

ð

ð

Newton OS 2.1
Engineering Documents

IMPORTANT

The information in this document is preliminary,
unreviewed, and it is subject to change.

October 6, 1996 Newton Technical Publications Team
© Apple Computer, Inc. 1996

Apple Computer, Inc.
© 1996 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to
be made for others, whether or not
sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop

applications only for licensed
Newton platforms.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleTalk,
eMate, Espy, LaserWriter, the light
bulb logo, Macintosh, MessagePad,
Newton, Newton Connection Kit,
and New York are trademarks of
Apple Computer, Inc., registered in
the United States and other
countries.
Geneva, NewtonScript, Newton
Toolkit, and QuickDraw are
trademarks of Apple Computer, Inc.
Acrobat, Adobe Illustrator, and
PostScript are trademarks of Adobe
Systems Incorporated, which may
be registered in certain
jurisdictions.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered trademark
of Microsoft Corporation.
Windows is a trademark of
Microsoft Corporation.
QuickView™ is licensed from
Altura Software, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no

charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY
(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Preface

About This Book

xiii

Related Books xiii
Sample Code xiv
Conventions Used in This Book xv

Special Fonts xv
Developer Products and Support xv

Chapter 1

NewtonWorks API ERS

1-1

NewtonWorks-Specific slots 1-2

UpdateStatusBar 1-2

DataDef 1-2

FindFn 1-3
FindSoupExcerpt 1-3

Info Preferences 1-3
Infobox (Title slip) info 1-4

InfoBoxExtract 1-4

Viewdefs 1-5
Find 1-5

FindChange 1-6
ShowFoundItem 1-6

Storage 1-7

SaveData 1-7

Scrolling 1-7

ViewScrollUpScript 1-8
ViewScrollDownScript 1-8
Scroll 1-8
GetScrollValues 1-8
GetTotalHeight 1-8
GetTotalWidth 1-9
GetScrollableRect 1-9
UpdateAllScrollers 1-9

Status Bar 1-9

UpdateStatusBar 1-10

Help 1-10

DoHelp 1-11

Other 1-11

PrefsChanged 1-11
ViewChangedScript 1-11

Registering Tools 1-12

iv

RegNewtWorksTool 1-12
UnregNewtWorksTool 1-13
GetNewtWorksTools 1-13

NewtonWorks Word Processor Soup Format 1-14

Chapter 2

NewtonWorks Draw Application ERS

2-1

Overview 2-1
Feature List 2-2

Creating Graphical Objects 2-2
Modifying Graphical Objects 2-3
Arranging Graphical Objects 2-4
Setting Text Attributes 2-4
Setting Paragraph Rulers 2-4
ClipArt Stamps (bitmaps) 2-5
Additional Features 2-5

Gestures 2-5
Selection 2-5
Specifying Vertices of Polygons 2-6
Locking Tools Palette 2-6

User Interface 2-6
Tool Bar 2-7

Arrow Tool 2-7
Text Tool 2-7
Line Tool 2-8
Rectangle Tool 2-8
Rounded Rectangle Tool 2-8
Oval Tool 2-8
Arc Tool 2-8
Freehand Tool 2-8
Polygon Tool 2-8
Stamp Tool 2-9
Shapes Tool 2-9
Fill Pattern Palette 2-9
Pen Pattern Palette 2-10
Pen Size Palette 2-11

New Button 2-12
Edit Button 2-12

Undo 2-13
Cut, Copy, Paste, Clear, Duplicate 2-13
Select All 2-13

Arrange Button 2-14
Move Forward, Move Backward 2-14
Move to Front, Move to Back 2-14
Align Objects 2-15
Rotate Right/Left 2-15

v

Flip Horizontally, Flip Vertically 2-16
Group, Ungroup 2-16
Font Button 2-16
Tools Button 2-16
Hide Grid/Show Grid 2-16
Hide Tools/Show Tools 2-16
Show Rulers/Hide Rulers 2-16
Info Button 2-16
About 2-17
Help 2-17
Prefs 2-17

Developer API 2-17
Adding and Removing Custom Drawing Tools 2-17
Drawing Tool Template 2-18

Developer-Defined Drawing Tool Methods 2-20
Drawing Methods 2-23

GetContents 2-23
SetContents 2-23
GetCanvas 2-23
AddShape 2-24
AddShapeToSelection 2-24
ClearSelection 2-24
SelectAll 2-24
GetSelectedShapes 2-24
DirtyShape 2-25
EditGroup 2-25
EditUnGroup 2-25
EditCopy 2-25
EditCut 2-25
EditPaste 2-25
EditDelete 2-25
EditDuplicate 2-25
EditUndo 2-26

Draw Patterns 2-26
Draw Stamps 2-26

Chapter 3

Word Processing View ERS

3-1

About protoTXView And the View System 3-1
Application-defined Methods 3-2
View Slots 3-3
Other View Features 3-3

Terminology 3-4
Common Parameter Descriptions 3-4

The Range Frame 3-4
The Font Specification Frame 3-5
The Graphics Specification Frame 3-5

vi

The Ruler Information Frame 3-5
Tab Frames 3-6

Initialization 3-6

SetStore 3-6
SetGeometry 3-7

Getting Info 3-8

GetRangeData 3-8
GetCountCharacters 3-9
FindString 3-9
GetWordRange 3-10
CharToPoint 3-10
PointToChar 3-11
GetLineRange 3-11

Editing 3-12

Cut 3-12
Copy 3-12
Paste 3-12
Clear 3-12
ChangeRangeRuns 3-13
ChangeRangeRulers 3-13
Replace 3-14
ReplaceAll 3-15

Storage 3-16

Externalize 3-16
Internalize 3-16
IsModified 3-17

Scrolling 3-17

Scroll 3-17
GetScrollValues 3-18
GetTotalHeight 3-18
GetTotalWidth 3-18
GetScrollableRect 3-18
ViewUpdateScrollersScript 3-19

Highlighting 3-19

GetHiliteRange 3-19
SetHiliteRange 3-19
GetContinuousRun 3-20

Ruler User Interface 3-20

ShowRuler 3-21
HideRuler 3-21
IsRulerShown 3-21
UpdateRulerInfo 3-22

Pages 3-22

GetCountPages 3-22
InsertPageBreak 3-22

Printing 3-22

SetDrawOrigin 3-23

protoTXViewFinder 3-23

FindString 3-24
GetCountCharacters 3-24

vii

GetRangeText 3-25

Chapter 4

Keyboard Enhancements ERS

4-1

Terminology 4-2
User Interface 4-2

General Usage 4-2
Text entry and editing 4-3
Slips, windows, and buttons: 4-3
Menus 4-5

The Command-key Combination Pop-up Help Slip 4-6
System and Built-in App Command Key Assignments 4-8

Command-key Assignments for The NotePad Application 4-10
Command-Key Assignments for The Names Application 4-10
Command-Key Assignments for The Dates Application 4-11
Command-Key Assignments for The In/Out Box 4-11
Command-Key Assignments for The Call Log 4-12
Command-Key Assignments for the BookPlayer 4-12

Keyboard Reference 4-12
Keystroke Handling 4-13

Intercepting Keystrokes Directly 4-14

IsCommandKeystroke 4-15
ViewKeyDownScript 4-15
ViewKeyUpScript 4-16
ViewKeyRepeatScript 4-17

Keystroke Event Sequencing 4-17
Intercepting Grouped Keystrokes 4-19

ViewKeyStringScript 4-19

Typing Without a Caret 4-19
The Caret Stack and Caret Activation 4-20
Obtaining The State Of a Key 4-21

IsKeyDown 4-21

Simulating Keystrokes 4-22

HandleKeyEvents 4-22

Command Key Handling 4-22
The Command-Key Mapping Frame 4-23
Searching for Key Commands 4-26
KeyMessage Definition and Invocation 4-28
Adding, Blocking, and Removing Key Commands 4-28

AddKeyCommand 4-28
AddKeyCommands 4-28
BlockKeyCommand 4-29
ClearKeyCommands 4-29

Looking Up KeyCommands 4-30

SendKeyMessage 4-30
FindKeyCommand 4-30
FindKeyCommand 4-31

viii

CategorizeKeyCommands 4-31

Displaying the Pop-up Command Key Help Slip 4-31
Faking a Button Press 4-32

PressButton 4-32

Designating the Default Button In a Slip 4-32
Designating a Slip’s Close Box 4-32
Default and Close Buttons in Confirm Slips 4-33
KeyCommands and Popup Menus 4-33

Compatibility 4-35
Default Buttons 4-35
Possible Key-view Compatibility Problem 4-35

Chapter 5

Newton OS 2.1 Grayscale Imaging ERS

5-1

Overview of Features 5-1
Terminology 5-2
Developer API 5-3

Color definitions in graphic shapes' style frame 5-3
Dithered Patterns 5-4
Text shapes 5-5
Color PICTs and bitmaps 5-5
Manipulating Bitmap Data 5-6

GrayShrink 5-7

Gray Text in clEditView Views 5-7
Gray viewFormat 5-7
Utility Functions 5-8

PackRGB 5-8
GetRed 5-8
GetGreen 5-8
GetBlue 5-8
GetTone 5-9
IsEqualTone 5-9
PtInCPicture 5-9

Compatibility Information 5-10

Chapter 6

Newton OS 2.1 Graphics Shapes ERS

6-1

Data Structures 6-1
Modifications to the Style Frame 6-1

Functions 6-2
New Functions 6-2

ConvertDropToShape 6-2
FindShape 6-3
GetPointsArrayXY 6-4
MakeInk 6-4
MungeShape 6-5

ix

PictToShape 6-5

Changed Functions 6-5
MakeShape now handles bitmaps with masks 6-6
GetStrokePointsArray filters more points and swaps point

coordinates 6-6

Chapter 7

Newton OS 2.1 Sound ERS

7-1

Terminology 7-1
User Interface 7-2
Developer Interface 7-2

Sound Interface in 1.x Systems 7-2
Sound Interface in 2.0 Systems 7-3

PlaySoundAtVolume 7-3
PlaySoundIrregardless 7-3
PlaySoundIrregardlessAtVolume 7-3
PlaySoundEffect 7-3
Clicker 7-4

Sound Interface for Newton OS 2.1 7-4

GetSystemVolume 7-4
SetSystemVolume 7-4
GetSoundFrame 7-4

protoSoundChannel 7-5

Open 7-5
Close 7-5
Schedule 7-6
Start 7-6
Stop 7-6
Pause 7-6
SetVolume 7-7
GetVolume 7-7
IsPaused 7-7
IsActive 7-7

Sound Frame Format 7-7
Sound Result Frame Format 7-9
Sound Manager Error Codes 7-11

Compatibility Information 7-12
Sound Input 7-12

NewtonScript Interface 7-13
Devices and Channels 7-14
Input Gain 7-15
ProtoSoundChannel 7-15

IsOpen 7-16
NewRecording 7-17
NewInputBlock 7-17
SetInputGain 7-17
GetInputGain 7-18

x

ProtoSoundFrame 7-18

GetSampleCount 7-18
GetSampleSize 7-18
GetSamplingRate 7-19
GetPlayingTime 7-19
SetRecordingLength 7-19

MuLaw Compression 7-19
Setting Global Sound Preferences 7-20

Getting and Setting Input Gain 7-20
Getting or Setting Default Input or Output Devices 7-21
UserConfiguration Slots 7-21

Sound Recorder and Player 7-22
ProtoRecorderEngine 7-23
ProtoRecorderView 7-23
SoundPaper 7-24

Chapter 8

Dial-In Networks ERS

8-1

Data Structures 8-2
Access Frame 8-2
Network Frame 8-2

GetAccessNumbers 8-2

Global Functions 8-3

RegDialinNetwork 8-3
UnRegDialinNetwork 8-5
GetLocalAccessNums 8-5
GetAllDialinNetworks 8-6
GetDialinNetwork 8-7

Chapter 9

IrDA Communication Tool ERS

9-1

Overview 9-1
Terminology 9-2
User Interface 9-3
Using the IrDA Tool 9-4
IrDA Tool Options 9-8

Discovery Option 9-8
Connection Info Option 9-10
Serial Bit Rate Option 9-11
Receive Buffers Option 9-12
Link Disconnect Option 9-12
Connect User Data Option 9-13
Getting IrDa Tool Information 9-14
Slow IR Connect Option 9-17
IrDA Statistics Option 9-18

xi

Chapter 10

eMate 300 Multi-user ERS

10-1

Configuration UI 10-1
User Login Interface 10-7

Developer API 10-10

GetBackupSoupNames 10-10
MultiUserSwitch 10-10
GetUserConfig 10-11
GenSoupName 10-11

KClassroomAware slot 10-11
Compatibility Information 10-11

xii

P R E F A C E

xiii

About This Book

This book describes changes and additions to the Newton
operating system for version 2.1.

Important Note

The chapters in this book are at different stages of
completion. Some are less complete than others. For all
chapters, even the most complete ones, keep in mind that
the information is preliminary, unreviewed, subject to
change, and may not consistently reflect the latest technical
information available.

◆

Related Books

This book is one in a set of books available for Newton
programmers. You’ll also need to refer to these other books in
the set:

■

Newton Programmer’s Guide

. This book is the definitive guide to
Newton programming, covering Newton OS 2.0. It contains a
companion volume,

Newton Programmer’s Reference

, on
CD-ROM in various electronic formats for quick access.

■

Newton Toolkit User’s Guide

. This book comes with the Newton
Toolkit development environment. It introduces the Newton
development environment and shows how to develop Newton
applications using Newton Toolkit. You should read this book
first if you are a new Newton application developer.

■

The NewtonScript Programming Language

. This book comes with
the Newton Toolkit development environment. It describes the
NewtonScript programming language.

P R E F A C E

xiv

■

Newton Book Maker User’s Guide

. This book comes with the
Newton Toolkit development environment. It describes how to
use Newton Book Maker and Newton Toolkit to make Newton
digital books and to add online help to Newton applications.

■

Newton 2.0 User Interface Guidelines

. This book contains
guidelines to help you design Newton applications that
optimize the interaction between people and Newton devices.

Sample Code

The Newton Toolkit development environment, from Apple
Computer, includes many sample code projects. You can examine
these samples, learn from them, and experiment with them. These
sample code projects illustrate most of the topics covered in this
book. They are an invaluable resource for understanding the
topics discussed in this book and for making your journey into the
world of Newton programming an easier one.

The Newton Developer Technical Support team continually
revises the existing samples and creates new sample code. The
latest sample code is included each quarter on the Newton
Developer CD, which is distributed to all Newton Developer
Program members and to subscribers of the Newton monthly
mailing. Sample code is updated on the Newton Development
side on the World Wide Web (

http://devworld.apple.com/dev/
newtondev.shtml

) shortly after it is released on the Newton
Developer CD. For information about how to contact Apple
Computer regarding the Newton Developer Program, see the
section “Developer Products and Support,” on page xv.

The code samples in this book show methods of using various
routines and illustrate techniques for accomplishing particular
tasks. All code samples have been compiled and, in most cases,
tested. However, Apple Computer does not intend that you use
these code samples in your application.

P R E F A C E

xv

To make the code samples in this book more readable, only
limited error handling is shown. You need to develop your own
techniques for detecting and handling errors.

Conventions Used in This Book

This book uses the following conventions to present various kinds
of information.

Special Fonts
This book uses the following special fonts:

■ Boldface. Key terms and concepts appear in boldface on first
use. These terms are also defined in the Glossary.

■ Code typeface. Code listings, code snippets, and special
identifiers in the text such as predefined system frame names,
slot names, function names, method names, symbols, and
constants are shown in the Code typeface to distinguish them
from regular body text. If you are programming, items that
appear in Code typeface should be typed exactly as shown.

■ Italic typeface. Italic typeface is used in code to indicate
replaceable items, such as the names of function parameters,
which you must replace with your own names. The names of
other books are also shown in italic type, and rarely, this style is
used for emphasis.

Developer Products and Support

The Apple Developer Catalog (ADC) is Apple Computer’s
worldwide source for hundreds of development tools, technical
resources, training products, and information for anyone
interested in developing applications on Apple computer
platforms. Customers receive the Apple Developer Catalog featuring

P R E F A C E

xvi

all current versions of Apple development tools and the most
popular third-party development tools. ADC offers convenient
payment and shipping options, including site licensing.

To order product or to request a complimentary copy of the Apple
Developer Catalog contact

Apple Developer Catalog
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

If you provide commercial products and services, call
408-974-4897 for information on the developer support programs
available from Apple.

For Newton-specific information, see the Newton developer
World Wide Web page at:

http://devworld.apple.com/dev/newtondev.shtml

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink ORDER.ADC

Internet order.adc@applelink.apple.com

World Wide Web http://www.devcatalog.apple.com

1-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 1

NewtonWorks API ERS 1

NewtonWorks is a new built-in application that is based on the NewtApp
framework. It is shipped with two kinds of installed stationery: a word
processor (based on the new protoTXView—see the protoTXView ERS), and
a drawing application (see the Draw ERS).

In addition to the standard NewtApp methods, NewtonWorks has other
methods and slots. These are listed in the section below.

NewtonWorks allows the registration of different types of dataDefs. These
dataDefs appear in the New menu, and their corresponding default
viewDefs control the status bar as well as the scroll bars and the viewable
area. Each dataDef can have a number of print viewDefs, but only one
viewDef that the user sees, the 'default viewDef. The following sections
describe the slots and methods that NewtonWorks expects to find in
registered dataDefs and viewDefs.

Figure 2-0
Table 2-0

C H A P T E R 1

NewtonWorks API ERS

1-2 NewtonWorks-Specific slots

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

NewtonWorks-Specific slots 1

Slot descriptions

newtAppBase Contains the NewtonWorks base view.
viewDefView Contains the current viewDef view. Can be nil if no

viewDef is currently active, as in the case when the
current layout is the overview.

The following method is also provided.

UpdateStatusBar 1

newtAppBase:UpdateStatusBar()

Can be called to recreate the status bar. This will call the UpdateStatusBar
method of viewDefView , if there is a currently active viewDef.

The return value of this method is undefined and you should not rely on it.

DataDef 1

To register the dataDef, call RegDataDef with the symbol and the dataDef
frame. As in the NewtApp framework, the symbol of the dataDef is used as
the class slot of soup entries created by the dataDef.

Note that certain slots are required for all dataDefs, such as symbol, name,
description, superSymbol, icon, StringExtract, TextScript,
FillNewEntry, etc. These slots are not documented here unless their values
are NewtonWorks-specific. The slots that NewtonWorks expects are as
follows.

Slot descriptions

superSymbol Must be the symbol 'newtWorks.

The following methods are also expected in the dataDef.

C H A P T E R 1

NewtonWorks API ERS

DataDef 1-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

FindFn 1

dataDef:FindFn(entry, what, offset)

Called when an app-wide Find is performed. Return non-nil if the string
what is found in the document anywhere after offset. Return nil if not.

Note that if the string is in the soup entry (if FindStringInFrame returns
true) FindFn will not be called because NewtonWorks has already identified
the entry as matching the Find criteria.

FindSoupExcerpt 1

ownerView:FindSoupExcerpt(entry, finderFrame)

Called when the user performs a Find operation, to return a title for the item.
This is the standard 2.0 function FindSoupExcerpt.

Extracts the name of a specified item from the result frame and returns it as a
string. The system displays this string to identify the item in the Find
overview. If no items are found, the FindSoupExcerpt message is not sent.

ownerView The view specified by the owner slot in the result frame
returned by the search method, usually your
application’s base view. For more information, see the
section “Returning Search Results” (page 16-21) in
Newton Programmer’s Guide.

entry Soup entry whose title is needed.

finderFrame The finder frame your application added to the system’s
results array.

Info Preferences 1

The dataDef can specify extra preferences that appear in the info button
when the user is viewing an entry of that dataDef type. To do so, the dataDef
should have a slot called prefs which contains a frame with relevant
information.

C H A P T E R 1

NewtonWorks API ERS

1-4 DataDef

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Slot descriptions

prefs A frame similar to the frames passed to PopupMenu, as
documented in the section “Specifying the List of Items
for a Popup” (page 6-37) in Newton Programmer’s Guide.
The standard slots in prefs (such as item, icon, etc.)
define the appearance of the command in the info
button. The frame must also contain a view template in
the prefsTemplate slot.
prefsTemplate

A view template for a slip that contains
the user interface elements needed for the
user to set the dataDef-specific prefs.

When the command is chosen from the info button, NewtonWorks will set
the slots target, newtAppBase, and viewDefView appropriately, and then
call BuildContext(prefsTemplate). The template must read the appropriate
slots in its ViewSetupFormScript method, and write the slots in its
ViewQuitScript method.

Note that the view must be closed by calling
newtAppBase:RememberedClose(base), or the unused view will use up RAM.

Infobox (Title slip) info 1

The dataDef can specify extra info that appears in the infobox when the user
taps to bring up the title slip. To do so, the dataDef should have a function
called InfoBoxExtract.

InfoBoxExtract 1

dataDef:InfoBoxExtract(target, boxInfo, viewDefView)

Called when the user brings up the title slip, to get the information to add to
the title slip. Return a shape which is the extra info to add to the slip, or nil
if no extra info.

target The current entry in NewtonWorks.

boxInfo A bounds frame where the text should be placed.

viewDefView The viewDef for the target.

C H A P T E R 1

NewtonWorks API ERS

Viewdefs 1-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

•••Appears to be optional.•••

Viewdefs 1

To register viewDefs, call RegisterViewDef with the dataDef symbol and
the viewDef frame. Note that certain slots are required for all viewDefs, such
as symbol, type, protection, etc. These slots are not documented here
unless their values are NewtonWorks-specific.

Printing requires the registration of a print format as documented in NPG
2.0. NewtonWorks does not expect any slots other than the ones required for
all print formats.

For the main viewDef, the slots that NewtonWorks expects are explained in
the following sections according to their function.

Find 1

This section describes the different methods supporting the various find
operations. Note that these find operations are document-specific; i.e. they
operate on the currently visible document.

The viewDef is responsible for putting the "Find" and "Find Again"
commands into the appropriate button in its statusBar. To do this, add
{keyMessage: 'NewtworksFind} and {keyMessage:
'NewtworksFindAgain} to the appropriate popup array. (NewtworksFind
and NewtworksFindAgain are defined in NewtonWorks, so the behavior will
be correct as long as these methods get called.)

NewtonWorks assumes that the viewDef defines a FindChange method. If
this method is not defined, the viewDef should not add the "Find" and "Find
Again" commands to any statusBar button, since Find will not operate within
the viewDef.

C H A P T E R 1

NewtonWorks API ERS

1-6 Viewdefs

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

FindChange 1

viewDef:FindChange(action, data)

Called when the user performs a Find operation from NewtonWorks Find/
Change slip.

action A symbol indicating the action the user requested:
'find, 'change, or 'changeAll.

data Varies depending on the value of action. See Table 2-1
for details.

ShowFoundItem 1

viewDef:ShowFoundItem(foundItem, finderFrame)

Called after the user performs a standard Newton Find operation (from the
Find slip that's built into ROM), to show the item that was found. This is the
same method documented in Newton Programmer’s Reference.

There is no specified return value.

Table 2-1 FindChange parameters and actions

action value data value FindChange method should do this

'find A string to find. Search for the next string that matches,
starting from the current selection. The
search should wrap if necessary. Return
true if the string is found, nil if not.

'change A frame with slots
findStr (string to find)
and changeStr (string
to replace with).

Replace the current selection with
changeStr. If findStr does not match the
current selection, this is an error condition.
Return true if the selection is replaced with
changeStr, nil if not.

'changeAll A frame with slots
findStr (string to find)
and changeStr (string
to replace with).

Replace all instances of findStr with
changeStr. Return the number of instances
replaced as an integer.

C H A P T E R 1

NewtonWorks API ERS

Viewdefs 1-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Storage 1

This section describes the methods which support saving and retrieving
NewtonWorks documents.

The viewDef should call StartFlush when a change has been made. This
will cause SaveData to be called at idle time, which gives the view a chance
to save data to the soup. Even if StartFlush is never called, SaveData will
be called after a longer idle period, so the view gets a periodic chance to save
changes that aren't really data changes.

SaveData 1

viewDef:SaveData(target)

Called when the data is to be saved to the soup.

target The target entry to be saved.

If there is data to be saved, modify target to hold the data, and return true. If
nil is returned, the soup entry may still be saved if it has otherwise been
modified, e.g. by the NewtApp framework.

To save the data but not mark the entry as changed, for example if the hilite
location needs to be saved, return the symbol 'noRealChange, instead of
true. This will tell NewtonWorks to save the changes to the soup entry, but
not to update the modtime of the entry (as displayed in the title slip).

Scrolling 1

This section describes the methods necessary to support scrolling. Note that
the vertical scrollbar is always visible in NewtonWorks, whereas the
horizontal scroller does not appear if the document width doesn't require it.
To remove the scrollers altogether, the viewDef should supply a
GetScrollableRect method that returns nil. In this case, no other scroll
methods are required.

ViewScrollUpScript 1

viewDef:ViewScrollUpScript

Called when the scroll-up arrow is tapped. If this method is not defined, the
default behavior occurs, which is to scroll upwards by one screen in the
document.

ViewScrollDownScript 1

viewDef:ViewScrollDownScript

Called when the scroll-down arrow is tapped. If this method is not defined,
the default behavior occurs, which is to scroll downwards by one screen in
the document.

Scroll 1

viewDef:Scroll(scrollValues)

Called to scroll the view content (viewBounds minus the ruler) horizontally
and vertically as defined in scrollValues.

scrollValues A frame with x and y slots, to scroll the content by x
pixels horizontally and y pixels vertically.

The return value is not used.

Note that you must call UpdateAllScrollers from your Scroll method to
update the corresponding scroller.

GetScrollValues 1

viewDef:GetScrollValues()

Called to get the current scroll values. Return a frame with x and y slots
containing the vertical and horizontal scroll values, as integers.

GetTotalHeight 1

viewDef:GetTotalHeight()

Called to get the total height of the view. Return an integer.

C H A P T E R 1

NewtonWorks API ERS

Viewdefs 1-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

GetTotalWidth 1

viewDef:GetTotalWidth()

Called to get the total width of the view. Return an integer.

GetScrollableRect 1

viewDef:GetScrollableRect()

Called to get a rectangle that describes the scrollable area for the view.
Return a frame of integers (top, left, bottom, right) describing the
rectangle enclosing the view. If nil is returned, NewtonWorks removes the
scrollbars, and no other scroll methods are required.

UpdateAllScrollers 1

viewDef:UpdateAllScrollers(view, totalHeightChanged, scrolledV,
totalWidthChanged, scrolledH)

Unlike the other methods, you call this method. This method is internal to
NewtonWorks, and should be called when your view moves its origin, so
that the scrollers can be updated appropriately.

view The view (self).

totalHeightChanged A Boolean value indicating whether or not the
maximum value of the vertical scroller has changed.

scrolledV A Boolean value indicating whether or not the vertical
scroller thumb needs to be updated.

totalWidthChanged A Boolean value indicating whether or not the
maximum value of the horizontal scroller has changed.

scrolledH A Boolean value indicating whether or not the
horizontal scroller thumb needs to be updated.

Status Bar 1

This section describes the status bar information that NewtonWorks expects.

C H A P T E R 1

NewtonWorks API ERS

1-10 Viewdefs

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Slot descriptions

statusLeftButtons
An array of button frames to put in the left portion of
the status bar, after the "New" button. The status bar
will be updated with the buttons in this array whenever
the viewDef appears. For more details on this array, see
the menuLeftButtons slot in the newtStatusBar proto
in Newton Programmer’s Reference .

statusRightButtons
An array of button frames to put in the right portion of
the status bar, before the routing and filing buttons. The
status bar will be updated with the buttons in this array
whenever the viewDef appears. For more details on this
array, see the menuRightButtons slot in the
newtStatusBar proto in Newton Programmer’s Reference .

UpdateStatusBar 1

viewDef:UpdateStatusBar()

This message is sent to the view identified by the viewDefView slot, if
NewtonWorks receives notification of an auxiliary button change. This can
occur if a package installs or removes an auxiliary button for NewtonWorks.
When this message is called, the view should update its statusLeftButtons
and statusRightButtons slots. Note that this method is optional.

The return value is not used.

Help 1

This section describes optional help settings that NewtonWorks will observe.

Slot descriptions

viewHelpTopic (optional) A string, used as the string index for the help
book to open to.

helpManual (optional) A frame defining the help manual to open.
This is the same as NewtApplication's helpManual slot.

The following help method is also supported.

C H A P T E R 1

NewtonWorks API ERS

Viewdefs 1-11
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

DoHelp 1

viewDef:DoHelp(entry)

If this method exists, it will be called when the user chooses Help from the
Prefs menu when the viewDef is visible, instead of the default behavior of
using the slots viewHelpTopic and helpManual to open help. If the default
behavior is desired, return 'loadHelp from this method.

Other 1

This section describes other slots and methods that NewtonWorks expects to
find in the viewDef.

Slot descriptions

symbol Must be 'default for the main viewDef.

PrefsChanged 1

viewDef:PrefsChanged(prefsFrame)

If this method is defined, it is called when the global preferences for
NewtonWorks are changed.

prefsFrame A frame containing the following slots:
metricUnits

True if using centimeters, nil if inches.
internalStore

True if always storing items on the
internal store.

ViewChangedScript 1

viewDef:ViewChangedScript(slot, view)

If this method is defined, it is called when the viewBounds of the view
changes as the result of a SetValue call.

C H A P T E R 1

NewtonWorks API ERS

1-12 Registering Tools

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Registering Tools 1

This section describes how to add tools to the viewDefs that are installed in
NewtonWorks. The individual viewDefs are responsible for displaying the
tools installed for that viewDef, and for calling the tool correctly when it's
chosen from the Tools popup.

Use the method RegNewtWorksTool to register a new tool. Call
UnRegNewtWorksTool to unregister a tool. You can call GetNewtWorksTools
to return an array of registered tools.

Within the viewDef or status bar context, you can use the syntax
newtAppBase:FunctionName to call these methods. For example:
newtAppBase:GetNewtWorksTools.

RegNewtWorksTool 1

GetRoot().newtWorks:RegNewtWorksTool(toolSym, toolFrame)

Registers a tool for the viewDef identified by dataTypeSymbol slot in the
toolFrame frame. Returns nil if the tool was not successfully registered,
non-nil if it was.

toolSym A unique symbol under which to register the tool.

toolFrame A frame describing the command to appear in the Tools
popup. Each command is a frame similar to the frames
passed to PopupMenu, as documented in Newton
Programmer’s Guide. These standard slots (such as item,
icon, and all other slots supported by PopupMenu)
define the appearance of the command in the viewDef's
Tools button, but each viewDef defines the additional
slots it expects to see in this frame.

Every toolFrame must also contain the slot
dataTypeSymbol that contains a symbol identifying the
dataDef it's registered for. For example, tools for the
word processor have the symbol 'paper.

•••The Draw app may have its own registery. See the Draw ERS.•••

C H A P T E R 1

NewtonWorks API ERS

Registering Tools 1-13
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

For 'drawPaper (Draw) or 'paper (Word Processor) stationery, provide the
following additional slots and methods in toolFrame:
CmdFunc(viewDefView, newtAppBase)

A method called when the command is chosen from the
Tools button. viewDefView is the main viewDef.
newtAppBase is the NewtonWorks application.

keyCommand (optional) A frame with command key information,
containing the same slots as the frames used to register
command keys, as documented in the Keyboard ERS. To
register a command key that activates an item on the
Tools button, the keyCommand frame must contain the
function KeyFn(receiverView). This function is called
when the command key for this item is pressed. This
function should perform the action as if the command
were chosen from the Tools button. The return value of
this function is not used.

UnregNewtWorksTool 1

GetRoot().newtWorks:UnregNewtWorksTool(toolSym)

Unregisters a tool registered by RegNewtWorksTool.

toolSym The symbol under which the tool was originally
registered.

The return value of this method is undefined and you should not rely on it.

GetNewtWorksTools 1

GetRoot().newtWorks:GetNewtWorksTools(dataTypeSym)

Returns an array containing the tools identified by dataTypeSym. If no tools
were found, an empty array is returned.

dataTypeSym The dataTypeSymbol to look for among the registered
tools. This is used to match the dataTypeSymbol slot in
the toolFrame specified when the tool was registered. To
get all the tools registered for all data types, pass nil for
this parameter.

C H A P T E R 1

NewtonWorks API ERS

1-14 NewtonWorks Word Processor Soup Format

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

NewtonWorks Word Processor Soup Format 1

NewtonWorks word processor soup entries have the following slots.

Slot descriptions

class The symbol 'paper
version Integer, the current version of the entry
title String which is the document title
timeStamp Creation date of the entry
realModTime Date the entry was most recently modified
saveData Frame returned from protoTXView Externalize call

(see protoTXView ERS)
hiliteRange Frame with the document's hilite range (see

protoTXView ERS)
margins Frame with slots top, left, bottom, right, which are

the document's margins in pixels.

Overview 2-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 2

NewtonWorks Draw
Application ERS 2

The NewtonWorks Draw application is built into the Apple eMate™ 300 and
runs on any platform providing appropriate hardware (eMate 300 size
screen) and software (Newton OS v. 2.1) support. Its features are similar to
those of MacDraw v. 1.0 or ClarisWorks v. 2.0. Easy document exchange with
desktop draw applications, especially those created in ClarisWorks, is a
primary feature.

Overview 2

This application uses the NewtonScript DrawShape function as its drawing
engine.

The Draw application is loosely integrated with the NewtonWorks word
processor application. The user is able to copy and paste a drawing into a
word processing document, but the word processor’s ability to edit drawings
is limited to the following operations:

■ Drawings can be moved to Quick Sketch and scaled.

Figure 3-0
Table 3-0

C H A P T E R 2

NewtonWorks Draw Application ERS

2-2 Overview

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

■ Drawings can be moved, cut, copied, pasted, and deleted.

■ Text from a text box can change font/size.

The design of the user interface for the Draw application tries to follow the
following (sometimes conflicting) goals:

■ Present an interface that is not dissonant with ClarisWorks.
A typical scenario is that students will use the eMate 300 to make a draw
document, and then upload the document to a Mac (or PC) and use a
desktop drawing program (such as ClarisWorks) if they want to use more
advanced features. So there should be some consistency of user interface
between the eMate 300 and the desktop. (kmc)

■ Provide Newton-like interfaces when appropriate.
Since the eMate 300 is a Newton product, its Draw application should fit
in with other applications on a Newton device. For example, the Draw
application should understand gestures that “make sense” for drawings.
Also, the pen can be a more convenient input device for drawing than a
mouse, and the Draw application should take advantage of that. (kmc)

■ Be usable on any Newton platform having an appropriate screen size.
Because the Apple eMate 300 is a Newton product, any of its applications
should in theory be usable on any other Newton product. In particular,
the Draw application should be usable without a hardware keyboard and
with handwriting recognition enabled.

Feature List 2
The initial release of the NewtonWorks Draw application provides the
features described in this section.

Drawings have fixed width/height/margins and cannot be larger than a
single page.

Creating Graphical Objects 2

The user can create the following graphical objects in the Draw application:

■ lines

■ squares/rectangles

C H A P T E R 2

NewtonWorks Draw Application ERS

Overview 2-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

■ rounded rectangles

■ circles/ovals

■ freehand drawing

■ polygons (open and closed)

■ arcs

■ text frames

■ shape recognition

■ Stamps (bitmaps and PICTs)

Modifying Graphical Objects 2

The user can perform the following operations on graphical objects:

■ drag out/move

■ scale (resize)

■ cut/copy/paste/clear/duplicate/select all

■ undo (single level undo/redo)

■ fill color (16 shades of gray) and fill patterns as shown in Figure 3-1. The
current plans are for 8 shades of true gray and 18 gray patterns.

Figure 3-1 Fill/pattern palette

■ pen size (4 widths)

■ pen color (8 shades of gray)

C H A P T E R 2

NewtonWorks Draw Application ERS

2-4 Overview

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

■ drag-and-drop (within app and via the clipboard)

■ selection

■ rotate in 90° increments

■ flip horizontal/vertical

■ group and ungroup

■ constrained drawing (e.g., constrain lines to be horizontal or vertical,
rectangles to be squares, ovals to be circles, arcs to be quadrants of circles,
images to rotate in increments of 45°, etc.)

Arranging Graphical Objects 2

The user can arrange graphical objects in the following ways:

■ front/back/forward/backward, send to front and send to back (kmc)

■ align relative to other objects

■ align left, center, right

■ align top, center, bottom

■ distribute objects evenly within selection (vertically, horizontally)

■ revert to saved state

Setting Text Attributes 2

The user can specify the following characteristics for each text object. Only
one style per text object.

■ font

■ size

■ style (face)

Setting Paragraph Rulers 2

Each text object (paragraph) optionally displays the following graphical
representations of its text layout characteristics:

C H A P T E R 2

NewtonWorks Draw Application ERS

Overview 2-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

■ rulers. Support for inches and cm, set in prefs.

■ gridlines

ClipArt Stamps (bitmaps) 2

The Draw toolbar provides an icon that pops up a selection of “clip art”
bitmaps. Subsequently tapping in the draw area creates the selected bitmap.

Additional Features 2

The Draw application also provides the following additional features:

■ import from/export to PICT format with embedded information
necessary to enable a reasonable level of content preservation when
exchanging with ClarisWorks. This import/export functionality may be
provided by the Newton device, or as part of the desktop connectivity
solution.

■ printing (portrait orientation only, single page only)

■ beaming and email (mail as attachment, no visible graphics in mail
preview or I/O Box)

■ API for developers to add tools to the tools palette

Gestures 2
The Draw application recognizes the following customized gestures:

Selection 2

The usual Newton hilite gesture (press and hold down pen on any part of an
object) selects an object. A second way to select an object is to tap on the
object. Tap works in all tool modes except the polygon tool. In the polygon
tool, a tap is always interpreted as specifying a point of the polygon.

Tapping on a selected object deselects that object.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-6 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Specifying Vertices of Polygons 2

The user specifies the vertices of a polygon by tapping out the points. After
the first tap, a small square is displayed as feedback for the location of the
first vertex. After the Nth tap, we draw the edge from the previous point to
the current point. To terminate the polygon, the user needs to tap on the first
vertex again (to terminate a closed polygon), or tap on the same point twice
in a row (to terminate an open polygon), or select another tool in the tools
palette, or tap on any button in the status bar. (kmc)

Locking Tools Palette 2

Tapping a drawing tool in the tools palette automatically locks in that tool
(unlike the spring-loaded tools palette in ClarisWorks 4.0) Tapping an
existing object will select it and switch to the "arrow" tool.

User Interface 2

This section provides a preliminary description of the Draw application’s
user interface. This interface is subject to change; for example, note that the
icons for the stamp tool and arc tool are missing from the toolbar depicted in
Figure 3-2.

C H A P T E R 2

NewtonWorks Draw Application ERS

User Interface 2-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 3-2 Draw application user interface

Tool Bar 2
The tool bar allows the user to select drawing tools, choose fill patterns and
and specify pen styles.

Arrow Tool 2

For shape selection and scrubbing. Icon definitely subject to change.

Text Tool 2

Tapping the text tool and then tapping in the drawing canvas places a text
insertion caret where the user can type text. Text within a caption is limited
to a single font, size, and face.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-8 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The text tool creates a text box containing an insertion caret. Box size is
determined when the user initially taps/drags the stylus.

Line Tool 2

Tapping the line tool and then drawing in the canvas drags out a
rubber-banded line.

Rectangle Tool 2

Tapping the rectangle tool and then drawing in the canvas drags out a
rectangle.

Rounded Rectangle Tool 2

Tapping the rounded rectangle tool and then drawing in the canvas drags
out a rounded rectangle.

Oval Tool 2

Tapping the oval tool and then drawing in the canvas drags out an oval.

Arc Tool 2

Allows user to draw arcs (kmc)

Freehand Tool 2

Tapping the freehand tool and then drawing in the canvas draws an ink
sketch.

Polygon Tool 2

Tapping the polygon tool puts you in a modal state where each tap in the
canvas will layout an edge of a polygon. After tapping at least two points,
tapping on the first point again will create a closed polygon. To create an
open polygon, tap on the last point twice. Tapping on the original point
twice (without tapping any other points) is a no-op, and no polygon is
created.

C H A P T E R 2

NewtonWorks Draw Application ERS

User Interface 2-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Once a polygon is completed, it is selected and the tool switches to the
"Arrow" tool for movement/manipulation.

Stamp Tool 2

Tapping the stamp tool brings up a popup of stamps to choose from. Once
selected, you can use it to create as many stamps as you like.

Shapes Tool 2

Using the Newton Shape recognizer, you can draw the shapes you'd like
directly on the screen.

Fill Pattern Palette 2

The tool bar’s fill pattern icon displays a palette from which the user can
choose a fill pattern, as shown in Figure 3-3.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-10 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 3-3 Selecting a fill pattern

Pen Pattern Palette 2

The tool bar’s pen pattern icon displays a palette from which the user can
choose a pen pattern, as shown in Figure 3-3.

C H A P T E R 2

NewtonWorks Draw Application ERS

User Interface 2-11
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 3-4 Selecting a pen pattern

Pen Size Palette 2

The tool bar’s pen size icon displays a palette from which the user can
choose a pen size, as shown in Figure 3-3.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-12 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 3-5 Selecting a pen size

New Button 2
••• to be supplied •••

Edit Button 2
The Edit button displays a picker that provides the Undo, Cut, Copy, Paste,
Clear, Select All, and Duplicate commands, as shown in Figure 3-6. The
Draw application also provides keyboard equivalents for all of the items in
this picker except the Clear command.

C H A P T E R 2

NewtonWorks Draw Application ERS

User Interface 2-13
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 3-6 The Edit button collapsed and expanded

Undo 2

Undo is an undo/redo command. Unlike the Mac, the Newton OS
implements a global Undo instead of a per-application Undo. As a result, if
the user makes an edit in a draw document, and then makes an edit outside
the Draw application, the change in the draw document cannot be undone.

Picking Undo from the menu, typing command-Z, or pressing the Undo key
on the eMate 300 keyboard will invoke Undo/Redo. (kmc)

Cut, Copy, Paste, Clear, Duplicate 2

Cut, Copy, Paste, Clear, and Duplicate do the usual operation on the selected
object(s). Clear deletes the selected object without putting it on the
clipboard. Duplicate makes a copy , pastes it back into the draw document
slightly offset from the original, and selects the copy without changing the
clipboard. As discussed in the “eMate 300 Word Processor ERS,” Cut and
Copy will put the cut/copied object on the visual clipboard.

If there is no selection, dragging the pen over the command does not
highlight the command (per the Newton UI Guidelines).

Select All 2

Select All selects all graphical objects in the active draw document.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-14 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Arrange Button 2
This section describes each of the items in the Arrange picker, which
provides items for manipulating the order, alignment, orientation, and
grouping of graphical objects. This picker is displayed by the Arrange
button, as shown in Figure 3-7.

Figure 3-7 The Arrange button

Move Forward, Move Backward 2

Move Forward and Move Backward move the selected graphical object(s)
one layer forward or backward, respectively, in the stacking order.

Move to Front, Move to Back 2

Move to Front and Move to Back move the selected object(s) to the top or
bottom, respectively, in the stacking order.

C H A P T E R 2

NewtonWorks Draw Application ERS

User Interface 2-15
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Align Objects 2

This item displays the slip shown in Figure 3-8. The user can select options in
this slip to align the selected objects in relation to each other. Following the
usual Newton convention that changes in a slip should take effect
immediately, selecting a choice from each of the pickers in this slip changes
the alignment of the selected objects immediately. Each time the slip is
opened, the initial value of each picker is “Don’t Align.”

Figure 3-8 The Align Objects slip

Rotate Right/Left 2

Rotates each selected object in 90° increments clockwise around each object's
center.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-16 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Flip Horizontally, Flip Vertically 2

Flip Horizontally flips each selected object over, along a vertical axis through
the center of each object. Flip Vertically flips each selected object over, along
a horizontal axis through the center of each object.

Group, Ungroup 2

Group makes the selected objects into a single selectable object. Ungroup
turns a group back into individually selectable objects.

Font Button 2

••• to be supplied •••

Tools Button 2

••• to be supplied •••

Hide Grid/Show Grid 2

Hides or shows the graphics grid. The menu command toggles between the
two choices.

Hide Tools/Show Tools 2

Hides or shows the tool bar (which includes the fill and pen buttons). The
menu command toggles between the two choices.

Show Rulers/Hide Rulers 2

Hides or shows the graphics rulers. The menu command toggles between
the two choices.

Info Button 2

••• to be supplied •••

C H A P T E R 2

NewtonWorks Draw Application ERS

Developer API 2-17
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

About 2

••• to be supplied •••

Help 2

••• to be supplied •••

Prefs 2

••• to be supplied •••

Developer API 2

This section describes the NewtonScript interface to the Draw application,
including how to register your own tool bar items.

Adding and Removing Custom Drawing Tools 2
The developer API allows adding addtional tools to the tool bar at the top of
the screen. Adding a tool allows the user to create new types of draw objects.

The New button is added by calling a method of the viewDef to register the
new button:

viewDef:RegTool(appSym, drawToolTemplate)

The best way to do this in an install script would be:

local viewDef := GetViewDefs('drawPaper).default;
local sym := EnsureInternal('|mySymbol:myCompany|);
if viewDef then

viewDef:RegTool(sym, drawToolTemplate)

This is normally done in the InstallScript function of an auto part. The
drawToolTemplate must be a template that uses the protoDrawTool prototype.

The RemoveScript function of the package should call:

C H A P T E R 2

NewtonWorks Draw Application ERS

2-18 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

viewDef:UnRegTool(sym)

The draw object created must be an array of shapes which has a class that
must match the 'class slot of this tool. This array should have a style frame at
the front to make sure you get the drawing environment you want. The last
two objects in the array should be an "invisible" style and a rect. The rect
should be the size of the shape you are returning and the style should be:

{penSize: 0, fillPattern: vfNone, selection: nil }

This makes hiliting and hit testing work. This rect at the end of your shapes
array will allow the user to hit the "corners" of your shape array for resizing
(even if you don't have any real shapes in that corner)

Drawing Tool Template 2
Your custom drawing tool is defined by a template that has the following
slots:

class Required. Symbol which uniquely identifies the tool
and the objects created by this tool.

icon Required. Bitmap that represents this tool in the toolbar.
Note that the tool border is drawn for you—this bitmap
supplys only the interior bits.

makeObject Required. Function object executed when the user drags
or taps with this tool in the canvas. This function creates
a graphical object having the bounds passed in its
arguments. (These values are specified by the user when
dragging out a new shape with this tool.)
The graphical object that this function returns would
normally be an array of shapes. The array must be of the

C H A P T E R 2

NewtonWorks Draw Application ERS

Developer API 2-19
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

same class as the tool (so the draw app can call your
tool back for edit operations) See comments above.

This function must be of the form
func (left, top, right, bottom, style) begin ... end;
left x-coordinate of start point of rectangle

user dragged with this tool.
top y-coordinate of start point of rectangle

user dragged with this tool.
right x-coordinate of end point of rectangle

user dragged with this tool.
bottom y-coordinate of start point of rectangle

user dragged with this tool.

Note

If the user drags up and to the left, the values passed as the
right and bottom arguments can be less than those passed as
the left and top arguments. ◆

style The current user defaults for penSize,
penPattern, fillPattern, and font.

setAttribute Required. Function object executed when a shape is
selected (attribute = 'selection) or draw attributes are
changed (penSize, penPattern, fillPattern, font). The
return value is ignored. This function must be of the
form
func (shape, attribute, newValue) begin ... end;

createByTapping The value true specifies that the user can tap to create
an object. The default value is nil.

createByDragging The value true specifies that the user can drag out
bounds for object. The default value is true

dragARectangle The value true specifies that the user drags out a plain
rectangle when creating an object. If the value of this

C H A P T E R 2

NewtonWorks Draw Application ERS

2-20 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

slot is nil, the template’s MakeDragObject method is
invoked. The default value is true.

currentDrawStyle
Optional. Frame containing the current (default)
drawing style.

Developer-Defined Drawing Tool Methods 2

You can further customize your drawing tool’s behavior by supplying in its
template the optional methods described in this section as appropriate. The
system supplies a default version of any method you don’t supply. The
default methods are made available to your drawing tool when its template

C H A P T E R 2

NewtonWorks Draw Application ERS

Developer API 2-21
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

is registered with the Draw application by means of the RegTool method, as
described in “Adding and Removing Custom Drawing Tools” (page 2-17).

makeDragObject Optional. Function object executed when this template’s
dragARectangle slot is nil and the user drags out an
object. This function must be of the form
func (left, top, right, bottom, style) begin ... end;
This function creates a shape to show while the user
drags out a bounding box. The default version of this
method calls your template’s MakeObject method.
left See the MakeObject method.
top See the MakeObject method.
right See the MakeObject method.
bottom See the MakeObject method.
style See the MakeObject method.

AdjustBounds Optional. Function object executed when user is
creating a bounding box or resizing an existing object.
This function must be of the form
func (shape, style, left, top, right, bottom,

constrain) begin ... end;
The default version of this method limits the bounding
box to always be square.
shape Graphical object being edited.
style See the MakeObject method.
left See the MakeObject method.
top See the MakeObject method.
right See the MakeObject method.
bottom See the MakeObject method.
constrain The value true indicates that the shift key

is pressed.
ScaleShape Optional. Function object executed when user is

resizing an existing object; this method actually resizes
the object. This function must be of the form
func (shape, oldBounds, newBounds) begin ... end;

C H A P T E R 2

NewtonWorks Draw Application ERS

2-22 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

This function MUST return a shape (either the original
or a new one.)The default version of this function calls
the global function ScaleShape(shape, oldBounds,
newBounds)and flips the shape with MungeShape as
necessary.

CanvasClickScript
Optional. Function object executed when user taps in
the content area and the tool that defines this method is
selected. This function is intended to provide additional
control over the creation of shapes. This function must
be of the form
func (unit) begin ... end;
unit Stroke unit passed to this method by the

recognition system.
Your version of this method must return one of the
following values:
true tool has handled click completely
nil tool has punted completely, click will turn

into tap or hilite.
'continue tool wants default shape creation

behavior (i.e. tapping or draging out a
shape. All of the above methods (such as
makeObject) will be called normally)

graphicalObject
tool has created a graphical object to be
added to drawing. This is the same object
returned by the MakeObject function that
this template defines.

ToolClickScript Optional. Function object executed when user taps on
this template’s tool in the tool bar. This function must be
of the form
func (Unit) begin ... end;
This function lets the tool do its own tracking of the
click. For example, the stamps tool uses this method to
display a slip containing the stamp bitmaps. It is

C H A P T E R 2

NewtonWorks Draw Application ERS

Developer API 2-23
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

recommended that your override method call the
inherited ToolClickScript method.
unit Stroke unit passed to this method by the

recognition system.
ToolBegin Optional. Function object executed before the

ToolClickScript method. Your tool can use this
method to perform setup tasks before creating shapes.
This function must be of the form
func () begin ... end;

ToolEnd Optional. Function object executed when the user
selects a tool other than the currently active one. Your
tool can use this method to perform housekeeping tasks.
This function must be of the form
func () begin ... end;

Drawing Methods 2
This section describes methods provided by the Draw application.

GetContents 2

viewDefView:GetContents()

Returns a pointer to all the shapes. This array is always an even length of
style/shape pairs. (i.e. Every shape is proceeded by a style).

SetContents 2

viewDefView:SetContents(newShapes)

Replaces the contents of the current drawing with newShapes, an array of
shapes. The array can be any combination of styles and shapes.

GetCanvas 2

viewDefView:GetCanvas()

Returns the view which contains and edits the actual style/shape pairs in the
document. The following methods/slots all are a part of this view.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-24 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

AddShape 2

canvas:AddShape(shape, style, nil)

Adds shape to the document.

style The style to use for drawing shape. If style is nil, the
default drawing style is used.

The third argument must be nil.

AddShapeToSelection 2

canvas:AddShapeToSelection(shape)

Adds shape to the current selection.

shape an existing shape in the current document.

ClearSelection 2

canvas:ClearSelection()

Deselects the current selection.

SelectAll 2

canvas:SelectAll()

Selects all shapes. This method’s return value is unspecified.

GetSelectedShapes 2

canvas:GetSelectedShapes(makeCopy)

Returns an array of shapes in the current selection.

makeCopy True specifies that this method is to return a DeepClone of
the shapes.

◆ W A R N I N G

If you don't work with a copy of the shapes, don't edit them
in any way. ◆

C H A P T E R 2

NewtonWorks Draw Application ERS

Developer API 2-25
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

DirtyShape 2

canvas:DirtyShape(shape)

Dirties canvas only enough to draw the area around shape'

EditGroup 2

canvas:EditGroup()

Groups the current selection

EditUnGroup 2

canvas:EditUnGroup()

Ungroups the current selection

EditCopy 2

canvas:EditCopy()

Copies the current selection to the clipboard.

EditCut 2

canvas:EditCut()

Cuts the current selection and places it on the clipboard.

EditPaste 2

canvas:EditPaste()

Replaces the current selection with the contents of the clipboard.

EditDelete 2

canvas:EditDelete()

Deletes the current selection.

EditDuplicate 2

canvas:EditDuplicate()

Duplicates the current selection.

C H A P T E R 2

NewtonWorks Draw Application ERS

2-26 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

EditUndo 2

canvas:EditUndo()

Reverses the effects of the most recent editing operation.

Draw Patterns 2
To add patterns to the fill pattern palette, use the RegPatterns method of the
viewDef from within an InstallScript method, as shown in the following
example:

local viewDef := GetViewDefs('drawPaper).default;
local sym:= EnsureInternal('|mySymbol:myCompany|);
if viewDef then

viewDef:RegPatterns(sym, arrayOfPatterns)

The arrayOfPatterns argument is an array of any of the QD patterns or
constants such as vfBlack, kRGB_Gray5, a graypattern or a dithered Pattern.

Use the corollary method UnRegPatterns to remove patterns from the fill
palette:

viewDef:UnRegPatterns(sym)

Draw Stamps 2
To add stamps to the stamp palette, use the RegStamps method of the
viewDef from within an InstallScript method, as shown in the following
example:

local viewDef := GetViewDefs('drawPaper).default;
local sym:= EnsureInternal('|mySymbol:myCompany|);
if viewDef then

viewDef:RegStamps(sym, arrayOfStamps)

The arrayOfStamps argument is an array of bitmaps or PICTs as returned by
the GetPictAsBits, GetNamedResource, or GetPictAsPixels functions.

Use the corollary method UnRegStamps to remove stamps from the stamp
palette:

C H A P T E R 2

NewtonWorks Draw Application ERS

Developer API 2-27
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

viewDef:UnRegStamps(sym)

Note

It is recommended that each stamp be <1K in size. Stamps
groups must not exceed 4x6 arrays of stamps (24 stamps in
an array). ◆

C H A P T E R 2

NewtonWorks Draw Application ERS

2-28 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

About protoTXView And the View System 3-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 3

Word Processing View ERS 3

This document describes how to use word-processing views, which are
provided by protoTXView. This view supports the editing of large amounts
of text. The word processor packaged with the eMate 300 uses this view to
provide word processing operations.

About protoTXView And the View System 3

You implement word-processing views in your applications with
protoTXView. This section describes some of the non-standard view features
of protoTXView. The remainder of this document provides a reference
manual for this proto.

Figure 4-0
Table 4-0

C H A P T E R 3

Word Processing View ERS

3-2 About protoTXView And the View System

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Application-defined Methods 3
The protoTXView proto supports some, but not all, of the standard Newton
view system application-defined methods. Table 4-1 shows the status of
application-defined methods with protoTXView.

Table 4-1 Use of application-defined method in protoTXView

Method Use in protoTXView

ViewGestureScript Supported.

ViewClickScript Supported.

ViewStrokeScript Supported.

ViewWordScript Supported.

ViewKeyDownScript Called if you specify vSingleKeystrokes in
the textFlags slot.

ViewKeyUpScript Called if you specify vSingleKeystrokes in
the textFlags slot.

ViewScrollUpScript Use protoTXView:Scrollfor scrolling. Note,
however, that the view system does send
this message to protoTXView.

ViewScrollDownScript Use protoTXView:Scrollfor scrolling. Note,
however, that the view system does send
this message to protoTXView.

ViewOverviewScript Use protoTXView:Scrollfor scrolling. Note,
however, that the view system does send
this message to protoTXView.

ViewGetDropTypesScript Supported.

ViewGetDropDataScript Supported.

ViewHiliteScript protoTXView does its own scrolling. Note,
however, that the view system does send
this message to protoTXView.

C H A P T E R 3

Word Processing View ERS

About protoTXView And the View System 3-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

View Slots 3
Some of the standard view slots are used differently for protoTXView, as
shown in Table 4-2.

Other View Features 3
This section describes several characteristics of protoTXViews.

■ No child views are allowed within protoTXViews. If a child is added to a
protoTXView, it will not update correctly, since the protoTXView assumes
it has control of the entire drawing area.

■ No word or text recognition is done in protoTXView views.

■ The drag and drop hooks are all supported. Like editViews,
protoTXViews support the movement of 'text, 'ink, 'picture and
'polygon content; in addition, protoTXViews also 'shape types as well.

The formats of the first four types are the same as for editViews, and are

Table 4-2 Use of standard view system slots in protoTXView

Slot name Use in protoTXView

recConfig Ignored.

_keyboard Ignored.

textFlags Ignored except for the vSingleKeystrokes flag.

viewFont Used to determine the default font in your view. If
this slot is missing, the userFont is used as the
default font.

viewJustify Can be used to specify sibling and parent-relative
alignment, but is not used with the protoTXView
view.

viewFormat Ignored.

viewLineSpacing Ignored.

C H A P T E R 3

Word Processing View ERS

3-4 Terminology

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

documented in Newton Programmer’s Guide. The shape format consists of
a shape array or shape frame, which can be drawn with DrawShape. You
can override drag/drop behavior by implementing any of the view
system application-defined methods, including ViewGetDropTypesScript
and ViewGetDropDataScript.

Terminology 3

The word-processing view refers to paragraph settings as a ruler. Each
paragraph has a ruler, which defines its margins, line spacing, justification,
and tab settings.

There are also style runs in word-processing documents. Each style run
specifies font appearance attributes that apply to a range of data in the
document.

Common Parameter Descriptions 3

This section describes the parameter values that are used by a number of the
word-processing view methods.

The Range Frame 3
Several of the word-processing methods use a range parameter to specify a
range of characters in the view.

range A frame with two slots: 'first and 'last. This frame
defines a text range from 'first to 'last, inclusive.
Each slot is required. The value of each slot must be a
positive integer value.

C H A P T E R 3

Word Processing View ERS

Common Parameter Descriptions 3-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The Font Specification Frame 3
Several of the word-processing methods use a font specification parameter to
specify the font to use for an operation.

fontSpec A font specification, used exactly as for paragraph
views. This can be an integer, frame, or binary object
specification of a font.

The Graphics Specification Frame 3
Several of the word-processing methods use a graphics specification
parameter to specify a shape object to use for an operation.

graphicsSpec A frame with two slots: class 'graphics and 'shape,
which is a shape object as described in Newton
Programmer’s Guide.

The Ruler Information Frame 3
Several of the word-processing methods use a ruler information parameter to
specify style information for a range of characters in the view.

rulerInfo A frame describing the attributes of a ruler. This frame
contains the following slots:
justification Optional. One of the symbols: 'left,

'right, 'center or 'full.
indent Optional. The indentation of the first line

of the paragraph, expressed as an integer
number of pixels measured from the left
edge of the text bounds.

leftMargin Optional. The left margin of the
paragraph, expresses as an integer
number of pixels measured from the left
edge of the text bounds.

rightMargin Optional. The right margin of the
paragraph, expresses as an integer

C H A P T E R 3

Word Processing View ERS

3-6 Initialization

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

number of pixels measured from the right
edge of the text bounds.

lineSpacing Optional. The number of lines between
text lines in the paragraph, expressed as
an integer number of lines. A value of 2
indicates double spacing.

tabs Optional. An array of tab frames, as
described in the next section.

Tab Frames 3
Each tab setting in a ruler is specified by a frame with two slots:

kind Required. One of the symbols: 'left, 'right, 'center
or 'decimalPoint.

value The tab value expressed as an integer number of pixels
measured from the left edge of the text bounds.

Initialization 3

This section describes the methods that you can call to set the different
storage and geometry characteristics of your word-processing views. You can
call these from your ViewSetupForm script.

SetStore 3

protoTXView:SetStore(store)

Specifies that the text in your word-processing view is to be stored as a
virtual binary object (VBO). The default is to store the text as a RAM-based
object.

store The store object to contain the text. This is usually the
same as your soup entry’s store.

Storing text as a VBO allows the text to be as large as the amount of free
space on the store. Text is swapped in and out of memory as required.

C H A P T E R 3

Word Processing View ERS

Initialization 3-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

IMPORTANT

You cannot change the storage-type of your text once your
ViewSetupDoneScript has executed. ◆

SetGeometry 3

protoTXView:SetGeometry(isPaged, width, height, margins)

Changes the geometrical characteristics of the view.

isPaged Required. Specifies whether the text is laid out in many
pages, with text flowing from one page to another, or
bounded by one box. Use true to indicate that the text
is paged, or nil to indicate that all text is contained in
one box. The default value is nil.

A page break inserted into a non-paged view has no
effect. However, the page break will have an effect if the
text is pasted into a paged view.

width Required. The width of the text bounds, or the page
width if isPaged is true. This value is expressed as an
integer number of pixels, and includes the left and right
margins. The default value is the width of the view (as
specified in the viewBounds rectangle).

height Required. The height of the text bounds, or the page
height if isPaged is true. This value is expressed as an
integer number of pixels, and includes the top and
bottom margins. The default value is the width of the
view (as specified in the viewBounds rectangle).

margins Required. A rectangle that specifies the margins of the
page or text box. The rectangle is specified as a frame
with four slots:
top The top edge of the rectangle.
left The left edge of the rectangle.
bottom The bottom edge of the rectangle.
right The right edge of the rectangle.

The default margins is a rectangle in which all four
values are 0.

C H A P T E R 3

Word Processing View ERS

3-8 Getting Info

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

You can call this method at any time to change the geometrical characteristics
of your word-processing view.

IMPORTANT

You cannot change the isPaged characteristic once the
ViewSetupDoneScript has executed. If you attempt to
change isPaged after that time, the new setting is ignored. ◆

Getting Info 3

This section describes the methods you can use to retrieve information about
the content of a word-processing view.

GetRangeData 3

protoTXView:GetRangeData(range, which)

Returns a certain kind of data (text or styles) for the specified range in a
word-processing view.

range A frame with two slots: 'first and 'last. This frame
defines a text range from 'first to 'last, inclusive.
Each slot is required. The value of each slot must be a
positive integer value.

which Specifies the kind of data to retrieve. You can specify
one of the following values:
'text A string allocated from the NS heap.
'styles An array with two entries for each style

run in the range. The first entry specifies
the number of characters, and the second
is either a fontSpec or a graphicsSpec
frame. The run length is always 1 for
graphicsSpec objects.

See “The Font Specification Frame”
(page 3-5) for a description of fontSpecs
and “The Graphics Specification Frame”

C H A P T E R 3

Word Processing View ERS

Getting Info 3-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

(page 3-5) for a description of
graphicsSpecs.

'rulers An array with two entries for each ruler.
The first entry specifies the number of
characters for the ruler, and the second
contains a rulerInfo frame.

See “The Ruler Information Frame”
(page 3-5) for a description of the
rulerInfo frames.

'all Returns all information in a frame that
contains three slots: 'text, 'styles, and
'rulers.

The GetRangeData methods returns data for a range of text within a
word-processing view.

GetCountCharacters 3

protoTXView:GetCountCharacters()

Returns the number of characters in a word-processing view.

This cannot be called before protoTXView's viewSetupDoneScript gets
called, since the document won't have been initialized yet.

FindString 3

protoTXView:FindString(str, startOffset, options)

Searches for matching text in a word-processing view.

str The string to be searched.

startOffset The offset at which the search should start.

options Must be nil. Currently the search is not case sensitive.

The FindString method searches in a word-processing view for a sequence
of characters that matches str. The search begins at startOffset from the
beginning of the view and continues until a match it made or the end of the
text is reached.

C H A P T E R 3

Word Processing View ERS

3-10 Getting Info

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The FindString method returns the offset of the matching string in the view.
If no match is found, FindString returns nil.

GetWordRange 3

protoTXView:GetWordRange(offset)

Returns a range frame that specifies the starting and ending offsets of the
word that follows the specified offset in a word-processing view.

offset The offset from the beginning of the text in the
word-processing view.

The GetWordRange method searches forward in the text to discover the first
character and last character of the word that follows offset. This method
considers a word to consist of alphanumeric characters delimited by white
space (tabs, returns, spaces, and graphic runs). Hyphenated words are
considered single words.

The GetWordRange method returns a range frame, as described in “The
Range Frame” (page 3-4). The GetWordRange method returns nil if it does not
find a word after offset.

CharToPoint 3

protoTXView:CharToPoint(offset)

Returns a frame that specifies the coordinates of the character at the specified
offset in a word-processing view.

offset The offset from the beginning of the text in the
word-processing view.

The CharToPoint method returns a frame with three slots:
x The horizontal coordinate of the top-left

corner of the rectangle enclosing the
character at offset.

y The vertical coordinate of the top-left
corner of the rectangle enclosing the
character at offset.

lineHeight The line height of the line that contains
the character.

C H A P T E R 3

Word Processing View ERS

Getting Info 3-11
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The value of each of the slots is in global coordinates, relative to the top-left
of the screen. This means that the y-value can be negative if the view has
been scrolled down.

PointToChar 3

protoTXView:PointToChar(point)

Returns a range frame for the character at the specified point.

point A point frame containing two slots:
x The horizontal coordinate, as a global

coordinate values, relative to the top-left
of the screen.

y The vertical coordinate, as a global
coordinate values, relative to the top-left
of the screen.

The PointToChar method returns a range frame for the character at the
specified point. Range frames are described in “The Range Frame” (page 3-4).

The values of the slots in the returned range frame are as follows:

■ If point is inside of a text run, the 'first and 'last slots will have the
same value.

■ If point is inside of a graphics run, the value of the 'last slot will be 1
greater than the value of the 'first slot.

GetLineRange 3

protoTXView:GetLineRange(offset)

Returns a range frame for the span of the line that contains the specified offset.

offset The offset from the beginning of the text in the
word-processing view.

The GetLineRange method returns a range frame corresponding to the span
of the line that contains offset. The returned range includes the trailing
carriage return if it exists. If the offset is on a carriage return, the range
returned is the one preceding the carriage return and including it. If the
offset is after a carriage return, the next run is returned. Page breaks are
treated the same as carriage returns.

C H A P T E R 3

Word Processing View ERS

3-12 Editing

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Editing 3

This section describes the methods that you can use to perform editing
operations in your word-processing views. Many of the editing operations
can be undone by the user without any coding effort on your part.

Note that when an editing operation crosses paragraph boundaries, the ruler
of the first paragraph is used.

Cut 3

protoTXView:Cut()

Removes the highlighted range text and copies it to the clipboard.

Copy 3

protoTXView:Copy()

Copies the highlighted range text to the clipboard.

Paste 3

protoTXView:Paste()

Replaces the highlighted range text with the clipboard content.

Clear 3

protoTXView:Clear()

Removes the highlighted range text and any included graphics, styles, and
rulers. The clipboard is not changed.

C H A P T E R 3

Word Processing View ERS

Editing 3-13
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

ChangeRangeRuns 3

protoTXView:ChangeRangeRuns(range, fontSpec, toggleFace, undoable)

Changes the font attributes for a range of text in a word-processing view.

range A range frame defining the text range that you want to
change. See “The Range Frame” (page 3-4).

fontSpec A font specification frame that can contain nil slots. Any
non-nil slots in this frame indicate new text attributes
for the range. Use nil slots to indicate that the
corresponding attribute is not to change. See “The Font
Specification Frame” (page 3-5).

toggleFace If this value is nil, the font face attribute used for all
text in the range is changed to the value of the face slot
in fontSpec, unless the face slot is nil.

If this value is non-nil, the font face used for all text in
the range is toggled: if one of the font face values
specified in the face slot in fontSpec is used across the
entire range, ChangeRangeRuns turns off that attribute.
Otherwise, that attribute is applied to all of the text in
range.

undoable If non-nil, the operation is undoable.

ChangeRangeRulers 3

protoTXView:ChangeRangeRulers(range, ruler, undoable)

Changes the attributes of the rulers in a range of text.

range The rulers in this range are changed. Note that the range
is grown to enclose entire paragraphs.

ruler A rulerInfo frame. Any non-nil slots in this frame
indicate new text attributes for the range. Use nil slots
to indicate that the corresponding attribute is not to
change. See “The Ruler Information Frame” (page 3-5).

undoable If non-nil, the operation is undoable.

C H A P T E R 3

Word Processing View ERS

3-14 Editing

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Replace 3

protoTXView:Replace(range, data, undoable)

Replaces the data inside of the specified range with the specified data. You
can replace text and/or graphics with this method.

range A range frame defining the text range that you want to
change. See “The Range Frame” (page 3-4).

data A frame describing the new data. This can be a graphics
specification frame, as described in “The Graphics
Specification Frame” (page 3-5). Or data can be a frame
with the following slots:
'text If this slot is nil, style runs are replaced,

but the text remains the same. If non-nil,
this is the new text.

'styles If this slot is nil, the new text uses the
style attributes at the start of the range.

If non-nil, this is an array with two
entries for each style run in the range. The
first entry specifies the number of
characters, and the second is either a
fontSpec or a graphicsSpec frame. The
run length is always 1 for graphicsSpec
objects.

See “The Font Specification Frame”
(page 3-5) for a description of fontSpecs
and “The Graphics Specification Frame”
(page 3-5) for a description of
graphicsSpecs.

undoable If non-nil, the operation is undoable.

The following call to the Replace method changes the first ten characters to
the word “any” using the system font, bold face, point size 9:

myTxView:Replace({first:0, last:10},
{text:"any", styles: [3, tsSystem+tsSize(10)+tsBold]});

C H A P T E R 3

Word Processing View ERS

Editing 3-15
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The following call to the Replace method changes the first ten characters of
the range to a rounded rectangle:

myShape:= makeroundrect(0, 0, 50, 50, 16);
myTxView:Replace({first:0, last:10},

{class: 'graphics, shape: myShape})

ReplaceAll 3

protoTXView:ReplaceAll(str, startOffset, options, data)

Searches the text in the view, starting at the specified startOffset, and replaces
all occurrences of str with data.

str The string to be replaced

startOffset The starting offset of the search in the text.

options Must be nil.

data A frame describing the new data. This can be a graphics
specification frame, as described in “The Graphics
Specification Frame” (page 3-5). Or data can be a frame
with the following slots:
'text If this slot is nil, style runs are replaced,

but the text remains the same. If non-nil,
this is the new text.

'styles If this slot is nil, the new text uses the
style attributes at the start of the range.

If non-nil, this is an array with two
entries for each style run in the range. The
first entry specifies the number of
characters, and the second is either a
fontSpec or a graphicsSpec frame. The
run length is always 1 for graphicsSpec
objects.

See “The Font Specification Frame”
(page 3-5) for a description of fontSpecs
and “The Graphics Specification Frame”

C H A P T E R 3

Word Processing View ERS

3-16 Storage

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

(page 3-5) for a description of
graphicsSpecs.

The ReplaceAll method returns a count of the replacements that it made.

WARNING

This operation can not be undone. ◆

Storage 3

This section describes the methods that you can use to save and retrieve
word-processing documents. What you normally do with these documents is
to put the protoTXView data frame in a soup entry slot and then use the
standard soup methods to store or modify it.

Externalize 3

protoTXView:Externalize()

Returns a reference to an object that contains all of the data for the document,
including the text, style runs, and rulers. The object is allocated from the NS
heap.

Note

The object referenced by this method is intended for use as a
block box, which means that you can only use it for two
purposes: to save it into a soup or as input to the
Internalize method. ◆

Internalize 3

protoTXView:Internalize(object)

Replaces the current content of the view with the data in object.

object A reference to an object, as returned by the
Externalize method.

C H A P T E R 3

Word Processing View ERS

Scrolling 3-17
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The Internalize method replaces the contents of a protoTXView view with
the data retrieved by a previous call to the Externalize method and resets
the highlight range to (0,0).

IsModified 3

protoTXView:IsModified()

Returns a non-nil value if the contents of the view have changed since the
last call to Externalize or Internalize.

Note

For improved performance, you should only call the
Externalize method when IsModified returns true. ◆

Scrolling 3

This section describes the methods that you can use for scrolling your
word-processing views.

Note

The protoTXView has built-in automatic scrolling. You
usually only have to call the methods described in this
section if you have scrollers attached to your view. ◆

Scroll 3

protoTXView:Scroll(scrollValues)

Scrolls the content of the view vertically and/or horizontally, as defined in
scrollValues.

scrollValues A frame with 'x and 'y slots. The content is scrolled by
x pixels horizontally and y pixels vertically.

For example, to scroll from page 1 to page 2, use the following:

Scroll({x:0, y:pageHt});

C H A P T E R 3

Word Processing View ERS

3-18 Scrolling

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

GetScrollValues 3

protoTXView:GetScrollValues()

Returns a frame with 'x and 'y slots containing the current scroll values.
You can use call this method and then use the returned values to position
your the thumbs on your scrollers.

GetTotalHeight 3

protoTXView:GetTotalHeight()

Returns the current total text height. You can use this value to set the
maximum value of a vertical scroller.

If the view is non-paged, GetTotalHeight returns the height of the entire
view, as set with the SetGeometry method. If the view is paged,
GetTotalHeight returns the height of the entire view (as specified in
SetGeometry) multiplied by the total number of pages.

GetTotalWidth 3

protoTXView:GetTotalWidth()

Returns the current total text width. You can use this value to set the
maximum value of a horizontal scroller.

The GetTotalWidth method returns the width of the view, as set with the
SetGeometry method.

GetScrollableRect 3

protoTXView:GetScrollableRect()

Returns a rectangle frame describing the global coordinates of the rectangle
in which text is displayed. This is normally equal to the view bounds minus
the ruler area. The returned frame has four slots: 'top, 'left, 'bottom, and
'right.

C H A P T E R 3

Word Processing View ERS

Highlighting 3-19
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

ViewUpdateScrollersScript 3

protoTXView:ViewUpdateScrollersScript(updateMaxVal, scrolled)

Is called to notify you that the scrollers need to be updated.

updateMaxVal A Boolean value indicating whether you need to update
the maximum value of the vertical scroller.

scrolled A Boolean value indicating whether you need to update
the scroller thumb values (of both the horizontal and
vertical scroller).

Highlighting 3

This section describes the methods that you can use to work with the
currently highlighted (selected) range of text in your word-processing view.

Note that protoTXView does not support discontinous highlights.

If there is currently an insertion point, the highlight range has a length of 0.

GetHiliteRange 3

protoTXView:GetHiliteRange()

Returns a range frame describing the current highlight range. Range frames
are described in “The Range Frame” (page 3-4).

SetHiliteRange 3

protoTXView:SetHiliteRange(newRange, showHilite, setKeyView)

Changes the current highlight range to newRange.

newRange A range frame that specifies the new highlight range.
Range frames are described in “The Range Frame”
(page 3-4).

showHilite A Boolean value. If this is true, the content of the view
is scrolled as necessary to display the new range. If the

C H A P T E R 3

Word Processing View ERS

3-20 Ruler User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

range is larger than the screen, the start of the range is
displayed.

setKeyView A Boolean value. If this is true, the view becomes the
current key view, which activates the view for keyboard
input. If this is nil, the highight range is shown as an
inactive selection.

GetContinuousRun 3

protoTXView:GetContinuousRun()

Returns a frame that specifies the style run containing the current highlight
range.

If the current highlight range contains only one graphics object,
GetContinuousRun returns a graphics specification frame, as described in
“The Graphics Specification Frame” (page 3-5) .

Otherwise, GetContinuousRun returns a font specification frame, as
described in “The Font Specification Frame” (page 3-5). Any non-nil values
in the font specification frame indicate values that are continous for the
highlight range.

Note

You can use this method to check the appropriate items in
the style menu(s). ◆

Ruler User Interface 3

This section describes the methods you can use to work with the ruler user
interface that is built into protoTXView. When the ruler is displayed, it
always appears at the top of the view, as shown in Figure 4-1.

C H A P T E R 3

Word Processing View ERS

Ruler User Interface 3-21
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 4-1 The displayed ruler

Whether or not the ruler is shown affects the values returned by the
GetTextViewRect method, since the operational area for text editing is
smaller if the ruler takes up space.

ShowRuler 3

protoTXView:ShowRuler(rulerSettings)

Shows the ruler if it is not currently shown. The ruler is hidden by default.

rulerSettings A frame with one slot, 'type. The value of this slot can
be either 'metric or 'inches. If this parameter is nil,
'inches is used.

HideRuler 3

protoTXView:HideRuler()

Hides the ruler if it is currently shown.

IsRulerShown 3

protoTXView:IsRulerShown()

Returns nil if the ruler is currently hidden, non-nil if the ruler is currently
visible.

C H A P T E R 3

Word Processing View ERS

3-22 Pages

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

UpdateRulerInfo 3

protoTXView:UpdateRulerInfo(rulerSettings)

Changes the ruler display settings and updates the ruler display.

rulerSettings A frame with one slot, 'type. The value of this slot can
be either 'metric or 'inches.

Pages 3

This section describes the methods you can use to work with pages in your
word-processing view.

GetCountPages 3

protoTXView:GetCountPages()

Returns the number of pages. GetCountPages returns 0 if the view is not
using a paged layout.

InsertPageBreak 3

protoTXView:InsertPageBreak(range)

Replaces the text inside of the specified range with a page break.

range A range frame, as described in “The Range Frame”
(page 3-4).

The page break is a real character with character code $\u000A. This
character can be copied, pasted, and searched for (with the FindString
method).

Printing 3

This section describes the SetDrawOrigin method, which you can use to
reconfigure your view for printing.

C H A P T E R 3

Word Processing View ERS

protoTXViewFinder 3-23
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

fferent methods that support printing. You can call SetGeometry to
reconfigure your view when printing, but it's nicer to keep the current
margin settings so the view stays WYSIWYG.

SetDrawOrigin 3

protoTXView:SetDrawOrigin(origin):

Reconfigures a view for printing.

origin A point frame with the following two slots:
x The horizontal margin, in pixels.
y The vertical margin, in pixels.

For paged layouts, the margins are used for each page. The default margin is
(0, 0).

Note

You can call SetGeometry to reconfigure your view for
printing; however, doing so changes your margin settings. If
you use SetDrawOrigin, your margin settings are not
affected. ◆

For example, to print the page number n for a view with page height h
(including margins) in your PrintNextPageScript, you can call
SetDrawOrigin as follows and the draw the view:

SetDrawOrigin({x:0, y:n*h})

protoTXViewFinder 3

This section describes the methods of protoTXViewFinder. You can use the
protoTXViewFinder to search a protoTXView document in a soup without
incurring the overhead of creating a word-processing view. This proto allows
you to search the data returned by the Externalize method of protoTXView.

C H A P T E R 3

Word Processing View ERS

3-24 protoTXViewFinder

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Note

At this time, you cannot use NTK to create a
protoTXViewFinder; instead, you can create an instance of
this proto with the following call:

txFinder := {_proto:@827};

 ◆

FindString 3

protoTXViewFinder:FindString(object, str, startOffset, options)

Searches for matching text in the data object returned by a call to the
protoTXView:Externalize method.

object A data object returned from the Externalize method.

str The string to be searched.

startOffset The offset at which the search should start.

options Must be nil. Currently the search is not case sensitive.

The FindString method searches in a word-processing view for a sequence
of characters that matches str. The search begins at startOffset from the
beginning of the view and continues until a match it made or the end of the
text is reached.

The FindString method returns the offset of the matching string in the view.
If no match is found, FindString returns nil.

Note

This method is the same as the protoTXView:FindString
method, except that the protoTXViewFinder version has an
additional parameter: object. ◆

GetCountCharacters 3

protoTXViewFinder:GetCountCharacters()

Returns the total number of characters.

C H A P T E R 3

Word Processing View ERS

protoTXViewFinder 3-25
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

IMPORTANT

You must call the protoTXViewFinder:FindString method
before calling protoTXViewFinder:GetCountCharacters. ◆

GetRangeText 3

protoTXViewFinder:GetRangeText(range)

Returns a string containing the characters in range.

range A range frame, as described in “The Range Frame”
(page 3-4).

IMPORTANT

You must call the protoTXViewFinder:FindString method
before calling protoTXViewFinder:GetRangeText. ◆

C H A P T E R 3

Word Processing View ERS

3-26 protoTXViewFinder

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

4-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 4

Keyboard Enhancements ERS4

This document covers the expanded toolbox support that is required for the
user-level keyboard features for the built-in keyboard on the eMate 300 and
the attached keyboard on the MessagePad 2000. This document focuses on
new facilities for defining, processing, and displaying keyboard commands
and shortcuts. These enhancements include:

■ command keys

■ return/enter for default actions (default buttons)

■ keyboard-based selection and navigation of text

■ keyboard-based selection and navigation of menu items

■ a context-sensitive popup slip that lists all available key commands

This document does not address hardware issues, nor does it address all
application-specific issues; for example, there is a command key proposal for
built-in applications at the conclusion of the User Interface section. All
features and issues described in this document apply to all forthcoming
Newton-based keyboards.

Figure 5-0
Table 5-0

C H A P T E R 4

Keyboard Enhancements ERS

4-2 Terminology

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Terminology 4

This section provides definitions for terms used in this document. There are
two terms defined here:

■ Modifier keys are keys that affect the functioning of the alphanumeric
keys. The modifier keys are the shift, command, control, option, and caps
lock keys.

■ The key-view is the view that receives user key strokes. You can get the
current key-view by calling the global function GetKeyView(). The
key-view is the view that owns the caret and is either a clParagraphView
or a clEditView.

■ Command keys associate a message (an action) with a key combination.
The key combination consists of a character typed on the keyboard in
combination with some number of modifier keys.

■ Keystroke events are events generated by the system when the user
interacts with a keyboard. Keystroke events include the key-up,
key-down, and key-repeat events.

User Interface 4

This section describes the specific user commands that are implemented
using the new keyboard facilities for specific applications.

General Usage 4
The following key combinations are applicable to general usage:

■ Pressing the control key in combination with a letter produces the
appropriate results, as per the ASCII standard. Built-in apps (anything
that uses paragraph views) will ignore control keys, which means that you
cannot insert a control-C into a note. However, applications such as a

C H A P T E R 4

Keyboard Enhancements ERS

User Interface 4-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

terminal emulator can make use of them. The control key will not be used
for commands.

■ Pressing the command key in combination with an alphanumeric key can
be used to trigger a system or application-defined command. Commands
can also be executed by pressing a combination of command, option, and
shift keys along with an alphanumeric key.

Text entry and editing 4
The following keyboard usage is applicable to text entry and text editing:

■ The arrow and tab keys can be used to move between fields.

■ The cut (cmd-X), copy (cmd-C), and paste (cmd-V) commands all function
as they do on the Macintosh.

■ The select-all (cmd-A) command is also available for text editing.

Slips, windows, and buttons: 4
As described in “Terminology” (page 4-2), the key-view is generally the view
that contains the caret and receives and processes keyboard commands. The
slip containing the key-view is drawn specially when a keyboard is
connected. Figure 5-1 shows how the find slip looks when it is not the
key-view.

Figure 5-1 The find slip when it is not the key view

C H A P T E R 4

Keyboard Enhancements ERS

4-4 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 5-2 shows how the Find slip looks when it is the key view.

Figure 5-2 The Find slip when it is the key view

When the slip is the key-view, its border is thicker, and the “default button,”
which is triggered by pressing return, is marked with lines above and below
the button. These appearance features are only applied when a keyboard is
connected. When a keyboard is not connected, the default button looks just
like any other button and the slip containing the caret is drawn exactly like
other slips.

Note

The default button is highlighted with lines above and
below to keeps its width the same whether or not a
keyboard is connected. ◆

As soon as the user taps to move the caret, the border and the default button
change to match the new caret location. Note that since the caret can be
placed in a slip that is not the frontmost slip, the key slip is not necessarily
the same as the frontmost slip.

Older applications do not have default buttons. However, the borders of
slips drawn in older applications are highlighted as shown above when they
contain the caret.

The user can close the frontmost window or slip by pressing the cmd-W key
combination, the Cmd-period key combination, or the “Close” key on the

C H A P T E R 4

Keyboard Enhancements ERS

User Interface 4-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

eMate 300 keyboard. This does work with older applications. Also note that,
unlike other keyboard commands, the close button is applied to the
frontmost slip regardless of whether that slip contains the caret.

Menus 4
This section describes keyboard usage with Newton menus.

Application-defined keys or key combinations can be used to pop up menus.
Some system-wide standards are defined (such as command-N for New and
command-R for the routing menu, among others), but application
developers can override these definitions if desired.

While a menu is displayed, the user can change the highlighted item by
pressing the up-arrow and down-arrow keys. If necessary, the menu will
scroll up or down. The right-arrow and left-arrow keys are also supported
for menus that contain two-dimensional grids.

When a menu is opened by way of a keyboard command, the first item of the
menu is initially highlighted. If the menu is opened in some other way, no
item is initially highlighted; in this case, the user can highlight the top item
by pressing the down-arrow key, or the user can highlight the bottom item
by pressing the up-arrow key.

Pressing the return key selects the highlighted item. This is the same as
tapping on that item.

Pressing a letter or sequence of letters “type-selects” menu items, as in the
Macintosh Finder and standard file dialogs. If necessary, the menu scrolls to
reveal the type-selected item.

Menu items can have keyboard equivalents that are displayed to the right of
the item. These are only displayed when a keyboard is actually connected.

Note

Only printable characters are displayed on menus as key
equivalents. ◆

The key equivalents can be used when the receiving application contains the
caret or when the menu is open. Figure 5-3 shows the basic appearance of a
menu with and without its keyboard equivalents displayed.

C H A P T E R 4

Keyboard Enhancements ERS

4-6 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 5-3 A menu with and without its keyboard equivalents displayed:

Note

The keyboard equivalents shown in Figure 5-3 are not the
actual key-combinations for these commands. ◆

The Command-key Combination Pop-up Help Slip 4

Keyboard equivalents are not displayed for buttons. Instead, a pop-up help
slip appears after the user holds down the command key for approximately
1.5 seconds. The pop-up help slip displays all of the valid command keys for
the current context.

The pop-up help slip is produced automatically by the system without any
direct assistance from the application. The application registers its command
key combinations, as described in “The Command-Key Mapping Frame”
beginning on page 4-23, and the system constructs the help slip based on
which command keys are available.

The pop-up help slip displays the available commands ordered by category.
The categories are displayed in alphabetical order. Applications can add to
the standard categories or can define new categories, as described in
“Command Key Handling” beginning on page 4-22.

Figure 5-4 shows a version of the command-key combination pop-up slip.

C H A P T E R 4

Keyboard Enhancements ERS

User Interface 4-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 5-4 Command-key combination slip.

The pop-up help slip does not display function key equivalents, which are
permanently labeled on the eMate 300 keyboard.

The pop-up help slip closes automatically when the user releases the
command key, or when the user presses a key on the keyboard.

If the number of commands defined exceeds the maximum number that can
be displayed at once, the help slip gets a scroller on the right. The view can
be scrolled using the up-arrow and down-arrow keys (while holding down
the command key), or by tapping on the scroller’s buttons. During this
process, the command key must be held down, or the help slip will close.

Not every keyboard command has to appear in the pop-up help slip. If a
command lacks a name (“copy,” “find,” etc), the command does not appear
in the list. This is true of the standard command-arrow combinations for

C H A P T E R 4

Keyboard Enhancements ERS

4-8 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

navigation. If a key-combination command has no category, but does have a
name, it is automatically placed in the “Other” category.

Applications can completely override this slip by providing a different
help-type slip, or can use the information presented in the default slip in
their own way, as described in “Command Key Handling” beginning on
page 4-22.

System and Built-in App Command Key Assignments 4
This section describes the command-key combinations for system-level and
built-in application operations. Table 5-1 shows the system-level
command-key combinations.

Table 5-1 System-level key assignments

Command-key
combination Behavior

Cmd-A Selects all text in a note or the current view

Cmd-C Copies selected text to clipboard

Cmd-E Opens the title slip

Cmd-F Opens the Find slip

Cmd-N Opens the New button popup

Cmd-O Opens the overview, toggles to close overview

Cmd-P Opens the print slip

Cmd-R Opens the routing popup, with first item hilited

Cmd-S Opens the Show button popup

Cmd-V Pastes selected text at cursor

Cmd-W Closes the open window/slip

Cmd-X Cuts selected text

Cmd-Z Undo/redo

C H A P T E R 4

Keyboard Enhancements ERS

User Interface 4-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Notes

The system-level key assignments do not include
combinations for accessing Prefs, the Info button, or the Edit
Folders button.

When local scrollers are present, the Cmd-up-arrow and
Cmd-down-arrow key combinations can affect the local
scrollers. ◆

Cmd-return Opens popup

Cmd-` (tilde) Opens assist

Cmd-. (period) Cancels action, closes window or slip

Cmd-= Activates spellcheck

Cmd-shift -F Opens the filing popup, tab/arrow supported

Cmd-shift S Opens the styles slip

Cmd-shift T Opens the folder tab

Cmd-? Opens help file

Cmd-up/
down arrows

Scrolls up and down, except in the Word Processor, in
which it scrolls to the beginning or end of the document.

up/down
arrows

Moves highlight up or down in overview or popup

Return Selects highlighted item from overview or popup

Table 5-1 System-level key assignments (continued)

Command-key
combination Behavior

C H A P T E R 4

Keyboard Enhancements ERS

4-10 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Command-key Assignments for The NotePad Application 4

Table 5-2 shows the command-key assignments for the Notepad checklist
and outline stationery.

Note

There is no support for demoting/promoting or expanding/
collapsing already created items. The user can only perform
these operations with the stylus. ◆

Command-Key Assignments for The Names Application 4

Table 5-3 shows the command-key assignments for the Names application.

Note

New users will often press Return or Enter after they fill in
the first of the entry screens, rather than the preferred
Cmd-W. ◆

Table 5-2 Notepad checklist and outline stationery command keys

Command Keys Behavior

Cmd-] Creates a new right bulleted item

Cmd- [Creates a new left bulleted item

Cmd-return Checks/unchecks an item

Cmd-= Creates a bulleted item (same level)

Table 5-3 Names application command keys

Command Keys Behavior

Cmd- + Opens the Add popup. The user can choose the menu
item with the arrow and return keys.

C H A P T E R 4

Keyboard Enhancements ERS

User Interface 4-11
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Command-Key Assignments for The Dates Application 4

Table 5-4 shows the command key assignments for the Dates application.

Command-Key Assignments for The In/Out Box 4

Table 5-5 shows the command key assignments for the In/Out box

Table 5-4 Dates application command keys

Command Keys Behavior

Cmd-+ Opens the Add popup. The user can choose the menu
picker item with the arrow and return keys.

Table 5-5 In/Out box command keys

Command Keys Behavior

Cmd-left-arrow Opens In Box

Cmd-right-arrow Opens Out Box

Cmd-E Taps the send button when in an item; taps the send
or receive when in box view

Cmd-G Taps the tag button

C H A P T E R 4

Keyboard Enhancements ERS

4-12 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Command-Key Assignments for The Call Log 4

Table 5-6 shows the command-key assignments for the call log.

Command-Key Assignments for the BookPlayer 4

Table 5-7 shows the command-key assignments for the BookPlayer
application.

Keyboard Reference 4

This section describes the functions, methods, and data structures for
keyboard handling in Newton applications. There are two main areas of
keyboard handling that you need to understand:

Table 5-6 Call log command keys

Command Keys Behavior

Cmd- + Taps the Add to Names button

Cmd-D Taps the Call button

Cmd-H Taps the Hang-up button; arrows then navigate popup

Table 5-7 BookPlayer command keys

Command Keys Behavior

Cmd- B Taps the Bookmark button

Cmd-G Taps the Page Number button

Cmd-M Taps the Markup button

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-13
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

■ How to handle keystrokes from a keyboard, as described in “Keystroke
Handling” beginning on page 4-13.

■ How to work with command keys, as described in “Command Key
Handling” beginning on page 4-22.

Keystroke Handling 4
This section describes the functions and methods that you can use to handle
keystrokes in your Newton applications.

You can handle keystrokes in an application in the following ways:

■ You can define keyboard commands that the system will match and
execute where appropriate. This is the usual mechanism for defining
keyboard equivalents and is described in detail later in this section.

■ When you need to apply custom handling to keyboard events, you can
intercept those events, including the key-down, key-up, and key-repeat
events.

■ Sometimes the system groups multiple keystrokes together into
“keyStrings” in order to improve performance. You can also intercept
these strings, which were implemented to improve user response time.
Note that keystrokes in all views are grouped together into strings unless
you set the vSingleKeystrokes text flag in the view.

For example, if the user quickly types the word “something” into a long
paragraph view, each change to the view’s contents results in an insertion
and redisplay. Grouping the keys into a single insertion and redisplay
operation produces a much faster response than responding individually
to the entry of each character.

C H A P T E R 4

Keyboard Enhancements ERS

4-14 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Table 5-8 shows the functions and methods that you can use to handle
keystrokes.

Intercepting Keystrokes Directly 4

To intercept keystrokes directly, you need to respond to the key-down,
key-repeat, and key-up events. To guarantee that the scripts for these
keystroke events are called in your view, you must set the
vSingleKeystrokes text flag. This is true regardless of the view class of your
view.

Note

Setting the vSingleKeystrokes text flag in a paragraph
view results in a substantial reduction in typing
performance for the user. This is because the system
processes each keystroke individually, rather than batching a
set of keystrokes into a string, as described in “Intercepting
Grouped Keystrokes” (page 4-19). ◆

Table 5-8 Summary of keyboard methods and functions

Function/Method Description

IsCommandKeystroke Determines if a keystroke is a command key
combination.

ViewKeyDownScript Sent to the key-view when the user presses
down on a key.

ViewKeyUpScript Sent to the key-view when the user releases a
key.

ViewKeyStringScript Sent to the key-view when a group of
keystrokes needs to be processed (when single
keystroke handling is not applied to the
key-view).

ViewKeyRepeatScript Sent to the key-view while the user holds a
key down.

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-15
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The system software calls a script for each of the keyboard events. To
understand how these scripts are invoked, read the next section, “Keystroke
Event Sequencing” beginning on page 4-17. If the script returns true (to
indicate that the system should continue processing the key event), the
system next checks the key to determine if it is a command key. If the event is
not a command key, the system hands the key event to the appropriate view
for default handling.

There is one global function for keystroke handling and four keystroke event
scripts. One of the event scripts, ViewKeyStringScript, is described in
“Intercepting Grouped Keystrokes” (page 4-19). The other three are
described here.

IsCommandKeystroke 4

IsCommandKeystroke(char, flags)

Returns true if the keystroke is a command-key combination, and nil if not.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 5-9.

ViewKeyDownScript 4

ViewKeyDownScript(char, flags)

Is sent by the system when a user presses down on a keyboard key.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 5-9.

Your implementation must return nil if you want the system to continue
processing the keystroke.

C H A P T E R 4

Keyboard Enhancements ERS

4-16 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Table 5-9 shows how the bits in the flags parameter are used for the key event
scripts.

ViewKeyUpScript 4

ViewKeyUpScript(char, flags)

Is sent by the system when the user releases a keyboard key.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 5-9
(page 4-16).

Table 5-9 Key event-processing script flags

Bits Description

0 to 7 The keycode.

8 to 23 The 16-bit character that would be inserted if none of the
modifier keys were pressed.

24 Indicates whether the key was delivered from an
on-screen keyboard. (kIsSoftKeyboard)

25 Indicates that the Command key was down.
(kCommandModifier)

26 Indicates that the Shift key was down. (kShiftModifier)

27 Indicates that the Caps Lock key was down.
(kCapsLockModifier)

28 Indicates that the Option key was down.
(kOptionsModifier)

29 Indicates that the Control key was down.
(kControlModifier)

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-17
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Your implementation must return nil if you want the system to continue
processing the keystroke.

ViewKeyRepeatScript 4

ViewKeyRepeatScript(char, flags)

Is sent by the system repeatedly while the user holds down a keyboard key.

char The character that was entered on the keyboard. Note
that if a modifier key is the only key pressed (for
example, the Shift key), this value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 5-9
(page 4-16).

Your implementation must return nil if you want the system to continue
processing the keystroke.

Keystroke Event Sequencing 4

This section describes the sequence of events that is generated when the user
presses, holds down, and then releases a key on the keyboard.

Key-down Events 4

The following list describes the processing sequence when the user presses
down on a keyboard key and a key-down event is generated:

1. If the vSingleKeystrokes text flag is set in the key-view, the view system
looks for a ViewKeyDownScript in the key-view (proto inheritance only)
and calls it. Note that the ViewKeyDownScript is also called when there
are no other pending, unprocessed keystrokes.

2. If the ViewKeyDownScript returns a non-nil value, handling for the
key-down event is complete.

3. Otherwise, the system checks for a command key. This is described in
detail in “Command Key Handling” beginning on page 4-22.

C H A P T E R 4

Keyboard Enhancements ERS

4-18 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

4. If the key is not a command key, the default view class handling occurs. If
the key-view is a clEditView, a new paragraph is created at the caret
location. If the key-view is a clParagraphView, the default handling is to
insert the appropriate character at the caret, unless the key is a backspace
or arrow key, in which case the expected action occurs.

Key-repeat Events 4

The following list describes the processing sequence when the user holds
down on a keyboard key and key-repeat events are generated:

1. After a brief delay, the system starts issuing key-repeat events.

2. For each key-repeat event, if vSingleKeystrokes is set in the key-view,
the ViewKeyRepeatScript (proto inheritance only) is called.

3. If the view does not have a ViewKeyRepeatScript, the
ViewKeyDownScript is called instead.

4. If this script returns non-nil, the repeated keystroke is considered to have
been handled.

5. Otherwise, the system checks for a command key , as described later in
this section. Commands can specify whether or not they are executed with
repeated keys.

6. If the key is not a command key, the default view class handling occurs.

Key-release Events 4

The following list describes the processing sequence when the user releases a
keyboard key and a key-up event is generated:

1. If vSingleKeystrokes is set in the key-view, the view system the
ViewKeyUpScript (proto inheritance only) is called.

2. If the ViewKeyUpScript returns a non-nil value, the key-up event
handling is complete.

3. No command check occurs with key-up events.

4. Otherwise, the default viewClass handling occurs. Ordinarily, this is
nothing at all — all characters are inserted at key-down time, and arrows
and tabs are handled then as well. The exception is the backspace key

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-19
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

when the last paragraph of a paragraph has been deleted — the default
key-up handler for a clParagraphView will remove the view from its
parent if that view is inside a clEditView.

Intercepting Grouped Keystrokes 4

If you have not set the vSingleKeystrokes flag for the key-view, the system
groups together a set of keystrokes for batch processing and sends the
ViewKeyStringScript message when a group of keystrokes is ready to be
handled.

ViewKeyStringScript 4

ViewKeyStringScript(string)

Is sent by the system when a batched group of keystrokes is ready to be
processed.

string The batched string of characters as a null-terminated
string. These are not keycodes.

You must return true if your script handles the string and nil if not.

Note that function keys and command-key combinations never appear in
string. These keys are always processed individually.

Typing Without a Caret 4

The key-view must be established before a keystroke is posted. This means
that when the user types and there is not an active caret (the key-view is
nil), the system has to set the key-view. However, different actions need to
be taken, depending on whether the keystroke is a command key or an
insertable character key.

When a key is pressed and the key-view is nil, the system looks for the
frontmost view that can handle it. This view may vary, depending on
whether or not the key pressed is a command key.

Non read-only paragraph views, edit views, and text editing views all accept
both command keys and normal keys (for insertion). For other views, there

C H A P T E R 4

Keyboard Enhancements ERS

4-20 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

are two additional textFlags that you can use to specify the kinds of
keystrokes you want to handle, as shown in Table 5-10.

Note:

You do not use the text flags shown in Table 5-10 for edit
views, paragraph views, or textEdit views, all of which
always act as if both flags are on (as long as they are not
read-only views). ◆

These flags are also significant when a normal key is typed. If a normal key is
typed when the key-view accepts only command keys, the key-view is
switched to the frontmost view that accepts normal keys.

You can determine which view is the frontmost view that accepts normal
keystroke by calling GetView as follows:

view := GetView('viewfrontkey);

You can determine which view is the frontmost view that accepts command
keystrokes by calling GetView as follows:

view := GetView('viewfrontcommandkey);

The Caret Stack and Caret Activation 4

The system maintains a stack of key-views, which allows the current
key-view to be reset to the previous one when a key-view is closed. For
example, when the user opens the Find slip while the caret is in the notepad,
the caret is moved from the notepad to the input line in the Find slip. Then,
when the user closes the find slip, the caret is returned to the notepad in its
former location.

Table 5-10 Text flags to specify the kind of keystrokes a view accepts

Text Flag Description

vTakesCommandKeys The view accepts command keys.

vTakesAllKeys The view accepts all keys, including command
keys.

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-21
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The system attempts to preserve selections in this process. If the user selects
a word in the notepad, then opens the find slip and closes it, the word in the
notepad will be re-selected.

The caret stack mechanism is largely invisible to applications. When a view
becomes the key-view (either through a user action or through restoration
from the caret stack) or when a view loses the key-view, the following
message is sent to the view that is losing the caret:

oldkeyview:ViewCaretActivateScript(nil);

Immediately thereafter, the following message is sent to the view that is
getting the caret:

newkeyview:ViewCaretActivateScript(true);

You can use the ViewCaretActivateScript to trigger actions when your
view becomes the key-view or is no longer the key-view. The return value is
ignored.

Obtaining The State Of a Key 4

You can use the IsKeyDown function to determine if a specified key is down
on the keyboard.

IsKeyDown 4

isDown := IsKeyDown(keyCode, isHardKeyboard);

Returns true if the specified key is down on the keyboard.

keyCode The keycode that you want to test.

isHardKeyboard True if you want the hardware keyboard tested. A value
of nil means that the on-screen keyboard is tested.

This function works for both on-screen and hardware keyboards.

Note that the system maintains two separate key maps, one for all on-screen
keyboards, and one for the connected hardware keyboard.

C H A P T E R 4

Keyboard Enhancements ERS

4-22 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Simulating Keystrokes 4

You can use the HandleKeyEvents function to post key events and have the
system handle them as if they had been typed on a hardware keyboard. This
is useful for testing purposes, or for playing back keyboard macros.

HandleKeyEvents 4

HandleKeyEvents(keyEvents);

Posts key events as if they were typed on a hardware keyboard.

keyEvents An array of integers. Each integer specifies a single
key-down or key-up event. The least significant seven
bits of each integer specificy a keyCode value, and the
eighth bit indicates whether or not the event is a
key-down event. Add 128 to the key code value to
simulate a key-down event.

The state of the hardware keyboard (its keymap) is saved and restored before
and after the events are handled so that inconsistencies are avoided (i.e., if
the shift key is down on the actual keyboard, it had better be down in the
hardware keyboard’s keyMap).

Note

You cannot simulate key-repeat events with the
HandleKeyEvents function. ◆

Command Key Handling 4
This section describes the data structures, methods, and functions that you
can use to work with command keys in your Newton applications. You
define key commands in keyCommand frames. Each keyCommand frame
associates a key combination with a message and other information.

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-23
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Each view in your application has a set of key commands associated with it.
You can use the functions and methods shown in Table 5-11 to work with key
commands.

The Command-Key Mapping Frame 4

The mapping between keystrokes and commands is defined by keyCommand
frames, which are used for the following purposes:

■ keyboard command dispatch and execution

■ menu display

■ display on the key equivalent help slip

The keyCommand frame contains five slots, as shown here:

keyCommand := {
char: $a,
modifiers: kCommandModifier,
keyMessage: '_SelectAll,
name: "Select All",

Table 5-11 Summary of command key methods and functions

Function/Method Description

view:AddKeyCommand Adds a key command to a view.

view:AddKeyCommands Adds an array of key commands to a view.

view:BlockKeyCommand Blocks a key command from being associated
with a view.

view:ClearKeyCommands Removes all key commands from a view.

SendKeyMessage Sends a key message as if a key command had
been typed on the keyboard.

FindKeyCommand Finds the key command that matches a
command-key combination.

GatherKeyCommands Returns an array of the command keys
associated with a view.

C H A P T E R 4

Keyboard Enhancements ERS

4-24 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

category: "Editing"
};

Slot descriptions

char The unmodified character of the keypress. Required.
modifiers The required modifiers. This slot can be absent or nil, in

which case no modifiers are required. See below for
additional details on specifying key commands that do
not require the command key to be held down.
This slot can also be used to specify other flags related
to the command:
kRepeatable

The command is to be executed on
key-repeat events as well as key-down
events.

kWorksInAllModals
Only applies to system-wide (root view)
commands. When set, the command is
available in modal dialogs.

kWorksInAppModals
Only applies to system-wide (root view)
commands. When set, the command is
modal dialogs whose vApplication bit is
set.

keyMessage A symbol. Required. This is the message that is sent
when the keyCommand is matched. You must supply a
method of this name that takes a single parameter (the
current key-view) somewhere in the key-view chain.
The method is called when the system matches the key
command.

name A string. The name of the command that appears on
menus and the command key pop-up help slip. If this
slot is nil or absent, the key equivalent is not displayed
on the pop-up help slip.

category A string. The name of the category to which the
command belongs on the command key pop-up help

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-25
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

slip. If this slot is absent or nil, but there is a name slot,
the command is placed in the “Other” category on the
command key pop-up help slip.

showChar A character. Optional. If present, this character is shown
on popup menus and in the pop-up help slip instead of
the character in the char slot. This is useful for
presenting a more user-friendly key combination to the
user than the actual combination. For example, you can
define the Cmd-/ combination and present it as Cmd-?
by defining this slot with the ‘?’ character.

Table 5-12 shows the key codes for special (non-printing) keyboard keys. You
can use these values in the char slot of your keyCommand frame.

Table 5-12 Key codes for special keys

Constant Value

kTabKey $\u0009

kBackspaceKey $\u0008

kReturnKey $\u000D

kEnterKey $\u0003

kEscKey $\u001B

kLeftArrowKey $\u001C

kRightArrowKey $\u001D

kUpArrowKey $\u001E

kDownArrowKey $\u001F

kF1Key $\uF721

kF2Key $\uF722

kF3Key $\uF723

kF4Key $\uF724

kF5Key $\uF725

C H A P T E R 4

Keyboard Enhancements ERS

4-26 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Note

The function keys (KF1Key through kF15Key) are only
available on the eMate 300 keyboard. ◆

Searching for Key Commands 4

If your viewKeyDownScript or viewKeyRepeatScript returns nil, the system
tests for a key command by searching for a keyCommand frame that matches
the entered key(s). By default, the system searches for a keyCommand frame
when the key pressed is one of the following:

■ a function key

■ the escape key

■ any key pressed while the command key is held down

However, it is also possible to force the system to search for keyCommands
with every keystroke, regardless of whether the command key is down. To
do this, set the text flag vAlwaysTryKeyCommands in the key-view.

kF6Key $\uF726

kF7Key $\uF727

kF8Key $\uF728

kF9Key $\uF729

kF10Key $\uF72A

kF11Key $\uF72B

kF12Key $\uF72C

kF13Key $\uF72D

kF14Key $\uF72E

kF15Key $\uF72F

Table 5-12 Key codes for special keys (continued)

Constant Value

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-27
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The following list describes how the system searches for a keyCommand frame
when the user enters a potential command key:

1. The command search starts at the view that owns the caret. See below for
a description of what happens when the key-view is nil.

2. The system looks in the _keyCommands slot of the current view for a
keyCommand that matches the pressed key.

3. If the system finds a match, the search is complete.

4. Otherwise, the system looks for a slot named _nextKeyView in the current
view. If this slot is present, its contents are used as the next view in which
to search.

5. If the _nextKeyView slot is not found, the system moves up to the current
view’s parent and uses that as the next view to search. This continues until
the command is found or the root view has been searched.

The search for a command key is analagous to the parent inheritance chain.
You can link a slip to your base view, rather than its parent, which is
normally the root view. This allows a key command defined in your base
view to be available in the slip.

Key commands can be global (available regardless of the context), specific to
a certain application, or specific to a slip within an application. Some
commands may even be specific to a certain input field of a certain slip. In
any case, each key command is associated with a certain view. Table 5-13
shows how commands are associated with views.

Table 5-13 Command definition views

Command Type Associated view

Global commands Root view

Application commands Application’s base view

Slip commands Slip’s base view

Field commands Field’s view

C H A P T E R 4

Keyboard Enhancements ERS

4-28 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

KeyMessage Definition and Invocation 4

You specify the method associated with a command key in the keyMessage
slot of the keyCommand frame. The method need not be implemented in the
same view as the command key.

Once the system matches a keyCommand, the system searches the same chain
(starting at the key-view and follwing either '_parent or '_nextKeyView
slots) until the method has been found. The method is called with a single
parameter: the current key-view. For example:

view:_SelectAll(currentKeyView)

You can examine the current key-view in your implementation to decide
which actions you want to take.

Adding, Blocking, and Removing Key Commands 4

You can use the methods described in this section to associate a command
key with a specific view or to remove (temporarily or permanently) a
command key from a view.

Note that the most recently added key command for a specific key
combination takes precedence. If, for example, your application defines a
command-F equivalent and adds it using AddKeyCommand, and then adds
another command-F equivalent, the last one added will be the only one seen
by the system.

AddKeyCommand 4

view:AddKeyCommand(keyCommandFrame);

Associates a key command with the view.

keyCommandFrame
A key command frame, as described in “The
Command-Key Mapping Frame” (page 4-23).

You can call this method from your viewSetupDoneScript.

AddKeyCommands 4

view:AddKeyCommands(arrayOfKeyCommandFrames);

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-29
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Associates a collection of key commands with the view.

arrayOfKeyCommandFrames
An array of key command frames, as described in “The
Command-Key Mapping Frame” (page 4-23).

You can call this method from your viewSetupDoneScript.

This method is efficient for adding an array of keyCommands at once. A
minimum of cloning is performed; in the case that a view already has one or
more keyCommands defined, some cloning is performed.

BlockKeyCommand 4

view:BlockKeyCommand(keyMessageSymbol);

Hides a key command that would ordinarily be accessible in the view.

keyMessageSymbol
A symbol that names the command message. This must
be the same message as you specified in the keyMessage
slot of the keyCommand frame.

The BlockKeyCommand method makes any key command that matches
keyMessageSymbol unavailable from the view. The key command no longer
displays on the command key pop-up help slip in the view.

IMPORTANT

Calling the AddKeyCommand() and BlockKeyCommand
methods grow a RAM-based array, so you must be careful to
not overuse these methods. ◆

ClearKeyCommands 4

view:ClearKeyCommands();

Removes all key commands from the view.

The ClearKeyCommands method removes all key commands that are defined
in the view. This method does not, however, remove key commands that are
available in the view but defined elsewhere.

C H A P T E R 4

Keyboard Enhancements ERS

4-30 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Looking Up KeyCommands 4

This section describes several functions you can use to work with the key
command system software.

SendKeyMessage 4

SendKeyMessage(keyView, keyMessage);

Sends a message to a view as if the user had typed a key command.

keyView The view to which the message gets sent.

keyMessage A symbol that names the command message. This must
be the same message as you specified in the keyMessage
slot of the keyCommand frame.

The SendKeyMessage function sends the message using the same lookup
rules that are used when a key command is being handled by the system.
This function always returns nil.

FindKeyCommand 4

keyCommand FindKeyCommand(startView, char, flags);

Searches for and returns the key command frame that matches a key
combination.

startView The view in which to start searching for the command
key.

char The command key character. Note that if a modifier key
is the only key pressed (for example, the Shift key), this
value will be 0.

flags A 30-bit integer that specifies which modifier keys were
pressed and other additional information. The use of the
individual bits in this value are shown in Table 5-9
(page 4-16).

The FindKeyCommand function function starts at the view startView and looks
for a keyCommand frame that matches the keypress described by key and flags.
The function returns a matching keyCommand or nil if none was found.

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-31
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

FindKeyCommand 4

keyCommandArray GatherKeyCommands(startView);

Returns an array of all key commands available in the view.

startView The view in which you are interested.

This function returns an array of all the key commands available to the view
startView.

CategorizeKeyCommands 4

keyCategories CategorizeKeyCommands(keyCommandArray);

Categorizes an array of key command frames.

keyCommandArray An array of keyCommand frames.

This function sorts the keyCommandArray by category. Within each category,
the keyCommand frames are sorted by name. CategorizeKeyCommands
returns an array of frames that describe each category and its key
commands. For example:

{ category: "myName", keyCommands: [kc1, kc2, kc3...] }

You can use this function to create your own popup command key help slip.

Displaying the Pop-up Command Key Help Slip 4

When the user has held down the command key for a certain period of time
(1.5 seconds), the system makes the following call:

SendKeyMessage(keyview, '__keyHelpOpenScript);

When the command key is released, the following call is made:

SendKeyMessage(keyview, '__keyHelpCloseScript);

The standard implementation of this command, which is in the rootView,
dynamically builds and displays the standard “Keyboard Commands”
pop-up help slip, according to the available keyCommands. You can provide
your own versions of these scripts to modify or override the default pop-up
help slip.

C H A P T E R 4

Keyboard Enhancements ERS

4-32 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Faking a Button Press 4

A common use of a keyCommand is to tap an on-screen button. To perform
this action, call the PressButton function.

PressButton 4

PressButton(buttonView);

Causes the button to act as if it had been tapped by the user.

buttonView The button you want tapped.

The ViewClickScript in buttonView is not called and thus does not need to
be defined. All other button-related scripts are called as if the button had
been tapped with the pen.

Designating the Default Button In a Slip 4

In order to designate a button as a view’s default button, you need to set a
the '_defaultButton slot in the slip. This slot must contain a reference to
the view that is the default button, which you can do by declaring the button
view as '_defaultButton in the slip). The system automatically applies the
highlighting graphical treatment to the default button.

You need to use a view that protos to the new protoContainerView. This
allows the button to be tapped when the user presses the Return key. Note
that protoApplication, protoDragger, and many other built-in protos are
based on protoContainerView.

Paragraph views that have oneLineOnly viewJustification automatically
send the keyMessage '_DoDefaultButton, which results in the default
button being tapped. protoContainerView does the same thing in a
ViewKeyDownScript, and implements the _DoDefaultButton method,
which calls PressButton() for the view declared as '_defaultButton.

Designating a Slip’s Close Box 4

You need to let the system know which button is the close button in a slip by
declaring the button in the slip as '_closeBox. All of the supplied close box
protos do this automatically; if you implement your own close box, you need
to ensure that the button is declared properly in the slip.

C H A P T E R 4

Keyboard Enhancements ERS

Keyboard Reference 4-33
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

When a slip is closed via the keyboard, the system simulates a tap on the
close box (in the same way the default button is pressed when the user
presses return).

Default and Close Buttons in Confirm Slips 4

Four new default button lists are now available for use in confirm calls. This
makes it easy to add keyboard support to all of your confirm slips. Table 5-14
shows the new default button lists.

If you are creating your own button list, you can add a slot to the
buttonFrame named 'buttonValue (NOTE: this might be 'keyValue, not
'buttonValue). The value of this slot can be either nil, 'default, or
'close. The confirm slip will associate the appropriate keystroke with each
button value. A value of nil means no key association.

A final note: the root version of the Confirm method (:Confirm())
previously used the 'okCancel button list; it now uses the
'okCancelDefaultOk button list instead.

KeyCommands and Popup Menus 4

As described in “Menus” beginning on page 4-5, command key equivalents
are shown on popup menus. Recall that a popup menu is defined using an
array of items. For example:

Table 5-14 New default button lists

Button list Default Other

'okCancel Ok Cancel means close

'okCancelDefaultCancel Cancel No keyboard equivalent for
OK

'yesNoDefaultYes Yes No means close

'yesNoDefaultNo No No keyboard equivalent for
Yes

C H A P T E R 4

Keyboard Enhancements ERS

4-34 Keyboard Reference

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

["one",
{icon: i, item: "two"},
{icon: ii, mark: $-, item: "three"}]

This array, which could be passed to :PopupMenu, defines a three-item menu.
The second item contains an icon, and the third contains an icon and a
“mark.”

In a similar way, items in popups can map to keyCommands. You specify the
keyMessage for a given item, and when the menu is displayed, the system
performs a keyCommand lookup, starting at the button that was pressed to
invoke the menu. When the system finds a matching keyCommand, it uses the
name, character, and required modifiers from the keyCommand frame. For
example:

["one",
{keyMessage: _DoSomething},
{keyMessage: _AnotherThing}]

In the above example, the names for the second and third items will come
from the corresponding keyCommands. An item that is defined using a
keyMessage slot can still have 'icon and 'mark slots.

If you want to use a name other than the name specified in the keyCommand
frame, you can specify a keyMessage and an item slot in the item frame. For
example:

{keyMessage: _DoSomething, item: "something"}

In this case, the name displayed on the menu will be “something,” regardless
of the contents of the keyCommand that matched the _DoSomething
keyMessage.

Note

Grid items are not permitted to have key equivalents. ◆

Normally, when a user choses a menu item that is defined through a
keyMessage, the action is triggered by sending the keyMessage to the
button’s view and following the key-view chain (_parent/_nextKeyView)
rather than through the normal process of calling the PickActionScript. If
you want the PickActionScript to be called regardless of how your menu
items are defined, you need to define the following slot in your button:

C H A P T E R 4

Keyboard Enhancements ERS

Compatibility 4-35
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

alwaysCallPickActionScript: true,

This forces the PickActionScript to be called for any menu item.

Compatibility 4

This section documents keyboard-related compatibility issues for older
applications.

Default Buttons 4
Default buttons in slips will only appear and function in applications which
were designed with them in mind.

Possible Key-view Compatibility Problem 4
Prior to this release, you could not set the key-view to anything other than a
clParagraphView (using Setkeyview) or a clEditView (using
SetCaretInfo). In this latest release, you can designate any view as a
key-view. This could be a problem for some older applications.

For example, the following code fragment worked fine for older versions of
the system software, but is now erroneous.

kv := GetKeyView();
if band(kv.viewClass,0x7FFF) = clParagraphView then

// do something specific for a paragraph view
else

// no good: cannot assume the view is an editView

C H A P T E R 4

Keyboard Enhancements ERS

4-36 Compatibility

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

Overview of Features 5-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Newton OS 2.1 Grayscale
Imaging ERS 5

The implementation of imaging in Newon OS 2.1 allows for 1, 2, and 4 bit
output on systems that provide appropriate hardware support, allowing
developers to write applications that

■ draw gray shapes, text, and patterns.

■ display color PICTs as grayscale images on the Newton screen.

The imaging system also supports anti-aliasing for pixelmaps (i.e. received
faxes). The imaging system does not support anti-aliasing for lines, curves,
or text.

The use of grayscale imaging on hardware that predates the
MessagePad 2000 or eMate 300 is not supported.

Overview of Features 5

The software buttons, icons, and other pictures used by the system are stored
as monochrome pictures. The soft button bar and Extras Drawer now

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

5-2 Terminology

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

contain some gray icons. Gray is also used in the card slot icons when
opening the card icon, and in the eMate 300 Word Processor and Draw
stationery. (Specifically, in scrollers.)

If an application contains color pictures, the RGB values contained within
the image are not modified. However, if the user creates a new picture from
the original, the new picture is defined in terms of grayscale values.

For example, the user views color images in a Newton application on his
desktop computer. He then downloads the application, including the color
image, to the Newton. When viewing the image on the LCD, the image is
converted from RGB values to gray tones. If the user then resizes the image,
and writes a new picture out to the store, gray tones are written out, not RGB
values. If the user subsequently uploads the new resized image to the
desktop, the user will see the original color picture and a new gray resized
picture.

PICTs are highlighted as a “photographic negative.” Ink and ink text are
monochrome.

Terminology 5

PICT A Macintosh file structure containing a series of
opcodes and related data.

bitmap A data structure containing several descriptive fields
followed by raster data.

multi-bit depth The bit depth of an image determines how many tones
can be represented by each pixel. The number of tones
is 2 raised to the power of the bit depth. For example, a
4 bit depth results in 16 possible tones, including white
and black.

direct pixel format A format for PixMaps where each pixel is composed of
an RGB triplet. This pixel format can be 16 bit (5 bits for

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

Developer API 5-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

each red, green, and blue value, and one unused bit) or
32 bit (8 bits for each value, and 8 unused bits).

indexed pixel format
A format for PixMaps where each pixel is an index into
a color table of RGB triplets. This pixel format supports
images with 1, 2, 4, or 8 bit depths.

RGB to gray conversion
The following luminance weights are used to convert
RGB values to gray tones:

gray = (.30 * red value) +
(.59 * green value) +
(.11 blue value)

antialiasing A technique that uses gray tones in the areas of
transition between white and black as a means of
avoiding the jagged lines caused by aliasing in 1-bit
images.

Developer API 5

This section describes the developer interface to grayscale imaging; it
assumes familiarity with the contents of the “Drawing and Graphics”
chapter of Newton Programmer’s Guide.

Color definitions in graphic shapes' style frame 5
The penPattern and fillPattern slots in the styles frame accept a constant
representing 4-bit gray tones ranging from black to white:

kRGB_Gray0
kRGB_Gray1
kRGB_Gray2
...
kRGB_Gray15

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

5-4 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

kRGB_Gray0 is black, and is also defined by the kRGB_Black constant.
kRGB_Gray15 is white, and is also defined by the kRGB_White constant.

You can use the new 'graypattern class to define a gray pattern in a binary
object. The pattern can be as large as 8 pixels high by 8 pixels wide, with
each pixel represented by an RGB triplet contained within the binary object.
Each component of the triplet is a 16-bit value ranging from 0 to 65535. In
the event the developer defines less than the number of bytes needed for an 8
x 8 pattern, the pattern triplets are repeated to complete the pattern.

For example, a fillPattern in the styles frame can be defined as in the
following code fragment:

fillPattern: SetClass("\u999999999999555555555555",
 'grayPattern)}

If less than 8 RGB triplets are defined, the defined triplets are repeated until a
full 8 pixel line is completed. This line is then duplicated an additional 8
times to complete the 8 x 8 pattern.

If more than 8 RGB triplets are defined, the triplets are duplicated using a
resolution of 8 pixel multiples. In other words, if 16 triplets are defined, the
16 triplets are duplicated 4 times to complete the pattern. If 15 triplets are
defined, the last 7 triplets are ignored, and the first 8 triplets are duplicated 8
times to complete the pattern.

Dithered Patterns 5

You can define a dithered pattern as a frame having the following slots:

{class:'ditherPattern,
pattern: vfBlack, // B/W QD pattern const (vfBlack, vfGray, etc.)

// or
binaryObj,// Binary object of type 'pattern (BW 8x8 pattern)

foreground: kRGB_Gray0, // kRGB_Gray0 thru kRGB_Gray15
background: kRGB_Gray15, // kRGB_Gray0 thru kRGB_Gray15
}

This pattern uses the BW pattern with the "black" bits drawn in the
foreground color and the "white" bits drawn in the background color. This

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

Developer API 5-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

allows for a wide range of pattern possibilities without taking up much
space.

Text shapes 5
The new 'textPattern slot in the style frame is used to render text shapes
in gray tones. This slot makes it possible to use the same style frame for an
array containing both non-text shapes and text rendered with different tones.

Text is drawn with a single shade of gray. If a'grayPattern binary object
defines a complex pattern using more than one shade of gray, the results are
undefined.

Color PICTs and bitmaps 5
Color PICTs can be imported through the use of a variation on the
GetPictAsBits function. The format of the PICT files must be indexed pixels
with 1, 2, 4, or 8 bit depth.

The existing GetPictAsBits function converts the PICT to a bitmap frame
containing the following slots:

bounds A rectangle describing the bounds of the image.

bits A binary object containing the image data. The binary
data is in the form of a "FramBitmap":
bytes 0-3 unused baseAddr
bytes 4-5 rowBytes
bytes 6-7 unused pad generated by ARM compiler
bytes 8-11 bounds
bytes 12-end image data

mask An optional slot containing a binary object in the same
format as bits. The data is a mask that is drawn with
modeBic.

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

5-6 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The new function provides a frame containing the following slots:

bounds A rectangle describing the bounds of the image.

bits Optional. A binary object containing 1-bit image data.
May be nil if the image has multiple bit depths.

mask Optional. A 1-bit mask that is drawn with modeBic.

colorData Optional. A frame or an array of frames. This slot
allow you to provide images that are customized for
different bit depths. Each frame contains the
parameters and data for a particular bit depth, and has
the following slots:
cBits A binary object containing color image

data. The binary data has the same
format as the bits, although the image
data will be indices into a color table.If
this slot exists, the bits slot should be set
to nil.

bitDepth The bitDepth of the image. Valid values
are 1, 2, 4, and 8. An invalid bit depth will
throw an exception. If this slot is empty, a
1 bit depth is assumed.

colorTable A table representing the RGB triplets,
conforming to the format described in
“Color definitions in graphic shapes' style
frame” (page 5-3). If the table is not
defined, a default table is used by the
system that has 2 bitDepth colors, ranging
from white to black.

You must use the GetNamedResource global function to load 16- or 32-bit
PICT files.

Manipulating Bitmap Data 5
The GrayShrink function performs scaling, gray tone conversion, and
antialiasing operations on monochrome bitmap data.

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

Developer API 5-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

GrayShrink 5

GrayShrink(bitmap, style);

Converts monochrome source data to grays before sending it to the screen.
This function can be used to antialias a monochrome bitmap. In order for the
antialiasing to occur, the height or width of the source data must be smaller
than the corresponding dimensions of the destination view.

bitmap The bitmap source data, as created by any of the global
functions MakeBitmap, GetPictAsBits or
GetPictAsPixels.

style A style array containing a transform represented by a
source rect and destination rect. This array conforms to
the DrawShape interface described in Newton
Programmer’s Reference, although the transform's
source rect is ignored because the bitmap's bounds are
used for the source rect. The transform’s destination rect
is the desired size for the entire picture. If transform is
nil, the view bounds is used.

If the bitmap is not monochrome data, the data is displayed as it would if
DrawBitmap was called rather than GrayShrink.

Gray Text in clEditView Views 5
The font frame used by clEditView views has 3 slots: 'family, 'face, and
'size. You can add a 'color slot to the font frame to cause an edit view to
render text in gray tones by. The 'color slot uses the constants described in
“Color definitions in graphic shapes' style frame” (page 5-3).

Gray viewFormat 5
The viewFormat can take advantage of gray colors and patterns. This is
done by selecting and defining a custom color for frame, fill, or lines. The
gray color can be defined as in “Color definitions in graphic shapes' style
frame” (page 5-3).

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

5-8 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Utility Functions 5

PackRGB 5

PackRGB(red, green, blue)

Returns a packed integer in a format that can be used when drawing shapes
or text.

red A 16-bit integer, ranging from 0 to 65535

green A 16-bit integer, ranging from 0 to 65535

 blue A 16-bit integer, ranging from 0 to 65535

GetRed 5

GetRed (packedRGB)

Returns the value of the packedRGB argument’s red component as a 16-bit
integer.

packedRGB A packed integer representation of an RGB color

GetGreen 5

GetGreen (packedRGB)

Returns the value of the packedRGB argument’s green component as a 16-bit
integer.

packedRGB A packed integer representation of an RGB color

GetBlue 5

GetBlue (packedRGB)

Returns the value of the packedRGB argument’s blue component as a 16-bit
integer.

packedRGB A packed integer representation of an RGB color

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

Developer API 5-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

GetTone 5

GetTone(packedRGB)

Returns an integer representing the 4-bit gray tone corresponding to the
packedRGB value.

packedRGB A packed integer representation of an RGB color

IsEqualTone 5

IsEqualTone(packedRGB1, packedRGB2)

Returns true when the values of its arguments map to the same gray tone.

packedRGB1 A packed integer representation of an RGB color

packedRGB2 A packed integer representation of an RGB color

PtInCPicture 5

PtInCPicture(x, y, picture)

PtInPicture returns a Boolean false when the pixel specified by the x and y
arguments is white or outside the bounds of picture. (Note: picture is a
bitmap, not a PICT.)

This function is similar to the existing PtInPicture function. PtInCpicture
returns the value of the specified pixel. This value is based on the bit depth
of the bitmap.

For bitmaps with a bit depth of 1, 2, 4, and 8, the pixel is an index. For
example, if the bitmap has a bit depth of 4, the value returned by the
function would range from 0 to 15.

If the bitmap has a bit depth of 16 or 32, the pixels have a direct format, and
the function will return the direct RGB pixel value.

When the pixel specified by the x and y coordinates lies outside the bounds
of the picture bitmap, this function returns -1.

C H A P T E R 5

Newton OS 2.1 Grayscale Imaging ERS

5-10 Compatibility Information

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Compatibility Information 5

The goal of this implementation is to have complete backward compatibility
with software written for version 2.0 of the Newton operating system. If an
application contains a monochrome PICT or bitmap, it is displayed properly.

New applications that take advantage of the grayscale imaging capabilities
will not be compatible with version 2.0 of the Newton operating system. If
an application contains a color PICT, the data is thrown away by the 2.0
imaging subsystem. If an application contains a color bitmap, the 2.0
operating system displays the image incorrectly and the result is undefined.
Application that contains references to the new textColor slot causes a frames
exception on a 2.0-based system.

Note that if a 2.1-based application beams or mails a Notepad note
containing a frame that holds a 'textColor slot, the 2.0 application ignores
the and 'textColor slot. A 2.1 application that tries to use the 'textColor
symbol on a 2.0 ROM causes a frames exception.

C H A P T E R 6

Newton OS 2.1 Graphics Shapes ERS

Data Structures 6-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Newton OS 2.1 Graphics
Shapes ERS 6

This document describes changes to the shape-based graphics model in the
Newton 2.1 OS. This is the primary graphics model used by applications to
draw custom items.

Data Structures 6

The style frame has changed in Newton 2.1 OS.

Modifications to the Style Frame 6
The following three changes have been made to style frames:

■ Text shapes can be rendered with gray tones by using the new
textPattern slot in the style frame. This slot can take the same values as
the style frame slot penPattern. This slot makes it possible to use the
same style frame for an array containing both non-text shapes and text
rendered with different tones.

C H A P T E R 6

Newton OS 2.1 Graphics Shapes ERS

6-2 Functions

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

■ In Newton 2.0 OS, text was drawn with a dithered pattern if the
penPattern slot was set to vfGray. In Newton 2.1 OS, lines, text, and ink
use penPattern to define their rendered tone. The geometric frames
around shapes (rect, roundrects, ovals) are treated as lines. The interior of
shapes are defined with fillPattern.

■ Style frames can now include a selection slot with a numeric value. If
present, “resize handles” (like you see in most drawing programs) will be
drawn in the four corners of the shape bounds. The value is the size of the
handles; an even number is recommended as it centers the handles best
over the corners. The FindShape (page 6-3) function supports hit testing
of these handles.

Functions 6

This section describes functions which are new to the Newton 2.1 OS, and
older functions which have been changed in this OS release.

New Functions 6
The following functions are new to Newton 2.1 OS.

ConvertDropToShape 6

ConvertDropToShape(dropType, dropFrame)

Converts clipboard-format data into shape data.

dropType On of the following symbols: 'polygon, 'ink,
'picture, 'shape, or 'text.

dropFrame Clipboard data that comes into the ViewDropScript.

It returns a shape or a shape array, depending on whether there's a style that
needs specifying.

C H A P T E R 6

Newton OS 2.1 Graphics Shapes ERS

Functions 6-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

FindShape 6

FindShape(shape,x,y,style)

Indicates whether the point (x,y) lies in the specified shape. This function
works like the HitShape function, however, the following behavior is
different:

■ Shapes are found from front to back instead of back to front. If two shapes
overlap and you call HitShape with a point that was inside both shapes,
the backmost shape was returned. FindShape returns the frontmost shape.

■ The new ink shapes are supported; see “MakeInk” (page 6-4).

■ If a shape has no fill pattern the click “falls through” and will miss, or hit a
shape below it.

■ There is “slop” built into the hit testing so clicks a few pixels from a shape
will still hit the shape.

■ If a shape is drawn with a selection style, you can “hit” these hilited
corners; see both “Modifications to the Style Frame” (page 6-1), and the
description of the vertex slot of the frame returned by this function.

■ It now takes a style frame as an argument so you can use it the same way
you do DrawShape.

shape The shape to test.

x The x coordinate of the point to be tested, in local (view)
coordinates.

y The y coordinate of the point to be tested, in local (view)
coordinates.

style A style frame. The effect of this parameter is to have this
function return nil or otherwise depending on whether
the point (x,y) would have been in shape, if shape had
been drawn with this style frame.

This function returns nil if there was no hit. Otherwise, it returns a frame
with the following slots:

C H A P T E R 6

Newton OS 2.1 Graphics Shapes ERS

6-4 Functions

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Slot Descriptions

vertex Either nil or one of the integers: 0, 1, 2, or 3. The value
nil is returned if the hit was not in the corner of a shape;
see “Modifications to the Style Frame” (page 6-1) for
more information. Otherwise, if the hit was in a corner,
the integers returned are to be interpreted as follows:
0 The northwest corner.
1 The northeast corner.
2 The southeast corner.
3 The southwest corner.
This slot will only be non-nil if you hit the corner of a
shape and the selection style is a numeric value.

path A path expression to the shape that was hit.

GetPointsArrayXY 6

GetPointsArrayXY(unit)

Returns an array of points extracted from the specified unit. The original
GetPointsArray function returned an array of points in y,x order. This
routine does the same thing but returns them in x,y order.

unit A unit passed to the ViewWordScript,
ViewShapeScript, ViewStrokeScript, and
ViewGestureScript methods.

MakeInk 6

MakeInk(inkdata,left, top, right, bottom)

Creates an ink shape in the specified bounds box.

inkdata The ink data object.

left The left boundary.

top The top boundary.

right The right boundary.

bottom The bottom boundary.

C H A P T E R 6

Newton OS 2.1 Graphics Shapes ERS

Functions 6-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

This ink shape will work fine when passed to the various shape methods:
DrawShape, OffsetShape, IsPrimShape, ScaleShape, etc. HitShape
however does not work on these new objects. The new and improved
FindShape (page 6-3) does however.

The bounds slot doesn't scale the ink, it just tells DrawShape where to place
the upper left corner; it doesn't clip to the box.

MungeShape 6

MungeShape(shape, action, style)

Flips a shape, or rotates it to the right. It modifies the shape in-place, unless
the shape is unmodifiable. In that case, it will create a bitmap that looks like
the shape, and operate on the new bitmap.

shape A shape or shape array.

action On of the following symbols: 'rotateRight,
'flipHorizontal, or 'flipVertical.

style Style to use if shape must be converted to a bitmap.

This function returns a shape or shape array.

PictToShape 6

PictToShape(pict)

Takes a pict binary object and returns an array of shapes that will produce
the same bits on the screen.

pict The pict binary object to convert.

Changed Functions 6
The following changes have been made to functions which existed in earlier
releases.

C H A P T E R 6

Newton OS 2.1 Graphics Shapes ERS

6-6 Functions

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

MakeShape now handles bitmaps with masks 6

MakeShape will now create bitmap shapes with an additional slot, mask, if
the bitmap also has a mask. This mask will not be used unless it is drawn
with the transferMode set to modeMask.

GetStrokePointsArray filters more points and swaps point
coordinates 6

In previous release this function accepted an integer format parameter. It can
now accept a frame of the following form as well as an integer:

Slot descriptions

format An integer, this integer has the same interpretation as
the format parameter of previous releases.

distance Optional. An integer, the minimum distance between
points.The default is 0. This significantly reduces the
size of the array you get back from this function. This is
handy as you don't have to munge through so much
data if you want to analyze a stroke yourself from
scripting. You can also create polygon views with
reasonable fidelity using significantly fewer points.

order Optional. One of the following symbols: 'xy or 'yx. The
default is 'yx. This slot controls the xy ordering of the
points. Normally, GetStrokePointsArray returns the
points in (y,x) order. If this slot has the value 'xy, the
points are returned in (x,y) order.

Terminology 7-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 7

Newton OS 2.1 Sound ERS 7

This document describes the developer API for the Newton OS 2.1 Sound
Manager, including the sound input interface, and improvements to
playback and sound compression.

Terminology 7

channel A virtual connection to specific piece of sound hardware.
sample Sound consisting of sound (ADC) samples. The

Runt-based products use the same sample format as
Macintosh (8 bit unsigned). Voyager-based products
use 16-bit linear (signed) samples.

volume A value used to specify the loudness for a sound. The
1.x interfaces support integer volumes 0 through 4, (0 =
quiet; 4 = maximum volume). The 2.0 interfaces
support real volumes in the volume slot of a sound
frame, which correspond to dB levels. A large negative
value corresponds to silence, and 0.0 corresponds to full
volume. The Newton OS 2.1 interfaces add a dB based
system volume (Get/SetSystemVolume).

Figure 6-0
Table 6-0

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-2 User Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

User Interface 7

Other than support for hardware volume control, there is no direct user
interface for sounds, apart from the sound and alarms prefs panel, and the
volume control in the Extras Drawer.

Developer Interface 7

This section reprises the 2.0 sound interface and its predecessors, then
describes the Newton OS 2.1 enhancements and extensions to the 2.0
interface.

Sound Interface in 1.x Systems 7

The following functions are supported as documented in Newton
Programmer’s Reference 2.0:

PlaySound(soundFrame);
PlaySoundSync(soundFrame);
GetVolume();
SetVolume(volume);

Note

PlaySound honors user preferences settings for pen, alarm
and action sound effects by comparing the sound frame
passed as its argument to the "typical" sound effects; for
example, PlaySound(ROM_click) is silent when “pen sound
effects” are turned off. This behavior can produce
unfortunate side-effects, the most notable being that
GetRoot():SysBeep() does nothing when beepSound is the
same as alarmSound and alarm sound effects are disabled. ◆

C H A P T E R 7

Newton OS 2.1 Sound ERS

Developer Interface 7-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Sound Interface in 2.0 Systems 7
The functions described in this section can be used to overcome the
limitations described in “Sound Interface in 1.x Systems” (page 7-2). These
functions allow you to play sounds at specific volumes easily, or to play
system sounds without regard to the current user preference settings that
govern system sound effects.

PlaySoundAtVolume 7

PlaySoundAtVolume(soundFrame, volume)

Plays the soundFrame at the specified volume. If volume is nil, it uses the
current sound volume. This function calls PlaySound, so it is subject to the
same limitations as PlaySound (see Note: above).

PlaySoundIrregardless 7

PlaySoundIrregardless(soundFrame)

Plays the specified sound frame, ignoring the user sound prefs settings, thus
always using the system volume.

PlaySoundIrregardlessAtVolume 7

PlaySoundIrregardlessAtVolume(soundFrame, volume);

As PlaySoundIrregardless at the specified volume. If volume is nil, it uses
the current system volume. This function does not call PlaySound.

PlaySoundEffect 7

PlaySoundEffect(soundFrame, volume, type);

Plays the sound specified by soundFrame at the volume specified by volume
if user prefs allow the sound type. Type can be one of 'pen, 'alarm, or 'action,
checked against userConfig slots 'penSoundEffects, 'alarmSoundEffects,
'actionSoundEffects respectively. If volume is NIL, the system volume is
used. This function is preferred to all other versions of PlaySound for
playing sound effects.

If type is not 'pen, 'alarm, or 'action, then the sound is always played at the
specified volume (same as PlaySoundIrregardlessAtVolume).

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-4 Developer Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Clicker 7

Clicker()

Plays various "click" sounds. Use this for pen sounds instead of
PlaySound(ROM_click).

Sound Interface for Newton OS 2.1 7
Support for hardware volume control has been added to the system. When a
particular system has hardware volume control, the volume parameters for
all sound calls are ignored.

GetSystemVolume 7

GetSystemVolume()

Returns the system volume in decibels.

SetSystemVolume 7

SetSystemVolume(volume)

Sets the system sound output level as specified and returns the output level
that was actually set. Most hardware supports only a few distinct volume
levels. This call sets system volume to the level nearest that supported by
the current sound driver. If the hardware supports a hardware volume
control, this function returns the hardware volume control’s current setting.
(Basically it turns into a GetSystemVolume(..) call.

volume Sound output level to set, expressed in decibels.

For more information, see the descriptions of new slots added for Voyager
sound support, as described in “Sound Frame Format” (page 7-7).

For information on sound input, see “Sound Input” (page 7-12).

GetSoundFrame 7

GetSoundFrame(name)

GetSoundFrame is a new build-time function available for retrieving
sounds. The calling convention is exactly the same as GetSound and
GetSound11. GetSoundFrame returns a sound frame in whatever format is

C H A P T E R 7

Newton OS 2.1 Sound ERS

Developer Interface 7-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

specified in the source sound resource. The old routines hard-wired the
sound frame to a specific sample size and sample rate. GetSoundFrame(...) is
capable of loading sounds other than 22khz and 11khz sounds. It can
theoretically load any type of sound source. The Newton, of course, will
only play certain kinds of sounds. This call should be added to the platform
file.

protoSoundChannel 7

The protoSoundChannel system prototype supplies the methods described
in this section.

Open 7

soundChannel:Open()

Open the sound channel. This method allocates the TUSoundChannel for
this channel. Throws |evt.ex.fr| if an error occurs. Returns nil.

soundChannel A frame having a _proto slot that references the
protoSoundChannel system prototype.

Close 7

soundChannel:Close()

Closes the sound channel. This method deletes the TUSoundChannel
allocated for this channel. Throws |evt.ex.fr| if an error occurs. Returns nil.

soundChannel A valid sound channel object created by the Open method
of the protoSoundChannel system prototype.

◆ W A R N I N G

The memory allocated for a sound channel is not released
when the soundChannel frame is GC'd. You MUST call the
Close method explicitly to avoid memory leaks. ◆

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-6 Developer Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Schedule 7

soundChannel:Schedule(soundFrame)

Queues the soundFrame for play. Throws |evt.ex.fr| if an error occurs.
Returns nil. If the soundFrame defines a callback function, the sound channel
sends the callback message to the soundFrame when play completes.

Start 7

soundChannel:Start(async)

Starts the sound channel. The channel will begin playing sound frames in
the order they were scheduled (see below). Throws |evt.ex.fr| if an error
occurs. Returns nil.

async Pass non-nil to play sounds asynchronously. If this
value is nil, control does not return until the entire play
queue is empty (all scheduled sounds complete).

Stop 7

soundChannel:Stop()

Stops playing the current sound, if any, and sends a callback message (state =
1 (kSoundAborted)), if defined, to each sound frame in the specified
channel’s queue. When this method returns, all scheduled sounds will have
received a callback message, and the queue will be empty. Throws
|evt.ex.fr| if an error occurs. Returns a sound result frame (page 7-9)
indicating which sound frame was stopped, or nil if no sound was currently
playing.

Pause 7

soundChannel:Pause()

Temporarily suspends play in progress or resumes play already paused.
Throws |evt.ex.fr| if an error occurs. Returns a sound result frame
(page 7-9) indicating which sound frame was stopped, or nil if no sound was
playing when the Pause message was sent to soundChannel. Scheduled
sounds are unaffected.

C H A P T E R 7

Newton OS 2.1 Sound ERS

Developer Interface 7-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

SetVolume 7

soundChannel:SetVolume(volume)

Sets playback level for the specified channel.

volume An integer or NIL. Values 0, 1, 2, 3, or 4 correspond to
decibel levels -∞ dB, -18 dB, -6 dB, -3 dB, or 0 dB (unity
gain) respectively. If volume is NIL, then the "master"
volume is set (the driver's preferred volume).

GetVolume 7

soundChannel:GetVolume()

Returns the specified channel’s current playback volume, expressed in
decibels. The integer return values 0, 1, 2, 3, and 4 correspond to decibel
levels -∞ dB, -18 dB, -6 dB, -3 dB, and 0 dB (unity gain) respectively. This
mehod returns nil when the channel does not specify its own volume but
instead inherits it from user preference settings (the default behavior).

IsPaused 7

soundChannel:IsPaused()

Returns TRUE if the channel is paused, nil otherwise.

IsActive 7

soundChannel:IsActive()

Returns TRUE if the channel is active (playing, recording or paused), nil
otherwise.

Sound Frame Format 7

A sound frame may have the following slots:

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-8 Developer Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Slot descriptions

sndFrameType Symbol specifying the type of sound frame. The
'simpleSound symbol indicates a standard sound,
while the 'codec symbol indicates a compressed sound.

samples Required. Binary of class 'samples. Contains the sound
samples.

samplingRate Optional. Real or Integer value describing the sampling
rate of data in the samples slot. (8000.0, 11013.21586,
and 22026.43172 are common values). If missing, the
sound channel assumes 22026.43172. For more
information, see the description of the
recordingQuality slot in the system’s user
configuration data.

compressionType Optional. Integer. Encoding format of samples. If
present, it must be kSampleStandard (0),
kSampleLinear (6), or kSampleMuLaw (1). If missing,
kSampleStandard is assumed.

dataType Optional. Integer value specifying the size of samples in
bits. If present, it must be 8 (k8Bit) or 16 (k16Bit). If
missing, k8Bit is assumed.

Note

Older versions of NTK generate sound frames having the
value 0 (zero) in the dataType slot. The Sound Manager
assumes 0 (zero) is the same as 8 (k8Bit). ◆

volume Optional. Integer or real value specifying the volume
level at which to play this sound. If missing, the
channel's volume setting is assumed. Note that if
volume is an integer it must have the value 0, 1, 2, 3, or
4 corresponding to decibel levels -∞ dB, -18 dB, -6 dB, -3
dB, or 0 dB (unity gain) respectively. If volume is real, it
is treated as the actual dB level, and should be negative.
This value overrides the system volume and the channel
volume—including values set by functions such as
PlaySoundAtVolume and sound channel methods such

C H A P T E R 7

Newton OS 2.1 Sound ERS

Developer Interface 7-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

as SetVolume. If the system has a hardware volume
control, the hardware control overrides everything else.

start Optional. Integer value that is the index of the first
sample toplay. When this value is missing, 0 is
assumed. Omit this slot in sound frames used for
recording.

count Integer that is the number of samples to play. When this
value is missing, Length(samples) / (dataType/8)
is assumed. Omit this slot in sound frames used for
recording.

loops Optional. Integer that is the number of times to repeat
the sound. (i.e., setting loops to 3 causes the sound to
play a total of four times). When this value is missing, 0
is assumed. There is no way to specify continuous play.
Omit this slot in sound frames used for recording.

callback Optional function object executed when the sound
frame completes. This function must be of the form
func (state, result) begin ... end;
state The state of the sound channel when the

callback was executed. Values are:
0 = kSoundCompleted

1 = kSoundAborted

2 = kSoundPaused

result An integer error code, if present. For a
listing of possible values, see “Sound
Manager Error Codes” (page 7-11).

Sound Result Frame Format 7

A sound result frame holds the following slots:

Slot descriptions

sound The sound frame that was paused, stopped, or
completed.

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-10 Developer Interface

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

index Integer value that is a zero-based index into the sample
slot. This value describes where in the sample data the
sound channel was paused or stopped. The following
inequality is always true:

C H A P T E R 7

Newton OS 2.1 Sound ERS

Developer Interface 7-11
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

soundFrame.start > soundFrame.index < (soundFrame.start + soundFrame.count).

Sound Manager Error Codes 7

This section lists error codes returned by the Sound Manager and describes
possible causes for each.
kError_Snd_Generic

Error scheduling node
Codec channel aborted
No driver found
Channel open; no sound port
Attempt to do synchronous input

kError_Snd_Bad_Msg
Internal sound manager error

kError_Snd_Not_Played
All Sound stopped (power off or other problem)

kError_Snd_Busy
Internal resource conflict

kError_Snd_Record_Busy
Internal resource conflict

kError_No_Samples_Given

Start called with nothing scheduled
Cancel called for nonexistent node
Codec called with zero-length samples

kError_Unsupported_Snd_Configuration

Unable to create codec
Bad value for sndFrameType slot
Bad value for compressionType slot
Bad value for dataType slot
Invalid samplingRate slot
Input not implemented on target hardware
Driver doesn't support output

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-12 Compatibility Information

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Driver doesn't support input
kError_Snd_Channel_Closed

Channel aborted (kChannelAborted returned to frame
callback)
Channel stopped (returned to frame callback)
Attempt to make call to closed channel
Unable to start channel
Unable to pause channel
Unable to schedule block
Unable to cancel channel
Unable to stop channel

kError_Snd_Cancelled

Channel cancelled (frame callback)
Channel aborted (frame callback)

Compatibility Information 7

No problems or issues expected. Eveything that worked on 1.x and 2.0
should work on Newton OS 2.1. Newton OS 2.1 sound frames are
backwards compatible, although sounds created using the Voyager data
format (16-bit linear) will not play on Runt-based units.

Sound Input 7

There are four main components to sound input: the NewtonScript API for
recording and storing sound; the Sound Manager and driver support that
implements the API; SoundRecorder, the UI element that lets you control
recording and playback; and SoundPaper, the UI element that lets you store
and organize pieces of recorded sound.

C H A P T E R 7

Newton OS 2.1 Sound ERS

Sound Input 7-13
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

NewtonScript Interface 7

The interfaces for recording are nearly identical to the sound channel
interfaces for playback. The protoSoundChannel frame and
protoSoundFrame have both been extended to support recording.

Because recording requires some UI to start and stop the recording process,
there is no simple interface for recording equivalent to PlaySound(). You
must create a new sound channel to do recording, and call open, schedule,
start and stop.

Generally, here is how you do a recording using a sound channel. First
create a new sound channel, using newRecording. Next, open the sound
channel by sending it the open message. Create a new block of memory for
it to record into by sending the newInputBlock message, which returns a
soundFrame, and then schedule it using the schedule message. Once a
soundFrame is scheduled, you can start the recording by sending the start
message to the sound channel.

After you have sent the start message, there will be about a 1/2 second delay
while the sound hardware powers up. Eventually we will probably play a
record beep during that interval.

The sound manager then records sound into the scheduled soundFrame.
Once the provided buffer is full (default size 64K), it looks to see if there is
another scheduled soundFrame to continue recording into. It calls the
callback provided by the first soundFrame, then it continues recording into
the next soundFrame. It is the application's job to ensure that enough
soundFrames are scheduled to keep up with it. In the soundRecorder, after
starting the sound channel, I schedule the second soundFrame immediately,
and then schedule one additional new one when an old one is filled up.

It is the application's responsibility to keep track of which sound frames have
been created and scheduled, and to update the size of the final sound block
when the stop button is pressed (see the return value of the stop function).

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-14 Sound Input

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Devices and Channels 7

We now support multiple output devices for playback, and multiple input
devices for recording. The system uses a default output device which can be
overridden by the channel. The system also uses a default input device
which can similarly be overridden by the channel.

Despite this flexibility, the hardware cannot send two simultaneous sounds
to different devices: all concurrent or overlapping output must go to the
same device(s). This means that if you have a sound playing on the external
speaker, and you request a sound on the internal speaker, it will be routed to
the external speaker instead. The same is true of input: all simultaneously
active input channels will have the same source.

The number of simultaneous sounds that can be played is limited by the
processing power of the CPU. On a 710, the number is about 4, depending
on the exact nature of the sound being played.

The current release supports the following output devices:

kDefaultDevice 0x00 // the internal speaker
kInternalSpeaker 0x01 // the internal speaker
kLineOut 0x08 // line out on the interconnect

and the following input devices:

kDefaultDevice 0x00// the internal microphone
kInternalMic 0x04// the internal microphone
kLineIn 0x10// line in on the interconnect

Notice that each device is represented by a single bit, so that the devices can
theoretically be OR'ed together. In the current release, we do not support
more than one input or output device at a time.

It is possible to have multiple recording sessions running simultaneously.

C H A P T E R 7

Newton OS 2.1 Sound ERS

Sound Input 7-15
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Input Gain 7
While recording, you can specify an input gain, which is an amplification
applied to the incoming signal.

The input gain can have a value ranging from 0 to 255. If the input gain is 0,
then the incoming signal will not be amplified at all; if the input gain is 255,
then the signal will be amplified by an amount that the driver has
determined to be a maximum desirable amount. The middle value of 128 is
considered to be an "optimal" setting for normal use.

The behavior of the input gain can seem non-intuitive. The signal that comes
from the internal microphone is a very weak one, and the system relies on
the input gain to boost it to a level that you can hear. Thus, when you are
using the internal microphone and you set the input gain to 0, the recording
will be silent. The signal that comes from the line-in jack, however, is much
stronger. When the input gain is set to 0, the recording is quite loud, which
you might not expect if you think about it as an input volume instead of an
input gain. In both cases, the default value of 128 instructs the device to
amplify the signal to an "optimal" level.

We do not support a self-adjusting input gain.

ProtoSoundChannel 7

ProtoSoundChannel has been modified to support input. This section
describes the new slots and methods that have been added to
protoSoundChannel.

The following new slots have been added:

Slot descriptions

direction Indicates whether the soundChannel is to be used for
input or output. It can have two valid values: 'record or
'play. This is set to 'record by the :newRecording()
function. If this slot is invalid or nil, 'play is assumed.

outputDevice Specifies the device that is to be used for playback. If
nil, then playback is done on the device specified by the
userConfiguration slot of the same name. If that is nil,
then the internal speaker is used. The default

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-16 Sound Input

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

outputDevice in protoSoundChannel is nil. Device
definitions are give above in the section on Devices and
Channels.

inputDevice Specifies the device that is to be used for recording. If
nil, then recording is done on the device specified by the
userConfiguration slot of the same name. If that is nil,
then the internal microphone is used. The default value
of inputDevice in protoSoundChannel is nil. Device
definitions are give above in the section on Devices and
Channels.

inputGain A value that specifies how much the input signal is to
be amplified before it is recorded. It can have a value
between 0 and 255, as described in the section on Input
Gain, above. If nil, then the inputGain specified by the
userConfiguration frame is used. If that is nil, then a
suitable default value is used. This value is used to
determine an initial value for input gain. Although the
SetInputGain functions (global and local) can change
the input gain for the channel, they will not change the
value of the inputGain slot.

inputBlockSize The allocation size used by newInputBlock when it
creates the VBO to record into. The default value is
65536. You can change the size, but the timing of the
sound manager may not work for sizes that are too
small.

The following new methods have been added to protoSoundChannel:

IsOpen 7

soundChannel:IsOpen()

IsOpen tests to see whether the sound channel is open, and returns true if it
is.

C H A P T E R 7

Newton OS 2.1 Sound ERS

Sound Input 7-17
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

NewRecording 7

soundChannel:NewRecording()

Creates a new protoSoundChannel frame that is properly initialized for
sound input. It is simply a protoSoundChannel that has its direction slot set
to 'record.

NewInputBlock 7

soundChannel:newInputBlock(callback)

Creates a new soundFrame, that has all its slots set up for recording speech
at an optimal combination of fidelity and compression. It allocates a VBO,
and stores it in the 'samples slot. This is where the recorded data is stored.
The size of the VBO is determined by the value of the inputBlockSize slot in
the channel, which defaults to 65536.

A newly created input block looks like this:

{
_proto: protoSoundFrame,
samples: vbo, // size determined by inputBlockSize
callback: callback, // specified by caller
dataType: k8Bit, // eight bits per sample
compressionType: kSampleMuLaw,// MuLaw encoded
samplingRate: 10800, // 10K samples per second
}

This is a reasonable default setting for voice recording. However, you
should not rely on these specific values. If you require specific settings, you
should override them yourself.

SetInputGain 7

soundChannel:setInputGain(gain)

Sets the amplification applied to the signal coming from the input device.
SetInputGain can only be called on open channels, or an error is thrown.

This method changes the input gain, in real time, of the current input
channel (and because the hardware supports only one input source at a time,
all other active input channels).

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-18 Sound Input

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

This method does not change the value of the inputGain slot in the channel.
This value is assumed to be the default value used when the channel is
started.

gain The amplification to be applied to the input signal. For
information on values, see “Input Gain” (page 7-15).

GetInputGain 7

soundChannel:getInputGain()

Returns the gain currently used by the specified channel. The channel must
be open. For information on the meaning of values this method returns, see
“Input Gain” (page 7-15).

ProtoSoundFrame 7
ProtoSoundFrame is newly created for Newton OS 2.1. Not only does it
contain all the slots described as valid for 2.0 soundFrames, but it now has
some functions that make it easier to work with. Note that sound frames
that are not derived from ProtoSoundFrame will not support these functions.

GetSampleCount 7

soundFrame:GetSampleCount()

GetSampleCount returns the number of samples in the soundFrame. This is
based on the value of the length slot, if non-nil, or on the size of the samples
object otherwise.

GetSampleSize 7

soundFrame:GetSampleSize()

Returns the size of each sample, in bytes.

C H A P T E R 7

Newton OS 2.1 Sound ERS

Sound Input 7-19
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

GetSamplingRate 7

soundFrame:GetSamplingRate()

Returns the rate at which the data in the soundFrame was (or will be)
recorded.

GetPlayingTime 7

soundFrame:GetPlayingTime()

Returns the playing time of the sound, in seconds, as a floating point
number. This is useful for creating progress indicators for the sound.

SetRecordingLength 7

soundFrame:SetRecordingLength(numSamples, callback)

SetRecordingLength should be called after the user presses the stop button.
It sets the length slot to the indicated value, then it adds a deferred call to
actually set the length of the VBO. Since the functions above rely on the
length slot, and not the size, both GetPlayingTime and GetSampleCount will
both return correct values immediately after SetRecordingLength has been
called.

numSamples An integer expressing the number of samples to include
in the sound frame.

callback Callback function object executed when the SetLength
is actually completed. This may be necessary for an
interface in which the user can switch rapidly from
recording to playback. This slot may hold the value nil
or a callback function of the form

func () begin ... end;

MuLaw Compression 7

In addition to kSampleStandard (0) and kSampleLinear (6), a third
compressionType has been added: kSampleMuLaw (1). This
compressionType is used to compress voice data from 16 bits (returned by
the sound hardware) to 8 bits. When you specify kSampleMuLaw, you must
set dataType to k8Bit.

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-20 Setting Global Sound Preferences

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Setting Global Sound Preferences 7

When optional override values are not specified in the sound channel,
default values are read from slots in the system’s user configuration data.
This data is soup-based, and therefore persists across application launches
and soft resets.

This section describes how to use the GetUserConfig and SetUserConfig
functions to access sound-related user configuration slots.

Getting and Setting Input Gain 7
To retrieve the global input gain value, pass the 'inputGain symbol to the
GetUserConfig function, as in the following example

GetUserConfig('inputGain)

The value returned is an integer between 0 and 255 that sound channels used
for input take as the default value of their inputGain slot. The default value
is 128.

To set the global input gain value, pass the 'inputGain symbol and the new
gain value to the SetUserConfig function, as in the following example

SetUserConfig('inputGain, gain)

This code sets the value used as the default value of inputGain slot in sound
channels used for input. If there are any active input channels, their input
gain will immediately be set to the specified value. The gain parameter must
hold an integer value between 0 and 255.

This call changes the value of the inputGain slot in the system’s user
configuration data, but not the value of the inputGain slots in any active
channels.

C H A P T E R 7

Newton OS 2.1 Sound ERS

Setting Global Sound Preferences 7-21
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Getting or Setting Default Input or Output Devices 7

GetUserConfig('inputDevice)

This code returns a constant representing the current default input device.
This default can be overridden by putting an inputDevice slot in your
protoSoundChannel. Device definitions are give above in the section on
Devices and Channels.

SetUserConfig('inputDevice, value)

This code sets a global that indicates the default input device used during
recording. It does not change the device for a currently recording input
channel.

GetUserConfig('outputDevice)

This code returns a constant representing the current default output device.
This default can be overridden by putting an outputDevice slot in your
protoSoundChannel. Device definitions are give above in the section on
Devices and Channels.

SetUserConfig('outputDevice, value)

This code sets a global that indicates the default output device used during
playback. It does not change the device for a currently playing output
channel.

UserConfiguration Slots 7

soundVolumeDb The current system sound volume, in decibels.
alarmVolumeDb The current system alarm volume, in decibels.

Rathe than accessing these slots directly, use the SetUserConfig function to
set their values. This function calls other functions necessary to make the
system use the new value.

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-22 Sound Recorder and Player

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Sound Recorder and Player 7

The user controls recording using an on-screen recorder slip described in this
section.

The soundRecorder is a root child, so you can access it by calling

sr := getroot().soundRecorder;

If you want to open it to do a recording, call:

sr:OpenRecord(callback);

This sets up the recorder slip to do recording, and opens it on the screen.
When the user presses the close box to close the recorder, the callback is
called with a single argument, the array of soundframes that were allocated
as a result of recording.

To play a sound via the sound recorder slip, call:

sr:OpenPlay(soundFrame);

This sets up the recorder to play the specified soundFrame, and opens it on
the screen.

C H A P T E R 7

Newton OS 2.1 Sound ERS

Sound Recorder and Player 7-23
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

After opening the recorder with either openPlay or openRecord, the
following slots in the base view can be changed to override the values in an
associated soundChannel or soundFrame.
fSoundFrameSlots may hold a frame that contains slots to be copied to the

sound frames for recording. For example:
fSoundFrameSlots:

{sndFrameType: 'simpleSound,

 samplingRate: 10800,

 compressionType: kSampleMuLaw,

 dataType: k8Bit

},

defines a frame that overrides the default values with
themselves. This frame can contain any slots that you
want copied to the sound frame.

fInputGain Sets the inputGain slot in the soundChannel
fInputDevice Sets the inputDevice slot in the soundChannel
fOutputDevice Sets the outputDevice slot in the soundChannel

ProtoRecorderEngine 7

••• to be supplied •••

This section is to contain a description of the protoRecorderEngine. This is a
base class that can be used to create custom recorders.

ProtoRecorderView 7

••• to be supplied •••

This section is to contain a description of the protoRecorderView. This proto
can be used to put an embedded recorder view within another view, as used
by SoundPaper.

C H A P T E R 7

Newton OS 2.1 Sound ERS

7-24 Sound Recorder and Player

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

SoundPaper 7

A new type of stationery called SoundPaper provides a standard way for the
user to store and manipulate sounds. The user will create a new sheet of
SoundPaper by tapping the "New" button, and picking "Recording". This
sheet of paper displays a small microphone and some informational text, and
it also contains recorder controls. The user uses the recorder to record a
sound. The record button should be used to start a recording; the play
button is used to start playback; and the stop button is used to stop either
recording or playback. Once you start recording or playing, the record/play
button changes to a pause button. You can pause and resume recording/
playback using this button.

.

8-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 8

Dial-In Networks ERS 8

The dial-in network application program interface (API) allows you to add
dial-in networks to augment the built-in SprintNet and ConcertNet networks
already in the system. A dial-in network basically provides phone numbers
for an application (or transport) to call to get access to the network.

For example, a CompuServe mail client would need to register a
CompuServe dial-in network to supply numbers for connecting to the
CompuServe network.

The primary function of a dial-in network is to supply phone numbers to call
given a particular location. It supplies these phone numbers by providing a
function to be called by elements such as the connection slip and the Internet
Enabler. This function returns the possible numbers.

Dial-in networks are stored in a registry in the system. To register a dial-in
network with the system, a developer must put a dial-in network into this
registry. A developer does this by calling the registration function
RegDialinNetwork, passing in a network frame that describes the dial-in
network; see “Network Frame” (page 8-2).

Figure 7-0
Table 7-0

C H A P T E R 8

Dial-In Networks ERS

8-2 Data Structures

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Data Structures 8

Two data structures are used with this API: access frames (page 8-2) and
network frames (page 8-2).

Access Frame 8
An access frame contains the following slots:

Slot descriptions

mailNewtwork A symbol for the network.
mailPhone A string for the phone number.
baud An integer indicating the baud rate.

Network Frame 8
A network frame contains the following slots:

Slot descriptions

title A string describing the network, such as "SprintNet"
or "ConcertNet".

id A symbol uniquely identifying the network,
GetAccessNumbers A function described in “GetAccessNumbers”

(page 8-2).

GetAccessNumbers 8

networkFrame:GetAccessNumbers(worksiteFrame, cityFrame)

Called to retrieve an array of access numbers for a given worksite or city.

worksiteFrame A frame of the format of a Names worksite soup entry;
see “Worksite Entries” (page 16-24) in Chapter 16,

C H A P T E R 8

Dial-In Networks ERS

Global Functions 8-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

“Built-in Applications and System Data Reference,” in
Newton Programmer’s Reference .

cityFrame A frame with the same format as the frames returned by
the GetCityEntry function; see “GetCityEntry”
(page 16-82) in Chapter 16, “Built-in Applications and
System Data Reference,” in Newton Programmer’s
Reference .

This function should return either an array of access frames, or nil if no
numbers are available; access frames are described in “Access Frame”
(page 8-2). You should never, however, return the empty array ([]).

It is up to you to implement a mechanism to store and retrieve these access
numbers. One possible implementation is to store a frame containing this
data in your package. If this data needs to be dynamic, to add new access
numbers for example, you will probably want to create a soup for this data.

Global Functions 8

The following functions are provided.

RegDialinNetwork 8

RegDialinNetwork(networkSym, networkFrame) //platform file fn.

Registers a new dial-in network with the system.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kRegDialinNetworkFunc with (networkSym, networkFrame);
 ◆

networkSym A symbol uniquely identifying the network

networkFrame A network frame, as described in “Network Frame”
(page 8-2).

C H A P T E R 8

Dial-In Networks ERS

8-4 Global Functions

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

This function should usually be called from your part’s InstallScript, as in
the following code sample:

DefConst ('dudeNetFrame,
{

title: "DudeNet",
id: 'dudeNet,
GetAccessNumbers: func(worksite,city)

begin
local result := [];
if worksite then

AddArraySlot (
result,
{
mailPhone:"111-1111",
mailNetwork: 'dudeNet,
baud: 9600
}

)
if city then

AddArraySlot (
result,
{

mailPhone:"222-2222",
mailNetwork: 'dudeNet,
baud: 2400

}
)

result;
end

}
);

partData := {};
InstallScript := func(partFrame,removeFrame) //auto part

begin
call kRegDialinNetworkFunc with ('dudeNet,dudeNetFrame);

end;

C H A P T E R 8

Dial-In Networks ERS

Global Functions 8-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

UnRegDialinNetwork 8

UnRegDialinNetwork(networkSym) //platform file function

Unregisters a dial-in network from the system which had been registered
with a call to RegDialinNetwork.

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kUnRegDialinNetworkFunc with (networkSym);
 ◆

networkSym The symbol used in the call to RegDialinNetwork.

This function should usually be called from your part’s RemoveScript.

GetLocalAccessNums 8

GetLocalAccessNums(entry, which) //platform file function

Retrieves an array of access frames given a location frame and an array of
dial-in network symbols to look for; see “Access Frame” (page 8-2).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetLocalAccessNumsFunc with (entry, which);
 ◆

entry A location frame. Can be a worksite or a city location. If
nil, GetLocalAccessNums uses the current emporium
and city location.

For information on these various entities see the
following sections of Chapter 16, “Built-in Applications

C H A P T E R 8

Dial-In Networks ERS

8-6 Global Functions

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

and System Data Reference,” in Newton Programmer’s
Reference :
worksites “Worksite Entries” (page 16-24), worksite

entries are a type of Names soup entry.
cities “GetCityEntry” (page 16-82), the

GetCityEntry function returns a city
location frame.

the current emporium
“User Configuration Variables”
(page 16-105), the currentEmporium
variable contains an alias to a Names
worksite soup entry.

which An array of network symbols. Usually the transport's
networkSymbols array if the Mail Enabler is used.
Matches to all these symbols are returned.

This function returns an array of access frames; see “Access Frame”
(page 8-2).

Note

If the mail transport does not contain the networkSym for the
dial-in network within its networkSymbols slot, the network
phone numbers will not appear in the connection slip. ◆

GetAllDialinNetworks 8

GetAllDialinNetworks() //platform file function

Returns an array of all the dial-in network frames that are registered in the
system; see “Network Frame” (page 8-2).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetAllDialinNetworksFunc with ();
 ◆

C H A P T E R 8

Dial-In Networks ERS

Global Functions 8-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

GetDialinNetwork 8

GetDialinNetwork(networkSym) //platform file function

Returns the dial-in network frame that corresponds to networkSym; see
“Network Frame” (page 8-2).

IMPORTANT

This function is not defined in all ROM versions and is
supplied by the NTK Platform file. Call it using this syntax:

call kGetDialinNetworkFunc with (networkSym);
 ◆

networkSym The symbol of the network whose frame to return.

C H A P T E R 8

Dial-In Networks ERS

8-8 Global Functions

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Overview 9-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 9

IrDA Communication Tool
ERS 9

This ERS describes the new IrDA communications tool built into the Newton
2.1 OS.

Overview 9

The IrDA Tool is a comm tool implementation of the Infrared Data
Association's standard for infrared communication. The IrDA standard
consists of a hardware serial infrared interface specification (SIR), a link
access protocol specification (IrLAP), a link management multiplexer
protocol specification (IrLMP) and a transport protocol specification
(IrTinyTP). The IrDA tool implements the IrLMP and IrLAP protocols and
communicates with a serial driver that implements the SIR protocol. The
IrDA transport protocol is not a component of the IrDA tool as it was not
necessary to satisfy marketing requirements (HP IrDA printers do not
require it). Future versions of the IrDA tool may include IrTinyTP, IrComm
and other components.

Figure 8-0
Table 8-0

C H A P T E R 9

IrDA Communication Tool ERS

9-2 Terminology

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The IrDA tool is a minimal implementation of IrLAP and IrLMP supporting
both primary (for printing) and secondary (for connection) roles. Initial uses
anticipated for the IrDA tool include printing, connection and beaming.

Printer drivers interface to the IrDA tool in the same way as the serial tool
with the additional requirement that the destination printer must be
specified with the TCMOIrDAConnectionInfo option, specifying "IrLPT" as
the peer class name.

Connection (NBU/NCU and possibly NTK) also interfaces to the IrDA tool
in the same way as the serial tool with the additional requirement of either
identifying the Newton device (for the listen case) or identifying the host
Mac/PC (for the connect case) with the TCMOIrDAConnectionInfo option.

Beaming is more complicated than printing or connection because the
architecture needs to support communication with another IrDA equipped
Newton device (MessagePad 2000 or eMate 300), with a SharpIR equipped
Newton (MessagePad 100/110/120/130) or with a Sharp Wizard. There
needs to be a way to distinguish the capabilities (beaming-wise) of the
Newton to communicate with and start the appropriate SharpIR or IrDA tool.

Beaming auto-detection is done using the ProbeIR tool. For connecting, both
protocols (SharpIR/IrDA) are tried, alternating between each. For listening,
the infrared serial tool is opened in a mode that can detect either the Newton
/ Sharp Wizard protocol or the IrDA protocol. If either protocol is received
then the appropriate tool is started.

Terminology 9

A lot of definitions and IrDA level details can be found in the IrLMP and
IrLAP specification documents.

Here is a quick list/description of the IrDA protocol levels defined to date.

C H A P T E R 9

IrDA Communication Tool ERS

User Interface 9-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

If you need more details, get the specs from the IrDA FTP/Web sites.
SIR (Serial IR), hardware protocol for 9600 - 115.2k data

transmission.
FIR (Fast serial IR), hw protocol for 115.2k - 4m data

transmission.
IrLAP (Link Access Protocol). Built on top of SIR and/or FIR.
IrLMP (Link Mgmt Protocol) - Multiplexor, Name Server,

Endpoints. Built on IrLMP.
IrTP (Transport) - Obsoleted by IrDA committee 10/95.
TinyTP (Transport) - Simplified version of IrTP. Built on IrLMP.
IrComm 3-wire/9-wire serial/parallel-like interface. Built on

TinyTP.
IrTA Terminal Adapter. Built on IrComm.
IrOBEX Object exchange protocol/API. Built on either IrComm

or IrLMP.

The only pieces that will be supported in the first implementation of the
IrDA tool are: SIR, IrLAP and IrLMP. This is the minimum required set to be
IrDA compliant.

User Interface 9

Here are the parts of the Newton system that will make use of IrDA:

■ Beaming. A user may beam to a Sharp-IR or IrDA-IR Newton. No user
interface changes are required.

■ Connection. Although the receiving end (a Macintosh or Windows-based
PC) also needs to support communicating over IrDA.

■ Printing. An IrDA capable print driver can be installed and chosen from
"Choose other printer" item of the "printer" pop-up. The print driver
interfaces to IrDA in a similar way that it interfaces to serial, with the
exception that it must specify some options (see Developer API). A
built-in IrDA printer driver for HP printers (using HPL protocol) has been
added to Newton 2.1 OS.

C H A P T E R 9

IrDA Communication Tool ERS

9-4 Using the IrDA Tool

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Using the IrDA Tool 9

Clients of the IrDA tool access it using the Endpoint Interface. The IrDA tool
service identifier is "irda". Most clients use CMGetEndpoint to open an
Endpoint with the IrDA tool (printer drivers, beamer). NewtonScript
applications open an Endpoint using the following option.

fEndpointConfigOptions :=
[

{
label:"irda",
type: 'service,
opCode:opSetRequired,
result:nil,

},
];

Establishing a connection with an IrDA device is a multi-staged process. The
following describes each stage and the option(s) associated with that stage.

It should be noted that all IrDA options are evaluated at connect/listen time
only. For convenience to developers, the options may be specified earlier at
open or bind time, at connect/listen time, or even after a connect/listen has
been established, but they will only be processed (evaluated) at connect/
listen time. Once the connection has been established, you must disconnect
and reconnect to change the connect/listen options.

Here is an example NewtonScript option array that specifies the options
used with either a connect or listen request. Note that some fields of some
options apply only to connect while other fields apply only to listen. They
will be noted below.

Typically the only option that needs to be supplied is the ConnectionInfo
option ("irci") to either identify your Newton device or to identify the device
that you are connecting to. And even this option may be omitted if two
Newton devices are communicating peer to peer, since they both use the
default connection names.

fEndpointConnectOptions :=

C H A P T E R 9

IrDA Communication Tool ERS

Using the IrDA Tool 9-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

[
{

label:"irdi",// IrDA discovery information
type: 'option,
opCode:opSetRequired,
result:nil,
form: 'template,
data:
{

arglist:
[

8,
kSvcHintPDAPalmtop,
kSvcInfoHintPrinter,
0,
1,

],
typelist:
[

kStruct,
kULong,// num probe slots, default: 8
kULong,// my service hint, default: PDA
kULong,// service hint mask
kULong,// returned devAddr of peer device
kULong,// use standard media busy check?

],
},

},
{

label:"irci",// IrDA connect info
type: 'option,
opCode:opSetRequired,
result:nil,
form: 'template,
data:
{

arglist:
[

0,
0,
4, // i.e. strlen("Test")
5, // i.e. strlen("IrLPT")

C H A P T E R 9

IrDA Communication Tool ERS

9-6 Using the IrDA Tool

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

"Test",
"IrLPT",

],
typelist:
[

kStruct,
kULong,// my lsap id, default: 0
kULong,// peer lsap id, default: 0
kULong,// my name length, def: 1
kULong,// peer name length, def: 1
[kArray, kChar, 0],// my name, def: "X"
[kArray, kChar, 0],// peer name, def: "X"

],
},

},
{

label:"sbps",// serial bit rate
type: 'option,
opCode:opSetRequired,
result:nil,
form: 'template,
data:
{

arglist:
[

115200,
],
typelist:
[

kStruct,
kULong,// max negotiate speed, def: 115.2k

],
},

},
{

label:"irrb",// IrDA recv buffers info
type: 'option,
opCode:opSetRequired,
result:nil,
form: 'template,
data:
{

C H A P T E R 9

IrDA Communication Tool ERS

Using the IrDA Tool 9-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

arglist:
[

2048,
1,

],
typelist:
[

kStruct,
kULong,// size of ea recv buf, def: 512
kULong,// num recv bufs used, def: 1

],
},

},
{

label:"irld",// IrDA link disconnect threshold
type: 'option,
opCode:opSetRequired,
result:nil,
form: 'template,
data:
{

arglist:
[

8,
],
typelist:
[

kStruct,
kULong,// Time before disc, def: 40 secs

],
},

},
];

If the above example option is used to connect, the Newton limits discovered
devices to printers, and connects to the IrDA device with the class name
"IrLPT". The Newton will communicate (up to) 115.2k bps, and will receive

C H A P T E R 9

IrDA Communication Tool ERS

9-8 IrDA Tool Options

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

data using one 2k buffer. If there is no activity from the peer device, then the
Newton will disconnect after 8 seconds.
Likewise, if the above example option is used to listen, the Newton
advertises itself as a "PDA" with the class name "Test". The Newton will
communicate (up to) 115.2k bps, and will receive data using one 2k buffer. If
there is no activity from the peer device, then the Newton will disconnect
after 8 seconds.

IrDA Tool Options 9

This section describes the IrDA communication tool options in detail.

Discovery Option 9

The first stage of the connection process is the Discovery Phase. This stage
probes and accumulates a list of other IrDA devices within beaming range of
the Newton. Each device is loosely identified by a service hints field (PDA/
Computer/Printer/etc) and a device nickname. The TCMOIrDADiscovery
option is used to specify which device to use and also how the Newton
should appear to other devices that probe the Newton.

class TCMOIrDADiscovery : public TOption
{

public:
TCMOIrDADiscovery();

ULong fProbeSlots;
ULong fMyServiceHints;
ULong fPeerServiceHints;
ULong fPeerDevAddr;
ULong fMediaBusyCheck;

};

The field fProbeSlots is used to specify the number of "slots" used during
probing. The valid choices are 1, 6, 8 and 12. The default is 8.

C H A P T E R 9

IrDA Communication Tool ERS

IrDA Tool Options 9-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The fields fMyServiceHints and fPeerServiceHints are used to specify the
category of device that you wish to discover (or specify the category of
device you wish to be discovered as). Here are the possible service hints
known to date (see latest IrDA specs for newer definitions).

#define kSvcHintPnPCompatible 0x00000001
#define kSvcHintPDAPalmtop 0x00000002
#define kSvcHintComputer 0x00000004
#define kSvcHintPrinter 0x00000008
#define kSvcHintModem 0x00000010
#define kSvcHintFAX 0x00000020
#define kSvcHintLanAccess 0x00000040
#define kSvcHintTelephony 0x00000100
#define kSvcHintFileServer 0x00000200

Note that the service hints can be bit-OR'd together to create the field. The
default for fMyServiceHints is kSvcHintPDAPalmtop and the default for
fPeerServiceHints is 0xFFFFFFFF (accept any device during discovery
phase).

The client can specify whatever it wishes for fMyServiceHints, but the
value kSvcHintPDAPalmtop will be OR'd in by the IrDA comm tool.

The field fMediaBusyCheck is used to disable the 600ms delay before
discovery begins. The default is true and is highly recommended to be left
that way. If you are using a sender/receiver model (like Newton beaming)
then you may want to set this field to nil. But beware, for this invalidates
IrDA complicancy with other IrDA devices.

The field fPeerDevAddr returns the address of the discovered device. And
the field fPeerServiceHints returns the service hints reported by the
discovered device. These can be retrieved using a get option.

Note that the device nickname always sent out is "Newton" and there is no
method to retrieve the device nickname of the discovered device. If more
than one qualified device is discovered, then the first device will be used.

Note

Fields used by connect are fProbeSlots,
fPeerServiceHints and fMediaBusyCheck. Fields used by
listen are fMyServiceHints. ◆

C H A P T E R 9

IrDA Communication Tool ERS

9-10 IrDA Tool Options

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Connection Info Option 9

The next stage of the connection process involves a name lookup of the
service to use, or registry of the service provided. The
TCMOIrDAConnectionInfo option is used to specify this information.

class TCMOIrDAConnectionInfo : public TOption
{

public:
TCMOIrDAConnectionInfo();

ULong fMyLSAPId;
ULong fPeerLSAPId;
ULong fMyNameLength;
ULong fPeerNameLength;
UChar fClassNames[61];

};

The field fMyLSAPId may be set to 0 and the IrDA comm tool chooses a
random LSAP id (between 1 and 31) or fMyLSAPId may be a specific value
from 1 to 31. The only reason to use a specific value would be to advertise
your service by number vs by name—and that is not recommended per IrDA
standards. (But the option is left available in case your application needs to
communicate with a dumb desktop IrDA application.)

The field fPeerLSAPId may be set to 0 to do the service lookup by name or
may be any other value from 1 to 111 (1 to 0x6f). If the value is non-zero,
then the name lookup phase is skipped and connection is made using an
LSAP id with that value. But, as noted above, per IrDA standards, services
should be identified and looked up by name, not number. (But if you need to
communicate with a dumb desktop IrDA application that only supports
access by LSAP id (no name look up) then you will be able to.)

The fields fMyNameLength and fClassNames are used to identify the service
provided by the Newton. The name is stored at fClassNames[0].

The fields fPeerNameLength and fClassNames are used to identify the
service provided by the peer device. The name is stored at
fClassNames[(fMyNameLength + 3) & ~4]. In other words, the name is
stored on a 4 byte boundary (a NewtonScript compatibility requirement).
Don't worry NewtonScript programmers—this is done automatically for you.

C H A P T E R 9

IrDA Communication Tool ERS

IrDA Tool Options 9-11
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Note

Fields used by connect are fPeerLSAPId, fPeerNameLength
and fClassNames. Fields used by listen are fMyLSAPId,
fMyNameLength and fClassNames. ◆

Serial Bit Rate Option 9

The final stage of the connection process is to make a connection. At this
point a negotiation phase takes place between the Newton and the other
IrDA device. The negotiation parameters are baud rate, data size (receive
buffer size), window size (number of receive buffers), and link disconnect
time.

The TCMOSerialBitRate and the following two options
(TCMOIrDAReceiveBuffers and TCMOIrDALinkDisconnect) are used to
define these negotiation parameters.

class TCMOSerialBitRate : public TOption
{

public:
TCMOSerialBitRate();

BitRatefBitsPerSecond;
};

The field fBitsPerSecond specifies the maximum speed that the Newton is
willing to communicate at. The default is 115200, which is the maximum
possible on the Newton. Here are the other choices:

#define k9600bps 9600
#define k19200bps 19200
#define k38400bps 38400
#define k57600bps 57600
#define k115200bps 115200

For convenience and future compatibility, the known higher FIR speeds
defined for IrDA of 576000, 1152000 and 4000000 will be accepted but treated
as k115200bps (the highest possible speed currently supported by the
hardware).

C H A P T E R 9

IrDA Communication Tool ERS

9-12 IrDA Tool Options

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Receive Buffers Option 9

class TCMOIrDAReceiveBuffers : public TOption
{

public:
TCMOIrDAReceiveBuffers();

ULong fSize;
ULong fCount;

};

The field fSize specifies the size of the receive buffer(s) used by the IrDA
driver. The default is 512 bytes. Valid choices are 64, 128, 256, 512, 1024 and
2048.

The field fCount specifies the number of receive buffers used by the IrDA
comm tool (window size in IrDA-speak). The default is 1. Valid choices
range from 1 to 7.

Note that you may request a large buffer (and/or a large number of buffers),
but the actual size of buffer and number of buffers may be less if the
negotiated speed is less than the maximum that you request.

Link Disconnect Option 9

class TCMOIrDALinkDisconnect : public TOption
{

public:
TCMOIrDALinkDisconnect();

ULong fTimeout;
};

The field fTimeout specifies the time (in seconds) before communication is
terminated, if no activity is received from the peer device. Proper
communication protocol between IrDA devices is to either send data or a
"ready to receive" packet every 500ms (minimum). If no such activity is
detected for fTimeout seconds, then the IrDA comm tool is disconnected.
The default value is 40. Valid choices are 3, 8, 12, 16, 20, 25, 30 and 40.

C H A P T E R 9

IrDA Communication Tool ERS

IrDA Tool Options 9-13
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Note that after 3 seconds of non-activity a disconnect warning event is sent
from the IrDA comm tool.

// Event codes used by system
#define kEventToolSpecific1
#define kEventDisconnect2
#define kEventRelease3

// IrDATool specific event data
#define kDisconnectWarningEvent1// no resp for 3+ secs

Note

All of the negotiation option fields are used by both connect
and listen. ◆

Connect User Data Option 9

There is a rarely used option that may be needed for comm tools that wish to
build upon the base IrDA comm tool. This is the
TCMOIrDAConnectUserData option, which is used during connect time to
send/receive "out of band" data. See IrDA documentation to get an idea of
how this would be used (specifically IrTinyTP and IrComm).

class TCMOIrDAConnectUserData : public TOption
{

public:
TCMOIrDAConnectUserData();

ULong fDataLength;
UChar fData[60];

};

The fields fDataLength and fData used together describe data to be sent/
received during connect/listen.

The option TCMOIrDAConnectAttrName is intended for comm tools (built
upon the IrDA comm tool) that are implementing higher layers of the IrDA
stack (IrComm for example) and want to register their LSAP ids with a
different attribute name. This option defines the IAS attribute string for the
LSAP selector that is registered or looked up by the comm tool. The default

C H A P T E R 9

IrDA Communication Tool ERS

9-14 IrDA Tool Options

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

value for the IrDA comm tool (which is implemented at the IrLMP level) is
"IrDA:IrLMP:LsapSel". For example, a comm tool that implements TinyTP
would supply a value of "IrDA:TinyTP:LsapSel", per the TinyTP spec.

class TCMOIrDAConnectAttrName : public TOption
{

public:
TCMOIrDAConnectAttrName();

ULong fNameLength;
UChar fName[60];

};

The fields fNameLength and fName used together describe the LSAP id
attribute name registered for listen/connect or looked up for connect.

Getting IrDa Tool Information 9

After a connection has been made, you may want to know various results of
the connection. Such as, what speed am I communicating, etc. The
following NewtonScript option can be used with the endpoint Option
method to get this information. The fields are described in the previous
sections.

local connectedOptions :=
[

{
label:"irdi",// IrDA discovery information
type: 'option,
opCode:opGetCurrent,
result:nil,
form: 'template,
data:
{

arglist:
[

0,
0,
0, // service hints of discovered dev
0, // dev addr of discovered device

C H A P T E R 9

IrDA Communication Tool ERS

IrDA Tool Options 9-15
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

0,
],
typelist:
[

kStruct,
kULong,// num probe slots, def:8
kULong,// my service hint, default: PDA
kULong,// service hint mask
kULong,// returned devAddr of peer device
kULong,// use standard media busy check?

],
},

},
{

label:"sbps",// serial bit rate
type: 'option,
opCode:opGetCurrent,
result:nil,
form: 'template,
data:
{

arglist:
[

0, // negotiated speed
],
typelist:
[

kStruct,
kULong,// max negotiate speed, def: 115.2k

],
},

},
{

label:"irrb",// IrDA recv buffers info
type: 'option,
opCode:opGetCurrent,
result:nil,
form: 'template,
data:
{

arglist:
[

C H A P T E R 9

IrDA Communication Tool ERS

9-16 IrDA Tool Options

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

0, // negotiated buffer size
0, // negotiated max buffers in use

],
typelist:
[

kStruct,
kULong,// size of ea recv buf, def: 512
kULong,// num recv bufs used, def: 1

],
},

},
{

label:"irld",// IrDA link disconnect threshold
type: 'option,
opCode:opGetCurrent,
result:nil,
form: 'template,
data:
{

arglist:
[

0, // negotiated disconnect timeout
],
typelist:
[

kStruct,
kULong,// Time before disc, def: 40 secs

],
},

},
{

label:"irco",// "SlowIR" connect info
type: 'option,
opCode:opGetCurrent,
result:nil,
form: 'template,
data:
{

arglist:
[

0, // connectOptions results
],

C H A P T E R 9

IrDA Communication Tool ERS

IrDA Tool Options 9-17
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

typelist:
[

kStruct,
kULong,// How did we connect?

],
},

},
];

Slow IR Connect Option 9

A note about the last option in the example above. Typically, one comm tool
listens while the other connects. But, IrDA has the capability to connect if
both devices are connecting (called symmetric connections here). Both
connect and listen options must be specified for this to work and they both
need to have and look for the same class names. But, after the connection is
established, one of the two devices has (invisibly to the comm tool client)
taken the role of the listener. The return value from the last option above lets
you know if you are the connecter or the "listener".

class TCMOSlowIRConnect : public TOption
{

public:
TCMOSlowIRConnect();

ULong connectOptions;// connect-time options.
};

#defineirActiveConnection(0x02)

If the flag irActiveConnection is set in connectOptions, then comm tool
takes role of connecter. If flag is not set then comm tool takes role of listener.

C H A P T E R 9

IrDA Communication Tool ERS

9-18 IrDA Tool Options

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Note

SlowIR required passing the TCMOSlowIRConnect option
with irSymmetricConnect set in connectOptions to
request "symmetric connecting." But, IrDA does not—the
concept is part of IrDA. And a more important note: Don't
confuse the old SlowIR TCMOSlowIRConnect option and the
new IrDA TCMOIrDAConnectInfo option. They are two
completely different things. ◆

IrDA Statistics Option 9

At any time, you may want to know the status of the connection, in terms of
error/retry rates. The following Newton Script option can be used with the
endpoint Option method to get this information.

local statsOption :=
[

{
label:"irst",// IrDA/(slowIR) stats info
type: 'option,
opCode:opGetCurrent,
result:nil,
form: 'template,
data:
{

arglist:
[

0, // Packets received
0, // CRC errors detected
0, // Packets sent out
0, // Retries
0,
0, // Serial errors detected
0, // Protocol errors

],
typelist:
[

kStruct,
kULong,
kULong,

C H A P T E R 9

IrDA Communication Tool ERS

IrDA Tool Options 9-19
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

kULong,
kULong,
kULong,
kULong,
kULong,

],
},

},
];

C H A P T E R 9

IrDA Communication Tool ERS

9-20 IrDA Tool Options

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-1
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

eMate 300 Multi-user ERS 10

In some classrooms eMate 300 units will be assigned to particular students
who will keep their work on the eMate 300 for several days or longer. The
eMate 300 unit will be used by several different people over the course of the
day. This requires the ability to protect one students data from other
students. When a user wakes up the eMate 300 they will be asked for a user
name and if applicable, a password. Applications designed to be used with
eMate 300, including our own NewtonWorks, will create a separate soup for
each student. The connection application will only backup the work (soups)
of the currently signed in student.

3rd party applications not modified to work with eMate 300 will work just as
they do on other Newtons--all users will see all data.

Configuration UI 10

The Teacher Setup application appears in both the Extras drawer (in the
Unfiled Icons folder), and the Easy Extras drawer. The first time this
application is opened, it prompts the user to specify a password. Figure 8-1
depicts the slip in which the user sets the password to be used.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-2
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 8-1 The set password slip

When the application is opened subsequently, it displays the get password
slip shown in Figure 8-2. The user can also change the current password
from within this slip.

Figure 8-2 The get password slip

Once the password slip has been navigated successfully, the application
displays the Teacher Setup slip, shown in Figure 8-3. This slip specifies
whether the eMate 300 is to operate in a limited-access Classroom Mode or in
Full Newton System mode.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-3
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 8-3 The Teacher Setup slip

The Classroom Options button in the Teacher Setup slip displays the
Classroom Options slip shown in Figure 8-4.

Figure 8-4 The Classroom Options slip

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-4
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

The Classroom Options slip specifies the following configuration options,
which apply to Classroom mode as well as to Full Newton System mode:

■ select the printer with which the eMate 300 is to connect automatically on
demand.

■ select the desktop computer with which the eMate 300 is to connect
automatically on demand.

■ disable automatic spell-checking

■ specify password and user login behaviors avaliable in multi-user mode.
When the “Require password for each user” checkbox is selected,the
eMate 300 holds a separate password for each of multiple users. When the
“Allow only listed users” checkbox is selected, the eMate 300 does not
permit the creation of new users at login time.

Additionally, the Classroom Options slip provides the Edit Extras and Edit
Users buttons, described immediately following.

 The Edit Extras button, shown inFigure 8-5, displays a slip that specifies the
applications visible to Classroom mode users of the Extras Drawer. Selecting
the checkbox next to an item in this slip makes the corresponding application
visible in the Extras Drawer while in Classroom mode.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-5
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 8-5 The ExtrasApplications slip

When the user taps the "Select Recommended Apps" button, the list is
refreshed to show only the default applications that should appear in
Classroom Extras.

The Edit Users button displays a Users slip similar to the one pictured in
Figure 8-6. From this slip, the teacher can add, delete, or edit users and their
associated passwords.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-6
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 8-6 The Users slip

The “Delete” button removes the user account information (name and
password) associated with one or more users selected in the Users slip.
Before deleting this information, the Delete button warns of the destructive
nature of this action by displaying an alert similar to those shown in
Figure 8-7.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-7
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 8-7 User-deletion alerts

User Login Interface 10
Whenever the eMate 300 wakes, it displays a login slip similar to the one
shown in Figure 8-8. The Name picker in this slip is used to specify a user
name. If the “Allow only listed users to login” option in the Teacher Setup
application’s Classroom Options slip is selected(page 10-3), the Name picker
does not include the “New User” item.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-8
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 8-8 User login slip

Password-protected units also require the user to enter a password in the
login slip. The Password line also accepts the Teacher Setup password in
lieu of an individual user’s password. If the “Require Password for each
user” checkbox in the Classroom Options slip is not selected, the Password
line does not appear in the login slip.

The Change Password button displays the set password slip (page 10-2),
which requires entry of the valid password before a change is allowed. This
slip also accepts the Teacher Setup password in lieu of an individual user’s
password.

The New User item in the Names picker displays the New User slip shown
in Figure 8-9. The New User slip is also displayed by the New User button
on the Users slip (page 10-6) made available by the Edit Users button in the
Classroom Options slip (page 10-3).

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-9
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Figure 8-9 New user slip

Note that here, too, if "Require Password" is not on, the password line does
not appear in the slip.

After logging in, the user is in the eMate 300 and can begin work. For all
applications that have been written to work with eMate 300, the user will
only see the data that has been created by the current user. For other
applications (including all of the built-in applications) the user will see all of
the data.

The data will be hidden by creating a separate soup for each user. The name
of the user will be saved in the soup info in a userName slot. Each "aware"
application will use the correct soup based on the current user. Each
application will also register for changes to the current user slot in
userconfiguration so that it can change users after the eMate 300 wakes up.

The eMate 300 connection application will know to look into the soup's info
and only backup and restore the data for the current user.

If the user switches to single-user mode from multi-user mode, the generic
(e.g. "NewtonWorks") soup will be shown.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-10 Developer API

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Developer API 10

Applications will have to do a few special things to work in "multi-user"
mode:

■ When the application opens, check the current user and open the
appropriate soup. Your application can name its soups anything you want
(soup1, soup2, etc.). The only requirement is that your application provide
a GetBackupSoupNames method that returns an array of the names of the
soups for the current user, so Connection for the classroom can work
properly.

GetBackupSoupNames 10

GetBackupSoupNames()

Returns an array of strings corresponding to the names of this application's
soups for the current user.

■ The application must also be aware that the current user can change while
the application is open. To handle this, the application can register for
userconfiguration changes while it's open. Here's an example of how the
method that responds to userconfig changes should look:

func(changeSym) begin
if changeSym = 'KCurrentUser then

GetRoot().HomePage:MultiUserSwitch('newtWorks);
end

MultiUserSwitch(appSymbol) handles the regular case, by closing and
reopening the application when the user changes.

MultiUserSwitch 10

MultiUserSwitch(appSymbol)

Performs setup and housekeeping tasks required to change users.

C H A P T E R 1 0

eMate 300 Multi-user ERS

Compatibility Information 10-11
Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

GetUserConfig 10

GetUserConfig(userSym)

Returns a string corresponding to the name of the specified user, or nil if the
unit is not in multi-user mode.

userSym Symbol specifying the current user. The only valid value
for this argument is the 'KCurrentUser symbol

GenSoupName 10

GetRoot().HomePage:GenSoupName(soupName, currentUser)

Returns a string that can be used as the soup name for a given user.

GenSoupName concatenates the soupName and the userName, putting a
colon in between. If the userName is nil (indicating that the unit is not in
multi-user mode), the soupName is returned without being modified.

The userName is limited to 19 characters. You must ensure that the user’s
soup name doesn't exceed 19 characters if it will be used in multi-user mode.

KClassroomAware slot 10

An application that works in Classroom mode can set the
'KClassroomAware slot in its base view, causing the application to be
checked by default in the Edit Extras slip.

Compatibility Information 10

For applications to be compatible with multi-user mode, they must meet
several requirements:

1. There should be no folder tab in the application. Because folders are
stored on a per-application basis, one user could delete a folder that another
user needs, which would be very confusing.

2. The application must follow the rules in the Developer API section above.

C H A P T E R 1 0

eMate 300 Multi-user ERS

10-12 Compatibility Information

Preliminary Draft. © 1996 Apple Computer, Inc. 10/6/96

Applications that don't meet these requirements should not set the
'KClassroomAware slot. These applications still appear in the Edit Extras
slip, but are not selected by default.

	About This Book
	Related Books
	Sample Code
	Conventions Used in This Book
	Special Fonts

	Developer Products and Support

	NewtonWorks API ERS
	NewtonWorks-Specific slots
	DataDef
	Info Preferences
	Infobox (Title slip) info

	Viewdefs
	Find
	Table�2-1 FindChange parameters and actions

	Storage
	Scrolling
	Status Bar
	Help
	Other

	Registering Tools
	NewtonWorks Word Processor Soup Format

	NewtonWorks Draw Application ERS
	Overview
	Feature List
	Creating Graphical Objects
	Modifying Graphical Objects
	Figure�3-1 Fill/pattern palette

	Arranging Graphical Objects
	Setting Text Attributes
	Setting Paragraph Rulers
	ClipArt Stamps (bitmaps)
	Additional Features

	Gestures
	Selection
	Specifying Vertices of Polygons
	Locking Tools Palette

	User Interface
	Figure�3-2 Draw application user interface
	Tool Bar
	Arrow Tool
	Text Tool
	Line Tool
	Rectangle Tool
	Rounded Rectangle Tool
	Oval Tool
	Arc Tool
	Freehand Tool
	Polygon Tool
	Stamp Tool
	Shapes Tool
	Fill Pattern Palette
	Figure�3-3 Selecting a fill pattern

	Pen Pattern Palette
	Figure�3-4 Selecting a pen pattern

	Pen Size Palette
	Figure�3-5 Selecting a pen size

	New Button
	Edit Button
	Figure�3-6 The Edit button collapsed and expanded
	Undo
	Cut, Copy, Paste, Clear, Duplicate
	Select All

	Arrange Button
	Figure�3-7 The Arrange button
	Move Forward, Move Backward
	Move to Front, Move to Back
	Align Objects
	Figure�3-8 The Align Objects slip

	Rotate Right/Left
	Flip Horizontally, Flip Vertically
	Group, Ungroup
	Font Button
	Tools Button
	Hide Grid/Show Grid
	Hide Tools/Show Tools
	Show Rulers/Hide Rulers
	Info Button
	About
	Help
	Prefs

	Developer API
	Adding and Removing Custom Drawing Tools
	Drawing Tool Template
	Developer-Defined Drawing Tool Methods

	Drawing Methods
	Draw Patterns
	Draw Stamps

	Word Processing View ERS
	About protoTXView And the View System
	Application-defined Methods
	Table�4-1 Use of application-defined method in pro...

	View Slots
	Table�4-2 Use of standard view system slots in pro...

	Other View Features

	Terminology
	Common Parameter Descriptions
	The Range Frame
	The Font Specification Frame
	The Graphics Specification Frame
	The Ruler Information Frame
	Tab Frames

	Initialization
	Getting Info
	Editing
	Storage
	Scrolling
	Highlighting
	Ruler User Interface
	Figure�4-1 The displayed ruler

	Pages
	Printing
	protoTXViewFinder

	Keyboard Enhancements ERS
	Terminology
	User Interface
	General Usage
	Text entry and editing
	Slips, windows, and buttons:
	Figure�5-1 The find slip when it is not the key vi...
	Figure�5-2 The Find slip when it is the key view

	Menus
	Figure�5-3 A menu with and without its keyboard eq...
	The Command-key Combination Pop-up Help Slip
	Figure�5-4 Command-key combination slip.

	System and Built-in App Command Key Assignments
	Table�5-1 System-level key assignments (continued)...
	Command-key Assignments for The NotePad Applicatio...
	Table�5-2 Notepad checklist and outline stationery...

	Command-Key Assignments for The Names Application
	Table�5-3 Names application command keys

	Command-Key Assignments for The Dates Application
	Table�5-4 Dates application command keys

	Command-Key Assignments for The In/Out Box
	Table�5-5 In/Out box command keys

	Command-Key Assignments for The Call Log
	Table�5-6 Call log command keys

	Command-Key Assignments for the BookPlayer
	Table�5-7 BookPlayer command keys

	Keyboard Reference
	Keystroke Handling
	Table�5-8 Summary of keyboard methods and function...
	Intercepting Keystrokes Directly
	Table�5-9 Key event-processing script flags�

	Keystroke Event Sequencing
	Key-down Events
	Key-repeat Events
	Key-release Events

	Intercepting Grouped Keystrokes
	Typing Without a Caret
	Table�5-10 Text flags to specify the kind of keyst...

	The Caret Stack and Caret Activation
	Obtaining The State Of a Key
	Simulating Keystrokes

	Command Key Handling
	Table�5-11 Summary of command key methods and func...
	The Command-Key Mapping Frame
	Table�5-12 Key codes for special keys (continued)

	Searching for Key Commands
	Table�5-13 Command definition views

	KeyMessage Definition and Invocation
	Adding, Blocking, and Removing Key Commands
	Looking Up KeyCommands
	Displaying the Pop-up Command Key Help Slip
	Faking a Button Press
	Designating the Default Button In a Slip
	Designating a Slip’s Close Box
	Default and Close Buttons in Confirm Slips
	Table�5-14 New default button lists

	KeyCommands and Popup Menus

	Compatibility
	Default Buttons
	Possible Key-view Compatibility Problem

	Newton OS 2.1 Grayscale Imaging ERS
	Overview of Features
	Terminology
	Developer API
	Color definitions in graphic shapes' style frame
	Dithered Patterns
	Text shapes
	Color PICTs and bitmaps
	Manipulating Bitmap Data
	Gray Text in clEditView Views
	Gray viewFormat
	Utility Functions

	Compatibility Information

	Newton OS 2.1 Graphics Shapes ERS
	Data Structures
	Modifications to the Style Frame

	Functions
	New Functions
	Changed Functions
	MakeShape now handles bitmaps with masks
	GetStrokePointsArray filters more points and swaps...

	Newton OS 2.1 Sound ERS
	Terminology
	User Interface
	Developer Interface
	Sound Interface in 1.x Systems
	Sound Interface in 2.0 Systems
	Sound Interface for Newton OS 2.1
	protoSoundChannel
	Sound Frame Format
	Sound Result Frame Format
	Sound Manager Error Codes

	Compatibility Information
	Sound Input
	NewtonScript Interface
	Devices and Channels
	Input Gain
	ProtoSoundChannel
	ProtoSoundFrame
	MuLaw Compression

	Setting Global Sound Preferences
	Getting and Setting Input Gain
	Getting or Setting Default Input or Output Devices...
	UserConfiguration Slots

	Sound Recorder and Player
	ProtoRecorderEngine
	ProtoRecorderView
	SoundPaper

	Dial-In Networks ERS
	Data Structures
	Access Frame
	Network Frame

	Global Functions

	IrDA Communication Tool ERS
	Overview
	Terminology
	User Interface
	Using the IrDA Tool
	IrDA Tool Options
	Discovery Option
	Connection Info Option
	Serial Bit Rate Option
	Receive Buffers Option
	Link Disconnect Option
	Connect User Data Option
	Getting IrDa Tool Information
	Slow IR Connect Option
	IrDA Statistics Option

	eMate 300 Multi-user ERS
	Configuration UI
	Figure�8-1 The set password slip
	Figure�8-2 The get password slip
	Figure�8-3 The Teacher Setup slip
	Figure�8-4 The Classroom Options slip
	Figure�8-5 The ExtrasApplications slip
	Figure�8-6 The Users slip
	Figure�8-7 User-deletion alerts

	User Login Interface
	Figure�8-8 User login slip
	Figure�8-9 New user slip

	Developer API
	KClassroomAware slot

	Compatibility Information

