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Chapter 1

Atoms and Molecules

1.1 Interactions in Isolated Atoms

In order to understand the properties of solids one has to be able to de-
scribe their constituents and how they interact with each other. Solids
are made out of arrays of atoms that are composed of electrons, protons
and neutrons. Elementary quantum mechanics describes very well the
behavior of isolated atoms such as Hydrogen. Most of the propertics of
solids depend on the behavior of electrons and protons. These are enti-
ties that have opposite charge, a large mass difference (the mass of the
proton, m,, is approximately 1000 times the electron mass, m,). and
different spatial position in the atom. The nucleus occupies the center
of the atom and its much smaller than the surrounding electronic cloud
which is extended over large distances (107®m = 14) if compared with
the nucleus size (107%m = 1fm). Since the characteristic distances in
solids are of order of a few A it is the electron who plays a major role
on the properties of solids.

The basic physics of atoms can be understood starting from the
Hydrogen atom. The Hamiltonian that describes the Hydrogen atom
is given by

2

2 2
gF=2r P (1.1)
2m, 2m., |rp—r.|

where pp (pe) is the momentum, rp (r.) the position of the proton
(electron) and e is the electric charge. Remember that in quantum
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mechanics these quantities are operators that act on a Hilbert space of
functions. Moreover, momentum and position are conjugated so that
they obey commutation rules, namely,

[.’L‘,',pj] = ’Lhé,ﬂ (12)

where we have introduced the components of the vector as r = (xy, z2, x3)
and p = (p1,p2, p3) (6;; = 1if i = j and 0 otherwise is called the Kro-
necker delta). Moreover, the operators for the electron and proton
commute among themselves since they are distinct from each other.
The state of the system can be represented in terms of the positions of
clectron and proton by a bra |rp, re, 0e, 0p) Where o is the spin degree
of freedom of cach one of the particles. From basic quantum mechan-
ics onc knows that protons and clectrons have spin 1/2 and therefore
are called fermions. In this case o can only have two possible pro-
jections on a fixed axis, that is, up (1) or down (). Observe that
although |rp, 1., 0,,0p) is a legitimate state of the problem and span
the whole Hilbert space of solutions it does not represent an eigenstate
of the Hamiltonian. The reason for that is that the momentum op-
erator which appears in the kinetic term of (1.1) does not commute
with the position operator and therefore it induces transitions between
states with different positions (that is, the electron and proton move
around!).

As usual in any problem in quantum mechanics one has to find the
basis that properly describe the system of interest. The obvious thing
to do, as in classical mechanics, it is to transform the Hamiltonian (1.1)
to the center of mass and relative coordinate. In order to do it we define

1
R = 5 (I'P + I'e)
r = Irp—T,, (1.3)

which are the center of mass and relative coordinate of the system. In
terms of these new coordinates the Hamiltonian becomes,
P2 2 62
L (1.4)
2M - 2u  r
where M = m, + m, is the total mass and p = 1/m, + 1/m, is the
reduced mass of the system. Observe that since m, ~ 1000m, we can
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rewrite M ~ m, and pu = m, with good accuracy. Hamiltonian (1.4)
already represents a major simplification in regards to (1.1). First of all
we realize that the center of mass motion decouples from the relative
motion since R does not appear in (1.4) (observe that almost all kinetic
energy of the center of mass is carried by the proton which is much
heavier). It implies that we can diagonalize the problem in the basis of
total momentum operator P:

PK) = HK[K) (1.5)

which is just to say that the electron-proton system moves freely in
space. The non-trivial part of the problem is the solution of the relative
motion. Because the potential is central the problem has a symmetry
of rotation in spacec.

Rotations in space are generated by the angular momentum oper-
ator L = r X p which can be rewritten in a very convenient form:
L; = 3,k €i,5x7;Pr Where €; 5 is the Levi-Civita tensor which is com-
pletely anti-symmetric (that is, €;;, = 0if i = jori =k or j =k
and the other components are defined such that €103 = +1 as well
as all other cyclic permutations, €231 = €312 = +1 and all the non-
cyclic permutations are —1: €; 30 = —1). This definition of the angular
momentum is good only in classical mechanics where z and p are not
operators. In the case of operators we define the symmetrized form

1

3
L, = 5 Z €5k (acjpk +pkacj) (16)
Jrk=1

which obeys the so-called Lie algebra
[Li, Lj] = ihei i Ly (1.7)

which you can easily show from (1.6) and (1.2). The fact that the an-
gular momentum operators do not commute among themselves implies
that one cannot classify the states in terms of these operators inde-
pendently. Instead we use one of them, say, Ly (L,) and its module
L2 = ¥, L2. Tt is indeed trivial to show that the Hamiltonian (1.4)
commutes with these operators, [H,L?| = [H, L3] = 0 and therefore
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the states of the system can be classified according to the eigenvalues
of these operators, namely,

L3, m) = RAI+ 1), m)

Ls|ll,m) = hm|l,m) (1.8)
where m = —I[,...,{ in unit steps. The Schrodinger equation for the
problem determines the principal quantum number n. Thus, we can
define an eigenstate of the Hamiltonian has the form |K, I, m,n, 0., op)
so that,

K> 13.6(eV)
2M n2

H|K,n,l,m,0.,0p) = < ) K, n,l,m,o.,0p) (1.9)
is the full solution of the problem. Observe that the solution of this
problem does not involve [ = 0,1,2...,n — 1 (these are usually called
s,p,d, f,... states) , m = —[, ...,+l or the spin degrees of freedom.
Thus the states of the system are degenerate in this quantum numbers
(there is more than one state of the system with the same energy).
Moreover, it is obvious that the ground state corresponds to put the
electron in n = 1 and set K = 0 corresponding to a static Hydrogen
atom. The eigenstates of the problem can be represented in real space
by projecting |Kn,l,m, 0., op), that is,

¢K,n,l,m(R7 T, 07 d)) = <R7 T, 07 ¢|K7 la m, TL>
X eiK.RYi,m (97 (b)Rn,l(r) (110)

where Y ,,(6,¢) is a spherical harmonic and R, ;(r) is the so-called
radial wavefunction that extends over a distance of order of the Bohr
radius, ap = h*/(ue?). The shape of some of these functions is shown
in Fig.1.1.

Things arc relatively simple in the H atom because the proton only
acts as an external potential. In atoms with more than one electrons the
situation is not so simple because electrons interact among themselves
via the Coulomb repulsion. Consider, for instance, the case of the He
atom that has 2 electrons and 2 protons. The nucleus of the atom has
mass 2m, and the full Hamiltonian of the problem reads

Pr . P! | P 2¢? 2¢? ¢’

H= + + - — +
4m, 2m, 2m, |rp—r1| |rp—rTs| |r; —1o

(1.11)
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Figure 1.1: Radial and angular dependence of some of the wavefunctions
of the H atom.
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where 115 is the position of the two electrons. This is a quite compli-
cated problem. The wavefunction of the system is a function of the
coordinates, ¥(rp, ri,12). What we need, however, is not the complete
solution of the problem but an approximate solution that provides qual-
itative understanding. Since the mass of the proton is so much larger
than the mass of the electron one expects the kinetic energy of the pro-
tons to be small compared to the other terms, that is, we expect the
light electron to move distances much larger than the protons in the
same time interval. During this time interval the protons “look” static
for the fast electron. If the protons are static then we are back to our
one-body quantum mechanics problem where the electron moves under
a potential field created by the two protons. This potential is parame-
terized by the distance between the protons (it implies that we can solve
the Schrédinger equation for cach configuration of the protons). If this
is the case the wavefuntion of the electrons can be written as ¥, (r1,12),
and depends on the proton coordinates as a parameter. Therefore, it is
intuitive to look for a variational solution of the quantum mechanical
problem with the form:

U(rp,ry,1T0) = Pr, (r1,19)0(rp) (1.12)

where ¢(rp) is the nucleus wavefunction. Eq.(1.12) is known as the

Born-Oppenheimer approximation. In order for this wavefunction to

make any sense one imposes that ¢, (r1,r2) is an eigenstate of
p? p2 2¢2 2¢2 e?

H = — _
s(re) 2m, + 2m, |rp—ri| |rp—r| + |ty — 1y

(1.13)

with cnergy E,(rp) where « labels the possible quantum numbers of

(1.13). Once the cigenenergies of (1.13) arc known the nucleus wave-
function ¢(r,) is an cigenstate of
Py

Hy=—-—"+FE,(rp). 1.14

Ly a(rp) (1.14)

This separation of energy scales between nucleus and electrons is very

natural and it will de discussed in more detail later.
The quantum mechanical problem of three bodies described above
is impossible to solve analytically (contrary to its classical counterpart).
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We can understand the physics of these many electron atoms qualita-
tively based on what we know about the H atom and Pauli’s exclusion
principle which states that there are no two electrons with the same
quantum numbers. As you probably know this is a consequence of the
Fermi-Dirac statistics obeyed by electrons. Let us go back to He atom
in the Born-Oppenheimer approximation (1.13) and set rp = 0 for
simplicity, that is,

2 2 22 22 2
P P2 _i_i_{_ei (1.15)

Hs 2me  2me  |ry|  |ro| |y — |’
which describes two electrons moving in the Coulomb potential of a
charge +2e and interacting with each other. Observe that because
the electrons are practically in the same volume, the direct interaction
between the electrons and the nucleus is approximately 2 times larger
than the electron-electron interaction and has to be considered first.
At short distances the electron sees the full potential of the nucleus
with charge +2e while at larger distances it will see a smaller effective
charge because of the other electron, that is, it sees a Coulomb potential
with charge 2e—e = +e. This effect only happens because the electrons
are free to move and adapt to the changes in the Coulomb potential. In
a static system (that is, a problem where m, — 00) this is not so and the
electron actually “feels” the full charge of the nucleus. This process in
which the kinetic energy of the electrons leads to a smaller “effective”
charge of the nucleus is called screening. What we are proposing is
that beyond the Hamiltonian (1.11) there is a simpler Hamiltonian,
or effective theory, that describes the problem. For the moment this
effective theory is hidden due to our current ignorance and lack of
sophistication. But the main thing is that because of the symmetry
of the problem the form of the potential will not change substantially
with distance since the charge distribution is spherically symmetric.
Therefore the wavefunction of the problem looks like a H-like state
with a slightly different energy than the H atom. Thus, the He atom is
obtained by filling up the 1s state (n = 1 and [ = 0) of the H atom with
electrons of opposite spin (Pauli’s principle). Observe, moreover, that
because the first shell is filled, the He atom will not be very reactive
since, as seen from far away, it will look like a neutral object to a foreign
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electron. Indeed, the ionization energy of the He atom is 24.6eV instead
of the 13.6eV of the H atom.

Consider now a somewhat more complicated situation: the Li atom
which has charge +3e in the nucleus. Again using our effective theory
we conclude that the wavefunctions are H-like and that in the ground
state we can occupy the first allowed 1s state with two electrons with
opposite spins. That is, we form first a He™ atom. Where does the
second electron go? Naturally it should go to a n = 2 state which
can be s or p (I = 0 or I = 1, respectively). In the H atom these
two states are degenerate but is this true for the Li atom? The reason
for the non-degeneracy of the Li atom is related with the charge of
the nucleus and the shape of the wavefunctions in the s and p states.
In Fig.1.2 we show the result of the combination of the radial and
angular part of the wavefunction as shown in Fig.1.1. Observe that in
the s state the electron is closer to the nucleus that has charge +3e,
while in the p orbital the electronic charge is distant from nucleus.
Thus, the s state has lower electron-proton Coulomb energy than the
p state and will be occupied first. Again, it is the preponderance of
the Coulomb attraction (which in the case of Li is 3 times larger than
the electron-electron interaction) which determines the ground state
properties. Observe that since the first 1s shell if filled this state is
very H-like and the ionization energy for this electron is 5.4eV showing
that Li is chemically very reactive. Most of the atoms in the periodic
table can be understood by simple arguments like these ones. The
understanding of the atoms and how onc describes the their ground
state is fundamental for the understanding of solids. The formation
of a solid depends very much on how the protons interact with the
electrons and how the electrons interact among themselves.

1.2 Atomic Magnetism

While the order and classification of energy levels in atoms is deter-
mined by the gross value of the Coulomb interaction between the elec-
trons and the nucleus (which is order of 1 eV & 10, 000K) the magnetic
behavior of isolated atoms depends on a delicate balance of energy
scales. When we talk about magnetism what we really mean is the
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s P d

Figure 1.2: The shaded areas are proportional to the probability of find-
ing the electron in each orbital.
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magnetic response of the atoms to an applied magnetic field. In the
presence of a magnetic field the Hamiltonian of the problem reads

H = Hy+H;

3 (pz + A(I‘Z)>2 -+ ,UBgoﬁB . S,/ﬁ (116)

1
H():Z

2m

where r; and p; arc the coordinate and momentum of the #** clectron
in the atom, A(r) is the vector potential (B = V x A) the last term
is the Zeeman energy of the electron spin in a field B (S; is the spin of
the i** electron, (up = efi/(2mc) is the Bohr magneton and gy ~ 2 is
the g-factor) and

N .2 N 2
Ze e
H; = — E E (1.17)
o Iml Sy I — 1

describes the Coulomb energies for the interaction between the electron
and the nucleus (7 is the nuclear charge) and between the electron
themselves. We assume that the magnetic field is applied in the z
direction and choose an electromagnetic gauge such that

A= g (xy — yx) (1.18)

which is called the symmetric gauge (notice that B = Bz). Substituting
(1.18) into (1.16) we get

2
HO:ZQI)—T:,L+MBBZ Z+905zz /h+ 22(1‘ +y7) 119)

We will show that for practical purposes the magnetic field terms are
very small compared to the field independent terms and can be treated
in perturbation theory. Thus, assuming the magnetic field to be small
we find that, up to second order in perturbation theory, the ground
state energy is given by:
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(L.;+ gOSz,i)/h|0)|2
Ey,—F,,

s (uppy 3
m#Q

5012 +1D)I0). (1.20)

+ 8mc?

We can immediately estimate the size of these terms. The first order
correction is ppB{n|>>;(L,; + 90S.:)/k|n) = ppB ~ hw, where

eB

— (1.21)

We =

is the cyclotron frequency. This term is of order of 107 eV (~ 1 K) for
a field of 1 Tesla. For the third term we have e2B?/(8mc?){(n| ¥; r?|n) ~
(e2B%a?)(8mc?) =~ (hw,)?/(€?/ag) which is of order of 107 eV (a~ 107°
K!) for a field of 1 Tesla. Indeed these terms are very small when
compared to the characteristic atomic energies that are of order of
electron Volts.

In order to calculate the perturbative shift in energy given in (1.20)
one needs to know the nature of the ground state of the atom in the
absence of the field. In the absence of interactions among the electrons
this is given by the energy levels of the H atom. The system is degener-
ate because the problem has rotational symmetry and for each state [
there are 2/ 4+ 1 degenerate states corresponding to the possible projec-
tions of /, that is, to the quantum numbers m = —{,...;l. In a system
with N electrons we can distribute the electrons along these 2(21 + 1)
states (the factor of 2 comes from the two possible spin orientations)
without changing the energy of the state. The total number of possible
combinations of quantum numbers is [2(2{ + 1)]!/(N![2(2] + 1) — N]).

Let us consider the problem of an atom with filled shell, that is,
with NV = 2/ 4 1. This is the case of noble gases such as He, Ar, etc.
It is clear that in the ground state we have L*|0) = S*|0) = 0 and the
only term that matters is the last one in (1.20). Using that fact that
(x2) = (y?y = (22) = (r?)/3 for the case of a spherically symmetric
potential we have

_ Ne’B?

0= ——ua
12mc?

(1.22)
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where
1
o’ = v ;(ﬁ). (1.23)

The magncetization per unit of volume in the system for N, atoms is
given by

N,O0F Neée?a?D

M= a0z NeaDp (1.24)

V 0B 6mc?
which has a necgative sign which implics that the response is diamag-
netic, that is, in responding to an applied field the atoms want to reduce
its value (p = N,/V is the atomic density). The magnetic susceptibility
susceptibility is given by

_OM _ Neé*a?p
X=9B = 6me -

(1.25)

Of course the situation described above is very simple because we
are dealing with a system with a closed shell. Most atoms have only
partially filled shells. In this case the matrix elements in (1.20) do not
vanish. The interaction among the electrons becomes important and
the degeneracy of the orbitals is lifted by the Coulomb interaction. We
observe that because the Coulomb interaction is spherically symmetric
the total angular momentum, L, and the total spin, S, are constants of
motion and the states can still be classified in terms of the eigenstates of
these two operators, that is, all states can be written as: |L, S, L,,S,).
Moreover, the system is degenerate since for a fixed value of L and
S we can have (2L + 1)(25 + 1) states for different values of L, and
S, corresponding to different projections of L and S. This is called a
multiplet. Consider, for instance, an atom with a configuration like 4 f2.
The f orbital can comport 14 electrons. Since there are two electron
they can be put into the orbitals in 14!/(2!12!) = 91 different ways! In
this case we have S = 0,1 and L = 0,1,2,3,4,5 and for each value of
S and L there are (25 + 1)(2L + 1) degenerate states.

The relevant question is: which state, |S, L) has the lowest energy?
Of course to answer this question one needs a quantitative calculation
which involves the coupling of all the electrons via the Coulomb term.
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Observe however that exclusion principle does not allow two electrons
with the same spin to be in the same place in space. Thus, electrons
with the same spin effectively repel each other. Naturally this effect
lowers the Coulomb energy. Thus, electrons in an atom tend to have
all their spins aligned. This is called Hund’s firsl rule: in an atom
the electrons want to maximize the total spin S. This rule solves the
problem of the spin but not of the orbital angular momentum. Again
the name of the game here is: minimize the Coulomb energy between
electrons! On the one hand, in states with small L (like an s-state) the
electrons spend much of their time close to the nucleus and therefore
pay an energetic price of the repulsion among themselves. On the other
hand, in states with large L the electrons are apart from the nucleus
and feel a weaker Coulomb repulsion. This gives rise to the Hund’s
second rule: For a maximum valuc of S the cnergy is minimized by the
largest value of L. The first and second Hund’s rules specify the values
of L and S for which the energy is minimum but still for fixed L and S
we have (2L + 1)(25 + 1) degenerate states. Is this degeneracy real in
an atom? The answer is: no! The reason being that the orbital motion
is coupled to the spin of the electron by the so-called spin-orbit effect.
Consider one electron moving with velocity v around a nucleus.
From the point of view of the electron (that is, looking at the problem at
the frame co-moving with the electron) the nucleus moves around with
velocity —v. Since the nucleus is charged we can imagine the nucleus
motion as a little current of charge circulating around the clectron. This
current generates a magnetic field at the position of the electron which
is proportional to r X v o< L. Thus, the Zeeman energy created by this
field is also proportional to L - S which is the spin-orbit coupling. One
usually writes the Hamiltonian associated with this coupling as

Hgo = \L-S (1.26)

where X\ depends on details of the atomic problem and can be obtained
from the atomic spectra. Indeed, if onc adds (1.26) to our original
Hamiltonian (1.16) we sce that L and S do not indeed commute with
the Hamiltonian scparately. However, the total angular momentum

J=L+S (1.27)
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commutes with the Hamiltonian. It means that we can still classify
the eigenstates of the problem in terms of J, that is, the states can be
labeled as: |J, J,, L, S). This implies that the degeneracy of the (2L +
1)(2S + 1) states is lifted and the states split into (2J + 1) degenerate
states corresponding to different values of J,. Indeed we can rewrite
(1.26) in terms of this operator as

A
2
since the Hamiltonian commutes with J, L? and S? . Observe that
due to (1.27) the allowed values of J go from |L — S| to L + S in unit
steps and the allowed valued of J, go from —J to J (which gives the

degeneracy of 2J + 1). The energy associated with each one of these
states is

Hgo =5 (3?-17 - §?) (1.28)

B(J.J.,8,L) = g T +1) = LL+1) = SS+1)].  (1.20)

It is observed experimentally that A > 0 for shells that are less than
half filled (n < 21 + 1) and A < 0 for shells that are more than half
filled (n > 21+ 1). If A > 0 it is clear from (1.29) that the energy will
be minimized for a given S and L for a configuration with smallest .J,
that is, J = |L — S|. Otherwise, if A < 0, the energy is minimized for
the largest value of J, that is, J = L + S. This is the so-called Hund’s
therd rule.

Hund’s rules can guide us to understand the response of an atom
to a magnetic field. Consider a system in which J = 0. In this case we
can use the Wigner-Eckart theorem and show that the first term in the
energy in (1.20) actually vanishes. We are left with the two other terms.
The third term is just the diamagnelic response we studied for the case
of atoms with filled shell. The second term is negative (remember
that second order perturbation theory always lowers the energy of the
ground state) and therefore it will give rise to a susceptibility with
positive sign. This is the so-called Van Vieck paramagnetic response.

If J # 0 then the first term in (1.20) does not vanish and it is the
largest contribution for the energy shift. We can rewrite this term in a
more appropriate form

Hz = ppB - (L + 90S) = ppB - (I + (90 — 1)S) (1.30)
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J

Figure 1.3: Angular momentum geometry.

which allows us to interpret J + (go — 1)S as the effective magnetic
moment of the atom,

M = —pgp(J + (90— 1)S) (1.31)

which is not a constant of motion since S is not conserved. It turns out,
however, that J is a constant of motion and we can think of J as being
fixed and that L and S rotate around J as in Fig.1.3. Thus the magnetic
moment is given by the component of L + ¢oS parallel to J. This is
the only component of the magnetic moment that contributes in first
order perturbation theory since the components of S in the direction
transverse to J will introduce transition between different values of J,
and give zero average when we calculate with an unperturbed state
|J, J,, L,S). The parallel component of S can be calculated from the
angle between J and S,

(J-S)

S; = 5 J
_ (J2 _ L2 + SQ)
= WE J (1.32)

which, in a state |J, J,, S, L) has a value

[J(J+1)—L(L+1)+S(S+1)]

(87) = 2J(J + 1)

J (1.33)

and therefore the effective magnetic moment in the direction of J is
given in (1.31)

M = —gugpJ (1.34)
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where
(o+1)  (9o—1) S(S+1)—L(L+1)
L = 1.
is the Landé g-factor. The energy associated with (1.30) is
SE(J, J,,S,L) = gJ.usB (1.36)

where J, = —J, ..., J. This final expression gives the splitting between
the energy levels of a multi-clectron atom.

Thermal effects

One interesting application of (1.36) is the calculation of the mag-
netic response of a set of isolated identical atoms in a magnetic field.
Observe that the partition function for the problem defined in (1.36) is

given by (8 = 1/(kgT))

7 - i o BE(Je,S,L) _ i ¢—BIIL,S) Teun B
Jo=—J Jy=—J
sinh [BgupB(J +1/2)]
sinh [BgppB /2]

where in the last line we used the sum of a geometric series. The
magnetization is obtained like in (1.24) and it is given by

M(B) = pgupJ B1(89J5B) (1.38)

(1.37)

where

2J 2J 2J

is the so-called Brillouin function. Notice that for SgugB >> 1 (that
is, low temperatures) the magnetization saturates at M — pgupJ as
expected since all the moments are aligned. At high temperatures, that
is, BgupB << 1 we find

B;(z) = Mcoth <M> — icoth (£> (1.39)

J(J + 1) (gu5)*B

M =~ 1.40
p ST (1.40)
and gives a magnetic susceptibility
J(J +1)(gpn)’
T) = 1.41
(1) == (1.41)

which is known as the Curie susceptibility.
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1.3 Molecules

1.3.1 The HJ molecule

We have seen that the physics of many-electron atoms can be quite
complicated if one is interested in the detailed behavior of the electrons.
Things become even more complicated if we now allow the atoms to
interact among themselves. Let us consider here the problem of the
formation a molecule (which is the first step toward a solid). To get
a qualitative understanding of the problem let us consider first the
problem of two protons and onc clectron, that is, the Hy molccule.
The Hamiltonian of this problem can be written as

2 2 2
P pT + P3 2 1 1 1
H=_—°4 +—e ( + - 1.42

2m, 2m,, lre —R;| |re—Rs| |R;—Ry| )

where r is the position of the electron and R; and R, are the positions
of the two protons. The first three terms are the kinetic energies of
each one of these particles and the last three their interaction energy.
This is a quite complicated problem. The wavefunction of the system
is a function of all the coordinates, ¥(r., R;,Rs). We make use of
the Born-Oppenheimer approximation and assume that the protons
are static during the time of motion of the electron.

Suppose that initially the protons are infinitely apart. For simplicity
assume R; = 0 and Ry = R.. In this case the problem has two solutions
which are degenerate with each other, that is, the electron is bound to
proton 1 with energy Ej and the proton 2 is empty or vice-versa. The
wavefunction of the electron, v, is well localized in each proton (it is
a H-like wavefunction). Let us consider a simplification of the problem
which forgets about all the other states of the problem except for the
states in which the electron is localized in one of the protons as in
Fig.1.4. Let (1| ({2|) be the state of the electron bound to proton 1(2).
If R — oo one has

Holl) = Ey|1)
Hy2) = Ey|2) (1.43)

where (1|2) = 0 and (1]1) = (2]2) = 1.
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J;. | 1>

e D 12>

Figure 1.4: Two states retained in the two-level system approximation
of Hy .
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Equation (1.43) can be rewritten as
Ho = By (1] + 2)2)) (1.44)

As the protons get closer to each other there is a finite probability
that the electron can jump from proton 1 to proton 2 and vice-versa.
This is the so-called quantum tunneling and is depicted on Fig.1.5. The
tunneling depends on the amount of overlap between the wavefunction
of the electron in the two different protons. There is an energy scale
associated with the tunneling which we are going to call ¢. ¢ is a function
of R and vanishes when R — oo and becomes large when R — 0. Thus,
in order to incorporate tunneling into the problem one has to add a
perturbation that mixes the two states. This perturbation we call Hr
and it has to be such that

Hripy o< 1o (1.45)

and of course H2 o< I since if we hop the clectron twice it has to return
to the same atom. It is obvious that the tunncling Hamiltonian must
have the form:

Hy = —t([1){2] + [2)(1]) - (1.46)

Any eigenstate of H = Hy+ Hr has to be a linear combination of states
(1] and (2|. This problem can be studied by rewriting the Hamiltonian
in matrix form. The matrix elements are:

(H[1) = @2[H2) = Ey

(1|1H|2) = {(2|H|1) = —t (1.47)
which can be rewritten in matrix form:
| Ep —t
[H] = l 4 B, ] } (1.48)

Observe that in terms of the matrix formulation the states are repre-
sented by vectors

(w,] = (é) (1.49)
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[, = (2) (1.50)

Of course our goal is to solve the Schrodinger equation

H[p) = Ely). (1.51)
From basic quantum mechanics the most general solution of this prob-
lem has to be a linear combination of base states, that is, |¢) =

a|l) + b|2). Normalization of the wavefunction (or probability) insures
that (¢|¢)) = 1 = |a]? + |b|*. In the language of (1.48) we have

(7] = ( Z ) (1.52)

and the Schrodinger equation becomes a simple eingenvalue problem

Y] = B[]
(H) - EI[®] = 0 (153)

where
1] = l (1) ; ] (1.54)

is the identity matrix. It is a simple exercise to show that eigenstates
of the problem are:

H|A) = (Eo +t)|4)
H|B) = (B, - t)|B). (1.55)

where

) = == ()

V2 V2
1 1 1
B = Js+m=5(1)- (1.56)
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These states are called anti-bonding and bonding, respectively. Observe
that the bonding state is the ground state of the problem. In the
representation of position these two states can be easily written as

(R,1|B) = 9pr(r)=1o(r) +vo(r —R)
R,r[A) = Yar(r) =1o(r) —tho(r —R) (1.57)

where 1)y is the ground state wavefunction of the H atom (¢n—0 1=0,m=0(7")).
Observe that the anti-bonding state has a node in the middle position
between the protons (¥4 r(r = R/2) = 0) while the bonding state
is always finite. Thus in the bonding state the amount of “charge”
between the protons is larger (the probability of finding the electron)
than in the bonding state. That is the reason its energy is lower and it
keeps the two protons together. In the anti-bonding case the electronic
charge is mostly around the two protons which are therefore ”shielded”
from each other. Thus, the anti-bonding state is unstable. A plot of
square of the wavefunction for each one of these states is shown on Fig.
1.6.

Another way to understand the problem is to realize that at finite
R we can expand the potential term in (1.42) in powers of /R and
it is clear that the first term is of order r/R2. Since this term is very
small we can do perturbation theory. The first order term cancels
due to symmetry {(tg|r|thy) = 0. The second order term has the form
6F =X, 0 {|V [Yn)[?/(Eo — E,). This term is always negative if E,
is the ground state. From the previous argument it is clear that |¢| =
—)F > 0. Thus, in this way, we relate our original problem with the
two-level system calculation. On the one hand, the energy of the ground
state (in this case a bonding state) has to decrease as we decrease the
distance between atoms. On the other hand the first excited state
(the anti-bonding state) increases in energy as we decrease the distance
between the protons (since ¢ — 0 as R — oo). When the distance
between atoms goes to zero the energy has to go to infinity since the
Coulomb energy term 1/R diverges. Thus we conclude that there must
be a minimum of the ground state energy at some distance Ry (see
Fig.1.7). In first approximation the energy close to the minimum is
parabolic and therefore the energy is quantized in units of hwy &~ Ej.
Moreover, since this corresponds to the potential where the electron is
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AV(r)

¥ -

Figure 1.5: Potential energy for Hy molecule showing the overlap of the
electron wavefunction in the two different protons.
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trapped we can write

km E}
2h2

where £ is a constant of order unit. Thus, by dircct substitution in
(1.14) we sce that the protons undergo harmonic motion around the
equilibrium position with a frequency = y/m./m,Ey/h.

Let us check now the validity of our approximation. By direct sub-
stitution of (1.42) and (1.14) into the Schrédinger cquation we find
that the have neglected terms of the form —h%Vi4p - Vié/ my. Since
variations in R; will produce variations in r we can write this term as
approximately |p.||pp|/(m,). Thus in order for our approximation to
be valid we have to require p2/m, >> |pe|[py|/myp or |Pp| >> |pel-
The momentum of the electron in a bound state of the H-atom is ap-
proximately p, ~ \/m¢FEy while for the protons undergoing harmonic

motion we have p, ~ \/ mypy/Me/mpEy. Thus the Born-Oppenheimer

E,(R)~ E° + (R — Ry)? (1.58)
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Anti-bonding state

gl

Bonding state

Figure 1.7: Energy of the Hj system as a function of the distance
between the protons R.

approximation works when
my/* << my/* (1.59)

which is a good approximation in most cases ((m./m,)'/* ~ 0.16).
Thus we have shown that within these approximations the protons un-
dergo harmonic motion and within a period of oscillation of the protons
the electron can be found in a bonding state. This is an example of a
covalent bond where the electron is shared by the protons.

1.3.2 The H> molecule

The argument given above does not apply to neutral atoms since we
have to introduce the Coulomb repulsion between the electrons in dif-
ferent atoms. Consider the H, molecule. The two electrons are tightly
bound to each proton. We can still do perturbation theory by assum-
ing that the atoms are very far apart from each other and start from
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the atomic limit. In this case, since the atoms are neutral, the electric
monopole terms of H, vanish and one has to consider the next term
in the multipole expansion of the Coulomb potential. The next con-
tribution comes from a dipole term that behaves like 1/R3. Thus, if
we do perturbation theory again on this term the first order is null (as
before) and the second order perturbation theory for the ground state
is negative. Thus the second order perturbation theory produces an
effective interaction that behaves like

05187

Hyay = 22 (1.60)

where « 5 are the polarizability of the atoms. This is a very short range
interaction compared with the bare Coulomb interaction and moreover
it is attractive. This is known as the Van der Walls interaction.

Our reasoning here is very similar to the one in the problem of the
H; system. Within the Born-Oppenheimer approximation consider
the wavefunction of the problem with two electrons and two protons
separated by a fixed distance R. We have various possibilities among
the various arrangements of the electrons around the protons. We can
have one electron around each proton or we can have the two electrons
around one proton. It turns out, however, that in this last situation
the Coulomb repulsion between the electrons is large and therefore
the ground state has to have one electron per proton. This is the
so-called Heiller-London approach. Thus we have two states which
are degenerated when the protons are infinitely apart, that is, with
the electrons in their original position or with the electrons exchanged
between the protons. These two states are depicted on Fig.1.8.

The situation here is completely equivalent to the Hj system and as
the protons approach each other they can exchange their electrons. Let
rio be the position of each electron. The most general wavefunction
for this problem has the form

W(ry,r9) = anhi(r1)ha(r2) + Bebi(ra)eha(r1) (1.61)

where o, 3 are coeflicients and /;(r;) means the state of electron j on
atom 4. If the distance between the atoms is infinity, any linear com-
bination of the type (1.61) is a solution. As we approach the H atoms
the electrons from each atom can tunnel from one proton to another
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Figure 1.8: Two states retained in the two-level system approrimation
Of HQ.
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(but always there is one electron per proton!). Using the two-level sys-
tem approach we find that the states that matter are the bonding and
anti-bonding states which can be written as,

\I’A(I'brz) = NA(¢1(T1)1/J2(T2)—?/J1(1'2)?/J2(1'1))
Up(ri, o) = Np(¢1(ri)ihe(re) + ¥1(r2)ibe(r:)) (1.62)

where N4 p are normalization constants. There is a possible problem
here, however. The Pauli principle requires that when we exchange the
electrons, the wavefunction has to change sign (indeed, one must have,
U(ry,r9) = —¥(ry, 1) and therefore, ¥(ry,ri) = 0). Thus, state Up
(which we concluded to be the ground state) cannot exist! What is
wrong with this picturc? What is wrong is that we forgot the clectron
spin. We can still have a wavefunction that is symmetric with respect
to the coordinates if we have a spin part which is anti-symmetric and
vice-versa. Thus, from the four states available for the two electron
problem the only spin states that matter are:

Xs(51,82) = [s1 =182 =]) — |s1 =L, 80 =1)
xi(s1,82) = |s1=T,52 =)+ [s1 =, 50 =1) (1.63)

which are singlet and triplet combinations of the spins, respectively.
Thus, accordingly to the Pauli principle the states allowed are

\IJs(rla S1;T2, 52) = \I’B(I'l, I'2)Xs(51, 52)
Uy(ry, 81379, 82) = Wu(ry,ro)xe(s1,52). (1.64)

The Pauli principle has strong consequences here. The tunneling of
electrons between atoms favors the bonding state but if the electrons
have the same spin projection this is not possible. Thus atoms with the
same spin projection repel each other. In some way, as we bring two
H atoms together we are trying to form a He atom. If the spins were
the same the electronic configuration should be 1s'2s! by the Pauli
principle. If we had the atoms with electrons with opposite spin then
we would get 1s? which is lower in energy. For the anti-bonding state
we can have the electrons with the same spin but in this case the atom
will not be stable (as shown in Fig.1.7). Thus, the ground state of
the Hy atom has to be a singlet state. This discussion implies that
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the Pauli principle acts as a force between the electrons, that is, there
is a quantum mechanical repulsion between the atoms with the same
spin. There is no classical analogue to this effect. Moreover, at shorter
distances the Coulomb repulsion between the electronic clouds becomes
large and this effect also increases the repulsion. In principle it is very
hard to calculate the combined effect of all interactions and one usually
uses the a phenomenological approach and introduce a repulsive term
of the form 1/R'? which is very short ranged and is called Lennard-
Jones potential so that the atom has a minimum at some R, as before.
Thus the energy of the molecule again looks very much like in Fig.1.7.

1.3.3 Ionic interactions

Another important interaction between atoms is the so-called ionic
bond. This interaction happens when the atoms have strong tendency
to form a filled electronic shell (that is, it gains more energy by bind-
ing strongly one electron to the nucleus instead of sharing it with the
other atom). Standard examples are the combinations of the elements
of the column 1A and 7A of the periodic table such as, NaCl. In or-
der to understand that observe that the charge distribution of Na is
1522522p%3s! while Cl is 1522522p83523p°. Thus if Na donates one elec-
tron entirely to Cl it has the electronic configuration of Ne while CI has
the configuration of Ar which are noble gases. Thus, in the most stable
configuration the molecule of NaCl has ions Na™CIl™. In this case there
is almost no screening of the electronic clouds and the atoms actually
feel the bare Coulomb interaction between them. At short distances, as
we saw before, there is a strong repulsion between the atoms which can
be accounted by the Lennard-Jones potential. Thus, for a molecule of
NaCl the energy of the system will look again like in Fig.1.7 with some
minimum at Ry. If we bring another molecule of NaCl close to the first
one Coulomb attraction (repulsion) between the atoms will bind the
molecules together.

1.4 Problems

1. Verify the following identities related with the Levi-Civita tensor:
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(1) €,5,k€Lmmn = 5i,l5j,m5k,n + 5i,m5j,n5k,l + 5i,n5j,l5k,m - 5i,n5j,m5k,l -
5i,m5j,l5k,n - 5i,l5j,n5k,m;

(2) 2k € gkerim = 06105m — im0 i;

Use (1.6) and (1.2) and the properties of the Levi-Civita tensor
to prove (1.7).

. The ionization energy of the oxygen is 13.6 eV and it is lower than

the energy of its neighbors on the periodic table (the ionization
energy of N is 14.5 eV and of F is 17.4 eV). Explain qualitatively
why this is so in terms of the interaction between the electrons.
(Hint: start the problem by thinking what is going on with B and
go up n the atomic number.

. Argon (A) is a noble gas and has filled shell with a configuration

3 p®. The next atom in the periodic table is potassium (K) which
has the configuration of lowest energy with 4 s instead of 3 d!!
Provide an argument that cxplains this obscrvation.

. Show that equation (1.19) is correct.

. Show that the total angular momentum defined in (1.27) com-

mutes with the Hamiltonian in the presence of spin-orbit cou-
pling.

. Use Hund’s rules to find the configuration of lowest cnergy for

an atom in which the last incomplete shell has a configuration:
1) d®; 2) f°. What is the value of the total magnetic moment in
each one of these configurations.

. What is the condition for which J = 0 in terms of n and ?

. Use the Wigner-Eckert theorem to show that for J = 0 the first

term in (1.20) vanishes.

. Use the algebra of angular momentum (Clebsh-Gordon coeffi-

cients) and prove (1.34) and (1.35).

Prove equation (1.36).
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Prove equation (1.37).
Prove equation (1.38).

Two localized spins 1/2 interact via an ezchange mechanism which
is described by a Hamiltonian

i) What are all the possible configurations of the two spins in the
basis of Sl, SlZ, SQ, ng?

it) What are the energies and their respective eigenstates of the
system when J > 07

i11) What are the energies and their respective eigenstates of the
system when J < 07

iv) Suppose a magnetic field, B, is applied to the system so that
we have to add the Zeeman energy to the Hamiltonian in (1.65):

HB = —ILLBB (SlZ + SQZ) (166)

where pg > 0 is the cffective Bohr magneton. Make a plot of the
cnergy of the states you found on item 2) as a function of magnetic
field. What is the state with lowest energy when B — 00?7 What
is its physical meaning?

Consider the Schrédinger equation (1.51). Assume that |¥) =
a|l) 4 b|2) and calculate a and b by direct substitution.

Solve the cigenvalue problem of equation (1.53) in matrix form
and show that the solution can be written in terms of (1.55) and
(1.56).

Consider a one dimensional molecule described by the Hamilto-
nian
i 2 82 77,2 82 mw? 2
H="————-— 4+ — - — 1.67
2M OR?  2m Or? + 2 <|T| 2> ( )
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where R > 0 is the relative coordinate of the nuclei with mass M,
m is the mass of the electron and r is the coordinate of the elec-
tron relative to the center of mass. Using the Born-Oppenheimer
approximation, that is, assuming

U(r, R) = ¥r(r)o(R) (1.68)

find, by direct substitution of (1.68) into (1.67) which terms are
neglected. Assuming that the energy has a minimum close to Ry
show that the nuclei oscillate with a frequency wy/m/M. From
this result show that we can use the Born-Oppenheimer approxi-
mation when (m/M)'/* << 1.

17. Show that the dominant interaction between two H atoms has a

dipole form at large values of the separation between them (call
it R).

18. Now consider a molecule made out of three atoms as shown of
Fig.1.9.

In this case the states of the electrons localized in each one of the
atoms can be written as:

1
P o= 0
0
0
Py = 1
0
0
3 = 0
1

() If tunneling between the atoms is allowed show that the Hamil-
tonian is written as
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Figure 1.9: Three atom molecule as a triangle of side R and hopping
enerqgy t.
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(i) Diagonalize the Hamiltonian and show that the eigenvalue
problem gives the following energies —2¢ and ¢ with eigenvectors,

1
vo =
v =
mz%

(1.69)

respectively. Observe that ¥g; and g, are not orthogonal to cach
other and onc has to orthogonalize them. Use the Gram-Schmidt
method and find an orthogonal basis.

Note: Observe that the degeneracy of the problem was lifted by the
tunneling. However, two of the states are still degenerate. This
is because the problem has an extra symmetry which is due to
rotation of w/3. A similar thing happens in the benzene molecule

which has 6 C atoms.
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Chapter 2

Crystals

2.1 Introduction

We have seen that by sharing or exchanging electrons stable molecules
of atoms can be formed. Depending on external conditions such as
temperature or pressure as atoms or molecules get closer to each other
a solid can be formed. Solids are highly symmetric structures that can
be formed in very different shapes. The shapes depend very on the type
of orbitals that participate in the binding between different atoms.

As an illustration let us consider the famous high temperature su-
perconductors (HTC) which are formed by planes of CuQO, atoms.
The atoms in these planes are arranged in squares as in Fig.2.1. An
isolated O atom has an electronic structure 1522s22p* while Cu has
1522522p%3523p53d'%4s'. Thus by getting two electrons the O atom can
close its p-shell and acquire the same configuration of Ne. We say that
O has valence —2. Thus, in the CuO, planes we have Cu*? and O~2.
The O atom has a close p shell and the Cu is in a 3d° configuration.
It means that there is a place for a single electron in the d shell of
Cu (there is one unpaired electron). Therefore, it is very reasonable to
imagine that the bond between O and Cu is done by a hybridizalion
(or mixing) of the p orbital of the O with the d orbital of Cu. Since
these orbitals have an anisotropic structure and are oriented 90 degrees
in respect to each other we expect a square lattice such the one in
Fig.2.1(a). The orbitals overlap like in Fig.2.1(b). It is interesting to

35
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note that this simple orbital structure is probably responsible for the
remarkable properties of these materials. We can predict a lot about
the structure of a solid by looking at the periodic table but, of course.
A remarkable property of crystalline solid is its symmetry. Imagine
yourself walking over a lattice of atoms which show a periodic structure
such as the one in Fig.2.1(a). You immediately note that as you move
from atom to atom you see exactly the same structure. Moreover, as
you look at the system from some specific angles it looks the same.
Thus, one expects based on this observation that in perfect crystals
the physical properties are the same at each point of the lattice, that
is, the physical properties of the system are invariant under symmetry
opcrations. These symmetry operations can be mathematically defined
and help us to predict many different propertics of crystals. In terms
of quantum mechanics this can be expressed by the fact that there are
quantum mechanical operators O that generate these symmetries. For
instance, the operator that generate translations by an amount R is

Or = F R/ (2.1)

where P is the momentum operator. It is very simple to show that this
is true. Suppose we apply this operator to a wavefunction ¥(r) and
suppose the R = dr is an infinitesimal quantity. Then,

Or¥(r) = U(r) + or - VU(r) ~ ¥(r + or) (2.2)

where we have expanded the exponential and used that P = —iAV. For
systems described by a Hamiltonian H which is translational invariant
the operator Or must be a constant, that is, it must commute with the
Hamiltonian, [H, Or] = 0. In this way, we know from the fundamentals
of quantum mechanics that the wavefunctions of the Hamiltonian can
be classified accordingly to the eigenstates of the operator Or. This
operator can be diagonalized straightforwardly since its eigenstates are
the momentum eigenstates,

Orlk) = e/ [k) (2.3)

Thus, even when we do not know how to calculate exactly the eigen-
states of the Hamiltonian (and we don’t in most cases) we know that
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Figure 2.1: (a) Spatial structure of a CuO, plane; (b) Atomic orbitals
involved in the binding.

the momentum is a good quantum number and therefore the wavefunc-
tions can be labeled by the momentum. This is a major advantage
since we can make predictions based on simple calculations as we are
going to see. Translation is a simple example of a symmetry. There are
many other symmetries that can be expressed in terms of operators as
well.

2.2 Discrete Symmetries

The two most important symmetry operations are:
1) Translations by one lattice spacing;
2) Point operations: rotations and reflections.

In order to define a translation we have to define first two mathe-
matical concepts: lattice and basis. Lattice is a periodic array of points
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which can be described by a translation vector
T = niai <+ nNods 4+ N3as (24)

where a; 93 are three independent vectors and n, o3 three arbitrary
integers (in two dimensions we have, of course, only two of them). A
periodic array of points is called a lattice if given R on the array then
R’ = R + T is also on the array. Thus by choosing different sets of
integers we can generate the whole lattice. For each lattice point we
can assign different atoms. In this case we have a basis. Let R, be
the coordinate of these atoms with respect to a lattice point. Here,
a=1,2,..., Ny, where N, is the number of atoms in a basis. A crystal
structure is combination of a lattice plus a basis, that is, any distance
between two atoms on a lattice can be written as T + R,,.

Observe that there is no unique way to define a lattice but it is
common to define the primitive quantities as the most economic way
to describe the crystal. We call the primitive translation vectors as the
smallest a; o5 that still allow the definition of a lattice. An example of
a two-dimensional lattice is shown on Fig.2.2.

We also define what is called as the unit cell as a certain volume
that fill out the space when translated by all possible T. It is clear that
this definition is not unique. We can define a primitive unit cell which
is the one with the smallest volume or the Wigner-Seitz unit cell which
is obtained by linking the nearest neighboring atoms together and then
cutting these lines in the middle by planes (see Fig.2.3). Observe that
if a; are the primitive vectors then the volume of the primitive unit cell
is simply

Vo =la; - (ag X a3)]. (2.5)

Together with the translation symmetry the point symmetries define
what is known as the Bravais lattices. To each symmetry we have an
operator which changes the coordinates of the system around a point
on the lattice with an axis through it. The principal axis is the axis
with the highest symmetry (that is, the one with the largest number
of symmetry operations). The symmetry operations are: (i) Identity
(R — R); (#) Inversion (R — —R); (44) Rotations, C,,, by an angle
of 27 /n where n is an integer; (iv) Reflection by a plane; (v) Improper
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Figure 2.2: Erample of a two-dimensional lattice with a basis.

Figure 2.3: (a) Conventional unit cell; (b) Wigner-Seitz cell.
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Figure 2.4: Possible Bravais lattices in two-dimensions.

rotations which are combinations of a rotation and a reflection through
a plane perpendicular to a principal axis. These operations can be
easily identified by inspection.

In two dimensions there are only five types of Bravais lattices that
can be obtained from the opcrations above. They are shown in Fig.2.4.
It is casy to show that in two dimensions it is not possible to have a
Bravais lattice with 5 fold symmetry (that is, it is not possible to fill
out the plane with pentagons) and there are not Bravais lattice with
rotations higher than six-fold symmetry. Thus we are only left with
the Bravais lattices of Fig.2.4: (1) Oblique (which is symmetric only
under Cy); (2) Rectangular (which is symmetric under Cs and has two
reflection planes); (3) Rectangular face centered; (4) Square (which is
symmetric under C; and three reflection planes); (5) Hexagonal (which
is symmetric under Cg, Cs5, and six reflection planes).

Observe that the hexagonal lattice is the most symmetric of all
Bravais lattice in two dimensions (that is, is invariant under the largest
number of symmetry operations). Moreover, the hexagonal lattice is
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Figure 2.5: Close packing structure for the hexagonal lattice.

special because it is close packed, that is, it is a lattice that has the
densest packing of hard spheres. Indeed, in the hexagonal lattice we
can densely fill the lattice by placing spheres of radius a/2 (where a is
the lattice spacing) in the center of a triangular lattice as in Fig.2.5.

In three dimensions there are fourteen Bravais lattices in seven dif-
ferent types of structures. One of the most important is the cubic
structure that has three Bravais lattices: Simple Cubic (SC); Body
Centered Cubic (BCC); Face Centered Cubic (FCC). These Bravais
lattices can be again classified by the symmetry operations described
before and are shown in Fig.2.6.

2.2.1 The reciprocal lattice

As we said before the symmetries are very useful in helping to describe
the various physical properties of materials. Tn a perfect crystal the
properties of the system should not vary as me move through a lattice.
One of the most important properties is the density, n(r). Given a set
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of N atoms at positions R; with 1 = 1, ..., N the density is simply

= Zl 5(r—R;) (2.6)

(observe that if we integrate the above expression in all space we obtain
N which is the total number of particles). Observe that from our
previous discussion we can rewrite for a crystal

R,=T+R,. (2.7)
Therefore, for a crystal, one can rewrite the density as

=Y S 6(r—T-Ry). (2.8)

Observe therefore that if we have N, unit cells with /N, atoms in a basis
we must have N = N, Nj.
The translation symmetry of the crystal requires that

n(t) = n(r + T) (2.9)
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for all T. This can automatically concluded if we use (2.8) and notice
that the sum of two lattice vectors is another lattice vector. Observe
that this property has strong consequences if we write the Fourier series
of the density:

n(r) => n(q)e” (2.10)

then from (2.9) we must have q = G where
G-T=2mn (2.11)

where n is an integer. It is clear from the definition of T in (2.4) that
we can always define G by

G = m1b1 -+ mgbg + m3b3 (2.12)

where my 23 arc three arbitrary integer and by o3 three independent
vectors such that

bi ca; = 277'5@' (213)

0; = 1 and 6;; = 0 if 7 # j is a Kronecker delta. It is simple to show
that

as X as

b =2r—F——
ai - (a2 X a3)

(2.14)

and the other vectors are just cyclic permutations of the above equation.
By the same token one has

b2 X b3
=2T . 2.1
aq 7Tb1 - (b2 » b3) ( 5)

Observe that these new vectors span a new lattice. This lattice is
called reciprocal lattice. Everything we said before in regards to Bravais
lattices is also valid for reciprocal lattices. In particular, the Wigner-
Seitz cell of the reciprocal lattice is called Brillouin zone. Moreover,
observe that (2.11) defines planes in the real space such that each plane
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is perpendicular to G (see Fig.2.7). In order to see that this is true
remember that the density is now written as

n(r) =3 nge®T (2.16)
G

thus, for each G the density is given by a plane wave of the form
cos(G-r) in the direction of G. Each maximum of the wave corresponds
to a plane of atoms (since the density is maximum at these planes)
where the empty space between the planes corresponds to a minimum
in the wave. Since the wavelength of this wave is 27 /|G| and the
distance between planes perpendicular to G is d we must have

2m
d reih (2.17)
Another way to sce this relation if through (2.11). Consider two points
in ncighboring plancs, say R,, and R,, {, such that R, —R,, | =d is
the distance between planes. Then from (2.11) one has

2
G| = 7 (2.18)

Thus G labels an infinite number of parallel planes in real space.
The classification of these planes in particularly useful in crystallogra-
phy. Since we saw that G = hb; + kbs + (b3 we can label planes by
the set of number [hkl] which are called Miller indices. For instance,
for a set of planes in the x direction we have (100) and for a set of
planes in the x + y direction we would have (110), etc. Observe that
the planes (200) and (—100) = (100), for instance, are parallel to the
planes (100). In this way it is very simple to think at the planes in real
space as labeled by reciprocal lattice vectors.

We have seen that the density can be written in terms of a Fourier
series of reciprocal lattice vectors G, as in (2.16), which guarantees the
periodic properties required by symmetry. The Fourier components ng
can be calculated by the inverse transform. This is done by multiplying
(2.16) by e 7T where K is a reciprocal lattice vector and integrating
in the volume of the unit cell, V5. Observe therefore that we are left
with the integral

; dlre G 8T = Vi5e k. (2.19)
7 Vo
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Figure 2.7: Series of planes and its associated reciprocal lattice vector.

In order to prove that this is indeed true we first remember that the
sum of two reciprocal lattice vectors is another reciprocal lattice vector
which can be written in the form (2.12). The result is trivial if G = K.
Moreover, observe that the integrand has the periodicity of the lattice
and its integral over a unit cell cannot depend on the choice of cell. In
particular, it cannot change if we translate the unit cell by an arbitrary
vector R. Therefore, from this result we have

1

= — | d¥%e7CTn(r) . (2.20)
Vo /v

ng

2.2.2 One dimensional chain

Consider a circular chain of NV atoms as depicted on Fig.2.8. The atomic
density along the chain (which we parameterize by z) is simply

N

n(z) =Y 6(z — ja) (2.21)

=0
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where @ is the lattice spacing. (2.21) has a simple Fourier series
n(z) =Y e*ny, (2.22)
k

and because the system has discrete translational symmetry by a, that
is, n{x + a) = n(z) (in (2.21) the shift by a is just equivalent to a
renumbering of the lattice sites!), we must have

eika = 1
-
ky = % (2.23)

Thus, the values allowed by symmetry form a lattice with lattice spacing
27 /a which is the reciprocal lattice. The reciprocal lattice vectors are
simply G = 2. Also it is very simple to show that (2.19) and (2.20)

a

are correct. Let us rewrite (2.22) in terms of the allowed values of k
n(z) =3 e¥an, (2.24)
J

where the sum runs over all integers (positive and negative). Multiply
both sides of the above equation by e~2"™% and integrate from 0 to a

/‘dace_z’”:m%n(m) => nj/‘dacez“’:(j_m)%. (2.25)
0 : 0
J

Now observe that for j  m one has

a . " 2mi(j—m) __ 1
/ doe? ii-mz — oS~ = _ (2.26)
0 21i(j — m)

because e>™/~™) = 1. If j = m the integral obviously gives a. Thus,
we conclude that,

/ dre®™ ™% = a6y, ; (2.27)
0

which is the one dimensional version of (2.19). Going back to (2.25)
one finds

1 s o
n; = 6/0 dre T an(x) (2.28)

which is the one-dimensional version of (2.20).
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Figure 2.8: Model for a one-dimensional crystal.

2.3 Elastic scattering

In order to illustrate the importance of the reciprocal lattice let us
consider the problem of scattering of the crystal lattice by light with
wavelength A. Imagine we send light into a crystal from very far away
with a wave-vector k such that £ = 27 /A. The atoms in the crystal
absorb the light and re-emit it in spherical waves as in Fig.2.9. These
waves interfere with each other and an observer located at R observes
a scattered wave with wave-vector k’. Here we consider only the elastic
scattering by the crystal so that no energy is lost in the collision of light
with the crystal, that is,

K=k =2r/\. (2.29)

Consider an atom located at a position r in the crystal. The amplitude
of the electric field of incident light at that position is

E(r) = Ege™*" (2.30)
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where Ej is a constant vector. The atom at r re-emits the light so that
the contribution of this atom to the observed light at R is

E(R) x E(r)e® ™ (2.31)
where r' = R — r (see Fig.2.9). Thus,
E(R) o Egem k) R (2.32)

The contribution from the whole crystal is obtained by integrating
(2.32) over the entire crystal

E(R) x Ege¥ ® / dVn(r) ek (2.33)
crystal

where 0k = k — k' and n(r) is the density of atoms. Observe that
the first factor in (2.33) is just a phase factor which is not important
since it does not include the superposition of all the fields created by
all atoms. Now the fact that the crystal has a periodic structure enters
into place. Since the crystal is composed by /N unit cells we do not have
to integrate over all crystal, we just have to integrate over one cell and
sum over all the other cells. This means that we can rewrite r = T + 1/
where r’ describes the position of each atom in the unit cell. Thus, we
can rewrite (whole) as

ER) x Eo), - dV'n(T + r')ei(T+r')'5k
T [

o Eo Y efToe dV'n(x")e™ % (2.34)
T Cell

where we have used the translational symmetry of the problem, that
is, n(T + ') = n(r').

Let us now focus on the first term of (2.34). For an arbitrary dk
the sums of the exponential is only different from zero if

T -k = 27n (2.35)

where n is an integer. This condition means that in order to have a
constructive interference we have to require that

k=G (2.36)
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Figure 2.9: Geometry for scattering of light by a crystal.

is a reciprocal lattice vector. Thus, (2.36) tells us is that there is only
scattering if k' = k — G, that this, the incoming and the out-going
plane waves can only differ by a reciprocal lattice vector. This has pro-
found consequences. In the elastic scattering the energy of the incident
and scattered beam is the same and therefore |k'| = |k|. Thus, as a
consequence we have,

)2 = k?*+(G)?-2-G
2kk|cosd = |G| (2.37)

where ¢ is the angle between k and G. But we know from (2.18)
that associated with each vector G we have a set of planes such that
|G| = 27 /d and given a plane wave we also have |k| = 27 /X where X is
the wavelength of the beam. If instead of ¢ we use the angle between
the incident beam and the plane (see Fig.2.10) the above equation can
be written as

2d sinf = A (2.38)
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which is the famous Bragg law for elastic scattering.

We use basic quantum mechanics to calculate the differential cross-
section for scattering of a plane wave with wave-vector k into another
wave-vector k’. This is given in the Born approzimation by

d’c  2n

— ~ —[(K|VIK)? 2.39

2~ V) (2:39)
where V is the scattering potential. In a condensed systems (gas, liquid
or solid) this potential is the atomic potential of each atom. Thus we
can write

V() = 3 Ve - R) (2.40)

where R; is the position of each atom. Using the fact that this potential
is periodic we can write

Vi)=Y Vge®” (2.41)
G

where the Fourier components can be obtained as in (2.20). Thus the
matrix element can be written as

1 ~ 1 .
<k|V|k'> = V/ddre—zq.rv(r) — V;VG/ddre—z(q_G).r

_ (2‘7;)d S Vodla—€) (2.42)

where q = k — k/. What this last equation tells us is that there is only
scattering if k' = k — @G, that this, the incoming and the out-going
plane waves can only differ by a reciprocal lattice vector in complete
agreement with our previous discussion.
We can now rewrite the differential cross-section as
d’c 1

- k kl 2=
o VIO = L

> Vel*bqc (2.43)
G

where we used the results of Appendix (2.5.1) for the substitution of
the Dirac delta function for the Kronecker delta. This equation is
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Figure 2.10: Bragg reflection through a set of planes.

quite interesting because it tells us that the intensity of the reflection
at q = G is proportional to [Vg|>. Thus, the Bragg condition is not
sufficient in order to see elastic scattering at some vector G but also
it is required that the potential has a finite Fourier component at this
wavevector.

We can get even more insight into (2.43) if we rewrite the Fourier
componcents of the potential in terms of the potential created by isolated
atoms. In this casc, within the unit cell, we write

V(r) =) Usd(r — Ry) (2.44)

where U, is the strength of the potential for a particular atom «. Using
(2.20) we find

1 .
VG = — Z Uae_lG.Ro‘ (245)
Vo g

which depends only on the atoms on a unit cell. In this case (2.43)
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becomes
o 1 o
- I * iG-(Ra—Ry)
70 x %2 %;UQUW
1
= = Y UU,FR, - R,) (2.46)
Vo o
where
1 .
FR,) = w S e iGRa (2.47)

This result implies that the scattering depends strongly on the local
structure of the atoms on the unit cell.

These equations simply considerably if we assume that the atoms
are the same. In this case one can write

V(r)=Up > 6(r— Ry) (2.48)
and thercfore
VG = Uopg (249)
where
1 s
pe = 3 e iGRa (2.50)
0 o

is the Fourier transform of the density. It is straightforward to conclude
from the above cquations that

d*o 9
a0 Uol"S(a) (2.51)

where
S(a) = (2m)*> Ipcl*dq.c (2.52)
G

is called the static structure factor. Observe that a scattering at some
vector q = G is only possible if pg # 0. This factor is the same
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that appears in equation (2.34). Thus, even if the scattering is allowed
the positions of the atoms on the unit cell determines if there is any
intensity for that particular scattering.

The scattering in a disordered system such as a glass (or liquid very
viscous fluid) can also be immediately obtained from these equations.
Since the system is disordered the unit cell is the volume of the system
itself. Moreover, the sum in (2.50) is a sum of random phases that leads
to destructive interference if the phases vary wildly. Thus, from (2.50),

1 .
PG =, Yo e e = nbgy (2.53)

[e%

where 7 = N/V is the average density of the system. By direct substi-
tution of this expression in (2.52) we find

S(q) = (2m)%n6q0 (2.54)

shows that in this case the system only has forward scattering.

2.3.1 Experimental constraints

So far we have discussed scattering but we did not specify what type
of scattering we are talking about, that is, what kind of probes we are
looking for. Observe that the only condition for scattering is given by
the Bragg law, (2.38), that requires that the wavelength of the probe
must be such that, A < 2d. Since d is of order of 1.4 we need probes
with very short wavelengths. The first probe that comes to mind is
lzght. Light interact with the charged particles in the system via what
is called minimal coupling, that is, we replace the momentum p of the
charged particle by p — eA/c where A is the vector potential. The
energy of light can be written as

h
E = hw = helk| = XC . (2.55)

For A ~ 1A one needs E ~ 10* eV which is the X-ray part of the
spectrum. Another possibility is scattering by electron waves. In this
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case the scattering process is due to the electron-electron interaction in
the system. The energy of an electron is given by

G S G

) = .
2m,  2mgA\?

(2.56)

For A ~ 1A one needs E ~ 100 eV. Another possibility is neutron
scattering. Neutron has no electric charge and therefore is insensitive
to charge degrees of freedom in the solid. It interacts with the magnetic
moments in the solid (nuclear and/or clectronic). The encrgy has the
same form as above for the electron but since its mass is a thousand
times larger the relevant energies are a thousand times smaller, that
is, £ ~ 0.1 eV. Although we have different probes it is easy to see
that each one of them measures the system at different scales of energy.
Thus, the choice of probe depends strongly on what kind of energy
scale one wants to probe. In condensed matter physics one is usually
interested in energies of the order of a few meV which is the energy
scale of the neutrons. Neutron scattering is also particularly important
because it probes directly the magnetic excitations. Electron scattering
is a complicated probe because the scattered electron tends to interact
strongly with the other electrons in the system (this is called multiple
scattering) and our simple Born approximation formula is not valid any
longer. We really need a probe that interacts weakly with the system
of interest. X-rays have an energy that is usually orders of magnitude
larger than the energy scales of interest and it is very hard to get good
accuracy with X-ray measurements. It turns out, however, that they
are excellent in order to measure static properties such as, S(q), via
elastic scattering.

2.4 Defects in solids

So far we have discussed only perfect crystalline structures where the
atoms occupy sites of a periodic lattice. It turns out, however, that
real crystals are not perfect and contain a series of different defects.
The most common types of defects are vacancies and interstitials that
are called point defects since they involve the subtraction of isolated
atoms. There are also line defects which involve the entire displacement
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Figure 2.11: Vacancy in a crystal.

of planes or lines of atoms and for this reason are called dislocations.
These defects are common in most materials and are responsible for
many effects observed in crystals.

At finite temperatures all crystals contain a certain number of va-
cancics or interstitials. This is duc to purely cntropic cffects. The
simplest type of defect is depicted on Fig.2.11 and it is called a Schot-
tky defect. In this kind of defect is essentially due to an atom which is
missing from its original position. The missing atom in this case creates
a ”hole” in the crystal and therefore a local defect.

In order to understand the entropic nature of such a defect consider
a perfect lattice made out of N atoms and M vacancies which are
randomly organized (we are considering that there is no clustering of
these vacancies and that the energy of the vacancies do not depend if
there are other vacancies in its immediate neighborhood). In this case
it is clear that the system has many equivalent configurations. The
number of these configurations is simply (N + M)!/(N!M!). Thus, the
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total entropy at zero temperature is:

(N+M)!>

N1 (2.57)

S:kBln(

Here we are going to consider the case where Ny M >>> 1 but M/N
is finite. Thus we can use the Stirling approximation

In(N!) ~ NIn(N) — N . (2.58)
Now consider the free energy of the system which is given by
FM)=U(M)—-TS(M) (2.59)

where U is the internal energy of the system with M vacancies. In the
case under consideration the energy of create M vacancies is just M
times the energy to create a single vacancy since we are disregarding
vacancy-vacancy interactions. In this case we have

U(M) = eeM (2.60)

where ¢ is the energy required to create a single vacancy. For a fixed
value of N the equilibrium is attained when the free energy is a mini-
mum with respect to variations of M. Thus, we have to minimize

(N+M)N+M1

SN (2.61)

F(M) = 60M— kBTln [

with respect to M keeping N 4+ M = N, the number of sites constant.
We write

F(M) ~ eM — kgTIn l(Ns—]\/A]f\;sz\f’ssMMMl (2.62)
and the derivative becomes
g—]\i — o — kpTln (Ns — M) (2.63)
and thus
€ ~ kgTIn (NSA_/[M> (2.64)
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Figure 2.12: Interstitials in a crystal.

or
N

M(T) = —<—
e*sT +1

(2.65)

which shows that there is always a finite number of vacancies in the
crystal. Observe that when kT >> ¢y we have M(T) ~ N,/2. How-
ever, in normal materials ¢ is of order of 1 eV (10, 000K) and therefore
one usually has the opposite limit, that is, kg7 << €y, where

M(T)/N, ~ ¢ FsT (2.66)

that is, there is an exponentially small number of vacancies in a crystal.

Another type of defect is the interstitial which is similar to a va-
cancy but the atom, instead of leaving the bulk of the crystal, moves
to an intermediary position between other atoms. This is shown on
Fig.2.12 and it is called a Frenkel defect. This type of defects are more
common in ionic crystal where a positively charged ion can move in
between negatively charged ions in a crystalline matrix. In this case
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charge neutrality requires that an equal number of negative and positive

defects are generated.
It is also possible to replace a negative ion by an electron local-

ized at the defect. In this case the electron is localized in a quantum
well. Naturally the absorption of light in the crystal changes since the
electrons in a quantum well absorbs light at different frequencies than
in a perfect crystal. It implies that the crystal changes its color. For
this reason this kind of defects are called color centers. An example is

depicted on Fig.2.13.
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2.5 Problems

1.

Prove that for n = 5 it is not possible to define a smallest vector
a; that generates the lattice. The proof of the non-existence of
Bravais lattices for n > 7 is analogous.

Prove that the Wigner-Seitz unit cell of a planar hexagonal lat-
tice of lattice spacing 2R has an area of 2v/3R2. Show that the
fractional area occupied by the spheres relative to this unit cell
area is 0.907.

Prove that the vectors b, can be written as in (2.14).
Prove that (2.15) is indeed correct.

Prove that the volume of the Brillouin zone, Vg = (27)%/V; where
Vi 1s the unit cell volume.

Show that by translating the unit cell to another cell Vj in (2.19)
the integral is zero if G # K.

We have seen that a reciprocal lattice vector labels a series of
planes (hkl). Show that a equivalent way to label the planes
in real space consists of two steps: 1) find the intercept of the
plane with the axes in terms of the vectors a;, ay, a3; 2)take the
reciprocal of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The
result, that is, (hkl) is the index of the plane.

. The primitive vectors for a bee lattice are

a
a; = 5(—x+y+z)
a, = g(x—y—i—z)
a3 = g(x+y—z) . (2.67)

Find the reciprocal lattice vectors. What lattice does it form?
Make a drawing of the two lattices.
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The primitive vectors for a fcc lattice are

a
a; = §(Y+Z)
a, = g(x+z)
a; = g(x+y). (2.68)

Find the reciprocal lattice vectors. What lattice does it form?
Make a drawing of the two lattices.

In this problem we are going to study the effect of the second
factor in (2.34), the static form factor. We write it as:

Se = dVn(r)e™C (2.69)
Cell

since 0k = G is the Bragg condition. When there are N, atoms
in the unit cell we can write

Ny
n(r) =Y ni(r —r;) (2.70)
7j=1
where n; now depends on the particular atom. Show that
Ny .
Sg =Y fie™i¢ (2.71)
j=1
where
fi= - dVn,(r)e™ @ (2.72)

is called atomic form factor which depends only on the kind of
atom is participating on the lattice formation. Consider now that
r; can be written in terms of the primitive vectors as

r; = r;a; + yj;az + z;as (2.73)

where 4, y;, 2; arc any rcal number. Using that G = 2 mb;
show that
Ny
SG — Z fjeQWi(m1$j+mzyj+M3Zj) . (274)

=1
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11.

12.

13.

Calculate Sg in previous problem for a fcc lattice with one atom
per unit cell assuming that the fcc lattice can be thought of a
simple cubic lattice with a basis given by the vectors (0,0, 0),
(0,1/2,1/2), (1/2,0,1/2), (1/2,1/2,0). (i) Assume that f; = f
and show that if mq, mo, ms are all even or all odd we have Sg =
4f. (ii1) Show that if one of the m; is even and the other two
are odd then Sg = 0. (iv) Show that if one of the m; is odd and
the other two are even then Sg = 0. (v) Compare the scattered
reflections that you would get from a fcc lattice without a basis
and the ones you got from assuming that the fcc lattice can be
seen as a simple cubic lattice with a basis. Do you get identical
results?

Consider a two dimensional crystal in a square lattice with two
different types of atoms with different cross-sections (a two di-
mensional version of NaCl). What would be a result of a neutron
scattering experiment in such a system? What are the allowed
values of momentum for scattering?

Consider an ionic crystal with positive and negative charges. As-
suming that the energy required to create an interstitial with
positive (negative) charge requires an energy €, (€,) and that the
system has charge neutrality show that the number of positive
and negative interstitials is

epten

Np = Ny = NpNne_B 2

where N,(N,) is the number os sites with positive (negative)
charge.

2.5.1 Appendix: Dirac and Kronecker delta func-

tions

There is a little caveat about equation (2.42). Observe that q is defined
in the continuum (that is, it can vary continuously from 0 to oco) while
the reciprocal lattice vector G is defined over a discrete set. Thus,
in order for the summation in (2.42) to make sense we should have a
Kronecker delta instead of a Dirac delta function. The solution for this



62 CHAPTER 2. CRYSTALS

little problem is given by the quantization of the scattering states in a
box. If we require the plane waves outside the material to have periodic
boundary conditions in a box of size L, then we must have

. 2 mn;

k== (2.75)

where ¢ = x, y, 2. Thus a Dirac delta can be written as

d(k) = 0(ky)o(ky)o(k,) =(2mn,/L)é(27n,/L)6(27n,/L)
V
= — 2.76
(27r)ddk’0 (2.76)
where dx o is a Kronecker delta and V = L? is the volume of the quan-
tization box. In this way one can replace sums by integrals,

2 (QZ)d Jda. (2.77)

Another way to rewrite this expression is due to the result of Problem
5: if N is the number of primitive cells and Vg is their volume we have
immediately,

S o % /ddq . (2.78)



Chapter 3

Elasticity Theory

3.1 Introduction

Point like defects are not the only type of defects that occur in crys-
tals. There are extended defects that are responsible for very important
mechanical properties of crystalline systems. Line or plane defects in
crystals are possible under application of pressure or stress. When de-
formations due to stress are reversible we call them elastic deformations,
otherwise, when they are not reversible, we call them plastic deforma-
tions. In order to understand the difference between plastic and elastic
deformations consider the simple toy model proposed by Frenkel for a
shear strength of a perfect crystal as shown in Fig.3.1. Suppose a stress,
o, is applied to a plane of atoms which is displaced by another plane
of atoms by an amount x. Under Hook’s law the stress, o, is linearly
related to the displacement by the shear modulus G

olx) =~ G (3.1)

x
d
where d is the distance between planes. Of course this equation is valid
for small displacements. Suppose we apply a strong shear stress so that
all the atoms move one lattice spacing a. In this case we are back to

the original situation with the atoms in their equilibrium position in
zero stress. This implies that the stress must be a periodic function of

63
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Figure 3.1: Simple model for shear stress in a perfect crystal.

the lattice spacing. For simplicity let us consider a harmonic function

2rx

a
0’(.’1)) = G% Sin (7) (32)
which becomes (3.1) in the limit of z << a/(27). Observe that (3.2)
has a maximum for z = a/4 for which

a

. = 4) = .
o = o(a/4) G27rd

(3.3)
If the stress applied is larger than o, the upper plane in Fig.3.1 has
to move freely and never return to the original unstressed situation.
This would imply plastic flow of the crystal. Since a ~ d ~ 14 the
critical stress is approximately G /6. It turns out that this prediction
is completely at odds with the experiments. For instance for a single
crystal of Al we find that experimentally o, &~ G/60,000! Thus, the
conclusion is that plastic deformations occur at a much smaller stress
than the theory predict and they must be generated not by elastic
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Figure 3.2: (a) Edge dislocation; (b) Screw dislocation.

deformations of the crystal but by defects. These defects are called
dislocations.

Plastic deformations in crystals occur when planes of atoms slide
over each other due the presence of dislocations. The simplest types
of dislocations are edge dislocations and screw dislocations. In a edge
dislocation there is a mismatch of planes as if an extra planes of atoms
have been inserted in the crystal while in a screw dislocation there is a
mismatch between planes of atoms as shown in Fig.3.2.

3.2 Elastic properties of crystals

As we have discussed in the last section the position of the i-th atom
in a crystals is given by R; = T + R, where T is a vector in the direct
lattice and R, is a vector in the unit cell. Moreover, in Chapter 1 we
have seen that the equilibrium position of atoms is given by the various
electronic interactions. Usually one finds that the competition between
a long range attractive force and a short range repulsive force lead to
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a mean distance between atoms that we call lattice spacing. In this
section we are going to consider the elastic energy required to deform
the atoms from their original equilibrium positions. Since the perfect
crystal is the lowest energy state for the system, local deformations will
cost energy. This energy is called elastic energy. Let us assume that
some part of the crystal is displaced by a quantity u(r) which means a
displacement of |u| in the direction of u at position r. Obviously the
free energy of the system due to this displacement is a function of u(r).
Here we would like to know the functional form of the free energy which
can be obtained from symmetry considerations.

The first obvious symmetry is the translations of all atoms of the
crystal by a fix value u(r) = ug. It is clear that the free energy of
the system cannot depend on the value of ug and thercfore it can only
depend on derivatives of u(r) which we denote by

8,~u7- = an

=5 (3.4)

where 4,7 = 1,2,3,...,d corresponding to x,y, 2.... Obscrve that d;u;
can be scen as a matrix, or more formally, a tensor with d x d compo-
nents. From this argument we conclude that the free energy has to be
written as F' = F[0;u;]. Another symmetry of the problem is inversion
symmetry, that is the free energy has to be invariant under u — —u. It
implies that linear terms are not allowed and therefore F' = F[(d;u;)?].
Now let us consider another important symmetry which is the symme-
try of rigid rotation of the lattice by an angle 0. Consider, for instance,
a plane of atoms labeled by a reciprocal lattice vector G which is ro-
tated by this angle. Along this plane all the atoms are displaced by
u(r) = |r|66 as shown in Fig.3.3. Another way to write this displace-
ment is to consider the vector 66 oriented anti-clockwise in the rotation
direction. It is clear that

u(r) =60 x r. (3.5)

This relation can be easily inverted with the help of differential calculus
to

L1
80 = ZV x u(r) (3.6)
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Figure 3.3: Rigid rotation of an atomic plane

which expresses the angle of rotation in terms of the displacement.
Since the whole crystal is rigidly rotated the free energy cannot depend
of 55, that is, the system is invariant under rigid rotations. Observe
that in (3.6) the displacements appear in combinations of the form
O;u; — Oju; which is the anti-symmetric part of the tensor d;u;. Thus,
duc to the rotation symmetry the free energy can only depend on the
symmectric part of the tensor Qju;, that is,

1
uij = 5 (Osu; + Ojui) (3.7)

which is called the strain tensor. In summary, due to rigid translations,
inversions and rotations the free energy due to elastic deformations of
a crystal can only be a function of wu;;u.

It is very simple to understand the physical meaning of each com-
ponent of the strain tensor. Consider for instance a compression or
dilation of the system along the direction x. If I, is the size of the
crystal in this direction then

5y = (3.8)

gives the relative compression in that direction (obviously for compres-
sion ¢, < 0 and for dilation d, > 0). In this case the volume of the
whole crystal is changed by 6V. By the same token the volume of the
unit cell, Vo = |a; - (ap X az)| is changed by 6V, because a; changes
under compression. It turns out, however, that since V = NV, where
N is the total number of atoms we must have

BV _ 8%

= T (3.9)
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Figure 3.4: Compression of a series of planes.

This relation is valid because we are considering the crystal in the
absence of vacancies and interstitials. In the presence of defects (3.9)
has to be modified. Moreover, since the reciprocal lattice vectors are
tied to the direct lattice vectors by a; - b; = 27d;; it is clear that a
compression in real space will lead to a dilation in reciprocal space and
vice-versa. Consider the set of N planes separated by a distance d
in the x direction before the application of pressure. In this case we
have L, = Nd. After pressure is applied the distance between planes
becomes d' so that L = Nd'. Therefore

LL—L, d—d
L,  d

=6y (3.10)

We will label the displacement of the nth plane of the crystal by w,.
Let us assume that the first plane is fixed before and after pressure is
applied so that uy = 0. It is simple to in Fig. 3.4 that second plane
is displaced by u; = d’ — d = §,d, the second plane is displaced by
us = 2d' — 2d = 26,d and so on. In general

Up, = N0gd . (3.11)

If we label the position of each plane by x = nd we see that this last
expression can be rewritten as

u(xr) = bgr

Opu(x) = 0y. (3.12)

In a more general way we can consider a set of planes labeled by the
reciprocal lattice vector G. We know that |G| = 27 /d where d is the
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distance between planes. After compression or dilation we must have
d' = (1+6;)d and therefore the reciprocal lattice vector changes for an
infinitesimal value of 6, by

G = (1-4,)G
G -G = —6,G. (3.13)

Moreover, in this case, the displacement of the atoms due to the com-
pression or dilation can be written as

G-ur) = (G-G)-r

.G -x (3.14)

and therefore
u = §,x (3.15)

and therefore
Upy = Og (3.16)

and all other derivatives vanish. Thus, it is clear that u;; measures the
lattice compression or dilation in the direction of the vector x;. The
total volume of the system is V = L,L, L, and therefore we must have
0V =6LyL,L,+ Ly0L,L,+ LyL,0L,. Thus, it is simple to show that

%:;% (3.17)

that is, the relative change in the volume of the solid is given by the
trace of the strain tensor. Equation (3.17) has to be interpreted with
a little care, however. Obscrve that wu;(r) is a local function of the
position and of course 6V is a global change in the system. Thus (3.17)
is really only valid in a perfect crystal without defects like vacancies
where changes in volume can be non-uniform. In general the diagonal
elements of the strain tensor are related to the local changes in the unit
cell volume such that,

Vo) _ 5~y
) = 2 o) (3.18)
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which is a local relation. Of course, for ordered systems equation (3.9)
is valid and (3.17) is identical to (3.18).

We can always decompose the distortion of a solid in terms of volume
changes and shear (which never changes the volume). We have seen
that volume changes have to do with the diagonal elements of the strain
tensor. The other off-diagonal components of the strain tensor represent
the shear distortion of the system as you can easily show. Since shear
does not change the volume of the crystal it is represented by a traceless
tensor

2ok Ukk
7

Notice that indeed ¥, s;; = 0 since >, §;; = d.
From now on we are going to consider only small distortions of the

crystal and from the symmetry arguments the free energy has to be
written as

(3.19)

Sij = Uij — 0

1
F = 5/611‘ Z Cijkluijukl (320)

oy

where Cjj are the so-called elastic constants of the crystal which in
principle can have d* components. Now observe that u;; = uj; and
therefore we must have the following symmetries:

Cijkl = Cjikl = Cijlk = Cjilk = Cklij . (3'21)

In addition the free energy has extra symmetries which depend on the
point symmetries of the crystal itself. Highly symmetric crystal will
have less independent elastic constants than less symmetric crystals.
For instance, a three dimensional cubic crystal has 3 independent elastic
constants while a triclinic crystal has 21 independent elastic constants.
Moreover, it is very simple to estimate the order of magnitude of the
elastic constants if we remember that u,; is a dimensionless quantity
and therefore Cjj,; has dimensions of energy divided by length?, that
is, energy density. The energy here is just the biding energy per atom
of the solid which is of order of a few electron volts while the length is
of order of the lattice spacing, that is, a few angstroms.

Things simplify considerably in isotropic solids where compression
and shear stress are independent of the direction they are applied. It
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must be clear that in this case there are only two elastic constants: one
associated with compressions and dilations (the so-called bulk modulus,
B) and another associated with shear distortions (the so-called shear
modulus, G). Since we have seen that compressions have to do with wu;
and shear are related to s;; the free energy has to be written as

F:%/dr

In order to see that this expression has indeed the form of (3.20) we
use (3.19) and rewrite (3.22) as

1
F=§/dr

which has the form of (3.20) with

2G
_> 0ij0nt + G (0udjk + Oirdjr) (3.24)

B (Z u> 2 + 2G Z s‘fj] : (3.22)

(B — %) (Z u) 2 +2G ZJ ufj] (3.23)

Cijii = (B T

which has the symmetry properties as required.

Of course the expression for the free energy as given by (3.20) is
uscful if we can rclate the internal distortions (the strain) with the
external agents such as pressure or strain. In order to do that onc has to
calculate the work done on the system by an external force. Consider an
external force F applied to an element of volume §V. If the interaction
between the atoms is short range this force will be transmitted by the
neighboring volumes through the surface 65 that surrounds the volume
0V. The total force in the volume in the ith direction is

F, = /5 def, (3.25)

where f is the force per unit of volume of the undistorted solid. Since
the force applied is a local function of the position it can be expressed
as a gradient with respect to the undistorted crystal and we write

fi =050y (3.26)
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where o;; is the stress tensor. Substitution of (3.26) into (3.25) leads
to

where we used Gauss theorem. Observe that the stress tensor o;; gives
the force per unit of area in the direction i exerted by the surrounding
medium on a volume element across its surface oriented on the direction
j. Consider a solid surrounded by an isotropic fluid at pressure P. This
solid will experience an stress given by the hydrostatic pressure which
is —P. In this case the stress tensor is simply

Oi5 = —Péij . (328)

Suppose uniaxial pressure 7 is applied along the x axis of a crystal. In
this case it is obvious that

Opz =T (3.29)

and all other components are zero. In the more generic case consider
the work done by a force density f which displaces the volume elements
of a crystal by u(r). This work is simply

SW = —PV = / drf - u(r)
= /drzajaijui(r)
4,J
= —/dI‘ZO’,'j’U,ij (330)
Y]

where we have integrated by parts and neglected the surface terms.
The change in the free energy duce to the changes in the strain ficld is
the negative of the work done by the internal forces, thus,

OF = —6W = /dI‘ZO’,'j’U,ij (331)
4]

Observe that this leads to the important relation:

_OF
N 8u,~j

(3.32)

Uij
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which relates the strain tensor with the stress tensor.
For the case of the isotropic crystal, accordingly to (3.22), we have:
Oy = B Z 'U'lléij -+ 2Géw (333)
1
which we can invert to write the strain in terms of the stress. Firstly
we observe that for ¢ # j we have

Oi5 = QGSij = QG’UWJ (334)

where we have used (3.19). Secondly, for i = j we have
2
o = 2Gu;; + (B - ;) > uy (3.35)
1

and therefore >, 0;; = dB Y, uy;. Thus, we conclude that

”Zlo-ll i(a.._(g..Zlall>
Y@2B 2 \Y Y d '

This last cquation is very uscful. Consider a solid subject to a
hydrostatic pressure P. Then, from (3.36) onc has

(3.36)

U'ij =

1 p
From (3.17) one finds immediately
ov._ P
V.~ B
1 16V
5= VP (3.38)

which is the usual thermodynamic definition of the bulk modulus as
expected. Suppose that uniaxial stress 7T is applied in the z direction.

Again we have
_ (1 N d—1
Y2 = g \dB " 2G

T/1 1
o= =t (= ). 3.39
b Y = 7Y <2G dB> (3.39)
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Observe that the change in the size of the system along z always follows
the applied force while in the transverse directions it will depend on
the ration dB/(2G). The Young’s modulus, Y, of the system is defined

as

y = L
U’ZZ
2d*GB
Y = A4
2G+d(d—-1)B (340)

and the Poisson’s ration v is defined as

Ugy
Uz

dB — 2G
~ dld—-1)B+2G" (3.41)

v o= —
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3.3 Problems

1. Write down the elastic free energy for a three dimensional crystal
with cubic symmetry. Show that the elastic tensor Cj;;; has only
3 independent components, namely, 01111, 01122 and 01212 (1, 2, 3
refers to x, y, z, respectively). Calculate: 1)the bulk modulus;

2)the Poisson ratio for stresses along one of the symmetry axes
in terms of the elastic constants.
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Chapter 4

Atoms in motion

4.1 Introduction

In the previous section we studied the problem of static deformation of
a crystal. As we have seen previously a crystalline structure each time
we take an atom from its position we have to pay an energetic price
which for clastic deformations. For small deformations the cnergy is a
simple quadratic function of the displacement. It is known from basic
quantum mcchanics that cven at zero temperature motion does not to
cease to exist entirely due to quantum fluctuations. The basic example
of this effect is the harmonic oscillator problem which is described by
a potential V(x) = mw?2?/2 where m is the oscillator mass and w its
oscillation frequency. In quantum mechanics the ground state of this
problem has finite energy fw/2 and therefore even in the ground state
the oscillator is not static but fluctuates with amplitude A ~ %/ (mw)
(since V(A) ~ hw/2). In classical mechanics the lowest energy state
have zero energy and therefore A = 0 (indeed, when % — 0 we recover
the classical case). Therefore, in order to understand the behavior of
solids at very low temperatures one has to take into consideration the
kinetic energy of the oscillations in the solid.

4.1.1 Motionind=1

As an example let us consider the simplest case of atoms with mass M
attached to each other by springs with strength x as shown in Fig.4.1.

77
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Classically the lowest state of the problem has all atoms at rest at some
characteristic distance a between them. This characteristic distance can
be traced back to the equilibrium position of atoms in a molecule as we
discussed in Chapter 1. Let us now displace the n** atom by a small
value u,. Because the atoms are tied to each other by electrostatic
forces the displacement of one of them will cause the displacement of
the others. This energy, as discussed in the last chapter, can be written
as

U= Z Un+1 2 (41)

since we are assuming that only the nearest neighbor atoms are coupled.
If U was everything we would have it is clear that the configuration of
lowest energy has u,, = 0 for all n. But in quantum mechanics we have
to include the kinetic energy of the atoms which is given by

(4.2)

where p, is the momentum of the n'* atom. The quantization condi-
tion for this problem is that the displacement and the momentum are
canonically conjugated and therefore have well defined commutation
relations:

As we all know from basic quantum mechanics the fact that two op-
erators do not commute imply the Heisenberg uncertainty principle,
that is, ép,du, > h, which implies that even we are certain that the
oscillator is at certain position w,, from cquilibrium we lose completely
the information about its momentum. This is exactly what causes the
harmonic oscillator to have a ground state with finite amplitude.

There are many ways to study the Hamiltonian H = K 4 U. Here
we are going to study the problem via the equations of motion by using
the Heisenberg representation for the problem. In this representation
the operators evolve in time accordingly to:

8un

3t

Opn
TLE = [pn, H] (4.4)

= [up, H]
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which can be easily calculated by using (4.3) and the Hamiltonian’:

Oun Dn

o M

P

% = —K(Upi1 — 2Up + Up—1) (4.5)

which can be rewritten by substituting the first equation into the second
one:
u,, K

52 = (Unt1 — 2Up + Up—1) (4.6)

which is the equation for the time evolution of the operator u,. This
equation is simply a simple second order linear differential equation and
can be solved by assuming wu,(¢) has a simple harmonic form, that is,
Un(t) = uye™* which leads to

(wW? +26/M) up — /M (Upp1 + Uy 1) =0. (4.7)

Notice that the above equation relates the displacement at n'* atom
with the displacement at n + 1 and n — 1 atoms. The solution to this
problem is given again by a simple harmonic solution:

U, = uerne (4.8)

where u is a constant. Direct substitution of (4.8) into (4.7) requires
that

w(k) = 2\/% sin(ka/2)] (4.9)

Which shows that there is a one to one correspondence between the
frequency of oscillation and & the wave-number of the oscillation. Ob-
serve that the periodicity of the chain requires that uy,; = u; which,
by (4.8) requires that

k(m) = 2;;” (4.10)
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where m is an integer. Observe, therefore that the wave-numbers are
quantized in units of 27/(Na) and these give the allowed quantum
states of the problem. Observe, however, that the total number of
states in the problem has to be conserved. In the absence of inter-
actions between the atoms there are N allowed states in the problem
corresponding to the rotation of the chain by N x27/N. We have to end
up with the same number of states in momentum space, as well. If N
is even the allowed values of m are m = 0,+1,+2, ..., +£(N/2 — 1), N/2
and for N odd, m = 0,+1,+2,...,+(N — 1)/2. . Thus, we see that