
Chapter 3

Neural Decoding

3.1 Encoding and Decoding

In chapters 1 and 2, we considered the problem of predicting neural re-
sponses to known stimuli. The nervous system faces the reverse problem,
determining what is going on in the real world from neuronal spiking pat-
terns. It is interesting to attempt such computations ourselves, using the
responses of one or more neurons to identify a particular stimulus or to ex-
tract the value of a stimulus parameter. We will assess the accuracy with
which this can be done primarily by using optimal decoding techniques,
regardless of whether the computations involved seem biologically plausi-
ble. Some biophysically realistic implementations are discussed in chapter
7. Optimal decoding allows us to determine limits on the accuracy and re-
liability of neuronal encoding. In addition, it is useful for estimating the
information content of neuronal spike trains, an issue addressed in chapter
4.

As we discuss in chapter 1, neural responses, even to a single repeated
stimulus, are typically described by stochastic models due to their inher-
ent variability. In addition, the stimuli themselves are often described
stochastically. For example, the stimuli used in an experiment might be
drawn randomly from a specified probability distribution. Natural stim-
uli can also be modeled stochastically as a way of capturing the statistical
properties of complex environments.

Given this two-fold stochastic model, encoding and decoding are re-
lated through a basic identity of probability theory called Bayes theo-
rem. Let r represent the response of a neuron or a population of neurons
to a stimulus characterized by a parameter s. Throughout this chapter,
r = (r1, r2, . . . , rN) for N neurons is a list of spike-count firing rates, al-
though, for the present discussion, it could be any other set of parameters
describing the neuronal response. Several different probabilities and con-
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2 Neural Decoding

ditional probabilities enter into our discussion. A conditional probabilityconditional
probability is just an ordinary probability of an event occurring except that its occur-

rence is subject to an additional condition. The conditional probability of
an event A occurring subject to the condition B is denoted by P[A|B]. The
probabilities we need are:

• P[s], the probability of stimulus s being presented. This is often
called the prior probability,prior probability

• P[r], the probability of response r being recorded,

• P[r, s], the probability of stimulus s being presented and response r
being recorded,

• P[r|s], the conditional probability of evoking response r given that
stimulus s was presented, and

• P[s|r], the conditional probability that stimulus s was presented
given that the response r was recorded.

Note that P[r|s] is the probability of observing the rates r given that the
stimulus took the value s, while P[r] is the probability of the rates taking
the values r independent of what stimulus was used. P[r] can be com-
puted from P[r|s] by summing over all stimulus values weighted by their
probabilities,

P[r] =
∑

s

P[r|s]P[s] and similarly P[s] =
∑

r

P[s|r]P[r] . (3.1)

An additional relationship between the probabilities listed above can be
derived by noticing that P[r, s] can be expressed as either the conditional
probability P[r|s] times the probability of the stimulus, or as P[s|r] times
the probability of the response,

P[r, s] = P[r|s]P[s] = P[s|r]P[r] . (3.2)

This is the basis of Bayes theorem relating P[s|r] to P[r|s],Bayes theorem

P[s|r] = P[r|s]P[s]
P[r]

, (3.3)

assuming that P[r] �= 0. Encoding is characterized by the set of probabili-
ties P[r|s] for all stimuli and responses. Decoding a response, on the other
hand, amounts to determining the probabilities P[s|r]. According to Bayes
theorem, P[s|r] can be obtained from P[r|s], but the stimulus probability
P[s] is also needed. As a result, decoding requires knowledge of the statis-
tical properties of experimentally or naturally occurring stimuli.

In the above discussion, we have assumed that both the stimulus and re-
sponse are characterized by discrete values so that ordinary probabilities,
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3.2 Discrimination 3

not probability densities, are used to describe their distributions. For ex-
ample, firing rates obtained by counting spikes over the duration of a trial
take discrete values and can be described by a probability. However, we
sometimes treat the response firing rates or the stimulus values as contin-
uous variables. In this case, the probabilities listed must be replaced by
the corresponding probability densities, p[r], p[r|s], etc. Nevertheless, the
relationships discussed above are equally valid.

In the following sections, we present examples of decoding that involve
both single neurons and neuronal populations. We first study a restricted
case of single-cell decoding, discrimination between two different stimu-
lus values. We then consider extracting the value of a parameter that char-
acterizes a static stimulus from the responses of a population of neurons.
As a final example, we return to single neurons and discuss spike-train
decoding in which an estimate of a time-varying stimulus is constructed
from the spike train it evokes.

3.2 Discrimination

To introduce the notion of discriminability and the receiver operating char-
acteristic that lie at the heart of discrimination analysis, we will discuss a
fascinating study performed by Britten, Shadlen, Newsome and Movshon
(1992). In their experiments, a monkey was trained to discriminate be-
tween two directions of motion of a visual stimulus. The stimulus was a
pattern of dots on a video monitor that jump from random initial locations
to new locations every 45 ms. To introduce a sense of directed movement
at a particular velocity, a percentage of the dots move together by a fixed
amount in a fixed direction (figure 3.1). The coherently moving dots are
selected randomly at each time step, and the remaining dots move to ran-
dom new locations. The percentage of dots that move together in the fixed
direction is called the coherence level. At 0% coherence, the image appears
chaotic with no sense of any particular direction of motion. As the coher-
ence increases, a sense of movement in a particular direction appears in the
image, until, at 100% coherence, the entire array of dots moves together on
the monitor. By varying the degree of coherence, the task of detecting the
movement direction can be made more or less difficult.

The experiments combined neural recording with behavioral measure-
ments. In the behavioral part, the monkey had to report the direction of
motion in the random dot images. During the same task, recordings were
made from neurons in area MT. Only two different possible directions of
coherent movement of the dots were used while a particular neuron was
being recorded; either the direction that produced the maximum response
in that neuron, or the opposite direction. The monkey’s task was to dis-
criminate between these two directions. The filled circles and solid curve
in figure 3.2A show the proportion of correct responses in a typical ex-
periment. Below 1% coherence, the responses were near chance (fraction
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4 Neural Decoding

0% coherence 50% coherence 100% coherence

Figure 3.1: The moving random-dot stimulus for different levels of coherence.
The visual image consists of randomly placed dots that jump every 45 ms accord-
ing to the scheme described in the text. At 0% coherence the dots move randomly.
At 50% coherence, half the dots move randomly and half move together (upwards
in this example). At 100% coherence all the dots move together. (Adapted from
Britten et al., 1992.)

correct = 0.5), but the monkey approached perfect performance (fraction
correct = 1) above 10% coherence.
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Figure 3.2: Behavioral and electrophysiological results from a random dot motion
discrimination task. A) The filled circles show the fraction of correct discrimina-
tions made by the monkey as a function of the degree of coherence of the mo-
tion. The open circles show the discrimination accuracy that an ideal observer
could achieve on the analogous two-alternative forced choice discrimination task
given the neural responses. B) Firing rate histograms for three different levels of
coherence. Hatched rectangles show the results for motion in the plus direction
and solid rectangles for motion in the minus direction. The histograms have been
thinned for clarity so that not all the bins are shown. (Adapted from Britten et al.,
1992 .)
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3.2 Discrimination 5

Figure 3.2B shows histograms of average firing rates in response to differ-
ent levels of movement coherence. The firing rates plotted are the number
of spikes recorded during the 2 s period that the stimulus was presented,
divided by 2 s. The neuron shown tended to fire more spikes when the
motion was in its preferred direction, which we will call the plus (or ‘+’)
direction (hatched histogram), than in the other, minus (or ‘−’) direction
(solid histogram). At high coherence levels, the firing-rate distributions
corresponding to the two directions are fairly well separated, while at low
coherence levels, they merge. Although spike count rates only take dis-
crete values, it is more convenient to treat r as a continuous variable for our
discussion. Treated as probability densities, these two distributions are
approximately Gaussian with the same variance, σ2

r , but different means,
〈r〉+ for the plus direction and 〈r〉− for the minus direction. A convenient
measure of the separation between the distributions is the discriminability discriminability d′

d′ = 〈r〉+ − 〈r〉−
σr

(3.4)

which is the distance between the means in units of their common stan-
dard deviation. The larger d′, the more separated the distributions.

In the example we are considering, decoding involves using the neural re-
sponse to determine in which of the two possible directions the stimulus
moved. A simple decoding procedure is to determine the firing rate r dur-
ing a trial and compare it to a threshold number z. If r≥ z, we report plus;
otherwise we report minus. Figure 3.2B suggests that if we choose z to
lie somewhere between the two distributions, this procedure will give the
correct answer at high coherence, but will have difficultly distinguishing
the two directions for low coherence. This difficulty is clearly related to
the degree to which the two distributions in figure 3.2B overlap, and thus
to the discriminability.

The probability that the procedure outlined in the previous paragraph will
generate the correct answer (called a hit) when the stimulus is moving in
the plus direction is the conditional probability that r≥z given a plus stim-
ulus, P[r≥z|+]. The probability that it will give the answer plus when the
stimulus is actually moving in the minus direction (called a false alarm)
is similarly P[r ≥ z|−]. These two probabilities completely determine the
performance of the decoding procedure because the probabilities for the
other two cases, i.e. reporting minus when the correct answer is plus, and
reporting minus when the correct answer is minus, are 1−P[r≥ z|+] and
1−P[r ≥ z|−] respectively. In signal detection theory, the quantity used
to perform the discrimination, r in our case, is called the test, and the
two probabilities corresponding to reporting a plus answer have specific test size and power

or false alarm and
hit rate

names:

α(z) = P[r ≥ z|−] is the size or false alarm rate of the test, and
β(z) = P[r ≥ z|+] is the power or hit rate of the test .

(3.5)
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6 Neural Decoding

The following table shows how the probabilities of the test giving correct
and incorrect answers in the different cases depend on α and β.

probability
stimulus correct incorrect

+ β 1 − β

− 1 − α α

The performance of the decoding procedure we have been discussing
depends critically on the value of the threshold z to which the rate r
is compared. Obviously, we would like to use a threshold for which
the size is near 0 and the power near 1. In general, it is impossible to
choose the threshold so that both the size and power of the test are opti-
mized; a compromise must be made. A logical optimization criterion is
to maximize the probability of getting a correct answer, which is equal to
(β(z) + 1 − α(z))/2 if the plus and minus stimuli occur with equal proba-
bility. While this is a possible approach for the experiment we are study-
ing, the analysis we present introduces a powerful technique that makes
better use of the full range of recorded data and can be generalized to tasks
where the optimal strategy is unknown. This approach makes use of ROC
curves, which indicate how the size and power of a test trade off as the
threshold is varied.

ROC Curves

The receiver operating characteristic (ROC) curve provides a way of eval-
uating how test performance depends on the choice of the threshold z.receiver operating

characteristic, ROC Each point on an ROC curve corresponds to a different value of z. The x
coordinate of the point is α, the size of the test for this value of z, and the
y coordinate is β, its power. As the threshold is varied continuously, these
points trace out the ROC plot. If z=0, the firing rate will always be greater
than or equal to z, so the decoding procedure will always give the answer
plus. Thus, for z = 0, α=β=1, producing a point at the upper-right corner
of the ROC plot. At the other extreme, if z is very large, r will always be
less than z, the test will always report minus, and α=β=0. This produces
a point at the bottom-left corner of the plot. Between these extremes, a
curve is traced out as a function of z.

Figure 3.3 shows ROC curves computed by Britten et al. for several dif-
ferent values of the stimulus coherence. At high coherence levels, when
the task is easy, the ROC curve rises rapidly from α(z) = 0, β(z) = 0 as the
threshold is lowered from a very high value, and the probability β(z) of a
correct plus answer quickly approaches 1 without a concomitant increase
in α(z). As the threshold is lowered further, the probability of giving the
answer ‘plus’ when the correct answer is ‘minus’ also rises, and α(z) in-
creases. When the task is difficult, the curve rises more slowly as z is low-
ered; and if the task is impossible, in that the test merely gives random
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3.2 Discrimination 7
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Figure 3.3: ROC curves for a variety of motion coherence levels. Each curve is the
locus of points (α(z), β(z)) for all z values. The values of α and β were computed
from histograms such as those in figure 3.2B. The diagonal line is the ROC curve
for random guessing. (Adapted from Britten et al., 1992.)

answers, the curve will lie along the diagonal α=β, because the probabil-
ities of answers being correct and incorrect are equal. This is exactly the
trend of the ROC curves at different coherence levels shown in figure 3.3.

Examination of figure 3.3 suggests a relationship between the area under
the ROC curve and the level of performance on the task. When the ROC
curve in figure 3.3 lies along the diagonal, the area underneath it is 1/2,
which is the probability of a correct answer in this case (given any thresh-
old). When the task is easy and the ROC curve hugs the left axis and upper
limit in figure 3.3, and the area under it approaches one, which is again the
probability of a correct answer (given an appropriate threshold). However,
the precise relationship between task performance and the area under the
ROC curve is complicated by the fact that different threshold values can be
used. This ambiguity can be removed by considering a slightly different
task, called two-alternative forced choice. Here, the stimulus is presented two-alternative

forced choice testtwice, once with motion in the plus direction and once in the minus di-
rection. The task is to decide which presentation corresponded to the plus
direction given the firing rates on both trials, r1 and r2. A natural extension
of the test procedure we have been discussing is to answer trial 1 if r1 ≥r2
and otherwise answer trial 2. This removes the threshold variable from
consideration.

In the two-alternative forced choice task, the value of r on one trial serves
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8 Neural Decoding

as the threshold for the other trial. For example, if the order of stimu-
lus presentation is plus then minus, the comparison procedure we have
outlined will report the correct answer if r1 ≥ z where z= r2, and this has
probability P[r1 ≥ z|+] = β(z) with z = r2. To determine the probability
of getting the correct answer in a two-alternative forced choice task, we
need to integrate this probability over all possible values of r2 weighted
by their probability of occurrence. For small 
z, the probability that r2
takes a value in the range between z and z+
z when the second trial has
a minus stimulus is p[z|−]
z, where p[z|−] is the conditional firing rate
probability density for a firing rate r = z. Integrating over all values of z
gives the probability of getting the correct answer,

P[correct] =
∫ ∞

0
dz p[z|−]β(z) . (3.6)

Because the two-alternative forced choice test is symmetric, this is also the
probability of being correct if the order of the stimuli is reversed.

The probability that r ≥ z for a minus stimulus, which is just α(z), can
be written as an integral of the conditional firing-rate probability density
p[r|−],

α(z) =
∫ ∞

z
dr p[r|−] . (3.7)

Taking the derivative of this equation with respect to z we find that

dα

dz
= −p[z|−] . (3.8)

This allows us to make the replacement dz p[z|−] → −dα in the integral
of equation 3.6 and to change the integration variable from z to α. Noting
that α=1 when z=0 and α=0 when z=∞, we find

P[correct] =
∫ 1

0
dαβ . (3.9)

The ROC curve is just β plotted as a function or α, so this integral is exactly
the area under the ROC curve. Thus, the area under the ROC curve is
exactly the probability of error in the two-alternative forced choice test.

Suppose that p[r|+] and p[r|−] are both Gaussian functions with means
〈r〉+ and 〈r〉−, and a common variance σ2

r . The reader is invited to show
that, in this case,

P[correct] = 1
2

erfc
( 〈r〉− − 〈r〉+

2σr

)
= 1

2
erfc

(
−d′

2

)
(3.10)

where d′ is the discriminability defined in equation 3.4 and erfc(x) is thecomplementary
error function complementary error function (whose values are closely related to the area

under the tail of a Gaussian distribution) defined as

erfc(x) = 2√
π

∫ ∞

x
dy exp(−y2) . (3.11)

Peter Dayan and L.F. Abbott Draft: December 17, 2000



3.2 Discrimination 9

In the case that the distributions are equal-variance Gaussians, the rela-
tionship between the discriminability and the area under the ROC curve
is invertible because the complementary error function is monotonic. It is
common to quote d′ values even for non-Gaussian distributions by invert-
ing the relationship between P[correct] and d′ in equation 3.10.

ROC Analysis of Motion Discrimination

To interpret their experiment as a two-alternative forced choice task, Brit-
ten et al. imagined that, in addition to being given the firing rate of the
recorded neuron during stimulus presentation, the observer is given the
firing rate of a hypothetical ‘anti-neuron’ having exactly the opposite re-
sponse characteristics from the recorded neuron. In reality, the responses
of this anti-neuron to a plus stimulus were just those of the recorded neu-
ron to a minus stimulus, and vice versa. The idea of using the responses
of a single neuron to opposite stimuli as if they were the simultaneous
responses of two different neurons reappears again in our discussion of
spike train decoding. An observer predicting motion directions on the ba-
sis of just these two neurons at a level equal to the area under the ROC
curve is termed an ideal observer.

Figure 3.2A shows a typical result for the performance of an ideal observer
using one recorded neuron and its anti-neuron partner. The open circles in
figure 3.2A were obtained by calculated the areas under the ROC curves
for this neuron. Amazingly, the ability of the ideal observer to perform
the discrimination task using a single neuron/anti-neuron pair is equal to
the ability of the monkey to do the task. Although the choices of the ideal
observer and the monkey do not necessarily match on a trial-to-trial basis,
their performances are comparable when averaged over trials. This seems
remarkable because the monkey presumably has access to a large popula-
tion of neurons, while the ideal observer uses only two. One speculation
is that correlations in the response variability between neurons limit the
performance of the monkey.

The Likelihood Ratio Test

The discrimination test we have considered compares the firing rate to a
threshold value. Could an observer do better than this already remark-
able performance by comparing some other function of the firing rate to
a threshold? What is the best test function to use for this purpose? The
Neyman-Pearson lemma (proven in appendix A) shows that it is impossi- Neyman-Pearson

lemmable to do better than to chose the test function to be the ratio of probability
densities (or, where appropriate, probabilities),

l(r) = p[r|+]
p[r|−]

, (3.12)

Draft: December 17, 2000 Theoretical Neuroscience



10 Neural Decoding

which is known as the likelihood ratio. The test function r used above islikelihood ratio
not equal to the likelihood ratio. However, if the likelihood is a mono-
tonically increasing function of r, as it is for the data of Britten et al., the
firing-rate threshold test is equivalent to using the likelihood ratio and is
indeed optimal. Similarly, any monotonic function of the likelihood ratio
will provide as good a test as the likelihood itself, and the logarithm is
frequently used.

There is a direct relationship between the likelihood ratio and the ROC
curve. As in equations 3.7 and 3.8, we can write

β(z) =
∫ ∞

z
dr p[r|+]

dβ
dz

= −p[z|+] . (3.13)

Combining this result with 3.8, we find that

dβ
dα

= dβ
dz

dz
dα

= p[z|+]
p[z|−]

= l(z) , (3.14)

so the slope of the ROC curve is equal to the likelihood ratio.

Another way of seeing that comparing the likelihood ratio to a threshold
value is an optimal decoding procedure for discrimination uses a Bayesian
approach based on associating a cost or penalty with getting the wrong
answer. Suppose that the penalty associated with answering minus when
the correct answer is plus is quantified by the loss parameter L−. Similarly,loss parameter
quantify the loss for answering plus when the correct answer is minus as
L+. For convenience, we assume that there is neither loss nor gain for
answering correctly. The probabilities that the correct answer is plus or
minus given the firing rate r are P[+|r] and P[−|r] respectively. These
probabilities are related to the conditional firing-rate probability densities
by Bayes Theorem,

P[+|r] = p[r|+]P[+]
p[r]

and P[−|r] = p[r|−]P[−]
p[r]

. (3.15)

The average loss expected for a plus answer when the firing rate is r is the
loss associated with being wrong times the probability of being wrong,
Loss+ = L+P[−|r]. Similarly the expected loss when answering minus is
Loss− = L−P[+|r]. A reasonable strategy is to ‘cut the losses’, answering
plus if Loss+ ≤ Loss− and minus otherwise. Using equation 3.15, we find
that this strategy gives the response plus if

l(r) = p[r|+]
p[r|−]

≥ L+
L−

P[−]
P[+]

. (3.16)

This shows that the strategy of comparing the likelihood ratio to a thresh-
old is a way of minimizing the expected loss. The right hand side of this in-
equality gives an explicit formula for the value of the threshold that should
be used, and reflects two factors. One is the relative losses for the two sorts
of possible errors. The other is the prior probabilities that the stimulus is
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3.3 Population Decoding 11

plus or minus. Interestingly, it is possible to change the thresholds that
human subjects use in discrimination tasks by manipulating these two fac-
tors.

If the conditional probability densities p[r|+] and p[r|−] are Gaussians
with means r+ and r− and identical variances σ2

r , and P[+] = P[−] = 1/2,
the probability P[+|r] is a sigmoidal function of r

P[+|r] = 1
1 + exp(−d′(r − rave)/σr)

(3.17)

where rave = (r+ + r−)/2. This provides an alternate interpretation of the
parameter d′ that is often used in the psychophysics literature; it deter-
mines the slope of a sigmoidal fit to P[+|r].

We have so far considered discriminating between two quite distinct stim-
ulus values, plus and minus. Often we are interested in discriminating
between two stimulus values s+
s and s that are very close to each other.
In this case, the likelihood ratio is

p[r|s+
s]
p[r|s]

≈ p[r|s] + 
s∂p[r|s]/∂s
p[r|s]

= 1 + 
s
∂ ln p[r|s]

∂s
.

For small 
s, a test that compares

Z(r) = ∂ ln p[r|s]
∂s

(3.18)

to a threshold (z − 1)/
s is equivalent to the likelihood ratio test. The
function Z(r) is sometimes called the score. score Z(r)

3.3 Population Decoding

The use of large numbers of neurons to perform tasks is one of the ba-
sic operating principles of most nervous systems. Population coding has a
number of advantages, including reduction of uncertainty due to neuronal
variability and the ability to represent a number of different stimulus at-
tributes simultaneously. Individual neurons in such a population typically
have different but overlapping selectivities so that many neurons, but not
necessarily all, respond to a given stimulus. In the previous section, we
discussed discrimination between stimuli on the basis of the response of
a single neuron. The responses of a population of neurons can also be
used for discrimination, with the only essential difference being that terms
such as p[r|s] are replaced by p[r|s], the conditional probability density of
the population response r. ROC analysis, likelihood ratio tests, and the
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12 Neural Decoding

Neyman-Pearson lemma continue to apply in exactly the same way. Dis-
crimination is a special case of decoding in which only few different stim-
ulus values are considered. A more general problem is the extraction of a
continuous stimulus parameter from one or more neuronal responses. In
this section, we study how the value of a continuous parameter associated
with a static stimulus can be decoded from the spike-count firing rates of
a population of neurons.

Encoding and Decoding Direction

The cercal system of the cricket, used to report the direction of incom-
ing air currents as a warning of approaching predators, is an interesting
example of population coding involving a relatively small number of neu-
rons. Crickets and other related insects have two appendages called cerci
extending from their hind ends. These are covered with hairs that are de-
flected by air currents. Each hair is attached to a neuron that fires when
the hair is deflected. Thousands of these primary sensory neurons send
axons to a set of interneurons that relay the sensory information to the rest
of the cricket’s nervous system. No single interneuron of the cercal system
responds to all wind directions, and multiple interneurons respond to any
given wind direction. This implies that the interneurons encode the wind
direction collectively as a population.

Theunissen and Miller (1991) measured both the mean and the variance
of responses of cercal interneurons while blowing air currents at the cerci.
At low wind velocities, information about wind direction is encoded by
just four interneurons. Figure 3.4 shows average firing rate tuning curves
for the four relevant interneurons as a function of wind direction. These
neurons are sensitive primarily to the angle of the wind around the ver-

360270180900
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Figure 3.4: Tuning curves for the four low-velocity interneurons of the cricket cer-
cal system plotted as a function of the wind direction s. Each neuron responds with
a firing rate that closely approximated by a half-wave rectified cosine function. The
preferred directions of the neurons are located 90◦ from each other, and rmax values
are typically around 40 Hz. Error bars show standard deviations. (Adapted from
Theunissen and Miller, 1991.)
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3.3 Population Decoding 13

tical axis and not to its elevation above the horizontal plane. Wind speed
was held constant in these experiments so we do not discuss how it is
encoded. The interneuron tuning curves are well approximated by half-
wave rectified cosine functions. Neuron a (where a = 1,2,3,4) responds
with a maximum average firing rate when the angle of the wind direction
is sa, the preferred direction angle for that neuron. The tuning curve for
interneuron a in response to wind direction s, 〈ra〉 = fa(s), normalized to
its maximum, can be written as cosine tuning(

f (s)
rmax

)
a
= [(cos(s − sa)]+ (3.19)

where the half-wave rectification eliminates negative firing rates. Here
rmax, which may be different for each neuron, is a constant equal to the
maximum average firing rate. The fit can be improved somewhat by in-
troducing a small offset rate, but the simple cosine is adequate for our
purposes.

To determine the wind direction from the firing rates of the cercal interneu-
rons it is useful to change the notation somewhat. In place of the angle s,
we can represent wind direction by a spatial vector �v pointing parallel to
the wind velocity and having unit length, |�v|= 1 (we use over-arrows to
denote spatial vectors). Similarly, we can represent the preferred wind di-
rection for each interneuron by a vector �ca of unit length pointing in the
direction specified by the angle sa. In this case, we can use the vector dot
product to write �v · �ca = cos(s−sa). In terms of these vectors, the average dot product
firing rate is proportional to a half-wave rectified projection of the wind
direction vector onto the preferred direction axis of the neuron,(

f (s)
rmax

)
a
= [�v · �ca

]
+ . (3.20)

Decoding the cercal system is particularly easy because of the close rela-
tionship between the representation of wind direction it provides and a
two-dimensional Cartesian coordinate system. In a Cartesian system, vec-
tors are parameterized by their projections onto x and y axes, vx and vy.
These projections can be written as dot products of the vector being rep-
resented, �v, with vectors of unit length �x and �y lying along the x and y
axes, vx = �v · �x and vy = �v · �y. Except for the half-wave rectification, these
equations are identical to 3.20. Furthermore, the preferred directions of
the four interneurons, like the x and y axes of a Cartesian coordinate sys-
tem, lie along two perpendicular directions (figure 3.5A). Four neurons are
required, rather than two, because firing rates cannot represent negative
projections. The cricket discovered the Cartesian coordinate system long
before Descartes, but failed to invent negative numbers! Perhaps credit
should also be given to the leech, for Lewis and Kristan (1998) have shown
that the direction of touch sensation in its body segments is encoded by
four neurons in a virtually identical arrangement.

A vector �v can be reconstructed from its Cartesian components through the
component-weighted vector sum �v = vx �x+vy �y. Because the firing rates of
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Figure 3.5: A) Preferred directions of four cercal interneurons in relation to the
cricket’s body. The firing rate of each neuron for a fixed wind speed is propor-
tional to the projection of the wind velocity vector �v onto the preferred direction
axis of the neuron. The projection directions �c1, �c2, �c3 and �c4 for the four neurons
are separated by 90◦, and they collectively form a Cartesian coordinate system.
B) The root-mean-square error in the wind direction determined by vector decod-
ing of the firing rates of four cercal interneurons. These results were obtained
through simulation by randomly generating interneuron responses to a variety of
wind directions, with the average values and trial-to-trial variability of the firing
rates matched to the experimental data. The generated rates were then decoded
using equation 3.21 and compared to the wind direction used to generate them. (B
adapted from Salinas and Abbott, 1994.)

the cercal interneurons we have been discussing are proportional to the
Cartesian components of the wind direction vector, a similar sum should
allow us to reconstruct the wind direction from a knowledge of the in-
terneuron firing rates, except that four, not two, terms must be included.
If ra is the spike-count firing rate of neuron a, an estimate of the wind di-
rection on any given trial can be obtained from the direction of the vectorpopulation vector

�vpop =
4∑

a=1

(
r

rmax

)
a
�ca . (3.21)

This vector is known as the population vector, and the associated decod-
ing method is called the vector method. This decoding scheme works quitevector method
well. Figure 3.5B shows the root-mean-square difference between the di-
rection determined by equation 3.21 and the actual wind direction that
evoked the firing rates. The difference between the decoded and actual
wind directions is around 6◦ except for dips at the angles corresponding
to the preferred directions of the neurons. These dips are not due to the
fact that one of the neurons responds maximally, but rather arise because
the two neurons with tuning curves adjacent to the maximally responding
neuron are most sensitive to wind direction at these points.

As discussed in chapter 1, tuning curves of certain neurons in the primary
motor cortex (M1) of the monkey can be described by cosine functions of
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3.3 Population Decoding 15

arm movement direction. Thus, a vector decomposition similar to that of
the cercal system appears to take place in M1. Many M1 neurons have
nonzero offset rates so they can represent the cosine function over most or
all of its range. When an arm movement is made in the direction repre-
sented by a vector of unit length, �v, the average firing rates for such an M1
neuron, labeled by an index a, (assuming that it fires over the entire range
of angles) can be written as( 〈r〉 − r0

rmax

)
a
=

(
f (s) − r0

rmax

)
a
= �v · �ca (3.22)

where �ca is the preferred direction vector that defines the selectivity of
this neuron. Because these firing rates represent the full cosine function,
it would, in principle, be possible to encode all movement directions in
three dimensions using just three neurons. Instead, many thousands of M1
neurons have arm-movement related tuning curves resulting in a highly
redundant representation. Of course, these neurons encode additional
movement-related quantities, for example, their firing rates depend on the
initial position of the arm relative to the body as well as on movement ve-
locity and acceleration. This complicates the interpretation of their activity
as reporting movement direction in a particular coordinate system.

Unlike the cercal interneuron, M1 neurons do not have orthogonal pre-
ferred directions that form a Cartesian coordinate system. Instead, the
preferred directions of the neurons appear to point in all directions with
roughly equal probability. If the projection axes are not orthogonal, the
Cartesian sum of equation 3.21 is not the correct way to reconstruct �v. Nev-
ertheless, if the preferred directions point uniformly in all directions and
the number of neurons N is sufficiently large, the population vector

�vpop =
N∑

a=1

(
r − r0

rmax

)
a
�ca (3.23)

will, on average, point in a direction parallel to the arm movement direc-
tion vector �v. If we average equation 3.23 over trials and use equation 3.22,
we find

〈�vpop〉 =
N∑

a=1

(�v · �ca)�ca . (3.24)

We leave as an exercise the proof that 〈�vpop〉 is approximately parallel to �v if
a large enough number of neurons is included in the sum, and if their pre-
ferred direction vectors point randomly in all directions with equal proba-
bility. Later in this chapter, we discuss how corrections can be made if the
distribution of preferred directions is not uniform or the number of neu-
rons is not large. The population vectors constructed from equation 3.23
on the basis of responses of neurons in primary motor cortex recorded
while a monkey performed a reaching task are compared with the actual
directions of arm movements in figure 3.6.
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16 Neural Decoding

Figure 3.6: Comparison of population vectors with actual arm movement direc-
tions. Results are shown for eight different movement directions. Actual arm
movement directions are radially outward at angles that are multiples of 45◦.
The groups of lines without arrows show the preferred direction vectors of the
recorded neurons multiplied by their firing rates. Vector sums of these terms
for each movement direction are indicated by the arrows. The fact that the ar-
rows point approximately radially outward shows that the population vector re-
constructs the actual movement direction fairly accurately. (Figure adapted from
Kandel et al., 1991 based on data from Kalaska et al., 1983.)

Optimal Decoding Methods

The vector method is a simple decoding method that can perform quite
well in certain cases, but it is neither a general nor an optimal way to re-
construct a stimulus from the firing rates of a population of neurons. In
this section, we discuss two methods that can, by some measure, be con-
sidered optimal. These are called Bayesian and maximum a posteriori or
MAP inference. We also discuss a special case of MAP called maximum
likelihood or ML inference. The Bayesian approach involves finding the
minimum of a loss function that expresses the cost of estimation errors.
MAP and ML inference generally produce estimates that are as accurate,
in terms of the variance of the estimate, as any that can be achieved by a
wide class of estimation methods (so-called unbiased estimates), at least
when large numbers of neurons are used in the decoding. Bayesian and
MAP estimates use the conditional probability that a stimulus parameter
takes a value between s and s+
s given that the set of N encoding neurons
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3.3 Population Decoding 17

fired at rates given by r. The probability density needed for a continuous
stimulus parameter, p[s|r], can be obtained from the encoding probability
density p[r|s] by the continuous version of Bayes theorem (equation 3.3),

p[s|r] = p[r|s]p[s]
p[r]

. (3.25)

A disadvantage of these methods is that extracting p[s|r] from experimen-
tal data can be difficult. In contrast, the vector method only requires us to
know the preferred stimulus values of the encoding neurons,

As mentioned in the previous paragraph, Bayesian inference is based on
the minimization of a particular loss function L(s, sbayes) that quantifies Bayesian inference
the ‘cost’ of reporting the estimate sbayes when the correct answer is s. The
loss function provides a way of defining the optimality criterion for de-
coding analogous to the loss computation discussed previously for opti-
mal discrimination. The value of sbayes is chosen to minimize the expected
loss averaged over all stimuli for a given set of rates, i.e. to minimize the
function

∫
ds L(s, sbayes)p[s|r]. If the loss function is the squared difference

between the estimate and the true value, L(s, sbayes) = (s−sbayes)
2, the es-

timate that minimizes the expected loss is the mean

sbayes =
∫

ds p[s|r]s . (3.26)

If the loss function is the absolute value of the difference, L(s, sbayes) =
|s − sbayes|, then sbayes is the median rather than the mean of the distribution
p[s|r].

Maximum a posteriori (MAP) inference does not involve a loss function but MAP inference
instead simply chooses the stimulus value, sMAP, that maximizes the con-
ditional probability density of the stimulus, p[sMAP|r]. The MAP approach
is thus to choose as the estimate sMAP the most likely stimulus value for
a given set of rates. If the prior or stimulus probability density p[s] is in-
dependent of s, p[s|r] and p[r|s] have the same dependence on s, because
the factor p[s]/p[r] in equation 3.25 is independent of s. In this case, the
MAP algorithm is equivalent to maximizing the likelihood function, i.e.
choosing sML to maximize p[r|sML], which is called maximum likelihood ML inference
(ML) inference.

Previously we applied the vector decoding method to the cercal system
of the cricket. Figure 3.7 shows the root-mean-square difference between
the true and estimated wind directions for the cercal system using ML and
Bayesian methods. For the cercal interneurons, the response probability
density p[r|s] is a product of four Gaussians with means and variances
given by the data points and error bars in figure 3.4. The Bayesian esti-
mate in figure 3.7 is based on the squared-difference loss function. Both
estimates use a constant stimulus probability density p[s], so the ML and
MAP estimates are identical. The maximum likelihood estimate is either
more or less accurate than the Bayesian estimate, depending on the angle.
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Figure 3.7: Maximum likelihood and Bayesian estimation errors for the cricket
cercal system. ML and Bayesian estimates of the wind direction were compared
with the actual stimulus value for a large number of simulated firing rates. Firing
rates were generated as for figure 3.5B. The error shown is the root-mean-squared
difference between the estimated and actual stimulus angles. (Adapted from Sali-
nas and Abbott, 1994.)

The Bayesian result has a slightly smaller average error across all angles.
The dips in the error curves in figure 3.7, as in the curve of figure 3.5B,
appear at angles where one tuning curve peaks and two others rise from
threshold (see figure 3.4). As in figure 3.5B these dips are due to the two
neurons responding near threshold, not to the maximally responding neu-
ron. They occur because neurons are most sensitive at points where their
tuning curves have maximum slopes which, in this case, is near threshold
(see figure 3.11). Comparing these results with figure 3.5B shows the im-
proved performance of these methods relative to the vector method. The
vector method performs extremely well for this system, so the degree of
improvement is not large. This is because the cercal responses are well
described by cosine functions and their preferred directions are 90◦ apart.
Much more dramatic differences occur when the tuning curves are not
cosines or the preferred stimulus directions are not perpendicular.

Up to now, we have considered the decoding of a direction angle. We now
turn to the more general case of decoding an arbitrary continuous stimulus
parameter. An instructive example is provided by an array of N neurons
with preferred stimulus values distributed uniformly across the full range
of possible stimulus values. An example of such an array for Gaussian
tuning curves,

fa(s) = rmax exp

(
−1

2

(
s − sa

σa

)2
)

(3.27)

is shown in figure 3.8. In this example, each neuron has a tuning curve
with a different preferred value sa and potentially a different width σa (al-
though all the curves in figure 3.8 have the same width). If the tuning
curves are evenly and densely distributed across the range of s values, the
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sum of all tuning curves
∑

fa(s) is approximately independent of s. The
roughly flat line in figure 3.8 is proportional to this sum. The constancy of
the sum over tuning curves will be useful in the following analysis.
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Figure 3.8: An array of Gaussian tuning curves spanning stimulus values from
-5 to 5. The peak values of the tuning curves fall on the integer values of s and
the tuning curves all have σa = 1. For clarity, the curves are drawn alternately
with dashed and solid lines. The approximately flat curve with value near 0.5 is
1/5 the sum of the tuning curves shown, indicating that this sum is approximately
independent of s.

Tuning curves give the mean firing rates of the neurons across multiple
trials. In any single trial, measured firing rates will vary from their mean
values. To implement the Bayesian, MAP, or ML approaches, we need to
know the conditional firing-rate probability density p[r|s] that describes
this variability. We assume that the firing rate ra of neuron a is determined
by counting na spikes over a trial of duration T (so that ra = na/T), and
that the variability can be described by the homogeneous Poisson model
discussed in chapter 1. In this case, the probability of stimulus s evoking
na = raT spikes, when the average firing rate is 〈ra〉 = fa(s) is given by (see
chapter 1)

P[ra|s] = ( fa(s)T)raT

(raT)!
exp(− fa(s)T) . (3.28)

If we assume that each neuron fires independently, the firing-rate proba-
bility for the population is the product of the individual probabilities,

P[r|s] =
N∏

a=1

( fa(s)T)raT

(raT)!
exp(− fa(s)T) . (3.29)

The assumption of independence simplifies the calculations considerably.

The filled circles in figure 3.9 show a set of randomly generated firing rates
for the array of Gaussian tuning curves in figure 3.8 for s=0. This figure
also illustrates a useful way of visualizing population responses; plotting
the responses as a function of the preferred stimulus values. The dashed
curve in figure 3.9 is the tuning curve for the neuron with sa =0. Because
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20 Neural Decoding

the tuning curves are functions of |s − sa|, the values of the dashed curve at
sa = −5,−4, . . . ,5 are the mean activities of the cells with preferred values
at those locations for a stimulus at s=0.
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Figure 3.9: Simulated responses of 11 neurons with the Gaussian tuning curves
shown in figure 3.8 to a stimulus value of zero. Firing rates for a single trial, gen-
erated using the Poisson model, are plotted as a function of the preferred stimulus
values of the different neurons in the population (filled circles). The dashed curve
shows the tuning curve for the neuron with sa = 0. Its heights at integer values
of sa are the average responses of the corresponding cells. It is possible to have
ra > rmax (point at sa = 0) because rmax is the maximum average firing rate, not the
maximum firing rate.

To apply the ML estimation algorithm, we only need to consider the terms
in P[r|s] that depend on s. Because equation 3.29 involves a product, it is
convenient to take its logarithm and write

ln P[r|s] = T
N∑

a=1

ra ln
(

fa(s)
) + . . . (3.30)

where the ellipsis represents terms that are independent or approximately
independent of s, including, as discussed above,

∑
fa(s). Because maxi-

mizing a function and maximizing its logarithm are equivalent, we can use
the logarithm of the conditional probability in place of the actual probabil-
ity in ML decoding.

The ML estimated stimulus, sML, is the stimulus that maximizes the right-
hand side of equation 3.30. Setting the derivative to zero, we find that sML
is determined by

N∑
a=1

ra
f ′
a(sML)

fa(sML)
= 0 (3.31)

where the prime denotes a derivative. If the tuning curves are the Gaus-
sians of equation 3.27, this equation can be solved explicitly using the re-
sult f ′

a(s)/fa(s) = (sa − s)/σ2
a ,

sML =
∑

rasa/σ
2
a∑

ra/σ2
a

. (3.32)
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If all the tuning curves have the same width, this reduces to

sML =
∑

rasa∑
ra

, (3.33)

which is a simple estimation formula with an intuitive interpretation as
the firing-rate weighted average of the preferred values of the encoding
neurons. The numerator of this expression is reminiscent of the population
vector.

Although equation 3.33 gives the ML estimate for a population of neurons
with Poisson variability, it has some undesirable properties as a decoding
algorithm. Consider a neuron with a preferred stimulus value sa that is
much greater than the actual stimulus value s. Because sa � s, the average
firing rate of this neuron is essentially zero. For a Poisson distribution,
zero rate implies zero variability. If, however, this neuron fires one or more
spikes on a trial due to a non-Poisson source of variability, this will cause
a large error in the estimate because of the large weighting factor sa.

The MAP estimation procedure is similar in spirit to the ML approach, but
the MAP estimate, sMAP, may differ from sML if the probability density p[s]
depends on s. The MAP algorithm allows us to include prior knowledge
about the distribution of stimulus values into the decoding estimate. As
noted above, if the p[s] is constant, the MAP and ML estimates are iden-
tical. In addition, if many neurons are observed, or if a small number of
neurons is observed over a long trial period, even a non-constant stimulus
distribution has little effect and sMAP ≈ sML.

The MAP estimate is computed from the distribution p[s|r] determined by
Bayes theorem. In terms of the logarithms of the probabilities, ln p[s|r] =
ln P[r|s] + ln p[s] − ln P[r]. The last term in this expression is independent
of s and can be absorbed into the ignored s-independent terms, so we can
write

ln p[s|r] = T
N∑

a=1

ra ln
(

fa(s)
) + ln p[s] + . . . . (3.34)

Maximizing this determines the MAP estimate,

T
N∑

a=1

ra f ′
a(sMAP)

fa(sMAP)
+ p′[sMAP]

p[sMAP]
= 0 . (3.35)

If the stimulus or prior distribution is itself Gaussian with mean sprior and
variance σprior, and we use the Gaussian array of tuning curves, equation
3.35 yields

sMAP =
T

∑
rasa/σ

2
a + sprior/σ

2
prior

T
∑

ra/σ2
a + 1/σ2

prior

. (3.36)
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Figure 3.10: Probability densities for the stimulus given the firing rates shown in
figure 3.9 and assuming the tuning curves of figure 3.8. The solid curve is p[s|r]
when the prior distribution of stimulus values is constant and the true value of
the stimulus is s = 0. The dashed curve is for a Gaussian prior distribution with a
mean of −2 and variance of 1, again with the true stimulus being s = 0. The peak
of the solid and dashed curves are at 0.0385 and −0.107 respectively.

Figure 3.10 compares the conditional stimulus probability densities p[s|r]
for a constant stimulus distribution (solid curve) and for a Gaussian stim-
ulus distribution with sprior =−2 and σprior =1, using the firing rates given
by the filled circles in figure 3.9. If the stimulus distribution is constant,
p[s|r] is peaked near the true stimulus value of zero. The effect of a non-
constant stimulus distribution is to shift the curve toward the value −2
where the stimulus probability density has its maximum, and to decrease
its width by a small amount. The estimate is shifted to the left because
the prior distribution suggests that the stimulus is more likely to take
negative values than positive ones, independent of the evoked response.
The decreased width is due to the added information that the prior dis-
tribution provides. The curves in figure 3.10 can be computed from equa-
tions 3.27 and 3.34 as Gaussians with variances 1/(T

∑
ra/σ

2
a ) (constant

prior) and 1/(T
∑

ra/σ
2
a + 1/σ2

prior) (Gaussian prior).

The accuracy with which an estimate sest describes a stimulus s can be
characterized by two important quantities; its bias best(s) and its variancebias
σ2

est(s). The bias is the difference between the average of sest across trials
that use the stimulus s and the true value of the stimulus, namely s,

best(s) = 〈sest〉 − s . (3.37)

Note that the bias depends on the true value of the stimulus. An estimate
is termed unbiased if best(s) = 0 for all stimulus values.

The variance of the estimator, which quantifies how much the estimate
varies about its mean value, is defined asvariance

σ2
est(s) = 〈(sest − 〈sest〉)2〉 . (3.38)

The bias and variance together can be used to compute the trial-average
squared estimation error ,

〈
(sest − s)2

〉
. This is measure of the spread of
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the estimated values about the true value of the stimulus. Because s =
〈sest〉 + best(s), we can write the squared estimation error asestimation error 〈

(sest − s)2〉 = 〈
(sest − 〈sest〉 − best(s))2〉 = σ2

est(s) + b2
est(s) . (3.39)

In other words, the average squared estimation error is the sum of the
variance and the square of the bias. For an unbiased estimate, the average
squared estimation error is equal to the variance of the estimator.

Fisher Information

Decoding can be used to limit the accuracy with which a neural system
encodes the value of a stimulus parameter because the encoding accuracy
cannot exceed the accuracy of an optimal decoding method. Of course, we
must be sure that the decoding technique used to establish such a bound
is truly optimal, or else the result will reflect the limitations of the decod-
ing procedure, not bounds on the neural system being studied. The Fisher
information is a quantity that provides one such measure of encoding ac-
curacy. Through a bound known as the Cramér-Rao bound, the Fisher
information limits the accuracy with which any decoding scheme can ex-
tract an estimate of an encoded quantity.

The Cramér-Rao bound limits the variance of any estimate sest according Cramér-Rao bound
to (appendix B)

σ2
est(s) ≥

(
1 + b′

est(s)
)2

IF(s)
(3.40)

where b′
est(s) is the derivative of best(s). If we assume here that the fir-

ing rates take continuous values and that their distribution in response
to a stimulus s is described by the conditional probability density p[r|s],
the quantity IF(s) is the Fisher information of the firing-rate distribution,
which is related to p[r|s] (assuming the latter is sufficiently smooth) by Fisher information

IF(s) =
〈
−∂2 ln p[r|s]

∂s2

〉
=

∫
dr p[r|s]

(
−∂2 ln p[r|s]

∂s2

)
. (3.41)

The reader can verify that the Fisher information can also be written as

IF(s) =
〈(

∂ ln p[r|s]
∂s

)2
〉

=
∫

dr p[r|s]
(

∂ ln p[r|s]
∂s

)2

. (3.42)

The Cramér-Rao bound sets a limit on the accuracy of any unbiased es-
timate of the stimulus. When best(s) = 0, equation 3.39 indicates that the
average squared estimation error is equal to σ2

est and, by equation 3.40, this
satisfies the bound σ2

est ≥ 1/IF(s). Provided that we restrict ourselves to
unbiased decoding schemes, the Fisher information sets an absolute limit
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on decoding accuracy, and it thus provides a useful limit on encoding ac-
curacy. Although imposing zero bias on the decoding estimate seems rea-
sonable, the restriction is not trivial. In general, minimizing the decoding
error in equation 3.39 involves a trade-off between minimizing the bias
and the variance of the estimator. In some cases, biased schemes may pro-
duce more accurate results than unbiased ones. For a biased estimator, the
average squared estimation error and the variance of the estimate are not
equal, and the estimation error can be either larger or smaller than 1/IF(s).

The limit on decoding accuracy set by the Fisher information can be at-
tained by a decoding scheme we have studied, the maximum likelihood
method. In the limit of large numbers of encoding neurons (N → ∞),
and for most firing rate distributions, the ML estimate satisfies a number
of desirable properties. First, it is asymptotically consistent, in the senseasymptotic

consistency that P[|sML −s| > ε] → 0 for any ε > 0; it is also unbiased and saturates
the Cramér-Rao bound. In other words, the variance of the ML estimate
is given asymptotically (for large N) by σ2

ML(s) = 1/IF(s). Any unbiased
estimator that saturates the Cramér-Rao lower bound is called efficient.efficiency
Furthermore, IF(s) grows linearly with N, and the ML estimate obeys a
central limit theorem, so that N1/2(sML − s) is Gaussian distributed with a
variance that is independent of N in the large N limit.

As equation 3.41 shows, the Fisher information is a measure of the ex-
pected curvature of the log likelihood at the stimulus value s. Curvature
is important because the likelihood is expected to be at a maximum near
to the true stimulus value s that caused the responses. If the likelihood
is very curved and thus the Fisher information is large, typical responses
to the stimulus s are much less likely for other slightly different stimuli.
Therefore, the typical response provides a strong indication of the value of
the stimulus. If the likelihood is fairly flat and thus the Fisher information
is small, typical responses to s are likely to occur for slightly different stim-
uli as well. Thus, the response does not as clearly determine the stimulus
value. The Fisher information is purely local in the sense that it does not
reflect the existence of stimulus values completely different from s that are
likely to evoke the same responses as those evoked by s itself. However,
this does not happen for the sort of simple population codes we consider.
Shannon’s mutual information measure, discussed in chapter 4, takes such
possibilities into account.

The Fisher information for a population of neurons with uniformly ar-
rayed tuning curves (the Gaussian array in figure 3.8, for example) and
Poisson statistics can be computed from the conditional firing-rate proba-
bility in equation 3.30. Because the spike-count rate is described here by a
probability rather than a probability density, we use the discrete analog of
equation 3.41,

IF(s) =
〈
−d2 ln P[r|s]

ds2

〉
= T

N∑
a=1

〈ra〉
((

f ′
a(s)

fa(s)

)2

− f ′′
a (s)
fa(s)

)
. (3.43)

If we assume that the array of tuning curves is symmetric, like the Gaus-
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Figure 3.11: The Fisher information for a single neuron with a Gaussian tuning
curve with s=0 and σa =1, and Poisson variability. The Fisher information (solid
curve) has been divided by rmaxT, the peak firing rate of the tuning curve times
the duration of the trial. The dashed curve shows the tuning curve scaled by rmax.
Note that the Fisher information is greatest where the slope of the tuning curve is
highest, and vanishes at s=0 where the tuning curve peaks.

sian array of figure 3.8, the second term in the parentheses of the last ex-
pression is zero. We can also make the replacement 〈ra〉 = fa(s), producing
the final result

IF(s) = T
N∑

a=1

(
f ′
a(s)

)2

fa(s)
. (3.44)

In this expression, each neuron contributes an amount to the Fisher infor-
mation proportional to the square of its tuning curve slope and inversely
proportional to the average firing rate for the particular stimulus value be-
ing estimated. Highly sloped tuning curves give firing rates that are sensi-
tive to the precise value of the stimulus. Figure 3.11 shows the contribution
to the sum in equation 3.44 from a single neuron with a Gaussian tuning
curve, the neuron with sa = 0 in figure 3.8. For comparison purposes, a
dashed curve proportional to the tuning curve is also plotted. Note that
the Fisher information vanishes for the stimulus value that produces the
maximum average firing rate, because f ′

a(s)= 0 at this point. The firing
rate of a neuron at the peak of its tuning curve is relatively unaffected by
small changes in the stimulus. Individual neurons carry the most Fisher
information in regions of their tuning curves where average firing rates
are rapidly varying functions of the stimulus value, not where the firing
rate is highest.

The Fisher information can be used to derive an interesting result on the
optimal widths of response tuning curves (Zhang and Sejnowski, 1998).
Consider a population of neurons with tuning curves of identical shapes,
distributed evenly over a range of stimulus values as in figure 3.8. Equa-
tion 3.44 indicates that the Fisher information will be largest if the tuning
curves of individual neurons are rapidly varying (making the square of
their derivatives large), and if many neurons respond (making the sum
over neurons large). For typical neuronal response tuning curves, these
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two requirements are in conflict with each other. If the population of neu-
rons has narrow tuning curves, individual neural responses are rapidly
varying functions of the stimulus, but few neurons response. Broad tun-
ing curves allow many neurons to respond, but the individual responses
are not as sensitive to the stimulus value. To determine whether narrow or
broad tuning curves produce the most accurate encodings, we consider a
dense distribution of Gaussian tuning curves, all with σa = σr. Using such
curves in equation 3.44, we find

IF(s) = T
N∑

a=1

rmax(s − sa)
2

σ4
r

exp

(
−1

2

(
s − sa

σr

)2
)

. (3.45)

This expression can be approximated by replacing the sum over neurons
by an integral over their preferred stimulus values and multiplying by asums→integrals
density factor ρs. The factor ρs is the density with which the neurons cover
the range of stimulus values, and it is equal to the number of neurons with
preferred stimulus values lying within a unit range of s values. Replacing
the sum over a with an integral over a continuous preferred stimulus pa-
rameter ξ (which replaces sa), we find

IF(s) ≈ ρsT
∫ ∞

−∞
dξ

rmax(s − ξ)2

σ4
r

exp

(
−1

2

(
s − ξ

σr

)2
)

=
√

2πρsσrrmaxT
σ2

r
. (3.46)

We have expressed the final result in this form because the number of neu-
rons that respond to a given stimulus value is roughly ρsσr, and the Fisher
information is proportional to this number divided by the square of the
tuning curve width. Combining these factors, the Fisher information is in-
versely proportional to σr, and the encoding accuracy increases with nar-
rower tuning curve widths.

The advantage of using narrow tuning curves goes away if the stimulus
is characterized by more than one parameter. Consider a stimulus with
D parameters and suppose that the response tuning curves are products
of identical Gaussians for each of these parameters. If the tuning curves
cover the D-dimensional space of stimulus values with a uniform density
ρs, the number of responding neurons for any stimulus value is propor-
tional to ρsσ

D
r and, using the same integral approximation as in equation

3.46, the Fisher information is

IF = (2π)D/2Dρsσ
D
r rmaxT

σ2
r

= (2π)D/2Dρsσ
D−2
r rmaxT . (3.47)

This equation, which reduces to the result given above if D = 1, allows us
to examine the effect tuning curve width on encoding accuracy. The trade-
off between the encoding accuracy of individual neurons and the number
of responding neurons depends on the dimension of the stimulus space.
Narrowing the tuning curves (making σr smaller) increases the Fisher in-
formation for D = 1, decreases it for D > 2, and has no impact if D = 2.
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Optimal Discrimination

In the first part of this chapter, we considered discrimination between two
values of a stimulus. An alternative to the procedures discussed there is
simply to decode the responses and discriminate on the basis of the es-
timated stimulus values. Consider the case of discriminating between s
and s+
s for small 
s. For large N, the average value of the difference
between the ML estimates for the two stimulus values is equal to 
s (be-
cause the estimate is unbiased) and the variance of each estimate (for small

s) is 1/IF(s). Thus, the discriminability, defined in equation 3.4, for the ML

discriminabilityML based test is

d′ = 
s
√

IF(s) . (3.48)

The larger the Fisher information, the higher the discriminability. We leave
as an exercise the proof that for small 
s, this discriminability is the same
as that of the likelihood ratio test Z(r) defined in equation 3.18.

Discrimination by ML estimation requires maximizing the likelihood, and
this may be computationally challenging. The likelihood ratio test de-
scribed previously may be simpler, especially for Poisson variability, be-
cause, for small 
s, the likelihood ratio test Z defined in equation 3.18 is a
linear function of the firing rates,

Z = T
N∑

a=1

ra
f ′
a(s)

fa(s)
. (3.49)

Figure 3.12 shows an interesting comparison of the Fisher information
for orientation tuning in the primary visual cortex with human orienta-
tion discrimination thresholds. Agreement like this can occur for difficult
tasks, like discrimination at threshold, where the performance of a subject
may be limited by basic constraints on neuronal encoding accuracy.

3.4 Spike Train Decoding

The decoding methods we have considered estimate or discriminate static
stimulus values on the basis of spike-count firing rates. Spike-count firing
rates do not provide sufficient information for reconstructing a stimulus
that varies during the course of a trial. Instead, we can estimate such a
stimulus from the sequence of firing times ti for i = 1,2, . . . , n of the spikes
that it evokes. One method for doing this is similar to the Wiener kernel
approach used to estimate the firing rate from the stimulus in chapter 2,
and to the approximation of a firing rate using a sliding window function
introduced in chapter 1. For simplicity, we restrict our discussion to the
decoding of a single neuron. We assume, as we did in chapter 2, that the
time average of the stimulus being estimated is zero.
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Figure 3.12: Comparison of Fisher information and discrimination thresholds for
orientation tuning. The solid curve is the minimum standard deviation of an esti-
mate of orientation angle from the Cramér-Rao bound, plotted as a function of the
number of neurons (N) involved in the estimation. The triangles are data points
from an experiment that determined the threshold for discrimination of the orien-
tation of line images by human subjects as a function of line length and eccentricity.
An effective number of neurons involved in the task was estimated for the differ-
ent line lengths and eccentricities using the cortical magnification factor discussed
in chapter 2. (Adapted from Paradiso, 1988.)

In spike train decoding, we attempt to construct an estimate of the stim-
ulus at time t from the sequence of spikes evoked up to that time. There
are paradoxical aspects of this procedure. The firing of an action potential
at time ti is only affected by the stimulus s(t) prior to that time, t < ti, and
yet, in spike decoding, we attempt to extract information from this action
potential about the value of the stimulus at a later time t > ti. That is,
the evoked spikes tell us about the past behavior of the stimulus and, in
spike decoding, we attempt to use this information to predict the current
stimulus value. Clearly, this requires that the stimulus have some form
of temporal correlation so that past behavior provides information about
the current stimulus value. To make the decoding task easier, we can intro-
duce a prediction delay, τ0, and attempt to construct from spikes occurringprediction delay τ0
prior to time t, an estimate of the stimulus at time t − τ0 (see figure 3.13A).
Such a delayed estimate uses a combination of spikes that could have been
fired in response to the stimulus s(t − τ0) being estimated (those for which
t − τ0 < ti < t; spike 7 in figure 3.13A), and spikes that occured too early
to be affected by the value of s(t − τ0) (those for which ti < t − τ0; spikes
1-6 in figure 3.13A), but that can contribute to its estimation on the basis
of stimulus correlations. The estimation task gets easier as τ0 is increased,
but this delays the decoding and makes the result less behaviorally rele-
vant. We will consider decoding with an arbitrary delay and later discuss
how to set a specific value for τ0.

The stimulus estimate is constructed as a linear sum over all spikes. Astimulus estimate
spike occurring at time ti contributes a kernel K(t − ti), and the total esti-
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Figure 3.13: Cartoon illustrating spike train decoding. A) The top trace denotes
a stimulus that evokes the spike train appearing below it. At time t an estimate is
being made of the stimulus at time t − τ0. The estimate is obtained by summing
the values of the kernels where they cross the dashed line labeled t, for spikes up
to and including spike 7. Two such kernels are shown in the third and fourth traces
from the top. The real estimate is obtained by summing similar contributions from
all of the spikes. The kernel is zero for negative values of its argument, so spikes
for i ≥ 8 do not contribute to the estimate at this time. B) The kernel used in A. This
has been truncated to zero value for negative values of τ. C) The spike triggered
average corresponding to the kernel in B, assuming no spike train correlations.
Note that C has been plotted with the τ axis reversed, following the convention
established in chapter 1. With this convention, K in panel B is simply a shifted and
truncated version of the curve appearing here. In this case τ0 = 160 ms.

mate is obtained by summing over all spikes,

sest(t − τ0) =
n∑

i=1

K(t − ti) − 〈r〉
∫ ∞

−∞
dτ K(τ) . (3.50)

The last term, with 〈r〉 = 〈n〉/T the average firing rate over the trial, is
included to impose the condition that the time average of sest is zero, in
agreement with the time-average condition on s. The sum in equation
3.50 includes all spikes so the constraint that only those spikes occurring
prior to the time t (spikes 1-7 in figure 3.13A) should be included must be
imposed by requiring K(t − ti) = 0 for t − ti ≤ 0. A kernel satisfying this
constraint is termed causal. We ignore the causality constraint for now and
construct an acausal kernel, but we will return to issues of causality later
in the discussion. Figure 3.13A shows how spikes contribute to a stimulus
estimate using the kernel shown in figure 3.13B.

Equation 3.50 can be written in a compact way by using the neural re-
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sponse function ρ(t) = ∑
δ(t − ti) introduced in chapter 1,

sest(t − τ0) =
∫ ∞

−∞
dτ (ρ(t − τ) − 〈r〉) K(τ) . (3.51)

Using this form of the estimate, the construction of the optimal kernel K
proceeds very much like the construction of the optimal kernel for predict-
ing firing rates in chapter 2. We choose K so that the squared difference
between the estimated stimulus and the actual stimulus, averaged over
both time and trials,

1
T

∫ T

0
dt

〈(∫ ∞

−∞
dτ (ρ(t − τ) − 〈r〉) K(τ) − s(t − τ0)

)2
〉

, (3.52)

is minimized. The calculation proceeds as in appendix A of chapter 2, and
the result is that K obeys the equation∫ ∞

−∞
dτ′ Qρρ(τ − τ′)K(τ′) = Qrs(τ − τ0) . (3.53)

where Qρρ is the spike-train autocorrelation function,

Qρρ(τ − τ′) = 1
T

∫ T

0
dt

〈
(ρ(t − τ) − 〈r〉)(ρ(t − τ′) − 〈r〉)〉 , (3.54)

as defined in chapter 1, and Qrs is the correlation of the firing rate and
the stimulus, which is related to the spike-triggered average C, both intro-
duced in chapter 1,

Qrs(τ − τ0) = 〈r〉C(τ0 − τ) = 1
T

〈
n∑

i=1

s(ti + τ − τ0)

〉
. (3.55)

At this point in the derivation of the optimal linear kernel for firing-rate
prediction in chapter 2, we chose the stimulus to be uncorrelated so that
an integral equation similar to 3.53 simplified. This could always be done
because we have complete control over the stimulus in this type of exper-
iment. However, we do not have similar control of the neuron, and must
deal with whatever spike train autocorrelation function it gives us. If the
spike train is uncorrelated, which tends to happen at low rates,

Qρρ(τ) = 〈r〉δ(τ) , (3.56)

and we find from equation 3.53 that

K(τ) = 1
〈r〉 Qrs(τ − τ0) = C(τ0 − τ) = 1

〈n〉

〈
n∑

i=1

s(ti + τ − τ0)

〉
. (3.57)

This is the average value of the stimulus at time τ − τ0 relative to the ap-
pearance of a spike. Because τ − τ0 can be either positive or negative,
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stimulus estimation, unlike firing rate estimation, involves both forward
and backward correlation and the average values of the stimulus both be-
fore and after a spike. Decoding in this way follows a simple rule; every
time a spike appears, we replace it with the average stimulus surrounding
a spike, shifted by an amount τ0 (figure 3.13).

The need for either stimulus correlations or a nonzero prediction delay is
clear from equation 3.57. Correlations between a spike and subsequent
stimuli can only arise, in a causal system, from correlations between the
stimulus and itself. If these are absent, as for white noise, K(τ) will be
zero for τ > τ0. For causal decoding, we must also have K(τ) = 0 for τ < 0.
Thus, if τ0 = 0 and the stimulus is uncorrelated, K(τ) = 0 for all values of
τ.

When the spike train autocorrelation function is not a δ function, the solu-
tion for K can be expressed as an inverse Fourier transform, optimal kernel

K(τ) = 1
2π

∫
dω K̃(ω)exp(−iωτ) (3.58)

where, as shown in appendix C,

K̃(ω) = Q̃rs(ω)exp(iωτ0)

Q̃ρρ(ω)
. (3.59)

Here Q̃rs and Q̃ρρ are the Fourier transforms of Qrs and Qρρ. The numer-
ator in this expression reproduces the expression Qrs(τ − τ0) in equation
3.57. The role of the denominator is to correct for any autocorrelations in
the response spike train. Such correlations introduce a bias in the decod-
ing, and the denominator in equation 3.59 corrects for this bias.

If we ignore the constraint of causality, then, because the occurrence of
a spike cannot depend on the behavior of a stimulus in the very distant
past, we can expect K(τ) from equation 3.57 or 3.58 and 3.59 to vanish for
sufficiently negative values of τ − τ0. For most neurons, this will occur for
τ − τ0 more negative than minus a few hundred ms. The decoding kernel
given by equation 3.57 can therefore be made small for negative values of τ

by choosing τ0 large enough, but this may require a fairly large prediction
delay. We can force exact adherence to the causality constaint for τ < 0 by causality constraint
replacing K(τ) by �(τ)K(τ) where �(τ) is defined such that �(τ) = 1 for
τ > 0 and �(τ) = 0 for τ < 0. The causality constraint was imposed in this
way in figure 3.13B. When it is multiplied by �(τ), the restricted K is no
longer the optimal decoding kernel, but it may be close to optimal.

Another way of imposing causality on the decoding kernel is to expand
K(τ) as a weighted sum of causal basis functions (functions that vanish for
negative arguments and span the space of functions satisfying the causal
constraint). The optimal weights are then determined by minimizing the
estimation error. This approach has the advantage of producing a truly
optimal kernel for any desired value of τ0. A simpler but non-optimal
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Figure 3.14: Decoding the stimulus from an H1 neuron of the fly. The upper
panel is the decoding kernel. The jagged curve is the optimal acausal filter and the
smooth curve is a kernel obtained by expanding in a causal set of basis functions.
In both cases, the kernels are shifted by τ0 = 40 ms. The middle panel shows
typical responses of the H1 neuron to the stimulus s(t) (upper trace) and −s(t)
(bottom trace). The dashed line in the lower panel shows the actual stimulus and
the solid line is the estimated stimulus from the optimal linear reconstruction using
the acausal filter. (Adapted from Rieke et al., 1997.)

approach is to consider a fixed functional form for K(τ) that vanishes for
τ ≤ 0 and is characterized by a number of free parameters that can be
determined by minimizing the decoding error. Finally, the optimal causal
kernel, also called the Wiener-Hopf filter, can be obtained by a technique
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that involves so-called spectral factorization of Q̃ρρ(ω).

Figure 3.14 shows an example of spike train decoding for the H1 neuron of
the fly discussed in chapter 2. The top panel gives two reconstruction ker-
nels, one acausal and one causal, that can be used in the decoding, and the
bottom panel compares the reconstructed stimulus velocity with the actual
stimulus velocity. The middle panel in figure 3.14 points out one further
wrinkle in the procedure. Flies have two H1 neurons, one on each side of
the body, that respond to motion in opposite directions. As is often the
case, half-wave rectification prevents a single neuron from encoding both
directions of motion. In the experiment described in the figure, rather than
recording from both H1 neurons, Bialek et al. (1991) recorded from a single
H1 neuron, but presented both the stimulus s(t) and its negative, −s(t).
The two rows of spikes in the middle panel show sample traces for each of
these presentations. This procedure provides a reasonable approximation
of recording both H1 neurons, and produces a neuron/anti-neuron pair
of recordings similar to the one that we discussed in connection with mo-
tion discrimination from area MT neurons. The stimulus is then decoded
by summing the kernel K(t − ti) for all spike times ti of the recorded H1
neuron and summing −K(t − t j) for all spike times t j of its anti-neuron
partner.

The fly only has two H1 neurons from which it must extract information
about visual motion, so it seems reasonable that stimulus reconstruction
using the spike-train decoding technique can produce quite accurate re-
sults (figure 3.14). It is perhaps more surprising that accurate decoding, at
least in the sense of percent correct, can be obtained from single neurons
out of the large population of MT neurons responding to visual motion
in the monkey. Of course, the reconstruction of a time-dependent stim-
ulus from H1 responses is more challenging than the binary discrimina-
tion done with MT neurons. Furthermore, it is worth remembering that in
all the examples we have considered, including decoding wind direction
from the cercal system and arm movement direction from a population of
M1 neurons, the stimuli used are extremely simple compared to the natu-
rally occurring stimuli that must be interpreted during normal behavior.

3.5 Chapter Summary

We have considered the decoding of stimulus characteristics from the re-
sponses they evoke, including discrimination between stimulus values,
the decoding of static stimuli on the basis of population responses, and
the decoding of dynamic stimulus parameters from spike trains. Discrim-
ination was studied using the receiver operating characteristic, likelihood
ratio tests, and the Neyman-Pearson lemma. For static parameter decod-
ing we introduced the vector method, Bayesian, maximum a posteriori and
maximum likelihood inference, the Fisher information and the Cramér-
Rao lower bound. We also showed how to use ideas from Wiener filtering
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to reconstruct an approximation to a time-varying stimulus from the spike
trains it evokes.

3.6 Appendices

A) The Neyman-Pearson Lemma

Consider the difference 
β in the power of two tests that have identical
sizes α. One uses the likelihood ratio l(r), and the other uses a different
test function h(r). For the test h(r) using the threshold zh,

αh(zh) =
∫

dr p[r|−]�(h(r) − zh) and βh(zh) =
∫

dr p[r|+]�(h(r) − zh) .

(3.60)

Similar equations hold for the αl(zl ) and βl(zl ) values for the test l(r) using
the threshold zl . We use the � function, which is one for positive and zero
for negative values of its argument, to impose the condition that the test is
greater than the threshold. Comparing the β values for the two tests, we
find


β = βl(zl )−βh(zh) =
∫

dr p[r|+]�(l(r)−zl ) −
∫

dr p[r|+]�(h(r)−zh) .

(3.61)

The range of integration where both l(r) ≥ zl and h(r) ≥ zh cancels be-
tween these two integrals, so, in a more compact notation, we can write


β =
∫

dr p[r|+] (�(l(r)−zl )�(zh−h(r)) − �(zl −l(r))�(h(r)−zh)) .

(3.62)

Using the definition l(r) = p[r|+]/p[r|−] we can replace p[r|+] by l(r)p[r|−]
in this equation, giving


β =
∫

dr l(r)p[r|−]
(
�(l(r)−zl )�(zh−h(r)) − �(zl −l(r))�(h(r)−zh)

)
.

(3.63)

Then, due to the conditions on l(r) imposed by the � functions within
the integrals, replacing l(r) by z cannot decrease the value of the integral
resulting from the first term in the large parentheses, nor increase the value
arising from the second. This leads to the inequality


β ≥ z
∫

dr p[r|−] (�(l(r)−zl )�(zh−h(r)) − �(zl −l(r))�(h(r)−zh)) .

(3.64)
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Putting back the region of integration that cancels between these two
terms (for which l(r) ≥ zl and h(r) ≥ zh), we find


β ≥ z
[∫

dr p[r|−]�(l(r)−zl ) −
∫

dr p[r|−]�(h(r)−zh)

]
. (3.65)

By definition, these integrals are the sizes of the two tests, which are equal
by hypothesis. Thus 
β ≥ 0, showing that no test can be better than the
likelihood ratio l(r), at least in the sense of maximizing the power for a
given size.

B) The Cramér-Rao Bound

The Cramér-Rao lower bound for an estimator sest is based on the Cauchy- Cauchy-Schwarz
inequalitySchwarz inequality, which states that for any two quantities A and B

〈A2〉〈B2〉 ≥ 〈AB〉2 . (3.66)

To prove this inequality, note that〈(〈B2〉A − 〈AB〉B
)2

〉
≥ 0 (3.67)

because it is the average value of a square. Computing the square gives

〈B2〉2〈A2〉 − 〈AB〉2〈B2〉 ≥ 0 (3.68)

from which the inequality follows directly.

Consider the inequality of equation 3.66 with A = ∂ ln p/∂s and B = sest −
〈sest〉. From equations 3.42 and 3.38, we have 〈A2〉 = IF and 〈B2〉 = σ2

est.
The Cauchy-Schwarz inequality then gives

σ2
est(s)IF ≥

〈
∂ ln p[r|s]

∂s
(sest − 〈sest〉)

〉2

. (3.69)

To evaluate the expression on the right side of the inequality 3.69, we dif-
ferentiate the defining equation for the bias (equation 3.37),

s + best(s) = 〈sest〉 =
∫

dr p[r|s]sest , (3.70)

with respect to s to obtain

1 + b′
est(s) =

∫
dr

∂p[r|s]
∂s

sest

=
∫

dr p[r|s]
∂ ln p[r|s]

∂s
sest

=
∫

dr p[r|s]
∂ ln p[r|s]

∂s
(sest − 〈sest〉) .
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The last equality follows from the identity

∫
dr p[r|s]

∂ ln p[r|s]
∂s

〈sest〉 = 〈sest〉
∫

dr
∂p[r|s]

∂s
= 0 (3.71)

because
∫

dr p[r|s] = 1. The last line of equation 3.71 is just another way of
writing the expression on the right side of the inequality 3.69, so combin-
ing this result with the inequality gives

σ2
est(s)IF ≥ (1 + b′

est(s))2 (3.72)

which, when rearranged, is the Cramér-Rao bound of equation 3.40.

C) The Optimal Spike-Decoding Filter

The optimal linear kernel for spike train decoding is determined by solv-
ing equation 3.53. This is done by taking the Fourier transform of both
sides of the equation, that is, multiplying both sides by exp(iωτ) and inte-
grating over τ,

∫ ∞

−∞
dτ exp(iωτ)

∫ ∞

−∞
dτ′ Qρρ(τ − τ′)K(τ′) =

∫ ∞

−∞
dτ exp(iωτ)Qrs(τ − τ0) .

(3.73)

By making the replacement of integration variable τ → τ + τ0, we find that
the right side of this equation is

exp(iωτ0)

∫ ∞

−∞
dτ exp(iωτ)Qrs(τ) = exp(iωτ0)Q̃rs(ω) (3.74)

where Q̃rs(ω) is the Fourier transform of Qrs(τ). The integral of the prod-
uct of two functions that appears on the left side of equations 3.53 and 3.73
is called a convolution. To evaluate the Fourier transform on the left side
of equation 3.73, we make use of an important theorem stating that the
Fourier transform of a convolution is the product of the Fourier transforms
of the two functions involved (see the Mathematical Appendix). Accord-
ing to this theorem

∫ ∞

−∞
dτ exp(iωτ)

∫ ∞

−∞
dτ′ Qρρ(τ − τ′)K(τ′) = Q̃ρρ(ω)K̃(ω) (3.75)

where Q̃ρρ(ω) and K̃(ω) are the Fourier transforms of Qρρ(τ) and K(τ)

respectively,

Q̃ρρ(ω) =
∫ ∞

−∞
dτ exp(iωτ)Qρρ(τ) and K̃(ω) =

∫ ∞

−∞
dτ exp(iωτ)K(τ) .

(3.76)
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Putting the left and right sides of equation 3.73 together as we have eval-
uated them, we find that

Q̃ρρ(ω)K̃(ω) = exp(iωτ0)Q̃rs(ω) . (3.77)

Equation 3.59 follows directly from this result, and equation 3.58 then de-
termines K(τ) as the inverse Fourier transform of K̃(ω).

3.7 Annotated Bibliography

Statistical analysis of discrimination, various forms of decoding, the
Neyman-Pearson lemma, the Fisher information and the Cramér-Rao
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& Schwartz (1988), van Gisbergen et al. (1987), and Lee et al. (1988). Var-
ious theoretical aspects of population decoding such as vector and ML
decoding and the Fisher information that comprise our account were de-
veloped by Paradiso (1988); Baldi and Heiligenberg (1988); Vogels (1990),
Snippe & Koenderink (1992); Zohary (1992), Seung & Sompolinsky (1993);
Touretzky et al. (1993), Salinas & Abbott (1994); Sanger (1994, 1996),
Snippe (1996), and Oram et al. (1998). Zhang & Sejnowski (1999) treat the
effect of narrowing or broadening tuning curves on the Fisher informa-
tion. Population codes are also known as coarse codes in the connectionist
literature (Hinton, 1981).
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