
Abstract. In this article we consider the application of
parametric spectral analysis to multichannel event-
related potentials (ERPs) during cognitive experiments.
We show that with proper data preprocessing, Adaptive
MultiVariate AutoRegressive (AMVAR) modeling is an
e�ective technique for dealing with nonstationary ERP
time series. We propose a bootstrap procedure to assess
the variability in the estimated spectral quantities. Final-
ly, we apply AMVAR spectral analysis to a visuomotor
integration task, revealing rapidly changing cortical
dynamics during di�erent stages of task processing.

1 Introduction

Spectral analysis is a mature methodology that has been
successfully applied to nearly every ®eld of science and
technology (Jenkins and Watts 1968; Bendat and Piersol
1986; Percival and Walden 1993). We sought to apply
spectral analysis to multichannel event-related potentials
(ERPs) from the cerebral cortex to understand how
di�erent cortical areas work together during cognitive
processing. We discovered, however, that two funda-
mental aspects of this problem present serious challenges
to the application of spectral analysis. First, because
di�erent cortical areas must be treated as belonging to
the same integrated system to understand their interac-
tions, spectral analysis of cortical ERPs must be fully
multivariate. Second, due to the rapidly changing
(nonstationary) nature of neural activity related to
cognitive processing, one must examine ERPs in brief
time intervals on the order of 40±80 ms (or possibly even
shorter). For the 200-Hz sampling rate used in this
study, this length corresponds to a data string of only 8±
16 points. The traditional nonparametric approach to
spectral analysis, based on discrete Fourier transform
(DFT), is rendered ine�ective by such short data lengths.

Even with the help of the most advanced windowing
(tapering) techniques, nonparametric analysis produces
severely biased spectral estimates for these short lengths
(Granger and Hughes 1968; Jenkins and Watts 1968;
Percival and Walden 1993; Muthuswamy and Thakor
1998).

A potential solution to both problems is provided by
parametric spectral analysis in which MultiVariate
AutoRegressive (MVAR) time series models are adap-
tively extracted from the data and become the basis for
deriving spectral quantities. The theoretical foundation
for this solution lies in treatment of the time series in a
short time window as being generated by an underlying
(approximately) stationary stochastic process. To make
use of this formulation, we rely on the standard design of
behavioral neurophysiology experiments in which a sin-
gle task is often repeated hundreds, even thousands, of
times (trials). Viewed from this perspective, the collection
of ERPs from these trials is treated as an ensemble of
realizations of a nonstationary stochastic process with
locally stationary segments. As such, the ERPs from
di�erent trials provide statistical samples for reliably
estimating time series models over time intervals nearly
as brief as that spanned by the autoregressive model.

The objective of this work is to demonstrate the
plausibility and utility of this approach to parametric
analysis both theoretically and experimentally. Previous
work (Florian and Pfurtscheller 1995; Schack and Kra-
use 1995) has applied model-based spectral analysis to
short time segments of EEG recordings. Our main
contributions lie in the following three areas. First, we
identify a set of preprocessing steps, including removal
of the averaged event-related potentials (ensemble
means) from the ensemble of single-trial ERPs, that
prove to be essential for the meaningful estimation of the
time series models. Second, we design a set of tests, in-
cluding the residual whiteness test, to show that the ®t-
ted models adequately represent the statistical properties
of the ERP data. Third, we devise a variability assess-
ment strategy based on the ideas of bootstrapping that
allows statistical testing of signi®cance to be carried out
on the derived spectral quantities.
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From the experience gained in this investigation, we
propose the following general approach to the spectral
analysis of ERPs during a cognitive task:

1. Cover the entire task time course with highly over-
lapped time windows short enough that the process in
each window can be treated as locally stationary.

2. In each time window, derive a linear stochasticMVAR
model of the process by ®tting the ERP data (after
suitable preprocessing) from an ensemble of trials.

3. Derive spectral quantities such as power and coher-
ence from the model parameters. The evolution of
these quantities, obtained by adaptively ®tting models
over successive windows, yields a very ®nely resolved
depiction of cortical dynamics. Since the MVAR
model parameters are adapted to each window, this
procedure is called Adaptive MVAR (AMVAR)
modeling.

4. Assess the variability of the spectral estimators by
bootstrapping.

This article is organized as a principled progression of
steps that establish the validity of the AMVAR model-
ing approach to spectral analysis of cortical ERPs. In
Sect. 2 we present mathematical formulations of the
AMVAR model and related estimation procedures. We
discuss the steps leading from autoregressive models to
spectral quantities. In Sect. 3 we consider a simple three-
variable autoregressive process for which all spectral
quantities are known exactly. We demonstrate that one
can obtain the correct spectral quantities by ®tting an
MVAR model to multiple short data segment realiza-
tions generated by the process. In Sect. 4 we examine the
application of MVAR models to ERPs recorded from
macaque monkeys. Here we discuss in detail the four-
step AMVAR procedure mentioned above. In Sect. 5 we
demonstrate the usefulness of the AMVAR approach
for the study of cortical interactions during cognitive
processing. Section 6 summarizes and reiterates the
main points of the article.

2 Formulation and estimation of MVAR models

Extensive treatment of MVAR time series models can be
found in the literature (Whittle 1963; Gersch 1970;
Pfurtscheller and Haring 1972; Franaszczuk et al. 1985;
Lutkepohl 1993; Schack and Krause 1995). Here we
summarize the main elements needed for our work with
emphasis on how to incorporate multiple realizations of
data into the estimation procedure.

Let X�t� � �X �1; t�;X �2; t�; . . . ;X �p; t��T be a p-di-
mensional random process. Here T denotes matrix
transposition. In ERP studies, p represents the total
number of ERP channels. Assume that the process X�t�
is stationary and can be described by the following mth-
order autoregressive equation:

X�t� � A�1�X�t ÿ 1� � � � � � A�m�X�t ÿ m� � E�t� ; �1�
where A�i� are p � p coe�cient matrices and
E�t� � �E�1; t�;E�2; t�; . . . ;E�p; t��T is a zero mean un-
correlated noise vector with covariance matrix R.

To estimate A�i� and R, we multiply (1) from the right
by XT�t ÿ k�, where k � 1; 2; . . . ;m. Taking expectation
we obtain the Yule-Walker equations

R�ÿk� � A�1�R�ÿk � 1� � � � � � A�m�R�ÿk � m� � 0 ;

�2�
where R�n� � hX�t�XT�t � n�i is X�t�'s covariance ma-
trix of lag n. In deriving these equations we have used
the fact that hE�t�XT�t ÿ k�i � 0 as a result of E�t� being
an uncorrelated process.

For a single realization of the X process, fx�i�gN
i�1, we

compute the covariance matrix in (2) according to

~R�n� � 1

N ÿ n

XNÿn

i�1
x�i�xT�i� n� : �3�

If multiple realizations of the same process are available,
then we compute the above quantity for each realization
and average across all the realizations to obtain the ®nal
estimate of the covariance matrix. (Note that for a single
short trial of data one uses the divisor N for evaluating
covariance to reduce inconsistency. Due to the avail-
ability of multiple trials we have used the divisor
�N ÿ n� in the above de®nition (3) to achieve an
unbiased estimate.) It is quite clear that, for a single
realization, if N is small, one will not get good estimates
of R�n� and hence will not be able to obtain a good
model. This problem can be overcome if a large number
of realizations of the same process are available. In this
case the data length can be as short as the model order
m plus 1.

Equation (1) contains a total of mp2 unknown model
coe�cients. In (2) there are exactly the same number of
simultaneous linear equations. One can simply solve
these equations to obtain the model coe�cients. The
Levinson, Wiggins, Robinson (LWR) algorithm (Morf
et al. 1978; Haykin and Kesler 1983) is a more robust
solution procedure, based on the ideas of maximum
entropy. This algorithm was implemented in this study.
The noise covariance matrix R can be obtained as part of
the LWR algorithm. Otherwise one may obtain R
through

R � R�0� �
Xm

i�1
A�i�R�i� : �4�

Here we note that RT�k� � R�ÿk�.
The above estimation procedure can be carried out

for any model order m. The correct m is usually deter-
mined by minimizing the Akaike Information Criterion
(AIC) (Akaike 1974) de®ned as

AIC�m� � 2 log�det�R�� � 2p2m=Ntotal �5�
where Ntotal is the total number of data points from all
the trials. Plotted as a function of m the proper model
order corresponds to the minimum of this function.

A standard procedure to examine whether an MVAR
time series model is suited for a given data set is to check
whether the residual noise is white. Here the residual
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noise is obtained by computing the di�erence between
model predicted values and the actually measured val-
ues. In Sect. 4 we describe an additional test that allows
us to assess directly how much statistical structure in the
data is re¯ected by the model.

Once an MVAR model is adequately estimated it
becomes the basis for subsequent spectral analysis.1 In
the spectral domain (1) can be written as

X�f � � H�f �E�f � �6�
where

H�f � �
Xm

j�0
A�j�eÿij2pf

 !ÿ1
�7�

is the transfer function. Note that we de®ne A�0� to be
the identity matrix.

From (6), after proper ensemble averaging, we obtain
the spectral matrix

S�f � � H�f �RH��f � �8�
from which all the commonly used multivariate spectral
quantities such as power, ordinary coherence, partial
coherence, and multiple coherence can be derived
(Jenkins and Watts 1968). For the purpose of this
article, we will only consider the ordinary coherence,
which we hereafter refer to simply as coherence. The
coherence between two given components X �i; t� and
X �j; t� is de®ned as

Cij�f � � jSijj2
SiiSjj

�9�

where Sij is the �i; j�th element of the spectral matrix.
(We comment that sometimes the quantity Cij�f � is

given the name of squared coherency and
�������������
Cij�f �

p
is

called the coherence.) The value of coherence is nor-
malized between 0 and 1, and it measures the degree of
linear dependence between X �i; t� and X �j; t�. If it is near
1 at any frequency f , then the two processes are
maximally interdependent at that frequency. On the
other hand, a value near 0 indicates independence of the
two processes at frequency f .

3 Analysis of a simple three-channel
autoregressive model

In this section we consider a three-channel autoregres-
sive process:

x�t� � n�t�
y�t� � x�t ÿ 1� � g�t�
z�t� � kz�t ÿ 1� � x�t ÿ 1� � ��t�

�10�

where jkj < 1 is a parameter, and n�t�, g�t�, ��t� are three
independent white noise processes with zero means and
variances r2

1; r
2
2; r

2
3, respectively. The pairwise coherence

is easily calculated to be

C12�f � � r2
1

r2
1 � r2

2

C13�f � � r1

r2
1 � r2

3

C23�f � � r4
1

�r2
1 � r2

2��r2
1 � r2

3�

�11�

which are independent of the frequency.
Setting k � 0:5, r1 � 1, r2 � 0:2, and r3 � 0:3 we

simulate (10) to generate 100 realizations of 10-point
data sets. Assuming no knowledge of (10) we ®t an
MVAR model to the data according to the steps speci-
®ed in the previous section. The derived coherence
shown in Fig. 1A is in excellent agreement with the
analytical results, C12�f � � 0:96 (top curve),
C13�f � � 0:92 (middle curve), C23�f � � 0:88 (lower
curve), computed from (11). This example demonstrates
the principle that stochastic processes of the autore-
gressive type can be fully recovered from multiple trials
of short data segments. It is worth noting that, to ex-
amine the sensitivity of the ®tting process to the model
order speci®cation, we used a third-order MVAR to ®t
the simulated data. The excellent result demonstrates the
good tolerance provided by models whose order is
slightly di�erent from that of the generating process.
Equally excellent results are obtained when a ®rst-order
MVAR is used.

A common preprocessing step in time series analysis
is to subtract the temporal mean from the time series.
We have found that this step is not advisable for indi-
vidual realizations that are of short duration. This is
because the temporal mean estimated from the small
number of samples in a short data segment is not a re-
liable estimate of the true process mean and can vary
greatly from realization to realization. Figure 1B shows
the e�ect of subtracting the temporal mean from each
realization of the simulated three-variable data set be-
fore model ®tting. The resulting coherence spectrum
from the ®tted model is severely underestimated in the
low frequency components. We will argue in the next
section that a necessary preprocessing step prior to
model ®tting is subtraction of the ensemble mean. In the
present example, subtraction of the ensemble mean is
not required since it is already zero due to the model
assumptions. Actual ERP data typically contain a sig-

1 Given the goal here of achieving short-window spectral analysis,
a common question concerns the resolution of spectral quantities at
low frequencies. This question in fact highlights the di�erence be-
tween parametric and nonparametric spectral estimations. For
classical (nonparametric) spectral analysis, resolution is indeed a
problem if the window length is not long enough to cover a sub-
stantial segment of the cycle. In AMVAR analysis, however, we
®rst establish that the repeated data observations can be accurately
estimated by an underlying linear stochastic process that is ap-
proximately stationary within the analysis window. Since this
process is stationary, it can be computed for any length of time, no
matter how long. The spectral quantities derived by AMVAR
analysis are the same as those that would be computed from this
stationary process if it were allowed to continue for a very long
time. Since that stationary process may contain components of any
frequency, we can accurately determine those components, even at
low frequencies. This holds equally well for all the components in
the full MVAR model
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ni®cant ensemble mean, the averaged ERP, which is
commonly studied in electrophysiology.

4 Application of AMVAR to cortical
event-related potentials

ERP data from macaque monkeys were used to test the
AMVAR approach outlined in Sect. 2. The ERPs were
recorded from chronically implanted transcortical bipo-
lar electrodes at 15 distributed sites in multiple cortical
areas of one hemisphere as the monkey performed a
visuomotor pattern discrimination task (Bressler et al.
1993). The prestimulus stage began when the monkey
depressed a hand lever. This was followed 0.5±1.25 s
later by the appearance of a visual stimulus (a four-dot
pattern) on a computer screen. The monkey made a GO
or NO-GO response depending on the stimulus category
and the session contingency. The entire trial lasted about

500 ms, during which the ERPs were recorded at a
sampling rate of 200 Hz. The speci®c data set considered
here consisted of 888 trials from one monkey with the
GO response.

For the purpose of data analysis, each of the 15
electrode recording sites was considered to be a separate
data channel. As the ®rst step of preprocessing, we
detrended the single-trial ERP time series of each
channel, subtracted the temporal mean of the entire
trial, and divided by the temporal standard deviation.
The result was that the data from each channel and each
trial were given equal weight in model estimation.

4.1 Inherent nonstationarity of ERP data

The visuomotor pattern discrimination task studied here
did not involve a single uniform cognitive function.
Rather, it required that the monkey undergo several
distinct cognitive states during the course of the trial:
motor maintenance, visual stimulus anticipation, visual
feature extraction, visual pattern discrimination, GO/
NO-GO decision, and ®nal motor execution in the GO
condition. This succession of states was re¯ected in an
inherent nonstationarity of the recorded ERPs. As
mentioned above, the use of MVAR analysis is based
on the assumption that the underlying stochastic process
is stationary. Therefore, MVAR analysis of the ERP
data necessitated that we ®rst assess the degree of this
nonstationarity.

The simplest nonstationarity measure is the ensemble
mean (®rst-order statistic), calculated by averaging the
measured amplitude values at a given channel at each
time point across trials. Figure 2 shows an example of the
ensemble mean from a site in the striate cortex. The time-
varying nature of the signal shows that the underlying
process is nonstationary in the mean. It is worth noting
that this ensemble mean is the commonly studied aver-
aged ERP that is often considered to be the only signal
related to cognitive processing. An important result of the

Fig. 1. a Estimated coherence spectra for the pairwise combinations
of channels in the three-variable autoregressive model (10). b
Estimated coherence spectra as in a, but with prior removal of the
temporal mean from each realization. It is demonstrated that such
removal leads to poor estimation of the coherence spectrum of the
underlying process

Fig. 2. Averaged event-related potential (with standard deviation as
error bars) from a site in the striate cortex
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present study is that this view is not correct. We ®nd that
the so-called ``noise'' component of the ERP, obtained by
subtracting the ensemble mean from the single-trial ERP,
actually contains rich task-relevant information that
cannot be inferred from the ensemble mean.

Figure 2 also plots as error bars at each time point the
ensemble standard deviation, which is a second-order
statistic. The time-varying nature of this quantity is also
apparent.

The nonstationarity embodied in the mean and
standard deviation can be easily removed by subtracting
the ensemble mean, point-by-point, from each trial and
then dividing the result, again point-by-point, by the
standard deviation. In fact, these two procedures con-
stitute our second and third preprocessing steps. They
are applied separately to the data from each channel.
After these two preprocessing steps are applied, the
mean of the resulting ensemble of trials is zero, and the
standard deviation is one, at every time point. Note that
the step of standard deviation normalization is crucial
for allowing the dynamical changes in model-derived
spectral quantities to be compared at each stage of task
processing. Unless otherwise noted, the above three
preprocessing steps were applied prior to all other
analysis steps described below. We will return to the
topic of ensemble mean subtraction in more detail in the
next subsection.

A deeper source of nonstationarity that cannot be
removed easily is the correlation structure in the data.
Correlation nonstationarity refers to the fact that the
auto-correlations of single channels, and the cross-cor-
relations between channels, at a ®xed lag, vary as a
function of time during the task. To demonstrate this
correlation nonstationarity, we averaged the zero-lag
cross-correlation between two channels from the striate
cortex over all trials successively for each time point
during the task. The time-varying structure of the re-
sulting curve, shown is Fig. 3, clearly demonstrates the
nonstationarity of the cross-correlation statistic.

4.2 Short-window approach to dealing
with correlation nonstationarity

Our strategy for dealing with correlation nonstationarity
is to perform MVAR analysis in short, highly over-
lapped time windows in which the underlying stochastic
processes are considered to be locally stationary. (Using
overlapped windows makes the estimated models vary
smoothly.) By adaptively estimating the MVAR model
parameters in each window, this AMVAR procedure
yields ®nely resolved dynamical information about the
cortical processes related to cognitive state. A crucial
question is how to choose the window length in an
objective way. It is clear that it must be longer than the
model order (see Sect. 2). On the other hand, it should
not be so long as to lose the temporal dynamics that we
wish to resolve.

A rough estimate of the upper limit of the window
length may be obtained with the following procedure.
First, as in Fig. 3, compute the zero-lag cross-correla-
tion between two channels in a 1-point window at all
time points during the task. Second, repeat the ®rst step
for progressively longer windows, averaging both within
the window and across all the trials. As the window gets
longer, more smoothing of the correlation structure
occurs, and dynamical variation is lost. This point is
illustrated in Fig. 4, which shows the same (1-point
window) cross-correlation curve as in Fig. 3, with ad-
ditional curves using 10-point (50 ms) and 20-point
(100 ms) windows. Clearly the 20-point window loses a
great deal of the variability in the correlation structure.
The 10-point window, on the other hand, is able to track
much of the basic pattern of variation. For model esti-
mation, we must also consider the smoothness of the
estimated spectral quantities. Our experience indicates
that the 10-point (50 ms) window is a good compromise
between preserving correlation variability and main-
taining smoothness of the estimated spectral quantities.
Although one could tailor the window size to ®t di�erent

Fig. 3. The zero-lag cross-correlation between two channels from the
striate cortex computed in 1-point windows at every time point during
the task

Fig. 4. The zero-lag cross-correlation between the same two channels
as in Fig. 3 for 1-, 10-, and 20-point windows
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parts of the trial, a 10-point window size is used in the
remainder of this study for uniformity in evaluation and
display of the results.

4.3 Model order determination and model validation

Thus far our focus has been on data preprocessing and
window length determination. We now examine the
issue of ®tting MVAR models in short time segments.
The main objective is to show that MVAR time series
models ®tted to data sets containing segments of
short duration from many trials can indeed capture the
statistical properties of the underlying stochastic
process.

The ®rst problem in MVAR modeling is to choose the
model order, which we did using the AIC. Figure 5
shows the AIC�m� [de®ned in (5)] as a function of model
order for a representative 50-ms window centered
120 ms after the stimulus onset. The shape of the curve
was extremely similar for all windows in the trial. The
rationale in using the AIC for order determination is to
select the model order for which the AIC reaches a
minimum. However, the AIC decreases monotonically
with increasing order. In fact, this monotonic decrease is
typical for our data set and also appears to be a general
feature of electroencephalographic (EEG) time series
(Jansen 1991). We infer from Fig. 5 that model order 5 is
su�cient since there is very little change in the AIC
beyond that value. This model order also appears to be
quite consistent with other EEG studies (Jansen 1991).
To test our choice of model order, we calculated a set of
spectral quantities for di�erent model orders around 5
and found that the results are robust against small
changes in model order.

An important assumption in MVAR modeling is that
the noise process E�t� in (1) is a white (uncorrelated)
process. This requirement can be intuitively understood

in the sense that if the left-hand side of (1) has captured
all the temporal structures in the data, then what re-
mains on the right-hand side (the residual) has no tem-
poral structure. The question is whether the residuals
remaining after MVAR modeling of the ERP segments
are indeed uncorrelated. We tested this idea by using
auto- and cross-correlation measures of the residuals.

Using 15 ERP channels, a 10-point (50-ms) window,
and a model order of 5, we obtained ®ve 15-dimensional
residual noise vectors. (The ®ve vectors corresponded to
the ®ve points in a 10-point window that could be pre-
dicted with a 5-point model; each vector contained a
residual element for each channel.) We computed auto-
and cross-correlations up to lag 3, excluding lag 0, for all
pairwise combinations of the 15 channels. The null hy-
pothesis was that the residual noise had no temporal
correlation. For this to be true, fewer than 95% of the
correlation coe�cients were expected to fall within
the interval �ÿ2= ���

5
p

; 2=
���
5
p �. This allowed about 5% of

the coe�cients to fall outside the interval by pure
chance. We computed the percentage of coe�cients
lying outside the above interval for each window for
model orders from 1 to 6. For all model orders, the
percentage of auto- and cross-correlation coe�cients
that were outside of the interval was below 2%. This
proved that the residual noise was indeed white and that
the data could be represented as an AR process.

As a last step of model validation, we now consider
the question of what portion of the correlation structure
in the data is captured by the ®tted MVAR models. For
this, we devised a statistical consistency test that com-
pared the correlation structure of the real ERP data
segments with that of simulated data segments generated
by iterating the corresponding equations of the ®tted
models. For both the real and simulated data sets,
containing 15 channels and 888 trials, we computed all
auto-correlations and pairwise cross-correlations up to
lag 5 in a sequence of overlapping 50-ms windows. In
each window, there are 1245 such correlations, treated as
a 1245-dimensional vector. The statistical consistency
between the correlation structure of the real ERP data
and that of the simulated data can be measured by the
following percent consistency measure:

PC�t� � 1ÿ jRs�t� ÿ Rr�t�j
jRr�t�j

� �
� 100 �12�

where Rr denotes the correlation vector of the real data
and Rs was the correlation vector of the simulated data.
The smaller the distance between the two vectors, the
larger was the consistency. In Fig. 6, we see that, as the
window was moved across the duration of the task, this
measure was reliably around 90%, indicating a high
degree of consistency.

4.4 Ensemble mean subtraction and stability
of MVAR models

For the MVAR process de®ned by (1) to be stable, the
roots to the following equation

Fig. 5. The Akaike Information Criterion (AIC) as a function of
model order, computed in a representative 50-ms window centered
120 ms after stimulus onset. The shape of the curve is similar for all
other windows
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det�kmI� kmÿ1A�1� � � � � � kA�mÿ 1� � A�m�� � 0

�13�
must satisfy the condition jkj < 1. Here by stable we
mean that the random process coming from the equation
is stationary and does not diverge. If any one of the
eigenvalues in (13) has a magnitude greater than 1, the
process generated by (1) will blow up, and it cannot be a
model of a stationary random process.

Thus, as part of model validation, one should also
check whether a ®tted model is stable in the sense de-
®ned above. Here we discuss this issue in conjunction
with the preprocessing step of ensemble mean subtrac-
tion prior to model ®tting. A common procedure in AR
modeling is to subtract the temporal mean within a given
window from the single trial time series before ®tting.
Although this is acceptable in the case of long stationary
time series, the results of Sect. 3 above show that this is a
bad practice when the window is short. In the short-
window case, provided that there exists an ensemble of
trials, a much more important procedure is to subtract
the ensemble mean from each trial. By doing so, we (1)
remove the ®rst-order nonstationarity from the data;
and (2) make the ensemble mean equal to zero, which is
a requirement for model ®tting.2 Additionally, we now

show that removal of the ensemble mean is also crucial
for achieving stability of the ®tted models.

To determine the stability of a ®tted MVAR model,
we only need to evaluate the largest eigenvalue in (13),
denoted k1. We used the quantity log jk1j as the Stability
Index (SI). Figure 7 shows SI as a function of time
during the task. In the case of not removing the en-
semble mean (dashed line), the values of SI became
positive for a period after the onset of stimulus (at 0 ms),
rendering the ®tted models invalid during this time pe-
riod. After the removal of the ensemble mean, all the
values of SI were negative (solid line), indicating that all
of the ®tted models throughout the task were stable.

4.5 Variability assessment by bootstrapping

Whether using parametric modeling or traditional
nonparametric analysis, it is often desirable to determine
the statistical signi®cance of spectral quantities to make
comparisons between di�erent task conditions or di�er-
ent times during the task. In the case of cognitive
processing, these comparisons are frequently crucial for
understanding of the underlying neural dynamics. If the
entire ensemble of available trials is used to estimate a
spectral quantity, only one value of that estimate can be
obtained, and there is no indication of the estimation
variability. It is just this variability that is needed to
determine statistical signi®cance. We note that, besides
the variability associated with a ®nite sample estimation
of a putative underlying stochastic process, there are
also other sources of variability for real-world data. To
assess the e�ect of all sources of variability, and their
e�ect on the estimated model, we propose to use the
bootstrap resampling technique (Efron 1982) in con-
junction with AMVAR analysis.

In bootstrap resampling, one randomly picks, with
replacement, a set of resample trials, where the size of the
resample should be the same as that of the original col-

Fig. 6. Percent consistency as a function of time, demonstrating the
similarity between the correlation structure of the real data and that of
AMVAR model simulated data during the entire task

Fig. 7. The Stability Index as a function of time without ensemble
mean subtraction (dashed line) and with it (solid line), demonstrating
the bene®t of such subtraction

2 To illustrate further the importance of this step in the analysis of
interdependency, we consider the following hypothetical example
in which two subjects take part in the same experiment. Record the
event-related brain response from the same electrode position on
the two subjects. It is reasonable to assume that the averaged event-
related responses (ensemble means) from the same electrode posi-
tion will be similar for the two subjects. If the ensemble means are
not removed from these two channels, then we will ®nd signi®cant
coherence between the two channels at the frequency of the en-
semble mean. This is clearly not a sensible result. For scalp elec-
troencephalogram (or magnetoencephalogram) this factor may not
be as signi®cant since the ensemble means are small relative to the
raw signals. For the intracranial recordings used here this factor is
very important as shown in what follows
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lection. Replacement means that any given trial's prob-
ability of selection is the same every time that a trial is
selected, so that the same trial may appear more than
once in the same resample, as well as in di�erent resam-
ples. An MVAR model is ®tted separately for each res-
ample, and spectral quantities are derived from the model
in the usual manner. By this procedure, a number of es-
timates equal to the number of resamples (which is usu-
ally chosen to be 100±200) is obtained for each spectral
quantity. The mean and standard deviation are com-
puted for the distribution across resamples of any spec-
tral quantity. We emphasize that before ®tting a model
to each resample one needs to treat it as a new ensemble
and perform the preprocessing steps of ensemble mean
removal and standard deviation normalization.

As indicated above the original bootstrap procedure
uses a resample size that equals the total number of trials
to be analyzed. For many experimental data the trial size
can be very large (in the thousands, for example). This
presents a computational problem. We investigated the
question of whether one can achieve an adequate vari-
ability assessment using smaller resample sizes. The ex-
ample we treat here is the coherence between a pair of
channels from prestriate and motor cortical areas, which
showed a peak at 12 Hz in a 50-ms window centered at
120 ms poststimulus. Figure 8A displays the results of
bootstrap resampling 100 resamples, where the resample
size was systematically varied. The mean coherence is
stable for resample sizes at or above 150, and the stan-
dard deviation is stable for resample sizes at or above
350. Although the standard deviation continues to de-
crease with increasing resample size, the rate of decrease
is very slow. Thus, for practical purposes, we inferred
that a resample size of approximately 350 trials was
adequate for assessing variability in the present data set.

To decide whether or not this result is a special
property of the particular channel pair that we used, we
calculated the standard deviations for all pairs at the
same frequency and time window. The result, shown in
Fig. 8B, is that for all pairs, as for the single pair
(Fig. 8A), the standard deviation decreases with in-
creasing resample size. The decrease asymptotes around
a resample size of 150.

4.6 In¯uence of model dimension and hidden variables
on coherence estimation

In our multichannel ERP measurements, we were only
able to sample a limited number of cortical sites. In
other words, many relevant variables were hidden from
our probe. A natural question is whether spectral
measures derived from MVAR models ®tted over all
the available channels are robust against addition or
deletion of channels. For example, does the coherence
spectrum between two channels depend on the inclusion
of other channels in the MVAR model from which it is
derived? We performed the following test to examine
this issue. First, for a 50-ms window centered at 120 ms,
we ®tted a model using data from all 15 available
channels. The three pairwise coherence spectra among

three channels (one striate and two prestriate) are shown
in Fig. 9. Then, we used only data from the three
involved channels to ®t an MVAR model and derive the
corresponding coherence spectra. The results from the 3-
channel model, displayed in Fig. 10, show the same
spectral features, such as number and location of peaks,
as those from the 15-channel model, although there are
some di�erences in the magnitudes of the peaks. This
indicates that the coherence between two ERP channels
is a robust quantity that is not greatly a�ected by
inclusion or exclusion of other channels.

5 Results of AMVAR analysis of the visuomotor
pattern discrimination task

The coherence results from the visuomotor pattern
discrimination task illustrate the usefulness of the

Fig. 8. aConvergence of the mean and standard deviation of the peak
coherence measure (12 Hz at 120 ms) with increasing resample size for
a single pair (prestriate and motor) of channels. b Convergence of the
standard deviations of the same peak coherence measure for all pairs
with increasing resample size. The largest standard deviation values at
around 0.5 are for a resample size of 10, and the values progressively
drop to around 0.1 with increasing resample sizes up to 400 (in
increments of 20)
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Fig. 9a±c. Pairwise coherence spectra among three channels (one
striate and two prestriate) derived from a model based on all 15
channels

Fig. 10a±c. Pairwise coherence spectra among the same three
channels as in Fig. 9, derived from a model based only on those
three channels
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AMVAR approach to spectral analysis of ERPs for
understanding the neural substrate of cognitive process-
ing. As mentioned above, the task required the animal to
go through a series of cognitive states in the roughly
one-half-second task period. We know of no other
technique than the short-window AMVAR coherence
analysis proposed here for assessing the rapidly shifting
patterns of interdependency among cortical sites that

accompany these cognitive state changes. Figure 11
demonstrates the patterns of intersite coherence that
develop over successive 50-ms windows at three di�erent
stages of task processing. The lines connecting cortical
sites represent signi®cant peak coherences. For a given
channel pair signi®cance was determined by comparison
of its peak coherence value to a threshold level. This
threshold was computed for a given window from a
baseline distribution of coherence. The baseline distri-
bution consisted of the coherence values at the same
frequency over all channel pairs and all windows over
the entire task. The threshold was set at two standard
deviations above the mean of this distribution.

First, Fig. 11A shows the pattern of peak coherence
in the period prior to arrival of the visual stimulus, but
after the monkey has started the trial by depressing the
hand lever. Here, in a window centered at 0 ms, two
distinct networks are observed, one involving ventral
sites at 15 Hz (dashed lines), and the other involving
dorsal sites at 22 Hz (solid lines).

In Fig. 11B, we see a dramatic transformation in the
pattern of peak coherence following the onset of visual
stimulus processing. In this window, centered at 120 ms,
the two earlier networks have been replaced by a single
network at 12 Hz. Furthermore, a great many more site
pairs are signi®cantly involved in this network. This
pattern reveals an extensive reorganization of the inter-
dependency relations in the cortex as the cognitive state
changes from the prestimulus state of anticipation and
focused attention, to the poststimulus state of active
processing of the visual feature information. The reor-
ganization occurs in terms of changes in both the fre-
quency of interdependency and the sites that are
interdependent.

Finally, in Fig. 11C, the pattern once again under-
goes an impressive change at a time, 280 ms, when the
monkey actually executes a movement of the hand from
the lever. Not only does the peak frequency shift to
5 Hz, but again there is a new set of channel pairs having
coherence peaks at this frequency. Although it is beyond
the scope of this report to detail all the coherence results
from this experiment, we note that this pattern from the
GO condition is strikingly di�erent from the pattern
from the same time window in the NO-GO condition.

From this cursory examination, we can clearly observe
that these three di�erent stages of cognitive processing are
starkly resolved by the interdependency relations exhib-
ited in the coherence patterns. Furthermore, these
patterns are consistent with the known physiological and
anatomical properties of the cortical areas involved. The
fact that the patterns changed so completely over such a
brief time span further underscores the necessity of using
a short-window analysis to uncover these relations.
[For details on the dynamic reorganization of large-scale
networks seen here, see Bressler et al. (1999, submitted)].

6 Summary

The purpose of this article has been to establish that
spectral analysis can be carried out for multichannel

Fig. 11a±c. Patterns of peak intersite coherence in one monkey from
the visuomotor pattern discrimination task, demonstrating the
evolution of functional interdependency in three successive stages of
the task. a The pattern of peak coherence in the period prior to arrival
of the visual stimulus (0 ms). Two networks are observed: one
involving ventral sites at 15 Hz (dashed lines), and the other involving
dorsal sites at 22 Hz (solid lines). b The pattern of peak coherence
following the onset of visual stimulus processing (120 ms). A large
number of site pairs now exhibit signi®cant coherence peaks at 12 Hz.
c The pattern when the monkey executes a movement of the hand
from the lever (280 ms). A new set of channel pairs are interdepen-
dent, with signi®cant coherence peaks at 5 Hz
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ERPs during cognitive tasks by the use of Adaptive
MultiVariate AutoRegressive (AMVAR) time series
modeling over short overlapping time windows. The
main results can be summarized as follows:

1. We pointed out the theoretical foundation of para-
metric short-window spectral analysis and demon-
strated its e�ectiveness in a simple analytical model in
Sect. 3.

2. We proposed a procedure in Sect. 4 for the objective
selection of the window length for nonstationary ERP
recordings.

3. We identi®ed a set of preprocessing steps in Sect. 4
that are essential for the interpretable application of
the model-®tting process: (i) detrend the single-trial
ERP time series from each recording site, remove
their temporal means, and normalize by the temporal
standard deviation; (ii) compute the mean of the en-
semble of trials at each site and subtract this mean
from single-trial ERPs; and (iii) compute the ensem-
ble standard deviation at each time point for a give
site and divide single-trial ERPs by it.

4. We designed a set of tests in Sect. 4 that can be used
to examine the validity of the model-®tting process.
These tests are: (i) AIC model order selection; (ii)
residual whiteness test; (iii) model stability test; and
(iv) statistical percent consistency test.

5. We proposed a variability assessment strategy using
bootstrapping in Sect. 4. We showed that, as a time-
saving measure, one can use fewer numbers of trials
in the resample than that of the original trial collec-
tion. It is worth emphasizing that for each bootstrap
resample one needs to perform steps (ii) and (iii) of
preprocessing, since each resample will be treated as a
new ensemble for model ®tting.

6. Finally, in Sect. 5 we applied the AMVAR spectral
analysis technique to ERPs recorded during the GO
condition of a visuomotor pattern discrimination
task. The results clearly show the remarkable e�ec-
tiveness of the technique by revealing task-relevant
patterns of cortical interdependency during di�erent
stages of cognitive processing.
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