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Preface: Deep Thought Meets Fluent Action

If you had to build an intelligent agent, where would you begin? What strikes you as the special 
something that separates the unthinking world of rocks, waterfalls, and volcanos from the realms of 
responsive intelligence? What is it that allows some parts of the natural order to survive by perceiving 
and acting while the rest stay on the sidelines, thought-free and inert?

"Mind," "intellect," "ideas": these are the things that make the difference. But how should they be 
understood? Such words conjure nebulous realms. We talk of "pure intellect,'' and we describe the 
savant as "lost in thought." All too soon we are seduced by Descartes' vision: a vision of mind as a realm 
quite distinct from body and world. 1 A realm whose essence owes nothing to the accidents of body and 
surroundings. The (in)famous "Ghost in the Machine."2

Such extreme opposition between matter and mind has long since been abandoned. In its stead we find a 
loose coalition of sciences of the mind whose common goal is to understand how thought itself is 
materially possible. The coalition goes by the name cognitive science, and for more than thirty years 
computer models of the mind have been among its major tools. Theorizing on the cusp between science 
fiction and hard engineering, workers in the subfield known as artificial intelligence3 have tried to give 
computational flesh to ideas about how the mind may arise out of the workings of a physical 
machine—in our case, the brain. As Aaron Sloman once put it, "Every intelligent ghost must contain a 
machine."4 The human brain, it seems, is the mechanistic underpinning of the human mind. When 
evolution threw up complex brains, mobile bodies, and nervous systems, it opened the door (by purely 
physical means) to whole new 
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ways of living and adapting—ways that place us on one side of a natural divide, leaving volcanos, 
waterfalls, and the rest of cognitively inert creation on the other.
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But, for all that, a version of the old opposition between matter and mind persists. It persists in the way 
we study brain and mind, excluding as "peripheral" the roles of the rest of the body and the local 
environment. It persists in the tradition of modeling intelligence as the production of symbolically coded 
solutions to symbolically expressed puzzles. It persists in the lack of attention to the ways the body and 
local environment are literally built into the processing loops that result in intelligent action. And it 
persists in the choice of problem domains: for example, we model chess playing by programs such as 
Deep Thought 5 when we still can't get a real robot to successfully navigate a crowded room and we still 
can't fully model the adaptive success of a cockroach.

In the natural context of body and world, the ways brains solve problems is fundamentally transformed. 
This is not a deep philosophical fact (though it has profound consequences). It is a matter of practicality. 
Jim Nevins, who works on computer-controlled assembly, cites a nice example. Faced with the problem 
of how to get a computer-controlled machine to assemble tight-fitting components, one solution is to 
exploit multiple feedback loops. These could tell the computer if it has failed to find a fit and allow it to 
try to again in a slightly different orientation. This is, if you like, the solution by Pure Thought. The 
solution by Embodied Thought is quite different. Just mount the assembler arms on rubber joints, 
allowing them to give along two spatial axes. Once this is done, the computer can dispense with the fine-
grained feedback loops, as the parts "jiggle and slide into place as if millions of tiny feedback 
adjustments to a rigid system were being continuously computed."6 This makes the crucial point that 
treating cognition as pure problem solving invites us to abstract away from the very body and the very 
world in which our brains evolved to guide us.

Might it not be more fruitful to think of brains as controllers for embodied activity? That small shift in 
perspective has large implications for how we construct a science of the mind. It demands, in fact, a 
sweeping reform in our whole way of thinking about intelligent behavior. It requires us to abandon the 
idea (common since Descartes) of the mental 
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as a realm distinct from the realm of the body; to abandon the idea of neat dividing lines between 
perception, cognition, and action 7; to abandon the idea of an executive center where the brain carries 
out high-level reasoning8; and most of all, to abandon research methods that artificially divorce thought 
from embodied action-taking.

What emerges is nothing less than a new science of the mind: a science that, to be sure, builds on the 
fruits of three decades' cooperative research, but a science whose tools and models are surprisingly 
different—a cognitive science of the embodied mind. This book is a testimony to that science. It traces 
some of its origins, displays its flavor, and confronts some of its problems. It is surely not the last new 
science of mind. But it is one more step along that most fascinating of journeys: the mind's quest to 
know itself and its place in nature.

javascript:doPopup('Popup','Page_xii_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')
javascript:doPopup('Popup','Page_xii_Popup_2.html','width=480,height=168,resizable=yes,scrollbars=yes')
javascript:doPopup('Popup','Page_xiii_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')
javascript:doPopup('Popup','Page_xiii_Popup_2.html','width=480,height=168,resizable=yes,scrollbars=yes')


  



Page xv
 

Acknowledgments

Parts of chapters 6 and 9 and the epilogue are based on the following articles of mine. Thanks to the 
editors and the publishers for permission to use this material.

"Happy couplings: Emergence, explanatory styles and embodied, embedded cognition," in Readings in 
the Philosophy of Artificial Life, ed. M. Boden. Oxford University Press.

"Economic reason: The interplay of individual learning and external structure," in Frontiers of 
Institutional Economics, ed. J. Drobak. Academic Press.

"I am John's brain," Journal of Consciousness Studies 2 (1995), no. 2: 144–148.

Source of figures are credited in the legends.

  



Page xvii
 

Groundings

Being There didn't come from nowhere. The image of mind as inextricably interwoven with body, 
world, and action, already visible in Martin Heidegger's Being and Time (1927), found clear expression 
in Maurice Merleau-Ponty's Structure of Behavior (1942). Some of the central themes are present in the 
work of the Soviet psychologists, especially Lev Vygotsky; others owe much to Jean Piaget's work on 
the role of action in cognitive development. In the literature of cognitive science, important and 
influential previous discussions include Maturana and Varela 1987, Winograd and Flores 1986, and, 
especially, The Embodied Mind (Varela et al. 1991). The Embodied Mind is among the immediate roots 
of several of the trends identified and pursued in the present treatment.

My own exposure to these trends began, I suspect, with Hubert Dreyfus's 1979 opus What Computers 
Can't Do. Dreyfus's persistent haunting of classical artificial intelligence helped to motivate my own 
explorations of alternative computational models (the connectionist or parallel distributed processing 
approaches; see Clark 1989 and Clark 1993) and to cement my interest in biologically plausible images 
of mind and cognition. Back in 1987 I tested these waters with a short paper, also (and not 
coincidentally) entitled "Being There," in which embodied, environmentally embedded cognition was 
the explicit topic of discussion. Since then, connectionism, neuroscience, and real-world robotics have 
all made enormous strides. And it is here, especially in the explosion of research in robotics and so-
called artificial life (see e.g. papers in Brooks and Maes 1994), that we finally locate the most immediate 
impetus of the present discussion. At last (it seems to me), a more rounded, compelling, and integrative 
picture is emerging—one that draws together many of the 
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elements of the previous discussions, and that does so in a framework rich in practical illustrations and 
concrete examples. It is this larger, more integrative picture that I here set out to display and examine.

The position I develop owes a lot to several authors and friends. At the top of the list, without a doubt, 
are Paul Churchland and Dan Dennett, whose careful yet imaginative reconstructions of mind and 
cognition have been the constant inspiration behind all my work. More recently, I have learned a lot 
from interactions and exchanges with the roboticists Rodney Brooks, Randall Beer, Tim Smithers, and 
John Hallam. I have also been informed, excited, and challenged by various fans of dynamic systems 
theory, in particular Tim van Gelder, Linda Smith, Esther Thelen, and Michael Wheeler. Several 
members of the Sussex University Evolutionary Robotics Group have likewise been inspiring, 
infuriating, and always fascinating—especially Dave Cliff and Inman Harvey.



Very special thanks are due to Bill Bechtel, Morten Christiansen, David Chalmers, Keith Butler, Rick 
Grush, Tim Lane, Pete Mandik, Rob Stufflebeam, and all my friends, colleagues, and students in the 
Philosophy/Neuroscience/Psychology (PNP) program at Washington University in St. Louis. It was 
there, also, that I had the good fortune to encounter Dave Hilditch, whose patient attempts to integrate 
the visions of Merleau-Ponty and contemporary cognitive science were a source of joy and inspiration. 
Thanks too to Roger Gibson, Larry May, Marilyn Friedman, Mark Rollins, and all the members of the 
Washington University Philosophy Department for invaluable help, support, and criticism.

David van Essen, Charlie Anderson, and Tom Thach, of the Washington University Medical School 
deserve special credit for exposing me to the workings of real neuroscience—but here, especially, the 
receipt of thanks should not exact any burden of blame for residual errors or misconceptions. Doug 
North, Art Denzau, Norman Schofield, and John Drobak did much to smooth and encourage the brief 
foray into economic theory that surfaces in chapter 9—thanks too to the members of the Hoover Institute 
Seminar on Collective Choice at Stanford University. I shouldn't forget my cat, Lolo, who kept things in 
perspective by sitting on many versions of the manuscript, or the Santa Fe Institute, which provided 
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Introduction: A Car with a Cockroach Brain

Where are the artificial minds promised by 1950s science fiction and 1960s science journalism? Why 
are even the best of our "intelligent" artifacts still so unspeakably, terminally dumb? One possibility is 
that we simply misconstrued the nature of intelligence itself. We imagined mind as a kind of logical 
reasoning device coupled with a store of explicit data—a kind of combination logic machine and filing 
cabinet. In so doing, we ignored the fact that minds evolved to make things happen. We ignored the fact 
that the biological mind is, first and foremost, an organ for controlling the biological body. Minds make 
motions, and they must make them fast—before the predator catches you, or before your prey gets away 
from you. Minds are not disembodied logical reasoning devices.

This simple shift in perspective has spawned some of the most exciting and groundbreaking work in the 
contemporary study of mind. Research in "neural network" styles of computational modeling has begun 
to develop a radically different vision of the computational structure of mind. Research in cognitive 
neuroscience has begun to unearth the often-surprising ways in which real brains use their resources of 
neurons and synapses to solve problems. And a growing wave of work on simple, real-world robotics 
(for example, getting a robot cockroach to walk, seek food, and avoid dangers) is teaching us how 
biological creatures might achieve the kinds of fast, fluent real-world action that are necessary to 
survival. Where these researches converge we glimpse a new vision of the nature of biological 
cognition: a vision that puts explicit data storage and logical manipulation in its place as, at most, a 
secondary adjunct to the kinds of dynamics and complex response loops that couple real brains, 
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bodies, and environments. Wild cognition, it seems, has (literally) no time for the filing cabinet.

Of course, not everyone agrees. An extreme example of the opposite view is a recent $50 million 
attempt to instill commonsense understanding in a computer by giving it a vast store of explicit 
knowledge. The project, known as CYC (short for "encyclopedia"), aims to handcraft a vast knowledge 
base encompassing a significant fraction of the general knowledge that an adult human commands. 
Begun in 1984, CYC aimed at encoding close to a million items of knowledge by 1994. The project was 
to consume about two person-centuries of data-entry time. CYC was supposed, at the end of this time, to 
"cross over": to reach a point where it could directly read and assimilate written texts and hence "self-
program" the remainder of its knowledge base.



The most noteworthy feature of the CYC project, from my point of view, is its extreme faith in the 
power of explicit symbolic representation: its faith in the internalization of structures built in the image 
of strings of words in a public language. The CYC representation language encodes information in units 
("frames") such as the following:

Missouri
Capital: (Jefferson City)
Residents: (Andy, Pepa, Beth)
State of: (United States of America)

The example is simplified, but the basic structure is always the same. The unit has "slots" (the three 
subheadings above), and each slot has as its value a list of entities. Slots can reference other units (for 
example, the "residents" slot can act as a pointer to another unit containing still more information, and 
so on and so on). This apparatus of units and slots is augmented by a more powerful language (the CycL 
Constraint language) that allows the expression of more complex logical relationships, such as "For all 
items, if the item is an X then it has property Y." Reasoning in CYC can also exploit any of several 
simple inference types. The basic idea, however, is to let the encoded knowledge do almost all the work, 
and to keep inference and control structure simple and within the bounds of current technology. CYC's 
creators, Douglas Lenat and Edward Feigenbaum 
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(1992, p. 192), argue that the bottleneck for adaptive intelligence is knowledge, not inference or control.

The CYC knowledge base attempts to make explicit all the little things we know about our world but 
usually wouldn't bother to say. CYC thus aims to encode items of knowledge we all have but seldom 
rehearse—items such as the following (ibid., p. 197):

Most cars today are riding on four tires.
If you fall asleep while driving, your car will start to head out of your lane pretty soon.
If something big is between you and the thing you want, you probably will have to go around it.

By explicitly encoding a large fraction of this "consensus reality knowledge," CYC is supposed to reach 
a level of understanding that will allow it to respond with genuine intelligence. It is even hoped that 
CYC will use analogical reasoning to deal sensibly with novel situations by finding partial parallels 
elsewhere in its vast knowledge base.



CYC is an important and ambitious project. The commonsense data base it now encodes will doubtless 
be of great practical use as a resource for the development of better expert systems. But we should 
distinguish two possible goals for CYC. One would be to provide the best simulacrum of commonsense 
understanding possible within a fundamentally unthinking computer system. The other would be to 
create, courtesy of the CYC knowledge base, the first example of a genuine artificial mind.

Nothing in the performance of CYC to date suggests that the latter is in the cards. CYC looks set to 
become a bigger, fancier, but still fundamentally brittle and uncomprehending "expert system." Adding 
more and more knowledge to CYC will not remedy this. The reason is that CYC lacks the most basic 
kinds of adaptive responses to an environment. This shortcoming has nothing to do with the relative 
paucity of the knowledge the system explicitly encodes. Rather, it is attributable to the lack of any fluent 
coupling between the system and a real-world environment posing real-world problems of acting and 
sensing. Even the lowly cockroach, as we shall see, displays this kind of fluent coupling—it displays a 
version of the kind of robust, flexible, practical intelligence that most computer systems so profoundly 
lack. Yet such a simple creature can hardly be 
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accused of commanding a large store of explicitly represented knowledge! Thus, the CYC project, taken 
as an attempt to create genuine intelligence and understanding in a machine, is absolutely, 
fundamentally, and fatally flawed. Intelligence and understanding are rooted not in the presence and 
manipulation of explicit, language-like data structures, but in something more earthy: the tuning of basic 
responses to a real world that enables an embodied organism to sense, act, and survive.

This diagnosis is not new. Major philosophical critics of AI have long questioned the attempt to induce 
intelligence by means of disembodied symbol manipulation and have likewise insisted on the 
importance of situated reasoning (that is, reasoning by embodied beings acting in a real physical 
environment). But it has been all too easy to attribute such doubts to some sort of residual 
mysticism—to unscientific faith in a soul-like mental essence, or to a stubborn refusal to allow science 
to trespass on the philosophers' favorite terrain. But it is now increasingly clear that the alternative to the 
''disembodied explicit data manipulation" vision of AI is not to retreat from hard science; it is to pursue 
some even harder science. It is to put intelligence where it belongs: in the coupling of organisms and 
world that is at the root of daily, fluent action. From CYC to cycle racing: such is the radical turn that 
characterizes the new sciences of the embodied mind.

Take, for example, the humble cockroach. The roach is heir to a considerable body of cockroach-style 
commonsense knowledge. At least, that is how it must appear to any theorist who thinks explicit 
knowledge is the key to sensible-looking real-world behavior! For the roach is a formidable escape 
artist, capable of taking evasive action that is shaped by a multitude of internal and external factors. 
Here is a brief list, abstracted from Ritzmann's (1993) detailed study, of the escape skills of the 
American cockroach, Periplaneta americana:



The roach senses the wind disturbance caused by the motion of an attacking predator.
It distinguishes winds caused by predators from normal breezes and air currents.
It does not avoid contact with other roaches.
When it does initiate an escape motion, it does not simply run at random. Instead, it takes into account 
its own initial orientation, the presence of 
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obstacles (such as walls and corners), the degree of illumination, and the direction of the wind.

No wonder they always get away! This last nexus of contextual considerations, as Ritzmann points outs, 
leads to a response that is much more intelligent than the simple "sense predator and initiate random 
run" reflex that cockroach experts (for such there be) once imagined was the whole story. The additional 
complexity is nicely captured in Ritzmann's descriptions of a comparably "intelligent" automobile. Such 
a car would sense approaching vehicles, but it would ignore those moving in normal ways. If it detected 
an impeding collision, it would automatically initiate a turn that took its own current state (various 
engine and acceleration parameters) into account, took account of the road's orientation and surface, and 
avoided turning into other dangers. A car with the intelligence of a cockroach, it seems clear, would be 
way ahead of the current state of the automotive art. ''Buy the car with the cockroach brain" does not 
immediately strike you as a winner of an advertising slogan, however. Our prejudice against basic forms 
of biological intelligence and in favor of bigger and fancier "filing cabinet/logic machines" goes all too 
deep.

How does the roach manage its escapes? The neural mechanisms are now beginning to be understood. 
Wind fronts are detected by two cerci (antenna-like structures located at the rear of the abdomen). Each 
cercus is covered with hairs sensitive to wind velocity and direction. Escape motions are activated only 
if the wind is accelerating at 0.6 m/s2 or more: this is how the creature discriminates ordinary breezes 
from the lunges of attackers. The interval between sensing and response is very short: 58 milliseconds 
for a stationary roach and 14 milliseconds for a walking roach. The initial response is a turn that takes 
between 20 and 30 milliseconds (Ritzmann 1993, pp. 113–116). The basic neural circuitry underlying 
the turn involves populations of neurons whose locations and connectivity are now quite well 
understood. The circuitry involves more than 100 interneurons that act to modulate various turning 
commands in the light of contextual information concerning the current location of the roach and the 
state of the local environment. The basic wind information is carried by a population of ventral giant 
interneurons, but the final activity builds in the results of modulation from many other neuronal 
populations sensitive to these other contextual features.
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Confronted with the cockroach's impressive display of sensible escape routines, a theorist might 
mistakenly posit some kind of stored quasilinguistic database. In the spirit of CYC, we might imagine 
that the roach is accessing knowledge frames that include such items as these:

If you are being attacked, don't run straight into a wall.
If something big is between you and the food, try to go around it.
Gentle breezes are not dangerous.

As the philosopher Hubert Dreyfus (1991) and others have pointed out, the trouble is that real brains 
don't seem to use such linguaform, text-like resources to encode skillful responses to the world. And this 
is just as well, since such strategies would require vast amounts of explicit data storage and search and 
could thus not yield the speedy responses that real action requires. In fact, a little reflection suggests that 
there would be no obvious end to the "commonsense" knowledge we would have to write down to 
capture all that an adult human knows. Even the embodied knowledge of a cockroach would probably 
require several volumes to capture in detail!

But how else might AI proceed? One promising approach involves what has become known as 
autonomous-agent theory. An autonomous agent is a creature capable of survival, action, and motion in 
real time in a complex and somewhat realistic environment. Many existing artificial autonomous agents 
are real robots that are capable of insect-style walking and obstacle avoidance. Others are computer 
simulations of such robots, which can thus move and act only in simulated, computer-based 
environments. There are disputes between researchers who favor only real-world settings and real robots 
and researchers who are happy to exploit "mere" simulations, but the two camps concur in stressing the 
need to model realistic and basic behaviors and in distrusting overintellectualized solutions of the 
"disembodied explicit reasoning" stripe.

With this general image of autonomous-agent research in mind, let us return very briefly to our hero, the 
cockroach. Randall Beer and Hillel Chiel have created plausible computer and robot simulations of 
cockroach locomotion and escape. In modeling the escape response, Beer and Chiel set out to develop 
an autonomous-agent model highly constrained by ethological and neuroscientific data. The goal was, 
thus, 
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to stay as close to the real biological data as is currently possible. To this end, they combined the 
autonomous-agent methodology with neural-network-style modeling. They also constrained this 
computational model in ways consistent with what is known about the actual neural organization of (in 
this case) the cockroach. They used a neural net to control the body of a simulated insect (Beer and 
Chiel 1993). The net circuitry was constrained by known facts about the neural populations and 
connectivities underlying the escape response in real cockroaches. After training, the neural network 
controller was able to reproduce in the simulated insect body all the main features of the escape response 
discussed earlier. In the chapters that follow, we shall try to understand something of how such 
successes are achieved. We shall see in detail how the types of research just sketched combine with 
developmental, neuroscientific, and psychological ideas in ways that can illuminate a wide range of both 
simple and complex behaviors. And we shall probe the surprising variety of adaptive strategies available 
to embodied and environmentally embedded agents—beings that move and that act upon their worlds.

These introductory comments set out to highlight a fundamental contrast: to conjure the disembodied, 
atemporal intellectualist vision of mind, and to lay beside it the image of mind as a controller of 
embodied action. The image of mind as controller forces us to take seriously the issues of time, world, 
and body. Controllers must generate appropriate actions, rapidly, on the basis of an ongoing interaction 
between the body and its changing environment. The classical AI planning system can sit back and take 
its time, eventually yielding a symbolically couched description of a plausible course of action. The 
embodied planning agent must take action fast—before the action of another agent claims its life. 
Whether symbolic, text-like encodings have any role to play in these tooth-and-claw decisions is still 
uncertain, but it now seem clear that they do not lie at its heart.

The route to a full computational understanding of mind is, to borrow a phrase from Lenat and 
Feigenbaum, blocked by a mattress in the road. For many years, researchers have swerved around the 
mattress, tried to finesse it away, done just about anything except get down to work to shift it. Lenat and 
Feigenbaum think the mattress is knowledge—that the puzzles of mind will fall away once a nice big 
knowledge base, complete with 
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explicit formulations of commonsense wisdom, is in place. The lessons of wild cognition teach us 
otherwise. The mattress is not knowledge but basic, real-time, real-world responsiveness. The cockroach 
has a kind of common sense that the best current artificial systems lack—no thanks, surely, to the 
explicit encodings and logical derivations that may serve us in a few more abstract domains. At root, our 
minds too are organs for rapidly initiating the next move in real-world situations. They are organs 
exquisitely geared to the production of actions, laid out in local space and real time. Once mind is cast as 
a controller of bodily action, layers upon layers of once-received wisdom fall away. The distinction 
between perception and cognition, the idea of executive control centers in the brain, and a widespread 
vision of rationality itself are all called into question. Under the hammer too is the methodological 
device of studying mind and brain with scant regard for the properties of the local environment or the 
opportunities provided by bodily motion and action. The fundamental shape of the sciences of the mind 
is in a state of flux. In the chapters to follow, we will roam the landscape of mind in the changing of the 
light.
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I
Outing the Mind

Well, what do you think you understand with? With your head? Bah!
—Nikos Kazantzakis, Zorba the Greek

Ninety percent of life is just being there.
—Woody Allen
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1
Autonomous Agents: Walking on the Moon

1.1 Under the Volcano 1

In the summer of 1994, an eight-legged, 1700-pound robot explorer named Dante II rapelled down a 
steep slope into the crater of an active volcano near Anchorage, Alaska. During the course of a six-day 
mission, Dante II explored the slope and the crater bed, using a mixture of autonomous (self-directed) 
and external control. Dante II is one product of a NASA-funded project, based at Carnegie Mellon 
University and elsewhere, whose ultimate goal is to develop truly autonomous robots for the purpose of 
collecting and transmitting detailed information concerning local environmental conditions on other 
planets. A much smaller, largely autonomous robot is expected to be sent to Mars in 1996, and the 
LunaCorp lunar rover, which is based on Dante II software, has a reserved spot on the first commercial 
moon shot, planned for 1997.

The problems faced by such endeavors are instructive. Robots intended to explore distant worlds cannot 
rely on constant communication with earth-based scientists—the time lags would soon lead to disaster. 
Such robots must be programmed to pursue general goals by exploring and transmitting information. For 
long missions, they will need to replenish their own energy supplies, perhaps by exploiting solar power. 
They will need to be able to function in the face of unexpected difficulties and to withstand various 
kinds of damage. In short, they will have to satisfy many (though by no means all) of the demands that 
nature made on evolving mobile organisms.

The attempt to build robust mobile robots leads, surprisingly quickly, to a radical rethinking of many of 
our old and comfortable ideas about the nature of adaptive intelligence.
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1.2 The Robots' Parade

Elmer and Elsie

The historical forebears of today's sophisticated animal-like robots (sometimes called "animats") were a 
pair of cybernetic "turtles" built in 1950 by the biologist W. Grey Walter. The ''turtles"—named Elmer 
and Elsie 2—used simple light and touch sensors and electronic circuitry to seek light but avoid intense 
light. In addition, the turtles each carried indicator lights, which came on when their motors were 
running. Even such simple onboard equipment led to thought-provoking displays of behavior, especially 
when Elmer and Elsie interacted both with each other (being attracted by the indicator lights) and with 
the local environment (which included a few light sources which they would compete to be near, and a 
mirror which led to amusing, self-tracking "dancing"). In a strange way, the casual observer would find 
it easier to read life and purpose into the behavior of even these shallow creations than into the 
disembodied diagnostics of fancy traditional expert systems such as MYCIN.3

Herbert

One of the pioneers of recent autonomous-agent research is Rodney Brooks of the MIT Mobile Robot 
Laboratory. Brooks's mobile robots ("mobots") are real robots capable of functioning in messy and 
unpredictable real-world settings such as a crowded office. Two major characteristics of Brooks's 
research are the use of horizontal microworlds and the use of activity-based decompositions within each 
horizontal slice.

The contrast between horizontal and vertical microworlds is drawn in Clark 1989 and, in different terms, 
in Dennett 1978b. The idea is simple. A microworld is a restricted domain of study: we can't solve all 
the puzzles of intelligence all at once. A vertical microworld is one that slices off a small piece of human-
level cognitive competence as an object of study. Examples include playing chess, producing the past-
tense forms of English verbs, and planning a picnic, all of which have been the objects of past AI 
programs. The obvious worry is that when we human beings solve these advanced problems we may 
well be bringing to bear computational resources shaped by the other, more basic needs for which 
evolution equipped our ancestors. Neat, design-oriented solutions to these recent 
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problems may thus be quite unlike the natural solutions dictated by the need to exploit existing 
machinery and solutions. We may be chess masters courtesy of pattern-recognition skills selected to 
recognize mates, food, and predators. A horizontal microworld, in contrast, is the complete behavioral 
competence of a whole but relatively simple creature (real or imaginary). By studying such creatures, we 
simplify the problems of human-level intelligence without losing sight of such biological basics as real-
time response, integration of various motor and sensory functions, and the need to cope with damage.

Brooks (1991, p. 143) lays out four requirements for his artificial creatures:

A creature must cope appropriately and in a timely fashion with changes in its dynamic environment.
A creature should be robust with respect to its environment. …
A creature should be able to maintain multiple goals. …
A creature should do something in the world; it should have some purpose in being.

Brooks's "creatures" are composed of a number of distinct activity-producing subsystems or "layers." 
These layers do not create and pass on explicit, symbolic encodings or recodings of inputs. Instead, each 
layer is itself a complete route from input to action. The "communication" between distinct layers is 
restricted to some simple signal passing. One layer can encourage, interrupt, or override the activity of 
another. The resultant setup is what Brooks calls a "subsumption architecture'' (because layers can 
subsume one another's activity but cannot communicate in more detailed ways).

A creature might thus be composed of three layers (Brooks 1991, p. 156):

Layer 1: Object avoidance via a ring of ultrasonic sonar sensors. These cause the mobot to halt if an 
object is dead ahead and allow reorientation in an unblocked direction.
Layer 2: If the object avoidance layer is currently inactive, an onboard device can generate random 
course headings so the mobot "wanders."
Layer 3: This can surpass the wander layer and instead set up a distant goal to take the mobot into a 
whole new locale.
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A key feature of the methodology is that layers can be added incrementally, each such increment 
yielding a whole, functional creature. Notice that such creatures do not depend on a central reservoir of 
data or on a central planner or reasoner. Instead, we see a "collection of competing behaviors" 
orchestrated by environmental inputs. There is no clear dividing line between perception and cognition, 
no point at which perceptual inputs are translated into a central code to be shared by various onboard 
reasoning devices. This image of multiple, special-purpose problem solvers orchestrated by 
environmental inputs and relatively simple kinds of internal signaling is, I shall argue in a later chapter, 
a neuroscientifically plausible model even of more advanced brains.

Herbert, 4 built at the MIT Mobot Lab in the 1980s, exploits the kind of subsumption architecture just 
described. Herbert's goal was to collect empty soft-drink cans left strewn around the laboratory. This 
was not a trivial task; the robot had to negotiate a cluttered and changing environment, avoid knocking 
things over, avoid bumping into people, and identify and collect the cans. One can imagine a classical 
planning device trying to solve this complex real-world problem by using rich visual data to generate a 
detailed internal map of the present surroundings, to isolate the cans, and to plan a route. But such a 
solution is both costly and fragile—the environment can change rapidly (as when someone enters the 
room), and rich visual processing (e.g. human-level object and scene recognition) is currently beyond 
the reach of any programmed system.

Subsumption architectures, as we saw, take a very different approach. The goal is to have the complex, 
robust, real-time behavior emerge as the result of simple interactions between relatively self-contained 
behavior-producing subsystems. These subsystems are, in turn, controlled rather directly by properties 
of the encountered environment.5 There is no central control or overall plan. Instead, the environment 
itself will guide the creature, courtesy of some basic behavioral responses, to success. In Herbert's case, 
these simple behaviors included obstacle avoidance (stopping, reorienting, etc.) and locomotion 
routines. These would be interrupted if a table-like outline was detected by a simple visual system. Once 
Herbert was beside a table, the locomotion and obstacle-avoidance routines ceded control to other 
subsystems that swept the table with a laser and a video camera. Once the basic outline of a can was 
detected, the 
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robot would rotate until the can-like object was in the center of its field of vision. At this point, the 
wheels stopped and a robot arm was activated. The arm, equipped with simple touch sensors, gently 
explored the table surface ahead. When Herbert encountered the distinctive shape of a can, grasping 
behavior ensued, the can was collected, and the robot moved on.

Herbert is thus a simple "creature" that commands no stored long-term plans or models of its 
environment. Yet, considered as an artificial animal foraging for cans in the sustaining niche provided 
by the Mobot Lab ecosystem, Herbert exhibits a kind of simple adaptive intelligence in which sensors, 
onboard circuitry, and external environment cooperate to ensure success.

Attila

Rodney Brooks believes that robots smaller and more flexible than the lumbering Dante will better serve 
the needs of extraterrestrial exploration. Attila 6 weighs just 3 ½ pounds and uses multiple special-
purpose "minibrains" ("finite-state machines") to control a panoply of local behaviors which together 
yield skilled walking: moving individual legs, detecting the forces exerted by the terrain so as to 
compensate for slopes, and so on. Attila also exploits infrared sensors to detect nearby objects. It is able 
to traverse rough terrain, and even to stand up again if it should fall on its back. Rodney Brooks claims 
that Attila already embodies something close to insect-level intelligence.

Periplaneta Computatrix

This is the simulated cockroach mentioned above. Beer and Chiel (1993) describe a neural-network 
controller for hexapod locomotion. Each leg has a mini-controller that exploits a "pacemaker" unit—an 
idealized model neuron whose output oscillates rhythmically. The unit will fire at intervals determined 
by the tonic level of excitation from a command neuron and any additional inputs it receives. The idea, 
borrowed from a biological model developed by K. G. Pearson (1976), is to give each leg its own 
rhythmic-pattern generator but then to factor in modulatory local influences involving the different 
sensory feedbacks from each leg as the insect traverses uneven terrain. Coordination between legs is 
achieved by
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Figure 1.1 The first hexapod robot, built by Ken Espenschied
at Case Western Reserve University under the supervision of 

Roger Quinn. Source: Quinn and Espenschied 1993. Reproduced by
kind permission of K. Espenschied, R. Quinn, and Academic Press.

Figure 1.2 The second hexapod robot, built by Ken Espenschied
at Case Western Reserve University under the supervision of

Roger Quinn. Photograph courtesy of Randall Beer.
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inhibitory links between neighboring pattern generators. Each leg has three motor neurons: one controls 
back swing, one controls forward swing, and one causes the foot to raise. The overall control circuit is 
again fully distributed. There is no central processor that must orchestrate a response by taking all 
sensory inputs into account. Instead, each leg is individually "intelligent," and simple inhibitory linkages 
ensure globally coherent behavior. Different gaits emerge from the interactions between different levels 
of tonic firing of the pacemaker units (the pattern generators) and local sensory feedback. The robot will 
adopt a tripod gait at high firing frequencies and will switch to a metachronal gait at lower ones. In a 
tripod gait, the front and back legs on one side swing in phase with the middle legs on the other side; in 
a metachronal gait, each leg begins its swing just after the leg behind it, in a kind of wave or ripple 
motion.

Although designed and tested as a pure computer simulation, the locomotion circuit has been used in a 
real robot body and has proved robust in the real world of friction, inertia, noise, delays, and so on An 
early example of a real-world hexapod robot is shown is figure 1.1 and is further discussed in Beer and 
Chiel 1993 and in Quinn and Espenschied 1993. The locomotion circuit employed is also able (because 
it is so highly distributed) to preserved most of its functionality after damage to individual neurons or 
connections (Beer et al. 1992). Despite the complexity of the behavior it produces, the locomotion 
circuit itself is quite modest—just 37 "neurons," strategically deployed and interconnected. Nonetheless, 
videos of the robot hexapod and its successors provide an enthralling spectacle. One sequence shows a 
somewhat more complex successor robot (figure 1.2) tentatively making its way across the rough terrain 
provided by some fragments of polystyrene packing. A foot is extended and gently lowered. Finding no 
purchase (because of the local terrain), it is retracted and then placed in a slightly different location. 
Eventually a suitable foothold is discovered and the robot continues on its way. Such tentative 
exploratory behavior has all the flavor of real, biological intelligence.

Brachiation Robot

Brachiation (figure 1.3) is the branch-to-branch swinging motion that apes use to traverse highly 
forested terrain. Saito and Fukuda (1994) describe a robot device that learns to brachiate using a neural-
network
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Figure 1.3 The brachiation of a gibbon. Source: Saito and Fukuda 1994.
Used by kind permission of F. Saito, T. Fukuda, and MIT Press.

Figure 1.4 A two-link brachiation robot.
Source: Saito and Fukuda 1994.

Used by kind permission of F. Saito,
T. Fukuda, and MIT Press.
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controller. The task is especially interesting since it incorporates a learning dimension and addresses a 
highly time-critical behavior.

The robot uses a form of neural-network learning called connectionist Q-learning. 7 Q-learning involves 
attempting to learn the value of different actions in different situations. A Q-learning system must have a 
delimited set of possible actions and situations and must be provided with a reward signal informing it 
of the value (goodness) of a chosen action in the situation it is facing. The goal is to learn a set of 
situation-action pairings that will maximize success relative to a reward signal. Saito and Fukuda 
demonstrate that such techniques enable an artificial neural network to learn to control a two-link real-
world brachiation robot (figure 1.4). The fully trained brachiation robot can swing successfully from 
"branch" to "branch," and if it misses it is able to use its momentum to swing back and try again.

Cog

COG (Brooks 1994; Brooks and Stein 1993) must surely be the most ambitious of all the "New 
Robotics" projects undertaken so far. The project, spearheaded by Rodney Brooks, aims to create a high-
functioning humanoid robot. The human-size robot (figure 1.5) is not mobile; it is, however, able to 
move its hands, arms, head, and eyes. It is bolted to a tabletop, but it can swivel at the hips. There are 24 
individual motors underpinning these various degrees of freedom, and each motor has a processor 
devoted solely to overseeing its operation (in line with the general mobot ethos of avoiding centralized 
control). The arms incorporate springs, which allow some brute-mechanical smoothing. Most of the 
motors (excluding the eye motors) incorporate heat sensors that allow COG to gather information about 
its own current workings by telling it how hard various motors are working—a kind of robot version of 
the kinesthetic sense that tells us how our body parts are oriented in space. Each eye each comprises two 
cameras; one has a wide field of view with low resolution, and the other has a narrow field of view with 
high resolution. The cameras can move around surveying a visual scene, with the narrow-field camera 
mimicking the mammalian fovea. COG also receives audio information via four microphones. All this 
rich incoming data is processed by a "brain" composed of multiple submachines ("nodes,"
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Figure 1.5 Three views of the robot COG. Photographs kindly provided by Rodney Brooks.
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each with a megabyte of ROM and RAM and a dedicated operating system), which are capable of 
communicating with one another in some restricted ways. COG's brain is thus itself a multi-processor 
system, and COG's nervous system also includes other "intelligent" devices (such as the dedicated motor 
processors). The overall setup thus reflects much of the guiding philosophy of Brooks's work with robot 
insects, but it is sufficiently complex to bring new and pressing problems to the fore. Familiar features 
include the lack of any central memory shared by all processors, the lack of any central executive 
controls, the restricted communications between subdevices, and the stress on solving real-time 
problems involving sensing and acting. The new problems all center around the need to press coherent 
behaviors from such a complex system without falling back on the old, impractical methods of serial 
planning and central control. The ingenious strategies and tricks that enable embodied systems to 
maintain coherence while exploiting multiple, special-purpose, quasi-independent problem-solving 
routines (addressed in later chapters) shed light on the roles of language, culture, and institutions in 
empowering human cognition. For the moment, however, let us back off and try to extract some general 
morals from our parade of artificial critters.

1.3 Minds without Models

The New Robotics revolution rejects a fundamental part of the classical image of mind. It rejects the 
image of a central planner that is privy to all the information available anywhere in the system and 
dedicated to the discovery of possible behavioral sequences that will satisfy particular goals. The trouble 
with the central planner is that is profoundly impractical. It introduces what Rodney Brooks aptly termed 
a "representational bottleneck" blocking fast, real-time response. The reason is that the incoming 
sensory information must be converted into a single symbolic code so that such a planner can deal with 
it. And the planners' output will itself have to be converted from its propriety code into the various 
formats needed to control various types of motor response. These steps of translation are time-
consuming and expensive.

Artificial critters like Herbert and Attila are notable for their lack of central planning. In its place the 
subsumption architecture puts multiple 
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quasi-independent devices, each of which constitutes a self-contained pathway linking sensory input to 
action. As a result, the behaviors of such systems are not mediated by any integrated knowledge base 
depicting the current state of the overall environment. Such knowledge bases are often called "detailed 
world models," and it is a recurring theme of the new approaches that they achieve adaptive success 
without the use of such models.

It would be easy, however, to overstate this difference. A major danger attending any revolutionary 
proposal in the sciences is that too much of the "old view" may be discarded—that healthy babies may 
be carried away by floods of bathwater. This very danger attends, I believe, the New Roboticists' 
rejection of internal models, maps, and representations. Taken only as an injunction to beware the costs 
of central, integrated, symbolic models, the criticism is apt and important. But taken as a wholesale 
rejection of inner economies whose complexities include multiple action-centered representations and 
multiple partial world models, it would be a mistake for at least two reasons.

First, there is no doubt that the human brain does at times integrate multiple sources of information. The 
area that governs visual saccades (the rapid motion of the high-resolution fovea to a new target) is able 
to respond to multiple sensory inputs—we can saccade to the site of peripherally detected motion, to the 
origin of a sound, or to track an object detected only by touch. In addition, we often combine modalities, 
using touch, sight, and sound in complex interdependent loops where the information received in each 
modality helps tune and disambiguate the rest (as when we confront a familiar object in the dark corner 
of a cupboard).

Second, the presence of internal models intervening between input and output does not always constitute 
a time-costly bottleneck. Motor emulation provides a clean and persuasive example. Consider the task of 
reaching for a cup. One "solution" to a reaching problem is ballistic reaching. As its name implies, this 
style of reaching depends on a preset trajectory and does not correct for errors along the way. More 
skilled reaching avails itself of sensory feedback to subtly correct and guide the reaching along the way. 
One source of such feedback is proprioception, the inner sense that tells you how your body (your arm, 
in this case) is located in space. But proprioceptive signals must travel back from bodily peripheries to 
the brain, and this takes time—too much time, in fact, for 
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the signals to be used to generate very smooth reaching movements. To solve the problem, the brain 
may use a trick (widely used in industrial control systems) called motor emulation. An emulator is a 
piece of onboard circuitry that replicates certain aspects of the temporal dynamics of the larger system. 
It takes as input a copy of a motor command and yields as output a signal identical in form to one 
returning from the sensory peripheries. That is, it predicts what the proprioceptive feedback should be. If 
the device is reliable, these predictions can be used instead of the real sensory signals so as to generate 
faster error-correcting activity. Such emulators are the subject of numerous detailed theoretical 
treatments (e.g. Kawato et al. 1987; Dean et al. 1994) that show how simple neural-network learning can 
yield reliable emulators and speculate on how such emulators may be realized in actual neural circuitry.

Such a motor emulator is not a bottleneck blocking real-time success. On the contrary, it facilitates real-
time success by providing a kind of ''virtual feedback" that outruns the feedback from the real sensory 
peripheries. Thus, an emulator provides for a kind of motor hyperacuity, enabling us to generate 
smoother and more accurate reaching trajectories than one would think possible in view of the distances 
and the speed of conduction governing the return of sensory signals from bodily peripheries. Yet an 
emulator is undoubtedly a kind of inner model. It models salient aspects of the agents' bodily dynamics, 
and it can even be deployed in the absence of the usual sensory inputs. But it is a partial model dedicated 
to a specific class of tasks. It is thus compatible with the New Roboticists' skepticism about detailed and 
centralized world models and with their stress on real-time behavioral success. It also underlines the 
intrinsic importance of the temporal aspects of biological cognition. The adaptive role of the emulator 
depends as much on its speed of operation (its ability to outrun the real sensory feedback) as on the 
information it encodes.

Carefully understood, the first moral of embodied cognition is thus to avoid excessive world modeling, 
and to gear such modeling as is required to the demands of real-time, behavior-producing systems.

1.4 Niche Work

The second moral follows closely from the first. It concerns the need to find very close fits between the 
needs and lifestyles of specific systems (be 
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they animals, robots, or humans) and the kinds of information-bearing environmental structures to which 
they will respond. The idea is that we reduce the information-processing load by sensitizing the system 
to particular aspects of the world—aspects that have special significance because of the environmental 
niche the system inhabits.

We saw something of this in the case of Herbert, whose "niche" is the Coke-can-littered environment of 
the MIT Mobile Robot Laboratory. One fairly reliable fact about that niche is that cans tend to 
congregate on table tops. Another is that cans, left to their own devices, do not move or attempt to 
escape. In view of these facts, Herbert's computational load can be substantially reduced. First, he can 
use low-resolution cues to isolate tables and home in on them. Once he is at a table, he can begin a 
special-purpose can-seeking routine. In seeking cans, Herbert need not (and in fact cannot) form internal 
representations of the other objects on the table. Herbert's "world" is populated only by obstacles, table 
surfaces, and cans. Having located a can, Herbert uses physical motion to orient himself in a way that 
simplifies the reaching task. In all these respects (the use of motion, the reliance on easily detected cues, 
and the eschewal of centralized, detailed world models), Herbert exemplifies niche-dependent sensing.

The idea of niche-dependent sensing is not new. In 1934 Jakob Von Uexkull published a wonderful 
monograph whose title translates as A Stroll through the Worlds of Animals and Men: A Picture Book of 
Invisible Worlds. Here, with almost fairy-tale-like eloquence and clarity, Von Uexkull introduces the 
idea of the Umwelt, defined as the set of environmental features to which a given type of animal is 
sensitized. He describes the Umwelt of a tick, which is sensitive to the butyric acid found on mammalian 
skin. Butyric acid, when detected, induces the tick to loose its hold on a branch and to fall on the animal. 
Tactile contact extinguishes the olfactory response and initiates a procedure of running about until heat 
is detected. Detection of heat initiates boring and burrowing. It is impossible to resist quoting Von 
Uexkull at some length:

The tick hangs motionless on the tip of a branch in a forest clearing. Her position gives her the chance to drop 
on a passing mammal. Out of the whole environment, no stimulus affects her until a mammal approaches, 
whose blood she needs before she can bear her young.
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And now something quite wonderful happens. Of all the influences that emanate from the mammal's body, only 
three become stimuli and those in definite sequence. Out of the vast world which surrounds the tick, three shine 
forth from the dark like beacons, and serve as guides to lead her unerringly to her goal. To accomplish this, the 
tick, besides her body with its receptors and effectors, has been given three receptor signs, which she can use as 
sign stimuli. And these perceptual cues prescribe the course of her actions so rigidly that she is only able to 
produce corresponding specific effector cues.

The whole rich world around the tick shrinks and changes into a scanty framework consisting, in essence, of 
three receptor cues and three effector cues—her Umwelt. But the very poverty of this world guarantees the 
unfailing certainty of her actions, and security is more important than wealth. (ibid., pp. 11–12)

Von Uexkull's vision is thus of different animals inhabiting different effective environments. The 
effective environment is defined by the parameters that matter to an animal with a specific lifestyle. The 
overarching gross environment is, of course, the physical world in its full glory and intricacy.

Von Uexkull's monograph is filled with wonderful pictures of how the world might seem if it were 
pictured through the lens of Umwelt-dependent sensing (figures 1.6–1.8). The pictures are fanciful, but 
the insight is serious and important. Biological cognition is highly selective, and it can sensitize an 
organism to whatever (often simple) parameters reliably specify states of affairs that matter to the 
specific life form. The similarity between the operational worlds of Herbert and the tick is striking: Both 
rely on simple cues that are specific to their needs, and both profit by not bothering to represent other 
types of detail. It is a natural and challenging extension of this idea to wonder whether the humanly 
perceived world is similarly biased and constrained. Our third moral claims that it is, and in even more 
dramatic ways than daily experience suggests.

1.5 A Feel for Detail?

Many readers will surely agree that even advanced human perception is skewed toward the features of 
the world that matter with respect to human needs and interests. The last and most speculative of our 
short list of morals suggests that this skewing penetrates more deeply than we ever imagined. In 
particular, it suggests that our daily perceptual experiences
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Figure 1.6 The environment and Umwelt of a scallop.
Based on figure 19 of Von Uexkull 1934; adapted by Christine

Clark, with permission of International Universities Press.
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Figure 1.7 The Umwelt of an astronomer.
Based on figure 21 of Von Uexkull 1934;

adapted by Christine Clark, with permission
of International Universities Press.

may mislead us by suggesting the presence of world models more durable and detailed than those our 
brains actually build. This somewhat paradoxical idea requires careful introduction. 8

Consider the act of running to catch a ball. This is a skill which cricketers and baseball players routinely 
exhibit. How is it done? Common experience suggests that we see the ball in motion, anticipate its 
continuing trajectory, and run so as to be in a position to intercept it. In a sense this is correct. But the 
experience (the "phenomenology") can be misleading if one believes that we actively compute such 
trajectories. Recent research9 suggests that a more computationally efficient strategy is to simply run so 
that the acceleration of the tangent of elevation of gaze from fielder to ball is kept at zero. Do this and 
you will intercept the ball before
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Figure 1.8 The environment and Umwelt of a honeybee.
Based on figure 53 of Von Uexkull 1934; adapted by Christine

Clark, with permission of International Universities Press.
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it hits the ground. Videotaped sequences of real-world ball interception suggest that humans do 
indeed—unconsciously—use this strategy. Such a strategy avoids many computational costs by isolating 
the minimal and most easily detectable parameters that can support the specific action of interception.



In a similar vein, an important body of research known as animate vision (Ballard 1991; see also P. S. 
Churchland et al. 1994) suggests that everyday visually guided problem solving may exploit a multitude 
of such tricks and special-purpose routines. Instead of seeing vision as the transformation of incoming 
light signals into a detailed model of a three-dimensional external world, animate-vision research 
investigates ways in which fast, fluent, adaptive responses can be supported by less computationally 
intensive routines: routines that intertwine sensing with acting and moving in the world. Examples 
include the use of rapid and repeated saccades to survey a visual scene and to extract detailed 
information only at selected foveated locations, and the exploitation of coarser cues (such as color) that 
can be detected at the low-resolution peripheries.

The case of rapid scanning is especially instructive. Human eyes exploit a small area (less than 0.01 
percent of the overall visual field) of very high resolution. Visual saccades move this high-resolution 
window from point to point in a visual scene. Yarbus (1967) showed that these saccades can be 
intelligent in the sense that a human subject faced with an identical scene will saccade around in very 
different ways so as to carry out different tasks. Such saccades are very fast (about three per second) and 
often visit and revisit the same location. In one of Yarbus's studies, subjects were shown a picture of a 
room with some people in it and asked to either give the ages of the people, guess what activity they had 
previously been engaged in, or remember the locations of the people and objects. Very different patterns 
of saccade were identified, depending on which task was specified.

Frequent saccades enable us, animate-vision researchers claim, to circumvent the need to build enduring 
and detailed models of our visual surroundings. Instead, to borrow a slogan from Rodney Brooks, we 
can use the world as its own best model and visit and revisit the real-world scene, sampling it in detail at 
specific locations as required. The costly business of maintaining and updating a full-scale internal 
model of a 
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three-dimensional scene is thus avoided. Moreover, we can sample the scene in ways suited to the 
particular needs of the moment.

For all that, it certainly seems to us as if we are usually in command of a full and detailed three-
dimensional image of the world around us. But this, as several recent authors have pointed out, 10 may 
be a subjective illusion supported by our ability to rapidly visit any part of the scene and then retrieve 
detailed (but not enduring) information from the foveated region. Ballard (1991, p. 59) comments that 
"the visual system provides the illusion of three-dimensional stability by virtue of being able to execute 
fast behaviors."
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A useful analogy11 involves the sense of touch. Back in the 1960s, Mackay raised the following 
question: Imagine you are touching a bottle, with your eyes shut and your fingertips spread apart. You 
are receiving tactile input from only a few spatially separated points. Why don't you have the sensation 
of feeling an object with holes in it, corresponding to the spaces between your fingers? The reason is, in 
a sense, obvious. We use touch to explore surfaces, and we are accustomed to moving our fingertips so 
as to encounter more surface—especially when we know that what we are holding is a bottle. We do not 
treat the spaces between the sensory inputs as indicating spaces in the world, because we are used to 
using the senses as exploratory tools, moving first to one point and then to the next. Reflection on this 
case led one researcher to suggest that what we often think of as the passive sensory act of "feeling the 
bottle" is better understood as an action-involving cycle in which fragmentary perceptions guide further 
explorations, and that this action-involving cycle is the basis for the experience of perceiving a whole 
bottle.12 This radical view, in which touch is cast as an exploratory tool darting hither and thither so as 
probe and reprobe the local environment, extends quite naturally to vision and to perception in general.

The suspicion that vision is not all it appears to be is wonderfully expressed by Patricia Churchland, V. 
S. Ramachandran, and Terrence Sejnowski in their 1994 paper "A critique of pure vision." In place of 
"picture perfect" internal representation, they too propose that we extract only a sequence of partial 
representations—a conjecture they characterize as the "visual semi-worlds" or ''partial representations 
per glimpse" hypothesis. Support for such a hypothesis, they suggest, comes 
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not only from general computational considerations concerning the use of frequent saccades and so on 
but also from some striking psychological experiments. 13

The experiments involved using computer displays that "tricked" the subjects by altering the visual 
display during saccadic eye movements. It turned out that changes made during saccades were rather 
seldom detected. At these critical moments, whole objects can be moved, colors altered, and objects 
added, all while the subject (usually) remains blissfully unaware. Even more striking, perhaps, is related 
research in which a subject is asked to read text from a computer screen. The target text is never all 
present on the screen at once. Instead, the real text is restricted to a display of (for typical subjects) 17 or 
18 characters. This text is surrounded by junk characters which do not form real words. But (and here is 
the trick) the window of real text moves along the screen as the subject's eyes scan from left to right. 
The text is nonrepetitive, as the computer program ensures that proper text systematically unfolds in 
place of the junk. (But, since it is a moving window, new junk appears where real text used to be.) When 
such a system is well calibrated to an individual subject, the subject does not notice the presence of the 
junk! Moreover, the subjective impression is quite distinctly one of being confronted with a full page of 
proper text stretching to the left and right visual peripheries. In these cases, at least, we can say with 
confidence that the experienced nature of the visual scene is a kind of subjective illusion caused by the 
use of rapid scanning and a small window of resolution and attention.
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1.6 The Refined Robot

Rodney Brooks's Mobile Robot Laboratory once had the motto "Fast, cheap, and out of control." Such, 
indeed, is the immediate message of the New Robotics vision. Without central planning or even the use 
of a central symbolic code, these artificial systems fluently and robustly navigate the real world. They do 
so in virtue of carefully orchestrated couplings between relatively independent onboard devices and 
selected aspects of the environment (the robot's Umwelt, if you will). Despite appearances, it now seems 
conceivable that much of human intelligence is based on similar environment-specific tricks and 
strategies, and that we too may not 

  

Page 32
 

command any central, integrated world model of the traditional style. Thus, to the extent that we take the 
broad morals of the New Robotics to heart, we are confronted by two immediate and pressing problems.

The first is a problem of discovery. If we avoid the easy image of the central planner cogitating over text-
like data structures, and if we distrust our intuitions concerning what types of information we are 
extracting from sensory data, how should we proceed? How can we even formulate hypotheses 
concerning the possible structure and operation of such unintuitive and fragmentary minds? Brooks and 
others rely on developing a new set of intuitions—intuitions grounded in attention to specific behaviors 
and organized around the general idea of a subsumption architecture. As we seek to tackle increasingly 
complex cases, however, it is doubtful that this "handcrafting" approach can succeed. In subsequent 
chapters we shall investigate some ways of proceeding that seem less hostage to human intuitions: 
working up from real neuroscientific and developmental data, relying more on getting robot systems to 
learn for themselves, and even attempting to mimic genetic change so as to evolve generations of 
progressively more refined robots. Look to nature, and let simulated nature takes its course!

The second problem is one of coherence. Both the power and the puzzle of New Robotics research lie in 
the use of multiple, quasi-independent subsystems from which goal-directed behavior gracefully 
emerges under normal ecological conditions. The power lies in the robust, real-time responsiveness of 
such systems. The puzzle is how to maintain coherent behavior patterns as the systems grow more and 
more complex and are required to exhibit a wider and wider variety of behaviors. One response to such a 
problem is, of course, to renege on the basic vision and insist that for complex, advanced behaviors there 
must be something more like a central symbolic planning system at work. We should not, however, give 
up too easily. In the chapters that follow, we shall unearth a surprising number of further tricks and 
strategies that may induce global coherence. Most of these strategies involve the use of some type of 
external structure or "scaffolding" to mold and orchestrate behavior. Obvious contenders are the 
immediate physical environment (recall Herbert) and our ability to actively restructure that environment 
so as to better support and extend our natural problem-solving abilities. These strategies are especially 
evi- 
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dent in child development. Less obvious but crucially important factors include the constraining 
presence of public language, culture, and institutions, the inner economy of emotional response, and the 
various phenomena relating to group or collective intelligence. Language and culture, in particular, 
emerge as advanced species of external scaffolding "designed" to squeeze maximum coherence and 
utility from fundamentally short-sighted, special-purpose, internally fragmented minds. From its 
beginnings in simple robotics, our journey will thus reach out to touch—and sometimes to 
challenge—some of the most ingrained elements of our intellectual self-image. The Rational Deliberator 
turns out to be a well-camouflaged Adaptive Responder. Brain, body, world, and artifact are discovered 
locked together in the most complex of conspiracies. And mind and action are revealed in an intimate 
embrace.
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2
The Situated Infant

2.1 I, Robot

Robot soda-can collectors, moon explorers, cockroaches—if all that sounded far from home, think 
again. The emerging perspective on embodied cognition may also offer the best hope so far for 
understanding central features of human thought and development. One especially promising arena is 
the study of infancy. The New Roboticists' vision of mind on the hoof finds a natural complement in our 
increasing understanding of how thought and action develop in children, for the roboticist and a growing 
number of developmental psychologists are united in stressing the delicate interplay of brain, body, and 
local environment in determining early cognitive success.

In fact (and to be historically fair), developmental psychologists were probably among the very first to 
notice the true intimacy of internal and external factors in determining cognitive success and change. In 
this respect, theorists such as Jean Piaget, James Gibson, Lev Vygotsky, and Jerome Bruner, although 
differing widely in their approaches, actively anticipated many of the more radical-sounding ideas now 
being pursued in situated robotics. 1 Nonetheless, ample scope remains for mutual illumination, since 
each of the two camps commands a distinct set of conceptual and experimental tools and a distinct body 
of data. Thus, the intellectual alliance between developmental psychology and the other sciences of the 
embodied mind may prove to be one of the most exciting interdisciplinary ventures of the coming 
decade.

This chapter explores five major landmarks along such a interdisciplinary frontier: the idea of action 
loops that criss-cross the organism and 
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its environment (section 2.2), a highly interactive view of the developmental process according to which 
mind, body, and world act as equal partners (section 2.3); an image of biological cognition in which 
problem solutions often emerge without central executive control (section 2.4); recognition of the major 
role of external structures and support in enabling adaptive success and in pushing the envelope of 
individual learning (section 2.5); and an increasing skepticism, rooted in all the above considerations, 
concerning the ultimate value of the intuitive divisions between perception, action, and cognition 
(section 2.6). Cognitive development, it is concluded, cannot be usefully treated in isolation from issues 
concerning the child's physical embedding in, and interactions with, the world. A better image of child 
cognition (indeed, of all cognition) depicts perception, action, and thought as bound together in a variety 
of complex and interpenetrating ways.

2.2 Action Loops

Consider a jigsaw puzzle. One (unlikely) way to tackle such a puzzle would be to look very hard at a 
piece and to try to determine by reason alone whether it will fit in a certain location. Our actual practice, 
however, exploits a mixed strategy in which we make a rough mental determination and then physically 
try out the piece to see if it will fit. We do not, in general, represent the detailed shape of a piece well 
enough to know for certain if it is going to fit in advance of such a physical manipulation. Moreover, we 
may physically rotate candidate pieces even before we try to fit them, so as to simplify even the more 
"mentalistic" task of roughly assessing potential fit. (Recall Herbert's use of a similar procedure in which 
self-rotation is used to fix a can into a canonical central location in the robot's visual field.) Completing 
a jigsaw puzzle thus involves an intricate and iterated dance in which "pure thought" leads to actions 
which in turn change or simplify the problems confronting "pure thought.'' This is probably the simplest 
kind of example of the phenomena known as action loops. 2

Recent developmental research by Esther Thelen and Linda Smith suggests that such interplays between 
thought and action may be so ubiquitous and so fundamental that these researchers suspect that all our 
early 
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knowledge is built "though the time-locked interactions of perceiving and acting in particular contexts" 
(Thelen and Smith 1994, p. 217). To see what this means, consider the performance of infants on visual 
cliffs. (A visual cliff is a vertical drop covered with a strong, rigid, transparent surface, such as 
plexiglass.) Infants who are not yet able to crawl are demonstrably able to distinguish the shallow sides 
of the cliff from the area beyond the dropoff. They show increased attention and interest, and 
(surprisingly) they cry less on the deep side than on the shallow side. Older, more mobile infants 
respond to the deep side in ways associated with fear (Campos et al. 1978). 3 Clearly, both groups of 
infants can perceive the visual information specifying depth. The crucial difference seems to lie in how 
that information is put to use—how it figures in the interplay between perception and action.

Further insight into this interplay is provided by recent work on infants' responses to slopes. In this 
research, infants displaying different kinds of mobility (crawlers and walkers) were placed at the tops of 
slopes of varying degrees of steepness. The walkers (14 months) were wary of slopes of about 20° and 
more, and they either refused to descend or switched to a sliding mode. The crawlers dauntlessly 
attempted slopes of 20° and more, and usually fell as a result. (They were always caught in time.)

Under closer scrutiny, however, a fascinating pattern emerges. As crawlers increased in experience, they 
learned to avoid the steeper slopes. But at the point of transition, when the infants first begin to walk, 
this hard-won knowledge seems to have disappeared. The early walkers had to learn about steep slopes 
all over again. In one test, two-thirds of the new walkers "plunged without hesitation down all the steep 
slopes, just as they did when they first encountered them as crawlers" (Thelen and Smith 1994, p. 220).4

This evidence suggests not only that infants learn about the world by performing actions but also that the 
knowledge they acquire is itself often action-specific. Infants do not use their crawling experience to 
acquire knowledge about slopes in general. Rather, they acquire knowledge about how slopes figure in 
specific contexts involving action. Other findings concerning the context-specificity of infant knowledge 
point in the same general direction.5
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This phenomenon is not restricted to infancy. Recent research on adults' mechanisms of perceptual 
compensation reveals a similarly action-specific profile. Thach et al. (1992) present an example 
involving perceptual adaptation under unusual conditions. 6 Thach and his colleagues studied human 
adaptation to the wearing of special glasses that shift the image to the right or the left. It is well known 
that the human perceptual system can learn to cope with such distortions. In fact, several experiments 
show that subjects can even accommodate to lenses that invert the whole visual scene so that the wearer 
sees an upside-down world. After wearing such glasses for a few days, subjects report sudden flips in 
which aspects of the world reorient themselves properly. Of course, once such adaptation has taken 
place, the subjects are dependent on the lenses—if they are removed, the world appears once again 
inverted until readaptation occurs.

What Thach's group showed was that the adaptation in the case of the sideways-shifting lenses appears 
to be specific to certain motor loops. Subjects were asked to throw darts at a board. At first they would 
miss as a result of the sideways-shifting action of the glasses. In time, however, adaptation occurred and 
they were able to aim as well as before. (In contrast with what happened in the experiments with lenses, 
this adaptation had no experiential aspect: no "backshift" in the conscious visual image was reported.) 
But this adaptation is, in most cases, quite motor-loop-specific. Asked to throw the darts underhand 
instead of overhand or to use their nondominant hand, the subjects showed no comparable improvement. 
Adaptation for dominant-arm, overhand throwing did not in any way carry over to the other cases. What 
seems to have occurred was an adaptation restricted to the specific combination of gaze angle and 
throwing angle used in the standard throw. What did not occur was a general, perceptual adaptation that 
would provide "corrected input data" for use by any motor or cognitive subsystem.

Thach et al. have related their results to some quite specific and fascinating hypotheses about the role of 
a particular neural structure—the cerebellum—in the learning of patterned responses to frequently 
encountered stimuli. These conjectures fit well with our emerging picture, since they suggest that the old 
view of the cerebellum as purely involved in motor tasks is misleading and that motor functions and 
some "higher" 
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cognitive functions may be intimately bound together in the brain. For now, however, it need only be 
noted that some rethinking of the "passive" image of our perceptual contact with the world may be in 
order. In many cases, perception should not, it seems, be viewed as a process in which environmental 
data is passively gathered. Instead, perception may be geared, from the outset, to specific action 
routines. 7 The challenge, thus, is to develop "a theoretical framework that is, as it were, 'motocentric' 
rather than "visuocentric" (P. S. Churchland et al. 1994, p. 60). Detailed microdevelopmental studies, 
such as the work on slope negotiation, seem to offer a promising test bed on which to pioneer such a 
radical reorientation.

2.3 Development without Blueprints

A blueprint is a highly detailed plan or specification of, for example, a car or a building. The simplest 
(but usually the least satisfying and plausible) accounts of development depict the alteration and growth 
of a child's cognitive capacities as the gradual unfolding of some genetically determined "blueprint" for 
cognitive change. Such accounts, which dominated during the 1930s and the 1940s,8 are neatly 
described by Thelen and Smith (1994, p.6) as a vision of development as "a linear, stage-like 
progression through a sequence of increasingly more functional behaviors, driven towards adult forms 
by a grand plan (and scheduled by a grand timekeeper)." Such views are still with us, although in 
increasingly sophisticated forms. For example, the gradual development of walking skills is explained as 
an effect of maturationally determined increases in the processing speed of the brain allowing complex 
motor control and integration (Zelazo 1984).

From the highly interactive perspective that we have been developing, however, such approaches may 
be guilty of an all-too-common error. They take a complex phenomenon (e.g. the child's development of 
walking) and look for a single determining factor. This is what Mitchel Resnick of the MIT Media Lab 
calls "centralized thinking":

… people tend to look for the cause, the reason, the driving force, the deciding factor. When people observe 
patterns and structures in the world (for example, the flocking patterns of birds or the foraging patterns of ants), 
they often assume centralized causes where none exist. And when people try to create patterns or structure in 
the world (for example, new organizations or new machines), they often impose centralized control when none 
is needed. (Resnick 1994, p. 120)
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I have quoted this passage at length because it so perfectly captures a central message of our 
investigations—a message that will recur again and again in this book: Complex phenomena exhibit a 
great deal of self-organization. Bird flocks do not, in fact, follow a leader bird. Instead, each bird follows 
a few simple rules that make its behavior depend on the behavior of its nearest few neighbors. The 
flocking pattern emerges from the mass of these local interactions—it is not orchestrated by a leader, or 
by any general plan represented in the heads of individual birds. In a similar vein, certain kinds of ants 
forage by a process of "mass recruitment." If an ant finds food, it returns to the nest and drops a 
chemical marker (a pheromone) on its way. If another ant detects the trail, it will follow it to the food 
source. This, in turn, leads the new ant to add to the chemical trail. The stronger trail will then be more 
likely to attract yet another ant, which in turn finds food, adds to the chemical trail, and thus increases 
the trail's potency. What we thus confront is an extended process of positive feedback that soon leads to 
a massive concentration of activity, with hundreds of ants proceeding up and down the trail. The point is 
that this organization is achieved by a few simple local "rules" that, in the presence of the food source 
and the other ants, give rise to the apparently organized behavior. 9

Some recent studies of infant development suggest that it, too, may be best understood in terms of the 
interactions of multiple local factors—factors that include, as equal partners, bodily growth, 
environmental factors, brain maturation, and learning. There is no "blueprint" for the behavior in the 
brain, or in the genes—no more than there is a blueprint for flocking in the head of the bird.

To get the flavor of the proposal, consider the case of learning to walk. The gross data are as follows: A 
newborn infant, when held suspended off the ground, performs well-coordinated stepping motions; at 
about 2 months these stepping motions are lost; the motions reappear between 8 and 10 months as the 
infant begins to support its weight on its feet; at about 12 months, independent walking appears. 
According to a "grand plan, single factor" view, we would expect these transitions to be expressions of 
the maturation or development of some central source—for example, the gradual capture of reflex-like 
processes by a higher cognitive center (see Zelazo 1984). Microdevelopmental studies suggest, how-

  

javascript:doPopup('Popup','Page_40_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')


Page 41
 

Figure 2.1 This 3-month-old infant was tested for upright stepping
with his feet on the table and then when submerged in warm water.

Source: Thelen and Smith 1994. Courtesy of E. Thelen, L. Smith, and MIT Press.

ever that the transitions are not centrally orchestrated. Instead, multiple factors seem to be interacting on 
essentially equal terms.

For example, although reflex stepping does indeed disappear at about 2 months, nearly kinematically 
identical motions are still produced when the infant is lying on its back. Such "supine kicking" persists 
throughout the first year. The crucial parameter underlying the two-month disappearance of stepping, it 
now seems, is merely leg mass! In the upright position, the resistance of the leg mass at about 2 months 
overwhelms the spring-like action of the muscles. This hypothesis is supported by experiments (figure 
2.1) in which stepping disappears after weights are added to the legs of stepping infants and by 
experiments in which stepping reappears after 3-month-old nonsteppers are held upright in water so that 
their effective leg mass is reduced. 10
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Environmental manipulations are equally effective in studying the second phase—the reappearance of 
stepping between 8 and 10 months. Younger, nonstepping infants, when placed on a treadmill, 
performed coordinated stepping; they were even able to adjust their step rate to the treadmill's speed and 
to adjust to asymmetric constraints when placed on a treadmill having two independent belts driven at 
different speeds. Treadmill stepping was found to occur in infants at all ages between 1 month and 7 
months (Thelen and Smith 1994, pp. 11–17). 11

These last results suggest a major role for a mechanical patterning caused by the backward stretching of 
the legs initiated by the treadmill. This component of stepping is independent of the gross normal 
behavioral transitions, which instead reflect the influence of multiple additional factors such as leg mass. 
The developmental pattern is not the expression of an inner blueprint. Rather, it reflects the complex 
interplay of multiple forces, some bodily (leg mass), some mechanical (leg stretching and spring-like 
actions), some fully external (the presence of treadmills, water, etc.), and some more cognitive and 
internal (the transition to volitional—i.e., deliberate—motion). To focus on any one of these parameters 
in isolation is to miss the true explanation of developmental change, which consists in understanding the 
interplay of forces in a way that eliminates the need to posit any single controlling factor.

2.4 Soft Assembly and Decentralized Solutions

A multi-factor perspective leads rather naturally to an increased respect for, and theoretical interest in, 
what might be termed the historical idiosyncrasies of individual development. What needs to be 
explained here is the delicate balance between individual variation and developmentally robust 
achievements. A key notion for understanding this balancing act is soft assembly.

A traditional robot arm, governed by a classical program, provides an example of "hard assembly." It 
commands a repertoire of moves, and its success depends on the precise placement, orientation, size, 
and other characteristics of the components it must manipulate. Human walking, in contrast, is soft-
assembled in that it naturally compensates for quite major changes in the problem space. As Thelen and 
Smith point out, icy side- 
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walks, blisters, and high-heeled shoes all "recruit" different patterns of gait, muscle control, etc., while 
maintaining the gross goal of locomotion. Centralized control via detailed inner models or specifications 
seems, in general, to be inimical to such fluid, contextual adaptation. (Recall the lessons from situated 
robotics in chapter 1.) Multi-factor, decentralized approaches, in contrast, often yield such robust, 
contextual adaptation as a cost-free side effect. This is because such systems, as we saw, create actions 
from an "equal partners" approach in which the local environment plays a large role in selecting 
behaviors. In situations where a more classical, inner-model-driven solution would break down as a 
result of the model's incapacity to reflect some novel environment change, "equal partners" solutions 
often are able to cope because the environment itself helps to orchestrate the behavior.

In this vein, Pattie Maes of the MIT Media Laboratory describes a scheduling system whose goal is to 
match processes (jobs, or job parts) to processors (machines). 12 This is a complex task, since new jobs 
are always being created and since the loads of different machines continuously vary. A traditional, hard-
assembled solution would invoke a centralized approach in which one system would contain a body of 
knowledge about the configurations of different machines, typical jobs, etc. That system would also 
frequently gather data from all the machines concerning their current loads, the jobs waiting, and so on. 
Using all this information and some rules or heuristics, the system would then search for a schedule (an 
efficient assignment of jobs to machines). This is the solution by Pure Centralized Cognition. Now 
consider, in contrast, the decentralized solution favored by Maes.13 Here, each machine controls its own 
workload. If machine A creates a job, it sends out a "request for bids" to all the other machines. Other 
machines respond to such a request by giving estimates of the time they would require to complete the 
job. (A low-use machine or one that has some relevant software already loaded will outbid a heavily 
used or ill-prepared machines.) The originating machine then simply sends the job to the best bidder. 
This solution is both robust and soft-assembled. If one machine should crash, the system compensates 
automatically. And no single machine is crucial—scheduling is rather an emergent property of the 
simple interactions of posting and bidding among whatever machines are currently active. Nowhere is 
there a 
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central model of the system's configuration, and hence the problems associated with updating and 
deploying such a model don't arise.

Soft assembly out of multiple, largely independent components yields a characteristic mix of robustness 
and variability. The solutions that emerge are tailored to the idiosyncrasies of context, yet they satisfy 
some general goal. This mix, pervasive throughout development, persists in mature problem solving and 
action. Individual variability should thus not be dismissed as "bad data" or "noise" that somehow 
obscures essential developmental patterns. Instead, it is, as Thelen and Smith insist, a powerful clue to 
the nature of underlying processes of soft assembly. 14

To illustrate this, Thelen and Smith describe the development of reaching behavior in several infants. 
Despite the gross behavioral commonality of the final state (ability to reach), they found powerful 
individual differences. Reaching, in each individual case, turned out to be soft-assembled from 
somewhat different components, reflecting differences in the intrinsic dynamics of the infants and in 
their historical experience. Thelen and Smith paint a highly detailed picture; we will visit just a few 
highlights here.

One infant, Gabriel, was very active by nature, generating fast flapping motions with his arms. For him, 
the task was to convert the flapping motions into directed reaching. To do so, he needed to learn to 
contract muscles once the arm was in the vicinity of a target so as to dampen the flapping and allow 
proper contact.

Hannah, in contrast, was motorically quiescent. Such movements as she did produce exhibited low hand 
speeds and low torque. Her problem was not to control flapping, but to generate enough lift to overcome 
gravity.

Other infants present other mixtures of intrinsic dynamics, but in all cases the basic problem is one of 
learning to control some intrinsic dynamics (whose nature, as we have seen, can vary quite 
considerably) so as to achieve a goal. To do so, the central nervous system must assemble a solution that 
takes into account a wide variety of factors, including energy, temperament, and muscle tone. One 
promising proposal15 is that in doing so the CNS is treating the overall system as something like a set of 
springs and masses. It is thus concerned, not with generating inner models of reaching trajectories and 
the like, but with learning how to modulate such factors as limb stiffness so that imparted energy will 
combine with 
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intrinsic spring-like dynamics to yield an oscillation whose resting point is some desired target. That is, 
the CNS is treated as a control system for a body whose intrinsic dynamics play a crucial role in 
determining behavior.

The developmental problems that face each child are thus different, since children's intrinsic dynamics 
differ. What is common is the higher-level problem of harnessing these individual dynamics so as to 
achieve some goal, such as reaching. The job of the CNS, over developmental time, is not to bring the 
body increasingly "into line" so that it can carry out detailed internally represented commands directly 
specifying, e.g., arm trajectories. Rather, the job is to learn to modulate parameters (such as stiffness) 
which will then interact with intrinsic bodily and environmental constraints so as to yield desired 
outcomes. In sum, the task is to learn how to soft-assemble adaptive behaviors in ways that respond to 
local context and exploit intrinsic dynamics. Mind, body, and world thus emerge as equal partners in the 
construction of robust, flexible behaviors.

2.5 Scaffolded Minds

One final property of soft-assembled solutions merits explicit attention here, since it will loom large in 
several later chapters. It concerns the natural affinity between soft assembly and the use of external 
scaffolding. As has already been noted, the central nervous system, in learning to modulate parameters 
such as stiffness, was in effect solving a problem by "assuming" a specific backdrop of intrinsic bodily 
dynamics (the springlike properties of muscles). Such assumed backdrops need not be confined to the 
agent's body. Instead, we may often solve problems by "piggybacking" on reliable environmental 
properties. This exploitation of external structure is what I mean by the term scaffolding.

The idea of scaffolding has its roots in the work of the Soviet psychologist Lev Vygotsky. 16 Vygotsky 
stressed the way in which experience with external structures (including linguistic ones, such as words 
and sentences—see chapter 10 below) might alter and inform an individual's intrinsic modes of 
processing and understanding. The tradition that ensued included the notion of a zone of proximal 
development17—the idea being that adult help, provided at crucial developmental moments, would give 
the child experience of successful action which the child alone 
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could not produce. Providing support for the first few faltering steps of a near-walker and supporting a 
baby in water to allow swimming movements would be cases in point.

The intuitive notion of scaffolding is broader, however, since it can encompass all kinds of external aid 
and support whether provided by adults or by the inanimate environment. 18 Two examples are the use 
of the physical structure of a cooking environment (grouping spices, oils, etc.) as an external memory 
aid (Cole et al. 1978) and the use of special eating utensils that reduce the child's freedom to spill and 
spear while providing a rough simulacrum of an adult eating environment (Valsiner 1987).19 The point, 
for present purposes, is that environmental structures, just like the elasticity of muscles, form a backdrop 
relative to which the individual computational problems facing the child take shape.

Such scaffolding is common enough in noncognitive cases. The simple sponge, which feeds by filtering 
water, exploits the structure of its natural physical environment to reduce the amount of actual pumping 
it must perform: it orients itself so as to make use of ambient currents to aid its feeding.20 The trick is an 
obvious one, yet not until quite recently did biologists recognize it. The reason for this is revealing: 
Biologists have tended to focus solely on the individual organism as the locus of adaptive structure. 
They have treated the organism as if it could be understood independent of its physical world. In this 
respect, biologists have resembled those cognitive scientists who have sought only inner-cause 
explanations of cognitive phenomena. In response to such a tendency, the biologist Vogel (1981, p. 182) 
has urged a principle of parsimony: ''Do not develop explanations requiring expenditure of metabolic 
energy (e.g. the full-pumping hypothesis for the sponge) until simple physical effects (e.g. the use of 
ambient currents) are ruled out." The extension of Vogel's dictum to the cognitive domain is simple. It is 
what I once dubbed the "007 Principle":

In general, evolved creatures will neither store nor process information in costly ways when they can use the 
structure of the environment and their operations upon it as a convenient stand-in for the information-processing 
operations concerned. That is, known only as much as you need to know to get the job done. (Clark 1989, p. 64)

This principle is reflected in the moboticists' slogan "The world is its own best representation." It is also 
a natural partner to ideas of soft 
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assembly and decentralized problem solving. In place of the intellectual engine cogitating in a realm of 
detailed inner models, we confront the embodied, embedded agent acting as an equal partner in adaptive 
responses which draw on the resources of mind, body, and world. We have now seen a few preliminary 
examples involving bodily dynamics and the use of simple kinds of external memory store. In later 
chapters we shall pursue these ideas into the special realms of external structure made available by 
language, culture, and institutions.

2.6 Mind as Mirror vs. Mind as Controller

We have now seen a variety of ways in which cognition might exploit real-world action so as to reduce 
computational load. The perspective developed in the preceding sections takes us one step further, for it 
suggests ways in which robust, flexible behavior may depend on processes of decentralized soft 
assembly in which mind, body, and world act as equal partners in determining adaptive behavior. This 
perspective leads to a rather profound shift in how we think about mind and cognition—a shift I 
characterize as the transition from models of representation as mirroring or encoding to models of 
representation as control (Clark 1995). The idea here is that the brain should not be seen as primarily a 
locus of inner descriptions of external states of affairs; rather, it should be seen as a locus of inner 
structures that act as operators upon the world via their role in determining actions.

A lovely example of the use of such action-centered representations can be found in the work of Maja 
Mataric of the MIT Artificial Intelligence Laboratory. Mataric has developed a neurobiology-inspired 
model of how rats navigate their environments. The model has been implemented in a mobile robot. The 
robot rat, which has sonar sensors and a compass, achieves real-time success by exploiting the kind of 
subsumption architecture I described in chapter 1: it uses a set of quasi-independent "layers," each of 
which constitutes a complete processing route from input to output and which communicates only by 
passing fairly simple signals. One such layer generates boundary tracing: the robot follows walls while 
avoiding obstacles. A second layer detects landmarks, each of which is registered as a combination of 
the robot's motion and its sensory input (a corridor
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Figure 2.2 Example of a robot's reflexive navigation
behavior in a cluttered office environment. Labels include

landmark type and compass bearing (LW8 = left wall
heading south; C0 = corridor heading north; J = long
irregular boundary). Source: Mataric 1991. Used by

kind permission of M. Mataric and MIT Press.

is thus remembered as the combination of forward motion and short lateral distance readings from the 
sonar sensors). A third layer uses this information to construct a map of the environment (figure 2.2). 
The map consists of a network of landmarks, each of which is, as we saw, a combination of motoric and 
sensory readings. All the nodes on the map process information in parallel, and they communicate by 
spreading activation. The robot's current location is indicated by an active node. The constructed map 
represents the spatial adjacency of landmarks by topological links (adjacent landmarks correspond to 
neighboring nodes—see figure 2.3). An active node excites its neighbors in the direction of travel, thus 
generating "expectations" about the next landmarks to be encountered. Suppose now that the robot 
wants to find its way to a remembered location. Activity at the node for that location is increased. The 
current
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Figure 2.3 A map constructed by a robot in the environment
shown in figure 2.2. Topological links between landmarks
indicate physical spatial adjacency. Source: Mataric 1991.

Used by kind permission of M. Mataric and MIT Press.

Figure 2.4 The map actively carries out path finding.
Shaded node is goal node. Arrows indicate spreading of

activation from goal. Source: Mataric 1991. Used by
kind permission of M. Mataric and MIT Press.

location node is also active. The process of spreading activation then propagates a signal through the 
cognitive map, and the shortest path to the goal is computed (figure 2.4). Since the nodes on the map 
themselves combine information about the robot's movement and the correlated perceptual input, the 
map can itself act as the controller. Using the map and generating the plan for real movements turns out 
to be one and the same activity.

It is this feature—the ability of the map itself to act as the controller—that is of the greatest interest to 
us. A more classical approach would posit both some kind of stored map and a central control module 
that accesses the map and uses it to plan movements. The Mataric robot, in contrast, employs no 
reasoning device outside of the map itself. The map is its own user, and its knowledge is both 
descriptive (of locations) and prescriptive (it represents the relationship between two locations as the 
sequence of movements that would carry the robot from one landmark to the other). The robot is thus a 
perfect example of the idea of action-oriented representations: representations that simultaneously 
describe aspects of the world and prescribe possible actions, and are poised between pure control 
structures and passive representations of external reality.
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A related view of internal representation was pioneered by the psychologist James Gibson (1950, 1968, 
1979). This work made the mistake, however, of seeming to attack the notion of complex mediating 
inner states tout court. Despite this rhetorical slip, Gibsonian approaches are most engagingly seen only 
as opposing the encoding or mirroring view of internal representation.

Gibson's claim, thus sanitized, was that perception is not generally mediated by action-neutral, detailed 
inner-world models. It is not mediated by inner states which themselves require further inspection or 
computational effort (by some other inner agency) in order to yield appropriate actions. This is not, then, 
to deny the existence and the importance of mediating inner states altogether. Rather, it is to insist that 
the inner states be "action-centered"—a theme Gibson pursues by depicting organisms as keyed to 
detecting "affordances" in the distal environment. Such affordances are nothing other than the 
possibilities for use, intervention, and action offered by the local environment to a specific type of 
embodied agent. For example, a human perceives a chair as "affording sitting,'' but the affordances 
presented by a chair to a hamster would be radically different.

Perception, construed this way, is, from the outset, geared to tracking possibilities for action. In the 
place of passive re-presentation followed by inference, Gibson posits the "direct perception" of a 
complex of opportunities for action. In representing (as I, but not Gibson, would put it) the environment 
as such a complex of possibilities, we create inner states that simultaneously describe partial aspects of 
the world and prescribe possible actions and interventions. Such states have been aptly christened 
"pushmi-pullyu" representations by the philosopher Ruth Millikan. 21 Like the fabulous beast, they face 
both ways at once: they say how the world is and they prescribe a space of adaptive responses.

The common theme of these several lines of inquiry is the rejection of any blanket image of perception 
as the passive reception of information. Infants' perceptions of slopes, we saw, seem deeply tied to the 
specific motor routines by which slopes are actively engaged. Adult skill at darts appears, from the 
distorting-lens experiments, to involve large-scale perception/action systems rather than passive 
perception acting as a source of data for independent action systems to exploit. The immediate prod- 
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ucts of much of perception, such cases suggest, are not neutral descriptions of the world so much as 
activity-bound specifications of potential modes of action and intervention. Nor are these specifications 
system-neutral. Instead, as the discussion of reaching suggested, they are likely to be tailored in ways 
that simply assume, as unrepresented backdrop, the intrinsic bodily dynamics of specific agents. It is 
worth pausing to appreciate how much distance separates this vision from the classical "disembodied" 
image.

Perception is commonly cast as a process by which we receive information from the world. Cognition 
then comprises intelligent processes defined over some inner rendition of such information. Intentional 
action is glossed as the carrying out of commands that constitute the output of a cogitative, central 
system. But real-time, real-world success is no respecter of this neat tripartite division of labor. Instead, 
perception is itself tangled up with specific possibilities of action—so tangled up, in fact, that the job of 
central cognition often ceases to exist. The internal representations the mind uses to guide actions may 
thus be best understood as action-and-context-specific control structures rather than as passive 
recapitulations of external reality. The detailed, action-neutral inner models that were to provide the 
domain for disembodied, centralized cogitation stand revealed as slow, expensive, hard-to-maintain 
luxuries—top-end purchases that cost-conscious nature will generally strive to avoid.
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3
Mind and World: The Plastic Frontier

3.1 The Leaky Mind

Mind is a leaky organ, forever escaping its "natural" confines and mingling shamelessly with body and with world. 
What kind of brain needs such external support, and how should we characterize its environmental interactions? What 
emerges, as we shall see, is a vision of the brain as a kind of associative engine, and of its environmental interactions as 
an iterated series of simple pattern-completing computations.

At first blush, such a vision may seem profoundly inadequate. How can it account for the sheer scale and depth of 
human cognitive success? Part (but only part) of the answer is that our behavior is often sculpted and sequenced by a 
special class of complex external structures: the linguistic and cultural artifacts that structure modern life, including 
maps, texts, and written plans. Understanding the complex interplay between our on-board and on-line neural resources 
and these external props and pivots is a major task confronting the sciences of embodied thought.

I shall begin gently, by introducing an important player to our emerging stage: the artificial neural network.

3.2 Neural Networks: An Unfinished Revolution

CYC, the electronic encyclopedia described in the introduction, was an extreme example of rule-and-symbol-style 
artificial intelligence. Not all projects in traditional AI were quite so gung-ho about the power of large knowledge bases 
and explicit encodings, but an underlying common flavor persisted throughout much of the work: the general vision of 
intelligence 
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as the manipulation of symbols according to rules. "Naive Physics," for example, aimed to specify in logical form our 
daily knowledge about how liquids spill, how books stack, and so on (Hayes 1979). Programs like STRIPS applied 
theorem-proving techniques to ordinary problem solving (Fikes and Nilsson 1971), and big systems like SOAR 
incorporated a wide variety of such methods and representations into a single computational architecture. Nonetheless, 
it was not until the advent (or rebirth 1 ) of so-called neural network models of mind that any fundamentally different 
proposal was put on the table.

Neural network models, as the name suggests, are at least distantly inspired by reflection on the architecture of the 
brain. The brain is composed of many simple processing units (neurons) linked in parallel by a large mass of wiring 
and junctions (axons and synapses). The individual units (neurons) are generally sensitive only to local 
information—each "listens" to what its neighbors are telling it. Yet out of this mass of parallel connections, simple 
processors, and local interactions there emerges the amazing computational and problem-solving prowess of the human 
brain.
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In the 1980s, the field of artificial intelligence was transformed by an explosion of interest in a class of computational 
models that shared this coarse description of the functionality of the brain. These were the "connectionist" (or "neural 
network," or ''parallel distributed processing") models of intelligence and cognition. The degree to which these early 
models resembled the brain should not be overstated.2 The differences remained vast: the multiplicity of types of 
neurons and synapses was not modeled, the use of temporal properties (such as spiking frequencies) was not modeled, 
the connectivity was not constrained in the same ways as that of real neural systems, and so forth. Despite all this, the 
flavor of the models was indeed different and in a very real sense more biologically appealing. It became much easier 
for AI researchers working in the new paradigm to make contact with the results and hypotheses of real neuroscience. 
The vocabularies of the various sciences of the mind seemed at last to be moving closer together.

The basic feel of the new approach is best conveyed by example. Consider the task of pronouncing English text by 
turning written input (words) into phonetic output (speech). This problem can be solved by sys- 
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tems that encode rules of text-to-phoneme conversion and lists of exception cases, all carefully hand-coded by human 
programmers. DECtalk, 3 for example, is a commercial program that performs the task and whose output can drive a 
digital speech synthesizer. DECtalk thus relies on a fairly large, explicitly formulated, handcrafted knowledge base. 
NETtalk, in contrast, learns to solve the problem using an artificial neural network. The network was not provided with 
any set of hand-coded rules for solving the problem. Instead, it learned to solve it by exposure to a large corpus of 
examples of text-phoneme pairings and a learning routine (detailed below). The architecture of NETtalk was an 
interconnected web of units that shared some of the coarse properties of real neural networks. And the behavior of the 
artificial network was truly impressive. The output units were connected to a speech synthesizer, so you could hear the 
system slowly learning to talk, proceeding from staccato babble to half-formed words and finally to a good simulation 
of normal pronunciation.

NETtalk (like DECtalk) understood nothing. It was not told about the meanings of words, and it could not use language 
to achieve any real-world goals. But it was nonetheless a benchmark demonstration of the power of artificial neural 
networks to solve complex and realistic problems. How did it work?

The elements of the computational system are idealized neurons, or "units." Each unit is a simple processing device that 
receives input signals from other units via a network of parallel connections. Each unit sums its inputs and yields an 
output according to a simple mathematical function.4 The unit is thus activated to whatever degree the inputs dictate, 
and will pass a signal to its neighbors. The signal arriving at the neighbors is determined by both the level of activation 
of the "sender" unit and the nature of the connection involved. Each connection has a weight, which modulates the 
signal. Weights can be positive (excitatory) or negative (inhibitory). The downstream signal is determined by the 
product of the numerical weight and the strength of the signal from the "sender" unit.

A typical connectionist network like NETtalk consists of three layers of units: "input units" (which encode the data to 
be processed), "hidden units" (which mediate the processing),5 and "output units" (which specify the systems response 
to the data in the form of a vector of numerical activation values). The knowledge of the system is encoded in the 
weighted 
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connections between the units, and it is these weights which are adapted during learning. Processing involves the 
spreading of activation throughout the network after the presentation of a specific set of activation values at the input 
units. In the case of NETtalk there are seven groups of input units, each group consisting of 29 units. Each group of 29 
represents one letter, and the input consists of seven letters—one of which (the fourth) was the target whose phonemic 
contribution (in the context provided by the other six) was to be determined at that moment. The inputs connected to a 
layer of 80 hidden units, which in turn connected to 26 output units which coded for phonemes. The network involved a 
total of 18,829 weighted connections.

How does such a system learn? It learns by adjusting the between-unit weights according to a systematic procedure or 
algorithm. One such procedure is the "backpropagation algorithm." This works as follows: The system is initialized 
with a series of random weights (within certain numerical bounds). As they stand (being random), these weights will 
not support a solution of the target problem as they stand. The net is then trained. It is given a set of inputs, and for 
each input it will (courtesy of the initially random weights) produce some output —almost always incorrect. However, 
for each input a supervisory system sees an associated correct output (like a teacher who knows the answers in 
advance). The supervisory system automatically compares the actual output (a set of numerical activation values) with 
the correct output. For example, a face-recognition system may take as input a specification of a visual image and be 
required to output artificial codes corresponding to named individuals. In such a case, the correct output, for some 
given visual input, might be the numerical sequence ‹1010› if this has been designated as an arbitrary code for "Esther 
Russell." The system, courtesy of the random weights, will not do well—it may give, e.g., ‹0.7, 0.4, 0.2, 0.2› as its 
initial output. At this point the supervisory system will compare the actual and desired outputs for each output unit and 
calculate the error on each. The errors are squared (for reasons that need not detain us) and averaged, yielding a mean 
squared error (MSE). The system then focuses on one weighted connection and asks whether (with all the other weights 
kept as they are) a slight increase or decrease in the weights would reduce the MSE. If so, then the weight is amended 
accordingly. This 
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procedure is repeated for each weight; then the overall cycle of input/output/weight adjustment is repeated again and 
again until a low MSE is achieved. At that point, the network will be performing well (in this case, putting the right 
names to the visual images). Training then ceases, and the weights are frozen; the network has learned to solve the 
problem. 6

This kind of learning can be usefully conceived as gradient descent. Imagine you are standing somewhere on the inside 
slopes of a giant pudding-basin-shaped crater. Your task is to find the bottom—the correct solution, the lowest error. 
You are blindfolded, so you cannot see where the bottom is. However, for each tiny step you might take, you can tell if 
the step would move you uphill (that is, in the direction of more error) or downhill (in the direction of less error). Using 
just this local feedback, and taking one tiny step at a time, you will inexorably move toward the bottom of the basin and 
then stop. Gradient-descent learning methods (of which back-propagation is an instance) proceed in essentially the 
same way: the system is pushed down the slope of decreasing error until it can go no further. At this point (in friendly, 
basin-shaped landscapes) the problem is solved, the solution reached.
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Notice that at no stage in this process are the weights coded by hand. For any complex problem, it is well beyond our 
current capacities to find, by reflective analysis, a functional set of connection weights. What is provided is an initial 
architecture of so many units with a certain kind of connectivity, and a set of training cases (input-output pairs). Notice 
also that the upshot of learning is not, in general, a mere parrot-fashion recall of the training data. In the case of 
NETtalk, for example, the system learns about general features of the relation between text and spoken English. After 
training, the network could successfully deal with words it had never encountered before—words that were not in its 
initial training set.

Most important, NETtalk's knowledge of text-to-phoneme transitions does not take the form of explicit symbol-string 
encodings of rules or principles. The knowledge is stored in a form suitable for direct use by a brain-like system: as 
weights or connections between idealized "neurons" or units. The text-like forms favored by CYC and SOAR are, in 
contrast, forms suitable for use as external, passive knowledge structures by advanced agents such as humans. In 
retrospect, it is surely highly implausible that our brains (which are not so very different from those of some 
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non-language-using creatures) should themselves use anything like the format favored by the thin projections of our 
thoughts onto public mediums like paper and air molecules. Brain codes must be active in a way in which text-style 
storage is not. The major lesson of neural network research, I believe, has been to thus expand our vision of the ways a 
physical system like the brain might encode and exploit information and knowledge. In this respect, the neural network 
revolution was surely a success.

Moreover, neural network technology looks to be with us to stay. Techniques such as those just described have been 
successfully applied in an incredible diversity of areas, including recognition of handwritten zip codes, visual 
processing, face recognition, signature recognition, robotic control, and even planning and automated theorem proving. 
The power and the usefulness of the technology are not to be doubted. However, its ability to illuminate biological 
cognition depends not just on using a processing style that is at least roughly reminiscent of real neural systems but also 
on deploying such resources in a biologically realistic manner. Highly artificial choices of input and output 
representations and poor choices of problem domains have, I believe, robbed the neural network revolution of some of 
its initial momentum. This worry relates directly to the emerging emphasis on real-world action and thus merits some 
expansion.

The worry is, in essence, that a good deal of the research on artificial neural networks leaned too heavily on a rather 
classical conception of the nature of the problems. Many networks were devoted to investigating what I once (Clark 
1989, chapter 4; see also section 1.2 above) termed "vertical microworlds": small slices of human-level cognition, such 
as producing the past tense of English verbs 7 or learning simple grammars.8 Even when the tasks looked more basic 
(e.g., balancing building blocks on a beam pivoting on a movable fulcrum9 ), the choice of input and output 
representations was often very artificial. The output of the block-balancing programs, for example, was not real motor 
actions involving robot arms, or even coding for such actions; it was just the relative activity of two output units 
interpreted so that equal activity on both indicated an expectation of a state of balance and excess activity on either unit 
indicated an expectation that the beam would overbalance in that direction. The inputs to the system, likewise, were 
artificial—an arbitrary coding for weight along one input channel and one for distance from the fulcrum 
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along another. It is not unreasonable to suppose that this way of setting up the problem space might well lead to 
unrealistic, artifactual solutions. An alternative and perhaps better strategy would surely be to set up the system to take 
realistic inputs (e.g., from cameras) and to yield real actions as outputs (moving real blocks to a point of balance). Of 
course, such a setup requires the solution of many additional problems, and science must always simplify experiments 
when possible. The suspicion, however, is that cognitive science can no longer afford simplifications that take the real 
world and the acting organism out of the loop—such simplifications may obscure the solutions to ecologically realistic 
problems that characterize active embodied agents such as human beings. Cognitive science's aspirations to illuminate 
real biological cognition may not be commensurate with a continuing strategy of abstraction away from the real-world 
anchors of perception and action. This suspicion is, I believe, fully borne out by the significant bodies of research 
described in this book. One central theme which has already emerged is that abstracting away from the real-world poles 
of sensing and acting deprives our artificial systems of the opportunity to simplify or otherwise transform their 
information-processing tasks by the direct exploitation of real-world structure. Yet such exploitation may be especially 
essential if we hope to tackle sophisticated problem solving using the kinds of biologically plausible pattern-completing 
resources that artificial neural networks provide, as we shall now see.

3.3 Leaning on the Environment

Artificial neural networks of the broad stripe described above 10 present an interesting combination of strengths and 
weaknesses. They are able to tolerate "noisy," imperfect, or incomplete data. They are resistant to local damage. They 
are fast. And they excel at tasks involving the simultaneous integration of many small cues or items of information—an 
ability that is essential to real-time motor control and perceptual recognition. These benefits accrue because the systems 
are, in effect, massively parallel pattern completers. The tolerance of "noisy," incomplete, or imperfect data amounts to 
the ability to recreate whole patterns on the basis of partial cues. The resistance to local damage is due to the use of 
multiple unit-level 
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resources to encode each pattern. The speed follows from the parallelism, as does the ability to take simultaneous 
account of multiple small cues. 11 Even some of the faults of such systems are psychologically suggestive. They can 
suffer from "crosstalk," in which similar encodings interfere with one another (much as when we learn a new phone 
number similar to one we already know and immediately muddle them up, thus forgetting both). And they are not 
intrinsically well suited to highly sequential, stepwise problem solving of the kind involved in logic and planning 
(Norman 1988; Clark 1989, chapter 6). A summary characterization might be "good at Frisbee, bad at logic"—a 
familiar profile indeed. Classical systems, with their neat, well-defined memory locations are immune to crosstalk and 
are excellent at logic and sequential problem solving, but they are much less well adapted to real-time control tasks.
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Thus, artificial neural networks are fast but limited systems that, in effect, substitute pattern recognition for classical 
reasoning. As might be expected, this is both a boon and a burden. It is a boon insofar as it provides just the right 
resources for the tasks humans perform best and most fluently: motor control, face recognition, reading handwritten zip 
codes, and the like (Jordan et al. 1994; Cottrell 1991; LeCun et al. 1989). But it is a burden when we confront tasks 
such as sequential reasoning or long-term planning. This is not necessarily a bad thing. If our goal is to model human 
cognition, computational underpinnings that yield a pattern of strengths and weaknesses similar to our own are to be 
favored. And we are generally better at Frisbee than at logic. Nonetheless, we are also able, at least at times, to engage 
in long-term planning and to carry out sequential reasoning. If we are at root associative pattern-recognition devices,12 
how is this possible? Several factors, I believe, conspire to enable us to thus rise above our computational roots. Some 
of these will emerge in subsequent chapters.13 One, however, merits immediate attention. It is the use of our old friend, 
external scaffolding.

Connectionist minds are ideal candidates for extensive external scaffolding. A simple example, detailed in Parallel 
Distributed Processing (the two-volume bible of neural network research14), concerns long multiplication. Most of us, 
it is argued, can learn to know at a glance the answers to simple multiplications, such as 7 × 7 = 49. Such knowledge 
could easily be supported by a basic on-board pattern-recognition device. 
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But longer multiplications present a different kind of problem. Asked to multiply 7222 × 9422, most of us resort to pen 
and paper (or a calculator). What we achieve, using pen and paper, is a reduction of the complex problem to a sequence 
of simpler problems beginning with 2 × 2. We use the external medium (paper) to store the results of these simple 
problems, and by an interrelated series of simple pattern completions coupled with external storage we finally arrive at 
a solution. Rumelhart et al. (1986, p. 46) comment: "This is real symbol processing and, we are beginning to think, the 
primary symbol processing that we are able to do. Indeed, on this view, the external environment becomes a key 
extension to our mind."

Some of us, of course, go on to learn to do such sums in our heads. The trick in these cases, it seems, is to learn to 
manipulate a mental model in the same way as we originally manipulated the real world. This kind of internal symbol 
manipulation is importantly distinct from the classical vision of inner symbols, for it claims nothing about the 
computational substrate of such imaginings. The point is simply that we can mentally simulate the external arena and 
hence, at times, internalize cognitive competencies that are nonetheless rooted in manipulations of the external 
world—cognitive science meets Soviet psychology. 15

The combination of basic pattern-completing abilities and complex, well-structured environments may thus enable us 
to haul ourselves up by our own computational bootstraps. Perhaps the original vision of classical AI was really a 
vision of the abilities of basic pattern-completing organisms as embedded in a superbly structured environment—a 
vision mistakenly projected all the way back onto the basic on-board computational resources of the organism. In other 
words, classical rule-and-symbol-based AI may have made a fundamental error, mistaking the cognitive profile of the 
agent plus the environment for the cognitive profile of the naked brain (Clark 1989, p. 135; Hutchins 1995, chapter 9). 
The neat classical separation of data and process, of symbol structures and CPU, may have reflected nothing so much 
as the separation between the agent and an external scaffolding of ideas persisting on paper, in filing cabinets, or in 
electronic media.

The attractions of such a vision should not disguise its shortcomings. The human external environment is superbly 
structured in virtue of our 
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use of linguistic, logical, and geometric formalisms and the multiple external memory systems of culture and learning. 
Not all animals are capable of originating such systems, and not all animals are capable of benefiting from them even 
once they are in place. The stress on external scaffolding thus cannot circumvent the clear fact that human brains are 
special. But the computational difference may be smaller and less radical than we sometimes believe. It may be that a 
small series of neuro-cognitive differences make possible the origination and exploitation of simple linguistic and 
cultural tools. From that point on, a kind of snowball effect (a positive feedback loop) may take over. Simple external 
props enable us to think better and hence to create more complex props and practices, which in turn "turbocharge" our 
thought a little more, which leads to the development of even better props. … It is as if our bootstraps themselves grew 
in length as a result of our pulling on them!

Coming back down to earth, we may pursue the idea of scaffolded pattern-completing reason in some simpler domains. 
Consider David Kirsh's (1995) treatment of the intelligent use of physical space. Kirsh, who works in the Cognitive 
Science Department at the University of California in San Diego, notes that typical AI studies of planning treat it as a 
very disembodied phenomenon—in particular, they ignore the way we use the real spatial properties of a work space to 
simplify on-board computation. Once the idea is broached, of course, examples are commonplace. Here are a few of 
Kirsh's favorites:

•
To solve the dieter's problem of allocating 3/4 of a day's allocation of cottage cheese (say, 2/3 cup) to one 
meal, physically form the cheese into a circle, divide it into 4, and serve 3 quadrants. It is easy to see the 
required quantity thus arranged: not so easy to compute 3/4 of 2/3. (De la Rocha 1985, cited in Kirsh 
1995)

• To repair an alternator, take it apart but place the pieces in a linear or grouped array, so that the task of 
selecting pieces for reassembly is made easier.

• To pack groceries into bags, create batches of similar items on the work surface. Grouping heavy items, 
fragile items, and intermediate items simplifies the visual selection process, and the relative sizes of the 
piles alert you to what needs accommodating most urgently.

• In assembling a jigsaw puzzle, group similar pieces together, thus allowing fine-grained visual comparison 
of (e.g.) all the green pieces having a straight edge.
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The moral is clear: We manage our physical and spatial surroundings in ways that fundamentally alter the information-
processing tasks our brains confront. (Recall the 007 Principle from chapter 2.)

What makes this cooperative approach worthwhile is the difference in nature between the kinds of computations which 
come naturally to the free-standing brain and the ones which can be performed by parasitizing environmental resources. 
But such parasitization, as we shall see, casts doubt on the traditional boundaries between mind and world themselves.

3.4 Planning and Problem Solving

There is a classical disembodied vision of planning which Phil Agre and David Chapman (1990) have labeled the "plan-
as-program" idea. This is the idea (already encountered in chapter 2) of a plan as specifying a complete sequence of 
actions which need only be successfully performed to achieve some goal. A list of instructions for boiling an egg, or for 
dismantling an alternator, amounts to such a specification. A great deal of the work on "classical" planning imagines, in 
effect, that complex sequences of actions are determined by an internalized version of some such set of instructions. 
(See, e.g., Tate 1985 and Fikes and Nilsson 1971.)

Once we look closely at the real-world behaviors of planning agents, however, it becomes clear that there is a rather 
complex interplay between the plan and the supporting environment. This interplay goes well beyond the obvious fact 
that specific actions, once performed, may not have the desired effect and may thus require some on-line rethinking 
about how to achieve specific subgoals. In such cases the original internalized plan is still a complete, though fallible, 
specification of a route to success. In many cases, however, the plan turns out to be something much more partial, and 
much more intimately dependent on properties of the local environment.

Our earlier example of the jigsaw puzzle is a case in point. Here, an agent may exploit a strategy that incorporates 
physical activity in an important way. Picking up pieces, rotating them to check for potential spatial matches, and then 
trying them out are all parts of the problem-solving activity. Imagine, in contrast, a system that first solved the whole 
puzzle by pure thought and then used the world merely as the arena in which the already-achieved solution was to be 
played out. Even a system 
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that then recognized failures of physical fit and used these as signals for replanning (a less caricatured version of 
classical planning) still exploits the environment only minimally relative to the rich interactions (rotations, assessments 
of candidate pieces, etc.) that characterize the human solution.

This crucial difference is nicely captured by David Kirsh and Paul Maglio (1994) as the distinction between pragmatic 
and epistemic action. Pragmatic action is action undertaken because of a need to alter the world to achieve some 
physical goal (e.g., one must peel potatoes before boiling them). Epistemic action, in contrast, is action whose primary 
purpose is to alter the nature of our own mental tasks. In such cases, we still act on the world, but the changes we 
impose are driven by our own computational and information-processing needs.



We have already met several examples of epistemic action, such as the use in animate vision of eye and body 
movements to retrieve specific types of information as and when required. What Kirsh and Maglio add to this 
framework is the idea that the class of epistemic actions is much broader than the animate-vision examples display. It 
includes all kinds of actions and interventions whose adaptive role is to simplify or alter the problems confronting 
biological brains.

A simple example, again from Kirsh (1995, p. 32), concerns the use of Scrabble tiles. During play, we physically order 
and reorder the tiles as a means of prompting our own on-line neural resources. Relating this to the research on 
artificial neural networks described in section 3.2, we may imagine the on-line neural resource as a kind of pattern-
completing associative memory. One Scrabble-playing strategy is to use the special class of external manipulations so 
as to create a variety of fragmentary inputs (new letter strings) capable of prompting the recall of whole words from the 
pattern-completing resource. The fact that we find the external manipulations so useful suggests strongly that our on-
board (in-the-head) computational resources do not themselves provide easily for such manipulations (whereas a 
classical AI program would find such internal operations trivial). This simple fact argues in favor of a nonclassical 
model of the inner resources. Once again, it looks for all the world (pun intended) as if the classical image bundles into 
the machine a set of operational capacities which in real life emerge only from the interactions between machine 
(brain) and world.
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Figure 3.1 In the game Tetris, ''zoids" fall one at a time from the top 
of the screen, eventually landing on the bottom or on zoids

that have already landed. As a zoid falls, the player can rotate it, translate
it to the right or the left, or immediately drop it to the bottom.

When a row of squares is filled all the way across the screen, it disappears, 
and all rows above it drop down. Source: Kirsh and Maglio 1994.

Reproduced by kind permission of D. Kirsh, P. Maglio, and Ablex Publishing Corporation.

One upshot of these observations is that external structures (including external symbols like words and letters) are 
special insofar as they allow types of operations not readily (if at all) performed in the inner realm. 16
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A more complex example that makes essentially the same point comes from Kirsh and Maglio's (1994) detailed studies 
of performance on the computer game Tetris. Tetris requires the player to place variegated geometric shapes ("zoids") 
into compact rows (figure 3.1). Each completed row disappears, allowing more space for new zoids. Zoids appear at the 
top of the screen and fall at a rate which increases as the game progresses. As a zoid falls, a player can rotate it, move it 
left or right, or drop it directly to the bottom. The task is thus to match shapes and geographical 
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opportunities, and to do so subject to strong real-time constraints. One striking result of Kirsh and Maglio's 
investigations was that advanced players performed a variety of epistemic actions: actions whose purpose was to reduce 
inner computational effort rather than to gain physical ground. For example, a player may physically rotate a zoid so as 
to better determine its shape or to check its potential match to some geographical opportunity. Such external encounters 
seem faster and more reliable than internal analogues, such as imagining the zoid rotating. It is especially interesting to 
note (with Kirsh and Maglio) that in the case of Tetris the internal and external operations must be temporally 
coordinated so closely that the inner and outer systems (the brain/CNS and the onscreen operations) seem to function 
together as a single integrated computational unit.

The world can thus function as much more than just external memory. It can provide an arena in which special classes 
of external operations systematically transform the problems posed to individual brains. 17 Just as Einstein replaced the 
independent notions of space and time with a unified construct (space-time), Kirsh and Maglio suggest that cognitive 
science may need to replace the independent constructs of physical space and information-processing space with a 
unified physico-informational space.18

A final aside concerning the interplay between mind and environmental structure: Consider the case of patients with 
advanced Alzheimer's Disease. Many of these patients live surprisingly normal lives in the community, despite the fact 
that standard assessments of their capabilities suggest that many such patients should be incapable of surviving outside 
of special-care institutions. The key to such surprising successes, it seems, lies in the extent to which the individuals 
rely on highly structured environments which they create and then inhabit. These environments may incorporate 
multiple reminding notices around the house and strict adherence to specific routines. One patient virtually lives on a 
couch in the center of her apartment, since this provides a vantage point from which she can visually access the 
location of whatever she needs—this really is a case of using the world as external memory.19

Where does all this leave the notion of planning? The systematic problem solving of biological brains, it seems, does 
not really follow the plan- 
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as-program model. Instead, individual agents deploy general strategies which incorporate operations upon the world as 
an intrinsic part of the problem-solving activity. Such activity can clearly involve explicitly formulated (perhaps 
written) plans. But even in these cases, the plan functions more like an external constraint on behavior than a complete 
recipe for success. 20 In a certain sense, we are like very clever mobots with Filofaxes. Our cleverness shows itself in 
our ability to actively structure and operate upon our environment so as to simplify our problem-solving tasks. This 
active structuring and exploitation extends from the simple use of spatial arrangements, through the use of specific 
transformations (shuffling the Scrabble tiles, rotating the Tetris zoids), all the way to the production of explicit written 
plans that allow easy reordering and shifting focus of attention. These latter cases involve the use of the special class of 
external structures that constitute maps, codes, languages, and symbols—structures that will be discussed at length in 
chapter 10.

3.5 After The Filing Cabinet

Artificial neural networks, we saw, provide a useful (though clearly only partial) model of some of the kinds of 
computational strategies that real brains seem to deploy. Such strategies stress pattern completion and associative 
memory at the expense of more familiar logical and symbolic manipulations. Work with artificial neural networks thus 
provides a valuable antidote to what has been termed the "filing cabinet" view of mind: the image of mind as a 
storehouse of passive language-like symbols waiting to be retrieved and manipulated by a kind of neural central 
processing unit. Nonetheless, some residual features of the filing-cabinet view remained unexpunged. Like a filing 
cabinet, mind was all too often treated as a passive resource: an organ for classifying and transforming incoming data 
but not intrinsically geared to taking action in the world. This lack of attention to the problems and possibilities 
attending real-world, real-time action taking manifests itself in various ways. The choice of highly abstract task 
domains (such as generating the past-tense forms of English verbs) and the use of very artificial forms of input and 
output coding are both symptoms of a vision of mind as, in essence, an organ of timeless, disembodied reason. No one 
thought, of course, that perception, 
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motion, and action did not matter at all. All agreed that sooner or later such issues would have to be factored in. But it 
was widely believed that the additional problems such topics posed could be safely separated from the primary task of 
understanding mind and cognition, and that the solutions to these more "practical" problems could just be "glued onto" 
the computational engines of disembodied reason.

It is this methodological separation of the tasks of explaining mind and reason (on the one hand) and explaining real-
world, real-time action taking (on the other) that a cognitive science of the embodied mind aims to question. Once real-
world problems are confronted in their proper setting and complexity, it becomes clear that certain styles of problem 
solving simply will not work. And the kinds of solution that do work often merge the processes of reasoning and acting 
in unexpected ways, and cut back and forth across the traditional boundaries of mind, body, and environment.
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In one sense, this should come as no surprise. Our brains evolved as controllers of bodies, moving and acting in a real 
(and often hostile) world. Such evolved organs will surely develop computational resources that are complementary to 
the actions and interventions they control. Thus understood, the brain need not, after all, maintain a small-scale inner 
replica of the world—one that supports the exact same types of operation and manipulation we customarily apply to the 
world. Instead, the brain's brief is to provide complementary facilities that will support the repeated exploitation of 
operations upon the world. Its task is to provide computational processes (such as powerful pattern completion) that the 
world, even as manipulated by us, does not usually afford. 21

Where, then, is the mind? Is it indeed "in the head," or has mind now spread itself, somewhat profligately, out into the 
world? The question is a strange one at first sight. After all, individual brains remain the seats of consciousness and 
experience. But what about reason? Every thought is had by a brain. But the flow of thoughts and the adaptive success 
of reason are now seen to depend on repeated and crucial interactions with external resources. The role of such 
interactions, in the cases I have highlighted, is clearly computational and informational: it is to transform inputs, to 
simplify search, to aid recognition, to prompt associative recall, to offload memory, and so on. In a sense, then, human 
reasoners are truly distributed cognitive engines: we call on external resources to perform spe- 
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cific computational tasks, much as a networked computer may call on other networked computers to perform specific 
jobs. One implication of Kirsh and Maglio's demonstration of the role of epistemic action is thus, I suggest, a 
commensurate spreading of epistemic credit. Individual brains should not take all the credit for the flow of thoughts or 
the generation of reasoned responses. Brain and world collaborate in ways that are richer and more clearly driven by 
computational and informational needs than was previously suspected.

It would be comforting to suppose that this more integrated image of mind and world poses no threat to any of our 
familiar ideas about mind, cognition, and self. Comforting but false. For although specific thoughts remain tied to 
individual brains, the flow of reason and the informational transformations it involves seem to criss-cross brain and 
world. Yet it is this flow of ideas that, I suspect, we most strongly associate with the idea of the mind as the seat of 
reason and of the self. This flow counts for more than do the snapshots provided by single thoughts or experiences. 22 
The true engine of reason, we shall see, is bounded neither by skin nor skull.
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4
Collective Wisdom, Slime-Mold-Style

4.1 Slime Time

It is the spring of 1973, and the weather has been unseasonably wet. As you gaze out the window into your yard, your 
eye is caught by a proliferation of deep yellow blob-like masses. What could they be? Puzzled, you return to work but 
are unable to settle down. A while later you return to the window. The yellow jelliform masses are still in evidence, but 
you would swear they have moved. You are right. The newcomers are slowly but surely creeping around your yard, 
climbing up the nearby telephone pole—moving in on you. In a panic, you phone the police to report a likely sighting 
of alien life forms in the USA. In fact, what you (and many others) saw was a fully terrestrial being, but one whose life 
cycle is alien indeed: Fuligo septica, a type of acellular slime mold. 1

Slime molds come in many varieties2 and sizes., but all belong to the class of Mycetozoa. The name is revealing, 
combining 'mycet' (fungus) and 'zoa' (animal). They like moist surroundings and are often found on rotting logs, tree 
stumps, or piles of decaying plant matter. They are widely distributed geographically, and do not seem bound to 
specific climates. As one handbook puts it, "many species are apt to pop up most anywhere, unexpectedly" (Farr 1981, 
p. 9).

Of special interest is the life cycle of the "cellular" slime mold. Take, for instance, the species Dictyostelium 
discoideum,3 first discovered in 1935 in North Carolina. The life cycle of D. discoideum begins with a so-called 
vegetative phase, in which the slime-mold cells exist individually, like amoeba (they are called myxamoebae). While 
local food sources last (the myxamoebae feed on bacteria) the cells grow and divide. But when
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Figure 4.1 Migrating shrugs (pseudoplasmodia)
of acellular slime mold. Source: Morrissey 1982.

Used by permission of Academic Press.

food sources run out, a truly strange thing happens. The cells begin to cluster together to form a tissue-like mass called 
a pseudoplasmodium. The pseudoplasmodium, amazingly, is a mobile collective creature—a kind of miniature slug 
(figure 4.1)—that can crawl along the ground. 4 It is attracted to light, and it follows temperature and humidity 
gradients. These cues help it to move toward a more nourishing location. Once such a spot is found, the 
pseudoplasmodium changes form again, this time differentiating into a stalk and a fruiting body—a spore mass 
comprising about two-thirds of the cell count. When the spores are propagated, the cycle begins anew with a fresh 
population of myxamoebae.
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How do the individual slime-mold cells (the myxamoebae) know to cluster? One solution—the biological analogue of a 
central planner (see chapter 3)—would be for evolution to have elected "leader cells." Such cells would be specially 
adapted so as to "call" the other cells, probably by chemical means, when food ran low. And they would somehow 
orchestrate the construction of the pseudoplasmodium. It seems, however, that nature has chosen a more democratic 
solution. In fact, slime-mold cells look to behave rather like the ants described in section 2.3. When food runs low, each 
cell releases a chemical (cyclic AMP) which attracts other cells. As cells begin to cluster, the concentrations of cyclic 
AMP increases, thus attracting yet more cells. A process of positive feedback thus leads to the aggregation of cells that 
constitutes a pseudoplasmodium. The process is, as Mitchel Resnick (1994, p. 51) notes, a nice example of what has 
become known as self-organization. A self-organizing system is one in which some kind of higher-level pattern 
emerges from the interactions of multiple simple components without the benefit of a leader, controller, or orchestrator.
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The themes of self-organization and emergence are not, I shall suggest, restricted to primitive collectives such as the 
slime mold. Collectives of human agents, too, exhibit forms of emergent adaptive behavior. The biological brain, which 
parasitizes the external world (see chapter 3) so as to augment its problem-solving capacities, does not draw the line at 
inorganic extensions. Instead, the collective properties of groups of individual agents determine crucial aspects of our 
adaptive success.

4.2 Two Forms of Emergence

There are at least two ways in which new phenomena can emerge (without leaders or central controllers) from 
collective activity. The first, which I will call direct emergence, relies largely on the properties of (and relations 
between) the individual elements, with environmental conditions playing only a background role. Direct emergence can 
involve multiple homogeneous elements (as when temperature and pressure emerge from the interactions between the 
molecules of a gas), or it can involve heterogeneous ones (as when water emerges from the interactions between 
hydrogen and oxygen molecules). The second form of emergence, which I will call indirect emergence, relies on the 
interactions of individual elements but requires that these interactions be mediated by active and often quite 
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complex environmental structures. The difference thus concerns the extent to which we may understand the emergence 
of a target phenomenon by focusing largely on the properties of the individual elements (direct emergence), versus the 
extent to which explaining the phenomenon requires attending to quite specific environmental details. The distinction is 
far from absolute, since all phenomena rely to some extent on background environmental conditions. (It can be made a 
little more precise by casting it in terms of the explanatory roles of different kinds of "collective variables"—see 
chapter 6). But we can get a working sense of the intuitive difference by looking at some simple cases.

A classic example of direct emergence is the all-too-familiar phenomenon of the traffic jam. A traffic jam can occur 
even when no unusual external event (such as a collision or a broken set of traffic lights) is to blame. For example, 
simple simulations recounted by Mitchel Resnick 5 show that bunching will occur if each car obeys just two intuitive 
rules: "If you see another car close ahead, slow down; if not, speed up (unless you are already moving at the speed 
limit)" (Resnick 1994, pp. 69, 73). Why, given just these two rules and no external obstacles, doesn't the traffic simply 
accelerate to the speed limit and stay there? The answer lies in the initial placements. At the start of the simulation, the 
cars were spaced randomly on the road. Thus, sometimes one car would start close to another. It would soon need to 
slow down, which would cause the car behind it to slow, and so on. The upshot was a mixture of stretches of fast-
moving traffic and slow-moving jams. Every now and then a car would leave the jam, thus freeing space for the one 
behind it, and accelerate away. But as fast as the jam "unraveled" in one direction, it grew in the other direction as new 
cars reached the backmarkers and were forced to slow. Although each car was moving forward, the traffic jam itself, 
considered as a kind of higher-order entity, was moving backward! The higher-order structure (which Resnick calls the 
collective structure) was thus displaying behavior fundamentally different from the behavior of its components. Indeed, 
the individual components kept changing (as old cars left and new ones joined), but the integrity of the higher-order 
collective was preserved. (In a similar fashion, a human body does not comprise the same mass of matter over 
time—cells die and are replaced by new ones built out of energy from food. We, too, are higher-order collectives 
whose constituting matter is in constant flux.) Traffic jams count as cases of direct 
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emergence because the necessary environmental backdrop (varying distances between cars) is quite minimal—random 
spacing is surely the default condition and requires no special environmental manipulations. The case of indirect 
emergence, as we shall now see, is intuitively quite different.

Consider the following scenario: You have to remember to buy a case of beer for a party. To jog your memory, you 
place an empty beer can on your front doormat. When next you leave the house, you trip over the can and recall your 
mission. You have thus used what is by now a familiar trick (recall chapter 3)—exploiting some aspect of the real 
world as a partial substitute for on-board memory. In effect, you have used an alteration to your environment to 
communicate something to yourself. This trick of using the environment to prompt actions and to communicate signals 
figures in many cases of what I am calling indirect emergence.

Take the nest-building behavior of some termites. A termite's building behavior involves modifying its local 
environment in response to the triggers provided by previous alterations to the environment—alterations made by other 
termites or by the same termite at an earlier time. Nest building is thus under the control of what are known as 
stigmergic algorithms. 6

A simple example of stigmergy is the construction of arches (a basic feature of termite nests) from mudballs. Here is 
how it works7: All the termites make mud balls, which at first they deposit at random. But each ball carries a chemical 
trace added by the termite. Termites prefer to drop their mudballs where the chemical trace is strongest. It thus becomes 
likely that new mudballs will be deposited on top of old ones, which then generate an even stronger attractive force. 
(Yes, it's the familiar story!) Columns thus form. When two columns are fairly proximal, the drift of chemical 
attractants from the neighboring column influences the dropping behavior by inclining the insects to preferentially add 
to the side of each column that faces the other. This process continues until the tops of the columns incline together and 
an arch is formed. A host of other stigmergic affects eventually yield a complex structure of cells, chambers, and 
tunnels. At no point in this extended process is a plan of the nest represented or followed. No termite acts as a 
construction leader. No termite "knows" anything beyond how to respond when confronted with a specific patterning of 
its local environment. The termites do not talk to one another in any way, except through the environmental products of 
their own 
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activity. Such environment-based coordination requires no linguistic encoding or decoding and places no load on 
memory, and the ''signals" persist even if the originating individual goes away to do something else (Beckers et al. 
1994, p. 188).

To sum up: We learn important lessons from even these simple cases of emergent collective phenomena. Such 
phenomena can come about in either direct or highly environmentally mediated ways. They can support complex 
adaptive behaviors without the need for leaders, blueprints, or central planners. And they can display characteristic 
features quite different in kind from those of the individuals whose activity they reflect. In the next section, we see 
these morals in a more familiar, human guise.

4.3 Sea and Anchor Detail
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In the most successful and sustained investigation of the cognitive properties of human groups to date, Edwin 
Hutchins—anthropologist, cognitive scientist, and open-ocean racing sailor and navigator—has described and analyzed 
the role of external structures and social interactions in ship navigation. Here is his description of how some of the 
necessary tasks are performed and coordinated (Hutchins 1995, p. 199; my note):

In fact, it is possible for the [navigation] team to organize its behavior in an appropriate sequence without there being a global 
script or plan anywhere in the system. 8 Each crew member only needs to know what to do when certain conditions are produced 
in the environment. An examination of the duties of members of the navigation team shows that many of the specified duties are 
given in the form "Do X when Y." Here are some examples from the procedures:

A.
Take soundings and send then to the bridge on request.

B. Record the time and sounding every time a sounding is sent to the bridge.

C. Take and report bearings to the objects ordered by the recorder and when ordered by the recorder.

Each member of the navigation team, it seems, need follow only a kind of stigmergic9 procedure, waiting for a local 
environmental alteration (such as the placing of a specific chart on a desk, the arrival of a verbal request, or the 
sounding of a bell) to call forth a specific behavior. That behavior, in turn, affects the local environment of certain other 
crew members and calls forth further bursts of activity, and so on until the job is done.
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Of course, these are human agents, who will form ideas and mental models of the overall process. And this general 
tendency, Hutchins observes, makes for a more robust and flexible system, since the individuals can monitor one 
another's performance (e.g., by asking for a bearing that has not been supplied on time) and, if need be (say, if someone 
falls ill), try to take over aspects of other jobs. Nonetheless, no crew member will have internalized all the relevant 
knowledge and skills.

Moreover, a large amount of work is once again done by external structures: nautical slide rules, alidades, bearing 
record logs, hoeys, charts, fathometers, and so on. 10 Such devices change the nature of certain computational problems 
so as to make them more tractable to perceptual, pattern-completing brains. The nautical slide rule, Hutchins's favorite 
example, turns complex mathematical operations into scale-alignment operations in physical space.11

Finally, and again echoing themes from chapter 3, the navigational work space itself is structured so as to reduce the 
complexity of problem solving. For example, the charts that will be used when entering a particular harbor are 
preassembled on a chart table and are laid one on top of the other in the order of their future use (the first-needed on 
top).

All these factors, Hutchins argues, unite to enable the overall system of artifacts, agents, natural world, and spatial 
organization to solve the problem of navigation. The overall (ship-level) behavior is not controlled by a detailed plan in 
the head of the captain. The captain may set the goals, but the sequence of information gatherings and information 
transformations which implement the goals need not be explicitly represented anywhere. Instead, the computational 
power and expertise is spread across a heterogeneous assembly of brains, bodies, artifacts, and other external structures. 
Thus do pattern-completing brains navigate the unfriendly and mathematically demanding seas.

4.4 The Roots of Harmony
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But how does such delicate harmonization of brains, bodies, and world come about? In the cases of what I have called 
direct emergence the problem is less acute, for here the collective properties are determined directly by the mass action 
of some uniform individual propensity. Thus, if 
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nature were (heaven forbid) to evolve cars and roads, then (given random initial distribution and the two rules 
rehearsed in section 4.2) traffic jams would immediately result.

Indirect emergence presents a superficially greater puzzle. In these cases, the target property (e.g., a termite nest or 
successful navigation of a ship) emerges out of multiple and often varied interactions between individuals and a 
complexly structured environment. The individuals are apparently built or designed so that the coupled dynamics of the 
agents and these complex environments yield adaptive success. No single individual, in such cases, needs to know an 
overall plan or blueprint. Yet the total system is, in a sense, well designed. It constitutes a robust and computationally 
economical method of achieving the target behavior. How does such design come about?

For the nervous systems of the individual termites, an important part of the answer 12 is clearly "through evolution." 
Hutchins suggests that a kind of quasi-evolutionary process may be at work in a navigation team too. The key feature is 
simply that small changes occur without prior design activity, and these changes tend to be preserved according to the 
degree to which they enhance biological success. Evolutionary change thus involves the gradual accretion of small 
"opportunistic" changes: changes which themselves alter the "fitness landscape" for subsequent changes both within the 
species and in other species inhabiting the same ecosystem.

Now, still following Hutchins, consider the case in which some established cognitive collective (such as a navigation 
team) faces a new and unexpected challenge. Suppose that this challenge calls for a fast response, so there is no time 
for the group to meet and reflect on how best to cope.13 How, under such conditions, is the group to discover a new 
social division of labor that responds to the environmental demand? What actually happens, Hutchins shows, is that 
each member of the group tries to fulfill the basic functions necessary to keep the ship from going aground, but in so 
doing each member constrains and influences the activity of the others in what amounts to a collective, parallel search 
for a new yet computationally efficient division of labor. For example, one crew member realizes that a crucial addition 
must be performed but does not have enough time. That crew member therefore tells a nearby person to add the 
numbers. This in turn has effects further down the line. The solution to 

  

javascript:doPopup('Popup','Page_78_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')
javascript:doPopup('Popup','Page_78_Popup_2.html','width=480,height=168,resizable=yes,scrollbars=yes')


Page 79
 

the problem of averting disaster emerges as a kind of equilibrium point in an iterated series of such local negotiations 
concerning task distribution—an equilibrium point that is determined equally by the skills of the individuals and the 
timing and sequence of incoming data. No crew member reflects on any overall plan for redistributing the tasks. 
Instead, they all do what each does best, negotiating whatever local help and procedural changes they need. In such 
cases there is a fast, parallel search for a coherent collective response, but the search does not involve any explicit and 
localized representation of the space of possible global solutions. In this sense, as Hutchins notes, the new solution is 
found by a process more akin to evolutionary adaptation than to global rationalistic design.

Here is a somewhat simpler version of the same idea 14 : Imagine that your task is to decide on an optimum placement 
of footpaths to connect a complex of already-constructed buildings (say, on a new university campus). The usual 
strategy is global rationalistic design, in which an individual or a small group considers the uses of the various 
buildings, the numbers of pedestrians, etc. and seeks some optimal pattern of linkages reflecting the patterns of likely 
use. An alternative solution, however, is to open the campus for business without any paths, and with grass covering all 
the spaces between buildings. Over a period of months, tracks will begin to emerge. These will reflect both the real 
needs of the users and the tendency of individuals to follow emerging trails. At the end of some period of time the most 
prominent trails can be paved, and the problem will have been solved without anyone's needing to consider the global 
problem of optimal path layout or needing to know or represent the uses of all the various buildings. The solution will 
have been found by means of an interacting series of small individual calculations, such as "I need to get from here to 
the refectory—how shall I do it?" and "I need to get to the physics lab as fast as possible—how shall I do it?" The 
overall effect of these multiple local decisions is to solve the global problem in a way that looks more like a kind of 
evolution than like classical, centralized design.

The need to account for the origins of collective success does not, it seems, force us back to the image of a central 
planning agency that knows the shape of the overall problem space. Instead, we may sometimes structure our own 
problem-solving environment as a kind of by-product of our basic problem-solving activity. On our hypothetical 
campus, the early 
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walkers structure the environment as a by-product of their own actions, but subsequent walkers will then encounter a 
structured environment that may help them, in turn, to solve the very same problems. 15

4.5 Modeling the Opportunistic Mind

These first few chapters have, I hope, conveyed a growing sense of the opportunistic character of much of biological 
cognition. For example: faced with the heavy time constraints on real-world action, and armed only with a somewhat 
restrictive, pattern-completing style of on-board computation, the biological brain takes all the help it can get. This help 
includes the use of external physical structures (both natural and artifactual), the use of language and cultural 
institutions (see also chapters 9 and 10 below), and the extensive use of other agents. To recognize the opportunistic 
and spatiotemporally extended nature of real problem solving is, however, to court a potential methodological 
nightmare. How are we to study and understand such complex and often non-intuitively constructed extended systems?
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There is a classical cognitive scientific methodology that quite clearly won't do in such cases. This is the methodology 
of rational reconstruction—the practice of casting each problem immediately in terms of an abstract input-output 
mapping and seeking an optimal solution to the problem thus defined. Such a methodology, though perhaps never 
defended in principle even by workers in classical AI, nonetheless seems to have informed a large body of research.16 
Think of all those investigations of abstract microworlds: checkers, block placement, picnic planning, medical 
diagnosis, etc. In all such cases, the first step is to cast the problem in canonical symbolic terms and the second is to 
seek an efficient solution defined over a space of symbol-transforming opportunities.

Connectionists, likewise, were seen (chapter 3 above) to inherit a distressing tendency to study disembodied problem 
solving and to opt for abstract, symbolically defined input-output mappings.17 Yet, from the perspectives on robotics 
and on infancy gained in the early chapters, it now seems more reasonable to imagine that the real-body, real-world 
setups of many tasks will deeply influence the nature of the problems they present to active, embodied agents. The real-
world problems will be posed in a milieu that includes the spring-like properties of muscles and the 
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presence of real, spatially manipulable objects. Such differences, as I have been at pains to show, can often make all the 
difference to the nature of a computational task.

In fact, the methodology of rational reconstruction can mislead in several crucial ways. First, the immediate 
replacement of real physical quantities with symbolic items can obscure opportunistic strategies that involve acting 
upon or otherwise exploiting the real world as an aid to problem solving. (Recall the 007 Principle.) Second, 
conceptualizing the problem in terms of an input-output mapping likewise invites a view of cognition as passive 
computation. That is, it depicts the output phase as the rehearsal of a problem solution. But we have now seen many 
cases (e.g., the strategies of animate vision and the use of the rotation button in Tetris) in which the output is an action 
whose role is to unearth or create further data that in turn contribute to ultimate success. These cases of what Kirsh and 
Maglio called "epistemic action" 18 threaten to fall through the cracks of any fundamentally disembodied, input-output 
vision of cognitive success. (A third threat is that the search for optimal solutions may further mislead by obscuring the 
role of history in constraining the space of biologically plausible solutions. Nature, as we shall see in chapter 5, is 
heavily bound by achieved solutions to previously encountered problems. As a result, new cognitive garments seldom 
are made of whole cloth; usually they comprise hastily tailored amendments to old structures and strategies.)

For all these reasons, the methodology of rational reconstruction seems to do extreme violence to the shape and nature 
of biological cognition. In its place, we may now glimpse the barest outlines of an alternative methodology—a 
methodology for studying embodied, active cognition. The key features of this methodology seem to be the following:

real-world, real-time focus Tasks are identified in real-world terms. Inputs are physical quantities, outputs are actions. 
Behavior is constrained to biologically realistic time frames.
awareness of decentralized solutions It is not simply assumed that coordinated intelligent action requires detailed 
central planning. Often, globally intelligent action can arise as a product of multiple, simpler interactions involving 
individuals, components, and/or the environment.
an extended vision of cognition and computation Computational processes are seen as (often) spread out in space and 
time. Such processes can 
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extend outside the head of an individual and include transformations achieved using external props, and they can 
incorporate the heads and bodies of multiple individuals in collective problem-solving situations.

Thus construed, the study of embodied active cognition clearly presents some major conceptual and methodological 
challenges. These include (but, alas, are not exhausted by) the following:

the problem of tractability How—given this radically promiscuous view of cognition as forever leaking out into its 
local surroundings—are we to isolate tractable phenomena to study? Doesn't this rampant cognitive liberalism make 
nonsense of the hope for a genuine science of the mind?
the problem of advanced cognition How far can we really hope to go with a decentralized view of mind? Surely there is 
some role for central planning in advanced cognition. What, moreover, of the vision of individual reason itself? What 
image of rational choice and decision making is implicit in a radically emergentist and decentralized view of adaptive 
success?
the problem of identity Where does all this leave the individual person? If cognitive and computational processes are 
busily criss-crossing the boundaries of skin and skull, does that imply some correlative leakage of personal identity into 
local environment? Less mysteriously, does it imply that the individual brain and the individual organism are not 
proper objects of scientific study? These would be unpalatable conclusions indeed.

We have here a mixed bag of practical worries (How can we study the embodied embedded mind?), unsolved problems 
(Will the same type of story work for truly advanced cognition?), and conceptual anomalies (Does leaky cognition 
imply leaky persons? Are brains somehow improper objects of study?). In the remaining chapters, I shall address all 
these issues. In particular, I shall try to respond in detail to the methodological and practical worries (chapters 5–7), to 
clarify the conceptual problems (chapters 6 and 8), and to begin to address the pressing problem of advanced cognition 
(chapters 9 and 10). The key to integrating the facts about advanced cognition with the vision of embodied active 
cognition lies, I shall suggest, in better understanding the roles of two very special external props or scaffolds: language 
and culture.

In sum: The death of rational reconstruction creates something of a conceptual and methodological vacuum. Our 
remaining task is to fill the void.
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Intermission: A Capsule History

Cognitive science, as sketched in the preceding chapters, can be seen in terms of a three-stage 
progression. The first stage (the heyday of classical cognitivism) depicted the mind in terms of a central 
logic engine, symbolic databases, and some peripheral "sensory" modules. Key characteristics of this 
vision included these ideas:

memory as retrieval from a stored symbolic database,
problem solving as logical inference,
cognition as centralized,
the environment as (just) a problem domain,

and
the body as input device.

The connectionist (artificial neural network) revolution took aim at the first three of these 
characteristics, replacing them with the following:

memory as pattern re-creation,
problem solving as pattern completion and pattern transformation,

and
cognition as increasingly decentralized.

This radical rethinking of the nature of the inner cognitive engine, however, was largely accompanied by 
a tacit acceptance of the classical marginalization of body and world. It is this residual classicism which 
the kind of research reported earlier confronts head on. In this research, the most general tenets of the 
connectionist view are maintained, but they are augmented by a vision of

the environment as an active resource whose intrinsic dynamics can play
 important problem-solving roles 
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and
the body as part of the computational loop.

To thus take body and world seriously is to invite an emergentist perspective on many key 
phenomena—to see adaptive success as inhering as much in the complex interactions among body, 
world, and brain as in the inner processes bounded by skin and skull. The challenges for such an 
approach, however, are many and deep. Most crucial is the pressing need to somehow balance the 
treatment of the internal (brain-centered) contribution and the treatment of external factors in a way that 
does justice to each. This problem manifests itself as a series of rather abstract-sounding worries—but 
they are worries with major concrete consequences for the conduct and the methodology of a science of 
the embodied mind. These worries include

finding the right vocabulary to describe and analyze processes that
criss-cross the agent/environment boundary,
isolating appropriate large scale systems to study and motivating some
decomposition of such systems into interacting component parts and
processes,

and
understanding familiar terms such as 'representation', 'computation',
and 'mind' in ways which fit the new picture (or else rejecting such
terms entirely).

In short: How should we think about the kind of phenomena we have displayed—and how many of our 
old ideas and prejudices will we have to give up to do so? This is the topic of part II.
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II
Explaining the Extended Mind

Our own body is in the world as the heart is in the organism … it forms with it a system.
—Maurice Merleau-Ponty, Phenomenology of Perception; passage translated by David Hilditch in his Ph.D. thesis, 
At the Heart of the World (Washington University, 1995)
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5
Evolving Robots

5.1 The Slippery Strategems of the Embodied, Embedded Mind

How should we study the embodied, embedded mind? The problem becomes acute once we realize that 
nature's solutions will often confound our guiding images and flout the neat demarcations (of body, 
brain, and world) that structure our thinking. The biological brain is, it seems, both constrained and 
empowered in important and sometimes non-intuitive ways. It is constrained by the nature of the 
evolutionary process—a process that must build new solutions and adaptive strategies on the basis of 
existing hardware and cognitive resources. And it is empowered, as we have seen, by the availability of 
a real-world arena that allows us to exploit other agents, to actively seek useful inputs, to transform our 
computational tasks, and to offload acquired knowledge into the world.

This combination of constraints and opportunities poses a real problem for the cognitive scientist. How 
can we model and understand systems whose parameters of design and operation look (from an 
ahistorical, disembodied design perspective) so messy and non-intuitive? One partial solution is to 
directly confront the problem of real-world, real-time action, as in the robotics work surveyed in chapter 
1. Another is to attend closely to the interplay between cognition and action in early learning, as in the 
developmental research discussed in chapter 2. An important additional tool—the focus of the present 
chapter—is the use of simulated evolution as a means of generating control systems for (real or 
simulated) robots. Simulated evolution (like neural network learning) promises to help reduce the role of 
our rationalistic prejudices and predispositions in the search for efficient solutions.
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5.2 An Evolutionary Backdrop



Naturally evolved systems, it has often been remarked, simply do not function the way a human designer 
might expect. 1 There are several reasons for this. One, which we have already seen exemplified many 
times over, involves a propensity for distributed solutions. The now-familiar point is that where a human 
designer will usually build any required functionality directly into a distinct device for solving a given 
problem, evolution is in no way constrained by the boundaries between an organism or device and the 
environment. Problem solving easily becomes distributed between organism and world, or between 
groups of organisms. Evolution, having in a very real sense no perspective on a problem at all, is not 
prevented from finding cheap, distributed solutions by the kinds of blinkers (e.g., the firm division 
between device and operating domain) that help human engineers focus their attention and decompose 
complex problems into parts.

This is not, however, to suggest that principles of decomposition play no role in natural design. But the 
kind of decomposition that characterizes design by natural selection is a very different beast indeed. It is 
a decomposition dictated by the constraint of evolutionary holism—a principle, explicitly formulated by 
Simon (1969), which states that complex wholes will usually be developed incrementally over 
evolutionary time, and that the various intermediate forms must themselves be whole, robust systems 
capable of survival and reproduction. As Dawkins (1986, p. 94) puts it, the key is to think in terms of 
trajectories or paths though evolutionary time, with whole successful organisms as steps along the way.

This is a strong constraint. A wonderfully adaptive complex design that lacks any such evolutionary 
decomposition (into simpler but successful ancestral forms) will never evolve. Moreover, the transitions 
between forms should not be too extreme: they should consist of small structural alterations, each of 
which yields a whole, successful organism.

One story has it, for example,2 that our lungs evolved from a foundation provided by the swim bladders 
of fish. Swim bladders are sacs of air that facilitate movement in watery environments. It has been 
suggested that our current susceptibility to pleurisy and emphysema can be traced to features of the 
swim-bladder adaptation. Lieberman (1984, p. 22) is 
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thus led to comment that ''swim bladders are logically designed devices for swimming—they constitute 
a Rube Goldberg system for breathing."
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The moral is an important one. It is that the constraints of evolutionary holism, coupled with the need to 
proceed via small incremental changes to existing structures, can yield solutions to current problems that 
owe a great deal to their particular historical antecedents. As the cell geneticist François Jacob (1977, p. 
1163) put it: "Simple objects are more dependent on (physical) constraints than on history. As 
complexity increases, history plays the greater part." Jacob likens evolution to a tinkerer rather than an 
engineer. An engineer sits down at a blank drawing board and designs a solution to a new problem from 
scratch; a tinkerer takes an existing device and tries to adapt it to some new purpose. What the tinkerer 
produces may at first make little sense to the engineer, whose thinking is not constrained by available 
devices and ready-to-hand resources. Natural solutions to the problems faced by complex evolved 
creatures may likewise appear opaque from a pure, ahistorical design perspective.

One way to begin to understand such initially opaque, historically path-dependent and opportunistic 
problem solutions is to try artificially to recapitulate the evolutionary process itself: set a tinkerer to 
catch a tinkerer. Enter the genetic algorithm.

5.3 Genetic Algorithms as Exploratory Tools

Biological evolution, as we all know, works by a process of diversification and selection. Given some 
population of organisms, and given variety within that population, some will do better at survival and 
reproduction than others. Add to this a mechanism of transmission, which causes the descendants of the 
fittest to inherit some of the structure of their forebears, and the minimal conditions for evolutionary 
search are in place. Transmission normally involves inbuilt means of further variation (e.g., mutation) 
and diversification (e.g., the splitting and recombination processes characteristic of sexual reproduction). 
By an iterated sequence of variations, diversifications, selections, and transmissions, the evolutionary 
process performs a search in the space of structural options—a search that will tend to zero in on the 
fitter solutions to the problems of survival and reproduction.
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Genetic algorithms 3 simulate this kind of evolutionary process. The population initially consists of a 
variety of software individuals, either hand coded or randomly generated. Such "individuals" might be 
lines of code, data structures, whole hierarchical computer programs, neural networks, or whatever. The 
individuals are then allowed to behave—to act in some environment in ways that will allow the 
computation, after some time, of a measure of fitness for each one. (How much food did it find? Did it 
avoid predators? …) The initial coding for the fittest individuals (usually stored as binary strings) is then 
used as a basis for reproduction (i.e., for generating the next population). But instead of simply copying 
the most successful individuals, operations of crossover and mutation are employed. In mutation, a small 
random change is made to the structure of the coding for an individual. For example, if the individual is 
a neural network, a few weights might be subtly varied. In crossover, parts of the codings for two 
individuals are recombined so as to mimic the rough dynamics of sexual reproduction. The new 
generation is thus based on the most successful variants among the old, but continues the process of 
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searching for efficient solutions by investigating some of the space surrounding the previous good 
solutions. This process, when iterated over hundreds of thousands of generations, constitutes (in certain 
problem domains) a powerful version of gradient-descent search4—except that here the learning 
increments occur generation by generation instead of during an individual lifetime.

Such techniques have been used to evolve problem solutions in a wide variety of domains, from trail 
following in artificial ants (Jefferson et al. 1990; Koza 1991), to discovering laws of planetary motion 
(Koza 1992), to evolving neural network controllers for artificial insects (Beer and Gallagher 1992). The 
latter kind of use is especially interesting insofar as it allows us to study the effects of incremental 
evolutionary learning in settings that include rich bodily and environmental dynamics, as we shall now 
see.

5.4 Evolving Embodied Intelligence

Walking, seeing, and navigating are fundamental adaptive strategies exploited by many evolved 
creatures. Can simulated evolution help us to understand them better? The answer looks to be a tentative 
Yes.
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Consider walking. Randall Beer and John Gallagher (1992) have used genetic algorithms to evolve 
neural network controllers for insect locomotion. These evolved controllers turn out to exploit a variety 
of robust and sometimes nonobvious strategies. Many of these strategies rely on close and continued 
interactions between the controller and the environment and do not involve the advance construction of 
detailed and explicit motor programs. Moreover, the best of the controllers were able to cope with a 
variety of challenging situations, including operation with and without sensory feedback and including 
automatic compensation for certain kinds of structural change.

Beer and Gallagher's robot insect was a kind of simulated cockroach 5 with six legs. Each leg was 
jointed and could have its foot up or down. A sensor on each leg reported the angle of the legs relative to 
the body. The simulated insect was controlled by a network of neural nets (each leg had a dedicated five-
neuron network controller). Each five-neuron subnet included three motor neurons driving the leg and 
two "extra" neurons whose role was left open. Each subnet received input from the sensor associated 
with the leg it controlled. A genetic algorithm (see section 5.3) was used to discover a set of features 
(such as connection weights—see chapter 3) that would enable this kind of control architecture to 
generate stable and robust locomotion. This, in turn, involved finding weights, biases, and time 
constants (response speeds) capable of generating a viable motion pattern for each leg, and also 
coordinating the motions of all the legs.
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Beer and Gallagher evolved eleven controllers, each of which used a different set of weights and 
parameter values. All the controllers produced good locomotion, and all used the "tripod gait" favored 
by real fast-walking insects.

The importance of the controller-environment interaction was demonstrated by evolving solutions in 
three different settings. In the first setting, evolutionary search occurred with leg sensors operative. 
Under these conditions, unsurprisingly, the final solutions relied heavily on continued sensory feedback. 
If the sensor were subsequently disabled, locomotion was lost or badly disrupted. In the second setting, 
evolutionary search occurred without sensory feedback. Under these "blind" conditions, solutions were 
discovered that relied only on central pattern generators and hence produced a somewhat clumsy but 
reliable locomotion akin to that of a toy robot.
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More interesting by far were the results obtained when sensory feedback was intermittently present 
during evolutionary search. Under these uncertain conditions, controllers evolved that could produce 
smooth walking using sensory feedback when available, switch to "blind" pattern generation in the 
absence of sensory feedback (and hence produce viable albeit less elegant locomotion), and even 
compensate automatically for certain structural changes (e.g., alterations of leg length, such as occur 
during biological growth). The explanation of this last property involves the modulation exercised by 
sensory feedback on the pattern generator in these "mixed" solutions. The altered leg length affects the 
readings at the sensor, and this causes a commensurate slowing of the motor output generator. This kind 
of automatic compensation has a biologically realistic flavor—think of how a cat automatically adopts a 
new three-legged gait when one leg is injured, or how a human being adapts to walking on an icy 
surface or with a sprained ankle. Yet, as Beer (1995b) points out, this kind of adaptation is not a result of 
individual learning as such—rather, the adaptation is inherent in the original dynamics of the system, 
and the new situation (damage, leg growth, or whatever) merely causes it to be displayed.

Overall, the kind of solution embodied in the mixed controller involves such a subtle balancing of 
central pattern generation and sensory modulation that, Beer suggests, the design might easily have 
eluded a human analyst. By using the genetic algorithm, solutions can be found that truly make the most 
of whatever environmental structure is available and which are not hobbled by our natural tendency to 
seek neat, clean, easily decomposable problem solutions. Of course, the bad news about messier, more 
biologically realistic and interactive solutions is that they are not just hard to discover but also hard to 
understand once we have them. We shall return to this problem in section 5.7.

Further experiments echo Beer and Gallagher's results in other domains. Harvey et al. (1994) evolved 
control systems for visually guided robots, and Yamuchi and Beer (1994) have evolved networks 
capable of controlling a robot that used sonar input to perform landmark recognition and navigation. 
Johnson et al. (1994) used genetic programming to evolve animate-vision-style routines for the 
computationally cheap solution of ecologically realistic visual processing tasks (recall chapter 1), 
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finding evolved solutions which significantly outperformed the best programs they were able to produce 
by hand. There is thus ample evidence of the power of simulated evolutionary search to unearth robust 
and unobvious solutions to biologically realistic problems. This optimistic statement, however, should 
be tempered by the recognition of several severe limitations that afflict most of the work in this field. 
The most important of those limitations are the "freezing" of the problem space, the use of fixed neural 
and bodily architectures, the lack of a rich phenotype/genotype distinction, and the problem of "scaling 
up" in evolutionary search.

By the "freezing" of the problem space I mean the tendency to predetermine a fixed fitness function and 
to use simulated evolution merely to maximize fitness relative to this preset goal (walking, navigating, 
or whatever). This approach ignores one of the factors that most strongly differentiate real evolutionary 
adaptation from other forms of learning: the ability to coevolve problems and solutions. A classic 
example is the coevolution of pursuit and evasion techniques in animal species. 6 The crucial point is 
just that natural evolution does not operate so as to "solve" a fixed problem. Instead, the problems 
themselves alter and evolve in a complex web of coevolutionary change.

Equally problematic is the tendency to search a problem space partially defined by some fixed bodily or 
neural architecture. Once again, these searches freeze parameters that, in the natural world, are 
themselves subject to evolutionary change. For example, the simulated cockroach had a fixed bodily 
shape and a fixed set of neural resources. Real evolutionary search, in contrast, is able to vary both 
bodily shape7 and gross neural architecture.

Another biological distortion involves the use of rather direct genotype-phenotype mappings. In 
standard genetic-algorithm search, the new populations of individuals are fully specified by their 
genotypes. In contrast, the way real genes become expressed in real bodies allows a much greater role 
for environmental interactions over individual developmental time. In fact, the image of genes "coding 
for" physical features is often quite misleading. Rather, genes code for possible physical features, in 
ways that depend heavily on a variety of environmental factors which affect their expression. The 
capacity to select genetic factors whose ultimate expression 
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in individuals remains under a large degree of environmental control allows biological evolution to 
exploit several degrees of freedom not present in most artificial models. 8

Finally, there is a widely acknowledged problem of "scaling up." Most of the work reported above uses 
genetic search applied to relatively small neural network controllers. As the number of parameters 
characterizing the controllers increases, standard varieties of evolutionary search become increasingly 
inefficient. The key to overcoming this problem seems to lie in some combination of better genetic 
encodings and the "offloading" of some of the burden onto the environment (i.e., reducing the amount of 
information encoded in the genotype by relying on developmental interactions with a structuring 
environment). In this way, the scaling problem and the previous phenotype/genotype problem may be 
more closely linked than is initially apparent.9

Clearly, then, the use of simulated evolution is far from being a panacea for autonomous-agent research. 
Nonetheless, such methods have already won a place in the tool kit of the cognitive sciences of the 
embodied mind. Exactly how central a place will depend also on the resolution of a rather vigorous in-
house dispute concerning the legitimacy and the value of using simulated agents and environments in 
understanding embodied, active cognition.

5.5 SIM Wars (Get Real!)

Artificial evolution takes place, by and large, in populations of simulated organisms attempting to 
negotiate simulated environments. But the use of simulations is itself a point of contention within the 
community of researchers studying embodied, embedded cognition. On the one hand, the use of 
simulated worlds and agents provides clear benefits in terms of problem simplification and the 
tractability of studying large populations. On the other hand, one of the major insights driving much 
autonomous-agent research is precisely a recognition of the unsuspected complexity of real agent-
environment interactions and of the surprising ways in which real-world features and properties can be 
exploited by embodied beings. Fans of real-world robotics10 note that researchers routinely 
underestimate the difficulty of problems (by ignoring such real-world features as 
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noise and the unreliability of mechanical parts) and also fail to spot quick and dirty solutions that depend 
on such gross physical properties as the elasticity and "give" of certain parts. 11

A useful nonrobotic example of the role of such physical properties is developed by Tim Smithers 
(1994, pp. 64–66) in his account of "hunting," a phenomenon associated with the second generation of 
fly-ball governors used to regulate the power outputs of early steam engines. Fly-ball governors (also 
known as Watt governors after their inventor, James Watt) are used to maintain constant speed in a 
flywheel, run off a steam engine, to which other machinery is connected. Without governance, the speed 
of the flywheel varies according to steam fluctuations, workload alterations, and other factors. The 
governor is based on a vertical spindle geared to the main flywheel. The spindle has two arms, attached 
by hinges, each of which has a metal ball at the end. The arms swing out as the flywheel turns, to a 
degree determined by the speed of rotation. The arms directly operate a throttle valve that reduces the 
flow of steam as the arms raise (and hence as the speed of the flywheel increases) and increases it as the 
arms lower (and hence as the speed of the flywheel decreases). This arrangement maintains a constant 
speed of rotation of the flywheel, as is required for many industrial applications. With increased 
precision of manufacture, Smithers notes, a new generation of governors began to exhibit a problem not 
seen in the earlier, "cruder" versions. The new, finely machined governors would often fail to determine 
a single fixed speed of rotation, and would instead oscillate between slowing down and speeding up. 
This "hunting" for a constant speed occurred because the new governors were reacting too quickly to the 
main shaft's speed and thus, in effect, overcorrecting each time. Why did the early, crude versions 
outperform their finely engineered successors? The reason was that friction between joints, bearings, 
and pulleys was, in the early versions, sufficient to damp the system's responses, thus protecting it from 
the looping cycles of rapid overcompensation observed in the newer machines. Modern regulators, we 
are told, rely on additional components to prevent hunting, but these pay a price in being more difficult 
to set up and use (ibid., p. 66).

Smithers shows that attempts to fine tune the sensory systems of simple real-world robots can run into 
similar problems. If robot behavior depends closely on sensor readings, highly sensitive devices can 
become 

  

javascript:doPopup('Popup','Page_95_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')


Page 96
 

overresponsive to small perturbations caused by relatively insignificant environmental changes, or even 
by the operation of the sensor itself. Increased resolution is thus not always a good thing. By using less 
accurate components, it is possible to design robots in which properties of the physical device (e.g., 
mechanical and electrical losses) act so as to damp down responses and hence avoid undesirable 
variations and fluctuations. As a result, Smithers suggests, it may even be misleading to think of the 
sensors as measuring devices—rather, we should see them as filters whose role is, in part, to soak up 
behaviorally insignificant variations so as to yield systems able to maintain simple and robust 
interactions with their environment. Real physical components, Smithers argues, often provide much of 
this filtering or sponge-like capacity "for free" as a result of mechanical and electrical losses inherent in 
the physical media. These effects, clearly, will not be available "for free" in simulated agent-
environment systems. Simulation-based work is thus in danger of missing cheap solutions to important 
problems by failing to recognize the stabilizing role of gross physical properties such as friction and 
electrical and mechanical loss.

Another problem with a pure simulation-based approach is the strong tendency to oversimplify the 
simulated environment and to concentrate on the intelligence of the simulated agent. This furthers the 
deeply misguided vision of the environment as little more than the stage that sets up a certain problem. 
In contrast, the arguments of the previous chapters all depict the environment as a rich and active 
resource—a partner in the production of adaptive behavior. Related worries include the relative poverty 
of the simulated physics (which usually fails to include crucial real-world parameters, such as friction 
and weight), the hallucination of perfect information flow between "world" and sensors, and the 
hallucination of perfectly engineered and uniform components 12 (e.g., the use of identical bodies for all 
individuals in most evolutionary scenarios). The list could be continued, but the moral is clear. 
Simulation offers at best an impoverished version of the real-world arena, and a version impoverished in 
some dangerous ways: ways that threaten to distort our image of the operation of the agents by 
obscuring the contributions of environmental features and of real physical bodies.
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For all that, the benefits of a judicious use of simulation can be large, especially when investigating 
evolutionary change. Large simulated populations are cheap to produce and easy to monitor. Fitness 
evaluation can be automated relative to behavior within the virtual environment. Real-world engineering 
problems are completely bypassed. In addition, large-scale simulated evolution offers vast time savings 
in comparison with the use of repeated real-world runs and evaluations.

For practical purposes, then, a mixed strategy seems to be indicated. Thus, theorists such as Nolfi, 
Miglino, and Parisi (1994) and Yamuchi and Beer (1994) use simulations for initial research and 
development and then transfer the results into real mobile robots. Of course, neural network controllers 
evolved to guide a simulated robot will hardly ever transfer without problems to a real-world system. 
But the simulation phase can at least be used to achieve rough settings for a variety of parameters, which 
can then be further tuned and adapted in the real-world setting. 13

Finally, it should be noted that even pure simulation-based research can be immensely valuable, insofar 
as it allows the investigation of general issues concerning (e.g.) the interplay between individual 
learning and evolutionary change (Ackley and Littman 1992; Nolfi and Parisi 1991) and the properties 
of large collectives of very simple agents (Resnick 1994). As a means of understanding the detailed 
dynamics of real agent-environment interactions, however, simulations must always be taken with a 
large pinch of salt.

5.6 Understanding Evolved, Embodied, Embedded Agents

The process of natural design, it seems, will routinely outrun the imaginings of human theorists. In 
particular, biological evolution cares nothing for our neat demarcation between the merely physical and 
the computational or informational. Gross physical features such as mechanical and electrical loss, 
friction, and noise can all be exploited alongside familiar computational strategies (e.g., neural network 
learning) so as to yield robust solutions to problems of surviving and responding. Moreover, as we have 
seen repeatedly in previous chapters, the environment can be actively exploited so as to transform the 
nature of the problems we confront. And, as was remarked in section 5.2, biological evolution must 
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often tinker with old resources so as to yield new capacities: cognitive innovation is thus seldom made 
from whole, ideally engineered cloth. These factors conspire to render biological design curiously 
opaque. Take a videocassette recorder apart and you find a well-demarcated set of modules and circuit 
boards, each of which plays a delimited and specific role in yielding successful performance. That's 
because human designers (unsurprisingly) opt for the kind of overall componential design that makes 
most sense to serial, conscious reflection. The human brain appears to involve much less transparent 
kinds of componential structure and wiring, including vast amounts of recurrent circuitry which allow 
mutual and iterated modifications between many areas. And the role of the brain, in any case, is merely 
to get the body to go through the right motions. Adaptive success finally accrues not to brains but to 
brain-body coalitions embedded in ecologically realistic environments. A large and currently unresolved 
question therefore looms: How are we to study and understand (not just replicate) the adaptive success 
of biological creatures—creatures whose design principles do not respect the intuitive boundaries 
between cognition, body, and world?

One possibility, currently gaining ground, is to replace the standard cognitive-scientific tools of 
computational theorizing and representation talk with those of Dynamical Systems theory. The argument 
goes like this: The image of cognition as the generation of computational transformation of internal 
representations is (it is said) a throwback to the idea of the brain as, in essence, the seat of a 
fundamentally disembodied kind of intelligence. It is a throwback because representations, thus 
conceived, are supposed to stand in for real-world items and events, and reasoning is supposed to occur 
in a kind of inner symbolic arena. But real embodied intelligence, we have seen, is fundamentally a 
means of engaging with the world—of using active strategies that leave much of the information out in 
the world, and cannily using iterated, real-time sequences of body-world interactions to solve problems 
in a robust and flexible way. The image here is of two coupled complex systems (the agent and the 
environment) whose joint activity solves the problem. In such cases, it may make little sense to speak of 
one system's representing the other.

The idea can be elusive, so an example may help. Tim van Gelder invites us to consider, in this light, the 
operation of the Watt governor 
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described in section 5.5. The governor, recall, maintains the flywheel at a constant speed by using two 
weighted arms which swing out so as to close the throttle valve as speed of rotation increases and open it 
as speed decreases. Van Gelder (1995, p. 348) contrasts this with the operation of an imaginary 
''computational governor" that would operate as follows:

Measure the speed of the flywheel.
Compare the actual speed against the desired speed.
If there is a discrepancy, then
measure the current steam pressure,
calculate the desired alteration in steam pressure,
calculate the necessary throttle-valve adjustment.
Make the throttle-valve adjustments. Return to step 1.

The computational governor thus uses explicit measurements of speed and steam pressure, which are fed 
into further processes for calculating the necessary adjustments. The Watt governor, in contrast, folds 
the stages of measurement, computation and control into a single process involving the reciprocal 
influences of the speed and angle of the arm and the speed of the engine. The best way to understand the 
operation of the Watt governor, van Gelder notes, is to think not in terms of representations and 
computations but in terms of feedback loops and closely coupled physical systems. Such phenomena are 
the province of standard Dynamical Systems theory. Let us pause to make its acquaintance.

Dynamical Systems theory is a well-established framework 14 for describing and understanding the 
behavior of complex systems (see, e.g., Abraham and Shaw 1992). The core ideas behind a Dynamical 
Systems perspective are the idea of a state space, the idea of a trajectory or a set of possible trajectories 
through that space, and the use of mathematics (either continuous or discrete) to describe the laws that 
determine the shapes of these trajectories.

The Dynamical Systems perspective thus builds in the idea of the evolution of system states over time as 
a fundamental feature of the analysis. As a general formalism it is applicable to all existing 
computational systems (connectionist as well as classicist), but it is also more general, and it can be 
applied to the analysis of noncognitive and noncomputational physical systems as well.
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The goal of a Dynamical Systems analysis is to present a picture of a state space whose dimensionality 
is of arbitrary size (depending on the number of relevant system parameters), and to promote an 
understanding of system behaviors in terms of location and motion within that abstract geometric space. 
To help secure such an understanding, a variety of further constructs are regularly invoked. These 
constructs capture the distinctive properties of certain points or regions (sets of points) in the space as 
determined by the governing mathematics. The mathematics typically specifies a dynamical law that 
determines how the values of a set of state variables evolve through time. (Such a law may consist, for 
example, in a set of differential equations.) Given an initial state, the temporal sequence of states 
determined by the dynamical law constitutes one trajectory through the space. The set of all the 
trajectories passing through each point is called the flow, and its shape is the typical object of study. To 
help understand the shape of the flow, a number of constructs are used, including that of an attractor (a 
point or a region) in the space such that the laws governing motion through the space guarantee that any 
trajectory passing close to that region will be "sucked into" it. Related concepts include the "basin of 
attraction" (the area in which an attractor exerts its influence) and "bifurcations" (cases where a small 
change in the parameter values can reshape the flow, yielding a new "phase portrait"—i.e., a new 
depiction of the overall structure of basins and boundaries between basins).

The Dynamical Systems approach thus provides a set of mathematical and conceptual tools that support 
an essentially geometric understanding of the space of possible system behaviors. To get the flavor of 
these tools in use, consider once again the work on evolving insect leg controllers described in section 
5.4. In attempting to understand the operation of a single leg controller, 15 Beer (1995b) highlights the 
role of a systematic flipping between two fixed-point attractors. The first comes into play when a foot 
has just been put down and a "stance phase" has begun. The evolution of this state takes the system close 
to a fixed-point attractor. As the leg continues to move, however, this attractor disappears to be replaced 
by a second attractor elsewhere in the state space, toward which the system state then evolves. This 
second attractor corresponds to a "swing phase." The switch between these fixed points is due to a set of 
bifurca- 
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tions that occur as the leg moves through a certain angle. The effect of this is to switch the phase portrait 
of the controller between the two fixed-point attractors. Should the leg-angle sensor be disabled, the 
dynamics collapses to a fixed point, freezing the insect into a permanent stance phase. Notice especially 
that the dynamics Beer describes belong not to the neural network controller per se but rather to the 
coupled system comprising the controller and the insect body (leg). It is the reciprocal interplay of 
controller and leg (mediated by the leg sensor's angle-detecting capacity) that yields the state-space 
trajectory just described.

This kind of geometric, state-space-based understanding is, to be sure, both valuable and informative. It 
remains an open question, however, to what extent such explanations can replace, rather than merely 
complement, more traditional understandings couched in terms of computational transitions and inner 
representational states. The radical position (which predicts the wholesale replacement of computation 
and representation talk by geometric Dynamical Systems talk) faces two crucial challenges.

The first challenge concerns scaling and tractability. Even the 30-neuron leg controller constitutes a 
dynamical system of such complexity that our intuitive geometric understanding breaks down. 
Moreover, the detailed mathematics of Dynamical Systems theory becomes steadily less tractable as the 
number of parameters and the size of the state space increase. As a result, Beer's analysis was in fact 
conducted only for a simpler, five-neuron system controlling a single leg. The practical applicability of 
Dynamical Systems theory to highly complex, high-dimensional, coupled systems (like the human 
brain) must therefore be in serious doubt.

The second and more fundamental challenge concerns the type of understanding such analyses provide. 
This type of understanding threatens to constitute abstract description rather than full explanation. We 
learn what the system does and when it does it, and what patterns of temporal evolution its behavior 
displays; but this understanding, although valuable, does not seem to be exhaustive. In particular, we are 
often left—as I will later argue in detail—with an impoverished understanding of the adaptive role of 
components, and of the internal functional organization of the system.

The best aspects of the dynamical analyses, I suggest, are their intrinsic temporal focus and their easy 
capacity to criss-cross brain/body/ 

  



Page 102
 

environment boundaries. I shall highlight the temporal issues in a subsequent chapter. The boundary 
issue should already be clear: By treating the brain as a dynamical system, we treat it in essentially the 
same terms as we treat bodily mechanics and environmental processes. As a result, it becomes especially 
easy and natural to characterize adaptive behavior in terms of complex couplings of brains, bodies, and 
environment.

I propose, therefore, to argue for a somewhat ecumenical stance. The tools of Dynamical Systems theory 
are a valuable asset for understanding the kinds of highly environmentally coupled behaviors I have 
highlighted. But they should be treated as complementary to the search for computational and 
representational understandings. The case for complementarity will occupy us for the next several 
chapters.
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6
Emergence and Explanation

6.1 Different Strokes?

What kind of tools are required to make sense of real-time, embodied, embedded cognition? In particular, is there a 
range of emergent phenomena that depend so closely on the coupling of brain, body, and world that traditional analyses 
are bound to fail? I shall argue that emergent phenomena do demand some new modes of explanation and study, but 
that these new modes are best seen as complementary to (not in competition with) more familiar analytic approaches. 
Certainly, we will see an increasing sensitivity to what might be termed the ecological 1 determination of the roles of 
various inner states and processes (i.e., the way what needs to be internally represented and computed is informed by 
the organism's location in, and interactions with, a wider environment). And certainly, we will see the flip side of this 
same sensitivity: increased attention to the overall dynamics of whole organism/environment systems. But neither of 
these developments compromises our need to understand the contribution of neurophysiologically real components to 
the psychologically characterized abilities of an agent—a project that still appears to require the use of some quite 
traditional analytic tools. A successful cognitive science, I shall argue, will thus study both the larger dynamics of 
agent/environment systems and the computational and representational microdynamics of real neural circuitry.

6.2 From Parts to Wholes

In this section I distinguish three styles of cognitive scientific explanation. The styles are quite general, and they cross-
classify particular programming styles (such as connectionist vs. classicist).
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Componential Explanation

To explain the functioning of a complex whole by detailing the individual roles and the overall organization of its parts 
is to engage in componential 2 explanation. This is the natural explanatory style to adopt when, for example, we explain 
the workings of a car, a television set, or a washing machine. We explain the capacities of the overall system by 
adverting to the capacities and roles of its components, and the way they interrelate.
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Componential explanation, thus construed, is the contemporary analogue to good old-fashioned reductionistic 
explanation. I avoid the vocabulary of reduction for two reasons. First, much of the philosophical discussion about 
reduction assumed that reduction named a relation between theories, and that theories were linguaform, law-involving 
constructs. But in many cases (especially biology and artificial intelligence) what we might otherwise naturally think of 
as reductive explanations do not take this form. Instead, they involve the development of partial models which specify 
components and their modes of interaction and which explain some high-level phenomena (e.g. being a television 
receiver) by adverting to a description of lower-level components and interactions.3 These are reductionist explanations 
in a broader sense—one which "componential explanation" seems to capture. My second reason is that to contrast 
emergent explanation with reductionist explanation would be to invite a common misunderstanding of the notion of 
emergence—viz., to suggest that emergentist accounts embrace mystery and fail to explain how higher-level properties 
arise from basic structures and interactions. Recent emergentist hypotheses are by no means silent on such matters. The 
contrast lies in the ways in which the lower-level properties and features combine to yield the target phenomena. This 
kind of emergentist explanation is really a special case of reductionist explanation, at least as intuitively construed, 
since the explanations aim to render the presence of the higher-level properties unmysterious by reference to a 
multitude of lower-level organizational facts.4 For these reasons, then, it will be more accurate and less confusing to 
contrast emergent explanation with componential explanation than with reductionist theorizing in general.

Modular programming methods in classical AI5 lent themselves quite nicely to a componential form of explanation. In 
attempting to understand the success of such a program, it is often fruitful to isolate the various sub- 

  

Page 105
 

routines, modules, etc. and to display their role in dividing the target problem into a manageable series of subproblems 
(Dennett 1978a).

Recent "connectionist" work, as Wheeler (1994) points out, is likewise amenable to a kind of componential 
explanation. Solutions to complex problems such as the recognition of handwritten Zip codes (Le Cun et al. 1989) 
exploit highly structured, multi-layer networks (or networks of networks). In such cases it is possible to advance our 
understanding of how the system succeeds by asking after the roles of these gross components (layers or subnets). This 
kind of explanation is most compelling when the components admit of straightforward representational 
interpretation—that is, when the target systems have reliably identifiable internal configurations of parts that can be 
usefully interpreted as "representing aspects of the domain … and reliably identifiable internal components that can be 
usefully interpreted as alogorithmically transforming those representations" (Beer 1995a, p. 225). In short: there is a 
relation between the componential analysis of intelligent systems and the image of such systems as trading in internal 
representations, for the distinctive roles of the posited components are usually defined by reference to the form or 
content of the internal representations they process.

"Catch and Toss" Explanation
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This is my pet name for an approach that takes seriously many of the insights of embodied, embedded cognition but 
continues to view them through the lens of a traditional analysis. The main characteristic of the "catch and toss" mode 
is that the environment is still treated as just a source of inputs to the real thinking system, the brain. The concession to 
the embodied perspective involves recognizing that such inputs can lead to actions that simplify subsequent 
computations. The traditional image of an input-thought-action cycle is maintained, but the complex and reciprocal 
influences of real-world action taking and internal computation are recognized. Research on animate vision displays 
something of this character in its description of how low-resolution visual input can lead to real-world actions (such as 
moving the head or the fovea) that in turn generate more input suitable for higher-resolution processing. Here we 
confront a description that recognizes the multiple and complex ways in which the inner jobs can be altered and 
simplified by means of real-world 
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structure, bodily dynamics, and active interventions in the world. But we also find a quite traditional emphasis on, and 
concern with, the realms of inner processing, internal representations, and computations (such as the construction of 
minimal internal databases encoding special-purpose "indexical" representations such as "My coffee cup is yellow"; see 
Ballard 1991, pp. 71–80). The peaceful coexistence of these two images (of the active, embedded system and of the 
primacy of the inner processing economy) is maintained by a firm insistence on the boundary between the brain and the 
world. The world tosses inputs to the brain, which catches them and tosses actions back. The actions may alter or 
simplify subsequent computations, by causing the world to toss back more easily usable inputs and so on. In short, 
there is a strong commitment to interactive modes of explanation, but the traditional focus on representation and 
computation in the individual brain is respected. One reason for this, implicit in the "catch and toss" idea itself, is that 
much of the focus in these cases is on simple feedback chains in which the system's actions alter its next inputs, which 
control the next action and so on. In such cases the relative low dimensionality of the interactions allows us to 
understand the system's behavior using quite conventional tools. By contrast, as the complexity and the dimensionality 
of crucial interactions increase, it becomes difficult (perhaps impossible) to conceptualize the situation by simply 
superimposing a notion of feedback loops on top of our standard understanding. Such critical complexity arises when 
the number of feedback processes increases and when the temporal staging of the various processes goes "out of 
synch," allowing feedback to occur along multiple channels and on multiple, asynchronous time scales. 6

Emergent Explanation

Emergent explanation is at once the most radical and the most elusive member of our trinity. Whereas "catch and toss" 
explanation is really just a sensitive and canny version of componential explanation, emergent explanation aims to offer 
a whole new perspective on adaptive success. At the heart of this new perspective lies, of course, the tricky idea of 
emergence itself. Let's approach it warily, by way of a sequence of illustrative examples.
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J. A. Scott Kelso, in his excellent treatment Dynamic Patterns (1995), presents the classic example of fluid heated from 
below. Specifically, he describes the behavior of cooking oil heated in a pan. When the heat is first applied, there is 
little temperature difference between the top and the bottom of the oil, and we observe no motion in the liquid. 
However, as the temperature increases, the body of oil begins to move in a coordinated fashion—we observe what 
Kelso (ibid., p. 7) describes as "an orderly, rolling motion." The source of this motion is the temperature difference 
between the cooler oil at the top and at the hotter oil at the bottom. The hotter and less dense oil rises, while the cooler 
and denser oil falls—a cycle which then repeats as the old cool oil, now at the bottom, gets hotter and rises, only to cool 
once again, and so on. The result is the persisting rolling motion known as convection rolls. The appearance of 
convection rolls is an example of an emergent self-organizing property of a collection of molecules, not unlike the self-
organization of slime-mold cells described in chapter 4. Kelso (ibid., pp. 7–8) comments:

The resulting convection rolls are what physicists call a collective or cooperative effect, which arises without any external 
instructions. The temperature gradient is called a control parameter in the language of dynamical systems. Note that the control 
parameter does not prescribe or contain the code for the emerging pattern. It simply leads the system through a variety of possible 
patterns or states. … Such spontaneous pattern formation is exactly what we mean by self-organization: the system organized 
itself, but there is no 'self,' no agent inside the system doing the organizing.

The idea, of course, is not that the emergent patterns are totally uncaused—obviously the proximal cause is the 
application of heat to the pan. Rather, it is that the observed patterns are largely explained by the collective behavior 
(under specified conditions) of a large ensemble of simple components (the molecules), none of which is playing a 
special or leading role in controlling or orchestrating the process of pattern formation. In fact, once the rolling motion 
begins, it feeds and maintains itself in a way that is characteristic of "self-organizing" systems. These systems are such 
that it is simultaneously true to say that the actions of the parts cause the overall behavior and that the overall behavior 
guides the action of the parts. For a homely example of this idea (sometimes called "circular causation"), consider the 
way the actions of individuals in a crowd combine to initiate a rush in one direction, and the way that activity then 
sucks in 
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and molds the activity of undecided individuals and maintains and reinforces the direction of collective motion. Such 
phenomena invite understanding in terms of collective variables—variables that fix on higher-level features which are 
crucial to the explanation of some phenomenon but which do not track properties of simple components. Instead, such 
variables may track properties that depend on the interaction of multiple components—properties such as the 
temperature and pressure of a gas, the rate of acceleration of a panicking crowd, or the amplitude of the convection 
rolls formed in a heated liquid. By plotting the values of such collective variables as a system unfolds over time, we 
may come to understand important facts about the actual and possible behavior of the larger system. And by plotting 
relations between the values of the collective variables and control parameters (such as the temperature gradient) we 
may come to understand important facts about the circumstances in which such higher-level patterns will emerge, when 
one higher-level pattern will give way to another, and so on.



One basic sense of the elusive term "emergence" is thus to hand. There is emergence whenever interesting, non-
centrally-controlled behavior ensues as a result of the interactions of multiple simple components within a system. We 
have already, however, rubbed shoulders with a second sense of emergence—one rooted primarily in ideas of organism-
environment interactions. This kind of emergence, which characterizes a lot of the work in real-world robotics 
described in previous chapters, can be illustrated with a simple example drawn from Steels 1994. Steels invites us to 
imagine a robotic agent that needs to position itself between two poles so as to recharge itself. The charging station is 
indicated by a light source. One (non-emergentist) solution would be to endow the robot with sensors that measure its 
position relative to the poles and with a subroutine that computes a trajectory between the poles. An alternative 
(emergentist) solution relies on two simple behavior systems whose environmental interactions yield positioning 
between the poles as a kind of side effect. The behavior systems are (1) a phototaxis system that yields a zigzag 
approach to any light source and (2) an obstacle-avoidance system that causes the robot to turn away when it hits 
something. With these two simple systems in place, the target behavior emerges smoothly and robustly. The robot is 
attracted to the light and zigzags toward it. If it touches a pole, it retreats, 
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but it is then attracted by the light and tries again, this time from a new angle. After a few tries, it finds the only 
position in which its behavior systems are in equilibrium—a position near the light, but not touching either pole. The 
pole-orienting behavior counts as emergent because no actual component computes a pole-centering 
trajectory—instead, phototaxis, obstacle avoidance, and local environmental structure (the location of the light source) 
collectively bring about the desired result. We thus confront a second sense of emergence—one that turns on the idea of 
functionally valuable side effects brought about by the interaction of heterogeneous components, and which 
foregrounds the notion of interactions between behavior systems and local environmental structure. The two senses of 
emergence thus correspond roughly to what (in section 4.2) I termed the distinction between direct and indirect forms 
of emergence.

Let us now try to go a little further and clarify the common theme uniting the various cases. Is there, in short, a 
reasonably precise, nontrivial account of the overarching idea of an emergent feature?

Sometimes the general notion of emergence is equated with the idea of unexpected behaviors. (There are traces of this 
in Steel's emphasis on "side effects," although he is aware of the dangers and tries hard to avoid them.) The trouble here 
is that what is unexpected to one person may be just what someone else predicts—a canny engineer might design the 
polecentering robot precisely so as to exploit the interactions between basic components and the world as a way of 
solving the charging problem. Yet the solution itself retains the characteristic flavor of emergence, even if the outcome 
was predicted from the start. What we really need, then, is an observer-independent criterion—or, at least, a criterion 
less hostage to the vagueries of individual expectations.

A more promising idea, also mentioned by Steels, equates emergent phenomena with ones that require description in a 
new vocabulary: a vocabulary quite different from the one we use to characterize the powers and properties of the 
components themselves. Steels gives the example of chemical properties such as temperature and pressure, which do 
not figure in descriptions of the motion of individual molecules but which are needed to describe the behavior of 
aggregates of such items. This looks promising, but it still won't quite do. The reason is that the vocabulary switch also 
characterizes cases that are not, intuitively, cases of real 
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emergence. A hi-fi system comprising an amplifier, a tuner, and speakers exhibits behavior some of which is best 
described in a vocabulary that does not apply to any of the individual components, yet such a system looks like a prime 
candidate for good old-fashioned componential explanation. 7

A better account of emergence (for our purposes, at any rate) is a generalization of a distinction between what Steels 
(ibid.) calls controlled variables (which track behaviors or properties that can be simply and directly manipulated) and 
uncontrolled variables (which track behaviors or properties that arise from the interaction of multiple parameters and 
hence tend to resist direct and simple manipulation). Consider Douglas Hofstadter's story about an operating system 
that begins to "thrash around" once about 35 users are on line. In such a case, Hofstadter notes, it would be a mistake to 
go to the system's programmer and ask to have the "thrashing number" increased to, say, 60. The reason is that the 
number 35 is not determined by a simple inner variable upon which the programmer can directly act. Instead, "that 
number 35 emerges dynamically from a host of strategic decisions made by the designers of the operating system and 
the computer's hardware and so on. It is not available for twiddling." (Hofstadter 1985, p. 642) Here we have a fully 
systems-internal version of an uncontrolled variable. In other cases, changing the variable might require adjusting a 
host of both inner and outer (environmental) parameters whose collective behavior fixes the variable's value. Emergent 
phenomena, on this account, are thus any phenomena whose roots involve uncontrolled variables (in this extended 
sense) and are thus the products of collective activity rather than of single components or dedicated control systems. 
Emergent phenomena, thus understood, are neither rare nor breathtaking: nonetheless, getting target behaviors to arise 
as functions of uncontrolled variables has not been a common strategy in AI, and such behaviors, when they arise, 
demand types of understanding and explanation that go beyond both the componential model and the interactive model 
rehearsed above.

Two final examples will help. The first, drawn from Resnick 1994b, concerns a strategy for getting simulated termites 
to collect wood chips and gather them into piles. One solution would be to program the termites to take chips to 
predesignated spots. Relative to such a solution, chip pil- 
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ing would count as a controlled variable, as piling behavior would be under direct control and would be fully 
"twiddleable." An emergentist solution, in contrast, yields the behavior indirectly via the combined effects of two 
simple rules and a restricted environment. The rules are these: "If you are not carrying anything and you bump into 
another wood chip, pick it up; If you are carrying a wood chip and you bump into another wood chip, put down the 
wood chip you are carrying." (ibid., p. 234) It is not obvious that such a strategy will work, as it allows chips to be 
removed from piles as easily as they can be added! Nonetheless, 2000 scattered chips, after 20,000 iterations, become 
organized into just 34 piles. The piling behavior ends up overwhelming the de-piling behavior because whenever (by 
chance) the last chip is removed from an incipient pile, that location is effectively blocked; under the two rules, no new 
pile can ever begin there. Over time, then, the number of possible pile locations in the artificial grid diminishes, forcing 
the chips to congregate in the remaining locations. It is the unprogrammed and environmentally determined feature of 
"location blocking" that enables piling activity to outrun de-piling activity. In this example, it is clear that piling 
behavior is not directly controlled but rather emerges from the interplay between the simple rules and the restricted 
environment.

javascript:doPopup('Popup','Page_110_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')


A second example: Hallam and Malcolm (1994) describe a simple solution to the problem of getting a robot to follow 
walls. You build into the robot a bias to veer to the right, and locate on its right side a sensor which is activated by 
contact and which causes the device to turn a little to the left. Such a robot will, on encountering a wall on the right, 
first move away (thanks to the sensor) and then quickly veer back to reencounter the wall (thanks to the bias). The 
cycle will repeat, and the robot will follow the wall by, in effect, repeatedly bouncing off it. In fact, as Tim Smithers 
has usefully pointed out in a personal communication, this solution requires a quite delicate balance between amount of 
"right veer" and amount of "left turning." Smithers also points out that this general idea of using "opposing forces to 
achieve stable regulated behavior" can be seen in early water-clock technology—a nice case of emergent timekeeping! 
The point to notice, in any case, is that the wall-following behavior described above emerges from the interaction 
between the robot and its environment. It is not subserved by any internal state encoding a goal of 
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wall following. We, as external theorists, lay on the wall-following description as a gloss on the overall embedded 
behavior of the device. In both of these cases, Steel's distinction between controlled and uncontrolled variables seems 
to give us what we need. The story can also be successfully applied to pole centering and, I suspect, to any cases of 
indirect emergence. Nonetheless, the emphasis on phenomena that cannot be controlled or manipulated by altering the 
values of a single parameter fails to encompass intuitively emergent phenomena such as the appearance of convection 
rolls in heated liquids. The reason is that the convection rolls are under the control of a simple parameter (the 
temperature gradient, or—to move to proximal causes—the applied heat) and can be effectively "twiddled" (to use 
Hofstadter's memorable phrase) as a result. In fact, the temperature gradient that drives the motion is called a control 
parameter precisely because it governs the collective behaviors of the system in such a powerful way.

Given this important class of cases, I think a better account of emergence (a kind of weak generalization of the idea of 
an uncontrolled variable) is simply this: a phenomenon is emergent if it is best understood by attention to the changing 
values of a collective variable. Some quick points about this definition:

•
A collective variable is a variable that tracks a pattern resulting from the interactions among multiple 
elements in a system (section 6.2 above; Kelso 1995, pp. 7, 8, 44). Thus, all uncontrolled variables are 
collective variables.

• To accommodate cases of indirect emergence, we extend the relevant notion of the "system" to include (at 
times) aspects of the external environment, as in the case of the pole-centering robot.

• Different degrees of emergence can now be identified according to the complexity of the interactions 
involved. Multiple, nonlinear, 8 temporally asynchronous interactions yield the strongest forms of 
emergence; systems that exhibit only simple linear interactions with very limited feedback do not 
generally require understanding in terms of collective variables and emergent properties at all.

• Phenomena may be emergent even if they are under the control of some simple parameter, just so long as 
the role of the parameter is merely to lead the system through a sequence of states themselves best 
described by appeal to a collective variable (e.g., the temperature gradient that leads
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the liquid through a sequence of states described by a collective variable marking the varying amplitude of 
the convection rolls—see Kelso 1995, p. 8).

• Emergence, thus defined, is linked to the notion of what variables figure in a good explanation of the 
behavior of a system. This is a weakly observer-dependent notion, since it turns on the idea of a good 
theoretical account and hence builds in some relation to the minds of the human scientists. But at least it 
does not depend on the vagaries of individual expectations about system behavior.

6.3 Dynamical Systems and Emergent Explanation

What is the most effective explanatory framework for understanding emergent phenomena? A widely shared negative 
intuition is that classical componential explanation, at least, often fares badly in such cases (Steels 1994; Maes 1994; 
Wheeler 1994). There are two rather distinct reasons for such failure.

One reason turns on the fact that many (not all) emergent cognitive phenomena are rooted in factors that spread across 
an organism and its environment. In such cases (and we saw several examples above) we ideally require an explanatory 
framework that (1) is well suited to modeling both organismic and environmental parameters and (2) models them both 
in a uniform vocabulary and framework, thus facilitating an understanding of the complex interactions between the 
two. A framework that invokes computationally characterized, information-processing homunculi is not, on the face of 
it, an ideal means of satisfying these demands.

A second reason turns on the nature of components. When each of the components makes a distinctive contribution to 
the ability of a system to display some target property, componential analysis is a powerful tool. But some systems are 
highly homogeneous at the component level, with most of the interesting properties dependent solely upon the 
aggregate effects of simple interactions among the parts. One example (van Gelder 1991; Bechtel and Richardson 
1992) would be a simple connectionist network in which the processing units are all markedly similar and the 
interesting abilities are largely attributable to the organization (by weighted, dense connectivity) of those component 
parts. A more complex case occurs when a system is highly nonhomogeneous, yet the contributions 
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of the parts are highly inter-defined—that is, the role of a component C at time t1 is determined by (and helps 
determine) the roles of the roles of the other components at t1, and may even contribute quite differently at a time t2, 
courtesy of complex (and often nonlinear—see note 8) feedback and feedforward links to other subsystems. Thus, even 
internal nonhomogeneity and on-line functional specialization is no guarantee that a componential analysis will 
constitute the most revealing description.



These complexities are reflected in Wimsatt's (1986) lovely description of "aggregate systems." Aggregate systems are 
the ones for which componential explanation is best suited. Such systems are defined as ones in which the parts display 
their explanatory relevant behavior even in isolation from one another, and in which the properties of a small number of 
subsystems can be invoked to explain interesting systemic phenomena. 9 As the complexities of interaction between 
parts increases, the explanatory burden increasingly falls not on the parts but on their organization. At such a time, we 
are driven to seek new kinds of explanatory frameworks. As we shall later see, it is likely that advanced biological 
cognition falls somewhere near the middle of this continuum. The systems have distinct and functionally specialized 
neural components, but the complex and often nonlinear interactions (feedback and feedforward relations) between 
these components may be crucial determinants of most intuitively "psychological" phenomena. Good explanations, in 
such cases, require both a traditional componential explanation and something else. But what else?

Given our two desiderata (viz., that we accommodate both organism-environment interactions and complex interactions 
between components), it is natural to consider the framework (briefly introduced in chapter 5 above) of Dynamical 
Systems theory—a theoretical approach that provides a set of tools for describing the evolution of system states over 
time (Abraham and Shaw 1992). In such descriptions, the theorist specifies a set of parameters whose collective 
evolution is governed by a set of (usually) differential equations. One key feature of such explanations is that they are 
easily capable of spanning organism and environment. In such cases the two sources of variance (the organism and the 
environment) are treated as coupled systems whose mutual evolution is described by a specific set of interlocking 
equations. The behavior of a wall-mounted pen- 
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dulum placed in the environmental setting of a second such pendulum provides an easy example. The behavior of a 
single pendulum can be described using simple equations and theoretical constructs such as attractors and limit cycles, 
10 but two pendulums placed in physical proximity tend, surprisingly, to become swing-synchronized over time. This 
synchronization admits of an elegant Dynamical Systems explanation treating the two pendulums as a single coupled 
system in which the motion equation for each pendulum includes a term representing the influence of the other's 
current state, the coupling being achieved via vibrations running through the wall.11 Most important in the present 
context, Dynamical Systems theory also provides a new kind of explanatory framework. At the heart of this framework 
is the idea of explaining a system's behavior by isolating and displaying a set of variables (collective variables, control 
parameters, and the like) which underlie the distinctive patterns that emerge as the system unfolds over time and by 
describing those patterns of actual and potential unfolding in the distinctive and mathematically precise terminology of 
attractors, bifurcation points, phase portraits, and so forth. (See section 5.6.)

There are many ways in which a typical Dynamical Systems explanation varies from a traditional, component-centered 
understanding. The most puzzling difference, at first sight, is that Dynamical Systems theory seems to want to explain 
behaviors by describing behaviors. Yet (intuitively, at least), the provision of even a rich and detailed description 
appears to fall well short of the provision of an explanation, which typically reduces puzzlement by revealing 
something of the hidden mechanisms that bring a behavior about. In addition, many scientists and philosophers believe 
that certain physical systems (such as the brain) depend on special organizational principles and hence require a 
vocabulary and an explanatory style very different from those used to explain the coordination of pendula or the 
dripping of taps. Again, Dynamical Systems theory surprises us by using the same basic approach to tackle many 
superficially very different kinds of real-world phenomena. This helps to explain why many cognitive scientists, on 
encountering this style of explanation, are disappointed to find detailed stories about patterns in gross behavior and 
little by way of "real mechanism." This is indeed a surprise if you are expecting a special kind of story focused on 
hidden, inner 
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events. But the cognitively motivated Dynamical Systems theorist believes that both neural dynamics and gross bodily 
dynamics flow from the same deep underlying principles of self-organization in complex systems. It is natural, working 
from within such a perspective, to treat both kinds of patterns in similar ways—as Kelso (1995, p. 28) puts it, ''the 
claim on the floor is that both overt behavior and brain behavior, properly construed, obey the same principles." 12

To get the true flavor of the kinds of explanation at issue here, let us turn to a real case study due to Kelso et al. (1981) 
and nicely summarized in chapter 2 of Kelso 1995. The study centers on the phenomenon of rhythmical behavior, and 
in particular on the production of rhythmic finger motions. Try to move your two index fingers from side to side so that 
they are moving at the same frequency. You will probably find that this can be achieved either by moving the two 
fingers so that the equivalent muscles of each hand contract at the same time or by ensuring that the equivalent muscles 
are exactly out of phase (one contracting as the other expands). The same two stable strategies describe the behavior of 
car windshield wipers: typically, the wipers move in phase. But a few models are set up to display slightly unnerving 
anti-phase coordination. The important difference is that human subjects can settle into either mode, according to how 
they begin the action sequence. Moreover, the antiphase strategy is stable only at low frequencies of oscillation. If a 
subject begins in anti-phase mode and is then asked to steadily increase the speed of oscillation, there occurs, around a 
certain critical frequency, an abrupt shift or phase transition. In a striking example of spontaneous pattern alteration, the 
anti-phase twiddling gives way to phased twiddling. (The same kind of spontaneous alteration occurs when a horse 
switches, at a certain velocity, from a trot to a canter. These two styles of locomotion involve quite different inter-limb 
coordination strategies—see Kelso 1995, pp. 42–43.)

How should we explain this pattern of results? Kelso set out to do so by first investigating which variables and control 
parameters would best describe the behaviors. The crucial variable, he discovered, was one that tracked the phase 
relationship between the fingers. This variable, as we saw, is constant for a wide range of individual finger oscillation 
frequencies, and changes suddenly when the frequency hits a critical value. It is 
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a collective variable since it cannot be defined for a single component (finger) but only for the larger system. 
Frequency of movement is thus the control parameter for the phase relation which is now plotted as a collective 
variable. The real meat of the analysis then lies in the provision of a detailed mathematical description of the system 
thus described—a set of equations displaying the space of possible temporal evolutions of relative phase as governed 
by the control parameter. Such a description effectively describes the state space (see chapter 5) of the system showing, 
among other things, which areas in the space act as attractors (variable values toward which the system will tend from 
certain other locations in the space). Haken et al. (1985) found just such a description and were able to display the 
detailed patterns of coordination corresponding to different values of the control parameter. Important features of the 
model included not only its ability to describe the observed phase transitions without positing any "switching 
mechanism" above and beyond the collective dynamics but also its ability to reproduce the results of minor interference 
with the system, such as occurs if one finger is briefly forced out of its stable phase relation. The model of Haken et al. 
also generated accurate predictions of features such as the time taken to switch from out of phase to in phase. 13
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It should now be clearer why the dynamical account is not merely a nice description of the observed phenomena. It 
owes its status as an explanation to its ability to illuminate what philosophers call counterfactuals: to inform us not just 
about the actual observed behavior of the system but also about how it will behave in various other circumstances. 
Nonetheless, these explanations still lack one powerful feature of their more traditional cousins. They are not 
constrained to constitute detailed recipes for building the kinds of devices they both describe and explain. In this, they 
differ from familiar models in which a behavior is explained by showing how it arises from the properties of a variety 
of well-understood components. Traditional computational models, for example, have the very real virtue of 
decomposing complex tasks into sequences of simpler and simpler ones to the point where we see how to carry them 
out given only the basic resources of logic gates, memory boards, and so forth.

On the positive side, Dynamical Systems explanations, with their apparatus of collective variables and coupled 
behaviors, are naturally suited 
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to spanning multiple interacting components and even whole agent-environment systems. Whereas the standard 
framework seems geared to describing computation and representation in agent-side processing, the Dynamical 
Systems constructs apply as easily to environmental features (e.g., the rhythms of a dripping tap) as to internal 
information-processing events. It is this easy ability to describe larger integrated systems that leads theorists such as 
Beer and Gallagher (1992) and Wheeler (1994) to prefer Dynamical Systems theory over classical componential 
approaches for the explanation of emergent, often environment-involving types of behaviors. Behaviors so far studied 
tend to be relatively basic ones, such as legged locomotion (see chapter 5 above) and visually guided motion. But the 
intuition of many theorists is that the bulk of everyday biological intelligence is rooted in canny couplings between 
organisms and specific task environments, and thus that this style of explanation may extend well beyond accounts of 
relatively "low-level" phenomena. Indeed, Port and van Gelder 1995 contains several examples of Dynamical Systems 
theorizing applied to such high-level tasks as planning, decision making, language production, and event recognition.

It is important to remember, however, that the system parameters tracked in these Dynamical Systems explanations can 
be arbitrarily far removed from facts about the real internal structure and processing of the agent. Van Gelder (1991) 
notes that a Dynamical Systems story tracking the behavior of a car engine over time might need to fix on a parameter, 
such as temperature, that does not correspond to any internal component or to any directly controlled variable. This can 
occur, van Gelder notes, because "in its pure form, dynamical explanation makes no reference to the actual structure of 
the mechanism whose behavior it is explaining. It tells us how the values of the parameters of the system evolve over 
time, not what it is about the way the system itself is constituted that causes those parameters to evolve in the specified 
fashion. It is concerned to explore the topographical structure of the dynamics of the system, but this is a wholly 
different structure than that of the system itself." (ibid., p. 500)

Intermediate options are clearly also available. Salzman (1995) offers a Dynamical Systems explanation of how we 
coordinate multiple muscles in speech production. He notes that the coordinative dynamics must be specified in 
abstract informational terms, which do not directly track 
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either biomechanical or neuroanatomical structure. Instead, "the abstract dynamics are defined in coordinates that 
represent the configurations of different constriction types e.g. the bilabial constrictions used in producing /b/, /p/, or 
/m/, the alveolar constrictions used in producing /d/, /t/, or /n/ etc." (ibid., p. 274). These constriction types are defined 
in physical terms involving items such as lip aperture and lip protrusion. But the Dynamical Systems story is defined 
over the more abstract types mentioned above. This is an intermediate case insofar as it is clear how the more abstract 
parameters cited in the Dynamical Systems analysis are related to physical structures and components of the system.

Such intermediate analyses are of great importance. Cognitive science, I shall next argue, cannot afford to do without 
any of the various explanatory styles just reviewed, and it is therefore crucial that we ensure that the various 
explanations somehow interlock and inform one another. I shall now develop an argument for this explanatory 
liberalism and show how the requirement of explanatory interlock imposes powerful additional constraints on our 
theorizing.

6.4 Of Mathematicians and Engineers

Just how powerful is the pure Dynamical Systems style of explanation and analysis? My view, as will become more 
increasingly clear over the next few chapters, is that it provides a crucial part of the understanding we need, but that (at 
least at present) it cannot take us all the way. To see why, we must first be clear about what I mean by a pure 
Dynamical Systems style of explanation.

A pure Dynamical Systems account will be one in which the theorist simply seeks to isolate the parameters, collective 
variables, and so on that give the greatest grip on the way the system unfolds over time—including (importantly) the 
way it will respond in new, not-yet-encountered circumstances. The pure Dynamical Systems theorist is thus seeking 
mathematical or geometrical models that give a powerful purchase on the observable phenomena. This is good science, 
and it is explanatory science (not mere description). Moreover, as we just saw, much of the distinctive power and 
attractiveness of these approaches lies in the way they can fix on collective variables—variables whose physical roots 
involve the interactions 
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of multiple systems (often spread across brain, body, and world). But this distinctive power comes at a cost: these 
"pure" models do not speak directly to the interests of the engineer. The engineer wants to know how to build systems 
that would exhibit mind-like properties, and, in particular, how the overall dynamics so nicely displayed by the pure 
accounts actually arise as a result of the microdynamics of various components and subsystems. Such a person may 
well insist that a full understanding of the working system will positively require pure dynamical stories such as those 
just rehearsed. However, he or she will not think such stories sufficient to constitute an understanding of how the 
system works, because they are pitched at such a distance from facts concerning the capacities of familiar and well-
understood physical components. By contrast, a standard computational account (connectionist or classical) is much 
closer to a recipe for actually building a device able to exhibit the target behaviors. This is because all the basic state 
transitions involved in the specification are constrained to be reproducible by known combinations of basic operations 
that can be performed using logic gates, connectionist processing units, or whatever.



In a certain sense, what is accomplished by a pure dynamical discussion is more closely akin to a sophisticated task 
analysis than to a fully worked out computational story. But it is a task analysis that is both counterfactually pregnant 
(see section 6.3) and potentially wide. It is wide insofar as it can "fold together" aspects of the problem space that 
depend on the external environment as well as those that depend on properties of the individual organism. In such cases 
there will be multiple ways of implementing the dynamics described, some of which may even divide subtasks 
differently among body, brain, and world. For example, body fat may do for infant A what artificial weights do for 
infant B, and complex computations may do for creature C what compliance in elastic muscles does for creature D. 
Identical gross dynamics may thus emerge from very different "divisions of labor."

The complaint, then, is that commanding a good pure dynamical characterization of the system falls too far short of 
possessing a recipe for building a system that would exhibit the behaviors concerned. One response to this complaint (a 
response I have often heard from diehard fans of Dynamical Systems theory) is to attack the criterion itself. Why 
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should we insist that real understanding requires "knowing how to build one"? Esther Thelen (personal communication) 
notes that "by such a criterion, we would need to throw out nearly all biology"—not to mention economics, astronomy, 
geology, and who knows what else. Why should cognitive science buy into an explanatory criterion so much more 
demanding than those proper to just about every science?

Despite its surface plausibility, this reply really misses the point. It does so by taking the claim about buildability just a 
bit too literally. What is really being suggested is not that in fact we should be able to build systems that exhibit the 
desired features (although AI, to its credit, often aims to do just that), but that we should understand something of how 
the larger-scale properties are rooted in the interactions of the parts. Perhaps we cannot build our own volcanos, but we 
do understand how subterranean forces conspire to create them. We may, in addition, seek powerful accounts of the 
ebb and flow of volcanic activity over time, and we may even do so by isolating control parameters, defining collective 
variables, and so on. A full understanding of the nature of volcanic activity depends, no doubt, on the simultaneous 
pursuit and careful interlocking of both types of explanation. In the relevant sense, then, we do know how to build 
volcanos, whirlwinds, solar systems, and all the rest! Our problems in actually carrying out the construction stem from 
practical difficulties (of scale, materials, etc.) and not from any lack of the requisite level of understanding.

The buildability criterion thus needs softening to allow for the large number of cases in which other problems stand in 
our way. Typical snags, to quote from an aptly titled paper 14 by Fred Dretske, might be: "The raw materials are not 
available. You can't afford them. You are too clumsy or not strong enough. The police won't let you." (Dretske 1994, p. 
468) Conversely, Dretske notes, the mere fact that you can build something does not guarantee that you really 
understand it—we can all assemble a kit and be none the wiser. The core (and I believe correct) claim is, therefore, just 
that to really understand a complex phenomenon it is at least necessary that we understand at least something of how it 
is rooted in the more basic properties of its biologically or physically proper parts. What this ultimately requires, I 
suggest, is continually probing beyond the level of collective variables and the like so as to understand the deeper roots 
of the collective dynamics themselves.
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The good news is that, occasional rhetoric aside, most of the proponents of a dynamical approach recognize and 
respond to this very need. Thelen and Smith (1994), having described the embodied, embedded behavior of infants in 
great detail, go on to pursue issues concerning the dynamics of the underlying neural organizations. As they themselves 
point out, their depiction of the changing dynamical landscapes of the infants (the shifting attractors) leaves them 
"completely uninformed about the more precise mechanisms of changing attractor stability" (ibid., p. 129). In response 
to this need, they then pursue a Dynamical Systems approach at the level of neural organization. Kelso (1995, p. 66) is, 
if anything, even clearer, insisting that a "tripartite scheme" involving a minimum of three levels (the task or goal level 
…, collective variable level, and component level) is required to provide a complete understanding." Kelso also notes, 
importantly, that what actually counts as a component or a collective variable will depend in part on our specific 
explanatory interests. To use his own example, nonlinear oscillators may be treated as components for some purposes. 
Yet the nonlinear oscillatory behavior is itself a collective effect that arises from the interactions of other, more 
fundamental parts.

Randall Beer, in his careful and progressive attempts to understand the operation of neural-network controllers for 
simple model agents, stresses the need to understand the detailed dynamics of individual neurons, of coupled pairs of 
neurons, of coupled pairs of neurons coupled to simple bodies, and so on up the scale. In short, Beer seeks a Dynamical 
Systems understanding that will go all the way down, and one relative to which the special properties of ever larger and 
more complex systems should begin to make more sense. (See, e.g., Beer 1995.) Common to all these theorists, then, is 
a recognition that the explanatory aspirations of cognitive science go beyond the careful depiction of embodied, 
embedded behavior, and beyond even the genuine explanations of such behavior that can be given in terms of 
collective variables keyed to making sense of gross observed behavior. What ultimately distinguishes these approaches 
from more traditional work is an insistence (Kelso et al.) or a suspicion (Beer) that the familiar notions of internal 
representation, information processing, and (perhaps) computation do not provide the best vocabulary or framework in 
which to understand the remaining issues concerning neural organization. Instead, these authors are betting on the use 
of a Dynamical 
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Systems vocabulary to describe and explain all levels of biological organization. My view, as the next few chapters will 
make clear, is that we will not only need a mix of levels of analysis (something like Kelso's "tripartite scheme") but 
also a mix of explanatory tools, combining Dynamical Systems constructs with ideas about representation, 
computation, and the information-processing role of distinguishable subcomponents. To get the broad flavor of such a 
mixed approach, consider a concrete example.

6.5 Decisions, Decisions



Componential explanation and "catch and toss" explanation are both well suited to explaining adaptive behavior by 
unraveling the contributions of specific agent-side components. "Catch and toss" explanation differs largely in its 
explicit recognition of the profound differences which attention to environmental opportunities and the demands of real-
time action can make to our hypotheses concerning the internal information-processing organization required. The pure 
Dynamical Systems approach to explaining emergent phenomena, in contrast, looks to import a whole new perspective, 
one which focuses on the evolution of overall system parameters and which is especially well suited to modeling the 
complex interplay between multiple agent-side parameters and environmental ones. Thus described, it seems almost 
obvious that both types of explanation (the information-processing, componential-style analysis and the global-
dynamics-style analysis) are needed and should be required to interlock gracefully. Yet several recent writings suggest 
an alternative, more imperialist point of view. Dynamical Systems theory, they suggest, is to be preferred over talk of 
information-processing decompositions and internal components that traffic in representations. Such a radical view can 
be sustained only by adopting an unduly impoverished vision of the goals of cognitive science.

Consider the goal of explaining the systematic effects of various kinds of local damage and disruption. The stress on 
gross system parameters, which helps us understand the dynamics that obtain within well-functioning organism-and-
environment systems, must often obscure the details of how various inner systems contribute to that coupling, and thus 
how the failure of such systems would affect overall behavior. Yet an important 
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body of work in cognitive neuroscience aims precisely to plot the inner organization that explains patterns of 
breakdown after local damage (Farah 1990; Damasio and Damasio 1994). Such explanations typically adopt both a 
modular/componential perspective and a representation-invoking perspective. This kind of understanding complements 
any broader understanding of global dynamics. Each explanatory style helps capture a distinct range of phenomena and 
helps provide different types of generalization and prediction.

For example, Busemeyer and Townsend (1995) present an elegant application of Dynamical Systems theorizing to 
understanding decision making. The framework they develop, called Decision Field Theory, describes how preference 
states evolve over time. They describe dynamical equations which plot the interplay of various gross factors (such as 
the long-term and short-term anticipated value of different choices) and which also predict and explain the oscillations 
between likely choices that occur during deliberation. These are explained as effects of varying how much attention the 
decision maker is currently giving to various factors. The account captures and explains several interesting phenomena, 
including the apparent inconsistencies between preference orderings measured by choice and those measured by selling 
price. 15 A whole class of generalizations, explanations, and predictions thus falls out of the specific equations they use 
to model the evolution of the chosen parameters and variables over time.

Other kinds of explanation and generalization, however, are not subsumed by this level of description. Thus consider 
the famous mid-nineteenth-century case of Phineas Gage, a railroad construction foreman who suffered a terrible injury 
when a tamping iron was thrust right through his face, skull, and brain. Amazingly, Gage survived and regained all his 
logical, spatial, and physical skills. His memory and intelligence were not affected, yet his life and personality changed 
dramatically. He was no longer trustworthy, or caring, or able to fulfill his duties and commitments. The damage to his 
brain had caused, it seemed, a very specific yet strange effect—it was almost as if his "moral centers" had been 
destroyed (Damasio et al. 1994). More accurate, it seemed that his ability to "make rational decisions in personal and 
social matters" (ibid.) had been selectively compromised, leaving the rest of his intelligence and skills intact. 
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In recent years, a team of neuroscientists specializing in brain imaging analyzed Gage's skull and were able, using 
computer-aided simulations, to identify the probable sites of neural damage. By identifying specific neural structures as 
the site of the damage, Damasio et al. (ibid.) were able to begin to make sense of Gage's selective disturbances (and 
those of others—see the case of E.V.R. in Damasio et al. 1990). The damage was to the ventromedial regions of both 
frontal lobes—areas that appear to play a major role in emotional processing. This finding led the Damasio team to 
speculate on a special role for emotional responses in social decision making. 16 Partly inspired by such case studies, 
the Damasios also developed a more general framework for the explanation of selective psychological deficits. This is 
the "convergence-zone hypothesis" explained in some detail in the next chapter. A distinctive feature of this hypothesis, 
as we shall see, is the way it combines attention to the basic functional compartmentalization of the brain with 
recognition of the role of larger-scale integrative circuitry. A full account of deficits such as Gage's and E.V.R.'s thus 
requires, it seems, a combination of some quite familiar kinds of information-processing localization (assigning distinct 
tasks to different areas of sensory and motor cortex) and the kinds of larger-scale analysis that implicate multiple areas 
linked together by complex webs of feedback and feedforward connectivity.

The details of this story will become clearer once we turn up the focus on contemporary neuroscience (in chapter 7). 
The point, for current purposes, is not to assess the details of any such proposal. It is merely to note that the proposal of 
Damasio et al. aims for a type of understanding that is not present in the global depiction offered by Decision Field 
Theory, which is quite clearly not designed to either predict or illuminate the kind of unexpectedly selective 
disturbance to the decision-making process that these neuroanatomy-motivated studies address. This is not a criticism 
of DFT, which itself provides a type of understanding, prediction, and explanation which the Damasio proposal does 
not. This is because DFT is free to treat emergent properties of the whole, intact, well-functioning system as collective 
variables, and hence provides a vocabulary and a level of analysis well suited to capturing patterns in the temporally 
evolving behavior of intact well-functioning agents. Moreover, it is these more abstract descriptions that will often 
serve us best if we seek to understand 
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the couplings between whole systems and their environments. Globally emergent features, we should readily concede, 
often play an important role in illuminating accounts of such couplings. Since the two styles of explanation are 
naturally complementary, there is, however, no need for the kind of competition that some of the fans of Dynamical 
Systems analysis seem to encourage. Instead, we should clearly distinguish two explanatory projects, each having its 
own associated class of generalizations. One project aims to understand the way intact agents and environments 
interrelate, and in so doing it may invoke abstract, globally emergent parameters. The other seeks to understand the 
specific information-processing roles of various inner subsystems in producing behavior, and hence it helps explain 
whole classes of phenomena (e.g., the effects of local damage) which its counterpart simply does not address.

Indeed, one natural way to think of the two projects just outlined is to depict the componential analysis as providing (in 
part) a story about the detailed implementation of the more global and abstract Dynamical Systems story. Van Gelder 
(1991) is skeptical about the value of such implementational stories, at least as regards the understanding of complex 
neural networks; he notes (p. 502) that componential (or, as he says, ''systematic") explanation is of little help in cases 
where "the 'parts' of the structure are so many and so similar, and key parameters … do not refer to parts of the system 
at all." But while this may be true for understanding the behaviors of single, relatively homogeneous connectionist 
networks, it seems manifestly untrue as regards the brains of most biological organisms. A more realistic picture, I 
suggest, must countenance three equally important and interlocking types of explanation and description:
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(1)
An account of the gross behaviors of the well-functioning organism in the environment—an account that 
may invoke collective variables whose componential roots span brain, body, and world.

(2) An account that identifies the various components whose collective properties are targeted by the 
explanations proper to (1). Two important subtasks here are to identify relevant neural components and to 
account for how these components interact.

(3) An account of the varying information-processing roles played by the components (both internal and 
external) identified in (2)—an account that may well assign specific computational roles and 
representational capacities to distinct neural subsystems.
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Satisfying explanations of embodied, embedded adaptive success must, I claim, touch all three bases. Moreover, each 
type of explanation imposes constraints and requirements on the others. There can be no legitimate collective variables 
in (1) that lack microdynamic implementation detail in (2), and such detail cannot be fully understood without the gross 
systems-level commentary on the roles of the various components provided by (3). The best way to achieve this, it 
would seem, is to pursue all three of the explanatory types isolated earlier in my discussion: componential analysis, so 
as to assign broad information-processing roles to neural structures; "catch and toss" analysis, to track the way the 
organism acts on and is acted on by the environment; and emergentist analysis, to describe the classes of adaptive 
behavior that depend most heavily on collective variables and organism-environment interactions.

6.6 The Brain Bites Back

A full account of embodied, embedded, and emergence-laden cognition must, it seems, do justice to several kinds of 
data. One such body of data concerns changes in a system's gross behavior over time. Another concerns, e.g., the 
specific effects of local, internal damage to the system. To explain such heterogeneous phenomena, the theorist should 
be willing to exploit multiple kinds of explanatory tools, ranging from analyses that criss-cross the organism and the 
environment, to ones that quantify over multiple inner components and complex connectivities, to ones that isolate 
components and offer a functional and representational commentary on their basic roles.

Emergent properties will figure in this explanatory activity at two levels. First, there will be internally emergent 
features: features tracked by collective variables constituted by the interaction of multiple inner sources of variation. 
Second, there will be behaviorally emergent features: features tracked by collective variables constituted by 
interactions between whole, functioning organisms and the local environment. Both classes of emergent property need 
to be understood, and Dynamical Systems theory provides a set of tools that can help in each arena. But these multiple 
explanatory endeavors are not autonomous. Collective variables must be cashed out in real (neural and environmental) 
sources 
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of variance. And basic componential specializations must be identified and factored into our understanding and models. 
Failure to do the latter will result in explanatory failure farther down the line—for example, when we are confronted by 
data concerning the selective impairments caused by local brain damage. In the next chapter, we will begin flesh out 
this broad framework by taking a closer look at some recent neuroscientific research.
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7
The Neuroscientific Image

7.1 Brains: Why Bother?

Does cognitive science really need to bother with the biological brain? To the casual observer, the answer will seem 
obvious: of course it must—how else can we hope to achieve a better understanding of the mind? What's more, the 
casual observer is right! It is all the more surprising, then, that influential research programs in cognitive science have 
so often downplayed or ignored neuroscientific studies in their attempts to model and explain mental phenomena. One 
popular reason for such inattention was the claim, common among early workers in symbolic artificial intelligence, that 
the right level of description of the physical device (for psychological purposes) lay at a fair remove from descriptions 
of neuronal structures and processes. Instead, it was believed that some much more abstract level of description was 
required—for example, a description in terms of information-processing roles in a computational system. 1 The fine 
details of neuronal organization, it was thought, constituted one specific solution to the problem of how to physically 
construct a device that would satisfy such an abstract computational story—but that was all.2

With the advent (or rebirth) of connectionist models, all that began to change. These models were deliberately specified 
in a way that reduced the distance between the computational story and the broad nature of neuronal implementation. 
The detailed fit between connectionist work and real brain theory was often far flimsier than one might have hoped. 
But, as connectionism matured, attempts to further bridge the gap3 became increasingly common, and a real synthesis 
of the computational and neuroscientific perspectives looked to be in the cards.
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But connectionist research was also being pulled in another direction: the direction, highlighted throughout this book, 
of attending to the details of embodied and environmentally embedded cognition. This emerging emphasis, I claim, 
should not be allowed to swamp attempts to develop increasingly neurally plausible models. Indeed, the two 
perspectives need to proceed hand in hand. We should indeed view the brain as a complex system whose adaptive 
properties emerge only relative to a crucial backdrop of bodily and environmental structures and processes. However, 
to fully understand these extended processes we must understand in detail the contributions of specific neural systems 
and the complex interactions among them. The stress on organism-environment interactions should thus not be seen as 
yet another excuse for cognitive science to avoid confrontation with the biological brain.

The real question, then, is not "should we study the brain?" but "how should we study the brain?" What kind of 
neuroscientific models best engage with our emphases on embodied action and real-time success? And if such models 
exist, how well are they supported by neuroanatomical and cognitive neuroscientific data and experiments? I shall 
suggest that the most promising class of neuroscientific models has three main characteristics:

(1)
the use of multiple, partial representations,

(2) a primary emphasis on sensory and motor skills, and
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(3) a decentralized vision of the overall neural economy.

In the following sections I will sketch and discuss some examples of neuroscientific conjectures of this broad type, and 
indicate some lines of continuity with research into embodied, embedded cognition.

7.2 The Monkey's Fingers

Consider a simple-sounding question: How does the monkey's brain guide the monkey's fingers? For many years 
neuroscientists endorsed a simple and intuitive picture. Part of the monkey's brain, the story went, was the site of a 
somatotopic map: a region in which groups of spatially clustered neurons were dedicated to the control of individual 
digits. Activity in a 
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group would cause the correlated finger to move. To move several fingers at once required simultaneous activity in 
several neuronal groups. This vision of how the monkey's brain controls its fingers was immortalized in the 
"homuncular" images of the spatial subdivisions of the Ml (motor area 1) brain region, which depicted distinct neuronal 
groups controlling each individual digit arranged in lateromedial sequence.

The model is neat and intuitive, and it would represent a nice solution to problems that require fingers to move 
independent of one another (as in skilled piano playing). But it is not nature's solution, as more recent research 
demonstrates. To see this, note an obvious prediction of the simple homuncular model. The model predicts that 
movements involving several digits should demand the activation of more, and more widespread, neurons than 
movements of an isolated digit. In addition, the model predicts that thumb movements should be accompanied by 
activity in the more lateral region of the Ml hand area, with movements of the other digits following in sequence until 
the most medial region (corresponding to the movements of the little finger) is reached. Neither prediction is borne out. 
Marc Schieber and Lyndon Hibbard, neuroscientists at Washington University School of Medicine, found that 
movements of each individual digit were accompanied by activity spread throughout the Ml hand area. In addition, it 
has been observed that more motor cortex activity is required for precise movements than for more basic whole hand 
movements, and that some motor-cortex neurons seem devoted to the prevention of movements of other digits when a 
target digit must act in isolation.

Schieber (1990, p. 444) suggests that we make sense of all this by thinking of isolated digit movements as the complex 
case, with "more rudimentary synergies, such as those used to open and close the whole hand" as the basic adaptation. 
Such an adaptation makes perfect sense for a creature whose primary need is to grasp branches and swing, and the 
overall diagnosis fits our evolutionary perspective on natural cognitive design to a T. The basic problem is one of 
producing fast, fluent, and environmentally appropriate action. Neural coding strategies are selected to facilitate a 
particular range of time-critical grasping behaviors. This basic, historically determined need shapes the solutions to 
more recent problems involving isolated digit movements (as in piano playing). To achieve these 
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more recent goals, Schieber (ibid.) suggests that "the motor cortex might then superimpose control in part on the 
phylogenetically older subcortical centers and in part directly on … spinal motorneurons, so as to adjust the movement 
of all the different fingers." Evolution thus tinkers with whole-hand synergies, devoting neural resources to the 
suppression of movements as much as to their production, so as to enable precise movements.

The moral, it seems, is that biological evolution can select internal coding schemes that look alien and clumsy at first 
sight but which actually represent quite elegant solutions to the combined problem of serving basic needs and making 
the most of existing resources. More generally, the neuroscientific literature abounds with cases of somewhat 
unexpected neural codings. For example, some neurons in the posterior parietal cortex of the rat have been found to 
respond maximally (in the context of running a radial maze) to specific combinations of head orientation and the 
presence of some local landmark or feature (McNaughton and Nadel 1990, pp. 49–50), others to specific turning 
motions made by the rat (another case of the kind of agent-oriented, motocentric representations featured in previous 
chapters).

Schieber's model also illustrates the role, in natural cognition, of distributed internal representations. This topic has 
loomed large in recent work on artificial neural networks. 4 A distributed representation is an inner encoding in which 
the target content is not carried by an individual resource (e.g. a single neuron) and is not necessarily carried by a 
spatially localized group of units or neurons. Instead, the content (concerning, e.g., the motion of an individual digit) is 
carried by a pattern of activation which is spread across a population of neurons or units. Distributed encodings present 
a number of advantages and opportunities. For example, the pattern itself can encode significant structural information 
in such a way that minor variations in the pattern reflect small but sometimes important differences in what is currently 
represented. And it becomes possible to use methods of overlapping storage so that each individual neuron can play a 
role in encoding many different things (just as the number 2 can appear in many different numerical patterns: "2, 4, 6," 
"2, 3, 4," "2, 4, 8," and so on). When this kind of overlapping storage is systematically exploited, so that semantically 
related items are represented 
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by overlapping but nonidentical patterns, there follow further advantages of generalization (new items or events can be 
given nonarbitrary codings based on the extent to which the new item resembles an old one) and graceful degradation 
(limited physical damage is less troublesome since multiple elements will participate in the coding for each broad class 
of item or event, and performance will be sensible as long as some are spared). These advantages are discussed in detail 
elsewhere (Clark 1989, 1993); the point for now is simply that the brain may be using quite complex, overlapping, 
spatially distributed representational schemes even in cases where we might intuitively have expected a simple, 
spatially localized encoding strategy, as in the case of the M1 motor area. 5 Nature's way, it seems, is to use spatially 
overlapping distributed encodings to govern related (but nonidentical) types of finger movement. The final picture is 
thus one in which specific cortical neurons play a role in controlling several finger muscles and do so by participating 
in widely spatially extended patterns of activity which correspond to different types and directions of finger 
movements.

7.3 Primate Vision: From Feature Detection to Tuned Filters6
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To get more of the flavor of current neuroscientific research, let us take a brief foray into the increasingly well-
understood world of primate vision. We already saw, in the computational work on animate vision, the likely extent to 
which a thrifty nature may rely on cheap cues and local environmental state so as to minimize internal computational 
load. But even when we allow for this, the complexity of the mechanisms of real vision remains staggering. What 
follows is a necessarily truncated sketch based on the recent work of David Van Essen, a leading researcher on primate 
vision who (conveniently for me) is based at the Washington University School of Medicine.7

Neuroanatomical research has uncovered a multiplicity of anatomical parts and pathways that seem to play special roles 
in visual processing. Cognitive neuroscience aims, using a wide diversity of experimental and theoretical tools, to 
identify the different response characteristics of participating neurons and neuronal populations. Anatomically, the 
macaque monkey possesses at least 32 visual brain areas and over 300 connecting 

  

Page 134
 

pathways. Major areas include early cortical processing sites such as V1 and V2, intermediate sites such as V4 and MT, 
and higher sites such as IT (inferotemporal cortex) and PP (posterior parietal cortex) (plate 1). The connecting 
pathways tend to go both ways—e.g. from V1 to V2 and back again. In addition, there is some "sideways" 
connectivity—e.g. between subareas within V1.

Felleman and Van Essen (1991) describe the overall system as comprising ten levels of cortical processing. Some of 
the most important of these will now be described. Subcortically, the system takes input from three populations of cells, 
including so-called magnocellular and parvocellular populations. One subsequent processing pathway is largely 
concerned with the magnocellular input, another with parvocellular input. This division makes sense in view of the 
different types of low-level information each population "specializes" in. Parvo (P) cells have high spatial and low 
temporal resolution; magno (M) cells have high temporal resolution. As a result, M cells enable the perception of rapid 
motions, whereas P cells underpin (among other things) color discrimination. Selective destruction of P cells prevents a 
monkey from distinguishing color but leaves motion recognition intact.

The magno-denominated (MD) stream of processing includes many populations of neurons sensitive to the direction of 
a stimulus motion, especially in area MT. Electrical stimulation of part of MT can cause a monkey to "perceive" left 
motion when the target object is in fact moving to the right (Salzman and Newsome 1994). At still higher stages in the 
processing hierarchy (such as MSDT) there is evidence for cells sensitive to quite complex motion stimuli, such as 
spiral motion patterns (Graziano et al. 1994). The MD stream is ultimately connected to the posterior parietal cortex, 
which appears to use spatial information to control such high-level functions as deciding where objects are and 
planning eye movements.

Meanwhile, the question of what things are (object recognition) is left to a different stream of processing: one rooted 
especially in parvocellular inputs, proceeding through V1, V4, and PIT (posterior inferotemporal areas), and leading 
into central and anterior inferotemporal areas. This pathway seems to specialize in form and color. By the level of V4, 
there is evidence of cells sensitive to quite complex forms such as concentric, radial, spiral, and hyperbolic stimuli 
(plate 2). Higher still, individual 
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cells in the inferotemporal cortex respond maximally to complex geometrical stimuli such as faces and hands. But (and 
this is crucial) these maximal responses do not exhaustively specify a cell's information-processing role. Although a 
cell may respond maximally to (e.g.) a spiral pattern, the same cell will respond to some degree to multiple other 
patterns also. It is often the tuning of a cell to a whole set of stimuli that is most revealing. This overall tuning enables 
one cell to participate in a large number of distributed patterns of encoding, contributing information both by its being 
active and by its degree of activity. Such considerations lead Van Essen and others to treat cells not as simple feature 
detectors signaling the presence or absence of some fixed parameter but rather as filters tuned along several stimulus 
dimensions, so that differences in firing rate allow one cell to encode multiple types of information. 8 There is also 
strong evidence that the responses of cells in the middle and upper levels of the processing hierarchy are dependent on 
attention and other shifting parameters (Motter 1994), and that even cells in V1 have their response characteristics 
modulated by the effects of local context (Knierim and Van Essen 1992). Treating neurons as tunable and modulable 
filters provides a powerful framework in which to formulate and understand such complex profiles. The basic image 
here invoked is also consonant with the design perspective advocated by Tim Smithers (see section 5.5 above), in 
which very simple sensory systems are themselves analyzed as tuned filters rather than as simple feature-detecting 
channels.

Recent work on primate vision thus shows an increasing awareness of the complexity and sophistication of biological 
coding schemes and processing pathways. Yet this increasing appreciation of both complexity and interactive dynamics 
does not render the primate visual system analytically opaque. Instead, we see how the system progressively separates, 
filters, and routes information so as to make various types of information available to various components (e.g. to 
inferotemporal cortex and to posterior parietal cortex) and so as to allow both low-level and higher-level visual cues to 
guide behavior as and when required. A full understanding of (e.g.) animate-vision strategies (recall chapter 1) will thus 
require both an appreciation of many kinds of complex internal dynamics and an understanding of how the embodied, 
embedded cognizer uses such resources to exploit environmental features and locally effective cues in the service of 
adaptive success.

  

Page 136
 

7.4 Neural Control Hypotheses

An important development in recent cognitive neuroscience involves the increasing recognition of the role of neural 
control structures. Neural control structures, as I shall use the term, are any neural circuits, structures, or processes 
whose primary role is to modulate the activity of other neural circuits, structures, or processes—that is to say, any items 
or processes whose role is to control the inner economy rather than to track external states of affairs or to directly 
control bodily activity. A useful analogy, suggested by Van Essen et al. (1994), is with the division of processes in a 
modern factory, where many processes are devoted not to the actual construction of the product but rather to the 
internal trafficking of materials. Likewise, many neuroscientists now believe, large amounts of neural capacity are 
devoted to the trafficking and handling of information. The role of certain neuronal populations, on those accounts, is 
to modulate the flow of activity between other populations so as to promote certain classes of attentional effect, multi-
modal recall, and so forth.
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Van Essen et al. (1994) posit, in this vein, neural mechanisms devoted to regulating the flow of information between 
cortical areas. Such regulation allows us, they suggest, to (e.g.) direct an internal window of visual attention at a 
specific target (such as a letter of the alphabet which appears at some random location in the visual field), or to direct 
the very same motion command to any one of a number of different body parts. In each case, the computational 
expense of generating a distinct signal for each case would be prohibitive. By developing a single resource which can 
be flexibly ''targeted" on various locations, vast computational savings are effected. The key to such flexible targeting, 
Van Essen et al. argue, is the use of populations of "control neurons" which dynamically route information around the 
brain. Nor do they leave this proposal at the level of the intuitive sketch presented above. Instead, they develop a 
detailed neural-network-style model of the operation of such controllers and relate the model to a variety of known 
neurological substrates and mechanisms. The highly context-dependent response profiles of some cortical neurons 
(mentioned in section 7.3) may itself be explained by the operation of these mechanisms for the routing and rerouting 
of incoming information.
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Another kind of neural control hypothesis is based on the idea of "reentrant processing" (Edelman and Mountcastle 
1978; Edelman 1987). It is well known that the brain includes many pathways which link distant cortical areas and 
which lead back from higher to lower brain areas. The idea of reentrant processing is that these "sideways and 
descending" pathways are used to control and coordinate activity in multiple (often much lower-level) sites. The 
pathways carry "reentrant signals'' which cause the receiving sites to become active. Consider two populations of 
neurons, each of which is responding to different types of external stimuli (e.g. from vision and touch), but which are 
reciprocally interconnected by such reentrant pathways. The reciprocal pathways would allow the goings-on at one site 
to become usefully correlated, over time, with goings-on at the other site. Such correlations could come to encode 
higher-level properties, such as the combinations of texture and color distinctive of some particular class of objects.

As a final example of a neural control hypothesis, consider the recent attempt by Damasio and Damasio (1994) to 
develop a general framework for the explanation of selective psychological deficits. Selective deficits occur when, 
usually as a result of a brain lesion or trauma, an individual loses specific types of cognitive capacity while others are 
left relatively intact. For example, the patient known as Boswell was found to be selectively impaired in the retrieval of 
knowledge concerning unique entities (e.g. specific individuals) and events (e.g. specific episodes of autobiography, 
unique places, unique objects) (Damasio et al. 1989). Nonetheless, his more general categorical knowledge remained 
intact. He could identify items as cars, houses, people, etc. Boswell showed no deficits of attention or perception, and 
his ability to acquire and display physical skills was not affected.

Damasio and Damasio (1994) describe a framework capable of accounting for such patterns of deficits. The key feature 
of their proposal is that the brain exploits "convergence zones": areas that "direct the simultaneous activation of 
anatomically separate regions whose conjunction defines an entity" (ibid., p. 65). A convergence zone is then defined 
as a neuronal grouping in which multiple feedback and feedforward loops make contact. It is a region in which several 
long-range corticocortical feedback and feedforward connections converge. The function 
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of a convergence zone is to allow the system to generate (by sending signals back down to multiple cortical areas 
involved in early processing) patterns of activity across widely separated neuronal groups. When we access knowledge 
of concepts, entities, and events, the Damasios suggest, we exploit such higher-level signals to re-create widespread 
patterns of activity characteristic of the contents in question. If we suppose that different classes and types of 
knowledge require different complexes of coactivation, managed by different convergence zones, we can begin to see 
how local brain damage could selectively impair the retrieval of different types of knowledge. To explain the 
dissociation between knowledge of unique and non-unique events, however, we need to introduce the additional notion 
of a hierarchy of convergence zones. Recall that convergence zones, as imagined by the Damasios, project both 
backward (reactivating earlier cortical representations) and forward (to higher convergence zones). The higher zones 
can economically prompt widespread lower-level activity by exploiting feedback connections to the earlier links in a 
convergence zone hierarchy. The basic hypothesis is thus as follows:

… the level at which knowledge is retrieved (e.g. superordinate, basic object, subordinate) would depend on the scope of 
multiregional activation. In turn, this would depend on the level of convergence zone that is activated. Low level convergence 
zones bind signals relative to entity categories. … Higher level convergence zones bind signals relative to more complex 
combinations. … The convergence zones capable of binding entities into events … are located at the top of the hierarchical 
streams, in anteriormost temporal and frontal regions. (ibid., p. 73)

The idea, then, is that retrieval of knowledge of unique entities and events requires the conjunctive activation of many 
more basic loci than does knowledge of non-unique entities and events (the former subsuming the latter, but not vice 
versa). Similarly, knowledge of concepts would require the conjunctive activation of several distinct areas, whereas 
knowledge of simple features (e.g. color) may be restricted to a single area. Assuming a hierarchy of convergence 
zones extended in neural space, this picture would explain why damage to early visual cortices selectively impairs 
knowledge of simple features such as color, whereas damage to intermediate cortices affects knowledge of non-unique 
entities and events, and damage to anterior cortices impairs responses concerning unique individuals and events.
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According to this framework, distinct but overlapping neural systems promote access to different types of knowledge. 
The more complex the conjunctions of information required to fix a class of knowledge, the more such coordinative 
activity is needed. This, in turn, implicates correlatively higher sites in a hierarchy of convergence zones which 
correspond to increasingly anterior loci within the temporal cortices. Damasio and Damasio stress that they are not 
depicting the damaged regions as the physical sites of different classes of knowledge. Rather, the damaged regions are 
the control zones that promote the conjunctive activation of several quite distant areas. These are typically early 
sensory and motor cortices, which would be led to re-create their proprietary responses to certain external stimuli by 
the reentrant signals. Summing up their suggestions, Damasio and Damasio comment that

the (picture) we favor implies a relative functional compartmentalization for the normal brain. One large set of systems in early 
sensory cortices and motor cortices would be the base for "sense" and "action" knowledge. … Another set of systems in higher-
order cortices would orchestrate time-locked activities in the former, that is, would promote and establish temporal 
correspondence among separate areas. (ibid., p. 70)



On this account, there are localized neural regions for several types of sensory and motor information, and for several 
levels of convergence-zone-mediated control. Higher-level capacities (such as grasping concepts) are, however, 
depicted as depending on the activity of multiple basic areas (in sensory and motor cortices) mediated by the activity of 
multiple convergence zones. Much of the explanatory apparatus for explaining phenomena like concept possession will 
thus require resources that go beyond the simple componential analyses introduced in chapter 6. We will need models 
that are especially well adapted to revealing the principles underlying phenomena that emerge from the complex, 
temporarily time-locked, coevolving activity of multiple components linked by multiple feedback and feedforward 
pathways. Classical componential analyses have not tended to fare well in such cases, and there thus looks to be a clear 
opening here for a Dynamical Systems account of the detailed implementation of the convergence-zone hypothesis. At 
the same time, the explanatory power of the theory is clearly tied up with the prior decomposition into basic processing 
areas (performing identifiable cognitive tasks) and into 
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a well-defined set of convergence zones whose different switching activities likewise map onto different classes of 
knowledge retrieval. It is only in the light of this decomposition and functional commentary that the model can predict 
and explain the selective effects of local brain damage on retrieval of knowledge concerning unique entities and events. 
In this case the presence of the component-based analysis seems essential as a means of bridging the gap between the 
phenomena to be explained (viz., deficits affecting specific types of knowledge) and the models we create. Without talk 
of the cognitive functions of early sensory cortices, and without talk of higher-level cortical structures as being 
specialized to re-create specific complexes of cognitive activity, we would not understand why any additional 
descriptions of the detailed dynamics of interactions between components were actually explanatory of the 
psychological phenomena.

Notice, finally, that neural control hypotheses fall well short of depicting the brain as a centralized message-passing 
device, for there is an important distinction between imagining that some internal control system has access to all the 
information encoded in various subsystems, and imagining a system which can open and close channels connecting 
various subsystems. 9 All that the neural control hypotheses sketched above demand is the latter, channel-controlling 
capacity. They are thus a far cry from the traditional vision of a "central executive" system. The "higher centers" 
posited by the Damasios do not act as storehouses of knowledge "ftp'd" from the lower-level agencies. They are instead 
''merely the most distant convergence points from which divergent retroactivation can be triggered" (Damasio and 
Damasio 1994, p. 70). Much opposition to an information-processing approach is, I believe, more properly cast as 
opposition to a rich "message-passing" vision of mind (see, e.g., Brooks 1991). Thus, Maes (1994, p. 141) notes that 
work on adaptive autonomous agents eschews the use of classical modules that "rely on the 'central representation' as 
their means of interface." Instead, such researchers propose modules that interface via very simple messages whose 
content rarely exceeds signals for activation, suppression, or inhibition. As a result, there is no need for modules to 
share any representational format—each may encode information in highly proprietary and task-specific ways (ibid., p. 
142). This vision of decentralized control and multiple representational formats is both biologically realistic and 
computationally attractive. But 
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it is, as we have seen, fully compatible both with some degree of internal modular decomposition and with the use of 
information-processing styles of (partial) explanation.

Neural control hypotheses thus constitute a powerful mixture of radicalism and traditionalism. They are radical insofar 
as they offer a decentralized, non-message-passing model of higher cognition, insofar as they often depict higher 
cognition as arising from the time-locked activity of multiple, more basic types of sensorimotor processing area, and 
insofar as they recognize the complex, recurrent dynamics of neural processing.

But they retain key elements of more traditional approaches, such as the use of an information-processing-style, 
component-based decomposition in which distinct neural components are associated with specific content-bearing 
roles.

7.5 Refining Representation

Contemporary neuroscience, as even this brief and sketchy sampling shows, displays an interesting mix of the radical 
and the traditional. It retains much of the traditional emphasis on componential and information-processing-based 
analyses of neural computation. But it does so within the broader context of a systemic understanding which is both 
increasingly decentralized and attentive to the role of complex recurrent dynamics. The notion of internal 
representation still plays a key role, but the image of such representations is undergoing some fundamental 
alterations—first because the question of what gets internally represented has been reopened both as a result of "bottom-
up" studies of the response profiles of specific neural populations (as in Schieber's work on representation in the 
monkey's motor cortex) and as a result of increased awareness of the importance of the organism's ecological 
embedding in its natural environment (as in the animate-vision research reported earlier), and second because the 
question of how things are internally represented has been transfigured by connectionist work on distributed 
representation and by the recognition that individual neurons are best seen as filters tuned along multiple stimulus 
dimensions. This combination of decentralization, recurrence, ecological sensitivity, and distributed multidimensional 
representation constitutes an image of the representing brain 
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that is far, far removed from the old idea of a single, symbolic inner code (or "Language of Thought"—see Fodor 1975 
and Fodor 1986). It is representationalism and computationalism stripped of all excess baggage, and streamlined so as 
to complement the study of larger organism-environment dynamics stressed in previous chapters. To complete this 
project of integration and reconciliation, we next must now look more closely at the fundamental notions of 
computation and representation themselves.
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8
Being, Computing, Representing

8.1 Ninety Percent of (Artificial) Life?

Ninety percent of life, according to Woody Allen, is just being there; and we have indeed charted lots of ways in which 
the facts of embodiment and environmental location bear substantial weight in explaining our adaptive success. The 
last two chapters, however, introduced some important caveats. In particular, we should not be too quick to reject the 
more traditional explanatory apparatuses of computation and representation. Minds may be essentially embodied and 
embedded and still depend crucially on brains which compute and represent. To make this ecumenical position stick, 
however, we need to specifically address some direct challenges concerning the very ideas of computation and 
representation (do they have nontrivial definitions compatible with new framework?) and some problems concerning 
the practical application of such notions in systems exhibiting emergent properties dependent upon processes of 
complex, continuous, reciprocal causation. 1

8.2 What Is This Thing Called Representation?

Cognitive scientists often talk of both brains and computer models as housing "internal representations." This basic 
idea provided common ground even between the otherwise opposing camps of connectionism and classical artificial 
intelligence.2 The differences between connectionists and the classicists concerned only the precise nature of the 
internal representational system, not its very existence. Classicists believed in a "chunky symbolic" inner economy in 
which mental contents were 
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tokened as strings of symbols that could be read, copied, and moved by some kind of inner central processing unit. 
Connectionists believed in a much more implicit style of internal representation: one that replaced strings of chunky, 
manipulable symbols with complex numerical vectors and basic operations of pattern recognition and pattern 
transformation.

For all that, explicit, chunky symbolic representations and distributed vectorial connectionist representations were both 
seen as species of internal representation, properly so called. This overarching species is present, it has been argued, 
whenever a system meets certain intuitive requirements. Haugeland (1991) unpacks these by describing a system as 
(internal) representation using just in case:

(1)
It must coordinate its behaviors with environmental features that are not always "reliably present to the 
system."

(2) It copes with such cases by having something else (in place of a signal directly received from the 
environment) "stand in" and guide bahavior in its stead.
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(3) That "something else" is part of a more general representational scheme that allows the standing in to 
occur systematically and allows for a variety of related representational states (see Haugeland 1991, p. 
62).

Point 1 rules out cases where there is no "stand-in" at all and where the environmental feature (via a "detectable 
signal") directly controls the behavior. Thus, ''plants that track the sun with their leaves need not represent it or its 
position because the tracking can be guided directly by the sun itself" (ibid., p. 62). Point 2 identifies as a 
representation anything that "stands in" for the relevant environmental feature. But point 3 narrows the class to include 
only stand-ins that figure in a larger scheme of standing in, thus ruling out (e.g.) gastric juices as full representations of 
future food (ibid.). These conditions are on the right track. But the role of decouplability (the capacity to use the inner 
states to guide behavior in the absence of the environmental feature) is, I think, somewhat overplayed.

Consider a population of neurons in the posterior parietal cortex of the rat. These neurons carry information about the 
direction (left, right, forward) in which the animals' head is facing. They do so by utilizing a coding scheme that is 
"general" in something like the sense required by Haugeland's third condition. At least on my reading, the notion of a 
general representational scheme is quite liberal and does not require the pres- 

  

Page 145
 

ence of a classical combinational syntax in which items can be freely juxtaposed and concatenated. Instead, it requires 
only that we confront some kind of encoding system. And these may come in many, many varieties. For example, it 
will be sufficient if the system is such that items which are to be treated similarly become represented by encodings 
(such as patterns of activation in a population of neurons or an artificial neural net) which are close together in some 
suitable high-dimensional state space. 3 This kind of representational scheme is, in fact, characteristic of much of the 
connectionist work discussed earlier, and looks to characterize at least some of the systems of encoding found in 
biological brains. Populations of posterior parietal neurons in the rat are a case in point. Yet there is nothing in our 
description so far to suggest that these neurons can play their role in the absence of a continuous stream of 
proprioceptive signals from the rat's body. If such "decoupling" is not possible, we confront a case that nicely meets 
Haugeland's third condition (there is some kind of systematic coding scheme present) but not his other two (the coding 
scheme is not available to act as a stand-in in the absence of the incoming signals). What should we say of such a 
case?4

It seems reasonably clear that by glossing states of the neuronal population as codings for specific head positions we 
gain useful explanatory leverage. Such glosses help us understand the flow of information within the system, when, for 
example, we find other neuronal groups (such as motor-control populations) that consume the information encoded in 
the target population. The strict application of Haugeland's criteria would however, rule out the description of any such 
inner systems (of non-decouplable inner states) as genuinely representational. This seems unappealing in view of the 
very real explanatory leverage that the representational gloss provides, and it is also out of step with standard 
neuroscientific usage.

Haugeland's criteria thus seem a little too restrictive. It is important, however, to find some way of constraining the 
applicability of the idea of internal representation. For example, it is surely necessary to rule out cases of mere causal 
correlation and of overly simple environmental control. It is certainly true that the presence within a system of some 
kind of complex inner state is not sufficient to justify characterizing the system as representational. As Beer (1995a) 
and others have pointed out, all kinds of 
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systems (including chemical fractionation towers) have complex internal states, and no one is tempted to treat them as 
representational devices. Nor is the mere existence of a reliable, and even nonaccidental, correlation between some 
inner state and some bodily or environmental parameter sufficient to establish representational status. The mere fact of 
correlation does not count so much as the nature and complexity of the correlation and the fact that a system in some 
way consumes 5 or exploits a whole body of such correlations for their specific semantic contents. It is thus important 
that the system uses the correlations in a way that suggests that the system of inner states has the function of carrying 
specific types of information.

There is a nice correlation between tides and the position of the moon; however, neither represents the other, since we 
do not find it plausible that (e.g.) the tides were selected, were designed, or evolved for the purpose of carrying 
information about the position of the moon. In contrast, it seems highly plausible that the population of neurons in the 
posterior parietal cortex of the rat is supposed (as a result of learning, evolution, or whatever—see Millikan 1984 and 
Dretske 1988) to carry information about the direction in which the animal's head is facing. And such a hypothesis is 
further supported when we see how other neural systems in the rat consume this information so as to help the rat run a 
radial maze.6

The status of an inner state as a representation thus depends not so much on its detailed nature (e.g., whether it is like a 
word in an inner language, or an image, or something else entirely) as on the role it plays within the system. It may be a 
static structure or a temporally extended process. It may be local or highly distributed. It may be very accurate or 
woefully inaccurate. What counts is that it is supposed to carry a certain type of information and that its role relative to 
other inner systems and relative to the production of behavior is precisely to bear such information. This point is nicely 
argued by Miller and Freyd, who add that "the strengths of representationalism have always been the basic normative 
conception of how internal representations should accurately register important external states and processes" and that 
"the weaknesses … have resulted from overly narrow assumptions about what sorts of things can function as 
representations and what sorts of things are worth representing" (1993, p. 13). To which (modulo the unnecessary 
emphasis on accurate registration) amen.
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Keeping all these points in mind, let us call a processing story representationalist if it depicts whole systems of 
identifiable inner states (local or distributed) or processes (temporal sequences of such states) as having the function of 
bearing specific types of information about external or bodily states of affairs. Representationalist theorizing thus falls 
toward the upper reaches of a continuum of possibilities whose nonrepresentationalist lower bounds include mere 
causal correlations and very simple cases of what might be termed "adaptive hookup." Adaptive hookup goes beyond 
mere causal correlation insofar as it requires that the inner states of the system are supposed (by evolution, design, or 
learning) to coordinate its behaviors with specific environmental contingencies. But when the hookup is very simple (as 
in a sunflower, or a light-seeking robot), we gain little by treating the inner state as a representation. Representation talk 
gets its foothold, I suggest, when we confront inner states that, in addition, exhibit a systematic kind of coordination 
with a whole space of environmental contingencies. In such cases it is illuminating to think of the inner states as a kind 
of code that can express the various possibilities and which is effectively "read" by other inner systems that need to be 
informed about the features being tracked. Adaptive hookup thus phases gradually into genuine internal representation 
as the hookup's complexity and systematicity increase. At the far end of this continuum we find Haugeland's creatures 
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that can deploy the inner codes in the total absence of their target environmental features. Such creatures are the most 
obvious representers of their world, and are the ones able to engage in complex imaginings, off-line reflection, and 
counterfactual reasoning. Problems that require such capacities for their solution are representation-hungry, in that they 
seem to cry out for the use of inner systemic features as stand-ins for external states of affairs. It is not, however, a 
foregone conclusion that creatures capable of solving such problems must use internal representations to do so. The 
cognitive scientific notion of internal representation brings with it a further commitment that we will gain explanatory 
leverage by treating identifiable inner substates or processes as the bearers of specific contents, and by deciphering the 
more general coding schemes in which they figure. Should such a project be blocked (e.g., should we find beings 
capable of thinking about the distal and the nonexistent whose capacities of reason and thought did not succumb to 
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our best attempts to pin representational glosses on specific inner happenings), we would confront representing agents 
who did not trade in internal representations!

The question before us is, thus, as follows: What role, if any, will representational glosses on specific inner happenings 
play in the explanations of a mature cognitive science? To this question there exists a surprising variety of answers, 
including these:

(1)
The glosses are not explanatorily important, but they may serve a kind of heuristic function.

(2) The glosses are actively misleading. It is theoretically misleading to associate specific inner states or 
processes with content-bearing roles.

(3) The glosses are part of the explanatory apparatus itself, and they reflect important truths concerning the 
roles of various states and processes.

Some (though by no means all) fans of Dynamical Systems theory and autonomous-agent research have begun to veer 
toward the most skeptical option—that is, toward the outright rejection of information-processing accounts that identify 
specific inner states or processes as playing specific content-bearing roles. The temptation is thus to endorse a radical 
thesis that can be summarized as follows:

Thesis of Radical Embodied Cognition Structured, symbolic, representational, and computational views of cognition 
are mistaken. Embodied cognition is best studied by means of noncomputational and nonrepresentational ideas and 
explanatory schemes involving, e.g., the tools of Dynamical Systems theory.

Versions of this thesis can be found in recent work in developmental psychology (chapter 2 above; Thelen and Smith 
1994; Thelen 1995), in work on real-world robotics and autonomous agent theory (chapter 1 above; Smithers 1994; 
Brooks 1991), in philosophical and cognitive scientific treatments (Maturana and Varela 1987; Varela et al. 1991; 
Wheeler 1994), and in some neuroscientific approaches (Skarda and Freeman 1987). More circumspect treatments that 
nonetheless tend toward skepticism about computation and internal representation include Beer and Gallagher 1992, 
Beer 1995b, van Gelder 1995, and several essays in Port and van Gelder 1995. Historical precedents for such 
skepticism are also in vogue—see especially Heidegger 1927, Merleau-Ponty 1942, and the works of J. J. Gibson 7 and 
the ecological psychologists.
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The thesis of Radical Embodied Cognition is thus, it seems, a genuinely held view. 8 It involves a rejection of 
explanations that invoke internal representations, a rejection of computational explanation in psychology, and a 
suggestion that we would be better off abandoning these old tools in favor of the shining new implements of Dynamical 
Systems theory.

Such radicalism, I believe, is both unwarranted and somewhat counterproductive. It invites competition where progress 
demands cooperation. In most cases, at least, the emerging emphasis on the roles of body and world can be seen as 
complementary to the search for computational and representational understandings. In the next several sections I shall 
examine a variety of possible motivations for representational and computational skepticism, and I shall show that, in 
general, the radical conclusion is not justified—either because the phenomena concerned were insufficiently 
"representation-hungry" in the first place or because the skeptical conclusion depends on too narrow and restrictive a 
reading of the key terms "representation" and "computation."

8.3 Action-Oriented Representation

One thing is increasingly clear. To the extent that the biological brain does trade in anything usefully described as 
"internal representation," a large body of those representations will be local and action-oriented rather than objective 
and action-independent. One contrast here is between computationally cheap, locally effective "personalized" 
representations and structures whose content is closer to those of classical symbols signifying elements of public, 
objective reality. Take the animate-vision work introduced in chapter 1. Here the commitment to the use of both 
computational and representational descriptions is maintained, but the nature of the computations and representations is 
reconceived so as to reflect the profound role of (e.g.) actual bodily motion (including foveation) in shaping and 
simplifying the information-processing problems to be solved. The strategies pursued involved greater reliance on what 
Ballard (1991) has termed "personalized representations," viz., the use of representations of idiosyncratic, locally 
effective features to guide behavior. For example, to guide a visual search for your coffee cup you may rely heavily on 
the particular color of the cup, and you may (according to animate-vision theory) 
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use an internal representation whose content is (e.g.) that my cup is yellow. Such a description is only locally effective 
(it won't generalize to help you find other coffee cups) and is heavily agent-o-centric. But, on the plus side, it involves 
features that are computationally cheap to detect—color can be spotted even at the low-resolution peripheries of the 
visual field.
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Classical systems, Ballard points out, tended to ignore such locally effective features because the object's identity (its 
being a coffee cup) does not depend on, e.g., its color. Such systems focused instead on identification procedures which 
searched for less accidental features and which hence invoked internal representational states whose contents reflected 
deeper, more agent-independent properties, such as shape and capacity. This emphasis, however, may be inappropriate 
in any model of the knowledge we actually use on line 9 to guide our real-time searches. In particular, the classical 
emphasis neglects the pervasive tendency of human agents to actively structure their environments in ways that will 
reduce subsequent computational loads. Thus, it is plausible to suppose that some of us use brightly colored coffee 
mugs partly because this enables us to rely on simple, personalized representations to guide search and identification. 
In so doing, we are adding structure to our environment in a way designed to simplify subsequent problem-solving 
behavior—much as certain social insects use chemical trails to add easily usable structure to their local environments, 
so they can make the route to the food detectable with minimal computational efforts. The commercial sector, as 
Ballard is quick to point out, displays a profound appreciation (bordering on reverence) for the power of such 
"nonessential" structurings—Kodak film comes in off-yellow boxes; ecologically sound products display soft green 
colors on the outside; Brand X corn flakes come in red cartons. Many of these codings will not generalize beyond one 
supermarket chain or one brand, yet they are used by the consumer to simplify search and identification, and thus they 
benefit the manufacturer in concrete financial terms.

An animate-vision-style account of the computations underlying everyday on-line visual search and identification may 
thus fall short of invoking internal representations that describe interpersonally valid defining features of classes of 
object. Nonetheless, these accounts still invoke stored databases in which specific kinds of locally effective features are 
associated with target items. Moreover, as we saw in chapter 7, a full account 
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of visual processing will also have to include stories about general mechanisms for the detection of (e.g.) shape, color, 
and motion. And such stories, we saw, typically associate specific neural pathways and sites with the processing and 
encoding of specific types of information.

It is also important to be clear, at this point, that the computational and representational commitments of animate-vision 
research fall well short of requiring us to accept an image of the brain as a classical rule-and-symbol system. 
Connectionist approaches (chapter 3 above) constitute a clear existence proof of the possibility of alternative 
frameworks which are nevertheless both computational and (usually) representational. It should also be clear that the 
kinds of neuroscientific story scouted in chapter 7 are a far cry from the classical vision of a centralized, symbol-
crunching inner economy. Witness the depiction in the Convergence Zone hypothesis of higher representational 
functions as essentially emergent from the time-locked coactivation of more basic, low-level processing regions; or the 
recognition in the story about primate vision of the context sensitivity, complexity, and sophistication of natural 
encoding schemes and the accompanying image of neurons as filters tuned along multiple stimulus dimensions; or the 
role in the new model of monkey finger control of highly distributed and basic-action-oriented forms of internal 
representation (viz., the representation of whole-hand synergies as the basic subject matter of encodings in the M1 hand 
area). In all these cases, we confront a neuroscientific vision that is representational (in that it recognizes the need to 
assign specific content-bearing roles to inner components and processes) and that displays a laudable liberality 
concerning the often complex and non-intuitive ways in which nature deploys its inner resources.

A related contrast, introduced in some detail in previous chapters, concerns the use of representations that are not 
personalized or partial so much as action-oriented. These are internal states which (as described in section 2.6) are 
simultaneously encodings of how the world is and specifications for appropriate classes of action. The internal map that 
is already a specification of the motor activity needed to link different locations (section 2.6) is a case in point.
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As a further example, consider briefly the robot crab described in chapter 5 of Churchland 1989 and discussed in 
Hooker et al. 1992. The crab 
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uses point-to-point linkages between two deformed topographic maps so as to directly specify reaching behaviors on 
the basis of simple perceptual input. In this example, the early visual encodings are themselves deformed or skewed so 
as to reduce the complexity of the computations required to use that information to specify reaching. This is again to 
exploit a kind of action-centered (or "deictic"—see Agre 1988) internal representation in which the system does not 
first create a full, objective world model and then define a costly procedure that (e.g.) takes the model as input and 
generates food-seeking actions as output. Instead, the system's early encodings are already geared toward the 
production of appropriate action. This type of action-oriented bias may be at least part of what Gibson was getting at 
with the rhetorically problematic talk of organisms as "directly perceiving" the world in terms of its affordances for 
action. 10 Perception, it seems, should not (or, at least, should not always) be conceptualized independently of thinking 
about the class of actions which the creature needs to perform.

Action-oriented representations thus exhibit both benefits and costs. The benefits, as we have noted, involve the 
capacity to support the computationally cheap guidance of appropriate actions in ecologically normal circumstances. 
The costs are equally obvious. If a creature needs to use the same body of information to drive multiple or open-ended 
types of activity, it will often be economical to deploy a more action-neutral encoding which can then act as input to a 
whole variety of more specific computational routines. For example, if knowledge about an object's location is to be 
used for a multitude of different purposes, it may be most efficient to generate a single, action-independent inner map 
that can be accessed by multiple, more special-purpose routines.

It is, however, reasonable to suppose that the more action-oriented species of internal representation are at the very 
least the most evolutionary and developmentally basic kinds.11 And it may even be the case that the vast majority of 
fast, fluent daily problem solving and action depends on them. The point, for present purposes, is just that, even if this 
turned out to be true, it would fall well short of establishing the thesis of radical embodied cognition, for we would still 
gain considerable explanatory leverage by understanding the specific features of personal or egocentric space 
implicated in the action-based analysis. Understanding the 
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specific contents of the action-oriented representations thus plays the usual explanatory role of revealing the adaptive 
function of certain inner states or processes and helping to fix their contribution to ever-larger information-processing 
webs.

8.4 Programs, Forces, and Partial Programs
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Consider next some of Thelen and Smith's claims (see chapter 2 above) concerning a sense in which learning to walk 
and learning to reach do not depend on stored programs. Recall that Thelen and Smith showed, rather convincingly, 
that learning to walk and to reach both depend on a multiplicity of factors spread out across brain, body, and local 
environment. The picture they present does indeed differ deeply from more traditional views in which the various 
stages of (e.g.) walking are depicted as the mere playing out of a set of prior instructions encoded in some genetically 
specified inner resource. The difference lies in the way the child's behavior patterns 12 are seen not as under the control 
of a fixed inner resource but rather as emergent out of "a continual dialogue" involving neural, bodily, and 
environmental factors. For example, we saw how infant stepping can be induced outside its usual developmental 
window if the infant is held upright in warm water. And we saw how differences in the energy levels and basic arm-
motion repertoires of different infants cause them to confront rather different problems in learning to reach. (The 
motorically active child must learn to dampen and control its arm flapping, whereas the more passive child must learn 
to generate sufficient initial force to propel the arm toward a target.) A close study of individual infants exhibiting such 
differing patterns of motor activity was said to support the general conclusion that solutions to the reaching problem 
"were discovered in relation to [the children's] own situations, carved out of their individual landscapes, and not 
prefigured by a synergy known ahead by the brain or the genes" (Thelen and Smith 1994, p. 260). This, of course, is 
not to say that the solutions had nothing in common. What they have in common, Thelen and Smith plausibly suggest, 
is a learning routine in which the arm-and-muscle system is treated like an assembly of springs and masses, and in 
which the job of the central nervous system is to learn to control that assembly by adjusting parameters such as the 
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initial stiffness of the springs. It is thus to coopt the intrinsic dynamics of the system in the service of some current 
goal. There are thus ''no explicit a priori instructions or programs for either the trajectory of the hand, joint-angle 
coordinations, or muscle firing patterns" (ibid., p. 264). Instead, we are said to learn to manipulate a few basic 
parameters (such as the initial stiffness conditions) so as to sculpt and modulate the behavior of a changing physical 
system with rich and developing intrinsic dynamics.

The experiments and data displayed by Thelen and Smith are fascinating, important, and compelling. But they do not 
unambiguously support the complex of radical claims I outlined in section 8.2. Rather than amounting to a clear case 
against computationalism and representationalism in general, what we confront is another body of evidence suggesting 
that we will not discover the right computational and representational stories unless we give due weight to the role of 
body and local environment—a role that includes both problem definition and, on occasion, problem solution. We saw 
how the spring-like qualities of infant muscles and the varying levels of infant energy help fix the specific problems a 
given brain must solve. And it is easy to imagine ways in which bodily and environmental parameters may likewise 
contribute to specific solutions— for example, compliance in spring-mounted limbs allows walking robots to adjust to 
uneven terrains without the massive computational effort that would be needed to achieve the same result using sensors 
and feedback loops in a noncompliant medium (see also Michie and Johnson 1984 and chapter 1 above). Moreover, 
once we recognize the role of body and environment (recall the examples of stepping infants suspended in water) in 
constructing both problems and solutions, it becomes clear that, for certain explanatory purposes, the overall system of 
brain, body, and local environment can constitute a proper, unified object of study. Nonetheless, this whole complex of 
important insights is fully compatible with a computational 13 and representational approach to the study of cognition. 
The real upshot of these kinds of consideration is, I suggest, a better kind of computational and representational story, 
not the outright rejection of computationalism and representationalism.

It is revealing, with this in mind, to look more closely at some of the specific passages in which computationalism is 
rejected. A typical example follows:
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The developmental data are compelling in support of … anticomputational views. What is required is to reject both Piaget's 
vision of the end-state of development as looking like a Swiss logician, and the maturationist conviction that there is an executive 
in the brain … that directs the course of development. (Thelen 1995, p. 76) 14

The point to notice is that here (as elsewhere) the bold assertion of anti-computationalism is followed by a narrower 
and more accurate description of the target. If we ignore the sweeping claims and focus on these narrower descriptions, 
we find that the real villain is not computationalism (or representationalism) per se but rather

(1)
the claim that development is driven by a fully detailed advance plan and

(2) the claim that adult cognition involves internal logical operations on propositional data structures (i.e., the 
logicist view of the endpoint of cognitive development attributed to Piaget).

In place of these theses, Thelen and Smith suggest (quite plausibly, in my view) the following:

(1*)
Development (and action) exhibit order which is merely executory. Solutions are "soft assembled" out of 
multiple heterogeneous components including bodily mechanics, neural states and processes, and 
environmental conditions. (1994, p. 311)

(2*) Even where adult cognition looks highly logical and propositional, it is actually relying on resources (such 
as metaphors of force, action, and motion) developed in real-time activity and based on bodily experience. 
(ibid., p. 323; Thelen 1995)

Experimental support for (1) was adduced in chapter 2 above. I shall not rehearse the case for (2), nor shall I attempt to 
further adjudicate either claim. Instead, I note only that granting both claims is quite compatible with a substantial 
commitment to the use of computational explanation. In fact, the evidence presented works best against models 
involving classical quasi-linguistic encodings and against the view that initial states of the child's head fully determine 
the course of subsequent development. Yet good old-fashioned connectionism has long disputed the tyranny of quasi-
linguistic encodings. And the computationally inclined developmentalist can surely still embrace an idea (to be cashed 
out below) of partially programmed solutions—that is, cases where the child's initial program is set 
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up by evolution precisely so as to allow bodily dynamics and local environmental contingencies to help determine the 
course and the outcome of the developmental process. Partial programs would thus share the logical character of most 
genes: they would fall short of constituting a full blueprint of the final product, and would cede many decisions to local 
environmental conditions and processes. Nonetheless, they would continue to constitute isolable factors which, in a 
natural setting, often make a "typical and important difference." 15

Thus, suppose we concede that, at least in the cases discussed, the brain does not house any comprehensive recipes for 
behavioral success. Would it follow that talk of internal programs is necessarily misguided in such cases? And even if it 
did, would it also follow that the neural roots of such activity are not usefully seen as involving computational 
processes? I shall argue that the answer to both questions is No. In short, I question both the implicit transition from 
"no comprehensive recipe" to "no inner program" and that from "no inner program" to "no computation.'' These moves 
strike me as deeply flawed, although they raises a constellation of deep and subtle issues which I do not pretend to be 
able to fully resolve.

Consider the very idea of a program for doing such and such—for example, calculating your tax liability. The most 
basic image here is the image of a recipe—a set of instructions which, if faithfully followed, will solve the problem. 
What is the difference between a recipe and a force which, if applied, has a certain result? Take, for example, the heat 
applied to a pan of oil: the heat will, at some critical value, cause the emergence of swirls, eddies, and convection rolls 
in the oil. Is the heat (at critical value) a program for the creation of these effects? Is it a recipe for swirls, eddies, and 
convection rolls? Surely not—it is just a force applied to a physical system. The contrast is obvious, yet it is 
surprisingly hard to give a principled account of the difference. Where should we look to find the differences that make 
the difference?

One place to turn is to the idea of a program as, literally, a set of instructions. Instructions are couched in some kind of 
a language—a system of signs that can be interpreted by some kind of reading device (a hearer, for instructions in 
English; a compiler, for instructions in LISP; and so on). One reason why the heat applied to the pan does not seem like 
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program for convection rolls may thus be that we see no evidence of a language here—no evidence of any signs or 
signals in need of subsequent interpretation or decoding.

Another, not unrelated, reason is that the guiding parameter (the amount of heat needed to produce, e.g., convection 
rolls) seems too simple and undifferentiated. It is, as one of my students usefully remarked, more like plugging the 
computer in than running a program on it. Indeed, it is my suspicion (but here is where the waters are still too murky to 
see clearly) that this difference is the fundamental one, and that the point about requiring a language or code is 
somehow derivative. Consider two putative "programs" for calculating your tax liability. One consists of 400 lines of 
code and explicitly covers all the ground you would expect. The other is designed to be run on a very special piece of 
hardware which is already set up to compute tax functions. This "program" consists solely of the command ''Do Tax!" 
This is surely at best a marginal or limiting case of a program. It is an instruction that (let's assume) needs to be 
decoded by a reading device before the desired behavior ensues. But it seems to have more in common with the "mere 
plugging in" scenario (and hence with the heat-to-a-pan model) than with the image of a recipe for success. Perhaps, 
then, the conceptual bedrock is not about the mere involvement of signs and decodings but rather about the extent to 
which the target behavior (the tax calculation, the convection rolls) is actually specified by the applied force rather than 
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merely prompted by it. Such a diagnosis seems intuitively appealing and would help explain why, for example, it is at 
least tempting to treat DNA as programming physical outcomes, 16 while denying that the heat programs the oil in the 
pan.

The idea of a partial program is thus the idea of a genuine specification that nonetheless cedes a good deal of work and 
decision making to other parts of the overall causal matrix. In this sense, it is much like a regular computer program 
(written in, say, LISP) that does not specify how or when to achieve certain subgoals but instead cedes those tasks to 
built-in features of the operating system. (Indeed, it is only fair to note that no computer program ever provides a full 
specification of how to solve a problem—at some point or points, specification gives out and things just happen in 
ways determined by the operating system or the hardware.) The phrase "partial program" thus serves mainly to mark 
out the rather special 
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class of cases in which some such decisions and procedures are ceded to rather more distant structures: structures in the 
wider causal matrix of body and external world. For example, a motor control system such as the emulator circuitry 
described in Jordan et al. 1994 and discussed in chapter 1 above may be properly said to learn a program for the control 
of arm trajectories. Yet it is a program that will yield success only if there is a specific backdrop of bodily dynamics 
(mass of arm, spring of muscles) and environmental features (force of gravity). It is usefully seen as a program to the 
extent that it nonetheless specifies reaching motions in a kind of neural vocabulary. The less detailed the specification 
required (the more work is being done by the intrinsic—long-term or temporary—dynamics of the system), the less we 
need treat it as a program. We thus confront not a dichotomy between programmed and unprogrammed solutions so 
much as a continuum in which solutions can be more or less programmed according to the degree to which some 
desired result depends on a series of moves (either logical or physical) that require actual specification rather than mere 
prompting.

In pursuing this contrast, however, we must bear in mind the very real possibility of a kind of cascade of computational 
activity in which a simple unstructured command is progressively unpacked, via a sequence of subordinate systems, 
into a highly detailed specification that ultimately controls behavior (see, e.g., Greene 1972 and Gallistel 1980). Should 
such progressive unpacking occur in the chain of neural events, we may count the stage (or stages) of more detailed 
specification as the stored program. The controversial claim of Thelen and Smith, Kelso, and others is that even the 
most detailed stages of neural specification may not be worth treating as a stored program—that so much is done by the 
synergetic 17 dynamics of the bodily system that the neural commands are at all stages best understood as the 
application of simple forces to a complex body-environment system whose own dynamics carry much of the problem-
solving load. Less radically, however, it may be that what these investigations really demonstrate is that the problem of 
bringing about reaching motions and the like may require somewhat less in the way of detailed inner instruction sets 
than we hitherto supposed, courtesy of the rather complex synergetic dynamics already implemented in (e.g.) the arms 
and muscles themselves. Perhaps, as Thelen and Smith claim, the kind of spec- 
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ification required to generate some motor behaviors amounts only to specifying the settings of a few central parameters 
(initial stiffness in the spring-like muscle system, etc.); these sparse kinds of specification may then have complex 
effects on the overall dynamics of the physical system such that reaching can be achieved without directly specifying 
things like joint-angle configurations. The point to notice is that the lack of a particular kind of specification or 
instruction set (e.g., the kind that explicitly dictates joint-angle configurations and muscle-firing patterns) does not 
itself establish the complete lack of any specification or program. Indeed, such a characterization looks most 
compelling only at the extreme limiting case in which the notion of a coded specification collapses into the notion of a 
simple applied force or a single unstructured command. There is thus plenty of very interesting space to explore 
between the idea of a stored program that specifies a problem-solving strategy at a very low level (e.g., the level of 
muscle firing patterns) and the idea of a system whose intrinsic dynamics render specification altogether unnecessary or 
(what really amounts to the same thing) reduce it to the level of applying a simple force. Between these two extremes 
lies the space of what I have called "partial programs." The real moral of dynamic-systems-oriented work in motor 
control, I believe, is that this is the space in which we will find nature's own programs.

But suppose we don't. Suppose there exists no level of neural elaboration of commands worth designating as a "stored 
program." Even then, I suggest, it would not follow that the image of the brain as a computing device is unsound. It is, 
alas, one of the scandals of cognitive science that after all these years the very idea of computation remains poorly 
understood. Given this lack of clarity, it is impossible to make a watertight case here. But one attractive option is to 
embrace a notion of computation that is closely tied to the idea of automated information processing and the 
mechanistic transformation of representations. According to this kind of account, we would find computation whenever 
we found a mechanistically governed transition between representations, irrespective of whether those representations 
participate in a specification scheme that is sufficiently detailed to count as a stored program. In addition, this relatively 
liberal 18 notion of computation allows easily for a variety of styles of computation spanning both digital computation 
(defined over discrete states) 
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and analog computation (defined over continuous quantities). On this account, the burden of showing that a system is 
computational reduces to the task of showing that it is engaged in the automated processing and transformation of 
information.

In conclusion, it seems multiply premature to move from the kinds of image and evidence adduced by Thelen and 
Smith and others to the conclusion that we should abandon notions of internal representation and computation in our 
efforts to understand biological cognition. Instead, what really emerges from this work and from the work in animate 
vision and robotics discussed earlier is a pair of now-familiar but very important cautions, which may be summed up as 
follows:

(1)
Beware of putting too much into the head (or the inner representational system). What gets internally 
represented and/or computed over will be determined by a complex balancing act that coopts both bodily 
and environmental factors into the problem-solving routine. As a result, both partially programmed 
solutions and action-oriented or personalized representations will be the order of the biological day.
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(2) Beware of rigid assumptions concerning the form of internal representations or the style of neural 
computation. There is no reason to suppose that classical (spatio-temporally localized) representations and 
discrete, serial computation limn the space of representational and computational solutions. Connectionist 
models have, in any case, already begun to relax these constraints—and they merely scratch the surface of 
the range of possibilities open to biological systems.

8.5 Beating Time

Perhaps there are other reasons to be wary of representational approaches. Such approaches, it has recently been 
argued, cannot do justice to the crucial temporal dimensions of real-world adaptive response. (See especially the 
introduction to Port and van Gelder 1995). Early connectionist models, for example (see chapter 3), displayed no 
intrinsic knowledge of time or order and depended on a variety of tricks 19 to disambiguate sequences containing 
identical elements. Moreover, the inputs to such networks were instantaneous "snapshots" of the world, and the outputs 
were never essentially temporally extended patterns of activity. The advent of recurrent networks (Jordan 1986; Elman 
1991) signaled a degree of 
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progress, since such networks incorporated internal feedback loops which enabled responses to new inputs to take 
account of the networks previous activities. Yet, as Port et al. (1995) nicely point out, such networks are good at 
dealing with order rather than with real timing. For example, such networks are able to specify an ordered sequence of 
operations as outputs (e.g. outputting a sequence of instructions to draw a rectangle—see Jordan 1986) or to display a 
sensitivity to grammatical constraints that depend on the order of inputs (see Elman's 1991 work on artificial 
grammars). But order is not the same thing as real timing. In running to catch a moving bus, you must do more than 
produce the right sequence of motor commands. You must register a pattern unfolding over time (the bus accelerating 
away from you) and generate a range of compensating actions (a temporally coordinated sequence of motor commands 
to legs, arms, and body). And at the point of contact (if you are so lucky) there must be a delicate coupling between the 
temporally extended activity of the two systems (you and the bus). Such behavior requires at least one system to 
respond to the real timing (not just the order) of events in the other. To model this, researchers have begun to find ways 
to use the real-time properties of incoming signals to "set" inner resources. The trick is to use the real timing of some 
input signals as a "clock" against which to measure other such signals. One way this can be achieved is by developing 
an "adaptive oscillator." Such devices (Torras 1985; McCauley 1994; Port et al. 1995) have two key properties. First, 
they generate periodic outputs all on their own (like neurons that have a tonic spiking frequency). Second, this periodic 
activity can be affected by incoming signals. Should such an oscillator detect incoming signals, it fires (spikes) 
immediately and alters its periodicity to bring it slightly more in line with that of the incoming signals. Within fixed 
boundaries such an oscillator will, over time, come to fire perfectly in phase with the inputs. Should the input signal 
cease, the oscillator will gradually "let go," returning to its natural rate. Neural network versions of such devices adapt 
by using the familiar gradient descent learning procedure. But the information that powers the descent is in this case the 
difference between the usual ("expected") timing of a spike and the real timing caused by the device's tendency to fire 
at once if an input signal is detected. Such devices thus "entrain" to the frequency of a detected signal and can then 
maintain that frequency for 
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a while even if the signal disappears or misses a beat. Entrainment is not immediate, so nonperiodic signals have no 
real effects (they produce one unusually timed spike and that's it). But regular signals cause the device to "pick up the 
rhythm." A complex system may deploy many adaptive oscillators, each having a different natural tempo and hence 
being especially sensitive to different incoming signal ratios. Global entrainment to a stimulus that contains several 
different periodic elements (e.g. a piece of music) occurs when several individual oscillators latch onto different 
elements of the temporal structure. 20

For present purposes, the lesson of all this is that internal processes, with intrinsic temporal features, may figure 
prominently in the explanation of an important subset of adaptive behaviors. In such cases, the "fit" between the inner 
state and the external circumstances may indeed go beyond anything captured in the usual notion of internal 
representation. The adaptive oscillator does its job by coupling its activity to the rhythms of external events yielding 
periodic signals. It does not represent that periodicity by the use of any arbitrary symbol, still less by the use of any text-
like encoding. Instead, it is best seen as an internal system suited to temporarily merging with external systems by 
parasitizing their real temporal properties. In attempting to analyze and explain such capacities, we need both the 
perspective in which the external system is a source of inputs to entrain the oscillator and the perspective that focuses 
on the subsequent properties of the larger, coupled system. Yet, despite these complications, it surely remains both 
natural and informative to depict the oscillator as a device whose adaptive role is to represent the temporal dynamics of 
some external system or of specific external events. The temporal features of external processes and events are, after 
all, every bit as real as colors, weights, orientations, and all the more familiar targets of neural encodings. It is, 
nonetheless, especially clear in this case that the kind of representation involved differs from standard conceptions: the 
vehicle of representation is a process, with intrinsic temporal properties. It is not an arbitrary vector or symbol 
structure, and it does not form part of a quasi-linguistic system of encodings. Perhaps these differences are enough to 
persuade some theorists that such processes are not properly termed representational at all. And it is not, ultimately 
worth fighting over the word. It does seem clear, however, that we understand the role and 
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function of the oscillator only by understanding what kinds of features of external events and processes it is keyed to 
and, hence, what other neural systems and motor-control systems might achieve by consuming the information it 
carries.

8.6 Continuous Reciprocal Causation

There is one last way (that I know of) to try to make the strong anti-representationalist case. It involves an appeal to to 
the presence of continuous, mutually modulatory influences linking brain, body, and world. We have already 
encountered hints of such mutually modulatory complexity in the interior workings of the brain itself (see the 
discussion of mammalian vision in section 7.3). But suppose something like this level of interactive complexity 
characterized some of the links among neural circuitry, physical bodies, and aspects of the local environment? The 
class of cases I have in mind can be gently introduced by adapting an analogy due to Tim van Gelder (personal 
communication).
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Consider a radio receiver, the input signal to which is best treated as a continuous modulator of the radio's "behavior" 
(its sound output). Now imagine (here is where I adapt the analogy to press the point) that the radio's output is also a 
continuous modulator of the external device (the transmitter) delivering the input signal. In such a case, we observe a 
truly complex and temporally dense interplay between the two system components—one which could lead to different 
overall dynamics (e.g. of positive feedback or stable equilibria) depending on the precise details of the interplay. The 
key fact is that, given the continuous nature of the mutual modulations, a common analytic strategy yields scant 
rewards. The common strategy is, of course, componential analysis, as described in chapter 6. To be sure, we can and 
should identify different components here. But the strategy breaks down if we then try to understand the behavioral 
unfolding of one favored component (say, the receiver) by treating it as a unit insulated 21 from its local environment 
by the traditional boundaries of transduction and action, for such boundaries, in view of the facts of continuous mutual 
modulation, look arbitrary with respect to this specific behavioral unfolding. They would not be arbitrary if, for 
example, the receiver unit displayed discrete time-stepped behaviors of signal 
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receiving and subsequent broadcast. Were that the case, we could reconceptualize the surrounding events as the world's 
giving inputs to a device which then gives outputs ("actions") which affect the world and hence help mold the next 
input down the line—for example, we could develop an interactive "catch and toss" version of the componential 
analysis, as predicted in chapter 6.

A second example (this one was suggested to me by Randy Beer) may help fix the difference. Consider a simple two-
neuron system. Suppose that neither neuron, in isolation, exhibits any tendency toward rhythmic oscillation. 
Nonetheless, it is sometimes the case that two such neurons, when linked by some process of continuous signaling, will 
modulate each other's behavior so as to yield oscillatory dynamics. Call neuron 1 "the brain" and neuron 2 "the 
environment." What concrete value would such a division have for understanding the oscillatory behavior?

Certainly there are two components here, and it is useful to distinguish them and even to study their individual 
dynamics. However, for the purpose of explaining the oscillation there is nothing special about the "brain" neuron. We 
could just as well choose to treat the other component (the "environment" neuron) as the base-line system and depict 
the "brain" neuron as merely a source of perturbations to the "environment.'' The fact of the matter, in this admittedly 
simplistic case, is that neither component enjoys any special status given the project of explaining the rhythmic 
oscillations. The target property, in this case, really is best understood and studied as an emergent property of the larger 
system created by the coupling of the two neurons. Similarly, in the case of biological brains and local environments it 
would indeed be perverse—as Butler (to appear) rightly insists—to pretend that we do not confront distinct 
components. The question, however, must be whether certain target phenomena are best explained by granting a kind of 
special status to one component (the brain) and treating the other as merely a source of inputs and a space for outputs. 
In cases where the target behavior involves continuous reciprocal causation between the components, such a strategy 
seems ill motivated. In such cases, we do not, I concede, confront a single undifferentiated system. But the target 
phenomenon is an emergent property of the coupling of the two (perfectly real) components, and should not be 
"assigned" to either alone.
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Nor, it seems to me, is continuous reciprocal causation 22 a rare or exceptional case in human problem solving. The 
players in a jazz trio, when improvising, are immersed in just such a web of causal complexity. Each member's playing 
is continually responsive to the others' and at the same time exerts its own modulatory force. Dancing, playing 
interactive sports, and even having a group conversation all sometimes exhibit the kind of mutually modulatory 
dynamics which look to reward a wider perspective than one that focuses on one component and treats all the rest as 
mere inputs and outputs. Of course, these are all cases in which what counts is something like the social environment. 
But dense reciprocal interactions can equally well characterize our dealings with complex machinery (such as cars and 
airplanes) or even the ongoing interplay between musician and instrument. What matters is not whether the other 
component is itself a cognitive system but the nature of the causal coupling between components. Where that coupling 
provides for continuous and mutually modularity exchange, it will often be fruitful to consider the emergent dynamics 
of the overarching system.

Thus, to the extent that brain, body, and world can at times be joint participants in episodes of dense reciprocal causal 
influence, we will confront behavioral unfoldings that resist explanation in terms of inputs to and outputs from a 
supposedly insulated individual cognitive engine. What would this mean for the use in such cases of the notion of 
internal representation in cognitive scientific explanations? There would seem to be just two possibilities.

The first is that we might nonetheless manage to motivate a representational gloss for some specific subset of the agent-
side structures involved. Imagine a complex neural network, A, whose environmentally coupled dynamics include a 
specific spiking (firing) frequency which is used by other onboard networks as a source of information concerning the 
presence or absence of certain external environmental processes—the ones with which A is so closely coupled. The 
downstream networks thus use the response profiles of A as a stand-in for these environmental states of affairs. 
Imagine also that the coupled response profiles of A can sometimes be induced, in the absence of the environmental 
inputs, by top-down neural influences,23 and that when this happens the agent finds herself imaging engaging in the 
complex interaction in question (e.g., playing 
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in a jazz trio). In such circumstances, it seems natural and informative to treat A as a locus of internal representations, 
despite its involvement, at times, in episodes of dense reciprocal interaction with external events and processes.

A second possibility, however, is that the system simply never exhibits the kind of potentially decoupled inner 
evolution just described. This will be the case if, for example, certain inner resources participate only in densely 
coupled, continuous reciprocal environmental exchanges, and there seem to be no identifiable inner states or processes 
whose role in those interactions is to carry specific items of information about the outer events. Instead, the inner and 
the outer interact in adaptively valuable ways which simply fail to succumb to our attempts to fix determinate 
information-processing roles to specific purely internal, components, states, or processes. In such a case the system 
displays what might be called nonrepresentational adaptive equilibrium. (A homely example is a tug of war: neither 
team is usefully thought of as a representation of the force being exerted by the other side, yet until the final collapse 
the two sets of forces influence and maintain each other in a very finely balanced way.)
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Where the inner and the outer exhibit this kind of continuous, mutually modulatory, non-decouplable coevolution, the 
tools of information-processing decomposition are, I believe, at their weakest. What matters in such cases are the real, 
temporally rich properties of the ongoing exchange between organism and environment. Such cases are conceptually 
very interesting, but they do not constitute a serious challenge to the general role of representation-based understanding 
in cognitive science. Indeed, they cannot constitute such a challenge, since they lie, by definition, outside the class of 
cases for which a representational approach is most strongly indicated, as we shall now see.

8.7 Representation-Hungry Problems

The most potent challenge to a representation-based understanding comes, we saw, from cases in which the web of 
causal influence grows so wide and complex that it becomes practically impossible to isolate any "privileged elements" 
on which to pin specific information-carrying adaptive roles. Such cases typically involve the continuous, reciprocal 
evolu- 
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tion of multiple tightly linked systems, whose cumulative ('emergent') effect is to promote some kind of useful behavior 
or response. In seeking to do justice to such problematic cases, however, we should not forget the equally compelling 
range of cases for which a representational understanding seems most appropriate. These are the cases involving what I 
elsewhere 24 dub "representation-hungry problems."

Recall the first of Haugeland's strong requirements for an internal-representation-using system (section 8.2 above). It 
was that the system must coordinate its behaviors with environmental features that are not always "reliably present to 
the system." There are, I think, two main classes of cases in which this constraint is met. These are (1) cases that 
involve reasoning about absent, nonexistent, or counterfactual states of affairs and/or (2) cases that involve selective 
sensitivity to states of affairs whose physical manifestations are complex and unruly.

The first class of cases (already mentioned in section 8.2) include thoughts about temporally or spatially distant events 
and thoughts about the potential outcomes of imagined actions. In such cases, it is hard to avoid the conclusion that 
successful reasoning involves creating some kind of prior and identifiable stand-ins for the absent phenomena—inner 
surrogates that make possible appropriate behavioral coordination without the guidance provided by constant external 
input.

The second class of cases (which Haugeland does not consider) is equally familiar, although a little harder to describe. 
These are cases in which the cognitive system must selectively respond to states of affairs whose physical 
manifestations are wildly various—states of affairs that are unified at some rather abstract level, but whose physical 
correlates have little in common. Examples would include the ability to pick out all the valuable items in a room and 
the ability to reason about all and only the goods belonging to the pope. It is very hard to see how to get a system to 
reason about such things without setting it up so that all the various superficially different inputs are first assimilated to 
a common inner state or process such that further processing (reasoning) can then be defined over the inner correlate: 
an inner item, pattern, or process whose content then corresponds to the abstract property. In such cases, behavioral 
success appears to depend on our ability to compress or dilate a sensory input space. The successful agent must learn to 
treat inputs whose early encodings (at the 
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sensory peripheries) are very different as calling for the same classification, or, conversely, to treat inputs whose early 
encodings are very similar as calling for different classifications. Identifiable internal states developed to serve such 
ends just are internal representations whose contents concern the target (elusive) states of affairs in question. 25 (Should 
any such story prove correct, it would be hard to resist the conclusion that even basic visual recognition involves, at 
times, computations defined over genuine internal representational states).

In the two ranges of cases (the absent and the unruly), the common feature is the need to generate an additional internal 
state whose information-processing adaptive role is to guide behavior despite the effective unfriendliness of the 
ambient environmental signals (either there are none, or they require significant computation to yield useful guides for 
action). In these representation-hungry cases, the system must, it seems, create some kind of inner item, pattern, or 
process whose role is to stand in for the elusive state of affairs. These, then, are the cases in which it is most natural to 
expect to find system states that count as full-blooded internal representations.

It may seem, indeed, that in such cases there cannot fail to be internal representations underlying behavioral success. 
This, however, is too strong a conclusion, for there is surely an important pragmatic element that might still confound 
the attempt to make sense of the system in representational terms. Thus, although the representation-hungry cases 
clearly demand that some kind of systemic property compensate for the lack of reliable or easily usable ambient inputs, 
it does not follow that the relevant property will be usefully individuable. It will not be usefully individuable if, once 
again, it somehow involves such temporally complex and reciprocally influential activity across so many subsystems 
that the "standing in" is best seen as an emergent property of the overall operation of the system. In such cases (if there 
are any), the overall system would rightly be said to represent its world—but it would not do so by trading in anything 
we could usefully treat as internal representations. The notion of internal representation thus gets a grip only when we 
can make relatively fine-grained assignments of inner vehicles to information-carrying adaptive roles. Such vehicles 
may be spatially distributed (as in the hypothesis of convergence zones), they may be temporally complex, and 
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they may involve analog qualities and continuous numerical values. But they must be identifiable as distinct subsets of 
overall systemic structure or activity. My guess (consistent with the state of contemporary neuroscience) is that such 
identification will prove possible, and that it will play a crucial role in helping us to understand certain aspects of our 
adaptive success. At the very least, we can now see more clearly what it would take to undermine a representation-
based approach: it would require a demonstration that, even in the representation-hungry cases, it remains practically 
impossible to isolate any system of fine-grained vehicles playing specific information-carrying adaptive roles. 
Moreover, we have seen many ways in which the fundamental insights of an embodied, embedded approach 
(concerning action-oriented encodings, environment-involving problem solving, and synergetic couplings between 
multiple elements) are in any case compatible with the use of computational and representational understandings.
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In the final analysis, then, the resolution of this debate must turn on future empirical studies. No doubt there is some 
upper limit 26 on the degree of complexity of inner states and processes such that beyond that limit it becomes simply 
uninformative and explanatorily idle to describe them as internal representations. But the question as to exactly where 
this limit lies will probably be resolved only by practical experience. The answer will emerge by trial and error, as 
experimentalists generate and analyze real dynamical solutions to increasingly complex and superficially 
"representation-hungry" problems. Such confrontations may lead to a process of mutual accommodation in which the 
dynamical systems stories are adapted and enriched with computational and representational forms of understanding 
and analysis and vice versa.27 Or the sheer complexity of the dynamical patterns and processes involved, and the deep 
interweaving of inner and outer elements, may convince us that it is fruitless to try to identify any specific aspects of 
the complex and shifting causal web as signaling the presence of specific environmental features, and hence fruitless to 
pursue any representational understanding of the structure and operation of the system. The most likely outcome, it 
seems to me, is not the outright rejection of ideas of computation and representation so much as their partial 
reconception. Such a reconception is prefigured in many dynamical analyses of more representation-hungry 
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kinds of problem (such as decision making, and planning 28) and is a natural continuation of research programs in both 
connectionism and computational neuroscience.

Such a reconception would, however, have implications that woulc go beyond the mere identification of a new range of 
inner vehicles capable of playing representational roles. On the positive side, the representational vehicles would no 
longer be constrained to the realm of inner states and processes. By allowing (e.g.) values of collective variables to take 
on representational significance, the dynamical theorist can allow some of a system's content-bearing states to be 
intrinsically wide—to depend on states defined only across the larger system comprising the agent and some select 
chunks of the local environment.29 On the negative side, to the extent that the representational vehicles are allowed to 
float higher and higher above the level of basic system variables and parameters,30 we may witness the partial 
fracturing of a powerful and familiar explanatory schema. The worry (already familiar from section 6.4 above) is that 
we thus begin to dislocate the representational description of a system (and, more generally, its information-processing 
characterization) from the kind of description that would speak directly to the project of actually building or 
constructing such a system. In contrast, one of the primary virtues of more standard computational models is that they 
display the way information and representations flow through the system in ways that are constrained to yield effective 
recipes for generating such behavior in a real physical device. By allowing representational glosses to stick to complex 
dynamical entities (limit cycles, state-space trajectories, values of collective variables, etc.), the theorist pitches the 
information-processing story at a very high level of abstraction from details of basic systemic components and 
variables, and thus severs the links between the representational description and the specific details of inner workings. 
The best representational stories, it now seems, may be pitched at an even greater remove31 from the nitty-gritty of 
physical implementation than was previously imagined.

8.8 Roots

The anti-representationalist and anti-computationalist intuitions discussed in the preceding sections have a variety of 
antecedents, both recent and
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not-so-recent. I will round off the present discussion by sketching some 32 of these roots and displaying some 
differences of emphasis and scope.

Heidegger (1927) wrote of the importance of Dasein (being there)—a mode of being-in-the-world in which we are not 
detached, passive observers but active participants—and stressed the way our practical dealings with the world 
(hammering nails, opening doors, and so on) do not involve detached representings (e.g. of the hammer as a rigid 
object of a certain weight and shape) so much as functional couplings. We use the hammer to drive in the nail, and it is 
this kind of skilled practical engagement with the world that is, for Heidegger, at the heart of all thought and 
intentionality.33 A key notion in this analysis is the idea of equipment—the stuff that surrounds us and figures in the 
multiple skilled activities underlying our everyday abilities to cope and succeed.

Thus, Heidegger's work prefigures skepticism concerning what might be termed "action-neutral" kinds of internal 
representation, and it echoes our emphasis on tool use and on action-oriented couplings between organism and world. 
Some of Heidegger's concerns, however, are radically different from those of the present treatment. In particular, 
Heidegger was opposed to the idea that knowledge involves a relation between minds and an independent world 
(Dreyfus 1991, pp. 48–51)—a somewhat metaphysical question on which I take no stand. In addition, Heidegger's 
notion of the milieu of embodied action is thoroughly social. My version of being there is significantly broader and 
includes all cases in which body and local environment appear as elements in extended problem-solving activity.34

Closer in spirit and execution to the present project is the work of the phenomenologist Maurice Merleau-Ponty,35 who 
was concerned to depict everyday intelligent activity as the playing out of whole organism-body-world synergies. In 
particular, Merleau-Ponty stressed the importance of what I have called "continuous reciprocal causation"—viz., the 
idea that we must go beyond the passive image of the organism perceiving the world and recognize the way our actions 
may be continuously responsive to worldly events which are at the same time being continuously responsive to our 
actions. Consider a lovely example, which I think of as "the hamster and tongs":

When my hand follows each effort of a struggling animal while holding an instrument for capturing it, it is clear that each of my 
movements responds to an external stimulation; but it is also clear that these stimulations could not be received 
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without the movements by which I expose my receptors to their influence. … The properties of the object and the intentions of 
the subject are not only intermingled; they also constitute a new whole. (Merleau-Ponty 1942, p. 13)

In this example the motions of my hands are continuously responsive to those of the struggling hamster, but the 
hamster's struggles are continuously molded and shaped by the motions of my hand. Here action and perception, as 
David Hilditch (1995) has put it, coalesce as a kind of "free form interactive dance between perceiver and perceived." It 
is this iterated interactive dance that, we saw, is now recognized in recent work concerning the computational 
foundations of animate vision.

Moreover, Merleau-Ponty also stresses the way perception is geared to the control of real-time, real-world behavior. In 
this respect, he discovers something very like 36 the Gibsonian notion of an affordance—a notion which, in turn, is the 
direct inspiration of the idea of action-oriented internal representations discussed above in chapter 2 and in section 8.3. 
An affordance is an opportunity for use or interaction which some object or state of affairs presents to a certain kind of 
agent. For example, to a human a chair affords sitting, but to a woodpecker it may afford something quite different.
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Gibson's special concern was with the way visual perception might be tuned to invariant features presented in the 
incoming light signal in ways that directly selected classes of possible actions—for example, the way patterns of light 
might specify a flat plain affording human walking. To the extent that the human perceptual system might become 
tuned to such affordances, Gibson claimed that there was no need to invoke internal representations as additional 
entities mediating between perception and action. In section 8.3 I argued that such outright rejection often flows from 
an unnecessary conflation of two properly distinct notions. One is the fully general idea of internal representations as 
inner states, structures, or processes whose adaptive role is to carry specific types of information for use by other neural 
and action-guiding systems. The other is the more specific idea of internal representations as rich, action-neutral 
encodings of external states of affairs. Only in the latter, more restricted sense is there any conflict between Gibsonian 
ideas and the theoretical construct of internal representation.37

Finally, the recent discussion of "the embodied mind" offered by Varela et al. (1991) displays three central concerns 
that likewise occupy center 
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stage in the present treatment. 38 First, Varela et al. are concerned to do justice to the active nature of perception and 
the way our cognitive organization reflects our physical involvement in the world. Second, they offer some powerful 
example of emergent behavior in simple systems.39 Third, there is sustained attention to the notion of reciprocal (or 
"circular") causation and its negative implications for certain kinds of component-based reductive projects. These 
themes come together in the development of the idea of cognition as enaction. Enactive cognitive science, as Varela et 
al. define it, is a study of mind which does not depict cognition as the internal mirroring of an objective external world. 
Instead, it isolates the repeated sensorimotor interactions between agent and world as the basic locus of scientific and 
explanatory interest.40

Varela et al. are thus pursuing a closely related project to our own. There are, however, some important differences of 
emphasis and interest. First, Varela et al. use their reflections as evidence against realist and objectivist views of the 
world. I deliberately avoid this extension, which runs the risk of obscuring the scientific value of an embodied, 
embedded approach by linking it to the problematic idea than objects are not independent of mind.41 My claim, in 
contrast, is simply that the aspects of real-world structure which biological brains represent will often be tightly geared 
to specific needs and sensorimotor capacities. The target of much of the present critique is thus not the idea that brains 
represent aspects of a real independent world, but rather the idea of those representations as action-neutral and hence as 
requiring extensive additional computational effort to drive intelligent responses. Second, Varela et al. (ibid., p. 9) 
oppose the idea that "cognition is fundamentally representation." Our approach is much more sympathetic to 
representationalist and information-processing analyses. It aims to partially reconceptualize ideas about the contents 
and formats of various inner states and processes, but not to reject the very ideas of internal representation and 
information-processing themselves. Finally, our treatment emphasizes a somewhat different body of cognitive scientific 
research (viz., the investigations of real-world robotics and autonomous-agent theory) and tries to show how the ideas 
and analyses emerging from this very recent research fit into the larger nexus of psychological, psychophysical, and 
developmental research which is the common ground of both discussions.
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8.9 Minimal Representationalism

The recent skepticism concerning the role of computations and representation in cognitive science is, I believe, 
overblown. Much of the debate can be better cast as a discussion between the fans of maximal, detailed, action-neutral 
inner world models and those (including this author) who suspect that much intelligent behavior depends on more 
minimal resources such as multiple, partial, personalized and/or action-oriented types of inner encoding. Similarly, 
much of the opposition to the idea of the brain as a computing device is better cast as opposition to the idea of the brain 
as encoding ''fully programmed specifications" of development or action. The minimal conditions under which internal-
representation talk will be useful, I have argued, obtain whenever we can successfully unpack the complex causal web 
of influences so as to reveal the information-processing adaptive role of some system of states or of processes—a 
system that may involve as much spatial distribution or temporal complexity as is compatible with successfully 
identifying the physical configurations that stand in for specific states of affairs. Such liberalism may disturb those 
whose intuitions about such matters were forged in the more restrictive furnaces of reflection on language, texts, and 
artificial grammars, 42 but I suspect that all parties will agree that one important lesson of ongoing work in both 
neuroscience and dynamical systems theory is that we should not be narrow-minded about the nature of the inner 
events that help explain behavioral success. Such inner events may include all kinds of complex neural processes 
depending upon wide ranges of dynamical property, including chaotic attractors, limit cycles, potential wells, 
trajectories in state space, values of collective or systemic variables, and much else.43 Stories invoking internal 
representation, likewise, may come to coopt such highly complex, nonlocal, dynamical processes as the vehicles of 
specific kinds of information and knowledge. To the extent that this occurs, the notion of internal representation itself 
may be subtly transformed, losing especially those classical connotations that invite us to think of relatively simple, 
spatially and/or temporally localized structures as the typical vehicles of representation.

There exist, to be sure, cases that pose an especially hard problem. These are cases involving processes of continuous 
reciprocal causation 
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between internal and external factors. Such continuous interplay, however, appears unlikely to characterize the range of 
cases for which the representational approach is in any case most compelling—viz., cases involving reasoning about 
the distant, the nonexistent, or the highly abstract. In such cases, the focus shifts to the internal dynamics of the system 
under study. The crucial and still-unresolved question is whether these internal dynamics will themselves reward a 
somewhat more liberalized but still recognizably representation-based understanding. To pump the negative intuition, it 
may be suggested that, as the internal dynamics grow more and more complex, or as the putative contents grow more 
and more minimal (personalized, action-oriented), the explanatory leverage provided by the representational glosses 
must diminish, eventually vanishing beneath some as-yet-to-be-ascertained threshold. To pump the positive intuition, it 
may be noted that no alternative understanding of genuinely representation-hungry problem solving yet exists, and that 
it is hard to see how to give crisp, general, and perspicuous explanations of much of our adaptive success without 
somehow reinventing the ideas of complex information processing and of content-bearing inner states.
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Further progress with these issues, it seems likely, must await the generation and analysis of a wider range of practical 
demonstrations: dynamical systems models that target reasoning and action in ever more complex and abstract 
domains. As such research unfolds, I think, we will see a rather delicate and cooperative coevolution between multiple 
types of analysis and insight. We will see the emergence of new ideas about representation and about 
computation—ideas that incorporate the economies of action-oriented inner states and continuous analog processing, 
and recognize the complex cooperative dance of a variety of internal and external sources of variance. We will learn to 
mark the information-processing adaptive role of inner states and processes in ways which do not blind us to the 
complexities of the interactive exchanges that undergird so much of our adaptive success. But, in general, we will find 
ourselves adding new tools to cognitive science's tool kit, refining and reconfiguring but not abandoning those we 
already posses. After all, if the brain were so simple that a single approach could unlock its secrets, we would be so 
simple that we couldn't do the job! 44
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III
Further

So the Hieronymus Bosch bus headed out of Kesey's place with the destination sign in front reading "Furthur" and a 
sign in the back saying "Caution: Weird Load."
—Tom Wolfe, The Electric Kool-Aid Acid Test

We live in a world where speech is an institution.
—Maurice Merleau-Ponty, Phenomenology of Perception (1945/1962), p. 184
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9
Minds and Markets

9.1 Wild Brains, Scaffolded Minds

Biological reason, we have seen, often consists in a rag-bag of "quick and dirty" on-line 
stratagems—strategems available, in part, thanks to our ability to participate in various kinds of 
collective or environment-exploiting problem solving. It is natural to wonder, however, just how much 
leverage (if any) this approach 1 offers for understanding the most advanced and distinctive aspects of 
human cognition—not walking, reaching, wall following, and visual search, but voting, consumer 
choice, planning a two-week vacation, running a country, and so on. Do these more exotic domains at 
last reveal the delicate flower of logical, classical, symbol-manipulating, internal cogitation? Is it here 
that we at last locate the great divide between detached human reason and the cognitive profiles of other 
animals?2

In the remaining chapters, I shall tentatively suggest that there is no need to posit such a great divide, 
that the basic form of individual reason (fast pattern completion in multiple neural systems) is common 
throughout nature, and that where we human beings really score is in our amazing capacities to create 
and maintain a variety of special external structures (symbolic and social-institutional). These external 
structures function so as to complement our individual cognitive profiles and to diffuse human reason 
across wider and wider social and physical networks whose collective computations exhibit their own 
special dynamics and properties.

This extension of our basic framework to more advanced cases involves three main moves. First, 
individual reasoning is again cast as some kind 
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of fast, pattern-completing style of computation. Second, substantial problem-solving work is offloaded 
onto external structures and processes—but these structures and processes now tend to be social and 
institutional rather than brute physical. And third, the role of public language (both as a means of social 
coordination and as a tool for individual thought) now becomes paramount.

The idea, in short, is that advanced cognition depends crucially on our abilities to dissipate reasoning: to 
diffuse achieved knowledge and practical wisdom through complex social structures, and to reduce the 
loads on individual brains by locating those brains in complex webs of linguistic, social, political, and 
institutional constraints. We thus begin to glimpse ways of confronting the phenomena of advanced 
cognition that are at least broadly continuous with the basic approach pursued in the simpler cases. 
Human brains, if this is anywhere near the mark, are not so different from the fragmented, special-
purpose, action-oriented organs of other animals and autonomous robots. But we excel in one crucial 
respect: we are masters at structuring our physical and social worlds so as to press complex coherent 
behaviors from these unruly resources. We use intelligence to structure our environment so that we can 
succeed with less intelligence. Our brains make the world smart so that we can be dumb in peace! Or, to 
look at it another way, it is the human brain plus these chunks of external scaffolding that finally 
constitutes the smart, rational inference engine we call mind. Looked at that way, we are smart after 
all—but our boundaries extend further out into the world than we might have initially supposed. 3

9.2 Lost in the Supermarket

You go into the supermarket to buy a can of beans. Faced with a daunting array of brands and prices, 
you must settle on a purchase. In such circumstances, the rational agent, according to classical economic 
theory, proceeds roughly as follows: The agent has some preexisting and comprehensive set of 
preferences, reflecting quality, cost, and perhaps other factors (country of origin or whatever). Such 
preferences have associated weights or values, resulting in a rank ordering of desired features. This 
complex (and consistent) preference ordering is then applied to a perfect 
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state of knowledge about the options which the world (supermarket) offers. The bean-selecting agent 
then acts so as to maximize expected utility; i.e., the agent buys the item that most closely satisfies the 
requirements laid out in the ordered set of preferences (Friedman 1953). This image of rational 
economic choice has recently been termed the paradigm of substantive rationality (Denzau and North 
1995).

Taken as a theory of the psychological mechanisms of daily individual choice, the substantive rationality 
model is, however, deeply flawed. The main trouble, as Herbert Simon (1982) famously pointed out, is 
that human brains are, at best, loci of only partial or bounded 4 rationality. Our brains, as the preceding 
chapters repeatedly attest, were not designed as instruments of unhurried, fully informed reason. They 
were not designed to yield perfect responses on the assumption of perfect information.

In view of the "quick and dirty," bounded, time-constrained nature of biological cognition, it is perhaps 
surprising that classical economic theory, with its vision of the fully informed, logically consistent, cool, 
unhurried reasoner, has done as well as it has. Why, given the gross psychological irrealism of its model 
of human choosing, has traditional economics yielded at least moderately successful and predictive 
models of, for example, the behaviors of firms (in competitive posted-price markets) and of political 
parties and the outcomes of experimental manipulations such as the "double auction" (Satz and Ferejohn 
1994; Denzau and North 1995). And why—on a less optimistic note—has it failed to illuminate a whole 
panoply other economic and social phenomena? Among the notable failures are the failure to model 
large-scale economic change over time and the failure to model choice under conditions of strong 
uncertainty—for example, cases where there is no preexisting set of outcomes that can be rank ordered 
according to desirability (Denzau and North 1995; North 1993). These are fundamental failures insofar 
as they ramify across a wide variety of more specific cases, such as the inability to model voter 
behavior, the inability to predict the development of social and economic institutions, and the inability to 
address the bulk of the choices faced by those who make public policy.5

The pattern of successes and failures is both fascinating and informative, for the best explanation of the 
pattern appears to involve a dissociation between cases of what may be termed highly scaffolded choice 
and 
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cases of more weakly constrained individual cogitation. The paradigm of substantive rationality, as 
several authors have recently argued, 6 seems to work best in the highly scaffolded case and to falter and 
fail as the role of weakly constrained individual cogitation increases.

The idea of highly scaffolded choice is at the heart of important recent treatments by Satz and Ferejohn 
(1994) and Denzau and North (1995). The common theme is that neoclassical economic theory works 
best in situations in which individual rational choice has been severely limited by the quasi-evolutionary 
selection of constraining policies and institutional practices. The irony is explicitly noted by Satz and 
Ferejohn: "the [traditional] theory of rational choice is most powerful in contexts where choice is 
limited" (p. 72). How can this be? According to Satz and Ferejohn, the reason is simple: What is doing 
the work in such cases is not so much the individual's cogitations as the larger social and institutional 
structures in which the individual is embedded. These structures have themselves evolved and prospered 
(in the cases where economic theory works) by promoting the selection of collective actions that do 
indeed maximize returns relative to a fixed set of goals. For example, the competitive environment of 
capital markets ensures that, by and large, only firms that maximize profits survive. It is this fact, rather 
than facts about the beliefs, desires, or other psychological features of the individuals involved, that 
ensures the frequent success of substantive rationality models in predicting the behavior of firms. Strong 
constraints imposed by the larger market structure result in firm-level strategies and policies that 
maximize profits. In the embrace of such powerful scaffolding, the particular theories and worldviews of 
individuals may at times make little impact on overall firm-level behavior. Where the external 
scaffolding of policies, infrastructure, and customs is strong and (importantly) is a result of competitive 
selection, the individual members are, in effect, inter-changeable cogs in a larger machine. The larger 
machine extends way outside the individual, incorporating large-scale social, physical, and even 
geopolitical structures. And it is the diffused reasoning and behavior of this larger machine that 
traditional economic theory often succeeds in modeling. A wide variety of individual psychological 
profiles are fully compatible with specific functional roles within such a larger machine. As Satz and 
Ferejohn (ibid., p. 79) remark: "Many sets of individual moti- 
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vations are compatible with the constraints that competitive market environments place on a firms 
behavior. In explaining firm behavior, we often confront causal patterns that hold constant across the 
diverse realizations of maximizing activity found in Calvinist England and the Savings and Loan 
Community in Texas."

In contrast, the theory of consumer behavior is weak and less successful. This is because individual 
worldviews and ideas loom large in consumer choice and the external scaffolding is commensurately 
weaker. Similarly, the theory of voting behavior is weak in comparison with the theory of party behavior 
in electoral competitions. Once again, the parties survive only subject to strong selection pressures that 
enforce vote-maximizing activity. In comparison, individual choice is relatively unconstrained (ibid., pp. 
79–80).

Satz and Ferejohn suggest that the crucial factor distinguishing the successful and unsuccessful cases (of 
the use of neoclassical, substantive-rationality-assuming theory) is the availability of a structurally 
determined theory of interests. In cases where the overall structuring environment acts so as to select in 
favor of actions which are restricted so as to conform to a specific model of preferences, neoclassical 
theory works. And it works because individual psychology no longer matters: the "preferences" are 
imposed by the wider situation and need not be echoed in individual psychology. For example, in a 
democratic, two-party electoral system the overall situation selects for the party that acts to maximize 
votes. This external structuring force allows us to impute "preferences" on the basis of the constraints on 
success in such a larger machine. The constraints on individual voters are much weaker. Hence, real 
psychological profiles come to the fore, and neoclassical theory breaks down (Satz and Ferejohn 1994, 
pp. 79–80; North 1993, p. 7). This general diagnosis is supported by the analysis of Denzau and North 
(1995). They note that traditional economic theory nicely models choice in competitive posted price 
markets and in certain restricted experimental studies. In such cases, they suggest, certain institutional 
features play major roles in promoting "maximizing-style'' economic performance. By way of 
illustration, Denzau and North cite some fascinating computational studies by Gode and Sunder (1992) 
that invoke "zero-intelligence" traders—simulated agents who do not actively theorize, recall events, or 
try to maximize 
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returns. When such simple agents were constrained to bid only in ways that would not yield immediate 
losses, an efficiency of 75 percent (measured as "the percentage of sum of potential buyer and seller 
rents" (ibid., p. 5) was achieved. Replacing the zero-intelligence (ZI) traders with humans increased 
efficiency by a mere 1 percent. But altering the institutional scaffolding (e.g. from collecting all bids in a 
double auction before contracting to allowing simultaneous bidding and contracting) yielded a 6 percent 
improvement in efficiency. The strong conclusion is that "most efficiency gains in some resource 
allocation situations may be attributed to institutional details, independent of their effects on rational 
traders" (ibid., p. 5).

The results of the ZI-trader experiments clearly demonstrate the power of institutional settings and 
external constraints to promote collective behaviors that conform to the model of substantive rationality. 
Such results fit nicely with the otherwise disquieting news that the bulk of traditional economics would 
be unaffected if we assumed that individuals chose randomly (Alchian 1950, cited in Satz and Ferejohn 
1994) rather than by maximizing preferences, and that pigeons and rats can often perform in ways 
consistent with the theory of substantive rationality (Kagel 1987, cited in Satz and Ferejohn 1994). Such 
results make sense if the scaffolding of choice by larger-scale constraining structures is sometimes the 
strongest carrier of maximizing force. In the extreme limiting cases of such constraint, the individual 
chooser is indeed a mere cog—a constrained functional role played as well by a zero-intelligence trader, 
a pigeon, a rat, a human trader, or, in the worst cases, a coin-flipping device. 7

9.3 The Intelligent Office?

The moral so far is that the scaffolding matters: the external structuring provided by institutions and 
organizations bears much of the explanatory burden for explaining current economic patterns. To see 
where human psychology fits in, let us begin by asking: What kind of individual mind needs an external 
scaffold?

A vital role for external structure and scaffolding is, as we have seen, strongly predicted by recent work 
on individual cognition. Simon's (1982) notion of bounded rationality was probably the first step in this 
direction. 
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But although Simon rightly rejected the view of human agents as perfect logical reasoners, he remained 
committed to a basically classicist model of computation (see introduction and chapter 3 above) as 
involving explicit rules and quasi-linguistic data structures. The major difference was just the use of 
heuristics, with the goal of satisficing rather than optimizing—i.e., the use of "rules of thumb" to find a 
workable solution with minimal expenditures of time and processing power.

The reemergence of connectionist (artificial neural networks, parallel distributed processing) ideas (see 
chapter 3 above) took us farther by challenging classical models of internal representation and of 
computational process.

We saw in section 3.3 how such systems in effect substitute fast pattern recognition for step-by-step 
inference and reasoning. This substitution yields a particular profile of strengths (motor skills, face 
recognition, etc.) and weaknesses (long-term planning, logic)—one that gives us a useful fix on the 
specific ways in which external structures may complement and augment bare individual cognition. The 
external structures, it was argued, enable us to negotiate problem domains that require the sequential and 
systematic deployment of basic pattern-completing capacities and the presentation and reuse of 
intermediate results. The simple example rehearsed in chapter 3 concerned the use of pen and paper to 
amplify simple arithmetical knowledge (e.g. that 7 × 7 = 49) into solutions to more complex problems 
(e.g. 777 × 777). We can now see, in barest outline, how institutions, firms, and organizations seem to 
share many of the key properties of pen, paper, and aritmetical practice in this example. Pen and paper 
provide an external medium in which we behave (using basic on-line resources) in ways dictated by the 
general policy or practice of long multiplication. Most of us do not know the mathematical justification 
of the procedure. But we use it, and it works. Similarly, firms and organizations provide an external 
resource in which individuals behave in ways dictated by norms, policies, and practices. Daily problem 
solving, in these arenas, often involves locally effective pattern-recognition strategies which are invoked 
as a result of some externally originating prompt (such as a green slip in the "in" tray, discharged in a 
preset manner) and which leave their marks as further traces (slips of paper, e-mail messages, whatever) 
which then are available for future manipulations within the overarching 
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machinery of the firm. In these contexts, in the short term at least, the role of individual rationality can 
become somewhat marginal. If the overall machinery and strategies have been selected so as to 
maximize profits, the fact that the individuals are cogs deploying very bounded forms of pattern-
completing rationality will not matter. (Individual neurons are, if you like, even more restricted cogs, but 
once organized into brains by natural selection they too support a grander kind of reason.)

Much of what goes on in the complex world of humans may thus, somewhat surprisingly, be understood 
as involving something rather akin to the "stigmergic algorithms" introduced in section 4.3. Stigmergy, 
recall, involves the use of external structures to control, prompt, and coordinate individual actions. Such 
external structures can themselves be acted upon and thus mold future behaviors in turn. In the case of 
termite nest building, the actions of individual termites were controlled by local nest structure yet often 
involved modifications of that structure which in turn prompted further activity by the same or other 
individuals. Humans, even when immersed in the constraining environments of large social political or 
economical institutions, are, of course, not termites! Unlike the termite, we will not always perform an 
action simply because an external prompt seems to demand it. However, our collective successes (and 
sometimes our collective failures) may often be best understood by seeing the individual as choosing his 
or her responses only within the often powerful constraints imposed by the broader social and 
institutional contexts of action. And this, indeed, is just what we should expect once we recognize that 
the computational nature of individual cognition is not ideally suited to the negotiation of certain types 
of complex domains. In these cases, it would seem, we solve the problem (e.g. building a jumbo jet or 
running a country) only indirectly—by creating larger external structures, both physical and social, 
which can then prompt and coordinate a long sequence of individually tractable episodes of problem 
solving, preserving and transmitting partial solutions along the way.

9.4 Inside the Machine

Organizations, factories, offices, institutions, and such are the large-scale scaffolds of our distinctive 
cognitive success. But as surely as these larger 
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wholes inform and scaffold individual thought, they themselves are structured and informed by the 
communicative acts of individuals and by episodes of solitary problem solving. One crucial project for 
the cognitive sciences of the embodied mind is to begin the hard task of understanding and analyzing 
this complex reciprocal relationship—a daunting task that will require the use of simulations which 
operate at multiple time scales and levels of organization. Such simulations should ideally encompass 
genetic evolutionary change, individual learning and problem solving, processes of cultural and 
artifactual evolution, and the emergent problem-solving capacities of groups of communicating agents. 
This is, alas, a little too much to ask, given the current state of the art. But it is at least possible to begin 
to scratch the surface of the issues.

There have been some nice attempts at modeling something of the interplay between genetic evolution 
and individual learning (Ackley and Littman 1992; Nolfi and Parisi 1991; see discussions in Clark 1993 
and Clark (to appear)). Of more relevance to the present discussion, however, are efforts to model the 
interplay of individual learning, cultural and artifactual evolution, and patterns of inter-group 
communication. In this vein, Hutchins (1995) set out to investigate how various patterns of 
communication affect the collective problem-solving capacities of small groups of simple artifactual 
"agents." Each agent, in this simulation, was a small neural network comprising a few linked processing 
units. Each unit coded for some specific environmental feature. Excitatory links connected mutually 
supportive features; inhibitory links connected mutually inconsistent features. For example, a feature 
like "is a dog" would be coded by a single unit with excitatory links to (e.g.) "barks" and ''has fur" units 
and inhibitory links to (e.g.) "meows" and "is a cat" units (the latter being themselves linked by an 
excitatory connection). Such networks are known as constraint-satisfaction networks.

Once a constraint-satisfaction network is set up (either by learning or by hand coding), it exhibits nice 
properties of pattern-completion-style reasoning. Thus, imagine that the various units receive input 
signals from the environment. Activation of a few units that figure in a linked web of excitatory 
connections will yield activity across all the other linked units. The input "barks" will thus yield a global 
activation profile appropriate to the category "dog," and so on. Individual units often "choose" whether 
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or not to respond (become active) by summing the inputs received along various channels and 
comparing the result to some threshold level. As a result, once a constraint-satisfaction network settles 
into an interpretation of the input (e.g. by having all the dog-feature units become active), dislodging it 
becomes difficult because the units lend each other considerable mutual support. This feature of such 
networks, Hutchins points out, corresponds rather nicely to the familiar psychological effect of 
confirmation bias—viz., the tendency to ignore, discount, or creatively reinterpret evidence (such as a 
solitary "meows" input) that goes against some hypothesis or model that is already in place. (See, e.g., 
Wason 1968.)

Now imagine a community of constraint-satisfaction networks in which each network has a different 
initial activity level ("predisposition") and different access to environmental data. Hutchins shows that in 
such cases the precise way in which the inter-network communication is structured makes a profound 
difference to the kind of collective problem solving displayed. Surprisingly, Hutchins (p. 252) found that 
in such cases more communication is not always better than less. In particular, if from the outset all the 
networks are allowed to influence the activity of the others (to communicate), the overall system shows 
an extreme degree of confirmation bias—much more than any one of the individual nets studied in 
isolation. The reason is that the dense communication patterns impose a powerful drive to rapidly 
discover a shared interpretation of the data—to find a stable pattern of activity across all the units. The 
individual nets, instead of giving due weight to the external input data, focus more heavily on these 
internal constraints (the need to find a set of activation patterns that doesn't disrupt the others). As a 
result, the social group rushes "to the interpretation that is closest to the center of gravity of their 
predispositions, regardless of the evidence" (ibid., p. 259).

By contrast, if you restrict the level of early communication, this gives each individual network time to 
balance its own predispositions against the environmental evidence. If inter-network communication is 
subsequently enabled, then overall confirmation bias is actively reduced—that is, the group is more 
likely than the average member to fix on a correct solution. Such results suggest that the collective 
advantage of a jury over an individual decision may dissipate proportionally to the level of early 
communication between members. 8 More important, however, the example 
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illustrates one way in which we may begin to understand, in a rigorous manner, some aspects of the 
delicate interplay between individual cognition and group-level dynamics. Such understanding will 
surely be crucial to a better appreciation of the roles of institutional and organizational structures in 
determining collective problem solving, and of the balance between individual cognition and the 
external scaffolding which it both shapes and inhabits.

One moral of the simple demonstration just rehearsed is that there is scope for patterns of inter-agent 
communication to evolve (over cultural-evolutionary time) so as to better serve the problem-solving 
needs of a given collective. In a fascinating earlier simulation, Hutchins and Hazelhurst (1991) showed 
that the cultural artifacts (words and symbols) that flow around inside the collective machine are 
themselves capable of "evolving" so as to better serve specific problem-solving needs. In this study 
Hutchins (a cognitive scientist) and Hazelhurst (a cultural anthropologist) created a simple computer 
simulation in which successive generations of simple connectionist networks gradually improved their 
problem-solving capacity by creating and passing on a set of cultural artifacts —viz., a simple language 
encoding information about some salient correlations among environmental events. The simulation 
involved a group of "citizens" (connectionist nets) able to learn from two kinds of environmental 
structure: "natural structure" (observed correlations between events—in this case, between phases of the 
moon and states of the tide) and "artifactual structure" (learning by exposure to symbols representing the 
states of moon and tide). The nets are able, by virtue of the usual pattern-completing and learning 
abilities, to learn to associate symbols with events, and to denote events with symbols. They are thus 
able to generate symbols to reflect experiences, and to use symbols to cause the kinds of experience 
which the real-world event (itself just another kind of coding in this simple simulation) would usually 
bring about. Exposure to symbols thus causes a kind of "vicarious experience'' of the associated events. 
In addition, some simulations incorporated an "artifact selection bias" in which cultural products (the 
symbol structures) were selected by other citizens with a probability based in part on the competence 
(degree of success) of the net that produced them.
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The Hutchins-Hazelhurst study involved observing the relative success of many generations of 
networks. But, in contrast with the geneticalgorithm work discussed in chapter 5, the subsequent 
generations were identical in internal structure—no genetic improvements were allowed. Nonetheless, 
the gradual accumulation of better external artifacts (the symbolic structures representing moon and tide 
states) enabled later generations to learn environmental regularities that earlier ones could not learn. The 
contribution of each individual to future generations was not genetic; rather, it consisted of a symbolic 
artifact comprising entries for phases of the moon and states of the tide. Citizens of subsequent 
generations were trained in part on the artifacts of their immediate predecessors, with selection of such 
artifacts either made at random (all artifacts of the previous generation equally likely to be used) or 
relative to the selection bias (thus favoring the better artifacts).

The results were clear: Early generations could not predict the regularity. Later generations, identical at 
birth and using the same learning procedures, were able to solve the problem. Simulations involving the 
selection bias were more successful than those based on random choice. The existence of artifactual 
products and strategies of artifactual selection thus enables a kind of multi-generational learning which 
is independent of genetic change and which greatly expands the horizons of individual learning. 9

We are seeing in these simple simulations some of the first attempts to put quantitative, analytic flesh on 
ideas about collective problem solving in communities of agents capable of creating and exploiting 
various kinds of external symbol structure. These symbol structures are the lifeblood flowing through 
the larger social and institutional machinery that both molds and empowers individual human thought.

9.5 Designer Environments

Rodney Brooks, the creator of many of the mobile robots described in the preceding chapters, recently 
asked this question: How can we get coherent behavior from multiple adaptive processes without 
centralized control? The question is pressing if, as many roboticists and neuroscientists suspect, even 
advanced human cognition depends on multiple inner sys- 
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tems, with limited communication, exploiting partial and action-oriented forms of internal 
representation. Without the great central homunculus—the inner area in which, as Dennett (1991) puts 
it, everything "comes together"—what stops behavior from becoming chaotic and self-defeating? 
Brooks (1994) considers three sources of constraint: natural coherence (where the physical world 
determines, e.g., that action A will be performed before action B), designed coherence (where the 
system has, e.g., a built-in hierarchy of goals), and various forms of cheap global modulation (such as 
hormonal effects).

To this list we can now add the idea of stigmergic self-modulation: the process by which intelligent 
brains actively structure their own external (physical and social) worlds so as to make for successful 
actions with less individual computation. The coherence and the problem-solving power of much human 
activity, it seems, may be rooted in the simple yet oftenignored fact that we are the most prodigious 
creatures and exploiters of external scaffolding on the planet. We build "designer environments" in 
which human reason is able to far outstrip the computational ambit of the unaugmented biological brain. 
Advanced reason is thus above all the realm of the scaffolded brain: the brain in its bodily context, 
interacting with complex world of physical and social structures. These external structures both 
constrain and augment the problem-solving activities of the basic brain, whose role is largely to support 
a succession of iterated, local, pattern-completing responses. The successes of classical economics (to 
take just one example) emerge, within this paradigm, as depending largely on the short-term dynamics 
of responses strongly determined by particular kinds of institutional or organizational structures: 
structures which have themselves evolved as a result of selective pressure to maximize rewards of a 
certain kind.

Nonetheless, these external scaffoldings are, in most cases, themselves the products of individual and 
collective human thought and activity. The present discussion thus barely scratches the surface of a large 
and difficult project: understanding the way our brains both structure and inhabit a world populated by 
cultures, countries, languages, organizations, institutions, political parties, e-mail networks, and all the 
vast paraphernalia of external structures and scaffoldings which guide and inform our daily actions.
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All of this, as Hutchins (1995) pointedly notes, serves only to remind us of what we already knew: if our 
achievements exceed those of our forebears, it isn't because our brains are any smarter than theirs. 
Rather, our brains are the cogs in larger social and cultural machines—machines that bear the mark of 
vast bodies of previous search and effort, both individual and collective. This machinery is, quite 
literally, the persisting embodiment of the wealth of achieved knowledge. It is this leviathan of diffused 
reason that presses maximal benefits from our own simple efforts and is thus the primary vehicle of our 
distinctive cognitive success.
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10
Language: The Ultimate Artifact

10.1 Word Power

What does public language do for us? There is a common, easy answer, which, though not incorrect, is 
subtly misleading. The easy answer is that language helps us to communicate ideas. It lets other human 
beings profit from what we know, and it enables us to profit from what they know. This is surely true, 
and it locates one major wellspring of our rather unique kind of cognitive success. However, the 
emphasis on language as a medium of communication tends to blind us to a subtler but equally potent 
role: the role of language as a tool 1 that alters the nature of the computational tasks involved in various 
kinds of problem solving.

The basic idea is simple enough. Consider a familiar tool or artifact, say a pair of scissors.2 Such an 
artifact typically exhibits a kind of double adaptation—a two-way fit, both to the user and to the task. On 
the one hand, the shape of the scissors is remarkably well fitted to the form and the manipulative 
capacities of the human hand. On the other hand (so to speak), the artifact, when it is in use, confers on 
the agent some characteristic powers or capacities which humans do not naturally possess: the ability to 
make neat straight cuts in certain papers and fabrics, the ability to open bubble packs, and so forth. This 
is obvious enough; why else would we value the artifact at all?

Public language is in many ways the ultimate artifact. Not only does it confer on us added powers of 
communication; it also enables us to reshape a variety of difficult but important tasks into formats better 
suited to the basic computational capacities of the human brain. Just as scissors enable us to exploit our 
basic manipulative capacities to fulfill new 
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ends, language enables us to exploit our basic cognitive capacities of pattern recognition and 
transformation in ways that reach out to new behavioral and intellectual horizons. Moreover, public 
language may even exhibit the kind of double adaptation described above, and may hence constitute a 
body of linguistic artifacts whose form is itself in part evolved so as to exploit the contingencies and 
biases of human learning and recall. (This reverse adaptation—of the artifact to the user—suggests a 
possible angle on the controversy concerning innate mechanisms for language acquisition and 
understanding.) Finally, the sheer intimacy of the relations between human thought and the tools of 
public language bequeaths an interesting puzzle. For in this case, especially, it is a delicate matter to 
determine where the user ends and the tool begins!

10.2 Beyond Communication

The idea that language may do far more than merely serve as a vehicle for communication is not new. It 
is clearly present in the work of developmentalists such as Lev Vygotsky (1962) and Laura Berk (see, 
e.g., Diaz and Berk 1992). It figures in the philosophical conjectures and arguments of, e.g., Peter 
Carruthers (to appear) and Ray Jackendoff (to appear). And it surfaces in the more cognitive-science-
oriented speculations of Daniel Dennett (1991, 1995). It will be helpful to review some of the central 
ideas in this literature before pursuing our preferred version—viz., the idea of language as a 
computational transformer that allows pattern-completing brains to tackle otherwise intractable classes 
of cognitive problems.

In the 1930s, Vygotsky, a psychologist, pioneered the idea that the use of public language had profound 
effects on cognitive development. He posited powerful links among speech, social experience, and 
learning. Two Vygotskian ideas that are especially pertinent for present purposes concern private speech 
and scaffolded action (action within the "zone of proximal development"—see Vygotsky 1962 and 
chapter 3 above). We have called an action "scaffolded" to the extent that it relies on some kind of 
external support. Such support could come from the use of tools or from exploitation of the knowledge 
and skills of others; that is to say, scaffolding (as I shall use the term 3) denotes a broad class of 
physical, cognitive, and social augmentations—augmentations that allow us to achieve 
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some goal that would otherwise be beyond us. Simple examples include the use of a compass and a 
pencil to draw a perfect circle, the role of other crew members in enabling a ship's pilot to steer a course, 
and an infant's ability to take its first steps only while suspended in the enabling grip of its parents. 
Vygotsky's focus on the "zone of proximal development" was concerned with cases in which a child is 
temporarily able to succeed at designated tasks only by courtesy of the guidance or help provided by 
another human being (usually a parent or a teacher), but the idea dovetails with Vygotsky's interest in 
private speech in the following way: When a child is "talked through" a tricky challenge by a more 
experienced agent, the child can often succeed at a task that would otherwise prove impossible. (Think 
of learning to tie your shoelaces.) Later, when the adult is absent, the child can conduct a similar 
dialogue, but this time with herself. But even in this latter case, it is argued, the speech (be it vocal or 
"internalized") functions so as to guide behavior, to focus attention, and to guard against common errors. 
In such cases, the role of language is to guide and shape our own behavior—it is a tool for structuring 
and controlling action, not merely a medium of information transfer between agents.

This Vygotskian image is supported by more recent bodies of developmental research. Berk and Garvin 
(1984) observed and recorded the ongoing speech of a group of children between the ages of 5 and 10 
years. They found that most of the children's private speech (speech not addressed to some other 
listener) seemed keyed to the direction and control of the child's own actions, and that the incidence of 
such speech increased when the child was alone and trying to perform some difficult task. In subsequent 
studies (Bivens and Berk 1990; Berk 1994) it was found that the children who made the greatest 
numbers of self-directed comments were the ones who subsequently mastered the tasks best. Berk 
concluded, from these and other studies, that self-directed speech (be it vocal or silent inner rehearsal) is 
a crucial cognitive tool that allows us to highlight the most puzzling features of new situations and to 
better direct and control our own problem-solving actions.

The theme of language as a tool has also been developed by the philosopher Christopher Gauker. 
Gauker's concern, however, is to rethink the intra-individual role of language in terms of what he calls a 
"cause-effect 
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analysis." The idea here is to depict public language "not as a tool for representing the world or 
expressing ones thoughts but a tool for effecting changes in one's environment" (Gauker 1990, p. 31). To 
get the flavor of this, consider the use of a symbol by a chimpanzee to request a banana. The chimp 
touches a specific key on a keypad (the precise physical location of the key can be varied between trials) 
and learns that making that symbol light tends to promote the arrival of bananas. The chimp's 
quasilinguistic understanding is explicable, Gauker suggests, in terms of the chimp's appreciation of a 
cause-effect relationship between the symbol production and changes in its local environment. Gauker 
looks at a variety of symbol-using behaviors and concludes that they all succumb to this kind of 
analysis. This leads him to hypothesize that, although clearly more complex, human beings' linguistic 
understanding likewise "consists in a grasp of the causal relations into which linguistic signs may enter" 
(ibid., p. 44).

Gauker tends to see the role of language as, if you like, directly causal: as a way of getting things done, 
much like reaching out your hand and grabbing a cake. However, the idea that we learn, by experience, 
of the peculiar causal potencies of specific signs and symbols is, in principle, much broader. We might 
even, as in the Vygotskian examples, discover that the self-directed utterance of words and phrases has 
certain effects on our own behavior. 4 We might also learn to exploit language as a tool in a variety of 
even less direct ways, as a means of altering the shape of computational problem spaces (see section 
10.3).

One obvious question raised by the putative role of language as a self-directed tool is "How does it 
work?" What is it about, for example, self-directed speech that fits it to play a guiding role? After all, it 
is not at all clear how we can tell ourselves anything we don't already know! Surely all public language 
can ever be is a medium for expressing ideas already formulated and understood in some other, more 
basic inner code. This is precisely the view that a supra-communicative account of language ultimately 
has to reject. One way to reject it is to depict public language as itself the medium of a special kind of 
thought. Another (by no means exclusive, and not altogether distinct) way is to depict linguaform inputs 
as having distinctive effects on some inner computational device. Carruthers (to appear) champions the 
first of these; Dennett (1991) offers a version of the second.5 Carruthers argues that, in this case at least, 
we 
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should take very seriously the evidence of our own introspection. It certainly often seems as if our very 
thoughts are composed of the words and sentences of public language. And the reason we have this 
impression, Carruthers argues, is because it is true: "… inner thinking is literally done in inner speech." 6 
By extension, Carruthers is able to view many uses of language as less a matter of simple 
communication than a matter of what he nicely terms public thinking. This perspective fits satisfyingly 
with the Vygotskian view championed by Berk and is also applicable to the interesting case of writing 
down our ideas. Carruthers (ibid., p. 56) suggests that "one does not first entertain a private thought and 
then write it down: rather, the thinking is the writing." I shall return to this point later (see section 10.3 
and the epilogue), since I believe that what Carruthers says is almost right but that we can better 
understand the kind of case he has in mind by treating the writing as an environmental manipulation that 
transforms the problem space for human brains.

A further way to unpack a supra-communicative view of language, as has been noted, is to suppose that 
the linguistic inputs actually reprogram or otherwise alter the high-level computational structure of the 
brain itself. The exegesis is delicate (and therefore tentative), but Dennett (1991, p. 278) seems to hold 
such a view when he suggests that "conscious human minds are more-or-less serial virtual machines 
implemented-inefficiently-on the parallel hardware that evolution has provided for us." In this and other 
passages of the same work, the idea seems to be that the bombardment of (something like) parallel-
processing, connectionist, pattern-completing brains by (among other things) public-language texts and 
sentences (reminders, plans, exhortations, questions, etc.) results in a kind of cognitive reorganization 
akin to that which occurs when one computer system simulates another. In such cases, the installation of 
a new program allows the user to treat a serial LISP machine (for example) as if it were a massively 
parallel connectionist device. What Dennett is proposing is, he tells us (ibid., p. 218), the same trick in 
reverse—the simulation of something like a serial logic engine using the altogether different resources 
of the massively parallel neural networks that biological evolution rightly favors for real-world, real-
time survival and action.

Strikingly, Dennett (1995, pp. 370–373) suggests that it is this subtle reprogramming of the brain by 
(primarily) linguistic bombardment that 
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yields the phenomena of human consciousness (our sense of self) and enables us to far surpass the 
behavioral and cognitive achievements of most other animals. Dennett thus depicts our advanced 
cognitive skills as attributable in large part not to our innate hardware (which may differ only in small, 
though important, ways from that of other animals) but to the special way that various plastic 
(programmable) features of the brain are modified by the effects of culture and language. As Dennett 
(1991, p. 219) puts it, the serial machine is installed by courtesy of "myriad microsettings in the 
plasticity of the brain." Of course, mere exposure to culture and language is not sufficient to ensure 
human-like cognition. You can expose a cockroach to all the language you like and get no trace of the 
cognitive transformations Dennett sees in us. Dennett's claim is not that there are no initial hardware-
level differences. Rather it is that some relatively small hardware differences (e.g., between humans and 
chimpanzees) allow us to both create and benefit from public language and other cultural developments 
in ways that lead to a great snowball of cognitive change and augmentation—including, perhaps, the 
literal installation of a new kind of computational device inside the brain.

Dennett's vision is complex and not altogether unambiguous. The view I want to develop is clearly 
deeply related to it, but it differs (I think) in one crucial respect. Whereas Dennett sees public language 
as both a cognitive tool and a source of some profound but subtle reorganization of the brain, I am 
inclined to see it as in essence just a tool—an external resource that complements but does not 
profoundly alter the brain's own basic modes of representation and computation. That is to say, I see the 
changes as relatively superficial ones geared to allowing us to use and exploit various external resource 
to the full. The positions are not, of course, wholly distinct. The mere fact that we often mentally 
rehearse sentences in our heads and use these to guide and alter our behavior means that one cannot and 
should not treat language and culture as wholly external resources. Nonetheless, it remains possible that 
such rehearsal does not involve the use of any fundamentally different kind of computational device in 
the brain so much as the use of the same old (essentially pattern-completing) resources to model the 
special kinds of behavior observed in the world of public language. And, as Paul Churchland (1995, pp. 
264–269) points out, there is indeed a class of connectionist networks 
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("recurrent networks"—see chapter 7 above, Elman 1993, and further discussion in Clark 1993) that 
seem well suited to modeling and supporting such linguistic behavior.

This view of inner rehearsal is nicely developed by the connectionists David Rumelhart, Paul 
Smolensky, James McClelland, and Geoffrey Hinton, who argue that the general strategy of "mentally 
modeling" the behavior of selected aspects of our environment is especially important insofar as it 
allows us to imagine external resources with which we have previously physically interacted, and to 
replay the dynamics of such interactions in our heads. Thus experience with drawing and using Venn 
diagrams allows us to train a neural network which subsequently allows us to manipulate imagined 
Venn diagrams in our heads. Such imaginative manipulations require a specially trained neural resource, 
to be sure, but there is no reason to suppose that such training results in the installation of a different 
kind of computational device. It is the same old process of pattern completion in high-dimensional 
representational spaces, but applied to the special domain of a specific kind of external representation. 
Rumelhart et al., who note the clear link with a Vygotskian image, summarize their view as follows 
(1986, p. 47):

We can be instructed to behave in a particular way. Responding to instructions in this way can be viewed 
simply as responding to some environmental event. We can also remember such an instruction and "tell 
ourselves" what to do. We have, in this way, internalized the instruction. We believe that the process of 
following instructions is essentially the same whether we have told ourselves or have been told what to do. Thus 
even here we have a kind of internalization of an external representational format.

The larger passage (pp. 44–48) from which the above is extracted is remarkably rich and touches on 
several of our major themes. Rumelhart et al. note that such external formalisms are especially hard to 
invent and slow to develop and are themselves the kinds of product that (in an innocently bootstrapping 
kind of way) can evolve only thanks to the linguistically mediated processes of cultural storage and 
gradual refinement over many lifetimes. They also note that by using real external representations we 
put ourselves in a position to use our basic perceptual and motor skills to separate problems into parts 
and to attend to a series of sub-problems, storing intermediate results along the way—an important 
property to which we shall return in section 10.3.
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The tack I am about to pursue likewise depicts language as an external artifact designed to complement 
rather than transfigure the basic processing profile we share with other animals. It does not depict 
experience with language as a source of profound inner reprogramming. Whether it depicts inner 
linguistic rehearsal as at times literally constitutive of specific human cognizings (as Carruthers claims) 
is moot. What matters, I think, is not to try to confront the elusive question "Do we actually think in 
words?" (to which the answer is surely "In a sense yes and in a sense no!"), but to try to see just what 
computational benefits the pattern-completing brain may press from the rich environment of 
manipulable external symbolic structures. Time, then, to beard language in its den.

10.3 Trading Spaces

How might linguistic artifacts complement the activity of the pattern-completing brain? One key role, I 
suggest, is captured by the image of trading spaces: the agent who exploits external symbol structures is 
trading culturally achieved representation against what would otherwise be (at best) time-intensive and 
labor-intensive internal computation. This is, in fact, the very same tradeoff we often make purely 
internally when we stop short of actually manipulating external symbols but instead use our internal 
models of those very symbols to cast a problem in a notational form that makes it easier to solve. And, 
as has often been remarked, it is surely our prior experiences with the manipulations of real external 
symbols that prepares the way for these more self-contained episodes of symbolically simplified 
problem solving.

Examples are legion, and they include the use of the Arabic numeral system (rather than, e.g., roman 
numerals) as a notation for arithmetic problem solving; the use of Venn diagrams for solving problems 
of set theory; the use of the specialized languages of biology, physics, and so on to set up and solve 
complex problems; and the use of lists and schedules as aides to individual planning and group 
coordination. All these cases share an underlying rationale, which is to build some of the knowledge you 
need to solve a problem directly into the resources you use to represent the problem in the first place. 
But the precise details of how the tradeoff is achieved and in what ways it expands our cognitive 
potential vary from 
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case to case. It is useful, then, to distinguish a variety of ways in which we may trade culturally 
transmitted representation against individual computational effort.

The very simplest cases are those that involve the use of external symbolic media to offload memory 
onto the world. Here we simply use the artifactual world of texts, diaries, notebooks, and the like as a 
means of systematically storing large and often complex bodies of data. We may also use simple 
external manipulations (such as leaving a note on the mirror) to prompt the recall, from onboard 
biological memory, of appropriate information and intentions at the right time. Thus, this use of 
linguistic artifacts is perfectly continuous with a variety of simpler environmental manipulations, such as 
leaving an empty olive oil bottle by the door so that you cannot help but run across it (and hence recall 
the need for olive oil) as you set out for the shops.

A slightly more complex case (Dennett 1993) concerns the use of labels as a source of environmental 
simplification. One idea here is that we use signs and labels to provide perceptually simple clues to help 
us negotiate complex environments. Signs for cloakrooms, for nightclubs, and for city centers all fulfill 
this role. They allow a little individual learning to go a very long way, helping others to find their targets 
in new locales without knowing in advance what, in detail, to seek or even where exactly to seek it. 
McClamrock (1995, p. 88) nicely describes this strategy as one in which we "enforce on the 
environment certain kinds of stable properties that will lessen our computational burdens and the 
demands on us for inference."

Closely related, but perhaps less obvious, is the provision, by the use of linguistic labels, of a greatly 
simplified learning environment for important concepts—a role already exemplified and discussed in 
the treatment of the Hutchins's "moon and tide" simulation in chapter 9. The use of simple labels, it 
seems, provides a hefty clue for the learning device, allowing it to shrink enormous search spaces to 
manageable size. 7

More sophisticated benefits of the use of linguistic representation cluster around the use of language in 
coordinating action. We say to others that we will be at a certain place at a certain time. We even play 
this game with ourselves, perhaps by writing down a list of what we will do on what days. One effect of 
such explicit planning is to facilitate the coordination 
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of actions. Thus, if another person knows you have said you'll be at the station at 9:00 A.M., they can 
time their taxi ride accordingly. Or, in the solo case, if you have to buy paint before touching up your 
car, and if you have to go to the shops to buy other items anyway, you can minimize your efforts and 
enforce proper sequencing by following an explicit plan. As the space of demands and opportunities 
grows, it often becomes necessary to use pencil and paper to collect and repeatedly reorganize the 
options, and then to preserve the result as a kind of external control structure available to guide your 
subsequent actions.

Such coordinative functions, thought important, do not exhaust the benefits of explicit (usually language-
based) planning. As Michael Bratman (1987) has pointed out, the creation of explicit plans may play a 
special role in reducing the on-line cognitive load on resource-limited agents like ourselves. The idea 
here is that our plans have a kind of stability that pays dividends by reducing the amount of on-line 
deliberation in which we engage as we go about much of our daily business. Of course, new information 
can, and often does, cause us to revise our plans. But we do not let every slight change prompt a 
reassessment of our plans—even when, other things being equal, we might now choose slightly 
differently. Such stability, Bratman suggests, plays the role of blocking a wasteful process of continual 
reassessment and choice (except, of course, in cases where there is some quite major payoff for the 
disruption). 8 Linguistic exchange and formulation thus plays a key role in coordinating activities (at 
both inter-personal and intra-personal levels) and in reducing the amount of daily on-line deliberation in 
which we engage.

Closely related to these functions of control and coordination is the fascinating but ill-understood role of 
inner rehearsal of speech in manipulating our own attention and guiding our allocation of cognitive 
resources. The developmental results mentioned in section 10.2 (concerning the way self-directed 
speech enhances problem solving) suggest an image of inner speech as an extra control loop capable of 
modulating the brain's use of its own basic cognitive resources. We see such a phenomenon in inter-
personal exchange when we follow written instructions, or when we respond to someone else's vocal 
prompts in learning to drive or to windsurf. When we practice on our own, the mental rehearsal of these 
same sentences acts as a controlling signal that somehow helps us to monitor and correct our own 
behaviors.
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Dreyfus and Dreyfus (1990) have argued that inner rehearsal plays this role only in novice performance 
and that real experts leave behind such linguistic props and supports. But although it is clearly true that, 
for example, expert drivers no longer mentally rehearse such prompts as ''mirror–signal–maneuver," this 
does not show that language-based reason plays no role at all at the expert level. An interesting recent 
study by Kirsh and Maglio (see chapter 3 above) concerns the roles of reaction and linguaform reflection 
in expert performance at the computer game Tetris. Tetris, recall, is a game in which the player attempts 
to accumulate a high score by the compact placement of geometric objects (zoids) which fall down from 
the top of the screen. As a zoid descends, the player can manipulate its fall by rotating it at the resting 
point of its current trajectory. When a zoid comes to rest, a new one appears at the top of the screen. The 
speed of fall increases with score. But (the saving grace) a full row (one in which each screen location is 
filled by a zoid) disappears entirely. When the player falls behind in zoid placement and the screen fills 
up so that new zoids cannot enter it, the game ends. Advanced play thus depends crucially on fast 
decision making. Hence, Tetris provides a clear case of domain in which connectionist, pattern-
completion style reasoning looks required for expert performance. If the model of Dreyfus and Dreyfus 
is correct, moreover, such parallel, pattern-completion-style reasoning should exhaustively explain 
expert skill. But, interestingly, this does not seem to be so. Instead, expert play seems to depend on a 
delicate and non-obvious interaction between a fast, pattern-completion module and a set of explicit 
higher-level concerns or normative policies. The results are preliminary, and it would be inappropriate to 
report them in detail, but the key observation is that true Tetris experts report that they rely not solely on 
a set of fast adaptive responses produced by (as it were) a trained-up network but also on a set of high-
level concerns or policies, which they use to monitor the outputs of the skilled network so as to 
"discover trends or deviations from … normative policy" (Kirsh and Maglio 1991, p. 10). Examples of 
such policies include "don't cluster in the center, but try to keep the contour flat" and "avoid piece 
dependencies" (ibid., pp. 8–9) Now, on the face of it, these are just the kind of rough and ready maxims 
we might (following Dreyfus and Dreyfus) associate with novice players only. Yet attention to these 
normative policies 
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seems to mark especially the play of real experts. Still, we must wonder how such policies can help at 
the level of expert play, given the time constraints on responses. There is just no time for reflection on 
such policies to override on-line output for a given falling zoid.

It is here that Kirsh and Maglio make a suggestive conjecture. The role of the high-level policies, they 
suggest, is probably indirect. Instead of using the policy to override the output of a trained-up network, 
the effect may be to alter the focus of attention for subsequent inputs. The ideas is that the trained-up 
network (or "reactive module," as Kirsh and Maglio put it) will sometimes make moves that lead to 
dangerous situations in which the higher-level policies are not reflected. The remedy is not to override 
the reactive module, but to thereafter manipulate the inputs it receives so as to present feature vectors 
that, when processed by the reactive model in the usual way, will yield outputs in line with policy. As 
Kirsh and Maglio describe it, the normative policies are thus the business of a distinct and highly 
"language-infected" resource that indirectly modulates the behavior of a more basic, fast and fluent 
reactive agency. Just how this indirect modulation is accomplished is, alas, left uncomfortably vague, 
but Kirsh and Maglio speculate that it might work by biasing perceptual attention toward certain danger 
regions or by increasing the resolution of specific visual routines.

The most obvious benefit of the linguistic encoding of thoughts and ideas, is, of course, that such 
encoding formats our ideas into compact and easily transmitted signals that enable other human beings 
to refine them, to critique them, and to exploit them. This is the communicative role, which, I have 
suggested, tends to dominate our intuitive ideas about the role and function of language. But our 
conception even of this familiar role remains impoverished until we see that role in the specific 
computational context provided by broadly connectionist models of the biological brain, for one notable 
feature of such models is the extreme path dependence of their learning routines. For example, a 
compelling series of experiments by Jeff Elman (1994) and others showed that connectionist learning is 
heavily dependent on the sequence of training cases. If the early training goes wrong, the network is 
often unable to recover. A specific network proved able to learn complex grammatical rules from a 
corpus of example sentences only if it had previously been trained on a 
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more basic subset of the examples highlighting (e.g.) verb-subject number agreement. Early exposure to 
the other, more complex grammatical cases (such as long-distance dependences) would lead it into bad 
early "solutions" (local minima) from which it was then unable to escape. 9 Human learning, like 
learning in artificial neural networks, appears to be hostage to at least some degree of path dependence. 
Certain ideas can be understood only once others are in place. The training received by one mind fits it 
to grasp and expand upon ideas which gain no foothold of comprehension in another. The processes of 
formal education, indeed, are geared to take young (and not-so-young) minds along a genuine 
intellectual journey, which may even begin with ideas which are now known to be incorrect but which 
alone seem able to prime the system to later appreciate finer-grained truth. Such mundane facts reflect 
cognitive path dependence—you can't get everywhere from anywhere, and where you are now strongly 
constrains your potential future intellectual trajectories. In fact, such path dependence is nicely 
explained by treating intellectual progress as involving something like a process of computational search 
in a large and complex space. Previous learning inclines the system to try out certain locations in the 
space and not others. When the prior learning is appropriate, the job of learning some new regularity is 
made tractable: the prior learning acts as a filter on the space of options to be explored. Artificial neural 
networks that employ gradient-descent learning (see chapter 3) are especially highly constrained insofar 
as the learning routine forces the network always to explore at the edges of its current weight 
assignments. Since these constitute its current knowledge, it means that such networks cannot "jump 
around" in hypothesis space. The network's current location in weight space (its current knowledge) is 
thus a major constraint on what new "ideas" it can next explore (Elman 1994, p. 94).

In confronting devices that exhibit some degree of path dependence, the mundane observation that 
language allows ideas to be packaged and to migrate between individuals takes on a new force. We can 
now appreciate how such migrations may allow the communal construction of extremely delicate and 
difficult intellectual trajectories and progressions. An idea that only Joe's prior experience could make 
available, but that can flourish only in the intellectual niche currently provided by the brain of Mary, can 
now realize its full potential by journeying between Joe and 
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Mary as and when required. The path to a good idea can now criss-cross individual learning histories so 
that one agent's local minimum becomes another's potent building block. Moreover, the sheer number of 
intellectual niches available within a linguistically linked community provides a stunning matrix of 
possible inter-agent trajectories. The observation that public language allows human cognition to be 
collective (Churchland 1995, p. 270) thus takes on new depth once we recognize the role of such 
collective endeavor in transcending the path-dependent nature of individual human cognition. Even a 
blind and unintelligent search for productive recodings of stored data will now and again yield a 
powerful result. By allowing such results to migrate between individuals, culturally scaffolded reason is 
able to incrementally explore spaces which path-dependent individual reason could never hope to 
penetrate. (For a detailed, statistically based investigation of this claim, see Clark and Thornton, to 
appear.)

This general picture fits neatly with Merlin Donald's (1991) exploratory work on the evolution of culture 
and cognition. Donald recognizes very clearly the crucial role of forms of external scaffolding 
(particularly, of external memory systems) in human thought. But he distinguishes two major types of 
scaffolding, which he terms the mythic and the theoretic. Before the Greeks, Donald claims, various 
external formalisms were in use but were deployed only in the service of myths and narratives. The key 
innovation of the Greeks was to begin to use the written medium to record the processes of thought and 
argument. Whereas previous written records contained only myths or finished theories (which were to 
be learned wholesale and passed down relatively unaltered), the Greeks began to record partial ideas, 
speculations with evidence for and against them, and the like. This new practice allowed partial 
solutions and conjectures to be passed around, amended, completed by others, and so on. According to 
Donald (ibid., p. 343), what was thus created was "much more than a symbolic invention, like the 
alphabet, or a specific external memory medium, such as improved paper or printing"; it was "the 
process of externally encoded cognitive change and discovery."

To complete our initial inventory of the cognitive virtues of linguistically scaffolded thought, consider 
the physical properties of certain external media. As I construct this chapter, for example, I am 
continually 

  



Page 207
 

creating, putting aside, and reorganizing chunks of text. I have files (both paper and on-line) which 
contain all kinds of hints and fragments, stored up over a long period of time, which may be germane to 
the discussion. I have source texts and papers full of notes and annotations. As I (literally, physically) 
move these things about, interacting first with one and then another and making new notes, annotations, 
and plans, the intellectual shape of the chapter grows and solidifies. It is a shape that does not spring 
fully developed from inner cogitations. Instead, it is the product of a sustained and iterated sequence of 
interactions between my brain and a variety of external props. In these cases, I am willing to say, a good 
deal of actual thinking involves loops and circuits that run outside the head and through the local 
environment. Extended intellectual arguments and these are almost always the products of brains acting 
in concert with multiple external resources. These resources enable us to pursue manipulations and 
juxtapositions of ideas and data that would quickly baffle the un-augmented brain. 10 In all these cases, 
the real physical environment of printed words and symbols allows us to search, store, sequence, and 
reorganize data in ways alien to the onboard repertoire of the biological brain.11

The moral is clear. Public speech, inner rehearsal, and the use of written and on-line texts are all potent 
tools that reconfigure the shape of computational space. Again and again we trade culturally achieved 
representation against individual computation. Again and again we use words to focus, clarify, 
transform, offload, and control our own thinkings. Thus understood, language is not the mere imperfect 
mirror of our intuitive knowledge.12 Rather, it is part and parcel of the mechanism of reason itself.

10.4 Thoughts about Thoughts: The Mangrove Effect

If a tree is seen growing on an island, which do you suppose came first? It is natural (and usually 
correct) to assume that the island provided the fertile soil in which a lucky seed came to rest. Mangrove 
forests,13 however, constitute a revealing exception to this general rule. The mangrove grows from a 
floating seed which establishes itself in the water, rooting in shallow mud flats. The seedling sends 
complex vertical roots through 
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the surface of the water, culminating in what looks to all intents and purposes like a small tree posing on 
stilts. The complex system of aerial roots, however, soon traps floating soil, weeds, and debris. After a 
time, the accumulation of trapped matter forms a small island. As more time passes, the island grows 
larger and larger. A growing mass of such islands can eventually merge, effectively extending the 
shoreline out to the trees. Throughout this process, and despite our prior intuitions, it is the land that is 
progressively built by the trees.

Something like the "mangrove effect," I suspect, is operative in some species of human thought. It is 
natural to suppose that words are always rooted in the fertile soil of preexisting thoughts. But 
sometimes, at least, the influence seems to run in the other direction. A simple example is poetry. In 
constructing a poem, we do not simply use words to express thoughts. Rather, it is often the properties 
of the words (their structure and cadence) that determine the thoughts that the poem comes to express. A 
similar partial reversal can occur during the construction of complex texts and arguments. By writing 
down our ideas, we generate a trace in a format that opens up a range of new possibilities. We can then 
inspect and reinspect the same ideas, coming at them from many different angles and in many different 
frames of mind. We can hold the original ideas steady so that we may judge them, and safely experiment 
with subtle alterations. We can store them in ways that allow us to compare and combine them with 
other complexes of ideas in ways that would quickly defeat the unaugmented imagination. In these 
ways, and as was remarked in the previous section, the real properties of physical text transform the 
space of possible thoughts.

Such observations lead me to the following conjecture: Perhaps it is public language that is responsible 
for a complex of rather distinctive features of human thought—viz., the ability to display second-order 
cognitive dynamics. By second-order cognitive dynamics I mean a cluster of powerful capacities 
involving self-evaluation, self-criticism, and finely honed remedial responses. 14 Examples would 
include recognizing a flaw in our own plan or argument and dedicating further cognitive efforts to fixing 
it, reflecting on the unreliability of our own initial judgments in certain types of situations and 
proceeding with special caution as a result, coming to see why we reached a particular conclusion by 
appreciating the 
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logical transitions in our own thought, and thinking about the conditions under which we think best and 
trying to bring them about. The list could be continued, but the patten should be clear. In all these cases, 
we are effectively thinking about our own cognitive profiles or about specific thoughts. This "thinking 
about thinking" is a good candidate for a distinctively human capacity—one not evidently shared by the 
non-language-using animals that share our planet. Thus, it is natural to wonder whether this might be an 
entire species of thought in which language plays the generative role—a species of thought that is not 
just reflected in (or extended by) our use of words but is directly dependent upon language for its very 
existence. Public language and the inner rehearsal of sentences would, on this model, act like the aerial 
roots of the mangrove tree—the words would serves as fixed points capable of attracting and positioning 
additional intellectual matter, creating the islands of second-order thought so characteristic of the 
cognitive landscape of Homo sapiens.

It is easy to see, in broad outline, how this might come about. As soon as we formulate a thought in 
words (or on paper), it becomes an object for ourselves and for others. As an object, it is the kind of 
thing we can have thoughts about. In creating the object, we need have no thoughts about thoughts—but 
once it is there, the opportunity immediately exists to attend to it as an object in its own right. The 
process of linguistic formulation thus creates the stable structure to which subsequent thinkings attach.

Just such a twist on potential role of the inner rehearsal of sentences has been suggested by the linguist 
Ray Jackendoff. Jackendoff (to appear) suggests that the mental rehearsal of sentences may be the 
primary means by which our own thoughts are able to become objects of further attention and reflection. 
The key claim is that linguistic formulation makes complex thoughts available to processes of mental 
attention, and that this, in turn, opens them up to a range of further mental operations. It enables us, for 
example, to pick out different elements of complex thoughts and to scrutinize each in turn. It enables us 
to "stabilize" very abstract ideas in working memory. And it enables us to inspect and criticize our own 
reasoning in ways that no other representational modality allows.

What fits internal sentence-based rehearsal to play such an unusual role? The answer, I suggest, must lie 
in the more mundane (and temporally 
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antecedent) role of language as an instrument of communication. In order to function as an efficient 
instrument of communication, public language will have been molded into a code well suited to the 
kinds of interpersonal exchange in which ideas are presented, inspected, and subsequently criticized. 
And this, in turn, involves the development of a type of code that minimizes contextuality (most words 
retain essentially the same meanings in the different sentences in which they occur), is effectively 
modality-neutral (an idea may be prompted by visual, auditory, or tactile input and yet be preserved 
using the same verbal formula), and allows easy rote memorization of simple strings. 15 By "freezing" 
our own thoughts in the memorable, context-resistant, modality-transcending format of a sentence, we 
thus create a special kind of mental object—an object that is amenable to scrutiny from multiple 
cognitive angles, is not doomed to alter or change every time we are exposed to new inputs or 
information, and fixes the ideas at a high level of abstraction from the idiosyncratic details of their 
proximal origins in sensory input. Such a mental object is, I suggest, ideally suited to figure in the 
evaluative, critical, and tightly focused operations distinctive of second-order cognition. It is an object 
fit for the close and repeated inspections highlighted by Jackendoff under the rubric of attending to our 
own thoughts. The coding system of public language is thus especially apt to be coopted for more 
private purposes of inner display, self-inspection, and self-criticism, exactly as predicted by the 
Vygotskian treatments mentioned in section 10.2 above. Language stands revealed as a key resource by 
which we effectively redescribe16 our own thoughts in a format that makes them available for a variety 
of new operations and manipulations.

The emergence of such second-order cognitive dynamics is plausibly seen as one root of the veritable 
explosion of types and varieties of external scaffolding structures in human cultural evolution. It is 
because we can think about our own thinking that we can actively structure our world in ways designed 
to promote, support, and extend our own cognitive achievements. This process also feeds itself, as when 
the arrival of written text and notation allowed us to begin to fix ever more complex and extended 
sequences of thought and reason as objects for further scrutiny and attention. (Recall Merlin Donald's 
conjectures from the preceding section.)
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Once the apparatus (internal and external) of sentential and text-based reflection is in place, we may 
expect the development of new types of nonlinguistic thought and encoding—types dedicated to 
managing and interacting with the sentences and texts in more powerful and efficient ways. 17 The 
linguistic constructions, thus viewed, are a new class of objects which invite us to develop new (non-
language-based) skills of use, recognition, and manipulation. Sentential and nonsentential modes of 
thought thus coevolve so as to complement, but not replicate, each other's special cognitive virtues.

It is a failure to appreciate this deep complementarity that, I suspect, leads Paul Churchland (one of the 
best and most imaginative neurophilosophers around) to dismiss linguaform expression as just a shallow 
reflection of our "real" knowledge. Churchland fears that without such marginalization we might 
mistakenly depict all thought and cognition as involving the unconscious rehearsal of sentence-like 
symbol strings, and thus be blinded to the powerful pattern-and-prototype-based encodings that appear 
to be biologically and evolutionarily fundamental. But we have now scouted much fertile intermediate 
territory.18 In combining an array of biologically basic pattern-recognition skills with the special 
"cognitive fixatives" of word and text, we (like the mangroves) create new landscapes—new fixed 
points in the sea of thought. Viewed as a complementary cognitive artifact, language can genuinely 
extend our cognitive horizons—and without the impossible burden of recapitulating the detailed 
contents of nonlinguistic thought.

10.5 The Fit of Language to Brain

Consider an ill-designed artifact—for example, an early word-processing program that required 
extraordinary efforts to learn and was clumsy and frustrating to use. An imaginary mutant prodigy who 
found such a program easy would surely have needed neural resources especially pre-tuned to promote 
the speedy acquisition of such competence!

Now consider a superbly designed artifact: the paper clip.19 The person who shows great speed and skill 
at learning to use paper clips need not be a mutant with a specially tuned brain, for the paper clip is itself 
adapted so as to facilitate easy use by beings like us (but not by rats or pigeons) in our office 
environment.
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Suppose (just suppose) that language is like that. That is, it is an artifact that has in part evolved so as to 
be easily acquired and used by beings like us. It may, for instance, exhibit types of phonetic or 
grammatical structure that exploit particular natural biases of the human brain and perceptual system. If 
that were the case, it would look for all the world as if our brains were especially adapted to acquire 
natural language, but in fact it would be natural language that was especially adapted so as to be 
acquired by us, cognitive warts and all.

No doubt the truth lies somewhere in between. Recent conjectures by cognitive scientists (see e.g. 
Newport 1990) do suggest that certain aspects of natural languages (such as morphological structure) 
may be geared to exploiting windowing effects provided by the specific limitations of memory and 
attention found in young humans. And Christiansen (1994) has explicitly argued, from the standpoint of 
connectionist research, that language acquisition is empowered by a kind of symbiotic relationship 
between the users and the language, such that a language can persist and prosper only if it is easily 
learned and used by its human hosts. This symbiotic relationship forces languages to change and adapt 
in ways that promote learning.

Such reverse adaptation, in which natural language is to some extent adapted to the human brain, may be 
important in assessing the extent to which our capacity to learn and to use public language should itself 
be taken as evidence that we are cognitively very dissimilar to other animals. For humans are, it seems, 
the only animals capable of acquiring and fully exploiting the complex, abstract, open-ended symbol 
systems of public language. 20 Nonetheless, we need not suppose that this requires major and sweeping 
computational and neurological differences between us and other animals.21 Instead, relatively minor 
neural changes may have made basic language learning possible for our ancestors, with the process of 
reverse adaptation thereafter leading to linguistic forms that more fully exploit pre-existing, language-
independent cognitive biases (especially those of young humans).22 The human brain, on this model, 
need not differ profoundly from the brains of higher animals. Instead, normal humans benefit from some 
small neurological innovation that, paired with the fantastically empowering environment of 
increasingly reverse-adapted public language, led to the cognitive explosions of human science, culture, 
and learning.

  

javascript:doPopup('Popup','Page_212_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')
javascript:doPopup('Popup','Page_212_Popup_2.html','width=480,height=168,resizable=yes,scrollbars=yes')
javascript:doPopup('Popup','Page_212_Popup_3.html','width=480,height=168,resizable=yes,scrollbars=yes')


Page 213
 

The vague and suggestive notion of reverse adaptation can even be given some (admittedly simplistic) 
quantitative and computational flesh. Hare and Elman (1995) used a ''cultural phylogeny" of 
connectionist networks to model, in some detail, the series of changes that characterized the progression 
from the past-tense system of Old English (circa 870) to the modern system. They showed that the 
historical progression can be modeled, in some detail, by a series of neural networks in which the output 
from one generation is used as the training data for the next. This process yields changes in the language 
itself as the language alters to reflect the learning profiles of its users. Briefly, this is what happens: An 
original network is trained on the Old English forms. A second network is then trained (though not to 
perfection) on the forms produced by the first. This output is then used to train a further network, and so 
on. Crucially, any errors one network makes in learning to perform the mappings become parts of the 
next network's data set. Patterns that are hard to learn and items that are close in form to other, 
differently inflected items tend to disappear. As Hare and Elman (ibid., p. 61) put it: "At the onset, the 
classes [of verbs] differ in terms of their phonological coherence and their class size. Those patterns that 
are initially less common or less well defined are the hardest to learn. And these tend to be lost over 
several generations of learning. This process snowballs as the dominant class gathers in new members 
and this combined class becomes an ever more powerful attractor." By thus studying the interplay 
between the external data set and the processes of individual learning, Hare and Elman were able to 
make some quite fine-grained predictions (borne out by the linguistic facts) about the historical 
progression from Old English to Modern English. The important moral, for our purposes, is that in such 
cases the external scaffoldings of cognition themselves adapt so as to better prosper in the niche 
provided by human brains. The complementarity between the biological brain and its artifactual props 
and supports is thus enforced by coevolutionary forces uniting user and artifact in a virtuous circle of 
mutual modulation.

10.6 Where Does the Mind Stop and the Rest of the World Begin? 23

The complexities of user-artifact dynamics invite reflection on a more general topic: how to conceive 
the boundary between the intelligent system and the world. This boundary, as we saw in previous 
chapters, looks 
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to be rather more plastic than had previously been supposed—in many cases, selected extra-bodily 
resources constitute important parts of extended computational and cognitive processes. Taken to 
extremes, this seepage of the mind into the world threatens to reconfigure our fundamental self-image by 
broadening our view of persons to include, at times, aspects of the local environment. This kind of 
broadening is probably most plausible in cases involving the external props of written text and spoken 
words, for interactions with these external media are ubiquitous (in educated modern cultures), reliable, 
and developmentally basic. Human brains, in such cultures, come to expect the surrounding media of 
text and speech as surely as they expect to function in a world of weight, force, friction, and gravity. 
Language is a constant, and as such it can be safely relied upon as the backdrop against which on-line 
processes of neural computation develop. Just as a neural-network controller for moving an arm to a 
target in space will define its commands to factor in the spring of muscles and the effects of gravity, so 
the processes of onboard reason may learn to factor in the potential contributions of textual offloading 
and reorganization, and vocal rehearsal and exchange. The mature cognitive competencies which we 
identify as mind and intellect may thus be more like ship navigation (see chapter 3) than capacities of 
the bare biological brain. Ship navigation emerges from the well-orchestrated adaptation of an extended 
complex system comprising individuals, instruments, and practices. Much of what we commonly 
identify as our mental capacities may likewise, I suspect, turn out to be properties of the wider, 
environmentally extended systems of which human brains are just one (important) part.

This is a big claim, and I do not expect to convince the skeptics here. But it is not, I think, quite as wild 
as it may at first appear. There is, after all, a quite general difficulty in drawing a firm line between a 
user and a tool. 24 A stone held in one's hand and used to crack a nut is clearly a tool. But if a bird drops 
a nut from the air so that it will break on contact with the ground, is the ground a tool? Some birds 
swallow small stones to aid digestion—are the stones tools, or, once ingested, simply parts of the bird? 
Is a tree, once climbed to escape a predator, a tool? What about a spider's web?

Public language and the props of text and symbolic notation are, I suggest, not unlike the stones 
swallowed by birds. The question "Where does 

  

javascript:doPopup('Popup','Page_214_Popup_1.html','width=480,height=168,resizable=yes,scrollbars=yes')


Page 215
 

the user end and the tool begin?" invites, in both cases, a delicate call. In the light of the larger body of 
our previous discussions, I am at a minimum persuaded of two claims. The first is that some human 
actions are more like thoughts than they at first appear. These are the actions whose true goal is to alter 
the computational tasks that confront the brain as we try to solve a problem—what Kirsh and Maglio 
called "epistemic actions." The second is that certain harms to the environment may have the kind of 
moral significance we normally associate with harm to the person—I am thinking here especially of the 
cases, described in chapter 3 above, of neurologically impaired humans who get along by adding 
especially dense layers of external prompts and supports to their daily surroundings. Tampering with 
these supports, it seems to me, would be more akin to a crime against the person than to a crime against 
property. In a similar vein, Clark and Chalmers (1995) describe the case of a neurologically impaired 
agent who relies heavily on a constantly carried notebook deferring to its contents on numerous daily 
occasions. Wanton destruction of the notebook, in such a case, has an especially worrying moral aspect: 
it is surely harm to the person, in about as literal a sense as can be imagined.

In the light of these concerns and the apparent methodological value (see chapters 3, 4, 6, and 8 above) 
of studying extended brain-body-world systems as integrated computational and dynamic wholes, I am 
convinced that it is valuable to (at times) treat cognitive processes as extending beyond the narrow 
confines of skin and skull. And I am led to wonder whether the intuitive notion of mind itself should not 
be broadened so as to encompass a variety of external props and aids—whether, that is, the system we 
often refer to as "mind" is in fact much wider than the one we call "brain." Such a more general 
conclusion may at first seem unpalatable. One reason, I think, is that we are prone to confuse the mental 
with the conscious. And I assuredly do not seek to claim that individual consciousness extends outside 
the head. It seems clear, however, that not everything that occurs in the brain and constitutes (in current 
scientific usage) a mental or cognitive process is tied up with conscious processing. 25 More plausibly, it 
may be suggested that what keeps real mental and cognitive processes in the head is some consideration 
of portability. That is to say, we are moved by a vision of what might be called the Naked 
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Mind: a vision of the resources and operations we can always bring to bear on a cognitive task, 
regardless of whatever further opportunities the local environment may or may not afford us.

I am sympathetic to this objection. It seems clear that the brain (or perhaps, on this view, the brain and 
body) is a proper and distinct object of study and interest. And what makes it such is precisely the fact 
that it comprises some such set of core, basic, portable cognitive resources. These resources may 
incorporate bodily actions as integral parts of some cognitive processes (as when we use our fingers to 
offload working memory in the context of a tricky calculation). But they will not encompass the more 
contingent aspects of our external environment—the ones that may come and go, such as a pocket 
calculator. Nonetheless, I do not think that the portability consideration can ultimately bear sufficient 
conceptual weight, and for two reasons. First, there is a risk of begging the question. If we ask why 
portability should matter to the constitution of specific mental or cognitive processes, the only answer 
seems to be that we want such processes to come in a distinct, individually mobile package. But this, of 
course, is just to invoke the boundary of skin and/or skull all over again—and it is the legitimacy of this 
very boundary that is in question. Second, it would be easy (albeit a little tedious for the reader) to 
construct a variety of troublesome cases. What if some people always carried a pocket calculator; what 
if we one day have such devices implanted in our brains? What if we have "body docks" for a variety of 
such devices and "dress" each day by adding on devices appropriate for that day's prescribed problem-
solving activity? Nor can the vulnerability of such additional devices to discrete damage or malfunction 
serve to distinguish them, for the biological brain likewise is at risk of losing specific problem-solving 
capacities through lesion or trauma.

The most compelling source of our anxieties, however, probably concerns that most puzzling entity, the 
self. 26 Does the putative spread of mental and cognitive processes out into the world imply some 
correlative (and surely unsettling) leakage of the self into the local surroundings? The answer now looks 
to be (sorry!) "Yes and No." No, because (as has already been conceded) conscious contents supervene 
on individual brains. But Yes, because such conscious episodes are at best snapshots of the self 
considered as an evolving psychological profile. Thoughts, considered 
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only as snapshots of our conscious mental activity, are fully explained, I am willing to say, by the 
current state of the brain. But the flow of reason and thoughts, and the temporal evolution of ideas and 
attitudes, are determined and explained by the intimate, complex, continued interplay of brain, body, and 
world. It is, if you like, a genuine aspect of my psychological profile to be the kind of person who writes 
a book like this—despite the fact that the flow and shape of the ideas expressed depended profoundly on 
a variety of iterated interactions between my biological brain and a small army of external encodings, 
recodings, and structuring resources.

Such liberality about cognitive processes and cognitive profiles must, of course, be balanced by a good 
helping of common sense. Mind cannot usefully be extended willy-nilly into the world. There would be 
little value in an analysis that credited me with knowing all the facts in the Encyclopaedia Britannica 
just because I paid the monthly installments and found space for it in my garage. Nor should the 
distinction between my mind and yours be allowed to collapse just because we are found chatting on the 
bus. What, then, distinguishes the more plausible cases of robust cognitive extension from the rest?

Some important features of the more plausible cases (such as the neurologically impaired agent's 
notebook) can be isolated quickly. The notebook is always there—it is not locked in the garage, or rarely 
consulted. The information it contains is easy to access and use. The information is automatically 
endorsed—not subject to critical scrutiny, unlike the musings of a companion on a bus. Finally, the 
information was originally gathered and endorsed by the current user (unlike the entries in the 
encyclopedia). These conditions may not all be essential. And there may be others I have missed. But 
the overall picture is of a rather special kind of user/artifact relationship—one in which the artifact is 
reliable present, frequently used, personally "tailored," and deeply trusted. Human agents, as we saw on 
numerous occasions in previous chapters, may press all kinds of crucial cognitive and computational 
benefits from interactions with artifacts that lack one or all of these features. But it is probably only 
when something like these conditions are met that we can plausibly argue for an extension of the 
morally resonant notions of self, mind, and agenthood to include aspects of the world beyond the skin. It 
is thus only when 
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the relationship between user and artifact is about as close and intimate as that between the spider and 
the web 27 that the bounds of the self—and not just those of computation and broadly cognitive 
process—threaten to push out into the world.

The crucial point in the case of the agent and the notebook is that the entries in the notebook play the 
same explanatory role,28 with respect to the agent's behavior, as would a piece of information encoded 
in long-term memory. The special conditions (accessibility, automatic endorsement, etc.) are necessary 
to ensure this kind of functional isomorphism. However, even if one grants (as many will not) that such 
an isomorphism obtains, it may be possible to avoid the radical conclusion concerning distributed 
agenthood. An alternative (and, I think, equally acceptable) conclusion would be that the agent remains 
locked within the envelope of skin and skull, but that beliefs, knowledge, and perhaps other mental 
states now depend on physical vehicles that can (at times) spread out to include select aspects of the 
local environment. Such a picture preserves the idea of the agent as the combination of body and 
biological brain, and hence allows us to speak—as we surely should—of the agent's sometimes 
manipulating and structuring those same external resources in ways designed to further extend, offload, 
or transform her own basic problem-solving activities. But it allows also that in this "reaching out" to the 
world we sometimes create wider cognitive and computational webs: webs whose understanding and 
analysis requires the application of the tools and concepts of cognitive science to larger, hybrid entities 
comprising brains, bodies, and a wide variety of external structures and processes.

In sum, I am content to let the notions of self and agency fall where they will. In the final analysis, I 
assert only that we have, at a minimum, good explanatory and methodological reasons to (at times) 
embrace a quite liberal notion of the scope of computation and cognitive processes—one that explicitly 
allows the spread of such processes across brain, body, world, and artifact. Paramount among such 
artifacts are the various manifestations of public language. Language is in many ways the ultimate 
artifact: so ubiquitous it is almost invisible, so intimate it is not clear whether it is a kind of tool or a 
dimension of the user. Whatever the boundaries, we confront at the very least a tightly linked economy 
in which the biological brain is fantastically empowered by some of its strangest and most recent 
creations: words in the air, symbols on the printed page.
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11
Minds, Brains, and Tuna: A Summary in
Brine

The swimming capacities of many fishes, such as dolphins and bluefin tuna, are staggering. These 
aquatic beings far outperform anything that nautical science has so far produced. Such fish are both 
mavericks of maneuverability and, it seems, paradoxes of propulsion. It is estimated that the dolphin, for 
example, is simply not strong enough 1 to propel itself at the speeds it is observed to reach. In attempting 
to unravel this mystery, two experts in fluid dynamics, the brothers Michael and George Triantafyllou, 
have been led to an interesting hypothesis: that the extraordinary swimming efficiency of certain fishes 
is due to an evolved capacity to exploit and create additional sources of kinetic energy in the watery 
environment. Such fishes, it seems, exploit aquatic swirls, eddies, and vortices to "turbocharge" 
propulsion and aid maneuverability. Such fluid phenomena sometimes occur naturally (e.g., where 
flowing water hits a rock). But the fish's exploitation of such external aids does not stop there. Instead, 
the fish actively creates a variety of vortices and pressure gradients (e.g. by flapping its tail) and then 
uses these to support subsequent speedy, agile behavior. By thus controlling and exploiting local 
environmental structure, the fish is able to produce fast starts and turns that make our ocean-going 
vessels look clumsy, ponderous, and laggardly. "Aided by a continuous parade of such vortices,'' 
Triantafyllou and Triantafyllou (1995, p. 69) point out, "it is even possible for a fish's swimming 
efficiency to exceed 100 percent." Ships and submarines reap no such benefits: they treat the aquatic 
environment as an obstacle to be negotiated and do not seek to subvert it to their own ends by 
monitoring and massaging the fluid dynamics surrounding the hull.
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The tale of the tuna 2 reminds us that biological systems profit profoundly from local environmental 
structure. The environment is not best conceived solely as a problem domain to be negotiated. It is 
equally, and crucially, a resource to be factored into the solutions. This simple observation has, as we 
have seen, some far-reaching consequences.
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First and foremost, we must recognize the brain for what it is. Ours are not the brains of disembodied 
spirits conveniently glued into ambulant, corporeal shells of flesh and blood. Rather, they are essentially 
the brains of embodied agents capable of creating and exploiting structure in the world. Conceived as 
controllers of embodied action, brains will sometimes devote considerable energy not to the direct, one-
stop solution of a problem, but to the control and exploitation of environmental structures. Such 
structures, molded by an iterated sequence of brain-world interactions, can alter and transform the 
original problem until it takes a form that can be managed with the limited resources of pattern-
completing, neural-network-style cognition.

Second, we should therefore beware of mistaking the problem-solving profile of the embodied, socially 
and environmentally embedded mind for that of the basic brain. Just because humans can do logic and 
science, we should not assume that the brain contains a full-blown logic engine or that it encodes 
scientific theories in ways akin to their standard expression in words and sentences.3 Instead, both logic 
and science rely heavily on the use and manipulation of external media, especially the formalisms of 
language and logic and the capacities of storage, transmission, and refinement provided by cultural 
institutions and by the use of spoken and written text. These resources, I have argued, are best seen as 
alien but complementary to the brain's style of storage and computation. The brain need not waste its 
time replicating such capacities. Rather, it must learn to interface4 with the external media in ways that 
maximally exploit their peculiar virtues.

Third, we must begin to face up to some rather puzzling (dare I say metaphysical?) questions. For 
starters, the nature and the bounds of the intelligent agent look increasingly fuzzy. Gone is the central 
executive5 in the brain—the real boss who organizes and integrates the activities of multiple special-
purpose subsystems. And gone is the neat boundary between the thinker (the bodiless intellectual 
engine) and the thinker's world. In 
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place of this comforting image we confront a vision of mind as a grab bag of inner agencies whose 
computational roles are often best described by including aspects of the local environment (both in 
complex control loops and in a wide variety of informational transformations and manipulations). In 
light of all this, it may for some purposes be wise to consider the intelligent system as a spatio-
temporally extended process not limited by the tenuous envelope of skin and skull. 6 Less dramatically, 
the traditional divisions among perception, cognition, and action7 look increasingly unhelpful. With the 
demise of the central executive, perception and cognition look harder to distinguish in the brain. And the 
division between thought and action fragments once we recognize that real-world actions often play 
precisely the kinds of functional roles more usually associated with internal processes of cognition and 
computation.
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Fourth (and last), whatever the metaphysical niceties, there are immediate and pressing methodological 
morals. Cognitive science, if the embodied, embedded perspective is even halfway on target, can no 
longer afford the individualistic, isolationist biases that characterized its early decades. We now need a 
wider view—one that incorporates a multiplicity of ecological and cultural approaches as well as the 
traditional core of neuroscience, linguistics, and artificial intelligence. And we need new tools with 
which to investigate effects that span multiple time scales, involve multiple individuals, and incorporate 
complex environmental interactions. A canny combination of Dynamical Systems approaches, real-
world robotics, and large-scale simulations (of evolutionary and collective effects) is, at present, 
probably the best we can do. But such investigations, I argued, must be carefully interlocked with real 
ongoing neuroscientific research, and thus anchored, whenever possible, in knowledge about the 
biological brain. In pursuit of this interlock, it would be folly to simply jettison the hard-won bedrock of 
cognitive scientific understanding that involves ideas of internal representation and computation. The 
true lesson of our investigations of embodied, embedded cognition is not that we somehow succeed 
without representing (or, worse, without computing). Rather, it is that the kinds of internal representation 
and computation we employ are selected so as to complement the complex social and ecological settings 
in which we must act. Thus, we ignore or downplay such wider settings at our intellectual peril.
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And there it is. The end of a long and surely unfinished journey. There were loops, detours, and, to be 
sure, one or two roadblocks more circumnavigated than demolished. Much remains to be done. I hope 
I've pulled together some threads, built a few bridges, and highlighted some pressing issues. Like 
Humpty Dumpty, brain, body, and world are going to take a whole lot of putting back together again. 
But it's worth persevering because until these parts click into place we will never see ourselves aright or 
appreciate the complex conspiracy that is adaptive success.
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Epilogue: A Brain Speaks 1

I am John's brain.2 In the flesh, I am just a rather undistinguished looking gray-white mass of cells. My 
surface is heavily convoluted, and I am possessed of a fairly differentiated internal structure. John and I 
are on rather close and intimate terms; indeed, sometimes it is hard to tell us apart. But at times John 
takes this intimacy a little too far. When that happens, he gets very confused about my role and my 
functioning. He imagines that I organize and process information in ways that echo his own perspective 
on the world. In short, he thinks that his thoughts are, in a rather direct sense, my thoughts. There is 
some truth to this, of course. But things are really rather more complicated than John suspects, as I shall 
try to show.

In the first place, John is congenitally blind to the bulk of my daily activities. At best, he catches 
occasional glimpses and distorted shadows of my real work. Generally speaking, these fleeting glimpses 
portray only the products of my vast subterranean activity, rather than the processes that give rise to 
them. Such products include the play of mental images and the steps in a logical train of thought or flow 
of ideas.

Moreover, John's access to these products is a pretty rough and ready affair. What filters into his 
conscious awareness is somewhat akin to what gets onto the screen display of a personal computer. In 
both cases, what is displayed is just a specially tailored summary of the results of certain episodes of 
internal activity: results for which the user has some particular use. Evolution, after all, would not waste 
time and money (search and energy) to display to John a faithful record of inner goings on unless they 
could help John to hunt, survive, and reproduce. John, as a result, is apprised of only the bare minimum 
of knowledge about my inner activities. All he 
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needs to know is the overall significance of the upshots of a select few of these activities: that part of me 
is in a state associated with the presence of a dangerous predator and that flight is therefore indicated, 
and other things of that sort. What John (the conscious agent) gets from me is thus rather like what a 
driver gets from an electronic dashboard display: information pertaining to the few inner and outer 
parameters to which his gross considered activity can make a useful difference.

A complex of important misapprehensions center around the question of the provenance of thoughts. 
John thinks of me as the point source of the intellectual products he identifies as his thoughts. But, to put 
it crudely, I do not have John's thoughts. John has John's thoughts, and I am just one item in the array of 
physical events and processes that enable the thinking to occur. John is an agent whose nature is fixed 
by a complex interplay involving a mass of internal goings on (including my activity), a particular kind 
of physical embodiment, and a certain embedding in the world. The combination of embodiment and 
embedding provides for persistent informational and physical couplings between John and his 
world—couplings that leave much of John's "knowledge" out in the world and available for retrieval, 
transformation, and use as and when required.

Take this simple example: A few days ago, John sat at his desk and worked rather hard for a sustained 
period of time. Eventually he got up and left his office, satisfied with his day's work. "My brain," he 
reflected (for he prides himself on his physicalism), "has done very well. It has come up with some neat 
ideas." John's image of the events of the day depicted me as the point source of those ideas—ideas 
which he thinks he captured on paper as a mere convenience and a hedge against forgetting. I am, of 
course, grateful that John gives me so much credit. He attributes the finished intellectual products 
directly to me. But in this case, at least, the credit should be extended a little further. My role in the 
origination of these intellectual products is certainly a vital one: destroy me and the intellectual 
productivity will surely cease! But my role is more delicately constituted then John's simple image 
suggests. Those ideas of which he is so proud did not spring fully formed out of my activity. If truth be 
told, I acted rather as a mediating factor in some complex feedback loops encompassing John and 
selected chunks of his local environment. Bluntly, I spent the day in a variety of close and complex 
interactions with a num- 
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ber of external props. Without these, the finished intellectual products would never have taken shape. 
My role, as best I can recall, was to support John's rereading of a bunch of old materials and notes, and 
to react to those materials by producing a few fragmentary ideas and criticisms. These small responses 
were stored as further marks on paper and in margins. Later on, I played a role in the reorganization of 
these marks on clean sheets of paper, adding new on-line reactions to the fragmentary ideas. The cycle 
of reading, responding, and external reorganization was repeated again and again. At the end of the day, 
the "good ideas" with which John was so quick to credit me emerged as the fruits of these repeated little 
interactions between me and the various external media. Credit thus belongs not so much to me as to the 
spatially and temporally extended process in which I played a role.

On reflection, John would probably agree to this description of my role on that day. But I would caution 
him that even this can be misleading. So far, I have allowed myself to speak as if I were a unified inner 
resource contributing to these interactive episodes. This is an illusion which the present literary device 
encourages and which John seems to share. But once again, if truth be told, I am not one inner voice but 
many. I am so many inner voices, in fact, that the metaphor of the inner voice must itself mislead, for it 
surely suggests inner subagencies of some sophistication and perhaps possessing a rudimentary self-
consciousness. In reality, I consist only of multiple mindless streams of highly parallel and often 
relatively independent computational processes. I am not a mass of little agents so much as a mass of 
non-agents, tuned and responsive to proprietary inputs and cleverly orchestrated by evolution so as to 
yield successful purposive behavior in most daily settings. My single voice, then, is no more than a 
literary conceit.

At root, John's mistakes are all variations on a single theme. He thinks that I see the world as he does, 
that I parcel things up as he would, and that I think the way he would report his thoughts. None of this is 
the case. I am not the inner echo of John's conceptualizations. Rather, I am their somewhat alien source. 
To see just how alien I can be, John need only reflect on some of the rather extraordinary and 
unexpected ways that damage to me (the brain) can affect the cognitive profiles of beings like John. 
Damage to me could, for example, result in the selective impairment 
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of John's capacity to recall the names of small manipulable objects yet leave unscathed his capacity to 
name larger ones. The reason for this has to do with my storing and retrieving heavily visually oriented 
information in ways distinct from those I deploy for heavily functionally oriented information; the 
former mode helps pick out the large items and the latter the small ones. The point is that this facet of 
my internal organization is altogether alien to John—it respects needs, principles, and opportunities of 
which John is blissfully unaware. Unfortunately, instead of trying to comprehend my modes of 
information storage in their own terms, John prefers to imagine that I organize my knowledge the way 
he—heavily influenced by the particular words in his language—organizes his. Thus, he supposes that I 
store information in clusters that respect what he calls "concepts" (generally, names that figure in his 
linguistic classifications of worldly events, states, and processes). Here, as usual, John is far too quick to 
identify my organization with his own perspective. Certainly I store and access bodies of 
information—bodies which together, if I am functioning normally, support a wide range of successful 
uses of words and a variety of interactions with the physical and social worlds. But the "concepts" that 
so occupy John's imagination correspond only to public names for grab bags of knowledge and abilities 
whose neural underpinnings are in fact many and various. John's "concepts'' do not correspond to 
anything especially unified, as far as I am concerned. And why should they? The situation is rather like 
that of a person who can build a boat. To speak of the ability to build a boat is to use a simple phrase to 
ascribe a panoply of skills whose cognitive and physical underpinnings vary greatly. The unity exists 
only insofar as that particular grab bag of cognitive and physical skills has special significance for a 
community of seafaring agents. John's "concepts," it seems to me, are just like that: names for 
complexes of skills whose unity rests not on facts about me but on facts about John's way of life.

John's tendency to hallucinate his own perspective onto me extends to his conception of my knowledge 
of the external world. John walks around and feels as if he commands a stable three-dimensional image 
of his immediate surroundings. John's feelings notwithstanding, I command no such thing. I register 
small regions of detail in rapid succession as I fixate first on this and then on that aspect of the visual 
scene. And I do not trouble 

  



Page 227
 

myself to store all that detail in some internal model that requires constant maintenance and updating. 
Instead, I am adept at revisiting parts of the scene so as to re-create detailed knowledge as and when 
required. As a result of this trick, and others, John has such a fluent capacity to negotiate his local 
environment that he thinks he commands a constant inner vision of the details of his surroundings. In 
truth, what John sees has more to do with the abilities I confer on him to interact constantly, in real time, 
with rich external sources of information than with the kind of passive and enduring registration of 
information in terms of which he conceives his own seeings.

The sad fact, then, is that almost nothing about me is the way John imagines it to be. We remain 
strangers despite our intimacy (or perhaps because of it). John's language, introspections, and 
oversimplistic physicalism incline him to identify my organization too closely with his own limited 
perspective. He is thus blind to my fragmentary, opportunistic, and generally alien nature. He forgets 
that I am in large part a survival-oriented device that greatly predates the emergence of linguistic 
abilities, and that my role in promoting conscious and linguaform cognition is just a recent sideline. This 
sideline is, or course, a major root of his misconceptions. Possessed as John is of such a magnificent 
vehicle for the compact and communicable expression and manipulation of knowledge, he often 
mistakes the forms and conventions of that linguistic vehicle for the structure of neural activity itself.

But hope springs eternal (more or less). I am of late heartened by the emergence of new investigative 
techniques, such as non-invasive brain imaging, the study of artificial neural networks, and research in 
real-world robotics. Such studies and techniques bode well for a better understanding of the very 
complex relations among my activity, the local environment, and the patchwork construction of the 
sense of self. In the meantime, just bear in mind that, despite our intimacy, John really knows very little 
about me. Think of me as the Martian in John's head. 3
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Plates

Plate 1

Plate 1 Two-dimensional map of cerebral cortex and major subcortical
visual centers of macaque monkey. The flattened cortical map encompasses

the entire right hemisphere. Source: Van Essen and Gallant 1994.
Courtesy of David Van Essen, Jack Gallant, and Cell Press.

  



 

Plate 2

Plate 2 Responses of two cells in V4 to different cartesian and
noncartesian spatial patterns. Each icon represents a particular

visual stimulus, and its color represents the mean response to that
stimulus relative to the spontaneous background rate, using the

color scale shown above. (A) A neuron that responded maximally
to polar stimuli, particular spirals, and much less hyperbolic and

cartesian gratings (modified, with permission, from Gallant et al. 1993).
(B) A neuron that responded maximally to hyperbolic stimuli of low

to moderate spatial frequencies. Source: Van Essen and Gallant 1994;
courtesy of David Van Essen, Jack Gallant, and Cell Press.



  

 

Plate 3

Plate 3 Robot tuna hanging from carriage in Ocean Engineering Testing
Tank Facility at MIT. Source: Triantafyllou and Triantafyllou 1995.

Photograph by Sam Ogden; used by courtesy of Sam Ogden
and with permission of Scientific American, Inc.

  



 

Plate 4

Plate 4 A forceful flap followed in quick succession by another
in the reverse direction produces a strong, sudden thrust well

suited to pouncing on prey or making a fast getaway.
The initial flap makes a large vortex (1); the second flap creates
a different, counterrotating vortex (2, 3). A strong forward thrust

and a stray but manageable lateral force result when the two
vortices meet and combine to create a jet and are pushed away
from the tail, weakening each other (4). Source: Triantafyllou

and Triantafyllou 1995; courtesy of M. S. and G. S.
Triantafyllou and of Scientific American, Inc.

  


	Contents



