http://www. 6502.org/source/floats/wozfpl.txt
31 October 2004
TABLE OF CONTENTS
Floating Point Routines for the 6502 by Roy Rankin and Steve Wozniak
Originally published in the August 1976 issue of Dr. Dobb's Journal, these floating point routines allow 6502 users to perform most of the more popular and desired floating point and transcendental functions, namely: Natural Log, Common Log, Addition, Subtraction, Multiplication, Division, and conversions between floating and fixed point numbers.

Errata for Rankin's 6502 Floating Point Routines by Roy Rankin
In the November/December issue of Dr. Dobb's Journal Roy Rankin published three error corrections to the Floating Point Routines presented above.

Floating Point Implementation in the Apple II by Steve Wozniak
An almost identical set of the above routines appeared in the original manual for the Apple II (the Red Book, January 1978). Documentation for these routines appeared in another book, the Wozpak II, in November 1979.

Floating Point Routines for the 6502 by Roy Rankin and Steve Wozniak
Originally published in the August 1976 issue of Dr. Dobb's Journal, these floating point routines allow 6502 users to perform most of the more popular and desired floating point and transcendental functions, namely: Natural Log, Common Log, Addition, Subtraction, Multiplication, Division, and conversions between floating and fixed point numbers.

Dr. Dobb's Journal, August 1976, pages 17-19.
Floating Point Routines for the 6502
by Roy Rankin, Department of Mechanical Engineering, Stanford University, Stanford, CA 94305
(415) 497-1822
and
Steve Wozniak, Apple Computer Company
770 Welch Road, Suite 154
Palo Alto, CA 94304
(415) 326-4248

Editor's Note: Although these routines are for the 6502, it would appear that one could generate equivalent routines for most of the "traditional" microprocessors, relatively easily, by following the flow of the algorithms given in the excellent comments included in the program listing. This is particularly true of the transcendental functions, which were directly modeled after well-known and proven algorithms, and for which, the comments are relatively machine independent.

These floating point routines allow 6502 users to perform most of the more popular and desired floating point and transcendental functions, namely:

Natural Log - LOG
Common Log - LOG10
Exponential - EXP
Floating Add - FADD
Floating Subtract - FSUB
Floating Multiply - FMUL
Floating Divide - FDIV
Convert Floating to Fixed - FIX
Convert Fixed to Floating - FLOAT
They presume a four-byte floating point operand consisting of a one-byte exponent ranging from -128 to +127 and a
24 -bit two's complement mantissa between 1.0 and 2.0.
The floating point routines were done by Steve Wozniak, one of the principals in Apple Computer Company. The transcendental functions were patterned after those offered by Hewlett-Packard for their HP2100 minicomputer (with some modifications), and were done by Roy Rankin, a Ph.D. student at Stanford University.

There are three error traps; two for overflow, and one for prohibited logarithm argument. ERROR (1D06) is the error exit used in the event of a non-positive log argument. OVFLW (1E3B) is the error exit for overflow occuring during calculation of e to some power. OVFL (1FE4) is the error exit for overflow in all of the floating point routines. There is no trap for underflow; in such cases, the result is set to 0.0.

All routines are called and exited in a uniform manner: The arguments(s) are placed in the specified floating point storage locations (for specifics, see the documentation preceeding each routine in the listing), then a JSR is used to enter the desired routine. Upon normal completion, the called routine is exited via a subroutine return instruction (RTS).

Note: The preceeding documentation was written by the Editor, based on phone conversations with Roy and studying the listing. There is a high probability that it is correct. However, since it was not written nor reviewed by the authors of these routines, the preceeding documentation may contain errors in concept or in detail.
-- JCW, Jr.

In the Exponent:
00 Represents - 128
7F Represents -1
80 Represents 0
81 Represents +1
FF Represents +127

Exponent SEEEEEEE n		Two's Complement Mantissa		
		SM. MMMMMM $n+1$	MMMMMMMM MMMMMMMM $n+2 \quad n+3$	
		*	JULY 5, 1976	
		*	BASIC FLOATING POINT ROUTINES	
		*	FOR 6502 MICROPROCESSOR	
		*	BY R. RANKIN AND S. WOZNIAK	
		*		
		*	CONSISTING OF:	
		*	NATURAL LOG	
		*	COMMON LOG	
		*	EXPONENTIAL (E**X)	
		*	FLOAT FIX	
		*	FADD FSUB	
		*	FMUL FDIV	
		*		
		*		
		*	FLOATING POINT REPRESENTATION (4-BYTES)	
		*	EXPONENT BYTE 1	
		*	MANTISSA BYTES 2-4	
		*		
		*	MANTISSA: TWO'S COMPLIMENT REPRESENTATION WITH SIGN IN	
		*	MSB OF HIGH-ORDER BYTE. MANTISSA IS NORMALIZED WITH AN	
		*	ASSUMED DECIMAL POINT BETWEEN BITS 5 AND 6 OF THE HIGH-ORDER	
		*	BYTE. THUS THE MANTISSA IS IN THE RANGE 1. TO 2. EXCEPT	
		*	WHEN THE NUMBER IS LESS THAN $2^{* *}(-128)$.	
		*	EXPONENT: THE EXPONENT REPRESENTS POWERS OF TWO. THE	
		*		
		*	REPRESENTATION IS 2'S COMPLIMENT EXCEPT THAT THE SIGN	
		*	BIT (BIT 7) IS COMPLIMENTED. THIS ALLOWS DIRECT COMPARISON	
		*	OF EXPONENTS FOR SIZE SINCE THEY ARE STORED IN INCREASING	
		*	NUMERICAL SEQUENCE RANGING FROM \$00 (-128) T0 \$FF (+127)	
		*	(\$ MEANS NUMBER IS HEXADECIMAL).	
		*		
		*	REPRESENTATION OF DECIMAL NUMBERS: THE PRESENT FLOATING POINT REPRESENTATION ALLOWS DECIMAL NUMBERS IN THE APPROXIMATE RANGE OF 10**(-38) THROUGH 10**(38) WITH 6 TO 7 SIGNIFICANT	
		*		
		*		
		*	DIGITS.	
		*		
0003			ORG 3 SET BASE PAGE ADRESSES	
0003	EA	SIGN	NOP	
0004	EA	X2	NOP EXPONENT 2	
0005	0000	00 M2	BSS 3 MANTISSA 2	
0008	EA	X1	NOP EXPONENT 1	
0009	0000	00 M1	BSS 3 MANTISSA 1	
000C		E	BSS 4 SCRATCH	
0010		Z	BSS 4	
0014		T	BSS 4	
0018		SEXP	BSS 4	
001C	00	${ }_{*}^{\text {INT }}$	BSS 1	
1 D 00			STARTING LOCATION FOR LOG	
		*		
		*		
		*	NATURAL LOG OF MANT/EXP1 WITH RESULT IN MANT/EXP1	
		*		
1 100	A5 09	LOG	LDA M1	
1 D02	F0 02		BEQ ERROR	

1F71	95	0 F		STA E+3, X
1F73	E8			INX
1F74	D0	F2		BNE ROR1 BYTE OF SHIFT
1F76	60			LOOP UNTIL DONE
			RTS	RETURN

1FD9		B2	MD3	BCC NORMX	CLEAR X1 AND RETURN
1 1FDB		80		EOR =\$80	COMPLIMENT SIGN BIT OF EXP
$1 F D D$		08		STA X1	STORE IT
1FDF	A0	17		LDY =\$17	COUNT FOR 24 MUL OR 23 DIV ITERATIONS
1FE1	60			RTS	RETURN
1FE2	10	F7	OVCHK	BPL MD3	IF POS EXP THEN NO OVERFLOW
1FE4	00		$\begin{aligned} & \text { OVFL } \\ & * \end{aligned}$	BRK	
			*		
			*	CONVERT EXP	MANT1 TO INTEGER IN M1 (HIGH) AND M1+1(LOW)
			*	EXP/MANT2	NEFFECTED
			*		
1FE5	20	5F 1F		JSR RTAR	SHIFT MANT1 RT AND INCREMENT EXPNT
1FE8	A5	08	FIX	LDA X1	CHECK EXPONENT
1FEA	C9	8E		CMP $=\$ 8 \mathrm{E}$	IS EXPONENT 14?
$1 F E C$	D0	F7		BNE FIX-3	NO, SHIFT
$1 F E E$	60		RTRN	RTS	RETURN
				END	

Errata for Rankin's 6502 Floating Point Routines by Roy Rankin
In the November/December issue of Dr. Dobb's Journal Roy Rankin published three error corrections to the Floating Point Routines presented above.

Dr. Dobb's Journal, November/December 1976, page 57.
ERRATA FOR RANKIN'S 6502
FLOATING POINT ROUTINES
Sept. 22, 1976
Dear Jim,
Subsequent to the publication of "Floating Point
Routines for the 6502" (Vol.1, No.7) an error which I made in the LOG routine came to light which causes improper results if the argument is less than 1 . The following changes will correct the error.

1.	After: Add:	A2 00	CONT JSR SWAP LDX $=0$	${ }_{\text {(1D07) }}^{\text {LOAD }} \mathrm{X}$ FOR HIGH BYTE OF EXPONENT
2.	After:		STA M1+1	(1D12)
	Delete:		LDA $=0$	
			STA M1	
	Add:	1001	BPL *+3	IS EXPONENT NEGATIVE
		CA	DEX	YES, SET X TO \$FF
		8609	STX M1	SET UPPER BYTE OF EXPONENT

3. Changes 1 and 2 shift the code by 3 bytes so add 3 to the addresses of the constants LN10 through MHLF whenever they are referenced. For example the address of LN10 changes from 1DCD to 1DD0. Note also that the entry point for LOG10 becomes 1DBF. The routines stays within the page and hence the following routines (EXP etc.) are not affected.

Yours truly,

Roy Rankin
Dep. of Mech. Eng.
Stanford University

Floating Point Implementation in the Apple II by Steve Wozniak
An almost identical set of the above routines appeared in the original manual for the Apple II (the Red Book, January 1978). Documentation for these routines appeared in another book, the Wozpak II, in November 1979.

Woz 6502 Floating Point Routines
Apple II Reference Manual (Red Book), January 1978, pages 94-95.

F44E: D0	F3		BNE	SWAP1	LOOP UNTIL DONE.
F450: 60			RTS		RETURN
F451: A9	8E	FLOAT	LDA	\#\$8E	INIT EXP1 TO 14,
F453: 85	F8		STA	X1	THEN NORMALIZE TO FLOAT.
F455: A5	F9	NORM1	LDA	M1	HIGH-ORDER MANT1 BYTE.
F457: C9	C0		CMP	\# $\$$ C0	UPPER TWO BITS UNEQUAL?
F459: 30	0C		BMI	RTS1	YES, RETURN WITH MANT1 NORMALIZED
F45B: C6	F8		DEC	X1	DECREMENT EXP1.
F45D: 06	FB		ASL	M1+2	
F45F: 26	FA		ROL	M1+1	SHIFT MANT1 (3 BYTES) LEFT.
F461: 26	F9		ROL	M1	
F463: A5	F8	NORM	LDA	X1	EXP1 ZER0?
F465: D0	EE		BNE	NORM1	NO, CONTINUE NORMALIZING.
F467: 60		RTS1	RTS		RETURN.
F468: 20	A4 F4	FSUB	JSR	FCOMPL	CMPL MANT1,CLEARS CARRY UNLESS 0
F46B: 20	7B F4	SWPALGN	JSR	ALGNSWP	RIGHT SHIFT MANT1 OR SWAP WITH
F46E: A5	F4	FADD	LDA	X2	
F470: C5	F8		CMP	X1	COMPARE EXP1 WITH EXP2.
F472: D0	F7		BNE	SWPALGN	IF \#,SWAP ADDENDS OR ALIGN MANTS.
F474: 20	25 F4		JSR	ADD	ADD ALIGNED MANTISSAS.
F477: 50	EA	ADDEND	BVC	NORM	NO OVERFLOW, NORMALIZE RESULT.
F479: 70	05		BVS	RTLOG	OV: SHIFT M1 RIGHT, CARRY INTO SIGN
F47B: 90	C4	* ${ }_{*}$ GGNSWP	$\begin{aligned} & \mathrm{BCC} \\ & \text { ELSE } S \end{aligned}$	SWAP HIFT RIG	SWAP IF CARRY CLEAR, T ARITH
F47D: A5	F9	RTAR	LDA	M1	SIGN OF MANT1 INTO CARRY FOR
F47F: 0A			ASL		RIGHT ARITH SHIFT.
F480: E6	F8	RTLOG	INC	X1	INCR X1 T0 ADJUST FOR RIGHT SHIFT
F482: F0	75		BEQ	OVFL	EXP1 OUT OF RANGE.
F484: A2	FA	RTLOG1	LDX	\#\$FA	INDEX FOR 6:BYTE RIGHT SHIFT.
F486: 76	FF	ROR1	ROR	E+3, X	
F488: E8			INX		NEXT BYTE OF SHIFT.
F489: D0	FB		BNE	ROR1	LOOP UNTIL DONE.
F48B: 60			RTS		RETURN.
F48C: 20	32 F4	FMUL	JSR	MD1	ABS VAL OF MANT1, MANT2
F48F: 65	F8		ADC	X1	ADD EXP1 TO EXP2 FOR PRODUCT EXP
F491: 20	E2 F4		JSR	MD2	CHECK PROD. EXP AND PREP. FOR MUL
F494: 18			CLC		CLEAR CARRY FOR FIRST BIT.
F495: 20	84 F4	MUL1	JSR	RTLOG1	M1 AND E RIGHT (PROD AND MPLIER)
F498: 90	03		BCC	MUL2	IF CARRY CLEAR, SKIP PARTIAL PROD
F49A: 20	25 F4		JSR	ADD	ADD MULTIPLICAND TO PRODUCT.
F49D: 88		MUL2	DEY		NEXT MUL ITERATION.
F49E: 10	F5		BPL	MUL1	LOOP UNTIL DONE.
F4A0: 46	F3	MDEND	LSR	SIGN	TEST SIGN LSB.
F4A2: 90	BF	NORMX	BCC	NORM	IF EVEN,NORMALIZE PROD, ELSE COMP
F4A4: 38		FCOMPL	SEC		SET CARRY FOR SUBTRACT.
F4A5: A2	03		LDX	\#\$3	INDEX FOR 3 BYTE SUBTRACT.
F4A7: A9	00	COMPL1	LDA	\#\$0	CLEAR A.
F4A9: F5	F8		SBC	X1, X	SUBTRACT BYTE OF EXP1.
F4AB: 95	F8		STA	X1, X	RESTORE IT.
F4AD: CA			DEX		NEXT MORE SIGNIFICANT BYTE.
F4AE: D0	F7		BNE	COMPL1	LOOP UNTIL DONE.
F4B0: F0	C5		BEQ	ADDEND	NORMALIZE (OR SHIFT RT IF OVFL).
F4B2: 20	32 F4	FDIV	JSR	MD1	TAKE ABS VAL OF MANT1, MANT2.
F4B5: E5	F8		SBC	X1	SUBTRACT EXP1 FROM EXP2.
F4B7: 20	E2 F4		JSR	MD2	SAVE AS QUOTIENT EXP.
F4BA: 38		DIV1	SEC		SET CARRY FOR SUBTRACT.
F4BB: A2	02		LDX	\#\$2	INDEX FOR 3-BYTE SUBTRACTION.
F4BD: B5	F5	DIV2	LDA	M2, X	
F4BF: F5	FC		SBC	E, X	SUBTRACT A BYTE OF E FROM MANT2.
F4C1: 48			PHA		SAVE ON STACK.
F4C2: CA			DEX		NEXT MORE SIGNIFICANT BYTE.
F4C3: 10	F8		BPL	DIV2	LOOP UNTIL DONE.
F4C5: A2	FD		LDX	\#\$FD	INDEX FOR 3-BYTE CONDITIONAL MOVE
F4C7: 68		DIV3	PLA		PULL BYTE OF DIFFERENCE OFF STACK

Wozpak][, November 1979, pages 109-115.

FLOATING POINT PACKAGE

The mantissa-exponent, or 'floating point' numerical representation is widely used by computers to express values with a wide dynamic range. With floating point representation, the number $7.5 \times 10^{\wedge} 22$ requires no more memory to store than the number 75 does. We have allowed for binary floating point arithmetic on the APPLE][computer by providing a useful subroutine package in ROM, which performs the common arithmetic functions. Maximum precision is retained by these routines and overflow conditions such as 'divide by zero' are trapped for the user. The 4-byte floating point number representation is compatible with future APPLE products such as floating point BASIC.

A small amount of memory in Page Zero is dedicated to the floating point workspace, including the two floating-point accumulators, FP1 and FP2. After placing operands in these accumulators, the user calls subroutines in the ROM which perform the desired arithmetic operations, leaving results in FP1. Should an overflow condition occur, a jump to location \$3F5 is executed, allowing a user routine to take appropriate action.

FLOATING POINT REPRESENTATION

Exponent
Signed Mantissa

1. Mantissa

The floating point mantissa is stored in two's complement representation with the sign at the most significant bit (MSB) position of the high-order mantissa byte. The mantissa provides 24 bits of precision, including sign, and can represent 24 -bit integers precisely. Extending precision is simply a matter of adding bytes at the low order end of the mantissa.

Except for magnitudes less than $2^{\wedge}-128$ (which lose precision) mantissa are normalized by the floating point routines to retain maximum precision. That is, the numbers are adjusted so that the upper two high-order mantissa bits are unequal.

HIGH-ORDER MANTISSA BYTE

1. XXXXXX Positive mantissa.
2. $X X X X X X$ Negative mantissa.
3. XXXXXX Unnormalized mantissa.
4. $X X X X X X$ Exponent $=-128$.

2. Exponent.

The exponent is a binary scaling factor (power of two) which is applied to the mantissa. Ranging from -128 to +127 , the exponent is stored in standard two's complement representation except for the sign bit which is complemented. This representation allows direct comparison of exponents, since they are stored in increasing numerical sequence. The most negative exponent, corresponding to the smallest magnItude, -128 , is stored as $\$ 00$ (\$ means hexidecimal) and the most positive, +127 , is stored as \$FF (all ones).

EXPONENT	STORED	AS
+127	11111111	$(\$ F F)$
+3	10000011	$(\$ 83)$
+2	10000010	$(\$ 82)$

+1	10000001	$(\$ 81)$
0	10000000	$(\$ 80)$
-1	01111111	$(\$ 7 F)$
-2	01111110	$(\$ 7 E)$
-3	01111101	$(\$ 7 D)$
-128	00000000	$(\$ 00)$

The smallest magnitude which can be represented is $2^{\wedge}-150$.

The largest positive magnitude which can be represented is $+2^{\wedge} 128-1$.

FLOATING POINT REPRESENTATION EXAMPLES

DECIMAL	HEX	HEX
NUMBER	EXPONENT	MANTISSA

	3	60	00	00
+3	81	40	00	00
+4	82	50	00	00
+5	82	70	00	00
+7	82	60	00	00
+12	83	60		
+15	83	78	00	00
+17	84	44	00	00
+20	84	50	00	00
+60	85	78	00	00
-3	81	A0 00	00	
-4	81	80	00	00
-5	82	B0 00	00	
-7	82	90	00	00
-12	83	A0 0000		
-15	83	88	00	00
-17	84	BC 00	00	
-20	84	$B 0$	00	00
-60	85	88	00	00

FLOATING POINT SUBROUTINE DESCRIPTIONS

FCOMPL subroutine (address \$F4A4)
Purpose: FCOMPL is used to negate floating point numbers.
Entry: A normalized or unnormalized value is in FP1 (floating point accumulator 1).

Uses: NORM, RTLOG.
Exit: The value in FP1 is negated and then normalized to retain precision. The 3-byte FP1 extension, E, may also be altered but FP2 and SIGN are not disturbed. The 6502 A-REG is altered and the X-REG is cleared. The Y-REG is not disturbed.

Caution: Attempting to negate $-2^{\wedge} 128$ will result in an overflow since $+2^{\wedge} 128$ is not representable, and a jump to location $\$ 3 F 5$ will be executed, with the following contents in FP1.

Example: Prior to calling FCOMPL, FP1 contains +15.

After calling FCOMPL as a subroutine, FP1 contains -15.

FADD subroutine (address \$F46E)
Purpose: To add two numbers in floating point form.
Entry: The two addends are in FP1 and FP2 respectively. For maximum
precision, both should be normalized.
Uses: SWPALGN, ADD, NORM, RTLOG.
Exit: The normalized sum is left in FP1. FP2 contains the addend of greatest magnitude. E is altered but sign is not. The A-REG is altered and the X-REG is cleared. The sum mantissa is truncated to 24 bits.

Caution: Overflow may result if the sum is less that -2^128 or greater than $+2^{\wedge} 128-1$. If so, a jump to location $\$ 3 F 5$ is executed leaving 0 in $\mathrm{X1}$, and twice the proper sum in the mantissa M1. The sign bit is left in the carry, 0 for positive, 1 for negative.

(For carry=0, true sum=+X.YYY x 2^128)
Example: Prior to calling FADD, FP1 contains +12 and FP2 contains -5.

X2
M2
After calling FADD, FP1 contains +7 (FP2 contains +12).

FSUB subroutine (address \$F468)
Purpose: To subtract two floating point numbers.
Entry: The minuend is in FP1 and the subtrahend is in FP2. Both should be normalized to retain maximum precision prior to calling FSUB.

Uses: FCOMPL, ALGNSWP, FADD, ADD, NORM, RTLOG.

Exit: The normalized difference is in FP1 with the mantissa truncated to 24 bits. FP2 holds either the minued or the negated subtrahend, whichever is of greater magnitude. E is altered but SIGN and SCR are not. the A-REG is altered and the X-REG is cleared. The Y-REG is not disturbed.

Cautions: An exit to location S3F5 is taken if the result is less than $-2^{\wedge} 128$ or greater than $+2^{\wedge} 128-1$. or if the subtrahend is $-2^{\wedge} 128$.

Example: Prior to calling FSUB, FP1 contains +7 (minuend) and FP2 contalns -5 (subtrahend).

After calling FSUB, FP1 contains +12 and FP2 contains +7 .

FMUL subroutine (address \$F48C)
Purpose: To multiply floating point numbers.
Entry: The multiplicand and multiplier must reside in FP1 and FP2 respectively. Both should be normalized prior to calling FMUL to retain maximum precision.

Uses: MD1, MD2, RTLOG1, ADD, MDEND.
Exit: The signed normalized floating point product is left in FP1. M1 is truncated to contain the 24 most significant mantissa bits (including sign). The absolute value of the multiplier mantissa (M2) is left in FP2. E, SIGN, and SCR are altered. The A- and X-REGs are altered and the Y-REG contains \$FF upon exit.

Cautions: An exit to location $\$ 3 F 5$ is taken if the product is less than -2^128 or greater than $+2^{\wedge} 128-1$.

Notes: FMUL will run faster if the absolute value of the multiplier
mantissa contains fewer 'l's than the absolute value of the multiplicand mantissa.

Example: Prior to calling FMUL, FP1 contains +12 and FP2 contains -5.
FP1: $\$ 83$
X1
\$60

FP2:

X2
M2

After calling FMUL, FP1 contains -60 and FP2 contains +5.
FP1:

X1
M1

X2
M2

FDIV subroutine (addr \$F4B2)
Purpose: To perform division of floating point numbers.
Entry: The normalized dividend is in FP2 and the normalized divisor is in FP1.

Exit: The signed normalized floating point quotient is left in FP1. The mantissa (M1) is truncated to 24 bits. The 3 -bit M1 extension (E) contains the absolute value of the divisor mantissa. MD2, SIGN, and SCR are altered. The A- and X-REGs are altered and the Y -REG is cleared.

Uses: MD1, MD2, MDEND.
Cautions: An exit to location $\$ 3 \mathrm{~F} 5$ is taken if the quotient is less than $-2^{\wedge} 128$ or greater than $+2^{\wedge} 128-1$

Notes: MD2 contains the remainder mantissa (equivalent to the MOD function). The remainder exponent is the same as the quotient exponent, or 1 less if the dividend mantissa magnitude is less than the divisor mantissa
magnitude.
Example: Prior to calling FDIV, FP1 contains -60 (dividend), and FP2 contains +12 (divisor).

After calling FMUL, FP1 contains -5 and M2 contains 0.

X1

FLOAT Subroutine (address \$F451)
Purpose: To convert integers to floating point representation.
Entry: A signed (two's complement) 2-byte integer is stored in M1 (high-order byte) and M1+1 (low-order byte). M1+2 must be cleared by user prior to entry.

Uses: NORM1.
Exit: The normalized floating point equivalent is left in FP1. E, FP2, SIGN, and SCR are not disturbed. The A-REG contains a copy of the high-order mantissa byte upon exit but the X - and Y -REGs are not disturbed. The carry is cleared.

Notes: To float a 1-byte integer, place it in M1+1 and clear M1 as well as M1+2 prior to calling FLOAT.

FLOAT takes approximately 3 msec . lonqer to convert zero to floating point form than other arguments. The user may check for zero prior to calling FLOAT and increase throughput.

```
    *
    * LOW-ORDER INT. BYTE IN A-REG
    * HIGH-ORDER BYTE IN Y-REG
    *
85 FA XFLOAT STA M1+1
```

	F9		STY	M1 I	INIT MANT1
A0	00		LDY	\#\$0	
84	FB		STY	M1+2	
05	D9		ORA	M1 C	CHK BOTH BYTES FOR
D0	03		BNE	TOFLOAT	T ZERO
85	F8		STA	X1 I	IF S0 CLR X1
60			RTS		AND RETURN
4C	51 F4	TOFLOAT	JMP	FLOAT E	ELSE FLOAT

Example: Float +274 (\$0112 hex)
CALLING SEQUENCE

A0 01	LDY \#\$01	HIGH-ORDER
A9 12	LDA \#\$12	INTEGER BYTE 84 F9
85 FA		INTEGER BYTE

Upon returning from FLOAT, FP1 contains the floating point representation of +274 .

FIX subroutine (address \$F640)
Purpose: To extract the integer portion of a floating point number with truncation (ENTIER function).

Entry: A floating point value is in FP1. It need not be normalized.
Uses: RTAR.
Exit: The two-byte signed two's complement representation of the integer portion is left in M1 (high-order byte) and M1+1 (low-order byte). The floating point values +24.63 and -61.2 are converted to the integers +24 and -61 respectively. FP1 and E are altered but FP2, E, SIGN, and SCR are not. The A - and X-REGs are altered but the Y-REG is not.

Example: The floating point value +274 is in FP1 prior to calling FIX.

FP1: $|\overline{\$ 88}||\$ 44||\overline{|\$ 80|}| 0 \mid(+274)$
\qquad
\qquad | \qquad
\qquad _

X1
M1
After calling FIX, M1 (high-order byte) and M1+1 (low-order byte) contain the integer representation of +274 (\$0112).

Note: FP1 contains an unnormalized representation of +274 upon exit.

NORM Subroutine (address \$F463)
Purpose: To normalize the value in FP1, thus insuring maximum precision.
Entry: A normalized or unnormalized value is in FP1.
Exit: The value in FP1 is normalized. A zero mantissa will exit with X1=0 (2 exponent). If the exponent on exit is -128 ($\mathrm{X} 1=0$) then the mantissa (M1) is not necessarily normalized (with the two high-order mantissa bits unequal). E, FP2, SIGN, AND SCR are not distubed. The A-REG is disturbed but the X - and Y -REGs are not. The carry is set.

Example: FP1 contains +12 in unnormalized form (as . 0011×2).

x1 M1
Upon exit from NORM, FP1 contains +12 in normalized form (as 1.1×2).

NORM1 subroutine (address \$F455)
Purpose: To normalize a floating point value in FP1 when it is known the exponent is not -128 ($\mathrm{Xl}=0$) upon entry.

Entry: An unnormalized number is in FP1. The exponent byte should not be 0 for normal use.

Exit: The normalized value is in FP1. E, FP2, SIGN, and SCR are not not disturbed. The A-REG is altered but the X - and Y-REGs are not.

ADD Subroutine (address \$F425)
Purpose: To add the two mantissas (M1 and M2) as 3-byte integers.
Entry: Two mantissas are in M1 (through M1+2) and M2 (through M2+2). They should be aligned, that is with identical exponents, for use in the FADD and FSUB subroutines.

Exit: the 24-bit integer sum is in M1 (high-order byte in M1, low-order byte in M1+2). FP2, X1, E, SIGN and SCR are not disturbed. The A-REG contains the high-order byte of the sum, the X-REG contains \$FF and the Y-REG is not altered. The carry is the '25th' sum bit.

Example: FP1 contains +5 and FP2 contains +7 prior to calling ADD.

Upon exit, M1 contains the overflow value for +12 . Note that the sign bit is incorrect. This is taken care of with a call to the right shift routine.

ABSWAP Subroutine (address \$F437)
Purpose: To take the absolute value of FP1 and then swap FP1 with FP2. Note that two sequential calls to ABSWAP will take the absolute values of both FP1 and FP2 in preparation for a multiply or divide.

Entry: FP1 and FP2 contain floating point values.
Exit: The absolute value of the original FP1 contents are in FP2 and the original FP2 contents are in FP1. The least significant bit of SIGN is complemented if a negation takes place (if the original FP1 contents are negative) by means of an increment. SCR and E are used. The A-REG
contains a copy of X 2 , the X -REG is cleared, and the Y -REG is not altered.

RTAR Subroutine (address \$F47D)
Purpose: To shift M1 right one bit position while incrementing X1 to compensate for scale. This is roughly the opposite of the NORM subroutine.

Entry: A normalized or unnormalized floating point value is in FP1.
Exit: The 6-byte field MANT1 and E is shifted right one bit arithmetically and X 1 is incremented by 1 to retain proper scale. The sign bit of MANT1 (MSB of M1) is unchanged. FP2, SIGN, and SCR are not disturbed. The A-REG contains the least significant byte of $\mathrm{E}(\mathrm{E}+2)$, the X-REG is cleared, and the Y -REG is not disturbed.

Caution: If X1 increments of 0 (overflow) then an exit to location \$3F5 is taken, the A-REG contains the high-order MANT1 byte, M1 and X1 is cleared. FP2, SIGN, SCR, and the X - and Y -REGs are not disturbed.

Uses: RTLOG
Example: Prior to calling RTAR, FP1 contains the normalized value -7.

After calling RTAR, FP1 contains the unnormalized value -7 (note that precision is lost off the low-order end of M1).

Note: M1 sign bit is unchanged.

RTLOG subroutine (address \$F480)
Purpose: To shift the 6-byte field MANT1 and E one bit to the right (toward the least significant bit). The 6502 carry bit is shifted into the high-order M1 bit. This is useful in correcting binary sum overflows.

Entry: A normalized or unnormalized floating point value is in FP1. The carry must be cleared or set by the user since it is shifted Into the sign bit of M1.

Exit: Same as RTAR except that the sign of M1 is not preserved (it is set
to the value of the carry bit on entry)
Caution: Same as RTAR.
Example: Prior to calling RTLOG, FP1 contains the normalized value -12 and the carry is clear.

After calling RTLOG, M1 is shifted one bit to the right and the sign bit is clear. X1 is incremented by 1.

X1
M1
Note: The bit shifted off the end of MANT1 is rotated into the high-order bit of the 3 -byte extension E. The 3 -byte E field is also shifted one bit to the right.

RTLOG1 subroutine (address \$F484)
Purpose: To shift MANT1 and E right one bit without adjusting X1. This is used by the multiply loop. The carry is shifted into the sign bit of MANT1.

Entry: M1 and E contain a 6-byte unsigned field. E is the 3-byte low-order extension of MANT1.

Exit: Same as RTLOG except that X 1 is not altered and an overflow exit cannot occur.

MD2 subroutine (address \$F4E2)
Purpose: To clear the 3-byte MANT1 field for FMUL and FDIV, check for inital result exponent overflow (and underflow), and initialize the X-REG to $\$ 17$ for loop counting.

Entry: the X-REG is cleared by the user since it is placed in the 3 bytes of MANT1. The A-REG contains the result of an exponent addition (FMUL) or subtraction (FDIV). The carry and sign status bits should be set according to this addition or subtraction for overflow and underflow determination.

Exit: The 3 bytes of M1 are cleared (or all set to the contents of the X-REG on Entry) and the Y -REG is loaded with $\$ 17$. The sign bit of the

A-REG is complemented and a copy of the A-REG is stored in X1. FP2, SIGN, SCR, and the X-REG are not disturbed.

Uses: NORM.
Caution: Exponent overflow results in an exit to location \$3F5. Exponent underflow results in an early return from the calling subroutine (FDIV or FMUL) with a floating point zero in FP1. Because MD2 pops a return address off the stack, it may only be called by another subroutine.
\#\#\#

