO.

In the following ways, VBOs are like normal NewtonScript binary objects:

■ The VBO is not persistent until it is written to a soup. As with any soup entry data,
if a VBO in a soup entry is modified, the changes are not persistent until the
cached entry frame is written back to the soup. If a soup entry containing a VBO
is moved to another store, the binary data associated with the VBO is moved to
that store as well. For a discussion of the soup entry cache, see “Entries” on
page 11-17.

■ The space used by the VBO is made available for garbage collection when there
are no more references to the VBO.

■ Binary data—including VBO data—is not shared between soup entries, even
when their respective soups reside on the same store. As a result, you may need
to consider space issues when moving or duplicating entries that hold VBO data.

VBOs are different from normal NewtonScript binary objects in the following ways:

■ VBO data does not reside in the NewtonScript heap—it resides in store memory.

■ Store memory for VBO data is not allocated until it is needed to write data. “Using
Virtual Binary Objects” on page 12-8 discusses this important point in detail.

■ You cannot use a value stored in a virtual binary object as a soup index key.

■ VBOs can be created in compressed or uncompressed form. If the VBO is
compressed, the system compresses and decompresses its associated binary data
on demand. The fact that a VBO is compressed is normally transparent to your
code; however, the time required to compress and uncompress VBO data may
affect performance.

■ When passed a reference to a VBO residing on a store that is unavailable,
methods that write VBO data throw exceptions rather than displaying the
“Newton still needs the card” alert.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

About Special-Purpose Storage Objects 12-3

Normal binary objects encapsulate their data and reside entirely in the NewtonScript
heap; thus, creating one of these objects or reading any of its data requires an
amount of heap space sufficient to hold all its data. Therefore, the size of a normal
binary object is limited by the amount of NewtonScript heap space available at the
time it is created. For example, a binary object encapsulating 5 KB of data requires
5 KB of NewtonScript heap space. If sufficient heap space is not available, the
binary object cannot be created.

In contrast, VBO data resides on a store specified when the VBO is created. The
system manages VBO data automatically, providing NewtonScript objects with
transparent access to it on demand. A VBO can hold more data than a normal
binary object because it is not limited by the amount of free space available in the
NewtonScript heap. Contrasting the previous example, a VBO holding 5 KB of
data requires a negligible amount of heap space, because its data resides in store
memory, rather than in the NewtonScript heap.

Note
The system does not allocate store memory for VBO data until it
is needed to write data to the store. Testing the amount of store
memory available when the VBO is created does not guarantee
the future availability of this memory. Thus, it is possible to fail
due to lack of store space when writing to a VBO, even though the
VBO was created successfully. The only practical solution to this
problem is to enclose in a try block any code that writes VBO
data. ◆

Parts 12
Recall that a package is the basic unit of downloadable Newton software: it
provides a means of loading code, resources, objects, and scripts into a Newton
device. A package consists of one or more constituent units called parts.

The format of a part is identified by a four-character identifier called its type or
its part code. Table 12-1 on page 12-4 lists the various kinds of parts and their
associated
type identifiers.

Some of the parts described in Table 12-1 may already be familiar to you. Form
parts are the Newton application packages you create with Newton Toolkit. Book
parts are the interactive digital books described in the Newton Book Maker User’s
Guide. Store parts (parts of type soup) are useful for the storage of read-only data
and are discussed later in this chapter. Dictionary parts (parts of type dict)
supplement the built-in word lists used by the recognition subsystem. Font parts
are used to add new typefaces to Newton devices; for more information about these
parts, contact Newton Developer Technical Support. Auto parts are described in
the Newton Toolkit User’s Guide.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-4 About Special-Purpose Storage Objects

Except for soup parts, all the parts listed in Table 12-1 are called frame parts
because they include a part frame which holds the items comprising the frame part.
Such items may include icons, scripts, other parts, binary data and so on. A soup
part, on the other hand, does not have a part frame and is composed of soup data only.

When a frame part is loaded, the system disperses the contents of its part frame to
the appropriate subsystems. For example, in addition to the application itself,
which is a form part used by the Extras Drawer, the part frame in an application
package might include a custom icon used by the Extras Drawer, a custom dictionary
used by the recognition subsystem, a soup part that provides application data, and
an InstallScript function that performs application-specific setup tasks.

Store Parts 12

A store part is a part that encapsulates a read-only store. Because you can build
store parts into application packages, the store part is sometimes referred to as a
package store.

Soups can reside on package stores, just as they do on normal stores; however,
because package stores are read-only, soups residing on package stores must also
be read-only. Store parts can be used to provide soup-like access to read-only data
residing in an application package.

For more information about the characteristics of soups, see “Soups” on page 11-7
and “Using Soups” on page 11-32.

Mock Entries 12
A mock entry is a NewtonScript object that mimics the behavior of a soup entry.
The mock entry is a foundation object you can use to build up a suite of objects
that acts like the system-supplied store, soup, cursor, and entry objects. For
example, you could create a mock entry object that uses a serial communications
link to retrieve a record from a remote database; additional objects could implement
methods to provide cursor-like access to these mock entries, just as if they resided

Table 12-1 Parts and type identifiers

Part Type Description

Application form Application.

Book book Book created by Newton Book Maker or Newton Press.

Auto part auto Background application/extension.

Store part soup Read-only soup.

Dictionary dict Custom dictionary for Newton recognition subsystem.

Font font Additional font.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

About Special-Purpose Storage Objects 12-5

in a local soup. Your mock entry could reside in a mock soup, which, in turn, could
reside on a mock store.

The mock entry counterparts to the system-supplied EntryXxx functions are
implemented as the methods of a NewtonScript frame known as the mock entry’s
handler. You supply this frame, which implements these methods as well as any it
requires for its own purposes. The handler may also hold information local to a
specific mock entry or information required to retrieve the mock entry’s data.

Like a normal soup entry, the mock entry caches its data in the NewtonScript heap
when the entry is accessed; thus, the data associated with a mock entry is called its
cached frame. As with normal soup entries, the cached frame appears to be the
mock entry itself when accessed by other NewtonScript objects. Your handler
provides an EntryAccess method that creates this frame in response to messages
from the system.

The cached frame must be self-contained, just as a normal soup entry is. Therefore,
the cached frame must not use _proto and _parent inheritance.

To create a mock entry, you call the NewMockEntry global function. Depending
on your needs, you can create the mock entry with or without its associated cached
frame. Either way, the mock entry object returned by this function manages other
objects’ access to its cached frame.

When the mock entry’s cached frame is present, the system forwards entry
accesses to it transparently. When the cached frame is not present, the system calls
the handler’s EntryAccess method to generate a cached frame before forwarding
the access. You must supply this method, which creates and installs the cached
frame in the mock entry.

The handler’s EntryAccess method is called only when a slot in the mock entry
is accessed. Simply referencing the mock entry does not cause the cached entry to
be created. For example, in the following code fragment, assigning m to x does not
create a cached entry—it just creates another reference to the mock entry. However,
accessing the mock entry’s foo slot from either of the variables m or x may cause
the EntryAccess method of myHandler to be invoked.

local myHandler := {
object: {foo: 'bar},
EntryAccess: func (mockEntry)

begin
// install cached obj & notify system
EntrySetCachedObject(mockEntry, object);
// return cached obj
object;

end,
// your additional slots and methods here
…}

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-6 About Special-Purpose Storage Objects

// create new mock entry w/ no cached frame
local m := NewMockEntry(myHandler, nil);
// referencing m doesn’t create cached frame
local x := m;
// either statement could invoke myHandler:EntryAccess()
local a := x.foo;
local b := m.foo;

To almost all of the system, the mock entry appears to be a normal soup entry;
for example:

■ m.foo evaluates to 'bar

■ ClassOf(m) is 'frame

■ m.baz := 42 adds a slot to the handler.object frame and this modified
frame is returned the next time the mock entry is accessed.

Only the IsMockEntry global function can determine that m is a mock entry,
rather than a soup entry. Note that the IsSoupEntry function returns true for
both mock entries and normal soup entries.

Mock Stores, Mock Soups, and Mock Cursors 12

The current implementation of the Newton object system provides only mock
entries; you must implement appropriate mock cursors, mock soups, and mock
stores as required.

The mock store is a frame you supply which responds appropriately to all the
messages that might normally be sent to a store object. For example, when the
mock store’s GetSoup method is invoked, it should return a mock soup.

The mock soup is a frame you supply which responds appropriately to all the
messages that might normally be sent to a soup object. For example, when the
mock soup’s Query method is called, the mock soup should return a mock cursor.
Mock soups cannot participate in union soups; however, you can implement your
own mock union soup objects that manage the interaction of your mock soups with
normal soups or union soups.

A mock cursor is a frame you supply that can respond appropriately to all the
messages that might normally be sent to a cursor object. For example, when the
mock cursor’s Entry method is invoked, it should return a mock entry.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

Using Special-Purpose Data Storage Objects 12-7

Using Special-Purpose Data Storage Objects 12

This section describes how to use entry aliases, virtual binary objects (VBOs),
store parts, and mock entries. This section presumes understanding of the
conceptual material presented in preceding sections.

Using Entry Aliases 12
This section describes how to create entry aliases, how to save them, and how to
resolve them.

Aliases can be created for any entry that resides in a soup or union soup. Aliases
cannot be created for mock entry objects.

You must not assume that an entry alias is valid. When the entry to which it refers
is deleted or is moved to another store, an entry alias becomes invalid. Renaming a
store renders invalid all aliases to entries residing on that store.

The MakeEntryAlias function returns an alias to a soup entry, as shown in the
following code fragment:

// return entries that contain "bob" and "Apple"
local myCurs:= namesSoup:Query({ entireWords: true,

words:["Bob", "Apple"]});
// keep an alias to bob around
local bobAlias := MakeEntryAlias(myCurs:Entry());
// but get rid of the cursor
myCurs := nil;

To save an entry alias, simply save it in a soup entry.

You can use the ResolveEntryAlias function to obtain the entry to which the
alias refers, as shown in the following code fragment:

// continued from previous example
local bobEntry := ResolveEntryAlias(bobAlias);

Note that the ResolveEntryAlias function returns nil if the original store,
soup, or entry to which the alias refers is unavailable.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-8 Using Special-Purpose Data Storage Objects

You can use the IsSameEntry function to compare entries and aliases to each
other; this function returns true for any two aliases or references to the same
entry. For example:

// return entries that contain "bob" and "Apple"
local myCurs:= namesSoup:Query({ entireWords: true,

words:["Bob", "Apple"]});
local aBob:= myCurs:Entry();
// keep an alias to bob around
local bobAlias := MakeEntryAlias(aBob);
// the following comparison returns true
IsSameEntry(aBob, bobAlias)

The IsEntryAlias function returns true if its argument is an entry alias, as
shown in the following example:

// return entries that contain "bob" and "Apple"
local myCurs:= namesSoup:Query({ entireWords: true,

words:["Bob", "Apple"]});
// keep an alias to bob around
local bobAlias := MakeEntryAlias(myCurs:Entry());
// the following test returns true
IsEntryAlias(bobAlias);

Using Virtual Binary Objects 12
This section describes how to use a virtual binary object to store binary data that is
too large to fit into the NewtonScript heap. Topics discussed include:

■ creating compressed or uncompressed VBOs

■ saving VBOs in soup entries

■ adding data to VBOs

■ undoing changes to VBO data

In addition to the subjects discussed here, see “VBO Functions and Methods”
(page 9-74) in Newton Programmer’s Reference for descriptions of VBO utility
functions.

Creating Virtual Binary Objects 12

When you create a VBO, you specify whether its associated binary data is to be
stored in compressed or uncompressed format. Whether you create compressed or
uncompressed VBO objects is a question of space versus speed: uncompressed
data provides faster access, but requires more store space than the equivalent
compressed data.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

Using Special-Purpose Data Storage Objects 12-9

The NewVBO and NewCompressedVBO store methods create virtual binary
objects. Both methods require that you specify the class of the binary object to be
created, as well as the store on which VBO data is to reside.

The following code fragment uses the store method NewVBO to create a new,
uncompressed, “blank” virtual binary object on the default store:

// create new uncompressed VBO of size 5 KB and class 'samples
local binData := GetDefaultStore():NewVBO('samples,5000);

Another way to create an uncompressed VBO is to pass nil as the
values of the companderName and companderData parameters to the
NewCompressedVBO method, as the following code fragment shows:

// create new uncompressed VBO of size 5 KB and class 'samples
local binData := GetDefaultStore():NewCompressedVBO('samples, 5000,

 nil, nil);

When you create a compressed VBO, you need to specify how the system is to
expand and compress data moved to and from the store associated with the VBO.
The system provides two compressor-expanders (also known as companders),
which compress and expand raw binary data on demand. The companderName
parameter to the NewCompressedVBO method indicates the compander to be used
for that particular VBO’s data.

The Lempel-Ziv compander is a suitable for most data types; its use is specified by
passing the string "TLZStoreCompander" as the value of the companderName
parameter to the NewCompressedVBO method. The pixel map compander is
specialized for use with pixel map data; its use is specified by passing the string
"TPixelMapCompander" as the value of the companderName parameter to the
NewCompressedVBO method.

▲ W A R N I N G

The pixel map compander makes certain assumptions about the
data passed to it; do not use it for any kind of data other than pixel
maps. For more information, see the description of the
NewCompressedVBO method (page 9-75) in Newton
Programmer’s Reference. ▲

Because both of the companders provided by the current implementation of the
system initialize themselves automatically, you must always pass nil as the value
of the companderArgs parameter to the NewCompressedVBO method.

To create a new compressed VBO, specify a compander and a store in the arguments
to the NewCompressedVBO method, as shown in the following example:

// create new compressed VBO of size 5 KB and class 'pixMap
local binData := GetDefaultStore():NewCompressedVBO('pixMap,

5000,"TPixelMapCompander", nil);

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-10 Using Special-Purpose Data Storage Objects

A VBO becomes permanent only when it is written to a soup entry, and its associated
binary data always resides on the same store as the entry. Thus, when creating a
VBO, it’s usually best to specify that it use the same store as the soup entry into
which you’ll save the VBO. If you try to put the same VBO in two different soup
entries, a duplicate VBO is created, even if both entries reside on the same store.

It is recommended that you enclose in a try block any code that writes VBO data.
Store memory for VBO data is not allocated when the VBO is created; rather, it is
allocated as needed to write VBO data. Thus, when writing an entry containing a
VBO back to its soup, it is possible to fail due to lack of store space for new or
changed VBO data, even though the VBO was created successfully.

Because the system manages store-backed VBO data transparently, calling a
function such as StuffByte on a VBO does not necessarily cause the system to
write new VBO data to the store. For similar reasons, VBOs may raise exceptions
at seemingly unusual times, as the system moves VBO data to and from store
memory as required to accommodate various objects’ needs.

Finally, you may need to consider store space requirements when copying soup
entries that hold VBOs. When moving or copying a soup entry containing a VBO,
another copy of the VBO data is made by the destination soup’s Add method
because VBO data is not shared between entries.

For a short code example that creates a VBO, saves data in it, and writes the VBO
to a soup, see the conclusion of the “Modifying VBO Data” section, immediately
following.

Modifying VBO Data 12

Recall that examining or modifying any slot in a soup entry causes the entire entry
to be read into the entry cache. When an entry containing a VBO is read into the
entry cache, the VBO data is not read into the entry cache, but made available to
the entry transparently.

Subsequently modifying the entry changes the cached data while leaving the
original soup entry untouched. The changes to the entry (and any VBOs residing in
it) are not saved until the entry is written back to the soup; for example, as the
result of an EntryChangedXmit call.

Note
Because store space for VBO data is not allocated until the data is
actually written, it’s recommended that you enclose VBO write
operations in exception handling code. ◆

To undo changes to binary data associated with a VBO that resides in a cached
soup entry, call the EntryUndoChanges function. This function disposes of the
cached soup entry and restores references to the original, untouched soup entry; it
also undoes changes to VBO data referenced by the entry.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

Using Special-Purpose Data Storage Objects 12-11

The following code fragment adds sound sample data to an empty VBO and
demonstrates the use of the EntryUndoChanges function to undo those changes:

// create a temporary soup
mySoup := RegUnionSoup('|foo:myApp:mySig|,
 {name: "foo:myApp:mySig", indexes: '[]}) ;

// get a soup entry that is a sound
anEntry := mySoup:AddToDefaultStoreXmit('{sndFrameType: nil,

samples:nil,
samplingRate:nil,
dataType:nil,
compressionType: nil,
userName: nil}, nil) ;

// make a VBO to use for the samples
myVBO := GetDefaultStore():NewCompressedVBO('samples,5000,nil, nil);

// grab some samples from ROM and fill in most of sound frame
romSound := Clone(ROM_FunBeep) ;
anEntry.sndFrameType := romSound.sndFrameType ;
anEntry.samplingRate := romSound.samplingRate ;
anEntry.dataType := romSound.dataType ;
anEntry.compressionType := romSound.compressionType ;
anEntry.samples := myVBO ;

// put the samples in the VBO
BinaryMunger(myVBO, 0, nil, romSound.samples, 0, nil) ;

// write the VBO to the soup
try

EntryChangeXmit(anEntry, nil);
onException |evt.ex.fr.store| do

:Notify(kNotifyAlert, "My App", "Sorry, can’t save changes.");

// listen to the sound to verify change
PlaySound(anEntry);

// change the sound
BinaryMunger(anEntry.samples,0, nil, ROM_PlinkBeep.samples, 0, nil);

PlaySound(anEntry) ;

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-12 Using Special-Purpose Data Storage Objects

// decide to go back to the original
EntryUndoChanges(anEntry);

PlaySound(anEntry);

// clean up
foreach store in GetStores() do
begin
 mySoup := store:GetSoup("foo:myApp:mySig") ;
 if mySoup then
 mySoup:RemoveFromStoreXmit(nil);
end ;
UnregUnionSoup("foo:myApp:mySig", '|foo:myApp:mySig|);

VBOs and String Data 12

In most cases, you should avoid using the & and && string-concatenation operators
with VBO-based strings. These operators work by allocating a new string in the
NewtonScript heap and copying data from its arguments into the new object. You
can run out of heap space easily when attempting this operation with large strings.

Instead, use the StrMunger global function to concatenate two strings. The
following code fragment appends the str2 string to the str1 string, increasing
the size of str1 as necessary, regardless of whether str1 is VBO data or resident
in the NewtonScript heap.

StrMunger(str1, MAXINT, nil, str2, 0, nil);

The value of MAXINT is 1<<29-1 or 536870911; however, any number larger
than StrLen(str1) works adequately.

Using Store Parts 12
This section describes how to create a store part and add soup data to it. This
discussion is followed by a description of how to access the store part’s soups
from your application.

Note that other representations may provide better space efficiency or faster access
to data. Store parts are useful when you wish to avoid recoding soup data in a more
efficient representation, or when you need multiple indexes or some other
convenience that soup-based queries provide.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

Using Special-Purpose Data Storage Objects 12-13

Creating a Store Part 12

To create a store part, take the following steps using Newton Toolkit version 1.5
or greater:

■ Create a new project.

■ Select the Store Part radio button in the Output Settings dialog box. NTK disables
all other settings in this dialog box when the Store Part option is selected.

■ Configure the Package Settings dialog box as you normally would. The name
specified in this dialog box identifies the store part to the system in much the
same way that a package name identifies a package; thus, you need to ensure the
uniqueness of this identifier by basing it on your developer signature in some way.

■ Add a new text file to the project. You’ll add to this document the NewtonScript
code that creates one or more soups to reside on the store part.

At compile time, NTK provides a global variable named theStore, which
represents the store part (package store) you are building. Any changes made to
this variable are reflected in the store part that is produced as the output of the build
cycle. Thus, to create your read-only soup, you can add to the text file some
NewtonScript code similar to the following example:

// some useful consts; note use of developer signature
constant kStoreName := "MyStore:MYSIG" ;
constant kSoupName := "MySoup:MYSIG" ;
constant kSoupIndices := '[] ;

// theStore is a global var provided by NTK
theStore:SetName(kStoreName) ;

// create the soup but don’t xmit at build time
local soup:=theStore:CreateSoupXmit(kSoupName,

kSoupIndices, nil);

// add a couple entries
soup:Add({anInteger: 1}) ;
soup:Add({anInteger: 2}) ;

When the package is built, NTK incorporates the store part in it.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-14 Using Special-Purpose Data Storage Objects

Getting the Store Part 12

Store parts (also known as package stores) are made available by the
GetPackageStore function. Package stores do not appear in the GetStores
result array, which is reserved for normal store objects.

The GetPackageStore function retrieves the store by name, so each package
store must be given a unique name when it is built. Generally, this is ensured by
including the unique package symbol in the store name.

Accessing Data in Store Parts 12

Although store parts support most of the messages that normal soups do, remember
that store parts are read-only. Sending to a store part those messages that would
normally change a soup or its store (such as CreateSoupXmit, SetName and so
on) throws an exception.

Another thing to keep in mind is that soups on store parts do not participate in
union soups. You need to check explicitly for the presence of your store and soup.

The GetPackageStore and GetPackageStores functions provide two
different ways to find a store part. Usually, you use the global function
GetPackageStore and pass the name of the store part you created as its
argument. Assuming the example code shown in “Creating a Store Part” on
page 12-13 was used to create the store part, you could use code similar to the
following example to check for the existence of the read-only soup residing on the
store part:

local pStore := GetPackageStore(kStoreName) ;
if pStore then

local pSoup := pStore:GetSoup(kSoupName) ;

Using Mock Entries 12
A mock entry has two parts: one is a cached frame, which the NewtonScript
interpreter treats as the entry when doing assignment, slot lookup, and so on; the
other is the handler frame that retrieves the actual entry data and implements a
suite of methods that manipulate it.

Topics discussed in this section include

■ implementing the EntryAccess method

■ creating a mock entry

■ testing the validity of a mock entry

■ getting entry cache data

■ getting and setting mock entry handlers

■ implementing additional handler methods

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

Using Special-Purpose Data Storage Objects 12-15

Implementing the EntryAccess Method 12

Each of your mock entry handler frames must supply an EntryAccess method
that creates a cached frame containing the mock entry’s data, installs the cached
frame in the mock entry, and returns the cached frame. This method is called when
the system attempts to access a cached frame that is not present.

The system passes the mock entry to your EntryAccess method when it is
invoked. This method calls the EntrySetCachedObject function to install the
cached frame in the mock entry and then returns the cached frame.

The following code fragment provides a simple example of an
EntryAccess method:

myHandler := {
object: {foo: 'bar},
EntryAccess: func (mockEntry)

begin
// install cached frame
EntrySetCachedObject(mockEntry, object);
// return cached frame
object;

end,
// your additional slots and methods here
…}

Creating a New Mock Entry 12

The NewMockEntry global function creates a new mock entry object having a
specified handler and cached frame. Your application can use this method to create
a new mock entry; for example, in response to a mockSoup:Add() message.

The handler frame you pass to the NewMockEntry function must define an
EntryAccess method, as described in “Implementing the EntryAccess Method”
on page 12-15. The handler may also contain supporting methods or data used by
the mock entry; for example, it might hold information local to a specific mock
entry or information required to retrieve the mock entry’s data.

Depending on your needs, you can create new mock entries with or without their
corresponding cached frames. To create a mock entry with its cached frame already
installed, pass both the handler and the cached frame to this function.

To create a mock entry without a cached frame, pass nil as the value of the
cachedObject parameter to the NewMockEntry function. When a slot in the
returned mock entry is accessed, the handler’s EntryAccess method is invoked
to create the cached entry if it is not present.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-16 Using Special-Purpose Data Storage Objects

Testing the Validity of a Mock Entry 12

The IsMockEntry global function returns the value true for objects that are valid
mock entries. You can use this function to distinguish between mock entry objects
and other objects such as cache frames or soup entries. Note that the IsSoupEntry
function returns true for both mock entries and normal soup entries.

Getting Mock Entry Data 12

The EntryCachedObject global function returns the cached frame associated
with a specified mock entry. You can call this function to retrieve the cached frame
associated with a specified mock entry. For example, your handler frame’s
EntryChange method must retrieve the cached frame in order to write it back to
a mock soup.

Changing the Mock Entry’s Handler 12

The EntrySetHandler function is a special-purpose function that you can use to
replace a mock entry’s handler. For example, you can use this function to install a
handler that implements debug versions of methods present in the mock entry’s
original handler frame. Such methods might include breakpoints and print
statements that would not be present in the commercial version of an application.

Getting the Mock Entry’s Handler 12

The system supplies the EntryHandler function for debugging purposes. The
EntryHandler function returns a reference to the handler frame associated with
the mock entry specified by the value of the mockEntry parameter.

Implementing Additional Handler Methods 12

Your handler needs to provide additional methods that are the mock entry counter-
parts to system-supplied entry functions, such as EntryUndoChangesXmit, and
others. For a list of suggested methods that your handler may implement, see
“Application-Defined Mock Entry Handler Methods” on page 12-19.

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

Summary of Special-Purpose Data Storage Objects 12-17

Summary of Special-Purpose Data Storage Objects 12

This section summarizes data structures, objects, methods and global functions
used by Newton devices for specialized data storage purposes.

Data Structures 12

Package Reference Information Frame 12

{
size: nBytes, // pkg’s uncompressed size in bytes
store: aStore, // store on which pkg resides
title: string,// user-visible package name string
version: int, // version number
timeStamp: int,// date and time pkg was loaded
creationDate: int, // date pkg created
copyProtection: value, Non-nil means protected.
dispatchOnly: value, // Non-nil means dispatch-only pkg.
copyright: string, // copyright information string
compressed:value, // Non-nil value means pkg is compressed
cmprsdSz: int,// compressed size of pkg in bytes
numParts: int, // number of parts in pkg
parts: [p1, p2, … pN], // parts comprising this package.
partTypes:[sym1, sym2, … symN] // parallel to parts array.

Functions and Methods 12

Packages 12

GetPackageNames(store)
GetPackages()
GetPkgRef(name, store)
GetPkgRefInfo(pkgRef)
IsValid(obj)
IsPackage(obj)
IsPackageActive(pkgRef)
MarkPackageBusy(pkgRef, appName, reason)
MarkPackageNotBusy(pkgRef)
ObjectPkgRef(obj)

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

12-18 Summary of Special-Purpose Data Storage Objects

SafeFreezePackage(pkgRef)
SafeMovePackage(pkgRef, destStore)
SafeRemovePackage(pkgRef)
store:SuckPackageFromBinary(binary, paramFrame)
store:SuckPackageFromEndpoint(endPoint, paramFrame)
ThawPackage(pkgRef)

Store Parts (Package Stores) 12

GetPackageStore(name)
GetPackageStores()

Entry Aliases 12

IsEntryAlias(object)
MakeEntryAlias(entry)
ResolveEntryAlias(alias)
IsSameEntry(entryOralias1, entryOralias2)

Virtual Binary Objects (VBOs) 12

store:NewVBO(class, size)
store:NewCompressedVBO(class, size, companderName, companderArgs)
IsVBO(vbo)
GetVBOStore(vbo)
GetVBOStoredSize(vbo)
GetVBOCompander(vbo)

Mock Entries 12

EntryCachedObject(mockEntry)
EntryHandler(mockEntry)
EntrySetCachedObject(mockEntry, newCachedObj)
EntrySetHandler(mockEntry, newHandler)
IsMockEntry(object)
NewMockEntry(handler, cachedObj)
NewWeakArray(length)

C H A P T E R 1 2

Special-Purpose Objects for Data Storage and Retrieval

Summary of Special-Purpose Data Storage Objects 12-19

Application-Defined Mock Entry Handler Methods 12

handler:EntryAccess(mockEntry)
handler:EntryChange(mockEntry)
handler:EntryChangeWithModTime(mockEntry)
handler:EntryCopy(mockEntry, newSoup)
handler:EntryModTime(mockEntry)
handler:EntryMove(mockEntry, newSoup)
handler:EntryRemoveFromSoup(mockEntry)
handler:EntryReplace(original, replacement)
handler:EntryReplaceWithModTime(original, replacement)
handler:EntrySize(mockEntry)
handler:EntrySoup(mockEntry)
handler:EntryStore(mockEntry)
handler:EntryTextSize(mockEntry)
handler:EntryUndoChanges(mockEntry)
handler:EntryUniqueID(mockEntry)
handler:EntryValid(mockEntry)

About Drawing 13-1

C H A P T E R 1 3

Drawing and Graphics 13Figure 13-0
Table 13-0

This chapter describes how to draw graphical objects such as lines and rectangles
in Newton applications.

You should read this chapter if you are attempting to draw complex or primitive
graphical objects in a view. Before reading this chapter, you should be familiar
with the information in Chapter 3, “Views.”

This chapter describes:

■ the types of graphical objects supported and how to draw them

■ drawing methods and functions used to perform specific tasks

■ drawing classes and protos that operate on graphics and drawing methods
and functions

About Drawing 13

The drawing interface provides a number of functions, methods, and protos that
allow you to create graphic objects in Newton applications. Objects can be shapes,
pictures, or rendered bitmaps. Additional functions and methods provide ways to
scale, transform, or rotate the images. All objects are drawn into views. See “View
Instantiation” (page 3-26) for complete details.

This section provides detailed conceptual information on drawing functions and
methods. Specifically, it covers the following:

■ supported shape objects

■ the style frame

■ new functions, methods, and messages added for Newton OS 2.0, as well as
modifications to existing pieces of the drawing code

C H A P T E R 1 3

Drawing and Graphics

13-2 About Drawing

Note that for all of the functions described in this chapter:

■ The coordinates you specify are interpreted as local to the view in which the
object is drawn.

■ The origin of the coordinate plane (0,0) is the upper-left corner of the view in
which the object is drawn.

■ Positive values are towards the right or the bottom of the screen from the origin.
For additional information on the Newton coordinate system see “Coordinate
System” (page 3-6).

Shape-Based Graphics 13
Newton system software provides functions for drawing primitive graphic objects
in a view. These drawing functions return a data structure called a shape that is
used by the drawing system to draw an image on the screen. The drawing system
supports the following shape objects:

■ lines

■ rectangles

■ rounded rectangles

■ ovals (including circles)

■ polygons

■ wedges and arcs

■ regions

■ text

■ pictures

■ bitmaps

Complex graphics can be drawn by passing arrays of shapes to the various drawing
functions. Primitive shapes can be combined procedurally by collecting them into a
shape called a picture. The appearance will be the same except that, when drawn,
the picture will not be affected by any style specifications. The styles are recorded
into the picture when you make it with MakePict—with the exception of any
transform or clipping slot. See “Controlling Clipping” (page 13-12) and
“Transforming a Shape” (page 13-13) for more information.

Each type of shape is described in the following pages.

A line is defined by two points: the current x and y location of the graphics pen and
the x and y location of its destination. The pen hangs below the right of the defining
points, as shown in Figure 13-1, where two lines are drawn with two different
pen sizes.

C H A P T E R 1 3

Drawing and Graphics

About Drawing 13-3

Figure 13-1 A line drawn with different bit patterns and pen sizes

A rectangle can be defined by two points—its top-left and bottom-right corners, as
shown in Figure 13-2, or by four boundaries—its upper, left, bottom, and right
sides. Rectangles are used to define active areas on the screen, to assign coordinate
systems to graphic entities, and to specify the locations and sizes for various
graphics operations.

Figure 13-2 A rectangle

Top

Bottom

Left

Right

C H A P T E R 1 3

Drawing and Graphics

13-4 About Drawing

Drawing also provides functions that allow you to perform a variety of mathematical
calculations on rectangles—changing their sizes, shifting them around, and so on.

An oval is a circular or elliptical shape defined by the bounding rectangle that
encloses it. If the bounding rectangle is a square (that is, has equal width and
height), the oval is a circle, as shown in Figure 13-3.

Figure 13-3 An oval

An arc is a portion of the circumference of an oval bounded by a pair of radii
joining at the oval’s center; a wedge includes part of the oval’s interior. Arcs and
wedges are defined by the bounding rectangle that encloses the oval, along with a
pair of angles marking the positions of the bounding radii, as shown in Figure 13-4.

Figure 13-4 An arc and a wedge

Oval

Bounding
rectangle

Bounding
rectangle

Bounding
rectangle

An arc A wedge

Bounding
radius

Bounding
radius

C H A P T E R 1 3

Drawing and Graphics

About Drawing 13-5

A rounded rectangle is a rectangle with rounded corners. The figure is defined by
the rectangle itself, along with the width and height of the ovals forming the
corners (called the diameters of curvature), as shown in Figure 13-5. The corner
width and corner height are limited to the width and height of the rectangle itself; if
they are larger, the rounded rectangle becomes an oval.

Figure 13-5 A rounded rectangle

A polygon is defined by a sequence of points representing the polygon’s vertices,
connected by straight lines from one point to the next. You define a polygon by
specifying an array of x and y locations in which to draw lines and passing it as a
parameter to MakePolygon. Figure 13-6 shows an example of a polygon.

Bounding
rectangle

Rounded
rectangle

Diameter
of curvature

Diameter
of curvature

C H A P T E R 1 3

Drawing and Graphics

13-6 About Drawing

Figure 13-6 A polygon

A region is an arbitrary area or set of areas, the outline of which is one or more
closed loops. One of drawing’s most powerful capabilities is the ability to work
with regions of arbitrary size, shape, and complexity. You define a region by
drawing its boundary with drawing functions. The boundary can be any set of lines
and shapes (even including other regions) forming one or more closed loops. A
region can be concave or convex, can consist of one connected area or many
separate areas. In Figure 13-7, the region consists of two unconnected areas.

Figure 13-7 A region

Your application can record a sequence of drawing operations in a picture and play
its image back later. Pictures provide a form of graphic data exchange: one program

C H A P T E R 1 3

Drawing and Graphics

About Drawing 13-7

can draw something that was defined in another program, with great flexibility and
without having to know any details about what’s being drawn. Figure 13-8 shows
an example of a picture containing a rectangle, an oval, and a triangle.

Figure 13-8 A simple picture

Manipulating Shapes 13
In addition to drawing shapes, you can perform operations on them. You can

■ offset shapes; that is, change the location of the origin of the shape’s coordinate
plane, causing the shape to be drawn in a different location on the screen. Note
that offsetting a shape modifies it; for example, the offset shape will have
different viewBounds values than the original shape.

■ scale shapes; that is, draw the shape to fill a destination rectangle of a specified
size. The destination rectangle can be larger, smaller, or the same size as the
original shape. Note that scaling a shape modifies it; for example, the scaled
shape has different viewBounds values than the original shape.

■ hit-test shapes to determine whether a pen event occurred within the boundaries
of the shape. This operation is useful for implementing button-like behavior in
any shape.

The Style Frame 13
Any shape can optionally specify characteristics that affect the way it is imaged,
such as the size of the pen or the fill pattern to be used. These characteristics are
specified by the values of slots in a style frame associated with the shape. If the
value of the style frame is nil, the view system draws the shape using default
values for these drawing characteristics. See “Style Frame” (page 10-1) in the
Newton Programmer’s Reference for complete details.

C H A P T E R 1 3

Drawing and Graphics

13-8 About Drawing

Drawing Compatibility 13
The following new functionality has been added for Newton OS 2.0. For complete
details on the new drawing functions, see the “Drawing and Graphics Reference”
in the Newton Programmer’s Reference.

New Functions 13

The following functions have been added:

■ GetShapeInfo—returns a frame containing slots of interest for the shape.

■ DrawIntoBitmap—draws shapes into a bitmap in the same way that the
DrawShape method draws shapes into a view.

■ MakeBitmap—returns a blank (white) bitmap shape of the specified size.

■ MungeBitmap—performs various destructive bitmap operations such as
rotating or flipping the bitmap.

■ ViewIntoBitmap—provides a screen-capture capability, writing a portion of
the specified view into the specified bitmap.

New Style Attribute Slots 13

Version 2.0 of Newton system software supports two new slots in the style frame:
clipping and the transform.

Changes to Bitmaps 13

Previous versions of Newton system software treated bitmaps statically. They were
created only from compile-time data, and the operations one could perform on
them were limited to drawing them.

Version 2.0 of Newton system software provides a more dynamic treatment of
bitmaps. You can dynamically create and destroy them, draw into them, and
perform such operations as rotating and flipping them. This more flexible treatment
of bitmaps allows you to use them as offscreen buffers as well as for storage of
documents such as fax pages.

Changes to the HitShape Method 13

Previous versions of HitShape returned a non-nil value if a specified point lies
within the boundaries of one or more shapes passed to it. Version 2.0 of the
HitShape function now returns additional information.

C H A P T E R 1 3

Drawing and Graphics

Using the Drawing Interface 13-9

Changes to View Classes 13

The icon slot of a view of the clPictureView class can now contain a graphic
shape, in addition to bitmap or picture objects.

Using the Drawing Interface 13

This section describes how to use the drawing interface to perform specific tasks.
See “Drawing and Graphics Reference” (page 10-1) in the Newton Programmer’s
Reference for descriptions of the functions and methods discussed in this section.

How to Draw 13
Drawing on the Newton screen is a two-part process. You first create a shape object
by calling one or more graphics functions, such as MakeRect, MakeLine, and so
on. You then draw the shape object by passing any of the shapes returned by the
shape-creation functions, or an array of such shapes optionally intermixed with
style frames to the DrawShape method. If a style frame is included in the shape
array, it applies to all subsequent shapes in the array, until overridden by another
style frame.

In addition to the shape object, the DrawShape method accepts a style frame
parameter. The style frame specifies certain characteristics to use when drawing the
shape, such as pen size, pen pattern, fill pattern, transfer mode, and so on.

This system is versatile because it separates the shapes from the styles with which
they are drawn. You can create a single shape and then easily draw it using different
styles at different times.

DrawShape can also accept as its argument an array of shapes instead of just a
single shape. Therefore, you can create a series of shapes and draw them all at once
with a single call to the DrawShape method. Additional style frames can be
included in the shape array to change the drawing style for the shapes that follow
them. “Using Nested Arrays of Shapes” (page 13-10), discusses the use of arrays of
shapes in more detail.

Responding to the ViewDrawScript Message 13

When the system draws a view, it sends a ViewDrawScript message to the view.
To perform your own drawing operations at this time, you must provide a
ViewDrawScript method that calls the appropriate drawing functions.

The system also sends the ViewDrawScript message to the view whenever it is
redrawn. Views may be redrawn as the result of a system notification or a user action.

C H A P T E R 1 3

Drawing and Graphics

13-10 Using the Drawing Interface

If you want to redraw a view explicitly at any particular time, you need to send it
the Dirty message. This message causes the system to add that view to the area of
the screen that it updates in the next event loop cycle. To make the update area
redraw before the next event loop cycle, you must call the RefreshViews
function after sending the Dirty message.

Drawing Immediately 13

If you want to draw in a view at times other than when the view is being opened
or redrawn automatically, you can execute drawing code outside of the
ViewDrawScript method by using DoDrawing. For example, you might need
to perform your own drawing operations immediately when the user taps in the view.

You can use the DoDrawing method for this purpose. The DoDrawing method
calls another drawing method that you supply as one of its arguments.

▲ W A R N I N G

Do not directly use DrawShape to draw shapes outside
of your ViewDrawScript. Standard drawing in
ViewDrawScript and DoDrawing automatically set
up the drawing environment. If you use DrawShape without
setting up the drawing environment, your application could
accidentally draw on top of other applications, keyboards,
or floaters. ▲

Using Nested Arrays of Shapes 13
The DrawShape method can draw multiple shapes when passed an array of shapes
as its argument. Style frames may be included in the shape array to change the
drawing style used to image subsequent elements of the array. Each element of
the array can itself be an array as well; this section refers to such an array as a
nested array.

Styles are maintained on a per-array basis in nested arrays, and the startStyle
parameter of DrawShape is always treated as though it were the first array
element of the topmost array. Therefore, compound shapes and multiple styles
remain intact when nested arrays are combined into larger groupings.

When the DrawShape method processes a nested array, the shapes are drawn in
ascending element order and drawing begins with the style of the parent array.
Although the drawing style may change while processing the elements of an
individual array, that style applies only to the elements of that particular array.
Therefore, if an array happens to be an element of another array—that is, a nested
array—style changes in the nested array affect the processing of its subsequent
elements but the drawing style of the parent array is restored after the last element
of the nested array is processed.

C H A P T E R 1 3

Drawing and Graphics

Using the Drawing Interface 13-11

For example, you might nest arrays to create the hierarchy of shapes and styles
depicted in Figure 13-9.

Figure 13-9 Example of nested shape arrays

If the nested shape array depicted in Figure 13-9 were passed to the DrawShape
function, the results summarized in Table 13-1 would occur.

The Transform Slot in Nested Shape Arrays 13

Within a single shape array, the transform slot is treated like a style frame: only
one transform is active per array; if another transform is specified within the array,
the previous transform is overridden. Within nested arrays, however, the transform
slot is treated a little differently than most style slots. As the DrawShape method
descends into nested arrays of shapes, changes to the transform slot are
cumulative; the resulting transform is the net sum of all the transforms in the
hierarchy. For example, if in Figure 13-9 startStyle has a transform of 10,10 and
Style 3 has a transform 50,0 then shapes 2a, 2b, 1, 3a would be drawn offset by
10,10 but Shape 3b would be drawn offset by 60,10.

Table 13-1 Summary of drawing results

Shape Style

2a 2

2b 2

3a startStyle

3b 3

1 startStyle

Style 2 Shape 3a

Shape 2a Style 3

Shape 2b Shape 3b

Start Style Shape 1

C H A P T E R 1 3

Drawing and Graphics

13-12 Using the Drawing Interface

Default Transfer Mode 13

The default transfer mode is actually a split state: bitmaps and text are drawn with
a modeOR transfer mode, but other items (geometric shapes, pens, and fill patterns)
are drawn with a modeCOPY transfer mode. However, when you actually specify a
transfer mode (with a non-nil value in the transferMode slot of the style
frame), all drawing uses the specified mode.

Transfer Modes at Print Time 13

Only a few transfer modes are supported for printing. Only modeCOPY, modeOR,
and modeBIC may be used; other modes may produce
unexpected results.

Note
Most problems occur when using PostScript
printers, so you should test your code on
LaserWriters as well as StyleWriters. ◆

Controlling Clipping 13
When the system draws a shape in a view for which the vClipping flag is set, it
draws only the part that fits inside the view in which drawing takes place. Any parts
of the shape that fall outside the boundaries of that view are not drawn, as if they
have been cut off or clipped. The term clipping refers to this view system behavior;
in common usage, the shape is said to have been “clipped to the destination view.”

Note
Although the view system allows drawing outside the boundaries
of a view for which the vClipping flag is not set, it does not
guarantee that drawing outside the boundaries of the view will
occur reliably. You need to make your destination view large
enough to completely enclose the shapes you want to draw. You
could also set the destination view’s vClipping flag to clip
drawing to the bounds of the destination view. Note also that an
application base view that is a child of the root view always clips
drawing to its boundaries. ◆

When no other clipping region is specified and vClipping is set, the boundaries
of the destination view define the region outside of which drawing does not occur.
This area is known as the clipping region. If you want to specify different clipping
regions, you can use the style frame’s clipping slot to do so. Because drawing is
always clipped to the boundaries of the destination view, regardless of any other
clipping region you specify, you cannot use the clipping slot to force drawing
outside the boundaries of a view.

C H A P T E R 1 3

Drawing and Graphics

Using the Drawing Interface 13-13

If the style frame includes a clipping slot, the drawing of all shapes affected by
this style frame is clipped according to the value of the clipping slot. If the
value of the clipping slot is nil or if the clipping slot is not supplied, the
clipping behavior of the destination view is used.

If the clipping slot contains a region shape, that region is used as the clipping
boundary for drawing operations affected by this style frame. If the clipping slot
contains an array of shapes or regions, the system passes the contents of the
clipping slot to the MakeRegion function to automatically create a new
clipping region from the contents of this slot.

Note
Although putting an array of shapes in the clipping slot may
seem convenient, it significantly increases the time required to
process the style frame. For best performance from the view
system, do not use this shortcut in style frames that are used
repeatedly. ◆

Transforming a Shape 13
The transform slot changes the size or location of a shape without altering the
shape itself. It accepts an array specifying an x, y coordinate pair or a pair of
rectangles. The x, y coordinate arguments relocate a shape by specifying an offset
from the origin of the destination view’s coordinate plane. The rectangle arguments
specify a mapping of the source and destination views that alters both the size and
location (offset) of the source view when it is drawn in the destination view.

The rectangle arguments work the same way as the parameters to the
ScaleShape function (although transforms won’t accept nil for the boundaries
of the source rectangle): the size of the shape is changed proportionately according
to the dimensions of the destination rectangle, and the coordinates of the
destination rectangle can also be used to draw the shape in a new location.

The following code fragments demonstrate the use of offset coordinates and
mapping rectangles as the value of the transform slot:

transform: [30,50],// offset shapes by 30 h and 50 v

or
transform:

[SetBounds(0,0,100,100),SetBounds(25,25,75,75)],
// half width and height, centered in relation to
// the original object(not the view) assuming that
// the first rect actually specified correct bounds

C H A P T E R 1 3

Drawing and Graphics

13-14 Using the Drawing Interface

Using Drawing View Classes and Protos 13
Four view classes and three protos, which you can use to create your own templates,
are built into the system. The view classes include:

■ clPolygonView —displays polygons or ink, or accepts graphic or ink input.

■ clPictureView—displays a bitmap or picture object shape.

■ clEditView—edits views that can accept both text and graphic user input.

■ clRemoteView—displays a scaled image of another view.

The protos include:

■ protoImageView—provides a view in which you can display, magnify, scroll,
and annotate images.

■ protoThumbnail—is used in conjunction with a protoImageView. It
displays a small copy of the image with a rectangle representing the location and
panel in the image.

■ protoThumbnailFloater—provides a way to use a thumbnail, but also
adjusts the thumbnail’s size to reflect the aspect ratio of the image that it contains.

Displaying Graphics Shapes and Ink 13

Use the clPolygonView class to display polygons and ink, or to accept graphic
or ink input. The clPolygonView class includes these features:

■ Shape recognition and editing, such as stretching of shapes from their vertices,
view resizing, scrubbing, selection, copying to clipboard, duplicating, and other
gestures, as controlled by the setting of the viewFlags slot.

■ Snapping of new line endpoints to nearby vertices and midpoints of existing shapes.

■ Automatic resizing to accommodate enlarged shapes (when the view is enclosed
in a clEditView). This feature is controlled by the vCalculateBounds flag
in the viewFlags slot.

Views of the clPolygonView class are supported only as children of views of the
clEditView class. In other words, you can put a clPolygonView only inside a
clEditView.

You don’t need to create polygon views yourself if you are accepting user input
inside a clEditView. You simply provide a clEditView and when the user
draws in it, the view automatically creates polygon views to hold shapes.

C H A P T E R 1 3

Drawing and Graphics

Using the Drawing Interface 13-15

Displaying Bitmaps, Pictures, and Graphics Shapes 13

You can use a view of the clPictureView class to display a bitmap, picture, or
graphic shape (polygon). The icon slot in this view can contain a bitmap, a picture
object, or a graphic shape.

Displaying Pictures in a clEditView 13

Use the clEditView view class to display and accept text and graphic data in a
view. Views of the clEditView class contain no data directly; instead, they have
child views that contain the individual data items. Pictures are contained in child
views of the class clPictureView. For details on displaying text, see “Using
Views and Protos for Text Input and Display” (page 8-6).

To add a picture to a clEditView, you need to create an appropriate template of
the clPictureView class, add the template to the viewChildren array, and
then open the view or call RedoChildren. You can also use the AddView
method to add the picture to an existing view, and then mark the view as dirty so
that it will be redrawn.

The template holding the PICT items must contain the following slots:

■ viewStationery—which must have the symbol 'pict

■ viewBounds—which is a bounds frame; for example,

RelBounds(0,0,40,40)

■ icon—which is a bitmap frame, a picture object, or a graphic shape

Displaying Scaled Images of Other Views 13

Use the clRemoteView view class to display a scaled image of another view.
This class can be used to show a page preview of a full-page view in a smaller
window, for example.

The view that you want to display inside the remote view should be specified as the
single child of the remote view. This child is always hidden, and is used internally
by the remote view to construct the scaled image.

A clRemoteView should never have more than one view, the scaled view,
otherwise the results are undefined and subject to change.

Here is an example of a view definition of the clRemoteView class:

myRemoteView := {...
viewclass: clRemoteView,
viewBounds: {left: 75, top: 203, right: 178,

bottom: 322},
viewFlags: vVisible+vReadOnly,

C H A P T E R 1 3

Drawing and Graphics

13-16 Using the Drawing Interface

viewFormat: nil,
ViewSetupFormScript: func()

begin
// aView is the view to be scaled
self.stepchildren := [aView];
end,

...};

Translating Data Shapes 13
You can use the global functions PointsToArray and ArrayToPoints to
translate points data between a polygon shape ('polygonShape) and a
NewtonScript array.

Finding Points Within a Shape 13
Use the HitShape function to determine whether a pen event occurred within the
boundaries of the shape. This operation is useful for implementing button-like
behavior in any shape. Possible results returned by the HitShape function include:

nil // nothing hit
true // the primitive shape passed was hit
[2,5] // X marks the shape hit in the following array

// shape := [s,s,[s,s,s,s,s,X,s],s,s]

You can retrieve the shape by using the value returned by the HitShape method
as a path expression, as in the following code fragment:

result := HitShape(shape,x,y);
if result then // make sure non-nil

begin
if IsArray(result) then // its an array path

thingHit := shape.(result);
else

thingHit := shape;// its a simple shape
end

Although the expression shape.(result) may look unusual, it is perfectly
legitimate NewtonScript. For further explanation of this syntax, see the “Array
Accessor” discussion in The NewtonScript Programming Language.

C H A P T E R 1 3

Drawing and Graphics

Using the Drawing Interface 13-17

Using Bitmaps 13
You can dynamically create and destroy bitmaps, draw into them, and perform
operations on them such as rotating, flipping, and sizing. This flexible treatment of
bitmaps allows you to use them as offscreen buffers and for storage of documents
such as fax pages.

You can create and use bitmap images with the drawing bitmap functions. To create
a bitmap you first allocate a bitmap that will contain the drawing with the
MakeBitmap function. Then create a shape with the MakeShape function.
DrawIntoBitmap takes the drawing and draws it into the bitmap. The final step
is to draw the bitmap on the Newton screen with the DrawShape function.

The following example shows how to draw a bitmap. It creates a bitmap by drawing
a shape and draws it onto the screen. This example then rotates the shape, scales it,
and redraws it on the Newton:

bitmapWidth := 90;
bitmapHeight := 120;
vfBlack := 5;

// allocate a new bitmap
bitmap := MakeBitmap(bitmapWidth, bitmapHeight, nil);

// make a shape and draw it into the bitmap
shapes := MakeOval(0, 0, 50, 75);
DrawIntoBitmap(shapes, {fillPattern: vfBlack}, bitmap);

// draw the bitmap
GetRoot():DrawShape(bitmap, {transform: [100, 100]});

// Rotation is a destructive operation: it replaces the
// old bitmap with the new rotated bitmap.
MungeBitmap(bitmap, 'rotateRight, nil);

// translate and scale the bitmap
fromRect := SetBounds(0, 0, bitmapWidth, bitmapHeight);
toRight := 100 + floor(bitmapWidth * 1.25);
toBottom := 200 + floor(bitmapHeight * 1.25);

toRight := 100 + bitmapWidth * 5 div 4;
toBottom := 200 + bitmapHeight * 5 div 4;

toRect := SetBounds(100, 200, toRight, toBottom);

// draw the bitmap again
GetRoot():DrawShape(bitmap, {transform: [fromRect,
toRect]});

C H A P T E R 1 3

Drawing and Graphics

13-18 Using the Drawing Interface

Making CopyBits Scale Its Output Bitmap 13
CopyBits uses the bounds of the bitmap passed to it to scale the bitmap that it
draws; so, by changing the bounds of the bitmap passed to CopyBits, you can
make this method scale the bitmap it draws. If you want to scale the output bitmap
without changing the bounds of the original, call ScaleShape on a clone of the
original bitmap and pass the modified clone bitmap to the CopyBits method.

Storing Compressed Pictures and Bitmaps 13
NTK supports limited compression of pictures and bitmaps. If you store your
package compressed (using the “optimize for space” setting), all items in your
package are compressed in small (approximately 1 KB) pages, rather than object
by object.

You can use the NTK compile-time function GetNamedResource to get a
Macintosh PICT resource that can be drawn on the Newton in a view of the
clPictureView class. PICT resources are generally smaller than bitmap
frames because each bitmap within the PICT resource contains compressed
bitmap data.

Note
This information applies to the Mac OS version of NTK; the
Windows version differs. See the Newton Toolkit User’s Guide
for details. ◆

Capturing a Portion of a View Into a Bitmap 13
Use the ViewIntoBitmap method to capture a portion of a specified view into a
specified bitmap. This function does not provide scaling capability, although
scaling can be accomplished by passing the destBitmap bitmap returned by this
method to the DrawIntoBitmap function as the value of its shape parameter.
Figure 13-10 shows the relationships between the view to be captured, the source
rectangle, the destination bitmap, and the destination rectangle.

C H A P T E R 1 3

Drawing and Graphics

Using the Drawing Interface 13-19

Figure 13-10 Example of ViewIntoBitmap method

Rotating or Flipping a Bitmap 13
Use the MungeBitmap function (page 10-22) to perform various bitmap operations
such as rotating or flipping the bitmap. These operations are destructive to the bitmap
passed as an argument to this function; the bitmap is modified in place and the
modified bitmap shape is returned. Figure 13-11 illustrates how the MungeBitmap
function works. See “Using Bitmaps” (page 13-17) for a code example.

Figure 13-11 Example of MungeBitmap method

(0, 0)

(0, 0)

(50, 100)

(10, 10)

srcRect

destBitmap destRect

view to capture

(115, 310)

(15, 10)

myBitmap

myBitmap
after calling
MungeBitmap (myBitmap, 'rotateLeft);

(315,110)

(15, 10)

C H A P T E R 1 3

Drawing and Graphics

13-20 Using the Drawing Interface

Importing Macintosh PICT Resources 13
The following information applies to the Mac OS version of NTK; the Windows
version differs. See the Newton Toolkit User’s Guide for details.

A Macintosh PICT resource can be imported into the Newton in two ways: as a
bitmap or as a picture object. A Macintosh PICT resource is stored much more
compactly on the Newton as a picture object; however, it may be slower to draw
than a bitmap. The same Macintosh PICT resource may occupy much more space
when imported as a bitmap, but may draw significantly faster. The method you
should use depends on whether you want to optimize for space or speed.

A Macintosh PICT resource is imported as a bitmap by using the slot editor for the
icon slot (an editor of the picture type). Alternatively, the resource can be
imported as a picture object by using the GetResource or GetNamedResource
compile-time functions available in NTK. In this case, you must use an
AfterScript slot to set the value of the icon slot to the picture object obtained
by one of these resource functions.

Note
The constant clIconView can also be used to indicate a
view of the clPictureView class. These two constants
have identical values. ◆

Here is an example of a template defining a view of the clPictureView class:

aPicture := {...
viewClass: clPictureView,
viewBounds: {left:0, top:75, right:150, bottom:175},
viewFlags: vVisible+vClickable,
icon: myPicture,

...}

Drawing Non-Default Fonts 13
You can draw a font other than the default font by putting the font specifier style
frame close to the text shape so that another style frame won’t override it. Use
either DrawShape or MakePict.

There are several places where it might seem reasonable to put the style frame with
the font specifier. DrawShape takes a style argument, so you could place it there:

:DrawShape(myText, {font: '{family: someFont,
face: 0, size: 9 }});

You can embed a style frame in an array of shapes:

:DrawShape ([{font: ...}, myText, shape], nil);

C H A P T E R 1 3

Drawing and Graphics

Using the Drawing Interface 13-21

You can also use MakePict:

myText := MakePict([{penpattern: 0, font: ...}, rect,
{font: ...}, txtshape], {font: ...});

You can set the font in locations with MakePict. In this case the font gets
“encapsulated” into the PICT.

If the {penpattern} frame was not present in the picture shape, any of the above
places should suffice to set the font.

PICT Swapping During Run-Time Operations 13
To set a default picture for a clPictureView, use NTK’s picture slot editor to set
the icon slot of the clPictureView. You may select a PICT resource from any
resource file that has been added to your project. The picture will be converted on
the Macintosh from a type 1 or 2 PICT into a bitmap, and stored in your package at
compile time. To change this picture at run time, you need to keep a reference to
each alternate picture or bitmap. This is done using DefConst at compile time in
a text file as follows:

OpenResFile(HOME & "Photos Of Ralph.rsrc");
// Here we convert a PICT 1 or PICT 2 into a BitMap.
// This is what NTK's picture slot editor does.
DefConst('kPictureAsBitMap,

GetPictAsBits("Ralph", nil));

// Here the picture is assumed to be in PICT 1 format.
// If it is not, the picture will not draw and you may
// throw exceptions when attempting to draw the object.
DefConst('kPictureAsPict,

GetNamedResource("PICT", "Ralph", 'picture));

// Verify this is a Format 1 PICT object!
if ExtractWord('kPictureAsPict, 10) <> 0x1101 then

print("WARNING: Ralph is not a Format 1 PICT
resource!");

// This is one way to get the picture's bounds
// information. You can also extract it from the
// picture's own bounds rectangle at either compile time
// or run time, by using ExtractWord to construct each
// slot of a bounds frame.
DefConst('kPictureAsPictBounds,

PictBounds("Ralph", 0, 0));

CloseResFile();

C H A P T E R 1 3

Drawing and Graphics

13-22 Using the Drawing Interface

Notice that there are two types of pictures: bitmaps (a frame with bits, a
bounds, and mask slots) and Format 1 PICTs (binary objects of class picture).
clPictureView can draw both of these types of objects,
so you just need to choose a format and use SetValue on the icon slot,
as follows:

SetValue(myView, 'icon, kPictureAsBitMap);
or

SetValue(myView, 'icon, kPictureAsPict);

Optimizing Drawing Performance 13
You can use several methods to make drawing functions execute faster.

If you have a fairly static background picture, you can use a predefined PICT
resource. Create the PICT in your favorite drawing program, and use the PICT as
the background (clIconView). The graphics system also has a picture-making
function that enables you to create pictures that you can draw over and over again.

If you want to improve hit-testing of objects, use a larger view in combination with
a ViewDrawScript or a ViewClickScript rather than using smaller views
with an individual ViewClickScript. This is especially true of a view that
consists of regular smaller views.

C H A P T E R 1 3

Drawing and Graphics

Summary of Drawing 13-23

Summary of Drawing 13

Data Structure 13

Style Frame 13

aStyle := {
transferMode : constant, // transfer mode for the pen
penSize : integer, // size of the pen in pixels
penPattern : constant, // the pen pattern
fillPattern : constant, // the fill pattern
font : string, // font to use for drawing text
justification : symbol, // alignment of text
clipping : shape, region, or array of shapes, // specifies clipping
transform : array, // offsets or scales the shape

View Classes 13

clPolygonView 13

clPolygonView := {
viewbounds : int, // size of view and location
points : struct, // binary data structure containing

polygon data
ink : struct, // binary data structure containing ink data
viewFlags : const, // controls the recognition behavior of

the view
viewFormat : const, // controls appearance of the view

clPictureView 13

clPictureView := {
icon : bitmap, graphic shape, picture, // icon to display
viewBounds: int, // size and location of the view
viewFlags : const, // controls the recognition behavior of

the view
viewFormat : const, // controls appearance of the view

C H A P T E R 1 3

Drawing and Graphics

13-24 Summary of Drawing

clRemoteView 13

clRemoteView := {
stepChildren : int, // specifies a single view
viewBounds: int, // size and location of the view
viewFlags : const, // controls the recognition behavior of

the view
viewFormat : const, // controls appearance of the view

Protos 13

protoImageView 13

aProtoImageView := {
_proto: ProtoImageView,
Image : shape,
Annotations : array,
scalingInfo : frame,
viewBounds : boundsFrame,
viewJustify: justificationFlags,
viewFormat : formatFlags,
zoomStops : array,
dragCorridor : integer,
grabbyHand : shape,
myImageView:penDown : function, // drags image
myImageView:ScalingInfoChanged : function, // called when

scaling changes
myImageView:Setup : function, // initializes the image
myImageView:OpenImage : function, // opens image
myImageView:ToggleImage : function, // closes image
myImageView:GetScalingInfo : function, // returns scaling

information
myImageView:HasAnnotations : function, // returns annotation

information
myImageView:GetAnnotations : function, // returns an array of

 views
myImageView:SetAnnotationMode : function, // sets display

behavior
myImageView:GetAnnotationMode : function, // returns a symbol
myImageView:TargetChanged : function, // called when

annotation is changed
myImageView:CanScroll : function, // returns scrolling

 information
myImageView:ScrollTo : function, // scrolls an image

C H A P T E R 1 3

Drawing and Graphics

Summary of Drawing 13-25

myImageView:ScrollBy : function, // scrolls an image
myImageView:ZoomBy : function, // makes an image larger

or smaller
myImageView:ZoomTo : function, // changes the size of

the image
myImageView:CanZoomBy : function, // changes the size of

 the image
myImageView:ZoomToBox : function, // resizes the image
...
}

protoThumbnail 13

protoThumbnail : = {
_proto: protoThumbnail,
ImageTarget : view,
Image : shape or bitmap,
viewBounds : boundsFrame,
viewJustify : justificationFlags,
trackWhileScrolling : integer, // tracks the grey box
myThumbnail:Setup : function, // prepares thumbnail
myThumbnail:OpenThumbnail : function, // opens thumbnail
myThumbnail:ToggleThumbnail : function, // opens or closes

thumbnail
myThumbnail:Update : function, // renders thumbnail view
myThumbnail:GetScalingInfo : function, // returns scaling

information
myThumbnail:PrepareToScroll : function, // prepares for

scrolling
myThumbnail:ScrollTo : function, // scrolls a view
myThumbnail:DoneScrolling : function, // cleans up a scroll
operation
...
}

protoThumbnailPointer 13

protoThumbnailPointer : = {
_proto: protoThumbnailPointer,
ImageTarget : view,
Image : shape,
viewBounds : boundsFrame,
viewJustify : justificationFlags,

C H A P T E R 1 3

Drawing and Graphics

13-26 Summary of Drawing

trackWhileScrolling : integer, // tracks the grey box
...
}

Functions and Methods 13

Bitmap Functions 13

MakeBitmap(widthInPixels, heightInPixels, optionsFrame)
DrawIntoBitmap(shape, styleFrame, destBitmap)
MungeBitmap(bitmap, operator, options)
view:ViewIntoBitmap(view, srcRect, destRect, destBitmap)

Hit-Testing Functions 13

HitShape(shape,x,y)
PtInPicture(x,y,bitmap)

Shape-Creation Functions 13

MakeLine (x1, y1, x2, y2)
MakeRect (left, top, right, bottom)
MakeRoundRect (left, top, right, bottom, diameter)
MakeOval (left, top, right, bottom)
MakeWedge (left, top, right, bottom, startAngle, arcAngle)
MakePolygon (pointArray)
MakeShape (object)
MakeRegion (shapeArray)
MakePict (shapeArray, styleFrame)
MakeText (string, left, top, right, bottom)
MakeTextLines(string, bounds, lineheight, font)
TextBox(text, fontFrame, bounds)

Shape Operation Functions and Methods 13

GetShapeInfo(shape)
view:DrawShape (shape, styleFrame)
OffsetShape (shape, deltaH, deltaV)
ScaleShape (shape, srcRect, dstRect)
ShapeBounds (shape)
InvertRect(left, top, right, bottom)
InsetRect(rect, deltax, deltay)

C H A P T E R 1 3

Drawing and Graphics

Summary of Drawing 13-27

IsPtInRect(x, y, bounds)
FitToBox(sourceBox, boundingBox, justify)
OffsetRect(rect, deltaX, deltaY)
SectRect(rect1, rect2)
UnionRect(rect1, rect2)
RectsOverlap(rect1, rect2)

Utility Functions 13

view:DoDrawing(drawMethodSym,parameters)
view:CopyBits(picture, x, y, mode)
DrawXBitmap(bounds,picture,index,mode)
view:LockScreen(lock)
IsPrimShape(shape)
PointsToArray(polygonShape)
ArrayToPoints(pointsArray)

About Newton Sound 14-1

C H A P T E R 1 4

Sound 14Figure 14-0
Table 14-0

This chapter describes how to use sound in your application and how to manipulate
Newton sound frames to produce pitch shifting and other effects.

You should read this chapter if you are attempting to use sound in an application.

This chapter provides an introduction to sound, describing:

■ sounds, sound channels, and sound frames

■ specific tasks such as creating a sound frame, playing a sound, and manipulating
sound frames

■ methods, functions, and protos that operate on sound

About Newton Sound 14

This section provides detailed conceptual information on sound functions and
methods. Specifically, it covers the following:

■ overview of sound and the sound channel

■ sounds related to user events

■ a brief description of the sound frame

■ new functions, methods, and messages added for NPG System Software 2.0, as
well as extensions to sound code

Newton devices play only sampled sounds; sound synthesis is not supported.
However, a number of built-in sounds are supplied in the Newton ROM that you
can use in your application. See “Sound Resources” (page 11-10) in the Newton
Programmer’s Reference for complete details. You can also use the Newton Toolkit
(NTK) to create custom sounds on desktop computers.

A Newton sound is represented as a sound frame. You can easily associate any
sound with a certain events or play sound frames programmatically. The system
allows you to play sound frames synchronously or asynchronously.

C H A P T E R 1 4

Sound

14-2 About Newton Sound

All operations on sound frames are created by sending messages to a sound
channel that encapsulates the sound frame and the methods that operate on it.
Sound channels can play sampled sounds starting from any point within the data.
For more advanced uses of sound you can open a sound channel which allows
multiple channels to play simultaneously, or multiple sounds to be queued in a
single channel. You use a sound channel by sending messages to a sound channel
frame. Additionally, playback can be paused at any point in the sample data and
later resumed from that point.

Sound channels have the following characteristics:

■ There is no visual representation of a sound to the user.

■ Sound channels must explicitly be created and destroyed.

The creation and disposal of sound channels follow this model:

■ To create a sound channel, you send the Open message to a sound channel frame.

■ To dispose of the sound channel, you send the Close message to it.

Event-related Sounds 14
Views can play sounds to accompany various events. For example, the system
plays certain sounds to accompany user actions such as opening the Extras Drawer,
scrolling the Notepad, and so forth.

Sounds in ROM 14

The system provides a number of sounds in ROM that are played to accompany
various events. See “Sound Resources” (page 11-10) in the Newton Programmer’s
Reference for complete details.

Sounds for Predefined Events 14

All views recognize a set of predefined slot names that specify sounds to
accompany certain system events. To add a ROM-based sound to one of these
events, store the name of the ROM-based sound in the appropriate view slot.

The following predefined slots can be included in views to play event-related sounds:

showSound The sound is played when the view is shown.

hideSound The sound is played when the view is hidden.

scrollUpSound The sound is played when the view receives a
ViewScrollUpScript message.

scrollDownSound
The sound is played when the view receives a
ViewScrollDownScript message.

C H A P T E R 1 4

Sound

About Newton Sound 14-3

For example, to play a sound in ROM when the view opens, place its name in the
view’s showSound slot.

In fact, all ROM_soundName constants are pointers to Newton sound frames stored
in ROM. Instead of using one of these constants; however, you can store a Newton
sound frame in a slot, causing the sound stored in that frame to play in
accompaniment to the event associated with that slot. The next section describes
the format of a Newton sound frame.

Sound Data Structures 14
Three data structures are related to sounds: a sound frame, a sound result frame,
and a protoSoundChannel.

A sound frame stores sound sample data and additional information used internally
by the system. A sound result frame returns information to the sound frame when
the sound channel stops or pauses. Like any other frame, a sound frame and sound
result frame cannot be greater than 32 KB in size. See “Sound Data Structures”
(page 11-1) in the Newton Programmer’s Reference, for a complete list of slots
required by for both types of frames.

The protoSoundChannel provides methods that implement pause and playback
of sounds and completion callbacks. It also provides query methods that return
whether the sound is running or paused.

If you are providing custom sounds, you can store them as virtual binary objects.
An example of storing a sound as a VBO is given in Chapter 11, “Data Storage and
Retrieval.”.

Compatibility 14
Sound frames have been extended so that those in version 1.x can be played
without modification by devices based on version 2.0 of the Newton ROM. Not all
Newton 2.0 sound frames can be played by older Newton devices.

Two new functions have been added: PlaySoundAtVolume and
PlaySoundIrregardless. PlaySoundAtVolume plays a sound specified by
the sound frame at a specific volume level. PlaySoundIrregardless plays a
sound no matter what the user’s settings are.

C H A P T E R 1 4

Sound

14-4 Using Sound

Using Sound 14

This section describes how to use sound to perform specific tasks. See Newton
Toolkit User’s Guide for descriptions of the functions and methods discussed in
this section.

Creating and Using Custom Sound Frames 14
The following information applies to the Mac OS version of NTK. The Windows
version differs; see the Newton Toolkit User’s Guide for details.

The compile-time functions GetSound and GetSound11 allow you to use the
Newton Toolkit to create Newton sound frames from Mac OS 'snd ' resource
data. This section summarizes the main steps required to create custom sound
frames from Mac OS'snd ' resources in NTK; for a complete discussion of this
material, see the Newton Toolkit User’s Guide.

Follow these steps to add a custom sound to your application:

1. Include the sound resource file in your application’s NTK project.

2. In your application, create an evaluate slot to reference the sound frame through
a compile-time variable.

3. In your Project Data file

n Open the sound resource file with OpenResFile or OpenResFileX.

n If using OpenResFileX, store the file reference it returns.

n Use the functions GetSound11 or GetSound to obtain the sound frame.

n Use a compile-time variable to store the sound frame returned by GetSound
or GetSound11.

n Use the function CloseResFile or CloseResFileX, as appropriate, to
close the sound resource file. If you use the CloseResFileX function, you
need to pass as its argument the saved file reference originally returned by
OpenResFileX.

4. In your application

n Set the value of the evaluate slot to the name of the compile-time variable
that stores the sound frame.

n Pass the name of the evaluate slot as the argument to the PlaySoundSync
function. These run-time functions play sound from anywhere in your code.

C H A P T E R 1 4

Sound

Using Sound 14-5

Creating Sound Frames Procedurally 14
To create a sound frame, you usually need to create a copy of the sound frame you
wish to modify. Because you cannot modify sound frames in ROM, you must copy
the sound frame in order to modify the binary
sample data.

Cloning the original version of a sound frame you want to modify also allows you
to reset values to their original state and provides a means of recovering the original
sound frame easily if an operation fails.

Cloning Sound Frames 14

You can use the Clone function to make a modifiable copy of the sound frame by
passing the frame or its reference to Clone and saving the result in a variable, as in
the following example:

clonedSound := clone(ROM_simpleBeep);

This technique is an extremely efficient means of creating a modifiable sound
frame, because the copy created is a shallow clone; that is, the cloned frame
clonedSound does not actually store a copy of the ROM_simpleBeep binary
data. Instead, the clonedSound frame stores a pointer to the ROM data in its
samples slot. Thus, the clonedSound frame is fairly lightweight in terms of
overhead in the NewtonScript heap.

Playing Sound 14
Newton system software plays sound in two ways. The first is to use the global
sound functions PlaySoundAtVolume or PlaySoundIrregardless. The
other way is to instantiate a sound playback channel and send messages to it. Each
approach has benefits and drawbacks. Using the global functions is the simplest
and most efficient approach, but it offers less control than sending messages to a
sound channel.

Sound channels are appropriate for applications that require greater control over
playback, such as one that allows pausing playback and sound completion. Sound
channels are also useful for games, which might require having many sounds
available on short notice or playing multiple sounds at the same time.

Using a Sound Channel to Play Sound 14

Using a sound channel to play a sound is accomplished by creating a sound
channel and sending the Start message to it.

C H A P T E R 1 4

Sound

14-6 Using Sound

Creating a Sound Channel for Playback 14

You create a sound channel by sending it the Open function.

The code that creates a sound channel for playback might look like the
following example:

mySndChn := {_proto:protoSoundChannel};
mySndChn:Open();

Playing Sounds 14

Once you create the sound channel, you can use any of the following methods to
control the sound.

Schedule—queues the sound for play.

Start—starts playing the sounds in the order that they were scheduled.

Stop—stops all scheduled sounds including currently playing sounds, if any.

Pause—temporarily stops the current playback process in the specified
sound channel.

IsPaused—checks to see if the sound channel is paused.

IsActive—checks to see if the sound channel is playing.

Deleting the Sound Channel 14

When finished with the sound channel, you need to dispose of it by sending the
Close message to it. Most applications can dispose of the sound channel as soon
as playback is completed; the callback function associated with a sound frame is an
appropriate way to send the Close message to the channel.

Note
The system sound channel is never automatically disposed of even
if the sound channel frame is garbage collected. You must send
the Close message to the channel to dispose of the system
sound channel. ◆

Playing Sound Programmatically 14
You can use any of the global functions to play sound programmatically. For
example, you might want to play a sound when the user taps a button, or when
a lengthy operation is complete. Sounds can be played synchronously or
asynchronously, as described in the following section.

C H A P T E R 1 4

Sound

Using Sound 14-7

Synchronous and Asynchronous Sound 14

When a sound is played asynchronously, the playback can be intermixed with other
tasks because the system does not wait for the sound to finish before beginning
another task (such as updating the user interface, allowing user feedback; for
example with buttons, or playing a subsequent sound).

When playback must be allowed to complete, use the PlaySoundSync,
PlaySoundAtVolume, or PlaySoundIrregardless to guarantee
uninterrupted playback. Synchronous playback is generally preferred unless the
sound is so long as to be tedious or the application requires a high degree of
responsiveness to the user. The NewtonScript interpreter can do nothing else until
it completes synchronous playback.

Both approaches have benefits and drawbacks: synchronous playback can block
other NewtonScript code from running when it’s inconvenient to do so; on the
other hand, asynchronous playback is never guaranteed to complete. Your use of
synchronous or asynchronous sound playback depends on your application’s needs.

Differences Between Synchronous Asynchronous Playback 14

The following code example demonstrates the difference between asynchronous
playback and synchronous playback. To hear the demonstration of the two types
of sound playback, type following code example into the Inspector as it is shown
here, select all of these lines, and press Enter:

print ("Synchronous sound demo");
call func()

begin
for i := 0 to 20 do
PlaySoundSync(ROM_simplebeep);

end with();

print ("Async sound demo");
call func()

begin
for i := 0 to 20 do
PlaySoundSync(ROM_simplebeep);

end with();

The synchronous sound playback example plays the ROM_simplebeep sound
twenty times; the sound plays its entire length each time. Twenty repetitions may
seem a bit laborious until you hear how quickly the same calls are made in
asynchronous mode.

Note that the asynchronous version can call the sound chip so fast that the sound
does not have enough time to finish playing; as a result, part of the playback is

C H A P T E R 1 4

Sound

14-8 Using Sound

clipped off with each new call to the PlaySoundSync function. In fact, it’s likely
that you won’t hear twenty sounds in the asynchronous playback demo; the calls
occur faster than the Newton sound chip can respond.

About the Sound Chip 14

The Newton sound chip requires about 50 milliseconds to load a sound and begin
playing it. It also requires about 50 milliseconds to clear its registers and ready
itself for the next call after playback completes. Although most applications are not
affected by this timing information, it is included for interested developers, along
with the caveat not to rely on the ramp-up and ramp-down times specified here
because they may change in future Newton devices.

Generating Telephone Dialing Tones 14

Applications can use the Dial view method and the RawDial global function to
generate telephone dialing tones from NewtonScript. It is strongly recommended
that you use these functions rather than attempt to generate dialing tones yourself.
These functions produce dialing tones that meet the standards for all countries in
which Newton devices are available, sparing the application developer the effort of
dealing with widely varying telephone standards.

If you need to perform other actions while generating dialing tones, such as posting
status messages as various parts of the phone number are dialed, you can use the
global function RawDial to dial asynchronously. The RawDial function accepts
the same arguments as the Dial method; however, it dials asynchronously.

Note that both dialing functions map alphanumeric characters to the dialing tones
that a standard telephone keypad produces for these characters. Standard telephone
keypads do not implement the letters Q and Z; the Dial method and RawDial
function map these letters to the tone for the digit 1. Pound (#) and asterisk (*)
characters are mapped to the same tones that a standard telephone keypad provides
for these characters.

Certain phone systems, such as those used for PBX and military applications, also
generate special tones (DTMF dialing tones) for the letters A–D. Because the
Newton ROM does not generate these special tones, its dialing functions map the
characters A, B, C, and D to the tones they generate on a standard telephone keypad.

Advanced Sound Techniques 14
This section describes advanced techniques for manipulating the sound frame or its
playback. The topics discussed include pitch shifting and manipulating sample data
to produce altered sounds.

C H A P T E R 1 4

Sound

Using Sound 14-9

Pitch Shifting 14

In general, you can set the value of a sound frame’s samplingRate slot to any
float value less than that specified by the kFloat22kRate constant. However, this
usually results in poor sound quality. What generally works best is to take an 11
kHz sound and play it at some higher rate. Of course, 22 kHz sound resources
cannot be played at any higher sampling rate.

You can experiment with pitch shifting by playing sounds in the Inspector using
the PlaySoundSync function. You can use any of the ROM sounds or your own
custom sounds. The following example shows how to shift a sound’s pitch by
altering the value of the sound frame’s samplingRate slot. Remember when
setting this slot that samplingRate must be a value of type float.

// keep a copy of original for future use
origSound := clone(ROM_simpleBeep);

// make a copy to modify
mySound := Clone(origSound);

// play the original sound
PlaySoundSync(mySound);

// play at half original pitch
mySound.samplingRate := origSound.samplingRate/2;
PlaySoundSync(mySound);

// note how easily we can return to normal pitch
mySound.samplingRate := origSound.samplingRate;

// play at twice speed
mySound.samplingRate := origSound.samplingRate*2;
PlaySoundSync(mySound);

By using the output from a control view to alter the value of the sound frame’s
samplingRate slot, you can allow the user to interactively modify the pitch of
playback. The following example code changes the value of the samplingRate
slot according to the setting of a protoSlider view:

theSlider.changedSlider := func()begin
if viewValue = maxValue then

mySound.samplingRate := originalRate
else mySound.samplingRate := (viewValue*1.01);

PlaySoundSync(mySound);
end

C H A P T E R 1 4

Sound

14-10 Using Sound

For an example that uses output from a view based on the protoKeypad
prototype, see the Newton DTS sample code on this topic.

Manipulating Sample Data 14

This section describes how to use the utility functions ExtractByte and
StuffByte to manipulate individual bytes in sound sample data. Because of
performance considerations, you’ll want to manipulate sample data on the Newton
only when it’s absolutely necessary. Even simple operations, like the example here,
can take a long time to perform on a relatively small sound sample.

The following example, extracts bytes from the end of the sample data and adds
them to its beginning, thus reassembling the samples in reverse order to create a
“backwards” sound.

// backwardSound is a slot in the app’s base view
// if it’s nil then create the backward sound
if (not backwardSound) then
begin
// get a frame to work with

backwardSound := deepclone(ROM_funbeep);
// a var to store the modified sample data

local sampleHolder := Clone(backwardSound.samples);
local theSize := Length(sampleHolder) -1 ;

// Copy bytes from one end of the binary object
// to the other.

for i := 0 to theSize do
StuffByte(backwardSound.samples,i,

ExtractByte(sampleHolder,theSize-i));
end;

A better solution is to provide the backwards sound as a resource that can be
played just like any other sound; a number of sound editors are available to create
such a resource on a desktop computer.

C H A P T E R 1 4

Sound

Summary of Sound 14-11

Summary of Sound 14

Data Structures 14

SndFrame Structure 14

mySndFrame := {
_proto: mySndFrame,
sndFrameType : symbol, // specifies format
samples : frame, // contains sampled binary data
samplingRate : integer /floating point, // specifies playback rate
compressionType : integer, // indicates no compression
dataType : integer, // indicates size of sample in bits
start : integer, // index of first sample to play
count : integer, // number of samples to play
loops : integer, // time to repeat sound
Callback : function, // indicates the state of the sound

SndResult Structure 14

mySndResult := {
_proto: mySndResult,
sound : integer, // reference to soundFrame that was paused
index : function, // index of sample that was paused/stopped

Protos 14

protoSoundChannel 14

aProtoSoundChannel := {
_proto: protoSoundChannel,
Open : function, // opens sound channel
Close : function, // closes sound channel
Schedule : function, // queues sound for play
Start : function, // starts sound channel
Stop : function, // stops sound channel
Pause : function, // pauses playback
IsPaused : function, // checks if sound channel is paused
IsActive : function, // checks if sound channel is active
...
}

C H A P T E R 1 4

Sound

14-12 Summary of Sound

Functions and Methods 14

view:Dial(numberString,where)
GetVolume()
PlaySoundSync(soundFrameRef)
RawDial(number, where)
SetVolume(volume)
PlaySoundAtVolume(soundFrameRef, volume)
PlaySoundIrregardless(soundFrameRef)
PlaySoundIrregardlessAtVolume(soundFrameRef, volume)
PlaySoundEffect(soundFrameRef, volume, type)
Clicker()

Sound Resources 14

ROM_alarmWakeup // alarm sound
ROM_click // click sound
ROM_crumple // paper crumpling sound
ROM_drawerClose // drawer closing sound
ROM_drawerOpen // drawer opening sound
ROM_flip // page flipping sound
ROM_funBeep // trill sound
ROM_hiliteSound // squeek sound
ROM_plinkBeep // xylo sound
ROM_simpleBeep // bell sound
ROM_wakeupBeep // power on sound
ROM_plunk // paper hitting trash sound
ROM_poof // puff of air sound

About Filing 15-1

C H A P T E R 1 5

Filing 15Figure 15-0
Table 15-0

This chapter describes how your application can support the Filing service. This
service allows the user to

■ associate data items with folders displayed by the user interface

■ create, edit, or delete folders at will

■ specify the store on which a soup entry is to reside when it is filed

Before reading this chapter, you should understand the use of views to image data,
as explained in Chapter 3, “Views.” You should also understand the contents of
Chapter 11, “Data Storage and Retrieval,” which describes the soup-based storage
model on which the Filing service is based. If your application does not save data
as soup entries, you need to implement mock entries and related objects to provide
soup-like access to your data, as described in Chapter 12, “Special-Purpose Objects
for Data Storage and Retrieval.”

A related service called the Soupervisor allows the user to file or move all entries
in a specified soup at once. For more information, see the description of this
service in Chapter 19, “Built-in Applications and System Data.”

About Filing 15

The Filing service enables the user to associate data items with tags that represent
folders in the user interface. In most cases, the filed items are soup entries that
reside in their respective soups, rather than in any sort of directory structure. Filing
an item displayed on the screen simply associates its corresponding soup entry
with the tag that represents a particular folder. Soup entries hold this tag in their
labels slot. The Filing service also allows the user to move entries to a specified
store when they are filed.

The currently displayed application data to be filed is referred to as the target of
the filing action. The target may consist of multiple data items; for example, most
applications provide an overview view from which the user can file and move
multiple items simultaneously.

C H A P T E R 1 5

Filing

15-2 About Filing

Your application must provide a target view that can manipulate the target. The
target view is usually the same view that images the target data. Although the
application base view is often an appropriate target view, it may not be under all
circumstances. For example, each of these common situations has specialized
targeting needs:

■ Most applications allow the user to file and move multiple data items from
within an overview view. In this situation, the target may consist of multiple
items, and the overview view is usually the appropriate target view.

■ Applications that display more than one data item at a time, such as the built-in
Notes application, may need to specify which of several equal child views is
actually the target.

■ You might want the target view to be a floating window when one is present,
and the application’s base view at all other times.

You can override the system-supplied GetTargetInfo method to vary the target
and target view according to circumstances.

Applications with less-elaborate targeting needs can use the default
GetTargetInfo method supplied by the system. To use the
default GetTargetInfo method, your application base view must supply
target and targetView slots. You are responsible for updating the values
of these slots whenever the target changes; that is, whenever the data item on
display changes.

To file the target, the user taps a file folder button you provide. This view, which is
based on the protoFilingButton system prototype, looks like a button with a
picture of a paper file folder on it. Figure 15-1 provides two examples of views
based on the protoFilingButton system prototype.

Figure 15-1 Two examples of filing button views

protoFilingButton
views

C H A P T E R 1 5

Filing

About Filing 15-3

When the user taps the protoFilingButton view, it displays the Filing slip
shown in Figure 15-2.

Figure 15-2 Filing slip

The Filing slip displays a set of categories in which the target can be filed. These
filing categories include all folders available to the application that displayed the
Filing slip, as well as the Unfiled category. This slip also provides a close box that
dismisses it without making any changes.

The user can create new folders and edit the names of existing ones by means of
buttons the Filing slip provides for this purpose. When a new folder is created, it
may be designated as visible only from within a specified application; such a folder
is said to be a local folder belonging to the application that created it. Any folder
not created as a local folder is visible from all applications, and is called a global
folder. The system permits the creation of a maximum of twelve local folders per
application and twelve global folders system-wide. The system does not permit the
creation of local and global folders having the same name.

Most applications allow the user to create and view any combination of local and
global folders; however, you can suppress the display of either kind of folder if
necessary. For example, the Extras Drawer displays only its own filing categories
because those created by other applications are not likely to be useful for
organizing the display of application packages, soups, and so on.

When the user adds, removes, or edits filing categories, the folder change
notification service executes your previously registered callback function to
respond appropriately to these changes. You use the RegFolderChanged global
function to register a callback function with this service. The companion function
UnRegFolderChanged unregisters a specified callback function.

stores

Filing slip

filing categories

File button sends FileThis message and closes slip

close box closes slip without
making changes

Edit Folder button allows user to edit or delete filing categories

New button allows user to create new filing categories (folders)

appObjectFileThisOn string

C H A P T E R 1 5

Filing

15-4 About Filing

Filing and other system services display user messages containing a string that is
the user-visible name of your application. For example, this string is used to complete
the text displayed when the user creates a local folder. You need to create in your
application’s base view an appName slot that holds this string. Figure 15-3 depicts
the text displayed when the user creates a folder that is local to the Notepad
application.

Figure 15-3 Creating a local folder

The system determines whether to display global or local folders by testing the
values of optional slots you can supply in the application’s base view. You can set
the value of the localFoldersOnly slot to true to cause the Filing slip and
folder tab views to display only the current application’s local folders. You can set
the value of the globalFoldersOnly slot to true to cause the Filing slip and
folder tab views to display only global folders. When these slots are both nil or
missing, the Filing slip and folder tab display global folders and the current
application’s local folders.

▲ W A R N I N G

The localFoldersOnly and globalFoldersOnly must not
both hold non-nil values at the same time. ▲

Your target view can provide an optional doCardRouting slot to control the
display of the buttons that specify the store on which to file the target. When an
external store is available and the value of the doCardRouting slot is true, the
Filing slip includes buttons that represent available stores.

You must supply the full text of the string that labels this group of store buttons.
This string is held in an appObjectFileThisOn slot that you provide. Similarly,
you must supply the full text of the string labelling the group of buttons that
represent filing categories. This string is held in an appObjectFileThisIn slot
that you provide. Figure 15-2 shows where the Filing slip displays these strings.

"Notepad" string is from appName slot

C H A P T E R 1 5

Filing

About Filing 15-5

When no external store is available or the value of the doCardRouting slot
is nil, the system displays the simplified version of the Filing slip shown in
Figure 15-4.

Figure 15-4 Filing slip without external store

This simplified version of the Filing slip does not include the buttons that allow
the user to choose a store. Note that the string labelling the group of buttons
representing filing categories differs slightly in this version of the Filing slip. This
string is provided by an appObjectFileThisIn slot that your application’s base
view supplies.

Regardless of other options you may have implemented, the Filing slip always
opens with the current filing category selected; for example, the 'business
folder is selected in Figure 15-4. If you include a non-nil
dontStartWithFolder slot in your target view, the Filing slip opens with no
default folder selected. This feature is intended for use when you cannot
necessarily determine a useful default filing category, such as when the target view
is an overview that displays the contents of multiple folders.

When the value of the doCardRouting slot is the 'onlyCardRouting symbol,
the Filing slip does not include the filing category buttons but allows the user to
move the target between available stores without changing its filing category.
Figure 15-5 shows the Filing slip when an external store is available and the value
of the target view’s doCardRouting slot is the 'onlyCardRouting symbol.

Figure 15-5 Filing slip for 'onlyCardRouting

appObjectFileThisIn string

appObjectFileThisOn

C H A P T E R 1 5

Filing

15-6 About Filing

When the user taps the File button, the system

■ invokes the GetTargetInfo method to discover the target and the target view

■ sends the FileThis message to the target view

Your target view must supply a FileThis method that performs any tasks
necessary to file the target, such as the following:

■ moving its soup entry to a different store

■ redrawing the current view

■ setting the target’s labels slot to its new value

■ performing any additional tasks that are appropriate

Your application must provide a folder tab view that

■ indicates the filing category of currently displayed data.

■ allows the user to choose a new filing category to display

The system provides protoNewFolderTab and protoClockFolderTab
system prototypes you can use to create your folder tab view. Views based on either
proto can display a title text string in the area to the left of the folder tab. The
protoNewFolderTab view displays a text string that you may supply optionally,
as shown in Figure 15-6.

Figure 15-6 A protoNewFolderTab view

data item to file

appAll string displayed by folder tab view

protoNewFolderTab view sends
NewFilingFilter
message when folder tab changes

title child view sends
TitleClickScript
message when folder user taps here

protoFilingButton view

optional
title.text
string

C H A P T E R 1 5

Filing

About Filing 15-7

The protoClockFolderTab is a variation on protoNewFolderTab
that displays the current time as its title text. Do not attempt to replace this
text; if you want to display your own title text in a folder tab view, use a
protoNewFolderTab view rather than a protoClockFolderTab view.
Figure 15-7 depicts a typical protoClockFolderTab view.

Figure 15-7 A protoClockFolderTab view

Either kind of folder tab view sends a TitleClickScript message to your
application when the user taps its title text. The protoClockFolderTab view’s
default TitleClickScript method opens the built-in Clock application. The
protoNewFolderTab view provides no default TitleClickScript method.
Your folder tab view can provide its own TitleClickScript method to
customize the action it takes in response to a tap on its title text. Your
titleClickScript method accepts no arguments.

Both kinds of folder tab views rely on an appObjectUnfiled slot that you
provide in your application’s base view. This slot contains the full text of the string
“Unfiled items”, in which items is the plural form of the target your application
manipulates; for example, “Unfiled Notes.” This string appears in the folder tab
view when the application displays data items not associated with any filing
category. This string is also displayed in the picker that opens when the user taps
the filing tab.

Both kinds of folder tab views also rely on the use of an appAll slot that you
provide in your application’s base view. This slot contains the full text of the string
“All items” in which items is the plural form of the target your application mani-
pulates; for example, “All Notes.” This string appears in the folder tab view when
the application displays all its data items (including those that are not filed). This
string is also displayed in the picker that opens when the user taps the folder tab.

Tapping the folder tab displays a picker from which the user can choose a filing
category. Your application must filter the display of filed items according to the
category selected in this list; hence, the value retrieved from this list is referred to
as the filing filter. A check mark appears next to the currently selected filing filter;
the user can tap an item in the list to select a new filing filter. In addition to
selecting a filing filter in this picker, the user can specify whether to display items

C H A P T E R 1 5

Filing

15-8 About Filing

on the internal store, the external store or both; that is, the user can specify a stores
filter in addition to a labels filter. Figure 15-8 shows the folder tab picker in a view
based on the protoClockFolderTab proto.

Figure 15-8 Choosing a filing filter

To display items according to the user’s choice of store, your target view must
supply a storesFilter slot. When the target view has a storesFilter slot
and more than one store is available, the folder tab views allow the user to specify a
store in addition to a folder from which data items are retrieved for display. For
example, the user might choose to display only entries in the 'business folder
on the internal store.

When the user chooses any filter from this picker, the system updates the
storesFilter or labelsFilter slot and sends the target view a
NewFilingFilter message. The argument passed to this method by the system
tells you what changed—the stores filter or the labels filter—but not its new value.

You must supply a NewFilingFilter method that examines the
storesFilter or labelsFilter slot and queries your application’s soups
appropriately. If the value of the labelsFilter slot is nil, your
NewFilingFilter method must display all target items. Similarly, if
the value of the target view’s storesFilter slot is nil, your
NewFilingFilter method must display items on all available stores.

Your NewFilingFilter method must also perform any other actions
necessary to display the appropriate data, such as redrawing views affected by
the new filter value.

You can use the RegFolderChanged function to register your own callback
function to be executed when the user adds, deletes, or edits folder names. You
cannot respond adequately to these kinds of changes from within your
NewFilingFilter or FileThis methods alone.

C H A P T E R 1 5

Filing

About Filing 15-9

Filing Compatibility Information 15

Version 2.0 of the Newton operating system supports earlier versions of the Filing
interface completely—no code modifications are required for older filing code to
continue working under the version 2.0 operating system. However, it is strongly
suggested that you update your application to the version 2.0 Filing interface to
take advantage of new features and to remain compatible with future versions of
the Newton operating system. This section provides version 2.0 compatibility
information for applications that use earlier versions of the Filing interface.

Users can now create folders visible only to a specified application; the folders are
said to be local to that application. Folders created using previous versions of the
Filing interface are visible to all applications when first read on a 2.0-based system.
Applications can now filter the display of items according to the store on which
they reside and according to whether they are filed in local or global folders.

The symbols that represent folders are no longer tied to the strings that represent
them to the user, as they were in previous versions of the Newton operating system.
This new scheme allows you to use the same folder symbol everywhere for a
particular concept, such as a business, while varying the user-visible string
representing that folder; for example the user-visible string could be localized for
various languages.

Applications can now route items directly to a specified store from the Filing slip.
In addition, registration for notification of changes to folder names has been
simplified.

The protoFolderTab proto is replaced by the protoNewFolderTab and
protoClockFolderTab protos.

The protoFilingButton proto now supplies its own borders. You do not need
to enclose the filing button in another view to produce a border around the button.

The FolderChanged and FilingChanged methods are obsolete. They are
replaced by the FileThis method and the folder change notification mechanism.
If your application supplies a FileThis method, the system does not send
FolderChanged and FilingChanged messages to your application. Instead of
supplying a FolderChanged method, your application should register a callback
function with the folder change notification mechanism to perform tasks when the
user adds, deletes, or edits folders.

The FilterChanged method is obsolete; your application should supply a
NewFilingFilter method instead. Your NewFilingFilter method must
update the query that retrieves items matching the current filing category and
perform any other actions that are appropriate, such as redrawing views affected by
the change of filing filter. If your application supplies a NewFilingFilter
method, the system does not send FilterChanged messages to your application.

C H A P T E R 1 5

Filing

15-10 Using the Filing Service

The new slots appObjectFileThisIn and appObjectFileThisOn support
localization of your application’s Filing messages into languages having masculine
and feminine nouns.

The DefaultFolderChanged function is obsolete. Do not use this function.

The target and targetView slots are superseded by your override of the
GetTargetInfo method. However, if you do not override the system-supplied
GetTargetInfo method, you must include these slots in your application’s
base view.

Registration for notification of changes to folder names has been simplified. Use
the new functions RegFolderChanged and UnRegFolderChanged to register
for folder change notification.

Using the Filing Service 15

To support the Filing service, your application must

■ provide three views (a folder tab view, a filing button view, and a view that
images the filing target)

■ respond to two messages (FileThis and NewFilingFilter)

■ register a callback function with the folder change notification service

Additionally, you can

■ support the use of multiple target items

■ customize the Filing slip and folder set that your application uses

The remainder of this section describes these tasks in detail.

Overview of Filing Support 15
You need to take the following steps to support the Filing service:

■ Add a labels slot to your application’s soup entries.

■ Create in your application’s base view the slots appName, appAll,
appObjectFileThisIn, appObjectFileThisOn, and
appObjectUnfiled.

■ Supply a filing target. It is recommended that you override the GetTargetInfo
method; if you do not, your application base view must supply target and
targetView slots for use by the default method. You are responsible for
keeping the values of these slots current.

■ Create a labelsFilter slot in your application’s target view.

C H A P T E R 1 5

Filing

Using the Filing Service 15-11

■ Create a storesFilter slot in your application’s target view

■ Implement the FileThis and NewFilingFilter methods.

■ Add a filing button view and a folder tab view to your application.

■ Register a callback function with the folder change notification mechanism.

Optionally, you can

■ create a doCardRouting slot in your application’s base view

■ create a dontStartWithFolder slot in your target view

■ implement support for local or global folders only

■ customize the title text in your protoNewFolderTab view

■ provide a TitleClickScript method to customize the action your folder tab
view takes when the user taps its title text

The sections immediately following describe these tasks in detail.

Creating the Labels Slot 15

Each of your application’s soup entries must contain a labels slot. It is
recommended that you make this slot part of a default soup entry created by a
frame-constructor function you supply. (For information on the use of frame-
constructor functions, see “Programmer’s Overview” on page 11-25 in Chapter 11,
“Data Storage and Retrieval.”)

When the user files a soup entry, the system stores a value in its labels slot.
Setting the value of the labels slot is really the only “filing” that is done—the
entry still resides in the soup, but your FileThis and NewFilingFilter
methods provide the user-interface illusion that the data has been put in a folder.

The labels slot can store either a symbol or the value nil. If the value stored in
this slot is nil, your FileThis method must treat the item as unfiled. If a symbol
is stored in this slot, your FileThis method must test the value of this slot to
determine whether the entry should be displayed and then redraw the display
appropriately. Similarly, your NewFilingFilter method tests the value of this
slot to determine whether to display the item when the filing filter changes.

Creating the appName Slot 15

You must create in your application’s base view an appName slot containing a
string that is the user-visible name of your application.

C H A P T E R 1 5

Filing

15-12 Using the Filing Service

Creating the appAll Slot 15

You must create in your application’s base view an appAll slot containing a string
of the form

"All Items"

where Items is the plural for the items to be filed, such as cards, notes, and so on.
For example, when the user taps the folder tab view in the built-in Notes
application, the last item in the picker is “All Notes.”

The following code fragment defines a typical appAll slot:

myAppBase := {… appAll: "All Notes", …}

Creating the appObjectFileThisIn Slot 15

You must define the appObjectFileThisIn slot in your application’s base
view. This slot holds the full text of the message to be displayed to the user when
filing a single item; for example,

“File this widget in”

This string is shown at the top of the Filing slip pictured in Figure 15-2 (page 15-3).

Creating the appObjectFileThisOn Slot 15

You must define the appObjectFileThisOn slot in your application’s base
view. This slot holds the full text of the string labelling the group of buttons that
represent stores in the Filing slip; for example,

“File this item on”

where item is the singular case of the target your application files, such as a card, a
note, and so on.

For an example of this string, see Figure 15-5 (page 15-5).

Creating the appObjectUnfiled Slot 15

You must define an appObjectUnfiled slot in your application’s base view.
This slot holds a string of the form

"Unfiled Items"

where Items is the plural case of the items to be filed, such as cards, notes, and so
on. For example, if the user taps the folder tab view in the built-in Notes application,
the first item in the picker is “Unfiled Notes.”

The following code fragment defines a typical appObjectUnfiled slot:

myAppBase := {… appObjectUnfiled: "Unfiled Notes", …}

C H A P T E R 1 5

Filing

Using the Filing Service 15-13

Specifying the Target 15

The GetTargetInfo method identifies the current target and target view to the
system. Depending on your needs, you can use the default version of this method
or override it.

If you use the default version, your application’s base view must supply target
and targetView slots that you update whenever the target or target view
changes. If you override this method, you provide these slots in the result frame
that it returns, rather than in your application’s base view. These slots provide the
same information regardless of whether they reside in the GetTargetInfo
method’s result frame or in the application’s base view.

Creating the Target Slot 15

The target slot contains the data item with which the user is working, such as the
soup entry that represents the currently displayed note to file. If there is no active
item, this slot must have the value nil.

Your application must update the value of the target slot every time the user
views a new item. Because the selection of a new item is an application-specific
detail, it is difficult to recommend a means of updating this slot that is appropriate
for every application; however, it is common to update the value of this slot from
the ViewClickScript method of the active view.

Creating the TargetView Slot 15

The targetView slot contains the view that receives messages from the Filing
service and can manipulate the target. The application’s base view is usually an
appropriate value for this slot.

Overriding the GetTargetInfo Method 15

You can implement your own GetTargetInfo method if the default version
supplied by the system is not suitable for your application’s needs. For example, if
your application images data items in floating windows or displays more than one
data item at a time, you probably need to supply a GetTargetInfo method that
can return an appropriate target and target view in those situations.

You must override the GetTargetInfo method in order to move an item to
another store when it is filed. The result frame returned by your GetTargetInfo
override can include an optional targetStore slot that specifies the store on
which an item is to reside when it is filed.

To override this method, create in your application base view a slot named
GetTargetInfo and implement this method as specified in the description of
the GetTargetInfo method (page 12-11) in Newton Programmer’s
Reference.

C H A P T E R 1 5

Filing

15-14 Using the Filing Service

Creating the labelsFilter slot 15

Your application’s target view must supply a labelsFilter slot. This slot holds
a value indicating the current filing filter selected by the user in the picker displayed
by the folder tab view. This slot can store either a symbol indicating the currently
displayed filing category or the value nil (which specifies that the Unfiled category
is currently displayed).

The system sets the value of the labelsFilter slot for you. Your
NewFilingFilter method must update the display of your application’s
data according to the value of this slot.

To display a predetermined filing category when your application opens, you can
set an initial value for the labelsFilter slot from within the application base
view’s ViewSetupFormScript method.

Creating the storesFilter slot 15

Your application’s target view must supply a storesFilter slot. This slot stores
a value indicating the current store filter selected by the user from the picker
displayed by the folder tab view. This slot can store either a symbol or the value nil.

The system sets the value of the storesFilter slot for you. Your
NewFilingFilter method must update the display of your application’s
data according to the value of this slot.

To display items on a particular store when your application opens, you can set an
initial value for the storesFilter slot from within the application base view’s
ViewSetupFormScript method.

Adding the Filing Button 15

You need to take the following steps to add the protoFilingButton view to
your application:

■ In NTK, sketch the filing button using the protoFilingButton proto and
declare it to the application’s base view.

■ Set appropriate values for the button’s viewBounds slot.

Adding the Folder Tab View 15

Your application’s base view must provide a view that displays the currently
selected filing category and allows the user to select a new filing category. This
view is based on either the protoNewFolderTab or protoClockFolderTab
system proto.

Adding the folder tab view to your application is easy. In NTK, sketch the folder
tab in your application’s base view using the protoNewFolderTab proto and

C H A P T E R 1 5

Filing

Using the Filing Service 15-15

declare your folder tab view to the application’s base view. The system sets the
folder tab view’s bounds for you at run time, positioning the folder tab relative to
its parent, near the top of the screen.

Customizing Folder Tab Views 15

The protoNewFolderTab proto supplies a child view named title that images
a string that you may supply optionally. To display your own string as the title text
in a protoNewFolderTab view, use the global function SetValue to set the
value of the text slot in the title view child of your folder tab view.

For example,

SetValue(myNewFolderTab.title, 'text, "My text");

▲ W A R N I N G

Do not create a title slot in any folder tab view. Do not replace
the title text in a protoClockFolderTab view. ▲

Defining a TitleClickScript Method 15

The folder tab view’s TitleClickScript method is invoked when the user taps
the title text in a protoNewFolderTab view or the time displayed as title text in
a protoClockFolderTab view. The default TitleClickScript method
provided for protoNewFolderTab views does nothing. The default
TitleClickScript method provided by the protoClockFolderTab view
displays the built-in Clock application.

You can provide your own TitleClickScript method to customize the action
your folder tab views take when the user taps them.

Implementing the FileThis Method 15

When the user taps the File button in the Filing slip, the system sends the
FileThis message to the target view. Your FileThis method must perform any
actions necessary to file the target and redraw the current display appropriately.

For example, if your application is displaying an overview list of unfiled items
when it receives this message, your FileThis method needs to redraw the list
without the newly filed item in it, providing the user-interface illusion that the item
has been moved.

Your FileThis method must also handle the case in which the user re-files an
item in the category under which it already resides. In this case, the appropriate
response is to do nothing; unnecessarily redrawing views that have not changed
makes the screen appear to flicker or flash. Because the value of the target’s
labels slot does not change unless you change it, you can test this slot’s current
value to determine whether the new value is different.

C H A P T E R 1 5

Filing

15-16 Using the Filing Service

The arguments to the FileThis method supply all the information necessary to file
a soup entry, including the item to file (the target), the category under which to file
it (the value to which you set the target’s labels slot), and the store on which to
file it.

If the value of the labelsChanged parameter to the FileThis method is true,
your FileThis method must use the value of the newLabels parameter to
update the value of the target’s labels slot. However, if the value of the
labelsChanged parameter is nil, the value of the newLabels parameter is
undefined—don’t use it!

Similarly, if the value of the storesChanged parameter is true, your
FileThis method must move the target to the new store. However, if the value of
the storesChanged parameter is nil, the value of the destStore parameter
is undefined.

The following code example shows the implementation of a typical FileThis
method. Remember to call EntryChangeXmit from this method so your changes
to filed entries are saved!

FileThis: // example code - your mileage may vary
func(target, labelsChanged, newLabels, storesChanged, destStore)

begin
if labelsChanged AND target.labels <> newLabels then
begin

target.labels := newLabels;
EntryChangeXmit(target, kAppSymbol);

end // labelsChanged
if storesChanged and (EntryStore(target) <> destStore) and

not destStore:IsReadOnly() then
begin

// move the entry to the new store & xmit change
// make sure you handle locked stores too
if EntryStore(target):IsReadOnly() then

EntryCopyXmit(target, destStore, kAppSymbol);
else

EntryMoveXmit(target, destStore, kAppSymbol);
end; //storesChanged

end; // FileThis

Implementing the NewFilingFilter Method 15

When the user changes the current filing filter in the folder tab view, the system
calls your application’s NewFilingFilter method. You need to define this
method in your application’s base view. Your NewFilingFilter method must
update the query that retrieves items matching the current filing category and

C H A P T E R 1 5

Filing

Using the Filing Service 15-17

perform any other actions that are appropriate, such as redrawing views affected by
the change in filing filter.

The symbol passed as the sole argument to your NewFilingFilter method
specifies which of the storesFilter or labelsFilter slots changed in value.
This argument does not specify the slot’s new value, however. Your
NewFilingFilter method must use the current value of the specified slot to
retrieve those soup entries that fall into the new filing category.

The following code example shows the implementation of a typical
NewFilingFilter method, which queries the application soup for the entries
that match the current filing category and then redraws views affected by the
change in filing category.

NewFilingFilter: func(newFilterPath)
begin

// first figure out if query should be done on
// a union soup or on a specific store soup
// this is to make filter by store more efficient

local querySoup := GetUnionSoupAlways(kSoupName) ;

if storesFilter and storesFilter:IsValid() then
querySoup := querySoup:GetMember(storesFilter) ;

// now construct the query based on the labelsFilter
// and set my application cursor (called myCursor)
// to the new query

// the default is to show all items, i.e.,
// labelsFilter is '_all
local theQuery := nil ;

if NOT labelsFilter then
// labelsFilter is NIL, so show only those entries
// that do not have a valid tag in the labels
// slot
theQuery := {none: GetFolderList(appSymbol, nil)};

else if labelsFilter <> '_all then
// labelsFilter is some specific folder
theQuery := {all: labelsFilter} ;

myCursor := querySoup:Query(theQuery) ;

C H A P T E R 1 5

Filing

15-18 Using the Filing Service

// now redraw views affected by the change
// NOTE: You could keep track of the original
// labelsFilter and storesFilter to see
// whether you need to actually do work.

end

Using the Folder Change Notification Service 15

You can use the RegFolderChanged global function to register callback
functions that are executed when the user adds, removes, or edits folders. Most
applications register these functions only while the application is actually open, so
the application base view’s ViewSetupFormScript is an ideal place from which
to call the RegFolderChanged function. For example,

myCallback1 := func(oldFolder,newFolder);
begin

// retag entries
end;
myAppBase.viewSetupFormScript := func ()begin
RegFolderChanged('|myFnId1:myApp:mySig|, myCallback1);
end;

The UnRegFolderChanged function removes a specified callback from use by
the folder change mechanism. Most applications unregister their folder change
callback functions when they close, making the application base view’s
ViewQuitScript method an appropriate place to unregister folder change
callback functions. For example,

myAppBase.viewQuitScript := func ()begin
UnRegFolderChanged('|myFnId1:myApp:mySig|);
end;

Creating the doCardRouting slot 15

If you want to move items between stores from within the Filing slip, you need to
create a doCardRouting slot in your application’s base view. When an external
store is available and the value of this slot is non-nil, the Filing slip displays
buttons allowing the user to route the target to a specified destination store. If this
slot has a non-nil value but no external store is available, these “card-routing”
buttons are not displayed.

C H A P T E R 1 5

Filing

Using the Filing Service 15-19

Using Local or Global Folders Only 15

To suppress the display of either local or global folders in the Filing slip and the
folder tab views, you can set the values of optional localFoldersOnly and
globalFoldersOnly slots that you supply in your application’s base view. Note
that the use of local or global folders only is intended to be an application design
decision that is made once, rather than a user preference that can change.

When the localFoldersOnly slot holds the value true, the Filing slip and
folder tab views do not display the names of global folders. When the
globalFoldersOnly slot holds the value true, the Filing slip and folder tab
views do not display the names of local folders.

▲ W A R N I N G

The localFoldersOnly and globalFoldersOnly must not
both hold non-nil values at the same time. ▲

Adding and Removing Filing Categories Programmatically 15

You can use the AddFolder and RemoveFolder global functions to modify the
set of folders (filing categories) available to your application. Note that the
RemoveFolder function does not remove any folder that is also used by other
applications. For more information, see the descriptions of these methods in the
Newton Programmer’s Reference.

Interface to User-Visible Folder Names 15

Symbols that represent folders are not tied to the strings that represent those folders
to the user. As a result, you can use the same folder symbol everywhere for a
particular concept, such as a business, while varying the user-visible string
representing that folder; for example the user-visible string could be localized for
various languages.

You can use the GetFolderStr function to retrieve the user-visible string
associated with a folder symbol.

C H A P T E R 1 5

Filing

15-20 Summary

Summary 15

This section summarizes the data structures, protos, functions, and methods used
by the Filing service.

Data Structures for Filing 15

Application Base View Slots 15

myAppBaseView :=
{_parent: {…},// root view
_proto: {// myAppBaseViewTemplate

 _proto: {…}, // protoApp,
// slots you supply in myAppBaseViewTemplate
appObjectUnfiled: "Unfiled Items",
appAll: "All Items",
appObjectFileThisOn: "File this item on",
storesFilter: NIL,
doCardRouting: 1,
GetTargetInfo: <function, 1 arg(s) #6000F951>,
labelsFilter: NIL,
appObjectFileThisIn: "File this item in",
appSymbol: |myApp:mySig|,
…},

// my filing button template, defined in app base view
myfilingButton: {_parent: <2> // myAppBaseView,

 _proto: protoFilingButton, …},
// my new folder tab template, defined in app base view
myNewFolderTab: {…}, // see summary on page 15-21
…}

Target Information Frame 15

// returned by the GetTargetInfo method
{target: item,// the item to file or route
targetView: view, // filing messages are sent to this view
targetStore: store, // store on which target resides
// this frame may also include your own slots
…}

C H A P T E R 1 5

Filing

Summary 15-21

Filing Protos 15

protoFilingButton 15

myFilingButtonView :=
// do not override ViewClickScript; use ButtonClickScript instead

{ _parent:{ // MyAppBaseView
 _parent: {…}, // root view
 _proto: {…}, // myAppBaseViewTemplate
…},

_proto: {// myFilingButtonTemplate
 // set your own viewBounds in NTK view editor
 viewBounds: {left: 10, top: 250,

 right: 27, bottom: 263},
 _proto: {// protoFilingButton

 _proto: {…}, // protoPictureButton
// your ButtonClickScript must call inherited
ButtonClickScript:<function, 0 arg(s) …>,
// your Update must call inherited
 Update: <function, 0 arg(s) …>,
// your viewSetupFormScript must call inherited
 viewSetupFormScript:<function, 0 arg(s)…>
…},

 …},
…}

protoNewFolderTab 15

myNewFolderTabView := {
{_parent: myAppBaseView, // see summary on page 15-20
_proto: { protoNewFolderTab,

// your folder tab’s viewSetupFormScript must
// call this inherited method using conditional send
viewSetupFormScript: <function, 0 arg(s) …>,
…},

// do not alter this slot; set only the text slot
title: {_parent: <2> // myNewFolderTabView,

_proto: {viewClass: clTextView, …},
// string displayed at left of newFolderTab view
text: "My Text",
…},

}

C H A P T E R 1 5

Filing

15-22 Summary

protoClockFolderTab 15

myClockFolderTabView := {
{_parent: myAppBaseView, // see page 15-20
_proto: { protoClockFolderTab,

// your folder tab’s viewSetupFormScript must
// call inherited:?viewSetupFormScript()
viewSetupFormScript: <function, 0 arg(s) …>, …},

// do not attempt to alter the time display text
…}

Filing Functions and Methods 15

view:GetTargetInfo(reason) // override for multiple targets
view:MoveTarget (target, destStore) // move target between stores
RegFolderChanged(callbackID,callBackFn)// register folder change callback
UnRegFolderChanged(callbackID) // unregister folder change callback
AddFolder(newFolderStr, appSymbol) // add local folder
RemoveFolder(folderSym, appSymbol) // remove local folder
GetFolderStr(folderSym) // get user-visible folder name from app sym
RemoveAppFolders(appSym) // remove specified app’s local folders
GetFolderList(appSymbol, localOnly) // list the app’s local folders

Application-Defined Filing Functions and Methods 15

// Optional. Specify filing target, target view, target store
GetTargetInfo(reason)
// Required. Respond to changes in filing filter or store filter
targetView:NewFilingFilter(newFilter)
// Required. File the item as specified
targetView:FileThis (target,labelsChanged, newLabels, storesChanged, newStore)

About the Find Service 16-1

C H A P T E R 1 6

Find 16Figure 16-0
Table 16-0

This chapter describes how your application can support finding text, dates, or your
own data types in its data. If you want users to be able to use the system’s Find
service to locate data in your application, you should be familiar with the material
discussed in this chapter.

Before reading this chapter, you should understand the concept of the target of an
action, explained in Chapter 15, “Filing.” Familiarity with using views to image
data, covered in Chapter 3, “Views,” is also helpful. If your application stores data
as soup entries, you should understand the contents of Chapter 11, “Data Storage
and Retrieval.”

This chapter is divided into two main parts:

■ “About the Find Service” describes the core user interface to the Find service,
along with variations and optional features. A compatibility section covers
differences between the current version of the Find service and previous ones.

■ “Using the Find Service” provides a technical overview of Find operations, with
code examples to show how to implement support for this service in your
application.

In addition, the “Find Reference” (page 13-1) in Newton Programmer’s Reference
provides complete descriptions of all Find service data structures, functions,
and methods.

About the Find Service 16

The Find service searches for occurrences of data items the user specifies on a Find
slip. The Find slip may be supplied by the system or by the developer. Figure 16-1
illustrates the system-supplied Find slip.

C H A P T E R 1 6

Find

16-2 About the Find Service

Figure 16-1 The system-supplied Find slip

The system-supplied Find slip contains an input line that specifies a search string,
several buttons indicate the scope of the search, and a Look For picker (pop-up
menu) that specifies the kind of search to perform. By choosing from the Look For
picker (pop-up menu) you may specify whether the search string is a text item or a
date, as shown in Figure 16-2.

Figure 16-2 Specifying text or date searches in the Find slip

Text searches are case insensitive and find only string beginnings. That is, a search
for the string “smith” may return the items “Smith” and “smithers,” but not
“blacksmith.” Date searches find items dated before, after, or on the date specified
by the search string.

From the application developer’s perspective, text finds and date finds are nearly
identical. The only significant difference between them is the test an item must
pass to be included in the result of the search.

The system-supplied Find slip always contains an Everywhere button and Selected
button. If the current application supports the Find service, a button with the
application’s name appears in this slip as well.

C H A P T E R 1 6

Find

About the Find Service 16-3

Searching for data in the current application only is called a Local find operation.
Figure 16-3 depicts a Local find in the Notepad application.

Figure 16-3 A local Find operation

The Everywhere and Selected buttons specify that the system perform searches in
applications other than the currently active one. Applications must register with the
Find service to participate in such searches.

Tapping the Everywhere button tells the system to conduct searches in all currently
available applications registered with the Find service. This kind of search is called
a Global find. Applications need not be open to participate in a Global find.

A Global find is similar to a series of Local find operations initiated by the system.
When the user requests a Global find, the system executes a Local find in each
application registered with the Find service.

Tapping the Selected button causes a checklist to appear at the top of the Find slip.
The list includes all currently available applications registered with the Find
service. Tapping items in the list places a check mark next to applications in which
the system should conduct a Local find. This kind of search is called a Selected
find. The slip in Figure 16-4 depicts a search for the string "Daphne" in the Notes
and Dates applications.

Figure 16-4 Searching selected applications

C H A P T E R 1 6

Find

16-4 About the Find Service

In addition, an application can support searches of multiple data sets. For example,
a personal finance program might allow you to search the check ledger, the account
list, and the credit charges list as separate searches, even though all the data resides
in a single application. For more information on how to implement this in your
application see “Adding Application Data Sets to Selected Finds” beginning on
page 16-19.

In addition, you can replace the Find slip in the currently active application.
Typically, you would do this to provide a customized user interface for specialized
searches. For more information, see “Replacing the Built-in Find Slip” beginning
on page 16-24.

After setting the parameters of the search with the Find slip, the user initiates the
search by tapping the Find button. Alternatively, the user can cancel the search by
tapping the close box to dismiss the Find slip.

While the search executes, the system provides user feedback through a Progress
slip. This slip provides a Stop button that allows the user to cancel a search in
progress. Figure 16-5 shows a typical Progress slip.

Figure 16-5 Progress slip

When the search is completed, the Find service displays an overview list of items
that match the search criteria. Figure 16-6 shows the Find overview as it might
appear after searching all applications for the string "Daphne".

C H A P T E R 1 6

Find

About the Find Service 16-5

Figure 16-6 The Find overview

The user can tap items in the Find overview to display them. As items are displayed,
a status message at the top of the Find slip indicates which item is displayed and
whether there are more results to display. Figure 16-7 depicts this status message.

Figure 16-7 Find status message

When more than one item is found, the status message indicates that there are more
items to display.

Between uses, the Find service stores the setting of the Look For picker. The next
time this service is used, it reopens in the most recently set find mode. Note that in
order to conserve memory, the list of found items is not saved between finds.

C H A P T E R 1 6

Find

16-6 Using the Find Service

Compatibility Information 16
The current version of the Find service opens in the text or date find mode last
used. The Find slip in versions of Newton System Software prior to 2.0 always
opened in text find mode, regardless of the mode last used.

Find now performs “date equal” finds, and returns control to the user more quickly
than previous versions did. The Find slip no longer displays the total number of
items in the search result; that is, instead of displaying user feedback such as “This
is item 24. There are 36 items” the Find slip displays “This is item 24. There are
(no) more items.”

The Find service now offers routines that allow you to include multiple data sets
from a single application in Selected find operations. Three new methods
support this functionality: AppFindTargets, FindTargeted, and
DateFindTargeted. You use the AppFindTargets method to add identifying
strings for the data sets to the Selected picker. The two new Find methods with
which you implement targeted finds are FindTargeted and
DateFindTargeted. They are identical to their nontargeted counterparts, except
the last parameter, indexPath, is a path to a data set within an application.

Do not modify any system data structures directly to register or unregister an
application with the Find service. Instead, use the RegFindApps and
UnRegFindApps functions provided for this purpose. Applications running
on older Newton devices can use the kRegFindAppsFunc and
kUnregFindAppsFunc functions provided by NTK for this purpose.

The ShowFoundItem method now has two parameters, a data item and a finder
frame. However, the old ShowFoundItem method, with one parameter (item) is
still supported.

The SetStatus method is obsolete; use the SetMessage method instead. In
addition, the FileAs and MoveTo methods are also obsolete; you should use
FileAndMove instead.

Using the Find Service 16

This section includes a technical overview of Find operations and describes how to
implement Find support in your application.

Technical Overview 16
When the user taps the Find button, the system invokes your application’s search
method. This can be a date find method (DateFind) or a text find method (Find).

C H A P T E R 1 6

Find

Using the Find Service 16-7

The only significant difference between a date find and a text find is that a different
search method locates the items that are returned. To support text searches, you
must supply a Find method. To support searching by date, you must supply a
DateFind method.

You can support any of these search methods independently of one another; for
example, you can implement the Find method without implementing the
DateFind method.

You may also customize searches by adding a subset of data items from one
application to the Selected picker menu in the Find slip. Items added here may be,
for instance, a checkbook and ledger from a personal finance program.

A finder is a frame that enumerates items resulting from a Find operation. The
general characteristics of your finder are defined by the proto it’s based on. The
system supplies two protos on which to base your finder: the ROM_SoupFinder
or the ROM_CompatibleFinder.

The ROM_SoupFinder proto supports searching soup data. The
ROM_CompatibleFinder proto provides a framework, which you should
override, that supports searching data that is not soup based. When a finder based
on the ROM_SoupFinder proto completes a search, it returns with a cursor which
is used to retrieve the found items from the application soup. When a finder based
on the ROM_CompatibleFinder proto completes a search, it returns with the
actual found items in an array (the items array).

If you store data in soups, there are standard find methods defined for the
ROM_SoupFinder proto that you can use. When you devise a different scheme,
you must use the ROM_CompatibleFinder proto and define versions of the
finder methods that are tailored to your type of data storage.

After a search method scans your application’s data and returns a finder frame, you
must append it to the system-supplied results array. Global and Selected finds
usually append more than one frame to this array, as multiple applications
complete their searches.

While a search continues, the system automatically provides user feedback on its
progress. When the search method completes, the system displays an overview list
of the items that were found.

For Global or Selected finds, each application (or data set, for a targeted data set
find) in which items were found is identified by a heading, with the found items
listed under it. The application name that appears in this heading is supplied by the
title slot each application provides in its base view.

The system sends a FindSoupExcerpt message to your application, which must
have a FindSoupExcerpt method to respond to it. This method must extract and
return a string for the Find overview to display. If no items are found, the
FindSoupExcerpt message is not sent. If you are using the

C H A P T E R 1 6

Find

16-8 Using the Find Service

ROM_CompatibleFinder proto, the string to display for each found item is
contained in the title slot of each of the items in the items array in your finder.

When the user taps scroll buttons to scroll through this list of found items, the
system keeps track of the user’s place in the array of found items. Figure 16-8
depicts the strings from both the title slot and the FindSoupExcerpt method
as they are used in a typical Find overview.

Figure 16-8 Strings used in a Find overview

When the user taps an item in the overview, the system sends a ShowFoundItem
message to the view specified by the owner slot in your finder frame (which you
appended to the system’s results array). In the template of the specified owner
view, you define a ShowFoundItem method that must locate the found item in
your application’s data and perform any actions necessary to display it, including
scrolling or highlighting the item as appropriate. Although the interface to the
ShowFoundItem method varies according to the finder proto your finder is based
on, you can often use the same method to display the results of both text and date
searches. If you are using a finder based on ROM_CompatibleFinder, you must
override its ShowFakeEntry method to call your ShowFoundItem method.

text from title slot

text returned by FindSoupExcerpt

C H A P T E R 1 6

Find

Using the Find Service 16-9

Figure 16-9 The ShowFoundItem method displays the view of an overview item

The Find overview provides Routing and Filing buttons. If you are using the
ROM_SoupFinder the system will file, move, and delete your entries in
the overview of found items. In such an occurrence, the soup-change notification
mechanism notifies your application. (The soup-change notification mechanism is
described in Chapter 11, “Data Storage and Retrieval.”)

If you are using the ROM_CompatibleFinder you may either not allow your
found item to be routed or override the relevant methods.

Note that if the system routes your soup-based data, your application is notified via
the soup-change notification mechanism. For a complete description of this
mechanism, see Chapter 11, “Data Storage and Retrieval.”

Global and Selected Finds 16

When the user taps the Find button, the system invokes find methods in the
appropriate applications. For a Local find, only the currently active application is
sent a message. For a Global find, all applications registered with the Find service
are sent messages. Selected finds send messages to a user-specified subset of all
applications registered for Global finds. In terms of the messages sent, Global finds
and Selected finds are similar to Local finds; however, there are some differences in
these operations that your application needs to address.

C H A P T E R 1 6

Find

16-10 Using the Find Service

The most important difference between Local finds and other kinds of find
operations is that when the system invokes your search method as part of a Global
or Selected find, your application may not be open. Therefore, you must test to see
that the application soup is available before searching it.

The system informs your search method of the scope of the search through the
scope parameter. You can choose to ignore it or you can modify your application’s
actions based on whether the value of this parameter is 'localFind or
'globalFind. The system passes the 'globalFind symbol when it invokes
your search method for a Global or Selected find. The 'localFind symbol is
passed for Local find operations.

Checklist for Adding Find Support 16
To add application support for the Find service, you need to do the following:

■ Create a title slot, in the view referenced by the owner slot of your finder
frame, that contains the user-visible name of the application.

■ Create the appName slot in your application’s base view that contains the user-
visible name of the application.

■ Choose a finder proto on which to base your application’s frame. You should
use ROM_SoupFinder if your data is stored in a single soup, and
ROM_CompatibleFinder otherwise.

■ Supply at least one search method (Find, DateFind).

■ Append the resultant finder frame to the system-supplied results array at the
end of your search method(s).

■ Supply a FindSoupExcerpt method that extracts strings from soup entries for
display in the Find overview. This method is required only if you use the
ROM_SoupFinder proto. If you use the ROM_CompatibleFinder proto you
must add a title slot with a string defining each found item to the frame
representing the item.

■ Supply a ShowFoundItem method that displays an individual entry from the
found items.

■ When using a ROM_CompatibleFinder proto, write a ShowFakeEntry
method to call your ShowFoundItem method.

■ When using the ROM_CompatibleFinder, you should either not allow
your found items to be selected (and thus not routed), or override the relevant
routing methods.

Optionally, you may also do the following:

■ Register and unregister for participation in Global and Selected finds.

C H A P T E R 1 6

Find

Using the Find Service 16-11

■ Employ multiple data sets from one application in a Selected find by adding
the method AppFindTargets, and one or both of the search methods
FindTargeted and DateFindTargeted.

■ Replace the system-supplied Find slip with one of your own by supplying a
CustomFind method in your application’s base view. This method will be
called when the user taps Find and your application is frontmost.

The sections immediately following describe these tasks in detail.

Creating the title Slot 16

A string that is your application’s user-visible name must be available in a text slot
called title. You need to create this slot in the view referenced by the owner slot
of the finder frame returned by your search method. Commonly, the owner slot
references the application’s base view and the title slot resides in this view.

The Find service uses this string in the list of application names displayed for
Selected finds as well as in the overview of found items.

Creating the appName Slot 16

Your application’s base view must contain an appName text slot. This slot holds a
string that is your application’s user-visible name. The value of this slot is used to
name the Find slip button that represents your application when it is the current
application. It is also employed by other system services to obtain a user-visible
name for your application.

Using the Finder Protos 16
You use a finder proto as the basis from which to construct the finder frame
returned by your search method. The two system-supplied finder protos are
employed according to the data type you use for your application’s data storage.
You can create your own customizations at compile time by creating an item like
the following example:

kMySoupFinder:= {
_proto: ROM_SoupFinder,

Delete: func()
begin

print("About to delete " &
Length(selected) && "items");

inherited:Delete();
end
}

C H A P T E R 1 6

Find

16-12 Using the Find Service

The full complement of slots in the finder frame resulting from your searches
varies according to the finder proto it’s based on. A finder frame based on the
ROM_SoupFinder proto returns a finder containing a cursor with which to
retrieve found items from the application soup. A finder frame based on the
ROM_CompatibleFinder proto results in a frame containing an array of the
actual found items.

The ROM_CompatibleFinder proto is meant to serve as a guideline for creating
a finder that works on a data storage set that does not use soups. The methods
included must be overridden to fit the data type in which your application data
is stored.

Several methods and slots are included by both system protos; they include:

■ The selected array stores selected items from the Find overview in an
internal format. All you can do is pass the array to the Length function to
determine the number of selected items.

■ The Count method returns an integer with the total number of found items.

■ The Resync method resets the finder to the first found item.

■ The ShowFoundItem method displays the overview data item that resides in
the overview’s items array.

■ The ShowOrdinalItem method displays an item based on the ordinal number
or symbol ('first, 'prev, or 'next) passed to it.

Whenever possible, you should store your application’s data in soups and use the
ROM_SoupFinder proto to support the Find service, as shown in the following
code fragment:

if cursor:Entry() then begin
myFinder := {

_proto: ROM_SoupFinder,
owner: self,
title:"My Application",
findType:'text, //other possible values are

 //'dateBefore,'dateOn, and 'dateAfter
findWords: [searchedForTheseStrings],
cursor: myCursor,};

Table 16-1 provides quick reference descriptions of the ROM_SoupFinder
methods. Most should not be overridden, but those that may be are indicated.

C H A P T E R 1 6

Find

Using the Find Service 16-13

Note
The ROM_SoupFinder and ROM_CompatibleFinder
methods MakeFoundItem and AddFoundItem are internal
methods, which should not be called or overridden under any
circumstances. ◆

Table 16-1 Overview of ROM_SoupFinder methods

Method Description Override?

Reset Resets cursor to first found entry. In
general you should use ReSync to reset
a finder.

No

ZeroOneOrMore Returns 0 if no found entries, 1 for one
found entry, or other number for more.

No

ShowEntry Causes the finding application to display
entry, which is passed to it as an argument.
Does not close the Find overview.

No

SelectItem Marks the item, passed in as an argument,
as selected. If this method is set to nil a
checkbox does not appear in front of
the item.

No

IsSelected Returns true if the item, passed in as an
argument, is selected.

No

ForEachSelected Calls the callback function, passed in as an
argument, with each selected item. The
function has one argument: the entry from
the cursor.

No

FileAndMove File and/or move the selected items. Has
four arguments: labelsChanged, newLabel,
storeChanged, newStore. If labelsChanged
or storeChanged, is true newLabel and
newStore indicate the new label and store.
If overridden you must check for selected
items as in

if selected then // do work;

Yes, but
should call
inherited
method to
do work.

Delete Deletes all selected items from
writeable stores.

Yes, but
crumple
effect still
occurs.

GetTarget Returns cursor for routing. Yes

C H A P T E R 1 6

Find

16-14 Using the Find Service

If your application does not store data as soup entries, you can use the
ROM_CompatibleFinder proto as the framework from which to create your
finder frame. Although ROM_CompatibleFinder provides most of the services
that ROM_SoupFinder does, it does not respond to messages sent by the system
when the user files, deletes, or moves items in the Find overview. The following
methods have the same definitions in the ROM_CompatibleFinder as they have
in the ROM_SoupFinder. If you use ROM_CompatibleFinder proto, in most
cases, you must define the following methods to work on your data structures:

■ FileAndMove

■ Delete

■ IsSelected

■ SelectItem

■ ForEachSelected

■ GetTarget

The commonality of definition between these methods causes problems in some
cases. For instance, when used with the ROM_CompatibleFinder proto, the
ForEachSelected method must be overridden because it is expected to return
an array of soup entries.

The ROM_CompatibleFinder proto has the two following methods which are
not found in the ROM_SoupFinder proto:

■ ShowFakeEntry

■ ConvertToSoupEntry

When you use the ROM_CompatibleFinder proto, you should define a
ShowFakeEntry method that makes sure your application is open, and calls your
ShowFoundItem method.

The convenience method, ConvertToSoupEntry, returns a soup entry when
given a data item as a parameter.

Implementing Search Methods 16
Your application conducts searches in response to messages that it receives from
the system. You must supply a search method for each message that your application
supports. These methods are usually defined in your application’s base view;
they include:

■ Find

■ DateFind

■ FindTargeted

■ DateFindTargeted

C H A P T E R 1 6

Find

Using the Find Service 16-15

Although the implementation of a search method is for the most part application
specific, some general requirements apply to all search methods. This section
describes these requirements and advises you of potential problems your search
methods may need to handle.

Your search method must be able to search for data in internal RAM as well as in
RAM or ROM on a PCMCIA card. Using union soups, which allow you to treat
multiple soups as a single soup regardless of physical location, to store your data
makes it easier to solve this problem.

As a search method proceeds through the application data, it must test items
against criteria specified in the Find slip and collect the ones meeting the test
criteria. It also needs to call the SetMessage method to provide a status string
that the system displays to the user while the search is in progress. Each of the
code examples included later in this section shows how to do this.

When the search is completed, it must append its finder frame to the system-
supplied results array. This task is described in detail in “Returning Search
Results” (page 16-21).

If your application registers for participation in Global finds, your search methods
may be invoked when your application is not open. Thus, your search methods
must not rely on your application being open when they are invoked.

Using the StandardFind Method 16

You can use the system-supplied StandardFind method to search for text in
soup-based application data. This method makes the necessary calls to display the
status message, gather matching data items, and to append the finder frame that
contains the cursor with which to fetch found items to the system’s results
array. The parameters are described in detail in “StandardFind” (page 13-13) in
Newton Programmer’s Reference.

You must call the GetUnionSoupAlways function, saving the result, before
calling StandardFind. Note that your Find method must be defined in your
application’s base view. Its use is illustrated in the following code example:

MyApplicationBase.Find :=
func(what, results, scope, statusView)
begin

// The following assignment forces the existence of
// a union soup. Always all GetUnionSoupAlways
//(saving the result in a local variable) before
// calling StandardFind.

local temp := GetUnionSoupAlways (kMySoupName);
:StandardFind(what, kMySoupName, results,

 statusView, nil);
end;

C H A P T E R 1 6

Find

16-16 Using the Find Service

Using Your Own Text-Searching Method 16

The following code example illustrates the kinds of tasks you must perform when
the StandardFind method is not used. (However, it is strongly suggested that
you use the StandardFind method to implement your Find routine, if possible.)
This example searches for text in soup-based application data using the
ROM_SoupFinder proto:

// This routine MUST be named Find; it is called by
// the system when the user chooses Find.
MyApplicationBase.Find :=
func(what, results, scope, statusView)
begin

local myFinder;

// Report status to the user;
// note use of GetAppName and Unicode ellipsis.
if statusView then

statusView:SetMessage("Searching in " &
GetAppName(kAppSymbol)& $\u2026);

// Presume our soup def is registered,
// however, app may be closed so get our own soup.
local mySoup:= GetUnionSoupAlways("My Soup");

// Make sure a member soup exists so query won’t
// fail (GetMember creates the soup if necessary).
mySoup:GetMember(GetDefaultStore());

//Retrieve entries with strings beginning with "what".
local myCursor := mySoup: Query({text: what});

// Append finder to system-supplied results array
if cursor:Entry() then
begin

myFinder :=
{

_proto: ROM_SoupFinder,
owner: self,
title:"My Application",
findType: 'text,
findWords: :MyStringSplittingFn(what),
cursor: myCursor,

};
AddArraySlot(results, myFinder);

end;
end;

C H A P T E R 1 6

Find

Using the Find Service 16-17

Finding Text With a ROM_CompatibleFinder 16

The following example shows how to use the ROM_CompatibleFinder proto to
search for text in application data that is not soup based. The sample code
immediately following doesn’t contain code that actually searches application data,
because the implementation of such a search would be specific to the data type
used to store the application data.

MyAppplicationBase.Find:=
func(what, results, scope, statusView)
begin

local item, foundItems, massagedFoundItems, myFinder;

// Set the message in the Find slip.
if statusView then

 statusView:SetMessage("Searching in " &
GetAppName(kAppSymbol) & $\u2026);

// MyFindMethod does the actual searching, since
// this is too app-specific to do here. It returns
// an array of all the data items that match 'what.
foundItems := MyFindMethod(what);

// Now we create an array with frames of the form
// mandated for ROM_CompatibleFinder.
massagedFoundItems :=

foreach item in foundItems collect
{

// Use proto inheritance to protect data
_proto : item,
// This is seen by the user in the Overview
// (pretend our data is frames w/'name slots)
title : item.name,
// We may add any other slots here our
// methods may want later

};

// Construct the finder frame.
myFinder :=

{_proto: ROM_CompatibleFinder, // For non-soup data
owner: self,// View receiving ShowFoundItem message
title: "My App",
items: massagedFoundItems,
findType : 'text,
findWords: :MyStringSplittingFn(what),

C H A P T E R 1 6

Find

16-18 Using the Find Service

// We may also add slots here...
};

// Append myFinder frame to system’s results array
AddArraySlot(results, myFinder);

end;

Implementing the DateFind Method 16

Date-based searches have a lot in common with their text-based counterparts; in
fact the only significant difference between these two operations is the search
criteria. Rather than matching a text string, the DateFind method tests items
against a time value according to the value of the findType parameter. This
parameter indicates whether the search should include results for items dated on,
after, or before a specified date.

You can simplify the implementation of date-based searches by time-stamping your
application’s data when it is stored. If you store application data as frames that hold
the time they were created or modified in a particular slot, the DateFind method
simply tests the value of this slot to accept or reject the entry.

The sample code immediately following shows the implementation of a typical
DateFind method using the ROM_SoupFinder proto. This code assumes that
soup entries have a timeStamp slot:

MyApplicationBase.DateFind :=
func(findTime, findType, results, scope, statusView)
begin

local myCursor ;
local querySpecFrame;
local querySpec;
local ourFinder;
local mySoup;
constant kOneDay := 60*24;

// report status to the user
if statusView then

statusView:SetMessage("Searching in " &
GetAppName(kAppSymbol) & $\u2026);

// Get the soup
mySoup:= RegUnionSoup(kAppSymbol, kSoupDef);

C H A P T E R 1 6

Find

Using the Find Service 16-19

querySpecFrame :=
{

dateBefore : {
indexPath : 'timeStamp,
endKey: findTime,
},

dateAfter : {
indexPath : 'timeStamp,
beginKey: findTime,
},

dateOn : {
indexPath : 'timeStamp,
beginKey: kOneDay *

(findTime div kOneDay) ,
endKey: kOneDay + kOneDay *

(findTime div kOneDay) ,
}

};
local querySpec := querySpecFrame.(findType);

// Get the cursor.
myCursor := mySoup:Query(querySpec);

// Set up finder frame and add it to the results
// array.
if myCursor:Entry() then
begin

ourFinder := {
_proto: ROM_SoupFinder,
owner: self,
title: "My Application",
findType: findType,
findWords: [DateNTime(findTime)],
cursor: myCursor

};
AddArraySlot(results, ourFinder);

end;
end;

Adding Application Data Sets to Selected Finds 16

You can allow users to choose data sets in an application to search by adding the
AppFindTargets method and either or both of the FindTargeted or
DateFindTargeted methods. This functionality is useful when you want to

C H A P T E R 1 6

Find

16-20 Using the Find Service

limit a Find operation to certain data sets of an application. For example, a personal
finance program may have a check ledger, an account list, and a credit card charges
list. Another example is an online sales catalog program that could allow users to
separately search different catalogs. Even though a single application is receiving
the Find message, a Selected find operation from the Find slip allows the user to
designate any or all of the associated data sets for the Find operation.

To enable multiple data sets in a find operation, first add the method
AppFindTargets to your application’s base view. This method must return an
array of frames that specify the data sets for the application. These data set frames
consist of a name and target pair of slots for each data set, in the following form:

[{name: "userVisibleText", target: thisDataForYourUse}, {...}]

The name slot of the data set frame holds the string to be displayed in the picker
which displays when the Find slip’s Selected button is tapped. The target slot, of
the data set frame, can be set to anything; it is passed to your FindTargeted (or
DateFindTargeted) method. There may be any number of these data set frames
included.

An example AppFindTargets method may be defined as follows:

MyApplicationBase.AppFindTargets: func()
begin

[{name:"Check Book", target:'check},
{name:"Accounts", target: 'accounts},
{name "Credit Cards", target:'credit}];

end;

You must then add the search methods to your finder frame. These methods
leverage from the built-in Find and DateFind methods, adding the data set you
refer to in the target slot as an additional parameter. You define a
FindTargeted method as shown in the following example:

MyApplicationBase.FindTargeted:
func (what,sysResultArray,scope, statusView,target)

// N.B. Scope for Selected find is always 'globalFind
begin

local mySoup;
// Assume the target parameter is the name of the
// soup to search... (We provided this value in
// base.AppFindTargets.)

// Must include the following line... See “Using the
// StandardFind Method.”
local temp := GetUnionSoupAlways(target)
:StandardFind(what, target, sysResultArray,

statusView, 'text);
end;

C H A P T E R 1 6

Find

Using the Find Service 16-21

Note
Applications implementing these methods must also implement
the usual Find and DateFind methods since a find operation
may be dispatched as other than a Selected find. ◆

Returning Search Results 16

After constructing the finder frame, your search method needs to append it to the
system-supplied results array. Each element in this array is a finder frame. In
the case of a finder based on the ROM_SoupFinder, the array the frame has a
cursor for obtaining the items found in the search. In the case of a finder based on
the ROM_CompatibleFinder proto, your finder frame contains an array of the
found items themselves. You need to use the global function AddArraySlot to
append your finder frame to the results array.

The following example shows a line of code that would be placed at the end of
your application’s search method to store the results of the search. In this code
fragment, the results parameter is the system-supplied array passed to the Find
method, and the myFinder parameter is the finder frame resulting from the
search. The following call to AddArraySlot places the finder frame, myFinder,
at the end of the results array:

AddArraySlot(results, myFinder);

Note that the system’s results array is cleared when the Find slip closes.

Implementing Find Overview Support 16
The messages described in this section are sent to your application when the user
taps buttons in the Find overview. These include:

■ the FindSoupExcerpt message

■ the ShowFoundItem message

If your finder frame is based on ROM_CompatibleFinder, you do not need to
write a FindSoupExcerpt method, but you must also write a ShowFakeEntry
method to call your ShowFoundItem method.

The FindSoupExcerpt Method 16

If you use the ROM_SoupFinder proto to construct a finder frame, your
application must supply a FindSoupExcerpt method. This methods must extract
the name of a found item when it is given the soup entry and the finder frame, and
return it to the system as a string to display in the Find overview.

C H A P T E R 1 6

Find

16-22 Using the Find Service

Your FindSoupExcerpt method may also extract extra information if the finder
frame has been set up to hold additional data. For example, if the date associated
with each found item was saved, you could use this information to build more
descriptive titles for overview items.

The following example shows the implementation of a simple
FindSoupExcerpt method:

myApplication.FindSoupExcerpt:=
func(entry, myFinder)
begin

//We simply return the string in our entry’s name slot
entry.name;

end

For a complete description of the FindSoupExcerpt method, see
“FindSoupExcerpt” (page 13-19) in Newton Programmer’s Reference.

If you are using the ROM_CompatibleFinder proto, this finder must contain the
strings that a ROM_SoupFinder’s FindSoupExcerpt method would return. For
more information see the description of the items array in
“ROM_CompatibleFinder” (page 13-7) in Newton Programmer’s Reference.

The ShowFoundItem Method 16

This method locates the specified item in your application’s data and displays it,
performing any scrolling or highlighting that is appropriate. A typical
ShowFoundItem method may need to

■ open a view appropriate for displaying the target

■ set the cursor or the target slot to reference the target

■ scroll the contents of the display view to make the target visible

■ highlight the target in the display view

The implementation of a ShowFoundItem method depends on which finder proto
you use. This section describes an example ShowFoundItem method suitable for
use with the ROM_SoupFinder proto.

If you’ve based your finder frame on the ROM_SoupFinder proto, the
ShowFoundItem method is passed two arguments: the soup entry that
the user tapped in the Find overview, and the finder frame your application
added to the results array of finder frames.

The system expects your application’s ShowFoundItem method to look like the
following example:

ShowFoundItem: func(myEntry, myFinder) begin . . . end

C H A P T E R 1 6

Find

Using the Find Service 16-23

In the body of this method, you need to do whatever is necessary to display the
soup entry myEntry. Typically, you first send a Close message to the Overview
and then open the view that displays the entry. The following code fragment shows
the implementation of a typical ShowFoundItem method.

// For use with ROM_SoupFinder proto
myApplication.ShowFoundItem:=
func(entry, myFinder)
begin // close my overview if it’s open
 if currentView = myOverview then begin
 myOverView:Close();
 myDisplayView:Open();

// open view that displays the entry
 end;
 // scroll, highlight, etc. as necessary

// to display the entry
myDisplayView:DisplayEntry(entry, cursor);

end

Your application is always open when the ShowFoundItem message is sent to it.
For example, this message is sent when the user scrolls between found items from
within the Find slip. The system also invokes this method when the user taps an
item in the Find overview. In this case, the system opens your application, if
necessary, before sending the ShowFoundItem message to it.

Note that if no items are found this message is never sent.

Using ShowFoundItem with ROM_CompatibleFinder 16

If you are using a finder based on ROM_CompatibleFinder, you still need to
implement a ShowFoundItem in your application’s base view. Your finder also
needs to override the ShowFakeEntry method. Your ShowFakeEntry method
needs to call your ShowFoundItem method, making sure that your application is
open first. Your ShowFoundItem method should accept an element of the finder’s
items array as its first parameter, instead of a soup entry. It should perform the
same actions as a ShowFoundItem method that expects a soup entry, as described
in “The ShowFoundItem Method” (page 16-22).

The following example demonstrates a typical ShowFakeEntry method:

myFinder :=
{

_proto : ROM_CompatibleFinder,
ShowFakeEntry : func (index)
begin

local myApp;
if myApp := GetRoot.(kAppSymbol) then

C H A P T E R 1 6

Find

16-24 Using the Find Service

begin
myApp:Open();
myApp:ShowFoundItem (items[index], self);

end;
end,
....

}

Replacing the Built-in Find Slip 16
Applications can replace the system-supplied Find slip with a customized version,
which is called when the application is frontmost. To implement a custom Find slip
that displays in your application, include a method named CustomFind in the
application’s base view. This CustomFind method must open the Find slip you
constructed and do anything else that’s appropriate, including displaying found items.

Reporting Progress to the User 16
It is strongly recommended that your status messages be consistent with those that
the built-in Newton applications display while a Find operation is in progress; for
example, you can use a message such as “Searching in appName.”

Your search method is passed a statusView parameter which is the view the system
is using to report progress. You can display a string in this view, by calling its
SetMessage method. Figure 16-10 depicts a typical status message from the Find
service.

Figure 16-10 Typical status message

C H A P T E R 1 6

Find

Using the Find Service 16-25

The following code fragment shows how to use the statusView parameter to
display a progress message to the user:

MyAppplicationBase.Find:=
func(what, results, scope, statusView)
begin

if statusView then
statusView:SetMessage("Searching in" &

GetAppName(kAppSymbol)&
$/u2026);

...
end;

There are several ways to obtain the application name string that replaces the
appName variable; they are listed here in order of recommended use:

■ You can retrieve this string from the appName slot in your application’s base view.

■ You can retrieve this string from the title slot in your finder frame.

■ You can retrieve this string by calling GetAppName(kAppSymbol);

Registering for Finds 16
Applications registered with the Find service participate in Global finds; they also
participate in selective finds when specified by the user.

You do not need to register with the Find service to support Local finds. Global
and Local find support use the same mechanism, which relies on the Find and
ShowFoundItem methods that your application supplies. A Global find is simply
a series of Local finds initiated by the system in applications that have registered
for participation in Global finds.

Use the RegFindApps function to register your application with the Find service
and its counterpart, the UnRegFindApps function, to reverse the effect. You
should call these functions from your application part’s InstallScript and
RemoveScript functions.

C H A P T E R 1 6

Find

16-26 Summary

Summary 16

Finder Protos 16

mySoupFinder:= { // Use to find soup entries.
_proto: ROM_SoupFinder,
owner:self, // View that gets ShowFoundItem message

// usually your app's base view
title: "My Application",// Displayed in Find overview

// usually inherited from owner
cursor:myCursor,// Returned by search method's query
findType:'text// Must use this value for text search
findWords:[search strings] // Array of words to match
selected: [], // Internal array of selected items
Count: func(),//Returns # found items; don’t override
Delete: func(), // Deletes all selected items
FileAndMove: func

(labelsChanged,newLabel,storeChanged,newStore),
// Files and/or moves selected items

ForEachSelected: func(callbackFunction), // Calls callback
// func for each selected found item; dont override

GetTarget: func(), //Returns target frame; for routing
IsSelected: func(item), // Returns true if item

// selected; don’t override.
Reset: func(), // Resets cursor; don’t override.
ReSync: func(), // Resets soupFinder; do not override.
SelectItem: func(item), // Marks item as selected
ShowFoundItem:func(item, finder),
ShowEntry: func(entry), // Displays entry;

// don’t override
ShowOrdinalItem: func(ordinal), //Shows found item

// specified by integer
ZeroOneOrMore: func(), // Returns number of items;

// don’t override
}

C H A P T E R 1 6

Find

Summary 16-27

myCompatibleFinder:= {// Use to find data stored in
// non-soup data structures.
//Override most to fit your data.

_proto: ROM_CompatibleFinder,
owner:self, // Required. View that gets ShowFoundItem

// message;usually your app's base view.
title: "My Application",// Displayed in Find overview;

// usually inherited from owner.
findType:'text// Can also be 'dateBefore,

 //'dateOn, or 'dateAfter.
findWords:[textOrDate]// Text or date to find.
items:[// Array of the items found by your search.

{_proto: myFoundItem, //Optional; but better
//to reference data as it

 //gets altered destructively.
title: "My Application",//String displayed in

//Find overview.
},
{ /* and other such frames... */ },
]

selected: [], // Internal array of selected items.
ConvertToSoupEntry: func(item),//Return a soup entry

//corresponding to data item.
Count: func(),//Returns number of found items;

// don’t override.
Delete: func(), // Deletes all selected items.
FileAndMove: func(labelsChanged,newLabel,

storeChanged,newStore),
// Files and/or moves selected items

ForEachSelected: (callbackFunction), // Calls callback
// function for each selected
// found item; don’t override.

GetTarget: func(), //Returns target frame; for routing
IsSelected: func(item), // Returns true if item is

// selected; don’t override.
ReSync: func(), // Resets finder to its initial

// state; do not override.
SelectItem: func(item), // Marks item as selected
ShowFakeEntry: func(index), // Displays the index(th)

// number found item. Replaces
// ShowFoundItem in compatabile finder.

}

C H A P T E R 1 6

Find

16-28 Summary

Functions and Methods 16

RegFindApps(appSymbol) //registers app. for global &
//selected finds

UnRegFindApps(appSymbol) //unregs. app for non-local finds
statusView:SetMessage(msg)//sets string in progress view
view:StandardFind (what,soupName,results,statusView,indexPath)

//searches soups

Application-Defined Methods 16

appBase:Find (what,results,scope,statusView) //text find
appBase:FindTargeted (what,results,scope,statusView, target)

// targeted text find
appBase:DateFind (findTime,compareHow,results,scope,statusView)

// date find
appBase:DateFindTargeted (what,results,scope,statusView, target)

// targeted date find
appBase:AppFindTargets ()//sets targets for targeted finds
targetView:FindSoupExcerpt(entry,resultFrame)// returns string

// to display in find overview
targetView:ShowFoundItem (foundItem, myFinder) //show found

 //item
appBase:CustomFind() //Does all find work

About Additional System Services 17-1

C H A P T E R 1 7

Additional System Services 17Figure 17-0
Table 17-0

This chapter discusses system services not covered elsewhere in this book. The
topics covered in this chapter are

■ Providing the capability to undo and redo user actions.

■ Using idler objects to perform periodic operations.

■ Using the notification service to respond to soup, folder, or user configuration
change messages.

■ Using the alerts and alarms service to display user messages and execute
callback functions at specified times.

■ Using progress indicators to provide user feedback.

■ Using the power registry to execute callback functions when the Newton is
powered on or off.

■ Using a custom help book to provide online help to the user.

If you are developing an application that utilizes any of these objects or services,
you should familiarize yourself with the material discussed in this chapter.

About Additional System Services 17

This section briefly describes the undo, idler objects, alerts and alarms, change
notification, progress reporting, and power registry services. These are discussed in
greater detail later in this chapter.

Undo 17
The Undo service is the mechanism the system provides for undoing and redoing
the user’s most recent action. From within each function or method that must
support Undo, your application registers a function object that can reverse the
actions of that function or method. This function object is called an undo action,
and is called when the user taps the Undo button. The undo action can then register

C H A P T E R 1 7

Additional System Services

17-2 About Additional System Services

a function object to redo the original function or method. Thus tapping the Undo
button twice completes an undo/redo cycle.

Undo Compatibility 17

The user interface standards for version 2.0 of the Newton operating system call for
the user’s second tap on the Undo button to provide a Redo rather than a second
level of Undo. Your undo action must create an undo action for itself to implement
this interface. For more information, see the section “Using Undo Actions”
beginning on page 17-8.

The global function AddUndoAction is obsolete, replaced by the view method of
the same name that provides similar functionality. Existing code that uses the
global function can be converted by prefixing a colon to the message selector.
For example:

AddUndoAction(....)

becomes

:AddUndoAction(...)

Idler Objects 17
An idler object sends a message to your view periodically to execute the
ViewIdleScript method you provide for that view. This allows you to perform
periodic tasks from any view for which you have installed an idler object.

Note, however, that the time the ViewIdleScript message is sent is not
guaranteed to be the exact interval you specify. This is because the idler
may be delayed if a method is executing when the interval expires. The
ViewIdleScript message cannot be sent until an executing method returns.

Change Notifications 17
The system provides notification services send your application a message when a
soup, folder, or user configuration variable has been changed. These are described
in the following chapters:

■ The soup change notification service is discussed in Chapter 11, “Data Storage
and Retrieval.”

■ The folder change notification service is discussed in Chapter 15, “Filing.”

■ The user configuration change notification service is discussed in Chapter 19,
“Built-in Applications and System Data.”

C H A P T E R 1 7

Additional System Services

About Additional System Services 17-3

Online Help 17
Your application can provide a protoInfoButton view that displays customized
online help to the user (or a newtInfoButton if working in the NewtApp
framework). Help can also be displayed from the Intelligent Assistant. For a
complete description of how to create a help book and integrate it with your
application, see version 2.0 of the Book Maker User’s Guide. For a description of
the protoInfoButton, see Chapter 7, “Controls and Other Protos.” For a
description of the newtInfoButton proto, see Chapter 4, “NewtApp
Applications.” For information about displaying online help from the Assistant, see
Chapter 18, “Intelligent Assistant.”

Alerts and Alarms 17
The Alert service enables you to display messages to the user. The Alarms service
in addition to displaying a user alert, provides applications with a way to perform
actions at specified times.

User Alerts 17

The view method Notify displays a user alert slip similar to the one shown in
Figure 17-1. The system saves the last four alert messages. The user can scroll
through them by tapping the universal scroll arrows while the alert view is open.
Also, the user can tap the circled “i” to display the date and time of the message.

Figure 17-1 User alert

User Alarms 17

The Alarms service can be used to display an alert slip and execute a callback
function at a specified time. If the Newton is asleep at the time the alarm is to
execute, the alarm powers up the Newton and executes the callback function. The
user can temporarily dismiss the alert for a specified time period by tapping the
Snooze button included in the alarm slip, as shown in Figure 17-2.

C H A P T E R 1 7

Additional System Services

17-4 About Additional System Services

Figure 17-2 Alarm slip with Snooze button

Periodic Alarms 17

The periodic alarm service sends messages to your application at a specified time.
This can be used, for example, by an email client application to periodically log on
to a server to check for incoming messages.

The interface to the periodic alarm service is the system-supplied
protoPeriodicAlarmEditor, shown in Figure 17-3. You can create views
from this proto to allow the user of your application to schedule periodic alarms.
When the alarm times scheduled in this view come up, a message is sent to your
application.

Figure 17-3 A view based on protoPeriodicAlarmEditor

C H A P T E R 1 7

Additional System Services

About Additional System Services 17-5

Alarms Compatibility 17

All alarm information described here is new to the Newton 2.0 system. Alarm
functionality for 1.x devices is provided by the NTK platform file. See the platform
file release notes for the 1.x platform for important compatibility information.

Progress Indicators 17
This section describes the automatic busy cursor, the notification icon, and the status
slip, which you can use to provide feedback to the user during lengthy operations.

Automatic Busy Cursor 17

When the system is temporarily unavailable for user input, it displays the busy
cursor shown in Figure 17-4. Your application need not do anything extra to
support the busy cursor; the system displays it automatically. There is a function,
ShowBusyBox, however, which shows or hides the busy cursor.

Figure 17-4 Busy cursor

Notify Icon 17

The notify icon is a small blinking star you can display at the top of the screen to
remind the user that an operation is in progress without using the amount of screen
space a progress slip requires. The notify icon allows you to register callback
functions that are accessible to the user from a pop-up menu that the notify icon
displays. For example, you would normally register a function that allows the user
to cancel the operation in progress. Figure 17-5 illustrates the notify icon and a
menu typical of those it can display.

Figure 17-5 Notify icon

Notify icon

Notify icon’s
popup menu

C H A P T E R 1 7

Additional System Services

17-6 About Additional System Services

Status Slips With Progress Indicators 17

For complex operations requiring more user feedback than the automatic busy
cursor offers, you can provide a status slip. You can use the DoProgress function
to call the function that implements that operation. The DoProgress function
displays a status slip with graphical progress indicators and informative messages.
Figure 17-6 depicts a typical progress slip displayed by the DoProgress
global function.

Figure 17-6 Progress slip with barber pole gauge

The status slip that this function displays is based on the protoStatusTemplate
system prototype. You can also use this system prototype to provide your own
status slips.

Status slips based on the protoStatusTemplate may contain any of the
following optional items:

■ Title text; for example, the name of the application or the operation in progress.

■ Message text; for example, “Searching in ApplicationName...”, “Connecting to
modem…” and so on.

■ Either a bar gauge, barber pole, or progress indicator that displays relative
completeness of the current operation as a shaded portion of the entire gauge. A
bar gauge is a horizontal rectangle which is filled from left to right. A barber
pole gauge animates a set of diagonal stripes while the operation progresses but
does not indicate how much of the operation has been completed. A progress
indicator looks like a piece of paper which is progressively filled in.

■ An icon; visually identifying the application or present operation. The Find slip
in Figure 17-6 on (page 17-6) uses a custom icon.

■ A button; this is usually used to allow the user to cancel the present operation.

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-7

Power Registry 17
The Power Registry implements a cooperative model for powering the Newton on
and off. When power is turned on or off, this service

■ notifies registered applications of the impending change in power status

■ allows applications to temporarily halt the shutdown process

■ executes registered callback functions

The Power Registry model is based on the registration of callback functions to
execute when the Newton is powered on or off. You can use the RegPowerOn
function to register a callback function for execution when the Newton is powered
on. The UnRegPowerOn function reverses the action of the RegPowerOn
function; that is, it removes the specified function from the registry of functions
called when the Newton is powered on.

Power-on functions can also be tied to the login screen. The login screen appears
when the user powers on a Newton device. Password-protected Newton devices
display the login screen until the password is correctly entered. If your power-on
function has a visible component, you should tie this function into the login screen,
instead of as a regular power-on function. The RegLogin and UnRegLogin
methods are used to register and unregister login functions respectively.

You can use the RegPowerOff function to register a callback function for
execution when the Newton is powered off. The UnRegPowerOff function
removes the specified function from the registry of functions called when the
Newton is powered off.

Note that “power-off” callback functions can delay an impending shutdown when
necessary. For example, your callback function might delay an impending power-
off operation until it can successfully tear down a communications endpoint.

Power Compatibility Information 17

Applications can now register callback functions to execute when the Newton
powers on or off. All of the functions that provide this service are new.

The BatteryLevel function is obsolete. It has been replaced by the
BatteryStatus function.

Using Additional System Services 17

This section discusses how to use the undo, idler objects, alerts and alarms, change
notification, progress reporting, and power registry services.

C H A P T E R 1 7

Additional System Services

17-8 Using Additional System Services

Using Undo Actions 17
The following code example shows how to provide undo capability in a view.
Imagine you have a view that uses cards. The view has a particular method,
DeleteCard, that it uses to delete a card. Within the DeleteCard method, you
call the AddUndoAction method, passing as its arguments the name of the card
deleted and a different method that will add the card (thereby undoing the delete
operation). Your call to view:AddUndoAction would look like the one in the
following code fragment:

DeleteCard: func(theCard)
begin

// statements that delete a card
...

// call AddCard as an undo action
:AddUndoAction ('AddCard, [theCard])

end,

You also need to supply the AddCard method, which would look similar to the
following example. It too provides an undo action—one that calls the original
action, thereby completing the Undo/Redo cycle.

AddCard: func(theCard)
 begin

// statements that add a card
 . . .

// call DeleteCard as an undo action
:AddUndoAction ('DeleteCard, [theCard])

 end,

The Various Undo Methods 17

The AddUndoAction method ties an undo action to a specific view. If that view is
no longer open when the user taps Undo, the action does not take place. Because
an undo action should generally cause a visible change, it is often desirable to tie
the undo actions to views.

When it is not desirable or feasible to tie an undo action to an open view, you can
use the AddUndoCall or AddUndoSend functions to execute the undo action
unconditionally. For example, view methods usually use the AddUndoAction
view method to post their undo action; however, if the view will not be open when
the user taps Undo, you may need to use the AddUndoCall or AddUndoSend
functions to post the undo action. If your action relies on the view being open or
some other condition, it must test that condition explicitly.

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-9

Avoiding Undo-Related “Bad Package” Errors 17

The AddUndoAction method saves the current context (self) so that later it can
send the “redo” message (the argument to the methodName parameter of the
AddUndoAction method) to the appropriate object. As a result, it is possible that
references to your application can stay in the system inside the Undo mechanism’s
data structures after the application has been removed. These references can cause
-10401 (bad package) errors when the user taps Undo after ejecting the card on
which the application resides. Using the EnsureInternal function on all
parameters passed to the AddUndoAction function does not remedy this problem.

You can use the ClearUndoStacks function to clean up dangling references
to self that are left behind by the AddUndoAction method. The
ClearUndoStacks function is generally called from the ViewQuitScript
method of the application base view. You can call this function elsewhere as
necessary but you must do so very cautiously to avoid damaging other
applications’ undo actions.

Note
The ClearUndoStacks function deletes all pending undo
actions—including those posted by other applications. Use this
function cautiously. ◆

Using Idler Objects 17
This section describes how to install an idler object for a specified view. An idler
object sends ViewIdleScript messages to the view periodically.

Note that an idler object cannot guarantee its ViewIdleScript message to be
sent at precisely the time you specify. The ViewIdleScript message cannot be
sent until an executing method returns; thus the idler’s message may be delayed if a
method is executing when the interval expires.

Using an idler object is straightforward; you need to

■ Send the SetUpIdle message to the view that is to receive the
ViewIdleScript message. This message takes a single parameter: the
number of milliseconds to wait before sending the first ViewIdleScript
message.

■ Implement the ViewIdleScript method that is to be executed. This method
should return the number of milliseconds before the next ViewIdleScript
message is sent.

■ Call SetUpIdle again, this time passing in the value 0, or return nil from
your ViewIdleScript. This removes the idler object.

The idler object is removed in any case when the view is closed.

C H A P T E R 1 7

Additional System Services

17-10 Using Additional System Services

Note
Do not install idler objects having idle time intervals of
less than 100 milliseconds. ◆

The following example prints a random five-letter word in the Inspector until the
view is closed:

myButton := {
_proto : protoTextButton,
ButtonClickScript : func() :SetUpIdle(100);//start the

//cycle
text : "Print silly words",
ViewIdleScript: func()

begin
print(GetRandomWord (5,5));
//this function’s return value
//determines when it is called next
2 * 1000; //come back in 2 secs.

end;
...

}

Using Change Notification 17
For a complete description of these services, see the appropriate chapter:

■ For information on soup change notification, see Chapter 11, “Data Storage
and Retrieval.”

■ For information on folder change notification, see Chapter 15, “Filing.”

■ For information on user configuration change notification, see Chapter 19,
“Built-in Applications and System Data.”

Using Online Help 17
You create online help by creating a help book using Newton Book Maker. For
information on how to do this see version 2.0 of the Book Maker User’s Guide. The
help book can then be displayed from the information (“i”) button. This button is
based on protoInfoButton, or newtInfoButton if you are working within
the NewtApp framework. For a description of the protoInfoButton proto, see
Chapter 7, “Controls and Other Protos.” For a description of the newtInfoButton
proto, see Chapter 4, “NewtApp Applications.”

Help can also be displayed from the Intelligent Assistant. For information about
this, see Chapter 18, “Intelligent Assistant.”

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-11

Using Alerts and Alarms 17
This section describes the use of functions and methods that provide alerts and
alarms, and the protoPeriodicAlarmEditor.

Using the Notify Method to Display User Alerts 17

The Notify method offers a simple way to display a message to the user. This
method takes three arguments. The first specifies which type of alert is displayed;
some alerts beep, some only log their notice instead of displaying it, and so on. The
other two arguments are strings shown to the user in the alert.

The following code fragment creates the slip shown in Figure 17-7:

:Notify(kNotifyAlert,"LlamaCalc",
"You’ve run out of Llamas!");

Figure 17-7 A user alert

Creating Alarms 17

The AddAlarm and AddAlarmInSeconds functions are used to schedule a new
alarm. You can also use these functions to substitute a new alarm for one that is
currently scheduled but has not yet executed.

The AddAlarm function creates each new alarm as a soup entry (thus, alarms
persist across restarts) and returns an alarm key that uniquely identifies the new
alarm. This alarm key is a string you provide as one of the arguments to the
function that creates the alarm; it includes your developer signature as a suffix. For
example, a typical alarm key might be the string "lunch:myApp:mySig" or
something similar. Note that only the first 24 characters of an alarm key are
significant.

IMPORTANT

Do not manipulate the alarm soup or its entries directly. Use only
the interface described in this chapter to manipulate alarms. ▲

C H A P T E R 1 7

Additional System Services

17-12 Using Additional System Services

The following code example adds an alarm set to execute in five minutes:

AddAlarm("Alarm1:MyApp:MySig", Time()+5,
["Title String","Message String"], nil, nil);

The first argument is the alarm key (which this function call returns). The second is
when the alarm is to execute. The third is an array of strings to use as arguments to
the AlarmUser function that displays the alarm slip. If a three-element array is
passed in as AddAlarm’s third argument, these array elements are used as
arguments to the Notify function that is used to display the slip. The fourth and
fifth arguments are a callback function, and its arguments, which is executed when
the alarm executes.

If an installed alarm has the key specified in the call to AddAlarm, the installed
alarm is removed, and the new alarm is installed.

After an alarm executes, it is made available for garbage collection; thus, alarms
that have already executed may no longer exist. For this reason, it is unwise to store
references to alarms or try to manipulate them by any means other than the
interface the system provides.

Obtaining Information about Alarms 17

The GetAlarm function returns a frame with information about an alarm. The
alarm is identified by its key. The frame returned has the following slots:

key The alarm key.

time The time at which the alarm is to execute.

notifyArgs The array of arguments to pass to Notify or AlarmUser.

callBackFunc The function object to execute, or nil.

callBackParams Array of arguments to callBackFunc, or nil.

This frame may contain other slots; do not rely on the values (or future existence)
of these slots. You must also not modify this frame in any way.

Retrieving Alarm Keys 17

The GetAppAlarmKeys function returns an array containing the alarm keys of all
alarms installed by an application. These keys can be used to pass to the
AddAlarm, GetAlarm, and RemoveAlarm functions.

This function relies on all of your application’s alarms ending with the same suffix.
For this reason it is important for all alarms created by a particular application to
use alarm keys ending with the same suffix.

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-13

The following code example removes all alarms an application has scheduled for
the next five minutes:

foreach alarmKey in GetAppAlarmKeys(":MyApp:MySig") do
if not (GetAlarm(alarmKey).time > Time() + 5) then

RemoveAlarm (alarmKey);

Removing Installed Alarms 17

The functions RemoveAlarm and RemoveAppAlarms remove a particular alarm
and all of an application’s alarms, respectively. The RemoveAlarm function takes
the alarm key of the alarm to remove as its single argument. Use of this function is
demonstrated in the code example in “Retrieving Alarm Keys” beginning on
page 17-12.

The RemoveAppAlarms function takes an alarm key suffix as an argument and
removes all alarms whose key ends with this suffix. For this reason it is important
for all alarms created by a particular application to use alarm keys ending with the
same suffix. If your application’s alarm are not meaningful if your application is
not installed, you should call this function in your application’s RemoveScript
function.

Common Problems With Alarms 17

This section describes common problems encountered with use of the alarm service.

Problems With Alarm Callback Functions 17

Alarms are kept in a soup; thus, they persist across restarts and installation or
removal of packages. This means that the arguments you pass to your callback
function are also stored in a soup; hence, these arguments are also copied deeply.
(See the description of the DeepClone function in Newton Programmer’s
Reference.) Therefore, you must avoid indirectly referencing large objects lest
they unnecessarily inflate the size of your entries in the alarm soup.

A classic example of accidentally referencing a large object is in dynamically
creating the function object executed with the alarm. Function objects may contain
references to the lexical environment and the current receiver (self) at the time
they are created. For example, function objects created from a view method reference
the root view through their parent chain. If you pass such a function object to the
AddAlarm function, the system attempts to copy the entire root view into the
alarm soup. One way to minimize the size of your callback function object is to
pass as your callback a one-line function that invokes a method in your application
package to actually do the work.

C H A P T E R 1 7

Additional System Services

17-14 Using Additional System Services

In any case, debugging your callback function is difficult because any exceptions it
raises are caught and ignored by the alarm mechanism. Thus, you need to debug
your callback functions thoroughly before passing them to the AddAlarm function.

Since your application may not be open, or even installed when its alarm executes,
your code needs to handle these eventualities appropriately. The following code
fragment shows how to test for the presence of an application before sending a
message to it:

if GetRoot().(kAppSymbol) then
GetRoot().(kAppSymbol):DoSomething()

else
GetRoot():Notify(...)

Alarms and Sound 17

The Alarm panel in user preferences controls the volume of alarm sounds. Do not
change preferences without the user’s knowledge.

Courteous Use of Alarms 17

Each alarm you schedule uses space in the internal store. You need to exercise
reasonable judgment when creating multiple alarms. Your application needs to
schedule and use alarms in a way that does not hamper the activities of other
applications residing on the user’s Newton. While limiting your application to a
single alarm might be too restrictive, scheduling a daily wake-up alarm for the next
year by creating 365 different alarms would use up a lot of the internal store.

Similarly, your alarm actions should be brief, so they don’t interfere with other
alarms. If you need to do something time consuming or repetitive, use a deferred
action or set up a ViewIdleScript.

Using the Periodic Alarm Editor 17

There is no way to set a periodic alarm programmatically. You can, however, create
a view from protoPeriodicAlarmEditor, and allow your application’s users
to set periodic alarms. To attain the functionality of periodic alarms without using
the protoPeriodicAlarmEditor, you would need to programmatically add
new alarms from the callback functions executed when your alarms go off.

There are three steps required to support the alarm editor:

1. Add a method in your application’s base view called AlarmsEnabled. This
method takes no arguments, and should return a Boolean indicating whether
your application should be sent the PeriodicAlarm message (see next item).
If the alarms are not a feature that can be disabled, you can simply define your
AlarmsEnabled method as:

func() true;

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-15

2. Define another method in your application’s base view named PeriodicAlarm.
This method is called whenever the alarm “goes off.” This method is passed a
single parameter, alarm, that contains information about the present alarm. For
information on the alarm parameter, see PeriodicAlarm in Newton
Programmer’s Reference.

3. Create a view that is based on protoPeriodicAlarmEditor. You need to
set three slots in this view:

n A title slot set to a string that is displayed at the top of the view.

n An ownerSymbol slot set to your application symbol. The system sends
PeriodicAlarm messages are sent to GetRoot().(ownerSymbol).

n An ownerApp slot set to a string that names of your application.

IMPORTANT

Do not add child views to a view that is based on
protoPeriodicAlarmEditor. ▲

Using Progress Indicators 17
This section describes how to use the automatic busy cursor, the notify icon, the
DoProgress function, and protoStatusTemplate views.

Using the Automatic Busy Cursor 17

Your application need not do anything extra to support the busy cursor; it
is displayed automatically when the system is temporarily unavailable for user
input. If you want the busy cursor to appear, or to suppress it’s appearance, you
may call the ShowBusyBox function. This global function takes one parameter,
showIt, which is a Boolean that determines whether the busy cursor is shown.

Using the Notify Icon 17

To report progress to the user, most applications display a status slip based on
protoStatusTemplate. Normally, this slip includes a close box you can use to
hide the status slip and add an action to the notify icon. The action shows the status
slip again.

Note
Status views that use the DoProgress function are an exception
to this rule. Do not include a close box in these views. ◆

The notify icon maintains a list of these actions. When the user taps the notify icon,
a pop-up menu of actions appears. Choosing an item from the menu invokes that
action and removes it.

C H A P T E R 1 7

Additional System Services

17-16 Using Additional System Services

To add an action to the notify icon and display it, call the AddAction method as
in the following example:

myFunc := func() GetRoot():SysBeep();
theAct := GetRoot().notifyIcon:AddAction("Beep", myFunc,

nil);

You can remove an action by calling the KillAction method—for example, if
your task in progress completes while the protoStatusTemplate view is
hidden, you should close the status view and remove the action from the notify
icon's menu. You need to save the result the AddAction method returns. Pass this
object to the KillAction method to remove the action from the notify icon’s list
of actions, as in the following example:

GetRoot().notifyIcon:KillAction(theAct);

Using the DoProgress Function 17

To provide user feedback during a lengthy operation, you can use the DoProgress
function to display a status view and call the function that implements that operation.
The DoProgress function is suitable only for tasks that complete synchronously.
To report the progress of asynchronous work, you must display your own
protoStatusTemplate view and update it yourself, as described in “Using
protoStatusTemplate Views” beginning on page 17-18.

The DoProgress function accepts as its arguments a symbol specifying the kind
of progress indicator to display (a thermometer gauge or a barber pole), an options
frame that allows you to customize the progress-reporting view further, and a
function that actually performs the operation on which you are reporting progress.

You must not allow the user to close the progress slip without cancelling the
progress-reporting operation—if the DoProgress method sends status messages
to a nonexistent view, the Newton hangs. You must hide the Close button normally
provided by the DoProgress method. You can do this by including a closebox
slot having the value nil, in the options frame that you pass to DoProgress as
shown in the following code fragment:

local myOpts := { closebox:nil,
icon: kMyIcon,
statusText: kAppName,
gauge: 10,
titleText:"One moment, please…"}

The function you pass to DoProgress must accept as its sole argument the view
that displays SetStatus strings to the user. For example, to report status while

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-17

performing the myFunc function, pass it as the value of the workFunc parameter to
the DoProgress function, as illustrated in the following code fragment:

// options and data are accessible from workFunc because
// the workFunc "closes over" this context
myOpts := { wFnData:"Confabulating",

closebox:nil,
icon: kMyIcon,
statusText: kAppName,
gauge: 10,
titleText:"One moment, please."};

workFunc := func (theContextView)
begin

for x := 1 to 10 do
begin

myOpts.titleText:= :SomeWork(myOpts.wFnData);
myOpts.gauge := x * 10;
try

theContextView:SetStatus('vGauge,myOpts);
// handle any exceptions you anticipate
onexception |evt.ex.foo| do

// handle & possibly rethrow if it's fatal
onexception |evt.ex.bar| do

// handle & possibly rethrow if it's fatal
onexception |evt.ex| do

// either an unexpected exception has been
// thrown or the user has canceled our
// operation. Perform any cleanup
// necessary, and be sure to rethrow..
ReThrow();

end; // for loop
end; // workFunc

progress := DoProgress('vGauge, myOpts, workFunc);
if progress = 'cancelled then

// this is another place to clean up after being
// cancelled

The workFunc function’s argument, theContextView, is the status slip that
contains the gauge. A reference to this view is passed to your work function so that
you can send it SetStatus messages. Note that workFunc is structured in a way
that permits it to call the progress slip’s SetStatus method at regular intervals,
passing values used to update the progress slip’s gauge and message string.

C H A P T E R 1 7

Additional System Services

17-18 Using Additional System Services

The code above shows the two ways in which your code can respond when the user
cancels the operation. If the user taps the Stop button an exception is thrown by
SetStatus. You may catch this exception and perform any clean-up necessary.
(In the code above the all-inclusive |evt.ex| onexception clause catches this
exception.) You must, however, rethrow this exception so the system can perform
its own cleanup, otherwise the Newton device appears to hang. You must ensure
that any exceptions you do not specifically anticipate are rethrown by your
exception-handling code.

You may also perform any necessary housecleaning after an uncompleted operation
by comparing the result of the DoProgress function. If the user tapped the Stop
button, DoProgress returns the symbol 'cancelled.

Using DoProgress or Creating Your Own protoStatusTemplate 17

The DoProgress function creates a view based on the protoStatusTemplate
to report progress to the user. Using this function is the simplest way to create a
protoStatusTemplate view. However, it is not suitable for all applications.

You should use DoProgress if

■ Your code is structured synchronously; that is, DoProgress does not return
until the workFunc function has completed or the user cancels the operation.

■ The built-in bar gauge or barber pole status slips which DoProgress uses are
suitable for your needs.

■ The action is modal; that is, the user cannot do anything until the action finishes
or is canceled.

If any of these is not true, use protoStatusTemplate; that is you should create
your own protoStatusTemplate if

■ Your code is structured asynchronously; that is, it allows user events to be
processed normally.

■ Your code uses communications; these usually have asynchronous components.

■ Your code requires a custom status template type; possibly for a transport.

■ Your actions are not modal; that is, the user could proceed in your application or
other applications while the action is in progress.

Using protoStatusTemplate Views 17

You need to take the following steps to use a protoStatusTemplate view to
report progress to the user:

1. Specify the components of the status slip and their initial values. You can use
one of the system-supplied templates or create your own template.

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-19

2. Open the status slip. There are three parts to this process:

n Instantiate your status view by passing its template to the BuildContext
function.

n Initialize the status slip by passing the template’s setup frame to the status
slip’s ViewSet method.

n Invoke the status slip’s Open method to display the slip.

3. Perform the operation on which you are reporting progress, updating the status
slip periodically by invoking the status view’s UpdateIndicator or
ViewSet method.

4. Write a CancelRequest method which is executed when the user cancels
your operation with a “Cancel” or “Stop” button. If your action cannot be
cancelled, do not provide such a button.

Each of these steps is described in detail in the following sections.

Defining Status View and Component View Templates 17

You can create a status slip view from the system-supplied templates vStatus,
vGauge, vBarber, vConfirm, vProgress, or vStatusTitle (shown in
Figure 17-8), or you can create your own template for this view.

Your status view template must have a _proto slot that holds the value
protoStatusTemplate. It may also include

■ Methods and data that must be available to the status view or its child views.

■ An optional initialSetup slot. If this slot is present, the view system uses its
contents to initialize the status slip automatically when the slip is opened.

■ A frame describing a custom component template. This is needed only if you do
not wish to use one of the built-in templates. This frame must contain the
following slots:

height Height of the status slip, (not the component view) expressed
in pixels. Making this value part of the component view
template allows status slips to resize themselves based on the
height specified by their component views.

name A symbol representing this template to the ViewSet
method. For example, if the name of your component
template is 'vMyBarber, this slot should hold the
'vMyBarber symbol.

kids Array of frames specifying the view templates used to
instantiate the components of this view. These templates
should be based on one of the protos described in “Status
View Components” (page 14-14) in Newton Programmer’s
Reference.

C H A P T E R 1 7

Additional System Services

17-20 Using Additional System Services

Figure 17-8 Built-in status view configurations

If you want to use a system-supplied template, you can simply define your status
template as

myStatusTemplate := {_proto : protoStatusTemplate};

The definition of myStatusTemplate above does not include an
initialSetup slot, so it is necessary to call the ViewSet method to initialize
the view when it is instantiated. (This is discussed in “Opening the Status Slip”
beginning on page 17-23.)

The following status template defines a more complicated, self-animating, custom
barber pole gauge. The myStatusTemplate template defined in this example

vStatus

vStatusTitle

vConfirm

vProgress

vGauge

vBarber

icon

statusText

icon

titleText

progress

primary

icon

primary

titleText

primary

closeBox closeBox

closeBox closeBox

closeBox closeBox

statusText

icon

secondary

primary

statusText

statusText

icon

titleText

gauge

primary

statusText

icon

titleText

barber

primary

statusText

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-21

includes an InitialSetup frame initializes this view automatically before
it opens.

myStatusTemplate := {
_proto: protoStatusTemplate,
// custom self-animating barber pole
vMyBarber:

{
height:105,
name:'vMyBarber,
kids:

[
protoStatusText,
{ _proto: protoStatusBarber,

//we animate ourself in this script
ViewIdleScript: func()

begin
// if hidden, don't bother with updating barber
if Visible(self) then

// animate barber pole
base:UpdateIndicator({name: 'vMyBarber,

values: {barber: true}});
// return number of ticks to wait
// before returning to ViewIdleScript
300;

end,
ViewSetupDoneScript: func()

begin
inherited:?ViewSetupDoneScript();
:SetupIdle(100);// kick off idle script

end,
},
{ _proto: protoStatusButton,

text: "Stop",
// ButtonClickScript: func() ...
// default is statusView:CancelRequest()...

},
//Note that we do not need to include a closebox or an
//icon these are provided by the protoStatusTemplate,
//All views created from protoStatusTemplate have
//these two children.
],

C H A P T E R 1 7

Additional System Services

17-22 Using Additional System Services

initialSetup: // used to initialize view automatically
{
name: 'vMyBarber,
appSymbol: kAppSymbol,
values:

{
icon: kDummyActionIcon,
statusText: "Computing IsHalting…",
closeBox: func()

begin
base:Hide(); //close the status view
//add an action to the Notify Icon, this allows
//the user to reopen the status view, which is
//necessary to allow the user to cancel the
//operation... (we save a reference to the
//action in the app base view to kill later)
GetRoot().(kAppSymbol).theNotifyIconAction :=

GetRoot().notifyIcon:AddAction(
"IsHalting",kNotifyCallbackFunc,nil)

//the notify icon will need this reference to
//the status slip
GetRoot().(kAppSymbol).theStatusSlip := base;

end;
}, //values

}, //initialSetup
} //myStatusTemplate

We defined kNotifyCallbackFunc at compile time, so as to avoid creating
run-time functions (closures) as:

DefConst ('kNotifyCallbackFunc,
func()

begin
if not Visible (GetRoot().(kAppSymbol)) then

GetRoot().(kAppSymbol):Open();
GetRoot().(kAppSymbol).theStatusView:Show();

//won't need any more
GetRoot().(kAppSymbol).theStatusView := nil;

end);

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-23

And be sure to include this in your application’s ViewQuitScript to get rid of
the notify icon’s action:

if theNotifyIconAction then
begin

GetRoot().notifyIcon:KillAction(theNotifyIconAction);
theNotifyIconAction := nil;

end;

Opening the Status Slip 17

To instantiate a status slip view from its template, pass the template to the
BuildContext function, as shown in the following code fragment:

statusView := BuildContext(myStatusTemplate);

You should use only the BuildContext function to instantiate this template.

Next, you need to initialize the view. If your status view template provided an
initialSetup slot containing a setup frame, the system uses the frame in this
slot to perform this initialization automatically. Otherwise, you need to set some
initial values for the status view from within its ViewSetupDoneScript
method. Pass the ViewSet method a setup frame, as described in ViewSet in
Newton Programmer’s Reference.

Once the view has been initialized, send it the Open message to display it, as in the
following code fragment:

statusView:Open();

Reporting Progress 17

Once your status slip is open you can perform the task on which you report
progress. You should structure the task to alternate between performing some work
and updating the status slip.

You can use the status slip’s UpdateIndicator method to update the gauge
view only, as in the following example:

statusView:UpdateIndicator({values:{gauge: 50}});

To update other items in the status slip, you need to use the ViewSet method.
Although you can use the ViewSet method to initialize all the status slip’s
components, you need not always pass all of these values. Once the status slip is
open you need only pass to this method the values to be changed.

statusView:ViewSet({
name: 'vGauge,
values: {statusText: "Waiting for host...",

gauge: 30} // 30% filled
});

C H A P T E R 1 7

Additional System Services

17-24 Using Additional System Services

Because the ViewSet method rebuilds and updates all the status slip’s child views,
you’ll obtain better performance by calling UpdateIndicator
rather than ViewSet when you just need to update the gauge view. The
UpdateIndicator method rebuilds and updates only the gauge, barber pole, and
progress sheet views.

Implementing a CancelRequest Method 17

If your status slip provides a “Stop” or “Cancel” button, you may include a
ButtonClickScript with the button or write a CancelRequest method to
handle the necessary housekeeping. The CancelRequest method can be
implemented either in the status slip or in the application (or transport) base view.
The system checks if the status slip has a CancelRequest method, and if not
sends this message to the application (or transport) base view.

Using the Power Registry 17
This section describes the cooperative model that Newton devices use to turn
power on and off, and the battery information functions.

Registering Power-On Functions 17

You may register functions to be called when a Newton device is powered on with
the RegPowerOn function. When the Newton device is powered on, the system
calls your “power-on” callback function passing it a symbol indicating the reason it
was called. This allows your code to condition its actions accordingly. For example,
you might perform one set of actions when the user presses the power switch and
another set of actions when the device is powered on by the execution of an alarm.

The 'user symbol indicates that the user pressed the power switch. The
'emergencyPowerOn symbol is passed any time the Newton device is powered
up after an emergency power-off. An emergency power-off is any shutdown in
which one or more power-off scripts did not execute. The 'serialgpi symbol
indicates the presence of +5 volts on the serial port general-purpose input pin (pin
7). The 'alarm symbol indicates that the power-on was caused by the execution
of an alarm. The 'cardlock symbol indicates that a PCMCIA card was inserted
or removed.

The UnRegPowerOn function unregisters functions added with RegPowerOn.

IMPORTANT

The callback function registered with RegPowerOn must not
itself call RegPowerOn nor UnRegPowerOn. ▲

C H A P T E R 1 7

Additional System Services

Using Additional System Services 17-25

Registering Login Screen Functions 17

If you want a power-on function that brings up some sort of visible component,
you should register that function as login function. These functions are only called
after the login screen has been displayed and the password entered (if the user has
installed a password). Note that future Newton devices may not support the login
screen. In this case the login functions will still be executed.

The methods that register login functions are defined in the sleepScreen view,
to get a reference to the sleepScreen view to send it RegLogin and
UnRegLogin messages, use code such as:

 GetRoot().sleepScreen:RegLogin(callBackFn,callBackFnArgs);

IMPORTANT

The callback function registered with RegLogin must not itself
call RegLogin nor UnRegLogin. ▲

Registering Power-Off Functions 17

You may register callback functions to be called when a Newton device is powered
off with the RegPowerOff function. As with power-on functions, when the
Newton is powered off, the system passes a symbol to your “shutdown” callback
function indicating the reason it was called. This symbol, passed as the value of
your callback’s why parameter, allows it to condition its actions according to the
way the system was powered off. The 'user symbol indicates that the user
initiated the shutdown. The 'idle symbol indicates the system initiated shutdown
after the Newton was left idle for the period of time specified by the user’s Sleep
preferences. The 'because symbol indicates that the Newton powered off for
some other unspecified reason.

The system also passes a symbol to your callback function indicating the current
status of the shutdown operation. This symbol is passed as the value of your
callback’s what parameter. The value of this parameter is used as the basis for
the cooperative shutdown process. Your callback function must return a value
indicating whether to continue the power-off sequence or delay it. This value is
passed to all registered shutdown functions, allowing each to indicate whether it is
ready to shut down or needs time to complete a task.

The 'okToPowerOff symbol indicates that the system has received a request to
shut down. In response to the 'okToPowerOff symbol, your callback can return
true to specify that shutdown may continue, or it can return nil to cancel the
shutdown process. Note that an 'okToPowerOff symbol does not guarantee that
shutdown will occur—another callback function may cancel the power-off sequence.

The 'powerOff symbol indicates that shutdown is imminent. If the callback
function must first perform an operation asynchronously, such as the disposal of a

C H A P T E R 1 7

Additional System Services

17-26 Using Additional System Services

communications endpoint, it can return the 'holdYourHorses symbol to delay
shutdown. After completing the task for which you delayed shutdown, you must
call the PowerOffResume function as soon as possible to resume the power-
off sequence.

Returning nil in response to the 'powerOff symbol allows the power-off
sequence to continue. Your callback function must return the value nil in response
to any symbols other than those described here.

The UnRegPowerOff function unregisters functions added with RegPowerOff.

IMPORTANT

The callback function registered with RegPowerOff must not
itself call RegPowerOff nor UnRegPowerOff. ▲

Using the Battery Information Functions 17

Two functions return battery-related information. The BatteryCount function
returns the count of installed battery packs. The BatteryStatus function returns
a frame with information about the status of a battery pack. This frame contains
information about the battery type and charge status, whether the Newton device is
plugged in, and other power-related data. Note that the contents of this frame differ
depending on the hardware responsible for the battery’s operation.

C H A P T E R 1 7

Additional System Services

Summary of Additional System Services 17-27

Summary of Additional System Services 17

This section summarizes the services documented in this chapter.

Undo 17

Functions and Methods 17

AddUndoCall(callBackFn, argArray) //registers a function to
//call for Undo

AddUndoSend(receiver, message, argArray) //registers a message
//to be sent for Undo

view:AddUndoAction(methodName, argArray) //registers an Undo
//action for a specific view

ClearUndoStacks() // clears Undo stack

Idlers 17

Method 17

view:SetupIdle(milliseconds) //sets up an idler object

Notification and Alarms 17

Proto 17

aProtoPeriodicAlarmEditor := { //creates periodic alarms
_proto: protoPeriodicAlarmEditor,
title : string, //text at top of view
ownerSymbol : symbol, //your appSymbol
ownerApp : string, //your app’s name
viewBounds : frame, //bounds frame

//don’t add child views
...
}

C H A P T E R 1 7

Additional System Services

17-28 Summary of Additional System Services

Functions and Methods 17

myApp:AlarmsEnabled() //call PeriodicAlarms?

myApp:PeriodicAlarms(alarm) //called when periodic alarm
 //triggers

AddAlarm(alarmKey,time,argsArray,callBackFn,callBackParams) //adds
//an alarm

AlarmUser(title, message) //brings up slip
RemoveAlarm(alarmKey) //removes alarms
GetAlarm(alarmKey) //gets an alarm
GetAppAlarmKeys(alarmKeySuffix) //gets an app’s alarm keys
RemoveAppAlarms(alarmKeySuffix) //removes an app’s alarms
view:Notify(level, headerStr, messageStr) //brings up slip

Reporting Progress 17

Proto 17

aProtoStatusTemplate := { // report asynch task progress
_proto: protoStatusTemplate,
viewBounds : boundsFrame, //bounds of slip
initialSetup: frame, // initial setup values frame
ViewSet: func(setup), // update the view
UpdateIndicator: func(setup), // change progress indicator
CancelRequest: func(why), // called on cancel
...
}

Functions and Methods 17

contextView:SetMessage(msgText)// for user msgs in find slip
DoProgress(kind, options, workFunc) // for synchronous tasks
notifyIcon:AddAction(title, cbFn, args) //adds action to notify

 //icon
notifyIcon:KillAction(obj) //removes action from notify icon
ShowBusyBox(showIt) //shows/hides busy box - Platform file

//function

C H A P T E R 1 7

Additional System Services

Summary of Additional System Services 17-29

Power Registry 17

Functions and Methods 17

BatteryCount() //returns battery count
BatteryStatus(which) //returns info about battery
RegPowerOff(callbackID,callBackFn) //registers a power-off

 //callback fn.
UnRegPowerOff(callBackID) //unregisters a power-off

//callback fn.
PowerOffResume(appSymbol) //resumes power-off sequence
RegPowerOn(callbackID,callBackFn) //registers a power-on

//callback fn.
UnRegPowerOn(callbackID) //unregisters a power-on handler
loginScreen:RegLogin(appSymbol,callBackFn) //registers a login

//screen callback fn.
loginScreen:UnRegLogin(callbackID) //unregisters a login

 //screen callback fn.

About the Assistant 18-1

C H A P T E R 1 8

Intelligent Assistant 18Figure 18-0
Table 18-0

The Intelligent Assistant is a system service that attempts to complete actions
specified by the user’s written input. You can think of the Assistant as an alternate
interface to Newton applications and services.

The Assistant can use the built-in applications to complete predefined tasks such as
calling, faxing, printing, scheduling, and so on. You can also program the Assistant
to execute any task that your application performs. In addition, you can display
your application’s online help from the Assistant.

This chapter describes how to make application behaviors and online help available
from the Assistant. If you want to provide a textual interface to your application or
its online help, you should become familiar with the Assistant and the concepts
discussed in this chapter.

Before reading this chapter, you should be familiar with the concept of the target of
an action, as explained in Chapter 15, “Filing,” and you should understand the
behavior or service that your application provides through the Assistant. Although
it is not essential, it is helpful if you are familiar with lexical dictionaries. Lexical
dictionaries are described in Chapter 9, “Recognition.”

About the Assistant 18

This section describes the Assistant’s behavior in a variety of user scenarios, and
then provides an overview of the templates, frames, and methods that provide
this behavior.

Introduction 18
When the user invokes the Assistant, the system passes the current text selection to
it. If no text is selected, the system passes to the Assistant the contents of a buffer
that holds the most recent text input.

The Assistant then attempts to match words in the input string with templates and
dictionaries that classify the words as actions, targets, or unknown entities. The

C H A P T E R 1 8

Intelligent Assistant

18-2 About the Assistant

templates may be supplied by the system or by your application. Some system-
supplied templates make use of lexical dictionaries, which are also supplied by the
system. For more information about lexical dictionaries, see Chapter 9,
“Recognition.”

Depending on the amount of information that parsing the input string provides, the
Assistant either attempts to complete a task or prompts the user to supply
additional information.

Input Strings 18

The Assistant is preprogrammed with a list of words representing tasks that the
built-in applications can perform. In addition to using these words, you can
program the Assistant to associate your own words with tasks your application
performs. The user cannot add words to the Assistant’s vocabulary.

You can associate multiple verbs with a single action; for example, the system
supplies a template that maps the words "call", "dial", "phone", and
"ring" to the same task.

The Assistant uses some of the same dictionaries as the recognition system when
attempting to classify items in the input string. For example, it uses the system’s
built-in lexical dictionaries to classify strings as phone numbers.

The word order in the input phrase is not significant— for example, the input
phrase "Bob fax" produces the same result as the phrase "Fax Bob". This
syntax-independent architecture allows easier localization of applications for
international audiences.

Note
The input string passed to the Assistant must not contain more
than 15 words. The Assistant does not attempt to interpret strings
containing more than 15 words. ◆

No Verb in Input String 18

If the Assistant cannot determine the user’s intended action, it displays an Assist
slip that prompts the user to tap the Please picker for more options. The Please
picker allows the user to specify an action when the Assistant cannot determine one
by parsing the input string.

For example, using the string "Bob" as partial input, the Assistant can perform a
number of actions: it can find Bob, fax Bob, call Bob, schedule a meeting with
Bob, and so on. However, this input string does not indicate which of these actions
is the user’s actual intent. Figure 18-1 shows the Assist slip as it would appear if
the string "Bob" were the only input provided to the Assistant.

C H A P T E R 1 8

Intelligent Assistant

About the Assistant 18-3

Figure 18-1 Assist slip

When prompted by the Assist slip, the user must provide additional information on
its input line or choose an action from the Please picker. The top portion of the
Please picker displays all of the actions currently registered with the Assistant. The
Please picker is shown in Figure 18-2.

Figure 18-2 The Please picker

The built-in tasks that the Assistant can complete include calling, faxing, finding,
mailing, printing, remembering (adding To Do items), scheduling (adding
meetings), getting time information from the built-in Time Zones application and
displaying online help. Note that the top portion of this menu displays only one
word for each action the Assistant can perform. For example, the word "call"
appears here but the synonyms "ring" and "phone" do not. Recently used
synonyms may appear in the bottom half of the slip, however.

C H A P T E R 1 8

Intelligent Assistant

18-4 About the Assistant

To allow the user to repeat recent actions easily, the bottom portion of the Please
picker displays the eight strings most recently passed to the Assistant. Thus, the
string "ring Maurice" appears here, even though the action of placing a phone
call is represented only by the verb "call" in the top portion of the picker.

After making corrections to the input string, the user can tap the Do button in the
Assist slip to pass the corrected string to the Assistant once again.

Ambiguous or Missing Information 18

If the input string specifies an action, the Assistant does not display the Assist slip
containing the Please picker, but may still need to obtain additional information in
order to complete the task.

When an action is specified but required information is still missing, the Assistant
tries to supply as much of the required information as possible. For example, if the
input string is "fax bob", the Assistant can query the Names soup for information
such as Bob’s name and fax number. However, the user may still need to correct
the input if the Assistant chooses the wrong Bob from the Names soup, cannot find
Bob in the Names soup, or cannot find Bob’s fax number in this soup.

The user can resolve ambiguities or provide additional information from within a
task slip that the Assistant displays for this purpose.

The Task Slip 18

The task slip provides the user with a final opportunity to correct input to the
Assistant and confirm or dismiss execution of the task before the Assistant actually
takes action. Although it’s recommended that you always provide this opportunity
to confirm, modify, or cancel the task before taking action, it’s especially important
to do so when execution of the task will open other applications or otherwise
inconvenience the user.

Figure 18-3 Calling task slip

C H A P T E R 1 8

Intelligent Assistant

About the Assistant 18-5

Programmer’s Overview 18
This section describes how the templates, frames and methods used by the
Assistant interact to provide services to the user.

You can think of any user operation as a set of one or more actions to complete. A
single action is represented to the Assistant by an action template. You can use
action templates supplied by the system and you can also define your own action
templates.

Some actions require data or objects on which to operate. For example, a
phone-dialing action requires a phone number to dial. The data or object on which
an action operates is represented to the Assistant by a target template. The system
provides a variety of target templates, and you can define your own as well.

Each action template or target template defines a set of one or more strings known
as its lexicon. In general, an action template’s lexicon slot holds one or more
verbs, while the lexicon slot of a target template holds one or more nouns.

When any of the words in a template’s lexicon appear in the input string passed to
the Assistant, the Assistant builds a frame based on that template. For example, the
lexicon for the built-in call_act template includes the strings "call", "ring",
and "dial". When any of these strings appear in the Assistant’s input string, the
Assistant builds a frame based on the call_act template. Frames created from
action templates are called action frames; frames created from target templates are
called target frames.

A task is a behavior (such as calling, printing, faxing, and so on) that is made
available to the user by the Assistant. Usually a task consists of multiple actions
and targets, although a task can be as simple as a single action having no target.

You define a task to the Assistant by using the RegTaskTemplate function to
register a task template with the system. A task template is like a recipe: it
specifies everything required to perform a particular task, including

■ the actions and targets required to provide a specified behavior

■ the behavior to provide

■ supporting methods and data structures

The task template must specify all of the actions and targets required to perform
the task it defines. You provide this information as an array of action templates and
target templates residing in your task template’s signature slot. When the task
template is registered with the Assistant, all of the templates in the signature
slot are registered as well. Once your task template is registered, the Assistant can
match user input with words in any of the lexicons of templates specified in the
task template’s signature slot.

C H A P T E R 1 8

Intelligent Assistant

18-6 About the Assistant

Your task template designates one action template as its primary action. The
primary action is the one that the Assistant associates with a specified verb in its
input string. The primary action is represented by an action template that resides in
the task template’s primary_act slot. Because task templates do not provide
lexicons, the designation of a primary action provides the Assistant with a way to
associate a verb in the input string with a task template.

In addition to items required by the Assistant, your task template can hold any
additional methods or data structures you require to perform the task.

Recall that the Assistant creates an action frame or target frame for each word in
the input string that matches a lexicon item in a registered template. If the Assistant
can match an action frame with the primary_act slot in a task template, it uses
that template to create a task frame. The task frame holds all the information defined
in the task template, as well as some additional slots that the Assistant provides.

The Assistant creates slots in the task frame to hold action frames and task frames
that are created as templates in the signature slot are matched. These slots are
named using symbols that reside in a preConditions slot that your task
template provides.

Each element of the preConditions array specifies the name of the slot that is
to hold the frame created from the template in the corresponding element of
the signature array. For example, presume that the fourth element of the
signature array holds the call_act template and the fourth element of the
preConditions array holds the 'myCallAction symbol. When the
call_act template is matched, the Assistant creates in a slot named
'myCallAction in the task frame and places in that slot the action frame created
from the call_act template. Later in this chapter, the section “The Signature and
PreConditions Slots” (page 18-10) discusses this process in more detail.

If the Assistant cannot match an action frame with any of the task templates
currently registered, it displays the Assist slip, which prompts the user to specify
an action.

If the Assistant matches more than one action frame with a currently registered task
template’s primary_act slot, it attempts to resolve the conflict by determining
whether additional frames required by the task template are present. The conflict
resolution process is described in “Resolving Template-Matching Conflicts”
(page 18-13).

Once the Assistant has matched as many templates as possible and stored the
resulting frames in the task frame, it sends the PostParse message to the
task frame.

Figure 18-4 illustrates a simple example of how the Assistant builds a task frame
by matching user input strings with registered templates.

C H A P T E R 1 8

Intelligent Assistant

About the Assistant 18-7

Figure 18-4 Simplified overview of the Assistant’s matching process

Action Template

call_act := {
 isa: 'action,
 value: "call action",
 Lexicon: ["yo", "call",
 "phone", "ring"],
 …}

Target Template

Parse raw input

person := {
 isa: 'who_obj,
 value: "person",
 …}

aCall_act := {
 isa: "action,
 lexicon: ["call",
 …}

calling_task:=
{
name: "Calling Task",
isa:task_template,
primary_act:call_act,
signature: [call_act,
	 who_obj,
	 where_obj],
preconditions:['action,
		 'who,
		 'where],
score:nil,
postParse:func () begin … end,
taskslip:mySlip,// view templt
}

aCalling_task :=
{isa:'action,
score:nil
raw:[...], // for internal use
phrases:[Call", "Bob"],
noisewords: ["for"]
origphrase: [Call for Bob"],
postparse:<function, 0 args>,
action:aCall_act
who:aPerson
// more template info,
}

aPerson :=
 {isa: 'person,
 value: "Bob",
 …}

Call For Bob

Matching "fax" in lexicon
of fax_action template
causes action frame to be
created from this template

Matching call_act template with the
primary action in calling_task template
causes the Assitant to use the calling_task
template to create the task frame

Matching "Bob" in
lexicon of person
template causes
target frame to be
created from this
template

Because "for" is not matched,
it is added to the noisewords
array. If a target is not found in
the original parse, your
PostParse method can try to
extract it from the task frame or
the appropiate soup.

Lexical matching & tokenization

Create frames from
registered templates
that match input

Create the task frame

Store action and target frames in
slots specified by preconditions

Invoke post parse task

C H A P T E R 1 8

Intelligent Assistant

18-8 About the Assistant

You define the PostParse method in your task template. Your PostParse
method must perform any actions required to complete the primary task. The
PostParse method usually acts as a dispatching method that executes the
subtasks comprising the primary action. In doing so, the PostParse method may
validate data and retrieve information that the Assistant was unable to find on its own.

IMPORTANT
Once your PostParse method is invoked, it is in complete
control of the error-handling and user interface on the Newton.
Your PostParse method must include any code necessary to
complete the primary action, such as code required to display a
task slip, validate input, and handle errors. ▲

Matching Words With Templates 18
This section discusses the process of extracting words or phrases from user input
and matching them to templates registered with the Assistant. In particular, this
section provides more detail regarding unmatched words, partially matched
phrases, and words that match multiple templates.

When the user taps the Assist button, the system passes the current input string to
the ParseUtter function, which matches words in the input string with elements
in the lexicons of templates currently registered with the Assistant. Normally, you
do not need to call the ParseUtter function yourself; however, you can
experiment with the Assistant by passing strings to this function in the NTK
Inspector window.

When parsing the input string, the ParseUtter function matches entire words only.
For example if the word "telephone" appears in a template’s lexicon slot,
that template is not matched when the word "phone" appears in the input string.

The Assistant’s matching process is case insensitive; thus, if the word "phone"
appears in a registered template’s lexicon slot, that template is matched when
"Phone" or "phone" appears in the input string.

If absolutely nothing in the input string is matched, the return result of the
ParseUtter function is unspecified. However, if any word in the input string is
matched, the ParseUtter function returns a frame containing frames created
from the appropriate templates and additional information about the matched
words. For more information about the result frame returned by the ParseUtter
function, see the description of this function in Newton Programmer’s Reference.

When none of the words in the input string matches an action template, the
Assistant may use the information it did match to try to determine a likely action.
For example, when the user enters the phrase "buzz 555-1234", the Assistant
does not match the word "buzz" to an action template but it can identify

C H A P T E R 1 8

Intelligent Assistant

About the Assistant 18-9

"555-1234" as having the format of a telephone number. Based on that
information, the Assistant creates a task frame from the built-in call_act
template and displays a call slip to prompt the user for additional information.

When no action template is matched, or more than one is matched, the Assistant
compares the number of matched target templates for each task with the total
number of targets for that task. The Assistant creates the task frame from the task
template having the highest percentage of targets matched and then invokes that
task frame’s PostParse method.

If two or more tasks have the same percentage of matched target templates, then
the Assistant displays the slip containing the Please picker and prompts the user to
choose an action. Under these circumstances, the Please picker contains only words
representing the candidate templates.

To permit more natural interaction, the Assistant ignores words that do not appear
in any registered template’s lexicon. Rather than limiting the user to terse
commands, the Assistant extracts meaningful words from phrases such as "Make
a call to Bob at work" and ignores the others. For example, the words
"call", "Bob" and "work" are meaningful to the Assistant because they appear
in the lexicons of registered templates. (In this case, the templates are supplied and
registered by the system.) On the other hand, because the words "a", "to", and
"at" do not appear in the lexicons of any registered templates, they are not
matched and are therefore ignored.

Unmatched words appear in the noiseWords slot of the frame that the
ParseUtter function returns. Your PostParse method may be able to use the
contents of this array to determine further information about the user’s intended
action. For example, if there are no entries for Bob in the Names soup, the word
"bob" is not matched and is returned as an element of the noiseWords array.
The word "to" is also likely to show up in this array. Because words are added to
this array in the order they were parsed, your PostParse method can extract the
word following "to" from the noiseWords array and attempt to use it as a
target. The recommended action in this situation is to use this information to fill out
a task slip that is displayed to the user for confirmation.

When a word appears in the lexicon of more than one template, it can cause the
Assistant to match the wrong template. For example, two games might both
register action templates having the word "play" in their lexicon, or you might
attempt to register a template that duplicates a word in the lexicon of one of the
system-supplied templates. A strategy for resolving these kinds of conflicts is
described in “Resolving Template-Matching Conflicts” (page 18-13).

C H A P T E R 1 8

Intelligent Assistant

18-10 About the Assistant

The Signature and PreConditions Slots 18
Your task template must define two slots, called signature and
preConditions, which store arrays of templates and symbols, respectively.

The signature slot holds action templates and target templates that must be
matched to complete the primary action. The preConditions slot specifies the
names of slots that the Assistant creates in the task frame as templates in the
signature slot are matched.

Each element of the preConditions array is related to the corresponding
element of the signature array. Specifically, an element of the preConditions
array specifies the name of the slot that the Assistant creates in the task frame when
the template in the corresponding element of the signature array is matched.

For example, to send a fax the Assistant needs frames representing the action of
faxing, a fax number, the name of the person to whom the fax is sent, and the time
at which the fax is to be sent. The signature slot in the following code fragment
specifies by name the templates required to create these frames.

{...
// example: when fax_number is matched, Assistant creates
// a 'number slot in task frame & puts target frame in it
signature: [fax_action, fax_number, who_obj, when_obj],
preConditions: ['action, 'number, 'recipient, 'when],
...}

The corresponding elements of the preConditions slot specify the names of
slots that the Assistant creates in the task frame to hold the frames created as the
templates in the signature slot are matched. For example, the preConditions
array in the previous code fragment specifies that the Assistant creates slots named
action, number, recipient and when in the task frame as necessary.

Continuing with the example based on the previous code fragment, when the
Assistant parses the input phrase "fax Bob", it matches the word "fax" to the
fax_action template in the first element of the signature array and creates an
action frame from this template. The Assistant places this action frame in an
action slot (named for the symbol in the first element of the preConditions
array) that it creates in the task frame. Similarly, the Assistant creates a target
frame when the word "Bob" is matched to the who_obj template in the third
element of the signature array. The Assistant places this target frame in a
recipient slot (named for the symbol in the third element of the
preConditions array) that it creates in the task frame.

Words representing elements of the signature array do not necessarily need to
appear in the input string in order to be matched to a template; for example, your
PostParse method might supply Bob’s fax number by finding it in the
Names soup.

C H A P T E R 1 8

Intelligent Assistant

About the Assistant 18-11

The Assistant creates a slot in the task frame only when a template is matched. For
example, if the when_obj template is not matched, the when slot is not created.

If any frame represented in the signature array is not present (that is, if its
lexicon was not matched) the Assistant may still call your PostParse method
if it can match an action frame with your task template’s primary action. Your
PostParse method must validate all input and deal with missing objects
appropriately. For example, if your PostParse method cannot obtain the missing
information by parsing the task frame or looking elsewhere for it (such as in the
appropriate soup), it can display a task slip to solicit further input from the user.

The Task Frame 18
When your PostParse method is called, the ParseUtter function will have
added slots to the task frame. You can use the information in these slots for your
own purposes. For example, your PostParse method can extract additional
information for use in displaying a task slip.

This section describes the entries, phrases, noiseWords, value and
origPhrase slots that the ParseUtter function adds to the task frame. These
slots are added only when they are needed to hold information. For example, if no
soup entries are matched in the parsing process, the entries slot is not added to
the task frame.

The Entries Slot 18

If a template matches a soup entry, an alias to that entry is returned as an element
of the array residing in the entries slot of the task frame. To retrieve an entry
from this array, use the GetMatchedEntries global function.

The Phrases Slot 18

The result frame returned by the ParseUtter function contains a phrases slot
that holds an array of strings. Each word in the input phrase that matches a template
is returned as an element of the phrases array.

For example the following code fragment depicts the phrases array that might be
returned after parsing the input string "call Bob".

// input string is "call Bob"
{…
phrases: ["call", "Bob"],
…}

Elements of the phrases array can store more than a single word. For example, if
the parser searches the Names soup for an object of the type who_obj having the

C H A P T E R 1 8

Intelligent Assistant

18-12 About the Assistant

value "Bob Anderson", that element of the phrases array stores the entire
string "Bob Anderson", as the following code fragment shows:

// input string is "call bob anderson"
{…
phrases: ["bob anderson", "call"],
…}

Note that strings may appear in the phrases array in a different order than they
did in the original input to the Assistant.

The OrigPhrase Slot 18

The original input phrase is returned as a single string that resides in the task
frame’s origPhrase slot. You can examine this slot to determine the number and
ordering of words in the original input string.

The Value Slot 18

Some values can be parsed correctly only by using a lexical dictionary that
describes their format. These values include formatted numbers such as phone
numbers, currency values, dates, and times.

When the Assistant uses a lexical dictionary to parse an object, it returns the parsed
phrase as a single string in the value slot. For example, if the user had entered the
phrase "Call 555-1212" the Assistant would store the phone number in the
value slot, as shown in the following example:

{...
input: [{isa: {value: "action"},

Lexicon: [["call", "phone", "ring", "dial"]],
value: "call"},
{isa: {isa: {isa: {#4B9F1D},

 value: NIL,
 Lexicon: [#4B9FA1]}},

value: "555-1212"}],
...}

Note that the value slot is created only when the Assistant uses a lexical
dictionary to parse a formatted string such as a time, date, phone number, or
monetary value.

C H A P T E R 1 8

Intelligent Assistant

About the Assistant 18-13

Resolving Template-Matching Conflicts 18
Template matching conflicts may arise when a template’s lexicon includes a word
that appears in the lexicon of another registered template. This section describes
the means by which the Assistant attempts to resolve such conflicts.

When a verb matches more than one action template, the Assistant must choose the
appropriate action template. For example, imagine that two games, Chess and
Checkers, are currently loaded in the Extras Drawer. If both games specify the
word "play" in their action template’s lexicon, the Assistant cannot open the
correct application by simply matching this verb; the correct game to open must be
determined by some other means. For example, the code fragment below shows the
template for an action, play_act, that might conceivably be defined by both games:

play_act := { value: "play action",
 isa: 'dyna_user_action,
 lexicon: ["play"]
 }

The task templates for each of these games might look like the following example.
Note that both templates define play_act as the primary action:

chessTemplate := {
value: "Chess Template",
isa: 'task_template,
primary_act: play_act,
preConditions: ['generic_action,'action, 'game],
signature: ['dyna_user_action, play_act,

chess_obj],
PostParse: func()

begin
print("we made it, chess!");

end,
score: nil},

checkersTemplate := { value: "Checkers Template",
isa: 'task_template,
primary_act: play_act,
preConditions: ['generic_action, 'action,

'game],
signature: ['dyna_user_action, play_act,

chkrs_obj],
PostParse: func()

begin
print("we made it, checkers!");

end,
score: nil},

C H A P T E R 1 8

Intelligent Assistant

18-14 About the Assistant

If you specify the 'dyna_user_action symbol as the first element of your task
template’s signature slot, any target that distinguishes one template from
another enables the Assistant to select the correct template. For example, the two
target templates in the following code fragment represent the games Chess and
Checkers, respectively:

chess_obj := {value: "chess obj",
isa: 'dyna_user_obj,
lexicon: ["chess"]
}

chkrs_obj := {value: "checkers obj",
isa: 'dyna_user_obj,
lexicon: ["checkers"]
}

The fact that the lexicons in these templates do not match allows the Assistant to
resolve the ambiguity. When the string "play chess" is passed to the Assistant,
the word "play" is matched to the play_act template and the Assistant creates
an action frame from that template. Similarly, the Assistant matches the word
"chess" with the chess_obj template’s lexicon and creates a target frame from
that template.

Note that the play_act action frame can be matched to the primary_act of
either the chess_Template or the checkers_Template. Because the
signatures of both of these templates specify the dyna_user_action and
play_act frame types as their first two elements, the conflict is not resolved until
the third element of one of these signature arrays is matched.

The chess_obj target frame matches the third element of the signature for the
chess_template. It does not match any elements of the signature in the
checkers_Template. Thus, matching the word "chess" resolves the conflict
because the only signature array that has been matched completely is that of the
chess_Template.

Compatibility Information 18
The Assistant now matches entire words only, instead of allowing partial matches.

The Assistant no longer uppercases the words that it returns.

The Assistant now adds the eight most recently parsed phrases to the bottom of the
Please pop-up menu. Phrases do not need to be interpreted successfully by the
Assistant to be included in this list.

The result frame returned by the ParseUtter function contains a new slot named
entries, which holds an array of aliases to soup entries that were matched when
parsing the input string. To retrieve these entries, you must use the new
GetMatchedEntries global function.

C H A P T E R 1 8

Intelligent Assistant

Using the Assistant 18-15

Using the Assistant 18

This section describes how to make an application behavior available through the
Assistant, as well as how to display online help from the Assistant. This material
presumes understanding of the conceptual material provided in previous section.

Making Behavior Available From the Assistant 18
You need to take the following steps to make an application behavior available
through the Assistant:

1. Create an action template for your primary action. If necessary, create additional
action templates that define subtasks of the primary action.

2. Create zero or more target templates. (Some actions require no target; others
may use system-supplied target templates.)

3. Implement your PostParse method.

4. Create a task template.

5. Register and unregister your task template with the Assistant at the
appropriate times.

The sections immediately following describe these tasks in detail.

It is recommended that you begin by defining the action and target templates
required to complete the primary action. After doing so, you will have a better idea
of the tasks your PostParse method needs to handle. After creating all the
necessary templates and writing a suitable PostParse method, defining the task
template itself is likely to be a trivial chore.

Defining Action and Target Templates 18

Action templates and target templates are simply frames that contain a specified set of
slots and values. You need to define templates for all the actions and targets required
to complete a task. One of the action templates must define the primary action.

Take the following steps to define an action template or a target template:

1. Define a frame containing the value, isa and lexicon slots.

2. Assign the frame to a slot or variable that is the name of the template.

3. Place in the value slot a string that identifies the action or target that this
template defines.

4. If the template defines an action, place the symbol 'dyna_user_action in its
isa slot. If the template defines a target, place the symbol 'dyna_user_obj
in its isa slot.

C H A P T E R 1 8

Intelligent Assistant

18-16 Using the Assistant

5. Define the words or phrases this template is to match as an array of strings in its
lexicon slot. If you place the name of a system-supplied template in your
template’s isa slot, your template inherits its lexicon from the system-supplied
template. You should be aware, however that isa slot values other than the
symbols 'dyna_user_action and 'dyna_user_obj may interfere
with the system’s ability to match your template successfully. For more
information, see the section “Defining Your Own Frame Types to the Assistant,”
immediately following.

Sample Action Template 18

The following code fragment defines an action template called myPayAction that
might be used by a home banking application:

myPayAction := {
value: "Pay Action", // name of action
isa: 'dyna_user_action // must use this value
lexicon: ["pay", "paid"] // words to match

}

Sample Target Template 18

The following code fragment defines a target template called cbPayee that a
home banking application might use:

myPayee := {
value: "Who Object", // name of target
isa: 'dyna_user_obj // must use this value
lexicon: ["to", "Bob"] // words to match
}

Defining Your Own Frame Types to the Assistant 18

The conflict resolution mechanism relies on the use of system-supplied dynamic
user object templates. You can define your own symbol for your template’s
isa slot as long as it ultimately refers to a template with the symbol
'dyna_user_action or 'dyna_user_obj as the value of its isa
slot. For example, you can define a my_action template that is a
'dyna_user_action , as shown in the following code fragment:

my_action := {
value: "my action" // name of this action
isa: 'dyna_user_action, // must use this value
lexicon: ["jump", "hop"] // words to match action

}

C H A P T E R 1 8

Intelligent Assistant

Using the Assistant 18-17

Based on the definition above, you can derive a my_other_action template that
holds the value 'my_action in its isa slot, as in the following example:

my_other_action := {
// name of this action
value: "my other action",
// subclass of 'dyna_user_action
isa: 'my_action,
// words matching this action
lexicon: ["leap", "lunge"]

}

You can take a similar approach to define your own target object types by placing
the 'dyna_user_obj symbol in your target template’s isa slot. For example,
you can define a template my_target that is a dyna_user_obj and use its
symbol in this slot also, as in the following code fragment:

my_target := {
value: "my target" // name of this target
isa: 'dyna_user_obj // must use this value

}

Based on the definition above, you can derive another target template from
my_target, and store the value 'my_target in its isa slot, as in the following
example:

my_other_target := {
value:"my other target",// name of this targe
isa: 'my_target, // subclass of 'dyna_user_obj

}

Implementing the PostParse Method 18

Your PostParse method implements the behavior your application provides
through the Assistant. This method resides in the PostParse slot of your
task template. It is called after all the templates in the signature slot have
been matched.

Your PostParse method must provide any behavior required to complete the
specified task, such as obtaining additional information from the ParseUtter
result frame as necessary, and handling error conditions.

C H A P T E R 1 8

Intelligent Assistant

18-18 Using the Assistant

Sample PostParse Method 18

The following code fragment is an example of a PostParse method that tests for
the existence of the value slot and accesses its content:

PostParse: func()
begin
 local thePhraseText;

// self is the task frame
 if hasSlot(self, 'value) then

thePhraseText := self.value;
 else

// handle missing input
end;
// display phrase text in task slip

 end;
end;

Defining the Task Template 18

Your task template defines a primary action and its supporting data structures.

Take the following steps to define a task template:

1. Define a frame containing the value, isa, primary_act, PostParse,
signature, preConditions, and score slots. Subsequent bullet items in
this section describe the contents of these slots.

2. Assign the frame to a slot, variable, or constant that is the name of the task
template.

3. Place a string in the value slot that identifies the task that this template defines.

4. Place the 'task_template symbol in the isa slot.

5. Place the name of the slot or variable defining your primary action in the
primary_act slot.

6. Place the name of the slot, variable or constant defining your PostParse
method in the PostParse slot.

7. Place in the signature slot an array of the names of all action and target
templates required to complete this task.

8. Place an array of symbols in the preConditions slot that specifies the names
of slots the Assistant must create to hold frames built from the templates
specified in the signature array. The preConditions and signature
arrays must have the same number of elements. Furthermore, the symbols in the
preConditions array must appear in the same ordinal position as their
counterparts in the signature array; that is, the first element of the

C H A P T E R 1 8

Intelligent Assistant

Using the Assistant 18-19

preConditions array is related to the first element of the signature array,
the second element of the preConditions array is related to the second
element of the signature array, and so on. For more information, see the
section “The Signature and PreConditions Slots” (page 18-10).

9. Place the value nil in the score slot. This slot is used internally by the Assistant.

Sample Task Template 18

The following code fragment is an example of a task template. This template might
be used to implement an action in a home banking application:

payTemplate := {
value: "Pay Template", // name of this template
isa: 'task_template, // must use this value
primary_act: myPayAction, // primary action
PostParse: func () begin … end, // PostParse method
// required templates
signature: [myPayAction, myWho, myAmount, myWhen],
// slots to create as required templates are matched
preConditions: ['action, 'name, 'amount, 'when],
score: nil // for internal use

}

Registering and Unregistering the Task Template 18

To register your task template, call the RegTaskTemplate function from your
application part’s InstallScript function. When the task template is registered
successfully, the value returned by RegTaskTemplate is a reference to the task
frame. You need to save a reference to the value returned by this function, because
you’ll need that value later to unregister the task template. If RegTaskTemplate
returns nil, the template was not registered successfully.

To unregister your task template, call the UnRegTaskTemplate function, passing
as its argument the result that was returned by RegTaskTemplate when you first
registered the task template. It is recommended that you call the
UnRegTaskTemplate function from your application part’s RemoveScript
method.

Displaying Online Help From the Assistant 18
Application help takes the form of a help book created with Newton Book Maker.
You need to take the following steps to open a help book from the Assistant:

1. In your application’s base view, define a viewHelpTopic slot. The value of
this slot is a string that is the name of a topic in the help book to be opened.

C H A P T E R 1 8

Intelligent Assistant

18-20 Using the Assistant

2. Define an action template for opening the appropriate help book. The global
functions ShowManual and OpenHelpTo open the system-supplied help
book. The OpenHelpBook and OpenHelpBookTo functions open a help book
that you supply. The ShowManual function is described in “Utility Functions”
(page 26-1). All of these functions are described in version 1.1 of the Newton
Book Maker User’s Guide .

3. Define a task template that holds the name of your action template as the value
of its primary_act slot.

4. Register and unregister the task template at the appropriate times.

For information on defining, registering, and unregistering templates, see the
preceding section, “Making Behavior Available From the Assistant” (page 18-15).

For information on displaying online help from an information button that
your application provides, see “protoInfoButton” (page 6-10) in Newton
Programmer’s Reference.

Routing Items From the Assistant 18
When routing an item from the Assistant—for example, when filing, faxing,
printing, or mailing the item—the Assistant sends a GetTargetInfo message to
your application. The root view supplies a default GetTargetInfo method that
returns information such as the item to be routed and the view that is able to
manipulate it. This method relies on target and targetView slots supplied by
your application’s base view. You can define your own GetTargetInfo method
if you need to supply different target information. For more information, see
“Specifying the Target” (page 15-13). For detailed information on supporting
routing in your application, see “Routing Interface” (page 21-1).

Normally the GetTargetInfo message is sent to the application’s base view;
however, such behavior may not be appropriate for applications having more than
one view with user data. For example, the built-in Notepad application can display
multiple active Notes.

To specify that the GetTargetInfo message be sent to a view other than your
application base view, your application’s base view must provide a
GetActiveView method that returns the view to which the GetTargetInfo
message is sent. The GetTargetInfo message is sent to the view specified by
the return result of the GetActiveView method.

C H A P T E R 1 8

Intelligent Assistant

Summary 18-21

Summary 18

Data Structures 18

Task Frame 18

// Returned by ParseUtter function
{

// original user input phrase
origphrase: ["str1", "str2", … "strN"],
// strings that matched registered templates
phrases: ["aStr1", "aStr2", … "aStrN"],
// strings that did not match registered templates
noisewords: ["noiseStr1", "noiseStr2", … "noiseStrN"],
// Aliases to soup entries that were matched
// You must use GetMatchedEntries fn to retrieve
entries: [alias1, alias2, … aliasN],
// formatted strings returned by lexical parse, if any
value : ["lexStr1", "lexStr2", … "lexStrN"],
// method that performs primary act
PostParse : func() begin … end,
// additional slots & methods defined in task template
…}

Templates 18

Task Template 18

// defines task and provides supporting objects & methods
myTask := {

isa: 'task_template, // Required. Must use this value
// Action template that defines lexicon for this task
primary_act: myAct, // Required.
// Required. Templates used by this task
signature: [myTarget1, myAct1, … , myTargetN, myActN],
// Required. Names of slots created in the task frame
// as templates are matched
preconditions : ['mySlot1, 'mySlot2, … 'mySlotN],
// Required. Method that performs the task
PostParse: func() begin … end,

C H A P T E R 1 8

Intelligent Assistant

18-22 Summary

// Optional. View template that defines task slip
taskslip : myTaskSlipView,
// internal use only - always put nil in this slot
score: nil,
// your additional slots and methods
…}

Action Template 18

// defines action words to Assistant
my_act := {

// string may be replaced in lexical parse
value: string , //Required.
// object type that this template creates
// must use this value or one descended from it
isa: 'dyna_user_action, // Required.

// Words or phrases to match with this template
lexicon: [string1, string2,…stringN],// Required.
}

Target Template 18

// defines object of an action to Assistant
my_Target := {

// string may be replaced in lexical parse
value: string , //Required.
// object type that this template creates
// must use this value or one descended from it
isa: 'dyna_user_obj, // Required.
// Words or phrases to match with this template
lexicon: [string1, string2,…stringN],// Required.
// your template can include your own slots as well
…}

Developer-Supplied Task Template 18

You must always supply a task template, which defines the application behavior
made available through the Assistant.

C H A P T E R 1 8

Intelligent Assistant

Summary 18-23

System-Supplied Action Templates 18

// base your action templates on this generic action
dyna_user_action:= {

// this template has no lexicon
…}

// Action template for dialing the telephone
call_act:= {

// Words or phrases to match with this template
// lexicon: ["call", "phone", "ring","dial"],
…}

// Action template for using the Find service.
find_act := {

lexicon :["find", "locate", "search for", "look for"],
…}

//Action template for faxing the target data item
fax_act:= {

lexicon: ["fax"],
…}

//Action template for printing the target data item
print_act:= {

lexicon: ["print"],
…}

// Action template for displaying the About box
about_act := {

lexicon: ["about newton"],
…}

// Action template for retrieving time values
// from the Time Zones application
time_act := {

lexicon: ["time", "time in","the time in",
"what time is it", "what time is it in",
"the time in", "what time",
"what is the time", "what is the time in"],

…}

C H A P T E R 1 8

Intelligent Assistant

18-24 Summary

// Action template for creating To Do items
remind_act := {

lexicon: ["remember", "remind", "remind me",
"to do", "todo", "don't forget to",
"don't let me forget to"],

…}

// Action template for sending electronic mail
mail_act := {

lexicon: ["mail", "send", "email"],
…}

// Action template for scheduling meetings
// and events in the Dates application
schedule_act := {

lexicon: ["schedule"],
…}

// Action template for scheduling meetings
// and events in the Dates application
meet_act := {

lexicon: ["meet", "meet me", "see", "talk to"],
…}

// Action template for scheduling meals in Dates app
meal_act := {…}

Meals 18

// Action template for scheduling breakfast in Dates app
breakfast_act := {

isa: 'meal_act,
usualTime:"7:00 am",
lexicon: ["breakfast"],
…}

// Action template for scheduling brunch in Dates app
brunch_act := {

isa: 'meal_act,
usualTime:"10:00 am",
lexicon: ["brunch"],
…}

C H A P T E R 1 8

Intelligent Assistant

Summary 18-25

// Action template for scheduling lunch in Dates app
lunch_act := {

isa: 'meal_act,
usualTime:"12:00 pm",
lexicon: ["lunch"],
…}

// Action template for scheduling dinner in Dates app
dinner_act := {

isa: 'meal_act,
usualTime:"7:00 pm",
lexicon: ["dinner"],
…}

Special Events 18

birthday := {
isa: 'special_event_act,
Lexicon: ["birthday","bday","b-day"],
…}

anniversary := {
isa: 'special_event_act,
Lexicon: ["anniversary"],
…}

holiday := {
isa: 'special_event_act,
Lexicon: ["holiday"],
…}

Developer-Supplied Action Templates 18

You must supply the action template specified by the value of your task template’s
primary_act slot.

You must supply any additional templates specified by the signature slot of the
task template.

C H A P T E R 1 8

Intelligent Assistant

18-26 Summary

System-Supplied Target Templates 18

Places 18

// list of system-supplied where_obj target templates
// system uses lexical dictionaries to match these
// templates so they do not provide lexicons
address, city, region, country, postal_code,
phone,parsed_phone, phone_tag, faxPhone, homePhone,
workPhone, carPhone, mobilePhone, beeper, places, company,
city, county, state, country, town, province

Times 18

// list of system supplied when_obj frames
// system uses lexical dictionaries to match these
// templates so they do not provide lexicons

time, date

User Objects 18

// System supplied generic target template has no lexicon
// your target templates must be based on this template
dyna_user_obj:= {

isa: 'user_obj
…}

// System supplied generic person template has no lexicon
// do not base your target templates on this template
who_obj:= {

isa: 'user_obj
…}

// System supplied generic object template has no lexicon
// do not base your target templates on this template
what_obj:= {

isa: 'user_obj
…}

// System supplied generic place template has no lexicon
// do not base your target templates on this template
where_obj:= {

isa: 'user_obj
…}

C H A P T E R 1 8

Intelligent Assistant

Summary 18-27

People 18

person := { // generic person template
isa: 'who_obj,
value: nil // system use only
…}

title := { // "owner", "manager", and so on
isa: 'who_obj,
…}

affiliate:= { // "friend", "brother", "sister", and so on
isa: 'person,
…}

group := { // "Engineering", "Marketing", and so on
isa: 'person,
…}

custom := { // customized 'person template
isa: 'person,
…}

Miscellaneous 18

salutationPrefix := {
ISA: 'parser_obj,
Lexicon: ["dear", "to", "attention", "attn",

"attn." , "hey"],
…}

Developer-Supplied Target Templates 18

You must supply any target template your task template requires that is not
supplied by the system. Required target templates are specified by the task
template’s signature slot.

Assistant Functions and Methods 18
ParseUtter(inputString) // matches input to templates
tmpltRef := RegTaskTemplate(myTemplt)//register w/ Assistant
UnRegTaskTemplate(tmpltRef) // unregister task template
GetMatchedEntries(which, entries) // returns array of aliases

C H A P T E R 1 8

Intelligent Assistant

18-28 Summary

Developer-Supplied Functions and Methods 18

taskFrame:PostParse() // called after input is parsed

Application Base View Slots 18

viewHelpTopic // topic in help book

19-1

C H A P T E R 1 9

Built-in Applications and
System Data 19

Figure 19-0
Table 19-0

This chapter describes the interfaces to the built-in applications. It also describes
the soup formats used by the built-in applications and the soup format of the
System soup.

You should read the appropriate section of this chapter if your application needs to
interact with any of the built-in applications, receive faxes, use auxiliary buttons, or
access system data. Specifically, the following areas are covered in this chapter:

■ interacting with the Names application and its soup

■ interacting with the Dates application and its soups

■ interacting with the To Do List application and its soup

■ interacting with the Time Zones application

■ interacting with the Notes application and its soup

■ retrieving entries from the Fax soup

■ adding panels to the Prefs and Formula rolls

■ adding auxiliary buttons to other applications

■ creating and managing icons in the Extras Drawer

■ accessing user configuration data and storing application preferences in the
System soup

At the end of this chapter is a summary of all the functions, methods, data
structures, protos, and soup formats that are associated with the material discussed
in this chapter. Everything listed in this summary section is described in more
detail in Newton Programmer’s Reference.

C H A P T E R 1 9

Built-in Applications and System Data

19-2 Names

IMPORTANT

Soup formats are subject to change. Applications that rely on soup
formats risk incompatibility with future versions of Newton
software. To avoid future compatibility problems with soup
format changes, you should use the methods provided by the
built-in applications (if any exist) or the global functions
GetSysEntryData and SetSysEntryData to get or change
entries in any of the built-in soups. They allow you to get and set
the values of slots in a soup entry. ▲

Familiarity with Chapter 1, “Overview,” Chapter 5, “Stationery,” and Chapter 11,
“Data Storage and Retrieval,” of this manual is particularly valuable in reading
this chapter.

Note
Future Newton devices may not include all the built-in
applications described in this chapter. ◆

Names 19

This section describes the application program interface (API) to the Names
application. The Names application manages a database of people and places. It
presents information either as a business card, or as a list of all the available
information. These two views are shown in Figure 19-1.

About the Names Application 19
The Names application is built with the NewtApp framework using data definitions
(commonly called “dataDefs”) and view definitions (commonly called “viewDefs”).
This architecture allows extensibility—the addition of new data views, card types,
and card layout styles—without altering the Names application itself. For more
information on dataDefs and viewDefs, see Chapter 4, “NewtApp Applications,”
and Chapter 5, “Stationery.”

The Names application interface allows you to programmatically add complete cards
and add information to an existing card. In addition, several Names methods let
you access information in a Names soup entry.

The Names application can be extended by adding auxiliary buttons, as described
in “Auxiliary Buttons” beginning on page 19-36.

The application is called Names, because that is what the user sees, but in program-
ming the term “cardfile” is used interchangeably and appears in the code.

C H A P T E R 1 9

Built-in Applications and System Data

Names 19-3

Figure 19-1 Names application Card and All Info views

Names Compatibility 19

All the Names methods, variables, and constants are new in this version. The
'group, 'owner, and 'worksite types are new. The 'person and 'company
types include many new slots.

The Names application converts incoming soup entries that contain 1.x data into
soup entries that conform to the 2.0 data format. Conversion includes adding
particular slots to soup entries and, in some cases, removing slots. The data
conversion occurs when the Newton receives 1.x entries by beaming, synchronizing
using Newton Connection, restoring from a backup, or updating a 1.x card to 2.0.

A user can beam a card created in version 2.0 to a Newton running an earlier
version of the system and it will read and edit the card, and vice versa.

In addition to changes in the programmatic interface, the 2.0 version has extensive
changes in the user interface to accommodate the increased number of card types,
layout styles, and data.

C H A P T E R 1 9

Built-in Applications and System Data

19-4 Names

Using the Names Application 19
This section describes

■ adding a new type of card to the Names application

■ adding a new data item to a card

■ adding a new card layout style

■ using the Names methods

■ using the Names soup

■ using two protos with pickers for personae and emporia

Adding a New Type of Card 19

The New button on the Names status bar creates its picker by looking at the
registered dataDefs for the Names application. All dataDefs whose superSymbol
slot is set to 'Names show up in the New picker. When the user picks a choice, the
MakeNewEntry routine defined for that dataDef is called.

Built-in choices on the New picker include Person, Company, and Group. You
can create a new type of card for the Names application by supplying a new
data definition.

In addition to the usual slots found in a dataDef frame, Names dataDefs contain
two special slots, overviewIcon and viewsToDisplay.

These slots are described in “Names Data Definition Frame” (page 16-2) in Newton
Programmer’s Reference. For information on dataDefs in particular, and stationery
in general, see Chapter 5, “Stationery.”

Adding a New Data Item 19

The Add button on the Names status bar allows the user to add new items of
information to a card, such as a phone number or an address for a person. There is
a Custom choice on the Add picker (pop-up menu), through which the user can
create special data items that contain a simple text field. However, you can
programmatically add new choices to the picker by creating and registering new
view definitions with the Names application.

The Add button creates its picker from the viewDefs registered for the card type of
the current card. Of these, only viewDefs whose type slot is set to 'editor show
up in the Add picker.

Names viewDefs must contain a special slot called infoFrame, in addition to
those slots required of all viewDefs. The infoFrame slot is described in “Names
View Definition Frame” (page 16-3), and the slots common to all viewDefs are
described in “viewDef Frame” (page 4-1) in Newton Programmer’s Reference.

C H A P T E R 1 9

Built-in Applications and System Data

Names 19-5

Here is an example of an infoFrame for a Names viewDef defining a view that
has two fields, Make and Model:

infoFrame:{checkPaths: '[carMake, carModel],
 checkPrefix: '[true, [pathExpr: carInfo]],
 stringData: nil,
 format: "^?0Make: ^0\n||^?1Model: ^1||" }

When chosen from the Add picker the first time, this view initially fills in the
carMake and carModel slots in the soup entry with the user’s entries. If chosen
again, this view creates an array called carInfo containing one frame for each
additional data set. These frames would look like this:

{carMake: make, carModel: model}

The reason this is necessary is that after information for the first car is entered, the
soup entry will contain the slots carMake and carModel. The information for the
second car could not also be stored in the carMake and carModel slots of the
soup entry. Instead a carInfo slot is added to the soup entry, this slot holds a
frame containing carMake and carModel slots.

When a view from the Add picker is instantiated, the system creates a slot called
selectedPath in the view that was instantiated. This slot is set to the path
expression where data should be entered (or to nil if the data should be entered
directly into the soup entry). For example, when chosen from the Add picker the
first time, the view in this example would have its selectedPath slot set to nil,
meaning that the information should be put directly into the soup entry. When
chosen from the picker the second time, the selectedPath slot is set to
[pathExpr: carInfo, 0], to indicate that the new car information should go
into the first frame in the carInfo array. The third time, selectedPath is set to
[pathExpr: carInfo, 1], and so on.

Adding a New Card Layout Style 19

When the “Card” layout is selected in the Show picker, the Names application
looks at the cardType slot of the current card to determine which kind of business
card layout to use for that card. You can create new viewDefs and register them
with the Names application to use a custom card layouts. Card viewDefs must have
the type slot set to 'bizcard, and must contain a bizCardNum slot and a
bizCardIcon slot.

The bizCardNum slot contains an integer that corresponds to the value stored in
the cardType slot of the card entries. The values 0-6 correspond to the business
card layouts that are built into the system. You should pick integers over 1,000 to
use as a bizCardNum, and register your number with Newton DTS.

C H A P T E R 1 9

Built-in Applications and System Data

19-6 Names

The bizCardIcon slot contains an icon representing the new layout, to be shown
in the Card Style view, where the user can change the type of card layout to use for
a particular card. This icon should be 38x23 since this is the size of the built-in icons.

Adding New Layouts to the Names Application 19

The Show picker allows the user to chose from the two built-in layouts: Card and
All Info. You can programmatically add a new layout by calling the Names method
AddLayout. It takes a single parameter, which is the layout to add. This layout
should be based on the newtLayout proto, and must include the following slots:

name A string shown in the Show picker.

symbol A symbol, which includes your developer signature, uniquely
identifying this layout. This symbol must be passed to the
EnsureInternal function.

type Set this slot to the symbol 'viewer.

protection Set this slot to the symbol 'private.

For more details see AddLayout (page 16-8), and its counterpart function
SafeRemoveLayout (page 16-13) in Newton Programmer’s Reference.

Using the Names Methods and Functions 19

There are a number of methods provided by the Names application. To obtain a
reference to the Names application in order to send these methods, use the
following code:

GetRoot().cardfile

Note that future Newton devices may not include the Names application. You should
therefore check for the existence of the Names application before trying to access
it. Use the following code to test for this:

if GetRoot().cardfile then ...

The methods provided allow you to

■ add a new card (AddCard)

■ add data to an existing card (AddCardData)

■ turn to a particular card if Names is open (ShowFoundItem)

■ open the Names application to a particular card (OpenTo)

■ replace ink data in a card with a string (ReplaceInkData)

■ add an action to the Action picker (RegNamesRouteScript)

C H A P T E R 1 9

Built-in Applications and System Data

Names 19-7

■ get information from Names soup entries

n for credit/phone card information (BcCreditCards)

n for custom fields information (BcCustomFields)

n for e-mail address information (BcEmailAddress)

n for e-mail network information (BcEmailNetwork)

n for phone number information (BcPhoneNumber)

These functions and methods are all described in Newton Programmer’s Reference.

Using the Names Soup 19

The Names application stores its data in the ROM_CardFileSoupName (“Names”)
soup. Entries in this soup are frames for either a person, an owner, a group, a
company, or a worksite card.

The soup formats for each of these types of entries are described in “Names Soup
Format” (page 16-15) in Newton Programmer’s Reference. A list of these frames is
available in the Summary; see “Names Soup” (page 19-49).

To avoid future compatibility problems with soup format changes, you should use
the Names methods provided for getting or setting information in the Names soup.
If none is available for getting the information you want, use the global functions
GetSysEntryData and SetSysEntryData to get or change entries in any of
the built-in soups. They allow you to get and set the values of slots in a soup entry.
If you don’t use these functions to get and set entry slots in the built-in soups, your
application may break under future versions of system software.

Using the Names Protos 19

The Names application uses two protos which are available to you:
protoPersonaPopup and protoEmporiumPopup. These protos provide
pickers that maintain lists of personae and emporia. Personae are people who use
the Newton device, and emporia are places where the Newton device is used.

Note that you can get the information on the current owner and worksite from
the user configuration data stored by the system. This data is described in
“System Data” beginning on page 19-44.

protoPersonaPopup 19

This proto is used for a picker that lets the user maintain and switch between
different owner cards, or “personae.” Here’s an example:

C H A P T E R 1 9

Built-in Applications and System Data

19-8 Dates

The diamond appears only if there is more than one owner card; otherwise you see
just a name without a diamond. Tapping the name produces a picker showing the
names of all owner cards stored by the Names application in this Newton device.

protoEmporiumPopup 19

This proto is used for a picker that lets the user maintain and switch between different
information relevant to various locations where she may be. Here’s an example:

When the user chooses a different city, information like time zone, area code, and
so on is changed to reflect the different location. Choosing “Other City” allows the
user to pick a different city anywhere in the world.

Dates 19

This section describes the Dates API. The Dates application manages meetings and
events, and is closely integrated with the To Do List application. Dates can display
the user’s schedule by day, week, month, and year. It also integrates its information
with the To Do List in the Day’s Agenda view. Figure 19-2 shows the Day and the
Day’s Agenda views.

About the Dates Application 19
The Dates application interface consists of many methods of the calendar object
(for a list, see “Summary” beginning on page 19-46). Always use these methods to
access or modify Dates application data. Even though the soup format is
documented for your information, do not directly modify Dates soup entries,
except for any special slots that you might want to add and maintain yourself.

The Dates application can schedule meetings and events.

■ A meeting is an entry for a specific time during the day. People can be invited
and the meeting can be scheduled for a particular location. Note that meetings
use two kinds of icons, one for regular meetings and a special icon for weekly
meetings (meetings that repeat at the same time each week).

■ An event is an entry for a day but not for a particular time during that day.
Examples include a birthday, an anniversary, or a vacation. Events are entered
into the blank space at the top of the Dates application while in the Day view.
Events use three kinds of icons: one for single-day events, one for multiday
events, and one for annual events (such as birthdays).

C H A P T E R 1 9

Built-in Applications and System Data

Dates 19-9

Figure 19-2 Dates application Day and Day’s Agenda views

Meetings and events can repeat. That is, they can recur on one or more days in
addition to the original meeting or event date.

The application is called Dates, because that is what the user sees, but in
programming the term “calendar” is used interchangeably and appears in the code.

Dates Compatibility 19

This section describes Dates features that are new, changed, or obsolete in system
software version 2.0, compared to 1.x versions.

■ All the Dates methods, variables, and constants described in this chapter are new.

■ The following slots are new in Dates soup meeting frames: class,
instanceNotesData, mtgIconType, mtgInvitees, mtgLocation, and
version. In addition, the mtgText slot may contain a rich string instead of a
plain string.

■ Dates soup notes frames are new; see “Notes Frames” (page 16-62) in Newton
Programmer’s Reference.

■ The Dates application converts incoming soup entries that contain 1.x data into
soup entries that conform to the 2.0 data format. Conversion includes adding
particular slots to soup entries and, in some cases, removing slots. The data
conversion occurs when the Newton receives 1.x entries by beaming,
synchronizing using the Newton Connection Kit, or restoring from a backup.

C H A P T E R 1 9

Built-in Applications and System Data

19-10 Dates

■ In addition to changes in the programmatic interface, the 2.0 version has
extensive changes in the user interface.

■ In system software version 1.x, the Dates application allowed notes (text and
graphics) to be written without an associated meeting marker. In system
software 2.0, such notes, previously called annotations, cannot be written.
Annotations imported via Newton Connection Kit from a 1.x system are still
visible and editable, however. As in version 1.x, these objects are stored in the
ROM_CalendarSoupName soup.

■ In 1.x versions, all instances of a repeating meeting or repeating events share the
same set of notes. A repeating meeting is one that recurs at a periodic time
interval. In 2.0, notes of a repeating meeting and repeating events are local to
each occurrence of the meeting. When a 1.x repeating meeting is converted to
2.0 format, all the notes are typically added to the meeting instance whose
meeting slip the user opens first.

Using the Dates Application 19
This section describes

■ adding meetings or events

■ deleting meeting or events

■ finding meetings or events

■ moving meetings or events

■ getting and setting information for meetings or events

■ creating and using a new meeting type

■ performing miscellaneous operations

■ controlling the Dates display

■ using the Dates soups

To get a reference to the Dates application, in order to send it the messages
described in this section, use this code:

GetRoot().calendar;

Note that future Newton devices may not include the Dates application. You should
therefore check for the existence of the Dates application before trying to access it.
Use the following code to test for this:

if GetRoot().calendar then ...

C H A P T E R 1 9

Built-in Applications and System Data

Dates 19-11

Adding Meetings or Events 19

You can programmatically add meetings and events by using the
AddAppointment and AddEvent methods. You should use these methods rather
than adding entries in the Dates soups directly.

Here are some examples of adding meetings. Note that the parameters to
AddAppointment are (mtgText, mtgStartDate, mtgDuration,
repeatPeriod, repeatInfo).

■ To schedule a one-hour lunch appointment:

GetRoot().calendar:AddAppointment("lunch with Ellen",
StringToDate("6/30/95 11:30am"), 60, nil, nil);

■ To schedule a twice weekly meeting on Mondays and Wednesdays:

GetRoot().calendar:AddAppointment("design meeting",
StringToDate("11/6/95 10:30am"), 60, 'weekly, [1, 3]);

■ To schedule a yearly party engagement at New Year’s Eve:

GetRoot().calendar:AddAppointment("New Year’s Eve Party",
StringToDate("12/31/96 9:00pm"), 120, 'yearly, nil);

Here are some examples of adding events; note that the parameters to AddEvent
are: (mtgText, mtgStartDate, repeatPeriod, repeatInfo).

■ To schedule an event:

GetRoot().calendar:AddEvent("buy flowers",
StringToDate("6/30/95"), nil, nil);

■ To schedule a birthday that repeats yearly:

GetRoot().calendar:AddEvent("George's birthday",
StringToDate("2/22/95"), 'yearly, nil);

■ To schedule Mother’s Day:

GetRoot().calendar:AddEvent("Mother's Day",
StringToDate("5/14/95"), 'yearlyByWeek, nil);

C H A P T E R 1 9

Built-in Applications and System Data

19-12 Dates

Deleting Meetings and Events 19

The Dates application provides three methods for deleting meetings or events:
DeleteAppointment, DeleteRepeatingEntry, and DeleteEvent.

These three methods all take the same parameters, as in
DeleteAppointment(mtgTextOrFrame,mtgStartDate,deleteOneOnly). The
meeting or event to be deleted can be identified in one of two ways:

■ By matching the title (in the mtgTextOrFrame parameter) and the start date (in
the mtgStartDate parameter) of the meeting or event.

■ By passing in a meeting frame for the mtgTextOrFrame parameter. A meeting
frame can be obtained either by calling one of two searching methods
(FindAppointment or FindExactlyOneAppointment) described in
“Finding Meetings or Events” (page 19-13), or by querying one of the Dates
soups, described in “Dates Soup Formats” (page 16-56) in Newton
Programmer’s Reference.

As is explained in “Using the Dates Soups” (page 19-22), repeating meetings and
events are stored as a single soup entry (meeting frame) in either the “Repeat
Meetings” or “Repeat Notes” soups. Calling DeleteAppointment or
DeleteEvent with a meeting title and start date (as in the first bullet above)
deletes only that instance of a repeating meeting or event. However, calling one of
these methods with a meeting frame (as in the second bullet above) stored in one of
these two soups deletes the entire series. DeleteRepeatingEntry deletes the
entire series of repeating events or meetings, regardless of whether a meeting frame
or the title and start date of an event or meeting is used.

Here are some examples of deleting meetings or events of different types:

■ To delete a meeting by title/start time:

GetRoot().calendar:DeleteAppointment ("lunch with Ellen",
StringToDate("6/30/95 11:30am"), true);

■ To delete the same meeting passing in a meeting frame returned by
FindExactlyOneAppointment:

GetRoot().calendar:DeleteAppointment
(GetRoot().calendar:FindExactlyOneAppointment

("lunch with Ellen",
nil,
StringToDate("6/30/95 11:30am"),
'Meeting),

nil, // these last two params. are ignored when
nil); // supplying a meeting frame.

C H A P T E R 1 9

Built-in Applications and System Data

Dates 19-13

■ To delete a single instance of the repeating event created in “Adding Meetings
or Events”:

GetRoot().calendar:DeleteEvent ("George's birthday",
StringToDate("2/22/95"), true);

■ To delete the whole series of George’s birthdays by passing in a meeting frame
for a repeating meeting:

GetRoot().calendar:DeleteEvent
(GetRoot().calendar:FindAppointment

("George's birthday",
nil,
StringToDate("2/22/95"),
'RepeatingEvent,
nil)

[0], //FindAppointment returns an array
nil, // again, these two params. are ignored
nil);

■ The preferred way to delete the repeating event series is by calling
DeleteRepeatingEntry:

GetRoot().calendar:DeleteRepeatingEntry
("George's birthday", StringToDate("2/22/95"), true);

Finding Meetings or Events 19

The Dates application provides two methods to find meetings or events in one of
the Dates soups: FindAppointment and FindExactlyOneAppointment.

The FindAppointment method takes the following parameters:
FindAppointment(mtgText, findWords, dateRange, type,
maxNumberToFind). The FindExactlyOneAppointment method shares the
same first four parameters, but (not surprisingly) does not use a maxNumberToFind
parameter. The FindExactlyOneAppointment method functions exactly like
FindAppointment, except that if more than one meeting or event fits the search
criteria, an exception (error –48418) is thrown.

The following examples show how to find meetings with these two methods:

■ To find all meetings in the month of June 1995 with the word “lunch” in the title
or the notes:

GetRoot().calendar:FindAppointment
(nil,
'["lunch"],

C H A P T E R 1 9

Built-in Applications and System Data

19-14 Dates

[StringToDate("6/1/95 12:00am"),
StringToDate ("6/30/95 11:59pm")],

nil,
nil);

■ To find the unique meeting in the month of June with the word “lunch” in the
title or the notes, and handle the possibility of an exception being thrown if this
criterion is not unique:

try
GetRoot().calendar:FindExactlyOneAppointment

(nil,
'["lunch"],
[StringToDate("6/1/95 12:00am"),
StringToDate("6/30/95 11:59pm")],
nil);

onexception |evt.ex| do
if CurrentException().data.errorCode = -48418

then //handle this case
else Rethrow()

The Dates application also provides a method, FindNextMeeting, which returns
an array with the meeting start date and duration, for the first meeting after a
specified time. The FindNextMeeting method is thus particularly useful for
finding an open time slot in the user’s schedule.

■ Here is an example, which finds the next meeting after 2 P.M. on November 1, 1996:

GetRoot().calendar:FindNextMeeting
(StringToDate("11/1/96 2pm"));

Moving Meetings and Events 19

To move an appointment programmatically you employ the MoveAppointment
method.

■ Here is an example; note that the parameters to MoveAppointment are:
(mtgText,mtgStartDate,newStartDate,newDuration).

GetRoot().calendar:MoveAppointment(
"Job Review",
StringToDate("9/1/96 9:30am"),
StringToDate("9/8/96 4:00pm"),
nil //do not change duration

);

C H A P T E R 1 9

Built-in Applications and System Data

Dates 19-15

■ To move a meeting half an hour earlier and give it a different (90 minute)
duration:

GetRoot().calendar:MoveAppointment(
"lunch with Ellen",
StringToDate("6/30/95 12:00pm"),
StringToDate("6/30/95 11:30am"),
90);

MoveOnlyOneAppointment works just like MoveAppointment except that if
it finds a nonexception instance of a repeating meeting or event that fits the criteria,
it moves only that instance. MoveAppointment would move all the
nonexceptions in that case.

■ To move a single occurrence of a repeating meeting:

GetRoot().calendar:MoveOnlyOneAppointment(
"design meeting",
StringToDate("11/13/95 10:30am"),
StringToDate("11/14/95 2:00pm"),
nil);

The IncrementMonth function can be especially useful when moving
appointments.

■ This example moves an appointment two months ahead:

GetRoot().calendar:MoveAppointment(
"lunch with Ellen",
StringToDate("6/30/95 12:00pm"),
IncrementMonth(StringToDate("6/30/95 11:30am"),2),
nil);

Getting and Setting Information for Meetings or Events 19

There are a number of Dates methods that get/set information stored in the
Dates soups:

■ Set a stop date for a repeating meeting with SetRepeatingEntryStopDate.

■ Set an alarm for a meeting with SetEntryAlarm.

■ Get or set the meeting invitees with GetMeetingInvitees and
SetMeetingInvitees.

■ Get or set a meeting location with GetMeetingLocation and
SetMeetingLocation.

■ Get or set the meeting notes with GetMeetingNotes and
SetMeetingNotes.

C H A P T E R 1 9

Built-in Applications and System Data

19-16 Dates

■ Get or set the meeting icon type with GetMeetingIconType and
SetMeetingIconType.

The remainder of this section presents sample code that uses these methods. You
may wish to look at the summary section at the end of this chapter to see what the
parameters to these methods are.

// useful abbreviations
cal := GetRoot().calendar;
mtgName := "App Design Mtg";
mtgDur := 60;
startDate := StringToDate("2/20/96 12:00pm");
appDueDate := StringToDate("7/23/96 12:00pm");

// schedule a weekly meeting at noon Tuesdays (2/20/96
// falls on a Tuesday)
cal:AddAppointment(mtgName,startDate,mtgDur,'weekly,nil);

// we stop having these meetings when app is due
cal:SetRepeatingEntryStopDate(mtgName,startDate,

appDueDate);

// set a 15-minute advance notice alarm for the meeting
cal:SetEntryAlarm (mtgName, startDate, 15);

// Add an invitee to the meeting. We know that there are
// presently no invitees, since we have just created this
// meeting. But in general, you would add to the present
// list of invitees. Here we add to the (empty) array.

invitees := cal:GetMeetingInvitees(mtgName,startDate);

AddArraySlot(invitees,{name:{first:"Jan",last:"Smith"}});

cal:SetMeetingInvitees(mtgName, startDate, invitees);

// set the location of a meeting to a place not in the
// Names soup
cal:SetMeetingLocation(mtgName, startDate, "Blue Room");

// if the meeting is not in the Blue Room beep
theRoom = cal:GetMeetingLocation(mtgName, startDate)

if not strEqual ("Blue Room", theRoom.company)
then GetRoot():SysBeep();

C H A P T E R 1 9

Built-in Applications and System Data

Dates 19-17

// get the notes of the last meeting. If there are no
// meeting notes, GetMeetingNotes returns nil
meetingNotes := cal:GetMeetingNotes(mtgName, appDueDate);

// add a paragraph to these notes, then set the meeting
// notes to this new array. Note, how care is taken
// not to overwrite any existing notes.

newNote := {viewStationery : 'para,
 text : "Last Design Meeting",
 viewBounds : SetBounds(5, 5, 10, 10)
 }; //Bounds will be expanded

//by system
if meetingNotes then

begin
lowestBottom := 0;
foreach elem in meetingNotes do

if elem.viewBounds.bottom > lowestBottom then
lowestBottom := elem.viewBounds.bottom;

newNote.viewBounds.top := lowestBottom + 5;
newNote.viewBounds.bottom := lowestBottom + 50;
AddArraySlot(meetingNotes, newNote);

end;

else
meetingNotes := [newNote];

// Now add the new note array to the meeting
cal:SetMeetingNotes (mtgName,AppDueDate,meetingNotes);

// check if the icon is of type 'WeeklyMeeting
// if it isn’t make it so
if NOT (cal:GetMeetingIconType(mtgName, startDate)

= 'WeeklyMeeting)
then cal:SetMeetingIconType(mtgName, startDate,

'WeeklyMeeting);

Creating a New Meeting Type 19

You can programmatically add new meeting types by calling the Dates method
RegMeetingType. The meeting type will appear in the New picker in the Dates
status bar. The RegMeetingType method takes two parameters, a symbol
identifying the meeting type—which should include your developer signature—

C H A P T E R 1 9

Built-in Applications and System Data

19-18 Dates

and a frame containing the definition of the new meeting type. This frame has the
following slots; see “RegMeetingType” (page 16-48) in Newton Programmer’s
Reference for full details:

Slot description

item Required. A string that is the meeting type name to appear in
the New picker.

icon Required. The icon shown in the New picker. It should be no
larger than 24x15 pixels.

NewMeeting Required. Method called if the user chooses this meeting type
in the New picker.

smallIcon Optional. The icon displayed in the meeting slip. It should be
no more than 12 pixels high. If this icon is not provided,
icon is used, which may look ugly.

OpenMeeting Optional. Method called when user taps an icon for a
meeting or event of this type. If this method is not provided,
Dates opens the default meeting slip.

memory Optional. Where to store meeting titles of this type.

The NewMeeting method is passed in the date and time the note was created and
the viewBounds of the Dates application. It must create a meeting (or event)
using either AddAppointment (or AddEvent), and must add a slot to the
appointment created called meetingType. This slot must be set to the symbol
that identified the meeting type in the call to RegMeetingType. Remember to
call EntryChange to save this new slot.

If NewMeeting returns the meeting (or event) created, Dates then opens the
default meeting slip. You may also return nil from NewMeeting, in which case
you must have already opened the meeting slip from within NewMeeting. The
meeting slip should be opened by using the Dates method RememberedOpen,
which records this so that Dates can close the view, if Dates is closed. Use
RememberedClose to close this view.

If you do define a custom meeting slip, you should also define an OpenMeeting
method. This method is called when the user taps an icon of the type you have
created. For more information see OpenMeeting (page 16-50) in Newton
Programmer’s Reference.

C H A P T E R 1 9

Built-in Applications and System Data

Dates 19-19

Examples of Creating New Meeting Types 19

The following example code registers a new meeting type for a monthly meeting:

GetRoot().calendar:RegMeetingType (
'|MonthlyMeeting:MySig|,
{ item: "Monthly Meeting",

icon: myIcon,
smallicon: mySmallIcon,
NewMeeting: func(date, parentBox)

begin
local appt:= GetRoot().calendar

:AddAppointment ("",date, 60,
'monthly, nil);

appt.meetingType:=
'|MonthlyMeeting:MySig|;

EntryChange(appt);
appt; // the calendar will open the

// default meeting slip if we
// return the new appointment

end,
});

To register a new meeting type for a monthly event with a custom meeting slip:

GetRoot().calendar:RegMeetingType (
'|Monthly Event:MySig|,
{ item: "Monthly Event",

icon: myIcon,
smallicon: mySmallIcon,
NewMeeting: func(date, parentBox)
begin

local appt := GetRoot().calendar
:AddEvent("", date, 'monthly, nil);

appt.meetingType := '|MonthlyEvent:MySig|;
EntryChange(appt);
:OpenMeeting(appt,date,cal:GlobalBox());
nil; // tells calendar not to open

// default meeting slip
end,
OpenMeeting: func(meeting, date, parentBox)
begin

local cal := GetRoot().calendar;

C H A P T E R 1 9

Built-in Applications and System Data

19-20 Dates

local slip :=
BuildContext(

{_proto: protoFloater
viewFlags:vClickable + vFloating +

vApplication + vClipping,
viewJustify:0,
viewBounds:SetBounds (

parentBox.left+40,
parentBox.top+40,
parentBox.right-40,
parentBox.bottom-100),

declareSelf:'base,
stepChildren:
[

{viewStationery: 'para,
text: "test slip",
viewBounds:RelBounds(10, 10,50, 20)
},
{_proto: protoCancelButton,
buttonClickScript: func()
//closes the view and tells
//calendar the view was closed

AddDeferredSend(
cal,
'RememberedClose,
[base]),

}
],

});
// open the view and tell Dates it was opened
GetRoot().calendar:RememberedOpen(slip);

nil; // tells Dates not to open
// default meeting slip

end,
});

Miscellaneous Operations 19

Dates provides a number of methods that have not been mentioned elsewhere:

■ DisplayDate displays meetings in the Dates application, To Do items, or the
agenda for a specified date.

■ GetSelectedDates returns an array of the currently selected and
displayed dates.

C H A P T E R 1 9

Built-in Applications and System Data

Dates 19-21

■ OpenMeetingSlip opens the meeting slip for a specific meeting or event.

■ RegInfoItem adds and UnRegInfoItem or deletes an item in the Info picker
in the base view of the Dates application. This example shows how to add a
command that displays the next day’s To Do List to the Info button:

GetRoot().calendar:RegInfoItem('|NextDayToDo:MyApp|,
 { item: "Next Day's To Do",

doAction: func()
begin

local cal := GetRoot().calendar;
cal:DisplayDate

(cal:GetSelectedDates() [0]
+(24*60),'ToDoList);

end;
});

Controlling the Dates Display 19

There are two system variables you can set to control specific features of the Dates
display: firstDayOfWeek and useWeekNumber.

The Dates variable firstDayOfWeek specifies what the first day of the week
should be, for display purposes. It holds an integer value from 0 to 6, where 0
means Sunday, 1 means Monday, and so on. The default value is 0, which means
that by default all months show Sunday as the first day of the week.

Once this value has been set, all new views of the class clMonthView and views
that display meeting frequency reflect the new value, but existing views must be
closed and reopened to reflect the new value. This variable is part of the
system-stored user configuration data (the Dates application checks there first), or
in the locale bundle frame (Dates checks there next).

The Dates variable useWeekNumber controls display of a week number in the
upper-left corner of the Dates view. If this slot is non-nil, the Dates application
displays the week number there. The first week of the year is number 1 and the last
week is number 52. This variable is a slot in the locale bundle frame.

To get and set the value of user configuration variables, use the functions
GetUserConfig and SetUserConfig; this frame and the two functions are
described in “System Data” (page 19-44). To return the current locale bundle
frame, use the global function GetLocale.

C H A P T E R 1 9

Built-in Applications and System Data

19-22 To Do List

Using the Dates Soups 19

The Dates application stores meeting and event information and notes in the
following soups:

The slot structures of meeting frames and note frames are described in “Meeting
Frames” (page 16-57) and “Notes Frames” (page 16-62) in Newton Programmer’s
Reference. A list of these frames is available in the Summary; see “Dates Soups”
(page 19-52).

Although the format of the various Dates soups is documented in this section, you
should not directly change entries. It is best to use the methods supplied by the
Dates application to get and set entries.

To Do List 19

This section describes the To Do List API. The To Do List application is integrated
into the Dates application; it is accessed through the Dates Show button. The To Do
List is shown in Figure 19-3.

About the To Do List Application 19
The To Do List API allows you to create To Do List items programmatically, check
them off, obtain them according to date and other criteria, and remove them by date
and other criteria.

Soup (name string) Description

ROM_CalendarSoupName
(“Calendar”)

Entries are meeting frames for nonrepeating
meetings.

ROM_RepeatMeetingName
(“Repeat Meetings”)

Entries are meeting frames for repeating
meetings and notes frames for notes associated
with specific instances of a repeating meeting. A
single meeting frame entry describes all the
instances of a repeating meeting.

ROM_CalendarNotesName
 (“Calendar Notes”)

Entries are meeting frames for nonrepeating
events.

ROM_RepeatNotesName
(“Repeat Notes”)

Entries are meeting frames for repeating events
and notes frames for notes associated with
specific instances of a repeating event.

C H A P T E R 1 9

Built-in Applications and System Data

To Do List 19-23

Figure 19-3 The To Do List application

To Do List Compatibility 19

Version 2.0 reads and converts all 1.x To Do List soups. It does not reproduce
styling of text, because 2.0 doesn’t support styling. It does not allow shapes and
sketches in a task, so shapes and sketches are thrown away.

Because the internal structure of the 2.0 To Do List soup is completely different
from that of the 1.x version, when you transmit a 2.0 soup to a 1.x system it creates
a 1.x entry.

Using the To Do List Application 19
This section provides information about the use of the To Do List soup and
methods. To obtain a reference to the To Do List in order to send it messages, use
the following code:

GetRoot().calendar:GetToDo();

Note that future Newton devices may not include the To Do List application. You
should therefore check for the existence of the To Do List application before trying
to access it. Use the following code for this test:

if GetRoot().calendar then
if GetRoot().calendar:?GetToDo() then ...

C H A P T E R 1 9

Built-in Applications and System Data

19-24 To Do List

Also, note that some of these methods only work when the To Do List is open. You
can ensure the To Do List is open by calling the Dates method DisplayDate
passing in 'toDoList for the format parameter as in the following code:

//open Dates and make it show today’s To Do List
GetRoot().calendar:Open();
GetRoot().calendar:DisplayDate(time(),'toDoList);

This section describes

■ creating and removing To Do tasks

■ accessing tasks

■ checking-off tasks

■ using miscellaneous To Do List methods

■ using the To Do List soup

Creating and Removing Tasks 19

There are two To Do List methods that add a task: CreateToDoItem and
CreateToDoItemAll. The CreateToDoItem method takes four parameters, as
in CreateToDoItem(date,richString,reminder,frequency). The
CreateToDoItemAll method takes two additional parameters, priority and
completed, which set the priority and completion status of the new task.

The following code example adds a task to today’s To Do List:

GetRoot().calendar:GetToDo():CreateToDoItem (time(),
"test", nil, nil);

The To Do List GetToDoEntry method (discussed in “Accessing Tasks” beginning
on page 19-24) will also create a soup entry if one does not exist for that date.

To remove tasks, use the To Do List method RemoveOldToDoItems, which
removes either all or those tasks that have been marked-off before a specific date.
The following code sample removes all the nonrepeating To Do List tasks in the
twentieth century:

GetRoot().calendar:GetToDo():
RemoveOldToDoItems(StringToDate("1/1/2000"),'all,nil);

Accessing Tasks 19

The To Do List provides three methods for accessing tasks:

■ GetToDoItemsForThisDate

■ GetToDoEntry

■ GetToDoItemsForRange.

C H A P T E R 1 9

Built-in Applications and System Data

To Do List 19-25

GetToDoItemsForThisDate returns an array of tasks. Tasks are elements of
the array stored in the topics slot of a day’s soup entry. For the structure of these
frames, see “To Do List Soup Format” (page 16-77) in Newton Programmer’s
Reference. The following code example obtains today’s tasks:

todaysTasksArray := GetRoot().calendar:GetToDo():
GetToDoItemsForThisDate(time());

GetToDoEntry returns an array of soup entries for a specific day. Since the To
Do List stores tasks in a soup entry for each day, this array will contain an element
for each store that has a task stored under that day. The following code example
obtains today’s soup entries:

todaysEntries := GetRoot().calendar:GetToDo():
GetToDoEntry(time(),nil);

Note
The GetToDoEntry method requires that the To Do
List be open. ◆

GetToDoItemsForRange returns an array of frames for each day in the range
passed in. The following code example retrieves the tasks for the next seven days:

nextWeeksTasks := GetRoot().calendar:GetToDo():
GetToDoItemsForRange(time(), time() + 7*24*60);

There is also a To Do List method, NextToDoDate(date), which returns the
date of the next task on or after date. This method can be useful in this context.

Checking-Off a Task 19

A tasks is marked as completed with the To Do List method SetDone. This
method requires the To Do List to be open; you can make sure the To Do List is
open by calling the Dates method DisplayDate. The following code sample
marks off a task:

//open Dates and make it show today’s To Do List
GetRoot().calendar:Open();
GetRoot().calendar:DisplayDate(time(),'toDoList);

//get a reference to today’s tasks
todaysTasksArray := GetRoot().calendar:GetToDo():

GetToDoItemsForThisDate(time());

//find a task that says "test"
for i := 0 to length(todaysTasksArray) - 1 do

if StrEqual (todaysTasksArray[i].text, "test") then

C H A P T E R 1 9

Built-in Applications and System Data

19-26 To Do List

begin
theTask := todaysTasksArray[i];
theIndex := i;

end;

//and mark it as done
GetRoot().calendar:GetToDo():

SetDone(theIndex,theTask,true,nil,nil);

The third parameter to SetDone determines whether a task is checked off; passing
nil unchecks it.

Miscellaneous To Do List Methods 19

The To Do List also provides the following methods:

■ GetTaskShapes and GetToDoShapes return the shapes necessary to draw
tasks, which are used for printing.

■ LastVisibleTopic returns the index in the topics array of the last
task drawn.

■ SetPriority sets the priority of a task. (This method requires the To Do List
to be open.)

■ EnsureVisibleTopic scrolls the To Do List as necessary to ensure that a
task is visible. (This method requires the To Do List to be open.)

Using the To Do List Soup 19

The To Do List stores its data in the “To Do List” soup. Entries in this soup are
frames for either a particular day, or for all repeating to do items.

In this soup, each day has a single entry that includes a topics slot, which is an
array of tasks for that day. All repeating tasks are saved in a single entry, with a
date slot of 0.

If one day is represented by an entry on each of several stores of the soup—for
example, if there was one entry in internal store and one on a storage card—the To
Do List merges the entries for display purposes. The entries are not actually moved
from one store to another in this process.

For information about the structure of entries in this soup, see “To Do List Soup
Format” (page 16-77) in Newton Programmer’s Reference. A list of these frames is
available in the Summary; see “To Do List Soup” (page 19-53).

To avoid future compatibility problems with soup format changes, you should use
the global functions GetSysEntryData and SetSysEntryData to get or
change entries in any of the built-in soups. They allow you to get and set the values

C H A P T E R 1 9

Built-in Applications and System Data

Time Zones 19-27

of slots in a soup entry. If you don’t use these functions to get and set entry slots
in the built-in soups, your application may break under future versions of
system software.

Time Zones 19

This section describes the Time Zones API. The Time Zones application is shown
in Figure 19-4.

Figure 19-4 The Time Zones application

About the Time Zones Application 19
The Time Zone application lets the user access information about locations, which
may come from the system, the user, or from another application. The user can
browse the cities of the world for the time and other travel information, such as
network access phone numbers. The user can define a Home City, an Away City,
and other locations of interest (emporia). Information the user specifies is
available to your application. When the user specifies that the Newton device is in a
new location, local information, such as network phone numbers, is available to
your application. For more information on localization, see Chapter 20,
“Localizing Newton Applications.”

Time Zone Compatibility 19

The Time Zone application runs only on version 2.0, and is fully compatible with
older versions back to 1.3.

C H A P T E R 1 9

Built-in Applications and System Data

19-28 Time Zones

Using the Time Zone Application 19
The application program interface provides functions for retrieving information
about cities and countries, a method to add a city to a Newton device’s list of cities,
and a method to set the home city. To call a Time Zones method, you need a
reference to the application. To obtain this reference, use the following code:

GetRoot().worldClock

Note that future Newton devices may not include the Time Zones application. You
should therefore check for the existence of the Time Zones application before
trying to access it. Use the following code to test for this:

if GetRoot().worldClock then ...

Obtaining Information About a City or Country 19

The GetCityEntry and GetCountryEntry global functions return information
about a number of cities and countries around the world. This information is
available to the user by picking All Info from the Show picker, shown in Figure 19-5.

Figure 19-5 Time Zones application’s All Info view

Both these functions take a string as an argument for the city or country to return
information about. The search is conducted by string comparison with this
argument. You should be aware that although there may be variations of the name
of a city or country, only one name is stored on the Newton device. For example,
GetCityEntry("Los Angeles") returns a frame with information about Los
Angeles, but GetCityEntry("LA") does not. You should check the spelling in
the Time Zones application of city or country names you wish to use. Keep in mind

C H A P T E R 1 9

Built-in Applications and System Data

Time Zones 19-29

though that the list of cities and countries is not necessarily the same on your
Newton device and the user of your application. Your application should also check
string names for cities and countries entered by the user.

The GetCountryEntry function performs an additional search based on the
class of the string passed in. This is done in order to take into account the language
of the ROM used; the symbols are all in English. To set the class of a string, use the
SetCountryClass function, described in Chapter 20, “Localizing Newton
Applications.”

The frame returned by the GetCityEntry function is the same as the
newCityFrame parameter to the NewCity function described in “Adding a City to
a Newton Device” beginning on page 19-29. For information on the frame returned
by the GetCountryEntry function see the description of this function in Newton
Programmer’s Reference.

Adding a City to a Newton Device 19

The Time Zones NewCity method adds a city to a Newton device. It takes a
newCityFrame parameter which is a frame with the following slots:

Slot descriptions

name Required. A string containing the name of the location.

longitude Required. The longitude of the location. The formula for
generating this value appears in “Using Longitude and
Latitude Values” beginning on page 19-30.

latitude Required. The latitude of the location.

gmt Required. The offset in minutes from Greenwich Mean Time.

country Required. A symbol representing the country in which the
city is located.

areaCode Optional. A string for the area code of the location.

region Optional. A string for the region of the location. For cities
in the U.S. this should be the state; for cities in Canada
the province.

airport Optional. A string for the airport designation for the city, or
an array of strings if the city is served by multiple airports.

Here is an example of such a frame:

{name:"Portland",
longitude:354036540,
latitude:67929083,
gmt: -28800,
country:'USA,

C H A P T E R 1 9

Built-in Applications and System Data

19-30 Notes

areaCode: "503",
region:"OR",
airport:"PDX"}

Using Longitude and Latitude Values 19

To calculate the latitude or longitude of a location, create and use the
following function:

CalcLngLat := func(dgrs, min, secs, westOrSouth) begin
local loc;
loc := dgrs / 180 + min / (180 * 60) + secs

/ (180 * 60 * 60);
loc := rinttol(loc * 0x10000000);
if westOrSouth then

loc := 0x20000000 - loc;
loc;

end;

The built-in utility functions LatitudeToString and LongitudeToString
return a string representation of an encoded integer latitude or longitude value. For
information on these functions see Newton Programmer’s Reference.

Setting the Home City 19

The SetLocation method sets the home city. It takes a single parameter
whichCity which is the same as the newCityFrame parameter of the NewCity
method; see “Adding a City to a Newton Device” beginning on page 19-29. The
following code makes Los Angeles the home city:

GetRoot().worldClock:SetLocation(GetCityEntry
("Los Angeles") [0]);

Notes 19

This section describes the Notes API. The Notes application uses three types of
stationery: regular notes, checklists, and outlines. Figure 19-6 shows a note and a
checklist; an outline (not shown) is like the checklist without the checkboxes.

C H A P T E R 1 9

Built-in Applications and System Data

Notes 19-31

Figure 19-6 Notes note and Checklist views

About the Notes Application 19
Notes is a simple application based on NewtApp that allows the user to create new
stationery, scroll up and down, route and file notes, and scan an overview.

The Notes API is limited to a few methods which allow you to create new notes.

The Notes application can be extended by adding auxiliary buttons, as described in
“Auxiliary Buttons” beginning on page 19-36.

The name of the application is Notes, which is what the user sees, but in
programming the term paperroll is also used and appears in the code.

Notes Compatibility 19

There are some anomalies in converting ink from system software 2.0 to earlier
versions of the system. Version 2.0 ink text is converted to straight ink when
viewed in 1.x versions. Paragraphs with mixed regular and ink text are converted so
that the regular text loses any styles; for example in 1.x versions, it becomes
18-point user font. Any paragraph that contains ink text is reflowed in 1.x versions
so that line layouts (breaks) are different from the original. This means that the
paragraph may grow taller. Ink works converted from 2.0 to 1.x straight ink appear
in the size originally drawn, not in the 2.0 scaled size.

C H A P T E R 1 9

Built-in Applications and System Data

19-32 Notes

Using the Notes Application 19
This section describes the methods that add new notes, and the Notes soup format.

To obtain a reference to the Notes application in order to send it messages, use the
following code:

GetRoot().paperroll

Note that future Newton devices may not include the Notes application. You should
therefore check for the existence of the Notes application before trying to access it.
Use the following code to test for this:

if GetRoot().paperroll then ...

Creating New Notes 19

The Notes method MakeTextNote(string,addIt) creates a note that consists of a
single string. The addIt parameter is a Boolean; pass true for addIt to add the note
to the Notes soup. The following code adds a note programmatically:

GetRoot().paperroll:MakeTextNote
("Isn’t this easy?",true);

If you want to add a more sophisticated note, follow these steps:

1. Create a note with MakeTextNote, but pass nil for the addIt parameter.
MakeTextNote returns a note frame.

2. Modify the data slot of the frame returned by MakeTextNote. The data slot
must be an array of frames that have the format described in “Notes Soup
Format” (page 16-82) in Newton Programmer’s Reference.

3. Call the Notes method NewNote with the modified note frame.

Below is an example of this procedure:

// create a note frame
notes := GetRoot().paperroll;
theNote := notes:MakeTextNote ("", nil);

// modify the data slot. Note that the data array now
// contains a frame for the empty string.
theNote.data :=

[{viewStationery :'para, // a text object
 viewBounds : {top:3, left:3, right:97, bottom:97},
 text : "I’m just a string."},
{viewStationery :'poly, //a polygon object

C H A P T E R 1 9

Built-in Applications and System Data

Notes 19-33

 points :ArrayToPoints ([11, // a rectangle
5, //how many points
0,0, //first point
0,25, //second
150,25,//third
150,0,//fourth
0,0]),//back home

 viewBounds : {top:0, left:0, right:100, bottom:100}}
];

//Add the note to the Notes application
notes:NewNote (theNote, true, nil);

This creates the note shown in Figure 19-7.

Figure 19-7 Note added using NewNote method

Adding Stationery to the Notes Application 19

The Notes application includes three types of built-in stationery: notes, outlines,
and checklists. In addition, you can create your own stationery. For information on
how to do this see Chapter 5, “Stationery,” which includes an extended example of
adding stationery to the Notes application.

Using the Notes Soup 19

The Notes soup holds individual entries for the different kinds of built-in stationery
as follows:

■ note—the lined paper used for the Notes

■ outline—paper with automated outlining

■ checklist—outline paper with a box to check off completed items

C H A P T E R 1 9

Built-in Applications and System Data

19-34 Fax Soup Entries

Detailed information on the data structures that support these stationeries is provided
in “Notes Soup Format” (page 16-82) in Newton Programmer’s Reference. A list of
these frames is available in the Summary; see “Notes Soup” (page 19-53).

To avoid future compatibility problems with soup format changes, you should use
the global functions GetSysEntryData and SetSysEntryData to make
change entries in any of the built-in soups. These allow you to get and set the
values of slots in a soup entry. If you don’t use these functions to get and set entry
slots in the built-in soups, your application may break under future versions of
system software.

Fax Soup Entries 19

This section describes Fax soup entries.

About Fax Soup Entries 19
If you want to use a received fax in your application, you can find it in the In/Out
Box soup or set up a process to route it to your application by means of the
PutAwayScript or the AutoPutAway messages, both described in Newton
Programmer’s Reference.

The PutAwayScript message results from a user action. An application can
register to handle putting away fax data by using the RegAppClasses function,
see RegAppClasses in Newton Programmer’s Reference.

The AutoPutAway message requires no user action. The In Box checks for an
AutoPutAway method in the base view of the application whose appSymbol slot
matches that in the item. If the AutoPutAway method exists, the In Box sends the
AutoPutAway message to the application, passing the incoming item as a
parameter.

In either case, the body slot from the In/Out Box entry is passed to the application.
All the fax data that an application needs is embedded within the body slot; see
“Using Fax Soup Entries” (page 19-34).

You may also want to use the system prototypes that relate to viewing and
manipulating images with your fax data. They are protoImageView,
protoThumbnail, and protoThumnailFloater.

Using Fax Soup Entries 19
When an entry is submitted to the In/Out Box from a transport such as fax receive,
or from an application, the fax is stored in the body slot of the In/Out Box soup
entry. The In/Out Box stores the original application soup entry in a frame called

C H A P T E R 1 9

Built-in Applications and System Data

Prefs and Formulas Rolls 19-35

body within the In/Out Box soup entry, where a user can view it. Applications may
be passed an In/Out Box soup entry as part of the putting away process. For more
information on handling items coming from the In/Out Box, see “Receiving Data”
beginning on page 21-31 in Newton Programmer’s Guide.

The structure of the body frame is described in “Fax Soup Entries Reference”
(page 16-94) in Newton Programmer’s Reference.

Prefs and Formulas Rolls 19

This section describes the Prefs and Formulas API’s. Figure 19-8 shows custom
panels added to these two applications by DTS sample code.

Figure 19-8 Custom Prefs and Formulas Panels

About the Prefs and Formulas Rolls 19
The Prefs application presents the user with a list of items for which such preferences
as handwriting recognition and sound levels can be set. These are system-wide or
system-level preferences, do not add application-specific preferences to the Prefs
roll. The Formulas application contains a list of items that perform some sort of
calculation for the user.

You can extend the Prefs and Formulas rolls through the registry functions:
RegPrefs and RegFormulas.

C H A P T E R 1 9

Built-in Applications and System Data

19-36 Auxiliary Buttons

Prefs and Formulas Compatibility 19

The functions RegPrefs, UnRegPrefs, RegFormulas, and UnRegFormulas
are new to the 2.0 system.

Using the Prefs and Formulas Interfaces 19
This section describes how to add panels to the Prefs and Formulas rolls.

Adding a Prefs Roll Item 19

The RegPrefs function adds a panel to the Prefs rolls. This roll is not intended for
application-specific preferences, but rather for system-wide preferences.
Application-specific preferences should be set through an information button (an
“i” button) in the application base view’s status bar. For more on the information
button, see newtInfoButton or protoInfoButton, depending on whether
you are working in the NewtApp framework or not.

The item added to the Prefs roll should be based on protoPrefsRollItem. The
UnRegPrefs function reverses the effects of the RegPrefs function.

Adding a Formulas Roll Item 19

The RegFormulas function adds a panel to the Formulas roll. There is no proto
tailored for use as a Formulas panel. Instead, you should attempt to make your
panel look and act like the system-supplied panels. For an example of a template
with the look of the built-in Formulas panels, see the DTS sample code related to
the Prefs and Formulas rolls.

The UnRegFormulas function reverses the effects of the RegFormulas function.

Auxiliary Buttons 19

This section describes the use of auxiliary buttons. Figure 19-9 shows the effect of
adding an auxiliary button to the Notes application.

About Auxiliary Buttons 19
A set of functions allow you to add buttons to the status bars of the Notes and
Names applications. Third-party applications can use this mechanism to allow
themselves to be extended.

Auxiliary Buttons Compatibility 19

The auxiliary buttons mechanism is new to the Newton 2.0 system.

C H A P T E R 1 9

Built-in Applications and System Data

Auxiliary Buttons 19-37

Figure 19-9 The Notes application with and without an auxiliary button

Using Auxiliary Buttons 19
You can add buttons to the status bars or other locations in the Notes and Names
applications. Your application may also use this mechanism to allow itself to be
extended.

RegAuxButton and UnRegAuxButton are the functions that add and remove a
button from the auxiliary button registry; they are called by button providers.
Button providers can ignore the descriptions of the other functions, which are
called by button hosts.

Here is an example of registering a button with the Notes application:

RegAuxButton('|smileButton:PIEDTS|,
 {destApp: 'paperroll,// Add buttons to Notes

_proto: protoTextButton,
text: "Smile!",
viewBounds: RelBounds(0,0,40,10),
buttonClickScript: func() print("Cheese!")
});

This code added the auxiliary button shown in Figure 19-9.

The following code shows how this button should be removed:

UnRegAuxButton('|smileButton:PIEDTS|);

You should be careful what assumptions you make about the environment where
the button will appear. The buttons may not be on a protoStatusBar or have a
base slot available by inheritance, and the implementation details of the built-in
applications may well change in the future. Remember to check your assumptions
and catch exceptions.

C H A P T E R 1 9

Built-in Applications and System Data

19-38 Icons and the Extras Drawer

Any application that adds buttons to another application should provide a preference
that allows the user to enable or disable the display of the source application buttons
in the destination application. The user may want to suppress buttons because the
buttons from several source applications may be too many to fit in a single destination
application. The user should be able to choose which should appear, and the
preference should normally default to not registering the button.

Note that a button you register might not appear at all if too many buttons are
already registered in the destination application, so you must ensure alternative
access to your application through conventional means, such as the Extras Drawer.

Also note that packages that install buttons into other applications may cause the
system to display the card reinsertion warning if they are on a card that has been
ejected. It is wise to advise or require users to install packages on the internal store
if they are going to register buttons in other applications.

The functions GetAuxButtons, AddAuxButton, and RemoveAuxButton are
for use by button hosts that are adding the buttons to their own status bars (or
wherever is appropriate). You should call GetAuxButtons in your base view’s
ViewSetupChildrenScript and merge the resulting array with the buttons
that always appear on your status bar. You should probably also override the
viewBounds or viewJustify slots of the buttons, to place them correctly.

If your application is the backdrop application, this array contains both the buttons
specific to your application and any designated for the backdrop application. You
do not need to write any special code to detect whether your application is the
backdrop application.

Icons and the Extras Drawer 19

This section describes the Extras Drawer’s API for icon management.

About Icons and the Extras Drawer 19
As you may know, you can design custom icons for your application in NTK.
Information on how to do this is provided in the Newton Toolkit User’s Guide. You
can also programmatically change the picture of the icon and the text displayed
under it.

There are two special purpose icons you can add to the Extras Drawer—script
icons and soup icons. A script icon is an icon that executes a function object when
tapped. A soup icon acts as a container, under which the icons of various soups are
combined. You should create a soup icon if your application creates more than one
soup, since this will unclutter the Extras Drawer. You also need to create soup icons
to support the soupervisor mechanism (described later in this section).

C H A P T E R 1 9

Built-in Applications and System Data

Icons and the Extras Drawer 19-39

This section also covers creating a cursor that iterates over icons in the Extras
Drawer, and a number of functions that manipulate the entries these cursors iterate
over. With these functions you can programmatically open an icon (which has the
same effect as a user tapping the icon), and get information about the package the
icon represents.

In addition, the Newton 2.0 system creates an icon for any soup on a mounted store
in the Storage folder of the Extras Drawer. Tapping this icon brings up a slip that
displays information about the memory consumption of the soup (see Figure 19-10).
It also provides a delete button, which can delete the soup. And, without too much
work, you can provide a filing button that allows the user to move the soup to a
different store or folder. This is accomplished through what is called the
soupervisor mechanism.

Figure 19-10 The information slips for an application’s soup that do and do not
support the soupervisor mechanism (note extra filing button)

Extras Drawer Compatibility 19

Everything described in this section is new to the Newton 2.0 system.

Using the Extras Drawer’s Interface for Icon Management19
This section covers the following topics:

■ creating cursors that iterate over the icons in the Extras Drawer

■ changing an icon’s information

■ creating script and soup icons

■ supporting the soupervisor mechanism

To accomplish some of these tasks, you need to send messages to the Extras
Drawer. Use this code to get a reference to the Extras Drawer:

GetRoot().extrasDrawer

C H A P T E R 1 9

Built-in Applications and System Data

19-40 Icons and the Extras Drawer

Using Extras Drawer Cursors 19

The Extras Drawer method GetPartCursor creates a cursor that can iterate over
parts (icons) in the Extras Drawer. You can create a cursor that iterates over parts in
a specific store, a particular folder of the Extras Drawer, a particular package, or a
combination of these criteria. This cursor is a normal soup cursor, as described in
Chapter 11, “Data Storage and Retrieval.”

Entries returned by part cursors are subject to change. These entries should be
manipulated only with one of the following three Extras Drawer methods:

■ GetPartEntryData returns information about a part.

■ LaunchPartEntry has the same effect as the user tapping the icon.

■ SetExtrasInfo sets data in a part entry; see “Changing Icon Information.”

Changing Icon Information 19

The Extras Drawer method SetExtrasInfo can be used to change the icon or
text under an icon. It can also change the labels slot of an icon, which has the
effect of filing the icon. If the icon is a soup icon, you may also change the array of
soups that this icon represents and the application that owns these soups.

Adding a Soup Icon 19

If your application uses more than one soup or you want to file or move entire
soups through the soupervisor mechanism, you should consider using a soup icon,
so that only one icon appears in the Extras Drawer. You should store this icon in the
internal store, otherwise all the component soups will reappear when the external
store is removed. Also, you should give the icon a different package name from
your application in your call to AddExtraIcon, both as the pkgName parameter
and in the app slot of the paramFrame parameter. Again, this is so that it is not
removed when your application is.

You add a soup icon to the Extras Drawer by calling its AddExtraIcon method.
Passing the symbol 'soupEntry for the first parameter specifies that the icon to
add is a soup icon.

The rest of this section provides sample code for installing a soup icon. Before
trying to understand this code, you should read the description of AddExtraIcon
(page 16-88) in Newton Programmer’s Reference.

//Useful constants
constant kMySoupNamesArray := '["soup1:NDTS",

"soup2:NDTS", "soup3:NDTS"];
constant kMySoupUserName := "Souper Thing";
DefConst('kSoupPackageName, "Soups:" & kPackageName);

C H A P T E R 1 9

Built-in Applications and System Data

Icons and the Extras Drawer 19-41

InstallScript := func (partFrame)
begin

local ed := GetRoot().extrasDrawer;
local iStore := GetStores()[0];

//check if our icon is already installed
if Length (ed:GetExtraIcons ('soupEntry,

kSoupPackageName, iStore)) = 0 then
call kAddExtraIconFunc with

('soupEntry,
{ //soups we are combining

soupNames: kMySoupNamesArray,
//title shown under the icon
text : kMySoupUserName,
//for the soupervisor mechanism
ownerApp : kAppSymbol,
//for access via SetExtrasInfo
app : kSoupPackageName,

}
//Note, we do not use kPackageName since
//we don’t want the icon moved when the
//package is moved.
kSoupPackageName,
iStore);

end;

The Extras Drawer method GetExtraIcons used in the above code to obtain an
array of soup icons that match the package name is described in GetExtraIcons
(page 16-90) in Newton Programmer’s Reference.

Removing a Soup Icon 19

Use the Extras Drawer method RemoveExtraIcon to remove your soup icon, as
in the following code:

//A good place for this would be in a DeletionScript
local ed := GetRoot().extrasDrawer;
foreach icon in ed:GetExtraIcons ('soupEntry,

kSoupPackageName, GetStores()[0]) do
ed:RemoveExtraIcon (icon);

C H A P T E R 1 9

Built-in Applications and System Data

19-42 Icons and the Extras Drawer

Creating a Script Icon 19

Installation of a script icon is basically the same as that for a soup icon. The two
main differences are that the symbol 'scriptEntry is passed in for the iconType
parameter of AddExtraIcon, and the paramFrame argument contains different
slots. However, with a script icon it is not important to keep this icon in the internal
store. Instead, you should ensure that the icon is installed on the same store as the
package with which it is associated.

The most likely use for a script icon is for a transport to bring up an interface for
user preferences. The code sample shown below brings up a such a slip:

//Useful constants.
DefConst('kMyConfigSlipSym,

Intern("configSlip:" & kAppSymbol));
constant kScriptIconName := "ScriptIcon Slip";
constant kScriptIconPkgName:= Intern ("Script:" &

kAppSymbol);

// get the icon picture
r := OpenResFileX(HOME & "pictures");
DefConst('kMyScriptIcon, GetPictAsBits("TARDIS", nil));
CloseResFileX(r);

// the tap action, small and simple
DefConst('kTapScript, func()
 GetGlobalVar(kMyConfigSlipSym):Open());

DefConst('kScriptIconParamFrame,
{
// name in the Extras Drawer
text: kScriptIconName,
 // icon in the Extras Drawer
icon: kMyScriptIcon,
// to allow access via SetExtrasInfo
app:kScriptIconPkgName,
// function to call when icon is tapped
tapAction: kTapScript

 }
);

C H A P T E R 1 9

Built-in Applications and System Data

Icons and the Extras Drawer 19-43

InstallScript := func(partFrame, removeFrame)
begin

local mySlip := GetLayout("MySlip.t") ;

// install the slip
DefGlobalVar (kMyConfigSlipSym, BuildContext(mySlip));

local ed := GetRoot().extrasDrawer;

//Figure out which store our package is in. This code
//will work for a form part, as long as the argument
//to ObjectPkgRef is a reference type (i.e., a
// pointer).
local myStore := GetVBOStore(ObjectPkgRef(mySlip));

//check if our icon is already installed
if Length(ed:GetExtraIcons('ScriptEntry, kPackageName,

myStore)) = 0 then
call kAddExtraIconFunc with

('ScriptEntry,
 kScriptIconParamFrame,
 kPackageName,
 myStore);

end;

RemoveScript := func(removeFrame)
// remove the slip
UnDefGlobalVar(kMyConfigSlipSym);

Note that you do not have to remove the script icon, since it is associated with your
package. When the package is removed, the icon is removed as well. But if you
wish to remove it at some other time, you can do so with a call to the Extras
Drawer method RemoveExtraIcon.

Using the Soupervisor Mechanism 19

In order to take advantage of the soupervisor mechanism, you need to do
the following:

1. At build time, add an ownerApp slot to your part frame. This slot should be set
to your application symbol. You can do this with a call to SetPartFrameSlot,
as in the following code:

call SetPartFrameSlot with ('ownerApp, kAppSymbol);

C H A P T E R 1 9

Built-in Applications and System Data

19-44 System Data

2. Add a frame called soupervisor to your application’s base view. Note that
this means you cannot add a soupervisor frame to an autopart unless
GetRoot.(kAppSymbol) exists. This frame must have a slot called type.
The possible values for the type slot are

'moveOnly Allows a user to move all soup entries to a different store.

'fileOnly Allows a user to file all soup entries to a different folder.

'all Allows a user to move and file all soup entries.

3. Create a soup icon whose ownerApp slot is your application’s application
symbol; see “Adding a Soup Icon” beginning on page 19-40.

If you wish to gain control over this process (or some part of it), you may define
one or more of the following optional methods in your soupervisor frame:
FileSoup, FileEntry, and MoveEntry. These three methods are described in
“The Soupervisor Frame” (page 16-86) in Newton Programmer’s Reference.

System Data 19

This section describes the API to system stored data and how to store application
preferences in the system soup.

About System Data 19
The system stores user preferences and other system information in a soup called
“System,” which you should reference with the constant ROM_SystemSoupName.
This soup holds information such as the user’s address and phone number, the
currently selected printer, and handwriting recognition settings.

Your application can use this data to customize itself to the user’s current situation,
and save the user some writing or tapping. Your application can be registered to be
notified when changes are made to this data.

You may also store a single entry in this soup with application-specific preferences.

Using System Data 19
This section describes

■ The functions used to access user configuration data, and to register an
application to be notified of changes to this data.

■ How to create an entry in the system soup for your application’s preferences.

C H A P T E R 1 9

Built-in Applications and System Data

System Data 19-45

Functions for Accessing User Configuration Data 19

The global functions GetUserConfig and SetUserConfig get and set the
values of user configuration variables in the system soup. These variables, see
“User Configuration Variables” (page 16-101) in Newton Programmer’s Reference.
A list of these variables is available in the Summary; see 19 “User Configuration
Variables.”

Your application can also register with the system to receive notification of changes
to these variables. To do this, use the functions RegUserConfigChange and
UnRegUserConfigChange described in Newton Programmer’s Reference.

IMPORTANT

The RegUserConfigChange global function registers a
callback function for execution in response to changes the user
configuration variables. This callback function must not call
RegUserConfigChange or UnRegUserConfigChange. ▲

Storing Application Preferences in the System Soup 19

Each application that needs to save user preference or state information should
create a single entry in the system soup to store its data. Each entry in the system
soup must contain a slot named tag whose value is a string uniquely identifying
the application to which the entry belongs. The system soup is indexed on the tag
slot, allowing quick access to your application’s entry.

Use the utility function GetAppPrefs to add your application’s preferences entry
to the system soup. GetAppPrefs takes a default frame as a parameter, so you do
not need to create an entry in the system soup. The default is used if one doesn’t
already exist. The following sample code illustrates how this is done:

//define a default frame
constant kDefaultPrefs :=

'{curCity : "Cupertino",
//... and other application specific slots.
// Note: we do not include a 'tag slot,
// this will be added by GetAppPrefs.
}

// then when we have information to store...
ourPrefsEntry := GetAppPrefs(kAppSymbol, kDefaultPrefs);
ourPrefsEntry.curCity := newCity;
EntryChange(ourPrefsEntry);

The GetAppPrefs function is described in Newton Programmer’s Reference.

C H A P T E R 1 9

Built-in Applications and System Data

19-46 Summary

Summary 19

Constants and Variables 19

Names Card Layouts 19

Dates Variables 19

firstDayOfWeek
useWeekNumber

Dates Constants for the Day of the Week 19

Constant Value
kSquiggle 0

kPlain 1

kSeparate 2

kCross 3

Constant Value

kSunday 0x00000800

kMonday 0x00000400

kTuesday 0x00000200

kWednesday 0x00000100

kThursday 0x00000080

kFriday 0x00000040

kSaturday 0x00000020

kEveryday 0x00000FE0

C H A P T E R 1 9

Built-in Applications and System Data

Summary 19-47

Dates Constants for repeatType 19

Other Date Constants 19

Dates Constants for the Weeks in a Month 19

User Configuration Variables 19

address
cityZip
company
country
countrySlot
currentAreaCode

Constant Value

kDayOfWeek 0

kWeekInMonth 1

kDateInMonth 2

kDateInYear 3

kPeriod 4

kNever 5

kWeekInYear 7

Constant Value

kForever 0x1FFFFFFF

kMaxyear 2919

kYearMissing 2920

Constant Value

kFirstWeek 0x00000010

kSecondWeek 0x00000008

kThirdWeek 0x00000004

kFourthWeek 0x00000002

kLastWeek 0x00000001

kEveryWeek 0x0000001F

C H A P T E R 1 9

Built-in Applications and System Data

19-48 Summary

currentCountry
currentEmporium
currentPersona
currentPrinter
dialingPrefix
doAutoAdd
doInkWordRecognition
doTextRecognition
doShapeRecognition
emailPassword
faxPhone
homePhone
leftHanded
learningEnabledOption
lettersCursiveOption
letterInFieldsOption
letterSetSelection
letterSpaceCursiveOption
location
mailAccount
mailNetwork
mailPhone
name
paperSize
paperSizes
phone
signature
speedCursiveOption
timeoutCursiveOption
userFont

Protos 19

protoPersonaPopup 19

myPersonaPopup := {
_proto: protoPersonaPopup,
SetUpText: function,// returns string to display as current

// persona
JamIt: function, // calls SetUpText and updates screen
...}

C H A P T E R 1 9

Built-in Applications and System Data

Summary 19-49

protoEmporiumPopup 19

myEmporiumPopup := {
_proto: protoEmporiumPopup,
SetUpText: function,// returns string to display as current

// emporium
JamIt: function, // calls SetUpText and updates screen
...}

protoRepeatPicker 19

myRepeatPicker := {
_proto: protoRepeatPicker,
selectedMeeting: meetingFrame, // the selected meeting
originalMtgDate: date, // if a repeating meeting, date of

 // instance, else ignored
newMtgDate: date, // the mtgStartDate of the selected

// meeting
viewBounds: boundsFrame, // the bounds frame
...}

protoRepeatView 19

myRepeatView := {
_proto: protoRepeatView,
viewFlags: integer, // defaults to vClickable+vFloating
viewFormat: integer, // defaults to vfFillWhite +

// vfFrameDragger + vfPen(7) +
// vfInset(1) + vfRound(5)

viewJustify: integer, // defaults to vjParentCenterH
viewBounds: boundsFrame , // defaults to RelBounds

// (0, 0, 204, 190)
GetRepeatSpec: function, // returns a frame with repeating

// info
...}

Soup Formats 19

Names Soup 19

Person Entries 19

aPersonEntry := {
version: integer,
class: symbol,

C H A P T E R 1 9

Built-in Applications and System Data

19-50 Summary

cardType: integer,
name: frame,
names: array,
company: stringOrRichString,
title: stringOrRichString,
companies: array,
address: stringOrRichString,
address2: stringOrRichString,
addresses: array,
city: stringOrRichString,
region: stringOrRichString,
postal_code: stringOrRichString,
country: stringOrRichString,
phones: array,
email: stringOrRichString,
emailAddrs: array,
emailPassword: nil,
pagers: array,
bday: integerOrStringOrRichString,
bdayEvent: entryAlias,
anniversary: integerOrStringOrRichString,
anniversaryEvent: entryAlias,
notes: array,
sorton: string,
...}

Owner Entries 19

anOwnerEntry := {
version: integer,
class: symbol,
cardType: integer,
name: frame,
names: array,
company: stringOrRichString,
title: stringOrRichString,
companies: array,
address: stringOrRichString,
address2: stringOrRichString,
addresses: array,
city: stringOrRichString,
region: stringOrRichString,
postal_code: stringOrRichString,
country: stringOrRichString,

C H A P T E R 1 9

Built-in Applications and System Data

Summary 19-51

phones: array,
email: stringOrRichString,
emailAddrs: array,
emailPassword: string,
pagers: array,
bday: integerOrStringOrRichString,
bdayEvent: entryAlias,
anniversary: integerOrStringOrRichString,
anniversaryEvent: entryAlias,
notes: array,
sorton: string,
owner: frame,
...}

Group Entries 19

aGroupEntry := {
version: integer,
class: symbol,
cardType: integer,
group: stringOrRichString,
goupInfo: frame,
members: array,
notes: array,
sorton: string,
...}

Company Entries 19

aCompanyEntry := {
version: integer,
class: symbol,
cardType: integer,
name: frame,
names: array,
company: stringOrRichString,
address: stringOrRichString,
address2: stringOrRichString,
addresses: array,
city: stringOrRichString,
region: stringOrRichString,
postal_code: stringOrRichString,
country: stringOrRichString,
phones: array,

C H A P T E R 1 9

Built-in Applications and System Data

19-52 Summary

email: stringOrRichString,
emailAddrs: array,
notes: array,
sorton: string,
...}

Worksite Entries 19

aWorksiteEntry := {
version: integer,
class: symbol,
cardType: integer,
place: stringOrRichString,
dialingPrefix: stringOrRichString,
areaCode: stringOrRichString,
printer: string,
mailAccess: array,
connectionPhone: string,
connectionNetwork: string,
cityAlias: entryAlias,
countrySymbol: symbol,
country: stringOrRichString,
notes: array,
sorton: string,
...}

Dates Soups 19

Meeting Frames 19

aMeetingFrame := {
viewStationery: symbol,
mtgStartDate: integer,
mtgDuration: integer,
mtgText: stringOrRichString,
mtgStopDate: integer,
repeatType: integer,
mtgInfo: frame,
mtgAlarm: integer,
mtgIconType: symbol,
mtgInvitees: array,
mtgLocation: nameReference,
notesData: array,
instanceNotesData: array,

C H A P T E R 1 9

Built-in Applications and System Data

Summary 19-53

version: integer,
viewBounds: frame,
exceptions: array,
...}

Notes Frames 19

aNotesFrame := {
notes: array,
repeatingMeetingAlias: entryAlias,
...}

To Do List Soup 19

aToDoListEntry := {
class: symbol,
needsSort: Boolean,
date: integer,
topics: array,
...}

Notes Soup 19

aNotesEntry := {
viewStationery: symbol,
class: symbol,
height: integer,
timeStamp: integer,
labels: symbol,
data: array,
topics: array,
...}

Functions and Methods 19

Names Application Methods 19

cardfile:AddCard(dataDefType, entryFrame) // creates a new
// card in the Names application

cardfile:AddCardData(entry, layoutSym, newData) // adds data
// to an existing card

cardfile:AddLayout(layout) // adds a view definition to
// the Show picker

C H A P T E R 1 9

Built-in Applications and System Data

19-54 Summary

cardfile:BcCreditCards(inEntry, inWhich) // returns the
// credit card information

cardfile:BcCustomFields(inEntry, inWhich) // returns custom
// field information

cardfile:BcEmailAddress(entry, which) // returns e-mail
// information

cardfile:BcEmailNetwork(entry, type)// returns e-mail
// network information

cardfile:BcPhoneNumbers(inEntry, inWhich) // returns an
// array of phone numbers

cardfile:OpenTo(entry, nil) // opens Names to a card
cardfile:ReplaceInkData(entry, layoutSym, oldString, checkPath,
newString) // replaces a specified ink string with a

// recognized string
RegNamesRouteScript(symbol, routeScriptFrame) // adds an

// action to the Action picker (platform file func)
cardfile:SafeRemoveLayout(layout) // removes a layout added

// with AddLayout (platform file function)
cardfile:ShowFoundItem(entry, nil) // opens a card if Names

// is open
UnRegNamesRouteScript(symbol) // removes an action added

// with RegNamesRouteScript (platform file function)

Dates Application Methods 19

calendar:AddAppointment(mtgText, mtgStartDate, mtgDuration,
repeatPeriod, repeatInfo) // adds a meeting to a Dates soup

calendar:AddEvent(mtgText, mtgStartDate, repeatPeriod, repeatInfo)
// adds an event to a Dates soup

calendar:DeleteAppointment(mtgTextOrFrame, mtgStartDate,
deleteOneOnly) // deletes specified meeting(s)

calendar:DeleteEvent(mtgTextOrFrame, mtgStartDate,
deleteOneOnly) // deletes specifed event

calendar:DeleteRepeatingEntry(mtgTextOrFrame, mtgStartDate,
deleteOneOnly) // deletes specified repeating meeting or
// event series

calendar:DisplayDate(date, format)// displays meetings,
// events, or To Do tasks for a date

calendar:FindAppointment(mtgText, findWords, dateRange, type,
maxNumberToFind) // returns specified mtgs or events

calendar:FindExactlyOneAppointment(mtgText, findWords,
dateRange, type) // returns a specified mtg or event

calendar:FindNextMeeting(date) // returns startDate and
// duration of next meeting after a date

C H A P T E R 1 9

Built-in Applications and System Data

Summary 19-55

calendar:GetMeetingIconType(mtgTextOFrame, mtgStartDate)
// returns the type of icon of a meeting or event

GetCalendarMeetingType() // returns an array of meeting
// types registered with Dates (platform file func)

GetCalendarMeetingTypeInfo(typeSymbol) // returns
// information about a meeting type registered with
// Dates (platform file function)

calendar:GetMeetingInvitees(mtgText, mtgStartDate) // returns
// list of invitees

calendar:GetMeetingLocation(mtgText, mtgStartDate) // returns
// meeting location

calendar:GetMeetingNotes(mtgText, mtgStartDate) // returns
// notes for a meeting

calendar:GetSelectedDates() // returns currently selected
// date(s)

calendar:MoveAppointment(mtgText, mtgStartDate, newStartDate,
newDuration) // changes date or duration of specified
// meetings or events or repeating series

calendar:MoveOnlyOneAppointment(mtgText, mtgStartDate,
newStartDate, newDuration) // changes date or duration of
// a specified meeting or event or repeating meeting
// or event instance

calendar:OpenMeetingSlip(meetingFrame, date, openDefaultSlip)
// opens slip for specified meeting

calendar:RegInfoItem(symbol, frame) // adds item to info
// picker

calendar:RegMeetingType(symbol, frame) // adds meeting type
// to New picker

myMeetingType:NewMeeting (date, parentBox) // creates a new
// meeting for custom meeting type

myMeetingType:OpenMeeting(meeting, date, parentBox) // opens
// meeting slip for custom meeting type

calendar:RememberedClose(view)// closes view opened with
// RememberedOpen

calendar:RememberedOpen(view) // opens view and sets up
// closing of view with calendar

calendar:SetEntryAlarm(mtgText,mtgStartDate,minutesBefore)
// sets alarm for specified meeting

calendar:SetMeetingIconType(mtgText,mtgStartDate,newIconType)
// sets icon type for specified meeting or event

calendar:SetMeetingInvitees(mtgText, mtgStartDate, invitees)
// sets list of invitees for specified meeting

calendar:SetMeetingLocation(mtgText, mtgStartDate, location)
// sets location for specified meeting

C H A P T E R 1 9

Built-in Applications and System Data

19-56 Summary

calendar:SetMeetingNotes(mtgText, mtgStartDate, notes)
// sets notes for specified meeting or event

calendar:SetRepeatingEntryStopDate(mtgText, mtgStartDate, mtgStopDate)
// sets last date for specified repeating
// meeting or event

calendar:UnRegInfoItem(symbol) // removes item from info
// picker

calendar:UnRegMeetingType(symbol) // removes meeting type
// from New picker

To Do List Methods 19

toDoFrame:CreateToDoItem(date, richString, reminder, frequency)
// adds a task on specified date

toDoFrame:CreateToDoItemAll(date, richString, reminder, frequency,
priority, completed) // Adds a task with
// priority and completion information

toDoFrame:EnsureVisibleTopic(index) // Scrolls the To Do
// List as necessary to display a task

toDoFrame:GetToDoItemsForRange (beginDate, endDate) //Returns
// topics for a range of dates

toDoFrame:GetToDoItemsForThisDate (date) // Returns
// topics for date

toDoFrame:GetTaskShapes (originalShapes, task, yOffset, width, font)
// Returns an array of shapes for the task

toDoFrame:GetToDoShapes (date, yOffset, width, font) // Returns
// an array of shapes for the task

toDoFrame:LastVisibleTopic() // Returns the index of the
// last topic drawn in the view

toDoFrame:NextToDoDate(date) // Returns the date of the
// next task

toDoFrame:RemoveOldTodoItems(beforeDate, removeWhich, nil)
// Removes tasks from before a sppecified date

toDoFrame:SetDone(index, topic, done, nil, nil) // Marks a task
// completed

SetPriority(index, priority, undo) //Sets the priority of a task

C H A P T E R 1 9

Built-in Applications and System Data

Summary 19-57

Time Zone Functions 19

GetCityEntry(name) // returns information about the
// specified city

GetCountryEntry(name) // returns information about the
// specified country

worldClock:SetLocation(whichCity) // sets the current city
worldClock:NewCity(newCity, nil, makeHome) // adds a city

Notes Methods 19

paperroll:MakeTextNote(string, addIt) // adds a text note to
 // Notes soup

paperroll:NewNote(note, goto, store) // adds a note to
 // Notes soup

Prefs and Formulas Functions 19

RegFormulas(appSymbol,formulasTemplate) //registers a template
// to be added to the Formulas roll

UnRegFormulas(appSymbol) //unregisters a template added
// with RegFormulas

RegPrefs(appSymbol,prefsTemplate) //registers a template
// to be added to the Prefs roll

UnRegPrefs(appSymbol) //unregisters a template added
// with RegPrefs

Auxiliary Button Functions 19

app:AddAuxButton(buttonFrame) // message sent when
// RegAuxButton is called with your app as destApp

GetAuxButtons(appSymbol) // returns array of your app’s
// buttons

RegAuxButton(buttonSymbol, template) // registers a button to
// be added to another application

app:RemoveAuxButton(buttonSymbol) // message sent when
// UnRegAuxButton is called for one of your app’s
// buttons

UnRegAuxButton(buttonSymbol) // removes an auxilary button
// added with RegAuxButton

C H A P T E R 1 9

Built-in Applications and System Data

19-58 Summary

Extras Drawer Functions and Methods 19

extrasDrawer:AddExtraIcon(iconType, paramFrame, pkgName, store)
// adds an icon (platform file function)

extrasDrawer:GetExtraIcons(iconType, pkgName, store)
// returns array of icons added with AddExtraIcon

extrasDrawer:GetPartCursor(packageName, store, folderSym)
// returns cursor that iterates over parts (icons)
// (platform file function)

extrasDrawer:GetPartEntryData(entry) // returns information
// about a part (platform file function)

extrasDrawer:LaunchPartEntry(entry) // launches a part entry
// (platform file function)

extrasDrawer:RemoveExtraIcon(extraIcon) // removes an icon
// added with AddExtraIcon

extrasDrawer:SetExtrasInfo(paramFrame, newInfo) //changes
// information about an icon (platform file function)

System Data and Utility Functions 19

GetSysEntryData(entry, path) // returns the value of a
// specifed slot in a built-in soup entry

GetUserConfig(configSym) // returns the value of a user
// configuration variable

RegUserConfigChange(callbackID,callBackFn) // registers
// a function called when a user configuration
// variable changes

SetSysEntryData(entry, path, value) // sets the value of a
// specifed slot in a built-in soup entry

SetUserConfig(configSym, theValue) // sets the value of a
// user configuration variable

UnRegUserConfigChange(appSymbol) // unregisters a
// function registered by RegUserConfigChange

UseCurrentEmporium() //makes system update user
// configuration variables based on the value of the
// currentEmporium variable

UseCurrentPersona() //makes system update user
// configuration variables based on the value of the
// currentPersona variable

About Localization 20-1

C H A P T E R 2 0

Localizing Newton
Applications 20

Figure 20-0
Table 20-0

This chapter discusses how to support multiple languages and use locale-specific user
preferences to customize the way an application handles numbers, dates, and times.

This chapter also discusses how locale settings affect the set of dictionaries the
system uses for handwriting recognition. The recognition information in this
chapter assumes a basic understanding of handwriting recognition issues. If you
need more information on this subject, you should read Chapter 9, “Recognition.”

About Localization 20

The goal of localization functions is to let you set up applications so you can build
versions in different languages without changing the source files.

There are two basic approaches to localization:

■ You can fully localize your application at compile time, replacing objects in
English with objects in other languages. This is discussed in “Defining
Language at Compile Time” (page 20-3).

■ You can check preferences that the user sets to indicate preferred formats for
output of dates and currency amounts. The next section discusses these user
settings. “Determining Language at Run Time” (page 20-6) discusses this and
related issues.

The Locale Panel and the International Frame 20
The Locale panel lets a user tell the Newton device the conventions that should be
used to interpret input and display information. The user can specify values for the
country, keyboard type, and paper size in this panel, which is shown in Figure 20-1.
The system stores the Locale panel settings in the International Frame.

C H A P T E R 2 0

Localizing Newton Applications

20-2 About Localization

Figure 20-1 The Locale settings in Preferences

The most important of these settings is the Country pop-up menu. Every Newton
device contains a number of frames for tailoring the system’s responses to match
the conventions of a specified location. These frames are called locale bundles. At
any time, one and only one of these locale bundles is active; that is called the active
locale bundle. The user can change the active locale bundle by using the Country
pop-up menu from the Locale panel.

The values in a locale bundle specify a variety of items, such as locally popular
formats for displaying currency values and other numbers.

Each Newton device may contain different locale bundles:

■ Every Newton device contains locale bundles in its ROM, which vary depending
on what ROM the device has. For example, the German version of the Newton
MessagePad does not have the same built-in locale bundles as the English
version.

■ Applications can add locale bundles to provide locale settings for additional
countries, or to override built-in locale bundles. For information on how to do
this, see “Adding a New Bundle to the System” (page 20-8).

Locale and ROM Version 20

Newton devices are sold with ROMs in different versions, such as an English ROM
and a German ROM. However, it is the active locale, rather than the ROM version,
that controls localized information.

How Locale Affects Recognition 20
As you change settings in the Locale panel, the set of dictionaries used for word
recognition does not change. However, altering the locale changes the set of
system lexical dictionaries and change the recognizable formats for dates, times,
and numbers.

For entering dates, times, and numbers, you can think of the entry process as
consisting of three stages:

■ Recognizing the handwriting. This uses the recognition lexical dictionaries.

■ Understanding what the recognized text means. This uses the system lexical
dictionaries.

C H A P T E R 2 0

Localizing Newton Applications

Using the Localization Features of the Newton 20-3

■ Displaying the text. This uses the date, time, and number formatting attributes of
the active locale bundle.

The recognition lexical dictionaries need to be, and are, most tolerant. Because
the formats specified in these dictionaries are more loosely defined, you can actually
combine the different formats being used in different countries. These dictionaries
accept constructs such as “77/34/56”, a string that doesn't make much sense.

The system lexical dictionaries are used to interpret (that is, parse) recognized text,
so they need to be more strict about accepted formats. For example, if given the
string “12/10/96”, the parser needs to know whether the user means that to represent
December 10 or October 12. The system lexical dictionaries impose these restrictions,
and are local-specific.

For more information about dictionary-based recognition, see Chapter 9,
“Recognition.”

Using the Localization Features of the Newton 20

This section describes how to localize your applications using the built-in features
of the Newton.

Defining Language at Compile Time 20
You can write an application so that the language used in strings and other objects
is determined at compile time. There are essentially three parts to doing this:

■ You define objects called localization frames that define the objects for
different languages. “Defining a Localization Frame” (page 20-4) discusses how
to do this.

■ You use the LocObj function in place of using the language-dependent object
directly. “Using LocObj to Reference Localized Objects” (page 20-4) discusses
how to do this.

■ You define the language for a build by using the Project Settings item in the
Project menu. See the Newton Toolkit User’s Guide for information on
project settings.

When you do this, you may also want to build strings from components and
measuring the lengths of strings at compile time so that you can arrange your
displays. “Use ParamStr Rather Than “&” and “&&” Concatenation” (page 20-5)
and “Measuring String Widths at Compile Time” (page 20-6) discuss how to do
those tasks.

C H A P T E R 2 0

Localizing Newton Applications

20-4 Using the Localization Features of the Newton

Defining a Localization Frame 20

You define the alternative language frames with the SetLocalizationFrame
function in a text file included in the project. Here is an example:

SetLocalizationFrame({
Swedish: {

find: {
searchFor:

"Söker efter ^0…", // "Searching for ^0…"
. . .}},

French: {
find: {

searchFor:
"Recherche dans ^0…",// "Searching for ^0…"

. . .}}
});

When the Language setting in the Project Settings dialog box is English, NTK uses
the string included in the code itself (“Searching for name”). When the Language
setting is Swedish, NTK looks for the string contained in the slot
Swedish.find.searchFor in the language frame.

You can place other kinds of objects in localization frames. For example, suppose
that you have an integer value that varies by language:

SetLocalizationFrame({
French: {

languageInt: 1,
},
Swedish: {

languageInt: 2,
},
German: {

languageInt: 3.
}

});

To avoid name collisions, it’s a good idea to use at least one extra naming level,
such as in the first example, which uses find. You can set up data objects in as
complex a hierarchy as you need within the language frame.

Using LocObj to Reference Localized Objects 20

The LocObj function takes two parameters:

■ A string or other object; this is used in the English-language version of the
application.

C H A P T E R 2 0

Localizing Newton Applications

Using the Localization Features of the Newton 20-5

■ A frames path the compiler uses to find the alternative object when the
Language setting in the Project Settings dialog box is for anything other than
English. You should avoid having reserved words in the path—refer to Appendix
A of The NewtonScript Programming Language for a complete list of reserved
words in NewtonScript.

If you display a message while searching for an object, for example, you can set up
the message for any language by wrapping the string in the LocObj function:

msg := LocObj("Searching for ^0…", 'find.searchfor)

When an English-language version of the application is compiled, the LocObj
function simply returns its first argument; this implementation helps keep code
readable by allowing you to use English strings in your code. For non-English
versions of the application, the LocObj function uses the value of the language
slot in NTK Package Settings and the path expression passed as its second
argument to return the appropriate object from the localization frame.

As another example, an application that is not localized might provide user feedback
by passing the string "Not found." to the SetStatus function, as in the
following code fragment:

:SetStatus("Not found.");

The localized version of the same code uses the LocObj function to return a path
expression based on the 'find.nope argument and the language for which the
application is compiled. The SetStatus function then uses this path expression
to reference the localized string. Because the LocObj function returns this path
expression as its result, the argument to SetStatus can be “wrapped” in a call to
the LocObj function, as in the following line of code:

:SetStatus(LocObj("Not found", 'find.nope));

The object passed to the LocObj method doesn’t have to be a string; it can be an
array or an immediate value.

The path expression that references the object must be unique across the entire
system. Thus, to avoid name collisions, it’s recommended that you use additional
naming levels based on your application symbol; for example,
'myApp.find.nope introduces a third naming level to the path expression.

Use ParamStr Rather Than “&” and “&&” Concatenation 20

While it is often convenient to use the ampersand string concatenators & and &&,
the ParamStr function provides a much more flexible and powerful way to
parameterize the construction of strings, which helps you customize your strings
for different languages by, for example, varying word order.

C H A P T E R 2 0

Localizing Newton Applications

20-6 Using the Localization Features of the Newton

Measuring String Widths at Compile Time 20

When the size of a screen element depends on the size of associated text, you can
use the MeasureString function to determine, at compile time, how big to make
the screen element. If you want to determine the size at runtime, use
StrFontWidth.

You could establish the width of the search message, for example, by using
MeasureString and LocObj together.

MeasureString(LocObj("What is your name?",
'find.nameQ), simpleFont12);

At compile time, the MeasureString call is replaced with a constant as long as
the arguments to MeasureString are also constant. (LocObj produces a
constant result at compile time.) You could access the width at run time from the
view’s ViewDrawScript method with this function:

func()
begin
local newBounds := deepClone(viewBounds);
newBounds.right := newBounds.left +

MeasureString("This is a string", simpleFont12);
SetValue(self, 'viewBounds, newBounds);

end

Determining Language at Run Time 20
You can determine the language at run time, and your program can use that
information to modify its behavior.

There are two ways to determine the current language:

■ Examine the active locale bundle. You can also add new locale bundles to give
the user new locale options and can set the locale from within your program.
The sections that follow discuss how to examine the active locale bundle.

■ Use the GetLanguageEnvironment function to find out the native language
for which the ROMs on the Newton device are implemented.

Note that you need to decide which of these methods your application should use
in order to determine its behavior.

Examining the Active Locale Bundle 20

The global function GetLocale returns the active locale bundle, which is the
locale bundle that the Country pop-up is currently set to. Use this function rather
than accessing the frame directly.

C H A P T E R 2 0

Localizing Newton Applications

Using the Localization Features of the Newton 20-7

For example:

activeLocale:=GetLocale();

Once you’ve obtained a bundle, you can examine it to see how your application
should interpret user input or display output.

See “Contents of a Locale Bundle” (page 17-1) in Newton Programmer’s
Reference for information on the slots of a locale bundle.

Changing Locale Settings 20

You cannot change settings in the active locale bundle. To change locale settings,
you need to create a new locale bundle that has the values you want and make it the
active locale. This is called a custom locale bundle. See the next section for
information on how to create on of those.

Creating a Custom Locale Bundle 20

Every custom locale bundle has a _proto slot that references another locale
bundle. To create your application’s custom locale bundle, use the FindLocale
function to get the frame to be referenced by your custom locale bundle’s
_proto slot.

IMPORTANT

Your custom bundle’s _proto slot must ultimately reference a
system-supplied locale bundle. That does not have to be direct—
you can reference a custom bundle that you know references a
system-supplied bundle, for example. ▲

Your custom locale bundle is simply a frame that includes this _proto reference
and any additional slots you wish to define to override the values of those inherited
from the prototype. Your custom locale bundle should look like the code in the
following example:

usLocaleBundle := FindLocale('usa);
myLocaleBundle :=

{
_proto: usLocaleBundle,
// add slots to be modified
title: "myLocaleBundle:PIEDTS",
localeSym: '|myLocaleBundle:PIEDTS|,
};

The FindLocale function accepts as its argument a symbol specifying the locale
bundle it is to return. This function returns the locale bundle that has this value in
its localeSym slot.

C H A P T E R 2 0

Localizing Newton Applications

20-8 Using the Localization Features of the Newton

In the preceding code example the myLocaleBundle frame is based on the U.S.
locale bundle. It gives a new title and localeSym value, as it must, but
implements no functional changes to the locale. To make changes to the locale
bundle, you can add your own slots in place of the comment that says

// add slots to be modified

Your custom locale bundle must have a localeSym slot of its own, as well as a
title slot that gives the string that you want to appear in the Country pop-up
menu. Since there can’t be another locale bundle in the system with the same
symbol as your new bundle, and shouldn’t be one with the same title, be careful to
avoid name clashes when creating your bundle’s title and localeSym values.
The problems associated with creating a unique name string for a locale bundle are
similar to those you might encounter when creating a name for a soup; for
suggestions regarding the creation of unique name strings, see “Naming Soups”
(page 11-32). Basically, you should incorporate your developer or application
symbol in the bundle’s title and symbol slots.

Adding a New Bundle to the System 20

Once you have created a locale bundle, you need to make it available to the system
by using the AddLocale function. The following code sample shows how to pass
the previously created locale bundle myLocaleBundle to this function:

Call kAddLocaleFunc with (myLocaleBundle);

(You call this function in this way because it is a platform file function.)

If the localeSym slot in myLocaleBundle is not unique, the new locale
overrides the existing locale with the same symbol. You can override a built-in
locale bundle.

Removing a Locale Bundle 20

To remove the custom locale bundle you have installed use the system-supplied
RemoveLocale function.

As with any shared data, the appropriate time to remove your locale bundle is left
up to you because it can be difficult to determine whether other applications are
using a bundle. Even if your own application is the only one using the custom
locale bundle, it can be difficult to decide whether to remove it. You wouldn’t
necessarily want to install it every time the application opened and remove it every
time the application closed.

If you remove the active locale bundle, RemoveLocale makes one of the built-in
locales the active locale; the locale it chooses depends on the ROM version. If your
application makes a new bundle active, you may want to save the symbol of the
previously active bundle, so that you can reset the value before you remove your
locale bundle.

C H A P T E R 2 0

Localizing Newton Applications

Using the Localization Features of the Newton 20-9

The RemoveLocale function accepts as its argument a symbol specifying the
locale bundle it is to remove. The following code shows how to pass the locale
bundle’s symbol to this function:

RemoveLocale('|myLocaleBundle:PIEDTS|);

Changing the Active Locale 20

The SetLocale function searches for a specified locale bundle and makes that
bundle the active locale bundle. This is equivalent to the user setting the Country
value from the Country pop-up menu, and overrides the user’s action. You should,
therefore, save the previous setting and reset it when you finish using your locale.

This function accepts as its argument a symbol identifying the bundle to install.
The following code example shows how to use the SetLocale function to install
the custom locale frame created in “Defining a Localization Frame” (page 20-4):

SetLocale('|myLocaleBundle:PIEDTS|);

Using a Localized Country Name 20

When the name of a country is stored in a soup, the program that stores it should
call SetCountryClass on the name string. That function sets the string to a
class that represents the country so that if the soup entry is read on a Newton with a
different ROM, a program can use GetCountryEntry to get the name of the
country in that ROM’s language. See “Obtaining Information About a City or
Country” (page 19-28) for information on using GetCountryEntry.

Summary: Customizing Locale 20

The following code sample summarizes the information discussed in the
preceding sections:

// get a bundle to use as a proto
usLocaleBundle := FindLocale('usa);

// define your custom locale bundle
myLocaleBundle :=

{
_proto: usLocaleBundle,
// add slots to be modified here
title: "myLocaleBundle:PIEDTS",
localeSym: '|myLocaleBundle:PIEDTS|,
}

// add myLocaleBundle to the system
AddLocale(myLocaleBundle);

C H A P T E R 2 0

Localizing Newton Applications

20-10 Using the Localization Features of the Newton

//save the current locale setting
previousLocale:=GetLocale().localeSym;

//install myLocaleBundle as the active locale bundle
SetLocale('|myLocaleBundle:PIEDTS|);

//reset the previous locale setting
SetLocale(previousLocale);

//remove your locale
RemoveLocale('|myLocaleBundle:PIEDTS|);

Localized Output 20
Your application should employ locale-specific user preferences to customize its
handling of numbers, dates, and times. In addition to information available from
the active locale bundle, your application should use the utility functions described
here to display localized strings representing dates, times, and monetary values.

Date and Time Values 20

The Newton system deals with dates and times as either the number of minutes
since midnight, January 1, 1904 or the number of seconds since midnight, January
1, 1993. Those functions are listed in “System Clock Functions” (page 20-15) in
this manual and detailed in “System Clock Functions” (page 17-20) in Newton
Programmer’s Reference.

Obviously, you generally need date and time values in formatted strings that the
user can enter or read. The system has several ways of helping you get these strings:

■ Some functions use the current locale setting to determine the proper format

■ Some functions take a format specification as a parameter; in this case, some of
the output (such as the words used for days of the week) are still determined by
the locale setting)

■ Some functions convert system clock values to and from date frames that have
the pieces of date and time information broken into individual slots

Some parts of the strings returned are always determined by the locale bundle. In
particular, the active locale bundle determines:

■ The order in which date elements appear

■ The delimiters that separate the various elements of the date or time string

■ Words used for months and days of the week

Times always appear in hour/minute/seconds order, although you can use format speci-
fications to vary the display of individual elements and delimiters in the time string.

C H A P T E R 2 0

Localizing Newton Applications

Using the Localization Features of the Newton 20-11

Functions that Use the Locale Setting To Determine Format 20

These functions are quite simple. You pass in a system clock value or a string, and
the function uses the date and time format information in the current locale bundle
to produce a string or a system clock value. Here are the functions of this type:

DateNTime(time)
HourMinute(time)
ShortDate(time)
StringToDate(dateString)
StringToTime(timeString)

For example:

DateNTime(Time());

Depending on the locale, this might return the string:

"04/17/1996 10:53am"

See the Newton Programmer’s Reference for more information on these functions.

Functions that Take Format Specifications 20

These functions take a time value and a string format specification and return a
string formatted accordingly:

LongDateStr(time, dateStrSpec)
ShortDateStr(time, dateStrSpec)
TimeStr(time, timeStrSpec)

You can pass three kinds of format specifications:

■ You can use one of the pre-defined format specifications in
ROM_dateTimeStrSpecs

■ You can use the GetDateStringSpec function to create a new format
specification

■ You can use the kIncludeAllElements constant, which tells the functions
to use the format in the active locale

In all cases, the active locale bundle determines certain features of date and time
strings, specifically the order of elements and the separators used.

Using Formats from ROM_dateTimeStrSpecs 20

For commonly used format specifications, the system defines formats that can be
passed directly to the functions that accept format specifications. These formats are
stored in ROM_dateTimeStrSpecs. See Table 17-5 (page 17-12) in Newton
Programmer’s Reference for the list of available formats.

C H A P T E R 2 0

Localizing Newton Applications

20-12 Using the Localization Features of the Newton

To use one of these values, access the appropriate slot by dereferencing
ROM_dateTimeStrSpecs with a dot operator, as in the following example:

LongDateStr(Time(),ROM_datetimestrspecs.longDateStrSpec);

Using these predefined format specifications also saves the trouble of defining them
at compile time and initializing slots with the compile-time variables at run time.

Format specifications available from the ROM_dateTimeStrSpecs object are
listed in “System-Defined Format Specifications” (page 17-11) in Newton
Programmer’s Reference

Using GetDateStringSpec 20

A date or time format specification is an array, the elements of which are
themselves two-element arrays. The first element in each two-element array is a
constant specifying the item to display. The second element is a constant specifying
the format in which to display that item.

The complete set of constants is listed in “Constants to Create Your Own
Specification” (page 17-13) in Newton Programmer’s Reference.

For example, the two-element array [kElementDayOfWeek, kFormatAbbr]
specifies that the day in a date string is to be displayed in abbreviated format, such
as “Wed”. On the other hand, the two-element array [kElementDayOfWeek,
kFormatLong] specifies that the day of the week is to be displayed in long
format, such as “Wednesday”.

The following code example uses system-supplied constants to build an array of
[element, format] pairs specifying the output of a date string. This array is
supplied as the argument to the GetDateStringSpec function, which returns the
format specification passed to the LongDateStr function. The LongDateStr
function returns a string with the current time (returned by the Time function)
formatted as specified by the format specification:

// at compile time, define my array of
// element and format pairs
DefConst('myArray,

[
[kElementYear, kFormatNumeric],// year
[kElementDay, kFormatNumeric],// day of month
[kElementMonth, kFormatLong],// name of month
[kElementDayOfWeek, kFormatLong]// day of week

]);
// create the formatSpec
// this spec returns a string such as “February 1, 1994”
DefConst('kmyDateSpec, GetDateStringSpec(myArray));

C H A P T E R 2 0

Localizing Newton Applications

Using the Localization Features of the Newton 20-13

// get the current time
theTime:= Time();
// pass the time and the format to LongDateStr
LongDateStr(theTime,kmyDateSpec);

This example is deliberately verbose for purposes of illustrating how to build a
format specification array.

The kIncludeAllElements Constant 20

If you want to use the default format for time or date strings as specified by the
active locale bundle, you can pass the kIncludeAllElements constant to the
functions LongDateStr, ShortDateStr, and TimeStr. You’ll get the results
summarized inTable 20-1.

Currency Values 20

Currency strings reflect localized formatting characteristics that distinguish them
from other number strings. They

■ typically display a prefix or suffix indicating their denomination

■ may require an additional prefix and/or suffix that indicates whether the amount
is negative.

Currency strings must also adhere to regional conventions for

■ grouping numbers

■ the delimiter that indicates these groupings

■ the character that represents the decimal point

These values are stored in a frame in the active locale bundle’s numberFormat slot.

For example, the currencyPrefix slot stores the value "$" for the U.S. locale
and "£" for the United Kingdom locale, while in the French Canadian locale, the
currencyPrefix slot has no value and the currencySuffix slot stores the
value "$".

Table 20-1 Using the kIncludeAllElements constant

Function Format of output

LongDateStr day of week, month, day, year in locale’s default format

ShortDateStr year, month, day in locale’s default short date format

TimeStr hour, minute, second, AM/PM, and suffix

C H A P T E R 2 0

Localizing Newton Applications

20-14 Summary of Localization Functions

Summary of Localization Functions 20

This section categorizes the date, time, locale, and utility functions in this chapter
according to task.

Compile-Time Functions 20
These functions allow you to build an application for various language environments.

LocObj(obj, pathexpr)
MeasureString(str, fontSpec)

Locale Functions 20
These functions manipulate locale bundles:

AddLocale(theLocaleBundle) // platform file function
FindLocale(locSymbol) // platform file function
GetLocale()
RemoveLocale(locSymbol) // platform file function
SetLocale(locSymbol)
SetLocalizationFrame(frame)

Date and Time Functions 20
These functions return date or time information from the system clock. They are
grouped into two categories: those that return formatted strings and those that do not.

Formatted Date/Time Functions 20

These functions return formatted date or time strings. Some of the functions in this
list format the string according to a format specification supplied as one of their
arguments; others format the string according to values stored in the active locale
bundle. See the descriptions of individual functions for more information.

DateNTime(time)
HourMinute(time)
LongDateStr(time, dateStrSpec)
ShortDate(time)
ShortDateStr(time, dateStrSpec)
StringToDate(dateString)
StringToDateFrame(str)

C H A P T E R 2 0

Localizing Newton Applications

Summary of Localization Functions 20-15

StringToTime(timeString)
TimeStr(time, timeStrSpec)

Date Frame Functions 20

These functions convert system clock values to or from date frames. A system
clock value is an integer giving the number of minutes since midnight, January 1,
1904 or the number of seconds since midnight, January 1, 1993; a date frame has
slots with day, date, year, and so on. See Table 17-8 (page 17-27) in Newton
Programmer’s Reference for details of a date frame.

Date(time)
DateFromSeconds(timeInSeconds)
TotalMinutes(dateFrame)
TotalSeconds(dateFrame)

System Clock Functions 20

These functions get and set system clock values, and convert those values between
seconds and minutes.

IncrementMonth(time, numMonths)
SetTime(time)
SetTimeInSeconds(time)
Ticks()
Time()
TimeInSeconds()
TimeInSecondsToTime(seconds)
TimeToTimeInSeconds(minutes, extraSeconds)

Utility Functions 20
These functions perform tasks related to the presentation of data in regionalized
formats.

GetDateStringSpec(formatArray)
GetLanguageEnvironment() // platform file function
IsValidDate(date)
SetCountryClass(countryName)

About Routing 21-1

C H A P T E R 2 1

Routing Interface 21Figure 21-0
Table 21-0

This chapter describes the Routing interface in Newton system software. The
Routing interface allows applications to send, receive, and perform other operations
on data, such as deleting or duplicating. The Routing interface provides a common
user interface mechanism that all applications should use to provide routing services.

You should read this chapter if your application needs to provide routing services
to the user. This chapter describes how to

■ route items through the Out Box using transport-supplied actions

■ route items using application-supplied actions

■ receive incoming items through the In Box

■ support viewing items in the In/Out Box

About Routing 21

Routing is a term that describes nearly any action taken on a piece of data. Some
typical routing actions include printing, faxing, mailing, beaming (infrared
communication), deleting, and duplicating. In addition to system-supplied routing
services, applications can implement their own routing actions that operate on data.

Routing also describes the process of receiving data through the In Box.

The Routing interface provides the link between an application and the In/Out Box
for sending and receiving data using transports. The Routing interface also
provides a standard mechanism for an application to make available its own routing
actions that do not use transports, such as deleting and duplicating.

The In/Out Box 21
The In/Out Box is a central repository for incoming and outgoing data handled by
the Routing and Transport interfaces. The In/Out Box application is accessed
through the In Box or Out Box icons in the Extras Drawer. The user can tap either
icon to open the In/Out Box to view and operate on its contents. Once it’s open, the

C H A P T E R 2 1

Routing Interface

21-2 About Routing

user can switch between the In Box and the Out Box by tapping radio buttons in
the application.

When open, the In/Out Box displays either the In Box, containing incoming items,
or the Out Box, containing outgoing items. The user can choose to sort items in
both the boxes in various ways, such as by date, transport type, or status. A transport
is a type of communication service such as fax, e-mail, or beam. Figure 21-1 shows
the In Box and Out Box overviews where the items are sorted by transport type.

Figure 21-1 In Box and Out Box overviews

The In/Out Box uses the Transport interface internally to perform its operations.

The In Box 21

Incoming data items are received into the In Box and stored there. For example, the
user may receive beamed items, e-mail, or fax messages. Many kinds of In Box
items can be viewed in the In Box and then put away into another application residing
on the Newton device. For example, the user may receive an e-mail message, read
it in the In Box, and then put it away into the Notes application. The act of putting
away an item transfers it to the selected application. The user can optionally delete
the item from the In Box at the same time.

The In Box also supports an automatic “put away” feature. An application can
register to automatically receive items designated for it. In this case, as soon as the

C H A P T E R 2 1

Routing Interface

About Routing 21-3

In Box receives such an item, it is automatically transferred from the In Box to the
application, without user intervention. For example, incoming stock quotes from a
wireless modem could be automatically transferred to a stock tracking application.

The In Box itself also supports routing certain items. For example, you can read
incoming e-mail, reply to it, print it, or fax it directly from within the In Box.

The Out Box 21

Outgoing data items are stored in the Out Box until a physical connection is
available or until the user chooses to transmit the items. For example, the user may
fax and e-mail several items while aboard an airplane. These items are stored in the
Out Box until the user reaches a destination, connects the Newton to a phone line,
and sends the items.

While items are stored in the Out Box, most can be viewed, some can be edited,
and routing or addressing information can be changed. For example, you can add
more recipients to an e-mail message or change a fax number.

Individual transports can support automatic connection features. For example, the
transport could be configured to automatically connect and send items at a certain
time each day.

The Out Box itself also supports routing actions. Items in the Out Box can be sent
through other transports directly from there. For example, if a fax is queued to
send, the user can also print it from the Out Box.

Action Picker 21
Routing actions are accessed in an application from the Action button—the small
envelope icon. When the user taps this button, a picker (pop-up menu) listing
routing actions appears, as shown in Figure 21-2. These routing actions apply to
the current target object. The target object typically consists of one or more
selected items or the data in a view, such as the current note in the Notes application.
Usually this corresponds to a soup entry or to multiple soup entries.

Figure 21-2 Action picker

Action picker

Action button

C H A P T E R 2 1

Routing Interface

21-4 About Routing

In the user interface of your application, the Action button should be positioned
differently, depending on how your application displays individual items. If your
application can have more than one selectable item on the screen at a time (like
Notes), the Action button should be attached to the top of the view it will act on.
For example, each note in the Notes application has its own Action button, which
applies just to that note. If your application displays only one data item at a time,
the Action button must be on the status bar at the bottom of the screen.

You can add an Action button to the user interface of your application by adding a
view based on the protoActionButton proto. This proto contains the
functionality to create and pop up the picker.

The picker displayed when a user taps the Action button lists the routing actions
available for the particular type of data selected. There are two kinds of routing
actions that can appear on the Action picker:

■ routing actions that correspond to transports installed in the Newton device

■ application-defined actions that do not use the Out Box and a transport to
perform the routing operation, such as Delete and Duplicate

Transport-based actions that support the type of data being routed are shown at the
top of the Action picker. Application-defined routing actions appear at the bottom
of the picker, below a separator line.

Note that the first action listed in the Action picker has the name of the target item
appended to it (for example, “Print Note”). The Action picker obtains the name of
the item from the appObject slot. Most applications define this slot in their base
view. It holds an array of two strings, the singular and plural forms of the name of
the item (for example, ["Entry", "Entries"]).

The system builds the list of routing actions dynamically, at the time the Action
button is tapped. This allows all applications to take advantage of new transports
that are added to the system at any time. Applications and transports need know
nothing about each other; the Routing interface acts as the bridge, creating the
picker at run time.

Applications don’t specify that particular transports be included on the picker.
Instead, applications enable transports based on the class of data to route and the
types of formats available for that data class: for example, view formats (for printing
and faxing), frame formats (for beaming), text formats (for e-mail), and so on.

Here’s a summary of the main steps that occur when the user taps the Action button:

1. The system obtains the target by sending the GetTargetInfo message to the
Action button view, and then determines the class of the target.

2. Using the class of the target, the system builds a list of routing formats that can
handle that class of data by looking them up in the view definition registry using
the GetRouteFormats function. Note that only routing formats are included
in the list; other view definitions are ignored.

C H A P T E R 2 1

Routing Interface

About Routing 21-5

3. Using the list of formats, the system builds a list of transports that can handle at
least one of the data types supported by any of the formats. The matching
transports are shown on the Action picker. Application-defined actions such as
delete or duplicate are also added to the picker.

4. If the user chooses a transport-based action from the picker, the system sends
the SetupItem message to the current (last-used) format for that transport and
the data type being routed. Then the routing slip is opened, where the user can
supply addressing information and confirm the routing action. If the user
switches formats from among those available, the SetupItem message is sent
to the new format.

5. If the user chooses an application-defined action from the picker, the system
sends the Action button view the message defined by the application for that
action (in the RouteScript slot of the routeScripts frame).

The following section describes routing formats in more detail and explains how
they’re used to determine what transport-based routing actions appear on the
Action picker. The steps in this summary are explained in greater detail in the
section “Providing Transport-Based Routing Actions” beginning on page 21-9.

Routing Formats 21
To implement the sending of data using the Routing interface and a transport, an
application uses one or more routing formats that specify how data is to be formatted
when it is routed. A routing format is a frame specifying items such as the title of
the format, a unique identifying symbol, the type of data the format handles, and
other information controlling how the data is handled. Some types of routing
formats, such as print formats, are view templates that contain child views that lay
out the data being printed. Other types of routing formats, such as frame formats,
simply control how a frame of data is sent; these have no visual representation.

Here is an example of a routing format frame:

{_proto: protoPrintFormat,// based on this proto
title: "Two-column", // name of format
symbol: '|twoColumnFormat:SIG|, // format id

// construct child views that do the actual layout
ViewSetupChildrenScript: func() begin ... end,

// handle multiple pages
PrintNextPageScript: func() begin ... end,
...}

The dataTypes slot in the format indicates the types of data handled by the
format. This slot and the class of the data object being routed are used to determine

C H A P T E R 2 1

Routing Interface

21-6 About Routing

which transports show up in the Action picker. The system builds a list of all
routing formats registered under the symbol matching the class of the object being
routed. This list contains all the formats that can be used with that class of object.
Remember that the class of a frame object is simply the value of the class slot in
the frame. So, to route a frame, it must have a class slot that contains a value
corresponding to one of the classes under which routing formats are registered. For
more details about registering routing formats, see the section “Registering Routing
Formats” beginning on page 21-16.

Each transport installed in the system contains a dataTypes array that indicates
the data types it can handle, for example, ['text, 'frame]. For the item being
routed, the Action picker lists every transport whose dataTypes slot includes one
of the types specified by the dataTypes slots of the routing formats associated
with that item. This selection mechanism is illustrated in Figure 21-3.

For more information about transports, see Chapter 22, “Transport Interface.”

Figure 21-3 Transport selection mechanism for action picker

Once the user chooses a transport from the Action picker, the routing slip for that
transport is displayed. All the routing formats that support the class of data being
routed and are handled by that transport are listed in the format picker in the routing
slip, as shown in Figure 21-4. The last used format for that transport in that
application is set as the current format; if no last format is found, the first format
found is used.

If there is an auxiliary view associated with a format, it is opened automatically
when that format is selected. For more details on auxiliary views, see “Displaying
an Auxiliary View” (page 21-15).

{
class: foo,
 ..
}

{foo: {
 Fmat1:{dataTypes:['view],
 ...},
 Fmat2:{dataTypes:['view],
 ...},
 Fmat3:{dataTypes:['frame],
 ...}}
baz: {
 FmatB1:{dataTypes:['view],
 ...}},
...
}

[Fax:{dataTypes:['view],
...},
Print:{dataTypes:['view],
...},
Mail1:{dataTypes:['text],
...},
Mail2:{dataTypes:
['frame,'text], ...},
...
]

Routed object Routing formats in view definition registry Installed transports

Resulting Action picker lists the
transports Fax, Print, and Mail2

C H A P T E R 2 1

Routing Interface

About Routing 21-7

Figure 21-4 Format picker in routing slip

The built-in applications and transports support routing of the basic data types
listed in Table 21-1. Other data types may be defined by applications, but only
those transports aware of them can use them. If you do create a custom data type,
you must append your developer signature to make it unique.

Typically, an application defines multiple routing formats to allow routing that uses
different types of transports. For example, an application might define one 'frame
format, one 'text format, and two 'view formats.

An application may make use of built-in routing formats and other routing formats
that have been registered in the system, if the application sends data of the class
handled by those formats. But typically an application registers unique formats of
its own that are custom designed for its own data.

1 This column lists the built-in transports that support each of the routing data types. Note
that this information is firmware-dependent. All Newton devices may not have all these
transports built in, and some devices may have additional transports not listed here.

Table 21-1 Routing data types

Data type Description
Built-in
transport support1

'view Data is exported in page-by-page views for
operations such as printing and faxing.

print, fax

'frame Data is exported as a NewtonScript frame. beam

'text Data is exported as a string. mail

'binary Data is exported as a binary object. not applicable

Format Picker

C H A P T E R 2 1

Routing Interface

21-8 Using Routing

You must register all routing formats that you define with the system, usually in
your application part InstallScript function. Registration is discussed in the
section “Registering Routing Formats” beginning on page 21-16.

Current Format 21

The routing system maintains a “current format,” which is the last routing format
used by your application for a specific transport, or the first routing format
available otherwise. The current format sets the format picker in the routing slip the
next time the user chooses to route an item using the same transport.

The current format is saved in a slot in the application base view. It is your
responsibility to save this information to a soup if you want to preserve it. For more
information, see the section “Getting and Setting the Current Format” (page 21-11).

Routing Compatibility 21
The Routing interface described in this chapter is entirely new in system software
2.0. The previous Routing interface, documented in the original edition of Newton
Programmer’s Guide, is obsolete, but still supported for compatibility with older
applications. Do not use the old Routing interface, as it will not be supported in
future system software versions.

Note that if a Newton 1.x application that includes the routing capability is run
under system software version 2.0, the names of routing actions in the Action
pickers may appear slightly differently than they do under Newton 1.x because of
the way the picker is constructed in Newton 2.0.

Also, note that custom transports designed using the Transport interface will not be
available to Newton 1.x applications.

Print Formats 21

In the Newton 1.x system, print formats have left and right default margins of
60 pixels. In Newton 2.0, the default margins are 0. In Newton 2.0, you must let the
print format set up its own view bounds and design its child views to be positioned
relative to their parent’s bounds. In other words, do not modify the viewBounds
and viewJustify slots of the print format.

Using Routing 21

This section describes how to use the Routing interface to perform these specific tasks:

■ provide transport-based routing actions

■ provide application-specific routing actions

C H A P T E R 2 1

Routing Interface

Using Routing 21-9

■ send items programmatically

■ receive items

■ allow items to be viewed in the In/Out Box

Providing Transport-Based Routing Actions 21
Here’s a summary of the minimum things you need to do to support routing by the
Action button in an application:

■ Include the Action button in your application (or in individual views) by adding
a view based on the protoActionButton proto.

■ Supply a GetTargetInfo method in your application (or in individual views)
or ensure that the target and targetView slots are set up correctly with the
target object and target view, so the system can determine what is being routed.

■ Ensure that the target data object has a meaningful class (for frame objects, this
is the class slot). The data class is used to determine the appropriate formats,
and thus transports, available to an item.

■ Create one or more routing formats, using one of the routing format protos. Give
your formats unique symbol and title slots, and supply the SetupItem
method, if necessary. View formats may need a PrintNextPageScript
method for multiple pages, and may need a FormatInitScript method if
much preparation must be done before printing or faxing. Text formats may
need a TextScript method.

■ Register your routing formats in the application part InstallScript function
and unregister them in the RemoveScript function.

To support routing through transports, your application uses one or more routing
formats. These may be custom formats registered by your application or other
formats built into the system or installed separately. For more information about
routing formats, see the section “Routing Formats” beginning on page 21-5. There
are some prototype formats built into the system that you must use to create your
own formats:

■ To create a format for routing a 'view data type, use the
protoPrintFormat; see “Creating a Print Format” (page 21-18).

■ To create a format for routing 'frame and 'text data types, use the
protoFrameFormat; see “Creating a Frame Format” (page 21-21).

■ To create a new kind of format for data types other than 'view or 'frame, you
can use the protoRoutingFormat; see “Creating a New Type of Format”
(page 21-22).

The following sections describe the more detailed aspects of supporting transport-
based routing.

C H A P T E R 2 1

Routing Interface

21-10 Using Routing

Getting and Verifying the Target Object 21

When the user first taps the Action button, but before a choice is made from the
picker, the Routing interface sends the Action button view the GetTargetInfo
message, passing the symbol 'routing as a parameter. The purpose of this
message is to get the target object to be routed and the target view in which it
resides. Usually, these items are stored in slots named target and targetView
in your application. If you set up and use such slots in your views, you don’t need
to implement the GetTargetInfo method because this is a root view method
that is found by inheritance. The root view method simply looks for the slots
target and targetView, starting from the receiver of the message, which is the
Action button view. It returns these slots in a frame called the target information
frame. If you don’t use these slots in your views, you’ll need to implement the
GetTargetInfo method to return them.

You’ll need to implement the GetTargetInfo method if the user has selected
multiple items to route. In this case, you’ll need to construct a single object that
encapsulates the multiple items selected for routing, because the target must be a
single object and it can’t be a standard cursor. In your GetTargetInfo method
you can use the function CreateTargetCursor to create a multiple-item target
object from the selected items.

Note
In most cases the target object is a frame. In some cases you
might want to route a nonframe object such as a string or binary.
The Routing interface supports nonframe target objects; however,
other system services such as Filing may require target objects
that are frames, so you may not be able to use the same target
with them. Note also that nonframe target objects must have a
meaningful class for use with the Routing interface. ◆

Once the user chooses a transport-based routing action from the Action picker, the
system creates a new item frame containing some default slots and values for the
target item. This is done by means of the transport method NewItem. One slot that
is initialized by NewItem is the appSymbol slot of the item frame. The value for
this slot is obtained from the appSymbol slot of the application doing the routing
(through inheritance from the Action button view).

Then, just before the routing slip is opened, the Routing interface sends the
message VerifyRoutingInfo to the view identified by the appSymbol slot in
the item frame. This is normally your application base view. However, if you are
doing routing from a view created by BuildContext, for example, the
appSymbol slot might be missing because such views don’t automatically include
this slot. You must include an appSymbol slot in such a view, if you need to use
the VerifyRoutingInfo message, since the appSymbol slot determines where
this message is sent.

C H A P T E R 2 1

Routing Interface

Using Routing 21-11

The VerifyRoutingInfo method is passed two parameters, the target
information frame obtained by GetTargetInfo, and the partially initialized item
frame obtained from NewItem. The VerifyRoutingInfo method allows you a
chance to verify or change the target item before the routing slip is opened.
Normally you would return the same target frame that was passed in, possibly
modified. To cancel the routing operation, you can return nil from this method.

Note that the system sends the VerifyRoutingInfo message only if it is imple-
mented by your application; otherwise, the routing operation continues without it.

If multiple items are being routed, the target object (constructed by
CreateTargeCursor) encapsulates them all. In your VerifyRoutingInfo
method, you can use the function GetTargetCursor to return a cursor to
navigate the items. Then you can iterate through the cursor using the cursor
methods Entry, Next, and Prev, as described in Chapter 11, “Data Storage and
Retrieval.” Note that only these three cursor methods are supported for use with
cursors returned by GetTargetCursor.

Getting and Setting the Current Format 21

Next, the Routing interface sends your application base view the
GetDefaultFormat message. The purpose of this message is to get the default
format so that when the routing slip is opened, the format can be initially set to the
default. Normally, the default format for a particular transport is simply the last
format used with that transport from that application. This information is stored in
the lastFormats slot of your application base view. Unless you want to do
something special, you don’t need to implement the GetDefaultFormat method
because this is a root view method that is found by inheritance. The root view
method simply gets the default format symbol from the lastFormats slot.

The format can be changed by the user, or by the system (if no last format is found,
the default is set to the first one that is found). When the format is changed, the
Routing interface sends your application base view the SetDefaultFormat
message. The purpose of this message is to store the default format symbol for later
use. Normally, this is stored in the lastFormats slot in the application base
view. Unless you want to do something special, you don’t need to implement the
SetDefaultFormat method because this is a root view method that is found by
inheritance. The root view method simply sets the new format symbol in the
lastFormats slot of your application base view.

The lastFormats frame contains a slot for each transport that has been used
from your application. Whenever a transport is selected, the system first checks
your application for the lastFormats frame and for a slot within that frame
named with the symbol of the transport being used. If the slot is found, it contains
the symbol of the last format used by that transport. Then the system searches for a
format whose symbol slot matches it.

C H A P T E R 2 1

Routing Interface

21-12 Using Routing

If your application does not have a lastFormats slot, or if a matching format
is not found (the format was unregistered), the first format found becomes the
current format.

It is your responsibility to save the lastFormats frame to a soup if you want to
maintain it, since this information is cleared on a system reset or if your application
is uninstalled.

Supplying the Target Object 21

Next, the Routing interface sends the SetupItem message to the current format.
This message informs the format that it is selected and an item is being routed. The
SetupItem method is passed two parameters: a partially initialized item frame,
and a target information frame, as returned by GetTargetInfo. The item frame
is obtained from the transport method NewItem, which creates a new Out Box
item frame containing some default slots and values. This is the frame that is to be
stored in the Out Box. It must be filled in with the data object being sent.

The target information frame contains two important slots, target and
targetView, which define the data object to be routed and the view that contains
it, respectively. The SetupItem method must set the body slot of the item frame
to the value contained in the target slot of the target information frame. This fills
in the item frame with the actual data to be sent.

You are not required to provide a SetupItem method in routing formats since this
method is defined in the routing format protos. The SetupItem method defined in
the protos simply assigns the target slot in the target information frame to the
body slot of the item frame. You can override this method if you want to perform
additional operations and still call the inherited SetupItem method. Note that
there’s a potential problem with not copying the target object. If the object is
viewable and editable and the user edits the object in the Out Box, that potentially
changes the original object stored by the application, since there are potentially not
two separate objects, but two pointers to the same object.

If you want to modify the body slot of the item in some way, you should supply
your own SetupItem method instead of calling the inherited version. Then
in your own SetupItem method, clone the target slot of the target information
frame into the body slot of the item frame.

When sending data to another Newton device (for example, by beaming) it’s a
good idea to ensure that the sent object contains a version slot (inside the
item.body frame) that holds the current version of your application. This will help
to reduce compatibility problems in future versions of your application. If the data
format changes, your application can easily identify older and newer data formats.

C H A P T E R 2 1

Routing Interface

Using Routing 21-13

Storing an Alias to the Target Object 21

When there is a single target object, if there is not enough storage space, or the
target object is larger than a specified size, you can specify that an alias to the
target object, rather than the target object itself, be stored in the item.body slot.
This can be a soup entry alias or you can implement your own alias handling. You
enable the storing of an alias by setting the storeAlias slot in the routing format
frame to true. Additionally, you can specify a maximum size limit for target
objects by setting the sizeLimit slot in the routing format frame. If any target
object is larger than the size specified in this slot, and storeAlias is also true,
an alias to the target object is stored in the item.body slot. To store every target
as an alias, set sizeLimit to 0.

The default SetupItem method provided in the routing format protos reads the
storeAlias slot and performs the appropriate operations if this slot is true;
otherwise, it assigns the actual target object to the item.body slot, as usual. If an
alias to the target object is stored in the item.body slot, the routing interface also
sets the item.needsResolve slot to true, to signal that the body slot contains
an alias that needs to be resolved.

When it’s time to send an item, the format ResolveBody method is used to resolve
an alias before the item is sent. The item won’t be sent until the alias is resolved
(ResolveBody returns a non-nil value), since there’s no point in sending an alias.

If an alias to an item is stored, the item can still be viewed and operated upon in the
In/Out Box, just like any other item.

Note that there are some potential problems if an alias to the target object is stored.
If the target entry resides on a card store, and the card is removed before the item is
actually sent from the Out Box, the alias cannot be resolved and the send operation
on that item will fail. No matter where the original object resides, even if it is simply
deleted, the send operation on that item will fail. Therefore, whenever an alias is
stored, the user is warned by an alert slip explaining that the original item must be
available when the routed item is actually sent. You can set the routing format slot
showMessage to nil to prevent the warning message from being displayed.

Another problem with storing an alias is that the alias is just a pointer to the
original data. For example, say the user faxes a note and chooses to send it later,
and you store an alias to the note in the Out Box. Then the user opens the fax item
in the Out Box and changes the note. This actually changes the original note in the
Notes application, since the alias is a pointer to the original soup entry. Similarly, if
the user changed the original note before the fax was sent, then the fax text would
be changed without the user being aware of it.

Most target objects are soup entries, for which the routing format protos can handle
the operations of determining the object size, making an alias, and resolving the
alias when needed. However, in some cases, you may want to route objects that are
not soup entries. If you want to create custom aliases to such objects, you must

C H A P T E R 2 1

Routing Interface

21-14 Using Routing

override the routing format methods that handle the alias operations: TargetSize,
MakeBodyAlias, and ResolveBody.

The TargetSize method must determine the size of the target object passed to it.
The default method does this for soup entries, but you must override it and do it
yourself for other kinds of objects. The size of the object is used to determine if the
object is greater than the size specified by the sizeLimit slot in the routing
format, or greater than the available space on the store. If either of these conditions
is true, an alias is created for the object.

Storing Multiple Items 21

You may want to send multiple items in one routing operation. This allows you to
use a single routing slip to address several items at once, for example, if the user
selects multiple items from an overview. If you’ve constructed a multiple-item
target object for a group of items, you can specify that these items be stored as
individual items in the Out Box or that the single multiple-item target object be
stored in the Out Box. The storeCursors slot in the routing format controls this
feature, along with the transport. This feature works only if the transport
also supports it and is able to handle a multiple-item target (the transport
allowBodyCursors slot is also true). For example, the built-in beam transport
does not support the storing of a multiple-item target for multiple items, so the
storeCursors slot in the routing format is ignored for that transport.

The default value of the storeCursors slot is true.

Set the storeCursors slot to true to store a single multiple-item target object
for the items in the Out Box. When the items are sent, the cursor is resolved into its
component entries.

Set the storeCursors slot to nil to store each of the selected items as a separate
item in the Out Box. Each item can later be sent or operated on individually from
the Out Box.

Using the Built-in Overview Data Class 21

The system includes a built-in overview data class, 'newtOverview, that you can
use to simplify routing from overviews. Special formats that handle the data types
'view, 'frame, and 'text are registered under this data class. (You should not
register any other formats under the 'newtOverview class.)

At the time data is actually sent from the Out Box, these special formats handle
each item from the overview separately, looking for the first nonoverview format
registered in the system that can handle the data class of that item. At this time,
formats you have registered would be invoked separately for the individual items in
the overview selection. For example, for printing, each item would be printed on a
new page.

C H A P T E R 2 1

Routing Interface

Using Routing 21-15

If your GetTargetInfo method returns a multiple-item target object by using the
function CreateTargetCursor, you can set the class of that target object to
'newtOverview to enable this special behavior. You’d do this using code like this:

CreateTargetCursor('newtOverview, myItemArray);

There is a limitation to using the 'newtOverview data class, which is that this
data class handles data types of 'view, 'frame, and 'text only. If you want to
enable other data types, or restrict the data types to just a subset of these, you’ll
need to create your own overview data class and register formats under that class.

Note that the overview-handling code discussed here is contained in
protoRoutingFormat, so any format that you create can support this same
functionality. To use it, you must define a multiple-item data class and then register
formats under that data class.

Displaying an Auxiliary View 21

When the user chooses a format in the format picker, you may need to get
additional information from the user in the routing slip view. You can do this
by means of an auxiliary view template that you specify in the auxForm slot
of the routing format. If you specify a view template in this slot, when the format
is selected, this auxiliary view template is instantiated with the function
BuildContext and is sent an Open message.

Figure 21-5 shows an example of the auxiliary view used with the built-in Memo
format for Note stationery in the Notes application. This view gets information to
be used for the Name and Subject fields of the memo header.

Figure 21-5 Auxiliary view example

If you need access to information about the item being routed, you can access the
fields slot in the auxiliary view. The system sets the fields slot to the frame
that becomes the In/Out Box entry for the item being routed. For details on this
frame, see “Item Frame” (page 18-1) in Newton Programmer’s Reference.

C H A P T E R 2 1

Routing Interface

21-16 Using Routing

If you need to read the body slot within the fields frame, note that it might
contain an alias. In order to access it you must get the format and send it the
ResolveBody message, like this:

theFormat := GetCurrentFormat(fields);
resolvedBodySlot := theFormat:ResolveBody(fields);

The ResolveBody method returns the data in the body slot whether or not it is
referenced by an alias, so you can always use it.

You can store information you obtain from an auxiliary view in the fields frame,
preferably in the body slot (or if body contains an alias, in the entry the alias
points to). If you store data from the auxiliary view in a different slot, be sure the
slot name has your developer signature appended to avoid future slot name
conflicts.

Registering Routing Formats 21

All routing formats are specified as view definitions and are registered with the
system by means of the global function RegisterViewDef. The formats that
handle data types other than 'view are not actually views, but they are registered
as view definitions to take advantage of the central registration mechanism.
Registering formats in this way makes them available to all applications in the
system. Routing formats are specially identified in the view definition registry
because the type slot of all routing formats is set to the symbol 'routeFormat
(or 'printFormat in some ROM versions).

Register formats with the class of the object you want them to act on. Here is an
example of registering a format:

RegisterViewDef(myPrintFormat, '|myDataClass:SIG|);

This call registers the format myPrintFormat as working with data whose
class is '|myDataClass:SIG|. If the class of any target data object is
'|myDataClass:SIG|, the format myPrintFormat will be available when
that item is routed. The fact that this print format (with a 'view data type) has
been registered means that you can print and fax that class of data items. This
mechanism enables you to have separate routing formats (and thus routing actions)
for individual views, if they use different data classes for data, rather than using the
same formats (and routing actions) for all views in an application.

Typically, your application registers routing formats when it is installed, in its part
InstallScript function, and unregisters formats in its RemoveScript
function. You use the function UnRegisterViewDef to unregister routing formats.

In an application part InstallScript function, when registering your
routing formats, you must not use the Newton Toolkit function GetLayout
to obtain a reference to the routing format layout, so that you can pass it to

C H A P T E R 2 1

Routing Interface

Using Routing 21-17

RegisterViewDef. Nor should you use DefConst, or any other method
that directly references the routing format. This is because the entire
InstallScript function is passed to EnsureInternal (for application parts).
Your routing format layouts would be copied into the NewtonScript heap, wasting
precious memory.

Instead, you should use an indirect method to reference your routing format
layouts. One way is to store a reference to your routing format layouts (by using
GetLayout) in a slot in your application base view (for example,
myRoutingFormat). Then in the InstallScript function, you can reference
that slot through the expression partFrame.theForm.myRoutingFormat.
Because the reference to the layout is found at run time through an argument to
InstallScript, it is not copied into NewtonScript memory by
EnsureInternal when your application is installed.

For example, first you could store the routing format layout in an application base
view slot:

myRoutingFormat: GetLayout("MyNiceLayout");

Then in the InstallScript function, you could use code like this to register the
format:

InstallScript(partFrame)
begin

local myApp := partFrame.theForm;
...
RegisterViewDef(myApp.myRoutingFormat,

kMyMainDataClassSym);
end;

For more information about view definitions and the functions that act on them,
refer to Chapter 5, “Stationery.”

Note
If your application uses the NewtApp framework, registering
routing formats is much easier. The NewtApp framework does it
for you. All you have to do is add your formats to the
allViewDefs frame in the application base view (that is based
on the newtApplication proto). For more information, see
“Using the Required NewtApp Install and Remove Scripts”
beginning on page 4-21. ◆

C H A P T E R 2 1

Routing Interface

21-18 Using Routing

Creating a Print Format 21
You create a print format by using protoPrintFormat. This proto is required
for routing formats with a 'view data type, such as views that you would print or
fax. This proto format is actually a view template, which displays the target object
visually. The data to be displayed is laid out as child views of the
protoPrintFormat view.

Here is an example of a format based on this proto:

// in NTK you create a new layout for view formats
MyPrintFormat := {

_proto: protoPrintFormat,
symbol: '|myPrintFormat:SIG|,
title: "PrintIt",
ViewSetupChildrenScript: func() begin

// construct child views for first page here
end,

PrintNextPageScript: func() begin
nil;
// construct child views for next page here
end,

};

For more information about the slots and methods provided by this proto, see
“Routing Format Protos” (page 18-9) in Newton Programmer’s Reference.

Topics unique to protoPrintFormat are discussed in the following subsections.

Page Layout 21

The view based on the protoPrintFormat proto is automatically sized (in the
ViewSetupFormScript method) to fit the dimensions of a page on the output
device to which it is being routed. Do not change the values of the viewBounds
or viewJustify slots in the print format view.

You can increase the margins used on the page by setting the margins slot. Set
this slot to a bounds rectangle frame, like this:

{left: 25, top: 20, right: 25, bottom: 30}

Each slot in this frame is interpreted as an inset from each edge of the printable
area of the paper in pixels. You must specify only non-negative values, to make
sure that you don’t print off the page. The default value of the margins slot is
{left:0, top:0, right:0, bottom:0}.

Also, you can control the orientation of the data on the paper by setting the
orientation slot. Specify a symbol indicating whether to use the paper vertically

C H A P T E R 2 1

Routing Interface

Using Routing 21-19

in portrait mode ('portrait) or horizontally in landscape mode ('landscape).
The default value of the orientation slot is 'portrait. Your format should
always use relative view justification and/or check the actual bounds of the print
format by using the LocalBox view method. Note that you cannot change the
orientation between a series of pages being printed by a single print format.

If multiple items are being routed (as from a multiple selection in an overview), you
may want to print each item on a separate page or print the items one after another,
placing multiple items on the same page before starting a new page. You can control
this feature by setting the usesCursors slot. The default setting of this slot is nil.

If you want to lay out multiple items on a page, set the usesCursors slot of the
format to true. In this case, the target object encapsulates all the items being
routed in a single multiple-item object created by CreateTargetCursor. Your
format should call the GetTargetCursor method to return a cursor for this
object, on which you can iterate over the individual items to be routed using the
cursor methods Entry, Next, and Prev. If your format can use other print
formats, you can use the GetCursorFormat method of the
protoPrintFormat to find formats for the individual items.

If you want to lay out each item on a separate page, or if this format cannot handle
a multiple-item target object, set the usesCursors slot to nil. In this case, this
format is invoked multiple times, once for each item being routed, and each item
begins on a separate page.

Printing and Faxing 21

When an item in the Out Box is actually printed or faxed using your print format,
the view represented by the print format is instantiated and drawn to the output
device. As when any view is instantiated, the system sends the print format view
standard messages and also routing-specific messages. For optimal printing
performance, and to avoid timing out a fax connection, you need to be aware of the
sequence of events and know which operations are time-critical.

Here is the sequence of events during a printing or faxing operation:

1. The transport sends the print format the FormatInitScript message, to give
you an opportunity to perform initialization operations. You must perform any
lengthy initialization operations in this method, before the transport connection
is made. You can store initialized data in self. For more information about
using FormatInitScript, see Newton Programmer’s Reference.

2. For sending a fax only, the transport sends the print format the CountPages
message. If you can determine the number of pages in the fax ahead of time, you
should override this method in your print format and have it return the number
of pages (not including the cover page). If you don’t override this message, the
transport opens the print format view in an offscreen window and performs steps
3, 4, and 6, below, to go through each page so it can count the number of pages.

C H A P T E R 2 1

Routing Interface

21-20 Using Routing

Then the print format view is closed. Note that the ViewShowScript and
ViewDrawScript messages are not sent to the view. This takes a lot of time
for the transport to determine the number of pages, so if you can, override the
CountPages method with one of your own.

3. The transport instantiates the print format view and sends it the
ViewSetupFormScript message. Depending on certain factors, the transport
connection might be made at the beginning of this step or in step 4. You can rely
only on the connection being made sometime after step 2.

4. The transport sends the ViewSetupChildrenScript message to the print
format view, then the child views are instantiated (and sent the standard view
messages), and finally the transport sends the ViewSetupDoneScript and
ViewShowScript messages to the view.

5. The transport draws the print format view and sends the ViewDrawScript
message to the view. Note that each child view on the page is also drawn and sent
the ViewDrawScript message, in hierarchical order. The page might be printed
or faxed in “bands” (sections), so this step may repeat several times for the page.

If you need to draw something in your ViewDrawScript method, you can call
the view method GetDrawBox to determine the band that is currently being
drawn. Then you can draw just those shapes that are necessary for the current
band. The transport does not draw any views or shapes outside the current band.
Any shapes extending outside the current band are automatically clipped.

IMPORTANT

The ViewDrawScript message is sent at a time-critical point
in a fax operation. It is imperative that you do as little work as
possible in the ViewDrawScript method. ▲

6. The transport sends the PrintNextPageScript message to the print format
view. If your print format handles more than a single page of data, you must
define the PrintNextPageScript method in your print format. The transport
sends this message each time it reaches the end of a page, to allow you to
construct the next page of data. While there is more data to route, this method
should return a non-nil value; in that case, the printing process continues
with the next page at step 4. When there is no more data to route, the
PrintNextPageScript method should return nil; in that case the printing
process ends and the connection is closed.

You set up the child views containing the data for the first page in the
ViewSetupChildrenScript method of your print format. Typically, you do
this by setting the value of the stepChildren array. Don’t forget to call the
inherited method (inherited:?ViewSetupChildrenScript) so that the
proto behavior is preserved.

C H A P T E R 2 1

Routing Interface

Using Routing 21-21

The PrintNextPageScript method should construct the view for the next page
of data so that the message self:Dirty() shows the view. Typically, you do this
by keeping track of what data has been routed so far. When the format receives this
message, you select a new set of child views representing the next page of data to
send. Then you call the view method RedoChildren, which closes and then
reopens the child views. This method also causes the transport to send your print
format view the ViewSetupChildrenScript message again.

Note that in the PrintNextPageScript method, you can also change the
content of child views on the current page. For example, you might want to change
the content of a text field. To do this, use the SetValue function to pass in a new
value for the view content, like this:

SetValue(myParagraphView, 'text, newRichString);

When faxing, it’s best not to perform lengthy operations in the
PrintNextPageScript method, since the connection stays open between
pages. However, this is less time critical than the ViewDrawScript method. If
possible, execute lengthy operations in the FormatInitScript method, which
is called just once before the connection is opened.

If you need to create any custom shapes to be drawn on the page by the
ViewDrawScript method, create the shapes in the FormatInitScript
method. Alternatively, you can create shapes at compile time, if they are static.
Because of fax connection time-out issues, minimize shape creation in the
ViewDrawScript method, as shape creation takes too much time and the
connection might time out as a result.

Creating a Frame Format 21
You create a frame format by using protoFrameFormat. This is the standard
format for routing objects with 'frame or 'text data types, such as for beaming
and e-mail. To enable these types of transports for your data, you must register at least
one format based on this proto. Here is an example of a format based on this proto:

MyFrameFormat := {
_proto: protoFrameFormat,
symbol: '|myFrameFormat:SIG|,
title: "No comments",
SetupItem: func(item, targetInfoFrame) begin

local myData := clone(myTargetInfo.target);
RemoveSlot(myData, 'comments); // remove some stuff
item.body := myData;
// this item.body is not a soup entry.
// if it MIGHT be a soup entry, call
// inherited:SetupItem(item, targetInfoFrame)

C H A P T E R 2 1

Routing Interface

21-22 Using Routing

// which takes targetInfoFrame.target and makes an
// alias, if appropriate
end,

TextScript: func(item,target) begin . . . end,
...

};

Note that one application can have multiple frame formats. You would simply
supply a different SetupItem method for the different formats (as well as unique
symbol and title slots), to construct the item frame differently.

If your frame format doesn’t support the 'text data type, you should override the
dataTypes slot and set it to ['frame].

For routing formats that support the 'text data type, you must override the
default TextScript method that obtains the string data, if there are no data
definitions for the data that contain their own TextScript method.

For more information about the slots and methods provided by this proto, see
“Routing Format Protos” (page 18-9) in Newton Programmer’s Reference.

Creating a New Type of Format 21
You create a new type of routing format by using protoRoutingFormat. This is
the base routing format, which serves as a proto for the other routing format protos.

Here is an example of a format based on this proto:

MyNewFormat := {
_proto: protoRoutingformat,
dataTypes: ['binary],
symbol: '|myFormat:SIG|,
title: "Custom",
SetupItem: func(item, targetInfoFrame) begin

call kMyFunkySetup with (item, targetInfoFrame);
end,

...
};

For more information about the slots and methods provided by this proto, see
“Routing Format Protos” (page 18-9) in Newton Programmer’s Reference.

Providing Application-Specific Routing Actions 21
First, to provide the Action button in the user interface of your application, you
must include a view based on the protoActionButton proto. For details, see
protoActionButton (page 18-7) in Newton Programmer’s Reference.

C H A P T E R 2 1

Routing Interface

Using Routing 21-23

Your application can provide internal application-defined actions, such as deleting
and duplicating, that do not use the Out Box and a transport to perform the routing
operation. These routing actions appear at the bottom of the Action picker.

You define these routing actions by providing a slot named routeScripts in
your application. The Action button searches its own context for the first
routeScripts slot that it finds. Usually you define routeScripts in the base
view of your application. That way, all child views can find it by inheritance. But if
you want to have different routing actions active for different views, you can define
a routeScripts slot in each child view definition, where it will override the one
in the base view.

Alternatively, instead of defining an array of application-specific routing actions in
the routeScripts slot, you may want to build the array dynamically. To do this,
you can override the root view method GetRouteScripts, which is used by the
Routing interface to obtain the routeScripts array from your application. The
default version of this method simply returns the contents of the routeScripts
slot to the Routing interface. In the GetRouteScripts method, build and return
an array like one you would define in the routeScripts slot.

If you provide a routeScripts slot, it must contain an array of frames, one for
each routing action item, that look like this:

{title: "MyAction", // name of action
icon: GetPictAsBits("MyActionIcon",nil), // picker icon
RouteScript: 'MyActionFunc, // called if action selected
// other slots and methods you need
...}

To include a separator line in the Action picker’s list of application-specific routing
actions, include the symbol 'pickSeparator in the routeScripts array
between the two items you want to separate. Alternatively, you can include a nil
value to include a separator line.

For delete and duplicate actions, there are bitmaps available in ROM that you can
use as icons. For the icon slot of a delete action, you can specify the magic
pointer constant ROM_RouteDeleteIcon. For the icon slot of a duplicate
action, you can specify the magic pointer constant ROM_RouteDuplicateIcon.

If your application registers view definitions with the system, note that each view
definition can define its own routeScripts array. The routing action items that
apply to the individual view definition are added below those that apply to the
whole application in the Action picker. See the following section for more
information about specifying routeScripts in stationery.

C H A P T E R 2 1

Routing Interface

21-24 Using Routing

Performing the Routing Action 21

The important slot in each frame in the routeScripts array is the
RouteScript slot. This slot contains either a symbol identifying a method, or a
function directly, that is called if the user chooses this action from the Action
picker. This function is where you perform the routing action. The function you
define is passed two parameters, target and targetView, which define the data object
to be routed and the view that contains it, respectively.

The two values, target and targetView, are obtained from your application by the
Routing interface. As soon as the Action button is first tapped, the Routing interface
sends the Action button view the GetTargetInfo message to obtain these two
values. The GetTargetInfo method returns a frame containing these and other slots.

If you set up and use target and targetView slots in your views, you don’t
need to implement the GetTargetInfo method because this is a root view
method that is found by inheritance. The root view method looks for the slots
target and targetView, starting from the receiver of the message, which is the
Action button view. It returns these slots in a frame called the target information
frame. If you don’t use these slots in your views, you’ll need to implement the
GetTargetInfo method to return them.

The RouteScript slot can contain either a symbol identifying a function or it
can contain a function directly. If you are defining the routeScripts array in a
registered view definition, the RouteScript slot must contain a function directly.
Alternatively, if your view definition is used only within your application, you can
specify an appSymbol slot in the routeScripts frame and specify a symbol
for the RouteScript slot. The appSymbol slot tells the system in what
application to find the method identified by the RouteScript slot. Using the
latter alternative ties the view definition to a single application.

Here is an example of how you might define the function identified by the
RouteScript slot shown in the example frame above:

MyActionFunc: func(target,targetView) begin
targetView:DeleteStuffFunc(target);
end,

Handling Multiple Items 21

The target item, as returned by GetTargetInfo, may actually be a multiple-item
target object that encapsulates several individual items to be routed. You can check
if this is the case by using the function TargetIsCursor. If the target item is a
multiple-item target object, and you need to act separately on the individual items,
you can obtain a cursor for the items by using the function GetTargetCursor.
Then you can use the standard cursor methods Entry, Next, and Prev to iterate
over the cursor and return individual items. For more information about using

C H A P T E R 2 1

Routing Interface

Using Routing 21-25

cursors, refer to Chapter 11, “Data Storage and Retrieval.” Note that only these
three cursor methods are supported for use with cursors returned by
GetTargetCursor.

Note that GetTargetCursor works with any kind of target data, whether or not
it’s a cursor. So you don’t need to call TargetIsCursor to check before calling
GetTargetCursor.

Here’s an example of a RouteScript method that uses GetTargetCursor to
operate on multiple items:

MyActionFunc := func(target,targetView)
begin

local curs := GetTargetCursor(target,nil);
local e := curs:Entry();
while e do begin

:DoMyAction(e); // do the operation
e := curs:Next();

end;
// update display here

end;

Handling No Target Item 21

If the target item returned by GetTargetInfo is nil, this indicates that no target
item is selected or there is nothing to do when the Action button is pressed. In this
case, the system displays a warning message to inform the user of that fact. To take
advantage of this warning message feature, all application-specific routing actions
must be disabled when there is no target. (You may want to include some actions
even when there is no target; in this case, you can ignore this section.)

To disable application-specific routing actions when there is no target, you can do
one of two things:

■ Define a GetTitle method in the routeScripts frame for each action,
instead of a title slot. Then return nil from the GetTitle method to
prevent that action from showing up on the picker.

■ Define a GetRouteScripts method in your application, instead of a
routeScripts slot. Then return nil or an empty array from the
GetRouteScripts method to prevent any actions from showing up on
the picker.

Note that there are different messages displayed when there is no target item (the
target is nil) and when there are no actions available for the target item.

C H A P T E R 2 1

Routing Interface

21-26 Using Routing

Sending Items Programmatically 21
Your application can send an item programmatically, using a specific transport or
transport group, without any user intervention. The Action button is not used in this
case. This is done using the global function Send.

Here is an example of how to use the Send function:

myItem := {
toRef: [nameRefObject, ...], // array of fax name refs
title: "The Subject", // title of item
body: {class: kMyDataSym, // fax data frame

 myData: ...},
appSymbol: kAppSymbol,
currentFormat: kOtherPrintFormatSym
};

Send('fax, myItem);

You must construct an item frame containing the data and other slots that you
want to set in the item. You then pass this item frame as an argument to the
Send function.

Before calling the Send function, you may want to allow the user to choose a
format for the item being sent. To do this, you’ll need a list of formats that can
handle the item. To get a list of appropriate formats, you can use the
GetRouteFormats function. Using this list, you could display a picker from
which the user can choose a format.

You may also want to allow the user to choose a transport for the item being sent.
To do this, you’ll need a list of transports that can handle specific formats. To get a
list of appropriate transports, you can use the GetFormatTransports function.

In the Send function, it’s best to specify a transport group or let the user choose
the transport. If you specify a specific transport, it may not be installed and the
operation will fail.

In the Send function, the Routing interface obtains a default item frame from the
selected transport by sending the NewItem message to the transport. The slots you
specify in your item frame are copied into the default item frame obtained from the
transport. Note that the default frame supplied by the transport may contain other
slots used by the transport.

The slots you include in the item frame vary, depending on the transport. The In/
Out Box and transports ignore slots they don’t care about. Applications can use this
feature to communicate information to multiple transports with the same item
frame. For a comprehensive list of slots and detailed descriptions, see “Item
Frame” (page 18-1) in Newton Programmer’s Reference.

C H A P T E R 2 1

Routing Interface

Using Routing 21-27

The following frame shows a summary of the slots you can include in the item
frame. Note that some of the slots shown are specific to a particular transport, and
you should include them only if you are sending to that transport. Also, don’t include
any additional slots in the item frame unless they are specific to a particular transport.

itemFrame := {
appSymbol: symbol, // appSymbol of sender
destAppSymbol: symbol, // receiving app, if different
body: frame, // the data to send
title: string, // item title, e-mail subject
toRef: array, // array of name refs for recipients
cc: array, // array of name refs for copied recipients
bcc: array, // array of name refs for blind copies
currentFormat: symbol, // routing format to use
connect: Boolean, // try to connect immediately?
hidden: Boolean, // hide in Out Box?
covert: Boolean, // not logged or saved in Out Box?
completionScript: Boolean, // notify app of state change?
needsResolve: Boolean, // body slot contains an alias?
// transport-specific slots
printer: frame, // the printer to use for printing
coverPage: Boolean, // use a cover page for fax?
faxResolution: symbol, // 'fine or 'normal fax resolution
phoneNumber: string, // phone number, for call transport
name: string, // name, for call transport
serviceProvider: symbol, // call; 'modem, 'speaker, or nil
saveAsLog: Boolean, // log call in Calls app?
}

Note that you can set any of the Boolean slots in the SetupItem method of the
routing format.

Applications implementing their own custom sending functionality apart from the
Action button may need to open the transport routing slip view for the user. If you
need to do this, you can use the global function OpenRoutingSlip, as described
in the section “Opening a Routing Slip Programmatically” beginning on page 21-29.

Creating a Name Reference 21

For the built-in fax and call transports, and for e-mail and other transports that use
addresses, addressing information for an item to send is stored in the toRef slot of
the item frame, and certain other slots such as cc, bcc, and so on. These slots
contain arrays of one or more name reference objects. A name reference is simply a
frame that serves as a wrapper for a soup entry (often from the Names soup, thus
the term “name reference”). The name reference may contain an alias to a soup

C H A P T E R 2 1

Routing Interface

21-28 Using Routing

entry and even some of the slots from the soup entry. Note that you must use name
references; you cannot specify soup entries directly.

To create a name reference object, use name reference data definitions registered
with the system in the data definition registry. There are built-in name reference
data definitions for e-mail ('|nameRef.email|), fax ('|nameRef.fax|), and
call ('|nameRef.phone|) information associated with names from the Names
file. These data definitions contain a method, MakeNameRef, that creates and
returns a name reference.

You can pass a Names soup entry directly to MakeNameRef, or you can construct
your own simple frame of information that contains the appropriate slots. Fax and
call name references should include the slots name, phone, and country. E-mail
name references should include the slots name, email, and country. For more
information about these slots, see “Names Soup Format” (page 16-15) in Newton
Programmer’s Reference.

Here’s an example of how to create a name reference for a fax phone number or an
e-mail address:

// use a Names file entry directly
local myData := aNamesFileEntry; // entry from Names soup

// or create your own fake entry frame based on other info
local myData := {

name:{first:"Juneau", last:"Macbeth"},
phone: "408-555-1234", // fax phone string
email: "jmacbeth@acompany.com", // e-mail address string
country: "USA",

}

// then create the fax name reference
aToRef := GetDataDefs('|nameRef.fax|):MakeNameRef(myData,

'|nameRef.fax|);
// or create the e-mail name reference
aToRef := GetDataDefs('|nameRef.email|):MakeNameRef(myData,

'|nameRef.email|);

For more information about name references and the MakeNameRef method, see
the documentation of protoListPicker in Chapter 6, “Pickers, Pop-up Views,
and Overviews.”

Specifying a Printer 21

For print operations, the printer slot of the item frame specifies which printer to
use. This slot must contain a printer frame. The only valid way of obtaining a
printer frame is from the currentPrinter variable of the user configuration

C H A P T E R 2 1

Routing Interface

Using Routing 21-29

data. That variable holds the printer selected by the user as the current printer. You
can use this function to obtain the current printer for the item:

item.printer := GetUserConfig('currentPrinter);

If you want to provide a way for the user to select a different printer, you can
use the printer chooser proto, protoPrinterChooserButton. This proto
changes the setting of the current printer in the system; it actually changes the
currentPrinter variable.

If you don’t want to change the current printer in the user’s system, but just want
to let them select a printer for this one print job, then you’ll need to do the
following things:

1. Get and temporarily save the current value of the currentPrinter variable in
the user configuration data, using GetUserConfig.

2. Display the printer chooser button, allowing the user to select a printer for this
print job. When they select one, the printer chooser proto automatically changes
the currentPrinter variable to the chosen one.

3. Retrieve the new value of the currentPrinter variable, using
GetUserConfig, and use that for the printer slot in the item frame.

4. Reset the user’s original printer choice by resetting the currentPrinter
variable in the user configuration data to the value you saved in step 1. To do
this you must use the function SetUserConfig.

Opening a Routing Slip Programmatically 21
To open a routing slip programmatically for a transport, use the OpenRoutingSlip
function. First, create a new item by using the transport’s NewItem method; then
add routing information such as the recipient or other information to the new item
frame; and finally, use OpenRoutingSlip to open the routing slip for the transport.

Here’s an example of how to do these steps to open a routing slip for the built-in
Call transport:

// opening the Call Transport routing slip
local curs, item, anEntry, class, nameRef;

// get a new item frame from the transport
// '|phoneHome:Newton| identifies the Call transport
item := TransportNotify('|phoneHome:Newton|, 'NewItem, [nil]);
if item = 'noTransport or not item then

return 'noTransport;

C H A P T E R 2 1

Routing Interface

21-30 Using Routing

// get an entry from the Names soup to use for the recipient
curs:=GetUnionSoupAlways(ROM_CardfileSoupName):Query(nil);
if curs:Entry() then

begin
// set the toRef slot in the item frame
class := '|nameRef.phone|; // transport addressing class
nameRef := GetDataDefs(class):MakeNameRef(anEntry, class);
item.toRef := [nameRef];
targetInfo := {

targetView: getroot(),
target: {}, // for non-Call transports, add your data here
appsymbol: '|my:SIG|
};

// open the routing slip
OpenRoutingSlip(item, targetInfo);
// returns view (succeeded), or fails with
// nil or 'skipErrorMessage
end;

For the built-in fax and call transports, and for e-mail transports, addressing
information for an item is stored in the toRef slot of the item frame. E-mail
transports may also store addresses in additional slots such as cc and bcc. These
slots contain arrays of one or more name reference objects. The example code
above illustrates a name reference created from the data definition registered for the
addressing class of the transport (in this case the Call transport). For more
information about creating name references, see “Creating a Name Reference”
beginning on page 21-27.

For transports that handle data (unlike the Call transport example here), you must
also pass a target information frame to the OpenRoutingSlip function. The
target slot in this frame contains the data to send. Note that the target slot can
contain a multiple-item target object, which you can create using the function
CreateTargetCursor.

Supporting the Intelligent Assistant 21
Besides using the standard interface for routing (the Action button), the user can
also invoke routing actions by using the Intelligent Assistant and writing the name
of the action. In order to determine what item to route, the Intelligent Assistant
sends the GetActiveView message to your application. This method returns the
view to which the GetTargetInfo message should be sent.

The GetActiveView method is implemented by default in the root view and
simply returns self, the current receiver. If this return value is not appropriate for
your application, you must override this method in your application base view.

C H A P T E R 2 1

Routing Interface

Using Routing 21-31

Receiving Data 21
Incoming data arrives first as an entry in the In Box. If there is a public view
definition registered for the class of the entry, the item may then be viewed directly
in the In Box.

IMPORTANT

Generally, the body slot of every received item must have a
meaningful class. (This is not strictly required if the item has an
appSymbol slot.) If body contains a frame, its class slot
identifies its data class. Items received from other Newton devices
generally have a body.class slot. For items received from
other systems, the transport must assign a meaningful class
(use SetClass). ▲

An incoming item may be stored in the In Box until the user chooses to manually
put away the item into an application, or an incoming item may be transferred
automatically to an application as soon as the item arrives in the In Box. This is
controlled by the applications present on the Newton and described in detail in the
following sections.

If an In Box item contains an appSymbol slot, that slot identifies the receiving
application for the item. The system uses this slot to identify the default application
to which the item should be put away (if any). If the original item contained a
destAppSymbol slot when submitted to the In Box, that slot is copied into the
appSymbol slot to identify the application that should receive it. The receiving
transport does this before the item is passed to the In Box by using the transport
method NewFromItem.

These are the minimum steps you need to take to support receiving items through
the In/Out Box in your application:

■ Supply a PutAwayScript method in your application base view. When a user
chooses to put away an item to your application from the In/Out Box, the item is
passed to this method.

■ Register the data classes that your application can accept by using the
RegAppClasses function in the application part InstallScript function.
Unregister using UnRegTheseAppClasses or UnRegAppClasses in the
application part RemoveScript function.

Automatically Putting Away Items 21

The first thing the In Box does with an incoming item is to determine which
applications might want to accept the item immediately. The In Box does this by
checking the In Box application registry to find out if any applications have
registered to accept such items; see the section “Registering to Receive Foreign

C H A P T E R 2 1

Routing Interface

21-32 Using Routing

Data” (page 21-34). If a matching application is found in the registry, the
appSymbol slot of the item is set to the value of the appSymbol slot in the
matching application. If no matching applications are found in the registry, the item
may have a pre-existing appSymbol slot, which determines the application to
which it belongs. If no matching application is located in the registry and the item
has no existing appSymbol slot, it cannot be put away automatically.

Next, the In Box checks for an AutoPutAway method in the base view of the
application whose appSymbol slot matches that in the item. If the AutoPutAway
method exists, the In Box sends the AutoPutAway message to the application,
passing the incoming item as a parameter. In this way, items can be automatically
transferred to an application, with no user intervention.

If the AutoPutAway method returns nil, this signals that the item could not be
put away and the item is left in the In Box.

If the AutoPutAway method returns a non-nil value, it is assumed that the
application handled the item. The item is either saved in the In Box or deleted from
the In Box, depending on the user’s preference.

If your application implements the AutoPutAway method, it can inform the
system of this fact when it is installed, to receive any items that may have arrived
for it while it was uninstalled. In the application part InstallScript function,
call the global function AppInstalled to let the system know that the
application is present. The AppInstalled function prompts the In Box to send
an AutoPutAway message to the application for each In Box item that may have
arrived for the application before the application was installed. Note that you must
call the AppInstalled function using a deferred action, like this:

AddDeferredCall(GetGlobalFn('AppInstalled),[kAppSymbol]);

This feature is useful in cases where the application resides on a card that is not
always installed in the system. Messages are held in the In Box while the application
is not installed, and then when it is installed, those received messages are sent to the
application with the AutoPutAway message.

The item passed to your application’s AutoPutAway method is the entry from the
In Box. It has several slots that are used by the In Box or the transport. The data
your application uses is contained in the body slot.

If the item was sent by a custom transport that sends multiple-item target objects
(such as those created by CreateTargetCursor), you might need to check if
the body slot contains such an object by using TargetIsCursor. If so, you can
get a cursor for the object by using GetTargetCursor, and then iterate over the
cursor to handle individual items.

C H A P T E R 2 1

Routing Interface

Using Routing 21-33

Manually Putting Away Items 21

If an item is not put away automatically, it resides in the In Box until the user
chooses to put it away manually by tapping the Put Away button. When the user
taps the Put Away button, the In Box displays a slip showing to which application
the item will be put away. This application is the one that matches the appSymbol
slot in the item. The In Box sends the PutAwayScript message to the base view
of that application. The item is passed as a parameter.

The item passed to your application’s PutAwayScript method is the entry from
the In Box. It has several slots in it that are used by the In Box or the transport. The
data your application uses is contained in the body slot.

Because the item could have been sent by a custom transport that sends
multiple-item target objects (such as those created by CreateTargetCursor),
you might need to check if the body slot contains such an object by using
TargetIsCursor. If so, you can get a cursor for the object by using
GetTargetCursor, and then iterate over the cursor to handle individual items.

If the PutAwayScript method returns nil, this signals that the item could not
be put away and the In Box leaves the item in the In Box and an alert is displayed
telling the user that the item could not be put away.

If the PutAwayScript method returns a non-nil value, it is assumed that the
application handled the item. The item is either saved in the In Box or deleted from
the In Box, depending on the user’s preference as set in the Put Away slip.

If multiple applications have registered to accept data of the item’s class, the system
displays a picker listing those applications in the Put Away slip. The application
that matches the appSymbol slot of the item is listed as the default choice. If there
is no appSymbol slot, or the application is missing, then a different application is
the default choice. The user can choose the application to which the data is to be
sent, and the PutAwayScript message is sent to that application.

The registry used for this operation is called the application data class registry;
note that it is different from the In Box application registry mentioned above.
Applications can register to accept data of one or more classes by using the
RegAppClasses function.

It is recommended that all applications wanting to receive items through the In Box
register their capability to receive data of particular classes by calling the
RegAppClasses function. If your application is no longer interested in data of
these classes, or your application is being uninstalled, you can unregister to receive
these data classes by using the UnRegTheseAppClasses function.

You can check which applications can accept data of a particular class by using the
ClassAppByClass function.

C H A P T E R 2 1

Routing Interface

21-34 Using Routing

Registering to Receive Foreign Data 21

To receive data from a different application or from a non-Newton source, your
application must register its interest in such data with the In Box application
registry. To do this, use the RegInboxApp function.

If your application is no longer interested in foreign data, or is being uninstalled,
you can unregister to receive foreign data by using the UnRegInboxApp function.

Note that your application can register to receive data from a different application.
If you register a test function with RegInBoxApp, and that test function returns
true for a particular item, the Routing interface changes the value of the
appSymbol slot in the item to be the value of the appSymbol slot in
your application.

Be careful not to intercept incoming items that should be destined for other
applications when using this feature. The In Box application registry overrides the
appSymbol slot of the item. The system uses the appSymbol slot as well as the
application data class registry (RegAppClasses) to find applications to which an
incoming item can be put away. The application identified by the appSymbol slot
is used as the default for the automatic put away feature (AutoPutAway) and for
the Put Away picker.

Filing Items That Are Put Away 21

When an item is put away by an application, by default it is filed in the same folder
on the receiving Newton as it was in on the sending Newton. This often makes it
difficult for users to find new items, since they may be put away in folders that are
undefined. To alleviate this problem, it is recommended that all incoming items be
put away unfiled, so that users can more easily find items and file them where they
want to. Incoming items should be put away unfiled even if the recipient has a
folder of the same name as the sender.

For most applications, you put away an item unfiled by setting the
item.body.labels slot to nil. However, filing techniques vary, so
this may not work for all applications.

Viewing Items in the In/Out Box 21
When data is queued in the Out Box, or has been received in the In Box and not
automatically put away, the user can view the data directly in the In/Out Box.
When the user chooses to view an item in the In/Out Box by tapping the item, the
system looks for a view definition of the type 'editor or 'viewer that is
registered for the class of that item.

Your application should register such view definitions with the system if you want
users to be able to view items from your application in the In/Out Box. If you do

C H A P T E R 2 1

Routing Interface

Using Routing 21-35

not provide a view definition, and there are no other view definitions available for
that data class, the In/Out Box displays a generic blank view for the item. Items
formatted with the 'view data type do not need a separate view definition because
the In/Out Box itself provides a page preview view for these items.

Of the view definitions registered by your application, you can identify which
should be made available to the In/Out Box and which should be hidden from the
In/Out Box, by setting the protection slot in the view definition. Set the
protection slot to 'public to make the view definition available to the In/Out
Box. Set the protection slot to 'private to hide the view definition from the
In/Out Box.

If more than one view definition is available to the In/Out Box for viewing an item,
the In/Out Box lets the user choose which view they want to see.

Note that view definitions for In Box items are opened by the In Box in a read-only
state. That is, if the view definition is of the type 'editor, the user won’t be able
to edit existing fields or write in new information. In other words, all child views
based on the clParagraphView class are read-only. However, views can receive
and respond to taps; that is, ViewClickScript messages are sent. If you want to
prevent your view definition from receiving all pen input, you can place a transparent
view of the clView class over the top of it to catch any taps.

Out Box items are opened in a writable state, if they are normally writable; that is,
the Out Box does nothing special to prevent editing if the view is editable. You may
want to make your out box items writable or not, depending on whether or not you
want the user to be able to change them in the out box.

You can use the newtEntryView method EntryCool to test if an item in the
In/Out Box is writable or not. This method returns nil for all In Box items, since
they are read-only.

Note also that application view definitions used in the In/Out Box must not expect
data defined within the context of the application.

For more information about writing and registering view definitions, refer to
Chapter 5, “Stationery.” Note that the In/Out Box does not need data definitions,
only view definitions.

View Definition Slots 21

View definitions to be used by the In/Out Box have other slots of interest besides
the target slot.

One other slot of interest is named fields. When the view is open, the fields
slot contains a reference to the In/Out Box entry. If the entry has a body slot and
the body slot contains a frame with a class slot, then the In/Out Box sets
target to the body slot of the entry. This allows view definitions written for your
application to be used by the In/Out Box without modification. If you need to

C H A P T E R 2 1

Routing Interface

21-36 Using Routing

access addressing or other information in the entry besides the actual data being
routed, look at the frame in the fields slot. However, use of the fields slot is
for special cases only and is generally discouraged. This is because it works only in
the In/Out Box, and so ties your stationery to it. If you need to use the fields slot
in your stationery, you should always check for the existence of this slot before
using it, and you must be able to handle the case where it is missing.

Also, view definitions to be used by the In/Out Box can have a rollScrolling
slot. This slot contains a Boolean value. If you set this slot to true, the view is
treated as a paper roll-based view that specifies its height. In this case, the In/Out
Box handles scrolling within the view for you, when the user taps the built-in scroll
arrows. If the rollScrolling slot is set to nil, scrolling functionality must be
provided by the view definition itself, typically with scroll arrows inside the view.

If the rollScrolling slot is set to true, the target item must have a height
slot that specifies the height of the item in pixels.

Note that the newtEditView proto sets the rollScrolling slot to true, and
is useful for creating a paper roll-based view definition.

Advanced Alias Handling 21
For sending data, an application may register a routing format that stores
a sent object as an alias in the In Box. In fact, you can set a slot, storeAlias, in
the routing format that allows this to happen. When such an object is to be sent by
the transport, the Routing interface automatically resolves the alias into the actual
object that is sent.

However, in some circumstances, you might want to provide your own custom
alias handling. For example, you might want to store an object in the In Box as a
complex frame consisting of some directly stored data and some slots that contain
aliases. In this case, you would override the routing format method
MakeBodyAlias to construct your own object.

When the system needs to access the item, such as when it is viewed in the In/Out
Box, it sends the message ResolveBody to the format. You must override this
method and use it to resolve the alias you constructed in the MakeBodyAlias
method.

Note that if the send operation fails, the Out Box continues to store the original
unresolved entry.

C H A P T E R 2 1

Routing Interface

Summary of the Routing Interface 21-37

Summary of the Routing Interface 21

Constants 21

ROM_RouteDeleteIcon // bitmap for delete icon
ROM_RouteDuplicateIcon // bitmap for duplicate icon

Data Structures 21

Item Frame 21

itemFrame := {
appSymbol: symbol, // appSymbol of sender
destAppSymbol: symbol,// receiving app, if different
body: frame, // the data to send
title: string, // item title, e-mail subject
toRef: array, // array of name refs for recipients
cc: array, // array of name refs for copied recipients
bcc: array, // array of name refs for blind copies
fromRef: frame, // name ref for sender
currentFormat: symbol,// routing format to use
connect: Boolean, // try to connect immediately?
hidden: Boolean, // hide in Out Box?
covert: Boolean, // not logged or saved in Out Box?
completionScript: Boolean, // notify app of state change?
needsResolve: Boolean, // body slot contains an alias?
// transport-specific slots
printer: frame, // printer frame; the printer to use
coverPage: Boolean, // use a cover page for fax?
faxResolution: symbol,// 'fine or 'normal fax resolution
phoneNumber: string, // phone number, for call transport
name: string, // name, for call transport
serviceProvider: symbol, // 'modem, 'speaker, or nil
saveAsLog: Boolean, // log call in Calls app?
}

C H A P T E R 2 1

Routing Interface

21-38 Summary of the Routing Interface

RouteScripts Array Element 21

RouteScriptsArrayElement := {
title: string, // string name of picker item
icon: bitmap object, // icon for picker item
appSymbol: symbol, // used if defined in a view def
RouteScript: symbol or function,// function called if this

 // action is chosen
GetTitle: function, // supplied instead of title slot
...
}

Protos 21

protoActionButton 21

aProtoActionButton := {
_proto: protoActionButton,
viewBounds : boundsFrame,
...
}

protoPrinterChooserButton 21

aPrinterChooserButton := {
_proto: protoPrinterChooserButton,
viewBounds : boundsFrame,
}

protoRoutingFormat, protoPrintFormat, and protoFrameFormat 21

aFormat := {
_proto: protoRoutingFormat, // or one of the other protos
type: 'routeFormat, // some ROMs also use 'printFormat
title: string, // name of format
symbol: symbol, // unique id - include signature
dataTypes: ['frame, 'text],// supports frame & text data
version: integer, // version number
auxForm: viewTemplate, // for auxiliary view
storeAlias: Boolean, // store alias?
showMessage: Boolean, // warn user when aliasing?
sizeLimit: integer, // maximum size without aliasing
storeCursors: Boolean, // store cursor to multiple items?
SetupItem: function, // puts target into item frame

C H A P T E R 2 1

Routing Interface

Summary of the Routing Interface 21-39

TextScript: function, // gets text data
TargetSize: function, // determines target size
MakeBodyAlias: function, // makes an alias
ResolveBody: function, // resolves alias body slot

// for protoPrintFormat variant only
dataTypes: ['view], // print formats support view data
usesCursors: Boolean, // handles multiple items on a page?
orientation: symbol, // 'portrait or 'orientation
margins: boundsFrame, // inset from edges
pageWidth: integer, // width of view
pageHeight: integer, // height of view
ViewSetupChildrenScript: function, // set up the children
PrintNextPageScript: function, // for multiple pages
GetCursorFormat: function, //returns format for next item
FormatInitScript: function, // initialization
CountPages: function, // counts pages for a fax
...
}

Functions and Methods 21

Send-Related Functions and Methods 21

Send(transportSym, item)
GetRouteFormats(item)
GetFormatTransports(formatArray, target)
app:GetDefaultFormat(transportSym, target)
app:SetDefaultFormat(transportSym, target, formatSym)
OpenRoutingSlip(item, targetInfo)

Cursor-Related Functions 21

CreateTargetCursor(class, dataArray)
GetTargetCursor(target, param2)
TargetIsCursor(target)

Utility Functions and Methods 21

AppInstalled(appSymbol)
ClassAppByClass(dataClass)
app:GetActiveView()

C H A P T E R 2 1

Routing Interface

21-40 Summary of the Routing Interface

GetItemTransport(item)
view:GetRouteScripts(targetInfoFrame)
RegAppClasses(appSymbol, dataClasses)
RegInboxApp(appSymbol, test)
TransportNotify(transportSym, message, paramArray)
UnRegAppClasses(appSymbol)
UnRegInboxApp(appSymbol)
UnRegTheseAppClasses(appSymbol, dataClasses)

Application-Defined Methods 21

app:AutoPutAway(item)
app:PutAwayScript(item)
app:ItemCompletionScript(item)
app:VerifyRoutingInfo(targetInfo, item)

About Transports 22-1

C H A P T E R 2 2

Transport Interface 22Figure 22-0
Table 22-0

This chapter describes the Transport interface in Newton system software. The
Transport interface lets you provide additional communication services to the system.

You should read this chapter if you are writing a low-level communication tool or
special endpoint that you want to make available as a transport for applications to
use. If you are writing only an application, you need only use the Routing interface
described in Chapter 21, “Routing Interface.”

This chapter describes how to

■ create a transport and make it available to the system

■ create a routing information template, for use by the In/Out Box

■ control the built-in status templates, if you need to provide status information to
the user

■ create a routing slip template, if your transport sends data

■ create a transport preferences template, if your transport has user-
configurable options

About Transports 22

A transport is a NewtonScript object that provides a communication service to the
Newton In/Out Box. It usually interfaces between the In/Out Box and an endpoint
(see Figure 1-2 on page 1-12), moving data between the two. This chapter describes
the transport object and its interface to the In/Out Box.

Applications interact with transports through the Routing interface and the In/Out
Box. The In/Out Box serves as the bridge between applications and transports,
neither of which knows about the other.

Most transports are visible as items in the Action picker menu. The transports
available in the picker are not specified directly by an application, but consist of all
the transports found that can handle the kind of data the application routes. Because
this menu is constructed dynamically, applications can take advantage of additional

C H A P T E R 2 2

Transport Interface

22-2 About Transports

transports that might be installed in the system at any time. An application need not
know anything about the transports available. Likewise, transports can be removed
from the system without any effect on applications.

Transport Parts 22
In writing a transport, you need to supply the following parts:

■ the transport object itself, created from protoTransport

■ an optional routing information template for the In/Out Box, created from
protoTransportHeader

■ an optional status template for displaying status information to the user, created
from protoStatusTemplate (if you don’t provide one, a default status view
is used)

■ a routing slip template for obtaining routing information from the user, created
from protoFullRouteSlip (used only for transports that send data)

■ a preferences template for user-configuration settings, created from
protoTransportPrefs (needed only for transports that have user-
configurable options that you want to store as preferences)

Item Frame 22
Anything sent or received through the In/Out Box by a transport is passed as a
single frame, called the item frame, though it may contain references to multiple
objects to send or receive. The frame can contain any number of slots. Some slots
are required, and others are optional. Some slots (body) have meaning only to the
application that created the item, others have meaning only to the In/Out Box itself,
and still others are reserved for the transport. You should ignore any slot not
documented, since it may be used internally.

The following are slots in the item frame that you should know about:

timestamp The time this item was submitted to the In/Out Box. For
e-mail transports and other kinds of transports where the sent
and received times are typically different, the transport
should set this slot to the time the item was originally sent,
for incoming items. For more information, see the section
“Setting the timeStamp Slot of an Item” (page 22-11). Other
transports or applications shouldn’t change this value.

appSymbol A symbol identifying the owner application. For an incoming
item, if this symbol is missing, or the application cannot be
located, the class slot inside the body frame is used to find
an application that can put away the item.

C H A P T E R 2 2

Transport Interface

About Transports 22-3

destAppSymbol Optional. A symbol identifying the application to receive the
item, if it is different from the sending application.
Applications that send data should set this slot to identify the
receiving application, if it is different from the sending one.
On the receiving side, the transport method NewFromItem
copies this value into the appSymbol slot of the received
item frame.

body The frame being sent (or references to the data). This is
supplied by the application. This can be a multiple-item
target object that references more than one data object to
send. All application-specific data should be stored within the
body slot.

title Optional. This string is used in the In/Out Box as the item’s
title. The transport may provide this for received items that
do not contain a data definition. If this slot is not provided,
the transport obtains a title from the item’s data definition.

remote A value interpreted as a Boolean. Any non-nil value
indicates an item whose body is stored remotely. The
transport must set this slot if it downloads just the title of an
item but leaves the body stored remotely. When the user tries
to view the item, the In Box alerts the transport to download
the body of the item from the remote host by sending it the
ReceiveRequest message.

connect A Boolean used for items to be sent. This slot is set to true
if the user chooses to send the item immediately with the
Send button in the routing slip. If the user chooses to send the
item later, this slot is set to nil. Note that this slot can also
be set by the format method SetupItem or the Send function.

error An integer error code; non-nil indicates an error. This is
usually set by ItemCompleted.

currentFormat A symbol identifying the selected format for this item.

hidden A Boolean; if true, the item is not displayed in the In/Out
Box. If set to true, the completionScript slot must also
be set to true and the application must have an
ItemCompletionScript method.

covert A Boolean; if true, the item is not logged or saved.

state A symbol indicating status: 'ready, 'sent, 'received,
'read, 'inLog, 'outLog, or 'pending. This is usually
set by ItemCompleted. Do not set this
slot directly.

C H A P T E R 2 2

Transport Interface

22-4 About Transports

completionScript
A Boolean; if true, the transport sends the
ItemCompletionScript message to the application when
the item’s state changes or when errors occur. For more
details on this mechanism, see the section “Completion and
Logging” beginning on page 22-16.

needsResolve A Boolean that is set to true if the body slot contains an
alias, rather than the actual data. This means that the format
method ResolveBody must be called before the item is sent.

For transports that need addressing information, this is usually encapsulated in
name references. A name reference is a frame that contains a soup entry or an
alias to one, usually from the Names soup, hence the term name reference. The
system includes built-in data definitions that can access name references, along
with associated view definitions to display the information stored in or referenced
by a name reference. For more information about using name references for
addressing information, see the section “Creating a Name Reference” beginning on
page 21-27. For more on name references in general, see “Name References”
(page 5-1) in Newton Programmer’s Reference.

The following slots in the item frame define the recipient and sender addresses:

toRef An array containing one or more name references used to
identify the recipient(s) of the item.

fromRef A frame containing a name reference that identifies the
sender. This information is usually extracted from the
sender’s current owner card, or current persona. The transport
normally sets this slot in its NewItem method. For more
information, see the section “Obtaining an Item Frame”
beginning on page 22-13.

cc An array containing one or more name references used to
identify recipients of copies of the item. Typically, this slot is
used by e-mail transports.

bcc An array containing one or more name references used to
identify recipients of blind copies of the item. Typically, this
slot is used by e-mail transports.

In addition, there may be other address slots used by some transports.

For a detailed description of all the item frame slots that are important to the Routing
interface, see “Item Frame” (page 18-1) in Newton Programmer’s Reference.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-5

Using the Transport Interface 22

This section describes how to use the Transport interface to perform these
specific tasks:

■ create a new transport object

■ create a routing information template, for use by the In/Out Box

■ control the built-in status template, if you need to provide status information to
the user

■ create a routing slip template, if your transport sends data

■ create a transport preferences template, if your transport has user-
configurable options

Providing a Transport Object 22
To make a new transport object, create a frame with a prototype of
protoTransport.

Transports are not built as applications, but are built as auto parts. This means that
when installed, they add their services to the system but do not add an application
to the Extras Drawer. (They are represented by an icon in the Extras Drawer, but
you can’t tap it to open it like you can an application icon.)

For a complete description of the protoTransport object, see “protoTransport”
(page 19-2) in Newton Programmer’s Reference.

The following subsections describe operations that a transport can perform, and
the methods that you must supply or call in your transport object to support
these operations.

Installing the Transport 22

To install a new transport in the system, call the RegTransport function from the
InstallScript function of your transport part and pass it the transport
appSymbol and transport template. The RegTransport function additionally
sends your transport object the InstallScript message; this message is
unrelated to the InstallScript function used by package parts. The
InstallScript message sent to your transport object lets the transport perform
initialization operations when it is installed.

C H A P T E R 2 2

Transport Interface

22-6 Using the Transport Interface

Here is an example of installing a transport in the part InstallScript function:

InstallScript := func(partFrame,removeFrame)
begin
RegTransport(kAppSym, partFrame.partData.(kAppSym));
// assumes that partData.(kAppSym) holds the transport
end;

When your transport is removed, use the UnRegTransport function to unregister
the transport from the system. You pass the UnRegTransport function the
transport appSymbol like this:

RemoveScript := func(removeFrame)
begin
UnRegTransport(kAppSym);
end;

If your transport is scrubbed by the user from the Extras Drawer, the system
also calls the DeletionScript function in its package part. In the
DeletionScript function, you should call the DeleteTransport function,
which removes user configuration information related to the transport. Here’s an
example of a DeletionScript function:

SetPartFrameSlot('DeletionScript,func(removeFrame)
begin
// delete prefs and other temporary data
DeleteTransport(kAppSym);
end)

Setting the Address Class 22

The transport object contains a slot, addressingClass, that holds a symbol.
This symbol identifies the class of the address information used by the transport,
such as that stored in the toRef and fromRef slots of an item. (See the section
“Item Frame” beginning on page 22-2.) The In/Out Box uses this symbol to look
up and display the to and from address information based on soup entries (usually
from the Names soup).

The class of address information is defined by name reference data definitions
registered in the system. You can specify one of the following built-in name
reference data definitions in the addressingClass slot:

■ '|nameRef.email|, for use with a transport that handles e-mail

■ '|nameRef.fax|, for use with a transport that handles fax phone calls

■ '|nameRef.phone|, for use with a transport that handles other phone calls

Or you can specify a custom name reference data definition that you have created
and registered with the system. Note that all name reference data definitions must
be registered under a symbol that is a subclass of 'nameref.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-7

The default setting of the addressingClass slot is the symbol
'|nameRef.email|

For more information about how to use name references for addressing information,
see the section “Creating a Name Reference” beginning on page 21-27. For more
on name references in general, see “Name References” (page 5-1) in Newton
Programmer’s Reference.

Grouping Transports 22

Two or more transports can be grouped together in the Action picker under a single
action. For example, there might be several different e-mail transports grouped
together under the single action “Mail.” The user selects a particular e-mail
transport from a picker supplied by the system in the routing slip, if there are
multiple transports registered for that group. (The picker doesn’t appear if there is
only one installed transport in the group.)

Each group of transports is identified by a common symbol, called the group
symbol. You indicate that your transport should be a member of a group by
specifying its group symbol in the group slot, its title in the groupTitle slot,
and its icon in the groupIcon slot. All transports in the same group should
specify the same group icon. This icon is shown in the Action picker for that
transport group. The individual transport icon (specified in the icon slot) is shown
in the routing slip when the transport is selected from the transport group picker.

You can use the following built-in bitmaps in the groupIcon slot of your transport,
if it belongs to one of the predefined groups. Here are the magic pointer constants:

After the user chooses a particular transport in a group from the picker in the
routing slip, the system remembers the last choice and sets the routing slip to that
choice when the user later chooses the same routing action from the Action picker.
If the user changes the transport in the routing slip group picker, the system closes
and reopens the routing slip for the current target item, since the routing slip may
be different for a different transport.

Before the routing slip is closed, it is sent the TransportChanged message. This
allows the routing slip to take any necessary action such as alerting the user that
addressing information might be lost as a result of changing transports. If
TransportChanged returns a non-nil value, the transport is not changed and

Group Icon bitmap constant
'mail ROM_RouteMailIcon

'print ROM_RoutePrintIcon

'fax ROM_RouteFaxIcon

'beam ROM_RouteBeamIcon

C H A P T E R 2 2

Transport Interface

22-8 Using the Transport Interface

the routing slip is not closed. If TransportChanged returns nil, then the
transport is changed and operations continue normally.

You can use the function GetGroupTransport to determine the name of the
current (last-used for sending by the user) transport in a group. Note that when you
install a grouped transport, it becomes the current transport for that group.

Transports that are part of a group are individually selectable on the Send, Receive,
and Preferences pickers in the In/Out Box.

Sending Data 22

The Out Box sends the SendRequest message to your transport when data needs
to be sent. If your transport supports sending data, you must define this method to
actually send the data. For a complete description of the SendRequest method,
see “SendRequest” (page 19-33) in Newton Programmer’s Reference.

The Out Box puts its own query information in the request frame argument to
SendRequest. Your SendRequest method must pass this frame to the
ItemRequest message to get the item (or next item) to send. In your
SendRequest method, keep calling ItemRequest until it returns nil,
signalling no more items to send. For a complete description of the ItemRequest
method, see “ItemRequest” (page 19-26) in Newton Programmer’s Reference.

If the body slot of an item originally contained an alias, the alias is automatically
resolved by ItemRequest. That is, items returned by ItemRequest always
contain a body slot that is not an alias.

Note that you can save entry aliases to items returned by ItemRequest, if you
want. Later, when using them, make sure that ResolveEntryAlias returns a
non-nil value, and that the item state slot is set as expected.

You can choose to comply with or ignore any request to send, depending on the
communication resources available and their status. If you choose to comply, your
SendRequest method must obtain one or more items from the Out Box by using
the ItemRequest method, and send them by whatever means the transport uses
to communicate. For example, most transports use the Endpoint interface to
establish and operate a connection.

If request.cause is 'submit, the item is queued in the Out Box for later sending,
but the Out Box still notifies the transport by sending it this SendRequest
message so that the transport knows there are items waiting to be sent. Typically, a
transport doesn’t need to take any immediate action on items where request.cause
is 'submit, so you can use code like this to simply return:

If request.cause = 'submit then return nil;

The item.connect slot contains a Boolean value indicating if the user chose to
send the item now (true) or later (nil).

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-9

After sending an item (successfully or unsuccessfully), you must call
ItemCompleted to inform the In/Out Box. If there was an error,
the ItemCompleted method informs the In/Out Box that an item was not sent.
ItemCompleted uses HandleError to inform the user of an error. If you want
to perform your own error notification, you can override the HandleError method.

Sending All Items 22

If your transport establishes a connection, and you want to take advantage of it to
send all queued items from the Out Box, you can send your transport the message
CheckOutbox. This method is defined in protoTransport and it causes the
In/Out Box to send your transport a SendRequest for all queued items waiting to
be sent. The SendRequest message sent back to your transport includes a request
argument in which the cause slot is set to 'user.

Applications can also send the CheckOutbox message directly to transports by
using the TransportNotify global function.

Note that a side effect of the CheckOutbox message is that if there is nothing to
send, an alert explaining that is displayed to the user. If you want to perform this
operation but avoid the alert in that case, you can use the function QuietSendAll.
This function causes the In/Out Box to send your transport a SendRequest for all
queued items waiting to be sent, however the cause slot of the SendRequest
request argument is set to 'periodic.

Converting an E-Mail Address to an Internet Address 22

If you are implementing a new e-mail transport that communicates with another
e-mail system, you may need to convert e-mail addresses from that system to
Internet-compatible addresses. The transport method NormalizeAddress allows
you to do this. You pass it a name reference containing an e-mail address, and it
returns a string containing an Internet-compatible e-mail address.

To register a new e-mail system so that it shows up on e-mail pickers throughout
the system and to register a conversion for Internet addresses, use the function
RegEmailSystem.

Receiving Data 22

The Out Box sends the ReceiveRequest message to your transport to request
the transport to receive items. If your transport supports receiving data, you must
define this method to receive it. For a complete description of the
ReceiveRequest method, see “ReceiveRequest” (page 19-32) in Newton
Programmer’s Reference.

The ReceiveRequest method takes one parameter, a frame containing a cause
slot whose value is a symbol.

C H A P T E R 2 2

Transport Interface

22-10 Using the Transport Interface

Some transports may ignore the ReceiveRequest message, since they receive
data continuously. Others may use this message as a trigger to initiate a connection.

You can choose to comply with or ignore any request to receive, depending on the
communication resources available and their status. If you choose to comply, the
ReceiveRequest method should establish a connection and begin receiving by
whatever means the transport uses to communicate. For example, many transports
use the Endpoint interface to establish and operate a connection. After receiving the
item, you should call the transport method NewFromItem to copy it into a
standard item frame used by the In/Out Box. Finally, you must call
ItemCompleted to write the item to the In Box.

If your transport creates virtual binary objects, you must use the method
GetDefaultOwnerStore to determine on which store to create them.

Note
The body slot within every received item must have a class slot
to identify its data class. Data objects received from other Newton
devices always have a class slot. For data received from other
systems, your transport must assign a meaningful class to the
item.body object. ◆

Deferring Reception of the Item Data 22

Some transports might want to download just part of an item initially, such as its
title, then download the actual item data when a user requests it. For example, upon
connection an e-mail transport might download just the titles of messages or other
data objects. When the user attempts to view one of these items in the In Box, the
transport then downloads the body of the item from the remote host.

This feature is accomplished by the use of the cause slot in the parameter passed
to the ReceiveRequest method, and by the use of a remote slot in the item frame.

If a transport initially downloads just a part of each item, such as its title, it must
insert a slot called remote, whose value is true in the item frame of those items.
This slot serves as a flag to tell the In/Out Box that the body of the item is stored
remotely and has not yet been downloaded.

When the user attempts to view one of these items in the In Box, the In Box sees
the remote slot, and sends the transport the ReceiveRequest message with the
'remote cause. This alerts the transport to download the body of the item from
the remote host. If the user selected multiple remote items for downloading, you
must use the ItemRequest method to retrieve subsequent requested items and
download them. Keep calling ItemRequest until it returns nil, which signals
that there are no more items to retrieve.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-11

After downloading all the remote data, you must refresh the In Box view, so the
items are updated. To do so, send the Refresh message to the application
identified by the ownerApp slot in the transport, like this:

ownerApp:Refresh();

Note
In Newton OS version 2.0, the ownerApp slot in the transport
must first be set up by using the NTK platform file function
kSetupOwnerAppFunc in the transport InstallScript
method. ◆

To delete partially downloaded (remote) items from the In Box, send the
RemoveTempItems message to the application identified by the ownerApp slot
in the transport, like this:

ownerApp:RemoveTempItems(transportSym);
// then refresh the in box view
ownerApp:Refresh();

Typically, after disconnecting, transports that handle remote items delete those
items from the In Box that the user has not chosen to fully download. Also, you
must send the Refresh message following RemoveTempItems.

Setting the timeStamp Slot of an Item 22

The timeStamp slot of the item frame holds the time that an item was submitted
to the In/Out Box. This slot is ordinarily set by the In/Out Box when an item is
received or submitted for sending. Many transports won’t need to do anything
special, but some transports must set this slot themselves. Such transports include
those that receive data that contains internal information about when an item was
sent, and where the time the item was sent typically differs from the time it was
received by the transport.

For example, this applies to most e-mail transports. Typically an e-mail message is
sent by a user to a mail system where it waits to be downloaded by a client transport
running on a Newton device. The time the item was originally sent always differs
from the time the item is eventually received by the Newton transport.

In this case, your transport will need to set the item.timeStamp slot to the time
the original mail was sent. You must decode this information however it is stored in
the mail message and set it in the item.timeStamp slot before you call the
ItemCompleted method. The timeStamp slot must contain the time in the
same format as returned by the Time function; that is, the number of minutes since
midnight, January 1, 1904.

If your transport sets the timeStamp slot, the In/Out Box does not override it.

C H A P T E R 2 2

Transport Interface

22-12 Using the Transport Interface

Handling Requests When the Transport Is Active 22

While the transport is actively sending or receiving data in the background, the user
might request another send or receive operation from the In/Out Box. One way to
handle such requests is to queue them up and append them to the current communi-
cation transaction or to start another connection when the transport is finished.

You can use the transport method QueueRequest to queue up requests for
sending or receiving, if the transport already has an active communication session
in progress. Call QueueRequest from the SendRequest or ReceiveRequest
method, whichever one you receive as a result of a user request.

Depending on how you call it, you can make QueueRequest append the new
request to a request in progress or start another connection when the current
request is finished. To append the new request to one in progress, for the first
parameter, specify the request frame of a request already in progress. A request
frame is the frame passed to SendRequest or ReceiveRequest to begin the
request in progress. The second parameter is the new request frame.

The following is an example of a SendRequest method in which
QueueRequest is called to append the new request to the one in progress.

// SendRequest method
func (newRequest)
begin
if status <> 'idle then // check if I’m active

// append to current request
:QueueRequest(currentRequest, newRequest);

else
// do a normal send here

end,

When a new request is appended to an in-progress request, items from the new
request are returned from the ItemRequest method after all items from the
in-progress request are exhausted. In this way, new items are sent as part of the
current communication session.

To queue a new request so that the transport finishes its current transaction before
beginning a new one, specify a symbol for the first parameter of QueueRequest.
The symbol should be the name of a method that you want the system to call when
the transport state returns to idle. Usually this is another SendRequest or
ReceiveRequest method. The following is an example of a SendRequest
method in which QueueRequest is called to defer a new request until the
transport returns to the idle state.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-13

// SendRequest method
func (newRequest)
begin
if status <> 'idle then // check if I’m active

// wait for idle and then call SendRequest again
:QueueRequest('SendRequest, newRequest);

else
// do a normal send here

end,

Canceling an Operation 22

The system sends the CancelRequest message to the transport when the user
cancels the current transaction or for other reasons, such as when the system wants
to turn off. This method must be defined by all transports.

When a transport receives this message, it must terminate the communication
operation as soon as possible.

The CancelRequest method should return non-nil if it is OK to turn off power
immediately after this method returns, or nil if it is not OK to turn off power
immediately. In the latter case, the system waits until your transport returns to the
idle state before turning off. This allows you to send an asynchronous cancel
request to your communication endpoint, for example, and still return immediately
from the CancelRequest method. When you receive the callback message from
your endpoint cancel request confirming cancellation, use the SetStatusDialog
method to set the transport status to idle to alert the system that it is OK to turn off.

Obtaining an Item Frame 22

The system sends the NewItem message to the transport to obtain a new item
frame to make a new In/Out Box entry.

This method is supplied by the protoTransport, but should be overridden by
your transport to fill in extra values your transport uses. If you override this
method, you must first call the inherited NewItem method, as shown in the
example below. The item frame returned by the NewItem method should contain
default values for your transport.

The item frame returned by the default method supplied in protoTransport is
not yet a soup entry. The item.category slot is initialized to the appSymbol
slot in your transport. For more information on the item frame, see the section
“Item Frame” beginning on page 22-2.

The NewItem message is sent to your transport during both send and receive
operations. When the user sends an item, the system sends the NewItem message
to the transport to create a new In/Out Box entry before opening a routing slip

C H A P T E R 2 2

Transport Interface

22-14 Using the Transport Interface

for the item. This allows the transport an opportunity to add its own slots to the
item frame.

Most transports will want to add a fromRef slot to the item frame. This slot must
contain a name reference that identifies the sender. This information is usually
extracted from the sender’s current owner card, or persona. You shouldn’t just use
the value of GetUserConfig('currentPersona) because it is simply an alias
to a names file entry. Instead, construct a name reference from this value. For example:

persona := GetUserConfig('currentPersona);
dataDef := GetDataDefs(addressingClass);
fromRef := dataDef:MakeNameRef(persona,addressingClass);

Most transports will want to extract and send only the needed information from the
fromRef name reference. For example, an e-mail transport would typically just
extract the sender name and e-mail address from the name reference and send them
as strings. One method of name reference data definitions that you can use to
extract useful information from a name card includes GetRoutingInfo. Here is
an example of using this method:

// extract just routing info using GetRoutingInfo
routeInfo:= datadef:GetRoutingInfo(fromRef);
// returns an array like this:
[{name: "Chris Smith", email: "cbsmith@apple.test.com"}]

The GetRoutingInfo method returns an array of at least one frame that has at
least a name slot containing a string. Depending on the addressingClass slot
passed to the GetDataDefs function, the returned frame also contains other
information particular to the type of address used for the transport. In the example
above, the frame also contains an email slot with an e-mail address.

If you want to add other slots to the fromRef frame, you can either define your
own name reference data definition and override the method
GetItemRoutingFrame (called by GetRoutingInfo), or add the slots you
want to the fromRef frame by extracting them from the original name reference
with the Get method. For example:

// use Get to extract info from certain slots
fromRef.myInfo := dataDef:Get(fromRef,'myInfo,nil);

Note that a sender may have multiple e-mail addresses and the transport should set
the e-mail address in the fromRef frame to the one that is appropriate to itself. For
example, for an internet e-mail transport, you would typically set the fromRef

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-15

e-mail address to the sender’s internet address. Here’s an example of code that sets
the appropriate e-mail address in the fromRef object:

owner:=ResolveEntryAlias(GetUserConfig('currentPersona));
if owner and GetRoot().cardfile then begin

addrs := GetRoot().cardfile:BcEmailAddress(owner,
['|string.email.internet|]);

if addrs then
fromRef := clone(addrs[0]);

end

You can find a description of BcEmailAddress and other similar functions that
extract information from Names soup entries in “Names Functions and Methods”
(page 16-5) in Newton Programmer’s Reference.

If, instead of extracting the address and sending it as a string, your transport sends
addressing information as a frame, like the beam transport, you must remove any
soup entry aliases from the name reference before it is transmitted. You can do
this by using the name reference data definition method PrepareForRouting,
as follows:

// strip the aliases from a name ref
fromRef := datadef:PrepareForRouting(fromRef);

In general, however, you should not send all the information in a user’s persona
with a message, since it can include personal or confidential information such as
credit card numbers.

For more information about name references and the methods of name reference
data definitions, see the section “Creating a Name Reference” beginning on
page 21-27, and “Name References” (page 5-1) in Newton Programmer’s
Reference.

The following is an example of how to override the NewItem method during a
send operation to add a fromRef slot:

// a sample overridden NewItem method
mytransport.NewItem := func(context) begin

// first call inherited method to get default frame
local item := inherited:NewItem(context);

// get sender info and insert fromRef slot
local persona:= GetUserConfig('currentPersona);
local dataDef := GetDataDefs(addressingClass);

C H A P T E R 2 2

Transport Interface

22-16 Using the Transport Interface

if dataDef then
begin
item.fromRef := dataDef:MakeNameRef(persona,

addressingClass);
// add other slots or extract routing info here
end;

item;
end;

During a receive operation, the transport itself must invoke the NewFromItem
method to get a new In/Out Box item frame. This method copies most slots from
the received item to the new In/Out Box item frame. Additionally, it inserts the
destAppSymbol slot value (if included) in the received frame into the appSymbol
slot in the new frame.

Finally, the transport should call ItemCompleted to register the item in the In
Box (see the following section).

Completion and Logging 22

After your transport finishes processing an item (either sending or receiving, with
or without errors), you must send the transport the message ItemCompleted.
This method must be used when an item is altered in any way. It performs several
operations, including setting the state and error status of the item; sending the
ItemCompletionScript callback message to the application; handling error
conditions; and saving, logging, or deleting the item, depending on the logging
preferences.

Send the ItemCompleted message only after your transport has completely
processed an item. If you send this message before you know that the item was
delivered successfully, for example, there’s a possibility that the item will be lost.

If ItemCompleted was called as the result of an error, it calls HandleError to
translate the error code and notify the user. If you want to perform your own error
notification, you can override the HandleError method.

Note that the ItemCompleted method in protoTransport sends the
ItemCompletionScript callback message to the application only if the item
contains a completionScript slot that is set to true. You must set this slot
if you want the callback message to be sent. For more information on
ItemCompletionScript see Newton Programmer’s Reference (page 18-33).

To perform logging, ItemCompleted sends your transport the message
MakeLogEntry, passing a log entry to which you can add slots. The
protoTransport object includes a default MakeLogEntry method, but you
should override this method to add transport-specific slots to the log entry.

The default method simply adds a title slot to the log entry. The
GetItemTitle transport method is called to get the title.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-17

Storing Transport Preferences and Configuration Information 22

Transports can store user-configurable preferences and other configuration
information. Typically, you store several chunks of data that correspond to
individual preferences or other kinds of configuration information that you want to
save for your transport. You must use the transport methods GetConfig and
SetConfig to retrieve and set configuration information for your transport.

Default preferences for a transport are set by the defaultConfiguration slot
in the transport object. This slot holds a frame containing values that correspond to
items in a preferences slip that lets the user set preferences for your transport. For
more information about displaying a preferences slip to the user, see the section
“Providing a Preferences Template” beginning on page 22-33.

If you don’t want to use this preferences dialog or the setting of the
defaultConfiguration slot in protoTransport, override the initial
setting by creating your own default preferences frame and including it in the
defaultConfiguration slot of your transport object. Note that you can’t
use a _proto slot in the default frame since the contents of the
defaultConfiguration slot are stored in a soup and _proto slots can’t be
stored in soup entries.

Extending the In/Out Box Interface 22

Your transport can extend the In/Out Box interface if items the transport handles
can be viewed in the In/Out Box. You can add additional actions to the In/Out Box
Tag picker in the In/Out Box. The In/Out Box Tag picker is displayed when the
user taps the Tag button in the In/Out Box, as shown here:

The In/Out Box Tag picker includes only the Put Away and Log items by default.
You can add other transport-dependent items by implementing the
GetTransportScripts method. For example, the picker shown above includes
Reply and Forward items added by an e-mail transport to let the user perform those
operations on e-mail directly in the In/Out Box.

When the user taps the Tag button, the system sends your transport the
GetTransportScripts message, if you’ve implemented it. This method must
return an array of frames that describe new items to be added to the In/Out Box Tag
picker. The array is exactly the same as the routeScripts array that adds items

Tag button

In/Out Box
Tag picker

C H A P T E R 2 2

Transport Interface

22-18 Using the Transport Interface

to the Action picker in an application. Here is an example of a return value that
adds two items to the picker:

[{title: "Reply", // name of action
icon: ROM_RouteReply, // picker icon
// called if action selected
RouteScript: func(target, targetView) begin ... end,
},
{title: "Forward", // name of action
icon: ROM_RouteForward, // picker icon
// called if action selected
RouteScript: func(target, targetView) begin ... end,
}]

The RouteScript slot contains a method that is called if the user selects that
item from the picker. Alternatively, in the RouteScript slot you can specify a
symbol identifying a transport method, and then supply your transport symbol in
another slot named appSymbol.

For more detailed information about the items in the array, see the section
“Providing Application-Specific Routing Actions” beginning on page 21-22.

For the icon slot of each frame in the array, you can specify an icon that appears
next to the name of the action in the picker. There are standard bitmaps available in
the ROM for the following actions:

■ reply, ROM_RouteReply

■ forward, ROM_RouteForward

■ add sender to the Names application, ROM_RouteAddSender

■ copy text to Notes application, ROM_RoutePasteText

If you are adding one of these actions, use the indicated magic pointer constant for
the standard bitmap, to keep the interface consistent among transports.

Also, when the user taps the Tag button, the system sends your transport the
CanPutAway message, if you’ve implemented it. This method allows your
transport to add a put away option for the item to the Put Away picker. This hook
allows a transport to put away items that could not otherwise be put away.
Remember that applications (or transports) that need to put away items must
implement the PutAwayScript method.

Whenever an item belonging to your transport is displayed in the In/Out Box, the
In/Out Box also sends your transport the IOBoxExtensions message. This hook
lets your transport add functionality to items in the In/Out Box by adding to the list
of view definitions available for an item.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-19

Application Messages 22

Applications can send messages directly to a single transport or to all transports by
using the TransportNotify global function. This mechanism serves as a
general way for applications to communicate with transports. Here is an example
of using this function:

TransportNotify('_all,'AppOpened,[appSymbol])

The In/Out Box uses this mechanism to send three different messages to transports:
AppOpened, AppClosed, and AppInFront. The AppOpened message notifies
the transport that an application has opened and is interested in data from the
transport. The In/Out Box sends this message to all transports when it opens. This
method is not defined by default in protoTransport since it’s transport-specific.
If you want to respond to the AppOpened message, you must define this method in
your transport.

This message is designed to support applications that might poll for data, such as a
pager. For example, when the application is open, it can notify the transport with
this message so that the transport can poll more frequently (and use more power)
than when the application is closed. Another use might be for an application to
notify a transport that automatically makes a connection whenever the application
is open.

The AppClosed message notifies the transport that an application has closed. The
In/Out Box sends this message to all transports when it closes. Again, this method
is not defined by default in protoTransport since there is no default action—
it’s transport-specific. If you want to respond to the AppClosed message, you
must define this method in your transport.

Note that more than one application can be open at a time in the system. If you
want your transport to do something like disconnect when it receives this message,
keep track of how many times it’s received the AppOpened message and don’t
actually disconnect until it receives the same number of AppClosed messages.

The AppInFront message notifies the transport of a change in the frontmost
status of an application—either the application is no longer frontmost, or it now is.
The In/Out Box sends this message to all transports when another application is
opened in front of the In/Out Box view, or when the In/Out Box view is brought to
the front. Note that the AppInFront message is not sent when an application is
opened or closed, so you need to check for the AppOpened and AppClosed
messages to catch those occurrences.

Again, this method is not defined by default in protoTransport since there is
no default action—it’s transport-specific. If you want to respond to the AppInFront
message, you must define this method in your transport. Not that this method is
used only in special circumstances and is not needed by most transports.

C H A P T E R 2 2

Transport Interface

22-20 Using the Transport Interface

Error Handling 22

The default exception handling method implemented by protoTransport is
HandleThrow, which catches and handles exceptions resulting from any supplied
transport methods such as SendRequest and ReceiveRequest. You must
provide your own exception handler for any methods that you define, or you can
pass them to HandleThrow, as follows:

try begin
... // do something
Throw();

onException |evt.ex| do
:HandleThrow();

end

When handling an exception, HandleThrow first calls IgnoreError to give
your transport a chance to screen out benign errors. If IgnoreError returns
true, HandleThrow returns nil and stops.

Assuming the error is not rejected by IgnoreError, HandleThrow next checks
to see if an item is currently being processed. If so, it sends your transport the
ItemCompleted message and returns true. Note that ItemCompleted calls
HandleError to display an error alert to the user. If no item is currently being
processed, HandleThrow sends the HandleError message itself to display an
error alert.

The HandleError method calls TranslateError to give your transport a
chance to translate an error code into an error message that can be displayed to the
user. If your transport can’t translate the error (for example, because it’s a
system-defined error) you should simply call the inherited TranslateError
method, which handles system-defined errors.

Power-Off Handling 22

The protoTransport object registers a power-off handler with the system
whenever the transport is not in the idle state. If the system is about to power off,
this power-off handler sends the transport the PowerOffCheck message.

The default PowerOffCheck method in protoTransport displays a slip
asking the user to confirm that it is OK to break the connection. Then, when the
power is about to be turned off, the system sends the transport the
CancelRequest message and waits until the transport is idle before turning the
power off.

You can override the default PowerOffCheck method if you wish.

There is also a power-on handler that sends a CancelRequest message to the
transport when the system turns on after shutting down unexpectedly while
the transport is active.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-21

Providing a Status Template 22
A status template for a transport is based on the proto protoStatusTemplate.
The status template displays status information to the user. A transport should
generally display a status view whenever it is sent the ReceiveRequest or
SendRequest messages.

You probably won’t need to create your own status template. The protoTransport
is defined with a default status template named statusTemplate (based on
protoStatusTemplate), which includes six predefined subtypes, described in
Table 22-1 and shown in Figure 22-1. Each subtype consists of a set of child views
that are added to the base status view. The base status view includes a transport
icon and a close box, to which different child views are added, depending on the
specified subtype name.

Table 22-1 Status view subtypes

Subtype name Important values Description

vStatus statusText (top string) A view that incorporates a status line.
This is the default subview created by
SetStatusDialog.

vStatusTitle statusText (top string),
titleText (lower string)

A view that incorporates a status line and
a line for the item’s title.

vConfirm statusText (top string),
primary (lower-button text
and method: {text:
string, script:
function}), secondary
(upper-button text and
method: {text: string,
script: function})

A view that has space for three lines of
text, and two buttons. This view is
suitable for situations where the user
must choose between two options.

vProgress statusText (top string),
titleText (lower string),
progress (integer,
percentage completed)

A view that incorporates status and title
lines, as well as a dog-eared page image
that fills from top to bottom, based on the
progress of the transfer.

vGauge statusText (top string),
titleText (lower string),
gauge (integer, percentage
completed)

A view that incorporates status and title
lines, as well as a horizontal gauge that
fills from left to right, based on the
progress of the transfer.

vBarber statusText (top string),
titleText (lower string),
barber (set to true)

A view that incorporates status and title
lines, as well as a horizontal barber
pole-like image that can be made to
appear to move from left to right.

C H A P T E R 2 2

Transport Interface

22-22 Using the Transport Interface

Figure 22-1 Status view subtypes

Each child view included in a subtype has one important value that controls the
appearance of that child element. For example, the vProgress subtype consists of
three child views that have these important values: statusText (the string
displayed at the top of the view), titleText (the string displayed at the bottom of
the view), and progress (an integer indicating the percentage of the page that
should be shown filled with black). The important values for each subtype appear in
Table 22-1. This information is necessary for use in the SetStatusDialog method.

A transport specifies the use of a subtype in the status view by passing the subtype
name in the name parameter to the SetStatusDialog transport method.
Transports can dynamically switch from one status subtype to another without
closing the status view, and can easily update the contents of the status view as well
(for example, updating the progress indicator).

vStatus

vStatusTitle

vProgress

vGauge

vConfirm

vBarber

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-23

Using this set of predefined status templates gives all transports a similar user
interface and matches the use of other status views throughout the system.

For more detailed information on protoStatusTemplate and the predefined
subtypes, refer to Chapter 17, “Additional System Services.”

Controlling the Status View 22

Your transport should display a status view to the user whenever it is engaged in
a lengthy activity such as sending or receiving data. In general, this means you
must display a status view as part of the processing you do whenever you receive
a SendRequest or ReceiveRequest message that results in the transmission
of data.

To display a status view, use the transport method SetStatusDialog. If the
autoStatus slot of the transport preferences frame is true, the status view
opens automatically when you send the SetStatusDialog message with a
status other than 'idle as the first parameter. If the status view is already open,
SetStatusDialog updates the status view with the new status information you
pass to it. If autoStatus is nil, the status view does not open because the user
has set a preference that it not be shown.

Here is an example of how to use the SetStatusDialog method:

:SetStatusDialog('Connecting, 'vStatus, "Looking for host...");

The SetStatusDialog method takes three parameters. The first is a symbol
indicating what the new transport status is. This is typically one of the slots in
the dialogStatusMsgs frame, such as 'Connecting, or 'Idle. The
second parameter is the name of the status subtype you want to use. You can
specify one of the built-in subtypes described in the previous section, or the
name of a custom subtype that you have constructed. (You specify the value of
the name slot in the subtype template.) For information on constructing
custom protoStatusTemplate view subtypes, see Chapter 17, “Additional
System Services.”

The third parameter is typically a frame that contains one or more slots of values.
Each slot corresponds to a single child view within the subtype you are using, and
it sets the value of that child view. A slot name is the value of the name slot in the
child view you are setting, and the value is whatever important value that type of
view uses. The slot names and the expected values for the predefined status
subtypes are listed in the “Important values” column in Table 22-1.

The following examples show how you’d use the SetStatusDialog method to
set the different status subtypes to create the status views shown in Figure 22-1.

C H A P T E R 2 2

Transport Interface

22-24 Using the Transport Interface

// vStatus subtype
:SetStatusDialog('Connecting, 'vStatus, "Looking for host...");

// vStatusTitle subtype
:SetStatusDialog('Connecting, 'vStatusTitle, {statusText: "Connecting
to host...", titleText: "Data set 4"});

// vConfirm subtype
:SetStatusDialog('Confirming, 'vConfirm, {statusText: "The host has a
new data set for you. Do you want to receive it now?",
secondary:{text:"Receive Data Set", script: func() ... },
primary:{text:"Disconnect Now", script: func() ... }});

// vProgress subtype
:SetStatusDialog('Sending, 'vProgress, {statusText: "Sending data
set...", titleText: "Data set 4", progress:40});

// vGauge subtype
:SetStatusDialog('Sending, 'vGauge, {statusText: "Sending data
set...", titleText: "Data set 4", gauge:40});

// vBarber subtype
:SetStatusDialog('Sending, 'vBarber, {statusText: "Sending data
set...", titleText:"Data set 4", barber:true});

Once the status view is open, each time you call SetStatusDialog, the system
closes and reopens all its child views. This is fairly fast, but if you just want to
update a progress indicator that is already visible in the subtypes vProgress,
vGauge, or vBarber, you can use the alternate method UpdateIndicator.
This protoStatusTemplate method updates the progress indicator child of the
status view: the page image for the vProgress subtype, the horizontal bar for the
vGauge subtype, and animation of the barber pole for the vBarber subtype.

For example, you’d use UpdateIndicator to update the vGauge subtype
as follows:

statusDialog:UpdateIndicator({name:'vGauge, values:{gauge: 50,}});

Note that the frame of data you pass to UpdateIndicator consists of two slots,
name and values, that hold the name of the subtype and the value(s) you want to
set, respectively. The values slot is specified just like the values parameter to
SetStatusDialog.

Also, note that UpdateIndicator is a method of protoStatusTemplate,
and you need to send this message to the open status view. A reference to the open
status view is stored in the statusDialog slot of the transport frame, so you can
send the message to the value of that slot, as shown above.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-25

The vBarber subtype shows a barber pole-like image, but it doesn’t animate
automatically. To make it appear to move, use the UpdateIndicator method in
a ViewIdleScript method, as shown here:

// create the initial vBarber status view
:SetStatusDialog('Sending, 'vBarber, {statusText: "Sending data
set...", titleText:"Data set 1", barber:true});

...
// set up the status view data frame
statusDialog.barberValueFrame:={name:'vBarber,values:{barber:true}};
...
// set up the idle script
statusDialog.ViewIdleScript:= func()

begin
:UpdateIndicator(barberValueFrame); // spin the barber
return 500; // idle for 0.5 seconds
end;

...
// start the idler
statusDialog:Setupidle(500);

If the autoStatus slot of the transport preferences frame is true, the status
view closes automatically when you send the SetStatusDialog message with
'idle as the first parameter.

You can force the status view to close manually by sending the transport the
message CloseStatusDialog. However, the next time you send the message
SetStatusDialog with a state other than 'idle as the first parameter, the
dialog reopens.

Providing a Routing Information Template 22
When viewing an item in the In/Out Box, the user can tap the transport icon to the
left of the item title to display a view that gives routing information about the item.
For example, for a fax item, the fax phone number is displayed; for a mail item, the
e-mail header is shown. Figure 22-2 (page 22-26) shows an example of a routing
information view.

You should create a template for a routing information view for your transport,
using protoTransportHeader. If you don’t specify a header view, your
transport uses the default view, which displays the item title, the transport icon and
name, and the item’s size in the In/Out Box soup (the first three elements in the
picture above).

C H A P T E R 2 2

Transport Interface

22-26 Using the Transport Interface

Figure 22-2 Routing information view

In your transport object, store a reference to your routing information template in
the transportInfoForm slot.

To add your own information to the routing information view, you can supply a
BuildText method. From BuildText, call the AddText method for each
additional line of text you want to add below the existing elements. Alternatively,
you can add child views to the routing information view.

If you do add additional lines or views to the routing information view that cause it
to increase in height, you must also set the addedHeight slot in the routing
information view or in your BuildText method (or anywhere before the inherited
ViewSetupFormScript method is called). In this slot, specify the number of
pixels by which you are increasing the height of the view.

The header view may include editable fields. If the user changes something in an
editable field, you probably want to know about it so that you can save the new
information or perform other operations. The InfoChanged message is provided
for this purpose. This message is sent to whatever object you designate when the
header view is closed.

Providing a Routing Slip Template 22
A transport uses a routing slip when sending an item in order to get all the informa-
tion necessary to transmit the item. Since the user interface for the routing slip is
provided by the transport, the application does not need to know anything about
what is required to send the item.

Tap
transport
icon next to

Routing
information
view is

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-27

Store a reference to your routing slip template in the routingSlip slot in your
transport object.

Use the protoFullRouteSlip template, described in the following section, to
create a routing slip.

One additional proto for use in routing slips is described in the section “Using
protoAddressPicker” (page 22-31).

Using protoFullRouteSlip 22

This routing slip proto already includes most of the elements required in a routing
slip. Figure 22-3 shows an example of this proto. For a complete description of the
slots and methods in this proto, see “protoFullRouteSlip” (page 19-38) in Newton
Programmer’s Reference.

Figure 22-3 protoFullRouteSlip view

The transport name and stamp icon in the upper-right corner of the routing slip are
automatically supplied. They are based on the transport.actionTitle and
transport.icon slots.

The format picker child in protoFullRouteSlip provides the picker list for
choosing among multiple formats. The current format is initially displayed. The
picker provides for opening an auxiliary view if one is associated with the current
format. This child view uses the currentFormat slot in the item (the
fields.currentFormat slot in the routing slip), a list of routing formats
compatible with the item, and the activeFormat slot in the routing slip to set up
the picker with the correct choices. These slots are set up by the system.

When the user picks another format, the activeFormat slot is updated, which
changes the format choice shown next to the label. Additionally, the
SetDefaultFormat message is sent to the application, and currentFormat in

Sender pop-up

Format picker

Send button

Cancel button

(Appears only if there are multiple formats)

This is a picker if there are multiple
transports in the group

C H A P T E R 2 2

Transport Interface

22-28 Using the Transport Interface

the item is updated. The format picker also sends the SetupItem message to the
format itself. If the format contains an auxForm slot, the view specified in the
auxForm slot opens when the format is selected.

The sender pop-up child view allows the sender of the item to select a different
owner persona or worksite from a picker, which might affect how the owner’s name
and address appear and how the item is sent. For example, if you choose a worksite
location with a different area code from your company worksite, and send a fax to
your company, the system automatically inserts a “1” and the company area code
before the phone number, which it wouldn’t do if you told the system you were at a
location in that area code.

The default owner name (or persona as it is sometimes called) shown by this picker
is the one corresponding to the last-used owner name for a routing operation. The
default worksite for the owner is the one corresponding to the last worksite used for
a routing operation, or the setting of the home location in the Time Zones
application (whichever was done last). Note that additional owner names and
worksites can be created by users in the Owner Info application.

The Send button child in protoFullRouteSlip provides the button that
actually sends the item to the Out Box, and can also activate the transport. When
tapped, the button may display a picker with the choices “Now” and “Later,” or it
may immediately send the item now or later. Its operation depends on the user
preference setting of the nowOrLater slot in the preferences configuration frame
described in Table 19-1 (page 19-7) in Newton Programmer’s Reference, and on
the return value of the transport ConnectionDetect method, which can force
the button to send now or later without displaying a picker.

The Send button also handles submitting multiple items to the Out Box when the
user has selected many entries from an overview. If the user has selected multiple
items but the transport cannot handle cursors (the allowBodyCursors transport
slot is nil), the system sends the transport the VerifyRoutingInfo method.
This method allows the transport to modify the individual items, if necessary.
When only a single item (not a multiple-item target object) is submitted to the Out
Box, VerifyRoutingInfo is not called. In this case, if you need to modify the
item before it is sent, you can do this in the routing slip method PrepareToSend.

The function of the Send button is to submit the contents of the fields slot in the
routing slip to the Out Box. (The fields slot holds the item being routed and
other information about it.) After the item is submitted, the Out Box sends the
transport the SendRequest message to alert it that an item is waiting to be sent. If
the cause slot in the request argument to SendRequest is set to 'submit, this
indicates the user chose to send the item later from the Send button. If the cause
slot is 'item, this indicates the user chose to send the item immediately.
Additionally, the connect slot in the item contains a Boolean value indicating if
the user chose to send the item now (true) or later (nil).

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-29

The name of the current transport appears in the upper-right corner of the
protoFullRouteSlip view. If that transport belongs to a group, the transport
name is actually a picker, from which the user can choose any of the other
transports in the group. The picker is displayed only if there is more than one
transport that belongs to the group. If the user changes the transport, the system
closes and reopens the routing slip for the current target item, since the routing slip
may be different for a different transport. Before the routing slip is closed, it is sent
the TransportChanged message. This allows the routing slip to take such
necessary action as alerting the user that addressing information might be lost as a
result of changing transports. For more information on grouped transports, see the
section “Grouping Transports” beginning on page 22-7.

Besides the supplied elements, your transport needs to add additional
transport-specific elements to the routing slip view. For example, transports are
responsible for adding the views that occupy the middle of the envelope area, to
obtain routing or addressing information for the item. And transports typically add
other elements to the area below the envelope. Figure 22-4 shows what a complete
routing slip might look like, after you add transport-specific items.

Figure 22-4 Complete routing slip

The middle of the envelope portion of a routing slip template typically includes a
view that gathers and displays recipient information for the item being sent. You’ll
probably want to use the protoAddressPicker to allow the user to choose
recipients for the item. For details on how to use this proto, see the section “Using
protoAddressPicker” beginning on page 22-31.

protoAddressPicker

C H A P T E R 2 2

Transport Interface

22-30 Using the Transport Interface

Positioning Elements in the Lower Portion of the Routing Slip 22

The height of the lower portion of the routing slip is controlled by the
bottomIndent slot. Placing your own user interface elements in this portion of
the routing slip is complicated by the fact that the format picker may or may not be
inserted by the system. It is included only if there is more than one format for the
item. Also, the system performs animation on the routing slip, changing the
location of the bottom bounds.

Any user interface elements you add to this portion of the routing slip must be
positioned relative to the bottom of the slip dynamically, at run time. You can
determine the position of the bottom of the slip by calling the routing slip method
BottomOfSlip. An alternative method of positioning elements dynamically is to
make them sibling bottom-relative to the last child of the routing slip proto, which
is the Send button.

Note that only the first child element you add needs to follow these rules.
Additional elements can be positioned sibling-relative to it.

Using Owner Information 22

The protoFullRouteSlip view sends the OwnerInfoChanged callback
method to itself if the user changes the selection of owner name or worksite
location in the sender pop-up view. The OwnerInfoChanged method provides
the chance to update any information in the routing slip that depends on data in the
sender’s current owner card or worksite. In addition, the fromRef slot in the item
will probably need to be updated with new sender information. For more informa-
tion about setting the fromRef slot, see the section “Obtaining an Item Frame”
beginning on page 22-13.

In your OwnerInfoChanged method, you can obtain any changes by checking
variables in which you are interested in the user configuration data, using the
GetUserConfig function. For example, the area code at the user’s location can
be found by using this code:

GetUserConfig('currentAreaCode);

For a list of variables in the user configuration data, see “User Configuration
Variables” (page 16-101) in Newton Programmer’s Reference.

One issue to consider when saving items in the Out Box for later transmission is
when to read the sender’s owner card and worksite information. In general, data
from the owner card should be obtained from the current persona at the time the
item is queued by the user. Such information might include the sender’s name,
return address, credit card information, and so on.

However, if you use worksite information (for example, for addressing), you may
want to wait until the item is actually transmitted to obtain the most current
information based on the user’s current worksite setting, and modify addressing

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-31

information at that time. For example, if a user queued several fax items from
home but didn’t send them until she got to work, the area code information for
telephone numbers might need to be changed.

Using protoAddressPicker 22

This proto consists of a labeled field that you can use in the routing slip to allow
the user to choose the recipient(s) of the item being sent. The first time the user
taps on the address picker, it opens a view that displays a list of names from the
Names file, from which the user can choose one or more recipients (Figure 22-5).

Figure 22-5 protoPeoplePicker view

This view uses the protoPeoplePicker to provide the name picking facility. The
address picker is customizable so that you can substitute a name picking service
other than protoPeoplePicker by setting the _picker slot. For example, an
e-mail transport might use this facility to provide an alternate directory service.

When the user picks a name, the information is saved, and the next time the address
picker opens, it displays a small picker with the saved name and the choice “Other
Names.” The user can choose “Other Names” to reopen the protoPeoplePicker
view and select from the comprehensive list of names. Each time a new name is
selected, it is saved and added to the initial address picker list, giving the user a
convenient way to select from recently used addresses, as shown in Figure 22-6.
The address picker remembers the last eight names selected.

C H A P T E R 2 2

Transport Interface

22-32 Using the Transport Interface

Figure 22-6 Address picker with remembered names

The Intelligent Assistant also interacts with the address picker. If the user invokes a
routing action such as “fax Bob” with the Intelligent Assistant, the Intelligent
Assistant sets up the address picker with a list of alternatives from the Names file,
as shown in Figure 22-7.

Figure 22-7 Address picker set up by Intelligent Assistant

The protoAddressPicker uses name references to refer to individual names. A
name reference is a frame that contains a soup entry or an alias to a soup entry,
usually from the Names soup, hence the term name reference. The system includes
built-in data definitions that can access name references and has associated view
definitions that can display the information stored in or referenced by a name
reference. The built-in data definitions and view definitions are registered under
subclasses of the symbol 'nameRef. For more information about name references,
see “Name References” (page 5-1) in Newton Programmer’s Reference.

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-33

Most transports can use the built-in name reference data and view definitions to
handle and display name references. For example, one place you might need to use
these is if you need to build a string representing the address or addresses chosen in
the protoAddressPicker. The selected slot of the protoAddressPicker
contains an array of name references for the names selected by the user in the picker.
You can use the name reference data definition method GetRoutingTitle to
return a string representing all the selected addresses, truncated to the length you
specify. Alternately, you can use the transport method GetNameText to do the
same thing.

Providing a Preferences Template 22
Transport preferences are accessed and changed from the information button in the
In/Out Box. (The information button is the small button with an “i” in it.) Each
transport with a preferences view is listed in the information picker, as shown in
Figure 22-8.

Figure 22-8 Information picker and preferences view

To make a preferences view for a transport, create a template with a prototype of
protoTransportPrefs. In your transport object, store a reference to your
preferences view template in the preferencesForm slot. When the information
picker is displayed, it automatically includes an item for each transport that has a
preferences template registered in the transport’s preferencesForm slot.

Each transport may add its own preferences view for configuring any options that
apply to that transport. Some common options include

■ enable/disable logging

■ deferred/immediate send

■ enable/disable listening

Information picker Preferences view

C H A P T E R 2 2

Transport Interface

22-34 Using the Transport Interface

■ default folders for new and read or sent items

■ show/hide status and progress dialogs

The protoTransportPrefs proto provides a dialog containing the preferences
items shown in Figure 22-9.

Figure 22-9 protoTransportPrefs view

You can selectively remove any of the elements shown above by setting the
corresponding slot to nil in the protoTransportPrefs view. To include
additional items in your preferences view, add child views to the
protoTransportPrefs view. The default child elements positioned in the center
of the view are added from the bottom up and are justified relative to the bottom of
the preferences view or to the top of their preceding sibling view. To add other
child elements, increase the height of the view and add your elements above the
existing ones, except for the title.

The protoTransportPrefs template also automatically checks your transport
and displays or hides the In/Out Box preference elements. If your transport does
not contain a SendRequest method, the Out Box preference element is not
displayed; if your transport does not contain a ReceiveRequest method, the In
Box preference element is not displayed. If the latter element is missing, the Out
Box element is automatically drawn at the bottom of the preferences view.

Controlled by 'silentPrefs slot

Controlled by 'sendPrefs slot

Controlled by 'outboxPrefs slot

Controlled by 'inboxPrefs slot

Controlled by 'infoPrefs slot

C H A P T E R 2 2

Transport Interface

Using the Transport Interface 22-35

For example, the built-in Print transport uses the protoTransportPrefs proto
for its preferences view. Since the ReceiveRequest method does not exist in
the Print transport, the In Box preference element is not displayed, as shown in
Figure 22-10.

Figure 22-10 Print preferences

The Info button is included in the protoTransportPrefs template so you can
give the user access to About and Help views for the transport. The button is built
from the standard protoInfoButton proto. To include items on the Info picker,
you must provide handler methods in the infoPrefs slot of your transport
preferences view. The protoTransportPrefs template includes a handler for
the “Help” item that displays the system help book, open to the routing section.
You’ll need to override this method if you want to provide your own help information.

You can add custom items to the Info picker by supplying GenInfoAuxItems
and DoInfoAux methods in the infoPrefs frame. For more information about
these methods and how the Info button works, see “protoInfoButton” (page 6-10)
in Newton Programmer’s Reference.

The defaultConfiguration slot in the protoTransport holds the initial
preferences associated with the transport. This slot is set up by default with a frame
holding an initial selection of preferences items. The child views of the
protoTransportPrefs proto are designed to manipulate the slots in this frame.

If you want to override the default preferences frame, you need to construct an
identical one with different values. You can’t use a _proto slot in your default
frame since the contents of the defaultConfiguration slot are stored in a
soup and _proto slots can’t be stored in soup entries.

C H A P T E R 2 2

Transport Interface

22-36 Summary of the Transport Interface

Summary of the Transport Interface 22

Constants 22

ROM_RouteMailIcon // bitmap for mail group icon
ROM_RoutePrintIcon // bitmap for print group icon
ROM_RouteFaxIcon // bitmap for fax group icon
ROM_RouteBeamIcon // bitmap for beam group icon
ROM_RouteReply // bitmap for reply action icon
ROM_RouteForward // bitmap for forward action icon
ROM_RouteAddSender // bitmap for add sender to Names icon
ROM_RoutePasteText // bitmap for copy text to Notes icon

Protos 22

protoTransport 22

myTransport := {
_proto: protoTransport, // proto transport object
appSymbol: symbol, // transport symbol
title: string, // transport name
dataTypes: array, // symbols for routing types supported
actionTitle: string, // name of transport action
icon: bitmapFrame, // transport icon
group: symbol, // transport group symbol
groupTitle: string, // group name
groupIcon: bitmapFrame, // group icon
routingSlip: viewTemplate, // routing slip template
transportInfoForm: viewTemplate, // routing info template
preferencesForm: viewTemplate, // preferences template
statusTemplate: viewTemplate, // status template
statusDialog: view, // status view
modalStatus: Boolean, // modal status dialogs?
dialogStatusMsgs: frame, // status strings
status: symbol, // current status
addressingClass: symbol, // name reference symbol
addressSymbols: array, // don’t translate e-mail classes
allowBodyCursors: Boolean, // allow cursors in body slot?
defaultConfiguration: frame, // user preferences defaults
AppClosed: function, // notifies transport of app closing

C H A P T E R 2 2

Transport Interface

Summary of the Transport Interface 22-37

AppInFront: function, // notifies transport of change in
app frontmost status

AppOpened: function, // notifies transport of app opening
CancelRequest: function, // cancels in-progress operation
CanPutAway: function, // put away hook for transport
CheckOutbox: function, // invokes SendRequest operation
CloseStatusDialog: function, // closes status dialog
ConnectionDetect: function, // force send now or later
GetConfig: function, // returns a prefs value
GetDefaultOwnerStore: function, // returns default store
GetFolderName: function, // gets folder name for item
GetFromText: function, // hook to supply item sender
GetItemInfo: function, // returns item to or from info
GetItemStateString: function, // returns item status string
GetItemTime: function, // returns item time stamp info
GetItemTitle: function, // returns item title
GetNameText: function, // returns name string from namerefs
GetStatusString: function, // returns transport status
GetTitleInfoShape: function, // returns info shape
GetToText: function, // hook to supply item recipient(s)
GetTransportScripts: function,// extends In/Out Box actions
HandleError: function, // displays error alert
HandleThrow: function, // handles exceptions
IgnoreError: function, // screens errors
InstallScript: function, // notification of installation
IOBoxExtensions: function, // extends In/Out Box view defs
IsInItem: function, // is item in the In or Out Box?
IsLogItem: function, // has item been logged?
ItemCompleted: function, // processes an item
ItemDeleted: function, // called when item is deleted
ItemDuplicated: function, // called when item is duplicated
ItemPutAway: function, // called after item is put away
ItemRequest: function, // gets next queued item
MakeLogEntry: function, // makes log entry
MissingTarget: function, // notification of missing target
NewFromItem: function, // gets item frame for received data
NewItem: function, // gets new item frame
NormalizeAddress: function, // translates e-mail address
PowerOffCheck: function, // notification of power-off
QueueRequest: function, // queues item for later handling
ReceiveRequest: function, // receives data
SendRequest: function, // sends data
SetConfig: function, // sets a prefs value
SetStatusDialog: function, // opens/updates status dialog

C H A P T E R 2 2

Transport Interface

22-38 Summary of the Transport Interface

TranslateError: function, // returns a string translation
VerifyRoutingInfo: function, // called on send of multiple

// item target that is being split
...
}

protoTransportHeader 22

aHeader := {
_proto: protoTransportHeader, // proto header object
transport: frame, // transport object
target: frame, // target object
addedHeight: integer, // height you’re adding to header
context: view, // view to notify with InfoChanged msg
changed: Boolean, // user changed a field?
BuildText: function, // builds additional header lines
AddText: function, // adds lines to header
InfoChanged: function, // notifies view of changed field
...
}

protoFullRouteSlip 22

aFullRoutingSlip := {
_proto: protoFullRouteSlip, // proto full routing slip
viewJustify: integer, // viewJustify flags
envelopeHeight: integer, // height of envelope portion
envelopeWidth: integer, // width of envelope portion
bottomIndent: integer, // height of lower portion
fields: frame, // item frame
target: frame, // target object
activeFormat: frame, // currently selected format
transport: frame, // transport object
formatPicker: frame, // the format picker child view
sendButton: frame, // the send button child view
BottomOfSlip: function, // returns bottom of slip
FormatChanged: function, // notifies slip of new format
OwnerInfoChanged: function, // notifies slip of new sender
PrepareToSend: function, // notifies slip when item is sent
ContinueSend: function, // continues send process
TransportChanged: function, // notifies of transport change
...
}

C H A P T E R 2 2

Transport Interface

Summary of the Transport Interface 22-39

protoAddressPicker 22

anAddressPicker := {
_proto: protoAddressPicker, // address picker
viewBounds: boundsFrame, // location and size
text: string, // picker label
otherText: string, // last item (pops up people picker)
selected: array, // name refs to be initially selected
alternatives: array, // name refs to be shown in picker
class: symbol, // name ref data def class
_picker: viewTemplate, // picker for other addresses
...
}

protoTransportPrefs 22

myTransportPrefs := {
_proto: protoTransportPrefs, // transport prefs proto
viewBounds: boundsFrame, // location and size
title: string, // transport name
appSymbol: symbol, // transport appSymbol
silentPrefs: frame, // controls checkbox element in prefs
sendPrefs: frame, // controls send element in prefs
outboxPrefs: frame, // controls out box prefs element
inboxPrefs: frame, // controls in box prefs element
infoPrefs: frame, // defines more info button choices
...
}

Functions and Methods 22

Utility Functions 22

RegTransport(symbol, transport)
UnRegTransport(symbol)
DeleteTransport(symbol)
GetCurrentFormat(item)
GetGroupTransport(groupSymbol)
QuietSendAll(transportSym) // platform file function
ownerApp:Refresh()
ownerApp:RemoveTempItems(transportSym)

About the Endpoint Interface 23-1

C H A P T E R 2 3

Endpoint Interface 23Figure 23-0
Table 23-0

This chapter describes the basic Endpoint interface in Newton system software.
The Endpoint interface allows you to perform real-time communication using any
of the communication tools available in the system. The Endpoint interface is well
suited for communication needs such as database access and terminal emulation.

You should read this chapter if your application needs to perform real-time
communications—that is, communication operations that do not use the Routing
and Transport interfaces described in the previous chapters. This chapter describes
how to

■ set options to configure the underlying communication tool

■ establish a connection

■ send and receive data

■ set up an input specification frame to control how data is received

■ cancel communication operations

This chapter describes the general approach to using the Endpoint interface, but
does not discuss details specific to using individual communication tools. For
specific details on using particular built-in communication tools, see Chapter 24,
“Built-in Communications Tools.”

About the Endpoint Interface 23

The Endpoint interface is based on a single proto—protoBasicEndpoint—
which provides a standard interface to all communication tools (serial, modem,
infrared, AppleTalk, and so on). This proto provides methods for

■ interacting with the underlying communication tool

■ setting and getting endpoint options

■ opening and closing connections

■ sending and receiving data

C H A P T E R 2 3

Endpoint Interface

23-2 About the Endpoint Interface

The endpoint object created from this proto encapsulates and maintains the details
of the specific connection. It allows you to control the underlying communication
tool to perform your communication tasks.

The Endpoint interface uses an asynchronous, state-driven communications model.
In asynchronous operation, communication requests are queued, and control is
returned to your application after each request is made but before it is completed.
Many endpoint methods can also be called synchronously. In synchronous operation,
execution of your application is blocked until the request completes; that is, the
endpoint method does not return until the communication operation is finished.

The Endpoint interface supports multiple simultaneous connections. That is, you
can have more than one active endpoint at a time. Each endpoint object controls an
underlying communication tool, and these tools run as separate operating system
tasks. However, remember that the endpoint objects you create and control all
execute within the single Application task.

The number of simultaneously active endpoints you can use is limited in practice
by available system memory and processor speed. Each communi-
cation tool task requires significant memory and processor resources. Note that
memory for the communication tools that underlie endpoints is allocated from the
operating system domain, whereas memory for the endpoint objects is allocated
from the NewtonScript heap.

Asynchronous Operation 23
Almost all endpoint methods can be called asynchronously. This means that calling
the method queues a request for a particular operation with the underlying communi-
cation tool task, and then the method returns. When the operation completes, the
communication tool sends a callback message to notify the endpoint that the
request has been completed. The callback message is the CompletionScript
message, and it is defined by your application in a frame called the callback
specification, or callback spec. (For more details, see “Callback Spec Frame”
(page 20-9) in Newton Programmer’s Reference.)

You define the callback spec frame in your application and pass it as an argument
to each endpoint method you call asynchronously. The callback spec frame
contains slots that control how the endpoint method executes, and it contains a
CompletionScript method that is called when the endpoint operation
completes. The CompletionScript method is passed a result code parameter
that indicates if the operation completed successfully or with an error.

A special type of callback spec, called an output spec, is used with the Output
method. An output spec contains a few additional slots that allow you to pass
special protocol flags and to define how the data being sent is translated. Output
specs are described in “Output Spec Frame” (page 20-10) in Newton Programmer’s
Reference.

C H A P T E R 2 3

Endpoint Interface

About the Endpoint Interface 23-3

This kind of asynchronous operation lends itself nicely to creating state-machine
based code, where each part of the communication process is a state that is invoked
by calling an endpoint method. The CompletionScript method of each state
invokes the next state, and the state machine automatically progresses from one
state to the next in a predefined fashion.

Synchronous Operation 23
Many endpoint methods can be called synchronously as well as asynchronously.
Synchronous operation means that invoking a method queues a request for a
particular operation with the underlying communication tool task, and the method
does not return until the operation is completed. This means that your application is
blocked from execution until the synchronous method returns.

Only a few endpoint methods must be called synchronously. Most can be called
either asynchronously or synchronously. For methods that can be called in either
mode, it is recommended that you use the asynchronous mode whenever possible.
If you call such a method synchronously, the communication system spawns a
separate task associated with the method call, while putting your application task
on hold. This results in higher system overhead and can reduce overall system
performance if you use many synchronous method calls.

Input 23
In the Endpoint interface, you receive data by defining a frame called an input
specification, or input spec, and then waiting for input. The input spec defines how
incoming data should be formatted, termination conditions that control when the
input should be stopped, data filtering options, and callback methods. The main
callback method is the InputScript method, which is passed the received data
when the input operation terminates normally. Receiving data with the Endpoint
interface is always asynchronous.

Here is an overview of the way you can use input spec methods to obtain the
received data:

■ Let the termination conditions specified in the input spec be triggered by the
received data, thus calling your InputScript method. For example, when a
particular string is received, the InputScript method is called.

■ Periodically sample incoming data by using the input spec PartialScript
method, which is called periodically at intervals you specify in the input spec.

■ Cause the system to send the InputScript callback method by using the
Input method. This immediately returns the contents of the input buffer and
clears it.

■ Immediately return the input buffer contents without terminating the active input
spec and without clearing the buffer by using the Partial method.

C H A P T E R 2 3

Endpoint Interface

23-4 About the Endpoint Interface

If the input operation terminates normally—that is, the InputScript method is
called—the system automatically reposts the input spec for you to receive
additional input. Of course, you can alter this process if you want to.

Data Forms 23
All NewtonScript data needs to be transformed whenever it is sent to or received
from a foreign environment. That foreign environment may be a server or host
computer at the other end of the connection, or it may even be the communication
tool that’s processing the configuration options you've passed to it. Typically,
communication tools expect C-type option data.

Whether you’re sending, receiving, or using data to set endpoint options, you can
tag the data with a data form. A data form is a symbol that describes the transfor-
mations that need to take place when data is exchanged with other environments.
When you send data or set endpoint options, the data form defines how to convert
the data from its NewtonScript format. When you receive data or get endpoint
options, the data form defines the type of data expected.

Data forms are used in output specs, input specs, and endpoint option frames. The
data form is defined by a slot named form in these frames. If you don't define the
data form in a particular case, a default data form is used, depending on the type of
operation and the type of data being handled.

Note that when sending data, you can take advantage of the default data forms by
not explicitly specifying a data form. Because NewtonScript objects have type
information embedded in their values, the system can select appropriate default
data forms for different kinds of data being sent. For example, if you send string
data and don’t specify the data form, the 'string data form is used by default.

The symbols you use to indicate data forms are 'char, 'number, 'string,
'bytes, 'binary, 'template, and 'frame. Each is best suited to certain data
and operations.:

■ For simple scalar values, use 'char for characters and 'number for integers.

■ For semi-aggregate forms of these kinds of data, use 'string for a
concatenation of characters plus a terminating byte, and use 'bytes for an
array of bytes.

■ For binary data, use 'binary. This is the fastest option for sending and
receiving, since the data processing is minimal.

■ For more complex data, there are two aggregate data forms. You may want to
use the 'template form if you're communicating with a remote procedure call
service that expects C-type data and that follows the exact same marshalling
restrictions the Newton does. The 'frame form is convenient if you're
exchanging frames with another Newton.

C H A P T E R 2 3

Endpoint Interface

About the Endpoint Interface 23-5

The different types of data forms and the defaults are described in more detail in
“Data Form Symbols” (Table 20-1 on page 20-2) in Newton Programmer’s
Reference.

Only a subset of data form values is applicable for any particular operation.
Table 23-1 enumerates the data forms and their applicability to output specs, input
specs, and endpoint option frames.

Template Data Form 23

The 'template data form enables you to pass data as if you were passing C
structures, and is thus extremely useful in communicating with the lower level
communication tools in getting and setting endpoint options.

When you set options or send data using the 'template data form, the data is
expected to be a frame containing two slots, arglist and typelist. The
arglist slot is an array containing the data, the list of arguments. The typelist
slot is a corresponding array containing the types that describe the data.

To get endpoint options, the data in the data slot must be a frame containing the
arglist and typelist arrays. The arglist array should contain placeholder
or default values. The system supplies the actual arglist values when the option
list is returned.

In the same manner, to receive data, you must add a target slot to your input
spec containing the arglist and typelist arrays. The arglist array contains

Table 23-1 Data form applicability

Data form Output spec Input spec Option frame

'char default for characters OK OK

'number default for numbers OK OK

'string default for strings default OK

'bytes OK OK OK

'binary default for binary objects;
output spec can include
optional target slot

OK; input spec
must include
target slot

OK

'template OK OK; input spec
must include
target slot

default

'frame OK OK not applicable

C H A P T E R 2 3

Endpoint Interface

23-6 About the Endpoint Interface

placeholder or default values, which the system fills in when the data is received.
For more information, see the section “Specifying the Data Form and Target”
beginning on page 23-13.

The data types that can be used in the typelist array are identified by these
symbols: 'long, 'ulong, 'short, 'byte, 'char, 'unicodechar,
'boolean, 'struct, and 'array. They are described in detail in “Data Type
Symbols” (Table 20-2 on page 20-3) in Newton Programmer’s Reference.

Note that the 'struct and 'array data types are not used alone, but in
conjunction with other elements in a typelist array. They modify how the other
elements are treated. The 'struct data type defines the array as an aggregate
structure of various data types that is padded to a long-word boundary (4 bytes in
the Newton system). Note that the whole structure is padded, not each array
element. You must specify the 'struct data type in order to include more than
one type of data in the array.

The 'array data type defines the array as an aggregate array of one or more
elements of a single data type. The 'array data type is specified as a NewtonScript
array of three items, like this:

['array, dataTypeSymbol, integer]

Replace the dataTypeSymbol with one of the other simple data types. And integer is
an integer specifying the number of units of that data type to convert. To convert an
entire string, including the terminator, specify zero for integer. A nonzero value
specifies the exact number of units to be converted, independent of a termination
character in the source string.

Here are some examples of how to use the 'array data type to represent C strings
and Unicode strings in NewtonScript. The first example shows how to convert
between a NewtonScript string of undefined length and a C string (translated
to/from Unicode):

['array, 'char, 0]

This example shows how to convert a four-character NewtonScript string to a C string:

['array, 'char, 4]

This example shows how to convert between a NewtonScript string and a
Unicode string:

['array, 'unicodechar, 0]

The 'template data form is intended primarily as a means of communicating
with the lower level communication tools in the Newton system. You can use this
data form to communicate with a remote system, however, you must be careful and
know exactly what you are doing to use it for this purpose. Remember that the
lengths of various data types and the byte order may be different in other systems
and may change in future releases of the Newton operating system.

C H A P T E R 2 3

Endpoint Interface

About the Endpoint Interface 23-7

Endpoint Options 23
You configure the communication tool underlying an endpoint object by setting
endpoint options. An endpoint option is specified in an endpoint option frame that
is passed in an array as an argument to one of the endpoint methods. Options select
the communication tool to use, control its configuration and operation, and return
result code information from each endpoint method call. An alternative way to set
options is to directly call the endpoint Option method.

There are three kinds of options you can set, each identified by a unique symbol:

■ 'service options, which specify the kind of communication service, or tool,
to be controlled by the endpoint

■ 'option options, which control characteristics of the communication tool

■ 'address options, which specify address information used by the
communication tool

For details on the particular options you can use with the built-in communication
tools, see Chapter 24, “Built-in Communications Tools.”

Compatibility 23
The protoBasicEndpoint and protoStreamingEndpoint objects and all
the utility functions described in this chapter are new in Newton system software
version 2.0. The protoEndpoint interface used in system software version 1.x is
obsolete, but still supported for compatibility with older applications. Do not use
the protoEndpoint interface, as it will not be supported in future system
software versions.

Specific enhancements introduced by the new endpoint protos in system software
2.0 include the following:

■ Data forms. You can handle and identify many more types of data by tagging it
using data forms specified in the form slot of an option frame.

■ Asynchronous behavior and callback specs. Most endpoint methods can now
be called asynchronously.

■ Flexible input specs. Enhancements include support for time-outs and the
ability to specify multiple termination sequences.

■ Better error handling. Consistent with other system services, errors resulting
from synchronous methods are signaled by throwing an exception.

■ Binary data handling. The way binary (raw) data is handled has changed
significantly. For input, you can now target a direct data input object, which
results in significantly faster performance. For output, you can specify offsets
and lengths, which allows you to send the data in chunks.

C H A P T E R 2 3

Endpoint Interface

23-8 Using the Endpoint Interface

■ Multiple communication sessions. The system now supports multiple
simultaneous communication sessions. In other words, you can have more than
one active endpoint at a time.

Using the Endpoint Interface 23

This section describes

■ setting endpoint options

■ initializing and terminating an endpoint

■ establishing a connection

■ sending data

■ receiving data

■ sending and receiving streamed data

■ working with binary data

■ canceling operations

■ handling errors

■ linking the endpoint with an application

Setting Endpoint Options 23
Endpoint options are specified in an endpoint option frame that is passed as an
argument to an endpoint method. Typically you specify an array of option frames,
setting several options at once. Note that you cannot nest an option array inside
another one.

You must specify a single 'service option, to select a communication tool. Then
you usually specify one or more 'option options to configure the communication
tool—for example, to set the baud rate, flow control, and parity of the serial tool.
Note that if you are using the modem communication tool, you can use the utility
function MakeModemOption to return a modem dialing option for use with the
built-in modem tool.

You may also need to specify an 'address option, depending on the communi-
cation tool you are using. The only built-in tools that use an 'address option are
the modem and AppleTalk tools. Note that you should use the global functions
MakePhoneOption and MakeAppleTalkOption to construct 'address
options for the modem and AppleTalk tools.

The slots in an endpoint option frame are described in detail in “Endpoint Option
Frame” (page 20-7) in Newton Programmer’s Reference.

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-9

All option data you set gets packed together into one block of data. Each option
within this block must be long-word aligned for the communication tools. So,
when using the 'template data form, you need to use the 'struct type (at the
beginning of the typelist array) to guarantee that the option is long-word
aligned and padded. To set the serial input/output parameters, for instance, the
option frame might look like this:

serialIOParms := {
type: 'option,
label: kCMOSerialIOParms,
opCode: opSetNegotiate,
data: {

arglist: [
kNoParity, // parity
k1StopBits, // stopBits
k8DataBits, // dataBits
k9600bps, // bps

],
typelist: [

'struct,
'uLong,
'long,
'long,
'long

]
}

};

To get the connection information, the option frame you construct might look like this:

connectInfoParms := {
type: 'option,
label: kCMOSerialIOParms,
opCode: opGetCurrent,
data: {

arglist: [
0, // parity placeholder
0, // stopBits placeholder
0, // dataBits placeholder
0, // bps placeholder

],
typelist: [

'struct,
'ulong,
'long,

C H A P T E R 2 3

Endpoint Interface

23-10 Using the Endpoint Interface

'long,
'long

]
}

};

When you set endpoint options, the cloned option frame is returned to you so that
you can check the result codes for individual options. If you set options with an
asynchronous method call, the cloned option frame is returned as a parameter to
the CompletionScript callback method. If you set options with a synchronous
method call, the cloned option frame is returned as the value of the synchronous
method itself.

The result slot in each option frame is always set for returned options. It can be
set to any of the error codes listed in “Option Error Code Constants” (Table 20-5
on page 20-5) in Newton Programmer’s Reference. If an option succeeds without
errors, the result slot is set to nil.

Exceptions are not thrown when individual options fail. This allows a request to
succeed if, for example, every specified option except one succeeds. If you need to
determine whether a particular option succeeds or fails, you must check the
result slot of the option in question.

Note that in one array of option frames, you can specify options that are of the
same type, and that seem to conflict. Since options are processed one at a time, in
order, the last option of a particular type is the one that is actually implemented by
the communication tool.

Note
When instantiating an endpoint for use with the modem tool, you
can have options specified by the options parameter to the
Instantiate method, as well as options specified by a modem
setup package (see Chapter 25, “Modem Setup Service.”). Any
options from a modem setup package are appended to those set by
the Instantiate method. ◆

For details on the specific options you can set for the built-in communication tools,
see Chapter 24, “Built-in Communications Tools.”

Initialization and Termination 23
Before using an endpoint, you must instantiate it using the Instantiate method.
This method allocates memory in the system and creates the endpoint object.
Then, you must bind the endpoint object to the communication hardware by calling
the Bind method. This allocates the communication tool resources for use by
the endpoint.

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-11

When you are finished with an endpoint, you must unbind it using the UnBind
method, then dispose of it using the Dispose method.

Establishing a Connection 23
After instantiating and binding an endpoint, you establish a connection.

There are two ways you can create a connection. One way is to call the Connect
method. If the physical connection is serial, for instance, you don't even need to
specify an address as an option. The Connect method immediately establishes
communication with whatever is at the other end of the line.

Certain communication tools—for example, the modem and AppleTalk tools—
require you to specify an option of type 'address in order to make a connection.
The modem tool requires a phone number as an 'address option. You should
use the global function MakePhoneOption to return a proper phone number
'address option. The AppleTalk tool requires an AppleTalk Name Binding
Protocol (NBP) 'address option. You should use the global function
MakeAppleTalkOption to return a proper NBP 'address option.

To establish a connection where you expect someone else to initiate the connection,
you need to call the Listen method. Once the connection is made by using
Listen, you need to call the Accept method to accept the connection, or the
Disconnect method to reject the connection and disconnect.

Sending Data 23
To send data, use the Output method. This method is intelligent enough to figure
out the type of data you're sending and to convert it appropriately for transmission.
This is because NewtonScript objects have type information embedded in their
values, allowing the system to select appropriate default data forms for different
kinds of data being sent.

You can specify output options and a callback method by defining an output spec,
which you pass as a parameter to the Output method.

Certain communication tools may require or support the use of special flags
indicating that particular protocols are in use. For example, the built-in infrared and
AppleTalk tools expect framed (or packetized) data, and there are special flags to
indicate that this kind of protocol is in use. If you are using such a communication
tool to send data, you need to specify the sendFlags slot in the output spec
frame. In this slot, you specify one or more flag constants added together.

To send packetized data, you set sendFlags to kPacket+kMore for each packet
of data that is not the last packet. For the last packet, set sendFlags to
kPacket+kEOP.

C H A P T E R 2 3

Endpoint Interface

23-12 Using the Endpoint Interface

Receiving Data Using Input Specs 23
The most common way to receive data is to use input specs. An input spec is a
frame that defines what kind of data you are looking for, termination conditions
that control when the input should be stopped, and callback methods to notify you
when input is stopped or other conditions occur.

An input spec consists of many pieces. It contains slots that define

■ the type of data expected (form slot)

■ the input target for template and binary data (target slot)

■ the data termination conditions (termination slot)

■ protocol flags for receiving data (rcvFlags slot)

■ an inactivity time-out (reqTimeout slot)

■ the data filter options (filter slot)

■ the options associated with the receive request (rcvOptions slot)

■ a method to be called when the termination conditions are met
(InputScript method)

■ a method to be called periodically to check input as it accumulates
(PartialScript method, partialFrequency slot)

■ a method to be called if the input spec terminates unexpectedly
(CompletionScript method)

Table 23-2 summarizes the various input data forms and the input spec slots that
are applicable to them. Input spec slots not included in the table apply to all data
forms. For more details on the input spec frame, see “Input Spec Frame”
(page 20-11) in Newton Programmer’s Reference.

After you’ve connected or accepted a connection, you set up your first input spec
by calling SetInputSpec. When one input spec terminates, the system
automatically posts another input spec for you when the InputScript method
defined in the previous input spec returns. This new input spec duplicates the
one that just terminated. If you don’t want this to happen, you can call the
SetInputSpec method from within the InputScript method of your input
spec to change the input spec or terminate the input. Pass nil to SetInputSpec
to terminate the input.

You also use the SetInputSpec method if you need to set up an input spec at
some other point. Note that if you want to terminate a current input spec to set up a
new one, you must call the Cancel method before calling SetInputSpec with
your new spec. (This applies inside an InputScript that is called as a result of
calling the Input method.)

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-13

The following sections describe how to set the various slots in the input spec to
accomplish specific tasks.

Specifying the Data Form and Target 23

You can choose how you want the received data formatted by setting the form
slot in the input spec. In this slot, you specify one of the standard data forms
described in “Data Form Symbols” (Table 20-1 on page 20-2) in Newton
Programmer’s Reference.

In preparation for receiving data, the system creates an input buffer. The buffer’s
size is based on the input spec slot termination.byteCount, on the slot
discardAfter, or on the intrinsic size of the data. The system receives all the
data in to this buffer, then translates the data into a newly created object whose type
is specified by the input spec’s form slot. It is this object that is passed back to the
InputScript method.

Table 23-2 Input spec slot applicability

Data form target slot
termination
slot

discard
After
slot*

filter
slot

partial
Frequency
and
partial
Script slots†

'char na (not applicable) determined
automatically

na OK na

'number na determined
automatically

na OK na

'string na OK OK OK OK

'bytes na OK OK OK OK

'binary data and offset
slots only

all slots except
endSequence

na na na

'template typelist and
arglist slots only

determined
automatically

na na na

'frame na determined
automatically

na na na

* discardAfter is written as one word, broken here because of space limitations.
† partialFrequency and partialScript are written as one word, broken here because of space limitations.

C H A P T E R 2 3

Endpoint Interface

23-14 Using the Endpoint Interface

If you specify the form 'template or 'binary, you also must specify a target
slot in the input spec. The target slot is a frame used to define additional
information pertaining to the data form.

If your input form is 'template, then you must set the arglist and typelist
slots in the target frame. The arglist array contains placeholder data, which
is filled in with actual data when it is received, and the typelist array contains
the template’s array of types.

If your input form is 'binary, data is written directly into the binary object that
you specify in the data slot of the target frame. You can specify a binary object,
virtual binary object, or string. Note that the binary object must be the same size as
the received data; the system will not expand or shrink the object. For information
on virtual binary objects, see Chapter 11, “Data Storage and Retrieval.”

The offset slot in the target frame allows you to specify an offset in the binary
object at which to write incoming data. For instance, if you want to write the
received data in consecutive blocks in a binary object that already exists, you must
set the data slot to the binary object, and set the offset slot to the byte offset at
which you want the new data to be written for each block.

Specifying Data Termination Conditions 23

For 'string and 'bytes data forms, you must indicate when the input
terminates by specifying a termination slot. You can terminate the input on
these conditions:

■ when a certain number of bytes has been received (set the byteCount slot)

■ when a specific set of characters in the input stream has been found (set the
endSequence slot)

■ when the communication tool returns an end-of-packet indicator (set the
useEOP slot)

Normally with the 'binary data form, the input is terminated when the target
object fills up. However, you can also use the termination slot with binary data
to specify a byte count that causes the input to terminate after a certain number of
bytes has been received. This feature is useful when you want to provide user
feedback as a large binary object is being received. Set the byteCount slot in the
termination frame, and, when the input terminates, repost the input spec with the
target.offset slot offset by the value of the termination.byteCount slot.

If you want to receive data that ends with a particular sequence of data, define
that sequence in the endSequence slot in the termination frame. The
endSequence slot allows you to terminate input based on a particular sequence
of incoming data called the termination sequence. You can specify a single

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-15

termination sequence, or an array of items, any one of which will cause the input to
terminate. A termination sequence can be a single character, a string, a number, or
an array of bytes. If you don't want to look for a termination sequence, don't define
this slot.

For the 'binary data form, you cannot use the endSequence slot to specify a
termination condition.

Note
Note that the system executes byte-by-byte comparisons between
the termination sequence and the input stream. To facilitate this
process, the termination sequence (or elements within the
endSequence array) is converted to a byte or binary format to
speed the comparison. Internally, single characters are converted
to single bytes using the translation table specified by the
endpoint encoding slot. Numbers are converted to single bytes;
strings are converted to binary objects. An array of bytes is also
treated as a binary object. For large numbers, you must encode
your number as an array of bytes if there are significant digits
beyond the high order byte of the number. ◆

If you want to terminate input based on a transport-level end-of-packet (EOP)
indicator, then you can set the useEOP slot in the termination frame. This slot
holds a Boolean value specifying whether or not to look for EOP indicators.
Specify this slot only if the input spec rcvFlags slot includes the kPacket flag.
Moreover, if the rcvFlags slot includes the kPacket flag and you do not specify
the termination.useEOP slot, the system effectively sets useEOP to the
default value true. For more information, see the following section, “Specifying
Flags for Receiving.”

It is not appropriate to specify the termination slot for data forms other than
'string, 'bytes, and 'binary. The 'char and 'number data forms
automatically terminate after 1 and 4 bytes, respectively. The 'frame data form is
terminated automatically when a complete frame has been received, and the
'template data form terminates when the number of bytes received matches the
typelist specification in the target frame.

To limit the amount of accumulated data in the input buffer, you can define a
discardAfter slot in the input spec. You can do this only when you have not
specified a termination.byteCount slot for 'string and 'bytes data
forms. The discardAfter slot sets the input buffer size. If the buffer overflows,
older bytes are discarded in favor of more recently received bytes.

C H A P T E R 2 3

Endpoint Interface

23-16 Using the Endpoint Interface

Specifying Flags for Receiving 23

For certain communication tools, it may be necessary to use special protocol flags
when receiving data. You do this by specifying one or more flag constants in the
rcvFlags slot in the input spec. You can use such flags only if the communication
tool supports them.

For example, some of the built-in communication tools, such as the infrared and
AppleTalk tools, support only framed receiving (packetized data). In order to use
framed receiving, you must set the rcvFlags slot to the constant kPacket. With
the infrared tool, if you do not specify a rcvFlags value of kPacket, the tool
will behave unexpectedly.

Do not define the rcvFlags slot if the underlying communication tool does not
support EOP indicators. If you do so, your input will terminate after each physical
buffer of data is received. If you wish to terminate an input spec based on an EOP
indicator, set the useEOP slot in the termination frame to true.

Of the built-in communication tools, only the infrared, AppleTalk, and framed
asynchronous serial tools support framed packets and the kPacket flag.

If you set the kPacket flag and set the useEOP slot to true, you cannot also use
the byteCount slot in the termination frame—if you do, byteCount will be
ignored. In this case, only an EOP indicator will terminate input. If you do want to
use the byteCount slot with the kPacket flag, set the useEOP slot to nil. In
the latter case, the remote system should send an EOP indicator with every packet,
though input won’t terminate until the byteCount condition is met.

Specifying an Input Time-Out 23

You can specify a time-out for input in the reqTimeout slot of the input spec. In
this slot, you specify the time, in milliseconds, of inactivity to allow during input.
If there is no input for the specified interval, the time-out expires, the input is
terminated, and the CompletionScript message is sent to the input spec frame.
In this case, the result code passed with the CompletionScript message
is –16005.

Don’t specify a reqTimeout value less than 30 milliseconds.

Note that if a time-out expires for an asynchronous request such as receiving, that
request and all outstanding requests are canceled.

Specifying Data Filter Options 23

As incoming data is received in the input buffer, the data can be processed, or
filtered. This filtering can occur on all types of received data, except binary data
(defined by the 'binary data form). This filtering of data is defined by the filter

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-17

slot in the input spec. The filter slot is a frame containing two slots, byteProxy
and sevenBit, which allow you to perform two different kinds of processing.

The byteProxy slot allows you to identify one or more characters or bytes in the
input stream to be replaced by zero or one characters. You may, for instance,
replace null characters (0x00) with spaces (0x20). Note that if your input data
form is set to 'string, you are encouraged to use this slot. Otherwise, null
characters embedded in your string may prematurely terminate that string.
(Remember, NewtonScript strings are null-terminated.)

The byteProxy slot contains an array of one or more frames. Each frame must
have a byte slot, identifying the single-byte character or byte to be replaced, and a
proxy slot, identifying the single-byte character or byte to be used instead. The
proxy slot can also be nil, meaning that the original byte is to be removed
completely from the input stream.

Note
Note that the system executes byte-by-byte comparisons and
swaps between the bytes in the input stream and the replacements
in the proxy slot. To facilitate this process, the values in the
byte and proxy slots are converted to a byte format to speed the
comparison and swap. Internally, single characters are converted
to single bytes using the translation table specified in the endpoint
encoding slot. Numbers are converted to single bytes. If a
number has significant digits beyond the high-order byte, they
will be dropped during the comparison and swap. ◆

You can also specify the sevenBit slot in the filter frame. Set this slot to
true to specify that the high-order bit of every incoming byte be stripped (“zeroed
out”). This is a convenient feature if you plan to communicate over links
(particularly private European carriers) that spuriously set the high-order bit.

Specifying Receive Options 23

You can also set communication tool options associated with the receive request.
To do this, specify an option frame or an array of option frames in the rcvOptions
slot in the input spec. The options are set when the input spec is posted by the
SetInputSpec method. The processed options are returned in the options
parameter passed to the InputScript method.

Note that the options are used only once. If your InputScript method is called,
for example, and it returns expecting the input spec to remain active, the options
are not reposted. To explicitly reset the options in this example, you must call
SetInputSpec within your InputScript method.

C H A P T E R 2 3

Endpoint Interface

23-18 Using the Endpoint Interface

Handling Normal Termination of Input 23

The InputScript message is sent to the input spec frame when one of the
termination conditions is met. You define the InputScript method in the input
spec frame.

The received data is passed as a parameter to the InputScript method. Another
parameter describes the specific condition that caused the input to terminate, in
case you had specified more than one in the input spec.

When the InputScript method returns, the system automatically posts another
receive request for you using the same input spec as the last one. You can prevent
this by calling SetInputSpec within the InputScript method. In the
SetInputSpec method, you can set a different input spec, or you can prevent a
new input spec from being posted by setting the inputSpec parameter to nil. Note
that while the input spec is nil, incoming data may be lost.

Periodically Sampling Incoming Data 23

You can sample the incoming data without meeting any of the termination
conditions by specifying a PartialScript method in the input spec. The system
sends the PartialScript message to the input spec frame periodically, at the
frequency you define in the partialFrequency slot in the input spec, as long as
there are one or more bytes of data in the input buffer. The system passes to the
PartialScript method all of the data currently in the input buffer, but the data
is not removed from the input buffer. If you want to remove this data from the input
buffer, you can call the FlushPartial method.

Note that the sending of PartialScript messages is controlled by system idle
events and is in no way triggered by receive request completions. The current input
spec remains in effect after the PartialScript method returns.

You typically would use a PartialScript method to detect abnormal or
out-of-band data not found by any of the usual input termination conditions.

You can specify PartialScript methods only for those input data forms that
allow termination conditions —specifically, the 'string and 'bytes data forms.

To use the PartialScript method, you must also include the
partialFrequency slot in the input spec. The partialFrequency slot
specifies the frequency, in milliseconds, at which the input data buffer should be
checked. If new data exists in the buffer, the PartialScript message is sent to
the input spec frame.

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-19

Handling Unexpected Completion 23

The CompletionScript message is sent to the input spec frame when the input
spec completes unexpectedly—for example, because of a time-out expiring or a
Cancel message.

If you do not specify a CompletionScript method in your input spec frame, an
exception is forwarded to the endpoint ExceptionHandler method.

Special Considerations 23

If you want to set up an input spec, but you never want to terminate the input, you
can set up the input form to be either 'string or 'bytes data, and not define
any of the data termination conditions. In this case, it is up to you to read and flush
the input. You can do this by using a PartialScript method that calls the
FlushPartial method at the appropriate times. Note that if the input exceeds
the discardAfter size, the oldest data in the buffer is deleted to reduce the size
of the input.

Alternatively, if you omit the InputScript method, yet define the input data
form and termination conditions, the input continues to be terminated and flushed
at the appropriate times. The only difference is that without an InputScript
method, you'll never see the complete input.

Receiving Data Using Alternative Methods 23
The methods described in this section allow you to receive data in ways other than
letting an input spec terminate normally. You may not need to use these methods;
they're provided for flexibility in handling special situations.

You can force the system to send a pending input spec the InputScript message
by calling the Input method. Note that this method is appropriate to use only
when receiving data of the forms 'string and 'bytes. Also, in an InputScript
method that is called as a result of calling Input, you cannot use SetInputSpec
to change or terminate the input spec. Instead, you must first send the Cancel
message to cancel the current input spec.

You can look at incoming data outside the scope of your InputScript or
PartialScript method by calling the method Partial. This method returns
data from the input buffer but doesn’t remove it from the buffer. You can use this
method to sample incoming data without affecting the normal operation of your
input spec and its callback methods. Note that this method is appropriate to use
only when receiving data of the forms 'string and 'bytes.

C H A P T E R 2 3

Endpoint Interface

23-20 Using the Endpoint Interface

IMPORTANT

Do not call the Input or Partial methods in a polling loop to
look for incoming data. The Newton communications architecture
requires a return to the main event loop in order to process
incoming data from the endpoint’s underlying communication
tool. These methods are included as an alternate way of retrieving
data from the incoming data buffer, not as a way to implement
synchronous data receives. ▲

To flush data from the input buffer, you can use the methods FlushInput and
FlushPartial. The FlushInput method discards all data in the input buffer,
and FlushPartial discards all data read by the last call to the Partial method.

Streaming Data In and Out 23
Besides protoBasicEndpoint, there is another type of endpoint proto called
protoStreamingEndpoint. The purpose of this streaming endpoint is to
provide a way to send and receive large frames without having first to flatten or
unflatten them.

Flattening refers to the process of converting a frame object into a stream of bytes.
Unflattening refers to the process of converting those bytes back into a frame object.

With the streaming endpoint, frame data is flattened or unflattened in chunks as it is
sent or received. This allows large objects to be sent and received without causing
the NewtonScript heap to overflow as a result of having to convert an entire object
at once.

The protoStreamingEndpoint proto is based on protoBasicEndpoint
and includes a method, StreamIn, that allows you to receive streamed data. This
method automatically unflattens received data into a frame object in memory, and
can place embedded virtual binary objects directly on a store. Another method,
StreamOut, allows you to send frame data as a byte stream. Note that these two
methods are synchronous; that is, they don’t return until the operation is complete.
However, they do provide progress information during the operation by means of a
periodic callback.

Working With Binary Data 23
For receiving binary data, the data is returned as a raw byte stream. The data is not
converted and is block-moved directly into a binary object that you have
preallocated and specified as the target for the input.

To create this target object, specify a target frame in your input spec. This frame
contains a data slot and optionally an offset slot. The data slot contains the
preallocated binary (or virtual binary) object, while the offset slot is the offset

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-21

within the binary object at which to stream data. For more information on receiving
binary data and using the target frame, see the section “Specifying the Data
Form and Target” beginning on page 23-13.

For sending data, the data is expected to be a binary object and is interpreted as a
raw byte stream. That is, the data is not converted and is passed directly to the
communication tool. This is the default data form for sending binary objects.

If you wish to send only a portion of your binary data at once, you can specify a
target frame in the output spec. Within the target frame, the offset slot
defines the offset from the beginning of the binary object at which to begin sending
data, and the length slot defines the length of the data to send.

These binary capabilities are very useful if you wish to send and receive flattened
frames “packetized” for a communication protocol. By using the global function
Translate, you can flatten a frame. Then you can packetize the transmission by
using the target frame in the output spec.

On the receiving end, you can preallocate a virtual binary object, and then assemble
the packets using the target frame in the input spec. Once all binary data has
been received, you can unflatten the frame using the Translate function again.

Canceling Operations 23
To stop endpoint operations, you can use the endpoint method Cancel or
Disconnect. Endpoint operations can also be canceled indirectly as a result of a
time-out expiring. Remember that you can set a time-out for a request in the
callback spec that you pass to most endpoint methods, and you can set a time-out
in an input spec.

Note that you cannot specify what is canceled. When you or the system cancel
operations, all outstanding synchronous and asynchronous requests are canceled.

The cancellation process proceeds differently depending on whether you are
canceling asynchronous or synchronous requests that you have previously queued.
Following a cancellation, it is safe to proceed with other endpoint operations at
different times, according to the following rules:

■ If you use only asynchronous calls in your application, you can safely proceed
after you receive the CompletionScript message resulting from the Cancel
call (or from the method whose time-out expired).

■ If you use only synchronous calls in your application, you can safely proceed
after the cancelled synchronous call throws an exception as a result of the
cancellation.

Mixing asynchronous and synchronous methods in your application is not
recommended. However, if you do so, you should treat the cancellation process as
if you had used all synchronous calls, and proceed only after an exception is thrown.

C H A P T E R 2 3

Endpoint Interface

23-22 Using the Endpoint Interface

The cancellation itself can be invoked asynchronously or synchronously, and is
handled differently in the system depending on how it’s done. The details are
explained in the following subsections.

Asynchronous Cancellation 23

Cancellation can be invoked asynchronously in the following ways:

■ calling the Cancel method asynchronously, or calling the Disconnect
method asynchronously with the cancelPending parameter set to true

■ having a time-out expire for an asynchronous request

When cancellation is invoked asynchronously, the system first cancels all pending
asynchronous requests. This means that the CompletionScript message is sent
to the callback spec for each of these requests, and the CompletionScript
result parameter is set to –16005.

Note
When calling Cancel asynchronously, it is possible that
additional asynchronous requests might be queued (by a
CompletionScript method) after the Cancel request is
queued but before it is executed. These additional requests will
fail with error –36003 since they will be processed after the
cancel process begins. In fact, any endpoint request that is made
while a cancel is in progress will fail with error –36003. ◆

Next, the cancel request itself completes by sending the CompletionScript
message. This message is sent to the callback spec passed to the Cancel (or
Disconnect) method. Or, if the cancellation was invoked as the result of a
time-out expiration, the CompletionScript message is sent to the callback spec
of whatever method timed out (or to the input spec, if input was in progress).

Finally, any pending synchronous request is canceled by throwing an exception that
contains error code –16005.

Synchronous Cancellation 23

Cancellation can be invoked synchronously in the following ways:

■ calling the Cancel method synchronously, or calling the Disconnect method
synchronously with the cancelPending parameter set to true

■ having a time-out expire for a synchronous request

When cancellation is invoked synchronously, the system first cancels any pending
asynchronous requests. This means that the CompletionScript message is sent
to the callback spec for each of these requests, and the CompletionScript
result parameter is set to –16005.

C H A P T E R 2 3

Endpoint Interface

Using the Endpoint Interface 23-23

Next, the Cancel (or Disconnect) method returns, and any pending
synchronous request is canceled by throwing an exception that contains error code
–16005. Or, if the cancellation was invoked as the result of a time-out expiration,
then whatever method timed out throws an exception containing error code –16005.

Other Operations 23
The Option method allows you to get and set options apart from the options
parameter to the Bind, Connect, Listen, Accept, and Output methods.

You can check the state of a connection by calling the State method.

Custom communication tools can return special events to the endpoint object
through the EventHandler message. This message is sent to the endpoint
whenever an event occurs that is not handled by one of the usual endpoint event
handlers. A custom communication tool and an endpoint can use this mechanism to
pass events from the communication tool up to the endpoint layer.

Error Handling 23
By specifying an ExceptionHandler method in your endpoint, you can handle
exception conditions not caught by local try...onexception clauses, as well
as exceptions not caught by CompletionScript methods.

When you call an endpoint method synchronously, and an error occurs in that
method, the system throws an exception (usually of type |evt.ex.comm|). You
can catch these exceptions in your application by using the try . . .
onexception construct. It’s a good idea to bracket every endpoint method call
with this exception catching construct.

If an error occurs as a result of an asynchronous request, no exception is thrown,
but the error is returned in the result parameter to the CompletionScript
method associated with that request. If you did not define a CompletionScript
method, or if the error is unsolicited, the error is forwarded to your
ExceptionHandler method. If you did not define an ExceptionHandler
method, then the communication system throws an exception. This exception is
caught by the operating system, which displays a warning message to the user.

Constants for error codes generated by the Endpoint interface are defined in
“Endpoint Error Code Constants” (Table 20-4 on page 20-4) in Newton
Programmer’s Reference.

When you use the Option method (or any method that takes options as a
parameter), not only can the method itself fail, but a failure can occur in processing
each of the individual option requests. If the latter happens, the result slot in the
returned option frame is set to one of the option error codes listed in “Option Error
Code Constants” (Table 20-5 on page 20-5) in Newton Programmer’s Reference. If

C H A P T E R 2 3

Endpoint Interface

23-24 Using the Endpoint Interface

an option succeeds without errors, the result slot is set to nil. For more general
information on setting options, see the section “Endpoint Options” beginning on
page 23-7.

Power-Off Handling 23
During send and receive operations, you may want to protect against the system
powering off so that the connection is not broken. The system can power-off
unexpectedly as a result of the user inadvertently turning off the power or as a
result of a low battery. If you want to be notified before the system powers off, you
can register a callback function that the system will call before the power is turned
off. Depending on the value you return from your callback function, you can
prevent, delay, or allow the power-off sequence to continue.

For details on registering power handling functions, see Chapter 17, “Additional
System Services.”

Linking the Endpoint With an Application 23
If your endpoint is going to be driven by an application, you’ll have a reference to
the endpoint frame in your application. Also, you’ll probably want to have a
reference to your application base view in the endpoint frame, so you can handle
endpoint messages in your application through inheritance.

The easiest way to link the endpoint and application together is to create a slot in
your application base view like this:

ViewSetupFormScript: func ()
begin
self.fEndPoint: {_proto: protoBasicEndpoint,

 _parent: self};
end

This creates an endpoint frame as a slot in the application base view at run time,
and makes the application base view (self here) the parent of the endpoint frame,
so it can receive endpoint messages through inheritance.

C H A P T E R 2 3

Endpoint Interface

Summary of the Endpoint Interface 23-25

Summary of the Endpoint Interface 23

Constants and Symbols 23

Data Form Symbols 23

'char
'number
'string
'bytes
'binary
'template
'frame

Data Type Symbols 23

'long
'ulong
'short
'byte
'char
'unicodechar
'boolean
'struct
'array

Option Opcode Constants 23

opSetNegotiate 256
opSetRequired 512
opGetDefault 768
opGetCurrent 1024

C H A P T E R 2 3

Endpoint Interface

23-26 Summary of the Endpoint Interface

Endpoint State Constants 23

Other Endpoint Constants 23

Data Structures 23

Option Frame 23

myOption := {
type: symbol, // option type
label: string, // 4-char option identifier
opCode: integer, // an opCode constant
form: 'template, // default form for options
result: nil, // set by the system on return
data: {

arglist: [], // array of data items
typelist:[], // array of data types
}

}

kUninit 0

kUnbnd 1

kIdle 2

kOutCon 3

kInCon 4

kDataXfer 5

kOutRel 6

kInRel 7

kInFlux 8

kOutLstn 9

kNoTimeout 0

kEOP 0

kMore 1

kPacket 2

C H A P T E R 2 3

Endpoint Interface

Summary of the Endpoint Interface 23-27

Callback Spec Frame 23

myCallbackSpec := {
async: Boolean, // asynch request?
reqTimeout: integer, // time-out period, or 0
CompletionScript: // called when request is done

func(endpoint, options, result)...,
}

Output Spec Frame 23

myOutputSpec := {
async: Boolean, // asynch request?
reqTimeout: integer, // time-out period, in milliseconds
sendFlags: integer, // flag constant(s)
form: symbol, // data form identifier
target: { // used for 'binary data forms

offset: integer, // offset to begin sending from
length: integer // number of bytes to send
},

CompletionScript: // called when request is done
func(endpoint, options, result)...,

}

Input Spec Frame 23

myInputSpec := {
form: symbol, // data form identifier
target: { // used with 'template and 'binary data forms

typelist: [], // array of data types
arglist: [], // array of data items
data: object, // binary object to receive data
offset: integer // offset at which to write data
},

termination: { // defines termination conditions
byteCount: integer, // number of bytes to receive
endSequence: object, // char,string,number,or byte array
useEOP: Boolean // terminate on EOP indicator?
},

discardAfter: integer, // buffer size
rcvFlags: integer, // receive flag constant(s)
reqTimeout: integer, // time-out period, in milliseconds

C H A P T E R 2 3

Endpoint Interface

23-28 Summary of the Endpoint Interface

filter: { // used to filter incoming data
byteProxy: [{ // an array of frames

byte: char, // char or byte to replace
proxy: char // replacement char or byte, or nil
}, ...],

sevenBit: Boolean // strip high-order bit
},

rcvOptions: [], // array of options, or a single frame
partialFrequency: integer,// freq, in milliseconds, to call

// PartialScript
InputScript: // called when input is terminated

func(endpoint, data, terminator, options)...,
PartialScript: // called at partialFrequency interval

func(endpoint, data)...,
CompletionScript: // called on unexpected completion

func(endpoint, options, result)...,
}

Protos 23

protoBasicEndpoint 23

myEndpoint := {
_proto: protoBasicEndpoint, // proto endpoint
encoding:integer,//encoding table,default=kMacRomanEncoding
Instantiate: // instantiates endpoint object

func(endpoint, options) ...,
Bind: // binds endpoint to comm tool

func(options, callbackSpec) ...,
UnBind: // unbinds endpoint from comm tool

func(options, callbackSpec) ...,
Dispose: // disposes endpoint object

func(options, callbackSpec) ...,
Connect: // establishes connection

func(options, callbackSpec) ...,
Listen: // passively listens for connection

func(options, callbackSpec) ...,
Accept: // accepts connection

func(options, callbackSpec) ...,
Disconnect: // disconnects

func(cancelPending, callbackSpec) ...,
Output: // sends data

func(data, options, outputSpec) ...,
SetInputSpec: // sets input spec

func(inputSpec)...,

C H A P T E R 2 3

Endpoint Interface

Summary of the Endpoint Interface 23-29

Input: // returns data from input buffer and clears it
func() ...,

Partial: // returns data from input buffer
func() ...,

FlushInput: // flushes whole input buffer
func() ...,

FlushPartial: // flushes input buffer previously read
func() ...,

Cancel: // cancels operations
func(callbackSpec) ...,

Option: // sets & gets options
func(options, callbackSpec) ...,

ExceptionHandler: // called on exceptions
func(error) ...,

EventHandler: // called on unhandled events
func(event) ...,

State: // returns endpoint state
func() ...,

...
}

protoStreamingEndpoint 23

myStreamEndpoint := {
_proto: protoStreamingEndpoint, // proto endpoint
StreamIn: // receives stream data

func({ form: 'frame, // required
reqTimeout: integer, // time-out in ms.
rcvFlags: integer, // receive flag constant(s)
target: {

store: store}, // store for VBOs
ProgressScript: // progress callback

func(bytes, totalBytes)...
}) ...,

StreamOut: // sends stream data
func(data,

 {form: 'frame, // required
reqTimeout: integer, // time-out in ms.
sendFlags: integer, // send flag constant(s)
ProgressScript: // progress callback

func(bytes, totalBytes)...
}) ...,

...
}

C H A P T E R 2 3

Endpoint Interface

23-30 Summary of the Endpoint Interface

Functions and Methods 23

Utility Functions 23

MakeAppleTalkOption(NBPaddressString)
MakeModemOption()
MakePhoneOption(phoneString)
Translate(data, translator, store, progressScript)

Serial Tool 24-1

C H A P T E R 2 4

Built-in Communications Tools24Figure 24-0
Table 24-0

This chapter describes the built-in communications tools provided in Newton
system software 2.0. The following tools are built into the system:

■ Serial

■ Modem

■ Infrared

■ AppleTalk

These communications tools are accessed and used through the Endpoint interface.
This chapter provides an introduction to each tool and the options that you use with
each. For detailed descriptions of the options, see “Built-in Communications Tools
Reference” (page 21-1) in Newton Programmer’s Reference.

For basic information on using communications endpoints, see “Endpoint
Interface” (page 23-1).

Serial Tool 24

Three varieties of the serial tool are built into Newton system software:

■ a standard asynchronous serial tool

■ a standard asynchronous serial tool with Microcom Networking Protocol (MNP)
compression

■ a framed asynchronous serial tool

These serial tool varieties are described in the following three subsections.

Standard Asynchronous Serial Tool 24
You use the standard asynchronous serial communications tool to perform
standard, asynchronous communications, including sending and receiving data.

C H A P T E R 2 4

Built-in Communications Tools

24-2 Serial Tool

The following is an example of how to create an endpoint that uses the standard
asynchronous serial tool:

myAsyncEP := {_proto:protoBasicEndpoint};
myOptions := [

{ label: kCMSAsyncSerial,
 type: 'service,
 opCode: opSetRequired }];

returnedOptions:= myAsyncEP:Instantiate(myAsyncEP,
myOptions);

Table 24-1 summarizes the standard serial options. Each of these options is
described in detail in “Options for the Standard Asynchronous Serial Tool”
(page 21-2) in Newton Programmer’s Referencee.

Table 24-1 Summary of serial options

Label Value Use when Description

kCMOSerialHWChipLoc "schp" Before or at
binding

Sets which serial
hardware to use.

kCMOSerialChipSpec "sers" Before or at
binding

Sets which serial
hardware to use and
returns information
about the serial
hardware.

kCMOSerialCircuitControl "sctl" After connecting Controls usage of the
serial interface lines.

kCMOSerialBuffers "sbuf" Before or at
binding

Sets the size of the
input and output
buffers.

kCMOSerialIOParms "siop" Any time Sets the bps rate, stop
bits, data bits, and
parity options.

kCMOSerialBitRate "sbps " Any time Changes the bps rate.

kCMOOutputFlowControlParms "oflc" Any time Sets output flow
control parameters.

kCMOInputFlowControlParms "iflc" Any time Sets input flow
control parameters.

continued

C H A P T E R 2 4

Built-in Communications Tools

Serial Tool 24-3

You can get or set most of the standard serial options in the endpoint method that
established the state, as shown in Table 24-1. You set the endpoint options by passing
an argument to the communications tool when calling one of the endpoint methods
such as Instantiate, Bind, and Connect. For example, when you pass an
option to the Bind method, the system sets the option and then does the binding.

Many of the communications options can only be used when the communications
tool is in a certain state. For example, the first option in Table 24-1,
kCMOSerialHWChipLoc, can only be used after the endpoint has been instantiated
and before the binding is made. That means you could use it in the Instantiate
and Bind methods, but not in the Connect method.

All of these options have default values, so you may not need to use an option if
the default values provide the behavior you want. However, the default values do
not apply partially. This means that if you do use an option, you must specify a
value for each field within it.

kCMOSerialBreak "sbrk" After connecting Sends a break.

kCMOSerialDiscard "sdsc" After connecting Discards data in input
and/or output buffer.

kCMOSerialEventEnables "sevt" Any time Configures the serial
tool to complete an
endpoint event on
particular state
changes.

kCMOSerialBytesAvailable "sbav" After connecting Read-only option
returns the number of
bytes available in the
input buffer.

kCMOSerialIOStats "sios" After connecting Read-only option
reports statistics from
the current serial
connection.

kHMOSerExtClockDivide "cdiv" After binding Used only with an
external clock to set
the clock divide factor.

Table 24-1 Summary of serial options (continued)

Label Value Use when Description

C H A P T E R 2 4

Built-in Communications Tools

24-4 Serial Tool

Serial Tool with MNP Compression 24
The asynchronous serial communications tool with MNP compression works
just like a standard asynchronous serial endpoint, except that it uses MNP data
compression.

The following is an example that shows how to create an endpoint that uses the
serial tool with MNP compression:

myMnpEP := {_proto:protoBasicEndpoint};
myOptions := [

{ label: kCMSMNPID,
 type: 'service,
 opCode: opSetRequired }];

returnedOptions:= myMnpEP:Instantiate(myMnpEP,
myOptions);

The serial tool with MNP endpoint uses all of the standard serial options, as well as
two MNP options, which are summarized in Table 24-2. These options are
described in detail in “Options for the Serial Tool with MNP Compression”
(page 21-27) in Newton Programmer’s Reference.

Framed Asynchronous Serial Tool 24
The framed asynchronous serial communications tool is a superset of the standard
asynchronous serial communications tool. This tool supports the sending and
receiving of framed data. If you use this tool and do not specify framing for a send
or receive operation, the framed asynchronous serial tool works exactly like the
standard asynchronous serial tool.

When you use framing for input, the framed asynchronous serial tool discards
characters until a start of frame sequence is detected and terminates input with an
end-of-file (EOF) indication when the end-of-frame sequence is detected. The tool
reports an error is if a CRC error is detected.

When you use framing for output, the data is prefixed with the start-of-frame
sequence. The end-of frame-sequence and the calculated CRC are sent at the end of
the data. The escape character is used for data transparency during framed operations.

Table 24-2 Summary of serial tool with MNP options

Label Value Use when Description

kCMOMNPCompression "mnpc" Before connecting Sets the data compression type.

kCMOMNPDataRate "eter" Any time Configures internal MNP timers.

C H A P T E R 2 4

Built-in Communications Tools

Serial Tool 24-5

An endpoint can include kPacket, kEOP, and kMore flags to control the sending
and receiving of framed (packetized) data with the framed asynchronous serial
tool. For more information on these flags, see “Sending Data” (page 23-11).

The following is an example that shows how to create an endpoint that uses the
framed asynchronous serial tool:

myFramedEP := {_proto:protoBasicEndpoint};
myOptions := [

{ label: kCMSFramedAsyncSerial,
 type: 'service,
 opCode: opSetRequired }];

returnedOptions:= myFramedEP:Instantiate(myFramedEP,
myOptions);

The framed asynchronous serial tool uses the standard asynchronous serial tool
options, as well as two framing options, which are summarized in Table 24-3.
These options are described in detail in “Options for the Framed Asynchronous
Serial Tool” (page 21-29) in Newton Programmer’s Reference.

The default settings for the kCMOFramingParms option implement BSC framing,
as shown in Figure 24-1.

Figure 24-1 Default serial framing

Each packet is framed at the beginning by the 3-character SYN-DLE-STX header.
The packet data follows; if a DLE (escape character) occurs in the data stream,

Table 24-3 Summary of framed serial options

Label Value Use when Description

kCMOFramingParms "fram" Any time Configures data framing parameters.

kCMOFramedAsyncStats "frst" Any time Read-only option returns the number
of bytes discarded while looking for
a valid header.

Octet 1

SYN
Flag
0001011

DLE
Flag
0001000

STX
Flag
0000001

Message . . . DLE
Flag
0001000

ETX
Flag
0000001

Frame
Check
Sequence

2 3 N-3 N-2 N-1 N

C H A P T E R 2 4

Built-in Communications Tools

24-6 Modem Tool

both that character and an additional DLE character are sent; conversely, two
consecutive DLE characters on input are turned into a single DLE data byte. The
packet is framed at the end by the 2-character DLE-ETX trailer. Finally, a
2-character frame check sequence is appended. This frame check is initialized to
zero at the beginning, and calculated on just the data bytes and the final ETX
character, ignoring the header bytes, any inserted DLE characters, and the DLE
character in the trailer.

The frame trailer is sent when an output is done that specifies end of frame.
Conversely, on input, when a trailer is detected, the input is terminated with an
end of frame indication; if a CRC error is detected, kSerErr_CRCError is
returned instead.

Modem Tool 24

The modem communications tool includes built in support of V.42 and V.42bis.
The alternate error-correcting protocol in V.42, also known as MNP, is supported
(LAPM is not implemented). V.42bis data compression and MNP Class 5 data
compression are supported.

The following is an example of how to create an endpoint that uses the built-in
modem communications tool:

myModemEP := {_proto:protoBasicEndpoint};
myOptions := [

{ label: kCMSModemID,
 type: 'service,
 opCode: opSetRequired }];

results := myModemEP:Instantiate(myModemEP, myOptions);

Table 24-4 summarizes the modem options you can use to configure the modem
communications tool. These options are described in detail in “Options for the
Modem Tool” (page 21-31) in Newton Programmer’s Reference.

C H A P T E R 2 4

Built-in Communications Tools

Modem Tool 24-7

Table 24-4 Summary of modem options

Label Value Use When Description

kCMOModemPrefs "mpre" Any time Configures the modem
controller.

kCMOModemProfile "mpro" Any time Override modem setup
selected in preferences. Use
when instatiating.

kCMOModemECType "mecp" Any time Specifies the type of error
control protocol to be used in
the modem connection.

kCMOModemDialing "mdo" Any time Controls the parameters
associated with dialing.

kCMOModemConnectType "mcto" Any time Configures the modem
endpoint for the type of
connection desired (voice,
fax, data, or cellular data).

kCMOModemConnectSpeed "mspd" After
connecting

Read-only option indicating
modem-to-modem raw
connection speed.

kCMOModemFaxCapabilities "mfax" After bind,
before
connecting

Read-only option indicating
the fax service class
capabilities and modem
modulation capabilities.

kCMOModemFaxEnabledCaps "mfec" Any time Determines or sets which
fax and modem capabilities
are enabled.

This option is available
only for System Software
version 2.1 or later.

kCMOModemVoiceSupport "mvso" After bind,
before
connecting

Read-only option indicating if
the modem supports line
current sense (LCS).

kCMOMNPSpeedNegotiation "mnpn" Any time Sets MNP data rate speed.

kCMOMNPCompression "mnpc" Before
connecting

Sets the data compression
type.

kCMOMNPStatistics "mnps" After
connecting

Read-only option reporting
performance statistics from
the current MNP connection.

C H A P T E R 2 4

Built-in Communications Tools

24-8 Infrared Tool

Infrared Tool 24

You use the infrared (IR) communications tool to perform half-duplex infrared
communications. Since the infrared tool does not support full-duplex communica-
tions, you cannot activate an input specification and expect to output data.

The infrared tool supports packetized data, which means that an endpoint can
include kPacket, kEOP, and kMore flags to control sending and receiving framed
(packetized) data. For more information on these flags, see “Sending Data”
(page 23-11).

The following is an example of how to create an endpoint that uses the infrared
communications tool:

myIrEP := {_proto:protoBasicEndpoint};
myOptions := [

{ label: kCMSSlowIR,
 type: 'service,
 opCode: opSetRequired }

];

returnedoptions:= myIrEP:Instantiate(myIrEP, myOptions);

The infrared tool supports three options, which are summarized in Table 24-5.
These options are described in detail in “Options for the Infrared Tool”
(page 21-65) in Newton Programmer’s Reference.

Table 24-5 Summary of Infrared Options

Label Value Use when Description

kCMOSlowIRConnect “irco” When initiating,
connecting, or
listening

Controls how the
connection is made

kCMOSlowIRProtocolType “irpt” After connecting
or accepting

Read-only option returns
the protocol and speed of
the connection

kCMOSlowIRStats “irst” After connecting
or accepting

Read-only option returns
statistics about the data
received and sent

C H A P T E R 2 4

Built-in Communications Tools

AppleTalk Tool 24-9

The infrared tool uses the Sharp Infrared protocol. Because of the characteristics of
this protocol, Apple recommends setting sendFlags to kPacket and to kEOP
every time you send data. For more information on sendFlags see, “Sending
Data” (page 23-11).

If you don’t set sendFlags as recommended above, the tool only sends data after
it queues 512 bytes of data, which means that input scripts do not terminate as you
might expect. On the receiving side, the queuing means you terminate after every
output if you set useEOP to true. If you are using byteCount, you should set
useEOP to nil to trigger on byteCount instead of EOP. For more information on
useEOP and byteCount, see “Specifying Data Termination Conditions”
(page 23-14).

AppleTalk Tool 24

The AppleTalk tool enables access to the ADSP (Apple Data Stream Protocol
component of the AppleTalk protocol stack.

The following is an example of how to create an AppleTalk endpoint:

myATalkEP := {_proto:protoBasicEndpoint};
myOptions := [

{ label: kCMSAppleTalkID,
 type: 'service,
 opCode: opSetRequired
},
{ label: kCMSAppleTalkID,
 type: 'option,
 opCode: opSetRequired,
 data: { arglist: ["adsp"],// or KCMOAppleTalkADSP

typelist:[
'struct
['array, 'char, 4]
]

 }
},
{ label: kCMOEndpointName,
 type: 'option,
 opCode: opSetRequired,
 data: { arglist: [kADSPEndpoint],

typelist:[
'struct
['array, 'char, 0]
]

C H A P T E R 2 4

Built-in Communications Tools

24-10 Resource Arbitration Options

 }
}];

results := myATalkEP:Instantiate(myATalkEP, myOptions);

The AppleTalk tool options are summarized in Table 24-6. These options are
described in detail in “Options for the AppleTalk Tool” (page 21-71) in Newton
Programmer’s Reference.

Resource Arbitration Options 24

You can construct a communications tool to share its resources with other
communications tools. For example, you might need to use a hardware port that
other tools want to use. This section describes how you can implement resource
sharing in your communications tool.

The communications tool base provides a default implementation of resource
arbitration that uses two options to control the release of a tool’s resources:

■ The resource-passive claim option (kCMOPassiveClaim) has a Boolean
value that specifies whether or not a communications tool is claiming its
resources passively or actively. If this value is true, the communications tool is

Table 24-6 Summary of AppleTalk options

Label Value Use When Description

kCMARouteLabel “rout” When connecting
or listening

Sets an AppleTalk
NBP address.

kCMOAppleTalkBuffer “bsiz” When connecting,
listening, or
accepting

Sets the size of the
send, receive, and
attention buffers.

kCMOSerialBytesAvailable “sbav” After connecting Read-only option
returns the number of
bytes available in the
receive buffer.

kCMSAppleTalkID “atlk” For instantiation Specifies AppleTalk
tool type.

kCMOEndpointName “endp” For instantiation Specifies AppleTalk
endpoint. Must be used
as above.

C H A P T E R 2 4

Built-in Communications Tools

Resource Arbitration Options 24-11

claiming its resources passively and will allow another tool to claim it. If this
value is nil, the communications tool is claiming its resources actively and will
not allow another tool to claim it.

■ The resource-passive state option (kCMOPassiveState) has a Boolean value
that specifies whether or not the current state of the communications tool
supports releasing resources. If this value is set, and kCMOPassiveClaim is
true, your communications tool is willing to relinquish use of its passively
claimed resources. If this value is nil, the communications tool is not willing to
relinquish use of its passively claimed resources.

Table 24-7 shows the resource arbitration options. These options are described in
detail in “Options for Resource Arbitration” (page 21-82) in Newton Programmer’s
Reference.

The following example demonstrates how to instruct a communications tool to
claim its resources passively. You must do this before binding the tool. By default
all tools are claimed actively.

{
label: kCMOPassiveClaim,
 type: 'option,
opCode: opSetRequired,
data: {

 arglist: [
true, // passively claim modem

],
typelist: [

kStruct,
kBoolean,

]
}

}

Table 24-7 Resource arbitration options

Label Value Use when Description

kCMOPassiveClaim "cpcm" Before bind Specifies whether your tool claims
resources actively or passively

kCMOPassiveState "cpst" Typically
on listen

Specifies whether your tool releases
resources

C H A P T E R 2 4

Built-in Communications Tools

24-12 AppleTalk Functions

The following example shows how to instruct a communications tool to allow its
resources to be claimed by another tool. For instance, you might send this option
with an arglist value of true if you are listening for an incoming connection.
The default for all tools is to be in an active state.

{
label: kCMOPassiveState,
type: 'option,
opCode: opSetRequired,
data: {

arglist: [
true, // passively claim modem

},
typelist: [
 kStruct,

kBoolean,
]

}

AppleTalk Functions 24

The Newton system software provides a number of global functions for obtaining
the addresses of other devices on the network.

If you are using an endpoint with the AppleTalk tool, the AppleTalk drivers are
opened automatically when you call the endpoint Bind method. The drivers are
closed when you call the endpoint UnBind method.

To manually open the AppleTalk drivers, you need to call the OpenAppleTalk
function. When you are done with AppleTalk, call the CloseAppleTalk function
to close the drivers.

Note that you call the AppleTalk zone access functions without first calling
OpenAppleTalk. Each of the AppleTalk zone access functions opens the drivers
(if necessary), performs its operations, and closes the drivers (if necessary). If you
are making multiple AppleTalk calls, it is more efficient for you to manually open
the drivers, make your calls, and then close the drivers.

Table 24-8 summarizes the AppleTalk functions. These functions are described in
detail in “AppleTalk Functions” (page 21-76) in Newton Programmer’s Reference.

C H A P T E R 2 4

Built-in Communications Tools

AppleTalk Functions 24-13

The Net Chooser 24
The Newton system provides a NetChooser as part of the root view. The Net
Chooser is similar in operation to the Mac OS Chooser. You can use the function
GetRoot().NetChooser:OpenNetChooser to display a list of network entities
from which the user can make a selection. This function is declared as follows:

NetChooser:OpenNetChooser(zone, lookupName, startSelection,
who, connText, headerText, lookforText)

The OpenNetChooser method displays the NetChooser view on the user’s
screen. The following is an example that shows the use of this function:

GetRoot().NetChooser:openNetChooser(nil,"=:LaserWriter@",ni
l, self, "Use printer, sir", "Printer", "printers");

This example opens the NetChooser view and displays the lookforText string while
the search is in progress, as shown in Figure 24-2 (page 24-14).

Table 24-8 AppleTalk functions

Function Description

OpenAppleTalk Opens the AppleTalk drivers.

CloseAppleTalk Closes the AppleTalk drivers.

AppleTalkOpenCount Returns the open count for the AppleTalk drivers.

HaveZones Returns true if a connection exists and zones are
available. Returns nil if there are no zones.

GetMyZone Returns a string naming the current AppleTalk zone.

GetZoneList Returns an array containing strings of all the existing
zone names

GetNames Returns the name for a network address or an array
of names for an array of network addresses.

GetZoneFromName Returns the zone name for a network address.

NBPStart Begins a lookup of network entities.

NBPGetCount Returns the number of entities the currently running
NBP lookup has found.

NBPGetNames Returns an array of names found by NBPStart.

NBPStop Terminates a lookup started by NBPStart.

C H A P T E R 2 4

Built-in Communications Tools

24-14 AppleTalk Functions

Figure 24-2 NetChooser view while searching

When the search has been completed, the NetChooser fills in the available choices
and allows the user to make a selection, as shown in Figure 24-3.

Figure 24-3 NetChooser view displaying printers

After the user has made a selection, the system calls a method that you provide
named NetworkChooserDone. The system fills in the parameters to this
method with the name of the selection and zone chosen by the user. The
NetworkChooserDone method must have the following format:

myChooser:NetworkChooserDone(currentSelection, currentZone)

The two parameters, currentSelection and currentZone, are filled in by the system
after the user makes a choice.

C H A P T E R 2 4

Built-in Communications Tools

AppleTalk Functions 24-15

The following is an example that shows the use of this function:

ChooserSample := {
// open network connection

openNetworkScript: func()
begin
GetRoot().NetChooser:openNetChooser(nil,"=:LaserWriter@",ni
l, self, "Use printer, sir", "Printer", "printers");
end,

// called when the user selects an item
networkChooserDone: func(currentSelection, currentZone)
begin
Print("Current Selection =" && currentSelection);
Print("Current Zone =" && currentZone);
end
};

The following is an example of running this code in the inspector:

ChooserSample:OpenNetworkScript()
#1A TRUE

// select the network entity, close the Chooser
"Current Selection = Idiot Savante"
"Current Zone = RD1/NewHaven-LocalTalk"

The NetChooser methods are described in detail in “NetChooser Methods”
(page 21-81) in Newton Programmer’s Reference.

C H A P T E R 2 4

Built-in Communications Tools

24-16 Summary

Summary 24

Built-in Communications Tool Service Option Labels 24

kCMSAsyncSerial "aser"

kCMSMNPID "mnps"

kCMSModemID "mods"

kCMSSlowIR "slir"

kCMSFramedAsyncSerial "fser"

kCMSAppleTalkID "atlk"

Options 24

Asynchronous Serial Tool Options 24

kCMOSerialHWChipLoc "schp"

kCMOSerialChipSpec "sers"

kCMOSerialCircuitControl "sctl"

kCMOSerialBuffers "sbuf"

kCMOSerialIOParms "siop"

kCMOSerialBitRate "sbps "

kCMOOutputFlowControlParms "oflc"

kCMOInputFlowControlParms "iflc"

kCMOSerialBreak "sbrk"

kCMOSerialDiscard "sdsc"

kCMOSerialEventEnables "sevt"

kCMOSerialBytesAvailable "sbav"

kCMOSerialIOStats "sios"

kHMOSerExtClockDivide "cdiv"

Serial with MNP Tool Options 24

kCMOMNPCompression "mnpc"

kCMOMNPDataRate "eter"

C H A P T E R 2 4

Built-in Communications Tools

Summary 24-17

Framed Serial Tool Options 24

kCMOFramingParms "fram"

kCMOFramedAsyncStats "frst"

Modem Options 24

kCMOModemPrefs "mpre"

kCMOModemProfile "mpro"

kCMOModemECType "mecp"

kCMOModemDialing "mdo"

kCMOModemConnectType "mcto"

kCMOModemConnectSpeed "mspd"

kCMOModemFaxCapabilities "mfax"

kCMOModemFaxEnabledCaps "mfec"

kCMOModemVoiceSupport "mvso"

kCMOMNPSpeedNegotiation "mnpn"

kCMOMNPCompression "mnpc"

kCMOMNPStatistics "mnps"

Infrared Tool Options 24

kCMOSlowIRConnect "irco"

kCMOSlowIRProtocolType "irpt"

kCMOSlowIRStats "irst"

AppleTalk Tool Options 24

kCMARouteLabel "rout"

kCMOAppleTalkBuffer "bsiz"

kCMOSerialBytesAvailable "sbav"

kCMSAppleTalkID "atlk"

kCMOEndpointName "endp"

Resource Arbitration Options 24

kCMOPassiveClaim "cpcm"

kCMOPassiveState "cpst"

C H A P T E R 2 4

Built-in Communications Tools

24-18 Summary

Constants 24

Serial Chip Location Option Constants 24

kHWLocExternalSerial "extr"

kHWLocBuiltInIR "infr"

kHWLocBuiltInModem "mdem"

kHWLocPCMCIASlot1 "slt1"

kHWLocPCMCIASlot2 "slt2"

Serial Chip Specification Option Constants 24

kSerCap_Parity_Space 0x00000001

kSerCap_Parity_Mark 0x00000002

kSerCap_Parity_Odd 0x00000004

kSerCap_Parity_Even 0x00000008

kSerCap_DataBits_5 0x00000001

kSerCap_DataBits_6 0x00000002

kSerCap_DataBits_7 0x00000004

kSerCap_DataBits_8 0x00000008

kSerCap_DataBits_All 0x0000000F

kSerCap_StopBits_1 0x00000010

kSerCap_StopBits_1_5 0x00000020

kSerCap_StopBits_2 0x00000040

kSerCap_DataBits_All 0x00000070

kSerialChip8250 0x00

kSerialChip16450 0x01

kSerialChip16550 0x02

kSerialChip8530 0x20

kSerialChip6850 0x21

kSerialChip6402 0x22

kSerialChipUnknown 0x00

C H A P T E R 2 4

Built-in Communications Tools

Summary 24-19

Serial Circuit Control Option Constants 24

kSerOutDTR 0x01

kSerOutRTS 0x02

kSerInDSR 0x02

kSerInDCD 0x08

kSerInRI 0x10

kSerInCTS 0x20

kSerInBreak 0x80

Serial Configuration Option Constants 24

k1StopBits 0

k1pt5StopBits 1

k2StopBits 2

kNoParity 0

kOddParity 1

kEvenParity 2

k5DataBits 5

k6DataBits 6

k7DataBits 7

k8DataBits 8

kExternalClock 1

k300bps 300

k600bps 600

k1200bps 1200

k2400bps 2400

k4800bps 4800

k7200bps 7200

k9600bps 9600

k12000bps 12000

k14400bps 14400

k19200bps 19200

k38400bps 38400

k57600bps 57600

k115200bps 115200

k230400bps 230400

C H A P T E R 2 4

Built-in Communications Tools

24-20 Summary

Serial Event Configuration Option Constants 24

kSerialEventBreakStartedMask 0x00000001

kSerialEventBreakEndedMask 0x00000002

kSerialEventDCDNegatedMask 0x00000004

kSerialEventDCDAssertedMask 0x00000008

kSerialEventHSKiNegatedMask 0x00000010

kSerialEventHSKiAssertedMask 0x00000020

kSerialEventExtClkDetectEnableMask 0x00000040

Serial External Clock Divide Option Constants 24

kSerClk_Default 0x00

kSerClk_DivideBy_1 0x80

kSerClk_DivideBy_16 0x81

kSerClk_DivideBy_32 0x82

kSerClk_DivideBy_64 0x83

Modem Error Control Type Option Constants 24

kModemECProtocolNone 0x00000001

kModemECProtocolMNP 0x00000002

kModemECProtocolExternal 0x00000008

Modem Fax Capabilities Option Constants 24

kModemFaxClass0 0x00000001

kModemFaxClass1 0x00000002

kModemFaxClass2 0x00000004

kModemFaxClass2_0 0x00000008

kV21Ch2Mod 0x00000001

kV27Ter24Mod 0x00000002

kV27Ter48Mod 0x00000004

kV29_72Mod 0x00000008

kV17_72Mod 0x00000010

kV17st_72Mod 0x00000020

kV29_96Mod 0x00000040

kV17_96Mod 0x00000080

kV17st_96Mod 0x00000100

C H A P T E R 2 4

Built-in Communications Tools

Summary 24-21

kV17_12Mod 0x00000200

kV17st_12Mod 0x00000400

kV17_14Mod 0x00000800

kV17st_14Mod 0x00001000

MNP Compression Option Constants 24

kMNPCompressionNone 0x00000001

kMNPCompressionMNP5 0x00000002

kMNPCompressionV42bis 0x00000008

Infrared Protocol Type Option Constants 24

kUsingNegotiateIR 0

kUsingSharpIR 1

kUsingNewton1 2

kUsingNewton2 4

kUsing9600 1

kUsing19200 2

kUsing38400 4

Functions and Methods 24

AppleTalk Driver Functions 24

OpenAppleTalk()
CloseAppleTalk()
AppleTalkOpenCount()

AppleTalk Zone Information Methods 24

HaveZones()
GetMyZone()
GetZoneList()
GetNames(fromWhat)
GetZoneFromName(fromWhat)
NBPStart(entity)
NBPGetCount(lookupID)
NBPGetNames(lookupID)
NBPStop(lookupID)

C H A P T E R 2 4

Built-in Communications Tools

24-22 Summary

NetChooser Function 24

NetChooser:OpenNetChooser(zone, lookupName, startSelection,
who, connText, headerText, lookforText)

About the Modem Setup Service 25-1

C H A P T E R 2 5

Modem Setup Service 25Figure 25-0
Table 25-0

This chapter contains information about the modem setup capability in Newton
system software. You need to read this chapter if you want to define a modem setup
package for your application. The built-in modem communications tool uses these
packages for communicating with modems. For more information about the built-in
modem communications tool, see “Built-in Communications Tools” (page 24-1).

This chapter describes:

■ The modem setup service and how it works with modem setup packages.

■ The user interface for modem setup.

■ The modem characteristics required by the Newton modem tool.

■ The constants you use in defining a modem setup. These constants are described
in detail in “Modem Setup Service Reference” (page 22-1) in Newton
Programmer’s Reference.

About the Modem Setup Service 25

This section provides detailed conceptual information on the modem setup service.
Specifically, it covers the following:

■ a description of the modem setup user interface

■ the programmatic process by which a modem is setup

■ modem requirements

The modem setup service allows many different kinds of modems to be used with
Newton devices. Each kind of modem can have an associated modem setup
package, which can configure a modem endpoint to match the particular modem.

A modem setup package is installed on the Newton as an automatically loaded
package. This means that when the package is loaded, the modem setup
information is automatically stored in the system soup and then the package is
removed. No icon appears for the modem setup in the Extras Drawer. Instead,
modem setups are accessed through a picker in the Modem preferences view.

C H A P T E R 2 5

Modem Setup Service

25-2 About the Modem Setup Service

Modem setup packages can be supplied by modem manufacturers, or can be
created by other developers.

A modem setup package can contain four parts:

■ General information. The beginning of a modem setup package specifies
general information about the modem corresponding to the package—for
example, the modem’s name and version number.

■ A modem tool preferences option. The part of the package that contains
specifications that configure the modem controller. For a description of this
option, see “Modem Preferences Option” (page 21-34) in Newton Programmer’s
Reference.

■ A modem tool profile option. This part of the package describes the
characteristics of the modem—for example, whether the modem supports error
correction protocols. For more information on this option, see the section
“Modem Profile Option” (page 21-38) in Newton Programmer’s Reference.

■ A fax profile option. This part of the package describes the characteristics of
the fax—for example, the speed at which faxes can be sent and received. This
option is particularly useful to limit fax speeds over cellular connections.

If a modem supports both cellular and landline operations and does not
automatically configure itself, you need to create a separate modem profile or setup
for each operation. If you want to give the user the option to limit fax speeds,
which is a common practice with cellular connections, you may want a third profile
that specifies the fax profile option.

Note
The constants and code shown in this chapter apply to the
NTK project that is provided by Newton Technical Support. This
project provides an easy way to create modem setups. ◆

The Modem Setup User Interface 25
The user chooses the current modem setup in the Modem preferences, as shown in
Figure 25-1 (page 25-3). The Modem Setup item is a picker, which when tapped
displays all of the modem setups installed in the system. The chosen modem setup
is the default used by all applications.

C H A P T E R 2 5

Modem Setup Service

About the Modem Setup Service 25-3

Figure 25-1 Modem preferences view

The Modem Setup Process 25
All communication applications that use a modem endpoint make use of the
modem setup service. The current modem setup is automatically invoked when
an application calls the modem endpoint’s Instantiate method.

Note
If the modem endpoint option list includes the modem profile
option (kCMOModemProfile), the modem setup is not invoked.
This allows modem applications to override the modem setup
when configuring the modem for special purposes. ◆

Here is what happens in the Instantiate method when the modem setup
is invoked:

1. The kCMOModemPrefs option is added to the endpoint configuration options,
and the fEnablePassThru field is set to true. This enables the endpoint to
operate in pass-through mode. In this mode, the modem endpoint is functionally
equivalent to a serial endpoint for input and output.

2. The modem endpoint is instantiated and connected in pass-through mode.

3. The Newton system software sets the modem preferences (kCMOModemPrefs),
modem profile (kCMOModemProfile), and fax profile
(kCMOModemFaxCapabilities) options as defined in the modem setup.

Note
A modem setup method is executed only once—when the
endpoint is instantiated—even if the endpoint is subsequently
used for multiple connections. ◆

C H A P T E R 2 5

Modem Setup Service

25-4 About the Modem Setup Service

4. The modem endpoint is reconfigured with pass-through mode disabled, and
control is returned to the client application, which can proceed with its Bind
and Connect calls.

“Defining a Modem Setup” (page 25-5) describes how to define a modem setup.

Modem Communication Tool Requirements 25
The Newton modem communication tool expects certain characteristics from a
modem. These characteristics are described here.

■ The modem tool expects a PCMCIA modem to use a 16450 or 16550 UART chip.

■ The modem tool expects hardware flow control in both serial and PCMCIA
modems. In modems not supporting hardware flow control, direct connect
support is required, and the modem profile constant kDirectConnectOnly
must be set to true. This means that the modem tool and the modem must be
running at the same bit rate, allowing for no compression or error correction
protocols to be used by the modem. (When operating in direct connect mode,
the data rate of the modem tool is automatically adjusted to the data rate stated
in the “CONNECT SEXTETS” message.)

■ The modem tool expects control signals to be used as follows:

n The modem tool uses RTS to control data flow from the modem.

n The modem uses CTS to control data flow from the modem tool.

n Support of the DCD signal is optional. In general, the modem tool expects
DCD to reflect the actual carrier state. The usage of this signal by the modem
tool is governed by the kUseHardwareCD constant.

■ The modem tool expects non-verbose textual responses from the modem.

■ The modem tool expects no echo.

■ The modem tool currently supports the Class 1 protocol for FAX connections;
under some circumstance (see the note below), the modem tool supports the
Class 2 protocol. The configuration string defined by the constant
kConfigStrNoEC is used for sending and receiving FAX documents.
Additionally, these other requirements apply to the FAX service:

n Flow control is required. In modems not supporting hardware flow control
(where kDirectConnectOnly = true), XON/XOFF software flow
control must be enabled.

n Buffering must be enabled.

n The kConfigSpeed constant must be set to higher than the highest connect
rate of which the modem is capable. For example, if the modem supports
14400, set kConfigSpeed to 19200; if the modem supports 28800, set
kConfigSpeed to 54600.

C H A P T E R 2 5

Modem Setup Service

Defining a Modem Setup 25-5

Note
The modem tool has been upgraded to support the Class 2 and
Class 2.0 FAX protocols in release 2.1 of the Newton System
Software. This upgrade is also available in the German version
of release 2.0 of the Newton System Software. To enable the
use of these protocols, you must define the fax profile in your
modem setup. ◆

Defining a Modem Setup 25

The parts of a modem setup are specified in a Newton Toolkit (NTK) text file,
which is provided by Newton Technical Support. The modem preferences and
profile options are specified by setting constants. The following sections describe
each part of the modem setup.

Setting Up General Information 25
The beginning of a modem setup contains general information about the setup and
the modem to which it corresponds. Here is an example:

constant kModemName := "Speedy Fast XL";
constant kVersion := 1;
constant kOrganization := "Speedy Computer, Inc.";

The value of kModemName appears in the Modem preferences. It is usually the
name of the modem. The constant kVersion identifies the (integer-only) version
of the modem setup package. The constant kOrganization indicates the source
of the modem setup package. For detailed descriptions of these constants, see
“Modem Setup General Information Constants” (page 22-2) in Newton
Programmer’s Reference.

Setting the Modem Preferences Option 25
This modem option configures the modem controller. Here is an example:

constant kIdModem := nil;
constant kUseHardwareCD := true;
constant kUseConfigString := true;
constant kUseDialOptions := true;
constant kHangUpAtDisconnect := true;

For detailed descriptions of these constants, see “Modem Setup Preference
Constants” (page 22-3) in Newton Programmer’s Reference. For more information

C H A P T E R 2 5

Modem Setup Service

25-6 Defining a Modem Setup

about the modem preferences option, see “Modem Preferences Option”
(page 21-34) in Newton Programmer’s Reference.

Setting the Modem Profile Option 25
This modem profile option describes the modem characteristics, to be used by the
modem controller. Here is an example:

constant kSupportsEC := true;
constant kSupportsLCS := nil;
constant kDirectConnectOnly:= nil;
constant kConnectSpeeds := '[300, 1200, 2400, 4800,

7200, 9600, 12000, 14400];
constant kConfigSpeed := 38400;
constant kCommandTimeout := 2000;
constant kMaxCharsPerLine := 40;
constant kInterCmdDelay := 25;
constant kModemIDString := "unknown";
constant kConfigStrNoEC :=

"ATE0&A0&B1&C1&H1&M0S12=12\n";
constant kConfigStrECOnly :=

"ATE0&A0&B1&C1&H1&M5S12=12\n";
constant kConfigStrECAndFallbac :=

"ATE0&A0&B1&C1&H1&M4S12=12\n";
constant kConfigStrDirectConnec :=

"ATE0&A0&B0&C1&H0&M0S12=12\n";

For detailed descriptions of these constants, see “Modem Setup Profile Constants”
(page 22-4) in Newton Programmer’s Reference. For more information about the
modem preferences option, see “Modem Profile Option” (page 21-38) in Newton
Programmer’s Reference.

When the modem tool establishes communication with a modem through an
endpoint, the tool normally sends a configuration string to the modem (as long as
kUseConfigString is true). Several configuration strings are defined in a
typical modem profile; the one that is sent depends on the type of connection
requested and other parameters set in the modem profile. Table 25-1 summarizes
when each kind of configuration string is used:

C H A P T E R 2 5

Modem Setup Service

Defining a Modem Setup 25-7

Setting the Fax Profile Option 25
The fax profile option describes the fax characteristics to be used by the fax tool.
Here is an example:

constant kTransmitDataMod :=
kV21Ch2Mod + KV27Ter24Mod+ kV27Ter48Mod;

constant kReceiveDataMod:=
kV21Ch2Mod + KV27Ter24Mod + kV27Ter48Mod;

constant kServiceClass :=
kModemFaxClass1 + kModemFaxClass2;

This example limits the faxing to 4800 bps for both send and receive messages. If
neither of these constants is defined, then the fax send and receive speeds are not
restricted.

Table 25-1 Summary of configuration string usage

Configuration string When used

kConfigStrNoEC The default configuration used for data
connections when kDirectConnectOnly is
nil. Also used for FAX connections. See
“The No Error Control Configuration String”
(page 22-7) in Newton Programmer’s Reference
for an example.

kConfigStrECOnly Used for data connections that require error
correction. This configuration string is used
only if requested by an application. The
constant kSupportsEC must be true for this
configuration string to be used. See “The Error
Control Configuration String” (page 22-8) in
Newton Programmer’s Reference for an example.

kConfigStrECAndFallback Used for data connections that allow error
correction, but that can fall back to non-error-
corrected mode. This configuration string is
used only if requested by an application. See
“The Error Control with Fallback Configuration
String” (page 22-9) in Newton Programmer’s
Reference for an example.

kConfigStrDirectConnect The default configuration used for data
connections when kDirectConnectOnly is
true. See “The Direct Connect Configuration
String” (page 22-9) in Newton Programmer’s
Reference for an example.

C H A P T E R 2 5

Modem Setup Service

25-8 Defining a Modem Setup

Note
You can only set the service class (use the kServiceClass
constant) for versions of the software that support the Class 2 fax
protocol. Newton System Software version 2.1 and the German
version of Newton System Software version 2.0 support the Class
2 fax protocol. ◆

For detailed descriptions of these constants, see “Fax Profile Constants”
(page 22-10) in Newton Programmer’s Reference.

The constants that you can use to specify speeds in defining your fax profile values
are shown in Table 22-5 (page 22-11) in Newton Programmer’s Reference.

C H A P T E R 2 5

Modem Setup Service

Summary of the Modem Setup Service 25-9

Summary of the Modem Setup Service 25

Constants 25

Constants for Modem Setup General Information 25

kModemName
kVersion
kOrganization

Constants for Modem Setup Preferences 25

kIdModem
kUseHardwareCD
kUseConfigString
kUseDialOptions
kHangUpAtDisconnect

Constants for the Modem Setup Profile 25

kSupportsEC
kSupportsLCS
kDirectConnectOnly
kXonnectSpeeds
kXommandTimeout
kMaxCharsPerLine
kInterCmdDelay
kModemIDString
kConfigStrNoEC
kConfigStrECOnly
kConfigStrECAndFallback
kConfigStrDirectConnect

Constants for the fax profile 25

kTransmitDataMod
kReceiveDataMod
kServiceClass

C H A P T E R 2 5

Modem Setup Service

25-10 Summary of the Modem Setup Service

Fax Speed Constants 25

kV21Ch2Mod
kv27Ter24Mod
kV27Ter48Mod
kV29_72Mod
kV17_72Mod
kV17st_72Mod
kV29_96Mod
kV17_96Mod
kV17st_96Mod
kV17_12Mod
kV17st_12Mod
kV17st_14Mod

Fax Class Constants 25

kModemFaxClass0
kModemFaxClass1
kModemFaxClass2
kModemFaxClass2_0

26-1

C H A P T E R 2 6

Utility Functions 26Figure 26-0
Table 26-0

This chapter provides a listing of a number of utility functions documented in the
“Utility Functions Reference” in the Newton Programmer’s Reference. The
following groups of functions are included:

■ Object system

■ String

■ Bitwise

■ Array and sorted array

■ Integer Math

■ Floating point math

■ Control of floating point math

■ Financial

■ Exception handling

■ Message sending and deferred message sending

■ Data extraction

■ Data stuffing

■ Getting and Setting Global Variables

■ Miscellaneous

Four of the functions described in the Object system section are designed to clone,
or copy, objects. These functions each behave slightly differently. Table 26-1
summarizes their actions. The “Recurs” column indicates if references within the
object are copied. The “Follows magic pointers” column indicates if objects
referenced through magic pointers are copied. The “Ensures object is internal”
column indicates if the function ensures that all parts of the object exist in internal
RAM or ROM. The “Copies object” column indicates if the object is copied.

C H A P T E R 2 6

Utility Functions

26-2 Compatibility

Compatibility 26

This section describes the changes to the utility functions for Newton System
Software 2.0.

New Functions 26
The following new functions have been added for this release.

New Object System Functions 26

The following new object system functions have been added.

GetFunctionArgCount
IsCharacter
IsFunction
IsInteger
IsNumber
IsReadOnly (existed in 1.0 but now documented)
IsReal
IsString
IsSubclass (existed in 1.0 but now documented)
IsSymbol
MakeBinary
SetVariable
SymbolCompareLex

Table 26-1 Summary of copying functions

Function name Recurs
Follows
magic pointers

Ensures object
is internal

Copies
object

Clone — — — yes

DeepClone yes yes — yes

EnsureInternal yes — yes as needed

TotalClone yes — yes yes

C H A P T E R 2 6

Utility Functions

Compatibility 26-3

New String Functions 26

The following new string functions have been added.

CharPos
LatitudeToString
LongitudeToString
StrExactCompare
StrFilled (existed in 1.0 but now documented)
StrTokenize
StyledStrTruncate
SubstituteChars

New Array Functions 26

The following new array functions have been added.

ArrayInsert
InsertionSort
LFetch
LSearch
NewWeakArray
StableSort

New Sorted Array Functions 26

The following new functions have been added that operate on sorted arrays. These
functions are based on binary search algorithms, hence the “B” prefix to the
function names.

BDelete
BDifference
BFetch
BFetchRight
BFind
BFindRight
BInsert
BInsertRight
BIntersect
BMerge
BSearchLeft
BSearchRight

C H A P T E R 2 6

Utility Functions

26-4 Compatibility

New Integer Math Functions 26

The following new functions related to integer math have been added.

GetRandomState
SetRandomState

New Financial Functions 26

The following new functions that perform operations related to the currency
exchange rate have been added.

GetExchangeRate
SetExchangeRate
GetUpdatedExchangeRates

New Exception Handling Functions 26

The following new exception handling function has been added.

RethrowWithUserMessage

New Message Sending Functions 26

The following new utility functions for sending immediate messages have
been added.

IsHalting
PerformIfDefined
ProtoPerform
ProtoPerformIfDefined

New Deferred Message Sending Functions 26

The following new utility functions for delayed and deferred actions have been added.

AddDeferredCall
AddDelayedCall
AddProcrastinatedCall
AddDeferredSend
AddDelayedSend
AddProcrastinatedSend

These new functions replace AddDelayedAction and AddDeferredAction
(although both remain in the ROM for compatibility with existing applications).
These two older functions have several problems, and you should not use them—
they will likely be removed in future versions of system software.

C H A P T E R 2 6

Utility Functions

Compatibility 26-5

New Data Stuffing Functions 26

The following new data stuffing functions have been added.

StuffCString
StuffPString

New Functions to Get and Set Globals 26

The following new functions that get, set, and check for the existence of global
variables and functions have been added.

GetGlobalFn
GetGlobalVar
GlobalFnExists
GlobalVarExists
DefGlobalFn
DefGlobalVar
UnDefGlobalFn
UnDefGlobalVar

New Debugging Functions 26

The following debugging functions have been added.

StrHexDump
TrueSize
ViewAutopsy

The following debugging functions have been changed.

StackTrace
BreakLoop

New Miscellaneous Functions 26

The following miscellaneous functions have been added.

AddMemoryItem
AddMemoryItemUnique
Backlight
BacklightStatus
BinEqual
Gestalt
GetAppName
GetAppPrefs
GetMemoryItems

C H A P T E R 2 6

Utility Functions

26-6 Compatibility

GetMemorySlot
MakePhone
MakeDisplayPhone
ParsePhone
PowerOff
Translate

Enhanced Functions 26
The following string function has been enhanced in Newton 2.0.

ParamStr has been enhanced to support conditional substitution.

Obsolete Functions 26
Some utility functions previously documented in the Newton Programmer’s Guide
are obsolete, but are still supported for compatibility with older applications. Do
not use the following utility functions, as they may not be supported in future
system software versions:

AddDeferredAction (use AddDeferredCall instead)
AddDelayedAction (use AddDelayedCall instead)
AddPowerOffHandler (use RegPowerOff instead)
ArrayPos (use LSearch instead)
GetGlobals (use GetGlobalVar or GetGlobalFn instead)
RemovePowerOffHandler (use UnRegPowerOff instead)
SmartStart (use other string manipulation functions)
SmartConcat (use other string manipulation functions)
SmartStop (use other string manipulation functions)
StrTruncate (use StyledStrTruncate instead)
StrWidth (use StrFontWidth instead)

C H A P T E R 2 6

Utility Functions

Summary of Functions and Methods 26-7

Summary of Functions and Methods 26

Object System Functions 26

ClassOf(object)
Clone(object)
DeepClone(object)
EnsureInternal(obj)
GetFunctionArgCount(function)
GetSlot(frame, slotSymbol)
GetVariable(frame, slotSymbol)
HasSlot(frame, slotSymbol)
HasVariable(frame, slotSymbol)
Intern(string)
IsArray(obj)
IsBinary(obj)
IsCharacter(obj)
IsFrame(obj)
IsFunction(obj)
IsImmediate(obj)
IsInstance(obj, class)
IsInteger(obj)
IsNumber(obj)
IsReadOnly(obj)
IsReal(obj)
IsString(obj)
IsSubclass(sub, super)
IsSymbol(obj)
MakeBinary(length, class)
Map(obj, function)
PrimClassOf(obj)
RemoveSlot(obj, slot)
ReplaceObject(originalObject, targetObject)
SetClass(obj, classSymbol)
SetVariable(frame, slotSymbol, value)
SymbolCompareLex(symbol1, symbol2)
TotalClone(obj)

C H A P T E R 2 6

Utility Functions

26-8 Summary of Functions and Methods

String Functions 26

BeginsWith(string, substr)
Capitalize(string)
CapitalizeWords(string)
CharPos(str, char, startpos)
Downcase(string)
EndsWith(string, substr)
EvalStringer(frame, array)
FindStringInArray(array, string)
FindStringInFrame(frame, stringArray, path)
FormattedNumberStr(number, formatString)
IsAlphaNumeric(char)
IsWhiteSpace(char)
LatitudeToString(latitude)
LongitudeToString(longitude)
NumberStr(number)
ParamStr(baseString, paramStrArray)
SPrintObject(obj)
StrCompare(a, b)
StrConcat(a, b)
StrEqual(a, b)
StrExactCompare(a, b)
StrFilled(string)
StrFontWidth(string, fontSpec)
Stringer(array)
StringFilter(str, filter, instruction)
StringToNumber(string)
StrLen(string)
StrMunger(dstString, dstStart, dstCount, srcString, srcStart, srcCount)
StrPos(string, substr, start)
StrReplace(string, substr, replacement, count)
StrTokenize(str, delimiters)
StyledStrTruncate(string, length, font)
SubstituteChars(targetStr, searchStr, replaceStr)
SubStr(string, start, count)
TrimString(string)
Upcase(string)

C H A P T E R 2 6

Utility Functions

Summary of Functions and Methods 26-9

Bitwise Functions 26

Band(a, b)
Bor(a, b)
Bxor(a, b)
Bnot(a)

Array Functions 26

AddArraySlot (array, value)
Array(size, initialValue)
ArrayInsert(array, element, position)
ArrayMunger(dstArray, dstStart, dstCount, srcArray, srcStart, srcCount)
ArrayRemoveCount(array, startIndex, count)
InsertionSort(array, test, key)
Length (array)
LFetch(array, item, start, test, key)
LSearch(array, item, start, test, key)
NewWeakArray(length)
SetAdd (array,value,uniqueOnly)
SetContains(array, item)
SetDifference(array1, array2)
SetLength (array, length)
SetOverlaps(array1, array2)
SetRemove (array, value)
SetUnion(array1, array2, uniqueFlag)
Sort(array, test, key)
StableSort(array, test, key)

Sorted Array Functions 26

BDelete(array, item, test, key, count)
BDifference(array1, array2, test, key)
BFetch(array, item, test, key)
BFetchRight(array, item, test, key)
BFind(array, item, test, key)
BFindRight(array, item, test, key)
BInsert(array, element, test, key, uniqueOnly)
BInsertRight(array, element, test, key, uniqueOnly)
BIntersect(array1, array2, test, key, uniqueOnly)

C H A P T E R 2 6

Utility Functions

26-10 Summary of Functions and Methods

BMerge(array1, array2, test, key, uniqueOnly)
BSearchLeft(array, item, test, key)
BSearchRight(array, item, test, key)

Integer Math Functions 26

Abs(x)
Ceiling(x)
Floor(x)
GetRandomState()
Max(a, b)
Min(a, b)
Real(x)
Random (low, high)
SetRandomSeed (seedNumber)
SetRandomState(randomState)

Floating Point Math Functions 26

Acos(x)
Acosh(x)
Asin(x)
Asinh(x)
Atan(x)
Atan2(x,y)
Atanh(x)
CopySign(x,y)
Cos(x)
Cosh(x)
Erf(x)
Erfc(x)
Exp(x)
Expm1(x)
Fabs(x)
FDim(x,y)
FMax(x,y)
FMin(x,y)
Fmod(x,y)
Gamma(x)
Hypot(x,y)

C H A P T E R 2 6

Utility Functions

Summary of Functions and Methods 26-11

IsFinite(x)
IsNaN(x)
IsNormal(x)
LessEqualOrGreater(x, y)
LessOrGreater(x, y)
LGamma(x)
Log(x)
Logb(x)
Log1p(x)
Log10(x)
NearbyInt(x)
NextAfterD(x,y)
Pow(x,y)
RandomX(x)
Remainder(x,y)
RemQuo(x,y)
Rint(x)
RintToL(x)
Round(x)
Scalb(x, k)
SignBit(x)
Signum(x)
Sin(x)
Sinh(x)
Sqrt(x)
Tan(x)
Tanh(x)
Trunc(x)
Unordered(x, y)
UnorderedGreaterOrEqual(x, y)
UnorderedLessOrEqual(x, y)
UnorderedOrEqual(x, y)
UnorderedOrGreater(x, y)
UnorderedOrLess(x, y)
FeClearExcept(excepts)
FeGetEnv()
FeGetExcept(excepts)
FeHoldExcept()
FeRaiseExcept(excepts)
FeSetEnv(envObj)
FeSetExcept(flagObj, excepts)

C H A P T E R 2 6

Utility Functions

26-12 Summary of Functions and Methods

FeTestExcept(excepts)
FeUpdateEnv(envObj)

Financial Functions 26

Annuity(r, n)
Compound(r, n)
GetExchangeRate(country1, country2)
SetExchangeRate(country1, country2, rate)
GetUpdatedExchangeRates()

Exception Functions 26

Throw(name, data)
Rethrow()
CurrentException()
RethrowWithUserMessage(userTitle,userMessage,override)

Message Sending Functions 26

Apply(function, parameterArray)
IsHalting(functionObject, args)
Perform(frame, message, parameterArray)
PerformIfDefined(receiver,message,paramArray)
ProtoPerform(receiver,message,paramArray)
ProtoPerformIfDefined(receiver,message,paramArray)

Deferred Message Sending Functions 26

AddDeferredCall(functionObject,paramArray)
AddDelayedCall(functionObject,paramArray,delay)
AddDeferredSend(receiver,message,paramArray)
AddDelayedSend(receiver,message,paramArray,delay)
AddProcrastinatedCall(funcSymbol,functionObject,paramArray,delay)
AddProcrastinatedSend(msgSymbol,receiver,message,paramArray,delay)

C H A P T E R 2 6

Utility Functions

Summary of Functions and Methods 26-13

Data Extraction Functions 26

ExtractByte(data, offset)
ExtractBytes(data, offset, length, class)
ExtractChar(data, offset)
ExtractLong(data, offset)
ExtractXLong(data, offset)
ExtractWord(data, offset)
ExtractCString(data, offset)
ExtractPString(data, offset)
ExtractUniChar(data, offset)

Data Stuffing Functions 26

StuffByte(obj, offset, toInsert)
StuffChar(obj, offset, toInsert)
StuffCString(obj, offset, aString)
StuffLong(obj, offset, toInsert)
StuffPString(obj, offset, aString)
StuffUniChar(obj, offset, toInsert)
StuffWord(obj, offset, toInsert)

Getting and Setting Global Variables and Functions 26

GetGlobalFn(symbol)
GetGlobalVar(symbol)
GlobalFnExists(symbol)
GlobalVarExists(symbol)
DefGlobalFn(symbol, function)
DefGlobalVar(symbol, value)
UnDefGlobalFn(symbol)
UnDefGlobalVar(symbol)

Debugging Functions 26

BreakLoop()
DV(view)
GC()
ExitBreakLoop()
StackTrace()

C H A P T E R 2 6

Utility Functions

26-14 Summary of Functions and Methods

Stats()
StrHexDump(object, spaceInterval)
TrueSize(object, filter)
ViewAutopsy(functionSpec)

Miscellaneous Functions 26

AddMemoryItem(memSymbol, value)
AddMemoryItemUnique(memorySlot, value, testFunc)
Backlight()
BacklightStatus(state)
BinEqual(a, b)
BinaryMunger(dst, dstStart, dstCount, src, srcStart, srcCount)
Chr(integer)
Compile(string)
Gestalt(selector)
GetAppName(appSymbol)
GetAppParams()
GetAppPrefs(appSymbol, defaultFrame)
GetMemoryItems(memSymbol)
GetMemorySlot(memorySlot, op)
GetPrinterName(printerFrame) //platform file function
MakePhone (phoneFrame)
MakeDisplayPhone(phoneStr)
rootView:MungePhone(inNum, country)
ParsePhone(phoneStr)
PowerOff(reason)
Ord (char)
RegEmailSystem(classSymbol, name, internet)
RegPagerType(classSymbol, name)
RegPhoneType with (classSymbol, name, number)
ShowManual()
Sleep(ticks)
rootView:SysBeep()
Translate(data, translator, store, callback)
UnRegEmailSystem(classSymbol)
UnregPagerType(classSymbol)
UnregPhoneTypeFunc(classSymbol)

Compile-Time Results A-1

A P P E N D I X

The Inside Story on Declare A

This appendix describes the technical details of the declare mechanism. Knowing
these technical details is not necessary to understanding what declaring a view
means; they are provided primarily for completeness and to help you when you are
debugging. You shouldn’t write code that depends on these details.

For a basic discussion of the declare mechanism, see the section “View Instantiation”
beginning on page 3-26. You should be familiar with that material before reading
this appendix.

To serve as an example here, imagine a calculator application whose base view is
named “Calculator.” It has (among others) a child view named “Display.” The
Display view is declared in the Calculator view. See Figure A-1 for an illustration
of this example.

In the following sections, we’ll explain what happens at compile time and at run
time as a result of the declare operation. A number of slots are created, which
you may see in the Newton Toolkit (NTK) Inspector if you are examining the
view templates.

Compile-Time Results 26

As a result of the declare operation, at compile time, NTK creates a slot in the place
where the view is declared—that is, in the Calculator template. The name of the slot
is the name of the declared view, Display. This slot’s value is initially set to nil.

Another slot, called stepAllocateContext, is also created in the Calculator
template. This slot holds an array of values (two for each view declared there). The
first value in each pair is a symbol used by the system at run time to identify the
name of the slot in the Calculator view that holds a reference to the declared view.
This symbol is simply the name of the declared view, Display.

The second value in each pair is a reference to the template for the declared view.
At run time, the system will preallocate a view memory object for the declared
view from this template.

Figure 27-0
Table 27-0

A P P E N D I X

A-2 Run-Time Results

Note
Protos built into the system use an analogous slot called
allocateContext, that holds the same thing as
stepAllocateContext. The allocateContext slot is for
declared children from the viewChildren array and the
stepAllocateContext slot is for declared children from the
stepChildren array. ◆

Also, as a result of the declare operation, NTK creates a slot in the Display template
called preallocatedContext. This slot holds a symbol that is the name of the
template, in this case 'Display. This symbol will be used by the system when the
view is instantiated to find the preallocated view memory object for the Display view.

Run-Time Results 26

When the Calculator view is opened (even before its ViewSetupFormScript
method is executed), a view memory object is preallocated for each view declared
in Calculator. (The information required to do this is obtained from the
allocateContext and stepAllocateContext slots.) In our example, a view
memory object is created for the Display view.

The Display slot in the Calculator view is updated so that it points to the newly
allocated Display view object.

Later in the instantiation process for the Calculator view, its child views are created
and shown, including the Display view. At this time, the view system looks at the
template for the Display view, sees the preallocatedContext slot, and knows
that a view memory object has been preallocated for this view. Using this slot, the
system can find the preallocated view.

The value of the preallocatedContext slot is the name of another slot in the
Calculator view. The system locates this slot in the Calculator view, and finds there
a reference to the preallocated view object. Instead of creating a new view object
for the Display view, the system uses the preallocated view.

A P P E N D I X

Run-Time Results A-3

Figure A-1 Declare example

Calculator

DisplayDisplay

{

preallocatedContext:

 'Display

.

.

}

Calculator

As a result of the declare, two
slots are added to the Calculator
template. The Display slot will
eventually hold the address of the
Display view.

In the Calculator view, the
address of the newly created
Display view is stored in the
slot whose name matches the
first entry in the
stepAllocateContext
array in the Calculator
template.

Also as a result of the declare,
one slot is added to the Display
template. It holds the name of the
slot in the Calculator template
where its view address will be
stored.

Later, when the Display view is to
be shown, the system finds the
preallocated view by using the
preallocatedContext slot
(in the template) and looking for a
slot with that name in the Calculator
view. That slot holds the address of
the preallocated Display view.

Templates (compile time) Views (run time)

{

_proto:

Display: Display

.

.

}

{

Display: nil

stepAllocateContext:

 ['Display, Display]

.

.}

When the
Calculator view
is opened, this
Display view is
preallocated.

{

_proto:

.

.

}

GL-1

Glossary

Action button The small envelope button used
in applications to invoke routing functions.
When tapped, it displays a picker listing routing
actions available for the current item.

alias An object that consists of a reference to
another object. An alias saves space, since the
alias object is small, and can be used to
reference very large objects. Resolving an alias
refers to retrieving the object that the alias
references. See also entry alias.

application base view The topmost parent
view in an application. The application base view
typically encloses all other views that make up
the application.

arc A portion of the circumference of an oval
bounded by a pair of radii joining at the oval’s
center. Contrast a wedge, which includes part of
the oval’s interior. Arcs and wedges are defined
by the bounding rectangle that encloses the oval,
along with a pair of angles marking the
positions of the bounding radii.

array A sequence of numerically indexed
slots (also known as the array elements) that
contain objects. The first element is indexed by
zero. Like other nonimmediate objects, an array
can have a user-specified class, and can have its
length changed dynamically.

away city The emporium that’s displayed as a
counterpoint to your home city. It defines such
information as dialing area, time zone, and so
on. Sometimes it is called the “I'm here” city.

binary object A sequence of bytes that can
represent any kind of data, can be adjusted
dynamically in size, and can have a user-

specified class. Examples of binary objects
include strings, real numbers, sounds, and
bitmaps.

Boolean A special kind of immediate value. In
NewtonScript, there is only one Boolean, called
true. Functions and control structures use nil
to represent false. When testing for a true/false
value, nil represents false, and any other value
is equivalent to true.

button host An application that receives
buttons from other applications (button
providers).

button provider An application that adds a
button to another application (the button host).

callback spec A frame passed as an argument
to an endpoint method. The callback spec frame
contains slots that control how the endpoint
method executes, along with a completion
method that is called when the endpoint
operation completes. See also
output spec.

card Short for a PCMCIA card. Also, a view
of information about an entry in the Names
soup, formatted as a business card.

child A frame that references another
frame (its parent) from a _parent slot. With
regard to views, a child view is enclosed by
its parent view.

class A symbol that describes the data
referenced by an object. Arrays, frames, and
binary objects can have user-defined classes.

constant A value that does not change. In
NewtonScript the value of the constant is
substituted wherever the constant is used in code.

G L O S S A R Y

GL-2

cursor An object returned by the Query
method. The cursor contains methods that iterate
over a set of soup entries meeting the criteria
specified in the query. The addition or deletion
of entries matching the query specification is
automatically reflected in the set of entries
referenced by the cursor, even if the changes
occur after the original query was made.

data definition A frame containing slots that
define a particular type of data and the methods
that operate on it. The entries defined are used
by an application and stored in its soup. A data
definition is registered with the system. The
shortened term dataDef is sometimes used. See
also view definition.

data form A symbol that describes the
transformations that must occur when data is
exchanged with other environments. When you
send data or set endpoint options, the data form
defines how to convert the data from its
NewtonScript format. When you receive data or
get endpoint options, the data form defines the
type of data expected.

declaring a template Registering a template
in another view (usually its parent) so that the
template’s view is preallocated when the other
view is opened. This allows access to methods
and slots in the declared view.

deferred recognition The process of
recognizing an ink word that was drawn by the
user at an earlier time. Deferred recognition is
usually initiated when the user double-taps on
an ink word. See also ink and ink word.

desktop computer Either a Mac OS or
Windows-based computer. Sometimes called
simply “desktop.”

emporium The permanent internal
descriptions of places the user works with the
Newton PDA. (Home and Office are obvious
examples, but so might be “Tokyo Office” if the
user travels a lot.) Choosing an emporium sets

up information such as local area code, dialing
prefixes, time zone, and so on. This term is
sometimes called “locale.” The plural
is “emporia.”

endpoint An object created from
protoBasicEndpoint, or one of its
derivative protos, that controls a real-time
communication session. This object
encapsulates and maintains the details of the
specific connection, and allows you to control
the underlying communication tool.

endpoint option An endpoint option is
specified in a frame passed in an array as an
argument to one of the endpoint methods.
Endpoint options select the communication tool
to use, control its configuration and operation,
and return result code information from each
endpoint method call.

entry A frame stored in a soup and accessed
through a cursor. An entry frame contains
special slots that identify it as belonging to a
soup.

entry alias An object that provides a standard
way to save a reference to a soup entry. Entry
aliases themselves may be stored in soups.

enumerated dictionary A list of words that
can be recognized when this dictionary is
enabled. See also lexical dictionary.

EOP End of packet indicator.

evaluate slot A slot that’s evaluated when
NTK (Newton Toolkit) compiles the application.

event An entry in the Dates application for a
day, but not a particular time during that day.

field An area in a view where a user can write
information.

finder A frame containing methods and/or
objects that enumerate data items found to
match criteria specified via the Find slip.

G L O S S A R Y

GL-3

flag A value that is set either on or off to
enable a feature. Typically, flag values are single
bits, though they can be groups of bits or a
whole byte.

font spec A structure used to store information
about a font, including the font family, style, and
point size.

frame An unordered collection of slots, each
of which consists of a name and value pair. The
value of a slot can be any type of object, and
slots can be added or removed from frames
dynamically. A frame can have a user-specified
class. Frames can be used like records in Pascal
and structs in C, and also as objects that respond
to messages.

free-form entry field A field of a
protoCharEdit view that accepts any
characters as user input.

function object A frame containing
executable code. Function objects are created by
the function constructor:

func(args) funcBody

An executable function object includes values
for its lexical and message environment, as well
as code. This information is captured when the
function constructor is evaluated at run time.

gesture A handwritten mark that is recog-
nized as having a special meaning in the Newton
system, such as tap, scrub, caret, and so on.

global A variable or function that is accessible
from any NewtonScript code.

grammar A set of rules defining the format of
an entity to be recognized, such as a date, time,
phone number, or currency value. Lexical
dictionaries are composed of sets of grammars.
See also lexical dictionary.

home city The emporium the system uses to
modify dialing information, time zone, and so
on. It is usually the user’s home, but the user
may set it to another city when traveling.

immediate A value that is stored directly
rather than through an indirect reference to a
heap object. Immediates are characters, integers,
or Booleans. See also reference.

implementor The frame in which a method is
defined. See also receiver.

In/Out Box The application that serves as a
central repository for all incoming and outgoing
data handled by the Routing and Transport
interfaces.

inheritance The mechanism by which
attributes (slots or data) and behaviors (methods)
are made available to objects. Parent inheritance
allows views of dissimilar types to share slots
containing data or methods. Prototype inheritance
allows a template to base its definition on that of
another template or prototype.

ink The raw data for input drawn by the user
with the stylus. Also known as raw ink or
sketch ink.

ink word The grouping of ink data created by
the recognition system, based on the timing and
spacing of the user’s handwriting. Ink words are
created when the user has selected “Ink Text” in
the Recognition Preferences slip. Ink words can
subsequently be recognized with deferred
recognition.

input spec A frame used in receiving endpoint
data that defines how incoming data should be
formatted; termination conditions that control
when the input should be stopped; data filtering
options; and callback methods.

instantiate To make a run-time object in the
NewtonScript heap from a template. Usually
this term refers to the process of creating a view
from a template.

G L O S S A R Y

GL-4

item frame The frame that encapsulates a
routed (sent or received) object and that is stored
in the In/Out Box soup.

lexical dictionary A list of valid grammars,
each specifying the format of an entity to be
recognized, such as a date, time, phone number
or currency value. See also enumerated
dictionary and grammar.

line A shape defined by two points: the current
x and y location of the graphics pen and the x
and y location of its destination.

local A variable whose scope is the function
within which it is defined. You use the local
keyword to explicitly create a local variable
within a function.

magic pointer A constant that represents a
special kind of reference to an object in the
Newton ROM. Magic pointer references are
resolved at run time by the operating system,
which substitutes the actual address of the ROM
object for the magic pointer reference.

meeting An entry in the Dates application for
a specific time during the day. People can be
invited and the meeting can be scheduled for a
particular location.

message A symbol with a set of arguments. A
message is sent using the message send syntax
frame:messageName(), where the message
messageName is sent to the
receiver frame.

method A function object in a frame slot that
is invoked in response to a message.

name reference A frame that contains a soup
entry or an alias to a soup entry, often, though
not necessarily, from the Names soup. The
frame may also contain some of the individual
slots from the soup entry.

NewtonScript heap An area of RAM used by
the system for dynamically allocated objects,
including NewtonScript objects.

nil A value that indicates nothing, none, no,
or anything negative or empty. It is similar to
(void*)0 in C. The value nil represents
“false” in Boolean expressions; any other value
represents “true.”

object A typed piece of data that can be an
immediate, array, frame, or binary object. In
NewtonScript, only frame objects can hold
methods and receive messages.

option frame A frame passed as a parameter
to an endpoint method that selects the
communication tool to use; controls its
configuration and operation; and returns result
code information from the endpoint method.

origin The coordinates of the top-left corner
of a view, usually (0, 0). The origin can be
shifted, for example, to scroll the contents of
a view.

output spec A special type of callback spec
used with an endpoint method. An output spec
contains a few additional slots that allow you to
pass special protocol flags and to define how the
data being sent is translated.

oval A circular or elliptical shape defined by
the bounding rectangle that encloses it.

package The unit in which software can be
installed on and removed from the Newton.
A package consists of a header containing the
package name and other information, and one or
more parts containing the software.

package file A file that contains downloadable
Newton software.

package store See store part.

parent A frame referenced through the
_parent slot of another frame. With regard to
views, a parent view encloses its child views.

G L O S S A R Y

GL-5

part A unit of software—either code or data—
held in a part frame. The format of the part is
identified by a four-character identifier called its
type or its part code.

part frame The top-level frame that holds an
application, book, or auto part.

PCMCIA Personal Computer Memory Card
International Association. This acronym is used
to describe the memory cards used by the
Newton PDA. Newton memory cards follow the
PCMCIA standards.

persona The permanent internal description of
an individual person that uses a particular
Newton PDA, or a particular public image of the
Newton owner. The owner is the obvious
example, but there can be many others.
Choosing a persona sets up information such as
name, title, birthday, phone numbers, e-mail
addresses, and so on. The plural is “personae.”

picker A type of Newton view that pops up
and contains a list of items. The user can select
an item by tapping it. This type of view closes
when the user taps an item or taps outside the
list without making a selection.

picture A saved sequence of drawing
operations that can be played back later.

polygon A shape defined by a sequence of
points representing the polygon’s vertices,
connected by straight lines from one point to
the next.

pop-up See picker.

project The collected files and specifications
that NTK uses to build a package that can be
downloaded and executed on
the Newton.

proto A frame referenced through another
frame’s _proto slot. With regard to views, a
proto is not intended to be directly instantiated—
you reference the proto from a template. The

system supplies several view protos, which an
application can use to implement user interface
elements such as buttons, input fields, and so on.

protocol An agreed-upon set of conventions
for communications between two computers,
such as the protocol used to communicate
between a desktop computer and a Newton device.

raw ink See ink.

receiver The frame that was sent a message.
The receiver for the invocation of a function
object is accessible through the pseudo-variable
self. See also implementor.

recognized text Ink words processed by the
recognition system. Ink drawn by the user is
converted into recognized text when the user has
selected “Text” in the Recognition Preferences
slip or after deferred recognition takes place.
See also ink word.

rectangle A shape defined by two points—its
top-left and its bottom-right corners—or by four
boundaries—its upper, left, bottom, and right
sides.

reference A value that indirectly refers to an
array, frame, or binary object. See also
immediate.

region An arbitrary area or set of areas on the
coordinate plane. The outline of a region should
be one or more closed loops.

resource Raw data—usually bitmaps or
sounds—stored on the development system and
incorporated into a Newton application during
the project build.

restore To replace all the information in
a Newton with information from a file on
the desktop.

restricted entry field A field of a
protoCharEdit view that accepts as user
input only the values specified in the view’s

G L O S S A R Y

GL-6

template slot. For example, a field for entering
phone numbers might restrict acceptable user
input to numerals.

rich string A string object that contains
imbedded ink words. Rich strings create a
compact representation for strings that contain
ink words and can be used with most of the
string-processing functions provided in the
system software. See also rich string format.

rich string format The internal representation
used for rich strings. Each ink word is
represented by a special placeholder character
(kInkChar) in the string. The data for each ink
word is stored after the string terminator
character. The final 32 bits in a rich string
encode information about the rich string.

root view The topmost parent view in the
view hierarchy. All other views descend from
the root view.

rounded rectangle A rectangle with rounded
corners. The shape is defined by the rectangle
itself, along with the diameter of the circles
forming the corners (called the diameter of
curvature).

routing format A frame that describes how to
format an object that is to be sent (routed).
Examples include print routing formats, which
describe how to visually format data, and frame
routing formats, which describe the internal
structure of a frame.

routing slip A view that looks like an
envelope. The transport displays this view after
the user selects a transport-based action from the
Action picker. This view is used by a transport
to collect information needed to send the item.

script icon An icon that executes a function
object when tapped.

self A pseudo-variable that is set to the current
receiver.

shape A data structure used by the drawing
system to draw an image on the screen.

siblings Child frames that have the same
parent frame.

sketch ink See ink.

slot An element of a frame or array that can
hold an immediate or reference.

soup A persistently stored object that contains
a series of frames called entries. Like a database,
a soup has indexes you can use to access entries
in a sorted order.

soupervisor mechanism The system service
that presents the user with information about a
soup when the user taps its icon in the Extras
Drawer. It allows for filing or moving all soup
entries.

soup icon An icon that represents one or more
soups, usually in the Storage folder of the Extras
Drawer.

stationery Refers to the capability of having
different kinds of data within a single
application (such as plain notes and outlines in
the Notepad) and/or to the capability of having
different ways of viewing the same data (such as
the Card and All Info views in the Names file).
Implementing stationery involves writing data
definitions and view definitions. See also data
definition and view definition.

store A physical repository that can contain
soups and packages. A store is like a volume on
a disk on a personal computer.

store part A part that encapsulates a read-only
store. This store may contain one or more soup
objects. Store parts permit soup-like access to
read-only data residing in a package. Store parts
are sometimes referred to as package stores.

G L O S S A R Y

GL-7

target The object being acted upon.
Sometimes the target consists of multiple items,
for example, when multiple items are selected
from an overview for sending.

template A frame that contains the data
description of an object (usually a view). A
template is intended to be instantiated at run
time. See also proto.

text run A sequence of characters that are all
displayed with the same font specification. Text
is represented in paragraph views as a series of
text runs with corresponding style (font spec)
information. See also font spec.

tick A sixtieth of a second.

transport A NewtonScript object that
provides a communication service to the
Newton In/Out Box. It interfaces between the In/
Out Box and an endpoint. Examples include the
print, fax, beam, and mail transports. See also
endpoint.

transport A special type of Newton
application used to send and/or receive data.
Transports communicate with the In/Out Box on
one end and typically to an endpoint object on
the other end. Examples include the built-in
transports such as print, fax, and beam. See also
endpoint.

user proto A proto defined by an application
developer, not supplied by the system.

view The object instantiated at run time from a
template. A view is a frame that represents a
visual object on the screen. The _proto slot of
a view references its template, which defines its
characteristics.

view class A primitive building block on
which a view is based. All view protos are based
directly or indirectly (through another proto) on
a view class. The view class of a view is
specified in the viewClass slot of its template
or proto.

view definition A view template that defines
how to display data from a particular data
definition. A view definition is registered with
the system under the name of the data definition
to which it applies. The shortened term viewDef
is sometimes used. See also data definition.

wedge A pie-shaped segment of an oval,
bounded by a pair of radii joining at the oval’s
center. Contrast with arc.

IN-1

Index

A

accessing query results 11-16
accessing tasks in the To Do List application 19-24
Action button 21-3

accessing routing actions from 21-3
adding to user interface 21-4
minimum actions for including 21-9
placement of 21-4

action button GL-1
action frames 18-5
Action picker

choosing a transport from 21-6
including a separator line in 21-23
types of routing actions 21-4

action template 18-5
AddAction 17-16
AddAlarm 17-11
AddAlarmInSeconds 17-11
AddAppointment, Dates method 19-11
AddArraySlot function 16-21
AddCard, Names method 19-6
AddCardData, Names method 19-6
AddEvent, Dates method 19-11
AddExtraIcon, Extras Drawer method 19-40, 19-42
adding a filing button 15-14
adding a new city to Time Zones 19-29
adding meetings or events to the Dates

application 19-11
adding views dynamically 3-33
AddLayout, Names method 19-6
address

converting e-mail to internet 22-9
address, user configuration variable 19-47
address class 22-6
AddStepView 3-35
AddUndoAction 17-8
AddUndoCall 17-8
AddUndoSend 17-8
alarm keys 17-11

retrieving 17-12

alarms
common problems 17-13
compatibility 17-5
creating 17-11
obtaining information about 17-12
periodic 17-4, 17-14
removing 17-13

AlarmsEnabled 17-14
alerting user 17-3, 17-11
alias GL-1
aliases

advanced usage of 21-36
for routing target 21-13

allDataDefs slot 4-20
allLayouts 4-15
allViewDefs slot 4-20
alphaKeyboard 8-26
animating views 3-23
annotations in Dates application 19-10
appAll slot 15-10

creating 15-12
appearance of view

viewFormat slot 3-20, 3-48
AppFindTargets method 16-20
AppInstalled 21-32
AppleTalk functions

NetChooser function 24-22
AppleTalk functions and methods 24-12
AppleTalk tool 24-9
application

asynchronous operation of 23-2
base view 3-5
DeletionScript function 2-6
DoNotInstallScript function 2-5
InstallScript function 2-5
linking endpoint with 23-24
name 2-10
RemoveScript function 2-6
structure 2-1
symbol 2-11
synchronous operation of 23-3

application base view GL-1

I N D E X

IN-2

application components
overview 1-15

application data class registry 21-33
application-defined routing actions 21-23
application extensions 5-1
application name

in appName slot 15-4
user-visible 15-4

application soup 16-10
appName slot 15-4, 15-10, 16-10

creating 15-11, 16-11
appObjectFileThisIn slot 15-4, 15-5, 15-10

creating 15-12
appObjectFileThisOn slot 15-4, 15-10

creating 15-12
appObjectUnfiled slot 15-10

creating 15-12
arc 13-4, GL-1
arglist array in endpoint options 23-5
array GL-1
assistant 18-9

architectural overview 18-5
entries slot 18-11
input strings 18-2
input to 18-1
intelligent 18-1
introduction to 18-1
matching entire words 18-8
multiple verbs 18-2
ordering of words in 18-2
overview 1-8
phrases slot 18-11
system-supplied templates 18-11

assist slip 18-6
asynchronous cancellation in endpoints 23-21
asynchronous serial tool 24-1
asynchronous sound 14-7
automatic busy cursor 17-15
auto part 2-4
AutoPutAway 21-32
auxForm slot 21-15
auxiliary buttons 19-36

compatibility information 19-36
list of functions and methods 19-57
using 19-37

auxiliary view
displaying 21-15
instantiating with BuildContext 21-15

Away City 19-27
away city GL-1

B

base view 3-5, GL-1
basic endpoint 23-1, 23-8
BatteryCount 17-26
battery information 17-26
BatteryStatus 17-26
BcCreditCards, Names method 19-7
BcCustomFields, Names method 19-7
BcEmailAddress, Names method 19-7
BcEmailNetwork, Names method 19-7
BcPhoneNumber, Names method 19-7
behavior of view 3-9, 3-47
binary object GL-1
bitmaps 13-17

capturing portions of a view into 13-18
flipping 13-19
rotating 13-19
storing compressed 13-18

Book Maker
overview 1-10

Book Reader
overview 1-10

books
advantages and disadvantages 2-3

Boolean GL-1
bounds

finding and setting 3-39
screen-relative 3-12

BuildContext 3-36
built-in applications

application program interfaces 19-1
built-in fonts 8-19
built-in keyboards 8-26
built-in tasks 18-3
button host 19-37, GL-1
button protos 7-6
button provider 19-37, GL-1
buttons

in Find slip 16-2

I N D E X

IN-3

C

calendar
versus the term Dates 19-9

Calendar Notes soup 19-22
Calendar soup 19-22
callback functions 15-3

registering 15-11
registering for folder changes 15-8

callback spec GL-1
defining 23-2

calling 18-3
Call transport

opening routing slip for 21-29
cancelling endpoint requests 23-21

asynchronously 23-21
synchronously 23-22

cancelling task slip 18-4
CancelRequest 22-13
CanPutAway 22-18
card GL-1
card-based application 4-6
cardfile

versus the term Names 19-2
caret insertion writing mode 8-3, 8-38

disabling 8-3
enabling 8-3

caret pop-up menu 8-38
case sensitivity 18-8
change notifications 17-2, 17-10
checking-off tasks in the To Do List application 19-25
checklist in Find slip 16-3
checklists

Notes stationery 19-30, 19-33
CheckOutbox 22-9
child GL-1
child template 3-2, 3-3
child views

closing obsolete 3-43
laying out 3-43

chooser function 24-22
cities

adding to Time Zones application 19-29
obtaining information about in Time Zones

application 19-28
cityZip, user configuration variable 19-47
class GL-1

view 3-9, 3-47, GL-7

ClassAppByClass 21-33
class constants

clEditView 3-47
clGaugeView 3-47
clKeyboardView 3-47
clMonthView 3-47
clOutlineView 3-47
clParagraphView 3-47
clPickView 3-47
clPictureView 3-47
clPolygonView 3-47
clRemoteView 3-47
clView 3-47

ClearUndoStacks 17-9
clEditView 8-4, 8-6, 8-8, 13-15
clEditView class

ViewAddChildScript method 9-25
clipping

clipping of view 3-12
clipping region 13-12
controlling 13-12

clKeyboardView 8-4, 8-28
cloning sound frames 14-5
closing a view 3-29
clParagraphView 8-4, 8-10
clPictureView 13-15
clPolygonView

features 13-14
clRemoteView 13-15
clView 2-2
communications architecture 1-11
communication tools

built-in 24-1
serial 24-1

company, user configuration variable 19-47
compatibility information

auxiliary buttons 19-36
Dates application 19-9
Endpoint interface 23-7
Extras Drawer 19-39
Filing service 15-9
Find service 16-6
Formulas roll 19-36
Names application 19-3
Notes application 19-31
Prefs roll 19-36
routing 21-8
Time Zones application 19-27
To Do List application 19-23

I N D E X

IN-4

completion
CompletionScript 23-18
handling unexpected in endpoints 23-18

compressed images
storing 13-18

configuration string usage 25-7
confirm 18-4
confirming task slip 18-4
conflict-resolution mechanism 18-16
constant GL-1
controlling clipping 13-12
controlling recognition in views 9-8
controls

compatibility 7-1
protos 7-2 to 7-15

coordinate system 3-6
copying functions

summary of 26-2
correcting intelligent assistant input 18-4
countries

obtaining information about a city or country 19-28
country, user configuration variable 19-47
countrySlot, user configuration variable 19-47
CreateToDoItem, To Do List method 19-24
CreateToDoItemAll, To Do List method 19-24
creating 19-42
creating and removing tasks in the To Do List

application 19-24
creating a shape object 13-9
creating a view 3-28
creating new meeting types in the Dates

application 19-17
creating notes in Notes application 19-32
creating sound frames 14-5
currentAreaCode, user configuration variable 19-47
currentCountry, user configuration variable 19-48
currentEmporium, user configuration variable 19-48
current format 21-8
currentPersona, user configuration variable 19-48
currentPrinter, user configuration variable 19-48
cursor 11-5, GL-2

part cursor 19-40
custom fill 3-21
CustomFind method 16-11, 16-24, 16-28
customizing folder tab views 15-15
custom sound frames

creating 14-4
using 14-4

custom view frame pattern 3-21

D

dataDef 5-2
allSoups slot 5-6
creating 5-8
MakeNewEntry example 5-9
StringExtract example 5-10
TextScript example 5-11
using FillNewEntry 5-6
using MakeNewEntry 5-9
using StringExtract 5-9
using TextScript 5-9

data definition GL-2
dataDefs

registering in a NewtApp application 4-20
data form GL-2
data forms in endpoints 23-4

binary data 23-20
tagging data with 23-4
template 23-5
uses of 23-5

data in endpoints
filter options 23-16
formatting 23-13
sampling incoming 23-18
sending 23-11
streaming 23-20
use of PartialScript with 23-18

dataRect 7-4
data shapes

translating 13-16
data storage system

overview 1-5
data termination in endpoints

conditions for 23-14
ending with particular data 23-14
sequence for 23-15
use of termination slot with 23-14
use of useEOP slot with 23-15

data types for routing 21-7
dataTypes slot 21-5
date find 16-7
DateFind method 16-7, 16-10, 16-28

example 16-18
implementing 16-18
returning results 16-21

date find mode 16-6
DateFindTargeted method 16-20

I N D E X

IN-5

dateKeyboard 8-27
Dates

compatibility information 19-9
versus the term calendar 19-9

Dates application 19-8
adding meetings or events 19-11
controlling display features 19-21
creating new meeting types 19-17
deleting meetings or events 19-12
finding meetings or events 19-13
getting and setting information for meetings or

events 19-15
getting a reference to 19-10
list of methods 19-54
moving meetings or events 19-14
soup format 19-52
soups 19-22

date search
description 16-2

declareSelf slot 3-24
declaring a template GL-2
declaring a view 3-27
DecodeRichString 8-24
deferred reception of data 22-10
deferred recognition 8-2, GL-2
defining keys in a keyboard view 8-30
defining tabbing order 8-36
DeleteAppointment, Dates method 19-12
DeleteEvent, Dates method 19-12
DeleteRepeatingEntry, Dates method 19-12
DeleteTransport 22-6
deleting a sound channel 14-6
deleting meetings or events from the Dates

application 19-12
DeletionScript function 2-6
dependent views 3-43
desktop GL-2
developer-defined methods

for Find overview support 16-21
developer signature 2-9
dialingPrefix, user configuration variable 19-48
dialog view

creating 3-38
dial tones

generating 14-8
digital books

advantages and disadvantages 2-3
dirtying views 3-33

DisplayDate, Dates method 19-20
displaying graphics shapes 13-14
displaying scaled images 13-15
displaying text and ink 8-14
displaying views 3-33
doAutoAdd, user configuration variable 19-48
do button 18-3
doCardRouting slot 15-4, 15-5, 15-11

creating 15-18
doInkWordRecognition, user configuration

variable 19-48
DoNotInstallScript function 2-5
dontStartWithFolder slot 15-5, 15-11
DoProgress 17-16

cancelling 17-18
vs. protoStatusTemplate 17-18

doShapeRecognition, user configuration
variable 19-48

doTextRecognition, user configuration variable 19-48
drawing

how to 13-9
non-default fonts 13-20
optimizing performance 13-22

drawing views 3-44
dynamically adding views 3-33

E

e-mail address
converting to internet 22-9

emailPassword, user configuration variable 19-48
emporium GL-2
emporium popup proto 19-8
endpoint GL-2

about 23-1
binary data 23-20
canceling requests 23-21
compatibility 23-7
constants 23-25
data filter options 23-16
data forms 23-4
data structures 23-26
data termination conditions 23-14
description of 23-1
error handling 23-23
functions and methods 23-30

I N D E X

IN-6

endpoint (continued)
input form 23-13
input spec 23-12
input target 23-13
input time-out 23-16
instantiating 23-10
linking to application 23-24
protoBasicEndpoint 23-1
protos 23-28
protoStreamingEndpoint 23-20
rcvOptions slot 23-17
setting options 23-8
summary of 23-25
terminating 23-10
using 23-8

endpoint interface
overview 1-14

endpoint option GL-2
endpoint options

setting 23-10
specifying 23-8

EnsureVisibleTopic, To Do List method 19-26
entries 11-4
entries slot 18-11
entry GL-2
entry alias GL-2
enumerated dictionary GL-2
EOP GL-2
error handling

in transports 22-20
establishing an endpoint connection

with Connect 23-11
with Listen 23-11

evaluate slot GL-2
event GL-2
event-related sounds

how to play 14-3
slots for 14-2

events
in Dates application 19-8

Everywhere buttton 16-2
exceptions

handling in endpoints 23-23
extending an application with stationery 5-7
extending the intelligent assistant 18-1
extending the Names application 19-2
ExtractRangeAsRichString 8-24

Extras Drawer 19-38
compatibility information 19-39
getting a reference to 19-39
list of methods 19-58
part cursors 19-40

F

faxing 18-3, 21-19
preparation for 21-9
sequence of events for 21-19

faxPhone, user configuration variable 19-48
fax profile option 25-2
fax soup entries 19-34
field GL-2
fields slot 21-15
file button 15-6
FileThis method 15-9, 15-11

implementing 15-15
filing 15-1

implementing 15-10
overview 1-11, 15-5
target 15-1
user interface illustrated 15-3

filing button 15-2, 15-11
adding 15-14

FilingChanged method 15-9
filing compatibility information 15-9
filing filter 15-7
filing functions

RegFolderChanged 15-3
UnRegFolderChanged 15-3

filing functions and methods 15-22
developer-supplied 15-22

filing protos 15-21
filing received items 21-34
filing services 15-1
filing slip

buttons in 15-3
filing categories in 15-3
illustrated 15-5
routing from 15-18

filing target 15-10
filterChanged method 15-9

I N D E X

IN-7

filter options 23-16
use of byteProxy slot with 23-16
use of filter slot with 23-16

Find
global 16-3
local 16-3
overview 1-10

Find, targeted 16-19
FindAppointment, Dates method 19-13
finder GL-2
finder frame 16-11
finder proto

choosing 16-11
ROM_CompatibleFinder 16-7
soupFinder 16-7

FindExactlyOneAppointment, Dates method 19-13
finding 18-3
finding meetings or events in the Dates

application 19-13
Find method 16-7, 16-10, 16-28

returning results 16-21
Find overview

filing, deleting, moving items from 16-9
illustrated 16-4

Find service
compatibility information 16-6
date find 16-6
DateFind method 16-18
introduction to 16-1
overview list 16-4
registering 16-3, 16-25
reporting progress in 16-4
result frame 16-12
ROM_CompatibleFinder proto 16-12
ROM_SoupFinder proto 16-7, 16-12
search method 16-6, 16-14
search mode 16-6
soups and 16-10
text find 16-6
title slot 16-7
unregistering 16-25

Find slip
and foremost application 16-4
checklist in 16-3
Everywhere button in 16-2
Find button in 16-9
kind of search in 16-2
Look For menu in 16-5

radio button 16-11
replacing 16-4, 16-11, 16-24
Selected button in 16-2, 16-3
status message in 16-5
system-supplied 16-2

FindSoupExcerpt method 16-7, 16-10, 16-21, 16-28
example 16-22
implementing 16-21

Find status message
illustrated 16-5

FindTargeted method 16-20
firstDayOfWeek, Dates variable 19-21, 19-46
flag GL-3
flags

vApplication 3-47
vCalculateBounds 3-47
vClickable 3-47
vClipping 3-47
vFloating 3-47
vNoFlags 3-47
vNoScripts 3-47
vReadOnly 3-47
vVisible 3-47
vWriteProtected 3-47

folder change
registering callback functions 15-8

folderChanged 15-9
folder-change notification service 15-11

using 15-18
folder change registry 15-9
folders

global 15-19
local 15-19

folder tab 15-7
folder tab popup list 15-8
folder tab views 15-11

adding 15-14
customizing 15-15

fonts
built-in 8-19
constraining style of 8-17
drawing non-default 13-20
family symbols 8-18
font frame 8-18
for text and ink display 8-3
packed integer specification 8-19
packing constants 8-21
specifying 8-17

I N D E X

IN-8

fonts (continued)
specifying for a view 3-24
style numbers 8-18

font spec 8-3, GL-3
font specification 8-17

packed integer format 8-19
font styles 8-18, 8-25

constraining in view 8-17
forceNewEntry slot 4-16
format picker

in routing slip 22-27
formatting endpoint data 23-13
Formulas roll 19-35, 19-57

compatibility information 19-36
frame 3-2, 11-2, GL-2, GL-3
framed asynchronous serial tool 24-4
frame functions and methods 26-7
frame routing format

creating 21-21
frame types 18-16
free-form entry field GL-3
fromRef slot

setting in item frame 22-14
function object GL-3
functions and methods

AddAction 17-16
AddAlarm 17-11
AddAlarmInSeconds 17-11
AddAppointment, Dates method 19-11
AddCard, Names method 19-6
AddCardData, Names method 19-6
AddEvent, Dates method 19-11
AddExtraIcon, Extras Drawer method 19-40, 19-42
AddLayout, Names method 19-6
AddStepView 3-35
AddUndoAction 17-8
AddUndoCall 17-8
AddUndoSend 17-8
AlarmsEnabled 17-14
AppInstalled 21-32
AutoPutAway 21-32
BatteryCount 17-26
BatteryStatus 17-26
BcCreditCards, Names method 19-7
BcCustomFields, Names method 19-7
BcEmailAddress, Names method 19-7
BcEmailNetwork, Names method 19-7
BcPhoneNumber, Names method 19-7

BuildContext 3-36
CancelRequest 22-13
CanPutAway 22-18
CheckOutbox 22-9
ClassAppByClass 21-33
ClearUndoStack 17-9
CreateToDoItem, To Do List method 19-24
CreateToDoItemAll, To Do List method 19-24
DecodeRichString 8-24
DeleteAppointment, Dates method 19-12
DeleteEvent, Dates method 19-12
DeleteRepeatingEntry, Dates method 19-12
DeleteTransport 22-6
DisplayDate, Dates method 19-20
DoProgress 17-16
EnsureVisibleTopic, To Do List method 19-26
ExtractRangeAsRichString 8-24
FindAppointment, Dates method 19-13
FindExactlyOneAppointment, Dates method 19-13
GetActiveView 21-30
GetAlarm 17-12
GetAppAlarmKeys 17-12
GetAppPrefs 19-45
GetCityEntry 19-28
GetCountryEntry 19-28
GetDefaultFormat 21-11
GetExtraIcons, Extras Drawer method 19-41
GetMeetingIconType, Dates method 19-16
GetMeetingInvitees, Dates method 19-15
GetMeetingLocation, Dates method 19-15
GetMeetingNotes, Dates method 19-15
GetPartCursor, Extras Drawer method 19-40
GetPartEntryData, Extras Drawer method 19-40
GetRichString 8-24
GetRouteScripts 21-23
GetSelectedDates, Dates method 19-20
GetTargetCursor 21-24
GetTargetInfo 21-10
GetTaskShapes, To Do List method 19-26
GetToDoEntry, To Do List method 19-24
GetToDoItemsForRange, To Do List method 19-24
GetToDoItemsForThisDate, To Do List

method 19-24
GetToDoShapes, To Do List method 19-26
GetTransportScripts 22-17
GetUserConfig 19-45
InstallScript 22-5
IsRichString 8-24

I N D E X

IN-9

functions and methods (continued)
ItemCompleted 22-16
KillAction 17-16
LastVisibleTopic, To Do List method 19-26
LaunchPartEntry, Extras Drawer method 19-40
LocObj 20-1 to 20-5
MakeRichString 8-24
MakeTextNote, Notes method 19-32
MeasureString 20-6
NewCity, Time Zones method 19-29
NewItem 22-13
NewNote, Notes method 19-32
NextToDoDate, To Do List method 19-25
NormalizeAddress 22-9
Notify 17-3, 17-11
OpenKeyPadFor 8-36
OpenMeetingSlip, Dates method 19-21
OpenTo, Names method 19-6
PeriodicAlarm 17-15
PointToCharOffset 8-38
PointToWord 8-38
PutAwayScript 21-33
QueueRequest 22-12
QuietSendAll 22-9
ReceiveRequest 22-9
RegAppClasses 21-33
RegAuxButton 19-37
RegInboxApp 21-34
RegInfoItem, Dates method 19-21
RegisterOpenKeyboard 8-36
RegLogin 17-25
RegMeetingType, Dates method 19-17
RegNamesRouteScript, Names method 19-6
RegPowerOff 17-25
RegPowerOn 17-24
RegPrefs 19-36
RegTransport 22-5
RegUserConfigChange 19-45
RemoveAlarm 17-13
RemoveAppAlarms 17-13
RemoveExtraIcon, Extras Drawer method 19-41,

19-43
RemoveOldToDoItems, To Do List method 19-24
ReplaceInkData, Names method 19-6
RouteScript 21-24
SafeRemoveLayout, Names method 19-6
Send 21-26
SendRequest 22-8

SetDefaultFormat 21-11
SetDone, To Do List method 19-25
SetEntryAlarm, Dates method 19-15
SetExtrasInfo, Extras Drawer method 19-40
SetLocalizationFrame 20-4
SetLocation, Time Zones method 19-30
SetMeetingIconType, Dates method 19-16
SetMeetingInvitees, Dates method 19-15
SetMeetingLocation, Dates method 19-15
SetMeetingNotes, Dates method 19-15
SetPriority, To Do List method 19-26
SetRepeatingEntryStopDate, Dates method 19-15
SetStatusDialog 22-23
SetUpIdle 17-9
SetupItem 21-12
SetValue 8-14
ShowBusyBox 17-15
ShowFoundItem, Names method 19-6
StripInk 8-24
TargetIsCursor 21-24
TransportChanged 22-7
TransportNotify 22-19
UnRegAppClasses 21-31
UnRegAuxButton 19-37
UnRegFormulas 19-36
UnRegInboxApp 21-34
UnRegInfoItem, Dates method 19-21
UnregisterOpenKeyboard 8-36
UnRegLogin 17-25
UnRegPowerOff 17-26
UnRegPowerOn 17-24
UnRegTheseAppClasses 21-33
UnRegTransport 22-6
UnRegUserConfigChange 19-45
VerifyRoutingInfo 21-10
ViewIdleScript 17-9
ViewSetupChildrenScript 8-7

G

generating dial tones 14-8
gesture GL-3
GetActiveView 21-30
GetAlarm 17-12
GetAppAlarmKeys 17-12
GetAppPrefs 19-45

I N D E X

IN-10

GetCityEntry 19-28
GetCountryEntry 19-28
GetDefaultFormat 21-11
GetDefs 5-8
GetExtraIcons, Extras Drawer method 19-41
GetMeetingIconType, Dates method 19-16
GetMeetingInvitees, Dates method 19-15
GetMeetingLocation, Dates method 19-15
GetMeetingNotes, Dates method 19-15
GetPartCursor, Extras Drawer method 19-40
GetPartEntryData, Extras Drawer method 19-40
GetRichString 8-24
GetRouteScripts 21-23
GetSelectedDates, Dates method 19-20
GetTargetCursor 21-24
GetTargetInfo 18-20, 21-10
GetTargetInfo method 15-6, 15-10

default behavior 15-2
overriding 15-13

GetTaskShapes, To Do List method 19-26
getting and setting information for meetings or events

in the Dates application 19-15
GetToDoEntry, To Do List method 19-24
GetToDoItemsForRange, To Do List method 19-24
GetToDoItemsForThisDate, To Do List method 19-24
GetToDoShapes, To Do List method 19-26
GetTransportScripts 22-17
GetUserConfig 19-45
global GL-3
global finds 16-3, 16-9
'globalFind symbol 16-10
global folders 15-9, 15-11, 15-19
globalFoldersOnly slot 15-4, 15-19
glossary GL-1
grammar GL-3
graphics

shape-based 13-2
graphic shapes

displaying 13-14
grouping transports 22-7

H

handling input events 8-38
heap

NewtonScript 1-3

help book 18-19
hidden view

showing 3-34
hideSound 14-2
hiding views 3-33
Highlighting 3-42
HitShape

using 13-16
Home City 19-27

setting 19-30
home city GL-3
homePhone, user configuration variable 19-48
how to draw 13-9

I, J

idler object 17-2, 17-9
imaging system

overview 1-9
immediate value GL-3
implementor GL-3
importing PICT resources 13-20
in box 21-1

application data class registry 21-33
application registry 21-31, 21-34
receiving items 21-31
routing 21-3
sorting items 21-2
storing incoming data 21-2
viewing items 21-34

infrared tool 24-8
inheritance GL-3
inheritance links

_parent slot 3-24
_proto slot 3-24
stepChildren slot 3-24
viewChildren slot 3-24

ink 8-1, GL-3
displaying 8-14
in views 8-14, 8-15

ink text
ViewAddChildScript method 9-25

ink word GL-3
ink words 8-2

scaling 8-16
styling 8-16

I N D E X

IN-11

In/Out Box 1-13, GL-3
extending the user interface 22-17

input
termination of in endpoints 23-17
use of InputScript message for 23-17

input buffer for endpoints
removing data from 23-18

input data forms for endpoints 23-12
input events

handling 8-38
input line protos 8-4, 8-12
input spec 23-12, GL-3

components of 23-12
data filter 23-16
data termination 23-14
flushing input 23-18
input form 23-13
input target 23-13
input time-out 23-16
receive options 23-17
setting up 23-18
slot applicability 23-12, 23-13
uses for 23-3

input string 18-3, 18-4
multiple matches in 18-8
multiple verbs 18-2
no word matches 18-8
partial matches in 18-8
unmatched words in 18-8

input to assistant
correcting 18-4
missing information 18-4

input views
tabbing order for 8-36

insertion caret 8-38
InstallScript function 2-5, 18-19
InstallScript transport method 22-5
instantiate GL-3
instantiation

view 3-26
intelligent assistant 18-1

about matching 18-8
action frames 18-5
action template 18-5
ambiguous or missing information 18-4
canceling the task 18-4
matching process 18-8
multiple verbs 18-2

overview 1-8
preconditions slot 18-10
primary action 18-18
signature 18-10
supporting 21-30
target frames 18-5
target template 18-5
task template 18-5
use of GetActiveView with 21-30
words that match multiple templates 18-8

IR Tool 24-8
IsRichString 8-24
ItemCompleted 22-16
item frame GL-4
item frame for routing 22-2

creating 22-13

K

key
alarm 17-11

keyboard
context sensitive 8-36
double-tap 8-36

keyboard protos 8-28
keyboard registry 8-5

using 8-36
keyboard views 8-4, 8-26

alphaKeyboard 8-26
built-in types 8-26
dateKeyboard 8-27
defining keys in 8-30
key definitions array 8-31
key descriptor 8-34
key dimensions 8-35
key legend for 8-32
key result 8-33
numericKeyboard 8-27
phoneKeyboard 8-27

key definitions array 8-31
key descriptor 8-34
key dimensions 8-35
key legend 8-32
keypad proto 8-29
key result 8-33

I N D E X

IN-12

keys
alarm 17-12

KillAction 17-16

L

labelsChanged parameter 15-16
labels filter 15-8
labelsFilter slot 15-8, 15-10

creating 15-14
labels slot 15-1, 15-6, 15-10

creating 15-11
lastFormats slot 21-12
LastVisibleTopic, To Do List method 19-26
latitude values 19-30
LaunchPartEntry, Extras Drawer method 19-40
laying out multiple child views 3-43
learningEnabledOption, user configuration

variable 19-48
leftHanded, user configuration variable 19-48
letterInFieldsOption, user configuration

variable 19-48
lettersCursiveOption, user configuration

variable 19-48
letterSetSelection, user configuration variable 19-48
letterSpaceCursiveOption, user configuration

variable 19-48
lexical dictionaries 18-2
lexical dictionary GL-4
lightweight paragraph views 8-4, 8-11
line 13-2, GL-4
lined paper effect 8-8
line patterns

defining 8-9
list of functions 19-57
local finds 16-3, 16-25
'localFind symbol 16-10
local folders 15-19
localFoldersOnly slot 15-4, 15-19
localization 15-10
local variable GL-4
location, user configuration variable 19-48
LocObj function 20-4 to 20-5
logging

in transports 22-16
login screen functions 17-25

longitude values 19-30
Look For popup menu 16-5

M

magic pointer 1-17, GL-4
mailAccount, user configuration variable 19-48
mailing 18-3
mailNetwork, user configuration variable 19-48
mailPhone, user configuration variable 19-48
MakeNewEntry 5-9
MakeRichString 8-24
MakeTextNote, Notes method 19-32
manipulating sample data 14-10
manipulating shapes 13-7
margins slot 21-18
masterSoupSlot 4-19
MeasureString function 20-6
meeting 18-3, GL-4

in Dates application 19-8
meetings 18-3
meeting types in Dates application 19-17
memory

affected by system resets 2-7
conserving use of 2-8
system overview 1-3
usage by views 3-45

menuLeftButtons 4-18
menuRightButtons 4-19
message GL-4
method 3-2, GL-4
MinimalBounds 5-14
MNP compression

serial tool 24-4
modal views 3-38

creating 3-39
opening 3-39

modem setup
configuration string usage 25-7
definition 25-5
general information 25-5
general information constants 25-9
operation 25-3
package 25-1
preferences constants 25-9
preferences option 25-5

I N D E X

IN-13

modem setup (continued)
process 25-3
profile constants 25-9
profile option 25-6, 25-7
user interface 25-2

modem setup package 25-1
modem setup service 25-1

about 25-1
required modem characteristics 25-1
user interface 25-1

modem tool
preferences option 25-2
profile option 25-2
requirements 25-4

moving meetings or events in the Dates
application 19-14

N

name, user configuration variable 19-48
name reference 22-4, GL-4

creating 21-27
example of 21-28

Names
compatibility information 19-3
versus the term cardfile 19-2

Names application 19-2
adding auxiliary buttons to 19-37
adding card layout style 19-5
adding dataDefs 19-4
adding layouts to 19-6
adding new data item 19-4
adding new type of card 19-4
adding viewDefs 19-4
getting a reference to 19-6
list of methods 19-53
Names soup 19-7
soup format 19-49

names card layouts 19-46
nested arrays

transform slot 13-11
NetChooser function 24-22
New button, definition of 5-2
NewCity, Time Zones method 19-29
NewFilingFilter method 15-8, 15-9, 15-11

implementing 15-8, 15-16

NewItem 22-13
overriding to add slots 22-15

NewNote, Notes method 19-32
NewtApp

advantages and disadvantages 2-2
allDataDefs slot 4-20
allSoups slot 4-16
allViewDefs slot 4-20
Default Layout 4-19
Entry Views 4-19
forceNewEntry slot 4-16
InstallScript 4-21
layout protos, using 4-16
layouts, controlling menu buttons 4-18
masterSoupSlot 4-19
menuRightButtons 4-19
newtFalseEntryView 4-22
RemoveScript 4-21

NewtApp application
constructing 4-12

NewtApp application framework 4-12
NewtApp entry view protos 4-8
NewtApp framework 4-1
NewtApp layout protos 4-5
newtApplication 4-4, 4-14

allSoups slot 5-6
NewtApp protos 4-2
NewtApp slot views 4-9
newtFalseEntryView 4-22
Newton 2.0

overview of changes 1-18
NewtonScript

heap 1-3, GL-4
language overview 1-18

newtOverLayout 4-17
newtSoup 4-5
NextToDoDate, To Do List method 19-25
nil GL-4
noise words in assistant 18-9
no match in input string 18-8
NormalizeAddress 22-9
notes

Notes stationery 19-30, 19-33
Notes application 19-30

adding auxiliary buttons to 19-37
adding stationery 19-33
compatibility information 19-31
creating new notes 19-32

I N D E X

IN-14

Notes application (continued)
list of methods 19-57
soup 19-33
soup format 19-53
versus term paperroll 19-31

Notes stationery 19-30, 19-33
notifications 17-2, 17-10
Notify 17-3, 17-11
notify icon

adding action to 17-16
numericKeyboard 8-27

O

object GL-4
object storage system

overview 1-5
object system functions and methods 26-7
obtaining information about a city or country in Time

Zones application 19-28
online help 17-10, 18-3
'onlyCardRouting symbol 15-5
OpenKeyPadFor 8-36
OpenMeetingSlip, Dates method 19-21
OpenTo, Names method 19-6
operating system

overview 1-1
option frame GL-4
option frame for endpoints

example of 23-9
result slot 23-10

options
resource arbitration 24-10

options for endpoints
setting 23-7
specifying 23-8

ordering of words in assistant 18-2
orientation slot 21-18
origin GL-4
out box 21-1

receiving items 21-31
routing actions 21-3
sorting items 21-2
transmitting data 21-3
viewing items in 21-34

outlines 19-30, 19-33

output spec 23-2, GL-4
oval 13-4, GL-4
overviews 6-1

routing from 21-14
owner information

using in routing slip 22-30
owner slot 16-8

P

package 1-4, GL-4
activation 2-5
deactivation 2-6
loading 2-5
name 2-11

package file GL-4
package store GL-4
package store. See store part
packed integer font specification 8-19
page-based application 4-6
page layout in print formats

controlling orientation of 21-18
layout of multiple items 21-19
margins slot 21-18

paperroll
versus the term Notes 19-31

paper roll-style application 4-6
paperSize, user configuration variable 19-48
paperSizes, user configuration variable 19-48
paragraph views 8-10
parent 3-2, GL-4
parent slot 3-4, 3-25
parent template 3-2, 3-3
ParseUtter function 18-8
ParseUtter result

phrases slot 18-11
part GL-5
part cursors 19-40
part frame GL-5
partially-matched phrases 18-8
parts

soup 12-4
store 12-4

PCMCIA GL-5
performance optimization 3-44
PeriodicAlarm 17-15

I N D E X

IN-15

periodic alarms 17-4, 17-14
persistent storage 1-3
persona GL-5
persona popup proto 19-7
phone, user configuration variable 19-48
phoneKeyboard 8-27
phrases slot 18-11
picker GL-5
pickers 6-1

about 6-1
compatibility 6-2
date 6-17
location 6-17
map 6-8
number 6-21
time 6-17

PickItems array
specifying 6-37

PICT
swapping during run-time 13-21

picture GL-5
pictures 13-6

setting a default 13-21
storing compressed 13-18

pitch shifting 14-9
pixel 3-6
playing event related sounds 14-3
playing sound

global sound functions 14-5
sound channel 14-5

please menu
built-in tasks 18-3

please slip 18-3
pop-up menu in 18-3

PointToCharOffset 8-38
PointToWord 8-38
polygon 13-5, GL-5
pop-up GL-5
pop-up menu

in Find slip 16-2
popups 6-1

about 6-1
compatibility 6-2

pop-up views 3-37
PostParse method 18-6, 18-17
power information 17-26
power-off functions 17-25
power-off handling for endpoints 23-23

power-on functions 17-24
power registry 17-7, 17-24

login screen functions 17-25
power-off functions 17-25
power-on functions 17-24

preconditions array
relationship to signature array 18-10

preconditions slot in intelligent assistant 18-10
preferences

for transports 22-17
storing application preferences in system

soup 19-45
preferences template for transports 22-33
Prefs roll 19-35

adding and removing items 19-36
compatibility information 19-36
list of functions 19-57

primary_act slot 18-6
primary action 18-18
printer

slot in item frame 21-28
specifying for routing 21-28

printing 18-3, 21-19
overview 1-9
preparation for 21-9
sequence of events for 21-19

progress
reporting to the user 16-24

progress indicators 17-15, 17-16
progress slip 16-4

creating 17-18
illustrated 16-4

project GL-5
protection slot 21-35
proto 3-4, GL-5
protoActionButton 21-4
protoAddressPicker 22-31
protoAlphaKeyboard 8-28, 8-30
protoBasicEndpoint 23-8

features of 23-1
protoClockFolderTab 15-6, 15-9

illustrated 15-3
TitleClickScript method of 15-7

protocol GL-5
protoDateKeyboard 8-28, 8-30
protoEmporiumPopup 19-8
protoFilingButton proto 15-9
protoFilingButton view 15-14

I N D E X

IN-16

protoFolderTab proto 15-9
protoFrameFormat 21-21
protoFullRouteSlip 22-27
protoInputLine 8-12, 8-13, 8-14
protoKeyboard 8-28
protoKeyboardButton 8-28, 8-29
protoKeypad 8-28, 8-29
protoLabelInputLine 8-13
protoListPicker

using 6-26
protoNewFolderTab 15-6, 15-9
protoNewFolderTab view 15-11
protoNumericKeyboard 8-28, 8-30
protoPeriodicAlarmEditor 17-4, 17-14
protoPersonaPopup 19-7
protoPhoneKeyboard 8-28, 8-30
protoPrinterChooserButton 21-29
protoPrintFormat 21-18
protoRoutingFormat 21-22
proto slot 3-4, 3-24
protoSmallKeyboardButton 8-28, 8-30
protoStaticText 8-13
protoStatusTemplate 17-18, 22-21

vs. DoProgress 17-18
protoStreamingEndpoint 23-20
proto templates

buttons and boxes 7-6
for keyboards 8-28
for text 8-4
input line 8-4, 8-12
protoActionButton 21-4
protoAddressPicker 22-31
protoAlphaKeyboard 8-28, 8-30
protoBasicEndpoint 23-8
protoDateKeyboard 8-28, 8-30
protoFrameFormat 21-21
protoFullRouteSlip 22-27
protoInputLine 8-12, 8-13, 8-14
protoKeyboard 8-28
protoKeyboardButton 8-28, 8-29
protoKeypad 8-28, 8-29
protoLabelInputLine 8-13
protoNumericKeyboard 8-28, 8-30
protoPeriodicAlarmEditor 17-14
protoPhoneKeyboard 8-28, 8-30
protoPrinterChooserButton 21-29
protoPrintFormat 21-18
protoRoutingFormat 21-22

protoSmallKeyboardButton 8-28, 8-30
protoStaticText 8-13
protoStatusTemplate 17-18, 22-21
protoStreamingEndpoint 23-20
protoTransport 22-5
protoTransportHeader 22-25
protoTransportPrefs 22-33
scrollers 7-2 to 7-6

protoTransport 22-5
protoTransportHeader 22-25
protoTransportPrefs 22-33
punctuation pop-up 8-5
PutAwayScript 19-34, 21-33
putting away received items

automatically 21-31
filing items 21-34
manually 21-33

Q

queries
accessing results 11-16

QueueRequest 22-12
QuietSendAll 22-9

R

raw ink 8-2, GL-5
rcBaseInfo frame, example 10-15
rcGridInfo frame, example 10-15
recConfig frame, example 10-15
receiver GL-5
ReceiveRequest 22-9
receiving data

appSymbol slot 21-32
AutoPutAway method 21-32
foreign data 21-34
PutAwayScript method 21-33

receiving endpoint data
alternative methods of 23-19
flushing data 23-19
looking at incoming data 23-19
preparing for 23-13
specifying flags for 23-15
with Input 23-19

I N D E X

IN-17

receiving large objects 23-20
recognition flags

vAddressField 9-31
vAnythingAllowed 9-32
vCapsRequired 9-31
vClickable 9-32
vCustomDictionaries 9-31
vDateField 9-33
vGesturesAllowed 9-32
vLettersAllowed 9-31
vNameField 9-31
vNoSpaces 9-32
vNothingAllowed 9-32
vNumbersAllowed 9-31, 9-33
vPhoneField 9-33
vPunctuationAllowed 9-31
vShapesAllowed 9-32
vSingleUnit 9-32
vStrokesAllowed 9-32
vTimeField 9-33

recognition functions 10-54
recognition menu 8-14
recognition system

overview 1-7
recognized text 8-1, GL-5
rectangle 13-3, GL-5
redrawing views 3-44, 13-10
reference GL-5
RegAppClasses 21-33
RegAuxButton 19-37
RegFindApps function 16-25, 16-28
RegFolderChanged function 15-3, 15-8, 15-10, 15-18
RegInboxApp 21-34
RegInfoItem, Dates method 19-21
region 13-6, GL-5
registering the task template 18-19
registering with Find service 16-3
RegisterOpenKeyboard 8-36
RegLogin 17-25
RegMeetingType, Dates method 19-17
RegNamesRouteScript, Names method 19-6
RegPowerOff 17-25
RegPowerOn 17-24
RegPrefs 19-36
RegTaskTemplate function 18-19
RegTransport 22-5
RegUserConfigChange 19-45
remembering 18-3

remote transport items 22-10
RemoveAlarm 17-13
RemoveAppAlarms 17-13
RemoveExtraIcon, Extras Drawer method 19-41,

19-43
RemoveOldToDoItems, To Do List method 19-24
RemoveScript function 2-6
Repeat Notes soup 19-22
ReplaceInkData, Names method 19-6
replacing the system-supplied Find slip 16-4, 16-11
reset, system 2-7
resource GL-5
resource arbitration options 24-10
restore GL-5
restricted entry field GL-5
result frame 16-12
results array 16-8, 16-21

Find service 16-7
result slot in endpoint option frame 23-10
rich string GL-6
rich string format 8-2, 8-23, GL-6
rich strings 8-2, 8-22

conversion of 8-23
format of 8-2, 8-23
functions for 8-24
usage considerations 8-23

rollScrolling slot 21-36
ROM_CalendarNotesName 19-22
ROM_CalendarSoupName 19-22
ROM_CompatibleFinder proto 16-8, 16-12

and routing 16-9, 16-10
example of use 16-17
ShowFakeEntry 16-23
ShowFoundItem 16-23
vs. ROM_SoupFinder 16-10

ROM_rcSingleCharacterConfig frame, example 10-15
ROM_RepeatMeetingName 19-22
ROM_RepeatNotesName 19-22
ROM_SoupFinder proto 16-7, 16-10, 16-12, 16-21,

16-26, 16-27
example of use 16-16
ShowFoundItem method 16-22
using 16-18
vs. ROM_CompatibleFinder 16-10

root view 3-6, GL-6
rotating a bitmap 13-19
rounded rectangle 13-5, GL-6
routeFormats slot 21-9

I N D E X

IN-18

RouteScript 21-24
example of 21-25

routeScripts slot 21-22, 21-23, 21-24
defining a method identified by 21-24

routing
about 21-1
application-specific 21-22
compatibility 21-8
current format 21-8
data types 21-7
dataTypes slot 21-5
formats 21-5
handling multiple items 21-14, 21-24
in box 21-1
lastFormats slot 21-12
out box 21-1, 21-3
programmatic sending 21-26
protoActionButton 21-4
protoFrameFormat 21-21
protoPrinterChooserButton 21-29
protoPrintFormat 21-18
protoRoutingFormat 21-22
providing transport-based actions 21-9
receiving data 21-31
routeFormats slot 21-9
routeScripts slot 21-22
sending items programmatically 21-26
transport-related 21-9
using 21-8
using aliases 21-13, 21-36
view definition registration 21-16
view definitions 21-34
viewing items in In/Out box 21-34

routing actions
application-specific 21-22
building 21-4
disabling application-specific 21-25
performing 21-24

routing format GL-6
routing formats

creating new 21-22
example of 21-16
functions to use 21-17
registering 21-7, 21-16, 21-17
use of built in 21-7

routing functions and methods
AppInstalled 21-32
AutoPutAway 21-32

ClassAppByClass 21-33
GetActiveView 21-30
GetDefaultFormat 21-11
GetRouteScripts 21-23
GetTargetCursor 21-24
GetTargetInfo 21-10
PutAwayScript 21-33
RegAppClasses 21-33
RegInboxApp 21-34
RouteScript 21-24
Send 21-26
SetDefaultFormat 21-11
SetupItem 21-12
TargetIsCursor 21-24
UnRegAppClasses 21-31
UnRegInboxApp 21-34
UnRegTheseAppClasses 21-33
VerifyRoutingInfo 21-10

routing interface
overview 1-13

routing slip 18-3, 22-26, GL-6
opening programmatically 21-29
picking address in 22-31
positioning child views in 22-30
using owner information in 22-30

S

SafeRemoveLayout, Names method 19-6
sample action template 18-16
sample data

manipulating 14-10
sample target template 18-16
scaled images

displaying 13-15
use of clRemoteView 13-15

scheduling 18-3
scope parameter 16-10
script icon GL-6
script icons 19-38, 19-42
scrollAmounts 7-5
scrollDownSound 14-2
scrollers 7-2 to 7-6

advancing 7-5
scroller slots 7-3, 7-4, 7-5

I N D E X

IN-19

scrolling
controlling in In/Out Box view def 21-36
speeding up 3-46

scrollRect 7-3
scrollUpSound 14-2
search method 16-7
search methods 16-6, 16-10

examples 16-16
implementing 16-15
returning results of 16-21
scope parameter to 16-10
StandardFind 16-15

Selected button 16-2, 16-3
selected Finds 16-9

targeted find 16-19
selection hits

testing for 8-38
self GL-6
Send 21-26
send button

in routing slip 22-28
sending data with endpoints 23-11
sending large objects 23-20
SendRequest 22-8
serial options 24-2, 24-5
serial tool 24-1

framed asynchronous 24-4
MNP compression 24-4
standard asynchronous 24-1
summary of serial options 24-2, 24-5

SetDefaultFormat 21-11
SetDone, To Do List method 19-25
SetEntryAlarm, Dates method 19-15
SetExtrasInfo, Extras Drawer method 19-40
SetLocalizationFrame 20-4
SetLocation, Time Zones method 19-30
SetMeetingIconType, Dates method 19-16
SetMeetingInvitees, Dates method 19-15
SetMeetingLocation, Dates method 19-15
SetMeetingNotes, Dates method 19-15
SetMessage method 16-24, 16-28
SetPriority, To Do List method 19-26
SetRepeatingEntryStopDate, Dates method 19-15
SetStatusDialog 22-23
setting target

in GetTargetInfo method 15-2
setting target view

in GetTargetInfo method 15-2

setting up the application soup for
newtApplication 4-15

SetUpIdle 17-9
SetupItem 21-12
SetUserConfig 19-45
SetValue 8-14
shape GL-6

finding points within 13-16
manipulating 13-7
nested arrays of 13-10
structure 13-2
transforming 13-13

shape-based graphics 13-2
shape objects 13-2

arc 13-4
creating 13-9
line 13-2
oval 13-4
polygon 13-5
rectangle 13-3
rounded rectangle 13-5

shape recognition
ViewAddChildScript method 9-25

ShowBusyBox 17-15
Show button, definition of 5-3
ShowFakeEntry 16-10, 16-23
ShowFoundItem 16-8, 16-10, 16-21, 16-23, 16-28

example 16-22
ShowFoundItem, Names method 19-6
showing a hidden view 3-34
showSound 14-2
siblings GL-6
sibling views 3-13
signature 18-10
signature, user configuration variable 19-48
signature guidelines 2-9
signature slot

relationship to preconditions array 18-10
sketch ink 8-2, GL-6
slot GL-6

global GL-3
sound

asynchronous 14-7
overview 1-9
pitch shifting 14-9
playing 14-5
playing on demand 14-6
responding to user input 14-7

I N D E X

IN-20

sound (continued)
synchronous 14-7
waiting for completion 14-7

sound channel
characteristics of 14-2
creating for playback 14-6
deleting 14-6
using 14-5

sound chip 14-8
sound frame

cloning 14-5
creating 14-5
setting sampling rate 14-9

sounds
event related 14-2
for predefined events 14-2
in ROM 14-2

sound slots
hideSound 14-2
scrollDownSound 14-2
scrollUpSound 14-2
showSound 14-2

sound structures
sound frame 14-3
sound result frame 14-3

sound techniques
advanced 14-8

soup 11-3, GL-6
affected by system resets 2-7
Dates 19-22
Names 19-7
Notes application 19-33
system 19-44

storing application preferences in 19-45
To Do List 19-26
union soup 11-3

soup change notification 16-9
soupervisor mechanism 19-39, GL-6

using 19-43
soupervisor slot 19-44
soup icon 19-38, GL-6
soup icons

adding 19-40
removing 19-41

special-format objects for assistant 18-12
specifying the target for filing 15-13
speedCursiveOption, user configuration

variable 19-48

StandardFind method 16-15, 16-28
stationery 1-8, GL-6

buttons 5-2
definition 5-1
implemented in an auto part 5-13
InstallScript 5-13
registration 5-4
RemoveScript 5-13

status slips 17-6, 17-16
cancelling 17-24
defining component views 17-19
opening 17-23
reporting progress 17-23
using 17-18

statusTemplate for transports 22-21
statusTemplate subviews

vBarber 22-21
vConfirm 22-21
vGauge 22-21
vProgress 22-21
vStatus 22-21
vStatusTitle 22-21

stepChildren array 3-25
adding to at run time 3-34

storage
persistent 1-3

storage system
overview 1-5

store 11-3, GL-6
storeChanged parameter of FileThis method 15-16
store part 12-4, GL-6
stores

package stores 12-4
stores filter 15-8
storesFilter slot 15-8, 15-11

creating 15-14
storing compressed images 13-18
streaming endpoint 23-20
StringExtract 5-9
StripInk 8-24
stroke data 8-2
style frame 13-7
superSymbol slot

using GetDefs to determine it 5-7
synchronization

view 3-43
synchronous cancellation in endpoints 23-22
synchronous sound 14-7

I N D E X

IN-21

synonyms 18-3
system data 19-44

list of functions 19-58
system messages

in automatic views 8-8
system resets 2-7
system services 16-1, 17-1

alarms 17-3
automatic busy cursor 17-5
filing 15-1
idling 17-2, 17-9
notify icon 17-5
online help 17-3
power registry 17-7
status slips 17-6
undo 17-1, 17-8
user alerts 17-3

system soup
storing application preferences 19-45

T

tabbing order 8-36
tags 15-1
target GL-7

getting and verifying for routing 21-10
of filing 15-1
of routing 21-3
specifying for filing 15-13

target frames 18-5
target information frame 15-20
TargetIsCursor 21-24
target slot 15-10

creating 15-13
target templates 18-5

system-supplied 18-11
target view 15-2

overview as 15-5
setting in GetTargetInfo method 15-2

targetView slot 15-10
creating 15-13

task frame 18-6
task slip 18-4
task template 18-5, 18-18, 18-22

primary_act slot 18-6
registering 18-19
registering with assistant 18-5

unregistering 18-5, 18-19
template 3-2, GL-7

child 3-2
declaring GL-2
parent 3-2
proto 3-4

template data form for endpoints 23-5
arglist array 23-5
setting options 23-7
typelist array 23-5

template-matching conflicts in assistant 18-13
text

displaying 8-14
in views 8-15, 8-25
keyboard input 8-4
styles 8-25
views 8-14

text find 16-7
text find mode 16-6
text functions and methods

DecodeRichString 8-24
ExtractRangeAsRichString 8-24
GetRichString 8-24
IsRichString 8-24
MakeRichString 8-24
OpenKeyPadFor 8-36
PointToCharOffset 8-38
PointToWord 8-38
RegisterOpenKeyboard 8-36
SetValue 8-14
StripInk 8-24
UnregisterOpenKeyboard 8-36
ViewSetupChildrenScript 8-7

text input and display
views and protos for 8-6

text run 8-25, GL-7
TextScript 5-9
text searches 16-2
text views

and lined paper effect 8-8
text views and protos 8-4
tick GL-7
time 18-3
timeoutCursiveOption, user configuration

variable 19-48
timeStamp slot

setting for received items 22-11

I N D E X

IN-22

Time Zones application 19-27
adding a city 19-29
compatibility information 19-27
getting a refernce to 19-28
list of functions and methods 19-57
obtaining information about a city or country 19-28

TitleClickScript method 15-7
defining 15-15

title slot 16-7, 16-10
and Find overview 16-7
creating 16-11

todo items 18-3
To Do List application 19-22

accessing tasks 19-24
checking-off tasks 19-25
compatibility information 19-23
creating and removing tasks 19-24
getting a reference to 19-23
list of methods 19-56
soup format 19-53

To Do List soup 19-26
transfer mode 3-22, 3-49
transfer modes

at print time 13-12
default 13-12
problems with 13-12

transforming a shape 13-13
translating data shapes 13-16
transport 21-2, 22-1, GL-7

canceling an operation 22-13
communication with applications 22-19
deferring reception of data 22-10
displaying status to user 22-21
error handling 22-20
grouping 22-7
group picker 22-29
installing 22-5
parts 22-2
power-off handling 22-20
preferences template 22-33
queueing a new request 22-12
receiving data 22-9
remote items 22-10
routing information template 22-25
routing slip template 22-26
sending data 22-8
status template 22-21
storing preferences 22-17

uninstalling 22-6
TransportChanged 22-7
transport functions and methods

CancelRequest 22-13
CanPutAway 22-18
CheckOutbox 22-9
DeleteTransport 22-6
GetTransportScripts 22-17
InstallScript 22-5
ItemCompleted 22-16
NewItem 22-13
NormalizeAddress 22-9
QueueRequest 22-12
QuietSendAll 22-9
ReceiveRequest 22-9
RegTransport 22-5
SendRequest 22-8
SetStatusDialog 22-23
TransportChanged 22-7
TransportNotify 22-19
UnRegTransport 22-6

transport interface overview 1-14
TransportNotify 22-19
transport object 22-5
transport protos

protoAddressPicker 22-31
protoFullRouteSlip 22-27
protoStatusTemplate 22-21
protoTransport 22-5
protoTransportHeader 22-25
protoTransportPrefs 22-33

transport templates
preferences 22-33
routing information 22-25
routing slip 22-26
status 22-21

typelist array in endpoint options 23-5

U

undo capability 17-1, 17-8
union soup 11-3
unmatched words in input to assistant 18-8, 18-9
UnRegAppClasses 21-31
UnRegAuxButton 19-37
UnRegFindApps function 16-25, 16-28

I N D E X

IN-23

UnRegFolderChanged function 15-3, 15-10, 15-18
UnRegFormulas 19-36
UnRegInboxApp 21-34
UnRegInfoItem, Dates method 19-21
unregistering the task template 18-19
UnregisterOpenKeyboard 8-36
UnRegLogin 17-25
UnRegPowerOff 17-26
UnRegPowerOn 17-24
UnRegTheseAppClasses 21-33
UnRegTransport 22-6
UnRegUserConfigChange 19-45
user alert 17-3, 17-11
user configuration data 19-45
user configuration variables

address 19-47
cityZip 19-47
company 19-47
country 19-47
countrySlot 19-47
currentAreaCode 19-47
currentCountry 19-48
currentEmporium 19-48
currentPersona 19-48
currentPrinter 19-48
dialingPrefix 19-48
doAutoAdd 19-48
doInkWordRecognition 19-48
doShapeRecognition 19-48
doTextRecognition 19-48
emailPassword 19-48
faxPhone 19-48
homePhone 19-48
learningEnabledOption 19-48
leftHanded 19-48
letterInFieldsOption 19-48
lettersCursiveOption 19-48
letterSetSelection 19-48
letterSpaceCursiveOption 19-48
location 19-48
mailAccount 19-48
mailNetwork 19-48
mailPhone 19-48
name 19-48
paperSize 19-48
paperSizes 19-48
phone 19-48
signature 19-48

speedCursiveOption 19-48
timeoutCursiveOption 19-48
userFont 19-48

userFont, user configuration variable 19-48
user proto GL-7
user-visible application name 15-4, 16-11
user-visible folder names 15-19
useWeekNumber, Dates variable 19-21, 19-46
utility functions 26-1

V

vAddressField 9-31
value

immediate GL-3
reference GL-5

vAnythingAllowed 9-32
vApplication flag 3-47
variables

global GL-3
local GL-4

vBarber 22-21
vCalculateBounds flag 3-47
vCapsRequired 9-31
vCharsAllowed 9-31
vClickable 3-47, 9-32
vClipping flag 3-47
vConfirm 22-21
vCustomDictionaries 9-31
vDateField 9-33
VerifyRoutingInfo 21-10
vFixedInkTextStyle flag 8-17
vFixedTextStyle flag 8-17
vFloating flag 3-47
vGauge 22-21
vGesturesAllowed 9-32
view 3-4, GL-7

adding dynamically 3-33
alignment 3-13
animating 3-23
base 3-5
behavior 3-9, 3-47
capturing 13-18
closing 3-29
controlling recognition in 9-29
coordinate system 3-6

I N D E X

IN-24

view (continued)
creating 3-28
custom fill pattern 3-21
custom frame pattern 3-21
declareSelf slot 3-24
declaring 3-27
defining characteristics of 3-8
dependencies between 3-43
dirtying 3-33
displaying 3-33
finding bounds 3-39
hiding 3-33
highlighting 3-42
idler for 17-2, 17-9
laying out multiple children 3-43
limiting text in 3-17
memory usage 3-45
modal 3-38
optimizing performance 3-44
origin offset 3-20
pop-up views 3-37
redrawing 3-44, 13-10
root 3-6, GL-6
screen-relative bounds 3-12
showing hidden 3-34
sibling views 3-13
size relative to parent 3-12
speeding up scrolling 3-46
synchronization 3-43
viewClass slot 3-9
viewFlags slot 3-9
viewFont slot 3-24
viewOriginX slot 3-20
viewOriginY slot 3-20
viewTransferMode slot 3-22, 3-49

ViewAddChildScript method 9-25
view alignment 3-10, 3-13
view bounds

finding 3-39
setting 3-39

viewChildren slot 3-25
view class 3-9, 3-47, GL-7
view classes

clEditView 8-4, 8-6, 8-8, 13-15
clKeyboardView 8-4, 8-28
clParagraphView 8-4, 8-10
clPictureView 13-15
clPolygonView 13-14

clRemoteView 13-15
clView 2-2

viewClass slot 3-9
viewDef 5-2

creating 5-11
MinimalBounds example 5-14
registering in a NewtApp application 4-20

view definition GL-7
for viewing items in In/Out box 21-34
hiding from In/Out Box 21-35
protection slot 21-35
registering formats as 21-16

viewEffect constants
fxBarnDoorCloseEffect 3-50
fxBarnDoorEffect 3-50
fxCheckerboardEffect 3-50
fxColAltHPhase 3-49
fxColAltVPhase 3-49
fxColumns 3-49
fxDown 3-49
fxDrawerEffect 3-49
fxFromEdge 3-50
fxHStartPhase 3-49
fxIrisCloseEffect 3-50
fxIrisOpenEffect 3-50
fxLeft 3-49
fxMoveH 3-49
fxMoveV 3-49
fxPopDownEffect 3-50
fxRevealLine 3-50
fxRight 3-49
fxRowAltHPhase 3-49
fxRowAltVPhase 3-49
fxRows 3-49
fxSteps 3-50
fxStepTime 3-50
fxUp 3-49
fxVenetianBlindEffect 3-49
fxVStartPhase 3-49
fxWipe 3-50
fxZoomCloseEffect 3-50
fxZoomOpenEffect 3-50
fxZoomVerticalEffect 3-50

view effects 3-23
viewEffect slot 3-23
viewFlags

vAddressField 9-31
vAnythingAllowed 9-32

I N D E X

IN-25

viewFlags (continued)
vApplication 3-47
vCalculateBounds 3-47
vCapsRequired 9-31
vClickable 3-47, 9-32
vClipping 3-47
vCustomDictionaries 9-31
vDateField 9-33
vFixedInkTextStyle 8-17
vFixedTextStyle 8-17
vFloating 3-47
vGesturesAllowed 9-32
vLettersAllowed 9-31
vNameField 9-31
vNoFlags 3-47
vNoScripts 3-47
vNoSpaces 9-32
vNothingAllowed 9-32
vNumbersAllowed 9-31, 9-33
vPhoneField 9-33
vPunctuationAllowed 9-31
vReadOnly 3-47
vShapesAllowed 9-32
vSingleUnit 9-32
vStrokesAllowed 9-32
vTimeField 9-33
vVisible 3-47
vWriteProtected 3-47

viewFlags slot 3-9, 9-29
viewFont slot 3-24
viewFormat 3-20
view frame 3-21
viewFramePattern 3-21
view functions and methods

AddStepView 3-35
BuildContext 3-36

viewHelpTopic slot 18-19
ViewIdleScript 17-9
view instantiation

description 3-26
view location 3-10
viewOriginX slot 3-20
viewOriginY slot 3-20
viewRect 7-4
views

about 3-1
and system messages 8-8
displaying text and ink in 8-14

for text 8-4
lined paper effect in 8-8
mixing text and ink in 8-15
paragraph 8-10
view system overview 1-6

views and protos for text 8-4
ViewSetupChildrenScript 8-7
view size 3-10
viewTransferMode constants

modeBic 3-49
modeCopy 3-49
modeMask 3-49
modeNotBic 3-49
modeNotCopy 3-49
modeNotOr 3-49
modeNotXor 3-49
modeOr 3-49
modeXor 3-49

viewTransferMode slot 3-22, 3-49
vLettersAllowed 9-31
vNameField 9-31
vNoFlags flag 3-47
vNoScripts flag 3-47
vNoSpaces 9-28, 9-29, 9-32
vNothingAllowed 9-32
vNumbersAllowed 9-31, 9-33
vPhoneField 9-33
vProgress 22-21
vPunctuationAllowed 9-31
vReadOnly flag 3-47
vShapesAllowed 9-32
vSingleUnit 9-32
vStatus 22-21
vStatusTitle 22-21
vStrokesAllowed 9-32
vTimeField 9-33
vVisible flag 3-29, 3-47
vWriteProtected flag 3-47

W, X, Y, Z

wedge GL-7
who_obj 18-11
written input formats 8-2

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited, and
composed on a desktop publishing system
using Apple Macintosh computers and
FrameMaker software. Proof pages were
created on an Apple LaserWriter Pro 630
printer. Final page negatives were output
directly from the text and graphics files. Line
art was created using Adobe™ Illustrator.
PostScript™, the page-description language
for the LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf Dingbats®.

LEAD WRITER
Christopher Bey

WRITERS
Bob Anders, Christopher Bey,
Cheryl Chambers, Gary Hillerson,
John Perry, Jonathan Simonoff,
Yvonne Tornatta, Dirk van Nouhuys,
Adrian Yacub

PROJECT LEADER
Christopher Bey

ILLUSTRATOR
Peggy Kunz

EDITORS
Linda Ackerman, David Schneider,
Anne Szabla

PRODUCTION EDITOR
Rex Wolf

PROJECT MANAGER
Gerry Kane

Special thanks to J. Christopher Bell,
Gregory Christie, Bob Ebert, Mike Engber,
Dan Peterson, Maurice Sharp, and Fred Tou.

NEWTON PROGRAMMER’S REFERENCE
CD TEAM
Gary Hillerson, Gerry Kane, Christopher Bey

	Newton Programmer’s Guide
	Table of Contents
	Figures and Tables
	About This Book
	Who Should Read This Book
	Related Books
	Newton Programmer’s Reference CD-ROM
	Sample Code
	Conventions Used in This Book
	Special Fonts
	Tap Versus Click
	Frame Code

	Developer Products and Support
	Undocumented System Software Objects

	Overview
	Operating System
	Memory
	Packages

	System Services
	Object Storage System
	View System
	Text Input and Recognition
	Stationery
	Intelligent Assistant
	Imaging and Printing
	Sound
	Book Reader
	Find
	Filing

	Communications Services
	NewtonScript Application Communications
	Routing Through the In/Out Box
	Endpoint Interface

	Low-Level Communications
	Transport Interface
	Communication Tool Interface

	Application Components
	Using System Software
	The NewtonScript Language
	What’s New in Newton 2.0
	NewtApp
	Stationery
	Views
	Protos
	Data Storage
	Text Input
	Graphics and Drawing
	System Services
	Recognition
	Sound
	Built-in Applications
	Routing and Transports
	Endpoint Communication
	Utilities
	Books

	Getting Started
	Choosing an Application Structure
	Minimal Structure
	NewtApp Framework
	Digital Books
	Other Kinds of Software

	Package Loading, Activation, and Deactivation
	Loading
	Activation
	Deactivation

	Effects of System Resets on Application Data
	Flow of Control
	Using Memory
	Localization
	Developer Signature Guidelines
	Signature
	How to Register
	Application Name
	Application Symbol
	Package Name

	Summary
	View Classes and Protos
	Functions

	Views
	About Views
	Templates
	Views
	Coordinate System
	Defining View Characteristics
	Class
	Behavior
	Location, Size, and Alignment
	Appearance
	Opening and Closing Animation Effects
	Other Characteristics
	Inheritance Links

	Application-Defined Methods
	View Instantiation
	Declaring a View
	Creating a View
	Closing a View

	View Compatibility
	New Drag and Drop API
	New Functions and Methods
	New Messages
	New Alignment Flags
	Changes to Existing Functions and Methods
	New Warning Messages
	Obsolete Functions and Methods

	Using Views
	Getting References to Views
	Displaying, Hiding, and Redrawing Views
	Dynamically Adding Views
	Showing a Hidden View
	Adding to the stepChildren Array
	Using the AddStepView Function
	Using the BuildContext Function
	Creating Templates
	Making a Picker View

	Changing the Values in viewFormat
	Determining Which View Item Is Selected
	Complex View Effects
	Making Modal Views
	Finding the Bounds of Views
	Animating Views
	Dragging a View
	Dragging and Dropping with Views
	Scrolling View Contents
	Redirecting Scrolling Messages
	Working With View Highlighting
	Creating View Dependencies
	View Synchronization
	Laying Out Multiple Child Views
	Optimizing View Performance
	Using Drawing Functions
	View Fill
	Redrawing Views
	Memory Usage
	Scrolling

	Summary of Views
	Constants
	Functions and Methods

	NewtApp Applications
	About the NewtApp Framework
	The NewtApp Protos
	About newtApplication
	About newtSoup
	The Layout Protos
	The Entry View Protos
	About the Slot View Protos

	Stationery
	NewtApp Compatibility

	Using NewtApp
	Constructing a NewtApp Application
	Using Application Globals
	Using newtApplication
	Using the Layout Protos
	Using Entry Views
	Using the Required NewtApp Install and Remove Scri...

	Using Slot Views in Non-NewtApp Applications
	Modifying the Base View
	Using a False Entry View

	Creating a Custom Labelled Input-Line Slot View

	Summary of the NewtApp Framework
	Required Code
	Protos

	Stationery
	About Stationery
	The Stationery Buttons
	Stationery Registration
	Getting Information about Stationery

	Compatibility Information

	Using Stationery
	Designing Stationery
	Using FillNewEntry

	Extending the Notes Application
	Determining the SuperSymbol of the Host
	Creating a DataDef
	Defining DataDef Methods
	Creating ViewDefs
	Registering Stationery for an Auto Part

	Using the MinimalBounds ViewDef Method

	Stationery Summary
	Data Structures
	Protos
	Functions

	Pickers, Pop-up Views, and Overviews
	About Pickers and Pop-up Views
	Pickers and Pop-up View Compatibility
	New Pickers and Pop-up Views
	Obsolete Function

	Picker Categories

	General-Purpose Pickers
	Using protoGeneralPopup

	Map Pickers
	Text Pickers
	Date, Time, and Location Pop-up Views
	Number Pickers
	Picture Picker
	Overview Protos
	Using protoOverview
	Using protoListPicker
	Using the Data Definitions Frame in a List Picker
	Specifying Columns
	Having a Single Selection in a List Picker
	Having Preselected Items in a List Picker
	Validation and Editing in protoListPicker
	Changing the Font of protoListPicker

	Using protoSoupOverview
	Determining Which protoSoupOverview Item Is Hit

	Displaying the protoSoupOverview Vertical Divider

	Roll Protos
	View Classes
	Specifying the List of Items for a Popup
	Summary
	General Picker Protos
	Map Pickers
	Text Picker Protos
	Date, Time, and Location Pop-up Views
	Number Pickers
	Picture Picker
	Overview Protos
	Roll Protos
	View Classes
	Functions

	Controls and Other Protos
	Controls Compatibility
	Scroller Protos
	Implementing a Minimal Scroller
	Automatic Arrow Feedback
	Scrolling Examples
	Scrolling Lines of Text
	Scrolling in the Dates Application
	Scrolling In a Graphics Application

	Scroll Amounts
	Advanced Usage

	Button and Box Protos
	Implementing a Simple Button

	Selection Tab Protos
	Gauge and Slider Protos
	Implementing a Simple Slider

	Time Protos
	Implementing a Simple Time Setter

	Special View Protos
	View Appearance Protos
	Status Bar Protos
	Summary
	Scroller Protos
	Button and Box Protos
	Selection Tab Protos
	Gauges and Slider Protos
	Time Protos
	Special View Protos
	View Appearance Protos
	Status Bar Protos

	Text and Ink Input and Display
	About Text
	About Text and Ink
	Written Input Formats
	Caret Insertion Writing Mode
	Fonts for Text and Ink Display

	About Text Views and Protos
	About Keyboard Text Input
	The Keyboard Registry
	The Punctuation Pop-up Menu

	Compatibility

	Using Text
	Using Views and Protos for Text Input and Display
	General Input Views
	Paragraph Views
	Lightweight Paragraph Views
	Using Input Line Protos

	Displaying Text and Ink
	Text and Ink in Views
	Using Fonts for Text and Ink Display
	Rich Strings
	Text and Styles

	Setting the Caret Insertion Point
	Using Keyboards
	Keyboard Views
	Using Keyboard Protos
	Defining Keys in a Keyboard View
	Using the Keyboard Registry
	Defining Tabbing Orders
	The Caret Pop-up Menu

	Handling Input Events
	Testing for a Selection Hit

	Summary of Text
	Text Constants and Data Structures
	Views
	Protos
	Text and Ink Display Functions and Methods
	Keyboard Functions and Methods
	Input Event Functions and Methods

	Recognition
	About the Recognition System
	Classifying Strokes
	Gestures
	Shapes
	Text
	Unrecognized Strokes

	Enabling Recognizers
	View Flags
	Recognition Configuration Frames
	View Flags vs. RecConfig Frames

	Where to Go From Here
	Recognition Failure
	System Dictionaries
	Correction and Learning
	User Preferences for Recognition
	Handwriting Recognition Preferences

	RecToggle Views
	Flag-Naming Conventions
	Recognition Compatibility

	Using the Recognition System
	Types of Views
	Configuring the Recognition System
	Obtaining Optimum Recognition Performance

	Accepting Pen Input
	Taps and Overlapping Views

	Recognizing Shapes
	Recognizing Standard Gestures
	Combining View Flags
	Recognizing Text
	Recognizing Punctuation
	Suppressing Spaces Between Words
	Forcing Capitalization
	Justifying to Width of Parent View
	Restricting Input to Single Lines or Single Words
	Validating Clipboard and Keyboard Input

	Using the vAnythingAllowed Mask

	Summary
	Constants
	Data Structures

	Recognition: Advanced Topics
	About Advanced Topics in Recognition
	How the System Uses Recognition Settings
	ProtoCharEdit Views
	Ambiguous Characters in protoCharEdit Views

	Deferred Recognition
	User Interface to Deferred Recognition
	Programmer’s Overview of Deferred Recognition

	Compatibility Information

	Using Advanced Topics in Recognition
	Using recConfig Frames
	Creating a recConfig Frame
	Using RecConfig Frames to Enable Recognizers
	Returning Text, Ink Text or Sketch Ink
	Fine-Tuning Text Recognition
	Manipulating Dictionaries
	Single-Character Input Views
	Creating Single-Letter Input Views

	Changing Recognition Behavior Dynamically
	Using protoRecToggle Views
	Creating the recToggle View
	Configuring Recognizers and Dictionaries for recTo...
	Creating the _recogSettings Slot
	Providing the _recogPopup Slot

	Accessing Correction Information
	Using Custom Dictionaries
	Creating a Custom Enumerated Dictionary
	Creating the Blank Dictionary
	Adding Words to RAM-Based Dictionaries
	Removing Words From RAM-Based Dictionaries
	Saving Dictionary Data to a Soup
	Restoring Dictionary Data From a Soup
	Using Your RAM-Based Custom Dictionary
	Removing Your RAM-Based Custom Dictionary
	Using System Dictionaries Individually

	Working With the Review Dictionary
	Retrieving the Review Dictionary
	Displaying Review Dictionary Browsers
	Adding Words to the User Dictionary
	Removing Words From the User Dictionary
	Adding Words to the Expand Dictionary
	Removing Words From the Expand Dictionary
	Retrieving Word Expansions
	Retrieving the Auto-Add Dictionary
	Disabling the Auto-Add Mechanism
	Adding Words to the Auto-Add Dictionary
	Removing Words From the Auto-Add Dictionary

	Using protoCharEdit Views
	Positioning protoCharEdit Views
	Manipulating Text in protoCharEdit Views
	Restricting Characters Returned by protoCharEdit V...

	Customized Processing of Input Strokes
	Customized Processing of Double Taps
	Changing User Preferences for Recognition
	Modifying or Replacing the Correction Picker
	Using Stroke Bundles
	Stroke Bundles Example

	Summary of Advanced Topics in Recognition
	Constants
	System-Supplied RecConfig Frames

	Data Structures
	Recognition System Prototypes
	Additional Recognition Functions and Methods

	Data Storage and Retrieval
	About Data Storage on Newton Devices
	Introduction to Data Storage Objects
	Where to Go From Here
	Stores
	Packages
	Soups
	Indexes
	Saving User Preference Data in the System Soup

	Queries
	Querying for Indexed Values
	Begin Keys and End Keys
	Tag-based Queries
	Customized Tests
	Text Queries

	Cursors
	Entries
	Alternatives to Soup-Based Storage
	Dynamic Data
	Static Data

	Compatibility Information
	Obsolete Store Functions and Methods
	Soup Compatibility Information
	Query Compatibility Information
	Obsolete Entry Functions
	Obsolete Data Backup and Restore Functions

	Using Newton Data Storage Objects
	Programmer’s Overview
	Using Stores
	Store Object Size Limits
	Referencing Stores
	Retrieving Packages From Stores
	Testing Stores for Write-Protection
	Getting or Setting the Default Store
	Getting and Setting the Store Name
	Accessing the Store Information Frame

	Using Soups
	Naming Soups
	Registering and Unregistering Soup Definitions
	Retrieving Existing Soups
	Adding Entries to Soups
	Adding an Index to an Existing Soup
	Removing Soups
	Using Built-in Soups
	Making Changes to Other Applications’ Soups
	Adding Tags to an Existing Soup

	Using Queries
	Querying Multiple Soups
	Querying on Single-Slot Indexes
	Querying for Tags
	Querying for Text
	Internationalized Sorting Order for Text Queries
	Queries on Descending Indexes
	Querying on Multiple-Slot Indexes
	Limitations of Index Keys

	Using Cursors
	Getting a Cursor
	Testing Validity of the Cursor
	Getting the Entry Currently Referenced by the Curs...
	Moving the Cursor
	Counting the Number of Entries in Cursor Data
	Getting the Current Entry’s Index Key
	Copying Cursors

	Using Entries
	Saving Frames as Soup Entries
	Removing Entries From Soups
	Modifying Entries
	Moving Entries
	Copying Entries
	Sharing Entry Data
	Using the Entry Cache Efficiently

	Using Soup Change Notification
	Registering Your Application for Change Notificati...
	Unregistering Your Application for Change Notifica...
	Responding to Notifications
	Sending Notifications

	Summary of Data Storage
	Data Structures
	Data Storage Functions and Methods

	Special-Purpose Objects for Data Storage and Retri...
	About Special-Purpose Storage Objects
	Entry Aliases
	Virtual Binary Objects
	Parts
	Store Parts

	Mock Entries
	Mock Stores, Mock Soups, and Mock Cursors

	Using Special-Purpose Data Storage Objects
	Using Entry Aliases
	Using Virtual Binary Objects
	Creating Virtual Binary Objects
	Modifying VBO Data
	VBOs and String Data

	Using Store Parts
	Creating a Store Part
	Getting the Store Part
	Accessing Data in Store Parts

	Using Mock Entries
	Implementing the EntryAccess Method
	Creating a New Mock Entry
	Testing the Validity of a Mock Entry
	Getting Mock Entry Data
	Changing the Mock Entry’s Handler
	Getting the Mock Entry’s Handler
	Implementing Additional Handler Methods

	Summary of Special-Purpose Data Storage Objects
	Data Structures
	Functions and Methods

	Drawing and Graphics
	About Drawing
	Shape-Based Graphics
	Manipulating Shapes
	The Style Frame
	Drawing Compatibility
	New Functions
	New Style Attribute Slots
	Changes to Bitmaps
	Changes to the HitShape Method
	Changes to View Classes

	Using the Drawing Interface
	How to Draw
	Responding to the ViewDrawScript Message
	Drawing Immediately

	Using Nested Arrays of Shapes
	The Transform Slot in Nested Shape Arrays
	Default Transfer Mode
	Transfer Modes at Print Time

	Controlling Clipping
	Transforming a Shape
	Using Drawing View Classes and Protos
	Displaying Graphics Shapes and Ink
	Displaying Bitmaps, Pictures, and Graphics Shapes
	Displaying Pictures in a clEditView
	Displaying Scaled Images of Other Views

	Translating Data Shapes
	Finding Points Within a Shape
	Using Bitmaps
	Making CopyBits Scale Its Output Bitmap
	Storing Compressed Pictures and Bitmaps
	Capturing a Portion of a View Into a Bitmap
	Rotating or Flipping a Bitmap
	Importing Macintosh PICT Resources
	Drawing Non-Default Fonts
	PICT Swapping During Run-Time Operations
	Optimizing Drawing Performance

	Summary of Drawing
	Data Structure
	View Classes
	Protos
	Functions and Methods

	Sound
	About Newton Sound
	Event-related Sounds
	Sounds in ROM
	Sounds for Predefined Events

	Sound Data Structures
	Compatibility

	Using Sound
	Creating and Using Custom Sound Frames
	Creating Sound Frames Procedurally
	Cloning Sound Frames

	Playing Sound
	Using a Sound Channel to Play Sound

	Playing Sound Programmatically
	Synchronous and Asynchronous Sound

	Advanced Sound Techniques
	Pitch Shifting
	Manipulating Sample Data

	Summary of Sound
	Data Structures
	Protos
	Functions and Methods
	Sound Resources

	Filing
	About Filing
	Filing Compatibility Information

	Using the Filing Service
	Overview of Filing Support
	Creating the Labels Slot
	Creating the appName Slot
	Creating the appAll Slot
	Creating the appObjectFileThisIn Slot
	Creating the appObjectFileThisOn Slot
	Creating the appObjectUnfiled Slot
	Specifying the Target
	Creating the labelsFilter slot
	Creating the storesFilter slot
	Adding the Filing Button
	Adding the Folder Tab View
	Customizing Folder Tab Views
	Defining a TitleClickScript Method
	Implementing the FileThis Method
	Implementing the NewFilingFilter Method
	Using the Folder Change Notification Service
	Creating the doCardRouting slot
	Using Local or Global Folders Only
	Adding and Removing Filing Categories Programmatic...
	Interface to User-Visible Folder Names

	Summary
	Data Structures for Filing
	Application Base View Slots

	Filing Protos
	Filing Functions and Methods
	Application-Defined Filing Functions and Methods

	Find
	About the Find Service
	Compatibility Information

	Using the Find Service
	Technical Overview
	Global and Selected Finds

	Checklist for Adding Find Support
	Creating the title Slot
	Creating the appName Slot

	Using the Finder Protos
	Implementing Search Methods
	Using the StandardFind Method
	Using Your Own Text-Searching Method
	Finding Text With a ROM_CompatibleFinder
	Implementing the DateFind Method
	Adding Application Data Sets to Selected Finds
	Returning Search Results

	Implementing Find Overview Support
	The FindSoupExcerpt Method
	The ShowFoundItem Method

	Replacing the Built-in Find Slip
	Reporting Progress to the User
	Registering for Finds

	Summary
	Finder Protos
	Functions and Methods
	Application-Defined Methods

	Additional System Services
	About Additional System Services
	Undo
	Undo Compatibility

	Idler Objects
	Change Notifications
	Online Help
	Alerts and Alarms
	User Alerts
	User Alarms
	Periodic Alarms
	Alarms Compatibility

	Progress Indicators
	Automatic Busy Cursor
	Notify Icon
	Status Slips With Progress Indicators

	Power Registry
	Power Compatibility Information

	Using Additional System Services
	Using Undo Actions
	The Various Undo Methods
	Avoiding Undo-Related “Bad Package” Errors

	Using Idler Objects
	Using Change Notification
	Using Online Help
	Using Alerts and Alarms
	Using the Notify Method to Display User Alerts
	Creating Alarms
	Obtaining Information about Alarms
	Retrieving Alarm Keys
	Removing Installed Alarms
	Common Problems With Alarms
	Using the Periodic Alarm Editor

	Using Progress Indicators
	Using the Automatic Busy Cursor
	Using the Notify Icon
	Using the DoProgress Function
	Using DoProgress or Creating Your Own protoStatusT...
	Using protoStatusTemplate Views

	Using the Power Registry
	Registering Power-On Functions
	Registering Login Screen Functions
	Registering Power-Off Functions
	Using the Battery Information Functions

	Summary of Additional System Services
	Undo
	Idlers
	Notification and Alarms
	Reporting Progress
	Power Registry

	Intelligent Assistant
	About the Assistant
	Introduction
	Input Strings
	No Verb in Input String
	Ambiguous or Missing Information
	The Task Slip

	Programmer’s Overview
	Matching Words With Templates
	The Signature and PreConditions Slots
	The Task Frame
	The Entries Slot
	The Phrases Slot
	The OrigPhrase Slot
	The Value Slot

	Resolving Template-Matching Conflicts
	Compatibility Information

	Using the Assistant
	Making Behavior Available From the Assistant
	Defining Action and Target Templates
	Defining Your Own Frame Types to the Assistant
	Implementing the PostParse Method
	Defining the Task Template
	Registering and Unregistering the Task Template

	Displaying Online Help From the Assistant
	Routing Items From the Assistant

	Summary
	Data Structures
	Templates
	Developer-Supplied Task Template
	Developer-Supplied Action Templates
	Developer-Supplied Target Templates

	Assistant Functions and Methods
	Developer-Supplied Functions and Methods
	Application Base View Slots

	Built-in Applications and System�Data
	Names
	About the Names Application
	Names Compatibility

	Using the Names Application
	Adding a New Type of Card
	Adding a New Data Item
	Adding a New Card Layout Style
	Adding New Layouts to the Names Application
	Using the Names Methods and Functions
	Using the Names Soup
	Using the Names Protos

	Dates
	About the Dates Application
	Dates Compatibility

	Using the Dates Application
	Adding Meetings or Events
	Deleting Meetings and Events
	Finding Meetings or Events
	Moving Meetings and Events
	Getting and Setting Information for Meetings or Ev...
	Creating a New Meeting Type
	Examples of Creating New Meeting Types
	Miscellaneous Operations
	Controlling the Dates Display
	Using the Dates Soups

	To Do List
	About the To Do List Application
	To Do List Compatibility

	Using the To Do List Application
	Creating and Removing Tasks
	Accessing Tasks
	Checking-Off a Task
	Miscellaneous To Do List Methods
	Using the To Do List Soup

	Time Zones
	About the Time Zones Application
	Time Zone Compatibility

	Using the Time Zone Application
	Obtaining Information About a City or Country
	Adding a City to a Newton Device
	Using Longitude and Latitude Values
	Setting the Home City

	Notes
	About the Notes Application
	Notes Compatibility

	Using the Notes Application
	Creating New Notes
	Adding Stationery to the Notes Application
	Using the Notes Soup

	Fax Soup Entries
	About Fax Soup Entries
	Using Fax Soup Entries

	Prefs and Formulas Rolls
	About the Prefs and Formulas Rolls
	Prefs and Formulas Compatibility

	Using the Prefs and Formulas Interfaces
	Adding a Prefs Roll Item
	Adding a Formulas Roll Item

	Auxiliary Buttons
	About Auxiliary Buttons
	Auxiliary Buttons Compatibility

	Using Auxiliary Buttons

	Icons and the Extras Drawer
	About Icons and the Extras Drawer
	Extras Drawer Compatibility

	Using the Extras Drawer’s Interface for Icon Manag...
	Using Extras Drawer Cursors
	Changing Icon Information
	Adding a Soup Icon
	Removing a Soup Icon
	Creating a Script Icon
	Using the Soupervisor Mechanism

	System Data
	About System Data
	Using System Data
	Functions for Accessing User Configuration Data
	Storing Application Preferences in the System Soup...

	Summary
	Constants and Variables
	User Configuration Variables

	Protos
	Soup Formats
	Functions and Methods

	Localizing Newton Applications
	About Localization
	The Locale Panel and the International Frame
	Locale and ROM Version

	How Locale Affects Recognition

	Using the Localization Features of the Newton
	Defining Language at Compile Time
	Defining a Localization Frame
	Using LocObj to Reference Localized Objects
	Use ParamStr Rather Than “&” and “&&” Concatenatio...
	Measuring String Widths at Compile Time

	Determining Language at Run Time
	Examining the Active Locale Bundle
	Changing Locale Settings
	Creating a Custom Locale Bundle
	Adding a New Bundle to the System
	Removing a Locale Bundle
	Changing the Active Locale
	Using a Localized Country Name
	Summary: Customizing Locale

	Localized Output
	Date and Time Values
	Currency Values

	Summary of Localization Functions
	Compile-Time Functions
	Locale Functions
	Date and Time Functions
	Utility Functions

	Routing Interface
	About Routing
	The In/Out Box
	The In Box
	The Out Box

	Action Picker
	Routing Formats
	Current Format

	Routing Compatibility
	Print Formats

	Using Routing
	Providing Transport-Based Routing Actions
	Getting and Verifying the Target Object
	Getting and Setting the Current Format
	Supplying the Target Object
	Storing an Alias to the Target Object
	Storing Multiple Items
	Using the Built-in Overview Data Class
	Displaying an Auxiliary View
	Registering Routing Formats

	Creating a Print Format
	Page Layout
	Printing and Faxing

	Creating a Frame Format
	Creating a New Type of Format
	Providing Application-Specific Routing Actions
	Performing the Routing Action
	Handling Multiple Items
	Handling No Target Item

	Sending Items Programmatically
	Creating a Name Reference
	Specifying a Printer

	Opening a Routing Slip Programmatically
	Supporting the Intelligent Assistant
	Receiving Data
	Automatically Putting Away Items
	Manually Putting Away Items
	Registering to Receive Foreign Data
	Filing Items That Are Put Away

	Viewing Items in the In/Out Box
	View Definition Slots

	Advanced Alias Handling

	Summary of the Routing Interface
	Constants
	Data Structures
	Protos
	Functions and Methods
	Application-Defined Methods

	Transport Interface
	About Transports
	Transport Parts
	Item Frame

	Using the Transport Interface
	Providing a Transport Object
	Installing the Transport
	Setting the Address Class
	Grouping Transports
	Sending Data
	Sending All Items
	Converting an E-Mail Address to an Internet Addres...
	Receiving Data
	Handling Requests When the Transport Is Active
	Canceling an Operation
	Obtaining an Item Frame
	Completion and Logging
	Storing Transport Preferences and Configuration In...
	Extending the In/Out Box Interface
	Application Messages
	Error Handling
	Power-Off Handling

	Providing a Status Template
	Controlling the Status View

	Providing a Routing Information Template
	Providing a Routing Slip Template
	Using protoFullRouteSlip
	Using protoAddressPicker

	Providing a Preferences Template

	Summary of the Transport Interface
	Constants
	Protos
	Functions and Methods

	Endpoint Interface
	About the Endpoint Interface
	Asynchronous Operation
	Synchronous Operation
	Input
	Data Forms
	Template Data Form

	Endpoint Options
	Compatibility

	Using the Endpoint Interface
	Setting Endpoint Options
	Initialization and Termination
	Establishing a Connection
	Sending Data
	Receiving Data Using Input Specs
	Specifying the Data Form and Target
	Specifying Data Termination Conditions
	Specifying Flags for Receiving
	Specifying an Input Time-Out
	Specifying Data Filter Options
	Specifying Receive Options
	Handling Normal Termination of Input
	Periodically Sampling Incoming Data
	Handling Unexpected Completion
	Special Considerations

	Receiving Data Using Alternative Methods
	Streaming Data In and Out
	Working With Binary Data
	Canceling Operations
	Asynchronous Cancellation
	Synchronous Cancellation

	Other Operations
	Error Handling
	Power-Off Handling
	Linking the Endpoint With an Application

	Summary of the Endpoint Interface
	Constants and Symbols
	Data Structures
	Protos
	Functions and Methods

	Built-in Communications Tools
	Serial Tool
	Standard Asynchronous Serial Tool
	Serial Tool with MNP Compression
	Framed Asynchronous Serial Tool

	Modem Tool
	Infrared Tool
	AppleTalk Tool
	Resource Arbitration Options
	AppleTalk Functions
	The Net Chooser

	Summary
	Built-in Communications Tool Service Option Labels...
	Options
	Constants
	Functions and Methods

	Modem Setup Service
	About the Modem Setup Service
	The Modem Setup User Interface
	The Modem Setup Process
	Modem Communication Tool Requirements

	Defining a Modem Setup
	Setting Up General Information
	Setting the Modem Preferences Option
	Setting the Modem Profile Option
	Setting the Fax Profile Option

	Summary of the Modem Setup Service
	Constants

	Utility Functions
	Compatibility
	New Functions
	New Object System Functions
	New String Functions
	New Array Functions
	New Sorted Array Functions
	New Integer Math Functions
	New Financial Functions
	New Exception Handling Functions
	New Message Sending Functions
	New Deferred Message Sending Functions
	New Data Stuffing Functions
	New Functions to Get and Set Globals
	New Debugging Functions
	New Miscellaneous Functions

	Enhanced Functions
	Obsolete Functions

	Summary of Functions and Methods
	Object System Functions
	String Functions
	Bitwise Functions
	Array Functions
	Sorted Array Functions
	Integer Math Functions
	Floating Point Math Functions
	Financial Functions
	Exception Functions
	Message Sending Functions
	Deferred Message Sending Functions
	Data Extraction Functions
	Data Stuffing Functions
	Getting and Setting Global Variables and Functions...
	Debugging Functions
	Miscellaneous Functions

	Appendix: The Inside Story on Declare
	Compile-Time Results
	Run-Time Results

	Glossary
	Index

