THE DESCRIPTION LOGIC HANDBOOK:
Theory, implementation, and applications

Edited by
Franz Baader
Deborah L. McGuinness
Daniele Nardi
Peter F. Patel-Schneider
Contents

List of contributors page 1

1 An Introduction to Description Logics D. Nardi, R. J. Brachman 5
1.1 Introduction 5
1.2 From networks to Description Logics 8
1.3 Knowledge representation in Description Logics 16
1.4 From theory to practice: Description Logics systems 20
1.5 Applications developed with Description Logics systems 24
1.6 Extensions of Description Logics 34
1.7 Relationship to other fields of Computer Science 40
1.8 Conclusion 43

Part one: Theory 45

2 Basic Description Logics F. Baader, W. Nutt 47
2.1 Introduction 47
2.2 Definition of the basic formalism 50
2.3 Reasoning algorithms 78
2.4 Language extensions 95

3 Complexity of Reasoning F. M. Donini 101
3.1 Introduction 101
3.2 OR-branching: finding a model 105
3.3 AND-branching: finding a clash 112
3.4 Combining sources of complexity 119
3.5 Reasoning in the presence of axioms 121
3.6 Undecidability 127
3.7 Reasoning about individuals in ABoxes 133
3.8 Discussion 137
3.9 A list of complexity results for subsumption and satisfiability 138
Contents

4 Relationships with other Formalisms U. Sattler, D. Calvanese, R. Molitor 142
 4.1 AI knowledge representation formalisms 142
 4.2 Logical formalisms 154
 4.3 Database models 166

5 Expressive Description Logics D. Calvanese, G. De Giacomo 184
 5.1 Introduction 184
 5.2 Correspondence between Description Logics and Propositional Dynamic Logics 185
 5.3 Functional restrictions 192
 5.4 Qualified number restrictions 200
 5.5 Objects 204
 5.6 Fixpoint constructs 207
 5.7 Relations of arbitrary arity 211
 5.8 Finite model reasoning 215
 5.9 Undecidability results 222

6 Extensions to Description Logics F. Baader, R. Küsters, F. Wolter 226
 6.1 Introduction 226
 6.2 Language extensions 227
 6.3 Non-standard inference problems 257

Part two: Implementation 269

7 From Description Logic Provers to Knowledge Representation Systems D. L. McGuinness, P. F. Patel-Schneider 271
 7.1 Introduction 271
 7.2 Basic access 273
 7.3 Advanced application access 276
 7.4 Advanced human access 280
 7.5 Other technical concerns 286
 7.6 Public relations concerns 286
 7.7 Summary 287

8 Description Logics Systems R. Möller, V. Haarslev 289
 8.1 New light through old windows? 289
 8.2 The first generation 290
 8.3 Second generation Description Logics systems 298
 8.4 The next generation: Fact, DLP and RACER 308
 8.5 Lessons learned 310
<table>
<thead>
<tr>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Implementation and Optimisation Techniques I. Horrocks</td>
<td>313</td>
</tr>
<tr>
<td>9.1 Introduction</td>
<td>313</td>
</tr>
<tr>
<td>9.2 Preliminaries</td>
<td>315</td>
</tr>
<tr>
<td>9.3 Subsumption testing algorithms</td>
<td>320</td>
</tr>
<tr>
<td>9.4 Theory versus practice</td>
<td>324</td>
</tr>
<tr>
<td>9.5 Optimisation techniques</td>
<td>330</td>
</tr>
<tr>
<td>9.6 Discussion</td>
<td>354</td>
</tr>
<tr>
<td>Part three: Applications</td>
<td>357</td>
</tr>
<tr>
<td>10 Conceptual Modeling with Description Logics A. Borgida, R. J. Brachman</td>
<td>359</td>
</tr>
<tr>
<td>10.1 Background</td>
<td>359</td>
</tr>
<tr>
<td>10.2 Elementary Description Logics modeling</td>
<td>361</td>
</tr>
<tr>
<td>10.3 Individuals in the world</td>
<td>363</td>
</tr>
<tr>
<td>10.4 Concepts</td>
<td>365</td>
</tr>
<tr>
<td>10.5 Subconcepts</td>
<td>368</td>
</tr>
<tr>
<td>10.6 Modeling relationships</td>
<td>371</td>
</tr>
<tr>
<td>10.7 Modeling ontological aspects of relationships</td>
<td>373</td>
</tr>
<tr>
<td>10.8 A conceptual modeling methodology</td>
<td>378</td>
</tr>
<tr>
<td>10.9 The ABox: modeling specific states of the world</td>
<td>379</td>
</tr>
<tr>
<td>10.10 Conclusions</td>
<td>381</td>
</tr>
<tr>
<td>11 Software Engineering C. Welty</td>
<td>382</td>
</tr>
<tr>
<td>11.1 Introduction</td>
<td>382</td>
</tr>
<tr>
<td>11.2 Background</td>
<td>382</td>
</tr>
<tr>
<td>11.3 Lassie</td>
<td>383</td>
</tr>
<tr>
<td>11.4 CODEBASE</td>
<td>388</td>
</tr>
<tr>
<td>11.5 CSIS and CBMS</td>
<td>389</td>
</tr>
<tr>
<td>12 Configuration D. L. McGuinness</td>
<td>397</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>397</td>
</tr>
<tr>
<td>12.2 Configuration description and requirements</td>
<td>399</td>
</tr>
<tr>
<td>12.3 The Prose and Questar family of configurators</td>
<td>412</td>
</tr>
<tr>
<td>12.4 Summary</td>
<td>413</td>
</tr>
<tr>
<td>13 Medical Informatics A. Rector</td>
<td>415</td>
</tr>
<tr>
<td>13.1 Background and history</td>
<td>416</td>
</tr>
<tr>
<td>13.2 Example applications</td>
<td>419</td>
</tr>
<tr>
<td>13.3 Technical issues in medical ontologies</td>
<td>425</td>
</tr>
<tr>
<td>13.4 Ontological issues in medical ontologies</td>
<td>431</td>
</tr>
<tr>
<td>13.5 Architectures: terminology servers, views, and change management</td>
<td>434</td>
</tr>
<tr>
<td>13.6 Discussion: key lessons from medical ontologies</td>
<td>435</td>
</tr>
</tbody>
</table>
Contents

14 Digital Libraries and Web-Based Information Systems
 I. Horrocks, D. L. McGuinness, C. Welty 436
14.1 Background and history 436
14.2 Enabling the Semantic Web: DAML 441
14.3 OIL and DAML+OIL 443
14.4 Summary 457

15 Natural Language Processing E. Franconi 460
15.1 Introduction 460
15.2 Semantic interpretation 461
15.3 Reasoning with the logical form 465
15.4 Knowledge-based natural language generation 470

16 Description Logics for Data Bases A. Borgida, M. Lenzerini, R. Rosati 472
16.1 Introduction 472
16.2 Data models and Description Logics 475
16.3 Description Logics and database querying 484
16.4 Data integration 488
16.5 Conclusions 493

1 Description Logic Terminology F. Baader 495
A1.1 Notational conventions 495
A1.2 Syntax and semantics of common Description Logics 496
A1.3 Additional constructors 501
A1.4 A note on the naming scheme for Description Logics 504
1

An Introduction to Description Logics
Daniele Nardi
Ronald J. Brachman

Abstract
This introduction presents the main motivations for the development of Description
Logics (DL) as a formalism for representing knowledge, as well as some important
basic notions underlying all systems that have been created in the DL tradition. In
addition, we provide the reader with an overview of the entire book and some
guidelines for reading it.
We first address the relationship between Description Logics and earlier seman-
tic network and frame systems, which represent the original heritage of the field. We
delve into some of the key problems encountered with the older efforts. Subse-
sequently, we introduce the basic features of Description Logic languages and related
reasoning techniques.
Description Logic languages are then viewed as the core of knowledge represent-
ation systems, considering both the structure of a DL knowledge base and its
associated reasoning services. The development of some implemented knowledge
representation systems based on Description Logics and the first applications built
with such systems are then reviewed.
Finally, we address the relationship of Description Logics to other fields of Com-
puter Science. We also discuss some extensions of the basic representation language
machinery; these include features proposed for incorporation in the formalism that
originally arose in implemented systems, and features proposed to cope with the
needs of certain application domains.

1.1 Introduction
Research in the field of knowledge representation and reasoning is usually focused
on methods for providing high-level descriptions of the world that can be effectively
used to build intelligent applications. In this context, “intelligent” refers to the abil-
ity of a system to find implicit consequences of its explicitly represented knowledge. Such systems are therefore characterized as knowledge-based systems.

Approaches to knowledge representation developed in the 1970’s—when the field enjoyed great popularity—are sometimes divided roughly into two categories: logic-based formalisms, which evolved out of the intuition that predicate calculus could be used unambiguously to capture facts about the world; and other, non-logic-based representations. The latter were often developed by building on more cognitive notions—for example, network structures and rule-based representations derived from experiments on recall from human memory and human execution of tasks like mathematical puzzle solving. Even though such approaches were often developed for specific representational chores, the resulting formalisms were usually expected to serve in general use. In other words, the non-logical systems created from very specific lines of thinking (e.g., early Production Systems) evolved to be treated as general purpose tools, expected to be applicable in different domains and on different types of problems.

On the other hand, since first-order logic provides very powerful and general machinery, logic-based approaches were more general-purpose from the very start. In a logic-based approach, the representation language is usually a variant of first-order predicate calculus, and reasoning amounts to verifying logical consequence. In the non-logical approaches, often based on the use of graphical interfaces, knowledge is represented by means of some ad hoc data structures, and reasoning is accomplished by similarly ad hoc procedures that manipulate the structures. Among these specialized representations we find semantic networks and frames. Semantic Networks were developed after the work of Quillian [1967], with the goal of characterizing by means of network-shaped cognitive structures the knowledge and the reasoning of the system. Similar goals were shared by later frame systems [Minsky, 1981], which rely upon the notion of a “frame” as a prototype and on the capability of expressing relationships between frames. Although there are significant differences between semantic networks and frames, both in their motivating cognitive intuitions and in their features, they have a strong common basis. In fact, they can both be regarded as network structures, where the structure of the network aims at representing sets of individuals and their relationships. Consequently, we use the term network-based structures to refer to the representation networks underlying semantic networks and frames (see [Lehmann, 1992] for a collection of papers concerning various families of network-based structures).

Owing to their more human-centered origins, the network-based systems were often considered more appealing and more effective from a practical viewpoint than the logical systems. Unfortunately they were not fully satisfactory because of their usual lack of precise semantic characterization. The end result of this was that every system behaved differently from the others, in many cases despite virtually identical-
looking components and even identical relationship names. The question then arose as to how to provide semantics to representation structures, in particular to semantic networks and frames, which carried the intuition that, by exploiting the notion of hierarchical structure, one could gain both in terms of ease of representation and in terms of the efficiency of reasoning.

One important step in this direction was the recognition that frames (at least their core features) could be given a semantics by relying on first-order logic [Hayes, 1979]. The basic elements of the representation are characterized as unary predicates, denoting sets of individuals, and binary predicates, denoting relationships between individuals. However, such a characterization does not capture the constraints of semantic networks and frames with respect to logic. Indeed, although logic is the natural basis for specifying a meaning for these structures, it turns out that frames and semantic networks (for the most part) did not require all the machinery of first-order logic, but could be regarded as fragments of it [Brachman and Levesque, 1985]. In addition, different features of the representation language would lead to different fragments of first-order logic. The most important consequence of this fact is the recognition that the typical forms of reasoning used in structure-based representations could be accomplished by specialized reasoning techniques, without necessarily requiring first-order logic theorem provers. Moreover, reasoning in different fragments of first-order logic leads to computational problems of differing complexity.

Subsequent to this realization, research in the area of Description Logics began under the label terminological systems, to emphasize that the representation language was used to establish the basic terminology adopted in the modeled domain. Later, the emphasis was on the set of concept-forming constructs admitted in the language, giving rise to the name concept languages. In more recent years, after attention was further moved towards the properties of the underlying logical systems, the term Description Logics became popular.

In this book we mainly use the term “Description Logics” (DL) for the representation systems, but often use the word “concept” to refer to the expressions of a DL language, denoting sets of individuals; and the word “terminology” to denote a (hierarchical) structure built to provide an intensional representation of the domain of interest.

Research on Description Logics has covered theoretical underpinnings as well as implementation of knowledge representation systems and the development of applications in several areas. This kind of development has been quite successful. The key element has been the methodology of research, based on a very close interaction between theory and practice. On the one hand, there are various implemented systems based on Description Logics, which offer a palette of description formalisms with differing expressive power, and which are employed in various application do-
mains (such as natural language processing, configuration of technical products, or databases). On the other hand, the formal and computational properties of reasoning (like decidability and complexity) of various description formalisms have been investigated in detail. The investigations are usually motivated by the use of certain constructors in implemented systems or by the need for these constructors in specific applications—and the results have influenced the design of new systems.

This book is meant to provide a thorough introduction to Description Logics, covering all the above-mentioned aspects of DL research—namely theory, implementation, and applications. Consequently, the book is divided into three parts:

- Part I introduces the theoretical foundations of Description Logics, addressing some of the most recent developments in theoretical research in the area;
- Part II focuses on the implementation of knowledge representation systems based on Description Logics, describing the basic functionality of a DL system, surveying the most influential knowledge representation systems based on Description Logics, and addressing specialized implementation techniques;
- Part III addresses the use of Description Logics and of DL-based systems in the design of several applications of practical interest.

In the remainder of this introductory chapter, we review the main steps in the development of Description Logics, and introduce the main issues that are dealt with later in the book, providing pointers for its reading. In particular, in the next section we address the origins of Description Logics and then we review knowledge representation systems based on Description Logics, the main applications developed with Description Logics, the main extensions to the basic DL framework and relationships with other fields of Computer Science.

1.2 From networks to Description Logics

In this section we begin by recalling approaches to representing knowledge that were developed before research on Description Logics began (i.e., semantic networks and frames). We then provide a very brief introduction to the basic elements of these approaches, based on Tarski-style semantics. Finally, we discuss the importance of computational analyses of the reasoning methods developed for Description Logics, a major ingredient of research in this field.

1.2.1 Network-based representation structures

In order to provide some intuition about the ideas behind representations of knowledge in network form, we here speak in terms of a generic network, avoiding references to any particular system. The elements of a network are nodes and links.
Typically, nodes are used to characterize concepts, i.e., sets or classes of individual objects, and links are used to characterize relationships among them. In some cases, more complex relationships are themselves represented as nodes; these are carefully distinguished from nodes representing concepts. In addition, concepts can have simple properties, often called attributes, which are typically attached to the corresponding nodes. Finally, in many of the early networks both individual objects and concepts were represented by nodes. Here, however, we restrict our attention to knowledge about concepts and their relationships, deferring for now treatment of knowledge about specific individuals.

Let us consider a simple example, whose pictorial representation is given in Figure 1.1, which represents knowledge concerning persons, parents, children, etc. The structure in the figure is also referred to as a terminology, and it is indeed meant to represent the generality/specificity of the concepts involved. For example the link between Mother and Parent says that “mothers are parents”; this is sometimes called an “IS-A” relationship.

The IS-A relationship defines a hierarchy over the concepts and provides the basis for the “inheritance of properties”: when a concept is more specific than some other concept, it inherits the properties of the more general one. For example, if a person has an age, then a mother has an age, too. This is the typical setting of the so-called (monotonic) inheritance networks (see [Brachman, 1979]).

A characteristic feature of Description Logics is their ability to represent other kinds of relationships that can hold between concepts, beyond IS-A relationships. For example, in Figure 1.1, which follows the notation of [Brachman and Schmolze, 1985], the concept of Parent has a property that is usually called a “role,” expressed...
by a link from the concept to a node for the role labeled \textit{hasChild}. The role has what is called a “value restriction,” denoted by the label v/r, which expresses a limitation on the range of types of objects that can fill that role. In addition, the node has a number restriction expressed as (1,NIL), where the first number is a lower bound on the number of children and the second element is the upper bound, and NIL denotes infinity. Overall, the representation of the concept of \textit{Parent} here can be read as “A parent is a person having at least one child, and all of his/her children are persons.”

Relationships of this kind are inherited from concepts to their subconcepts. For example, the concept \textit{Mother}, i.e., a female parent, is a more specific descendant of both the concepts \textit{Female} and \textit{Parent}, and as a result inherits from \textit{Parent} the link to \textit{Person} through the role \textit{hasChild}; in other words, \textit{Mother} inherits the restriction on its \textit{hasChild} role from \textit{Parent}.

Observe that there may be implicit relationships between concepts. For example, if we define \textit{Woman} as the concept of a female person, it is the case that every \textit{Mother} is a \textit{Woman}. It is the task of the knowledge representation system to find implicit relationships such as these (many are more complex than this one). Typically, such inferences have been characterized in terms of properties of the network. In this case one might observe that both \textit{Mother} and \textit{Woman} are connected to both \textit{Female} and \textit{Person}, but the path from \textit{Mother} to \textit{Person} includes a node \textit{Parent}, which is more specific then \textit{Person}, thus enabling us to conclude that \textit{Mother} is more specific than \textit{Person}.

However, the more complex the relationships established among concepts, the more difficult it becomes to give a precise characterization of what kind of relationships can be computed, and how this can be done without failing to recognize some of the relationships or without providing wrong answers.

\subsection{A logical account of network-based representation structures}

Building on the above ideas, a number of systems were implemented and used in many kinds of applications. As a result, the need emerged for a precise characterization of the meaning of the structures used in the representations and of the set of inferences that could be drawn from those structures.

A precise characterization of the meaning of a network can be given by defining a language for the elements of the structure and by providing an interpretation for the strings of that language. While the syntax may have different flavors in different settings, the semantics is typically given as a Tarski-style semantics.

For the syntax we introduce a kind of abstract language, which resembles other logical formalisms. The basic step of the construction is provided by two disjoint alphabets of symbols that are used to denote \textit{atomic concepts}, designated by unary
predicate symbols, and *atomic roles*, designated by binary predicate symbols; the latter are used to express relationships between concepts.

Terms are then built from the basic symbols using several kinds of constructors. For example, *intersection of concepts*, which is denoted \(C \cap D \), is used to restrict the set of individuals under consideration to those that belong to both \(C \) and \(D \). Notice that, in the syntax of Description Logics, concept expressions are variable-free. In fact, a concept expression denotes the set of all individuals satisfying the properties specified in the expression. Therefore, \(C \cap D \) can be regarded as the first-order logic sentence, \(C(x) \land D(x) \), where the variable ranges over all individuals in the interpretation domain and \(C(x) \) is true for those individuals that belong to the concept \(C \).

In this book, we will present other syntactic notations that are more closely related to the concrete syntax adopted by implemented DL systems, and which are more suitable for the development of applications. One example of concrete syntax proposed in [Patel-Schneider and Swartout, 1993] is based on a Lisp-like notation, where the concept of female persons, for example, is denoted by \(\text{(and Person Female)} \).

The key characteristic features of Description Logics reside in the constructs for establishing relationships between concepts. The basic ones are *value restrictions*. For example, a value restriction, written \(\forall R.C \), requires that all the individuals that are in the relationship \(R \) with the concept being described belong to the concept \(C \) (technically, it is all individuals that are in the relationship \(R \) with an individual described by the concept in question that are themselves describable as \(C \)'s).

As for the semantics, concepts are given a set-theoretic interpretation: a concept is interpreted as a set of individuals and roles are interpreted as sets of pairs of individuals. The domain of interpretation can be chosen arbitrarily, and it can be infinite. The non-finiteness of the domain and the *open-world assumption* are distinguishing features of Description Logics with respect to the modeling languages developed in the study of databases (see Chapters 4, and 16).

Atomic concepts are thus interpreted as subsets of the interpretation domain, while the semantics of the other constructs is then specified by defining the set of individuals denoted by each construct. For example, the concept \(C \cap D \) is the set of individuals obtained by intersecting the sets of individuals denoted by \(C \) and \(D \), respectively. Similarly, the interpretation of \(\forall R.C \) is the set of individuals that are in the relationship \(R \) with individuals belonging to the set denoted by the concept \(C \).

As an example, let us suppose that *Female*, *Person*, and *Woman* are atomic concepts and that *hasChild* and *hasFemaleRelative* are atomic roles. Using the operators *intersection*, *union* and *complement* of concepts, interpreted as set operations, we can describe the concept of “persons that are not female” and the concept of “in-
D. Nardi, R. J. Brachman

individuals that are female or male” by the expressions

\[\text{Person } \cap \neg \text{Female} \quad \text{and} \quad \text{Female } \cup \text{Male}. \]

It is worth mentioning that intersection, union, and complement of concepts have been also referred to as concept conjunction, concept disjunction and concept negation, respectively, to emphasize the relationship to logic.

Let us now turn our attention to role restrictions by looking first at quantified role restrictions and, subsequently, at what we call “number restrictions.” Most languages provide (full) existential quantification and value restriction that allow one to describe, for example, the concept of “individuals having a female child” as \(\exists \text{hasChild.Female} \), and to describe the concept of “individuals all of whose children are female” by the concept expression \(\forall \text{hasChild.Female} \). In order to distinguish the function of each concept in the relationship, the individual object that corresponds to the second argument of the role viewed as a binary predicate is called a role filler. In the above expressions, which describe the properties of parents having female children, individual objects belonging to the concept Female are the fillers of the role hasChild.

Existential quantification and value restrictions are thus meant to characterize relationships between concepts. In fact, the role link between Parent and Person in Figure 1.1 can be expressed by the concept expression

\[\exists \text{hasChild.Person} \cap \forall \text{hasChild.Person}. \]

Such an expression therefore characterizes the concept of Parent as the set of individuals having at least one filler of the role hasChild belonging to the concept Person; moreover, every filler of the role hasChild must be a person.

Finally, notice that in quantified role restrictions the variable being quantified is not explicitly mentioned. The corresponding sentence in first-order logic is \(\forall y. R(x, y) \supset C(y) \), where \(x \) is again a free variable ranging over the interpretation domain.

Another important kind of role restriction is given by number restrictions, which restrict the cardinality of the sets of fillers of roles. For instance, the concept

\[(\geq 3 \text{hasChild}) \cap (\leq 2 \text{hasFemaleRelative}) \]

represents the concept of “individuals having at least three children and at most two female relatives.” Number restrictions are sometimes viewed as a distinguishing feature of Description Logics, although one can find some similar constructs in some database modeling languages (notably Entity-Relationship models).

Beyond the constructs to form concept expressions, Description Logics provide constructs for roles, which can, for example, establish role hierarchies. However,
the use of role expressions is generally limited to expressing relationships between concepts.

Intersection of roles is an example of a role-forming construct. Intuitively, \(\text{hasChild} \sqcap \text{hasFemaleRelative} \) yields the role “has-daughter,” so that the concept expression

\[
\text{Woman} \sqcap \leq 2 (\text{hasChild} \sqcap \text{hasFemaleRelative})
\]

denotes the concept of “a woman having at most 2 daughters”.

A more comprehensive view of the basic definitions of DL languages will be given in Chapter 2.

1.2.3 Reasoning

The basic inference on concept expressions in Description Logics is *subsumption*, typically written as \(C \sqsubseteq D \). Determining subsumption is the problem of checking whether the concept denoted by \(D \) (the *subsumer*) is considered more general than the one denoted by \(C \) (the *subsumee*). In other words, subsumption checks whether the first concept always denotes a subset of the set denoted by the second one.

For example, one might be interested in knowing whether \(\text{Woman} \sqsubseteq \text{Mother} \). In order to verify this kind of relationship one has in general to take into account the relationships defined in the terminology. As we explain in the next section, under appropriate restrictions, one can embody such knowledge directly in concept expressions, thus making subsumption over concept expressions the basic reasoning task. Another typical inference on concept expressions is *concept satisfiability*, which is the problem of checking whether a concept expression does not necessarily denote the empty concept. In fact, concept satisfiability is a special case of subsumption, with the subsumer being the empty concept, meaning that a concept is not satisfiable.

Although the meaning of concepts had already been specified with a logical semantics, the design of inference procedures in Description Logics was influenced for a long time by the tradition of semantic networks, where concepts were viewed as nodes and roles as links in a network. Subsumption between concept expressions was recognized as the key inference and the basic idea of the earliest subsumption algorithms was to transform two input concepts into labeled graphs and test whether one could be embedded into the other; the embedded graph would correspond to the more general concept (the subsumer) [Lipkis, 1982]. This method is called *structural comparison*, and the relation between concepts being computed is called *structural subsumption*. However, a careful analysis of the algorithms for structural subsumption shows that they are *sound*, but not always *complete* in terms of the logical semantics: whenever they return “yes” the answer is correct, but when they
report “no” the answer may be incorrect. In other words, structural subsumption is in general weaker than logical subsumption.

The need for complete subsumption algorithms is motivated by the fact that in the usage of knowledge representation systems it is often necessary to have a guarantee that the system has not failed in verifying subsumption. Consequently, new algorithms for computing subsumption have been devised that are no longer based on a network representation, and these can be proven to be complete. Such algorithms have been developed by specializing classical settings for deductive reasoning to the DL subsets of first-order logics, as done for tableau calculi by Schmidt-Schauß and Smolka [1991], and also by more specialized methods.

In the paper “The Tractability of Subsumption in Frame-Based Description Languages,” Brachman and Levesque [1984] argued that there is a tradeoff between the expressiveness of a representation language and the difficulty of reasoning over the representations built using that language. In other words, the more expressive the language, the harder the reasoning. They also provided a first example of this tradeoff by analyzing the language \mathcal{FL}^- (Frame Language), which included intersection of concepts, value restrictions and a simple form of existential quantification. They showed that for such a language the subsumption problem could be solved in polynomial time, while adding a construct called role restriction to the language makes subsumption a coNP-hard problem (the extended language was called \mathcal{FL}).

The paper by Brachman and Levesque introduced at least two new ideas:

(i) “efficiency of reasoning” over knowledge structures can be studied using the tools of computational complexity theory;

(ii) different combinations of constructs can give rise to languages with different computational properties.

An immediate consequence of the above observations is that one can study formally and methodically the tradeoff between the computational complexity of reasoning and the expressiveness of the language, which itself is defined in terms of the constructs that are admitted in the language. After the initial paper, a number of results on this tradeoff for concept languages were obtained (see Chapters 2 and 3), and these results allow us to draw a fairly complete picture of the complexity of reasoning for a wide class of concept languages. Moreover, the problem of finding the optimal tradeoff, namely the most expressive extensions of \mathcal{FL}^- with respect to a given set of constructs that still keep subsumption polynomial, has been studied extensively [Donini et al., 1991b; 1999].

One of the assumptions underlying this line of research is to use worst-case complexity as a measure of the efficiency of reasoning in Description Logics (and more generally in knowledge representation formalisms). Such an assumption has some-
times been criticized (see for example [Doyle and Patil, 1991]) as not adequately characterizing system performance or accounting for more average-case behavior. While this observation suggests that computational complexity alone may not be sufficient for addressing performance issues, research on the computational complexity of reasoning in Description Logics has most definitely led to a much deeper understanding of the problems arising in implementing reasoning tools. Let us briefly address some of the contributions of this body of work.

First of all, the study of the computational complexity of reasoning in Description Logics has led to a clear understanding of the properties of the language constructs and their interaction. This is not only valuable from a theoretical viewpoint, but gives insight to the designer of deduction procedures, with clear indications of the language constructs and their combinations that are difficult to deal with, as well as general methods to cope with them.

Secondly, the complexity results have been obtained by exploiting a general technique for satisfiability-checking in concept languages, which relies on a form of tableau calculus [Schmidt-Schauß and Smolka, 1991]. Such a technique has proved extremely useful for studying both the correctness and the complexity of the algorithms. More specifically, it provides an algorithmic framework that is parametric with respect to the language constructs. The algorithms for concept satisfiability and subsumption obtained in this way have also led directly to practical implementations by application of clever control strategies and optimization techniques. The most recent knowledge representation systems based on Description Logics adopt tableau calculi [Horrocks, 1998b].

Thirdly, the analysis of pathological cases in this formal framework has led to the discovery of incompleteness in the algorithms developed for implemented systems. This has also consequently proven useful in the definition of suitable test sets for verifying implementations. For example, the comparison of implemented systems (see for example [Baader et al., 1992b; Heinsohn et al., 1992]) has greatly benefitted from the results of the complexity analysis.

The basic reasoning techniques for Description Logics are presented in Chapter 2, while a detailed analysis of the complexity of reasoning problems in several languages is developed in Chapter 3.

After the tradeoff between expressiveness and tractability of reasoning was thoroughly analyzed and the range of applicability of the corresponding inference techniques had been experimented with, there was a shift of focus in the theoretical research on reasoning in Description Logics. Interest grew in relating Description Logics to the modeling languages used in database management. In addition, the discovery of strict relationships with expressive modal logics stimulated the study of so-called very expressive Description Logics. These languages, besides admitting very general mechanisms for defining concepts (for example cyclic definitions,
addressed in the next section), provide a richer set of concept-forming constructs and constructs for forming complex role expressions. For these languages, the expressiveness is great enough that the new challenge became enriching the language while retaining the decidability of reasoning. It is worth pointing out that this new direction of theoretical research was accompanied by a corresponding shift in the implementation of knowledge representation systems based on very expressive DL languages. The study of reasoning methods for very expressive Description Logics is addressed in Chapter 5.

1.3 Knowledge representation in Description Logics

In the previous section a basic representation language for Description Logics was introduced along with some key associated reasoning techniques. Our goal now is to illustrate how Description Logics can be useful in the design of knowledge-based applications, that is to say, how a DL language is used in a knowledge representation system that provides a language for defining a knowledge base and tools to carry out inferences over it. The realization of knowledge systems involves two primary aspects. The first consists in providing a precise characterization of a knowledge base; this involves precisely characterizing the type of knowledge to be specified to the system as well as clearly defining the reasoning services the system needs to provide—the kind of questions that the system should be able to answer. The second aspect consists in providing a rich development environment where the user can benefit from different services that can make his/her interaction with the system more effective. In this section we address the logical structure of the knowledge base, while the design of systems and tools for the development of applications is addressed in the next section.

One of the products of some important historical efforts to provide precise characterizations of the behavior of semantic networks and frames was a functional approach to knowledge representation [Levesque, 1984]. The idea was to give a precise specification of the functionality to be provided by a knowledge base and, specifically, of the inferences performed by the knowledge base—indeed of any implementation. In practice, the functional description of a reasoning system is productively specified through a so-called “Tell&Ask” interface. Such an interface specifies operations that enable knowledge base construction (Tell operations) and operations that allow one to get information out of the knowledge base (Ask operations). In the following we shall adopt this view for characterizing both the definition of a DL knowledge base and the deductive services it provides.

Within a knowledge base one can see a clear distinction between intensional knowledge, or general knowledge about the problem domain, and extensional knowledge, which is specific to a particular problem. A DL knowledge base is analogously
typically comprised by two components—a “TBox” and an “ABox.” The TBox contains intensional knowledge in the form of a terminology (hence the term “TBox,” but “taxonomy” could be used as well) and is built through declarations that describe general properties of concepts. Because of the nature of the subsumption relationships among the concepts that constitute the terminology, TBoxes are usually thought of as having a lattice-like structure; this mathematical structure is entailed by the subsumption relationship—it has nothing to do with any implementation. The ABox contains extensional knowledge—also called assertional knowledge (hence the term “ABox”)—knowledge that is specific to the individuals of the domain of discourse. Intensional knowledge is usually thought not to change—to be “timeless,” in a way—and extensional knowledge is usually thought to be contingent, or dependent on a single set of circumstances, and therefore subject to occasional or even constant change.

In the rest of the section we present a basic Tell&Ask interface by analyzing the TBox and the ABox of a DL knowledge base.

1.3.1 The TBox

One key element of a DL knowledge base is given by the operations used to build the terminology. Such operations are directly related to the forms and the meaning of the declarations allowed in the TBox.

The basic form of declaration in a TBox is a concept definition, that is, the definition of a new concept in terms of other previously defined concepts. For example, a woman can be defined as a female person by writing this declaration:

$$\text{Woman} \equiv \text{Person} \sqcap \text{Female}$$

Such a declaration is usually interpreted as a logical equivalence, which amounts to providing both sufficient and necessary conditions for classifying an individual as a woman. This form of definition is much stronger than the ones used in other kinds of representations of knowledge, which typically impose only necessary conditions; the strength of this kind of declaration is usually considered a characteristic feature of DL knowledge bases. In DL knowledge bases, therefore, a terminology is constituted by a set of concept definitions of the above form.

However, there are some important common assumptions usually made about DL terminologies:

- only one definition for a concept name is allowed;
- definitions are acyclic in the sense that concepts are neither defined in terms of themselves nor in terms of other concepts that indirectly refer to them.

This kind of restriction is common to many DL knowledge bases and implies that
every defined concept can be expanded in a unique way into a complex expression containing only atomic concepts by replacing every defined concept with the right-hand side of its definition.

Nebel [1990b] showed that even simple expansion of definitions like this gives rise to an unavoidable source of complexity; in practice, however, definitions that inordinately increase the complexity of reasoning do not seem to occur. Under these assumptions the computational complexity of inferences can be studied by abstracting from the terminology and by considering all given concepts as fully expanded expressions. Therefore, much of the study of reasoning methods in Description Logics has been focused on concept expressions and, more specifically, as discussed in the previous section, on subsumption, which can be considered the basic reasoning service for the TBox.

In particular, the basic task in constructing a terminology is classification, which amounts to placing a new concept expression in the proper place in a taxonomic hierarchy of concepts. Classification can be accomplished by verifying the subsumption relation between each defined concept in the hierarchy and the new concept expression. The placement of the concept will be in between the most specific concepts that subsume the new concept and the most general concepts that the new concept subsumes.

More general settings for concept definitions have recently received some attention, deriving from attempts to establish formal relationships between Description Logics and other formalisms and from attempts to satisfy a need for increased expressive power. In particular, the admission of cyclic definitions has led to different semantic interpretations of the declarations, known as greatest/least fixed-point, and descriptive semantics. Although it has been argued that different semantics may be adopted depending on the target application, the more commonly adopted one is descriptive semantics, which simply requires that all the declarations be satisfied in the interpretation. Moreover, by dropping the requirement that on the left-hand side of a definition there can only be an atomic concept name, one can consider so-called (general) inclusion axioms of the form

\[C \sqsubseteq D \]

where \(C \) and \(D \) are arbitrary concept expressions. Notice that a concept definition can be expressed by two general inclusions. As a result of several theoretical studies concerning both the decidability of and implementation techniques for cyclic TBoxes, the most recent DL systems admit rather powerful constructs for defining concepts.

The basic deduction service for such TBoxes can be viewed as logical implication and it amounts to verifying whether a generic relationship (for example a subsumption relationship between two concept expressions) is a logical consequence of the
declarations in the TBox. The issues arising in the semantic characterization of cyclic TBoxes are dealt with in Chapter 2, while techniques for reasoning in cyclic TBoxes are addressed also in Chapter 2 and in Chapter 5, where very expressive Description Logics are presented.

1.3.2 The ABox

The ABox contains extensional knowledge about the domain of interest, that is, assertions about individuals, usually called membership assertions. For example,

$$\text{Female} \sqcap \text{Person}(\text{ANNA})$$

states that the individual ANNA is a female person. Given the above definition of woman, one can derive from this assertion that ANNA is an instance of the concept Woman. Similarly,

$$\text{hasChild}(\text{ANNA}, \text{JACOPO})$$

specifies that ANNA has JACOPO as a child. Assertions of the first kind are also called concept assertions, while assertions of the second kind are also called role assertions.

As illustrated by these examples, in the ABox one can typically specify knowledge in the form of concept assertions and role assertions. In concept assertions general concept expressions are typically allowed, while role assertions, where the role is not a primitive role but a role expression, are typically not allowed, being treated in the case of very expressive languages only.

The basic reasoning task in an ABox is instance checking, which verifies whether a given individual is an instance of (belongs to) a specified concept. Although other reasoning services are usually considered and employed, they can be defined in terms of instance checking. Among them we find knowledge base consistency, which amounts to verifying whether every concept in the knowledge base admits at least one individual; realization, which finds the most specific concept an individual object is an instance of; and retrieval, which finds the individuals in the knowledge base that are instances of a given concept. These can all be accomplished by means of instance checking.

The presence of individuals in a knowledge base makes reasoning more complex from a computational viewpoint [Donini et al., 1994b], and may require significant extensions of some TBox reasoning techniques. Reasoning in the ABox is addressed in Chapter 3.

It is worth emphasizing that, although we have separated out for convenience the services for the ABox, when the TBox cannot be dealt with by means of the simple substitution mechanism used for acyclic TBoxes, the reasoning services may have to
take into account all of the knowledge base including both the TBox and the ABox, and the corresponding reasoning problems become more complex. A full setting including general TBox and ABox is addressed in Chapter 5, where very expressive Description Logics are discussed.

More general languages for defining ABoxes have also been considered. Knowledge representation systems providing a powerful logical language for the ABox and a DL language for the TBox are often considered hybrid reasoning systems, since completely different knowledge representation languages may be used to specify the knowledge in the different components. Hybrid reasoning systems were popular in the 1980’s (see for example [Brachman et al., 1985]); lately, the topic has regained attention [Levy and Rousset, 1997; Donini et al., 1998b], focusing on knowledge bases with a DL component for concept definitions and a logic-programming component for assertions about individuals. Sound and complete inference methods for hybrid knowledge bases become difficult to devise whenever there is a strict interaction between the knowledge components.

1.4 From theory to practice: Description Logics systems

A direct practical result of research on knowledge representation has been the development of tools for the construction of knowledge-based applications. As already noted, research on Description Logics has been characterized by a tight connection between theoretical results and implementation of systems. This has been achieved by maintaining a very close relationship between theoreticians, system implementors and users of knowledge representation systems based on Description Logics (DL-KRS). The results of work on reasoning algorithms and their complexity has influenced the design of systems, and research on reasoning algorithms has itself been focused by a careful analysis of the capabilities and the limitations of implemented systems. In this section we first sketch the functionality of some knowledge representation systems and, subsequently, discuss the evolution of DL-KRS. The reader can find a deeper treatment of the first topic in Chapter 7, while a survey of knowledge representation systems based on Description Logics is provided in Chapter 8. Chapter 9 is devoted to more specialized implementation and optimization techniques.

1.4.1 The design of knowledge representation systems based on Description Logics

In order to appreciate the difficulties of implementing and maintaining a knowledge representation system, it is necessary to consider that in the usage of a knowledge representation system, the reasoning service is really only one aspect of a complex
system, one which may even be hidden from the final user. The user, before getting
to “push the reasoning button,” has to model the domain of interest, and input
knowledge into the system. Further, in many cases, a simple yes/no answer is of
little use, so a simplistic implementation of the Tell&Ask paradigm may be inade-
quate. As a consequence, the path one follows to get from the identification of
a suitable knowledge representation system to the design of applications based on
it is a complex and demanding one (see for example [Brachman, 1992]). In the
case of Description Logics, this is especially true if the goal is to devise a system
to be used by users who are not DL experts and who need to obtain a working
system as quickly as possible. In the 1980’s, when frame-based systems (such as,
for example, KEE [Fikes and Kehler, 1985]; see [Karp, 1992] for an overview) had
reached the strength of commercial products, the burden on a user of moving to the
more modern DL-KRS had to be kept small. Consequently, a stream of research
addressed important aspects of the pragmatic usability of DL systems. This issue
was especially relevant for those systems aiming at limiting the expressiveness of
the language, but providing the user with sound, complete and efficient reasoning
services. The issue of embedding a DL language within an environment suitable for
application development is further addressed in Chapter 7.

In recent years, we might add, useful DL systems have often come as internal
components of larger environments whose interfaces could completely hide the DL
language and its core reasoning services. Systems like IMACS [Brachman et al.,
1993] and PROSE [Wright et al., 1993] were quite successful in classifying data and
configuring products, respectively, without the need for any user to understand the
details of the DL representation language (CLASSIC) they were built upon.

Nowadays, applications for gathering information from the World-Wide Web,
where the interface can be specifically designed to support the retrieval of such
information, also hide the knowledge representation and reasoning component. In
addition, some data modeling tools, where the system provides a more conventional
interface, can provide additional facilities based on the capability of reasoning about
models with a DL inference engine. The possible settings for taking advantage
of Description Logics as components of larger systems are discussed in Part III;
more specifically, Chapter 14 presents Web applications and Chapter 15 Natural
Language applications, while the reasoning capabilities of Description Logics in
Database applications are addressed in Chapter 16.

1.4.2 Knowledge representation systems based on Description Logics
The history of knowledge representation is covered in the literature in numerous
ways (see for example [Woods and Schmolze, 1992; Rich, 1991; Baader et al.,
1992b]). Here we identify three generations of systems, highlighting their historical
evolution rather than their specific functionality. We shall characterize them as Pre-DL systems, DL systems and Current Generation DL systems. Detailed references to implemented systems are given in Chapter 8.

1.4.2.1 Pre-Description Logics systems

The ancestor of DL systems is Kl-One [Brachman and Schmolze, 1985], which signaled the transition from semantic networks to more well-founded terminological (description) logics. The influence of Kl-One was profound and it is considered the root of the entire family of languages [Woods and Schmolze, 1990].

Semantic networks were introduced around 1966 as a representation for the concepts underlying English words, and became a popular type of framework for representing a wide variety of concepts in AI applications. Important and commonsensical ideas evolved in this work, from named nodes and links for representing concepts and relationships, to hierarchical networks with inheritance of properties, to the notion of “instantiation” of a concept by an individual object. But semantic network systems were fraught with problems, including vagueness and inconsistency in the meaning of various constructs, and the lack of a level of structure on which to base application-independent inference procedures. In his Ph.D. thesis [Brachman, 1977a] and subsequent work (e.g., see [Brachman, 1979]), Brachman addressed representation at what he called an “epistemological,” or knowledge-structuring level. This led to a set of primitives for structuring knowledge that was less application- and world-knowledge-dependent than “semantic” representations (like those for processing natural language case structures), yet richer than the impoverished set of primitives available in strictly logical languages. The main result of this work was a new knowledge representation framework whose primitive elements allowed cleaner, more application-independent representations than prior network formalisms. In the late 1970’s, Brachman and his colleagues explored the utility and implications of this kind of framework in the Kl-One system.

Kl-One introduced most of the key notions explored in the extensive work on Description Logics that followed. These included, for example, the notions of concepts and roles and how they were to be interrelated; the important ideas of “value restriction” and “number restriction,” which modified the use of roles in the definitions of concepts; and the crucial inferences of subsumption and classification. It also sowed the seeds for the later distinction between the TBox and ABox and a host of other significant notions that greatly influenced subsequent work. Kl-One also was the initial example of the substantial interplay between theory and practice that characterizes the history of Description Logics. It was influenced by work in logic and philosophy (and in turn itself influenced work in philosophy and psychology), and significant care was taken in its design to allow it to be consistent and semantically sound. But it was also used in multiple applications, covering intel-
ligent information presentation and natural language understanding, among other things.

Most of the focus of the original work on KL-ONE was on the representation of and reasoning with concepts, with only a small amount of attention paid to reasoning with individual objects. The first descendants of KL-ONE were focused on architectures providing a clear distinction between a powerful logic-based (or rule-based) component and a specialized terminological component. These systems came to be referred to as hybrid systems. A major research issue was the integration of the two components to provide unified reasoning services over the whole knowledge base.

1.4.2.2 Description Logics systems

The earliest “pre-DL” systems derived directly from KL-ONE, which, while itself a direct result of formal analysis of the shortcomings of semantic networks, was mainly about the implementation of a viable classification algorithm and the data structures to adequately represent concepts. Description Logic systems, per se, which followed as the next generation, were more derived from a wave of theoretical research on terminological logics that resulted from examination of KL-ONE and some other early systems. This work was initiated in roughly 1984, inspired by a paper by Brachman and Levesque [Brachman and Levesque, 1984] on the formal complexity of reasoning in Description Logics. Subsequent results on the trade-off between the expressiveness of a DL language and the complexity of reasoning with it, and more generally, the identification of the sources of complexity in DL systems, showed that a careful selection of language constructs was needed and that the reasoning services provided by the system are deeply influenced by the set of constructs provided to the user. We can thus characterize three different approaches to the implementation of reasoning services. The first can be referred to as limited+complete, and includes systems that are designed by restricting the set of constructs in such a way that subsumption would be computed efficiently, possibly in polynomial time. The CLASSIC system [Brachman et al., 1991] is the most significant example of this kind. The second approach can be denoted as expressive+incomplete, since the idea is to provide both an expressive language and efficient reasoning. The drawback is, however, that reasoning algorithms turn out to be incomplete in these systems. Notable examples of this kind of system are LOOM [MacGregor and Bates, 1987], and BACK [Nebel and von Luck, 1988]. After some of the sources of incompleteness were discovered, often by identifying the constructs—or, more precisely, combinations of constructs—that would require an exponential algorithm to preserve the completeness of reasoning, systems with complete reasoning algorithms were designed. Systems of this sort (see for example KRIS [Baader and Hollunder, 1991a]) are therefore characterized as expres-
sive-complete; they were not as efficient as those following the other approaches, but they provided a testbed for the implementation of reasoning techniques developed in the theoretical investigations, and they played an important role in stimulating comparison and benchmarking with other systems [Heinsohn et al., 1992; Baader et al., 1992b].

1.4.2.3 Current generation Description Logics systems

In the current generation of DL-KRS, the need for complete algorithms for expressive languages has been the focus of attention. The expressiveness of the DL language required for reasoning on data models and semi-structured data has contributed to the identification of the most important extensions for practical applications.

The design of complete algorithms for expressive Description Logics has led to significant extensions of tableau-based techniques and to the introduction of several optimization techniques, partly borrowed from theorem proving and partly specifically developed for Description Logics. The first example of a system developed along these lines is Fact [Horrocks, 1998b].

This research has also been influenced by newly discovered relationships between Description Logics and other logics, leading to exchanging benchmarks and experimental comparisons with other deduction systems.

The techniques that have been used in the implementation of very expressive Description Logics are addressed in detail in Chapter 9.

1.5 Applications developed with Description Logics systems

The third component in the picture of the development of Description Logics is the implementation of applications in different domains. Some of the applications created over the years may have only reached the level of prototype, but many of them have the completeness of industrial systems and have been deployed in production use.

A critical element in the development of applications based on Description Logics is the usability of the knowledge representation system. We have already emphasized that building a tool to be used in the design and implementation of knowledge-based applications requires significant work to make it suitable for interactive development, explanation and debugging, interface implementation, and so on. In addition, here we focus on the effectiveness of Description Logics as a modeling language. A modeling language should have intuitive semantics and the syntax must help convey the intended meaning. To this end, a somewhat different syntax than we have seen so far, closer to that of natural language, has often been adopted, and graphical interfaces that provide an operational view of the process of knowledge
base construction have been developed. The issues arising in modeling application
domains using Description Logics are dealt with in Chapter 10, and will be briefly
addressed in the next subsection.

It is natural to expect that some classes of applications share similarities both
in methodological patterns and in the design of specific structures or reasoning
capabilities. Consequently, we identify several application domains in Section 1.5.2;
these include Software Engineering, Configuration, Medicine, and Digital Libraries
and Web-based Information Systems.

In Section 1.5.3 we consider several application areas where Description Logics
play a major role; these include Natural Language Processing as well as Database
Management, where Description Logics can be used in several ways.

When addressing the design of applications it is also worth pointing out that there
has been significant evolution in the way Description Logics have been used within
complex applications. In particular, the DL-centered view that underlies the earliest
generation of systems, wherein an application was developed in a single environment
(the one provided by the DL system), was characterized by very loose interaction, if
any, between the DL system and other applications. Later, an approach that viewed
the DL more as a component became evident; in this view the DL system acts as
a component of a larger environment, typically leaving out functions, such those
for data management, that are more effectively implemented by other technologies.
The architecture where the component view is taken requires the definition of a clear
interface between the components, possibly adopting different modeling languages,
but focusing on Description Logics for the implementation of the reasoning services
that can add powerful capabilities to the application. Obviously, the choice between
the above architectural views depends upon the needs of the application at hand.

Finally, we have already stressed that research in Description Logics has benefited
from tight interaction between language designers and developers of DL-KRS. Thus,
another major impact on the development of DL research was provided by the
implementation of applications using DL-KRS. Indeed, work on DL applications
not only demonstrated the effectiveness of Description Logics and of DL-KRS, but
also provided mutual feedback within the DL community concerning the weaknesses
of both the representation language and the features of an implemented DL-KRS.

1.5.1 Modeling with Description Logics

In order for designers to be able to use Description Logics to model their application
domains, it is important for the DL constructs to be easily understandable; this
helps facilitate the construction of convenient to use yet effective tools. To this
end, the abstract notation that we have previously introduced and that is nowadays
commonly used in the DL community is not fully satisfactory.
As already mentioned, there are at least two major alternatives for increasing the usability of Description Logics as a modeling language:

(i) providing a syntax that resembles more closely natural language;
(ii) implementing interfaces where the user can specify the representation structures through graphical operations.

Before addressing the above two possibilities, one brief remark is in order. While alternative ways of specifying knowledge, such as natural language-style syntax, can be more appealing to the user, one should remember that Description Logics in part arose from a need to respond to the inadequacy—the lack of a formal semantic basis—of early semantic networks and frame systems. Those early systems often relied on an assumption of intuitive readings of natural-language-like constructs or graphical structures, which in the end made them unsatisfactory. Therefore, we need to keep in mind always the correspondence of the language used by the user and the abstract DL syntax, and consequently correspondences with the formal semantics should always be clear and available.

The option of a more readable syntax has been pursued in the majority of DL-KRS. In particular, we refer to the concrete syntax proposed in [Patel-Schneider and Swartout, 1993], which is based on a Lisp-like notation, where, for example, the concept of a female person is denoted by (and Person Female). Similarly, the concept ∀ hasChild Female would be written (all hasChild Female). In addition, there are shorthand expressions, such as (the hasChild Female), which indicates the existence of a unique female child, and can be phrased using qualified existential restriction and number restriction. In Chapter 10 this kind of syntax is discussed in detail and the possible sources for ambiguities in the natural language reading of the constructs are discussed.

The second option for providing the user with a concrete syntax is to rely on a graphical interface. Starting with the KL-ONE system, this possibility has been pursued by introducing a graphical notation for the representation of concepts and roles, as well as their relationships. More recently, Web-based interfaces for Description Logics have been proposed [Welty, 1996a]; in addition, an XML standard has been proposed [Bechhofer et al., 1999; Euzenat, 2001], which is suitable not only for data interchange, but also for providing full-fledged Web interfaces to DL-KRS or applications embodying them as components.

The modeling language is the vehicle for the expression of the modeling notions that are provided to the designers. Modeling in Description Logics requires the designer to specify the concepts of the domain of discourse and characterize their relationships to other concepts and to specific individuals. Concepts can be regarded as classes of individuals and Description Logics as an object-centered modeling language, since they allow one to introduce individuals (objects) and explicitly define
their properties, as well as to express relationships among them. Concept definition, which provides both for necessary and sufficient conditions, is a characteristic feature of Description Logics. The basic relationship between concepts is subsumption, which allows one to capture various kinds of sub-classing mechanisms; however other kinds of relationships can be modeled, such as grouping, materialization, and part-whole aggregation.

The model of a domain in Description Logics is embedded in a knowledge base. We have already addressed the TBox/ABox characterization of the knowledge base. We recall that the roles of TBox and ABox were motivated by the need to distinguish general knowledge about the domain of interest from specific knowledge about individuals characterizing a specific world/situation under consideration. Besides the TBox/ABox, other mechanisms for organizing a knowledge base such as contexts and views have been introduced in Description Logics. The use of the modeling notions provided by Description Logics and the organization of knowledge bases are addressed in greater detail in Chapter 10.

Finally, we recall that Description Logics as modeling languages overlap to a large extent with other modeling languages developed in fields such as Programming Languages and Database Management. While we shall focus on this relationship later, we recall here that, when compared to modeling languages developed in other fields the characteristic feature of Description Logics is in the reasoning capabilities that are associated with it. In other words, we believe that, while modeling has general significance, the capability of exploiting the description of the model to draw conclusions about the problem at hand is a particular advantage of modeling using Description Logics.

1.5.2 Application domains

Description Logics have been used (and are being used) in the implementation of many systems that demonstrate their practical effectiveness. Some of these systems have found their way into production use, despite the fact that there was no real commercial platform that could be used for developing them.

1.5.2.1 Software engineering

Software Engineering was one of the first application domains for Description Logics undertaken at AT&T, where the CLASSIC system was developed. The basic idea was to use a Description Logic to implement a Software Information System, i.e., a system that would support the software developer by helping him or her in finding out information about a large software system.

More specifically, it was found that the information of interest for software development was a combination of knowledge about the domain of the application and
code-specific information. However, while the structure of the code can be determined automatically, the connection between code elements and domain concepts needs to be specified by the user.

One of the most novel applications of Description Logics is the LassIE system [Devambu et al., 1991], which allowed users to incrementally build a taxonomy of concepts relating domain notions to the code implementing them. The system could thereafter provide useful information in response to user queries concerning the code, such as, for example “the function to generate a dial tone.” By exploiting the description of the domain, the information retrieval capabilities of the system went significantly beyond those of the standard tools used for software development. The LassIE system had considerable success but ultimately stumbled because of the difficulty of maintenance of the knowledge base, given the constantly changing nature of industrial software. Both the ideas of a Software Information System and the usage of Description Logics survived that particular application and have been subsequently used in other systems. The usage of Description Logics in applications for Software Engineering is described in Chapter 11.

1.5.2.2 Configuration

One very successful domain for knowledge-based applications built using Description Logics is configuration, which includes applications that support the design of complex systems created by combining multiple components.

The configuration task amounts to finding a proper set of components that can be suitably connected in order to implement a system that meets a given specification. For example, choosing computer components in order to build a home PC is a relatively simple configuration task. When the number, the type, and the connectivity of the components grow, the configuration task can become rather complex. In particular, computer configuration has been among the application fields of the first Expert Systems and can thus be viewed as a standard application domain for knowledge-based systems. Configuration tasks arise in many industrial domains, such as telecommunications, the automotive industry, building construction, etc.

DL-based knowledge representation systems meet the requirements for the development of configuration applications. In particular, they enable the object-oriented modeling of system components, which combines powerfully with the ability to reason from incomplete specifications and to automatically detect inconsistencies. Using Description Logics one can exploit the ability to classify the components and organize them within a taxonomy. In addition, a DL-based approach supports incremental specification and modularity. Applications for configuration tasks require at least two features that were not in the original core of DL-KRS: the representation of rules (together with a rule propagation mechanism), and the ability to provide explanations. However, extensions with so-called “active rules” are now very common
in DL-KRS, and a precise semantic account is given in Chapter 6; significant work on explanation capabilities of DL-KRS has been developed in connection with the design of configuration applications [McGuinness and Borgida, 1995]. Chapter 12 is devoted to the applications developed in Description Logics for configuration tasks.

1.5.2.3 Medicine

Medicine is also a domain where Expert Systems have been developed since the 1980’s; however, the complexity of the medical domain calls for a variety of uses for a DL-KRS. In practice, decision support for medical diagnosis is only one of the tasks in need of automation. One focus has been on the construction and maintenance of very large ontologies of medical knowledge, the subject of some large government initiatives. The need to deal with large-scale knowledge bases (hundreds of thousands of concepts) led to the development of specialized systems, such as GALEN [Rector et al., 1993], while the requirement for standardization arising from the need to deal with several sources of information led to the adoption of the DL standard language KRSS [Patel-Schneider and Swartout, 1993] in projects like SNOMED [Spackman et al., 1997].

In order to cope with the scalability of the knowledge base, the DL language adopted in these applications is often limited to a few basic constructs and the knowledge base turns out to be rather shallow, that is to say the taxonomy does not have very many levels of sub-concepts below the top concepts. Nonetheless, there are several language features that would be very useful in the representation of medical knowledge, such as, for example, specific support for PART-OF hierarchies (see Chapter 10), as well as defaults and modalities to capture lack of knowledge (see Chapter 6).

Obviously, since medical applications most often must be used by doctors, a formal logical language is not well-suited; therefore special attention is given to the design of the user interface; in particular, natural language processing (see Chapter 15) is important both in the construction of the ontology and in the operational interfaces.

Further, the DL component of a medical application usually operates within a larger information system, which comprise several sources of information, which need to be integrated in order to provide a coherent view of the available data (on this topic see Chapter 16).

Finally, an important issue that arises in the medical domain is the management of ontologies, which not only requires common tools for project management, such as versioning systems, but also tools to support knowledge acquisition and re-use (on this topic see Chapter 8).

The use of Description Logics specifically in the design of medical applications is addressed in Chapter 13.
1.5.2.4 Digital libraries and Web-based information systems

The relationship between semantic networks and the linked structures implied by hypertext has motivated the development of DL applications for representing bibliographic information and for supporting classification and retrieval in digital libraries [Welty and Jenkins, 2000]. These applications have proven the effectiveness of Description Logics for representing the taxonomies that are commonly used in library classification schemes, and they have shown the advantage of subsumption reasoning for classifying and retrieving information. In these instances, a number of technical questions, mostly related to the use of individuals in the taxonomy, have motivated the use of more expressive Description Logics.

The possibility of viewing the World-Wide Web as a semantic network has been considered since the advent of the Web itself. Even in the early days of the Web, thought was given to the potential benefits of enabling programs to handle not only simple unlabeled navigation structures, but also the information content of Web pages. The goal was to build systems for querying the Web “semantically,” allowing the user to pose queries of the Web as if it were a database, roughly speaking. Based on the relationship between Description Logics and semantic networks, a number of proposals were developed that used Description Logics to model Web structures, allowing the exploitation of DL reasoning capabilities in the acquisition and management of information [Kirk et al., 1995; De Rosa et al., 1998].

More recently, there have been significant efforts based on the use of markup languages to capture the information content of Web structures. The relationship between Description Logics and markup languages, such as XML, has been precisely characterized [Calvanese et al., 1999d], thus identifying DL language features for representing XML documents. Moreover, interest in the standardization of knowledge representation mechanisms for enabling knowledge exchange has led to the development of DAML-ONT [McGuinness et al., 2002], an ontology language for the Web inspired by object-oriented and frame-based languages, and OIL [Fensel et al., 2001], with a similar goal of expressing ontologies, but with a closer connection to Description Logics. Since the two initiatives have similar goals and use languages that are somewhat similar (see Chapter 4 for the relationships between frames and Description Logics), their merger is in progress. The use of Description Logics in the design of digital libraries and Web applications is addressed in Chapter 14, with specific discussion on DAML-ONT, OIL, and DAML+OIL.

1.5.2.5 Other application domains

The above list of application domains, while presenting some of the most relevant applications designed with DL-KRS, is far from complete. There are many other domains that have been addressed by the DL community. Among the application
areas that have resorted to Description Logics for useful functions are Planning and Data Mining.

With respect to Planning, many knowledge-based applications rely on the services of a planning component. While Description Logics do not provide such a component themselves, they have been used to implement several general-purpose planning systems. The basic idea is to represent plans and actions, as well as their constituent elements, as concepts. The system can thus maintain a taxonomy of plan types and provide several reasoning services, such as plan recognition, plan subsumption, plan retrieval, and plan refinement. Two examples of planning components developed in a DL-KRS are CLASP [Yen et al., 1991b] developed on top of CLASSIC and EXPECT [Swartout and Gil, 1996], developed on top of LOOM. In addition, the integration of Description Logics and other formalisms, such as Constraint Networks, has been proposed [Weida and Litman, 1992]. Planning systems based on Description Logics have been used in many application domains to support planning services in conjunction with a taxonomic representation of the domain knowledge. Such application domains include, among others, software engineering, medicine, campaign planning, and information integration.

It is worth mentioning that Description Logics have also been used to represent dynamic systems and to automatically generate plans based on such representations. However, in such cases the use of Description Logics is limited to the formalization of properties that characterize the states of the system, while plan generation is achieved through the use of a rule propagation mechanism [De Giacomo et al., 1999]. Such use of Description Logics is inspired by the correspondence between Description Logics and Dynamic Modal Logics described in Chapter 5.

Description Logics have also been used in data mining applications, where their inferences can help the process of analyzing large amounts of data. In this kind of application, DL structures can represent views, and DL systems can be used to store and classify such views. The classification mechanism can help in discovering interesting classes of items in the data. We address this type of application briefly in the next subsection on Database Management.

1.5.3 Application areas

From the beginning Description Logics have been considered general purpose languages for knowledge representation and reasoning, and therefore suited for many applications. In particular, they were considered especially effective for those domains where the knowledge could be easily organized along a hierarchical structure, based on the “IS-A” relationship. The ability to represent and reason about taxonomies in Description Logics has motivated their use as a modeling language in the design and maintenance of large, hierarchically structured bodies of knowledge.
as well as their adoption as the representation language for formal ontologies [Welty and Guarino, 2001].

We now briefly look at some other research areas that have a more general relationship with Description Logics. Such a relationship exists either because Description Logics are viewed as a basic representation language, as in the case of natural language processing, or because they can be used in a variety of ways in concert with the main technology of the area, as in the field of Database Management.

1.5.3.1 Natural language

Description Logics, as well as semantic networks and frames, originally had natural language processing as a major field for application (see for example [Brachman, 1979]). In particular, when work on Description Logics began, not only was a large part of the DL community working on natural language applications, but Description Logics also bore a strong similarity to other formalisms used in natural language work, such as for example [Nebel and Smolka, 1991].

The use of Description Logics in natural language processing is mainly concerned with the representation of semantic knowledge that can be used to convey meanings of sentences. Such knowledge is typically concerned with the meaning of words (the lexicon), and with context, that is, a representation of the situation and domain of discourse.

A significant body of work has been devoted to the problem of disambiguating different syntactic readings of sentences, based on semantic knowledge, a process called semantic interpretation. Moreover, semantic knowledge expressed in Description Logics has also been used to support natural language generation.

Since the domain of discourse for a natural language application can be arbitrarily broad, work on natural language has also involved the construction of ontologies [Welty and Guarino, 2001]. In addition, the expressiveness of natural language has led also to investigations concerning extensions of Description Logics, such as for example, default reasoning (see Chapter 6).

Several large projects for natural language processing based on the use of Description Logics have been undertaken, some reaching the level of industrially-deployed applications. They are referenced in Chapter 15, where the role of Description Logics in natural language processing is addressed in more detail.

1.5.3.2 Database management

The relationship between Description Logics and databases is rather strong. In fact, there is often the need to build systems where both a DL-KRS and a Database Management System (DBMS) are present. DBMS’s deal with persistence of data and with the management of large amounts of it, while a DL-KRS manages intensional knowledge, typically keeping the knowledge base in memory (possibly including as-
assertions about individuals that correspond to data). While some of the applications created with DL-KRS have developed ad hoc solutions to the problem of dealing with large amounts of persistent data, in a complex application domain it is very likely that a DL-KRS and a DBMS would both be components of a larger system, and they would work together.

In addition, Description Logics provide a formal framework that has been shown to be rather close to the languages used in semantic data modeling, such as the Entity-Relationship Model [Calvanese et al., 1998g]. Description Logics are equipped with reasoning tools that can bring to the conceptual modeling phase significant advantages, as compared with traditional languages, whose role is limited to modeling. For instance, by using concept consistency one can verify at design time whether an entity can have at least one instance, thus clearly saving all the difficulties arising from discovering such a situation when the database is being populated [Borgida, 1995].

A second dimension of the enhancement of DBMS’s with Description Logics involves the query language. By expressing the queries to a database in a Description Logic one gains the ability to classify them and therefore to deal with issues such as query processing and optimization. However, the basic Description Logic machinery needs to be extended in order to deal with conjunctive queries; otherwise DL expressiveness with respect to queries is rather limited. In addition, Description Logics can be used to express constraints and intensional answers to queries.

A corollary of the relationship between Description Logics and DBMS query languages is the utility of Description Logics in reasoning with and about views. In the Imacs system [Brachman et al., 1993], the CLASSIC language was used as a “lens” [Brachman, 1994] with which data in a conventional relational database could be viewed. The interface to the data was made significantly more appropriate for a data analyst, and views that were found to be productive could be saved; in fact, they were saved in a taxonomy and could be classified with respect to one another. In a sense, this allows the schema to be viewed and queried explicitly, something normally not available when using a raw DBMS directly.

A more recent use of Description Logics is concerned with so-called “semi-structured” data models [Calvanese et al., 1998c], which are being proposed in order to overcome the difficulties in treating data that are not structured in a relational form, such as data on the Web, data in spreadsheets, etc. In this area Description Logics are sufficiently expressive to represent models and languages that are being used in practice, and they can offer significant advantages over other approaches because of the reasoning services they provide.

Another problem that has recently increased the applicability of Description Logics is information integration. As already remarked, data are nowadays available in large quantities and from a variety of sources. Information integration is the task
of providing a unique coherent view of the data stored in the sources available. In
order to create such a view, a proper relationship needs to be established between
the data in the sources and the unified view of the data. Description Logics not
only have the expressiveness needed in order to model the data in the sources, but
their reasoning services can help in the selection of the sources that are relevant for
a query of interest, as well as to specify the extraction process [Calvanese et al.,
2001c].

The uses of Description Logics with databases are addressed in more detail in
Chapter 16.

1.6 Extensions of Description Logics

In this section we look at several types of extensions that have been proposed for
Description Logics; these are addressed in more detail in Chapter 6. Such exten-
sions are generally motivated by needs arising in applications. Unfortunately, some
extended features in implemented DL-KRS were created without precise, formal
accounts; in some other cases, such accounts have been provided using a formal
framework that is not restricted to first-order logic.

A first group of extensions has the purpose of adding to DL languages some
representational features that were common in frame systems or that are relevant
for certain classes of applications. Such extensions provide a representation of some
novel epistemological notions and address the reasoning problems that arise in the
extended framework.

Extensions of a second sort are concerned with reasoning services that are useful
in the development of knowledge bases but are typically not provided by DL-KRS.
The implementation of such services relies on additional inference techniques that
are considered non-standard, because they go beyond the basic reasoning services
provided by DL-KRS.

Below we first address the extensions of the knowledge representation framework
and then non-standard inferences.

1.6.1 Language extensions

Some of the research associated with language extensions has investigated the se-
manics of the proposed extensions, but often the emphasis is only on finding rea-
soning procedures for the extended languages. Within these language extensions
we find constructs for non-monotonic, epistemic, and temporal reasoning, and con-
structs for representing belief and uncertain and vague knowledge. In addition some
constructs address reasoning in concrete domains.
1.6.1.1 Non-monotonic reasoning

When frame-based systems began to be formally characterized as fragments of first-order logic, it became clear that those frame-based systems as well as some DL-KRS that were used in practice occasionally provided the user with constructs that could not be given a precise semantic characterization within the framework of first-order logic. Notable among the problematic constructs were those associated with the notion of defaults, which over time have been extensively studied in the field of non-monotonic reasoning [Brachman, 1985].

While one of the problems arising in semantic networks was the oft-cited so-called “Nixon diamond” [Reiter and Criscuolo, 1981], a whole line of research in non-monotonic reasoning was developed in trying to characterize the system behavior by studying structural properties of networks. For example, the general property that “birds fly” might not be inherited by a penguin, because a rule that penguins do not fly would give rise to an arc in the network that would block the default inference. But as soon as the network becomes relatively complex (see for example [Touretzky et al., 1991]), we can see that attempts to provide semantic characterization in terms of network structure are inadequate.

Another approach that has been pursued in the formalization of non-monotonic reasoning in semantic networks is based on the use of default logic [Reiter, 1980; Etherington, 1987; Nado and Fikes, 1987]. Following a similar approach is the treatment of defaults in DL-based systems [Baader and Hollunder, 1995a], where formal tools borrowed from work on non-monotonic reasoning have been adapted to the framework of Description Logics. Such adaptation is non-trivial, however, because Description Logics are not, in general, propositional languages.

1.6.1.2 Modal representation of knowledge and belief

Modal logics have been widely studied to model a variety of features that in first-order logic would require the application of special constraints on certain elements of the formalization. For example, the notions of knowing something or believing that some sentence is true can be captured by introducing modal operators, which characterize properties that sentences have.

For instance the assertion

\[B(\text{Married(ANNA)}) \]

states a fact explicitly concerning the system’s beliefs (the system believes that Anna is married), rather than asserting the truth of something about the world being modeled (the system could believe something to be true without firm knowledge about its truth in the world).

In general, by introducing a modal operator one gains the ability to model properties like knowledge, belief, time-dependence, obligation, and so on. On the one
hand, extensions of Description Logics with modal operators can be viewed very much like the corresponding modal extensions of first-order logic. In particular, the semantic issues arising in the interpretation of quantified modal sentences (i.e., sentences with modal operators appearing inside the scope of quantifiers) are the same. On the other hand, the syntactic restrictions that are suited to a DL language lead to formalisms whose expressiveness and reasoning problems inherit some of the features of a specialized DL language. Extensions of Description Logics with modal operators including those for representing knowledge and belief are discussed in [Baader and Ohlbach, 1995].

1.6.1.3 Epistemic reasoning

It is not sufficient to provide a semantics for defaults to obtain a full semantic account of frame-based systems. Frame-based systems have included procedural rules as well as other forms of closure and epistemic reasoning that need to be covered by the semantics as well as by the reasoning algorithms. In particular, if one looks at the most widely-used systems based on Description Logics, such features are still present, possibly in new flavors, while their semantics is given informally and the consequences of reasoning sometimes not adequately explained.

Among the non-first-order features that are used in the practice of knowledge-based applications in both DL-based and frame-based systems we point out these:

- **procedural rules**, (also called *trigger rules*) which are normally described as *if-then* statements and are used to infer new facts about known individuals;
- **default rules**, which enable default reasoning in inheritance hierarchies;
- **role closure**, which limits the reasoning involving role restrictions to the individuals explicitly in the knowledge base;
- **integrity constraints**, which provide consistency restrictions on admissible knowledge bases.

In Chapter 6, among other approaches an epistemic extension of Description Logics with a modal operator is addressed. In the resulting formalism [Donini et al., 1998a] one can express epistemic queries and, by admitting a simple form of epistemic sentences in the knowledge base, one can formalize the aforementioned procedural rules. This characterization of procedural rules in terms of an epistemic operator has been widely accepted in the DL community and is thus also included in Chapter 2. The approach has been further extended to what have been called Autoepistemic Description Logics (ADLs) [Donini et al., 1997b], where it is combined with default reasoning. This combination is achieved by relying on the non-monotonic modal logic $MKNF$ [Lifschitz, 1991], thus introducing a second modal operator interpreted as autoepistemic assumption. The features mentioned above can be uniformly treated as epistemic sentences in the knowledge base, without the
need to give them special status as in the case of procedural rules, defaults, and epistemic constraints on the knowledge base. This expressiveness does not come without making reasoning more difficult. An extension of the reasoning methods available for deduction in the propositional formalizations of non-monotonic reasoning to the fragment of first-order logic corresponding to Description Logics has nonetheless been shown to be decidable.

1.6.1.4 Temporal reasoning

One notion that is often required in the formalization of application domains is time. Temporal extensions of Description Logics have been treated as a special kind of modal extension. The first proposal for handling time in a DL framework [Schmiedel, 1990] was originated in the context of the DL system Back. Later, following the standard approaches in the representation of time, both interval-based and point-based approaches have been studied, specifically focusing on the decidability and complexity of the reasoning problems (see [Artale and Franconi, 2001] for a survey the temporal extensions of Description Logics).

Time intervals can also be treated as a form of concrete domain (see below).

1.6.1.5 Representation of uncertain and vague knowledge

Another aspect of knowledge that is sometimes useful in representing and reasoning about application domains is uncertainty. As in other knowledge representation frameworks there are several approaches to the representation of uncertain knowledge in Description Logics. Two of them, namely probabilistic logic and fuzzy logic, have been proposed in the context of Description Logics. In the case of probabilistic Description Logics [Heinsohn, 1994; Jaeger, 1994] the knowledge about the domain is expressed in terms of probabilistic terminological axioms, which allow one to represent statistical information about the domain, and in terms of probabilistic assertions, which specify the degree of belief of asserted properties. The reasoning tasks aim at finding the probability bounds for subsumption relations and assertions. A more recent line of work tries to combine Description Logics with Bayesian networks.

In the case of fuzzy Description Logics [Yen, 1991] the goal is to characterize notions that cannot be properly defined with a “crisp” numerical bound. For example, the concept of living near Rome cannot be always defined with a crisp boundary on the map, but must be represented with a membership or degree function, which expresses closeness to the city in a continuous way.

Proposed approaches to fuzzy Description Logics not only define the semantics of assertions in terms of fuzzy sets, but also introduce new operators to express notions like “mostly,” “very,” etc. Reasoning algorithms are also provided for computing fuzzy subsumption within the framework of tableau-based methods.
1.6.1.6 Concrete domains

One of the limitations of basic Description Logics is related to the difficulty of integrating knowledge (and, consequently, performing reasoning) of specific domains, such as numbers or strings, which are needed in many applications. For example, in order to model the concept of a young person it seems rather natural to introduce the (functional) role age and to use a concrete value (or range of values) in the definition of the concept. In addition, one would like to be able to conclude that a person of school age is also a young person. Such a conclusion might require the use of properties of numbers to establish that the expected subsumption relation holds.

While for some time such extensions were designed in ad hoc ways, in [Baader and Hanschke, 1991a] a general method was established for integrating knowledge about concrete domains within a DL language. If a domain can be properly formalized, it is shown that the tableau-based reasoning technique can be suitably extended to handle the reasoning services in the extended language.

Concrete domains include not only data types such as numerical types, but also more elaborate domains, such as tuples of the relational calculus, spatial regions, or time intervals.

1.6.2 Additional reasoning services

Non-standard inference tasks can serve a variety of purposes, among them support in building and maintaining the knowledge base, as well as in obtaining information about the knowledge represented in it.

Among the more useful non-standard inference tasks in Description Logics we find the computation of the least common subsumer and the most specific concept, matching/unification, and concept rewriting.

1.6.2.1 Least common subsumer and most specific concept

The least common subsumer (lcs) of a set of concepts is the minimal concept that subsumes all of them. The minimality condition implies there is no other concept that subsumes all the concepts in the set and is less general (subsumed by) the lcs. This notion was first studied in [Cohen et al., 1992] and it has subsequently been used for several tasks: inductive learning of concept description from examples; knowledge base vivification (as a way to represent disjunction in languages that do not admit it); and in the bottom-up construction of DL knowledge bases (starting from instances of the concepts).

The notion of lcs is closely related to that of most specific concept (msc) of an individual, i.e., the least concept description that the individual is an instance of, given the assertions in the knowledge base; the minimality condition is specified...
as before. More generally, one can define the \textit{msc} of a set of assertions about individuals as the \textit{lcs} of the \textit{msc} associated with each individual. Based on the computation of the \textit{msc} of a set of assertions about individuals one can incrementally construct a knowledge base [Baader and Küsters, 1999].

It interesting to observe that the techniques that have been proposed to compute the \textit{lcs} and \textit{mcs} rely on compact representations of concept expressions, which are built either following the structural subsumption approach, or through the definition of a well-suited normal form.

1.6.2.2 Unification and matching

Another tool to support the construction and maintenance of DL knowledge bases that goes beyond the standard inference services provided by DL-KRS is the unification of concepts.

Concept unification [Baader and Narendran, 1998] is an operation that can be regarded as weakening the equivalence between two concept expressions. More precisely, two concept expressions unify if one can find a substitution of concept variables into concept expressions such that the result of applying the substitution gives equivalent concepts. The intuition is that, in order to find possible overlaps between concept definitions, one can treat certain concept names as variables and discover, via unification, that two concepts (possibly independently defined by distinct knowledge designers) are in fact equivalent. The knowledge base can consequently be simplified by introducing a single definition of the unifiable concepts.

As usual, matching is defined as a special case of unification, where variables occur only in one of the two concept expressions. In addition, in the framework of Description Logics, one can define matching and unification based on the subsumption relation instead of equivalence [Baader \textit{et al.}, 1999a].

As with other non-standard inferences, the computation of matching and unification relies on the use of specialized representations for concept expressions, and it has been shown to be decidable for rather simple Description Logics.

1.6.2.3 Concept rewriting

Finally, there has been a significant body of work on the problem of Concept Rewriting. Given a concept expressed in a source language, Concept Rewriting amounts to finding a concept, possibly expressed in a target language, which is related to the given concept according to equivalence, subsumption, or some other relation.

In order to specify the rewriting, one can provide a suitable set of constraints between concepts in the source language and concepts in the target language. Concept Rewriting can be applied to the translation of concepts from one knowledge base to another, or in the reformulation of concepts during the process of knowledge base construction and maintenance.
In addition, Concept Rewriting has been addressed in the context of the rewriting of queries using views, in Database Management (see also Chapter 16), and has recently been investigated in the framework of Information Integration. In this setting, one can apply Concept Rewriting techniques to automatically generate the queries that enable a system to gather information from a set of sources [Beeri et al., 1997]. Given an initial specification of the query according to a common, global language, and a set of constraints expressing the relationship between the global schema and the individual sources where information is stored, the problem is to compute the queries to be posed to the local sources that provide answers, possibly approximate, to the original query [Calvanese et al., 2000a].

1.7 Relationship to other fields of Computer Science

Description Logics were developed with the goals of providing formal, declarative meanings to semantic networks and frames, and of showing that such representation structures can be equipped with efficient reasoning tools. However, the underlying ideas of concept/class and hierarchical structure based upon the generality and specificity of a set of classes have appeared in many other field of Computer Science, such as Database Management and Programming Languages. Consequently, there have been a number of attempts to find commonalities and differences among formalisms with similar underlying notions, but which were developed in different fields. Moreover, by looking at the syntactic form of Description Logics—logics that are restricted to unary and binary predicates and allow for restricted forms of quantification—other, logical formalisms that have strong relationships with Description Logics have been identified. In this section we briefly address such relationships; in particular, we focus our attention on the relationship of Description Logics to other class-based languages, and then we address the relationship between Description Logics and other logics. These topics are addressed in more detail in Chapter 4.

1.7.1 Description Logics and other class-based formalisms

As we have mentioned, Description Logics can, in principle, be related to other class-based formalisms. Before looking at other fields, it is worth relating Description Logics to other formalisms developed within the field of Knowledge Representation that share the intuitions underlying network-based representation structure. In [Lehmann, 1992] several languages aiming at structured representations of knowledge are reviewed. We have already discussed the relationship between Description Logics and semantic networks and frames, since they provided the basic motivations for developing Description Logics in the first place. Among others, conceptual
graphs [Sowa, 1991] have been regarded as a way of representing conceptual structures very closely related to semantic networks (and consequently, to Description Logics). However, only recently has there been a detailed analysis of the relationship between conceptual graphs and Description Logics [Baader et al., 1999c]. The outcome of this work makes it apparent that, although one can establish a relationship between simple conceptual graphs and a DL language, there are substantial differences between the two formalisms. The most significant one is that Description Logics are characterized by the universally quantified role restriction, which is not present in conceptual graphs. Consequently, the interpretation of the representation structures becomes substantially different.

In many other fields of Computer Science we find formalisms for the representation of objects and classes [Motschnig-Pitrik and Mylopoulos, 1992]. Such formalisms share the notion of a class that denotes a subset of the domain of discourse, and they allow one to express several kinds of relationships and constraints (e.g., subclass constraints) that hold among classes. Moreover, class-based formalisms aim at taking advantage of the class structure in order to provide various types of information, such as whether an element belongs to a class, whether a class is a subclass of another class, and more generally, whether a given constraint holds between two classes. In particular, formalisms that are built upon the notions of class and class-based hierarchies have been developed in the field of Database Management, in semantic data modeling (see for example [Hull and King, 1987]), in object-oriented languages (see for example [Kim and Lochovsky, 1989]), and more generally, in Programming Languages (see for example [Lenzerini et al., 1991]).

There have been several attempts to establish relationships among the class-based formalisms developed in different fields. In particular, the common intuitions behind classes and concepts have stimulated several pieces of work aimed at establishing a precise relationship between class-based formalisms and Description Logics. However, it is difficult to find a common framework for carrying out a precise comparison.

In Chapter 4 a specific Description Logic is taken as a basis for identifying the common features of frame systems and object-oriented and semantic data models (see also [Calvanese et al., 1999e]). Specifically, a precise correspondence between the chosen DL and the Entity-Relationship model [Chen, 1976], as well as with an object-oriented language in the style of [Abiteboul and Kanellakis, 1989], is presented there.

This kind of comparison shows that one can indeed identify a large common basis, but also that there are features that are currently missing in each formalism. For example, to capture semantic data models one needs a cyclic form of inclusion assertion, as well as the inverses of roles for modeling relationships that work in both directions, while DL roles have a directionality from one concept to another.
Moreover, in order to make a comparison with frame-based systems, one has to leave out both the non-monotonic features of frames, such as defaults and closures (that are addressed among the extensions of Description Logics in the previous section) and their dynamic aspects such as daemons and and triggers (with the exception of trigger rules, which are also addressed in the previous section). Finally, with respect to object-oriented data models the main difference is that although Description Logics provide the expressiveness to model record and set structures, they are not explicitly available in Description Logics and thus their representation is a little cumbersome. On the other hand, semantic and object-oriented data models are typically not equipped with reasoning tools that are available with Description Logics. This issue is further developed in Chapter 16, where the applications of Description Logics in the field of Database Management are addressed. However, if the language is sufficiently expressive, as it needs to be in order to establish relationships among various class-based formalisms, one needs to distinguish between finite model reasoning which is required for Database languages that are designed to represent a closed domain of discourse, and unrestricted reasoning, which is typical of knowledge representation formalisms and, therefore, of Description Logics.

1.7.2 Relationships to other logics

The initial observation for addressing the relationship of Description Logics to other logics is the fact that Description Logics are subsets of first-order logic. This has been known since the earliest days of Description Logics, and has been thoroughly investigated in [Borgida, 1996]. In fact, the DL ALC corresponds to the fragment of first-order logic obtained by restricting the syntax to formulas containing two variables. The importance of this and subsequent studies on this issue is related to finding adequate characterizations of the expressiveness of Description Logics. Since Description Logics focus on a language formed by unary and binary predicates, it turned out that they are closely related to modal languages, if one regards roles as accessibility relations. In particular, Schild [1991] pointed out that some Description Logics are notational variants of certain propositional modal logics; specifically, the DL ALC has a modal logic counterpart, namely the multi-modal version of the logic K (see [Halpern and Moses, 1992]). Actually, ALC-concepts and formulas in multi-modal K can immediately be translated into each other. Moreover, an ALC-concept is satisfiable if and only if the corresponding K-formula is satisfiable. Research in the complexity of the satisfiability problem for modal propositional logics was initiated quite some time before the complexity of Description Logics was investigated. Consequently, this relationship made it possible to borrow from modal logic complexity results, reasoning techniques, and language constructs that had not been previously considered in Description Logics. On the
other hand, there are features of Description Logics that did not have counterparts in modal logics and therefore needed \textit{ad hoc} extensions of the reasoning techniques developed for modal logics. In particular, number restrictions as well as the treatment of individuals in the ABox required specific treatments based on the idea of \textit{reification}, which amounts to expressing the extensions through a special kind of axiom within the logic. Finally, we mention that recent work has pointed out a relationship between Description Logics and guarded fragments, which can be regarded as generalizations of modal logics. Most of the research on very expressive Description Logics, addressed in Chapter 5, has its roots in the correspondence with modal logic.

\section*{1.8 Conclusion}
From their humble origins in the late 1970’s as a remedy for logical and semantic problems in frame and semantic network representations, Description Logics have grown to be a unique and important keystone in the history of Knowledge Representation. DL formalisms certainly evoked interest in their earliest days, with the invention and application of the KL-ONE system, but international attention and research was given a significant boost in 1984 when Brachman and Levesque used the simple and intuitive structure of Description Logics as the basis for their observation about the tradeoff between knowledge representation language expressiveness and computational complexity of reasoning. The way Description Logics were able to separate out the structure of concepts and roles into simple term-forming operators opened the door to extensive analysis of a broad family of languages. One could add and subtract these operators from the language and explore both the computational ramifications and the relationship of the resulting language to other formal languages in Computer Science, such as modal logics and data models for database systems.

As a result, the family of Description Logic languages is probably the most thoroughly understood set of formalisms in all of knowledge representation. The computational space has been thoroughly mapped out, and a wide variety of systems have been built, testing out different styles of inference computation and being used in many applications.

Description Logics are responsible for many of the cornerstone notions used in knowledge representation and reasoning. They helped crystallize many of the ideas treated informally in earlier notations, such as concepts and roles. But they added many new important building blocks for later work in the field: the terminology/assertion distinction (TBox/ABox), number and value restrictions on roles, internal structure for concepts, Tell/Ask interfaces, and others. They have been the subject of a great deal of comparison and analysis with their cousins in other fields.
of Computer Science, and DL systems run the gamut from simple, restricted systems with provably advantageous computational properties to extremely expressive systems that can support very powerful applications. Perhaps, the most important aspect of work on Description Logics has been the very tight coupling between theory and practice. The exemplary give-and-take between the formal, analytical side of the field and the pragmatic, implemented side—notable throughout the entire history of Description Logics—has been a role model for other areas of AI.

Acknowledgements
We are grateful to Franz Baader, Francesco M. Donini, Maurizio Lenzerini, and Riccardo Rosati for reading the manuscript and making suggestions for improving the final version of the chapter.
Basic Description Logics
Franz Baader
Werner Nutt

Abstract
This chapter provides an introduction to Description Logics as a formal language for representing knowledge and reasoning about it. It first gives a short overview of the ideas underlying Description Logics. Then it introduces syntax and semantics, covering the basic constructors that are used in systems or have been introduced in the literature, and the way these constructors can be used to build knowledge bases. Finally, it defines the typical inference problems, shows how they are interrelated, and describes different approaches for effectively solving these problems. Some of the topics that are only briefly mentioned in this chapter will be treated in more detail in subsequent chapters.

2.1 Introduction
As sketched in the previous chapter, Description Logics (DLs) is the most recent name\(^1\) for a family of knowledge representation (KR) formalisms that represent the knowledge of an application domain (the “world”) by first defining the relevant concepts of the domain (its terminology), and then using these concepts to specify properties of objects and individuals occurring in the domain (the world description). As the name Description Logics indicates, one of the characteristics of these languages is that, unlike some of their predecessors, they are equipped with a formal, logic-based semantics. Another distinguished feature is the emphasis on reasoning as a central service: reasoning allows one to infer implicitly represented knowledge from the knowledge that is explicitly contained in the knowledge base. Description Logics support inference patterns that occur in many applications of intelligent information processing systems, and which are also used by humans to structure and understand the world: classification of concepts and individuals. Classification

\(^1\) Previously used names are terminological knowledge representation languages, concept languages, term subsumption languages, and KL-ONE-based knowledge representation languages.
of concepts determines subconcept/superconcept relationships (called subsumption relationships in DL) between the concepts of a given terminology, and thus allows one to structure the terminology in the form of a subsumption hierarchy. This hierarchy provides useful information on the connection between different concepts, and it can be used to speed-up other inference services. Classification of individuals (or objects) determines whether a given individual is always an instance of a certain concept (i.e., whether this instance relationship is implied by the description of the individual and the definition of the concept). It thus provides useful information on the properties of an individual. Moreover, instance relationships may trigger the application of rules that insert additional facts into the knowledge base.

Because Description Logics are a KR formalism, and since in KR one usually assumes that a KR system should always answer the queries of a user in reasonable time, the reasoning procedures DL researchers are interested in are decision procedures, i.e., unlike, e.g., first-order theorem provers, these procedures should always terminate, both for positive and for negative answers. Since the guarantee of an answer in finite time need not imply that the answer is given in reasonable time, investigating the computational complexity of a given DL with decidable inference problems is an important issue. Decidability and complexity of the inference problems depend on the expressive power of the DL at hand. On the one hand, very expressive DLs are likely to have inference problems of high complexity, or they may even be undecidable. On the other hand, very weak DLs (with efficient reasoning procedures) may not be sufficiently expressive to represent the important concepts of a given application. As mentioned in the previous chapter, investigating this trade-off between the expressivity of DLs and the complexity of their reasoning problems has been one of the most important issues in DL research.

Description Logics are descended from so-called “structured inheritance networks” [Brachman, 1977b; 1978], which were introduced to overcome the ambiguities of early semantic networks and frames, and which were first realized in the system KL-ONE [Brachman and Schmolze, 1985]. The following three ideas, first put forward in Brachman’s work on structured inheritance networks, have largely shaped the subsequent development of DLs:

- The basic syntactic building blocks are atomic concepts (unary predicates), atomic roles (binary predicates), and individuals (constants).
- The expressive power of the language is restricted in that it uses a rather small set of (epistemologically adequate) constructors for building complex concepts and roles.
- Implicit knowledge about concepts and individuals can be inferred automatically with the help of inference procedures. In particular, subsumption relationships between concepts and instance relationships between individuals and concepts
play an important rôle: unlike IS-A links in Semantic Networks, which are explicitly introduced by the user, subsumption relationships and instance relationships are inferred from the definition of the concepts and the properties of the individuals.

After the first logic-based semantics for KL-ONE-like KR languages were proposed, the inference problems like subsumption could also be provided with a precise meaning, which led to the first formal investigations of the computational properties of such languages. It has turned out that the languages used in early DL systems were too expressive, which led to undecidability of the subsumption problem [Schmidt-Schauss, 1989; Patel-Schneider, 1989b]. The first worst-case complexity results [Levesque and Brachman, 1987; Nebel, 1988] showed that the subsumption problem is intractable (i.e., not polynomially solvable) even for very inexpressive languages. As mentioned in the previous chapter, this work was the starting point of a thorough investigation of the worst-case complexity of reasoning in KL-ONE-like KR languages (see Chapter 3 for details).

Later on it has turned out, however, that intractability of reasoning (in the sense of being non-polynomial in the worst case) does not prevent a DL from being useful in practice, provided that sophisticated optimization techniques are used when implementing a system based on such a DL (see Chapter 9). When implementing a DL system, the efficient implementation of the basic reasoning algorithms is not the only issue, though. On the one hand, the derived system services (such as classification, i.e., constructing the subsumption hierarchy between all concepts defined in a terminology) must be optimized as well [Baader et al., 1994]. On the other hand, one needs a good user and application programming interface (see Chapter 7 for more details). Most implemented DL systems provide for a rule language, which can be seen as a very simple, but effective, application programming mechanism (see Subsection 2.2.5 for details).

Section 2.2 introduces the basic formalism of Description Logics. By way of a prototypical example, it first introduces the formalism for describing concepts (i.e., the description language), and then defines the terminological (TBox) and the assertional (ABox) formalisms. Next, it introduces the basic reasoning problems and shows how they are related to each other. Finally, it defines the rule language that is available in many of the implemented DL systems.

Section 2.3 describes algorithms for solving the basic reasoning problems in DLs. After shortly sketching structural subsumption algorithms, it concentrates on tableau-based algorithms. Finally, it comments on the problem of reasoning w.r.t. terminologies.

Finally, Section 2.4 describes some additional language constructors that are not included in the prototypical family of description languages introduced in Sec-

2.2 Definition of the basic formalism

A KR system based on Description Logics provides facilities to set up knowledge bases, to reason about their content, and to manipulate them. Figure 2.1 sketches the architecture of such a system (see Chapter 8 for more information on DL systems).

A knowledge base (KB) comprises two components, the TBox and the ABox. The TBox introduces the terminology, i.e., the vocabulary of an application domain, while the ABox contains assertions about named individuals in terms of this vocabulary.

The vocabulary consists of concepts, which denote sets of individuals, and roles, which denote binary relationships between individuals. In addition to atomic concepts and roles (concept and role names), all DL systems allow their users to build complex descriptions of concepts and roles. The TBox can be used to assign names to complex descriptions. The language for building descriptions is a characteristic of each DL system, and different systems are distinguished by their description languages. The description language has a model-theoretic semantics. Thus, statements in the TBox and in the ABox can be identified with formulae in first-order logic or, in some cases, a slight extension of it.

A DL system not only stores terminologies and assertions, but also offers services that reason about them. Typical reasoning tasks for a terminology are to determine whether a description is satisfiable (i.e., non-contradictory), or whether one
description is more general than another one, that is, whether the first subsumes the second. Important problems for an ABox are to find out whether its set of assertions is consistent, that is, whether it has a model, and whether the assertions in the ABox entail that a particular individual is an instance of a given concept description. Satisfiability checks of descriptions and consistency checks of sets of assertions are useful to determine whether a knowledge base is meaningful at all. With subsumption tests, one can organize the concepts of a terminology into a hierarchy according to their generality. A concept description can also be conceived as a query, describing a set of objects one is interested in. Thus, with instance tests, one can retrieve the individuals that satisfy the query.

In any application, a KR system is embedded into a larger environment. Other components interact with the KR component by querying the knowledge base and by modifying it, that is, by adding and retracting concepts, roles, and assertions. A restricted mechanism to add assertions are rules. Rules are an extension of the logical core formalism, which can still be interpreted logically. However, many systems, in addition to providing an application programming interface that consists of functions with a well-defined logical semantics, provide an escape hatch by which application programs can operate on the KB in arbitrary ways.

2.2.1 Description languages

Elementary descriptions are atomic concepts and atomic roles. Complex descriptions can be built from them inductively with concept constructors. In abstract notation, we use the letters A and B for atomic concepts, the letter R for atomic roles, and the letters C and D for concept descriptions. Description languages are distinguished by the constructors they provide. In the sequel we shall discuss various languages from the family of \mathcal{AL}-languages. The language \mathcal{AL} (= attributive language) has been introduced in [Schmidt-Schauß and Smolka, 1991] as a minimal language that is of practical interest. The other languages of this family are extensions of \mathcal{AL}.

2.2.1.1 The basic description language \mathcal{AL}

Concept descriptions in \mathcal{AL} are formed according to the following syntax rule:

\[
C, D \rightarrow A \mid \top \mid \bot \mid \neg A \mid C \cap D
\]

(atomic concept)

(atomic negation)

(intersection)
F. Baader, W. Nutt

∀R.C | (value restriction)
∃R.⊤ | (limited existential quantification).

Note that, in \mathcal{AL}, negation can only be applied to atomic concepts, and only the top concept is allowed in the scope of an existential quantification over a role. For historical reasons, the sublanguage of \mathcal{AL} obtained by disallowing atomic negation is called \mathcal{FL}^- and the sublanguage of \mathcal{FL}^- obtained by disallowing limited existential quantification is called \mathcal{FL}_0.

To give examples of what can be expressed in \mathcal{AL}, we suppose that Person and Female are atomic concepts. Then $\text{Person} \sqcap \text{Female}$ and $\text{Person} \sqcap \neg \text{Female}$ are \mathcal{AL}-concepts describing, intuitively, those persons that are female, and those that are not female. If, in addition, we suppose that hasChild is an atomic role, we can form the concepts $\text{Person} \sqcap \exists \text{hasChild}.\top$ and $\text{Person} \sqcap \forall \text{hasChild}.\text{Female}$, denoting those persons that have a child, and those persons all of whose children are female. Using the bottom concept, we can also describe those persons without a child by the concept $\text{Person} \sqcap \forall \text{hasChild}.\bot$.

In order to define a formal semantics of \mathcal{AL}-concepts, we consider interpretations I that consist of a non-empty set Δ^I (the domain of the interpretation) and an interpretation function, which assigns to every atomic concept A a set $A^I \subseteq \Delta^I$ and to every atomic role R a binary relation $R^I \subseteq \Delta^I \times \Delta^I$. The interpretation function is extended to concept descriptions by the following inductive definitions:

\[
\begin{align*}
\top^I &= \Delta^I \\
\bot^I &= \emptyset \\
(\neg A)^I &= \Delta^I \setminus A^I \\
(C \sqcap D)^I &= C^I \cap D^I \\
(\forall R.C)^I &= \{a \in \Delta^I \mid \forall b. (a, b) \in R^I \rightarrow b \in C^I\} \\
(\exists R.\top)^I &= \{a \in \Delta^I \mid \exists b. (a, b) \in R^I\}.
\end{align*}
\]

We say that two concepts C, D are equivalent, and write $C \equiv D$, if $C^I = D^I$ for all interpretations I. For instance, going back to the definition of the semantics of concepts, one easily verifies that $\forall \text{hasChild}.\text{Female} \sqcap \forall \text{hasChild}.\text{Student}$ and $\forall \text{hasChild}.(\text{Female} \sqcap \text{Student})$ are equivalent.

2.2.1.2 The family of \mathcal{AL}-languages

We obtain more expressive languages if we add further constructors to \mathcal{AL}. The union of concepts (indicated by the letter \mathcal{U}) is written as $C \sqcup D$, and interpreted as

\[
(C \sqcup D)^I = C^I \cup D^I.
\]
Full existential quantification (indicated by the letter E) is written as $\exists R.C$, and interpreted as
\[(\exists R.C)^I = \{ a \in \Delta^I \mid \exists b. (a, b) \in R^I \land b \in C^I \}. \]
Note that $\exists R.C$ differs from $\exists R.\top$ in that arbitrary concepts are allowed to occur in the scope of the existential quantifier.

Number restrictions (indicated by the letter N) are written as $\geq n R$ (at-least restriction) and as $\leq n R$ (at-most restriction), where n ranges over the nonnegative integers. They are interpreted as
\[(\geq n R)^I = \{ a \in \Delta^I \mid |\{ b \mid (a, b) \in R^I\}| \geq n\}, \]
and
\[(\leq n R)^I = \{ a \in \Delta^I \mid |\{ b \mid (a, b) \in R^I\}| \leq n\}, \]
respectively, where “$|\cdot|$” denotes the cardinality of a set. From a semantic viewpoint, the coding of numbers in number restrictions is immaterial. However, for the complexity analysis of inferences it can matter whether a number n is represented in binary (or decimal) notation or by a string of length n, since binary (decimal) notation allows for a more compact representation.

The negation of arbitrary concepts (indicated by the letter C, for “complement”) is written as $\neg C$, and interpreted as
\[(\neg C)^I = \Delta^I \setminus C^I. \]

With the additional constructors, we can, for example, describe those persons that have either not more than one child or at least three children, one of which is female:
\[
\text{Person} \sqcap (\leq 1 \text{hasChild} \sqcup (\geq 3 \text{hasChild} \sqcap \exists \text{hasChild.Female})).
\]

Extending \mathcal{AL} by any subset of the above constructors yields a particular \mathcal{AL}-language. We name each \mathcal{AL}-language by a string of the form
\[
\mathcal{AL}[U][E][N][C],
\]
where a letter in the name stands for the presence of the corresponding constructor. For instance, \mathcal{ALEN} is the extension of \mathcal{AL} by full existential quantification and number restrictions (see the appendix on DL terminology for how to extend this naming scheme to more expressive DLs).

From the semantic point of view, not all these languages are distinct, however. The semantics enforces the equivalences $C \sqcap D \equiv \neg (\neg C \sqcap \neg D)$ and $\exists R.C \equiv \neg \forall R.\neg C$. Hence, union and full existential quantification can be expressed using negation. Conversely, the combination of union and full existential quantification gives us
the possibility to express negation of concepts (through their equivalent negation normal form, see Section 2.3.2). Therefore, we assume w.l.o.g. that union and full existential quantification are available in every language that contains negation, and vice versa. It follows that (modulo the equivalences mentioned above), all \mathcal{AL}-languages can be written using the letters U, E, N only. It is not hard to see that the eight languages obtained this way are indeed pairwise non-equivalent. In the sequel, we shall not distinguish between an \mathcal{AL}-language with negation and its counterpart that has union and full existential quantification instead. In the same vein, we shall use the letter C instead of the letters UE in language names. For instance, we shall write \mathcal{ALC} instead of \mathcal{ALUE} and \mathcal{ALCN} instead of \mathcal{ALUEN}.

2.2.1.3 Description languages as fragments of predicate logic

The semantics of concepts identifies description languages as fragments of first-order predicate logic. Since an interpretation \mathcal{I} respectively assigns to every atomic concept and role a unary and binary relation over $\Delta^\mathcal{I}$, we can view atomic concepts and roles as unary and binary predicates. Then, any concept C can be translated effectively into a predicate logic formula $\phi_C(x)$ with one free variable x such that for every interpretation \mathcal{I} the set of elements of $\Delta^\mathcal{I}$ satisfying $\phi_C(x)$ is exactly $C^\mathcal{I}$: An atomic concept A is translated into the formula $A(x)$; the constructors intersection, union, and negation are translated into logical conjunction, disjunction, and negation, respectively; if C is already translated into $\phi_C(x)$ and R is an atomic role, then value restriction and existential quantification are captured by the formulae

$$\phi_{\exists R,C}(y) = \exists x. R(y, x) \land \phi_C(x)$$
$$\phi_{\forall R,C}(y) = \forall x. R(y, x) \to \phi_C(x),$$

where y is a new variable; number restrictions are expressed by the formulae

$$\phi_{\geq n R}(x) = \exists y_1, \ldots, y_n. R(x, y_1) \land \cdots \land R(x, y_n) \land \bigwedge_{i<j} y_i \neq y_j$$
$$\phi_{\leq n R}(x) = \forall y_1, \ldots, y_{n+1}. R(x, y_1) \land \cdots \land R(x, y_{n+1}) \to \bigvee_{i<j} y_i = y_j.$$

Note that the equality predicate “=” is needed to express number restrictions, while concepts without number restrictions can be translated into equality-free formulae.

One may argue that, since concepts can be translated into predicate logic, there is no need for a special syntax. However, the above translations show that, in particular for number restrictions, the variable free syntax of description logics is much more concise. As can be seen from Section 2.3, it also lends itself easily to the development of algorithms.
A more detailed analysis of the connection between fragments of first-order predicate logic and DLs can be found in Chapter 4.

2.2.2 Terminologies

We have seen how we can form complex descriptions of concepts to describe classes of objects. Now, we introduce terminological axioms, which make statements about how concepts or roles are related to each other. Then we single out definitions as specific axioms and identify terminologies as sets of definitions by which we can introduce atomic concepts as abbreviations or names for complex concepts. If the definitions in a terminology contain cycles, we may have to adopt fixpoint semantics to make them unequivocal. We discuss for which types of terminologies fixpoint models exist.

2.2.2.1 Terminological axioms

In the most general case, terminological axioms have the form

\[C \sqsubseteq D \quad (R \sqsubseteq S) \quad \text{or} \quad C \equiv D \quad (R \equiv S), \]

where \(C, D \) are concepts (and \(R, S \) are roles). Axioms of the first kind are called inclusions, while axioms of the second kind are called equalities. To simplify the exposition, we deal in the following only with axioms involving concepts.

The semantics of axioms is defined as one would expect. An interpretation \(\mathcal{I} \) satisfies an inclusion \(C \sqsubseteq D \) if \(C^\mathcal{I} \subseteq D^\mathcal{I} \), and it satisfies an equality \(C \equiv D \) if \(C^\mathcal{I} = D^\mathcal{I} \). If \(T \) is a set of axioms, then \(\mathcal{I} \) satisfies \(T \) iff \(\mathcal{I} \) satisfies each element of \(T \). If \(\mathcal{I} \) satisfies an axiom (resp. a set of axioms), then we say that it is a model of this axiom (resp. set of axioms). Two axioms or two sets of axioms are equivalent if they have the same models.

2.2.2.2 Definitions

An equality whose left-hand side is an atomic concept is a definition. Definitions are used to introduce symbolic names for complex descriptions. For instance, by the axiom

\[\text{Mother} \equiv \text{Woman} \sqcap \exists \text{hasChild}. \text{Person} \]

we associate to the description on the right-hand side the name Mother. Symbolic names may be used as abbreviations in other descriptions. If, for example, we have defined Father analogously to Mother, we can define Parent as

\[\text{Parent} \equiv \text{Mother} \sqcup \text{Father}. \]

A set of definitions should be unequivocal. We call a finite set of definitions \(\mathcal{T} \) a
termology or TBox if no symbolic name is defined more than once, that is, if for every atomic concept \(A \) there is at most one axiom in \(\mathcal{T} \) whose left-hand side is \(A \). Figure 2.2 shows a terminology with concepts concerned with family relationships.

Suppose, \(\mathcal{T} \) is a terminology. We divide the atomic concepts occurring in \(\mathcal{T} \) into two sets, the name symbols \(\mathcal{N}_\mathcal{T} \) that occur on the left-hand side of some axiom and the base symbols \(\mathcal{B}_\mathcal{T} \) that occur only on the right-hand side of axioms. Name symbols are often called defined concepts and base symbols primitive concepts\(^1\). We expect that the terminology defines the name symbols in terms of the base symbols, which now we make more precise.

A base interpretation for \(\mathcal{T} \) is an interpretation that interprets only the base symbols. Let \(\mathcal{J} \) be such a base interpretation. An interpretation \(\mathcal{I} \) that interprets also the name symbols is an extension of \(\mathcal{J} \) if it has the same domain as \(\mathcal{J} \), i.e., \(\Delta^\mathcal{I} = \Delta^\mathcal{J} \), and if it agrees with \(\mathcal{J} \) for the base symbols. We say that \(\mathcal{T} \) is definitorial if every base interpretation has exactly one extension that is a model of \(\mathcal{T} \). In other words, if we know what the base symbols stand for, and \(\mathcal{T} \) is definitorial, then the meaning of the name symbols is completely determined. Obviously, if a terminology is definitorial, then every equivalent terminology is also definitorial.

The question whether a terminology is definitorial or not is related to the question whether or not its definitions are cyclic. For instance, the terminology that consists of the single axiom

\[
\text{Human'}' \equiv \text{Animal} \sqcap \forall \text{hasParent.Human'}'
\]

contains a cycle, which in this special case is very simple. In general, we define cycles in a terminology \(\mathcal{T} \) as follows. Let \(A, B \) be atomic concepts occurring in \(\mathcal{T} \). We say that \(A \) directly uses \(B \) in \(\mathcal{T} \) if \(B \) appears on the right-hand side of the

\(^1\) Note that some papers use the notion “primitive concept” with a different meaning; e.g., synonymous to what we call atomic concepts, or to denote the (atomic) left-hand sides of concept inclusions.
definition of A, and we call uses the transitive closure of the relation directly uses. Then T contains a cycle iff there exists an atomic concept in T that uses itself. Otherwise, T is called acyclic.

Unique extensions need not exist if a terminology contains cycles. Consider, for instance, the terminology that contains only Axiom (2.1). Here, Human' is a name symbol and Animal and hasParent are base symbols. For an interpretation where hasParent relates every animal to its progenitors, many extensions are possible to interpret Human' in a such a way that the axiom is satisfied: Human' can, among others, be interpreted as the set of all animals, as some species, or any other set of animals with the property that for each animal it contains also its progenitors.

In contrast, if a terminology T is acyclic, then it is definitorial. The reason is that we can expand through an iterative process the definitions in T by replacing each occurrence of a name on the right-hand side of a definition with the concepts that it stands for. Since there is no cycle in the set of definitions, the process eventually stops and we end up with a terminology T' consisting solely of definitions of the form $A \equiv C'$, where C' contains only base symbols and no name symbols. We call T' the expansion of T. Note that the size of the expansion can be exponential in the size of the original terminology [Nebel, 1990b]. The Family TBox in Figure 2.2 is acyclic. Therefore, we can compute the expansion, which is shown in Figure 2.3.

Proposition 2.1 Let T be a acyclic terminology and T' be its expansion. Then

(i) T and T' have the same name and base symbols;
(ii) T and T' are equivalent;
(iii) both, T and T', are definitorial.

Proof Let T_1 be a terminology. Suppose $A \equiv C$ and $B \equiv D$ are definitions in T_1 such that B occurs in C. Let C' be the concept obtained from C by replacing each occurrence of B in C with D, and let T_2 be the terminology obtained from T_1 by replacing the definition $A \equiv C$ with $A \equiv C'$. Then both terminologies have the same name and base symbols. Moreover, since T_2 has been obtained from T_1 by replacing equals by equals, both terminologies have the same models. Since T' is obtained from T by a sequence of replacement steps like the ones above, this proves claims (i) and (ii).

Suppose now that J is an interpretation of the base symbols. We extend it to an interpretation I that covers also the name symbols by setting $A^I = C^I_J$, if $A \equiv C'$ is the definition of A in T'. Clearly, I is a model of T', and it is the only extension of J that is a model of T'. This shows that T' is definitorial. Moreover, T is definitorial as well, since it is equivalent to T'.

It is characteristic for acyclic terminologies, in a sense to be made more precise, to uniquely define the name symbols in terms of the base symbols.

Of course, there are also terminologies with cycles that are definitorial. Consider for instance the one consisting of the axiom

$$A \equiv \forall R.B \sqcup \exists R.(A \sqcap \neg A), \quad (2.2)$$

which has a cycle. However, since $\exists R.(A \sqcap \neg A)$ is equivalent to the bottom concept, Axiom (2.2) is equivalent to the acyclic axiom

$$A \equiv \forall R.B. \quad (2.3)$$

This example is typical for the general situation.

Theorem 2.2 Every definitorial ALC-terminology is equivalent to an acyclic terminology.

The theorem is a reformulation of Beth’s Definability Theorem [Gabbay, 1972] for the modal propositional logic K_n, which, as shown by Schild [1991], is a notational variant of ALC.

2.2.2.3 Fixpoint semantics for terminological cycles

Under the semantics we have studied so far, which is essentially the semantics of first-order logic, terminologies have definitorial impact only if they are essentially acyclic. Following Nebel [1991], we shall call this semantics descriptive semantics to distinguish it from the fixpoint semantics introduced below. Fixpoint semantics are
motivated by the fact that there are situations where intuitively cyclic definitions are meaningful and the intuition can be captured by least or greatest fixpoint semantics.

Example 2.3 Suppose that we want to specify the concept of a “man who has only male offspring,” for short Momo. In particular, such a man is a Mos, that is, a “man who has only sons.” A Mos can be defined without cycles as

\[
\text{Mos} \equiv \text{Man} \cap \forall \text{hasChild}.\text{Man}.
\]

For a Momo, however, we want to make a statement about the fillers of the transitive closure of the role hasChild. Here a recursive definition of Momo seems to be natural. A man having only male offspring is himself a man, and all his children are men having only male offspring:

\[
\text{Momo} \equiv \text{Man} \cap \forall \text{hasChild}.\text{Momo}.
\]

(2.4)

In order to achieve the desired meaning, we have to interpret this definition under an appropriate fixpoint semantics. We shall show below that greatest fixpoint semantics captures our intuition here.

Cycles also appear when we want to model recursive structures, e.g., binary trees.

Example 2.4 We suppose that there is a set of objects that are Trees and a binary relation has-branch between objects that leads from a tree to its subtrees. Then the binary trees are the trees with at most two subtrees that are themselves binary trees:

\[
\text{BinaryTree} \equiv \text{Tree} \cap \leq 2 \text{has-branch} \cap \forall \text{has-branch}.\text{BinaryTree}.
\]

As with the definition of Momo, a fixpoint semantics will yield the desired meaning. However, for this example we have to use least fixpoint semantics.

We now give a formal definition of fixpoint semantics. In a terminology \(T \), every name symbol \(A \) occurs exactly once as the left-hand side of an axiom \(A \equiv C \). Therefore, we can view \(T \) as a mapping that associates to a name symbol \(A \) the concept description \(T(A) = C \). With this notation, an interpretation \(\mathcal{I} \) is a model of \(T \) if, and only if, \(A^\mathcal{I} = (T(A))^\mathcal{I} \). This characterization has the flavour of a fixpoint equation. We exploit this similarity to introduce a family of mappings such that an interpretation is a model of \(T \) iff it is a fixpoint of such a mapping.

Let \(T \) be a terminology, and let \(J \) be a fixed base interpretation of \(T \). By \(\text{Ext}_J \) we denote the set of all extensions of \(J \). Let \(T_J : \text{Ext}_J \rightarrow \text{Ext}_J \) be the mapping

\[1\] The following example is taken from [Nebel, 1991].
that maps the extension \(\mathcal{I} \) to the extension \(\mathcal{T}_{\mathcal{J}}(\mathcal{I}) \) defined by \(A^{\mathcal{T}_{\mathcal{J}}(\mathcal{I})} = (\mathcal{T}(A))^\mathcal{I} \) for each name symbol \(A \).

Now, \(\mathcal{I} \) is a fixpoint of \(\mathcal{T}_{\mathcal{J}} \) iff \(\mathcal{I} = \mathcal{T}_{\mathcal{J}}(\mathcal{I}) \), i.e., iff \(A^\mathcal{I} = A^{\mathcal{T}_{\mathcal{J}}(\mathcal{I})} \) for all name symbols. This means that, for every definition \(A \equiv C \) in \(\mathcal{T} \), we have \(A^\mathcal{I} = A^{\mathcal{T}_{\mathcal{J}}(\mathcal{I})} = (\mathcal{T}(A))^\mathcal{I} = C^\mathcal{I} \), which means that \(\mathcal{I} \) is a model of \(\mathcal{T} \). This proves the following result.

Proposition 2.5 Let \(\mathcal{T} \) be a terminology, \(\mathcal{I} \) be an interpretation, and \(\mathcal{J} \) be the restriction of \(\mathcal{I} \) to the base symbols of \(\mathcal{T} \). Then \(\mathcal{I} \) is a model of \(\mathcal{T} \) if, and only if, \(\mathcal{I} \) is a fixpoint of \(\mathcal{T}_{\mathcal{J}} \).

According to the preceding proposition, a terminology \(\mathcal{T} \) is definitorial iff every base interpretation \(\mathcal{J} \) has a unique extension that is a fixpoint of \(\mathcal{T}_{\mathcal{J}} \).

Example 2.6 To get a feel for why cyclic terminologies are not definitorial, we discuss as an example the terminology \(\mathcal{T}_{\text{Momo}} \) that consists only of Axiom (2.4). Consider the base interpretation \(\mathcal{J} \) defined by

\[
\begin{align*}
\Delta^\mathcal{J} &= \{\text{Charles}_1, \text{Charles}_2, \ldots\} \cup \{\text{James}_1, \ldots, \text{James}_{\text{Last}}\}, \\
\text{Man}^\mathcal{J} &= \Delta^\mathcal{J}, \\
\text{hasChild}^\mathcal{J} &= \{(\text{Charles}_i, \text{Charles}_{(i+1)}) \mid i \geq 1\} \cup \{(\text{James}_i, \text{James}_{(i+1)}) \mid 1 \leq i < \text{Last}\}.
\end{align*}
\]

This means that the \text{Charles} dynasty does not die out, whereas there is a last member of the \text{James} dynasty.

We want to identify the fixpoints of \(\mathcal{T}^\mathcal{J}_{\text{Momo}} \). Note that an individual without children, i.e., without fillers of \text{hasChild}, is always in the interpretation of \(\forall\text{hasChild. Momo} \), no matter how \text{Momo} is interpreted. Therefore, if \(\mathcal{I} \) is a fixpoint extension of \(\mathcal{J} \), then \text{James}_{\text{Last}} \) is in \((\forall\text{hasChild. Momo})^\mathcal{I} \), and thus in \(\text{Momo}^\mathcal{J} \). We conclude that every \text{James} is a \text{Momo}. Let \(\mathcal{I}_1 \) be the extension of \(\mathcal{J} \) such that \(\text{Momo}^\mathcal{I}_1 \) comprises exactly the \text{James} dynasty. Then it is easy to check that \(\mathcal{I}_1 \) is a fixpoint. If, in addition to the \text{James} dynasty, also some \text{Charles} is a \text{Momo}, then all the members of the \text{Charles} dynasty before and after him must belong to the concept \text{Momo}. One can easily check that the extension \(\mathcal{I}_2 \) that interprets \text{Momo} as the entire domain is also a fixpoint, and that there is no other fixpoint. ■

In order to give definitorial impact to a cyclic terminology \(\mathcal{T} \), we must single out a particular fixpoint of the mapping \(\mathcal{T}_{\mathcal{J}} \) if there are more than one. To this end, we define a partial ordering "\(\preceq \)" on the extensions of \(\mathcal{J} \). We say that \(\mathcal{I} \preceq \mathcal{I}' \) if \(A^\mathcal{I} \subseteq A^{\mathcal{I}'} \) for every name symbol in \(\mathcal{T} \). In the above example, \text{Momo} is the only name symbol. Since \(\text{Momo}^\mathcal{I}_1 \subseteq \text{Momo}^\mathcal{I}_2 \), we have \(\mathcal{I}_1 \preceq \mathcal{I}_2 \).
A fixpoint \(I \) of \(T_J \) is the least fixpoint (lfp) if \(I \preceq I' \) for every other fixpoint \(I' \). We say that \(I \) is a least fixpoint model of \(T \) if \(I \) is the least fixpoint of \(T_J \), for some base interpretation \(J \). Under least fixpoint semantics we only admit the least fixpoint models of \(T \) as intended interpretations. Greatest fixpoints (gfp), greatest fixpoint models, and greatest fixpoint semantics are defined analogously. In the Momo example, \(I_1 \) is the least and \(I_2 \) the greatest fixpoint of \(T_J \).

2.2.2.4 Existence of fixpoint models

Least and greatest fixpoint models need not exist for every terminology.

Example 2.7 As a simple example, consider the axiom

\[
A \equiv \neg A. \tag{2.5}
\]

If \(I \) is a model of this axiom, then \(A^I = \Delta^I \setminus A^I \), which implies \(\Delta^I = \emptyset \), an absurdity.

A terminology containing Axiom (2.5) thus does not have any models, and therefore also no gfp (lfp) models.

There are also cases where models (i.e., fixpoints) exist, but there is neither a least one nor a greatest one. As an example, consider the terminology \(T \) with the single axiom

\[
A \equiv \forall R. \neg A. \tag{2.6}
\]

Let \(J \) be the base interpretation with \(\Delta^J = \{a, b\} \) and \(R^J = \{(a, b), (b, a)\} \). Then there are two fixpoint extensions \(I_1, I_2 \), defined by \(A^{I_1} = \{a\} \) and \(A^{I_2} = \{b\} \). However, they are not comparable with respect to “≤”.

In order to identify terminologies with the property that for every base interpretation there exists a least and a greatest fixpoint extension, we draw upon results from lattice theory. Recall that a lattice is complete if every family of elements has a least upper bound.

On \(\text{Ext}_J \) we have introduced the partial ordering “≤”. For a family of interpretations \((I_i)_{i \in I} \) in \(\text{Ext}_J \) we define \(I_0 = \bigsqcup_{i \in I} I_i \) as the pointwise union of the \(I_i \)'s, that is, for every name symbol \(A \) we have \(A^{I_0} = \bigsqcup_{i \in I} A^{I_i} \). Then \(I_0 \) is the least upper bound of the \(I_i \)'s, which shows that \((\text{Ext}_J, \preceq) \) is a complete lattice.

A function \(f : L \to L \) on a lattice \((L, \preceq) \) is monotone if \(f(x) \preceq f(y) \) whenever \(x \preceq y \). Tarski’s Fixpoint Theorem [Tarski, 1955] says that for a monotone function on a complete lattice the set of fixpoints is nonempty and forms itself a complete lattice. In particular, there is a least and a greatest fixpoint.

We define that a terminology \(T \) is monotone if the mapping \(T_J \) is monotone for all base interpretations \(J \). By Tarski’s theorem, such terminologies have greatest
and least fixpoints. However, to apply the theorem, we must be able to recognize monotone terminologies. A simple syntactic criterion is the following. We call a terminology \textit{negation free} if no negation occurs in it. By an induction over the depth of concept descriptions one can check that every negation free \textit{ALCN}-terminology is monotone.

\textbf{Proposition 2.8} If \(T \) is a negation free terminology and \(J \) a base interpretation, then there exist extensions of \(J \) that are a lfp-model and a gfp-model of \(T \), respectively.

Negation free terminologies are not the most general class of terminologies having least and greatest fixpoints. We have seen in Proposition 2.1 that acyclic terminologies are definitorial and thus for a given base interpretation admit only a single extension that is a model, which then is both a least and a greatest fixpoint model.

We obtain a more refined criterion for the existence of least and greatest fixpoints if we pay attention to the interplay between cycles and negation. To this end, we associate to a terminology \(T \) a \textit{dependency graph} \(G_T \), whose nodes are the name symbols in \(T \). If \(T \) contains the axiom \(A \equiv C \), then for every occurrence of the name symbol \(A' \) in \(C \), there is an arc from \(A \) to \(A' \) in \(G_T \). Arcs are labeled as positive and negative. The arc from \(A \) to \(A' \) is positive if \(A' \) occurs in \(C \) in the scope of an even number of negations, and it is negative if \(A' \) occurs in the scope of an odd number of negations. A sequence of nodes \(A_1, \ldots, A_n \) is a \textit{path} if there is an arc in \(G_T \) from \(A_i \) to \(A_{i+1} \) for all \(i = 1, \ldots, n - 1 \). A path is a cycle if \(A_1 = A_n \).

\textbf{Proposition 2.9} Let \(T \) be a terminology such that each cycle in \(G_T \) contains an even number of negative arcs. Then \(T \) is monotone.

We call a terminology satisfying the precondition of this proposition \textit{syntactically monotone}.

\subsection{2.2.2.5 Terminologies with inclusion axioms}

For certain concepts we may be unable to define them completely. In this case, we can still state necessary conditions for concept membership using an inclusion. We call an inclusion whose left-hand side is atomic a \textit{specialization}.

For example, if a (male) knowledge engineer thinks that the definition of “woman” in our example TBox (Figure 2.2) is not satisfactory, but if he also feels that he is not able to define the concept “woman” in all detail, he can require that every woman is a person with the specialization

\[\text{Woman} \sqsubseteq \text{Person}. \tag{2.7} \]

If we allow also specializations in a terminology, then the terminology loses its
definitorial impact, even if it is acyclic. A set of axioms \(T \) is a *generalized terminology* if the left-hand side of each axiom is an atomic concept and for every atomic concept there is at most one axiom where it occurs on the left-hand side.

We shall transform a generalized terminology \(T \) into a regular terminology \(\bar{T} \), containing definitions only, such that \(\bar{T} \) is equivalent to \(T \) in a sense that will be specified below. We obtain \(\bar{T} \) from \(T \) by choosing for every specialization \(A \sqsubseteq C \) in \(T \) a new base symbol \(\bar{A} \) and by replacing the specialization \(A \sqsubseteq C \) with the definition \(A \equiv \bar{A} \cap C \). The terminology \(\bar{T} \) is the *normalization* of \(T \).

If a TBox contains the specialization (2.7), then the normalization contains the definition

\[
\text{Woman} \equiv \text{Woman} \cap \text{Person}.
\]

Intuitively, the additional base symbol \(\bar{\text{Woman}} \) stands for the qualities that distinguish a woman among persons. Thus, normalization results in a TBox with a definition for \(\text{Woman} \) that is similar to the one in the Family TBox.

Proposition 2.10 Let \(T \) be a generalized terminology and \(\bar{T} \) its normalization.

- Every model of \(\bar{T} \) is a model of \(T \).
- For every model \(I \) of \(T \) there is a model \(\bar{I} \) of \(\bar{T} \) that has the same domain as \(I \) and agrees with \(I \) on the atomic concepts and roles in \(T \).

Proof The first claim holds because a model \(\bar{I} \) of \(\bar{T} \) satisfies \(A^{\bar{I}} = (\bar{A} \cap C)^{\bar{I}} = \bar{A}^{\bar{I}} \cap C^{\bar{I}} \), which implies \(A^{\bar{I}} \subseteq C^{\bar{I}} \). Conversely, if \(I \) is a model of \(T \), then the extension \(\bar{I} \) of \(I \), defined by \(\bar{A}^{\bar{I}} = A^{\bar{I}} \), is a model of \(\bar{T} \), because \(A^{\bar{I}} \subseteq C^{\bar{I}} \) implies \(A^{\bar{I}} = A^{\bar{I}} \cap C^{\bar{I}} = \bar{A}^{\bar{I}} \cap C^{\bar{I}} \), and therefore \(\bar{I} \) satisfies \(A \equiv \bar{A} \cap C \). \(\square \)

Thus, in theory, inclusion axioms do not add to the expressivity of terminologies. However, in practice, they are a convenient means to introduce terms into a terminology that cannot be defined completely.

2.2.3 World descriptions

The second component of a knowledge base, in addition to the terminology or TBox, is the *world description* or *ABox*.

2.2.3.1 Assertions about individuals

In the ABox, one describes a specific state of affairs of an application domain in terms of concepts and roles. Some of the concept and role atoms in the ABox may be defined names of the TBox. In the ABox, one introduces individuals, by giving them names, and one asserts properties of these individuals. We denote individual
names as \(a, b, c \). Using concepts \(C \) and roles \(R \), one can make assertions of the following two kinds in an ABox:

\[
C(a), \quad R(b, c).
\]

By the first kind, called concept assertions, one states that \(a \) belongs to (the interpretation of) \(C \), by the second kind, called role assertions, one states that \(c \) is a filler of the role \(R \) for \(b \). For instance, if \(\text{PETER}, \text{PAUL}, \) and \(\text{MARY} \) are individual names, then \(\text{Father}(\text{PETER}) \) means that Peter is a father, and \(\text{hasChild}(\text{MARY}, \text{PAUL}) \) means that Paul is a child of Mary. An ABox, denoted as \(\mathcal{A} \), is a finite set of such assertions. Figure 2.4 shows an example of an ABox.

In a simplified view, an ABox can be seen as an instance of a relational database with only unary or binary relations. However, contrary to the “closed-world semantics” of classical databases, the semantics of ABoxes is an “open-world semantics,” since normally knowledge representation systems are applied in situations where one cannot assume that the knowledge in the KB is complete.\(^1\) Moreover, the TBox imposes semantic relationships between the concepts and roles in the ABox that do not have counterparts in database semantics.

We give a semantics to ABoxes by extending interpretations to individual names. From now on, an interpretation \(\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I}) \) not only maps atomic concepts and roles to sets and relations, but in addition maps each individual name \(a \) to an element \(a^\mathcal{I} \in \Delta^\mathcal{I} \). We assume that distinct individual names denote distinct objects. Therefore, this mapping has to respect the unique name assumption (UNA), that is, if \(a, b \) are distinct names, then \(a^\mathcal{I} \neq b^\mathcal{I} \). The interpretation \(\mathcal{I} \) satisfies the concept assertion \(C(a) \) if \(a^\mathcal{I} \in C^\mathcal{I} \), and it satisfies the role assertion \(R(a, b) \) if \((a^\mathcal{I}, b^\mathcal{I}) \in R^\mathcal{I} \).

An interpretation satisfies the ABox \(\mathcal{A} \) if it satisfies each assertion in \(\mathcal{A} \). In this case we say that \(\mathcal{I} \) is a model of the assertion or of the ABox. Finally, \(\mathcal{I} \) satisfies an assertion \(\alpha \) or an ABox \(\mathcal{A} \) with respect to a TBox \(\mathcal{T} \) if in addition to being a model of \(\alpha \) or of \(\mathcal{A} \), it is a model of \(\mathcal{T} \). Thus, a model of \(\mathcal{A} \) and \(\mathcal{T} \) is an abstraction of a concrete world where the concepts are interpreted as subsets of the domain as required by the TBox and where the membership of the individuals to concepts and their relationships with one another in terms of roles respect the assertions in the ABox.

\(^1\) We discuss implications of this difference in semantics in Section 2.2.4.4.
Basic Description Logics

2.2.3.2 Individual names in the description language

Sometimes, it is convenient to allow individual names (also called nominals) not only in the ABox, but also in the description language. Some concept constructors employing individuals occur in systems and have been investigated in the literature. The most basic one is the “set” (or one-of) constructor, written

\[\{a_1, \ldots, a_n\}, \]

where \(a_1, \ldots, a_n\) are individual names. As one would expect, such a set concept is interpreted as

\[\{a_1, \ldots, a_n\}^I = \{a_1^I, \ldots, a_n^I\}. \quad (2.8) \]

With sets in the description language one can for instance define the concept of permanent members of the UN security council as \{CHINA, FRANCE, RUSSIA, UK, USA\}.

In a language with the union constructor “\(\sqcup\)”, a constructor \(\{a\}\) for singleton sets alone adds sufficient expressiveness to describe arbitrary finite sets since, according to the semantics of the set constructor in Equation (2.8), the concepts \(\{a_1, \ldots, a_n\}\) and \(\{a_1\} \sqcup \cdots \sqcup \{a_n\}\) are equivalent.

Another constructor involving individual names is the “fills” constructor

\[R : a, \]

for a role \(R\). The semantics of this constructor is defined as

\[(R : a)^I = \{d \in \Delta^I \mid (d, a^I) \in R^I\}, \quad (2.9) \]

that is, \(R : a\) stands for the set of those objects that have \(a\) as a filler of the role \(R\). To a description language with singleton sets and full existential quantification, “fills” does not add anything new, since Equation (2.9) implies that \(R : a\) and \(\exists R.\{a\}\) are equivalent.

We note, finally, that “fills” allows one to express role assertions through concept assertions: an interpretation satisfies \(R(a, b)\) iff it satisfies \((\exists R.\{b\})(a)\).

2.2.4 Inferences

A knowledge representation system based on DLs is able to perform specific kinds of reasoning. As said before, the purpose of a knowledge representation system goes beyond storing concept definitions and assertions. A knowledge base—comprising TBox and ABox—has a semantics that makes it equivalent to a set of axioms in first-order predicate logic. Thus, like any other set of axioms, it contains implicit knowledge that can be made explicit through inferences. For example, from the TBox in Figure 2.2 and the ABox in Figure 2.4 one can conclude that Mary is a grandmother, although this knowledge is not explicitly stated as an assertion.
The different kinds of reasoning performed by a DL system (see Chapter 8) are defined as logical inferences. In the following, we shall discuss these inferences, first for concepts, then for TBoxes and ABoxes, and finally for TBoxes and ABoxes together. It will turn out that there is one main inference problem, namely the consistency check for ABoxes, to which all other inferences can be reduced.

2.2.4.1 Reasoning tasks for concepts

When a knowledge engineer models a domain, she constructs a terminology, say \(T \), by defining new concepts, possibly in terms of others that have been defined before. During this process, it is important to find out whether a newly defined concept makes sense or whether it is contradictory. From a logical point of view, a concept makes sense for us if there is some interpretation that satisfies the axioms of \(T \) (that is, a model of \(T \)) such that the concept denotes a nonempty set in that interpretation. A concept with this property is said to be satisfiable with respect to \(T \) and unsatisfiable otherwise.

Checking satisfiability of concepts is a key inference. As we shall see, a number of other important inferences for concepts can be reduced to the (un)satisfiability. For instance, in order to check whether a domain model is correct, or to optimize queries that are formulated as concepts, we may want to know whether some concept is more general than another one: this is the subsumption problem. A concept \(C \) is subsumed by a concept \(D \) with respect to \(T \) if in every model of \(T \) the set denoted by \(C \) is a subset of the set denoted by \(D \). Algorithms that check subsumption are also employed to organize the concepts of a TBox in a taxonomy according to their generality. Further interesting relationships between concepts are equivalence and disjointness.

These properties are formally defined as follows. Let \(T \) be a TBox.

Satisfiability: A concept \(C \) is satisfiable with respect to \(T \) if there exists a model \(I \) of \(T \) such that \(C^I \) is nonempty. In this case we say also that \(I \) is a model of \(C \).

Subsumption: A concept \(C \) is subsumed by a concept \(D \) with respect to \(T \) if \(C^I \subseteq D^I \) for every model \(I \) of \(T \). In this case we write \(C \sqsubseteq_T D \) or \(T \models C \sqsubseteq D \).

Equivalence: Two concepts \(C \) and \(D \) are equivalent with respect to \(T \) if \(C^I = D^I \) for every model \(I \) of \(T \). In this case we write \(C \equiv_T D \) or \(T \models C \equiv D \).

Disjointness: Two concepts \(C \) and \(D \) are disjoint with respect to \(T \) if \(C^I \cap D^I = \emptyset \) for every model \(I \) of \(T \).

If the TBox \(T \) is clear from the context, we sometimes drop the qualification “with respect to \(T \).”

We also drop the qualification in the special case where the TBox is empty, and
we simply write $\models C \subseteq D$ if C is subsumed by D, and $\models C \equiv D$ if C and D are equivalent.

Example 2.11 With respect to the TBox in Figure 2.2, Person subsumes Woman, both Woman and Parent subsume Mother, and Mother subsumes Grandmother. Moreover, Woman and Man, and Father and Mother are disjoint. The subsumption relationships follow from the definitions because of the semantics of “⊓” and “⊔”. That Man is disjoint from Woman is due to the fact that Man is subsumed by the negation of Woman.

Traditionally, the basic reasoning mechanism provided by DL systems checked the subsumption of concepts. This, in fact, is sufficient to implement also the other inferences, as can be seen by the following reductions.

Proposition 2.12 (Reduction to Subsumption) For concepts C, D we have

(i) C is unsatisfiable $\iff C$ is subsumed by \bot;
(ii) C and D are equivalent $\iff C$ is subsumed by D and D is subsumed by C;
(iii) C and D are disjoint $\iff C \sqcap D$ is subsumed by \bot.

The statements also hold with respect to a TBox.

All description languages implemented in actual DL systems provide the intersection operator “⊓” and almost all of them contain an unsatisfiable concept. Thus, most DL systems that can check subsumption can perform all four inferences defined above.

If, in addition to intersection, a system allows one also to form the negation of a description, one can reduce subsumption, equivalence, and disjointness of concepts to the satisfiability problem (see also Smolka [1988]).

Proposition 2.13 (Reduction to Unsatisfiability) For concepts C, D we have

(i) C is subsumed by D $\iff C \sqcap \neg D$ is unsatisfiable;
(ii) C and D are equivalent \iff both $(C \sqcap \neg D)$ and $(\neg C \sqcap D)$ are unsatisfiable;
(iii) C and D are disjoint $\iff C \sqcap D$ is unsatisfiable.

The statements also hold with respect to a TBox.

The reduction of subsumption can easily be understood if one recalls that, for sets M, N, we have $M \subseteq N$ iff $M \setminus N = \emptyset$. The reduction of equivalence is correct because C and D are equivalent if, and only if, C is subsumed by D and D is subsumed by C. Finally, the reduction of disjointness is just a rephrasing of the definition.
Because of the above proposition, in order to obtain decision procedures for any of the four inferences we have discussed, it is sufficient to develop algorithms that decide the satisfiability of concepts, provided the language for which we can decide satisfiability supports conjunction as well as negation of arbitrary concepts.

In fact, this observation motivated researchers to study description languages in which, for every concept, one can also form the negation of that concept [Smolka, 1988; Schmidt-Schauß and Smolka, 1991; Donini et al., 1991b; 1997a]. The approach to consider satisfiability checking as the principal inference gave rise to a new kind of algorithms for reasoning in DLs, which can be understood as specialized tableaux calculi (see Section 2.3 in this chapter and Chapter 3). Also, the most recent generation of DL systems, like KRIS [Baader and Hollunder, 1991b], CRACK [Bresciani et al., 1995], Fact [Horrocks, 1998b], DLP [Patel-Schneider, 1999], and RACE [Haarslev and Möller, 2001e], are based on satisfiability checking, and a considerable amount of research work is spent on the development of efficient implementation techniques for this approach [Baader et al., 1994; Horrocks, 1998b; Horrocks and Patel-Schneider, 1999; Haarslev and Möller, 2001c].

In an \cal{AL}-language without full negation, subsumption and equivalence cannot be reduced to unsatisfiability in the simple way shown in Proposition 2.13 and therefore these inferences may be of different complexity.

As seen in Proposition 2.12, from the viewpoint of worst-case complexity, subsumption is the most general inference for any \cal{AL}-language. The next proposition shows that unsatisfiability is a special case of each of the other problems.

Proposition 2.14 (Reducing Unsatisfiability) Let C be a concept. Then the following are equivalent:

(i) C is unsatisfiable;
(ii) C is subsumed by \bot;
(iii) C and \bot are equivalent;
(iv) C and \top are disjoint.

The statements also hold with respect to a TBox.

From Propositions 2.12 and 2.14 we see that, in order to obtain upper and lower complexity bounds for inferences on concepts in \cal{AL}-languages, it suffices to assess lower bounds for unsatisfiability and upper bounds for subsumption. More precisely, for each \cal{AL}-language, an upper bound for the complexity of the subsumption problem is also an upper bound for the complexity of the unsatisfiability, the equivalence, and the disjointness problem. Moreover, a lower bound for the complexity of the unsatisfiability problem is also a lower bound for the complexity of the subsumption, the equivalence, and the disjointness problem.
2.2.4.2 Eliminating the TBox

In applications, concepts usually come in the context of a TBox. However, for developing reasoning procedures it is conceptually easier to abstract from the TBox or, what amounts to the same, to assume that it is empty.

We show that, if T is an acyclic TBox, we can always reduce reasoning problems with respect to T to problems with respect to the empty TBox. As we have seen in Proposition 2.1, T is equivalent to its expansion T'. Recall that in the expansion every definition is of the form $A \equiv D$ such that D contains only base symbols, but no name symbols. Now, for each concept C we define the expansion of C with respect to T as the concept C' that is obtained from C by replacing each occurrence of a name symbol A in C by the concept D, where $A \equiv D$ is the definition of A in T', the expansion of T.

For example, we obtain the expansion of the concept

$$\text{Woman} \sqcap \text{Man}$$

with respect to the TBox in Figure 2.2 by considering the expanded TBox in Figure 2.3, and replacing Woman and Man with the right-hand sides of their definitions in this expansion. This results in the concept

$$\text{Person} \sqcap \text{Female} \sqcap \text{Person} \sqcap \neg (\text{Person} \sqcap \text{Female}).$$

We can readily deduce a number of facts about expansions. Since the expansion C' is obtained from C by replacing names with descriptions in such a way that both are interpreted in the same way in any model of T, it follows that

- $C \equiv_T C'$.

Hence, C is satisfiable w.r.t. T iff C' is satisfiable w.r.t. T. However, C' contains no defined names, and thus C' is satisfiable w.r.t. T iff it is satisfiable. This yields that

- C is satisfiable w.r.t. T iff C' is satisfiable.

If D is another concept, then we have also $D \equiv_T D'$. Thus, $C \sqsubseteq_T D$ iff $C' \sqsubseteq_T D'$, and $C \equiv_T D$ iff $C' \equiv_T D'$. Again, since C' and D' contain only base symbols, this implies

- $T \models C \sqsubseteq D$ iff $T \models C' \sqsubseteq D'$;
- $T \models C \equiv D$ iff $T \models C' \equiv D'$.

With similar arguments we can show that

- C and D are disjoint w.r.t. T iff C' and D' are disjoint.
Summing up, expanding concepts with respect to an acyclic TBox allows one to get rid of the TBox in reasoning problems. Going back to our example from above, this means that, in order to verify whether Man and Woman are disjoint with respect to the Family TBox, which amounts to checking whether $\text{Man} \cap \text{Woman}$ is unsatisfiable, it suffices to check that the concept (2.11) is unsatisfiable.

Expanding concepts may be computationally costly, since in the worst case the size of T' is exponential in the size of T, and therefore C' may be larger than C by a factor that is exponential in the size of T. A complexity analysis of the difficulty of reasoning with respect to TBoxes shows that the expansion of definitions is a source of complexity that cannot always be avoided (see Subsection 2.3.3 of this chapter and Chapter 3).

2.2.4.3 Reasoning tasks for ABoxes

After a knowledge engineer has designed a terminology and has used the reasoning services of her DL system to check that all concepts are satisfiable and that the the expected subsumption relationships hold, the ABox can be filled with assertions about individuals. We recall that an ABox contains two kinds of assertions, concept assertions of the form $C(a)$ and role assertions of the form $R(a, b)$. Of course, the representation of such knowledge has to be consistent, because otherwise—from the viewpoint of logic—one could draw arbitrary conclusions from it. If, for example, the ABox contains the assertions Mother(MARY) and Father(MARY), the system should be able to find out that, together with the Family TBox, these statements are inconsistent.

In terms of our model theoretic semantics we can easily give a formal definition of consistency. An ABox \mathcal{A} is consistent with respect to a TBox T, if there is an interpretation that is a model of both \mathcal{A} and T. We simply say that \mathcal{A} is consistent if it is consistent with respect to the empty TBox.

For example, the set of assertions $\{\text{Mother(MARY)}, \text{Father(MARY)}\}$ is consistent (with respect to the empty TBox), because without any further restrictions on the interpretation of Mother and Father, the two concepts can be interpreted in such a way that they have a common element. However, the assertions are not consistent with respect to the Family TBox, since in every model of it, Mother and Father are interpreted as disjoint sets.

Similarly as for concepts, checking the consistency of an ABox with respect to an acyclic TBox can be reduced to checking an expanded ABox. We define the expansion of \mathcal{A} with respect to T as the ABox $\mathcal{A'}$ that is obtained from \mathcal{A} by replacing each concept assertion $C(a)$ in \mathcal{A} with the assertion $C'(a)$, where C' is the expansion of C with respect to T.\footnote{We expand only concept assertions because the description language considered until now does not provide constructors for role descriptions and therefore we have not considered TBoxes with role definitions.} In every model of T, a concept C and its

...
expansion C' are interpreted in the same way. Therefore, A' is consistent w.r.t. T iff A is so. However, since A' does not contain a name symbol defined in T, it is consistent w.r.t. T iff it is consistent. We conclude:

- A is consistent w.r.t. T iff its expansion A' is consistent.

A technique to check the consistency of $ALCN$-ABoxes is discussed in Section 2.3.2.

Other inferences that we are going to introduce can also be defined with respect to a TBox or for an ABox alone. As in the case of consistency, reasoning tasks for ABoxes with respect to acyclic TBoxes can be reduced to reasoning on expanded ABoxes. For the sake of simplicity, we shall give only definitions of inferences with ABoxes alone, and leave it to the reader to formulate the appropriate generalization to inferences with respect to TBoxes and to verify that they can be reduced to inferences about expansions, provided the TBox is acyclic.

Over an ABox A, one can pose queries about the relationships between concepts, roles and individuals. The prototypical ABox inference on which such queries are based is the instance check, or the check whether an assertion is entailed by an ABox. We say that an assertion α is entailed by A and we write $A \models \alpha$, if every interpretation that satisfies A, that is, every model of A, also satisfies α. If α is a role assertion, the instance check is easy, since our description language does not contain constructors to form complex roles. If α is of the form $C(a)$, we can reduce the instance check to the consistency problem for ABoxes because there is the following connection:

- $A \models C(a)$ iff $A \cup \{\neg C(a)\}$ is inconsistent.

Also reasoning about concepts can be reduced to consistency checking. We have seen in Proposition 2.13 that the important reasoning problems for concepts can be reduced to the one to decide whether a concept is (un)satisfiable. Similarly, concept satisfiability can be reduced to ABox consistency because for every concept C we have

- C is satisfiable iff $\{C(a)\}$ is consistent,

where a is an arbitrarily chosen individual name. Conversely, Schaerf has shown that ABox consistency can be reduced to concept satisfiability in languages with the “set” and the “fills” constructor [Schaerf, 1994b]. If these constructors are not available, however, then instance checking may be harder than the satisfiability and the subsumption problem [Donini et al., 1994b].

For applications, usually more complex inferences than consistency and instance
checking are required. If we consider a knowledge base as a means to store information about individuals, we may want to know all individuals that are instances of a given concept description C, that is, we use the description language to formulate queries. In our example, we may want to know from the system all parents that have at least two children—for instance, because they are entitled to a specific family tax break. The retrieval problem is, given an ABox \mathcal{A} and a concept C, to find all individuals a such that $\mathcal{A} \models C(a)$. A non-optimized algorithm for a retrieval query can be realized by testing for each individual occurring in the ABox whether it is an instance of the query concept C.

The dual inference to retrieval is the realization problem: given an individual a and a set of concepts, find the most specific concepts C from the set such that $\mathcal{A} \models C(a)$. Here, the most specific concepts are those that are minimal with respect to the subsumption ordering \sqsubseteq. Realization can, for instance, be used in systems that generate natural language if terms are indexed by concepts and if a term as precise as possible is to be found for an object occurring in a discourse.

2.2.4.4 Closed- vs. open-world semantics

Often, an analogy is established between databases on the one hand and DL knowledge bases on the other hand (see also Chapter 16). The schema of a database is compared to the TBox and the instance with the actual data is compared to the ABox. However, the semantics of ABoxes differs from the usual semantics of database instances. While a database instance represents exactly one interpretation, namely the one where classes and relations in the schema are interpreted by the objects and tuples in the instance, an ABox represents many different interpretations, namely all its models. As a consequence, absence of information in a database instance is interpreted as negative information, while absence of information in an ABox only indicates lack of knowledge.

For example, if the only assertion about Peter is $\text{hasChild}(\text{PETER}, \text{HARRY})$, then in a database this is understood as a representation of the fact that Peter has only one child, Harry. In an ABox, the assertion only expresses that, in fact, Harry is a child of Peter. However, the ABox has several models, some in which Harry is the only child and others in which he has brothers or sisters. Consequently, even if one also knows (by an assertion) that Harry is male, one cannot deduce that all of Peter’s children are male. The only way of stating in an ABox that Harry is the only child is by doing so explicitly, that is by adding the assertion $(\leq 1 \text{hasChild})(\text{PETER})$. This means that, while the information in a database is always understood to be complete, the information in an ABox is in general viewed as being incomplete. The semantics of ABoxes is therefore sometimes characterized as an “open-world” semantics, while the traditional semantics of databases is characterized as a “closed-world” semantics.
Basic Description Logics

This view has consequences for the way queries are answered. Essentially, a query is a description of a class of objects. In our setting, we assume that queries are concept descriptions. A database (in the sense introduced above) is a listing of a single finite interpretation. A finite interpretation, say \(I \), could be written up as a set of assertions of the form \(A(a) \) and \(R(b, c) \), where \(A \) is an atomic concept and \(R \) an atomic role. Such a set looks syntactically like an ABox, but is not an ABox because of the difference in semantics. Answering a query, represented by a complex concept \(C \), over that database amounts to computing \(C^I \) as it was defined in Section 2.2.1. From a logical point of view this means that query evaluation in a database is not logical reasoning, but finite model checking (i.e., evaluation of a formula in a fixed finite model).

Since an ABox represents possibly infinitely many interpretations, namely its models, query answering is more complex: it requires nontrivial reasoning. Here we are only concerned with semantical issues (algorithmic aspects will be treated in Section 2.3). To illustrate the difference between a semantics that identifies a database with a single model, and the open-world semantics of ABoxes, we discuss the so-called Oedipus example, which has stimulated a number of theoretical developments in DL research.

Example 2.15 The example is based on the Oedipus story from ancient Greek mythology. In a nutshell, the story recounts how Oedipus killed his father, married his mother Iokaste, and had children with her, among them Palyneikes. Finally, also Palyneikes had children, among them Thersandros.

We suppose the ABox \(A_{oe} \) in Figure 2.5 represents some rudimentary facts about these events. For the sake of the example, our ABox asserts that Oedipus is a patricide and that Thersandros is not, which is represented using the atomic concept Patricide.

Suppose now that we want to know from the ABox whether Iokaste has a child that is a patricide and that itself has a child that is not a patricide. This can be expressed as the entailment problem

\[
A_{oe} \models (\exists \text{hasChild}.(\text{Patricide} \sqcap \exists \text{hasChild}.\neg \text{Patricide}))(\text{IOKASTE})
\]

One may be tempted to reason as follows. Iokaste has two children in the ABox.
One, Oedipus, is a patricide. He has one child, Polyneikes. But nothing tells us that Polyneikes is not a patricide. So, Oedipus is not the child we are looking for. The other child is Polyneikes, but again, nothing tells us that Polyneikes is a patricide. So, Polyneikes is also not the child we are looking for. Based on this reasoning, one would claim that the assertion about Iokaste is not entailed.

However, the correct reasoning is different. All the models of A_{oe} can be divided into two classes, one in which Polyneikes is a patricide, and another one in which he is not. In a model of the first kind, Polyneikes is the child of Iokaste that is a patricide and has a child, namely Thersandros, that isn’t. In a model of the second kind, Oedipus is the child of Iokaste that is a patricide and has a child, namely Polyneikes, that isn’t. Thus, in all models Iokaste has a child that is a patricide and that itself has a child that is not a patricide (though this is not always the same child). This means that the assertion $(\exists \text{hasChild} . (\text{Patricide} \cap \exists \text{hasChild} . \neg \text{Patricide})) (\text{IOKASTE})$ is indeed entailed by A_{oe}.

As this example shows, open-world reasoning may require to make case analyses. As will be explained in more detail in Chapter 3, this is one of the reasons why inferences in DLs are often more complex than query answering in databases.

2.2.5 Rules

The knowledge bases we have discussed so far consist of a TBox T and an ABox A. We denote such a knowledge base as a pair $K = (T, A)$.

In some DL systems, such as CLASSIC [Brachman et al., 1991] or LOOM [MacGregor, 1991a], in addition to terminologies and world descriptions, one can also use rules to express knowledge. The simplest variant of such rules are expressions of the form

$$C \Rightarrow D,$$

where C, D are concepts. The meaning of such a rule is “if an individual is proved to be an instance of C, then derive that it is also an instance of $D.”$ Such rules are often called trigger rules.

Operationally, the semantics of a finite set R of trigger rules can be described by a forward reasoning process. Starting with an initial knowledge base K, a series of knowledge bases $K^{(0)}, K^{(1)}, \ldots$ is constructed, where $K^{(0)} = K$ and $K^{(i+1)}$ is obtained from $K^{(i)}$ by adding a new assertion $D(a)$ whenever R contains a rule $C \Rightarrow D$ such that $K^{(i)} \models C(a)$ holds, but $K^{(i)}$ does not contain $D(a)$. This process eventually halts because the initial knowledge base contains only finitely many individuals and there are only finitely many rules. Hence, there are only finitely many assertions $D(a)$ that can possibly be added. The result of the rule applica-
tions is a knowledge base $\mathcal{K}^{(n)}$ that has the same TBox as $\mathcal{K}^{(0)}$ and whose ABox is augmented by the membership assertions introduced by the rules. We call this final knowledge base the *procedural extension* of \mathcal{K} and denote it as \mathcal{K}. It is easy to see that this procedural extension is independent of the order of rule applications. Consequently, a set of trigger rules \mathcal{R} uniquely specifies how to generate, for each knowledge base \mathcal{K}, an extended knowledge base \mathcal{K}. The semantics of a knowledge base \mathcal{K}, augmented by a set of trigger rules, can thus be understood as the set of models of \mathcal{K}.

This defines the semantics of trigger rules only operationally. It would be preferable to specify the semantics declaratively and then to prove that the extension computed with the trigger rules correctly represents this semantics. It might be tempting to use the declarative semantics of inclusion axioms as semantics for rules. However, this does not correctly reflect the operational semantics given above. An important difference between the trigger rule $C \Rightarrow D$ and the inclusion axiom $C \sqsubseteq D$ is that the trigger rule is not equivalent to its contrapositive $\neg D \Rightarrow \neg C$. In addition, when applying trigger rules one does not make a case analysis. For example, the inclusions $C \sqsubseteq D$ and $\neg C \sqsubseteq D$ imply that every object belongs to D, whereas none of the trigger rules $C \Rightarrow D$ and $\neg C \Rightarrow D$ applies to an individual a for which neither $C(a)$ nor $\neg C(a)$ can be proven.

In order to capture the meaning of trigger rules in a declarative way, we must augment description logics by an operator \mathbf{K}, which does not refer to objects in the domain, but to what the knowledge base knows about the domain. Therefore, \mathbf{K} is an *epistemic operator*. More information on epistemic operators in DLs can be found in Chapter 6.

To introduce the \mathbf{K}-operator, we enrich both the syntax and the semantics of description languages. Originally, the \mathbf{K}-operator has been defined for \mathcal{ALC} [Donini et al., 1992b; 1998a]. In this subsection, we discuss only how to extend the basic language \mathcal{AL}. For other languages, one can proceed analogously (see also Chapter 6).

First, we add one case to the syntax rule in Section 2.2.1.1 that allows us to construct epistemic concepts:

$$
C, D \rightarrow \mathbf{K}C \quad \text{(epistemic concept)}.
$$

Intuitively, the concept $\mathbf{K}C$ denotes those objects for which the knowledge base knows that they are instances of C.

Next, using \mathbf{K}, we translate trigger rules $C \Rightarrow D$ into inclusion axioms

$$
\mathbf{K}C \sqsubseteq D. \quad (2.12)
$$

Intuitively, the \mathbf{K} operator in front of the concept C has the effect that the axiom is only applicable to individuals that appear in the ABox and for which ABox and
TBox imply that they are instances of C. Such a restricted applicability prevents the inclusion axiom from influencing satisfiability or subsumption relationships between concepts. In the sequel, we will define a formal semantics for the operator K that has exactly this effect.

A rule knowledge base is a triple $\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$, where \mathcal{T} is a TBox, \mathcal{A} is an ABox, and \mathcal{R} is a set of rules written as inclusion axioms of the form (2.12). The procedural extension of such a triple is the knowledge base $\bar{\mathcal{K}} = (\bar{\mathcal{T}}, \bar{\mathcal{A}})$ that is obtained from $(\mathcal{T}, \mathcal{A})$ by applying the trigger rules as described above.

The semantics of epistemic inclusions will be defined in such a way that it applies only to individuals in the knowledge base that provably are instances of C, but not to arbitrary domain elements, which would be the case if we dropped K. The semantics will go beyond first-order logic because we not only have to interpret concepts, roles and individuals, but also have to model the knowledge of a knowledge base. The fact that a knowledge base has knowledge about the domain can be understood in such a way that it considers only a subset \mathcal{W} of the set of all interpretations as possible states of the world. Those individuals that are interpreted as elements of C under all interpretations in \mathcal{W} are then “known” to be in C.

To make this formal, we modify the definition of ordinary (first-order) interpretations by assuming that:

1. there is a fixed countably infinite set Δ that is the domain of every interpretation (Common Domain Assumption);
2. there is a mapping γ from the individuals to the domain elements that fixes the way individuals are interpreted (Rigid Term Assumption).

The Common Domain Assumption guarantees that all interpretations speak about the same domain. The Rigid Term Assumption allows us to identify each individual symbols with exactly one domain element. These assumptions do not essentially reduce the number of possible interpretations. As a consequence, properties like satisfiability and subsumption of concepts are the same independently of whether we define them with respect to arbitrary interpretations or those that satisfy the above assumptions.

Now, we define an epistemic interpretation as a pair $(\mathcal{I}, \mathcal{W})$, where \mathcal{I} is a first-order interpretation and \mathcal{W} is a set of first-order interpretations, all satisfying the above assumptions. Every epistemic interpretation gives rise to a unique mapping $\mathcal{I}^\mathcal{W}$ associating concepts and roles with subsets of Δ and $\Delta \times \Delta$, respectively. For \top, \bot, for atomic concepts, negated atomic concepts, and for atomic roles, $\mathcal{I}^\mathcal{W}$ agrees with \mathcal{I}. For intersections, value restrictions, and existential quantifications, the definition is similar to the one of \mathcal{I}:

$$(C \cap D)^{\mathcal{I}, \mathcal{W}} = C^{\mathcal{I}, \mathcal{W}} \cap D^{\mathcal{I}, \mathcal{W}}$$
Basic Description Logics

\[(\forall R.C)^I_W = \{a \in \Delta \mid \forall b. (a, b) \in R^I_W \rightarrow b \in C^I_W\}\]

\[(\exists R.\top)^I_W = \{a \in \Delta \mid \exists b. (a, b) \in R^I_W\}\].

For other constructors, \(I_W\) can be defined analogously. Note that for a concept \(C\) without an occurrence of \(K\), the sets \(C^I_W\) and \(C^I\) are identical. The set of interpretations \(W\) comes into play when we define the semantics of the epistemic operator:

\[(KC)^I_W = \bigcap_{\mathcal{I} \in W} C^I_W.\]

It would also be possible to allow the operator \(K\) to occur in front of roles and to define the semantics of role expressions of the form \(KR\) analogously. However, since epistemic roles are not needed to explain the semantics of rules, we restrict ourselves to epistemic concepts.

An epistemic interpretation \((I, W)\) satisfies an inclusion \(C \subseteq D\) if \(C^I_W \subseteq D^I_W\), and an equality \(C \equiv D\) if \(C^I_W = D^I_W\). It satisfies an assertion \(C(a)\) if \(a^I_W = \gamma(a) \in C^I_W\), and an assertion \(R(a, b)\) if \((a^I_W, b^I_W) = (\gamma(a), \gamma(b)) \in R^I_W\). It satisfies a rule knowledge base \(K = (T, A, \mathcal{R})\) if it satisfies every axiom in \(T\), every assertion in \(A\), and every rule in \(\mathcal{R}\).

An epistemic model for a rule knowledge base \(K\) is a maximal nonempty set \(W\) of first-order interpretations such that, for each \(I \in W\), the epistemic interpretation \((I, W)\) satisfies \(K\).

Note that, if \((T, A)\) is first-order satisfiable, then the set of all first-order models of \((T, A)\) is the only epistemic model of the rule knowledge base \(K = (T, A, \emptyset)\), whose rule set is empty. A similar statement holds for arbitrary rule knowledge bases. One can show that, if \(W_1\) and \(W_2\) are epistemic models, then the union \(W_1 \cup W_2\) is one, too, which implies \(W_1 = W_2\) because of the maximality of epistemic models.

Proposition 2.16 Let \(K = (T, A, \mathcal{R})\) be a rule knowledge base such that \((T, A)\) is first-order satisfiable. Then \(K\) has a unique epistemic model.

Example 2.17 Let \(\mathcal{R}\) consist of the rule

\[\text{KStudent} \sqsubseteq \forall \text{eats.JunkFood}. \quad (2.13)\]

The rule states that “those individuals that are known to be students eat only junk food”.

We consider the rule knowledge base \(K_1 = (\emptyset, A_1, \mathcal{R})\), where

\[A_1 = \{\text{Student(PETER)}\}.

Let us determine the epistemic model \(W\) of \(K_1\). Every first-order interpretation \(I \in W\) must satisfy \(A_1\). Therefore, in every such \(I\), we have that \text{Student(PETER)}
is true, and thus Peter is known to be a student. Since \mathcal{W} satisfies Rule (2.13), also the assertion \foralleats.JunkFood(PETER) holds in every \mathcal{I}.

For any other domain element $a \in \Delta$, there is at least one interpretation in \mathcal{W} where a is not a student. Thus, Peter is the only domain element to which the rule applies. Summing up, the epistemic model of \mathcal{K}_1 consists exactly of the first order models of $\mathcal{A}_1 \cup \{\forall$eats.JunkFood(PETER)\}.

Next we demonstrate with this example that the epistemic semantics for rules disallows for contrapositive reasoning. We consider the rule knowledge base $\mathcal{K}_2 = (\emptyset, \mathcal{A}_2, \mathcal{R})$, where

$$\mathcal{A}_2 = \{\neg\forall$eats.JunkFood(PETER)\}.$$

In this case, $\neg\forall$eats.JunkFood(PETER) is true in every first-order interpretation of the epistemic model \mathcal{W}. However, because of the maximality of \mathcal{W}, there is at least one interpretation in \mathcal{W} in which Peter is a student and another one where Peter is not a student. Therefore, Peter is not known to be a student. Thus, the epistemic model of \mathcal{K}_2 consists exactly of the first order models of \mathcal{A}_2. The rule is satisfied because the antecedent is false.

Clearly, the procedural extension of a rule knowledge base \mathcal{K} contains only assertions that must be satisfied by the epistemic model of \mathcal{K}. It can be shown that the assertions added to \mathcal{K} by the rule applications are in fact, as stated in the following proposition, a first-order representation of the information that is implicit in the rules (see [Donini et al., 1998a] for a proof).

Proposition 2.18 Let $\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$ be a rule knowledge base. If $(\mathcal{T}, \mathcal{A})$ is first-order satisfiable, then the epistemic model of \mathcal{K} consists precisely of the first-order models of the procedural extension $\hat{\mathcal{K}} = (\mathcal{T}, \hat{\mathcal{A}})$.

2.3 Reasoning algorithms

In Section 2.2.4 we have seen that all the relevant inference problems can be reduced to the consistency problem for ABoxes, provided that the DL at hand allows for conjunction and negation. However, the description languages of all the early and also of some of the present day DL systems do not allow for negation. For such DLs, subsumption of concepts can usually be computed by so-called **structural subsumption algorithms**, i.e., algorithms that compare the syntactic structure of (possibly normalized) concept descriptions. In the first subsection, we will consider such algorithms in more detail. While they are usually very efficient, they are only complete for rather simple languages with little expressivity. In particular, DLs with (full) negation and disjunction cannot be handled by structural subsumption
Basic Description Logics

algorithms. For such languages, so-called *tableau-based algorithms* have turned out to be very useful. In the area of Description Logics, the first tableau-based algorithm was presented by Schmidt-Schauß and Smolka [1991] for satisfiability of \mathcal{ALC}-concepts. Since then, this approach has been employed to obtain sound and complete satisfiability (and thus also subsumption) algorithms for a great variety of DLs extending \mathcal{ALC} (see, e.g., [Hollunder et al., 1990; Hollunder and Baader, 1991a; Donini et al., 1997a; Baader and Sattler, 1999] for languages with number restrictions; [Baader, 1991] for transitive closure of roles and [Sattler, 1996; Horrocks and Sattler, 1999] for transitive roles; and [Baader and Hanschke, 1991a; Hanschke, 1992; Haarslev et al., 1999] for constructors that allow to refer to concrete domains such as numbers). In addition, it has been extended to the consistency problem for ABoxes [Hollunder, 1990; Baader and Hollunder, 1991b; Donini et al., 1994b; Haarslev and Möller, 2000], and to TBoxes allowing for general sets of inclusion axioms and more [Buchheit et al., 1993a; Baader et al., 1996].

In the second subsection, we will first present a tableau-based satisfiability algorithm for \mathcal{ALCN}-concepts, then show how it can be extended to an algorithm for the consistency problem for ABoxes, and finally explain how general inclusion axioms can be taken into account. The third subsection is concerned with reasoning w.r.t. acyclic and cyclic terminologies.

Instead of designing new algorithms for reasoning in DLs, one can also try to reduce the problem to a known inference problem in logics (see also Chapter 4). For example, decidability of the inference problems for \mathcal{ALC} and many other DLs can be obtained as a consequence of the known decidability result for the two variable fragment of first-order predicate logic. The language \mathcal{L}^2 consists of all formulae of first-order predicate logic that can be built with the help of predicate symbols (including equality) and constant symbols (but without function symbols) using only the variables x, y. Decidability of \mathcal{L}^2 has been shown in [Mortimer, 1975]. It is easy to see that, by appropriately re-using variable names, any concept description of the language \mathcal{ALC} can be translated into an \mathcal{L}^2-formula with one free variable (see [Borgida, 1996] for details). A direct translation of the concept description $\forall R.(\exists R.A)$ yields the formula $\forall y.(R(x, y) \rightarrow (\exists z.(R(y, z) \land A(z))))$. Since the subformula $\exists z.(R(y, z) \land A(z))$ does not contain x, this variable can be re-used: renaming the bound variable z into x yields the equivalent formula $\forall y.(R(x, y) \rightarrow (\exists x.(R(y, x) \land A(x))))$, which uses only two variables. This connection between \mathcal{ALC} and \mathcal{L}^2 shows that any extension of \mathcal{ALC} by constructors that can be expressed with the help of only two variables yields a decidable DL. Number restrictions and composition of roles are examples of constructors that cannot be expressed within \mathcal{L}^2. Number restrictions can, however, be expressed in \mathcal{C}^2, the extension of \mathcal{L}^2 by counting quantifiers, which has recently been shown to be decidable [Grädel et al., 1997b; Pacholski et al., 1997]. It should be noted, however, that the complexity of the de-
cision procedures obtained this way is usually higher than necessary: for example, the satisfiability problem for \mathcal{L}^2 is NExpTime-complete, whereas satisfiability of \mathcal{ALC}-concept descriptions is “only” PSPACE-complete.

Decision procedures with lower complexity can be obtained by using the connection between DLs and propositional modal logics. Schild [1991] was the first to observe that the language \mathcal{ALC} is a syntactic variant of the propositional multimodal logic \mathbf{K}, and that the extension of \mathcal{ALC} by transitive closure of roles [Baader, 1991] corresponds to Propositional Dynamic Logic (PDL). In particular, some of the algorithms used in propositional modal logics for deciding satisfiability are very similar to the tableau-based algorithms newly developed for DLs. This connection between DLs and modal logics has been used to transfer decidability results from modal logics to DLs [Schild, 1993; 1994; De Giacomo and Lenzerini, 1994a; 1994b] (see also Chapter 5). Instead of using tableau-based algorithms, decidability of certain propositional modal logics (and thus of the corresponding DLs), can also be shown by establishing the finite model property (see, e.g., [Fitting, 1993], Section 1.14) of the logic (i.e., showing that a formula/concept is satisfiable iff it is satisfiable in a finite interpretation) or by employing tree automata (see, e.g., [Vardi and Wolper, 1986]).

2.3.1 Structural subsumption algorithms

These algorithms usually proceed in two phases. First, the descriptions to be tested for subsumption are normalized, and then the syntactic structure of the normal forms is compared. For simplicity, we first explain the ideas underlying this approach for the small language \mathcal{FL}_0, which allows for conjunction ($C \sqcap D$) and value restrictions ($\forall R.C$). Subsequently, we show how the bottom concept (\bot), atomic negation ($\neg A$), and number restrictions ($\leq n R$ and $\geq n R$) can be handled. Evidently, \mathcal{FL}_0 and its extension by bottom and atomic negation are sublanguages of \mathcal{AL}, while adding number restrictions to the resulting language yields the DL \mathcal{ALN}.

An \mathcal{FL}_0-concept description is in normal form iff it is of the form

$$ A_1 \sqcap \cdots \sqcap A_m \sqcap \forall R_1.C_1 \sqcap \cdots \sqcap \forall R_n.C_n, $$

where A_1, \ldots, A_m are distinct concept names, R_1, \ldots, R_n are distinct role names, and C_1, \ldots, C_n are \mathcal{FL}_0-concept descriptions in normal form. It is easy to see that any description can be transformed into an equivalent one in normal form, using associativity, commutativity and idempotence of \sqcap, and the fact that the descriptions $\forall R.(C \sqcap D)$ and $(\forall R.C) \sqcap (\forall R.D)$ are equivalent.

Proposition 2.19 Let

$$ A_1 \sqcap \cdots \sqcap A_m \sqcap \forall R_1.C_1 \sqcap \cdots \sqcap \forall R_n.C_n, $$
be the normal form of the FL_0-concept description C, and

$$B_1 \sqcap \cdots \sqcap B_k \sqcap \forall S_1.D_1 \sqcap \cdots \sqcap \forall S_l.D_l,$$

the normal form of the FL_0-concept description D. Then $C \sqsubseteq D$ iff the following two conditions hold:

(i) for all $i, 1 \leq i \leq k$, there exists $j, 1 \leq j \leq m$ such that $B_i = A_j$.

(ii) For all $i, 1 \leq i \leq l$, there exists $j, 1 \leq j \leq n$ such that $S_i = R_j$ and $C_j \sqsubseteq D_i$.

It is easy to see that this characterization of subsumption is sound (i.e., the “if” direction of the proposition holds) and complete (i.e., the “only-if” direction of the proposition holds as well). This characterization yields an obvious recursive algorithm for computing subsumption, which can easily be shown to be of polynomial time complexity [Levesque and Brachman, 1987].

If we extend FL_0 by language constructors that can express unsatisfiable concepts, then we must, on the one hand, change the definition of the normal form. On the other hand, the structural comparison of the normal forms must take into account that an unsatisfiable concept is subsumed by every concept. The simplest DL where this occurs is FL_\bot, the extension of FL_0 by the bottom concept \bot.

An FL_\bot-concept description is in normal form iff it is \bot or of the form

$$A_1 \sqcap \cdots \sqcap A_m \sqcap \forall R_1.C_1 \sqcap \cdots \sqcap \forall R_n.C_n,$$

where A_1, \ldots, A_m are distinct concept names different from \bot, R_1, \ldots, R_n are distinct role names, and C_1, \ldots, C_n are FL_\bot-concept descriptions in normal form. Again, such a normal form can easily be computed. In principle, one just computes the FL_0-normal form of the description (where \bot is treated as an ordinary concept name): $B_1 \sqcap \cdots \sqcap B_k \sqcap \forall R_1.D_1 \sqcap \cdots \sqcap \forall R_n.D_n$. If one of the B_is is \bot, then replace the whole description by \bot. Otherwise, apply the same procedure recursively to the D_js. For example, the FL_0-normal form of $\forall R.\forall R.B \sqcap A \sqcap \forall R.(A \sqcap \forall R.\bot)$ is

$$A \sqcap \forall R.(A \sqcap \forall R.(B \sqcap \bot)),$$

which yields the FL_\bot-normal form

$$A \sqcap \forall R.(A \sqcap \forall R.\bot).$$

The structural subsumption algorithm for FL_\bot works just like the one for FL_0, with the only difference that \bot is subsumed by any description. For example, $\forall R.\forall R.B \sqcap A \sqcap \forall R.(A \sqcap \forall R.\bot) \sqsubseteq \forall R.\forall R.A \sqcap A \sqcap \forall R.A$ since the recursive comparison of their FL_\bot-normal forms $A \sqcap \forall R.(A \sqcap \forall R.\bot)$ and $A \sqcap \forall R.(A \sqcap \forall R.A)$ finally leads to the comparison of \bot and A.

The extension of FL_\bot by atomic negation (i.e., negation applied to concept names only) can be treated similarly. During the computation of the normal form, negated
concept names are just treated like concept names. If, however, a name and its negation occur on the same level of the normal form, then \(\bot \) is added, which can then be treated as described above. For example, \(\forall R. \neg A \sqcap \forall R.(A \sqcap \forall R.B) \) is first transformed into \(A \sqcap \forall R.(A \sqcap \neg A \sqcap \forall R.B) \), then into \(A \sqcap \forall R.(\bot \sqcap A \sqcap \neg A \sqcap \forall R.B) \), and finally into \(A \sqcap \forall R.\bot \). The structural comparison of the normal forms treats negated concept names just like concept names.

Finally, if we consider the language \(\mathcal{ALN} \), the additional presence of number restrictions leads to a new type of conflict. On the one hand, as in the case of atomic negation, number restrictions may be conflicting with each other (e.g., \(\geq 2 R \) and \(\leq 1 R \)). On the other hand, at-least restrictions \(\geq n R \) for \(n \geq 1 \) are in conflict with value restrictions \(\forall R.\bot \) that prohibit role successors. When computing the normal form, one can again treat number restrictions like concept names, and then take care of the new types of conflicts by introducing \(\bot \) and using it for normalization as described above. During the structural comparison of normal forms, one must also take into account inherent subsumption relationships between number restrictions (e.g., \(\geq n R \sqsubseteq \geq m R \) iff \(n \geq m \)). A more detailed description of a structural subsumption algorithm working on a graph-like data structure for a language extending \(\mathcal{ALN} \) can be found in [Borgida and Patel-Schneider, 1994].

For larger DLs, structural subsumption algorithms usually fail to be complete. In particular, they cannot treat disjunction, full negation, and full existential restriction \(\exists R.C \). For languages including these constructors, the tableau-approach to designing subsumption algorithms has turned out to be quite useful.

2.3.2 Tableau algorithms

Instead of directly testing subsumption of concept descriptions, these algorithms use negation to reduce subsumption to (un)satisfiability of concept descriptions: as we have seen in Subsection 2.2.4, \(C \sqsubseteq D \) iff \(C \sqcap \neg D \) is unsatisfiable.

Before describing a tableau-based satisfiability algorithm for \(\mathcal{ALCN} \) in more detail, we illustrate the underlying ideas by two simple examples. Let \(A, B \) be concept names, and let \(R \) be a role name.

As a first example, assume that we want to know whether \((\exists R.A) \sqcap (\exists R.B) \) is subsumed by \(\exists R.(A \sqcap B) \). This means that we must check whether the concept description

\[
C = (\exists R.A) \sqcap (\exists R.B) \sqcap \neg (\exists R.(A \sqcap B))
\]

is unsatisfiable.

First, we push all negation signs as far as possible into the description, using de Morgan's rules and the usual rules for quantifiers. As a result, we obtain the
Basic Description Logics

Basic Description Logics

description

\[C_0 = (\exists R.A) \cap (\exists R.B) \cap \forall R.(-A \sqcup -B), \]

which is in negation normal form, i.e., negation occurs only in front of concept names.

Then, we try to construct a finite interpretation \(I \) such that \(C_0^I \neq \emptyset \). This means that there must exist an individual in \(\Delta^I \) that is an element of \(C_0^I \).

The algorithm just generates such an individual, say \(b \), and imposes the constraint \(b \in C_0^I \) on it. Since \(C_0 \) is the conjunction of three concept descriptions, this means that \(b \) must satisfy the following three constraints: \(b \in (\exists R.A)^I \), \(b \in (\exists R.B)^I \), and \(b \in (\forall R.(-A \sqcup -B))^I \).

From \(b \in (\exists R.A)^I \) we can deduce that there must exist an individual \(c \) such that \((b, c) \in R^I \) and \(c \in A^I \). Analogously, \(b \in (\exists R.B)^I \) implies the existence of an individual \(d \) with \((b, d) \in R^I \) and \(d \in B^I \). In this situation, one should not assume that \(c = d \) since this would possibly impose too many constraints on the individuals newly introduced to satisfy the existential restrictions on \(b \). Thus:

- For any existential restriction the algorithm introduces a new individual as role filler, and this individual must satisfy the constraints expressed by the restriction.

Since \(b \) must also satisfy the value restriction \(\forall R.(-A \sqcup -B) \), and \(c, d \) were introduced as \(R \)-fillers of \(b \), we obtain the additional constraints \(c \in (\neg A \sqcup \neg B)^I \) and \(d \in (\neg A \sqcup \neg B)^I \). Thus:

- The algorithm uses value restrictions in interaction with already defined role relationships to impose new constraints on individuals.

Now \(c \in (\neg A \sqcup \neg B)^I \) means that \(c \in (\neg A)^I \) or \(c \in (\neg B)^I \), and we must choose one of these possibilities. If we assume \(c \in (\neg A)^I \), this clashes with the other constraint \(c \in A^I \), which means that this search path leads to an obvious contradiction. Thus we must choose \(c \in (\neg B)^I \). Analogously, we must choose \(d \in (\neg A)^I \) in order to satisfy the constraint \(d \in (\neg A \sqcup \neg B)^I \) without creating a contradiction to \(d \in B^I \). Thus:

- For disjunctive constraints, the algorithm tries both possibilities in successive attempts. It must backtrack if it reaches an obvious contradiction, i.e., if the same individual must satisfy constraints that are obviously conflicting.

In the example, we have now satisfied all the constraints without encountering an obvious contradiction. This shows that \(C_0 \) is satisfiable, and thus \((\exists R.A) \cap (\exists R.B) \) is not subsumed by \(\exists R.(A \sqcap B) \). The algorithm has generated an interpretation \(I \) as witness for this fact: \(\Delta^I = \{b, c, d\}; R^I = \{(b, c), (b, d)\}; A^I = \{c\} \) and \(B^I = \{d\} \).
For this interpretation, $b \in C^I_0$. This means that $b \in ((\exists R.A) \cap (\exists R.B))^I$, but $b \not\in (\exists R.(A \cap B))^I$.

In our second example, we add a number restriction to the first concept of the above example, i.e., we now want to know whether $(\exists R.A) \cap (\exists R.B) \sqsubseteq 1 R$ is subsumed by $\exists R.(A \cap B)$. Intuitively, the answer should now be “yes” since $\leq 1 R$ in the first concept ensures that the R-filler in A coincides with the R-filler in B, and thus there is an R-filler in $A \cap B$. The tableau-based satisfiability algorithm first proceeds as above, with the only difference that there is the additional constraint $b \in (\leq 1 R)^I$. In order to satisfy this constraint, the two R-fillers c, d of b must be identified with each other. Thus:

- If an at-most number restriction is violated then the algorithm must identify different role fillers.

In the example, the individual $c = d$ must belong to both A^I and B^I, which together with $c = d \in (\neg A \sqcup \neg B)^I$ always leads to a clash. Thus, the search for a counterexample to the subsumption relationship fails, and the algorithm concludes that $(\exists R.A) \cap (\exists R.B) \sqsubseteq 1 R \sqsubseteq \exists R.(A \cap B)$.

2.3.2.1 A tableau-based satisfiability algorithm for \mathcal{ALCN}

Before we can describe the algorithm more formally, we need to introduce an appropriate data structure in which to represent constraints like “a belongs to (the interpretation of) C” and “b is an R-filler of a.” The original paper by Schmidt-Schauß and Smolka [1991], and also many other papers on tableau algorithms for DLs, introduce the new notion of a constraint system for this purpose. However, if we look at the types of constraints that must be expressed, we see that they can actually be represented by ABox assertions. As we have seen in the second example above, the presence of at-most number restrictions may lead to the identification of different individual names. For this reason, we will not impose the unique name assumption (UNA) on the ABoxes considered by the algorithm. Instead, we allow for explicit inequality assertions of the form $x \not= y$ for individual names x, y, with the obvious semantics that an interpretation I satisfies $x \not= y$ iff $x^I \not= y^I$. These assertions are assumed to be symmetric, i.e., saying that $x \not= y$ belongs to an ABox A is the same as saying that $y \not= x$ belongs to A.

Let C_0 by an \mathcal{ALCN}-concept in negation normal form. In order to test satisfiability of C_0, the algorithm starts with the ABox $A_0 = \{C_0(x_0)\}$, and applies consistency preserving transformation rules (see Figure 2.6) to the ABox until no more rules apply. If the “complete” ABox obtained this way does not contain an obvious contradiction (called clash), then A_0 is consistent (and thus C_0 is satisfiable), and inconsistent (unsatisfiable) otherwise. The transformation rules that handle disjunction and at-most restrictions are non-deterministic in the sense that a given
The \(\rightarrow \cap \)-rule

Condition: \(\mathcal{A} \) contains \((C_1 \cap C_2)(x) \), but it does not contain both \(C_1(x) \) and \(C_2(x) \).

Action: \(\mathcal{A}' = \mathcal{A} \cup \{C_1(x), C_2(x)\} \).

The \(\rightarrow \cup \)-rule

Condition: \(\mathcal{A} \) contains \((C_1 \cup C_2)(x) \), but neither \(C_1(x) \) nor \(C_2(x) \).

Action: \(\mathcal{A}' = \mathcal{A} \cup \{C_1(x)\}, \mathcal{A}'' = \mathcal{A} \cup \{C_2(x)\} \).

The \(\rightarrow \exists \)-rule

Condition: \(\mathcal{A} \) contains \((\exists R.C)(x) \), but there is no individual name \(z \) such that \(C(z) \) and \(R(x, z) \) are in \(\mathcal{A} \).

Action: \(\mathcal{A}' = \mathcal{A} \cup \{C(y), R(x, y)\} \) where \(y \) is an individual name not occurring in \(\mathcal{A} \).

The \(\rightarrow \forall \)-rule

Condition: \(\mathcal{A} \) contains \((\forall R.C)(x) \) and \(R(x, y) \), but it does not contain \(C(y) \).

Action: \(\mathcal{A}' = \mathcal{A} \cup \{C(y)\} \).

The \(\rightarrow \geq \)-rule

Condition: \(\mathcal{A} \) contains \((\geq n R)(x) \), and there are no individual names \(z_1, \ldots, z_n \) such that \(R(x, z_i) (1 \leq i \leq n) \) and \(z_i \neq z_j (1 \leq i < j \leq n) \) are contained in \(\mathcal{A} \).

Action: \(\mathcal{A}' = \mathcal{A} \cup \{R(x, y) \mid 1 \leq i \leq n\} \cup \{y_i \neq y_j \mid 1 \leq i < j \leq n\} \), where \(y_1, \ldots, y_n \) are distinct individual names not occurring in \(\mathcal{A} \).

The \(\rightarrow \leq \)-rule

Condition: \(\mathcal{A} \) contains distinct individual names \(y_1, \ldots, y_{n+1} \) such that \((\leq n R)(x) \) and \(R(x, y_1), \ldots, R(x, y_{n+1}) \) are in \(\mathcal{A} \), and \(y_i \neq y_j \) is not in \(\mathcal{A} \) for some \(i \neq j \).

Action: For each pair \(y_i, y_j \) such that \(i > j \) and \(y_i \neq y_j \) is not in \(\mathcal{A} \), the ABox \(\mathcal{A}_{i,j} = [y_i/y_j] \mathcal{A} \) is obtained from \(\mathcal{A} \) by replacing each occurrence of \(y_i \) by \(y_j \).

Fig. 2.6. Transformation rules of the satisfiability algorithm.

ABox is transformed into finitely many new ABoxes such that the original ABox is consistent iff one of the new ABoxes is so. For this reason we will consider finite sets of ABoxes \(S = \{\mathcal{A}_1, \ldots, \mathcal{A}_k\} \) instead of single ABoxes. Such a set is consistent iff there is some \(i, 1 \leq i \leq k \), such that \(\mathcal{A}_i \) is consistent. A rule of Figure 2.6 is applied to a given finite set of ABoxes \(S \) as follows: it takes an element \(\mathcal{A} \) of \(S \), and replaces it by one ABox \(\mathcal{A}' \), by two ABoxes \(\mathcal{A}' \) and \(\mathcal{A}'' \), or by finitely many ABoxes \(\mathcal{A}_{i,j} \).

The following lemma is an easy consequence of the definition of the transformation rules:

Lemma 2.20 (Soundness) Assume that \(S' \) is obtained from the finite set of ABoxes \(S \) by application of a transformation rule. Then \(S \) is consistent iff \(S' \) is consistent.

The second important property of the set of transformation rules is that the transformation process always terminates:
Lemma 2.21 (Termination) Let \(C_0 \) be an \(\mathcal{ALCN} \)-concept description in negation normal form. There cannot be an infinite sequence of rule applications

\[
\{\{C_0(x_0)\}\} \rightarrow S_1 \rightarrow S_2 \rightarrow \cdots
\]

The main reasons for this lemma to hold are the following.\(^1\)

Lemma 2.22 Let \(A \) be an ABox contained in \(S_i \) for some \(i \geq 1 \).

- For every individual \(x \neq x_0 \) occurring in \(A \), there is a unique sequence \(R_1, \ldots, R_\ell \) (\(\ell \geq 1 \)) of role names and a unique sequence \(x_1, \ldots, x_{\ell-1} \) of individual names such that \(\{R_1(x_0, x_1), R_2(x_1, x_2), \ldots, R_\ell(x_{\ell-1}, x)\} \subseteq A \). In this case, we say that \(x \) occurs on level \(\ell \) in \(A \).
- If \(C(x) \in A \) for an individual name \(x \) on level \(\ell \), then the maximal role depth of \(C \) (i.e., the maximal nesting of constructors involving roles) is bounded by the maximal role depth of \(C_0 \) minus \(\ell \). Consequently, the level of any individual in \(A \) is bounded by the maximal role depth of \(C_0 \).
- If \(C(x) \in A \), then \(C \) is a subdescription of \(C_0 \). Consequently, the number of different concept assertions on \(x \) is bounded by the size of \(C_0 \).
- The number of different role successors of \(x \) in \(A \) (i.e., individuals \(y \) such that \(R(x, y) \in A \) for a role name \(R \)) is bounded by the sum of the numbers occurring in at-least restrictions in \(C_0 \) plus the number of different existential restrictions in \(C_0 \).

Starting with \(\{\{C_0(x_0)\}\} \), we thus obtain after a finite number of rule applications a set of ABoxes \(\hat{S} \) to which no more rules apply. An ABox \(A \) is called complete iff none of the transformation rules applies to it. Consistency of a set of complete ABoxes can be decided by looking for obvious contradictions, called clashes. The ABox \(A \) contains a clash iff one of the following three situations occurs:

\[\text{(i) } \{\bot(x)\} \subseteq A \text{ for some individual name } x;\]
\[\text{(ii) } \{A(x), \neg A(x)\} \subseteq A \text{ for some individual name } x \text{ and some concept name } A;\]
\[\text{(iii) } \{(\leq n R)(x)\} \cup \{R(x, y_i) \mid 1 \leq i \leq n + 1\} \cup \{y_i \neq y_j \mid 1 \leq i < j \leq n + 1\} \subseteq A \text{ for individual names } x, y_1, \ldots, y_{n+1}, \text{ a nonnegative integer } n, \text{ and a role name } R.\]

Obviously, an ABox that contains a clash cannot be consistent. Hence, if all the ABoxes in \(\hat{S} \) contain a clash, then \(\hat{S} \) is inconsistent, and thus by the soundness lemma \(\{\{C_0(x_0)\}\} \) is inconsistent as well. Consequently, \(C_0 \) is unsatisfiable. If, however, one of the complete ABoxes in \(\hat{S} \) is clash-free, then \(\hat{S} \) is consistent. By soundness of the rules, this implies consistency of \(\{C_0(x_0)\} \), and thus satisfiability of \(C_0 \).

\(^1\) A detailed proof of termination for a set of rules extending the one of Figure 2.6 can be found in [Baader and Sattler, 1999]. A termination proof for a slightly different set of rules has been given in [Donini et al., 1997a].
Lemma 2.23 (Completeness) Any complete and clash-free ABox A has a model.

This lemma can be proved by defining the canonical interpretation I_A induced by A:

(i) the domain Δ^{I_A} of I_A consists of all the individual names occurring in A;
(ii) for all atomic concepts A we define $A^{I_A} = \{x \mid A(x) \in A\}$;
(iii) for all atomic roles R we define $R^{I_A} = \{(x, y) \mid R(x, y) \in A\}$.

By definition, I_A satisfies all the role assertions in A. By induction on the structure of concept descriptions, it is easy to show that it satisfies the concept assertions as well. The inequality assertions are satisfied since $x \neq y \in A$ only if x, y are different individual names.

The facts stated in Lemma 2.22 imply that the canonical interpretation has the shape of a finite tree whose depth is linearly bounded by the size of C_0 and whose branching factor is bounded by the sum of the numbers occurring in at-least restrictions in C_0 plus the number of different existential restrictions in C_0. Consequently, \mathcal{ALCN} has the finite tree model property, i.e., any satisfiable concept C_0 is satisfiable in a finite interpretation I that has the shape of a tree whose root belongs to C_0.

To sum up, we have seen that the transformation rules of Figure 2.6 reduce satisfiability of an \mathcal{ALCN}-concept C_0 (in negation normal form) to consistency of a finite set \hat{S} of complete ABoxes. In addition, consistency of \hat{S} can be decided by looking for obvious contradictions (clashes).

Theorem 2.24 It is decidable whether or not an \mathcal{ALCN}-concept is satisfiable.

2.3.2.2 Complexity issues

The tableau-based satisfiability algorithm for \mathcal{ALCN} presented above may need exponential time and space. In fact, the size of the canonical interpretation built by the algorithm may be exponential in the size of the concept description. For example, consider the descriptions C_n ($n \geq 1$), which are inductively defined as follows:

\[
C_1 = \exists R.A \sqcap \exists R.B,
C_{n+1} = \exists R.A \sqcap \exists R.B \sqcap \forall R.C_n.
\]

Obviously, the size of C_n grows linearly in n. However, given the input description C_n, the satisfiability algorithm introduced above generates a complete and clash-free ABox whose canonical model is the full binary tree of depth n, and thus consists of $2^{n+1} - 1$ individuals.

Nevertheless, the satisfiability algorithm can be modified such that it needs only
polynomial space. The main reason is that different branches of the tree model to be generated by the algorithm can be investigated separately. Since the complexity class \(\text{NPSPACE} \) coincides with \(\text{PSPACE} \) [Savitch, 1970], it is sufficient to describe a non-deterministic algorithm using only polynomial space, i.e., for every non-deterministic rule we may simply assume that the algorithm chooses the correct alternative. In principle, the modified algorithm works as follows: it starts with \(\{C_0(x_0)\} \) and

(i) applies the \(\rightarrow \uparrow \) and \(\rightarrow \downarrow \)-rules as long as possible, and checks for clashes of the form \(A(x_0), \neg A(x_0) \) and \(\bot(x_0) \);
(ii) generates all the necessary direct successors of \(x_0 \) using the \(\rightarrow \exists \) and the \(\rightarrow \geq \)-rule;
(iii) generates the necessary identifications of these direct successors using the \(\rightarrow \leq \)-rule, and checks for clashes caused by at-most restrictions;
(iv) successively handles the successors in the same way.

Since after identification the remaining successors can be treated separately, the algorithm needs to store only one path of the tree model to be generated, together with the direct successors of the individuals on this path and the information which of these successors must be investigated next. We already know that the length of the path is linear in the size of the input description \(C_0 \). Thus, the only remaining obstacle on our way to a \(\text{PSPACE} \)-algorithm is the fact that the number of direct successors of an individual on the path also depends on the numbers in the at-least restrictions. If we assumed these numbers to be written in base 1 representation (where the size of the representation coincides with the number represented), this would not be a problem. However, for bases larger than 1 (e.g., numbers in decimal notation), the number represented may be exponential in the size of the representation. For example, the representation of \(10^n - 1 \) requires only \(n \) digits in base 10 representation. Thus, we cannot introduce all the successors required by at-least restrictions while only using polynomial space in the size of the concept description if the numbers in this description are written in decimal notation.

It turns out, however, that most of the successors required by the at-least restrictions need not be introduced at all. If an individual \(x \) obtains at least one \(R \)-successor due to the application of the \(\rightarrow \exists \)-rule, then the \(\rightarrow \geq \)-rule need not be applied to \(x \) for the role \(R \). Otherwise, we simply introduce one \(R \)-successor as representative. In order to detect inconsistencies due to conflicting number restrictions, we need to add a new type of clash: \(\{ (\leq n R)(x), (\geq m R)(x) \} \subseteq \mathcal{A} \) for nonnegative integers \(n < m \). The canonical interpretation obtained by this modified algorithm need not satisfy the at-least restrictions in \(C_0 \). However, it can easily be modified to an interpretation that does, by duplicating \(R \)-successors (more precisely, the whole subtrees starting at these successors).
Theorem 2.25 Satisfiability of ALCN-concept descriptions is PSPACE-complete.

The above argument shows that the problem is in PSPACE. The hardness result follows from the fact that the satisfiability problem is already PSPACE-hard for the sublanguage ALC, which can be shown by a reduction from validity of Quantified Boolean Formulae [Schmidt-Schauß and Smolka, 1991]. Since subsumption and satisfiability of ALCN-concept descriptions can be reduced to each other in linear time, this also shows that subsumption of ALCN-concept descriptions is PSPACE-complete.

2.3.2.3 Extension to the consistency problem for ABoxes

The tableau-based satisfiability algorithm described in Subsection 2.3.2.1 can easily be extended to an algorithm that decides consistency of ALCN-ABoxes. Let A be an ALCN-ABox such that (w.o.l.g.) all concept descriptions in A are in negation normal form. To test A for consistency, we first add inequality assertions $a \neq b$ for every pair of distinct individual names a, b occurring in A.\footnote{This takes care of the UNA.} Let A_0 be the ABox obtained this way. The consistency algorithm applies the rules of Figure 2.6 to the singleton set $\{A_0\}$.

Soundness and completeness of the rule set can be shown as before. Unfortunately, the algorithm need not terminate, unless one imposes a specific strategy on the order of rule applications. For example, consider the ABox

$$A_0 = \{R(a, a), (\exists R.A)(a), (\leq 1 R)(a), (\forall R.\exists R.A)(a)\}.$$

By applying the $\rightarrow\exists$-rule to a, we can introduce a new R-successor x of a:

$$A_1 = A_0 \cup \{R(a, x), A(x)\}.$$

The $\rightarrow\forall$-rule adds the assertion $(\exists R.A)(x)$, which triggers an application of the $\rightarrow\exists$-rule to x. Thus, we obtain the new ABox

$$A_2 = A_1 \cup \{(\exists R.A)(x), R(x, y), A(y)\}.$$

Since a has two R-successors in A_2, the $\rightarrow\leq$-rule is applicable to a. By replacing every occurrence of x by a, we obtain the ABox

$$A_3 = A_0 \cup \{A(a), R(a, y), A(y)\}.$$

Except for the individual names (and the assertion $A(a)$, which is, however, irrelevant), A_3 is identical to A_1. For this reason, we can continue as above to obtain an infinite chain of rule applications.

We can easily regain termination by requiring that generating rules (i.e., the rules $\rightarrow\exists$ and $\rightarrow\geq$) may only be applied if none of the other rules is applicable. In the
above example, this strategy would prevent the application of the \rightarrow_3-rule to x in the ABox $A_1 \cup \{(\exists R.A)(x)\}$ since the \rightarrow_\leq-rule is also applicable. After applying the \rightarrow_\leq-rule (which replaces x by a), the \rightarrow_3-rule is no longer applicable since a already has an R-successor that belongs to A.

Using a similar idea, one can reduce the consistency problem for \mathcal{ALCN}-ABoxes to satisfiability of \mathcal{ALCN}-concept descriptions [Hollunder, 1996]. In principle, this reduction works as follows: In a preprocessing step, one applies the transformation rules only to old individuals (i.e., individuals present in the original ABox). Subsequently, one can forget about the role assertions, i.e., for each individual name in the preprocessed ABox, the satisfiability algorithm is applied to the conjunction of its concept assertions (see [Hollunder, 1996] for details).

Theorem 2.26 Consistency of \mathcal{ALCN}-ABoxes is PSpace-complete.

2.3.2.4 Extension to general inclusion axioms

In the above subsections, we have considered the satisfiability problem for concept descriptions and the consistency problem for ABoxes without an underlying TBox. In fact, for acyclic TBoxes one can simply expand the definitions (see Subsection 2.2.4). Expansion is, however, no longer possibly if one allows for general inclusion axioms of the form $C \sqsubseteq D$, where C and D may be complex descriptions. Instead of considering finitely many such axiom $C_1 \sqsubseteq D_1, \ldots, C_n \sqsubseteq D_n$, it is sufficient to consider the single axiom $\top \sqsubseteq \hat{C}$, where

$$\hat{C} = (\neg C_1 \sqcup D_1) \cap \cdots \cap (\neg C_n \sqcup D_n).$$

The axiom $\top \sqsubseteq \hat{C}$ simply says that any individual must belong to the concept \hat{C}. The tableau algorithm introduced above can easily be modified such that it takes this axiom into account: all individuals (both the original individuals and the ones newly generated by the \rightarrow_3- and the \rightarrow_\geq-rule) are simply asserted to belong to \hat{C}.

However, this modification may obviously lead to nontermination of the algorithm. For example, consider what happens if this algorithm is applied to test consistency of the ABox $A_0 = \{A(x_0), (\exists R.A)(x_0)\}$ w.r.t. the axiom $\top \sqsubseteq \exists R.A$: the algorithm generates an infinite sequence of ABoxes A_1, A_2, \ldots and individuals x_1, x_2, \ldots such that $A_{i+1} = A_i \cup \{R(x_i, x_{i+1}), A(x_{i+1}), (\exists R.A)(x_{i+1})\}$. Since all individuals x_i receive the same concept assertions as x_0, we may say that the algorithm has run into a cycle.

Termination can be regained by trying to detect such cyclic computations, and then blocking the application of generating rules: the application of the rules \rightarrow_3 and \rightarrow_\geq to an individual x is blocked by an individual y in an ABox A iff $\{D \mid D(x) \in A\} \subseteq \{D' \mid D'(y) \in A\}$. The main idea underlying blocking is that the blocked individual x can use the role successors of y instead of generating new ones.
For example, instead of generating a new R-successor for x_1 in the above example, one can simply use the R-successor of x_0. This yields an interpretation \mathcal{I} with $\Delta^x = \{x_0, x_1\}$, $A^x = \Delta^x$, and $R^x = \{(x_0, x_1), (x_1, x_1)\}$. Obviously, \mathcal{I} is a model of A_0 and of the axiom $\top \sqsubseteq \exists R.A$.

To avoid cyclic blocking (of x by y and vice versa), we consider an enumeration of all individual names, and define that an individual x may only be blocked by individuals y that occur before x in this enumeration. This, together with some other technical assumptions, makes sure that an algorithm using this notion of blocking is sound and complete as well as terminating (see [Buchheit et al., 1993a; Baader et al., 1996] for details). Thus, consistency of \mathcal{ALCN}-ABoxes w.r.t. general inclusion axioms is decidable. It should be noted that the algorithm is no longer in PSPACE since it may generate role paths of exponential length before blocking occurs. In fact, even for the language \mathcal{ALC}, satisfiability w.r.t. a single general inclusion axiom is known to be ExpTime-hard [Schild, 1994] (see also Chapter 3).

The tableau-based algorithm sketched above is a NExpTime algorithm. However, using the translation technique mentioned at the beginning of this section, it can be shown [De Giacomo, 1995] that \mathcal{ALCN}-ABoxes and general inclusion axioms can be translated into PDL, for which satisfiability can be decided in exponential time. An ExpTime tableau algorithm for \mathcal{ALC} with general inclusion axiom was described by Donini and Massacci [2000].

Theorem 2.27 Consistency of \mathcal{ALCN}-ABoxes w.r.t. general inclusion axioms is ExpTime-complete.

2.3.2.5 Extension to other language constructors

The tableau-based approach to designing concept satisfiability and ABox consistency algorithms can also be employed for languages with other concept and/or role constructors. In principle, each new constructor requires a new rule, and this rule can usually be obtained by simply considering the semantics of the constructor. Soundness of such a rule is often very easy to show. More problematic are completeness and termination since they must also take interactions between different rules into account. As we have seen above, termination can sometimes only be obtained if the application of rules is restricted by an appropriate strategy. Of course, one may only impose such a strategy if one can show that it does not destroy completeness.

2.3.3 Reasoning w.r.t. terminologies

Recall that terminologies (TBoxes) are sets of concept definitions (i.e., equalities of the form $A \equiv C$ where A is atomic) such that every atomic concept occurs at most once as a left-hand side. We will first comment briefly on the complexity of
reasoning w.r.t. acyclic terminologies, and then consider in more detail reasoning w.r.t. cyclic terminologies.

2.3.3.1 Acyclic terminologies

As shown in Section 2.2.4, reasoning w.r.t. acyclic terminologies can be reduced to reasoning without terminologies by first expanding the TBox, and then replacing name symbols by their definitions in the terminology. Unfortunately, since the expanded TBox may be exponentially larger than the original one [Nebel, 1990b], this increases the complexity of reasoning. Nebel [1990b] also shows that this complexity can, in general, not be avoided: for the language \mathcal{FL}_0, subsumption between concept descriptions can be tested in polynomial time (see Section 2.3.1), whereas subsumption w.r.t. acyclic terminologies is coNP-complete (see also Section 2.3.3.2 below).

For more expressive languages, the presence of acyclic TBoxes may or may not increase the complexity of the subsumption problem. For example, subsumption of concept descriptions in the language \mathcal{ALC} is PSPACE-complete, and so is subsumption w.r.t. acyclic terminologies [Lutz, 1999a]. Of course, in order to obtain a PSPACE-algorithm for subsumption in \mathcal{ALC} w.r.t. acyclic TBoxes, one cannot first expand the TBox completely since this might need exponential space. The main idea is that one uses a tableau-based algorithm like the one described in Section 2.3.2, with the difference that it receives concept descriptions containing name symbols as input. Expansion is then done on demand: if the tableau-based algorithm encounters an assertion of the form $A(x)$, where A is a name occurring on the left-hand side of a definition $A \equiv C$ in the TBox, then it adds the assertion $C(x)$. However, it does not further expand C at this stage. It is not hard to show that this really yields a PSPACE-algorithm for satisfiability (and thus also for subsumption) of concepts w.r.t. acyclic TBoxes in \mathcal{ALC} [Lutz, 1999a].

There are, however, extensions of \mathcal{ALC} for which this technique no longer works. One such example is the language \mathcal{ALCF}, which extends \mathcal{ALC} by functional roles as well as agreements and disagreements on chains of functional roles (see Section 2.4 below). Satisfiability of concepts is PSPACE-complete for this language [Hollunder and Nutt, 1990], but satisfiability of concepts w.r.t. acyclic terminologies is NEXP-Time-complete [Lutz, 1999a].

2.3.3.2 Cyclic terminologies

For cyclic terminologies, expansion is no longer possible since it would not terminate. If we use descriptive semantics, then cyclic terminologies are a special case of terminologies with general inclusion axioms. Thus, the tableau-based algorithm for handling general inclusion axioms introduced in Subsection 2.3.2.4 can also be used for cyclic \mathcal{ALCN}-TBoxes with descriptive semantics. For cyclic \mathcal{ALC}-
TBoxes with fixpoint semantics, the connection between Description Logics and propositional modal logics turns out to be useful. In fact, syntactically monotone \(\mathcal{ALC} \)-TBoxes with least or greatest fixpoint semantics can be expressed within the propositional \(\mu \)-calculus, which is an extension of the propositional multimodal logic \(\mathbf{Km} \) by fixpoint operators (see [Schild, 1994; De Giacomo and Lenzerini, 1994b; 1997] and Chapter 5 for details). Since reasoning w.r.t. general inclusion axioms in \(\mathcal{ALC} \) and reasoning in the propositional \(\mu \)-calculus are both \(\text{ExpTime} \)-complete, these reductions yield an \(\text{ExpTime} \)-upper bound for reasoning w.r.t. cyclic terminologies in sublanguages of \(\mathcal{ALC} \).

For less expressive DLs, more efficient algorithms can, however, be obtained with the help of techniques based on finite automata. Following [Baader, 1996b], we will sketch these techniques for the small language \(\mathcal{FL}_0 \). The results can, however, be extended to the language \(\mathcal{ALN} \) [Küsters, 1998]. We will develop the results for \(\mathcal{FL}_0 \) in two steps, starting with an alternative characterization of subsumption between \(\mathcal{FL}_0 \)-concept descriptions, and then extending this characterization to cyclic TBoxes with greatest fixpoint semantics. Baader [1996b] also considers cyclic \(\mathcal{FL}_0 \)-TBoxes with descriptive and with least fixpoint semantics. For these semantics, the characterization of subsumption is more involved; in particular, the characterization of subsumption w.r.t. descriptive semantics depends on finite automata working on infinite words, so-called Büchi automata. Acyclic TBoxes can be seen as a special case of cyclic TBoxes, where all three types of semantics coincide.

In Subsection 2.3.1, the equivalence \((\forall R.C) \cap (\forall R.D) \equiv \forall R.(C \cap D)\) was used as a rewrite rule from left to right in order to compute the structural subsumption normal form of \(\mathcal{FL}_0 \)-concept descriptions. If we use this rule in the opposite direction, we obtain a different normal form, which we call concept-centered normal form since it groups the concept description w.r.t. concept names (and not w.r.t. role names, as the structural subsumption normal form does). Using this rule, any \(\mathcal{FL}_0 \)-concept description can be transformed into an equivalent description that is a conjunction of descriptions of the form \(\forall R_1 \cdots \forall R_m.A \) for \(m \geq 0 \) (not necessarily distinct) role names \(R_1, \ldots, R_m \) and a concept name \(A \). We abbreviate \(\forall R_1 \cdots \forall R_m.A \) by \(\forall R_1 \cdots R_m.A \), where \(R_1 \cdots R_m \) is viewed as a word over the alphabet \(\Sigma \) of all role names. In addition, instead of \(\forall w_1.A \cap \cdots \cap \forall w_l.A \) we write \(\forall L.A \) where \(L = \{ w_1, \ldots, w_l \} \) is a finite set of words over \(\Sigma \). The term \(\forall \emptyset.A \) is considered to be equivalent to the top concept \(\top \), which means that it can be added to a conjunction without changing the meaning of the concept. Using these abbreviations, any pair of \(\mathcal{FL}_0 \)-concept descriptions \(C, D \) containing the concept names \(A_1, \ldots, A_k \) can be rewritten as

\[
C \equiv \forall U_1.A_1 \cap \cdots \cap \forall U_k.A_k \quad \text{and} \quad D \equiv \forall V_1.A_1 \cap \cdots \cap \forall V_k.A_k,
\]

where \(U_i, V_i \) are finite sets of words over the alphabet of all role names. This normal
form provides us with the following characterization of subsumption of \mathcal{FL}_0-concept descriptions [Baader and Narendran, 1998]:

$$C \sqsubseteq D \iff U_i \supseteq V_i \text{ for all } i, 1 \leq i \leq k.$$

Since the size of the concept-based normal forms is polynomial in the size of the original descriptions, and since the inclusion tests $U_i \supseteq V_i$ can also be realized in polynomial time, this yields a polynomial-time decision procedure for subsumption in \mathcal{FL}_0. In fact, as shown in [Baader et al., 1998a], the structural subsumption algorithm for \mathcal{FL}_0 can be seen as a special implementation of these inclusion tests.

This characterization of subsumption via inclusion of finite sets of words can be extended to cyclic TBoxes with greatest fixpoint semantics as follows. A given TBox \mathcal{T} can be translated into a finite automaton $\mathcal{A}_\mathcal{T}$ whose states are the concept names occurring in \mathcal{T} and whose transitions are induced by the value restrictions occurring in \mathcal{T} (see Figure 2.7 for an example and [Baader, 1996b] for the formal definition).

For a name symbol A and a base symbol P in \mathcal{T}, the language $L_{\mathcal{A}_\mathcal{T}}(A, P)$ is the set of all words labeling paths in $\mathcal{A}_\mathcal{T}$ from A to P. The languages $L_{\mathcal{A}_\mathcal{T}}(A, P)$ represent all the value restrictions that must be satisfied by instances of the concept A. With this intuition in mind, the following characterization of subsumption w.r.t. cyclic \mathcal{FL}_0 TBoxes with greatest fixpoint semantics should not be surprising:

$$A \sqsubseteq_\mathcal{T} B \iff L_{\mathcal{A}_\mathcal{T}}(A, P) \supseteq L_{\mathcal{A}_\mathcal{T}}(B, P) \text{ for all base symbols } P.$$

In the example of Fig. 2.7, we have $L_{\mathcal{A}_\mathcal{T}}(A, P) = R^*SS^* \supseteq RSS^* = L_{\mathcal{A}_\mathcal{T}}(B, P)$, and thus $A \sqsubseteq_\mathcal{T} B$, but not $B \sqsubseteq_\mathcal{T} A$.

Obviously, the languages $L_{\mathcal{A}_\mathcal{T}}(A, P)$ are regular, and any regular language can be obtained as such a language. Since inclusion of regular languages is a PSPACE-complete problem [Garey and Johnson, 1979], this shows that subsumption w.r.t. cyclic \mathcal{FL}_0-TBoxes with greatest fixpoint semantics is PSPACE-complete [Baader, 1996b].

1 Strictly speaking, we obtain a finite automaton with word transitions, i.e., transitions that may be labeled by a word over Σ rather than a letter of Σ.

$$A \equiv \forall R.A \cap \forall S.C$$

$$B \equiv \forall R.\forall S.C$$

$$C \equiv P \cap \forall S.C$$
For an acyclic terminology T, the automaton A_T is acyclic as well. Since inclusion of languages accepted by acyclic finite automata is coNP-complete, this proves Nebel’s result that subsumption w.r.t. acyclic \mathcal{FL}_0-TBoxes is coNP-complete [Nebel, 1990b].

2.4 Language extensions

In Section 2.2 we have introduced the language \mathcal{ALCN} as a prototypical Description Logic. For many applications, the expressive power of \mathcal{ALCN} is not sufficient. For this reason, various other language constructors have been introduced in the literature and are employed by systems. Roughly, these language extensions can be put into two categories, which (for lack of a better name) we will call “classical” and “nonclassical” extensions. Intuitively, a classical extension is one whose semantics can easily be defined within the model-theoretic framework introduced in Section 2.2, whereas defining the semantics of a nonclassical constructor is more problematic and requires an extension of the model-theoretic framework (such as the semantics of the epistemic operator K introduced in Section 2.2.5). In this section, we briefly introduce the most important classical extensions of Description Logics. Inference procedures for such expressive DLs are discussed in Chapter 5. Nonclassical extensions are the subject of Chapter 6.

In addition to constructors that can be used to build complex roles, we will introduce more expressive number restrictions, and constructors that allow one to express relationships between the role-filler sets of different (complex) roles.

2.4.1 Role constructors

Since roles are interpreted as binary relations, it is quite natural to employ the usual operations on binary relations (such as Boolean operators, composition, inverse, and transitive closure) as role forming constructors. Syntax and semantics of these constructors can be defined as follows:

Definition 2.28 (Role constructors) Every role name is a role description (atomic role), and if R, S are role descriptions, then $R \sqcap S$ (intersection), $R \sqcup S$ (union), $\neg R$ (complement), $R \circ S$ (composition), R^+ (transitive closure), R^{-} (inverse) are also role descriptions.

A given interpretation I is extended to (complex) role descriptions as follows:

1. $(R \sqcap S)^T = R^T \cap S^T$, $(R \sqcup S)^T = R^T \cup S^T$, $(\neg R)^T = \Delta^T \setminus R^T$;
2. $(R \circ S)^T = \{(a, c) \in \Delta^T \times \Delta^T \mid \exists b. (a, b) \in R^T \land (b, c) \in S^T\}$;
3. $(R^+)^T = \bigcup_{i \geq 1} (R^T)^i$, i.e., $(R^+)^T$ is the transitive closure of (R^T);
For example, the union of the roles hasSon and hasDaughter can be used to define the role hasChild, and the transitive closure of hasChild expresses the role hasOffspring. The inverse of hasChild yields the role hasParent.

The complexity of satisfiability and subsumption of concepts in the language \(\text{ALCN}^\cap\) (also called \(\text{ALCN}^\cap R\) in the literature), which extends \(\text{ALCN}\) by intersection of roles, has been investigated in [Donini et al., 1997a]. It is shown that these problems are still \(\text{PSPACE}\)-complete, provided that the numbers occurring in number restrictions are written in base 1 representation (where the size of the representation coincides with the number represented). Tobies [2001b] shows that this result also hold for non-unary coding of numbers. Decidability of the extension of \(\text{ALCN}\) by the three Boolean operators and the inverse operator is an immediate consequence of the fact that concepts of the extended language can be expressed in \(C^2\), i.e., first-order predicate logic with two variables and counting quantifiers, which is known to be decidable in \(\text{NEXPTIME}\) [Grädel et al., 1997b; Pacholski et al., 1997]. Lutz and Sattler [2000a] show that \(\text{ALC}\) extended by role complement is \(\text{EXPTIME}\)-complete, whereas \(\text{ALC}\) extended by role intersection and (atomic) role complement is \(\text{NEXPTIME}\)-complete.

In [Baader, 1991], the DL \(\text{ALC}_{\text{trans}}\), which extends \(\text{ALC}\) by transitive-closure, composition, and union of roles, has been introduced, and subsumption and satisfiability of \(\text{ALC}_{\text{trans}}\)-concepts has been shown to be decidable. Schild’s observation [Schild, 1991] that \(\text{ALC}_{\text{trans}}\) is just a syntactic variant of propositional dynamic logic (PDL) [Fischer and Ladner, 1979] yields the exact complexity of subsumption and satisfiability in \(\text{ALC}_{\text{trans}}\): they are \(\text{EXPTIME}\)-complete [Fischer and Ladner, 1979; Pratt, 1979; 1980]. The extension of \(\text{ALC}_{\text{trans}}\) by the inverse constructor corresponds to converse PDL [Fischer and Ladner, 1979], which can also be shown to be decidable in deterministic exponential time [Vardi, 1985]. Whereas this extension of \(\text{ALC}_{\text{trans}}\) does not change the properties of the obtained DL in a significant way, things become more complex if both number restrictions and the inverse of roles are added to \(\text{ALC}_{\text{trans}}\). Whereas \(\text{ALC}_{\text{trans}}\) and \(\text{ALC}_{\text{trans}}\) with inverse still have the finite model property, \(\text{ALC}_{\text{trans}}\) extended by inverse and number restrictions does not. Indeed, it is easy to see that the concept

\[-A \sqcap \exists R^- . A \sqcap (\leq 1 R) \sqcap \forall (R^-)^+ . (\exists R^- . A \sqcap (\leq 1 R))\]

is satisfiable in an infinite interpretation, but not in a finite one. Nevertheless, this DL still has an \(\text{EXPTIME}\)-complete subsumption and satisfiability problem. In fact, in [De Giacomo, 1995], number restrictions, the inverse of roles, and Boolean operators on roles are added to \(\text{ALC}_{\text{trans}}\), and \(\text{EXPTIME}\)-decidability is shown by a rather ingenious reduction to the decision problem for \(\text{ALC}_{\text{trans}}\). It should be noted,
however, that in this work only atomic roles and their inverse may occur in number restrictions, and that the complement of roles is built with respect to a fixed role any, which must contain all other roles, but need not be interpreted as the universal role (i.e., $\Delta^I \times \Delta^I$). As we shall see below, allowing for more complex roles inside number restrictions may easily cause undecidability.

2.4.2 Expressive number restrictions

There are three different ways in which the expressive power of number restrictions can be enhanced.

First, one can consider so-called qualified number restrictions, where the number restrictions are concerned with role-fillers belonging to a certain concept. For example, given the role hasChild, the simple number restrictions introduced above can only state that the number of all children is within certain limits, such as in the concept $\geq 2 \text{hasChild} \sqcap \leq 5 \text{hasChild}$. Qualified number restrictions can also express that there are at least 2 sons and at most 5 daughters:

$$\geq 2 \text{hasChild.Male} \sqcap \leq 5 \text{hasChild.Female}.$$

Adding qualified number restrictions to \mathcal{ALC} leaves the important inference problems (like subsumption and satisfiability of concepts, and consistency of ABoxes) decidable: the worst-case complexity is still PSpace-complete. Membership in PSpace was first shown for the case where numbers occurring in number restrictions are written in base 1 representation [Hollunder and Baader, 1991a; Hollunder, 1996]. More recently, this has been proved even for the case of binary (or, equivalently, decimal) representation of numbers [Tobies, 1999c; 2001b]. The language stays decidable if general sets of inclusion axioms are allowed [Buchheit et al., 1993a].

Second, one can allow for complex role expressions inside number restrictions. As already mentioned above, allowing for the three Boolean operators and the inverse operator in number restrictions of \mathcal{ALCN} leaves us within C^2, which is known to be decidable. In [Baader and Sattler, 1996b; 1999], languages that allow for composition of roles in number restrictions have been considered. The extension of \mathcal{ALC} by number restrictions involving composition has a decidable satisfiability and subsumption problem. On the other hand, if either number restrictions involving composition, union and inverse, or number restrictions involving composition and intersection are added, then satisfiability and subsumption become undecidable [Baader and Sattler, 1996b; 1999]. For $\mathcal{ALC}_{\text{trans}}$, the extension by number restrictions involving composition is already undecidable [Baader and Sattler, 1999].

Third, one can replace the explicit numbers n in number restrictions by variables α.

Note that composition cannot be expressed within C^2.

1 Note that composition cannot be expressed within C^2.
that stand for arbitrary nonnegative integers [Baader and Sattler, 1996a; 1999].
This allows one, for example, to define the concept of all persons having at least
as many daughters as sons, without explicitly saying how many sons and daughters
the person has:

\[
\text{Person} \sqcap \alpha \text{ hasDaughter} \sqcap \alpha \text{ hasSon}.
\]

The expressive power of this language can further be increased by introducing ex-
plicit quantification of the numeric variables. For example, it is important to know
whether the numeric variables are introduced before or after a value restriction.
This is illustrated by the following concept

\[
\text{Person} \sqcap \downarrow \alpha. (\forall \text{hasChild}.(\geq \alpha \text{ hasChild} \sqcap \leq \alpha \text{ hasChild})),
\]

in which introducing the numerical variable before the universal value restriction
makes sure that all the children of the person have the same number of children.
Here, \(\downarrow \alpha\) stands for an existential quantification of \(\alpha\). Universal quantification of
numerical variables comes in via negation. In [Baader and Sattler, 1996a; 1999] it
is shown that \(\mathcal{ALCN}\) extended by such symbolic number restrictions with universal
and existential quantification of numerical variables has an undecidable satisfiability
and subsumption problem. If one restricts this language to existential quantification
of numerical variables and negation on atomic concepts, then satisfiability becomes
decidable, but subsumption remains undecidable.

\subsection{2.4.3 Role-value-maps}

Role-value-maps are a family of very expressive concept constructors, which were,
however, available in the original Kl-ONE-system. They allow one to relate the sets
of role fillers of role chains.

\begin{definition}[Role-value-maps]\text{A role chain is a composition } R_1 \circ \cdots \circ R_n \text{ of role names. If } R, S \text{ are role chains, then } R \subseteq S \text{ and } R = S \text{ are concepts (role-
value-maps). The former is called a containment role-value-map, while the latter is
called an equality role-value-map.}

A given interpretation } \mathcal{I} \text{ is extended to role-value-maps as follows:

(i) } (R \subseteq S)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \forall b. (a, b) \in R^{\mathcal{I}} \rightarrow (a, b) \in S^{\mathcal{I}}\},
(ii) (R = S)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \forall b. (a, b) \in R^{\mathcal{I}} \iff (a, b) \in S^{\mathcal{I}}\}.

\end{definition}

For example, the concept

\[
\text{Person} \sqcap (\text{hasChild} \circ \text{hasFriend} \sqsubseteq \text{knows})
\]
describes the persons knowing all the friends of their children, and

\[
\text{Person} \sqcap (\text{marriedTo} \circ \text{likesToEat} = \text{likesToEat})
\]

describes persons having the same favorite foods as their spouse.

Unfortunately, in the presence of role-value-maps, the subsumption problem is undecidable, even if the language allows only for conjunction and value restriction as additional constructors [Schmidt-Schauß, 1989] (see also Chapter 3).

To avoid this problem, one may restrict the attention to role chains of functional roles, also called attributes or features in the literature. An interpretation \(\mathcal{I} \) interprets the role \(R \) as a functional role iff \(\{(a, b), (a, c)\} \subseteq R^I \) implies \(b = c \). In the following, we assume that the set of role names is partitioned into the set of functional roles and the set of ordinary roles. Any interpretation must interpret the functional roles as such. Usually, we write functional roles with small letters \(\mathit{f}, \mathit{g} \), possibly with index.

Definition 2.30 (Agreements) If \(\mathit{f}, \mathit{g} \) are role chains of functional roles, then \(\mathit{f} \doteq \mathit{g} \) and \(\mathit{f} \neq \mathit{g} \) are concepts (agreement and disagreement).

A given interpretation \(\mathcal{I} \) is extended to agreements and disagreements as follows:

(i) \((\mathit{f} \doteq \mathit{g})^I = \{a \in \Delta^I | \exists b. (a, b) \in \mathit{f}^I \land (a, b) \in \mathit{g}^I\} \),

(ii) \((\mathit{f} \neq \mathit{g})^I = \{a \in \Delta^I | \exists b_1, b_2. b_1 \neq b_2 \land (a, b_1) \in \mathit{f}^I \land (a, b_2) \in \mathit{g}^I\} \).

In the literature, the agreement constructor is sometimes also called the same-as constructor. Note that, since \(\mathit{f}, \mathit{g} \) are role chains between functional roles, there can be at most one role filler for \(a \) w.r.t. the respective role chain. Also note that the semantics of agreements and disagreements requires these role fillers to exist (and be equal or distinct) for \(a \) to belong to the concept.

For example, \(\mathit{hasMother}, \mathit{hasFather} \), and \(\mathit{hasLastName} \) with their usual interpretation are functional roles, whereas \(\mathit{hasParent} \) and \(\mathit{hasChild} \) are not. The concept

\[
\text{Person} \sqcap (\mathit{hasLastName} \doteq \mathit{hasMother} \circ \mathit{hasLastName}) \sqcap (\mathit{hasLastName} \neq \mathit{hasFather} \circ \mathit{hasLastName})
\]

describes persons whose last name coincides with the last name of their mother, but not with the last name of their father.

The restriction to functional roles makes reasoning in \(\mathcal{ALC} \) extended by agreements and disagreements decidable [Hollunder and Nutt, 1990]. A structural subsumption algorithm for the language provided by the Classic-system, which includes the same-as constructor, can be found in [Borgida and Patel-Schneider, 1994]. However, if general inclusion axioms (or transitive closure of functional roles or cyclic definitions) are allowed, then agreements and disagreements between chains of functional roles again cause subsumption to become undecidable [Nebel, 1991;
Baader et al., 1993]. Additional types of role interaction constructors similar to agreements and role-value-maps are investigated in [Hanschke, 1992].

Acknowledgement

We would like to thank Maarten de Rijke for his pointers to the literature on Beth definability in modal logics.
Complexity of Reasoning
Francesco M. Donini

Abstract
We present lower bounds on the computational complexity of satisfiability and subsumption in several description logics. We interpret these lower bounds as coming from different “sources of complexity”, which we isolate one by one. We consider both reasoning with simple concept expressions and with an underlying TBox. We discuss also complexity of instance check in simple ABoxes. We tried to enhance clarity and ease of presentation, sometimes sacrificing exhaustiveness for lack of space.

3.1 Introduction
Complexity of reasoning has been one of the major issues in the development of Description Logics (DL). This is because such logics are conceived [Brachman and Levesque, 1984] as the formal specification of subsystems for representing knowledge, to be used in larger knowledge-based systems. Since using knowledge means also to derive implicit facts from the told ones, the implementation of derivation procedures should take into account the optimality of reasoning algorithms. The study of optimal algorithms starts from the elicitation of the computational complexity of the problem the algorithm should solve. Initially, studies about the complexity of reasoning problems in DLs were more focused on polynomial-time versus intractable (\(NP\)- or co\(NP\)-hard) problems. The idea was that a Knowledge Representation system based on a DL with polynomial-time inference problems would guarantee timely answers to the rest of the system. However, once very expressive DLs with exponential-time reasoning problems were implemented [Horrocks, 1998b], it was recognized that knowledge bases of realistic size could be processed in reasonable time. This shifted most of the complexity analysis to DLs whose reasoning problems are \(\text{ExpTime}\)-hard, or worse.

This chapter presents some lower bounds on the complexity of basic reasoning
tasks in simple DLs. The reasoning services taken into account are: first, satisfiability and subsumption of concept expressions alone (no TBox), then the same reasoning services considering a TBox also, and in the last part of the chapter, instance checking w.r.t. an ABox.

We show in detail some reductions from problems that are hard for complexity classes \textbf{NP}, \textbf{CoNP}, \textbf{PSPACE}, \textbf{ExpTime}, and from semidecidable problems to satisfiability/subsumption in various DLs. Then, we show how these reductions can be adapted to other DLs as well.

In several reductions, we use tableaux expansions to prove the correctness of the reduction. Thus, a secondary aim in this chapter is to show how tableaux are useful not only to devise reasoning algorithms and complexity upper bounds—as seen in Chapter 2—but also in finding complexity lower bounds. This is because tableaux untangle two different aspects of the computational complexity of reasoning in DLs:

- The first aspect is the structure of possible models of a concept. Such a structure is—in many DLs—a tree of individual names, linked by arcs labeled by roles. We consider such a tree an AND-tree, in the sense that all branches must be followed to obtain a candidate model. Following [Schmidt-Schauß and Smolka, 1991], we call \textit{trace} each branch of such a tree. Readers familiar with tableaux terminology should observe that traces are not tableaux branches; in fact, they form a structure inside a single tableau branch.

- The second aspect is the structure of proofs or refutations. Clearly, if a trace contains an inconsistency—a clash in the terminology set up in Chapter 2, the candidate models containing this trace can be discarded. When all candidate models are discarded this way, we obtain a proof of subsumption, or unsatisfiability. Hence, the structure of refutations is often best viewed as an OR-tree of traces containing clashes.

Here we chose to mark the nodes with AND, OR, considering a satisfiability problem; if either unsatisfiability or subsumption are considered, AND-OR labels should be exchanged. Before starting with the various results, we elaborate more on this subject in the next paragraph.

\subsection{Intuition: sources of complexity}

The deterministic version of the calculus for $\mathcal{ALCN'}$ in Chapter 2 can be seen as exploring an AND-OR tree, where an AND-branching corresponds to the (independent) check of all successors of an individual, while an OR-branching corresponds to the different choices of application of a nondeterministic rule.

Realizing that, one can see that the exponential-time behavior of the calculus
is due to two independent origins: The AND-branching, responsible for the exponential size of a single candidate model, and the OR-branching, responsible for the exponential number of different candidate models. We call these two different combinatorial explosions sources of complexity.

3.1.1.1 OR-branching

The OR-branching is due to the presence of disjunctive constructors, which make a concept satisfiable by more than one model. The obvious disjunctive constructor is \sqcup, hence \mathcal{ALU} is a good sublanguage to see this source of complexity. Recall that \mathcal{ALU} allows one to form concepts using negation of concept names, conjunction \sqcap, disjunction \sqcup, universal role quantification $\forall R.C$, and unqualified existential role quantification \exists. This source of complexity is the same that makes propositional satisfiability NP-hard: in fact, satisfiability in \mathcal{ALU} can be trivially proved NP-hard by rewriting propositional letters as atomic concepts, \land as \sqcap, and \lor as \sqcup.

Many proofs of coNP-hardness of subsumption were found exploiting this source of complexity ([Levesque and Brachman, 1987; Nebel, 1988]), by reducing an NP-hard problem to non-subsumption. In Section 3.2.1, we show how disjunction can be introduced also by combining role restrictions and universal quantification, and in Section 3.2.2 by combining number restrictions and role intersection.

3.1.1.2 AND-branching

The AND-branching is more subtle. Its exponential behaviour is due to the interplay of qualified existential and universal quantifiers, hence \mathcal{ALE} is now a minimal sublanguage of \mathcal{ALCN} with these features. As mentioned in Chapter 2 one can see the effects of this source of complexity by expanding the tableau $\{D(x)\}$, when D is the following concept (whose pattern appears in many papers, from [Schmidt-Schauß and Smolka, 1991], to [Hemaspaandra, 1999])—see Chapter 2 for its general form:

$$\exists P_1.\forall P_2.\forall P_3.C_{11} \sqcap$$

$$\exists P_1.\forall P_2.\forall P_3.C_{12} \sqcap$$

$$\forall P_1.(\exists P_2.\forall P_3.C_{21} \sqcap$$

$$\exists P_2.\forall P_3.C_{22} \sqcap$$

$$\forall P_2.(\exists P_3.C_{31} \sqcap$$

$$\exists P_3.\forall P_3.C_{32})$$

For each level l of nested quantifiers, we use a different role P_l (but using the same role R would produce the same results). The structure of the tableau for $\{D(x)\}$, which is the candidate model for D, is a binary tree of height 3: the nodes are the individual names, the arcs are given by the P_l-successor relation, and the branches are the traces in the tableau.
Each trace ends with an individual that belongs to \(C_{1i}, C_{2j}, C_{3k} \), for \(i, j, k \in \{1, 2\} \). Hence, a clash may be found independently in each trace, i.e., in each branch of the tree. To verify that this structure is indeed a model, one has to check every AND-branch of it; and branches can be exponentially many in the nesting of quantifiers.

This source of complexity causes an exponential number of possible refutations to be searched through (each refutation being a trace containing a clash).

This second source of complexity is not evident in propositional calculus, but a similar problem appears in predicate calculus—where the interplay of existential and universal quantifiers may lead to large models—and in Quantified Boolean Formulae.

Remark 3.1 For DLs that are not closed under negation, a source of complexity might appear in subsumption, while it may not in satisfiability. This is because \(C \) is subsumed by \(D \) iff \(C \sqcap \neg D \) is unsatisfiable, where \(\neg D \) may not belong to the same DL of \(C \) and \(D \).

3.1.2 Overview of the chapter

We first present separately the effect of each source of complexity. In the next section, we discuss intractability results stemming from disjunction (OR-branching), which lead to \(\text{coNP} \)-hard lower bounds. We discuss both the case of plain logical disjunction (as the description logic \(\mathcal{FL} \)), and the case of disjunction arising from alternative identification of individuals (\(\mathcal{ALEN} \)). Then in Section 3.3 we present an \(\text{NP} \) lower bound stemming from AND-branching, namely a DL in which concepts have one candidate model of exponential size.

A \(\text{PSPACE} \) lower bound combining the two sources of complexity is presented in Section 3.4, and then in Section 3.5 we show how axioms can combine in a succinct way the sources of complexity, leading to \(\text{ExpTime} \)-hardness of satisfiability.

In Section 3.6 we examine one of the first undecidability results found for a DL, using the powerful construct of role-value-maps—now recognized very expressive, because of this result.

Finally, we analyze intractability arising from reasoning with individuals in ABoxes (Section 3.7), and add a final discussion about the significance of these results—beyond the initial study of theoretical complexity of reasoning—also for benchmark testing of implemented procedures.

An appendix with a (hopefully complete) list of complexity results for satisfiability and subsumption closes the chapter.
Table 3.1. Syntax and semantics of the description logic \mathcal{FL}. For \mathcal{FL}^-, omit role restriction.

<table>
<thead>
<tr>
<th>concept expressions</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept name</td>
<td>$A \subseteq \Delta^I$</td>
</tr>
<tr>
<td>concept intersection</td>
<td>$C \cap D \subseteq C^I \cap D^I$</td>
</tr>
<tr>
<td>limited exist. quant.</td>
<td>$\exists R { x \in \Delta^I \mid \exists y, (x,y) \in R^I }$</td>
</tr>
<tr>
<td>value restriction</td>
<td>$\forall R.C { x \in \Delta^I \mid \forall y, (x,y) \in R^I \rightarrow y \in C^I }$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>role expressions</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>role name</td>
<td>$P \subseteq \Delta^I \times \Delta^I$</td>
</tr>
<tr>
<td>role restriction</td>
<td>$R</td>
</tr>
</tbody>
</table>

3.2 OR-branching: finding a model

When the number of candidate models is exponential in the size of the concepts involved, a combinatorial problem is finding the right candidate model to check. In DLs, this may lead to NP-hardness of satisfiability, and coNP-hardness of subsumption.

3.2.1 Intractability in \mathcal{FL}

Brachman and Levesque [1984]; [Levesque and Brachman, 1987] were the first to point out that a slight increase in the expressiveness of a DL may result in a drastic change in the complexity of reasoning. They called this effect a “computational cliff” of structured knowledge representation languages. They considered the language \mathcal{FL}, which admits concept conjunction, universal role quantification, unqualified existential quantification, and role restriction. For readability, the syntax and semantics of \mathcal{FL} are recalled in Table 3.1.

Role restriction allows one to construct a subrole of a role R, i.e., a role whose extension is a subset of the extension of R. For example, the role $\text{child}|_{\text{male}}$ may be used for the “son-of” relation. Observe two properties of role restriction, whose proofs easily follow from the semantics in Table 3.1:

(i) for every role R, the role $R|_\top$ is equivalent to R;

(ii) for every role R, and concepts A, C, D, the concept $(\forall (R|_C).A) \cap (\forall (R|_D).A)$ is equivalent to $(\forall (R|_{(C\cup D)}).A)$.

The second property highlights that disjunction—although not explicitly present in the syntax of the language—arises from semantics.
Brachman and Levesque defined also the language \mathcal{FL}^-, derived from \mathcal{FL} by omitting role restriction. They first showed that for \mathcal{FL}^-, subsumption can be decided by a structural algorithm, with polynomial time complexity, similar to the one shown in Chapter 2. Then they showed that subsumption in \mathcal{FL} is coNP-hard, exhibiting the first “computational cliff” in description logics.

Since the original proof of coNP-hardness is somehow complex, we give here a simpler proof, found by Calvanese [1990]. The proof is based on the observation that if $C_1 \sqcup \cdots \sqcup C_n \equiv \top$, then, given a role R and a concept A, it is
\[
(\forall R|C_1).A \cap \cdots \cap (\forall R|C_n).A \equiv \text{ (from (ii))} (3.1)
\]
\[
\forall R|\top. A \equiv \text{ (from (i))} (3.2)
\]
\[
\forall R. A \equiv \text{ (3.4)}
\]
Moreover, observe that, for every role Q and every concept C, the disjunction $\exists Q \sqcup \forall Q.C$ is equivalent to the concept \top. Hence $\forall (R|\exists Q).A \cap \forall (R|\forall Q).A$ is equivalent to $\forall R. A$. These observations are the key to the reduction from tautology check of propositional 3DNF formulae to subsumption in \mathcal{FL}.

Theorem 3.2 Subsumption in \mathcal{FL} is coNP-hard.

Proof Given an alphabet of propositional variables $L = \{p_1, \ldots, p_k\}$, define a propositional formula $F = G_1 \lor \cdots \lor G_n$ in 3DNF over L, where each disjunct G_i is made of three literals $l^1_i \land l^2_i \land l^3_i$, and for every $i \in \{1, \ldots, n\}$, and $j \in \{1, 2, 3\}$, each literal l^j_i is either a variable $p \in L$, or its negation \overline{p}.

Given a set of role names $\{R, P_1, \ldots, P_n\}$ (one role P_i for each variable p_i) and a concept name A, define the concept $C_F = (\forall R|C_1).A \cap \cdots \cap (\forall R|C_n).A$ where, for each $i \in \{1, \ldots, n\}$, C_i is the conjunction of three concepts $D^1_i \land D^2_i \land D^3_i$, and each D^j_i is
\[
D^j_i = \begin{cases}
\forall P_h.A, & \text{if } l^j_i = p_h \\
\exists P_h, & \text{if } l^j_i = \overline{p_h}
\end{cases} \quad \text{for } j \in \{1, 2, 3\}, \ i \in \{1, \ldots, n\}
\]
Then the claim follows from the following lemma.

Lemma 3.3 F is a tautology if and only if $C_F \equiv \forall R.A$.

Proof The proof of the claim is straightforward; however, since it does not appear elsewhere but Calvanese’s Master thesis (in Italian), we present it here in full.

Only-if If F is a tautology, then $C_1 \sqcup \cdots \sqcup C_n \equiv \top$. This can be shown by contradiction: suppose $C_1 \sqcup \cdots \sqcup C_n$ is not equivalent to \top. Then, there exists an interpretation I in which there is an element $x \not\in C^j_i$, for every $i \in \{1, \ldots, n\}$. Since
each \(C_i = D_i^1 \cap D_i^2 \cap D_i^3 \), it follows that for each \(i \) there is a \(j \in \{1, 2, 3\} \) such that \(x \not\in D_i^j \). Define a truth assignment \(\tau \) to \(L \) as follows. For each \(h \in \{1, \ldots, k\} \),

- \(\tau(p_h) = \text{false} \) iff \(l_i^j = p_h \), and \(x \not\in D_i^j \)
- \(\tau(p_h) = \text{true} \) iff \(l_i^j = \overline{p_h} \), and \(x \not\in D_i^j \)

Observe that it cannot be both \(\tau(p_h) = \text{false} \) and \(\tau(p_h) = \text{true} \) at the same time, since this would imply both \(x \not\in \exists P_h \), and \(x \not\in \forall P_h . A \), which is impossible since \(\exists P_h \cup \forall P_h . A \equiv \top \). Evidently, \(\tau \) assigns \(\text{false} \) to at least one literal for each disjunct of \(F \), contradicting the hypothesis that \(F \) is a tautology. Therefore \(C_1 \cup \cdots \cup C_n \equiv \top \).

The claim is now implied by equivalences (3.1)–(3.4).

If \(F \) is not a tautology. Then, there exists a truth assignment \(\tau \) such that for each \(i \in \{1, \ldots, n\} \), there exists a \(j \in \{1, 2, 3\} \) such that \(\tau(l_i^j) = \text{false} \).

Define an interpretation \((\Delta^F, I^F)\), with \(\Delta^F \) containing three elements \(x, y, z \), such that \(P_h^F = (y, z) \) if \(\tau(p_h) = \text{false} \), and \(P_h^F = \emptyset \) otherwise. Moreover, let \(A^F = \emptyset \), and \(R^F = \{x, y\} \).

Observe that in this way, \(y \in (\exists P_h)^F \) iff \(\tau(p_h) = \text{false} \), and \(y \in (\forall P_h . A)^F \) iff \(\tau(p_h) = \text{true} \). This implies that \(x \not\in (\forall R . A)^F \). To prove the claim, we now show that \(x \in C_i^F \).

Observe that, for each \(i \in \{1, \ldots, n\} \), there exists a \(j \in \{1, 2, 3\} \) such that \(\tau(l_i^j) = \text{false} \). For such \(j \), we show by case analysis that \(y \not\in (D_i^j)^F \):

- if \(l_i^j = p_h \) then \(D_i^j = \forall P_h . A \), and in this case, \(\tau(p_h) = \text{false} \), hence \(y \not\in (\forall P_h . A)^F \);
- if \(l_i^j = \overline{p_h} \) then \(D_i^j = \exists P_h \), and in this case, \(\tau(p_h) = \text{true} \), hence \(y \not\in (\exists P_h)^F \).

Therefore, for every \(i \in \{1, \ldots, n\} \) it is \(y \not\in C_i^F \). This implies that \((x, y) \not\in R|_{(C_1 \cup \cdots \cup C_n)} \), hence \(x \in (\forall R|_{(C_1 \cup \cdots \cup C_n)}. A)^F \), which is a concept equivalent to \(C_F \).

The above proof shows only that subsumption in \(\mathcal{FL} \) is \text{coNP}-hard. However, role restrictions could be used also to obtain qualified existential quantification, since \(\exists R . C = \exists R|_C \). Hence, \(\mathcal{FL} \) contains also the AND-branching source of complexity. Combining the two sources of complexity, Donini et al. [1997a] proved a \text{PSPACE} lower bound for subsumption in \(\mathcal{FL} \), matching the upper bound found by Schmidt-Schauss and Smolka [1991].

3.2.2 Intractability in \(\mathcal{FL}^- \) plus qualified existential quantification and number restrictions

As shown in Chapter 2, disjunction arises also from qualified existential quantification and number restrictions. This can be easily seen examining the construction...
of the tableau checking the satisfiability of the concept

\((\exists R.A) \cap (\exists R.(-A \cap -B)) \cap (\exists R.B) \cap \leq 2 R \)

in which, once three objects are introduced to satisfy the existentials, one has to choose between three non-equivalent identifications of pairs of objects, where only one identification leads to a consistent tableau.

Remark 3.4 When a DL includes number restrictions, also negation of concept names is included for free, at least from a computational viewpoint. In fact, a concept name \(A \) and its negation \(\neg A \) can be coded as, say, \(\geq 4 R_A \) and \(\leq 3 R_A \) where \(R_A \) is a new role name introduced for \(A \). Now these two concepts obey the same axioms of \(A \) and \(\neg A \)—namely, their conjunction is \(\bot \) and their union is \(\top \). Hence, everything we say about computational properties of DLs including \(FL^- \) plus number restrictions holds also for \(AL \) plus number restrictions.

We now present a proof of intractability based on this property. The reduction was first published by Nebel [1988], who reduced the \(NP \)-complete problem of **set splitting** [Garey and Johnson, 1979, p. 221], to non-subsumption in the DL of the BACK system, which included the basic \(FL^- \) plus intersection of roles, and number restrictions. **SET SPLITTING** is the following problem:

Definition 3.5 (set splitting) Given a collection \(C \) of subsets of a basic set \(S \), decide if there exists a partition of \(S \) into two subsets \(S_1 \) and \(S_2 \) such that no subset of \(C \) is entirely contained in either \(S_1 \) or \(S_2 \).

We simplify the original reduction. We start from a variant of **set splitting** (still \(NP \)-complete) in which all \(c \in C \) have exactly three elements, and reduce it to satisfiability in \(FL^- \) plus qualified existential role quantification and number restrictions\(^1\). Since role intersection can simulate qualified existential role quantification (see next Section 3.2.2.1) this result implies the original one.

Theorem 3.6 Satisfiability in \(FL^-\mathcal{EN} \) is \(NP \)-hard.

Proof Let \(S = \{1, \ldots, n\} \), and let \(c_1, \ldots, c_k \) be the subsets of \(S \). There exists a splitting of \(S \) iff the concept \(D_1 \cap D_2 \cap D_3 \) is satisfiable, where \(D_1, D_2, D_3 \) are defined as follows:

\[
\begin{align*}
D_1 & = (\exists R.B_1 \cap \cdots \cap \exists R.B_n) \\
D_2 & = (\forall R.((\leq 2 Q_1 \cap \cdots \cap \leq 2 Q_k)) \\
D_3 & = (\leq 2 R)
\end{align*}
\]

\(^1\) From Remark 3.4, this DL has the same computational properties of \(AL\mathcal{EN} \) [Donini et al., 1997a].
where each concept B_i codes which subsets element i appears in, as follows:

$$B_i = \bigcap_{j : i \in C_j} \exists Q_j . A_i$$

and concepts A_1, \ldots, A_n are defined in such a way that they are pairwise disjoint—say, for $i \in \{1, \ldots, n\}$ let $A_i = \geq i R \cap \leq i R$. Intuitively, when tableaux rules dealing with \cap and qualified existential quantification are applied to $D_1 \cap D_2 \cap D_3(x)$, one obtains a tableau whose tree structure of individual names can be visualized as in Figure 3.1. The rest of the proof strictly follows the original one [Nebel, 1988], hence we do not present it here. The intuition is that D_3 forces to identify all y’s generated by D_1 into two successors of the root individual name x. Such identifications correspond to the sets S_1 and S_2. Then D_2 forces the split of each 3-subset, since it makes sure that neither of these successors has more than two Q_j-successors, and thus both have at least one Q_j-successor (since there are three of them).

We clarify the construction and show its relevant properties on an example.

Example 3.7 Suppose $S = \{1, 2, 3, 4\}$, and let $c_1 = \{1, 2, 4\}, c_2 = \{2, 3, 4\}, c_3 = \{1, 3, 4\}$. Applying the tableau rules of Chapter 2 to D_1, one obtains the following
tree of individual names (definitions of each \(B_i \) are expanded):

\[
D_1(x) = \begin{cases}
R(x, y_1) & B_1(y_1) \\
R(x, y_2) & B_1(y_1) \\
R(x, y_3) & B_1(y_1) \\
R(x, y_4) & B_1(y_1) \\
\end{cases} \begin{cases}
Q_1(y_1, z_{11}) & A_1(z_{11}) \\
Q_3(y_1, z_{13}) & A_1(z_{13}) \\
Q_1(y_2, z_{21}) & A_2(z_{21}) \\
Q_2(y_2, z_{22}) & A_2(z_{22}) \\
Q_2(y_3, z_{32}) & A_3(z_{32}) \\
Q_3(y_3, z_{33}) & A_3(z_{33}) \\
Q_1(y_4, z_{41}) & A_4(z_{41}) \\
Q_2(y_4, z_{42}) & A_4(z_{42}) \\
Q_3(y_4, z_{43}) & A_4(z_{43}) \\
\end{cases}
\]

where the individual names \(y_1, \ldots, y_4 \) stand for the four elements of \(S \), and each \(z_{ij} \) codes the fact that element \(i \) appears in subset \(c_j \). Because of assertions \(A_i(z_{ij}) \), no two \(z \)'s disagreeing on the first index—e.g., \(z_{32} \) and \(z_{42} \)—can be safely identified, since they must satisfy assertions on incompatible \(A \)'s. This is the same as if the constraints \(z_{ij} \neq z_{hj} \), for all \(i, h \in \{1, \ldots, |S|\} \) with \(i \neq h \), and all \(j \in \{1, \ldots, |C|\} \) were present.

Now \(D_3 \) states that \(y_1, \ldots, y_4 \) must be identified into only two individual names. Observe that identifying \(y_2, y_3, y_4 \) leads to an individual name (say, \(y_2 \)) having among others, three unidentifiable \(Q_2 \)-fillers \(z_{22}, z_{32}, z_{42} \). But \(D_2 \) states that all \(R \)-fillers of \(x \), including \(y_2 \), have no more than 2 fillers for \(Q_2 \). This rules out the identification of \(y_2, y_3, y_4 \) in the tableau. Observe that this identification corresponds to a partition of \(S \) in \(\{1\} \) and \(\{2, 3, 4\} \) which is not a solution of SET SPLITTING because the subset \(c_2 \) is not split. Following the same line of reasoning, one could prove that the only identifications of all \(R \)-fillers into two individual names, leading to a satisfiable tableau, are one-one with solutions of SET SPLITTING.

The same reduction works for non-subsumption, since \(D_1 \cap D_2 \cap D_3 \) is satisfiable iff \(D_1 \cap D_2 \) is not subsumed by \(\neg D_3 \equiv \geq 3 \ R \). This type of reduction was also applied (see [Donini et al., 1999]) to prove that subsumption in \(\mathcal{ALN} \) is co\(\text{NP} \)-hard, where \(\mathcal{ALN} \) is the DL including \(\mathcal{AL} \), number restrictions and inverse roles.

Observe that also \(\mathcal{FL}^-\mathcal{EN} \) contains the AND-branching source of complexity, since qualified existential restriction is present. With a more complex reduction from Quantified Boolean Formulae, combining the two sources of complexity, satisfiability and non-subsumption in \(\mathcal{ALEN} \) has been proved \(\text{PSPACE} \)-complete by Hemaspaandra [1999].

Note that in the above proof of intractability, pairwise disjointness of \(A_1, \ldots, A_n \) could be also expressed by conjoining \(\log n \) concept names and their negations in all possible ways. Hence, the proof needs only the concept \(\leq 2 \ R \), and when quali-
fied existentials are simulated by subroles, only \(\geq 1 R \) is used. This shows that the above proof of intractability is quite sharp: intractability raises independently of the size of the numbers involved. The computational cliff is evident if one moves to having 0 and 1 only in number restrictions, that leads to so-called functional roles—since the assertion \(\leq 1 R(x) \) forces \(R \) to be a partial function from \(x \). In that case, the tractability of a DL can be usually established, e.g., the DL of the system CLASSIC [Borgida and Patel-Schneider, 1994]. The intuitive reason for tractability of functional roles can be found in the corresponding tableau rules, which for number restrictions of the form \(\leq 1 R(x) \) become deterministic: there is no choice in identifying individuals names \(y_1, \ldots, y_k \) which are all \(R \)-fillers for \(x \), but to collapse them all into one individual.

3.2.2.1 Simulating \(\exists R.C \) with role conjunction

Donini et al. [1997a] showed that a concept \(D \) containing qualified existential role quantifications \(\exists R.C \) is satisfiable iff the concept \(\tilde{D} \) is satisfiable, where in \(\tilde{D} \) each occurrence of a concept \(\exists R.C \) is replaced by the concept \(\exists(R \cap Q_C) \cap \forall(R \cap Q_C).C \), adding \(Q_C \) as a new role name (a different \(Q_C \) for each occurrence of \(\exists R.C \), to be used nowhere else). We call \(\tilde{D} \) an \(\cap \)-simulation of \(D \) in the rest of the chapter.

The proof that the simulation is correct can be easily given by referring to tableaux.

Example 3.8 Considering the concept \(D \) below on the left, and simulating qualified existential quantifications in \(D \) by role intersections, one obtains the concept \(\tilde{D} \) on the right,

\[
D = \left\{ \begin{array}{l}
\exists R.A \cap \\
\exists R.B \cap \\
\forall R.C
\end{array} \right. \quad \tilde{D} = \left\{ \begin{array}{l}
\exists(R \cap Q_A) \cap \forall(R \cap Q_A).A \cap \\
\exists(R \cap Q_B) \cap \forall(R \cap Q_B).B \cap \\
\forall R.C
\end{array} \right.
\]

where subscripts on new role names help identifying which existential they simulate. Applying tableaux rules of Chapter 2 to \(\tilde{D}(x) \), one obtains the model

\[
\begin{align*}
R(x, y) & \quad A(y) \\
Q_A(x, y) & \quad C(y) \\
R(x, z) & \quad B(z) \\
Q_B(x, z) & \quad C(z)
\end{align*}
\]

which satisfies both concepts.

Proposition 3.9 A concept \(D \) is satisfiable iff \(\tilde{D} \) is satisfiable.

Proof The proof of the proposition follows the example. Namely, an open tableau
branch for \bar{D} is also an open tableau branch for D (ignoring assertions on new role names), and an open tableau branch for D can be transformed to an open tableau branch for \bar{D} just by adding the assertions about new role names. \hfill \Box

As observed by Nebel [1990a], an acyclic role hierarchy in a description logic can be always simulated by conjunctions of existing roles and new role names. In the above example, using two role names Q_A, Q_B and the inclusions $Q_A \sqsubseteq R$, $Q_B \sqsubseteq R$ yields the same simulation.

Applying \sqcap-simulation, one could obtain from the reduction in Theorem 3.6 the original reduction by Nebel, proving that satisfiability (and non-subsumption) in $\mathcal{ALN}(\sqcap)$ is NP-hard. Using a more complex reduction, Donini et al. [1997a] proved that satisfiability in $\mathcal{ALN}(\sqcap)$ is in fact PSPACE-complete.

3.3 AND-branching: finding a clash

When candidate models of a concept have exponential size—as for the \mathcal{ALE}-concept of Section 3.1.1.2—models cannot be guessed and checked in polynomial time. In this case, a combinatorial problem is finding the clash—if any—in the candidate model. This leads to NP-hardness of unsatisfiability and subsumption. However, for many DLs the AND-tree structure of a model is such that its traces (branches of the AND-tree) have polynomial size. A concept C is satisfiable iff there is no trace containing a clash, hence it is sufficient to guess such a trace to show that C is unsatisfiable. From this argument, Schmidt-Schauß and Smolka [1991] proved that satisfiability in \mathcal{ALE} is in coNP.

3.3.1 Intractability of satisfiability in \mathcal{ALE}

We now report a proof that satisfiability in \mathcal{ALE} is coNP-complete. The original proof was based on a polynomial-time reduction from a variant of the NP-complete problem \textsc{one-in-three 3sat} [Garey and Johnson, 1979, p. 259]. Here we present a proof based on the same idea, but with a slightly different construction, relying on a reduction from the NP-complete problem \textsc{exact cover (xc)} [Garey and Johnson, 1979, p. 221]. Such a problem is defined as follows.

Definition 3.10 (Exact cover xc) Let $U = \{u_1, \ldots, u_n\}$ be a finite set, and let \mathcal{M} be a family M_1, \ldots, M_m of subsets of U. Decide if there are q mutually disjoint subsets M_{i_1}, \ldots, M_{i_q} such that their union equals U, i.e., $M_{i_h} \cap M_{i_k} = \emptyset$ for $1 \leq h < k \leq q$, and $\bigcup_{k=1}^{q} M_{i_k} = U$. \hfill \blacksquare

The reduction consists in associating every instance of xc with an \mathcal{ALE}-concept $C_{\mathcal{M}}$, such that \mathcal{M} has an exact cover if and only if $C_{\mathcal{M}}$ is unsatisfiable. It is
important to note that, differently from the previous sections, here a solution of the \textit{NP}-complete source problem is related to a proof of the \textit{absence} of a model. In fact, exact covers of \mathcal{M} are related to those traces of $\{C_{\mathcal{M}}(x)\}$ that contain a clash, hence the certificate of a solution of an \textit{NP}-complete problem is related to a refutation in the target DL.

In the following we assume R to be a role name. We translate \mathcal{M} into the concept

$$C_{\mathcal{M}} = C_1 \cap \cdots \cap C_m \cap D_1$$

where each concept C_i^j represents a subset M_j, and is inductively defined as

$$C_i^j = \begin{cases} R.C_i^{j+1}, & \text{if either } l \leq n, u_l \in M_j \text{ or } l > n, u_{l-n} \in M_j \\ \forall R.C_i^{j+1}, & \text{if either } l \leq n, u_l \notin M_j \text{ or } l > n, u_{l-n} \notin M_j \end{cases} \quad \text{for } l \in \{1, \ldots, 2n\}$$

and by the base case $C_{2n+1} = \top$. The concept D_1 is defined by

$$D_1 = \forall R.\ldots \forall R. \bot$$

and each one of D_2, D_3, \ldots have one universal quantifier less than the previous one.

Intuitively, for every element u_l in U there are two corresponding levels $l, l+n$ in the concepts C_i^j’s, where “level” refers to the nesting of quantifiers. The element u_l is present in M_j if and only if there is an existential quantifier in the concept C_i^j at level $l+n$—which implies by construction that \exists is also at level l. The concept D_1 is designed in such a way that a clash for $\{C_{\mathcal{M}}(x)\}$ can only occur in a trace containing at least $2n+1$ individual names.

Example 3.11 Consider the following instance of xc: let $U = \{u_1, \ldots, u_3\}$, and

$$\mathcal{M} = \{M_1 = \{u_1, u_2\}, M_2 = \{u_2, u_3\}, M_3 = \{u_3\}\}$$

The corresponding \mathcal{ALE}-concept $C_{\mathcal{M}}$ is given by the conjunction of C_1^1, C_1^2, C_1^3 and D_1, defined as follows.

$$\begin{array}{c|c|c|c|c} M_1 & \iff & C_1^1 & \iff & \exists R.\exists R.\forall R.\exists R.\exists R.\forall R.\top \\
M_2 & \iff & C_1^2 & \iff & \forall R.\exists R.\forall R.\exists R.\exists R.\top \\
M_3 & \iff & C_1^3 & \iff & \forall R.\forall R.\exists R.\forall R.\forall R.\exists R.\top \\
D_1 & \iff & \forall R.\forall R.\forall R.\forall R.\forall R.\top \end{array}$$

where on the left we put the subset M_j corresponding to each C_i^j, and above the elements of U corresponding to each level of the concepts. Observe that the elements of U appear twice.
The conjunction of the above concepts is unsatisfiable if and only if the interplay of the various existential and universal quantifiers, represented by a trace, forces an individual name in the tableau for \(\{C_M(x)\}\) to belong to the extension of \(\perp\). This reduction creates a correspondence between such a trace and an exact cover of \(U\).

In order to formally characterize such a correspondence, we define the activeness of a concept in a trace. Let \(T\) be a trace and \(C\) be a concept. We say that \(C\) is active in \(T\) if \(C\) is of the form \(\exists R.D\) and there are individual names \(y, z\) such that \(T\) contains \(C(y), R(y, z),\) and \(D(z)\). Therefore, an existentially quantified concept \(\exists R.D\) is active in \(T\) if the \(\rightarrow\exists\)-rule has been applied to the assertion \(\exists R.D(y)\) in \(T\). Intuitively, if \(C^j_k\) is active in a trace of \(\{C_M(x)\}\) containing a clash, then \(u_k\) belongs to an exact cover of \(M\).

Lemma 3.12 ([Donini et al., 1992a, Lemma 3.1]) Let \(T\) be a trace of \(\{C_M(x)\}\).

(i) Suppose \(C^j_k\) is active in \(T\). Then for all \(l \in \{1, \ldots, k\}\) if the concept \(C^l_{i+1}\) is of the form \(\exists R.C^j_{i+1}\), then it is active in \(T\).

(ii) If \(T\) contains a clash, then for every \(l \in \{1, \ldots, 2n\}\) there exists exactly one \(j\) such that \(C^j_l\) is active in \(T\).

Example 3.13 The reader can gain an insight on the importance of the above properties by constructing the tableau for the concept

\[(\exists R.\forall R.\exists R.A) \cap
(\exists R.\forall R.\exists R.B) \cap
(\forall R.\exists R.\top)\]

and verifying that the trace reaching the concept \(A\) has both existentials in the first line active (and no existential of the second line), and vice versa for the trace reaching \(B\).

Example 3.14 (Example 3.11 continued) Note that in Example 3.11 the two subsets \(M_1\) and \(M_2\) form a (non-exact) cover of \(U\), and indeed, the tableau for \(\{C^1_1 \cap C^1_2 \cap D_1(x)\}\) is satisfiable. Moreover, observe the importance of the two levels. If concepts were formed by just one level, the following concepts would be unsatisfiable (choose highlighted existentials):

\[
\overline{C^1_1} = \exists R.\exists R.\forall R.\top
\overline{C^1_2} = \forall R.\exists R.\exists R.\top
\overline{D^1_1} = \forall R.\forall R.\forall R.\perp
\]

corresponding to a cover by \(M_1\) and \(M_2\) which is non-exact. The second level ensures
that once an existential is chosen, all nested existentials must be chosen too to form a trace.

Theorem 3.15 Unsatisfiability in \(\mathcal{ALE} \) is NP-hard.

Proof We show that an instance \((U, \mathcal{M}) \) of xc has an exact cover if and only if \(C_\mathcal{M} \) is unsatisfiable. Let \(\mathcal{M} = \{M_1, \ldots, M_m\} \) be a set of subsets from \(U \) and \(C_\mathcal{M} = C_1^1 \cap \ldots \cap C_m^{m_1} \cap D_1 \) be the corresponding concept. Since this proof is the base for three other ones in the chapter, we present it with some detail.

Only-if Let \(M_{i_1}, \ldots, M_{i_q} \) be an exact cover of \(U \). Let \(T \) be a trace of \(\{C_\mathcal{M}(x_1)\} \) defined inductively as follows:

\[
T_1 = \{C_1^j(x_1) \mid j \in \{1, \ldots, m\}\} \cup \{D_1(x_1)\}
\]

\[
T_{l+1} = T_l \cup \{R(x_l, x_{l+1})\} \cup \{C_{l+1}^j(x_{l+1}) \mid u_{l+1} \in M_j\} \cup \{D_{l+1}(x_{l+1})\}
\]

Obviously, \(T = T_{2n+1} \) contains a clash, because \(D_{2n+1} = \perp \). For each level \(l \) there is exactly one \(j \) such that \(C_l^j = \exists R.C_{l+1}^j \). Using this fact, one can easily show that \(T \) is a trace by induction on \(l \).

If If \(C_\mathcal{M} \) is unsatisfiable, then there exists a trace \(T \) of \(\{C_\mathcal{M}(x)\} \) such that \(T \) contains a clash. We show that the subsets in

\[
\{M_j \mid \exists l \in \{1, \ldots, n\} : C_{n+l}^j \text{ is active in } T\}
\]

form an exact cover of \(U \). First of all, since \(T \) is a trace, for every level \(l \in \{1, \ldots, 2n\} \) there exists a \(j \) such that \(C_l^j \) is active in \(T \) (second point of Lemma 3.12). Hence the union of these subsets cover \(U \).

We now prove that no two subsets overlap: in fact, suppose there are \(i, j \) such that \(M_i, M_j \) intersect non-trivially in element \(u_l \). Here we exploit the two-layered construction of \(C_\mathcal{M} \). By definition, there are \(h, k \) such that \(C_{n+h}^i \) and \(C_{n+k}^j \) are active in \(T \). Since \(u_l \) is in both \(M_i \) and \(M_j \), by construction of \(C_\mathcal{M} \) we have \(C_l^i = \exists R.C_{l+1}^i \) and \(C_l^j = \exists R.C_{l+1}^j \). From first point in Lemma 3.12, we know that \(C_l^i \) and \(C_l^j \) are both active in \(T \). Hence \(i = j \) from second point of Lemma 3.12. \(\square \)

The above reduction works also for the special case of xc in which every subset has at most three elements, which corresponds to at most six nested existential quantifications in each concept \(C_l^j \). Hence, bounding by a constant \(k \geq 6 \) the number of nested existential quantifications does not yield tractability. The original reduction from **ONE-IN-THREE 3SAT** shows that also bounding by a constant \(k \geq 3 \) the number of existentials in each level, does not yield tractability.

Simulating qualified existential quantifications in \(C_\mathcal{M} \) by role intersection (see Section 3.2.2.1), we conclude that unsatisfiability of concepts in \(\mathcal{AL}(\sqcap) - \mathcal{AL} \) plus role conjunction—is NP-hard, too.
Theorem 3.16 Satisfiability and subsumption of concepts are \(\text{NP}-\text{hard} \) in \(\mathcal{AL}(\cap) \).

We note that this source of intractability is not due to the presence of the concept \(\bot \), but to the interplay of universal and existential quantification. In fact, the above reduction works also for the description logic \(\mathcal{FL}^- \), which is \(\mathcal{FL}^- \) plus qualified existential quantification.

Theorem 3.17 Subsumption is \(\text{NP}-\text{hard} \) in \(\mathcal{FL}^- \).

Proof The proof is based on the reduction given for \(\mathcal{AL}\mathcal{E} \). The \(\mathcal{AL}\mathcal{E} \)-concept \(C_M = C_1 \cap \ldots \cap C_m \cap D_1 \) in that reduction, is unsatisfiable if and only if \(C_1 \cap \ldots \cap C_m \) is subsumed by \(\neg D_1 \). Now \(C_1 \cap \ldots \cap C_m \) is a concept in \(\mathcal{FL}^- \mathcal{E} \) and \(\neg D_1 \) can be rewritten to the equivalent concept \(E \), defined as

\[
E = \exists R \ldots \exists R \top
\]

i.e., a chain of \(2n \) qualified existential quantifications terminating with the concept \(\top \). Obviously, \(E \) is in \(\mathcal{FL}^- \mathcal{E} \), hence subsumption in \(\mathcal{FL}^- \mathcal{E} \) is \(\text{NP}-\text{hard} \).

We now use the above construction to show that in three other DLs—extending \(\mathcal{FL}^- \) with each pair of role constructs for role conjunction, role inverse, and role chain—subsumption is \(\text{NP}-\text{hard} \). The fact that reductions can be easily reused is a characteristic of DLs. It depends on the compositional semantics of constructs—hardness proofs obviously carry over to more general DLs—but also on the extensional semantics, that allows one to simulate a construct with others.

3.3.2 \(\mathcal{FL}^- \) plus role conjunction and role inverse

We abbreviate this description logic as \(\mathcal{FL}^- (\cap, -) \). We prove that \(\mathcal{FL}^- (\cap, -) \) is hard for \(\text{NP} \) with an argument similar to that for \(\mathcal{FL}^- \mathcal{E} \). One may be tempted to use \(\cap \)-simulation, defined in Section 3.2.2.1, which substitutes qualified existential quantifications with role intersections. However, a direct \(\cap \)-simulation of the concepts used in the reduction for \(\mathcal{FL}^- \mathcal{E} \) does not work. In fact, \(\cap \)-simulation preserves satisfiability, not subsumption; e.g., while \(\exists R.C \cap D \) is subsumed by \(\exists R.C \), its \(\cap \)-simulation \(\exists (R \cap Q_1) \cap \forall Q_1.C \cap D \) is not subsumed by \(\exists (R \cap Q_2) \cap \forall Q_2.C \).

To carry over the proof, it is useful a tableaux rule for role inverse:

Condition: \(T \) contains \(R(x, y) \),

where \(R \) is either a role name \(P \) or its inverse \(P^- \);

Action: \(T' = T \cup \{ R^-(y, x) \} \),

where if \(R = P^- \), then \(R^- = P \).
Theorem 3.18 Subsumption in $FL^-(\cap, \ominus)$ is NP-hard.

Proof We refer to the concept C_M defined in the reduction given for ALE. Let n be the cardinality of U in xc. First define the concept F as follows:

$$F = \forall R \ldots \forall R \exists (R^-) \ldots \exists (R^-) A$$

where A is a concept name (remind that C_M does not contain any concept name, but \top and \bot). F is a concept of $FL^-(\cap, \ominus)$.

Observe now that the ALE-concept $C_M = C_1 \cap \ldots \cap C_m \cap D_1$ is unsatisfiable if and only if $\tilde{C}_1 \cap \ldots \cap \tilde{C}_m \cap F$ is subsumed by A (where \tilde{C} is the \cap-simulation of C). In fact, the subsumption holds if and only if the complete tableau for $\{\tilde{C}_1 \cap \ldots \cap \tilde{C}_m \cap F(x), \neg A(x)\}$ contains the only possible clash $\{A(x), \neg A(x)\}$. This tableau contains a clash if and only if there is a trace of length $2n$ in the tableau, and such a trace is in one-one correspondence with the exact covers of the problem xc. Hence subsumption in $FL^-(\cap, \ominus)$ is NP-hard.

3.3.3 FL^- plus role conjunction and role chain

We abbreviate this description logic as $FL^-(\cap, \circ)$.

Theorem 3.19 Subsumption in $FL^-(\cap, \circ)$ is NP-hard.

Proof Again, we refer to the concept C_M defined in the reduction given for ALE. Observe that the ALE-concept $C_M = C_1 \cap \ldots \cap C_m \cap D_1$ is unsatisfiable if and only if $\tilde{C}_1 \cap \ldots \cap \tilde{C}_m$ is subsumed by $\neg D_1$ (again, \tilde{C} is the \cap-simulation of C). The claim holds, since $\tilde{C}_1 \cap \ldots \cap \tilde{C}_m$ is in $FL^-(\cap)$ and $\neg D_1$ can be expressed as the equivalent concept E, defined as follows:

$$G = \exists (R \circ \ldots \circ R)$$

(3.8)

Obviously, G is in $FL^-(\circ)$, hence subsumption in $FL^-(\cap, \circ)$ is NP-hard.

We note that in the above reduction, subsumption is proved intractable by using only role conjunction in the subsumee (to simulate existential quantification), and only role chain in the subsumer. We exploit this fact in the following section.

3.3.4 FL^- plus role chain and role inverse

We abbreviate this description logic as $FL^-(\circ, \ominus)$. We first show that, similarly to Section 3.2.2.1, qualified existential quantifications in a concept D can be replaced
by a combination of role chains and role inverses, obtaining a new concept \(\hat{D} \) that is satisfiable iff \(D \) does.

3.3.4.1 Simulating \(\exists R.C \) via role chains and role inverses

Donini et al. [1991b; 1999] showed that a concept \(D \) containing qualified existential role quantifications \(\exists R.C \) is satisfiable iff the concept \(\hat{D} \) is satisfiable, where in \(\hat{D} \) each occurrence of a concept \(\exists R.C \) is replaced by the concept \(\exists (R \circ Q_C) \cap \forall (R \circ Q_C \circ Q_C^{-1}).C \), adding \(Q_C \) as a new role name (a different \(Q \) for each occurrence of \(\exists R.C \), to be used nowhere else). We say that \(\hat{C} \) is a \(\circ \)-simulation of \(C \).

Also this simulation can be explained by referring to tableaux, through an example concept.

Example 3.20 Consider the concept \(D \) below on the left, and its \(\circ \)-simulation \(\hat{D} \) on the right:

\[
D = \begin{cases}
\exists R.A \cap \\
\exists R.B \cap \\
\forall R.C
\end{cases}
\]

\[
\hat{D} = \begin{cases}
\exists (R \circ Q_A) \cap \forall (R \circ Q_A \circ Q_A^{-1}).A \cap \\
\exists (R \circ Q_B) \cap \forall (R \circ Q_B \circ Q_B^{-1}).B \cap \\
\forall R.C
\end{cases}
\]

where subscripts on new role names help identifying which existential they simulate.

Applying tableau rules of Chapter 2 to \(\hat{D}(x) \), one obtains the model

\[
\begin{align*}
R(x, y) & \quad A(y) \quad Q_A(y, u_y) \\
& \quad C(y) \\
R(x, z) & \quad B(z) \quad Q_B(z, u_z) \\
& \quad C(z)
\end{align*}
\]

where subscripts on individuals \(u_y, u_z \) highlight that there is a new individual name for each individual name used to satisfy an existential quantification. That is, the number of individual names in the tableau for \(\hat{D} \) are at most twice those in the tableau for \(D \).

\[\blacksquare \]

Lemma 3.21 Let \(C \) be an \(\mathcal{ALE} \)-concept and \(\hat{C} \) its \(\circ \)-simulation. Then \(C \) is satisfiable if and only if \(\hat{C} \) is satisfiable.

Proof The proof extends the above example. In one direction, an open tableau for \(\hat{D} \) is also an open tableau for \(D \) (ignoring assertions on new role names). In the other direction, an open tableau for \(D \) can be transformed to an open tableau for \(\hat{D} \): to every role assertion \(R(x, y) \)—added to satisfy an existential \(\exists R.C \) in \(D \)—chain an assertion \(Q_C(y, u_y) \).

\[\blacksquare \]

If \(C \) is an \(\mathcal{ALE} \)-concept, its \(\circ \)-simulation \(\hat{C} \) is a concept belonging to the language \(\mathcal{ALE}(\circ, \sim) \), that is, \(\mathcal{AL} \) plus role inverses and role chains. Of course, \(\circ \)-simulations
could be defined for concepts belonging to DLs more expressive than \mathcal{ALE}. For DLs in which every concept is satisfiable (like $\mathcal{FL}^-(\circ, \neg)$) this simulation can be interesting only in subsumptions.

We can now come back to subsumption in the DL \mathcal{FL}^- plus role inverses and role chains.

Theorem 3.22 Subsumption in $\mathcal{FL}^-(\circ, \neg)$ is NP-hard.

Proof For every \mathcal{ALE}-concept C, one can compute in quadratic time an \circ-simulation \tilde{C}. For a given instance (U, \mathcal{M}) of xc, $C_{\mathcal{M}}$ is unsatisfiable iff (by Lemma 3.21) $\tilde{C}_{\mathcal{M}}$ is satisfiable iff $\tilde{C}_1 \cap \ldots \cap \tilde{C}_m$ is subsumed by $\neg D_1$. Now the subsume contains no negated concept, hence it belongs to $\mathcal{FL}^-(\circ, \neg)$. The subsumer is equivalent to the concept G in (3.8), which again is in $\mathcal{FL}^-(\circ, \neg)$. \square

3.4 Combining sources of complexity

In a DL containing both sources of complexity, one might expect to code any problem involving the exploration of polynomial-depth, rooted AND-OR graphs. The computational analog of such graphs is the class APTime (problems solved in polynomial time by an alternating Turing machine) which is equivalent to PSpace (e.g., see [Johnson, 1990, p. 98]). A well-known PSpace-complete problem is Validity of Quantified Boolean Formulae:

Definition 3.23 (Quantified Boolean Formulae QBF) Decide whether it is valid the (second-order logic) closed sentence

$$(Q_1X_1)(Q_2X_2)\cdots(Q_nX_n)[F(X_1, \ldots, X_n)]$$

where each Q_i is a quantifier (either \forall or \exists) and $F(X_1, \ldots, X_n)$ is a Boolean formula with Boolean variables X_1, \ldots, X_n. \blacksquare

The problem remains PSpace-complete if F is in 3CNF, i.e., conjunctive normal form with at most three literals per clause. We call *prefix* of the quantified formula the string of quantifiers, and *matrix* the 3CNF formula F.

This problem can be encoded in an AND-OR graph, using AND-nodes to encode \forall-quantifiers, and OR-nodes for \exists-quantifiers. In the leaves, there is the matrix F. We use this analogy to illustrate the reduction, taken from [Schmidt-Schauß and Smolka, 1991].
Without loss of generality, we assume that each clause is non-tautological, i.e., a literal and its complement do not appear both in the same clause. Let \(F = G_1 \land \cdots \land G_m \). The QBF \((Q_1 X_1) \cdots (Q_n X_n) (G_1 \land \cdots \land G_m) \) is valid iff the \(ALC \) concept

\[
C = D \sqcap C_1^1 \sqcap \ldots \sqcap C^a
\]

is satisfiable, where in \(C \) all concepts are formed using the concept name \(A \) and the atomic role name \(R \). The concept \(D \) encodes the prefix, and is of the form \(D_1 \sqcap \forall R.(D_2 \sqcap \forall R.(\ldots (D_{n-1} \sqcap \forall R.D_n) \ldots) \) where for \(i \in \{1, \ldots, n\} \) each \(D_i \) corresponds to a quantifier of the QBF in the following way:

\[
D_i = \begin{cases}
(\exists R.A) \sqcap (\exists R.\neg A), & \text{if } Q_i = \forall \\
\exists R.\top, & \text{if } Q_i = \exists
\end{cases}
\]

The concept \(C_1^i \) is obtained from the clause \(G_i \) using the concept name \(A \) when a Boolean variable occurs positively in \(G_i \), \(\neg A \) when it occurs negatively, and nesting \(l \) universal role quantifications to encode the variable \(X_l \). In detail, let \(k \) be the maximum index of all Boolean variables appearing in \(G_i \). Then, for \(l \in \{1, \ldots, (k-1)\} \) one defines

\[
C_i^l = \begin{cases}
\forall R.(A \sqcup C_{i+1}^l), & \text{if } X_l \text{ appears positively in } G_i \\
\forall R.(\neg A \sqcup C_{i+1}^l), & \text{if } X_l \text{ appears negatively in } G_i \\
\forall R.C_{i+1}^l, & \text{if } X_l \text{ does not appear in } G_i
\end{cases}
\]

and the last concept of the sequence is defined as

\[
C_k^i = \begin{cases}
\forall R.A, & \text{if } X_k \text{ appears positively in } G_i \\
\forall R.\neg A, & \text{if } X_k \text{ appears negatively in } G_i
\end{cases}
\]

It can be shown that each trace in a tableau branch for \(D \) corresponds to a truth assignment to the Boolean variables, and that all traces of a tableau branch correspond to a set of truth assignments consistent with the prefix. Therefore, Schmidt-Schauß and Smolka conclude that satisfiability in \(ALC \) is PSPACE-hard. Combining this result with the polynomial-space calculus given for \(ALCN \) in Chapter 2, one obtains that satisfiability (and subsumption) in \(ALCN \) are PSPACE-complete, and that the exponential-time behavior of the calculus cannot be improved unless PSPACE = PTIME. Satisfiability and subsumption are still in PSPACE if role conjuctions are added to \(ALCN \) [Donini et al., 1997a], or if inverse roles and transitive roles are added to \(ALC \) [Horrocks et al., 2000b].

Using \(\sqcap \) -simulations, one can use the same reduction to prove that both satisfiability and subsumption in \(ALCU(\sqcap) \) are PSPACE-hard (and thus PSPACE-complete). With a more complex reduction, Donini et al. [1991a] proved that also satisfiability in \(ALCN(\sqcap) \) is PSPACE-hard. Hemaspaandra [1999] proved that satisfiability in
\(\mathcal{ALEN}\) is \(\text{PSPACE}\)-hard using a reduction from QBF, where the prefix was coded with a concept similar to \(D\) (more precisely, similar to the concept \(D\) in Section 3.1.1.2), and the matrix was coded in a more complex way. Also \(\mathcal{FL}\) was proved \(\text{PSPACE}\)-hard in [Donini et al., 1997a]. Observe that all these DLs contain both sources of complexity.

3.4.2 A remark on reductions

Schild [1991] observed that \(\mathcal{ALC}\) is a notational variant of multi-modal logic \(\mathcal{K}\), whose satisfiability was proved \(\text{PSPACE}\)-hard by Ladner [1977], using a different reduction from QBF. This gives us the occasion to point out a characteristic of reductions from a different, pretty experimental viewpoint.

The target modal formula in Ladner’s reduction has size quadratic w.r.t. the given instance of QBF, while one can observe that the concept \(C\) in (3.9) has just linear size. From a theoretical perspective of the \(\text{PSPACE}\) reduction, this is irrelevant. However, QBF has been studied also from an experimental point of view (e.g., [Cadoli et al., 2000; Gent and Walsh, 1999]): trivial cases have been identified, easy-hard-easy patterns have been found, and one can use ratios of clauses/variables for which the probability that a random QBF is valid is around 0.5—which have been proved experimentally to contain the “hard” instances. This experimental work can be transferred in DLs, to compare the various algorithms and systems for reasoning in \(\mathcal{ALC}\). This transfer yields the benefits that

- concepts which are trivially (un)satifiable do not need to be isolated again;
- the translation of “hard” QBFs can be used to test reasoning algorithms for \(\mathcal{ALC}\);
- the performance of algorithms for \(\mathcal{ALC}\) can be compared with best known algorithms for solving QBF (see [Cadoli et al., 2000; Rintanen, 1999; Giunchiglia et al., 2001b]), and optimizations can be carried over.

However, using Ladner’s reduction to obtain “hard-to-reason” concepts, the quadratic blow-up of the reduction makes the resulting concepts soon too big to be significantly tested. Using Schmidt-Schauß and Smolka linear reduction, instead, one can use a spectrum of “hard” concepts as wide as the original instances of QBF. Thus, experimental analysis might make significant differences between (theoretically equivalent) polynomial many-one transformations used in reductions [Donini and Massacci, 2000].

3.5 Reasoning in the presence of axioms

In this section we consider the impact of axioms on reasoning. Intuitively, axioms introduce new concept expressions in every individual generated in a tableau, hence
simple arguments on termination and complexity based on the nesting of operators
do not apply. We start with a comparison with Dynamic Logic, and then we show
how axioms can encode a succinct representation of AND-OR graphs, leading to an
ExpTime lower bound.

3.5.1 Results from Propositional Dynamic Logic

Propositional Dynamic Logic (pdl) [Harel et al., 2000] is a formalism able to express
propositional properties of programs. Instead of introducing yet another logical
syntax, we will talk about pdl in terms of DLs. A precise correspondence between
DLs and pdl can be found in Chapter 5.

The counterpart of pdl in DLs is \(\mathcal{ALC}_{\text{trans}}\) [Baader, 1991], already defined in
Chapter 2. We recall that \(\mathcal{ALC}_{\text{trans}}\) is \(\mathcal{ALC}\) plus a rich set of role constructors:
union of roles, composition, and transitive closure. To be precise, pdl has also a role-
forming constructor which is role identity, and the closure of a role is the reflexive-
transitive one, denoted as \(R^*\). Reflexive-transitive closure is defined similarly to
transitive closure, but considering also every pair \((a, a)\) is in the interpretation of
\(R^*\). However, Schild [1991] showed that these are minor differences, as far as we are
concerned with computational behavior only.

pdl and \(\mathcal{ALC}_{\text{trans}}\) are relevant in this section about axioms, because using union
and transitive closure of roles, one can “internalize” axioms in a concept in the
following way [Baader, 1991; Schild, 1991]. Let \(C\) be an \(\mathcal{ALC}\) concept, \(T\) a set of
axioms of the form \(C_i \sqsubseteq D_i, i \in \{1, \ldots, m\}\). Observe that every axiom can also be
thought as a concept \(\neg C \sqcup D\) which every individual in a model must belong to.
Let \(R_1, \ldots, R_n\) be all the role names used in either \(C\) or \(T\). Then \(C\) is satisfiable
w.r.t. \(T\) iff the following concept is satisfiable:

\[
C \sqcap \forall (R_1 \sqcup \cdots \sqcup R_n)^*.(\neg C_1 \sqcup D_1) \sqcap \cdots \sqcap (\neg C_m \sqcup D_m) \tag{3.10}
\]

The key property that makes this reduction correct is the connected model property
[Streett, 1982]: if \(C\) has a model w.r.t. a set of axioms, then it has also a model in
which one element \(a \in \Delta^T\) is in \(C^T\), and for every other element \(b\) in the model,
there is a path of roles from \(a\) to \(b\).

Concept (3.10) is just a syntactic variant of a pdl expression. Hence, every upper
bound on complexity of satisfiability for pdl applies also to concept satisfiability
in \(\mathcal{ALC}\) w.r.t. axioms, including all role constructors of pdl. Namely, satisfiability
in pdl was proved to be decidable in deterministic exponential time, first by
Pratt [1979], and then by Vardi and Wolper [1986] using an embedding into tree
automata. This upper bound holds also for \(\mathcal{ALC}\) plus axioms. It is interesting to
observe that the deterministic exponential time upper bound was nontrivial; simple
nondeterministic upper bounds were proved by Fischer and Ladner [1979] for pdl.
and by Buchheit et al. [1993a] for DLs, using tableaux. Only recently a tableaux with lemmata providing a deterministic exponential upper bound has been found [Donini and Massacci, 2000].

Regarding hardness, every lower bound on reasoning in \(\mathcal{ALC}\) with axioms carries over to \(\mathcal{PDL}\). However, lower bounds for \(\mathcal{PDL}\) were already known. Fischer and Ladner [1979] proved that \(\mathcal{PDL}\) is ExpTime-hard using a reduction from Alternating Turing Machines working in polynomial space (recall that the complexity class Alternating Polynomial Space is the same as ExpTime [Johnson, 1990]). van Emde Boas [1997] proved the same result using a reduction from alternating domino games. However, both hardness proofs use a very small part of \(\mathcal{PDL}\), and in particular, transitive closure on roles appears only in one expression of the form (3.10), so that proofs could be adapted to \(\mathcal{ALC}\) concept satisfiability w.r.t. a set of inclusions, in a very simple way. Moreover, the proofs use \(\forall R.C\) to code an AND-node, and \(\exists R.C\) to code an OR-node. Hence, they follow the same intuition presented in the previous section, where we showed the correspondence between AND-OR-trees and satisfiability of \(\mathcal{ALC}\) without axioms.

Here, we want to present yet another proof, of a very different nature, that highlights the fact that concept inclusions can express a large structure in a succinct way.

3.5.2 Axioms and succinct representations of AND-OR-graphs

We now need more precise definitions about AND-OR-graphs. An AND-OR-graph is a graph in which nodes are partitioned into AND-nodes, and OR-nodes. An OR-node is reachable if one of its predecessors is reachable (as in ordinary graphs), while an AND-node is reachable only if all its predecessors are reachable.

Definition 3.24 (AND-OR-Graph Accessibility Problem (AGAP)) Given an AND-OR-graph, a set of source nodes \(S_1, \ldots, S_m\), and a target node \(T\), is \(T\) reachable from \(S_1, \ldots, S_m\)?

Let \(n\) be the number of nodes of the graph, and \(d\) (a constant) the maximum number of predecessors of a node. It is well known that AGAP can be solved in time polynomial in \(n\) (e.g., it can be reduced to Monotone Circuit Value, which is PTIME-complete [Papadimitriou, 1994]). However, AGAP becomes ExpTIME-complete when one considers its succinct version [Balcazar, 1996]. Let the out-degree of a node be bounded by a constant \(d\). Let \(C\) be a Boolean circuit with \(\log n\) inputs, and with \(1 + d \log n\) outputs; when the input of \(C\) is the binary encoding of a node \(N\), its outputs are the encodings of the type of \(N\) (AND/OR) and of the \(d\) predecessors of \(N\) (using a dummy node if the predecessors are less than \(d\)).
Definition 3.25 (Succinct AND-OR-Graph Accessibility Problem \(s(\text{agap}) \))

Given a circuit \(C \) representing an AND-OR-graph, a set of source nodes \(S_1, \ldots, S_m \), and a target node \(T \), is \(T \) reachable from \(S_1, \ldots, S_m \)?

Now, \(s(\text{agap}) \) is \text{ExpTime}-complete [Balcazar, 1996]. The intuition for this exponential blow-up in complexity is that there are many circuits which can encode graphs whose size is exponentially larger than the circuit size. This intuition applies to many other succinct representations of problems with circuits [Papadimitriou, 1994, p. 492] or with propositional formulae [Veith, 1997], yielding complete problems for high complexity classes.

We reduce \(s(\text{agap}) \) for graphs with in-degree \(d = 2 \) to unsatisfiability of an \(\mathcal{ALC} \) concept \(C \) w.r.t. a set of inclusions \(T \). Intuitively, the axioms can succinctly encode either a proof of unsatisfiability for a concept, or a model for \(C \) w.r.t. \(T \). We note that, since we are coding reachability into unsatisfiability, we will use \(\sqcap \) to code OR-nodes—a conjunction is unsatisfiable when at least one of its conjuncts does—and \(\sqcup \) to code AND-nodes.

First of all, let \(A_1, \ldots, A_{\log n} \), be a set of concept names one-one with the inputs of the circuit \(C \). Each node \(N \) in the graph is then mapped into a conjunction of \(A_s \) and their negations, denoted as \(\text{concept}(N) \), depending on the code of \(N \): if the \(i \)-th bit in the code of \(N \) is 1, use \(A_i \), if it is 0, use \(\neg A_i \). For example, if \(N \) has code 1101 then \(\text{concept}(N) \) is \(A_1 \sqcap A_2 \sqcap \neg A_3 \sqcap A_4 \).

Then, let \(B_1^1, \ldots, B_{\log n}^1 \), and \(B_1^2, \ldots, B_{\log n}^2 \) be two sets of concept names one-one with the outputs of \(C \). Conjunctions of \(B_s \) with negations code predecessor nodes.

Moreover, let two concept names \(\text{AND}, \text{OR} \), represent the type of a graph node. If \(C \) has \(k \) internal gates, we use also \(k \) concept names \(W_1, \ldots, W_k \). For each gate, we use a concept equality that mimics the Boolean formula defining the gate. E.g., if \(C \) has a \(\wedge \)-gate \(x_1 \wedge x_2 = x_3 \), we use the equality \(X_1 \sqcap X_2 = X_3 \), where the \(X_1, X_2, X_3 \) can be either concept names among \(W_1, \ldots, W_k \) denoting input/output of internal gates, or they can be some of the \(A_s \) and \(B_s \), denoting inputs/outputs of the whole circuit.

For the output of \(C \) encoding the type of the node, we use directly the two concept names \(\text{AND}, \text{OR} \) in the concept equality coding the output gate of \(C \). Moreover, to model the different interpretation of predecessors for the two type of nodes, we use the inclusions:

\[
\begin{align*}
\text{AND} & \sqsubseteq \exists R^1.\top \sqcup \exists R^2.\top \\
\text{OR} & \sqsubseteq \exists R^1.\top \sqcap \exists R^2.\top
\end{align*}
\tag{3.11}
\tag{3.12}
\]

where \(R^1 \) and \(R^2 \) are two role names (we use indexes 1,2 to parallel indexes of the \(B_s \)). Observe that concept \(\text{AND} \) implies a disjunction \(\sqcup \), and concept \(\text{OR} \) implies a conjunction \(\sqcap \). This is because we reduce reachability to unsatisfiability, as we
Complexity of Reasoning

said before. Moreover, observe that predecessors in the AND-OR-graph are coded into role successors in the target DL.

For the output of C encoding the predecessors of a node, For \(i \in \{1, \ldots, \log n\} \), we add the following inclusions:

\[
\begin{align*}
B_1^1 & \subseteq \forall R^1.A_i \\
B_1^i & \subseteq \forall R^1.A_i \\
B_2^i & \subseteq \forall R^2.A_i \\
B_2^i & \subseteq \forall R^2.A_i
\end{align*}
\]

We denote by \(T_C \) the set of all of the above axioms.

We now give an example of what the axioms imply. Suppose \(C \) computes the two predecessors 1011 and 0110 for node 1101. Then, equalities coding \(C \) force concept \((1101) = A_1 \sqcap A_2 \sqcap A_3 \sqcap A_4\) to be included in \(B_1^1 \), \(\neg B_1^2 \), \(B_1^3 \), \(B_1^4 \) (first predecessor) and \(B_2^1 \), \(B_2^2 \), \(B_2^3 \), \(\neg B_2^4 \) (second predecessor). Then inclusions (3.13)–(3.16) tell that every \(R^1\)-successor is included in \(A_1 \), \(\neg A_2 \), \(A_3 \), \(\neg A_4 \) (concept \((0110)) \). Moreover, if \(C \) computes an AND-type for node 1101, then axiom (3.11) implies that the corresponding concept is included in AND, and this implies that either an \(R^1\)-successor, or an \(R^2\)-successor exists. For OR-type nodes, both successors exist.

Theorem 3.26 Let \(C \) be a circuit, \(T \) be the target node, and \(S_1, \ldots, S_m \) be the source nodes in an instance of \(s(\text{AGAP}) \). Then \(T \) is reachable from \(S_1, \ldots, S_m \) iff concept\((T)\) is unsatisfiable in the TBox \(T_C \cup \{ \text{concept} (S_1) \sqsubseteq \bot \} \cup \cdots \cup \{ \text{concept} (S_m) \sqsubseteq \bot \} \).

Proof Most of the rationale of the proof has been informally given above. We sketch what is needed to complete the proof.

If \(T \) is reachable from \(S_1, \ldots, S_m \). We construct a model \((I, \Delta^I)\) for concept\((T)\) satisfying the axioms as follows. Let \(\Delta^I \) be the set of all nodes in the graph which are unreachable from \(S_1, \ldots, S_m \). Then, \((R^1)^I\) is the set of pairs \((a, b)\) of nodes in \(\Delta^I \), such that \(b \) is the first predecessor of \(a \), and similarly for \((R^2)^I\) (second predecessor). For \(i \in \{1, \ldots, \log n\} \), \((A_i)^I\) is the set of nodes in \(\Delta^I \) whose binary code has the \(i\)-th bit equal to 1. The interpretation of the \(B \)-s, \(W \)-s, \(\text{AND}, \text{OR} \), concepts is according to the 1-value of the circuit: node \(a \) is in their interpretation iff the output they correspond to is 1 when the code of \(a \) is the input of the circuit.

Then, \(T \in (\text{concept}(T))^I \), and moreover \((I, \Delta^I)\) satisfies by construction all axioms in \(T_C \); e.g., if an OR-node is unreachable, then both its predecessors are
unreachable, hence both predecessors are in \(\Delta^T \), and axiom (3.12) is satisfied. Similarly for an AND-node.

Only-if Let \(N \) be any node reachable from \(S_1, \ldots, S_m \), and let \(d(N) \) be the depth of the shortest hyperpath leading from \(S_1, \ldots, S_m \) to \(N \). We show by induction on \(d(N) \) that \(\text{concept}(N) \) is unsatisfiable in the TBox.

If \(d(N) = 0 \), the claim holds by construction. Let \(N \) be a reachable node, with \(d(N) = k + 1 \). If \(N \) is an OR-node, at least one of its predecessors—let it be the first predecessor, and call it \(M \)—is reachable with \(d(M) = k \). Then \(\text{concept}(M) \) is unsatisfiable by inductive hypothesis. But axiom (3.12) implies that \(\text{concept}(N) \) is included in \(\exists R_1. \top \sqcap \exists R_2. \top \), while (3.13)–(3.16) imply that \(\text{concept}(N) \) is included in \(\forall R_1. \text{concept}(M) \), that is, \(\forall R_1. \bot \). Hence, also \(\text{concept}(N) \) is unsatisfiable. A similar proof holds in case \(N \) is an AND-node.

Then, the claim holds for \(N = T \). \(\square \)

Observe that in the above proof we did not use qualified existential quantification, hence, the proof works for the sublanguage of \(\mathcal{ALC} \) called \(\mathcal{ALU} \). Now, axioms coding the circuit can be propositionally rewritten without union. Moreover, the only other axiom in which union is needed is (3.11), which could be rewritten equivalently as \(\forall R_1. \bot \sqcap \forall R_2. \bot \sqsubseteq \neg \text{OR} \), which is now in the language \(\mathcal{AL} \).

Theorem 3.27 Let \(C \) be a concept and \(T \) a set of inclusions in \(\mathcal{AL} \), with at least two role names. Deciding whether \(C \) is unsatisfiable w.r.t. \(T \) is \(\text{ExpTime} \)-hard.

The above theorem sharpens a result by Calvanese [1996b], who proved \(\text{ExpTime} \)-hardness for \(\mathcal{ALU} \). McAllester et al. [1996] proved \(\text{ExpTime} \)-hardness for a logic that includes \(\mathcal{FL}^{-E} \), and their proof can be rewritten to work with \(\mathcal{ALU} \).

We close the section with some discussion about the proof.

Remark 3.28 The above proof does not follow the correspondence used by Fischer and Ladner [1979] between AND-nodes and \(\forall R.C \) concepts on one side, and OR-nodes and \(\exists R.C \) concepts on the other side. Here, quantifications \(\exists R \) and \(\forall R.C \) were used to code predecessors in the graph, node type was coded by \(\sqcap, \sqcup \) constructors, while axioms were crucial to mimic the behavior of the circuit.

3.5.3 Syntax restrictions on axioms

In the proof, no restriction on axioms was imposed. A significant syntactic restriction is to allow one to use only concept names on the left-hand side of axioms. In this case, a dependency graph induced by the axioms of a TBox \(T \) can be constructed, whose nodes are labeled by concept names. A node \(A \) is connected to a node \(B \) if the concept name \(B \) appears (also as a subconcept) in a concept \(C \), and
$A \sqsubseteq C$ is an axiom. Then, it makes sense to distinguish between cyclic axioms, in which the dependency graph contains a cycle, and acyclic axioms.

Acyclicity is significant, because if only acyclic axioms are allowed, then reasoning in \mathcal{ALC} can be performed in PSPACE by expanding axioms when needed [Baader and Hollunder, 1991b; Calvanese, 1996b]. The only case for \mathcal{ALC} (till now) in which acyclic axioms make reasoning EXPTIME-hard is when concrete domains are also added [Lutz, 2001b].

Also sublanguages of \mathcal{ALC} can be considered. With regard to acyclic axioms in \mathcal{AL}, Buchheit et al. [1998] proved that subsumption in acyclic \mathcal{AL} TBoxes is coNP-hard, and in PSPACE. Calvanese [1996b] proved that cyclic axioms in \mathcal{AL} are PSPACE-complete, and other results for \mathcal{ALE} and \mathcal{ALU}.

A second possible restriction is to allow for axioms of the form $A \equiv C$, but in which a concept name can appear only once on the left-hand side. For axioms of this form in \mathcal{ALN}, Küsters [1998] proved that reasoning is PSPACE-complete when the TBox is cyclic, and NP-complete when it is acyclic.

3.6 Undecidability

One of the main reasons why satisfiability and subsumption in many DLs are decidable—although highly complex—is that most of the concept constructors can express only local properties about an element [Vardi, 1997; Libkin, 2000]. Let C be a concept in \mathcal{ALC}: recalling the tableaux methods in Chapter 2, an assertion $C(x)$ states properties about x, and about elements which are linked to x by a chain of at most $|C|$ role assertions. Intuitively, this implies that a constraint regarding x will not “talk about” elements which are arbitrarily far (w.r.t. role links) from x. This also means that in \mathcal{ALC}, and in many DLs, an assertion on an individual cannot state properties about a whole structure satisfying it. However, not every DL satisfies locality.

3.6.1 Undecidability of role-value-maps

The first notable non-local DL is a subset of the language of the knowledge representation system Kl-ONE, isolated by Schmidt-Schauß [1989], which we call $\mathcal{FL}^-(\circ,=)$. It contains conjunction, universal quantification, role composition, and equality role-value-maps $R = Q$. A role-value-map allows one to express concepts like “persons whose co-workers coincide with their relatives”, as it could be, e.g., a small family-based firm. Using two role names co-worker and relative, this concept would be expressed as (co-worker = relative).

The DL proved undecidable by Schmidt-Schauß used equality role-value-maps.

1 In his paper, Schmidt-Schauß used the name \mathcal{ACR}.
Table 3.2. Syntax and semantics of the description logic $\mathcal{FL}^-(\circ, \subseteq)$.

<table>
<thead>
<tr>
<th>concept expressions</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>concept name</td>
<td>$A \subseteq \Delta^T$</td>
</tr>
<tr>
<td>value restriction</td>
<td>$\forall R.C$</td>
</tr>
<tr>
<td>concept intersection</td>
<td>$C \cap D$</td>
</tr>
<tr>
<td>role-value-map</td>
<td>$R \subseteq Q$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>role expressions</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>role name</td>
<td>$P \subseteq \Delta^T \times \Delta^T$</td>
</tr>
<tr>
<td>role composition</td>
<td>$R \circ Q$</td>
</tr>
</tbody>
</table>

Here we present a simpler proof for a DL using containment role-value-maps $R \subseteq Q$. We call this DL $\mathcal{FL}^-(\circ, \subseteq)$. Clearly, $\mathcal{FL}^-(\circ, \subseteq)$ is (slightly) more expressive than $\mathcal{FL}^-(\circ, =)$, since $R = Q$ can be expressed by $(R \subseteq Q) \cap (Q \subseteq R)$, but not vice versa. Most of the original reduction is preserved, though.

Although all constructs of $\mathcal{FL}^-(\circ, \subseteq)$ have already been defined in different parts of Chapter 2, we recall for convenience their syntax and semantics in the single Table 3.2. Recall that $R \subseteq Q$ is a concept; namely, the concept of all elements whose set of fillers for role R is included in the set of fillers for role Q. To avoid many parentheses, we assume \circ has always precedence over \subseteq.

Before giving the proof that subsumption in $\mathcal{FL}^-(\circ, \subseteq)$ is undecidable, let us consider an example illustrating why $\mathcal{FL}^-(\circ, \subseteq)$ is not local.

Example 3.29 Let Q, R, S, U, V be role names. Consider whether the concept $C = \forall S.\forall U.A \cap (R \circ Q \subseteq S) \cap \forall R.(Q \circ U \subseteq V)$ is subsumed by the concept $D = \forall R.\forall Q.\forall U.B$.

The answer is no: in fact, a model satisfying C and not satisfying D is shown in Fig. 3.2. This model can be obtained trying to satisfy $\neg D = \exists R.\exists Q.\exists U.\neg B$ with individual x, y, z, w, and then adding role assertions satisfying C. Observe that a model of C cannot be a tree because of concepts like $(R \circ Q \subseteq S)$. Hence, any notion of “distance” between two individuals in a model, as number of role links connecting them, is ambiguous when a DL has role-value-maps. Moreover, the satisfaction of the assertions $(R \circ Q \subseteq S)(x)$ and $\forall S.A(x)$ in an interpretation depends on the satisfaction of the assertion $A(z)$, for every individual z connected to x via a path of role fillers that can be composed according to role-value-maps. In fact, replacing B with A in D yields a concept D' which now subsumes C—and indeed, the previous model satisfies also D'.

\[\square\]
These properties are crucial for the reduction from ground rewriting systems to subsumption in $\mathcal{FL}^{-}(\circ, \subseteq)$. For basics about rewriting systems, consult [Dershowitz and Jouannaud, 1990].

Definition 3.30 (Ground Rewriting System) Let Σ be a finite alphabet \{a, b, \ldots\}. A term w on Σ is an element of Σ^*, i.e., a finite sequence of 0 or more letters from Σ. If v, w are terms, their concatenation is a term, denoted as vw. A ground rewriting system is a finite set of rewriting rules $\rho = \{s \rightarrow t\}_{i=1, \ldots, n}$, where for every $i \in \{1, \ldots, n\}$ both s_i and t_i are terms on Σ. The rewriting relation \rightarrow induced by a set of rewriting rules ρ is the minimal relation which is reflexive, transitive, and satisfies the following conditions:

(i) if $s \rightarrow t \in \rho$ then $s \rightarrow t$;

(ii) for every letter $a \in \Sigma$, if $p \rightarrow q$ then both $ap \rightarrow aq$ and $pa \rightarrow qa$.

The rewriting problem for ground rewriting systems is: Given a set of rewriting rules ρ and two terms v, w, decide whether $v \rightarrow^* w$.

Remark 3.31 In general, a single rewriting step of a term v consists in finding a substring of v which coincides with the antecedent s of a rewriting rule $s \rightarrow t$, and then substitute t for s in v. Hence, $v \rightarrow^* w$ if there exist n terms u_1, \ldots, u_n such that $u_1 = v, u_n = w$, and for each $i \in 1..n-1$ the two terms u_i, u_{i+1} are such that for some terms p and q, it is $u_i = p$ and $s \rightarrow t \in \rho$. This proves that the term problem is recursively enumerable. However, it is semidecidable (recursively enumerable, but nonrecursive).
• for every letter a in Σ, let P_a be a role name;
• for every term w, let R_w be the composition of the role names corresponding to
 the letters of w. For example, if $w = aab$, then $R_w = P_a \circ P_a \circ P_b$.

Now for each set of rewriting rules ρ, we define the concept C_ρ as

$$C_\rho = \bigcap_{s \rightarrow t \in \rho} (R_s \subseteq R_t)$$

Let Q be a new atomic role: we define a concept C_Σ as

$$C_\Sigma = \bigcap_{a \in \Sigma} (Q \circ P_a \subseteq Q)$$

Intuitively, if a model I satisfies $C_\Sigma(x)$, then for every term w, if $(Q \circ R_w)(x, z)$ holds in I, then $Q(x, z)$ also holds, i.e., x is directly connected via Q to every other element z to which it is indirectly connected via $Q \circ R_w$.

If also $I \models \forall Q. C_\rho(x)$, then $C_\rho(z)$ holds for every such z. This is a key property of the reduction.

Remark 3.32 The two concepts $\forall Q. C_\rho$ and C_Σ are a way to internalize simple axioms in a concept. Consider a TBox $T = \{ \top \sqsubseteq C_\rho \}$ which states that every individual in a model must satisfy concept C_ρ. One could prove that in $\mathcal{FL}^{-}(\circ, \subseteq)$ a concept C is subsumed by a concept D w.r.t. T iff $C \sqcap \forall Q. C_\rho \sqcap \forall Q. C$ is subsumed by $\forall Q. D$, where the latter is plain subsumption between concept expressions.

Theorem 3.33 Subsumption in $\mathcal{FL}^{-}(\circ, \subseteq)$ is undecidable.

Let ρ be a set of rewriting rules, and v, w be two terms. Define the following two concepts:

$$C = C_\Sigma \sqcap \forall Q. C_\rho \quad (3.17)$$
$$D = \forall Q. (R_v \subseteq R_w) \quad (3.18)$$

We divide the proof in two lemmata.

Lemma 3.34 If $v \stackrel{\rho}{\rightarrow} w$ then the concept C is subsumed by D.

Proof We first prove that the claim holds for the base case of the inductive definition of \rightarrow^ρ (Condition (i) in Definition 3.30). Then, we prove the claim for the two inductive cases (Condition (ii)). Finally, we prove that the proof carries over the closure conditions. In all cases, let $s \rightarrow t \in \rho$.

Base case. The concept D is $\forall Q. (R_s \subseteq R_t)$. Observe that the concept $\forall Q. C_\rho$ is equivalent to $\bigcap_{s \rightarrow t \in \rho} \forall Q. (R_s \subseteq R_t)$. Hence, C is subsumed by D because D is one of the conjuncts of (an equivalent form of) C.

Inductive cases. For the first inductive case, let $D = \forall Q. (P_a \circ R_p \subseteq P_a \circ R_q)$, and
let the inductive hypothesis be that C is subsumed by $\forall Q.R_p \subseteq R_q$. By refutation, suppose C is not subsumed by D: then, there is a model \mathcal{I} in which both $C(x)$ and $\neg D(x)$ hold. The latter constraint implies that there is an element y such that

(i) $\mathcal{I} \models Q(x, y)$
(ii) $\mathcal{I} \models (P_a \circ R_p)(y, z)$
(iii) $\mathcal{I} \not\models (P_a \circ R_q)(y, z)$

From (ii), there is an element y' such that both $P_a(y, y')$ and $R_s(y', z)$ hold. Now from $C_{\Sigma}(x)$, it must be $\mathcal{I} \models Q(x, y')$, and from the inductive hypothesis this implies ($R_s \subseteq R_t(y')$). Then, $\mathcal{I} \models R_t(y', z)$ holds, hence $\mathcal{I} \models (P_a \circ R_t)(y, z)$, contradicting (iii).

The second inductive case is simpler, since one does not need to consider $C_{\Sigma}(x)$. The interested reader can use it as an exercise.

We conclude the proof by showing that the reduction carries over the reflexive and transitive closure of \rightarrow.

First, from the semantics in Table 3.2 follows that $R_w \subseteq R_w$ is equivalent to \top, which implies also that $D \equiv \top$. Hence the claim holds also for $w \rightarrow w$ (i.e., reflexivity).

For transitivity, the induction is easy: suppose $u \rightarrow v$ and $v \rightarrow w$: then by induction C is subsumed by D_1 and by D_2, where $D_1 = \forall Q.(R_u \subseteq R_v)$ and $D_2 = \forall Q.(R_v \subseteq R_w)$. Then C is subsumed also by $D_1 \cap D_2$ which is equivalent to $\forall Q.((R_u \subseteq R_v) \cap (R_v \subseteq R_w))$. This concept is subsumed by $\forall Q.(R_u \subseteq R_w)$, which is the claim.

We now prove the other direction of the reduction.

Lemma 3.35 If $v \nrightarrow w$, then the concept C is not subsumed by D.

Proof We give the rule to construct an infinite tableau branch T and show that it defines a model that satisfies C, and does not satisfy D. The tableau is one-one with an infinite automaton accepting the term v, and every other term v can be rewritten into. Let $v[1], \ldots, v[n]$ denote the n letters of v ($v[i]$ is the i-th letter of v).

Let x, y, z be individual names. Start from the set of assertions

$$\mathcal{T}_0 = P_{v[1]}(y, y_1), \ldots, P_{v[i+1]}(y_i, y_{i+1}), \ldots, P_{v[n]}(y_{n-1}, z)$$

Then add role assertions to \mathcal{T} following the $\rightarrow \subseteq$-rule:

Condition: there is a rewriting rule $s \rightarrow t \in \rho$

where $s = s[1] \cdots s[h]$ and $t = t[1] \cdots t[k]$;

\mathcal{T} contains $h + 1$ individuals y_0, \ldots, y_h and h assertions

$P_{s[i]}(y_{i-1}, y_i)$ for $i \in \{1, \ldots, h\}$
\(\mathcal{T} \) does not contain all assertions \(P_{i[i]}(y_0, y'_1), \ldots, P_{i[n]}(y'_{k-1}, y_h) \)

Action: \(T' = T \cup \{ P_{i[i]}(y_0, y'_1), \ldots, P_{i[n]}(y'_{k-1}, y_h) \} \)

where \(y'_1, \ldots, y'_{k-1} \) are \(k-1 \) individual names not occurring in \(T \).

Intuitively, if there is in \(T \) a path of role assertions such that \(R_u(y_0, y_h) \) holds, the \(\rightarrow_{\preceq} \)-rule adds another path such that also \(R_{\ell}(y_0, y_h) \) holds. Of course, \(T_\omega \) can have an infinite number of individuals and role assertions between them; this is reasonable, since its role paths from \(y \) to \(z \) are one-one with the possible transformations on \(v \) one can make using the rewriting rules. One can also think \(T_\omega \) as an infinite-state automaton accepting \(\sigma = \{ u \mid v \xrightarrow{\ast} u \} \).

The \(\rightarrow_{\preceq} \)-rule always adds new assertions to \(T \), and its application given some premises does not destroy other premises of application of the \(\rightarrow_{\preceq} \)-rule itself, since we keep in \(T \) all the rewritten terms. Therefore, the construction is monotonic over the \(\preceq \)-lattice of all tableaux with a countable number of individuals, and role assertions between individuals. In building \(T_\omega \), however, a *fair strategy* must be adopted. That is, if at a given stage \(T_i \) of the construction, the \(\rightarrow_{\preceq} \)-rule is applicable for individuals \(y_0, \ldots, y_h \), then for some finite \(k \), in \(T_{i+k} \) the \(\rightarrow_{\preceq} \)-rule has been applied for those premises—i.e., a possible rule application is not indefinitely deferred. This could be achieved by, e.g., inserting possible rule applications in a queue.

Proposition 3.36 Let \(T_\omega \) be constructed using the \(\rightarrow_{\preceq} \)-rule, and a fair strategy. For every term \(u = u[1] \cdots u[k] \), \(v \xrightarrow{\ast} u \) in \(T_\omega \) there are \(k-1 \) individual names \(y_1, \ldots, y_{k-1} \) and \(\omega \) assertions \(P_{u[1]}(y, y_1), \ldots, P_{u[k]}(y_{k-1}, z) \).

Proof If \(v \xrightarrow{\ast} u \), then there are a minimum finite number \(n \) of applications of rewriting rules in \(\rho \) transforming \(v \) into \(u \). By induction on such \(n \), the premises of the \(\rightarrow_{\preceq} \)-rule are fulfilled, and since \(T_\omega \) is built adopting a fair strategy, from some finite stage of its construction onwards, \(R_u(y, z) \) must hold. For the other direction, if \(R_u(y, z) \) holds in \(T_\omega \), then for each \(\rightarrow_{\preceq} \)-rule application leading to \(R_u(y, z) \) one can apply a rewriting rule to \(v \), leading to \(u \).

We can now define the model \(\mathcal{I} \) satisfying \(C \) and not satisfying \(D \). Let \(N \) be the set of individual names of \(T_\omega \). \(\mathcal{I} \) has domain \(\{ x \} \cup N \). Let \(\mathcal{I} = T_\omega \cup \{ Q(x, y) | y \in N \} \). Then \(\mathcal{I} \) satisfies \(C(x) \) straightforwardly; moreover, it does not satisfy \(D \) from Proposition 3.36.

To prove that subsumption in undecidable in the less expressive DL \(\mathcal{FL}^- (\circ, =) \), Schmidt-Schauß [1989] started from the word problem for groups. Starting from the Post correspondence problem, with a more complex construction, also Patel-Schneider [1989b] proved that subsumption is undecidable in the more expressive DL \(\mathcal{FL}^- (\circ, \preceq) \) plus role inverses, functional roles, and role restrictions.
Starting from the word problem—which is less general than the term rewriting problem, but still semidecidable—Baader [1998] showed that subsumption in $\mathcal{FL}^-(\circ, \subseteq)$ is undecidable without referring to tableaux. We report here the second part of his proof, (corresponding to Lemma 3.35) since it is quite short and elegant, and shows a different way of proving the only-if direction, namely, giving a direct definition of an infinite structure satisfying the concepts.

The word problem follows Definition 3.30, but considers the reflexive-symmetric-transitive closure $\overset{*}{\leftrightarrow}$ of rewriting rules. This is also known as the word problem for semigroups, or Thue systems. In this case, ground term and word are synonyms. Of course, $\overset{*}{\leftrightarrow}$ is an equivalence relation on words; let $[u]$ denote the $\overset{*}{\leftrightarrow}$-equivalence classes. Note that $[u] = [v]$ iff $u \overset{*}{\leftrightarrow} v$. There is a natural multiplication on these classes induced by concatenation: $[u][v] = [uv]$ (since $\overset{*}{\leftrightarrow}$ is even a congruence, this is well-defined).

Taking the equivalence classes plus one distinguished element x as domain of the model I, the roles can be interpreted as

\[
Q^I \quad = \quad \{(x, [u])| u \in \Sigma^*\} \\
(P_a)^I \quad = \quad \{([u], [ua])| a \in \Sigma, u \in \Sigma^*\}
\]

Then, it can be shown that if $v \not\overset{*}{\rightarrow} w$, then x belongs to C^I, but not to D^I as follows.

(i) x belongs to C^I: from (3.20), for every word u it is $(x, [u]) \in Q^I$ and $([u], [ua]) \in (P_a)^I$; but also from (3.19), $(x, [ua]) \in Q^I$, hence $C_{\Sigma}(x)$ is satisfied by I. Regarding $\forall Q.C_{\nu}(x)$, suppose $([u], [w]) \in (R_s)^I$, where $s \rightarrow t \in \rho$. Then $[w] = [us]$ by definition of $(P_a)^I$. Moreover, from $s \rightarrow t \in \rho$ it follows $us \overset{*}{\rightarrow} ut$, hence $[us] = [ut]$. Consequently, $([u], [w]) = ([u], [ut]) \in (R_t)^I$ from (3.20).

(ii) x does not belong to D^I: for the empty word ϵ, $[\epsilon]$ is a Q-filler of x, however $[\epsilon]$ does not satisfy the concept $R_w \subseteq R_w$. In fact, $([\epsilon], [v]) \in (R_v)^I$, but not $([\epsilon], [v]) \in (R_w)^I$ since $[w]$ is the only R_w-filler of $[\epsilon]$, but $[v] \neq [w]$ from the assumption that $v \not\overset{*}{\rightarrow} w$.

3.7 Reasoning about individuals in ABoxes

When an ABox is considered, the reasoning problem of instance check arises: Given an ABox \mathcal{A}, an individual a and a concept C, decide whether $\mathcal{A} \models C(a)$. For the instance check problem, the size of the input is formed by the size of the concept expression C plus the size of \mathcal{A}. Since the size of one input may be much larger than the other in real applications, it makes sense to distinguish the complexity
w.r.t. the two inputs—as it is usually done in databases with data complexity and query complexity [Vardi, 1982].

A common intuition [Schmolze and Lipkis, 1983] about instance check was that it could be performed via subsumption, using the so-called most specific concept (msc) method.

Definition 3.37 (most specific concepts) Let \mathcal{A} be an ABox in a given DL, and let a be an individual in \mathcal{A}. A concept C is the most specific concept of a in \mathcal{A}, written $\text{msc}(\mathcal{A}, a)$, if, for every concept D in the given DL, $\mathcal{A} \models D(a)$ implies $C \subseteq D$.

Recall from Chapter 2 a slightly different definition of msc in the realization problem: given an individual a and an ABox \mathcal{A}, find the most specific concepts C (w.r.t. subsumption) such that $\mathcal{A} \models C(a)$ [Nebel, 1990a, p. 104]. Since conjunction is always available in every DL, the two definitions are equivalent (just conjoin all specific concepts of realization in one msc).

Clearly, once $\text{msc}(\mathcal{A}, a)$ is known, to decide whether a is an instance of a concept D it should be sufficient to check whether $\text{msc}(\mathcal{A}, a)$ is subsumed by D, turning instance checking into subsumption. Moreover, when a TBox is present, off-line classification of all msc’s in the TBox may provide a way to pre-compute many instance checks, providing an on-line speed-up.

The intuition about how computing $\text{msc}(\mathcal{A}, a)$ was to gather the concepts/properties explicitly stated for a in \mathcal{A}. However, this approach is quite sensitive to the DL chosen to express $\text{msc}(\mathcal{A}, a)$ and the queries. In fact, most specific concepts can be easily computed for simple DLs, like \mathcal{AL}. However, it may not be possible when slightly more expressive languages are considered.

Example 3.38 A simple example (simplified from [Baader and Küsters, 1998]) is the ABox made just by the assertion $R(a,a)$. If \mathcal{FL}^- is used for most specific concepts and queries, then $\text{msc}(\{R(a,a)\}, a) = \exists R$. However, if qualified existential quantification is allowed for most specific concepts, then each of the concepts $\exists R, \exists R \exists R, \exists R \exists R \exists R, \ldots$, is more specific than the previous one. Using this argument, it is possible to prove that $\text{msc}(\{R(a,a)\}, a)$ has no finite representation, unless also transitive closure on roles is allowed. Using the axiom $A \sqsubseteq \exists R.A$ in an ad-hoc TBox, $\text{msc}(\{R(a,a)\}, a) = A$ for the simple ABox of this example—but this does not simplify instance check. An alternative approach would be to raise individuals in the language to express concepts, through the concept constructor $\{\ldots\}$ that enumerates the individuals belonging to it (called “one-of” in Classic). In that case, $\text{msc}(\{R(a,a)\}, a) = \exists R.\{a\}$ (see [Donini et al., 1990]). But this “solution” to instance check becomes now a problem for subsumption, which must take
The msc’s method makes an implicit assumption: to work well, the size of $msc(A,a)$ should be comparable with the size of the whole ABox, and in most cases much shorter. However, consider the DL \mathcal{ALE}, in which subsumption is in NP. Then, solving instance check by means of subsumption in polynomial space and time would imply that in instance check was in NP, too. However, suppose that we prove that instance check was hard for $coNP$. Then, solving instance check by subsumption implies that either $coNP \subseteq NP$, or $msc(A,a)$, if ever exists, has superpolynomial size w.r.t. A. The former conclusion is unlikely to hold, while the latter would make unfeasible the entire method of msc’s.

In general, this argument works whenever subsumption in a DL belongs to a complexity class C, while instance check is proved hard for a different complexity class C', for which $C' \subseteq C$ is believed to be false. We present here a proof using this argument, found by Schaerf [1993; 1994b; 1994a].

We first start with a simple example highlighting the construction.

Example 3.39 Let f, c_1, c_2, x, y, z be individuals, R, P, N be role names, and A a concept name. Let A be the following ABox, whose structure we highlight using some arrows between assertions:

$$
\begin{align*}
 & f \nearrow R(f, c_1) \nearrow P(c_1, x) \quad A(x) \\
 & R(f, c_2) \nearrow P(c_2, y) \quad N(c_2, z) \quad \neg A(z)
\end{align*}
$$

The query $\exists R. (\exists P.A \cap \exists N.\neg A)(f)$ is entailed by A. That is, one among c_1 and c_2 has its P-filler in A and its N-filler in $\neg A$. This can be verified by case analysis on y: in every model either $A(y)$ or $\neg A(y)$ must be true. For models in which $A(y)$ holds, c_2 is the R-filler of f satisfying the query; for models in which $\neg A(y)$ holds, c_1 is. Observe that if \mathcal{ALE} is used to express most specific concepts, the best approximation we can find for $msc(A, f)$, by collecting assertions along the role paths starting from f, is the concept $C = \exists R. (\exists P.A \cap \exists N.\neg A)(f)$, in which the fact that the same individual y is both the N-filler of $\exists N$ and the P-filler of $\exists P$ is lost. Indeed, C is not subsumed by the query, as one can see constructing an open tableau for $C \cap \neg \exists R. (\exists P.A \cap \exists N.\neg A)(f)$.

The above example can be extended to a proof that deciding $\mathcal{A} \models C(a)$, where C is an \mathcal{ALE}-concept, is $coNP$-hard. Observe that this is a different source of complexity w.r.t. unsatisfiability in \mathcal{ALE}. In fact, a concept C is unsatisfiable iff $\{C(a)\} \models \bot(a)$. This problem is NP-complete when C is a concept in \mathcal{ALE} (Section 3.3.1).
The source conjunctive-complete problem is the complement of 2+2-sat, which is the following problem.

Definition 3.40 (2+2-sat) Given a 4CNF propositional formula F, in which every clause has exactly two positive literals and two negative ones, decide whether F is satisfiable.

The problem 2+2-sat is a simple variant of the well-known 3-sat. Indeed, for 3-literal clauses mixing both positive and negative literals, add a fourth disjunct, constantly false; e.g., $X \lor Y \lor \neg Z$ is transformed into the 2+2-clause $X \lor Y \lor \neg Z \lor \neg true$. Unmixed clauses can be replaced by two mixed ones using a new variable (see [Schaerf, 1994a, Theorem 4.2.6]).

Given an instance of 2+2-sat $F = C_1 \land C_2 \land \cdots \land C_n$, where each clause $C_i = L_{i1}^+ \lor L_{i2}^+ \lor \neg L_{i1}^- \lor \neg L_{i2}^-$, we construct an ABox A_F as follows. A_F has one individual l for each variable L in F, one individual c_i for each clause C_i, one individual f for the whole formula F, plus two individuals true and false for the corresponding propositional constants.

The roles of A_F are Cl (for Clause), P_1, P_2 (for positive literals), N_1, N_2 (for negative literals), and the only concept name is A. Finally, A_F is given by (we group role assertions on first individual to ease reading):

$$Cl(f, c_1)$$

$$\begin{cases}
P_1(c_1, l_1^+) \\
P_2(c_1, l_2^+) \\
N_1(c_1, l_1^-) \\
N_2(c_1, l_2^-)
\end{cases}$$

$$\vdots$$

$$\begin{cases}
P_1(c_n, l_1^n) \\
P_2(c_n, l_2^n) \\
N_1(c_n, l_1^n) \\
N_2(c_n, l_2^n)
\end{cases}$$

$$A(true), \neg A(false)$$

Now let D be the following, fixed, query concept:

$$D = \exists Cl.((\exists P_1.\neg A) \land (\exists P_2.\neg A) \land (\exists N_1.A) \land (\exists N_2.A))$$

Intuitively, an individual name l is in the extension of A or $\neg A$ iff the propositional variable L is assigned true or false, respectively. Then, checking whether $A_F \models D(f)$ corresponds to checking that in every truth assignment for F there exists a clause whose positive literals are interpreted as false, and whose negative literals are interpreted as true—i.e., a clause that is not satisfied. If one applies the above idea to translate the two clauses (having just two literals each one) false $\lor \neg Y$, $Y \lor \neg true$, one obtains exactly the ABox of Example 3.39.
The correctness of this reduction was proved by Schaerf [1993; 1994a]. We report here only the concluding lemma.

Lemma 3.41 A $2+2$-CNF formula F is unsatisfiable if and only if $A_F \models D(f)$.

Hence, instance checking in \mathcal{ALE} is coNP-hard. This implies that instance check in \mathcal{ALE} cannot be efficiently solved by subsumption, unless $\text{coNP} \subseteq \text{NP}$. We remark that only the size of A_F depends on the source formula F, while D is fixed. Hence, instance checking in \mathcal{ALE} is coNP-hard with respect to knowledge base complexity—and it is also NP-hard from Section 3.3.1. The upper bound for knowledge base complexity of instance checking in \mathcal{ALE} is in Π_2^p, but it is still not known whether the problem is Π_2^p-complete. Regarding combined complexity—that is, neither the size of the ABox nor that of the query is fixed—in [Schaerf, 1994a; Donini et al., 1994b] it was proved that instance checking in \mathcal{ALE} is PSPACE-complete.

Since the above reduction makes use of negated concept names, it may seem that coNP-hardness arises from the interaction between qualified existential quantification and negated concept names. However, all it is needed are two concepts whose union covers all possible cases. We saw in Section 3.2.1 that also $\exists R$ and $\forall R.B$ have this property. Therefore, if we replace A and $\neg A$ in A_F with $\exists R$ and $\forall R.B$, respectively, (where R is a new role name and B is a new concept name), we obtain a new reduction for which Lemma 3.41 still holds. Hence, instance checking in \mathcal{FLE} (i.e., \mathcal{ALE} without negation of concept names) is coNP-hard too, thus confirming that coNP-hardness is originated by qualified existential quantification alone. In other words, intractability arises from a query language containing both qualified existential quantification, and pairs of concepts whose union is equivalent to \top. Hence, for languages containing these constructs, the msc method is not effective.

Regarding the expressivity of the language for assertions in the ABox, coNP-hardness of instance checking arises already when assertions in the ABox involve just concept and role names. However, note that a key point in the reduction is the fact that two individuals in the ABox can be linked via different role paths, as f and y were in Example 3.41.

3.8 Discussion

In this chapter we analyzed various lower bounds on the complexity of reasoning about simple concept expressions in DLs. Our presentation appealed to the intuitive notions of exploring AND-OR trees, in the special case when the tree comes out of a tableau.

We remark that an alternative approach to reasoning is to reduce it to the emptiness test for automata (e.g., [Vardi, 1996]), which has been quite successfully applied to temporal logics, and propositional logics of programs. However, till now
such techniques were used to obtain upper bounds in reasoning, while in order obtaining lower bounds one would need a way to reduce problems on automata to unsatisfiability/subsumption in DL. The only example of this reduction is [Nebel, 1990b], for a very simple DL, which we did not presented in this chapter for lack of space.

We end the chapter with a perspective on the significance of the \(\text{NP}, \text{coNP}, \) and \(\text{PSPACE} \) complexity lower bounds we presented. Present reasoning systems in DLs (see chapter in this book) can now cope with reasonable size \(\text{Exptime} \)-complete problems. Hence the computational complexity of the problems now reachable is above \(\text{PSPACE} \). However, in our opinion, for implemented systems the significance of a reduction lies not just in the theoretical lower bound obtained, but also in the reduction itself. In fact, when experimenting algorithms for subsumption, satisfiability, etc. [Baader et al., 1992a; Hustadt and Schmidt, 1997] on an implemented system, one can exploit already known “hard” cases of a source problem like 3-SAT, 2+2-SAT, SET SPLITTING, or QBF validity to obtain “hard” instances for the algorithm under test. These instances isolate the influence of each source of combinatorial explosion on the performance of the overall reasoning system, and can be used to optimize reasoning algorithms in a piecewise fashion [Horrocks and Patel-Schneider, 1999], separately for the various sources of complexity. In this respect, the issue of finding “efficient” reductions (w.r.t. the size of the resulting concepts) is still open, and can make the difference when concepts to be tested scale up (see [Donini and Massacci, 2000]).

3.9 A list of complexity results for subsumption and satisfiability

A lot of names were invented for languages of different DLs, e.g., \(\mathcal{FL} \) for Frame Language, \(\mathcal{ALC} \) for Attributive Descriptions Language with Complement, etc. Although suggestive, these names are not very explicit about which constructs are in the named language. This makes the huge mass of results about complexity of reasoning in DLs often difficult to screen by non-experts in the field. To clarify the constructs each language is equipped with, we use two lists of constructors: the first one for concept constructors, and the second one for role constructors. For example, the pair of lists \((\sqcap, \exists R, \forall R.C) \) \((\sqcap, \circ) \) denotes a language whose concept constructors are conjunction \(\sqcap \), unqualified existential quantification \(\exists R \), universal role quantification \(\forall R.C \), and whose role constructors are conjunction \(\sqcap \) and composition \(\circ \). Many combinations of concept constructors have been given a name which is now commonly used. For instance, the first list of the above example is known as \(\mathcal{FL}^- \). In these cases, we follow a syntax first proposed in [Baader and Sattler, 1996b], and write just \(\mathcal{FL}^- (\sqcap, \circ) \)—that is, \(\mathcal{FL}^- \) augmented with role conjunction...
and composition—to make it immediately recognizable also by researchers in the
field.

3.9.1 Notation
In the following catalog, satisfiability and subsumption refer to the problems with
plain concept expressions. When satisfiability and subsumption are w.r.t. a set of
axioms, we state it explicitly. Moreover, when the constructs of the DL allows one
to reduce subsumption between C and D to satisfiability of $C \sqcap \neg D$, we mention
only satisfiability.

In the lists, we tried to use the symbol of the DL construct whenever possible.
We abbreviated some constructs, however: unqualified number restrictions $\geq n R$
$\leq n R$ are denoted as $\leq R$, while qualified number restrictions $\geq n R.C$, $\leq n R.C$
are $\leq R.C$. When a construct is allowed only for names (either concept names in
the first list, or role names in the second one) we apply the construct to the word
name.

3.9.2 Subsumption in \textit{PTime}
To the best of author’s knowledge, no proof of \textit{PTime}-hardness was given for any
DL so far. Therefore the following results refer only to membership in \textit{PTime}.

- $(\sqcap, \exists R, \forall R.C)$ () known as \mathcal{FL}^{-} [Levesque and Brachman, 1987].
- $(\sqcap, \exists R, \forall R.C, \neg (\text{name}))$ () known as \mathcal{AL} [Schmidt-Schauß and Smolka, 1991]
- $(\sqcap, \exists R, \forall R.C, \leq R)$ () known as \mathcal{ALN} [Donini \textit{et al.}, 1997a]
- $\mathcal{AL}(\circ), \mathcal{AL}(\neg)$ [Donini \textit{et al.}, 1999]
- $\mathcal{FL}^{-}(\sqcap)$ [Donini \textit{et al.}, 1991a]
- $(\sqcap, \exists R.C, \{\text{individual}\}) (\sqcap, \neg)$ known as $\mathcal{ELIRO^{1}}$ [Baader \textit{et al.}, 1998b]

3.9.3 \textit{NP} and \textit{CoNP}

- $(\sqcap, \exists R.C, \forall R.C, \neg (\text{name}))$ () (known as \mathcal{ALE}) subsumption and unsatisfiability
are \textit{NP}-complete [Donini \textit{et al.}, 1992a] (see Section 3.3.1)
- $\mathcal{AL}(\sqcap), \mathcal{ALE}(\sqcap)$, and $(\sqcap, \exists R.C, \forall R.C)$ () (known as \mathcal{ALR}, \mathcal{ALER} and $\mathcal{FL}^{-}\mathcal{E}$
respectively) subsumption and unsatisfiability \textit{NP}-complete [Donini \textit{et al.}, 1997a]
(see Theorems 3.16,3.17 for hardness, and [Donini \textit{et al.}, 1992a] for membership)
- $(\sqcap, \sqcup, \exists R.C, \forall R.C, \neg (\text{name}))$ () (known as \mathcal{ALU}) subsumption and unsatisfiability
\textit{CoNP}-complete [Donini \textit{et al.}, 1997a] (see Section 3.1.1.1)
- $\mathcal{ALN}(\neg)$ subsumption is \textit{CoNP}-complete, while satisfiability is decidable in poly-
nomial time [Donini \textit{et al.}, 1999]
• $FL^-(\sqcap, \neg)$, $FL^-(\sqcap, \circ)$, and $FL^-(\circ, \neg)$ [Donini et al., 1999] (see Sections 3.3.2, 3.3.3, and 3.3.4)
• $ACL()$, satisfiability w.r.t. a set of acyclic axioms is coNP-hard [Buchheit et al., 1994a; Calvanese, 1996b; Buchheit et al., 1998] (coNP-complete for $ALE()$ [Calvanese, 1996b]).

3.9.4 PSPACE
• $(\sqcap, \sqcup, \neg, \exists R.C, \forall R.C) ()$ (known as ALC) [Schmidt-Schauß and Smolka, 1991] (see Section 3.4.1)
• $(\sqcap, \neg(name), \exists R.C, \forall R.C, \leq R) ()$ (known as $ALEN$) [Hemaspaandra, 1999]
• $FL^-(R|C)(\neg)$ (known as FL), $ALN(\sqcap)$, $ALU(\sqcap)$, $(\sqcap, \exists R.C, \forall R.C, \neg, \leq R) (\sqcap)$ (known as $ALCNR$) [Donini et al., 1997a]
• $ALC(\sqcap, \sqcup, \circ)$ satisfiability [Massacci, 2001]. Membership is nontrivial.
• $ALE()$ satisfiability w.r.t. a set of cyclic axioms is PSPACE-complete [Calvanese, 1996b].
• $ALC()$ satisfiability w.r.t. a set of cyclic axioms of the form $A \equiv C$, where each concept name A can appear only once on the left-hand side, is PSPACE-complete [Küsters, 1998].

3.9.5 ExpTime
• ACL w.r.t. a set of axioms (see Section 3.5 for hardness).
• $(\sqcap, \sqcup, \neg, \exists R.C, \forall R.C) ()$ (known as ALC_{trans} [Baader, 1991; Schild, 1991]. Membership is nontrivial, and was proved by Pratt [1979] without inverse, and by Vardi and Wolper [1986] for converse-pdl reducing the problem to emptiness of tree-automata.
• $(\sqcap, \sqcup, \neg, \exists R.C, \forall R.C, \leq name.C, \leq name^{-}.C) ()$ (known as ALC_{QI_reg} (see Chapter 5). Membership is nontrivial.
• $(\sqcap, \sqcup, \neg, \exists R.C, \forall R.C, \mu x.C[x], \{individual\})(\neg)$, where $\mu x.C[x]$ denotes the least fixpoint of x [Sattler and Vardi, 2001]. Membership is nontrivial.

3.9.6 NExpTime
• adding concrete domains (see [Baader and Hanschke, 1991a]), satisfiability in ACL w.r.t. a set of acyclic axioms, and $ACL(\neg)$ [Lutz, 2001a]
• $ACL(\sqcap, \sqcup, \neg)$ satisfiability [Lutz and Sattler, 2001]
• $(\sqcap, \sqcup, \exists R.C, \forall R.C, \{individual\}, \leq R.C) ()$ satisfiability [Tobies, 2001b]
• $(\sqcap, \sqcup, \neg, \exists R.C, \forall R.C, \leq R) (\sqcap)$ (known as ACL_{N_R}) satisfiability w.r.t. a set of axioms (only membership was proved) in [Buchheit et al., 1993a]
3.9.7 Undecidability results

- $\mathcal{FL}^- (\circ, =)$, which is a subset of the language of the knowledge representation system Kl-ONE [Schmidt-Schauß, 1989] (see Section 3.6.1 for undecidability of $\mathcal{FL}^- (\circ, \subseteq)$)
- $\mathcal{FL}^- (\circ, \subseteq, \circ)$, which is a subset of the language of the knowledge representation system Nikl [Patel-Schneider, 1989]
- $\mathcal{ALCN}(\circ, \sqcup, \neg)$ (known as U) [Schild, 1989]
- $\mathcal{ALCN}(\circ, \sqcup, \sqcap)$ satisfiability w.r.t. a set of axioms [Baader and Sattler, 1999]

Acknowledgements

I thank Franz Baader for useful and stimulating discussions on the proofs of Lemmata 3.34, 3.35, and many other comments and help. I am indebted to Maurizio Lenzerini, Daniele Nardi, Werner Nutt and Andrea Schaerf, co-authors of many papers containing results presented in this chapter. I thank also Fabio Massacci for involving me in the experimental evaluation of reasoning algorithms. Giuseppe De Giacomo wasted some time discussing automata with me, and Diego Calvanese promised to make helpful comments on an early draft; I thank them both.

The work has been supported by italian CNR (projets LAICO, DeMAnD, “Metodi di Ragionamento Automatico nella modellazione ed analisi di dominio”), and italian MURST (project MOSES).
Relationships with other Formalisms

Ulrike Sattler

Diego Calvanese

Ralf Molitor

Abstract

In this chapter, we are concerned with the relationship between Description Logics and other formalisms, regardless of whether they were designed for knowledge representation issues or not. We concentrated on those representation formalisms that either (1) had or have a strong influence on Description Logics (e.g., modal logics), (2) are closely related to Description Logics for historical reasons (e.g., semantic networks and structured inheritance networks), or (3) have similar expressive power (e.g., semantic data models). There are far more knowledge representation formalisms than those mentioned in this section. For example, “verb-centered” graphical formalisms like those introduced by Simmons [1973] are not mentioned since we believe that their relationship with Description Logics is too weak.

4.1 AI knowledge representation formalisms

In artificial intelligence (AI), various “non-logical” knowledge representation formalisms were developed, motivated by the belief that classical logic is inadequate for knowledge representation in AI applications. This belief was mainly based upon cognitive experiments carried out with human beings and the wish to have representational formalisms that are close to the representations in human brains. In this section, we will discuss some of these formalisms, namely semantic networks, frame systems, and conceptual graphs. The first two formalisms are mainly presented for historical reasons since they can be regarded as ancestors of Description Logics. In contrast, the third formalism can be regarded as a “sibling” of Description Logics since both have similar ancestors and live in the same time.
4.1.1 Semantic networks

Semantic networks originate in Quillian’s *semantic memory models* [Quillian, 1967], a graphical formalism designed to represent “word concepts” in a definitorial way, i.e., similar to the one that can be found in an encyclopedia definition. This formalism is based on labelled graphs with different kinds of edges and nodes. Besides others, Quillian’s networks allow for *subclass/superclass* edges, for *and*- and *or* edges, and for *subject/object* edges between nodes.

Following Quillian’s memory models, a great variety of semantic network formalisms were proposed; an overview of their history can be found in [Brachman, 1979]. In general, semantic networks distinguish between *concepts* (denoted by *generic nodes*) and *individuals* (denoted by *individual nodes*), and between *subclass/superclass edges* and *property edges*. Using subclass/superclass links, concepts can be organised in a specialisation hierarchy. Using property edges, properties can be associated to concepts, that is, to the individuals belonging to the concept the properties are associated with. Figure 4.1 contains a hierarchy of animals, birds, fishes, etc. Interestingly, the cognitive adequacy of this approach was proven empirically [Collins and Quillian, 1970].

The two kinds of edges interact with each other: A property is *inherited* along subclass/superclass edges—if not modified in a more specific class. For example, birds are equipped with skin because animals are equipped with skin, and birds

![Fig. 4.1. A semantic network describing animals.](image-url)
inherit this property because of the subclass/superclass edge between birds and animals. In contrast, although ostriches are birds, they do not inherit the property “can fly” from birds because this property is “modified” for ostriches.

Intuitively, it should be possible to translate subclass/superclass edges into concept definitions, for example,

\[\text{Shark} \equiv \text{Fish} \cap \text{CanBite} \cap \text{IsDangerous}. \]

According to Brachman [1985], the above translation is not always intended. Subclass/superclass edges can also be read as primitive concept definitions, that is, they impose only necessary properties but not sufficient ones. Hence the above translation might better be

\[\text{Shark} \sqsubseteq \text{Fish} \cap \text{CanBite} \cap \text{IsDangerous}. \]

Due to the lack of a precise semantics, there are even more readings of subclass/superclass edges which are discussed in Woods [1975], [1977b; 1985]. A prominent reading is the one of inheritance by default, which can be specified in different ways, thus leading to misunderstandings and to the question which of these specifications is the “right” one (see also Chapter 6).

As a consequence of this ambiguity, new formalisms mainly evolved along two lines: (1) To capture inheritance by default, various non-monotonic inheritance systems, respectively various ways of reasoning in non-monotonic inheritance systems, were investigated [Touretzky et al., 1987; 1991; Selman and Levesque, 1993]. (2) To capture the monotonic aspects of semantic networks, a new graphical formalism, structured inheritance networks, was introduced and implemented in the system KL-ONE [Brachman, 1979; Brachman and Schmolze, 1985]. It was designed to cover the declarative, monotonic aspects of semantic networks, and hence did not specify the way in which (non-monotonic multiple) inheritance was supposed to function in conflicting situations. Brachman and Schmolze [1985] argue that KL-ONE does not allow for cancellation or inheritance by default because such mechanisms would make taxonomies meaningless. Indeed, all properties of a given concept could be cancelled, so that it would fit everywhere in the taxonomy. Their proposition is to make a strict separation of default assertions and conceptual descriptions.

Brachman and Schmolze [1985], besides pointing out the computation of the taxonomy as a core system service, describe the meaning of various concept constructors that were implemented in KL-ONE, for example conjunction, universal value restrictions, role hierarchies, role-value-maps, etc. Moreover, we find a clear distinction between individuals and concepts, and between a terminological and an assertional formalism.

1 In the following, we use standard Description Logics as defined in Chapter 2.
Later [Levesque and Brachman, 1987], Kl-ONE was provided with a well-defined “Tarski-style” semantics which fixed the precise meaning of its graphical constructs and led to the definition of the first Description Logic [Levesque and Brachman, 1987], at that time also called terminological languages, concept languages, or Kl-ONE based languages. Besides giving a precise meaning to semantic networks, this formalisation allowed the investigation of inference algorithms with respect to their soundness, completeness, and computational complexity. For example, it turned out that subsumption in Kl-ONE is undecidable, mainly due to role-value-maps [Schmidt-Schauß, 1989].

4.1.2 Frame systems

Minsky [1981] introduced frame systems as an alternative to logic-oriented approaches to knowledge representation, which he thought were not adequate to “simulate common sense thinking” for various reasons. His system provides record-like data structures to represent prototypical knowledge concerning situations and objects and includes defaults, multiple perspectives, and analogies. Nowadays, semantic networks and frame systems are often viewed as the same family of formalisms. However, in standard semantic networks, properties are restricted to primitive, atomic ones, whereas, in general, properties in frame systems can be complex concepts described by frames.

One goal of the frame approach was to gather all relevant knowledge about a situation (e.g., entering a restaurant) in one object instead of distributing this knowledge across various axioms. Roughly spoken, a situation (or an object) is described in one frame. Similar to entries in a record, a frame contains slots to represent properties of the situation described by the frame. Reasoning comes in two shapes: (1) Using a “partial matching”, more specific frames are embedded into more general ones, thus giving, for example, meaning to a new situation or classifying an object as a kind of, say, bird. (2) Searching for slot fillers to collect more information concerning a specific situation. A variety of expert systems [Fikes and Kehler, 1985; Christaller et al., 1992; Gen, 1995; Flex, 1999] are based on a frame-based formalism and are further enhanced with rules, triggers, daemons, etc.

Despite the fact that frame systems were designed as an alternative to logic, the monotonic, declarative part of this formalism could be shown to be captured using first-order predicate logic [Hayes, 1977; 1979]. To our knowledge, no precise semantics could be given for the non-declarative, non-logic, or non-monotonic aspects of frame systems. Hence neither their expressive power nor the quality of the corresponding reasoning algorithms and services can be compared with other formalisms.

In the remainder of this section, we show how the monotonic part of a frame-
based knowledge base can be translated into an \textit{ALUN} TBox [Calvanese et al., 1994].\footnote{Not only the translation but also the example are by Calvanese et al. [1994].} Since there is no standard syntax for frame systems, we have chosen to use basically the notation adopted by Fikes and Kehler [1985], which is used also in the \textit{Kee} \footnote{\textit{Kee} is a trademark of Intellicorp. Note that a \textit{Kee} user does not directly specify her knowledge base in this notation, but is allowed to define frames interactively via the graphical system interface.} system.

A \textit{frame definition} is of the form $\text{Frame} : F \text{ in } \mathcal{KB} \mathcal{E} E$, where F is a \textit{frame name} and E is a \textit{frame expression}, i.e., an expression formed according to the following syntax:

$$
E \rightarrow \text{SuperClasses} : F_1, \ldots, F_h \\
\text{MemberSlot} : S_1 \\
\text{ValueClass} : H_1 \\
\text{Cardinality.Min} : m_1 \\
\text{Cardinality.Max} : n_1 \\
\ldots \\
\text{MemberSlot} : S_k \\
\text{ValueClass} : H_k \\
\text{Cardinality.Min} : m_k \\
\text{Cardinality.Max} : n_k
$$

F_i denotes a frame name, S_j denotes a slot name, m_j and n_j denote positive integers, and H_j denotes slot constraints. A \textit{slot constraint} can be specified as follows:

$$
H \rightarrow F | (\text{INTERSECTION } H_1 H_2) | (\text{UNION } H_1 H_2) | (\text{NOT } H)
$$

A \textit{frame knowledge base} \mathcal{F} is a set of frame definitions.

For example, Figure 4.2 shows a simple \textit{Kee} knowledge base describing courses in a university. Cardinality restrictions are used to impose a minimum and maximum number of students that may be enrolled in a course, and to express that each course is taught by exactly one individual. The frame \textit{AdvCourse} represents courses which enroll only graduate students, i.e., students who already have a degree. Basic courses, on the other hand, may be taught only by professors.

Hayes [1979] gives a semantics to frame definitions by translating them to first-order formulae in which frame names are translated to unary predicates, and slots are translated to binary predicates.

In order to translate frame knowledge bases to \textit{ALUN} knowledge bases, we first define the function Ψ that maps each frame expression into an \textit{ALUN} concept expression as follows: Each frame name F is mapped onto an atomic concept $\Psi(F)$,
Relationships with other Formalisms

<table>
<thead>
<tr>
<th>Frame: Course in KB University</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberSlot: enrolls</td>
</tr>
<tr>
<td>ValueClass: Student</td>
</tr>
<tr>
<td>Cardinality.Min: 2</td>
</tr>
<tr>
<td>Cardinality.Max: 30</td>
</tr>
<tr>
<td>MemberSlot: taughtby</td>
</tr>
<tr>
<td>ValueClass: (UNION GradStudent Professor)</td>
</tr>
<tr>
<td>Cardinality.Min: 1</td>
</tr>
<tr>
<td>Cardinality.Max: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame: AdvCourse in KB University</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperClasses: Course</td>
</tr>
<tr>
<td>MemberSlot: enrolls</td>
</tr>
<tr>
<td>ValueClass: (INTERSECTION GradStudent (NOT Undergrad))</td>
</tr>
<tr>
<td>Cardinality.Max: 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame: BasCourse in KB University</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperClasses: Course</td>
</tr>
<tr>
<td>MemberSlot: taughtby</td>
</tr>
<tr>
<td>ValueClass: Professor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame: Professor in KB University</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberSlot: degree</td>
</tr>
<tr>
<td>ValueClass: String</td>
</tr>
<tr>
<td>Cardinality.Min: 1</td>
</tr>
<tr>
<td>Cardinality.Max: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame: Student in KB University</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemberSlot: taughtby</td>
</tr>
<tr>
<td>ValueClass: Student</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame: GradStudent in KB University</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperClasses: Student</td>
</tr>
<tr>
<td>MemberSlot: degree</td>
</tr>
<tr>
<td>ValueClass: String</td>
</tr>
<tr>
<td>Cardinality.Min: 1</td>
</tr>
<tr>
<td>Cardinality.Max: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame: Undergrad in KB University</th>
</tr>
</thead>
<tbody>
<tr>
<td>SuperClasses: Student</td>
</tr>
</tbody>
</table>

Fig. 4.2. A Kee knowledge base.

Each slot name S onto an atomic role $\Psi(S)$, and each slot constraint H onto the corresponding Boolean combination $\Psi(H)$ of concepts. Then, every frame expression of the form

$$\text{SuperClasses} : F_1, \ldots, F_h$$
$$\text{MemberSlot} : S_1$$
$$\text{ValueClass} : H_1$$
$$\text{Cardinality.Min} : m_1$$
$$\text{Cardinality.Max} : n_1$$

$$\ldots$$
$$\text{MemberSlot} : S_k$$
$$\text{ValueClass} : H_k$$
$$\text{Cardinality.Min} : m_k$$
$$\text{Cardinality.Max} : n_k$$

Is mapped into the concept

$$\Psi(F_1) \sqcap \cdots \sqcap \Psi(F_h) \sqcap$$
$$\forall \Psi(S_1). \Psi(H_1) \sqcap \geq m_1 \Psi(S_1) \sqcap \leq n_1 \Psi(S_1) \sqcap$$
$$\ldots$$
$$\forall \Psi(S_k). \Psi(H_k) \sqcap \geq m_k \Psi(S_k) \sqcap \leq n_k \Psi(S_k).$$

Making use of the mapping Ψ, we obtain the \mathcal{ALUN} knowledge base $\Psi(\mathcal{F})$ corresponding to a frame knowledge base \mathcal{F}, by introducing in $\Psi(\mathcal{F})$ an inclusion assertion $\Psi(F) \subseteq \Psi(E)$ for each frame definition $\text{Frame} : F \text{ in KB } \mathcal{F} \ E \text{ in } \mathcal{F}$.
The \textit{ALUN} knowledge base corresponding to the Kee knowledge base given in Figure 4.2 is shown in Figure 4.3.

The correctness of the translation follows from the correspondence between the set-theoretic semantics of \textit{ALUN} and the first-order interpretation of frames [Hayes, 1979; Borgida, 1996; Donini et al., 1996b]. Consequently,

- verifying whether a frame F is satisfiable in a knowledge base and
- identifying which of the frames are more general than a given frame,

are captured by concept satisfiability and concept subsumption in \textit{ALUN} knowledge bases. Hence reasoning for the monotonic, declarative part of frame systems can be reduced to concept satisfiability and concept subsumption in \textit{ALUN} knowledge bases.

4.1.3 Conceptual graphs

Besides Description Logics, conceptual graphs [Sowa, 1984] can be viewed as descendants of frame systems and semantic networks. Conceptual graphs (CGs) are a rather popular (especially in natural language processing) and expressive formalism for representing knowledge about an application domain in a graphical way. They are given a formal semantics, e.g., by translating them into (first-order) formulae.

In the CG formalism, one is, just as for Description Logics, not only interested in representing knowledge, but also in reasoning about it. Reasoning services for CGs are, for example, deciding whether a given graph is valid, i.e., whether the corresponding formula is valid, or whether a graph g is subsumed by a graph h, i.e., whether the formula corresponding to g implies the formula corresponding to h. Since CGs can express all of first-order predicate logic [Sowa, 1984], these reasoning problems are undecidable for general CGs. In the literature [Sowa, 1984; Wermelinger, 1995; Kerdiles and Salvat, 1997] one can find complete calculi for validity of CGs, but implementations of these calculi may not terminate for formulae that are not valid. An approach to overcome this problem, which has also been
employed in the area of Description Logics, is to identify decidable fragments of the formalism. The most prominent decidable fragment of CGs is the class of simple conceptual graphs (SGs) [Sowa, 1984], which corresponds to the conjunctive, positive, and existential fragment of first-order predicate logic (i.e., existentially quantified conjunctions of atoms). Even for this simple fragment, however, subsumption is still an \textit{NP}-complete problem [Chein and Mugnier, 1992].

Although Description Logics and CGs are employed in very similar applications, precise comparisons were published, to our knowledge, only recently [Coupey and Faron, 1998; Baader et al., 1999c]. These comparisons are based on translations of CGs and Description Logic concepts into first-order formulae. It turned out that the two formalisms are quite different for several reasons:

(i) CGs are translated into closed first-order formulae, whereas Description Logic concepts are translated into formulae in one free variable;
(ii) since Description Logics use a variable-free syntax, certain identifications of variables expressed by cycles in SGs and by co-reference links in CGs cannot be expressed in Description Logics;
(iii) in contrast to CGs, most Description Logics considered in the literature only allow for unary and binary relations but not for relations of arity greater than 2;
(iv) SGs are interpreted by existential sentences, whereas almost all Description Logics considered in the literature allow for universal quantification.

Possibly as a consequence of these differences, so far no natural fragment of CGs that corresponds to a Description Logic has been identified. In the sequel, we will illustrate the main aspects of the correspondence result presented by Baader et al. [1999c], which strictly extends the one proposed by Coupey and Faron [1998].

Simple Conceptual Graphs

Simple conceptual graphs (SGs) as introduced by Sowa [1984] are the most prominent decidable fragment of CGs. They are defined with respect to a so-called support. Roughly spoken, the support is a partially ordered signature that can be used to fix the a primitive ontology of a given application domain. It introduces a set of concept types (unary predicates), a set of relation types (\(n\)-ary predicates), and a set of individual markers (constants). As an example, consider the support \(S\) shown in Figure 4.4, where \(\top\) is the most general concept type representing the entire domain. The partial ordering on the individual markers is flat, i.e., all individual markers are pairwise incomparable and the so-called generic marker \(*\) is more general than

1 Since SGs are equivalent to conjunctive queries (see also Chapter 16), the \textit{NP}-completeness of subsumption of SGs is also an immediate consequence of \textit{NP}-completeness of containment of conjunctive queries [Chandra and Merlin, 1977].
all individual markers. In this example, all relation types are assumed to have arity 2 and to be pairwise incomparable except for `hasOffspring`, which is more general than `hasChild`. The partial orderings on the types yield a fixed specialization hierarchy for these types that must be taken into account when computing subsumption relations between SGs. For binary relation types, this partial ordering resembles a role hierarchy in Description Logics.

An SG over the support \mathcal{S} is a labelled bipartite graph of the form $g = (C, R, E, \ell)$, where C is a set of concept nodes, R is a set of relation nodes, and $E \subseteq C \times R$ is the edge relation.

As an example, consider the SGs depicted in Figure 4.5: the SG g describes a woman Mary having a child who likes its grandfather Peter and who attends the computer science course number KR101; the SG h describes all mothers having a child who likes one of its grandparents.

Each concept node is labelled with a concept type (such as `Female`) and a referent, i.e., an individual marker (such as `MARY`) or the generic marker \ast. A concept node is called generic if its referent is the generic marker; otherwise, it is called individual concept node. Each relation node is labelled with a relation type r (such as `hasChild`), and its outgoing edges are labelled with indices according to the arity of r. For example, for the binary relation `hasChild`, there is one edge labelled with 1 (leading to the parent), and one edge labelled with 2 (leading to the child).

Simple graphs are given a formal semantics in first-order predicate logic (FOL) by the operator Φ [Sowa, 1984]: each generic concept node is related to a unique variable, and each individual concept node is related to its individual marker. Concept types and relation types are translated into atomic formulae, and the whole SG g is translated into the existentially closed conjunction of all atoms obtained from the nodes in g.

In our example, this operator yields

$$\Phi(g) = \exists x_1. (\text{Female}(\text{MARY}) \land \text{Human}(\text{PETER}) \land \text{Student}(x_1) \land \text{CScourse}(\text{KR101}) \land \text{hasChild}(\text{PETER, MARY}) \land \text{hasChild}(\text{MARY, } x_1) \land \text{likes}(x_1, \text{PETER}) \land \text{attends}(x_1, \text{KR101})),$$
Relationships with other Formalisms

Fig. 4.5. Two simple graphs.

1.)

Female: MARY
Student: MARY

2.)

Female: *
Student: *

3.)

Female: MARY
Student: MARY

Fig. 4.6. Expressing conjunction of concept types in SGs.

\[\Phi(h) = \exists x_0 x_1 x_2. (\text{Female}(x_0) \land \text{Human}(x_1) \land \text{Human}(x_2) \land \text{hasChild}(x_1, x_0) \land \text{hasChild}(x_0, x_2) \land \text{likes}(x_2, x_1)) , \]

where \(x_1 \) in \(\Phi(g) \) is (resp. \(x_0, x_1, \) and \(x_2 \) in \(\Phi(h) \) are) introduced for the generic concept node \(c_2 \) (resp. the generic concept nodes \(d_0, d_1, \) and \(d_2 \)).

In general, there are three different ways of expressing conjunction of concept types. For example, suppose we want to express that Mary is both female and a student. This can be expressed by a SG containing one individual concept node for each statement (see Figure 4.6, 1.).\(^1\) A second possibility is to introduce a new concept type in the support for a common specialization of Female(MARY) and Student(MARY) (see Figure 4.6, 2.). Finally, such a conjunction can be represented by labelling the corresponding concept node with a set of concept types instead of a single concept type (see Figure 4.6, 3.; for details on how to handle SGs labelled with sets of concept types see [Baader et al., 1999c]).

Subsumption with respect to a support \(S \) for two SGs \(g, h \) is defined by a so-called projection from \(h \) to \(g \) [Sowa, 1984; Chein and Mugnier, 1992]: \(g \) is subsumed by \(h \) w.r.t. \(S \) iff there exists a mapping from \(h \) to \(g \) that (1) maps concept nodes

\(^1\) Note that this solution cannot be applied if the individual marker MARY were substituted by the generic marker *, because the two resulting generic concept nodes would be interpreted by different variables.
(resp. relation nodes) in h onto more specific (w.r.t. the partial ordering in S) concept nodes (resp. relation nodes) in g and that (2) preserves adjacency.

In our example (Figure 4.5), it is easy to see that g is subsumed by h, since mapping d_i onto c_i for $0 \leq i \leq 2$ yields a projection w.r.t. S from h to g.

Subsumption for SGs is an NP-complete problem [Chein and Mugnier, 1992]. In the restricted case where the subsumer h is a tree, subsumption can be decided in polynomial time [Mugnier and Chein, 1992].

Concept Descriptions and Simple Graphs

In order to determine a Description Logic corresponding to (a fragment of) SGs, one must take into account the differences between Description Logics and CGs mentioned before.

- Most Description Logics only allow for role terms corresponding to binary relations and for concept descriptions describing connected structures. Thus, Baader *et al.* [1999c] and Coupey and Faron [1998] restrict their attention to connected SGs over a support S containing only unary and binary relation types.
- Due to the different semantics of SGs and concept descriptions (closed formulae vs. formulae in one free variable), Coupey and Faron restrict their attention to SGs that are trees. Baader *et al.* introduce so-called rooted SGs, i.e., SGs that have one distinguished node called the root. An adaption of the operator Φ yields a translation of a rooted SG g into a FO formula $\Phi(g)(x_0)$ with one free variable x_0.
- Since all Description Logics considered in the literature allow for conjunction of concepts, Baader *et al.* allow for concept nodes labelled with a set of concept types instead of a single concept type in order to express conjunction of atomic concepts in SGs. Coupey and Faron avoid the problem of expressing conjunction of atomic concepts: they just do not allow for (1) conjunctions of atomic concepts in concept descriptions, and (2) for individual concept nodes in SGs.

 The Description Logic considered by Baader *et al.*, denoted by \mathcal{ELTRO}_1, allows for existential restrictions and intersection of concept descriptions (\mathcal{EL}), inverse roles (\mathcal{I}), intersection of roles (\mathcal{R}), and unary one-of concepts (\mathcal{O}_1). For the constants occurring in the one-of concepts the unique name assumption applies, i.e., all constants are interpreted as different objects. Coupey and Faron only consider a fragment of the Description Logic \mathcal{ELT}.

 In both papers, the correspondence result is based on translating concept descriptions into syntax trees. For example, consider the \mathcal{ELTRO}_1-concept

\[
C = \text{Female} \sqcap \exists \text{hasChild}^{-}.(\text{Human} \sqcap \{\text{PETER}\}) \sqcap \exists(\text{hasChild} \sqcap \text{likes}).(\text{Male} \sqcap \text{Student} \sqcap \exists \text{attends.CCourse})
\]
describing all daughters of Peter who have a dear child that is a student attending a computer science course. The syntax tree corresponding to C is depicted on the left hand side of Figure 4.7.

One can show [Baader et al., 1999c] that, if concept descriptions C are restricted to contain at most one unary one-of concept in each conjunction, the corresponding syntax tree T_C can be easily translated into an equivalent rooted SG g_C that is a tree1 (see Figure 4.7). Conversely, every rooted SG g that is a tree and that contains only binary relation types can be translated into an equivalent \mathcal{ELTRO}_1-concept description C_g. There are, however, rooted SGs that can be translated into equivalent \mathcal{ELTRO}_1-concept descriptions though they are not trees. For example, the rooted SG g depicted in Figure 4.5 is equivalent to the concept description

$$C_g = \{\text{MARY}\} \sqcap \text{Female} \sqcap \exists \text{hasChild}^- . (\text{Human} \sqcap \{\text{PETER}\}) \sqcap$$

$$\exists \text{hasChild}. (\text{Student} \sqcap \exists \text{attends}. (\{\text{KR101}\} \sqcap \text{Ccourse}) \sqcap \exists \text{likes}. \{\text{PETER}\})$$

In general, the above correspondence result can be strengthened as follows [Baader et al., 1999c]: Every rooted SG g containing only binary relation types can be transformed into an equivalent rooted SG that is a tree if each cycle in g with more than 2 concept nodes contains at least one individual concept node. Hence, each such rooted SG can be translated into an equivalent \mathcal{ELTRO}_1-concept description.

Note that the SG h with root d_0 in Figure 4.5 cannot be translated into an equivalent \mathcal{ELTRO}_1-concept description C_h because, in \mathcal{ELTRO}_1, one cannot express that the grandparent (represented by the concept node d_1) and the human liked by the child (represented by the concept node d_2) must be the same person.

The correspondence result between \mathcal{ELTRO}_1 and rooted SGs allows for transferring the tractability result for subsumption between SGs that are trees to \mathcal{ELTRO}_1. Furthermore, the characterization of subsumption based on projections between graphs was adapted to \mathcal{ELTRO}_1 and other Description Logics, e.g., \mathcal{ALE}, and is

1 In this context, a tree may contain more than one relation between two adjacent concept nodes.
used in the context of inference problems like matching and computing least common subsumers [Baader and Küsters, 1999; Baader et al., 1999b]. Conversely, the correspondence result can be used as a basis for determining more expressive fragments of conceptual graphs, for which validity and subsumption is decidable. Based on an appropriate characterization of a fragment of conceptual graphs corresponding to a more expressive Description Logic (like \mathcal{ALC}), one could use algorithms for these Description Logics to decide validity or subsumption of graphs in this fragment.

4.2 Logical formalisms

In this section, we will investigate the relationship between Description Logics and other logical formalisms.

Traditionally, the semantics of Description Logics is given in a Tarski-style model-theoretic way. Alternatively, it can be given by a translation into predicate logic, where it depends on the Description Logic whether this translation yields first order formulae or whether it goes beyond first order, as it is the case for Description Logics that allow, e.g., for the transitive closure of roles or fixpoints. Due to the variable-free syntax of Description Logics and the fact that concepts denote sets of individuals, the translation of concepts yields formulae in one free variable. Following the definition by Borgida [1996], a concept C and its translation $\pi(C)(x)$ are said to be equivalent if and only if, for all interpretations $\mathcal{I} = (\Delta, \cdot)$ and all $a \in \Delta$, we have

$$a \in C \iff \mathcal{I}(\pi(C)(a)).$$

A Description Logic \mathcal{DL} is said to be less expressive than a logic \mathcal{L} if there is a translation that translates all \mathcal{DL}-concepts into equivalent \mathcal{L} formulae. Such a translation is called preserving.

Please note that there are various other ways in which equivalence of formulae and logics being “less expressive than” others could have been defined [Baader, 1996a; Kurtonina and de Rijke, 1997; Areces and de Rijke, 1998]. For example, a less strict definition is the one that only asks the translation to be satisfiability preserving.

To start with, we give a translation π that translates \mathcal{ALC}-concepts into predicate logic and which will be useful in the remainder of this section. For those familiar with modal logics, please note that this translation parallels the one from propositional modal logic [van Benthem, 1983; 1984]; the close relationship between modal logic and Description Logic will be discussed in Section 4.2.2. For \mathcal{ALC}, the translation of concepts into predicate logic formulae can be defined in such a way that the resulting formulae involve only two variables, say x, y, and only unary and binary

\[1\] In the following, we view interpretations both as Description Logic and predicate logic interpretations.
predicates. In the following, \mathcal{L}^k denotes the first order predicate logic over unary and binary predicates with k variables.

The translation is given by two mappings π_x and π_y from \mathcal{ALC}-concepts into \mathcal{L}^2 formulae in one free variable. Each concept name A is also viewed as a unary predicate symbol, and each role name R is viewed as a binary predicate symbol. For \mathcal{ALC}-concepts, the translation is inductively defined as follows:

$$
\begin{align*}
\pi_x(A) &= A(x), \\
\pi_x(C \cap D) &= \pi_x(C) \land \pi_x(D), \\
\pi_x(C \cup D) &= \pi_x(C) \lor \pi_x(D), \\
\pi_x(\exists R.C) &= \exists y. R(x, y) \land \pi_y(C), \\
\pi_x(\forall R.C) &= \forall y. R(x, y) \supset \pi_y(C).
\end{align*}
$$

Other concept and role constructors that can easily be translated into first order predicate logic without involving more than two variables are inverse roles, conjunction, disjunction, and negation on roles, and one-of1.

If a Description Logic allows for number restrictions $\geq n R$, $\leq n R$, the translation either involves counting quantifiers $\exists^{\geq n}$, $\exists^{\leq n}$ (and still involves only two variables) or equality (and involves an unbounded number of variables):

$$
\begin{align*}
\pi_x(\geq n R) &= \exists^{\geq n} y. R(x, y) = \exists y_1, \ldots, y_n. \bigwedge_{i \neq j} y_i \neq y_j \land \bigwedge_i R(x, y_i), \\
\pi_x(\leq n R) &= \exists^{\leq n} y. R(x, y) = \forall y_1, \ldots, y_{n+1}. \bigwedge_{i \neq j} y_i \neq y_j \lor \bigvee_i \neg R(x, y_i).
\end{align*}
$$

For qualified number restrictions, the translations can easily be modified with the same consequence on the number of variables involved.

So far, all Description Logics were less expressive than first order predicate logic (possibly with equality or counting quantifiers). In contrast, the expressive power of a Description Logic including the transitive closure of roles goes beyond first order logic: First, it is easy to see that expressing transitivity $(\rho^+(x, y) \land \rho^+(y, z)) \supset \rho^+(x, z)$ involves at least three variables. To express that a relation ρ^+ is the transitive closure of ρ, we first need to enforce that ρ^+ is a transitive relation including ρ—which can easily be axiomatized in first order predicate logic. Secondly, we must enforce that ρ^+ is the smallest transitive relation including ρ—which, as a consequence of the Compactness Theorem, cannot be expressed in first order logic.

Internalisation of Knowledge Bases: So far, we were concerned with preserving translations of concepts into logical formulae, and thus could reduce satisfiability of concepts to satisfiability of formulae in the target logic. In Description Logics, however, we are also concerned with concept consistency and logical implication w.r.t. a TBox, and with ABox consistency w.r.t. a TBox.

Furthermore, TBoxes differ in whether they are restricted to be acyclic, allow for

1 In this case, the translation is to \mathcal{L}^2 with constants.
cyclic definitions, or allow for general concept inclusion axioms (see Chapter 2 for
details). In first order logic, the equivalent to a TBox assertion is simply a uni-
versally quantified formula, and thus it is not necessary to make the above men-
tioned distinction between, for example, pure concept satisfiability and satis-
fiability with respect to a TBox—provided that cyclic TBoxes are read with descripti-
ve semantics [Baader, 1990a; Nebel, 1991] (cyclic TBoxes read with least or greatest fix-
point semantics go beyond the expressive power of first order predicate logic). In the fol-
lowing, we consider only the most expressive form of TBoxes, namely those allowing
for general concept inclusion axioms. Given a preserving translation \(\pi \) from Descrip-
tion Logic concepts into first order formulae and a TBox
\[
T = \{ C_i \sqsubseteq D_i \mid 1 \leq i \leq n \},
\]
we define
\[
\pi(T) = \forall x. \bigwedge_{i=1}^{n} (\pi_x(C_i) \supset \pi_x(D_i)).
\]
Then it is easy to show that

- a concept \(C \) is satisfiable with respect to \(T \) iff the formula \(\pi_x(C) \land \pi(T) \) is
 satisfiable.
- a concept \(C \) is subsumed by a concept \(D \) with respect to \(T \) iff the formula \(\pi_x(C) \land
 \neg \pi_x(D) \land \pi(T) \) is unsatisfiable.
- given two index sets \(I, J \), an ABox \(\{ R_k(a_i, a_j) \mid \langle i, j, k \rangle \in I \} \cup \{ C_j(a_i) \mid \langle i, j \rangle \in J \} \)
 is consistent with \(T \) iff the formula
\[
\bigwedge_{\langle i,j,k \rangle \in I} R_k(a_i, a_j) \land \bigwedge_{\langle i,j \rangle \in J} \pi_x(C_j)(a_i) \land \pi(T)
\]
is satisfiable, where the \(a_i \)-s in the formula are constants corresponding to the
individuals in the ABox.

Observe that, if all concepts in a TBox \(T \) can be translated to \(\mathcal{L}^2 \) (resp. \(\mathcal{C}^2 \)), then
the translation \(\pi(T) \) of \(T \) is also a formula of \(\mathcal{L}^2 \) (resp. \(\mathcal{C}^2 \)).

Hence in first order logic, reasoning with respect to a knowledge base (consisting
of a TBox and possibly an ABox) is not more complex than reasoning about concept
expressions alone—in contrast to the complexity of reasoning for most Description
Logics, where considering even acyclic TBoxes can make a considerable difference
(for example, see [Calvanese, 1996b; Lutz, 1999a]). This gap is not surprising since
first order predicate logic is far more complex than most Description Logics, namely
undecidable.

In the following, we investigate logics that are more closely related to Descrip-
tion Logics, namely restricted variable fragments, modal logics, and the guarded
fragment.
4.2.1 Restricted variable fragments

One possibility to define decidable fragments of first-order logic is to restrict the set of variables which are allowed inside formulae and the arity of relation symbols. As mentioned in the previous section, we use \mathcal{L}^k to denote first order predicate logic over unary and binary predicates with at most k variables. Analogously, \mathcal{C}^k denotes first order predicate logic over unary and binary predicates with at most k variables and counting quantifiers $\exists \geq n$, $\exists \leq n$.

With the exception of the Description Logics introduced by Calvanese et al. [1998a] and Lutz et al. [1999], the translation of Description Logic concepts into predicate logic formulae involves predicates of arity at most 2.

From the translations in the previous section, it follows immediately that

- \mathcal{ALCR} is less expressive than \mathcal{L}^2 and that
- \mathcal{ALCNR} is less expressive than \mathcal{C}^2.

As we have shown above, general TBox assertions can be translated into \mathcal{L}^2 formulae. These facts together with the linearity of the translation yields upper bounds for the complexity of \mathcal{ALCR} and \mathcal{ALCNR} (even though these bounds are far from being tight): \mathcal{L}^2 and \mathcal{C}^2 are known to be NExpTime-complete [Grädel et al., 1997a; Pacholski et al., 2000] (for \mathcal{C}^2, this is true only if numbers in counting quantifiers are assumed to be coded in unary, an assumption often made in Description Logics), hence satisfiability and subsumption with respect to a (possibly cyclic) TBox are in NExpTime for \mathcal{ALCR} and \mathcal{ALCNR}.

However, both \mathcal{L}^2 and \mathcal{C}^2 are far more expressive than \mathcal{ALCR} and \mathcal{ALCNR}, respectively. For example, both logics allow for the negation of binary predicates, i.e., subformulae of the form $\neg R(x, y)$. In Description Logics, this corresponds to negation of roles, an operator that is rarely considered in Description Logics, except in the weakened form of difference [De Giacomo, 1995; Calvanese et al., 1998a] (Exceptions are the work by Mameide and Montero [1993] and Lutz and Sattler [2000b], which deal with genuine negation of roles). Moreover, \mathcal{L}^2 and \mathcal{C}^2 allow for “global” quantification, e.g., for formulae of the form $\exists x. \Phi(x)$ or $\forall x. \Psi(x)$ that talk about the whole interpretation domain. In contrast, quantification in Description Logics is, in general, “local”, e.g., concepts of the form $\forall R.C$ only constrain all R-successors of an individual.

Borgida [1996] presents a variety of results stating that a certain Description Logic is less than or as expressive as a certain fragment of first order logic. We mention only the most important ones:

- \mathcal{ALC} extended with

1 Difference of roles is easier to deal with than genuine negation, since it does not destroy “locality” of quantification.
(role constructors) full Boolean operators on roles, inverse roles, cross-product of two concepts, an identity role \(id \), and
(concept constructors) individuals (“one-of”),
is as expressive as \(\mathcal{L}^2 \) (and therefore decidable and, more precisely, \(\text{NExpTime-complete} \)).

- A further extension of this logic with all sorts of role-value-maps is as expressive as \(\mathcal{L}^3 \) (and therefore undecidable).

Since both extensions include full Boolean operators on roles, they can simulate a universal role using the complex role \(R \sqcup \neg R \), and thus general TBox assertions can be internalised (see Chapter 5). Thus, for these two extensions, reasoning with respect to (possibly cyclic) TBoxes can be reduced to pure concept reasoning—i.e., the TBox can be internalized—and the above complexity results include both sorts of reasoning problems.

Later, a second Description Logic was presented that is as expressive as \(\mathcal{L}^2 \) [Lutz et al., 2001a]. In contrast to the logic in [Borgida, 1996], this logic does not allow to build a role as the cross-product of two concepts, and it does not provide individuals. However, using the identity role \(id \) (with \(id^I = \{(x,x) \mid x \in \Delta^I\} \) for all interpretations \(I \)), we can guarantee that (the atomic concept) \(N \) is interpreted as an individual, i.e., a singleton set, using the following TBox axiom:

\[
\top \sqsubseteq \exists(R \sqcup \neg R). (N \sqcap \forall \neg \text{id} \neg N)
\]

4.2.2 Modal logics

Modal logics and Description Logics have a very close relationship, which was first described in [Schild, 1991]. In a nutshell, [Schild, 1991] points out that \(\mathcal{ALC} \) can be seen as a notational variant of the multi modal logic \(\mathcal{K}_m \). Later, a similar relationship was observed between more expressive modal logics and Description Logics [De Giacomo and Lenzerini, 1994a; Schild, 1994], namely between (extensions of) Propositional Dynamic Logic PDL and (extensions of) \(\mathcal{ALC}_{\text{reg}} \), i.e., \(\mathcal{ALC} \) extended with regular roles. Following and exploiting these observations, various (complexity) results for Description Logics were found by translating results from modal or propositional dynamic logics and the \(\mu \)-calculus to Description Logics [De Giacomo and Lenzerini, 1994a; 1994b; Schild, 1994; De Giacomo, 1995]. Moreover, upper bounds for the complexity of satisfiability problems were tightened considerably, mostly in parallel with the development of decision procedures suitable for implementations and optimisation techniques for these procedures [De Giacomo and Lenzerini, 1995; De Giacomo, 1995; Horrocks et al., 1999]. In the following, we will describe the relation between modal logics and Description Logics in more detail.
We start by introducing the basic modal logic K; for a nice introduction and overview see [Halpern and Moses, 1992; Blackburn et al., 2001]. Given a set of propositional letters p_1, p_2, \ldots, the set of formulae of the modal logic K is the smallest set that

- contains p_1, p_2, \ldots,
- is closed under Boolean connectives \land, \lor, and \neg, and
- if it contains ϕ, then it also contains $\Box\phi$ and $\Diamond\phi$.

The semantics of modal formulae is given by so-called Kripke structures $M = (S, \pi, K)$, where S is a set of so-called states or worlds (which correspond to individuals in Description Logics), π is a mapping from the set of propositional letters into sets of states (i.e., $\pi(p_i)$ is the set of states in which p_i holds), and K is a binary relation on the states S, the so-called accessibility relation (which can be seen as the interpretation of a single role). The semantics is then given as follows, where, for a modal formula ϕ and a state $s \in S$, the expression $M, s \models \phi$ is read as "ϕ holds in M in state s".

$$
\begin{align*}
M, s \models p_i & \quad \text{iff} \quad s \in \pi(p_i) \\
M, s \models \phi_1 \land \phi_2 & \quad \text{iff} \quad M, s \models \phi_1 \text{ and } M, s \models \phi_2 \\
M, s \models \phi_1 \lor \phi_2 & \quad \text{iff} \quad M, s \models \phi_1 \text{ or } M, s \models \phi_2 \\
M, s \models \neg \phi & \quad \text{iff} \quad M, s \not\models \phi \\
M, s \models \Diamond\phi & \quad \text{iff} \quad \text{there exists } s' \in S \text{ with } (s, s') \in K \text{ and } M, s' \models \phi \\
M, s \models \Box\phi & \quad \text{iff} \quad \text{for all } s' \in S, \text{ if } (s, s') \in K, \text{ then } M, s' \models \phi
\end{align*}
$$

In contrast to many other modal logics, K does not impose any restrictions on the Kripke structures. For example, the modal logic $S4$ is obtained from K by restricting the Kripke structures to those where the accessibility relation K is reflexive and transitive. Other modal logics restrict K to be symmetric, well-founded, an equivalence relation, etc. Moreover, the number of accessibility relations may be different from one. Then we are talking about multi modal logics, where each accessibility relation K_i can be thought to correspond to one agent, and is quantified using the multi modal operators \Box_i and \Diamond_i (or, alternatively $[i]$ and $\langle i \rangle$). For example, K_m stands for the multi modal logic K with m agents.

To establish the correspondence between the modal logic K_m and the Description Logic \mathcal{ALC}, Schild [1991] gave the following translation f from \mathcal{ALC}-concepts using role names R_1, \ldots, R_m to K_m:

$$
\begin{align*}
f(A) & = A, \\
f(C \land D) & = f(C) \land f(D), \\
f(C \lor D) & = f(C) \lor f(D), \\
f(\neg(C)) & = \neg(f(C))
\end{align*}
$$
\[
\begin{align*}
f(\forall R_i.C) &= \Box_i(f(C)), \\
f(\exists R_i.C) &= \Diamond_i(f(C)).
\end{align*}
\]

Now, Kripke structures can easily be viewed as Description Logic interpretations and vice versa. Then, from the semantics of K_m and ALC, it follows immediately that a is an instance of an ALC-concept C in an interpretation I iff its translation $f(C)$ holds in a in the Kripke structure corresponding to I. Obviously, we can define an analogous translation from K_m formulae into ALC.

There exists a large variety of modal logics for a variety of applications. In the following, we will sketch some of them together with their relation to Description Logics.

Propositional Dynamic Logics are designed for reasoning about the behaviour of programs. *Propositional Dynamic Logic* (PDL) was introduced by Fischer and Ladner [1979], and proven to have an ExpTime-complete satisfiability problem by Fischer and Ladner [1979] and Pratt [1979]; for an overview, see [Harel et al., 2000]. PDL was designed to describe the (dynamic) behaviour of programs: complex programs can be built starting from atomic programs by using non-deterministic choice (\cup), composition (\cdot), and iteration (\ast). PDL formulae can be used to describe the properties that should hold in a state after the execution of a complex program. For example, the following PDL formula holds in a state if the following condition is satisfied: whenever program α or β is executed, a state is reached where p holds, and there is a sequence of alternating executions of α and β such that a state is reached where $\neg p \land q$ holds:

\[
[\alpha \cup \beta]p \land (\langle \alpha; \beta \rangle^\ast(\neg p \land q))
\]

Its Description Logic counterpart, ALC_{reg}, was introduced independently by Baader [1991]. ALC_{reg} is the extension of ALC with regular expressions over roles\(^1\) and can be seen as a notational variant of Propositional Dynamic Logic. For this correspondence, see the work by Schild [1991] and De Giacomo and Lenzerini [1994a], and Chapter 5. There exist a variety of extensions of PDL (or ALC_{reg}), for example with inverse roles, counting, or difference of roles, most of which still have an ExpTime satisfiability problem; see, e.g., [Kozen and Tiuryn, 1990; De Giacomo, 1995; De Giacomo and Lenzerini, 1996] and Chapter 5.

The μ-Calculus can be viewed as a generalisation of dynamic logic, with similar applications, and was introduced by Pratt [1981] and Kozen [1983]. It is obtained from multi modal K_m by allowing for (least and greatest) fixpoint operators to be

\(^1\) Regular expressions over roles are built using union (\cup), composition (\circ), and the Kleene operator (\ast) on roles and can be used in ALC_{reg}-concepts in the place of atomic roles (see Chapter 5).
used on propositional letters. For example, for μ the least fixpoint operator and X a variable for propositional letters, the formula $\mu X. p \lor \langle \alpha \rangle X$ describes the states with a (possibly empty) chain of α edges into a state in which p holds. In PDL, this formula is written $\langle \alpha^* \rangle p$, and its $\mathcal{ALC}_{\text{reg}}$ counterpart is $\exists R_{\alpha}^* p$. However, the μ-calculus is strictly more expressive than PDL or $\mathcal{ALC}_{\text{reg}}$: for example, the μ-calculus can express well-foundedness of a program (binary relation), i.e., there is a μ-calculus formula that has only models in which α is interpreted as a well-founded relation (that is, a relation without any infinite chains). In [De Giacomo and Lenzerini, 1994b; 1997; Calvanese et al., 1999c], this additional expressive power is shown to be useful in a variety of Description Logics applications. The Description Logic counterpart of the μ-calculus extended with number restrictions [De Giacomo and Lenzerini, 1994b; 1997] and additionally with inverse roles [Calvanese et al., 1999c] is proven to have an ExpTime-complete satisfiability problem.

There are two other classes of Description Logics with other forms of fixpoints: in Description Logics, fixpoints first came in through (1) the transitive closure operator [Baader, 1991], which is naturally defined using a least fixpoint, and (2) through terminological cycles [Baader, 1990a], which have a different meaning according to whether a greatest, least, or arbitrary fixpoint semantics is employed [Nebel, 1991; Baader, 1996b; Küsters, 1998].

Temporal Logics are designed for reasoning about time-dependent information. They have applications in databases, automated verification of programs, hardware, and distributed systems, natural language processing, planning, etc. and come in various different shapes; for a survey of temporal logics, see, e.g., [Gabbay et al., 1994]. Firstly, they can differ in whether the basic temporal entities are time points or time intervals. Secondly, they differ in whether they are based on a linear or on a branching temporal structure. In the latter structures, the flow of time might “branch” into various succeeding future times. Finally, they differ in the underlying logic (e.g., Boolean logic or first order predicate logic) and in the operators provided to speak about the past and the future (e.g., operators that refer to the next time point, to all future time points, to a future time point and all its respective future time points, etc.).

In contrast to some other modal logics, temporal logics do not have very close Description Logic relatives. However, they are mentioned here because they are used to “temporalise” Description Logics; for a survey on temporal Description Logics, see [Artale and Franconi, 2001] and Chapter 6. When speaking of “the temporalisation” of a logic, e.g., \mathcal{ALC}, one usually refers to a logic with two-dimensional interpretations. One dimension refers to the flow of time, and each state in this flow of time comprises an interpretation of the underlying logic, e.g., an \mathcal{ALC} interpretation. Obviously, the logic obtained depends on the temporal logic chosen for the
temporal dimension and on the underlying (description) logic. Moreover, one has the choice to require that the interpretation domain of each time point is the same for all states ("constant domain assumption") or that it is a subset of the domains of the interpretations underlying future states. Examples of temporalised Description Logics can be found in [Wolter and Zakharyaschev, 1999d; Sturm and Wolter, 2002; Artale et al., 2001; Schild, 1993; Lutz et al., 2001b]. An alternative to this temporalisation is to extend a Description Logic with a temporal concrete domain [Baader and Hanschke, 1991a]. This yields a "two-sorted" interpretation domain, consisting of abstract individuals on the one hand and time points or intervals on the other hand. Abstract individuals are then related to the temporal structure using features (functional roles) and the standard concrete domain constructs. An example of such a logic is described by Lutz [2001a].

Hybrid Logics extend standard modal logics with the the possibility to refer to single states (individuals in the interpretation domain) using so-called *nominals* (see, e.g., [Blackburn and Seligman, 1995; Areces et al., 2000; Areces, 2000] for hybrid logics related to Description Logics). Nominals are simply special propositional variables which hold in exactly one state. Hybrid logics enjoy a variety of "nice" properties whose description goes beyond the scope of this article; for a summary, see [Areces, 2000]. In Description Logics, there are three standard ways to refer to individuals: (1) we can use ABox individuals in ABoxes, (2) we can use the "one-of" concept constructor \{o_1, \ldots, o_k\} which can be applied to individual names \(o_i\) and which is present in only a few Description Logics (e.g., in the Description Logic described in [Bresciani et al., 1995]), and (3) we can use nominals in a similar way as in hybrid logics (e.g., [De Giacomo, 1995; Tobies, 2000; Horrocks and Sattler, 2001]), namely as special atomic concepts that are interpreted as singleton sets. For most Description Logics, there is a direct mapping between nominals and the "one-of" constructor and back: let \(o_i\) stand for individual names and, at the same time, nominals. Then we can extend the translation \(f\) mentioned above to the "one-of" constructor as follows—provided that we make the unique name assumption (cf. Chapter 2) either for both the individual names and the nominals or for none of them:

\[
f(\{o_1, \ldots, o_k\}) = f(\{o_1\} \sqcup \ldots \sqcup \{o_k\}) = o_1 \lor \ldots \lor o_k
\]

ABox individuals can be viewed as a restricted form of nominals, and each ABox in a Description Logic \(\mathcal{L}\) can be translated into a single concept of (the extension of) \(\mathcal{L}\) with conjunction, existential restriction, and "one-of": first, translate each assertion of the form

- \(C(a)\) into \(\{a\} \sqcap C\) and
- \(R(a, b)\) into \(\{a\} \sqcap \exists R.\{b\}\)
Next, for C_1, \ldots, C_m the resulting concepts of this translation and U a role name not occurring in any C_i, define $C = \bigcap_{1 \leq i \leq m} \exists U.C_i$. Then each model of C is a model of the original ABox—provided, again, that the unique name assumption holds either for both individual names and nominals or for none. Vice versa, each model of the original ABox can easily be extended to a model of C.

So far, we only mentioned the weakest way in which nominals occur in hybrid logics. The next stronger form are formulae of the form $\varphi@o_i$ which describes, intuitively, that φ holds in the state o_i. For U a universal role and C_φ the translation of φ, this formula corresponds to the concept $\exists U.(o_i \cap C_\varphi)$. Finally, we only point out that there are even more expressive ways of talking about nominals in hybrid logics using, for example, variables for nominals and quantification over them.

So far for the relation between certain modal logics and certain Description Logics. In the remainder of this section, the relationship between standard Description Logics constructors and their counterpart in modal logics are discussed.

Number Restrictions: In modal logics, the equivalent to qualified number restrictions $\geq n.R.C$ and $\leq n.R.C$ [Hollunder and Baader, 1991b] is known as graded modalities [Fine, 1972; Van der Hoek and de Rijke, 1995], whereas no equivalent to the standard, weaker form of number restrictions, $\geq n.R$ and $\leq n.R$, has been considered explicitly.

Number restrictions can be said to play a central role in Description Logics: they are present in almost all knowledge representation systems based on Description Logics, several variants have been investigated with respect to their computational complexity (e.g., see [Tobies, 1999c] for qualified number restrictions, [Baader and Sattler, 1999] for symbolic number restrictions and number restrictions on complex roles), and it was proved by De Giacomo and Lenzerini [1994a] that reasoning with respect to (possibly cyclic) TBoxes for the Description Logic equivalent to converse-PDL extended with qualified number restrictions (on atomic and inverse atomic roles) is ExpTime-complete.

In contrast, they play a minor role in modal and dynamic logics. A more prominent role in dynamic logics is played by deterministic programs, i.e., programs that are to be interpreted as functional relations (cf. Chapter 2). Ben-Ari et al. [1982] and Parikh [1981] show that validity (and hence satisfiability) of DPDL (i.e., the logic that is obtained from PDL by restricting programs to be deterministic) is ExpTime-complete. Moreover, Parikh [1981] has shown that PDL formulae can be linearly translated into DPDL formulae, and this translation was used by De Giacomo and Lenzerini [1994a] to code qualified number restrictions into DPDL formulae. As a consequence, we have that satisfiability and subsumption with respect to (possibly
Transitivity: In modal logics and Description Logics, transitivity comes in (at least) two different shapes, as transitive roles (or frames whose accessibility relation is transitive, like in K_4^m) and as the transitive closure operator on roles (or the Kleene star operator on programs in PDL). Interestingly, these two sorts of transitivity differ in their complexity.

Fischer and Ladner [1979] prove that satisfiability in PDL is ExpTime-complete. However, the only operator on programs (or roles) used in the hardness proof is the transitive closure operator. Translated to Description Logics, this yields ExpTime-completeness of satisfiability in ALC extended with the transitive closure operator on roles.

In contrast, K_4^m is known to be of the same complexity as K_m (or ALC), namely PSPACE-complete [Halpern and Moses, 1992], while providing transitivity: K_4^m is obtained from K_m by restricting Kripke structures to those where the accessibility relations are transitive. Translated into Description Logics, this means that concept satisfiability in ALC extended with transitive roles (i.e., the possibility to say that certain roles are interpreted as transitive relations) is in PSPACE [Sattler, 1996]. An extension of this Description Logic with role hierarchies was implemented in the Description Logic system Fact [Horrocks, 1998a]. Although pure concept satisfiability of this extension is ExpTime-hard, its highly optimised implementation behaves quite well [Horrocks, 1998b].

Inverse Roles: Without the converse operator on programs/time (or the inverse operator on roles), binary relations are restricted to be used asymmetrically: For example, one is restricted to either model “into the future” or “into the past”, or one must decide whether to use a role “has-child” or “is-child-of”, but may not use both and relate them in the proper way. Hence in both modal and Description Logics, the converse/inverse operator plays an important role since it overcomes this asymmetry, and a variety of logics allowing for this operator were investigated [Streett, 1982; Vardi, 1985; De Giacomo and Massacci, 1996; Calvanese, 1996a; De Giacomo, 1996; Horrocks et al., 1999].

4.2.3 Guarded fragments

Andréka et al. [1996] introduce guarded fragments as natural generalisations of modal logics to relations of arbitrary arity. Their definition and investigation was motivated by the question why modal logics have such “nice” properties, e.g., finite
Relationships with other Formalisms

axiomatisability, Craig interpolation, and decidability. Guarded fragments are obtained from first order logic by allowing the use of quantified variables only if these variables are guarded by appropriate atoms before they are used in the body of a formula. More precisely, quantifiers are restricted to appear only in the form

\[\exists y(P(x,y) \land \Phi(y)) \quad \text{or} \quad \forall y(P(x,y) \supset \Phi(y)) \] (First Guarded Fragment)

\[\exists y(P(x,y) \land \Phi(x,y)) \quad \text{or} \quad \forall y(P(x,y) \supset \Phi(x,y)) \] (Guarded Fragment)

for atoms \(P \), vectors of variables \(x \) and \(y \), and (first) guarded fragment formulae \(\Phi \) with free variables in \(y \) and \(x \) (resp. in \(y \)). The loosely guarded fragment further allows for a restricted form of conjunction as guards.

Obviously, the translation \((\exists y.R(x,y) \land \varphi(y))(x)\) of the \(K \) formula \(\Diamond \varphi \) (or of the \(ALC \) concept \(\exists R.C_\varphi \)) is a formula in the first guarded fragment since the quantified variable \(y \) is “guarded” by \(R \). A more complex guarded fragment formula is

\[\exists z_1, z_2.(\text{parents}(x,z_1,z_2) \land (\text{married}(z_1,z_2) \land (\forall y.\text{parents}(y,z_1,z_2) \supset \text{rich}(z_1)))) \]

in one free variable \(x \), a guard atom parents, and describing all those persons that have married parents and whose siblings (including herself) are rich.

All guarded fragments were shown to be decidable [Andréka et al., 1996]. Grädel [1999] proves that satisfiability of the guarded fragment is in \(\text{ExpTime} \)—provided that the arity of the predicates is bounded—and \(2\text{ExpTime} \)-complete for unbounded signatures. Interestingly, the guarded fragment was shown to remain \(2\text{ExpTime} \) when extended with fixpoints [Grädel and Walukiewicz, 1999]. These “nice” properties together with their close relationship to modal/description logics suggest that they are a good starting point for the development of a Description Logic with \(n \)-ary predicates [Grädel, 1998]: in [Lutz et al., 1999], a restriction of the guarded fragment was proven to be \(\text{PSpace} \)-complete, where the restriction concerns the way in which variables are used in guard atoms. Roughly spoken, each predicate \(A \) comes with a two-fold arity \((i,j)\) and, when \(A \) is used as a guard, either all first \(i \) variables are quantified and none of the last \(j \) are or, symmetrically, all last \(j \) variables are quantified and none of the first \(i \) are. Hence one might think of the predicates as having two-fold “groupings”. A similar logic, the so-called action-guarded fragment AGF is proposed in [Gonçalvês and Grädel, 2000]: it comes with a similar grouping of variables in predicates (which is, when extended with “inverse actions”, the same as the grouping in [Lutz et al., 1999]) and, additionally, it divides predicates into those allowed as guards and those allowed in the body of formulae. From a Description Logic perspective, this should not be too severe a restriction since it parallels the distinction between role and concept names. Interestingly, the extension of AGF with counting quantifiers (the first order counterpart of number restrictions), inverse actions, and fixpoints yields an \(\text{ExpTime} \) logic—provided that

\footnote{Atoms are formulae \(P(x_1, \ldots, x_k) \) where \(P \) is a \(k \)-ary predicate symbol and \(x_i \) are variables.}
the arity of the predicates is bounded and that numbers in counting quantifiers are
coded unarily [Gonçalves and Grädel, 2000]. This result is even more interesting
when noting that the guarded fragment, when extended with number restrictions,
functional restrictions, or transitivity (i.e., statements saying that certain binary
relations are to be interpreted as transitive relations) becomes undecidable [Grädel,
1999].

To the best of our knowledge, the only other \(n \)-ary Description Logics with sound
and complete inference algorithms are \(\mathcal{DLR} \) [Calvanese et al., 1998a] and \(\mathcal{DLR}_\mu \)
[Calvanese et al., 1999c], which seem to be orthogonal to the guarded fragment. An
exact description of the relationship between \(\mathcal{DLR} \) (resp. \(\mathcal{DLR}_\mu \)) and the guarded
fragment (resp. its extension with fixpoints) is missing so far.

4.3 Database models

In this section we will describe the relationship between Description Logics and
data models used in databases. We will consider both traditional data models used
in the conceptual modeling of an application domain, such as semantic and object-
oriented data models, and more recently introduced formalisms for representing
semistructured data and data on the web. We will concentrate on the relationship
between the formalisms and refer to Chapter 16 for a more detailed discussion on
the use of Description Logics in data management [Borgida, 1995].

4.3.1 Semantic data models

Semantic data models were introduced primarily as formalisms for database
schema design [Abrial, 1974; Chen, 1976], and are currently adopted in most
of the database and information system design methodologies and Computer
Aided Software Engineering (CASE) tools [Hull and King, 1987; Batini et al.,
1992]. In semantic data models, classes provide an explicit representation of
objects with their attributes and the relationships to other objects, and sub-
type/supertype relationships are used to specify the inheritance of properties. Here,
we concentrate on the Entity-Relationship (ER) model [Chen, 1976; Teorey, 1989;
Batini et al., 1992; Thalheim, 1993], which is one of the most widespread semantic
data models. However, the considerations we make hold also for other formalisms
for conceptual modeling, such as UML class diagrams [Rumbaugh et al., 1998;
Jacobson et al., 1998]

4.3.1.1 Formalization

The basic elements of the ER model are entities, relationships, and attributes, which
are used to model the domain of interest by means of an ER schema.
Figure 4.8 shows a simple ER schema representing the registration of customers for (telephone) services provided by departments (e.g., of a telephone company). The schema is drawn using the standard graphical ER notation, in which entities are represented as boxes, and relationships as diamonds. An attribute is shown as a circle attached to the entity for which it is defined. An entity type (or simply entity) denotes a set of objects, called its instances, with common properties. Elementary properties are modeled through attributes, whose values belong to one of several predefined domains, such as Integer, String, Boolean, etc. Relationships between instances of different entities are modeled through relationship types (or simply relationships). A relationship denotes a set of tuples, each one representing an association among a combination of instances of the entities that participate in the relationship. The participation of an entity in a relationship is called an ER-role and has a unique name. It is depicted by connecting the relationship to the participating entity. The number of ER-roles for a relationship is called its arity.

Cardinality constraints can be attached to an ER-role in order to restrict the minimum or maximum number of times an instance of an entity may participate via that ER-role in instances of the relationship [Abrial, 1974; Grant and Minker, 1984; Lenzerini and Nobili, 1990; Ferg, 1991; Ye et al., 1994; Thalheim, 1992; Calvanese and Lenzerini, 1994b]. Minimal and maximal cardinality constraints can be arbitrary non-negative integers. However, typical values for minimal cardinality constraints are 0, denoting no constraint, and 1, denoting mandatory participation of the entity in the relationship; typical values for maximal cardinality constraints are 1, denoting functionality, and ∞, denoting no constraint. In Figure 4.8, cardinality constraints are used to impose that each customer must be registered for at least one service. Also, each service is provided by exactly one department, which in turn may not provide more than 20 different services.

To represent inclusions between the sets of instances of two entities or two relationships, so called IS-A relations are used. An IS-A relation states the inheritance
of properties from a more general entity (resp. relationship) to a more specific one. A
generalization is a set of IS-A relations which share the more general entity
(resp. relationship). Multiple generalizations can be combined in a *generalization
hierarchy*. A generalisation can be *mutually exclusive*, meaning that all the specific
entities (resp. relationships) are mutually disjoint, or *complete*, meaning that the
union of the more specific entities (resp. relationships) completely covers the more
general entity (resp. relationship). In Figure 4.8, a mutually exclusive and com-
plete generalisation is used to represent the fact that customers are partitioned into
private and business customers.

Additionally, *keys* are used to represent the fact that an instance of an entity is
uniquely identified by a certain set of attributes, or that an instance of a relation-
ship is uniquely identified by a set of instances of the entities participating in the
relationship.

Although we do not provide a formal definition here, the semantics of an ER
schema can be given by specifying which database states are consistent with the
information structure represented by the schema; for details see e.g., [Calvanese et
al., 1999e].

Traditionally, the ER model has been used in the design phase of commercial
applications, and modern CASE tools usually provide sophisticated schema editing
facilities and automatic generation of code for the interaction with the database
management system. However, these tools do not provide any support for dealing
with the complexity of schemata that goes beyond the graphical user interface. In
particular, the designer is responsible for checking schemata for important proper-
ties such as consistency and redundancy. This may be a complex and time consum-
ing task if performed by hand. By translating an ER schema into a Description
Logic knowledge base in such a way that the verification of schema properties cor-
responds to traditional Description Logic reasoning tasks, the reasoning facilities
of a Description Logic system can be profitably exploited to support conceptual
database design.

4.3.1.2 Correspondence with Description Logics

Both in Description Logics and in the ER model, the domain of interest is mod-
eled through classes and relationships, and various proposals have been made for
establishing a correspondence between the two formalisms. Bergamaschi and Sar-
tori [1992] provide a translation of ER schemas into acyclic \mathcal{ALN} knowledge bases.
However, due to the limited expressiveness of the target language, several features
of the ER model and desired reasoning tasks could not fully be captured by the
proposed translation. Indeed, when relating the ER model to Description Logics,
one has to take into account the following aspects:
(i) The ER model allows for relations of arbitrary arity, while in traditional Description Logics only unary and binary relations are considered.

(ii) The assumption of acyclicity is unrealistic in an ER schema, while it is common in Description Logics knowledge bases.

(iii) Database states are considered to be finite structures, while no assumption on finiteness is usually made on the interpretation domain of a Description Logic knowledge base.

Before discussing these issues in more detail, we show in Figure 4.9 part of the ALUNI knowledge base corresponding to the ER schema in Figure 4.8, derived according to the translation proposed by Calvanese et al. [1994; 1999e]. We have omitted the part corresponding to the translation of most attributes, showing as an example only the translation of the attribute name of the entity Customer.

Due to point (i), when translating ER schemas into knowledge bases of a traditional Description Logic, it becomes necessary to reify relationships, i.e., to translate each relationship into a concept whose instances represent the tuples of the relationship. Each entity is translated also into a concept, while each ER-role is translated into a Description Logic role. Then, using functional roles, one can enforce that each instance of the atomic concept C corresponding to a relationship R represents a tuple of R, i.e., for each role representing an ER-role of R, the instance of C is connected to exactly one instance of the entity associated to the ER-role.
There is, however, one condition, which is implicit in the semantics of the ER model, but which does not necessarily hold once relationships are reified, and which can also not be enforced in Description Logics on the models of a knowledge base: The condition is that the extension of a relationship R does not contain some tuple twice. After reification this corresponds to the fact that there are no two instances of the concept corresponding to R that are connected through all roles of R exactly to the same instances of the entities associated to the roles. However, it can be shown that, when reasoning on a knowledge base corresponding to an ER schema, nothing is lost by ignoring this condition. Indeed, given an arbitrary model of such a knowledge base, one can always find a model in which the condition holds, and thus one that corresponds directly to a legal database state [Calvanese et al., 1994; De Giacomo, 1995; Calvanese et al., 1999e].

Cardinality constraints are translated using number restrictions on the inverse of the roles connecting relationships to entities. To avoid the need for qualified number restrictions, in the translation in Figure 4.9 we have disambiguated the roles by appending to their name the name of the relationship they belong to. An alternative would be to allow the same role to appear in several places, and use qualified number restrictions instead of unqualified ones. While considerably complicating the language, this makes it possible to translate also IS-A relations between relationships, which cannot be captured using the translation proposed by Calvanese et al. [1999e]. Also more general forms of cardinality constraints have been proposed for the ER model [Thalheim, 1992], allowing e.g., to limit the number of locations a customer may be registered for, independently of the service. To the best of our knowledge, such types of cardinality constraints cannot be captured in Description Logics in general. Borgida and Weddell [1997] have studied reasoning in Description Logics in the presence of functional dependencies that are more general than unary ones, and which allow one to represent keys of relations. Decidability of reasoning in a very expressive Description Logic augmented with non-unary key constraints has been shown by Calvanese et al. [2000b], and Calvanese et al. [2001a] have shown that also general functional dependencies can be added without losing \textsc{ExpTime}-completeness.

IS-A relations are simply translated using concept inclusion assertions. Generalisation hierarchies additionally require negation, if they are mutually disjoint, and union, if they are complete.

With respect to point (ii), we observe that the translation of an ER schema containing cycles obviously gives rise to a cyclic Description Logic knowledge base. However, due to the necessity of properly relating a relationship via an ER-role to an entity, even when translating an acyclic ER schema, the resulting knowledge base contains cycles. On the other hand, it is sufficient to use inclusion assertions
rather than equivalence, since the former naturally correspond to the semantics of
ER schemata.

With respect to point (iii), we observe that one cannot simply ignore it and
adopt algorithms that reason with respect to arbitrary models. Indeed, the
ER model itself does not have the finite model property [Cosmadakis et al.,
1990; Calvanese and Lenzerini, 1994b], which states that, if a knowledge base
(resp. schema) has an arbitrary, possibly infinite model (resp. database state),
then it also has a finite one (see also Chapter 5 for more details). A further
confirmation comes from the fact that, for correctly capturing ER schemas in
Description Logics, possibly cyclic knowledge bases expressed in a Description
Logic including functional restrictions and inverse roles are required, and such
knowledge bases do not have the finite model property [Calvanese et al., 1994;
1999e]. Therefore one must resort to techniques for finite model reasoning. Cal-
vanese et al. [1994] show that reasoning w.r.t. finite models in $ALC\!U\!NT$ knowl-
edge bases containing only inclusion assertions is $\mathbb{E}x\mathbb{P}t\mathbb{E}m\mathbb{E}$-complete, and Cal-
vanese [1996a] presents a $2\mathbb{E}x\mathbb{P}t\mathbb{E}m\mathbb{E}$ algorithm for reasoning in $ALCQI$ knowledge
bases with general inclusion assertions.

4.3.1.3 Applications of the correspondence

The study of the correspondence between Description Logics and semantic data
models has led to significant advantages in both fields. On the one hand, the
richness of constructs that is typical of Description Logics makes it possible to add
them to semantic data models and take them fully into account when reasoning on
a schema [Calvanese et al., 1998g]. Notable examples are:

- the ability to specify not only IS-A and generalisation hierarchies, but also arbi-
 trary Boolean combinations of entities or relationships, which can correspond to
 forms of negative and incomplete knowledge [Di Battista and Lenzerini, 1993];
- the ability to refine properties along an IS-A hierarchy, such as restricting the
 numeric range for cardinality constraints, or refining the participation in rela-
 tionships using universal quantification over roles;
- the ability to define classes by means of equality assertions, and not only to state
 necessary properties for them.

The correspondence between semantic data models and Description Logics has been
recently exploited to add such advanced capabilities to CASE tools. A notable
example is the i•com tool [Franconi and Ng, 2000] for conceptual modeling, which
combines a user-friendly graphical interface with the ability to automatically infer
properties of a schema (e.g., inconsistency of a class, or implicit IS-A relations) by
invoking the Fact Description Logic reasoner [Horrocks, 1998a; 1999].
On the other hand, the basic ideas behind the translation of semantic data models into Description Logics, namely reification and the fact that one can restrict the attention to models in which distinct instances of a reified relation correspond to distinct tuples, have led to the development of Description Logics in which relations of arbitrary arity are first class citizens [De Giacomo and Lenzerini, 1994c; Calvanese et al., 1997; 1998a]. Using such Description Logics, the translation of an ER schema is immediate, since now also relationships of arbitrary arity have their direct counterpart. For example, using \mathcal{DLR} [Calvanese et al., 1998a], the part of the schema in Figure 4.8 relative to the ternary relation Registration can be translated as follows:

\[
\text{Registration} \sqsubseteq (\$1: \text{Customer}) \cap (\$2: \text{Location}) \cap (\$3: \text{Service})
\]

\[
\text{Customer} \sqsubseteq \exists [\$1]\text{Registration}
\]

We refer to Chapter 16, Section 16.2.2 for the details of the translation.

Description Logics could also be considered as expressive variants of semantic data models with incorporated reasoning facilities. This is of particular importance in the context of information integration, where a high expressiveness is required to capture in the best possible way the complex relationships that hold between data in different information sources [Levy et al., 1995; Calvanese et al., 1998d; 1998e].

4.3.2 Object-oriented data models

Object-oriented data models have been proposed recently with the goal of devising database formalisms that could be integrated with object-oriented programming systems [Abiteboul and Kanellakis, 1989; Kim, 1990; Cattell and Barry, 1997; Rumbaugh et al., 1998]. Object-oriented data models rely on the notion of \textit{object identifier} at the extensional level (as opposed to traditional data models which are value-oriented) and on the notion of \textit{class} at the intensional level. The structure of the classes is specified by means of \textit{typing} and \textit{inheritance}. Since we aim at discussing the relationship with Description Logics, which are well suited to describe structural rather than dynamic properties, we restrict our attention to the structural component of object-oriented models. Hence we do not consider all those aspects that are related to the specification of the behaviour and evolution of objects, which nevertheless constitute an important part of these data models. Although in our discussion we do not refer to any specific formalism, the model we use is inspired by the one presented by Abiteboul and Kanellakis [1989], and embodies the basic features of the static part of the ODMG standard [Cattell and Barry, 1997]
4.3.2.1 Formalization

An object-oriented schema is a finite set of class declarations, which impose constraints on the instances of the classes that are used to model the application domain. A class declaration for a class C has the form

$$\text{class } C \text{ is-a } C_1, \ldots, C_k \text{ type-is } T,$$

where the is-a part, which is optional, specifies inclusions between the sets of instances of the involved classes, while the type-is part specifies through the type expression T the structure assigned to the objects that are instances of the class.

We consider union, set, and record types, built according to the following syntax, where the letter A is used to denote attributes:

$$T \rightarrow C \mid \text{union } T_1, \ldots, T_k \text{ end } \mid \text{set-of } T \mid \text{record } A_1:T_1, \ldots, A_k:T_k \text{ end}.$$

Figure 4.10 shows part of an object-oriented schema modeling the same reality as the Entity-Relationship schema of Figure 4.8. Notice that now registrations are represented as a class and grouped according to the customer, since all registrations related to one customer are collected in the set-valued attribute \textit{regis}.

The meaning of an object-oriented schema is given by specifying the characteristics of a database state for the schema. The definition of a database state makes use of the notions of object identifier and value. Starting from a finite set $O^\mathcal{J}$ of object identifiers, the set of complex values over $O^\mathcal{J}$ is built inductively by grouping values into finite sets and records. A database state \mathcal{J} for a schema is constituted by the

\begin{verbatim}
class Customer
 type-is
 union BusinessCustomer, PrivateCustomer
end

class PrivateCustomer
 is-a Customer
 type-is
 record
 SSN: String
 end
end

class Service
 type-is
 record
 code: Integer,
 suppliedBy: Department
 end
end

class Registration
 type-is
 record
 cust: Customer,
 regis: set-of record
 serv: Service,
 loc: Location
 end
end

Fig. 4.10. An object-oriented schema.
\end{verbatim}
set of object identifiers, a mapping π_J assigning to each class a subset of O_J, and a mapping ρ_J assigning to each object in O_J a value over O_J.

Notice that, although the set of values that can be constructed from a set O_J of object identifiers is infinite, for a database state one only needs to consider the finite subset V_J of values assigned by ρ_J to the elements of O_J, including the values that are not explicitly associated with object identifiers, but are used to form other values.

The interpretation of type expressions in a database state J is defined through an interpretation function \cdot_J that assigns to each type expression T a set T_J of values in V_J as follows:

- if T is a class C, then $T_J = \pi_J(C)$;
- if T is a union type $\text{union } T_1, \ldots, T_k \text{ end}$, then $T_J = T_{1J} \cup \cdots \cup T_{kJ}$;
- if T is a record type (resp. set type), then T_J is the set of record values (resp. set values) compatible with the structure of T. For records we are using an open semantics, meaning that the records that are instances of a record type may have more components than those explicitly specified in the type [Abiteboul and Kanellakis, 1989].

A database state J for an object-oriented schema S is said to be legal (with respect to S) if for each declaration

$$\text{class } C \text{ is-a } C_1, \ldots, C_n \text{ type-is } T$$

in S, it holds that (1) $C_J \subseteq C_i^J$ for each $i \in \{1, \ldots, n\}$, and (2) $\rho_J(C_J) \subseteq T_J$. Therefore, for a legal database state, the type expressions that are present in the schema determine the (finite) set of values that must be considered. The construction of such values is limited by the depth of type expressions.

4.3.2.2 Correspondence with Description Logics

When establishing a correspondence between an object-oriented model as the one presented above, and Description Logics, one must take into account that the interpretation domain for a Description Logic knowledge base consists of atomic objects, whereas each object of an object-oriented schema is assigned a possibly structured value. Therefore one needs to explicitly represent in Description Logics the type structure of classes [Calvanese et al., 1994; 1999e; Artale et al., 1996a]. We describe now the translation proposed by Calvanese et al. [1994; 1999e], that overcomes this difficulty by introducing in the Description Logic knowledge base concepts and roles with a specific meaning: the concepts AbstractClass, RecType, and SetType are used to denote instances of classes, record values, and set values, respectively. The associations between classes and types induced by the class declarations, as well as the basic characteristics of types, are modeled by means of
specific roles: the functional role value models the association between classes and types, and the role member is used for specifying the type of the elements of a set. Moreover, the concepts representing types are assumed to be mutually disjoint, and disjoint from the concepts representing classes. These constraints are expressed by the following inclusion assertions, which are always part of the knowledge base that is obtained from an object-oriented schema:

\[
\begin{align*}
\text{AbstractClass} & \sqsubseteq \text{1 value} \\
\text{RecType} & \sqsubseteq \forall \text{value.}\bot \\
\text{SetType} & \sqsubseteq \forall \text{value.}\bot \sqcap \neg \text{RecType}
\end{align*}
\]

The translation from object-oriented schemas to Description Logic knowledge bases is defined through a mapping \(\Gamma \), which maps each type expression to a concept expression as follows:

- Each class \(C \) is mapped to an atomic concept \(\Gamma(C) \).
- Each type expression \text{union} \(T_1, \ldots, T_k \) end is mapped to \(\Gamma(T_1) \sqcup \cdots \sqcup \Gamma(T_k) \).
- Each type expression \text{set-of} \(T \) is mapped to \(\text{SetType} \sqcap \forall \text{member.}\Gamma(T) \).
- Each attribute \(A \) is mapped to an atomic role \(\Gamma(A) \), and each type expression \text{record} \(A_1:T_1, \ldots, A_k:T_k \) end is mapped to

\[
\begin{align*}
\text{RecType} & \sqcap \forall \Gamma(A_1).\Gamma(T_1) \sqcap = 1 \Gamma(A_1) \sqcap \cdots \sqcap \\
& \forall \Gamma(A_k).\Gamma(T_k) \sqcap = 1 \Gamma(A_k).
\end{align*}
\]

Then, the knowledge base \(\Gamma(S) \) corresponding to an object-oriented schema \(S \) is obtained by taking for each class declaration

\[\text{class } C \text{ is-a } C_1, \ldots, C_n \text{ type-is } T \]

an inclusion assertion

\[\Gamma(C) \sqsubseteq \text{AbstractClass} \sqcap \Gamma(C_1) \sqcap \cdots \sqcap \Gamma(C_n) \sqcap \forall \text{value.}\Gamma(T). \]

We show in Figure 4.11 the knowledge base resulting from the translation of the fragment of object-oriented schema shown in Figure 4.10.

Analogously to the ER model, it is sufficient to use inclusion assertions instead of equivalence assertions to capture the semantics of object-oriented schemas. A translation to an acyclic knowledge base is possible under the assumption that no class in the schema refers to itself, either directly in its type or indirectly via the class declarations\(^1\) [Artale et al., 1996a]. However, since this assumption represents a rather strong limitation in expressiveness, cycles are typically present in object-oriented schemas, and in this case the resulting Description Logic knowledge base

\(^1\) Note that cyclic references cannot appear directly in a type, which is constructed inductively, but only through the class declarations.
Customer ⊑ AbstractClass ⊓ ∀value. (BusinessCustomer ⊔ PrivateCustomer)

PrivateCustomer ⊑ AbstractClass ⊓ Customer ⊓ ∀value. (RecType ⊓ = 1 SSN ⊓ ∀SSN.String)

Service ⊑ AbstractClass ⊓ ∀value. (RecType ⊓ = 1 code ⊓ ∀code.Integer ⊓ = 1 suppliedBy ⊓ ∀suppliedBy.Department)

Customer ⊑ AbstractClass ⊓ ∀value. (RecType ⊓ = 1 cust ⊓ ∀cust.Customer ⊓ = 1 regis ⊓ ∀regis.(SetType ⊓ ∀member.(RecType ⊓ = 1 serv ⊓ ∀serv.Service ⊓ = 1 loc ⊓ ∀loc.Location)))

Fig. 4.11. The specific part of the knowledge base corresponding to the object-oriented schema in Figure 4.10.

will contain cyclic assertions. No inverse roles are needed for the translation, since in object-oriented models the inverse of an attribute is rarely considered. Furthermore, the use of number restrictions is limited to functionality, since all attributes are implicitly functional.

To establish the correctness of the transformation, and thus ensure that the reasoning tasks on an object-oriented schema can be reduced to reasoning tasks on its translation in Description Logics, we would like to establish a one-to-one correspondence between database states legal for the schema and models of the knowledge base resulting from the translation. However, as for the ER model, the knowledge base may have models that do not correspond directly to legal database states. In this case, this is due to the fact that, while values have a treelike structure, the corresponding individuals in a model of the Description Logic knowledge base may be part of cyclic substructures. One way of ruling out such cyclic substructures would be to adopt a specific constructor that allows one to impose well-foundedness [Calvanese et al., 1995], or even exploit general fixed points on concepts [Schild, 1994; De Giacomo and Lenzerini, 1994a; 1997; Calvanese et al., 1999c]. However, it turns out that, in this case, it is not necessary to explicitly enforce such a condition. Indeed, due to the finite depth of nesting of types in a schema, it can be shown that each model of the translation of the schema can be unfolded into one that directly corresponds to a legal database state (more details are provided by Calvanese et al. [1999e]).

4.3.2.3 Applications of the correspondence

Similarly to the ER model, the existence of property-preserving transformations from object-oriented schemas into Description Logic knowledge bases makes it possible to exploit the reasoning capabilities of a Description Logic system for checking
relevant schema properties, such as consistency and redundancy [Bergamaschi and Nebel, 1994; Artale et al., 1996a; Calvanese et al., 1998g]. Additionally, several extensions of the object-oriented formalism that are useful for the purpose of conceptual modeling can be considered:

- Not only IS-A, but also disjointness, and, more generally, Boolean combinations of classes can be used.
- Class definitions can be used to specify not only necessary but also necessary and sufficient properties for an object to be an instance of a class [Bergamaschi and Nebel, 1994].
- Cardinality constraints and not only implicit functionality can be imposed on attributes. Having attributes with multiple values could in some cases be a useful alternative to set-valued attributes.
- By admitting also the use of inverse roles in the language, one gains the ability to impose constraints using a relation in both directions, as it is customary in semantic data models. The increase in expressiveness that one obtains this way has indeed been recognized as extremely important by the database community [Albano et al., 1991], and has been included in the recent ODMG standard [Cattell and Barry, 1997].

The basic characteristics of object-oriented data models have also been included in the structural part of the Unified Modeling Language (UML) [Rumbaugh et al., 1998; Jacobson et al., 1998], which is becoming the standard language for the analysis phase of software and information system development. Additionally, UML allows for the definition of generic recursive data structures (both inductive and coinductive) such as lists and trees, and for their specialisation to specific types. In order to capture also these aspects of UML in Description Logics and take them fully into account when reasoning over a schema, the Description Logic must provide the ability to represent and reason over data structures. In particular, to represent UML schemas, it is necessary to resort to very expressive Description Logics including number restrictions, inverse roles or n-ary relations, and fixed point constructs on concepts [Calvanese et al., 1999c]. Also in this case, the reasoning services provided by a Description Logic system can be integrated in CASE tools and profitably exploited to support the designer in the analysis phase [Franconi and Ng, 2000].

4.3.3 Semistructured data models and XML

In recent application areas such as data integration, access to data on the web, and digital libraries, the structure of the data is usually not rigid, as in conventional databases, and thus it is difficult to describe it using traditional data models. Therefore, so called *semistructured data models* have been proposed, which are graph-
based data models that provide flexible structuring mechanisms, and thus allow one to represent data that is neither raw nor strictly typed [Abiteboul et al., 2000; Abiteboul, 1997; Buneman et al., 1997; Mendelzon et al., 1997]. The Extensible Markup Language (XML) [Bray et al., 1998; Abiteboul et al., 2000], which has been introduced as a mechanism for representing structured documents on the web, can in fact also be considered a model for semistructured data. Indeed, XML is by now the way most popular model for data on the Web, and there is a tremendous effort related to XML and the associated standards\(^1\), both in the research community and in industry.

Description Logics have traditionally been used to describe and organize data in a more flexible way than what is done in databases, basically using graph-like structures. Hence it seems natural to adopt Description Logics and the associated reasoning services also for representing and reasoning on semistructured data and XML. In the following, we discuss the (rather few) proposals made in the literature. What these proposals have in common is the necessity to resort to fixpoints, either by adopting fixpoint semantics [Nebel, 1991; Baader, 1991], or by using reflexive transitive closure or explicit fixpoint constructs [De Giacomo and Lenzerini, 1997] (cf. also Chapter 5).

For the recent extensive work on the use of Description Logics to provide a semantically richer representation of data on the web we refer to Chapter 14.

4.3.3.1 Relationship between semistructured data and Description Logics

Michaeli et al. [1997] propose to extend a semistructured data model that is an abstraction of the OEM model [Abiteboul et al., 1997] with a layer of classes, representing objects with common properties. Class expressions correspond to Description Logic concepts and the properties for the classes are specified by a set of classification rules, which provide sufficient conditions for class membership and are interpreted under a least fixpoint semantics. By a reduction to reasoning in a Description Logic with fixpoint operators [De Giacomo and Lenzerini, 1997; Calvanese et al., 1999c], it is shown that determining class satisfiability and containment under a set of rules is ExpTime-decidable (and in fact ExpTime-complete).

In the following, we discuss in more detail the use of Description Logics to represent and reason on semistructured data, on the example of one typical representative for semistructured data models. In semistructured data models, data is organized in form of a graph, and information on both the values and the schema for the data are attached to the edges of the graph. In the formalism proposed by Buneman et al. [1997], the labels of edges in a schema are formulae of a complete first order theory, and the conformance of a database to a schema is defined in terms of a special relation, called simulation. The notion of simulation is less rigid than the usual notion

\(^{1}\) http://www.w3.org/
of satisfaction, and suitably reflects the need for dealing with less strict structures of data. In order to capture in Description Logics the notion of simulation, it is necessary on the one hand to express the local conditions that a node must satisfy, and on the other hand to deal with the fact that the simulation relation is the greatest relation satisfying the local conditions. Since semistructured data schemas may contain cycles, the local conditions may depend on each other in a cyclic way. Therefore, while the local conditions can be encoded by means of suitable inclusion assertions in \mathcal{ALU}, the maximality condition on the simulation relation can only be captured correctly by resorting to a greatest fixed point semantics [Calvanese et al., 1998c; 1998b]. Then, using a Description Logic with fixed point constructs, such as $\mu\mathcal{ALCQ}$ [De Giacomo and Lenzerini, 1994b; 1997] (see also Chapter 5), a so-called characteristic concept for a semistructured data schema can be constructed, which captures exactly the properties of the schema. Subsumption between two schemas, which is the task of deciding whether every semistructured database conforming to one schema also conforms to another schema [Buneman et al., 1997], can be decided by checking subsumption between the characteristic concepts of the schemas [Calvanese et al., 1998c].

The correspondence with Description Logics can again be exploited to enrich semistructured data models, without losing the ability to check schema subsumption. Indeed, the requirement already raised by Buneman et al. [1997], to extend semistructured data models with several types of constraints, has been addressed by Calvanese et al. [1998b], who propose several types of constraints, such as existence and cardinality constraints, which are naturally derived from Description Logic constructs. Reasoning in the presence of constraints is done by encoding also the constraints in the characteristic concept of a schema. Calvanese et al. deal also with the presence of incomplete information in the theory describing the properties of edge labels, by proposing the use of a theory expressed in $\mu\mathcal{ALCQ}$, instead of a complete first order theory.

4.3.3.2 Relationship between XML and Description Logics

XML [Bray et al., 1998] is a formalism for representing documents that are structured by means of nested tags. Recently, XML has gained popularity also as a formalism for representing (semistructured) data and exchanging it over the Web. Figure 4.12 shows two example XML documents containing respectively data about customers and their registration to services provided by various departments (e.g., of a telephone company). A part of an XML document consisting of a start tag (e.g., `<Customer>`), the matching end tag (e.g., `</Customer>`), and everything in between is called an element. Elements can be arbitrarily nested, and can have associated attributes, specified by means of attribute-value pairs inside the start tag (e.g., `type="business"`). Intuitively, each XML document can be viewed as a finite
ordered unranked tree\(^1\), where each element represents a node, and the children of an element are those elements directly contained in it. How XML documents are viewed as trees is defined, together with an API for accessing and manipulating such trees/XML-documents, by the Document Object Model\(^2\), which defines, besides element nodes, also other types of nodes, such as attributes, comments, etc.

In XML, it is possible to impose a structure on documents by means of a Document Type Declaration (DTD) [Bray et al., 1998]. A DTD consists of a set of declarations: For each element type used in the XML document, the DTD must contain a declaration that specifies, by means of a regular expression, how elements can be nested within elements of that type. The keyword \#PCDATA is used to specify that the element content (i.e., the part enclosed by the tags) is free text without nested elements. For each attribute appearing in the XML document, the DTD must contain a declaration specifying the name of the attribute, the type of the elements it is associated to, and additional properties (e.g., the type and whether the attribute is optional or mandatory). Figure 4.13 shows part of the DTD for the XML documents in Figure 4.12. We refer to [Bray et al., 1998] for a precise definition of the syntax and semantics of XML DTDs.

\(^1\) In an unranked tree each node can have an arbitrary finite number of child nodes. The tree is ordered since the order among children of the same node matters.

\(^2\) http://www.w3.org/DOM/
We illustrate the method for encoding XML DTDs into Description Logics knowledge bases proposed in [Calvanese et al., 1999d]. For simplicity, we do not consider XML attributes, although they can easily be dealt with by introducing suitable roles. Due to the presence of regular expressions, to encode DTDs in Description Logics, it is necessary to resort to a Description Logic equipped with constructs for building regular expressions over roles (cf. Chapter 5). Notice that the encoding of DTDs into Description Logic knowledge bases must allow for representing unranked trees and at the same time for preserving the order of the children of a node. For example, the DTD in Figure 4.13 enforces that the content of a Customer element consists of a Name element, followed by (in DTDs, \textit{concatenation} is denoted with "\&", alternative is denoted with "\|"), followed by an arbitrary number (but at least one) of Registered elements (\textit{transitive closure} is denoted with "\ast"). To overcome these difficulties, Calvanese et al. [1999d] propose to represent XML documents (i.e., ordered unranked trees) by means of binary trees, and provide an encoding of DTDs in Description Logics that exploits such a representation. Figure 4.14 shows the binary tree corresponding to one of the XML documents in Figure 4.12.

Figure 4.15 shows part of the axioms encoding the DTD in Figure 4.13. The two roles \(f \) and \(r \) are used to encode binary trees, and such roles are globally functional (axiom (4.1)). Moreover, the \textit{well-founded} construct (cf. Chapter 5) \(\text{wf}(f \sqcap r) \) is used to express that there can be no infinite chain of objects, each one connected to the next by means of \(f \sqcap r \). Such a condition turns out to be necessary to correctly capture the fact that XML documents correspond to trees that are \textit{finite}. For each
element type E, the atomic concepts $\text{Start}E$ and $\text{End}E$ represent respectively the start tags (4.2) and end tags (4.3) for E, and such tags are leaves of the tree (4.4). The remaining leaves of the tree are free text, represented by the atomic concept PCDATA (4.5). Using such concepts and roles, one can introduce for each element type E appearing in a DTD D an atomic concept E_D, and encode the regular expression specifying the structure of elements of type E in a suitable complex role, exploiting constructs for regular expressions over roles (including the $\text{id}(\cdot)$

\[
\begin{align*}
\top & \equiv \leq 1 f \cap \leq 1 r \cap \text{wf}(f \cup r) & (4.1) \\
\text{Start}E & \subseteq \text{Tag} \quad \text{for each element type } E & (4.2) \\
\text{End}E & \subseteq \text{Tag} \quad \text{for each element type } E & (4.3) \\
\text{Tag} & \subseteq \forall (f \cup r). \bot & (4.4) \\
\text{PCDATA} & \subseteq \forall (f \cup r). \bot \cap \neg \text{Tag} & (4.5) \\
\text{Customers}_S & \equiv \exists f. \text{StartCustomers} \sqcap \exists (r \circ (\exists f. \text{Customer}_S) \circ r^+). \text{EndCustomers} \\
\text{Customer}_S & \equiv \exists f. \text{StartCustomers} \sqcap \exists (r \circ \text{id}(\exists f. \text{Name}_S) \circ r \\
& \circ (\text{id}(\exists f. \text{Field}_S) \sqcup \text{id}(\exists f. \text{SSN}_S)) \circ r \\
& \circ (\text{id}(\exists f. \text{Registered}_S) \circ r^+). \text{EndCustomer} \\
\text{Name}_S & \equiv \exists f. \text{Name} \sqcap \exists (r \circ \text{id}(\exists f. \text{PCDATA}) \circ r). \text{EndName} \\
\end{align*}
\]

Fig. 4.15. Part of the encoding of the DTD S in Figure 4.13 into a Description Logics knowledge base.
construct). This is illustrated in Figure 4.15 for part of the element types of the DTD in Figure 4.13. We refer to [Calvanese et al., 1999d] for the precise definition of the encoding.

The encoding of DTDs into Description Logics can be exploited to verify different kinds of properties on DTDs, namely inclusion, equivalence, and disjointness between the sets of documents conforming respectively to two DTDs. Such reasoning tasks come in different forms. For strong inclusion (resp. equivalence, disjointness) both the document structure and the actual tag names are of importance when comparing documents, while for structural inclusion (resp. equivalence, disjointness) one abstracts away from the actual tag names, and considers only the document structure [Wood, 1995]. Parametric inclusion (resp. equivalence, disjointness) generalizes both notions, by considering an equivalence relation between tag names, and comparing documents modulo such an equivalence relation. By exploiting the encoding of DTDs into Description Logics presented above, all forms of inference on DTDs can be carried out in deterministic exponential time [Calvanese et al., 1999d].
This chapter covers extensions of the basic description logics introduced in Chapter 2 by very expressive constructs that require advanced reasoning techniques. In particular, we study reasoning in description logics that include general inclusion axioms, inverse roles, number-restrictions, reflexive-transitive closure of roles, fixpoint constructs for recursive definitions, and relations of arbitrary arity. The chapter will also address reasoning w.r.t. knowledge bases including both a TBox and an ABox, and discuss more general ways to treat objects. Since the logics considered in the chapter lack the finite model property, finite model reasoning is of interest and will also be discussed. Finally, we mention several extensions to description logics that lead to undecidability, confirming that the expressive description logics considered in this chapter are close to the boundary between decidability and undecidability.

5.1 Introduction

Description logics have been introduced with the goal of providing a formal reconstruction of frame systems and semantic networks. Initially, the research has concentrated on subsumption of concept expressions. However, for certain applications, it turns out that it is necessary to represent knowledge by means of inclusion axioms without limitation on cycles in the TBox. Therefore, recently there has been a strong interest in the problem of reasoning over knowledge bases of a general form. See Chapters 2, 3, and 4 for more details.

When reasoning over general knowledge bases, it is not possible to gain tractability by limiting the expressive power of the description logic, because the power of arbitrary inclusion axioms in the TBox alone leads to high complexity in the inference mechanisms. Indeed, logical implication is ExpTime-hard even for the very simple language \(\mathcal{AL} \) (see Chapter 3). This has lead to investigating very powerful languages for expressing concepts and roles, for which the property of interest is
no longer tractability of reasoning, but rather decidability. Such logics, called here *expressive description logics*, have the following characteristics:

(i) The language used for building concepts and roles comprises all classical concept forming constructs, plus several role forming constructs such as inverse roles, and reflexive-transitive closure.

(ii) No restriction is posed on the axioms in the TBox.

The goal of this chapter is to provide an overview on the results and techniques for reasoning in expressive description logics. The chapter is organized as follows. In Section 5.2, we outline the correspondence between expressive description logics and Propositional Dynamic Logics, which has given the basic tools to study reasoning in expressive description logics. In Section 5.3, we exploit automata-theoretic techniques developed for variants of Propositional Dynamic Logics to address reasoning in expressive description logics with functionality restrictions on roles. In Section 5.4 we illustrate the basic technique of *reification* for reasoning with expressive variants of number restrictions. In Section 5.5, we show how to reason with knowledge bases composed of a TBox and an ABox, and discuss extensions to deal with *names* (one-of construct). In Section 5.6, we introduce description logics with explicit fixpoint constructs, that are used to express in a natural way inductively and coinductively defined concepts. In Section 5.7, we study description logics that include relations of arbitrary arity, which overcome the limitations of traditional description logics of modeling only binary links between objects. This extension is particularly relevant for the application of description logics to databases. In Section 5.8, the problem of finite model reasoning in description logics is addressed. Indeed, for expressive description logics, reasoning w.r.t. finite models differs from reasoning w.r.t. unrestricted models, and requires specific methods. Finally, in Section 5.9, we discuss several extensions to description logics that lead in general to undecidability of the basic reasoning tasks. This shows that the expressive description logics considered in this chapter are close to the boundary to undecidability, and are carefully designed in order to retain decidability.

5.2 Correspondence between Description Logics and Propositional Dynamic Logics

In this section, we focus on expressive description logics that, besides the standard \mathcal{ALC} constructs, include regular expression over roles and possibly inverse roles [Baader, 1991; Schild, 1991]. It turns out that such description logics correspond directly to Propositional Dynamic Logics, which are modal logics used to express properties of programs. We first introduce syntax and semantics of the description
logics we consider, then introduce Propositional Dynamic Logics, and finally discuss the correspondence between the two formalisms.

5.2.1 Description Logics

We consider the description logic \(ALCI_{reg} \), in which concepts and roles are formed according to the following syntax:

\[
\begin{align*}
C, C' & \rightarrow A \mid \lnot C \mid C \sqcap C' \mid C \sqcup C' \mid \forall R.C \mid \exists R.C \\
R, R' & \rightarrow P \mid R \sqcup R' \mid R \circ R' \mid R^* \mid \text{id}(C) \mid R^-
\end{align*}
\]

where \(A \) and \(P \) denote respectively atomic concepts and atomic roles, and \(C \) and \(R \) denote respectively arbitrary concepts and roles.

In addition to the usual concept forming constructs, \(ALCI_{reg} \) provides constructs to form regular expressions over roles. Such constructs include role union, role composition, reflexive-transitive closure, and role identity. Their meaning is straightforward, except for role identity \(\text{id}(C) \) which, given a concept \(C \), allows one to build a role which connects each instance of \(C \) to itself. As we shall see in the next section, there is a tight correspondence between these constructs and the operators on programs in Propositional Dynamic Logics. The presence in the language of the constructs for regular expressions is specified by the subscript “\(reg \)” in the name.

\(ALCI_{reg} \) includes also the inverse role construct, which allows one to denote the inverse of a given relation. One can, for example, state with \(\exists \text{child}^- \cdot \text{Doctor} \) that someone has a parent who is a doctor, by making use of the inverse of role \(\text{child} \). It is worth noticing that, in a language without inverse of roles, in order to express such a constraint one must use two distinct roles (e.g., \(\text{child} \) and \(\text{parent} \)) that cannot be put in the proper relation to each other. We use the letter \(\mathcal{I} \) in the name to specify the presence of inverse roles in a description logic; by dropping inverse roles from \(\mathcal{ALC}_{reg} \), we obtain the description logic \(\mathcal{ALC}_{reg} \).

From the semantic point of view, given an interpretation \(\mathcal{I} \), concepts are interpreted as subsets of the domain \(\Delta^\mathcal{I} \), and roles as binary relations over \(\Delta^\mathcal{I} \), as follows\(^1\):

\[
\begin{align*}
A^\mathcal{I} & \subseteq \Delta^\mathcal{I} \\
(\lnot C)^\mathcal{I} & = \Delta^\mathcal{I} \setminus C^\mathcal{I} \\
(C \sqcap C')^\mathcal{I} & = C^\mathcal{I} \cap C'^\mathcal{I} \\
(C \sqcup C')^\mathcal{I} & = C^\mathcal{I} \cup C'^\mathcal{I} \\
(\forall R.C)^\mathcal{I} & = \{ o \in \Delta^\mathcal{I} \mid \forall o'. (o, o') \in R^\mathcal{I} \implies o' \in C^\mathcal{I} \}
\end{align*}
\]

\(^1\) We use \(R^* \) to denote the reflexive-transitive closure of the binary relation \(R \), and \(R_1 \circ R_2 \) to denote the chaining of the binary relations \(R_1 \) and \(R_2 \).
Expressive Description Logics

\[(\exists R.C)^I = \{ o \in \Delta^I \mid \exists o'. (o, o') \in R^I \land o' \in C^I \}\]

\[P^I \subseteq \Delta^I \times \Delta^I\]

\[(R \sqcup R')^I = R^I \cup R'^I\]

\[(R \circ R')^I = R^I \circ R'^I\]

\[(R^*)^I = (R^I)^*\]

\[id(C)^I = \{(o, o) \in \Delta^I \times \Delta^I \mid o \in C^I\}\]

\[(R^-)^I = \{(o, o') \in \Delta^I \times \Delta^I \mid (o', o) \in R^I\}\]

We consider the most general form of TBoxes constituted by general inclusion axioms of the form \(C \sqsubseteq C'\), without any restriction on cycles. We use \(C \equiv C'\) as an abbreviation for the pair of axioms \(C \sqsubseteq C'\) and \(C' \sqsubseteq C\). We adopt the usual descriptive semantics for TBoxes (cf. Chapter 2).

Example 5.1 The following \(\mathcal{ALC}I_{\text{reg}}\) TBox \(T_{\text{file}}\) models a file-system constituted by file-system elements (FSelem), each of which is either a Directory or a File. Each FSelem has a name, a Directory may have children while a File may not, and Root is a special directory which has no parent. The parent relationship is modeled through the inverse of role child.

\[
\begin{align*}
 \text{FSelem} & \sqsubseteq \exists \text{name}.\text{String} \\
 \text{FSelem} & \equiv \text{Directory} \sqcup \text{File} \\
 \text{Directory} & \sqsubseteq \neg \text{File} \\
 \text{Directory} & \sqsubseteq \forall \text{child}.\text{FSelem} \\
 \text{File} & \sqsubseteq \forall \text{child}.\bot \\
 \text{Root} & \sqsubseteq \text{Directory} \\
 \text{Root} & \sqsubseteq \forall \text{child}^-\bot
\end{align*}
\]

The axioms in \(T_{\text{file}}\) imply that in a model every object connected by a chain of role child to an instance of Root is an instance of FSelem. Formally, \(T_{\text{file}} \models \exists(\text{child}^-)^*.\text{Root} \sqsubseteq \text{FSelem}\). To verify that the implication holds, suppose that there exists a model in which an instance \(o\) of \(\exists(\text{child}^-)^*.\text{Root}\) is not an instance of FSelem. Then, reasoning by induction on the length of the chain from the instance of Root to \(o\), one can derive a contradiction. Observe that induction is required, and hence such reasoning is not first-order.

In the following, when convenient, we assume, without loss of generality, that \(\sqcup\) and \(\forall R.C\) are expressed by means of \(\neg\), \(\sqcap\), and \(\exists R.C\). We also assume that the inverse operator is applied to atomic roles only. This can be done again without
loss of generality, since the following equivalences hold:
\((R_1; R_2)^- = R_1^- \circ R_2^-\),
\((R - 1 \sqcup R_2)^- = R_1^- \sqcup R_2^-,\)
\((R^*)^- = (R^-)^*,\) and \((id(C))^- = id(C)\).

5.2.2 Propositional Dynamic Logics

Propositional Dynamic Logics (PDLs) are modal logics specifically developed for reasoning about computer programs [Fischer and Ladner, 1979; Kozen and Tiuryn, 1990; Harel et al., 2000]. In this section, we provide a brief overview of PDLs, and illustrate the correspondence between description logics and PDLs.

Syntactically, a PDL is constituted by expressions of two sorts: . programs and formulae. Programs and formulae are built by starting from atomic programs and propositional letters, and applying suitable operators. We denote propositional letters with \(A\), arbitrary formulae with \(\phi\), atomic programs with \(P\), and arbitrary programs with \(r\), all possibly with subscripts. We focus on converse-pdl [Fischer and Ladner, 1979] which, as it turns out, corresponds to \(ALCI_{reg}\). The abstract syntax of converse-pdl is as follows:

\[
\phi, \phi' \rightarrow \top | \bot | A | \phi \land \phi' | \phi \lor \phi' | \neg \phi | \langle r \rangle \phi | [r] \phi \\
\phi, \phi' \rightarrow P | r \sqcup r' | r; r' | r^* | r? | r^-
\]

The basic Propositional Dynamic Logic pdl [Fischer and Ladner, 1979] is obtained from converse-pdl by dropping converse programs \(r^-\).

The semantics of PDLs is based on the notion of (Kripke) structure, defined as a triple \(M = (S, \{R_P\}, \Pi)\), where \(S\) denotes a non-empty set of states, \(\{R_P\}\) is a family of binary relations over \(S\), each of which denotes the state transitions caused by an atomic program \(P\), and \(\Pi\) is a mapping from \(S\) to propositional letters such that \(\Pi(s)\) determines the letters that are true in state \(s\). The basic semantical relation is “a formula \(\phi\) holds at a state \(s\) of a structure \(M\)”, written \(M, s \models \phi\), and is defined by induction on the formation of \(\phi\):

\[
\begin{align*}
M, s \models A & \quad \text{iff} \quad A \in \Pi(s) \\
M, s \models \top & \quad \text{always} \\
M, s \models \bot & \quad \text{never} \\
M, s \models \phi \land \phi' & \quad \text{iff} \quad M, s \models \phi \text{ and } M, s \models \phi' \\
M, s \models \phi \lor \phi' & \quad \text{iff} \quad M, s \models \phi \text{ or } M, s \models \phi' \\
M, s \models \neg \phi & \quad \text{iff} \quad M, s \not\models \phi \\
M, s \models \langle r \rangle \phi & \quad \text{iff} \quad \text{there is } s' \text{ such that } (s, s') \in R_r \text{ and } M, s' \models \phi \\
M, s \models [r] \phi & \quad \text{iff} \quad \text{for all } s', (s, s') \in R_r \text{ implies } M, s' \models \phi
\end{align*}
\]

where the family \(\{R_P\}\) is systematically extended so as to include, for every program
Expressive Description Logics

The corresponding relation \(R_r \) defined by induction on the formation of \(r \):

\[
\begin{align*}
R_P & \subseteq S \times S \\
R_{r \cup r'} & = R_r \cup R_{r'} \\
R_{r \cdot r'} & = R_r \circ R_{r'} \\
R_{r^*} & = (R_r)^* \\
R_{\phi?} & = \{(s, s) \in S \times S | M, s \models \phi\} \\
R_{r^-} & = \{(s_1, s_2) \in S \times S | (s_2, s_1) \in R_r\}.
\end{align*}
\]

If, for each atomic program \(P \), the transition relation \(R_P \) is required to be a function that assigns to each state a unique successor state, then we are dealing with the deterministic variants of PDLs, namely dpdl and converse-dpdl [Ben-Ari et al., 1982; Vardi and Wolper, 1986].

It is important to understand, given a formula \(\phi \), which are the formulae that play some role in establishing the truth-value of \(\phi \). In simpler modal logics, these formulae are simply all the subformulae of \(\phi \), but due to the presence of reflexive-transitive closure this is not the case for PDLs. Such a set of formula is given by the Fischer-Ladner closure of \(\phi \) [Fischer and Ladner, 1979].

To be concrete we now illustrate the Fischer-Ladner closure for converse-pdl. However, the notion of Fischer-Ladner closure can be easily extended to other PDLs. Let us assume, without loss of generality, that \(\lor \) and \(\lbrack \cdot \rbrack \) are expressed by means of \(\neg \), \(\land \), and \(\langle \cdot \rangle \). We also assume that the converse operator is applied to atomic programs only. This can again be done without loss of generality, since the following equivalences hold: \((r \cup r')^- = r^- \cup r'^- \), \((r; r')^- = r'^-; r^- \), \((r^*)^- = (r^-)^* \), and \((\phi?)^- = \phi? \).

The Fischer-Ladner closure of a converse-pdl formula \(\psi \), denoted \(CL(\psi) \), is the least set \(F \) such that \(\psi \in F \) and such that:

\[
\begin{align*}
\text{if } &\phi \in F \text{ then } \neg \phi \in F \quad \text{(if } \phi \text{ is not of the form } \neg \phi') \\
\text{if } &\neg \phi \in F \text{ then } \phi \in F \\
\text{if } &\phi \land \phi' \in F \text{ then } \phi, \phi' \in F \\
\text{if } &\langle r \rangle \phi \in F \text{ then } \phi \in F \\
\text{if } &\langle r \cup r' \rangle \phi \in F \text{ then } \langle r \rangle \phi, \langle r' \rangle \phi \in F \\
\text{if } &\langle r; r' \rangle \phi \in F \text{ then } \langle r \rangle \langle r' \rangle \phi \in F \\
\text{if } &\langle r^* \rangle \phi \in F \text{ then } \langle r \rangle \langle r^* \rangle \phi \in F \\
\text{if } &\langle \phi'? \rangle \phi \in F \text{ then } \phi' \in F.
\end{align*}
\]

Note that \(CL(\psi) \) includes all the subformulae of \(\psi \), but also formulae of the form \(\langle r \rangle \langle r^* \rangle \phi \) derived from \(\langle r^* \rangle \phi \), which are in fact bigger than the formula they derive from. On the other hand, both the number and the size of the formulae in \(CL(\psi) \) are linearly bounded by the size of \(\psi \) [Fischer and Ladner, 1979], exactly as the set of subformulae. Note also that, by definition, if \(\phi \in CL(\psi) \), then \(CL(\phi) \subseteq CL(\psi) \).
A structure $\mathcal{M} = (\mathcal{S}, \{R_P\}, \Pi)$ is called a model of a formula ϕ if there exists a state $s \in \mathcal{S}$ such that $\mathcal{M}, s \models \phi$. A formula ϕ is satisfiable if there exists a model of ϕ, otherwise the formula is unsatisfiable. A formula ϕ is valid in structure \mathcal{M} if for all $s \in \mathcal{S}$, $\mathcal{M}, s \models \phi$. We call axioms formulae that are used to select the interpretations of interest. Formally, a structure \mathcal{M} is a model of an axiom ϕ, if ϕ is valid in \mathcal{M}. A structure \mathcal{M} is a model of a finite set of axioms Γ if \mathcal{M} is a model of all axioms in Γ. An axiom is satisfiable if it has a model and a finite set of axioms is satisfiable if it has a model. We say that a finite set Γ of axioms logically implies a formula ϕ, written $\Gamma \models \phi$, if ϕ is valid in every model of Γ.

It is easy to see that satisfiability of a formula ϕ as well as satisfiability of a finite set of axioms Γ can be reformulated by means of logical implication, as $\emptyset \not\models \neg \phi$ and $\Gamma \not\models \perp$ respectively.

Interestingly, logical implication can, in turn, be reformulated in terms of satisfiability, by making use of the following theorem (cf. [Kozen and Tiuryn, 1990]).

Theorem 5.2 (Internalization of axioms) Let Γ be a finite set of converse-PDL axioms, and ϕ a converse-PDL formula. Then $\Gamma \models \phi$ if and only if the formula

$$
\neg \phi \land [(P_1 \cup \cdots \cup P_m \cup P_1^- \cup \cdots \cup P_m^-)^*] \Gamma'
$$

is unsatisfiable, where P_1, \ldots, P_m are all atomic programs occurring in $\Gamma \cup \{\phi\}$ and Γ' is the conjunction of all axioms in Γ.

Such a result exploits the power of program constructs (union, reflexive-transitive closure) and the connected model property (i.e., if a formula has a model, it has a model which is connected) of PDLs in order to represent axioms. The connected model property is typical of modal logics and it is enjoyed by all PDLs. As a consequence, a result analogous to Theorem 5.2 holds for virtually all PDLs.

Reasoning in PDLs has been thoroughly studied from the computational point of view, and the results for the PDLs considered here are summarized in the following theorem [Fischer and Ladner, 1979; Pratt, 1979; Ben-Ari et al., 1982; Vardi and Wolper, 1986]:

Theorem 5.3 Satisfiability in PDL is ExpTime-hard. Satisfiability in PDL, in converse-PDL, and in converse-DPDL can be decided in deterministic exponential time.
5.2.3 The correspondence

The correspondence between description logics and PDLs was first published by Schild [1991]. In the work by Schild, it was shown that \mathcal{ALCI}_{reg} can be consid-
ered a notational variant of converse-PDL. This observation allowed for exploiting
the results on converse-PDL for instantly closing long standing issues regarding the
decidability and complexity of both satisfiability and logical implication in \mathcal{ALC}_{reg}
and \mathcal{ALCI}_{reg}. The paper was very influential for the research in expressive de-
scription logics in the following decade, since thanks to the correspondence between
PDLs and description logics, first results but especially formal techniques and in-
sights could be shared by the two communities. The correspondence between PDLs
and description logics has been extensively used to study reasoning methods for
expressive description logics. It has also lead to a number of interesting extensions
of PDLs in terms of those constructs that are typical of description logics and have
never been considered in PDLs. In particular, there is a tight relation between
qualified number restrictions and graded modalities in modal logics [Van der Hoek,
1992; Van der Hoek and de Rijke, 1995; Fattorosi-Barnaba and De Caro, 1985;
Fine, 1972].

The correspondence is based on the similarity between the interpretation struc-
tures of the two logics: at the extensional level, individuals (members of Δ^I) in
description logics correspond to states in PDLs, whereas links between two individ-
uals correspond to state transitions. At the intensional level, concepts correspond
to propositions, and roles correspond to programs. Formally, the correspondence
is realized through a one-to-one and onto mapping τ from \mathcal{ALCI}_{reg} concepts to
converse-PDL formulae, and from \mathcal{ALCI}_{reg} roles to converse-PDL programs. The
mapping τ is defined inductively as follows:

\[
\begin{align*}
\tau(A) &= A \\
\tau(\neg C) &= \neg \tau(C) \\
\tau(C \cap C') &= \tau(C) \land \tau(C') \\
\tau(C \cup C') &= \tau(C) \lor \tau(C') \\
\tau(\forall R.C) &= \langle \tau(R) \rangle \tau(C) \\
\tau(\exists R.C) &= \langle \tau(R) \rangle \tau(C)
\end{align*}
\]

Axioms in description logics’ TBoxes correspond in the obvious way to axioms in
PDLs. Moreover all forms of reasoning (satisfiability, logical implication, etc.) have
their natural counterpart.

One of the most important contributions of the correspondence is obtained by

1 In fact, the correspondence was first noticed by Levesque and Rosenschein at the beginning of the ‘80s,
but never published. In those days Levesque just used it in seminars to show intractability of certain
description logics.

2 In fact, the decidability of \mathcal{ALC}_{reg} without the $id(C)$ construct was independently established by
Baader [1991].
rephrasing Theorem 5.2 in terms of description logics. It says that every TBox can be “internalized” into a single concept, i.e., it is possible to build a concept that expresses all the axioms of the TBox. In doing so we rely on the ability to build a “universal” role, i.e., a role linking all individuals in a (connected) model. Indeed, a universal role can be expressed by using regular expressions over roles, and in particular the union of roles and the reflexive-transitive closure. The possibility of internalizing the TBox when dealing with expressive description logics tells us that for such description logics reasoning with TBoxes, i.e., logical implication, is no harder that reasoning with a single concept.

Theorem 5.4 Concept satisfiability and logical implication in \mathcal{ALC}_{reg} are ExpTime-hard. Concept satisfiability and logical implication in \mathcal{ALC}_{reg} and \mathcal{ALCIT}_{reg} can be decided in deterministic exponential time.

Observe that for description logics that do not allow for expressing a universal role, there is a sharp difference between reasoning techniques used in the presence of TBoxes, and techniques used to reason on concept expressions. The profound difference is reflected by the computational properties of the associated decision problems. For example, the logic \mathcal{AL} admits simple structural algorithms for deciding reasoning tasks not involving axioms, and these algorithms are sound and complete and work in polynomial time. However, if general inclusion axioms are considered, then reasoning becomes ExpTime-complete (cf. Chapter 3), and the decision procedures that have been developed include suitable termination strategies [Buchheit et al., 1993a]. Similarly, for the more expressive logic \mathcal{ALC}, reasoning tasks not involving a TBox are PSPACE-complete [Schmidt-Schauß and Smolka, 1991], while those that do involve it are ExpTime-complete.

5.3 Functional restrictions

We have seen that the logics \mathcal{ALC}_{reg} and \mathcal{ALCIT}_{reg} correspond to standard PDL and converse-PDL respectively, which are both well studied. In this section we show how the correspondence can be used to deal also with constructs that are typical of description logics, namely functional restrictions, by exploiting techniques developed for reasoning in PDLs. In particular, we will adopt automata-based techniques, which have been very successful in studying reasoning for expressive variants of PDL and characterizing their complexity.

Functional restrictions are the simplest form of number restrictions considered in description logics, and allow for specifying local functionality of roles, i.e., that instances of certain concepts have unique role-fillers for a given role. By adding functional restrictions on atomic roles and their inverse to \mathcal{ALCIT}_{reg}, we obtain the description logic \mathcal{ALCFI}_{reg}. The PDL corresponding to \mathcal{ALCFI}_{reg} is a PDL
that extends converse-DPDL [Vardi and Wolper, 1986] with determinism of both atomic programs and their inverse, and such that determinism is no longer a global property, but one that can be imposed locally.

Formally, \mathcal{ALCFI}_{reg} is obtained from \mathcal{ALCI}_{reg} by adding functional restrictions of the form $\leq 1 Q$, where Q is a basic role, i.e., either an atomic role or the inverse of an atomic role. Such a functional restriction is interpreted as follows:

$$(\leq 1 Q)^T = \{ o \in \Delta^T \mid |\{ o' \in \Delta^T \mid (o, o') \in Q^T \}| \leq 1 \}$$

We show that reasoning in \mathcal{ALCFI}_{reg} is in ExpTime, and, since reasoning in \mathcal{ALC}_{reg} is already ExpTime-hard, is in fact ExpTime-complete. Without loss of generality we concentrate on concept satisfiability. We exploit the fact that \mathcal{ALCFI}_{reg} has the tree model property, which states that if a \mathcal{ALCFI}_{reg} concept C is satisfiable then it is satisfied in an interpretation which has the structure of a (possibly infinite) tree with bounded branching degree (see later). This allows us to make use of techniques based on automata on infinite trees. In particular, we make use of two-way alternating automata on infinite trees (2ATAs) introduced by Vardi [1998]. 2ATAs were used by Vardi [1998] to derive a decision procedure for modal μ-calculus with backward modalities. We first introduce 2ATAs and then show how they can be used to reason in \mathcal{ALCFI}_{reg}.

5.3.1 Automata on infinite trees

Infinite trees are represented as prefix closed (infinite) sets of words over \mathbb{N} (the set of positive natural numbers). Formally, an infinite tree is a set of words $T \subseteq \mathbb{N}^*$, such that if $x \cdot c \in T$, where $x \in \mathbb{N}^*$ and $c \in \mathbb{N}$, then also $x \in T$. The elements of T are called nodes, the empty word ε is the root of T, and for every $x \in T$, the nodes $x \cdot c$, with $c \in \mathbb{N}$, are the successors of x. By convention we take $x \cdot 0 = x$, and $x \cdot i \cdot -1 = x$. The branching degree $d(x)$ of a node x denotes the number of successors of x. If the branching degree of all nodes of a tree is bounded by k, we say that the tree has branching degree k. An infinite path P of T is a prefix-closed set $P \subseteq T$ such that for every $i \geq 0$ there exists a unique node $x \in P$ with $|x| = i$. A labeled tree over an alphabet Σ is a pair (T, V), where T is a tree and $V : T \rightarrow \Sigma$ maps each node of T to an element of Σ.

Alternating automata on infinite trees are a generalization of nondeterministic automata on infinite trees, introduced by Muller and Schupp [1987]. They allow for an elegant reduction of decision problems for temporal and program logics [Emerson and Jutla, 1991; Bernholtz et al., 1994]. Let $\mathcal{B}(I)$ be the set of positive Boolean formulae over I, built inductively by applying \land and \lor starting from true, false, and elements of I. For a set $J \subseteq I$ and a formula $\varphi \in \mathcal{B}(I)$, we say that J satisfies φ if and only if, assigning true to the elements in J and false to those in $I \setminus J$, makes
the following complexity characterization of non-emptiness of 2ATAs. In

\[\text{Theorem 5.5 (Vardi, 1998)} \] Given a 2ATA \(A \) with \(n \) states and an input alphabet with \(m \) elements, deciding non-emptiness of \(A \) can be done in time exponential in \(n \) and polynomial in \(m \).

\footnote{No condition is imposed on the finite paths of the run.}
5.3.2 Reasoning in \(\text{ALCFI}_{\text{reg}} \)

The (Fischer-Ladner) closure for \(\text{ALCFI}_{\text{reg}} \) extends immediately the analogous notion for converse-pdl (see Section 5.2.2), treating functional restrictions as atomic concepts. In particular, the closure \(\text{CL}(C_0) \) of an \(\text{ALCFI}_{\text{reg}} \) concept \(C_0 \) is defined as the smallest set of concepts such that \(C_0 \in \text{CL}(C_0) \) and such that (assuming \(\sqcup \) and \(\forall \) to be expressed by means of \(\sqcap \) and \(\exists \), and the inverse operator applied only to atomic roles)

\[
\begin{align*}
\text{if} & \quad C \in \text{CL}(C_0) & \text{then} & \quad \neg C \in \text{CL}(C_0) & \quad \text{(if } C \text{ is not of the form } \neg C' \text{)} \\
\text{if} & \quad \neg C \in \text{CL}(C_0) & \text{then} & \quad C \in \text{CL}(C_0) \\
\text{if} & \quad C \sqcap C' \in \text{CL}(C_0) & \text{then} & \quad C, C' \in \text{CL}(C_0) \\
\text{if} & \quad \exists R.C \in \text{CL}(C_0) & \text{then} & \quad C \in \text{CL}(C_0) \\
\text{if} & \quad \exists (R \sqcup R').C \in \text{CL}(C_0) & \text{then} & \quad \exists R.C, \exists R'.C \in \text{CL}(C_0) \\
\text{if} & \quad \exists R^* . C \in \text{CL}(C_0) & \text{then} & \quad \exists R, \exists R^* . C \in \text{CL}(C_0) \\
\text{if} & \quad \exists \text{id}(C).C' \in \text{CL}(C_0) & \text{then} & \quad C \in \text{CL}(C_0)
\end{align*}
\]

The cardinality of \(\text{CL}(C_0) \) is linear in the length of \(C_0 \).

It can be shown, following the lines of the proof in [Vardi and Wolper, 1986] for converse-dpdl, that \(\text{ALCFI}_{\text{reg}} \) enjoys the tree model property, i.e., every satisfiable concept has a model that has the structure of a (possibly infinite) tree with branching degree linearly bounded by the size of the concept. More precisely, we have the following result.

Theorem 5.6 Every satisfiable \(\text{ALCFI}_{\text{reg}} \) concept \(C_0 \) has a tree model with branching degree \(k_{C_0} \) equal to twice the number of elements of \(\text{CL}(C_0) \).

This property allows us to check satisfiability of an \(\text{ALCFI}_{\text{reg}} \) concept \(C_0 \) by building a 2ATA that accepts the (labeled) trees that correspond to tree models of \(C_0 \). Let \(A \) be the set of atomic concepts appearing in \(C_0 \), and \(B = \{Q_1, \ldots, Q_n\} \) the set of atomic roles appearing in \(C_0 \) and their inverses. We construct from \(C_0 \) a 2ATA \(A_{C_0} \) that checks that \(C_0 \) is satisfied at the root of the input tree. We represent in each node of the tree the information about which atomic concepts are true in the node, and about the basic role that connects the predecessor of the node to the node itself (except for the root). More precisely, we label each node with a pair \(\sigma = (\alpha, q) \), where \(\alpha \) is the set of atomic concepts that are true in the node, and \(q = Q \) if the node is reached from its predecessor through the basic role \(Q \). That is, if \(Q \) stands for an atomic role \(P \), then the node is reached from its predecessor through \(P \), and if \(Q \) stands for \(P^- \), then the predecessor is reached from the node.

\[\text{We remind that } C \text{ and } C' \text{ stand for arbitrary concepts, and } R \text{ and } R' \text{ stand for arbitrary roles.}\]
through P. In the root, $q = P_{dum}$, where P_{dum} is a new symbol representing a dummy role.

Given an $\mathcal{ALCFI}_{\text{reg}}$ concept C_0, we construct an automaton A_{C_0} that accepts trees that correspond to tree models of C_0. For technical reasons, it is convenient to consider concepts in negation normal form (i.e., negations are pushed inside as much as possible). It is easy to check that the transformation of a concept into negation normal form can be performed in linear time in the size of the concept. Below, we denote by $\text{nnf}(C)$ the negation normal form of C, and with $\text{CL}_{\text{nnf}}(C_0)$ the set $\{\text{nnf}(C) \mid C \in \text{CL}(C_0)\}$. The automaton $A_{C_0} = (\Sigma, S, \delta, s_{\text{ini}}, F)$ is defined as follows.

- The alphabet is $\Sigma = 2^A \times (B \cup \{P_{dum}\})$, i.e., the set of pairs whose first component is a set of atomic concepts, and whose second component is a basic role or the dummy role P_{dum}. This corresponds to labeling each node of the tree with a truth assignment to the atomic concepts, and with the role used to reach the node from its predecessor.

- The set of states is $S = \{s_{\text{ini}}\} \cup \text{CL}_{\text{nnf}}(C_0) \cup \{Q, \neg Q \mid Q \in B\}$, where s_{ini} is the initial state, $\text{CL}_{\text{nnf}}(C_0)$ is the set of concepts (in negation normal form) in the closure of C_0, and $\{Q, \neg Q \mid Q \in B\}$ are states used to check whether a basic role labels a node. Intuitively, when the automaton in a state $C \in \text{CL}_{\text{nnf}}(C_0)$ visits a node x of the tree, this means that the automaton has to check that C holds in x.

- The transition function δ is defined as follows.

1. For each $\alpha \in 2^A$, there is a transition from the initial state

$$\delta(s_{\text{ini}}, (\alpha, P_{dum})) = (0, \text{nnf}(C_0))$$

Such a transition checks that the root of the tree is labeled with the dummy role P_{dum}, and moves to the state that verifies C_0 in the root itself.

2. For each $(\alpha, q) \in \Sigma$ and each atomic concept $A \in A$, there are transitions

$$\delta(A, (\alpha, q)) = \begin{cases} \text{true}, & \text{if } A \in \alpha \\ \text{false}, & \text{if } A \notin \alpha \end{cases}$$

$$\delta(\neg A, (\alpha, q)) = \begin{cases} \text{true}, & \text{if } A \notin \alpha \\ \text{false}, & \text{if } A \in \alpha \end{cases}$$

Such transitions check the truth value of atomic concepts and their negations in the current node of the tree.
3. For each \((\alpha, q) \in \Sigma\) and each basic role \(Q \in \mathcal{B}\), there are transitions

\[
\delta(Q, (\alpha, q)) = \begin{cases}
\text{true}, & \text{if } q = Q \\
\text{false}, & \text{if } q \neq Q
\end{cases}
\]

\[
\delta(-Q, (\alpha, q)) = \begin{cases}
\text{true}, & \text{if } q \neq Q \\
\text{false}, & \text{if } q = Q
\end{cases}
\]

Such transitions check through which role the current node is reached.

4. For the concepts in \(\mathit{CL}_{nnf}(C_0)\) and each \(\sigma \in \Sigma\), there are transitions

\[
\delta(C \cap C', \sigma) = (0, C) \land (0, C')
\]

\[
\delta(C \cup C', \sigma) = (0, C) \lor (0, C')
\]

\[
\delta(\forall Q.C, \sigma) = ((0, -Q^-) \lor (-1, C)) \land \bigwedge_{1 \leq i \leq k_0} ((i, -Q) \lor (i, C))
\]

\[
\delta(\exists R \sqcup R'.C, \sigma) = (0, \exists R.C) \land (0, \exists R'.C)
\]

\[
\delta(\forall R^* .C, \sigma) = (0, C) \land (0, \forall R^* .C)
\]

\[
\delta(\forall \text{id}(C), C', \sigma) = (0, \text{nnf}(-C)) \lor (0, C')
\]

\[
\delta(\exists Q.C, \sigma) = ((0, Q^-) \lor (-1, C)) \lor \bigvee_{1 \leq i \leq k_0} ((i, Q) \lor (i, C))
\]

\[
\delta(\exists R \sqcup R'.C, \sigma) = (0, \exists R.C) \lor (0, \exists R'.C)
\]

\[
\delta(\exists (R \circ R').C, \sigma) = (0, \exists R .\exists R'.C)
\]

\[
\delta(\exists R^* .C, \sigma) = (0, C) \lor (0, \exists R^* .C)
\]

\[
\delta(\exists \text{id}(C), C', \sigma) = (0, C) \land (0, C')
\]

All such transitions, except for those involving \(\forall R^* .C\) and \(\exists R^* .C\), inductively decompose concepts and roles, and move to appropriate states of the automaton and nodes of the tree. The transitions involving \(\forall R^* .C\) treat \(\forall R^* .C\) as the equivalent concept \(C \cap \forall R^* .C\), and the transitions involving \(\exists R^* .C\) treat \(\exists R^* .C\) as the equivalent concept \(C \sqcup \exists R .\exists R^* .C\).

5. For each concept of the form \(\leq 1 Q\) in \(\mathit{CL}_{nnf}(C)\) and each \(\sigma \in \Sigma\), there is a transition

\[
\delta(\leq 1 Q, \sigma) = ((0, Q^-) \land \bigwedge_{1 \leq i \leq k_0} ((i, -Q))^\lor (
((0, -Q^-) \land \bigwedge_{1 \leq i < j \leq k_0} ((i, -Q) \lor (j, -Q))))
\]

Such transitions check that, for a node \(x\) labeled with \(\leq 1 Q\), there exists at most one node (among the predecessor and the successors of \(x\)) reachable from \(x\) through \(Q\).

6. For each concept of the form \(\neg \leq 1 Q\) in \(\mathit{CL}_{nnf}(C)\) and each \(\sigma \in \Sigma\), there is a
transition
\[
\delta(\neg \leq 1Q, \sigma) = ((0, Q^-) \land \lor_{1 \leq i \leq k_{C_0}} (i, Q)) \lor \lor_{1 \leq i < j \leq k_{C_0}} ((i, Q) \land (j, Q))
\]

Such transitions check that, for a node \(x\) labeled with \(\neg \leq 1Q\), there exist at least two nodes (among the predecessor and the successors of \(x\)) reachable from \(x\) through \(Q\).

• The set \(F\) of final states is the set of concepts in \(CL_{nnf}(C_0)\) of the form \(\forall R^* . C\). Observe that concepts of the form \(\exists R^* . C\) are not final states, and this is sufficient to guarantee that such concepts are satisfied in all accepting runs of the automaton.

A run of the automaton \(A_{C_0}\) on an infinite tree starts in the root checking that \(C_0\) holds there (item 1 above). It does so by inductively decomposing \(nnf(C_0)\) while appropriately navigating the tree (items 3 and 4) until it arrives to atomic concepts, functional restrictions, and their negations. These are checked locally (items 2, 5 and 6). Concepts of the form \(\forall R^* . C\) and \(\exists R^* . C\) are propagated using the equivalent concepts \(C \cap \forall R . \forall R^* . C\) and \(C \cup \exists R . \exists R^* . C\), respectively. It is only the propagation of such concepts that may generate infinite branches in a run. Now, a run of the automaton may contain an infinite branch in which \(\exists R^* . C\) is always resolved by choosing the disjunct \(\exists R . \exists R^* . C\), without ever choosing the disjunct \(C\). This infinite branch in the run corresponds to an infinite path in the tree where \(R\) is iterated forever and in which \(C\) is never fulfilled. However, the semantics of \(\exists R^* . C\) requires that \(C\) is fulfilled after a finite number of iterations of \(R\). Hence such an infinite path cannot be used to satisfy \(\exists R^* . C\). The acceptance condition of the automaton, which requires that each infinite branch in a run contains a state of the form \(\forall R^* . C\), rules out such infinite branches in accepting runs. Indeed, a run always deferring the fulfillment of \(C\) will contain an infinite branch where all states have the form \(\exists R_1 \cdots \exists R_n . \exists R^* . C\), with \(n \geq 0\) and \(R_1 \circ \cdots \circ R_n\) a postfix of \(R\). Observe that the only remaining infinite branches in a run are those that arise by propagating concepts of the form \(\forall R^* . C\) indefinitely often. The acceptance condition allows for such branches.

Given a labeled tree \(T = (T, V)\) accepted by \(A_{C_0}\), we define an interpretation \(\mathcal{I}_T = (\Delta^T, \cdot^T)\) as follows. First, we define for each atomic role \(P\), a relation \(R_P\) as follows: \(R_P = \{(x, xi) \mid V(xi) = (\alpha, P)\text{ for some }\alpha \in 2^A\} \cup \{(xi, x) \mid V(xi) = (\alpha, P^-)\text{ for some }\alpha \in 2^A\}\). Then, using such relations, we define:

• \(\Delta^T = \{x \mid (\varepsilon, x) \in (\bigcup P(R_P \cup R_P^-))^*\}\);
• \(A^T = \Delta^T \cap \{x \mid V(x) = (\alpha, q)\text{ and }A \in \alpha\text{ for some }\alpha \in 2^A\text{ and }q \in B \cup \{P_{dum}\}\}\), for each atomic concept \(A\);
• $P^T = (\Delta^T \times \Delta^T) \cap \mathcal{R}_P$, for each atomic role P.

Lemma 5.7 If a labeled tree T is accepted by A_{C_0}, then I_T is a model of C_0.

Conversely, given a tree model I of C_0 with branching degree k_{C_0}, we can obtain a labeled tree $T_I = (T, V)$ (with branching degree k_{C_0}) as follows:

- $T = \Delta^I$;
- $V(\varepsilon) = (\alpha, P_{\text{dum}})$, where $\alpha = \{A \mid \varepsilon \in A^I\}$;
- $V(x_i) = (\alpha, Q)$, where $\alpha = \{A \mid x_i \in A^I\}$ and $(x, x_i) \in Q^I$.

Lemma 5.8 If I is a tree model of C_0 with branching degree k_{C_0}, then T_I is a labeled tree accepted by A_{C_0}.

From the lemmas above and the tree model property of $\mathcal{ALCFI}_{\mathcal{Reg}}$ (Theorem 5.6), we get the following result.

Theorem 5.9 An $\mathcal{ALCFI}_{\mathcal{Reg}}$ concept C_0 is satisfiable if and only if the set of trees accepted by A_{C_0} is not empty.

From this theorem, it follows that we can use algorithms for non-emptiness of 2ATAs to check satisfiability in $\mathcal{ALCFI}_{\mathcal{Reg}}$. It turns out that such a decision procedure is indeed optimal w.r.t. the computational complexity. The 2ATA A_{C_0} has a number of states that is linear in the size of C_0, while the alphabet is exponential in the number of atomic concepts occurring in C_0. By Theorem 5.5 we get an upper bound for reasoning in $\mathcal{ALCFI}_{\mathcal{Reg}}$ that matches the ExpTime lower bound.

Theorem 5.10 Concept satisfiability (and hence logical implication) in $\mathcal{ALCFI}_{\mathcal{Reg}}$ is ExpTime-complete.

Functional restrictions, in the context of expressive description logics that include inverse roles and TBox axioms, were originally studied in [De Giacomo and Lenzerini, 1994a; De Giacomo, 1995] using the so called axiom schema instantiation technique. The technique is based on the idea of devising an axiom schema corresponding to the property of interest (e.g., functional restrictions) and instantiating such a schema to a finite (polynomial) number of concepts. A nice illustration of this technique is the reduction of converse-PDL to PDL in [De Giacomo, 1996]. Axiom schema instantiation can be used to show that reasoning w.r.t. TBoxes is ExpTime-complete in significant sub-cases of $\mathcal{ALCFI}_{\mathcal{Reg}}$ (such as reasoning w.r.t. \mathcal{ALCFI} TBoxes [Calvanese et al., 2001b]). However, it is still open whether it can be applied to show ExpTime-completeness of $\mathcal{ALCFI}_{\mathcal{Reg}}$. The attempt in this direction presented in [De Giacomo and Lenzerini, 1994a; De Giacomo, 1995] turned out to be incomplete [Zakharyaschev, 2000].
5.4 Qualified number restrictions

Next we deal with qualified number restrictions, which are the most general form of number restrictions, and allow for specifying arbitrary cardinality constraints on roles with role-fillers belonging to a certain concept. In particular we will consider qualified number restrictions on basic roles, i.e., atomic roles and their inverse. By adding such constructs to \mathcal{ALCI}_{reg} we obtain the description logic \mathcal{ALCQI}_{reg}. The PDL corresponding to \mathcal{ALCQI}_{reg} is an extension of converse-PDL with “graded modalities” [Fattorosi-Barnaba and De Caro, 1985; Van der Hoek and de Rijke, 1995; Tobies, 1999c] on atomic programs and their converse.

Formally, \mathcal{ALCQI}_{reg} is obtained from \mathcal{ALCI}_{reg} by adding qualified number restrictions of the form $\leq n QC$ and $\geq n QC$, where n is a nonnegative integer, Q is a basic role, and C is an \mathcal{ALCQI}_{reg} concept. Such constructs are interpreted as follows:

\[
(\leq n QC)^I = \{o \in \Delta^I \mid |\{o' \in \Delta^I \mid (o, o') \in Q^I \land o' \in C^I\}| \leq n\}
\]

\[
(\geq n QC)^I = \{o \in \Delta^I \mid |\{o' \in \Delta^I \mid (o, o') \in Q^I \land o' \in C^I\}| \geq n\}
\]

Reasoning in \mathcal{ALCQI}_{reg} is still ExpTime-complete under the standard assumption in description logics, that numbers in number restrictions are represented in unary\(^1\). This could be shown by extending the automata theoretic techniques introduced in Section 5.3 to deal also with qualified number restrictions. Here we take a different approach and study reasoning in \mathcal{ALCQI}_{reg} by exhibiting a reduction from \mathcal{ALCQI}_{reg} to \mathcal{ALCFI}_{reg} [De Giacomo and Lenzerini, 1995; De Giacomo, 1995]. Since the reduction is polynomial, we get as a result ExpTime-completeness of \mathcal{ALCQI}_{reg}. The reduction is based on the notion of reification. Such a notion plays a major role in dealing with Boolean combinations of (atomic) roles [De Giacomo and Lenzerini, 1995; 1994c], as well as in extending expressive description logics with relation of arbitrary arity (see Section 5.7).

5.4.1 Reification of roles

Atomic roles are interpreted as binary relations. Reifying a binary relation means creating for each pair of individuals (o_1, o_2) in the relation an individual which is connected by means of two special roles V_1 and V_2 to o_1 and o_2, respectively. The set of such individuals represents the set of pairs forming the relation. However, the following problem arises: in general, there may be two or more individuals being all connected by means of V_1 and V_2 to o_1 and o_2 respectively, and thus all representing

\(^1\) In [Tobies, 2001a] techniques for dealing with qualified number restrictions with numbers coded in binary are presented, and are used to show that even under this assumption reasoning over \mathcal{ALCQI} knowledge bases can be done in ExpTime.
the same pair \((o_1, o_2)\). Obviously, in order to have a correct representation of a relation, such a situation must be avoided.

Given an atomic role \(P\), we call its \textit{reified form} the following role

\[
V_1^- \circ \text{id}(A_P) \circ V_2
\]

where \(A_P\) is a new atomic concept denoting individuals representing the tuples of the relation associated with \(P\), and \(V_1\) and \(V_2\) denote two functional roles that connect each individual in \(A_P\) to the first and the second component respectively of the tuple represented by the individual. Observe that there is a clear symmetry between the role \(V_1^- \circ \text{id}(A_P) \circ V_2\) and its inverse \(V_2^- \circ \text{id}(A_P) \circ V_1\).

Definition 5.11 Let \(C\) be an \(\mathcal{ALCQI}_{\text{reg}}\) concept. The \textit{reified counterpart} \(\xi_1(C)\) of \(C\) is the conjunction of two concepts, \(\xi_1(C) = \xi_0(C) \cap \Theta_1\), where:

- \(\xi_0(C)\) is obtained from the original concept \(C\) by (i) replacing every atomic role \(P\) by the complex role \(V_1^- \circ \text{id}(A_P) \circ V_2\), where \(V_1\) and \(V_2\) are new atomic roles (the only ones present after the transformation) and \(A_P\) is a new atomic concept; (ii) and then re-expressing every qualified number restriction

\[
\begin{align*}
&\leq n (V_1^- \circ \text{id}(A_P) \circ V_2).D \quad \text{as} \quad \leq n V_1^-. (A_P \sqcap \exists V_2.D) \\
&\geq n (V_1^- \circ \text{id}(A_P) \circ V_2).D \quad \text{as} \quad \geq n V_1^-. (A_P \sqcap \exists V_2.D) \\
&\leq n (V_2^- \circ \text{id}(A_P) \circ V_1).D \quad \text{as} \quad \leq n V_2^- . (A_P \sqcap \exists V_1.D) \\
&\geq n (V_2^- \circ \text{id}(A_P) \circ V_1).D \quad \text{as} \quad \geq n V_2^- . (A_P \sqcap \exists V_1.D)
\end{align*}
\]

- \(\Theta_1 = \forall (V_1 \sqcup V_2 \sqcup V_1^- \sqcup V_2^-)^* (\leq 1 V_1 \sqcap \leq 1 V_2)\).

The next theorem guarantees that, without loss of generality, we can restrict our attention to models of \(\xi_1(C)\) that correctly represent relations associated with atomic roles, i.e., models in which each tuple of such relations is represented by a single individual.

Theorem 5.12 If the concept \(\xi_1(C)\) has a model \(\mathcal{I}\) then it has a model \(\mathcal{I}'\) such that for each \((o, o') \in (V_1^- \circ \text{id}(A_P) \circ V_2)_I^\mathcal{I}\) there is exactly one individual \(o_{oo'}\) such that \((o_{oo'}, o) \in V_1^T_I\) and \((o_{oo'}, o') \in V_2^T_I\). That is, for all \(o_1, o_2, o, o' \in \Delta^T_I\) such that \(o_1 \neq o_2\) and \(o \neq o'\), the following condition holds:

\[
\quad o_1, o_2 \in \mathcal{P}_{\mathcal{I}} \quad \supset \quad \neg((o_1, o) \in V_1^T_I \land (o_2, o) \in V_1^T_I \land (o_1, o') \in V_2^T_I \land (o_2, o') \in V_2^T_I)
\]

The proof of Theorem 5.12 exploits the \textit{disjoint union model property}: let \(C\) be an \(\mathcal{ALCQI}_{\text{reg}}\) concept and \(\mathcal{I} = (\Delta^T, \mathcal{I})\) and \(\mathcal{J} = (\Delta^J, \mathcal{J})\) be two models of \(C\), then also the interpretation \(\mathcal{I} \uplus \mathcal{J} = (\Delta^T \uplus \Delta^J, \mathcal{I} \uplus \mathcal{J})\) which is the disjoint union of \(\mathcal{I}\) and \(\mathcal{J}\), is a model of \(C\). We remark that most description logics have such a property, which is, in fact, typical of modal logics. Without going into details, we
Fig. 5.1. A model of the $\mathcal{ALCQI}_{\text{reg}}$ concept $C_0 = \exists P.(\leq 2 P^-.(\leq 2 P.\top))$.

Fig. 5.2. A model of the reified counterpart $\xi_1(C_0)$ of C_0.

just mention that the model \mathcal{I}' is constructed from \mathcal{I} as the disjoint union of several copies of \mathcal{I}, in which the extension of role V_2 is modified by exchanging, in those instances that cause a wrong representation of a role, the second component with a corresponding individual in one of the copies of \mathcal{I}.

By using Theorem 5.12 we can prove the result below.

Theorem 5.13 An $\mathcal{ALCQI}_{\text{reg}}$ concept C is satisfiable if and only if its reified counterpart $\xi_1(C)$ is satisfiable.

5.4.2 Reducing $\mathcal{ALCQI}_{\text{reg}}$ to $\mathcal{ALCFI}_{\text{reg}}$

By Theorem 5.13, we can concentrate on the reified counterparts of $\mathcal{ALCQI}_{\text{reg}}$ concepts. Note that these are $\mathcal{ALCQI}_{\text{reg}}$ concepts themselves, but their special form allows us to convert them into $\mathcal{ALCFI}_{\text{reg}}$ concepts. Intuitively, we represent the role V_i^-, $i = 1, 2$ (recall that V_i is functional while V_i^- is not), by the role $F_{V_i} \circ F_{V_i}'^*$, where F_{V_i} and F_{V_i}' are new functional roles\(^1\). The main point of such transformation is that it is easy to express qualified number restrictions as constraints on the chain of $(F_{V_i} \circ F_{V_i}'^*)$-successor of an individual. Formally, we define the $\mathcal{ALCFI}_{\text{reg}}$-counterpart of an $\mathcal{ALCQI}_{\text{reg}}$ concept as follows.

Definition 5.14 Let C be an $\mathcal{ALCQI}_{\text{reg}}$ concept and $\xi_1(C) = \xi_0(C) \cap \Theta_1$ its reified counterpart. The $\mathcal{ALCFI}_{\text{reg}}$-counterpart $\xi_2(C)$ of C is the conjunction of two concepts, $\xi_2(C) = \xi_0'(C) \land \Theta_2$, where:

\(^1\) The idea of expressing nonfunctional roles by means of chains of functional roles is due to Parikh [1981], who used it to reduce standard PDL to DPDL.
Observe that Θ and the models of its reified counterpart and characterization of the computational complexity of reasoning in $(\exists R \land \forall \mathcal{F} \lor \forall \mathcal{I})$ to other individuals by both $(\exists R \land \forall \mathcal{F} \lor \forall \mathcal{I})$ can easily reconstruct \mathcal{L} and consider the model \mathcal{I} of $\xi_0(C)$.

Example 5.15 Consider the concept

$$C_0 = \exists P. (=2 P^- . (=2 P \top))$$

and consider the model \mathcal{I} of C_0 depicted in Figure 5.1, in which $a \in C_0^\mathcal{I}$. Such a model corresponds to a model \mathcal{I}' of the reified counterpart $\xi_1(C_0)$ of C_0, shown in Figure 5.2. The model \mathcal{I}' of $\xi_1(C_0)$ in turn, corresponds to a model \mathcal{I}'' of the \mathcal{L}-counterpart $\xi_2(C_0)$ of C_0, shown in Figure 5.3. Notice that, from \mathcal{I}'' we can easily reconstruct \mathcal{I}', and from \mathcal{I}' the model \mathcal{I} of the original concept.

It can be shown that $\xi_1(C)$ is satisfiable if and only if $\xi_2(C)$ is satisfiable. Since, as it is easy to see, the size of $\xi_2(C)$ is polynomial in the size of C, we get the following characterization of the computational complexity of reasoning in \mathcal{L}.

\[^2\text{Here } R^+ \text{ stands for } R \circ R^* \text{ and } R^n \text{ stands for } R \circ \cdots \circ R \text{ (n times).} \]
Theorem 5.16 Concept satisfiability (and hence logical implication) in \(\mathcal{ALCQI}_{reg} \) is \(\text{ExpTime} \)-complete.

5.5 Objects

In this section, we review results involving knowledge on individuals expressed in terms of membership assertions. Given an alphabet \(\mathcal{O} \) of symbols for individuals, a (membership) assertion has one of the following forms:

\[
C(a) \quad P(a_1, a_2)
\]

where \(C \) is a concept, \(P \) is an atomic role, and \(a, a_1, a_2 \) belong to \(\mathcal{O} \). An interpretation \(\mathcal{I} \) is extended so as to assign to each \(a \in \mathcal{O} \) an element \(a^I \in \Delta^I \) in such a way that the unique name assumption is satisfied, i.e., different elements are assigned to different symbols in \(\mathcal{O} \). \(\mathcal{I} \) satisfies \(C(a) \) if \(a^I \in C^I \), and \(\mathcal{I} \) satisfies \(P(a_1, a_2) \) if \((a_1^I, a_2^I) \in R^I \). An ABox \(\mathcal{A} \) is a finite set of membership assertions, and an interpretation \(\mathcal{I} \) is called a model of \(\mathcal{A} \) if \(\mathcal{I} \) satisfies every assertion in \(\mathcal{A} \).

A knowledge base is a pair \(\mathcal{K} = (T, A) \), where \(T \) is a TBox, and \(A \) is an ABox. An interpretation \(\mathcal{I} \) is called a model of \(\mathcal{K} \) if it is a model of both \(T \) and \(A \). \(\mathcal{K} \) is satisfiable if it has a model, and \(\mathcal{K} \) logically implies an assertion \(\beta \), denoted \(\mathcal{K} \models \beta \), where \(\beta \) is either an inclusion or a membership assertion, if every model of \(\mathcal{K} \) satisfies \(\beta \). Logical implication can be reformulated in terms of unsatisfiability: e.g., \(\mathcal{K} \models C(a) \iff \mathcal{K} \cup \{ \neg C(a) \} \) is unsatisfiable; similarly \(\mathcal{K} \models C_1 \sqsubseteq C_2 \iff \mathcal{K} \cup \{ (C_1 \sqcap \neg C_2)(a') \} \) is unsatisfiable, where \(a' \) does not occur in \(\mathcal{K} \). Therefore, we only need a procedure for checking satisfiability of a knowledge base.

Next we illustrate the technique for reasoning on \(\mathcal{ALCQI}_{reg} \) knowledge bases [De Giacomo and Lenzerini, 1996]. The basic idea is as follows: checking the satisfiability of an \(\mathcal{ALCQI}_{reg} \) knowledge base \(\mathcal{K} = (T, A) \) is polynomially reduced to checking the satisfiability of an \(\mathcal{ALCQI}_{reg} \) knowledge base \(\mathcal{K}' = (T', A') \), whose ABox \(A' \) is made of a single membership assertion of the form \(C(a) \). In other words, the satisfiability of \(\mathcal{K} \) is reduced to the satisfiability of the concept \(C \) w.r.t. the TBox \(T' \) of the resulting knowledge base. The latter reasoning service can be realized by means of the method presented in Section 5.4, and, as we have seen, is \(\text{ExpTime} \)-complete. Thus, by means of the reduction, we get an \(\text{ExpTime} \) algorithm for satisfiability of \(\mathcal{ALCQI}_{reg} \) knowledge bases, and hence for all standard reasoning services on \(\mathcal{ALCQI}_{reg} \) knowledge bases.

Definition 5.17 Let \(\mathcal{K} = (T, A) \) be an \(\mathcal{ALCQI}_{reg} \) knowledge base. We call the reduced form of \(\mathcal{K} \) the \(\mathcal{ALCQI}_{reg} \) knowledge base \(\mathcal{K}' = (T', A') \) defined as follows. We introduce a new atomic role \(\text{create} \), and for each individual \(a_i, i = 1, \ldots, m, \)
occurring in A, a new atomic concept A_i. Then:

$$A' = \{(\exists create.A_1 \cap \cdots \cap \exists create.A_m)(g)\},$$

where g is a new individual (the only one present in A'), and $T' = T \cup T_A \cup T_{aux}$, where:

- T_A is constituted by the following inclusion axioms:
 - for each membership assertion $C(a_i) \in A$, one inclusion axiom
 $A_i \sqsubseteq C$
 - for each membership assertion $P(a_i, a_j) \in A$, two inclusion axioms
 $A_i \sqsubseteq \exists P.A_j \sqcap \leq 1 P.A_j$
 $A_j \sqsubseteq \exists P^- . A_i \sqcap \leq 1 P^- . A_i$
 - for each pair of distinct individuals a_i and a_j occurring in A, one inclusion axiom
 $A_i \sqsubseteq \neg A_j$

- T_{aux} is constituted by one inclusion axiom (U stands for $(P_1 \sqcup \cdots \sqcup P_n \sqcup P_{1}^{-} \sqcup \cdots \sqcup P_{n}^{-})^*$, where P_1, \ldots, P_n are all atomic roles in $T \cup T_A$):

$$A_i \cap C \sqsubseteq \forall U. (\neg A_i \sqcup C)$$

for each A_i occurring in $T \cup T_A$ and each $C \in CL_{ext}(T \cup T_A)$, where $CL_{ext}(T \cup T_A)$ is a suitably extended syntactic closure of $T \cup T_A$ whose size is polynomially related to the size of $T \cup T_A$ [De Giacomo and Lenzerini, 1996].

To understand how the reduced form $K' = (T', A')$ relates to the original knowledge base $K = (T, A)$, first, observe that the ABox A' is used to force the existence of the only individual g, connected by the role $create$ to one instance of each A_i. It can be shown that this allows us to restrict the attention to models of K' that represent a graph connected to g, i.e., models $I = (\Delta^I, \mathcal{I})$ of K' such that $\Delta^I = \{g\} \cup \{(g, s') \in create^I \circ (\bigcup P_i (P^I \cup P^{I-})^*)\}$.

The TBox T' consists of three parts T, T_A, and T_{aux}. T are the original inclusion axioms. T_A is what we may call a “naive encoding” of the original ABox A as inclusion axioms. Indeed, each individual a_i is represented in T_A as a new atomic concept A_i (disjoint from the other A_j’s), and the membership assertions in the original ABox A are represented as inclusion axioms in T_A involving such new atomic concepts. However $T \cup T_A$ alone does not suffice to represent faithfully (w.r.t. the reasoning services we are interested in) the original knowledge base.

1 The syntactic closure of a TBox is the syntactic closure of the concept obtained by internalizing the axioms of the TBox.
because an individual \(a_i \) in \(K \) is represented by the set of instances of \(A_i \) in \(K' \). In order to reduce the satisfiability of \(K' \) to the satisfiability of \(K \), we must be able to single out, for each \(A_i \), one instance of \(A_i \) representative of \(a_i \). For this purpose, we need to include in \(T' \) a new part, called \(T_{aux} \), which contains inclusion axioms of the form:

\[
(A_i \cap C) \subseteq \forall U. \lnot (A_i \cup C)
\]

Intuitively, such axioms say that, if an instance of \(A_i \) is also an instance of \(C \), then every instance of \(A_i \) is an instance of \(C \). Observe that, if we could add an infinite set of axioms of this form, one for each possible concept of the language (i.e., an axiom schema), we could safely restrict our attention to models of \(K' \) with just one instance for every concept \(A_i \), since there would be no way in the logic to distinguish two instances of \(A_i \) one from the other. What is shown by De Giacomo and Lenzerini [1996] is that in fact we do need only a polynomial number of such inclusion axioms (as specified by \(T_{aux} \)) in order to be able to identify, for each \(i \), an instance of \(A_i \) as representative of \(a_i \). This allows us to prove that the existence of a model of \(K' \) implies the existence of a model of \(K \).

Theorem 5.18 Knowledge base satisfiability (and hence every standard reasoning service) in \(\text{ALCQI}_{\text{reg}} \) is \(\text{ExpTime} \)-complete.

Using a similar approach, De Giacomo and Lenzerini [1994a] and De Giacomo [1995] extend \(\text{ALCQ}_{\text{reg}} \) and \(\text{ALCI}_{\text{reg}} \) by adding special atomic concepts \(A_a \), called **nominals**, having exactly one single instance \(a \), i.e., the individual they name. Nominals may occur in concepts exactly as atomic concepts, and hence they constitute one of the most flexible ways to express knowledge about single individuals.

By using nominals we can capture the “one-of” construct, having the form \(\{a_1, \ldots, a_n\} \), denoting the concept made of exactly the enumerated individuals \(a_1, \ldots, a_n \).\(^1\) We can also capture the “fills” construct, having the form \(R : a \), denoting those individuals having the individual \(a \) as a role filler of \(R \).\(^2\) (see [Schaerf, 1994b] and references therein for further discussion on these constructs).

Let us denote with \(\text{ALCQO}_{\text{reg}} \) and \(\text{ALCITO}_{\text{reg}} \) the description logics resulting by adding nominals to \(\text{ALCQ}_{\text{reg}} \) and \(\text{ALCI}_{\text{reg}} \) respectively. De Giacomo and Lenzerini [1994a] and De Giacomo [1995] polynomially reduce satisfiability in \(\text{ALCQO}_{\text{reg}} \) and \(\text{ALCITO}_{\text{reg}} \) knowledge bases to satisfiability of \(\text{ALCQ}_{\text{reg}} \) and \(\text{ALCI}_{\text{reg}} \) concepts respectively, hence showing decidability and \(\text{ExpTime} \)-completeness of reasoning in these logics. \(\text{ExpTime} \)-completeness does not hold for \(\text{ALCQITO}_{\text{reg}} \).

\(^1\) Actually, nominals and the one-of construct are essentially equivalent, since a name \(A_a \) is equivalent to \(\{a\} \) and \(\{a_1, \ldots, a_n\} \) is equivalent to \(A_{a_1} \cup \cdots \cup A_{a_n} \).

\(^2\) The “fills” construct \(R : a \) is captured by \(\exists R. A_a \).
i.e., $\text{ALCQI}_{\text{reg}}$ extended with nominals. Indeed, a result by Tobies [1999a; 1999b] shows that reasoning in such a logic is NExpTime-hard. Its decidability still remains an open problem.

The notion of nominal introduced above has a correspondent in modal logic [Prior, 1967; Bull, 1970; Blackburn and Spaan, 1993; Gargov and Goranko, 1993; Blackburn, 1993]. Nominals have also been studied within the setting of PDLs [Passy and Tinchev, 1985; Gargov and Passy, 1988; Passy and Tinchev, 1991]. The results for $\text{ALCQO}_{\text{reg}}$ and $\text{ALCIO}_{\text{reg}}$ are immediately applicable also in the setting of PDLs. In particular, the PDL corresponding to $\text{ALCQO}_{\text{reg}}$ is standard PDL augmented with nominals and graded modalities (qualified number restrictions). It is an extension of deterministic combinatory PDL, dcpdl, which is essentially dpdl augmented with nominals. The decidability of dcpdl is established by Passy and Tinchev [1985], who also prove that satisfiability can be checked in nondeterministic double exponential time. This is tightened by the result above on ExpTime-completeness of $\text{ALCQO}_{\text{reg}}$, which says that dcpdl is in fact ExpTime-complete, thus closing the previous gap between the upper bound and the lower bound. The PDL corresponding to $\text{ALCIO}_{\text{reg}}$ is converse-PDL augmented with nominals, which is also called converse combinatory PDL, ccpdl [Passy and Tinchev, 1991]. Such logic was not known to be decidable [Passy and Tinchev, 1991]. Hence the results mentioned above allow us to establish the decidability of ccpdl and to precisely characterize the computational complexity of satisfiability (and hence of logical implication) as ExpTime-complete.

5.6 Fixpoint constructs

Decidable description logics equipped with explicit fixpoint constructs have been devised in order to model inductive and coinductive data structures such as lists, streams, trees, etc. [De Giacomo and Lenzerini, 1994d; Schild, 1994; De Giacomo and Lenzerini, 1997; Calvanese et al., 1999c]. Such logics correspond to extensions of the propositional μ-calculus [Kozen, 1983; Streett and Emerson, 1989; Vardi, 1998], a variant of PDL with explicit fixpoints that is used to express temporal properties of reactive and concurrent processes [Stirling, 1996; Emerson, 1996]. Such logics can also be viewed as a well-behaved fragment of first-order logic with fixpoints [Park, 1970; 1976; Abiteboul et al., 1995].

Here, we concentrate on the description logic μALCQI studied by Calvanese et al. [1999c]. Such a description logic is derived from ALCQI by adding least and greatest fixpoint constructs. The availability of explicit fixpoint constructs allows for expressing inductive and coinductive concepts in a natural way.
Example 5.19 Consider the concept \(\text{Tree} \), representing trees, inductively defined as follows:

(i) An individual that is an \(\text{EmptyTree} \) is a \(\text{Tree} \).

(ii) If an individual is a \(\text{Node} \), has at most one parent, has some children, and all children are \(\text{Trees} \), then such an individual is a \(\text{Tree} \).

In other words, \(\text{Tree} \) is the concept with the smallest extension among those satisfying the assertions (i) and (ii). Such a concept is naturally expressed in \(\mu ALCQI \) by making use of the least fixpoint construct \(\mu X.C \):

\[
\text{Tree} \equiv \mu X. (\text{EmptyTree} \sqcup (\text{Node} \sqcap \leq 1 \text{child} \sqcap \exists \text{child}. \top \sqcap \forall \text{child}. X))
\]

Example 5.20 Consider the well-known linear data structure, called stream. Streams are similar to lists except that, while lists can be considered as finite sequences of nodes, streams are infinite sequences of nodes. Such a data structure is captured by the concept \(\text{Stream} \), coinductively defined as follows:

(i) An individual that is a \(\text{Stream} \), is a \(\text{Node} \) and has a single successor which is a \(\text{Stream} \).

In other words, \(\text{Stream} \) is the concept with the largest extension among those satisfying condition (i). Such a concept is naturally expressed in \(\mu ALCQI \) by making use of the greatest fixpoint construct \(\nu X.C \):

\[
\text{Stream} \equiv \nu X. (\text{Node} \sqcap \leq 1 \text{succ} \sqcap \exists \text{succ}. X)
\]

Let us now introduce \(\mu ALCQI \) formally. We make use of the standard first-order notions of scope, bound and free occurrences of variables, closed formulae, etc., treating \(\mu \) and \(\nu \) as quantifiers.

The primitive symbols in \(\mu ALCQI \) are atomic concepts, (concept) variables, and atomic roles. Concepts and roles are formed according to the following syntax

\[
\begin{align*}
C & \rightarrow A \mid \neg C \mid C_1 \cap C_2 \mid \geq n \cdot R.C \mid \mu X.C \mid X \\
R & \rightarrow P \mid P^-
\end{align*}
\]

where \(A \) denotes an atomic concept, \(P \) an atomic role, \(C \) an arbitrary \(\mu ALCQI \) concept, \(R \) an arbitrary \(\mu ALCQI \) role (i.e., either an atomic role or the inverse of an atomic role), \(n \) a natural number, and \(X \) a variable.

The concept \(C \) in \(\mu X.C \) must be syntactically monotone, that is, every free occurrence of the variable \(X \) in \(C \) must be in the scope of an even number of negations [Kozen, 1983]. This restriction guarantees that the concept \(C \) denotes a monotonic operator and hence both the least and the greatest fixpoints exist and are unique (see later).
In addition to the usual abbreviations used in ALCQI, we introduce the abbreviation $\nu X.C$ for $\neg \mu X. \neg C[X/\neg X]$, where $C[X/\neg X]$ is the concept obtained by substituting all free occurrences of X with $\neg X$.

The presence of free variables does not allow us to extend the interpretation function \cdot^I directly to every concept of the logic. For this reason we introduce valuations. A valuation ρ on an interpretation I is a mapping from variables to subsets of Δ^I. Given a valuation ρ, we denote by $\rho[X/E]$ the valuation identical to ρ except for the fact that $\rho[X/E](X) = E$.

Let I be an interpretation and ρ a valuation on I. We assign meaning to concepts of the logic by associating to I and ρ an extension function \cdot^I_ρ, mapping concepts to subsets of Δ^I, as follows:

\[
\begin{align*}
X^I_\rho &= \rho(X) \subseteq \Delta^I \\
A^I_\rho &= A^I \subseteq \Delta^I \\
(\neg C)^I_\rho &= \Delta^I \setminus C^I_\rho \\
(C_1 \cap C_2)^I_\rho &= (C_1)^I_\rho \cap (C_2)^I_\rho \\
\geq n R C^I_\rho &= \{ s \in \Delta^I \mid \| \{ s' \mid (s, s') \in R^I \text{ and } s' \in C^I_\rho \} \| \geq n \} \\
(\mu X.C)^I_\rho &= \bigcap \{ E \subseteq \Delta^I \mid C^I_\rho[X/E] \subseteq E \}
\end{align*}
\]

Observe that $C^I_\rho[X/E]$ can be seen as an operator from subsets E of Δ^I to subsets of Δ^I, and that, by the syntactic restriction enforced on variables, such an operator is guaranteed to be monotonic w.r.t. set inclusion. $\mu X.C$ denotes the least fixpoint of the operator. Observe also that the semantics assigned to $\nu X.C$ is

\[
(\nu X.C)^I_\rho = \bigcup \{ E \subseteq \Delta^I \mid E \subseteq C^I_\rho[X/E] \}
\]

Hence $\nu X.C$ denotes the greatest fixpoint of the operator.

In fact, we are interested in closed concepts, whose extension is independent of the valuation. For closed concepts we do not need to consider the valuation explicitly, and hence the notion of concept satisfiability, logical implication, etc. extend straightforwardly.

Exploiting a recent result on ExpTime decidability of modal μ-calculus with converse [Vardi, 1998], and exploiting a reduction technique for qualified number restrictions similar to the one presented in Section 5.4, Calvanese et al. [1999c] have shown that the same complexity bound holds also for reasoning in $\mu\mathit{ALCQI}$.

Theorem 5.21 Concept satisfiability (and hence logical implication) in $\mu\mathit{ALCQI}$ is ExpTime-complete.

For certain applications, variants of $\mu\mathit{ALCQI}$ that allow for mutual fixpoints, de-
noting least and greatest solutions of mutually recursive equations, are of interest [Schild, 1994; Calvanese et al., 1998c; 1999b]. Mutual fixpoints can be re-expressed by suitably nesting the kind of fixpoints considered here (see, for example, [de Bakker, 1980; Schild, 1994]). It is interesting to notice that, although the resulting concept may be exponentially large in the size of the original concept with mutual fixpoints, the number of (distinct) subconcepts of the resulting concept is polynomially bounded by the size of the original one. By virtue of this observation, and using the reasoning procedure by Calvanese et al. [1999c], we can strengthen the above result.

Theorem 5.22 Checking satisfiability of a closed $\mu\mathcal{ALCQI}$ concept C can be done in deterministic exponential time w.r.t. the number of (distinct) subconcepts of C.

Although $\mu\mathcal{ALCQI}$ does not have the rich variety of role constructs of \mathcal{ALCQI}_{reg}, it is actually an extension of \mathcal{ALCQI}_{reg}, since any \mathcal{ALCQI}_{reg} concept can be expressed in $\mu\mathcal{ALCQI}$ using the fixpoint constructs in a suitable way. To express concepts involving complex role expressions, it suffices to resort to the following equivalences:

\[
\exists (R_1 \circ R_2).C = \exists R_1 \exists R_2.C
\]
\[
\exists (R_1 \sqcup R_2).C = \exists R_1.C \sqcup \exists R_2.C
\]
\[
\exists R^*.C = \mu X.(C \sqcup \exists R.X)
\]
\[
\exists \text{id}(D).C = C \cap D.
\]

Note that, according to such equivalences, we have also that

\[
\forall R^*.C = \nu X.(C \cap \forall R.X)
\]

Calvanese et al. [1995] advocate a further construct corresponding to an implicit form of fixpoint, the so called well-founded concept construct $\text{wf}(R)$. Such construct is used to impose well-foundedness of chains of roles, and thus allows one to correctly capture inductive structures. Using explicit fixpoints, $\text{wf}(R)$ is expressed as $\mu X.(\forall R.X)$.

We remark that, in order to gain the ability of expressing inductively and coinductively defined concepts, it has been proposed to adopt ad hoc semantics for interpreting knowledge bases, specifically the least fixpoint semantics for expressing inductive concepts and the greatest fixpoint semantics for expressing coinductive ones (see Chapter 2 and also [Nebel, 1991; Baader, 1990a; 1991; Dionne et al., 1992; Küsters, 1998; Buchheit et al., 1998]). Logics equipped with fixpoint constructs allow for mixing statements interpreted according to the least and greatest fixpoint semantics in the same knowledge base [Schild, 1994; De Giacomo and Lenzerini, 1997], and thus can be viewed as a generalization of these approaches.
Recently, using techniques based on alternating two-way automata, it has been shown that the propositional \(\mu \)-calculus with converse programs remains ExpTime-decidable when extended with nominals [Sattler and Vardi, 2001]. Such a logic corresponds to a description logic which could be called \(\mu \text{ALCIO} \).

5.7 Relations of arbitrary arity

A limitation of traditional description logics is that only binary relationships between instances of concepts can be represented, while in some real world situations it is required to model relationships among more than two objects. Such relationships can be captured by making use of relations of arbitrary arity instead of (binary) roles. Various extensions of description logics with relations of arbitrary arity have been proposed [Schmolze, 1989; Catarci and Lenzerini, 1993; De Giacomo and Lenzerini, 1994c; Calvanese et al., 1997; 1998a; Lutz et al., 1999].

We concentrate on the description logic \(\mathcal{DLR} \) [Calvanese et al., 1997; 1998a], which represents a natural generalization of traditional description logics towards \(n \)-ary relations. The basic elements of \(\mathcal{DLR} \) are atomic relations and atomic concepts, denoted by \(P \) and \(A \) respectively. Arbitrary relations, of given \textit{arity} between 2 and \(n_{\text{max}} \), and arbitrary concepts are formed according to the following syntax

\[
R \rightarrow \top_n \mid P \mid (\$i/n:C) \mid \neg R \mid R_1 \cap R_2 \\
C \rightarrow \top_1 \mid A \mid \neg C \mid C_1 \cap C_2 \mid \exists[i]R \mid \leq k[i]R
\]

where \(i \) and \(j \) denote components of relations, i.e., integers between 1 and \(n_{\text{max}} \), \(n \) denotes the arity of a relation, i.e., an integer between 2 and \(n_{\text{max}} \), and \(k \) denotes a nonnegative integer. Concepts and relations must be \textit{well-typed}, which means that only relations of the same arity \(n \) can be combined to form expressions of type \(R_1 \cap R_2 \) (which inherit the arity \(n \)), and \(i \leq n \) whenever \(i \) denotes a component of a relation of arity \(n \).

The semantics of \(\mathcal{DLR} \) is specified through the usual notion of \textit{interpretation} \(\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I}) \), where the \textit{interpretation function} \(\cdot^\mathcal{I} \) assigns to each concept \(C \) a subset \(C^\mathcal{I} \) of \(\Delta^\mathcal{I} \), and to each relation \(R \) of arity \(n \) a subset \(R^\mathcal{I} \) of \((\Delta^\mathcal{I})^n \), such that
the following conditions are satisfied

\[
\begin{align*}
\top^T_n & \subseteq (\Delta^T)^n \\
P^T & \subseteq \top^T_n \\
(-R)^T & = \top^T_n \setminus R^T \\
(R_1 \cap R_2)^T & = R_1^T \cap R_2^T \\
(\$i/n: C)^T & = \{(d_1, \ldots, d_n) \in \top^T_n \ | \ d_i \in C^T\} \\
\top^T_1 & = \Delta^T \\
A^T & \subseteq \Delta^T \\
(-C)^T & = \Delta^T \setminus C^T \\
(C_1 \cap C_2)^T & = C_1^T \cap C_2^T \\
(\exists [\$i] R)^T & = \{d \in \Delta^T \ | \ \exists (d_1, \ldots, d_n) \in R^T, d_i = d\} \\
(\leq k \ [\$i] R)^T & = \{d \in \Delta^T \ | \ |\{(d_1, \ldots, d_n) \in R^T \ | \ d_i = d\}| \leq k\}
\end{align*}
\]

where P, R, R_1, and R_2 have arity n. Observe that \(\top_1\) denotes the interpretation domain, while \(\top_n\), for \(n > 1\), does not denote the n-cartesian product of the domain, but only a subset of it, that covers all relations of arity n that are introduced. As a consequence, the “\(-\)” construct on relations expresses difference of relations rather than complement.

The construct \(\$i/n: C\) denotes all tuples in \(\top_n\) that have an instance of concept C as their \(i\)-th component, and therefore represents a kind of selection. Existential quantification and number restrictions on relations are a natural generalization of the corresponding constructs using roles. This can be seen by observing that, while for roles the “direction of traversal” is implicit, for a relation one needs to explicitly say which component is used to “enter” a tuple and which component is used to “exit” it.

\(\mathcal{DLR}\) is in fact a proper generalization of \(\mathcal{ALCQL}\). The traditional description logic constructs can be reexpressed in \(\mathcal{DLR}\) as follows:

\[
\begin{align*}
\exists P, C & \quad \text{as} \quad \exists [\$1](P \cap (\$2/2: C)) \\
\exists P^{-}.C & \quad \text{as} \quad \exists [\$2](P \cap (\$1/2: C)) \\
\forall P, C & \quad \text{as} \quad \forall [\$1](P \cap (\$2/2: -C)) \\
\forall P^{-}.C & \quad \text{as} \quad \forall [\$2](P \cap (\$1/2: -C)) \\
\leq k \ P, C & \quad \text{as} \quad \leq k \ [\$1](P \cap (\$2/2: C)) \\
\leq k \ P^{-}.C & \quad \text{as} \quad \leq k \ [\$2](P \cap (\$1/2: C))
\end{align*}
\]

Observe that the constructs using direct and inverse roles are represented in \(\mathcal{DLR}\) by using binary relations and explicitly specifying the direction of traversal.

A TBox in \(\mathcal{DLR}\) is a finite set of inclusion axioms on both concepts and relations of the form

\[
C \subseteq C' \quad \text{and} \quad R \subseteq R'.
\]
where R and R' are two relations of the same arity. The notions of an interpretation satisfying an assertion, and of model of a TBox are defined as usual.

The basic technique used in \mathcal{DLR} to reason on relations is *reification* (see Section 5.4.1), which allows one to reduce logical implication in \mathcal{DLR} to logical implication in \mathcal{ALCQI}. Reification for n-ary relations is similar to reification of roles (see Definition 5.11): A relation of arity n is reified by means of a new concept and n functional roles f_1, \ldots, f_n. Let the \mathcal{ALCQI} TBox T' be the reified counterpart of a \mathcal{DLR} TBox T. A tuple of a relation R in a model of T is represented in a model of T' by an instance of the concept corresponding to R, which is linked through f_1, \ldots, f_n respectively to n individuals representing the components of the tuple. In this case reification is further used to encode Boolean constructs on relations into the corresponding constructs on the concepts representing relations.

As for reification of roles (cf. Section 5.4.1), performing the reification of relations requires some attention, since the semantics of a relation rules out that there may be two identical tuples in its extension, i.e., two tuples constituted by the same components in the same positions. In the reified counterpart, on the other hand, one cannot explicitly rule out (e.g., by using specific axioms) the existence of two individuals o_1 and o_2 “representing” the same tuple, i.e., that are connected through f_1, \ldots, f_n to exactly the same individuals denoting the components of the tuple. A model of the reified counterpart T' of T in which this situation occurs may not correspond directly to a model of T, since by collapsing the two equivalent individuals into a tuple, axioms may be violated (e.g., cardinality constraints). However, also in this case the analogue of Theorem 5.12 holds, ensuring that from any model of T' one can construct a new one in which no two individuals represent the same tuple. Therefore one does not need to take this constraint explicitly into account when reasoning on the reified counterpart of a knowledge base with relations. Since reification is polynomial, from ExpTime decidability of logical implication in \mathcal{ALCQI} (and ExpTime-hardness of logical implication in \mathcal{ALC}) we get the following characterization of the computational complexity of reasoning in \mathcal{DLR} [Calvanese et al., 1997]

Theorem 5.23 Logical implication in \mathcal{DLR} is ExpTime-complete.

\mathcal{DLR} can be extended to include regular expressions built over projections of relations on two of their components, thus obtaining $\mathcal{DLR}_{\text{reg}}$. Such a logic, which represents a generalization of $\mathcal{ALCQI}_{\text{reg}}$, allows for the internalization of a TBox. ExpTime decidability (and hence completeness) of $\mathcal{DLR}_{\text{reg}}$ can again be shown by exploiting reification of relations and reducing logical implication to concept satisfiability in $\mathcal{ALCQI}_{\text{reg}}$ [Calvanese et al., 1998a]. Recently, $\mathcal{DLR}_{\text{reg}}$ has been extended to \mathcal{DLR}_{μ}, which includes explicit fixpoint constructs on concepts, as those
introduced in Section 5.6. The ExpTime-decidability result extends to \(\mathcal{DLR}_\mu \) as well [Calvanese et al., 1999c].

Recently it has been observed that guarded fragments of first order logic [Andréka et al., 1996; Grädel, 1999] (see Section 4.2.1), which include \(n \)-ary relations, share with description logics the “locality” of quantification. This makes them of interest as extensions of description logics with \(n \)-ary relations [Grädel, 1998; Lutz et al., 1999]. Such description logics are incomparable in expressive power with \(\mathcal{DLR} \) and its extensions: On the one hand the description logics corresponding to guarded fragments allow one to refer, by the use of explicit variables, to components of relations in a more flexible way than what is possible in \(\mathcal{DLR} \). On the other hand such description logics lack number restrictions, and extending them with number restrictions leads to undecidability of reasoning. Also, reasoning in the guarded fragments is in general \(\text{NExpTime} \)-hard [Grädel, 1998; 1999] and thus more difficult than in \(\mathcal{DLR} \) and its extensions, although \(\text{PSPACE} \)-complete fragments have been identified [Lutz et al., 1999].

5.7.1 Boolean constructs on roles and role inclusion axioms

Observe also that \(\mathcal{DLR} \) (and \(\mathcal{DLR}_{\text{reg}} \)) allows for Boolean constructs on relations (with negation interpreted as difference) as well as relation inclusion axioms \(R \subseteq R' \). In fact, \(\mathcal{DLR} \) (resp. \(\mathcal{DLR}_{\text{reg}} \)) can be viewed as a generalization of \(\mathcal{ALCQI} \) (resp. \(\mathcal{ALCQI}_{\text{reg}} \)) extended with Boolean constructs on atomic and inverse atomic roles. Such extensions of \(\mathcal{ALCQI} \) were first studied in [De Giacomo and Lenzerini, 1994c; De Giacomo, 1995], where logical implication was shown to be \(\text{ExpTime} \)-complete by a reduction to \(\mathcal{ALCQI} \) (resp. \(\mathcal{ALCQI}_{\text{reg}} \)). The logics above do not allow for combining atomic roles with inverse roles in Boolean combinations and role inclusion axioms. Tobies [2001a] shows that, for \(\mathcal{ALCQI} \) extended with arbitrary Boolean combinations of atomic and inverse atomic roles, logical implication remains in \(\text{ExpTime} \). Note that, in all logics above, negation on roles is interpreted as difference. For results on the impact of full negation on roles see [Lutz and Sattler, 2001; Tobies, 2001a].

Horrocks et al. [2000b] investigate reasoning in \(\mathcal{SHIQ} \), which is \(\mathcal{ALCQI} \) extended with roles that are transitive and with role inclusion axioms on arbitrary roles (direct, inverse, and transitive). \(\mathcal{SHIQ} \) does not include reflexive-transitive closure. However, transitive roles and role inclusions allow for expressing a universal role (in a connected model), and hence allow for internalizing TBoxes. Satisfiability and logical implication in \(\mathcal{SHIQ} \) are \(\text{ExpTime} \)-complete [Tobies, 2001a]. The importance of \(\mathcal{SHIQ} \) lies in the fact that it is the logic implemented by the current state-of-the-art description logic-based systems (cf. Chapters 8 and 9).
5.7.2 Structured objects

An alternative way to overcome the limitations that result from the restriction to binary relationships between concepts, is to consider the interpretation domain as being constituted by objects with a complex structure, and extend the description logics with constructs that allow one to specify such structure [De Giacomo and Lenzerini, 1995]. This approach is in the spirit of object-oriented data models used in databases [Lecluse and Richard, 1989; Bancilhon and Khoshafian, 1989; Hull, 1988], and has the advantage, with respect to introducing relationships, that all aspects of the domain to be modeled can be represented in a uniform way, as concepts whose instances have certain structures. In particular, objects can either be unstructured or have the structure of a set or of a tuple. For objects having the structure of a set a particular role allows one to refer to the members of the set, and similarly each component of a tuple can be referred to by means of the (implicitly functional) role that labels it.

In general, reasoning over structured objects can have a very high computational complexity [Kuper and Vardi, 1993]. However, reasoning over a significant fragment of structuring properties can be polynomial reduced to reasoning in traditional description logics, by exploiting again reification to deal with tuples and sets. Thus, for such a fragment, reasoning can be done in \(\text{ExpTime} \) [De Giacomo and Lenzerini, 1995]. An important aspect in exploiting description logics for reasoning over structured objects, is being able to limit the depth of the structure of an object to avoid infinite nesting of tuples or sets. This requires the use of a well-founded construct, which is a restricted form of fixpoint (see Section 5.6).

5.8 Finite model reasoning

For expressive description logics, in particular for those containing inverse roles and functionality, a TBox may admit only models with an infinite domain [Cosmadakis et al., 1990; Calvanese et al., 1994]. Similarly, there may be TBoxes in which a certain concept can be satisfied only in an infinite model. This is illustrated in the following example by Calvanese [1996c].

Example 5.24 Consider the TBox

\[
\begin{align*}
\text{FirstGuard} & \sqsubseteq \text{Guard} \sqcap \forall \text{shields}^- . \bot \\
\text{Guard} & \sqsubseteq \exists \text{shields} \sqcap \forall \text{shields} . \text{Guard} \sqcap \leq 1 \text{shields}^-
\end{align*}
\]

In a model of this TBox, an instance of \text{FirstGuard} can have no \text{shields}-predecessor, while each instance of \text{Guard} can have at most one. Therefore, the existence of an instance of \text{FirstGuard} implies the existence of an infinite sequence of instances of \text{Guard}, each one connected through the role \text{shields} to the following one. This means
that FirstGuard can be satisfied in an interpretation with a domain of arbitrary cardinality, but not in interpretations with a finite domain.

Note that the TBox above is expressed in a very simple description logic, in particular \mathcal{AL} (cf. Chapter 2) extended with inverse roles and functionality.

A logic is said to have the finite model property if every satisfiable formula of the logic admits a finite model, i.e., a model with a finite domain. The example above shows that virtually all description logics including functionality, inverse roles, and TBox axioms (or having the ability to internalize them) lack the finite model property. The example shows also that to lose the finite model property, functionality in only one direction is sufficient. In fact, it is well known that converse-DPDL, which corresponds to a fragment of \mathcal{ALCFI}_{reg}, lacks the finite model property [Kozen and Tiuryn, 1990; Vardi and Wolper, 1986].

For all logics that lack the finite model property, reasoning with respect to unrestricted and finite models are fundamentally different tasks, and this needs to be taken explicitly into account when devising reasoning procedures. Restricting reasoning to finite domains is not common in knowledge representation. However, it is typically of interest in databases, where one assumes that the data available are always finite [Calvanese et al., 1994; 1999e].

When reasoning w.r.t. finite models, some properties that are essential for the techniques developed for unrestricted model reasoning in expressive description logics fail. In particular, all reductions exploiting the tree model property (or similar properties that are based on “unraveling” structures) [Vardi, 1997] cannot be applied since this property does not hold when only finite models are considered. An intuitive justification can be given by observing that, whenever a (finite) model contains a cycle, the unraveling of such a model into a tree generates an infinite structure. Therefore alternative techniques have been developed.

In this section, we study decidability and computational complexity of finite model reasoning over TBoxes expressed in various sublanguages of \mathcal{ALCQI}. Specifically, by using techniques based on reductions to linear programming problems, we show that finite concept satisfiability w.r.t. to \mathcal{ALUN} TBoxes1 constituted by inclusion axioms only is ExpTime-complete [Calvanese et al., 1994], and that finite model reasoning in arbitrary \mathcal{ALCQI} TBoxes can be done in deterministic double exponential time [Calvanese, 1996a].

5.8.1 Finite model reasoning using linear inequalities

A procedure for finite model reasoning must specifically address the presence of number restrictions, since it is only in their presence that the finite model property

1 \mathcal{ALUN} is the description logic obtained by extending \mathcal{ALUN} (cf. Chapter 2) with inverse roles.
fails. We discuss a method which is indeed based on an encoding of number restrictions into linear inequalities, and which generalizes the one developed by Lenzerini and Nobili [1990] for the Entity-Relationship model with disjoint classes and relationships (hence without IS-A). We first describe the idea underlying the reasoning technique in a simplified case. In the next section we show how to apply the technique to various expressive description logics [Calvanese and Lenzerini, 1994b; 1994a; Calvanese et al., 1994; Calvanese, 1996a].

Consider an \mathcal{ALNI} TBox1 T containing the following axioms: for each pair of distinct atomic concepts A and A', an axiom $A \sqsubseteq \neg A'$, and for each atomic role P, an axiom of the form $\top \sqsubseteq \forall P.A_2 \sqcap \forall P^- A_1$, for some atomic concepts A_1 and A_2 (not necessarily distinct). Such axioms enforce that in all models of T the following hold:

- **P\textsubscript{1}**: The atomic concepts have pairwise disjoint extensions.
- **P\textsubscript{2}**: Each role is “typed”, which means that its domain is included in the extension of an atomic concept A_1, and its codomain is included in the extension of an atomic concept A_2.

Assume further that the only additional axioms in T are used to impose cardinality constraints on roles and inverse roles, and are of the form $\top \sqsubseteq m_1 P \sqcap \leq n_1 P$ and $\top \sqsubseteq m_2 P^- \sqcap \leq n_2 P^-$ where m_1, n_1, m_2, n_2 are positive integers with $m_1 \leq n_1$ and $m_2 \leq n_2$.

Due to the fact that properties P\textsubscript{1} and P\textsubscript{2} hold, the local conditions imposed by number restrictions on the number of successors of each individual, are reflected into global conditions on the total number of instances of atomic concepts and roles. Specifically, it is not difficult to see that, for a model \mathcal{I} of such a TBox, and for each P, A_1, A_2, m_1, m_2, n_1, and n_2 as above, the cardinalities of P^I, A_1^I, and A_2^I must satisfy the following inequalities:

$$m_1 \cdot |A_1^I| \leq |P^I| \leq n_1 \cdot |A_1^I|$$
$$m_2 \cdot |A_2^I| \leq |P^I| \leq n_2 \cdot |A_2^I|$$

On the other hand, consider the system Ψ_T of linear inequalities containing for each atomic role P typed by A_1 and A_2 the inequalities

$$m_1 \cdot \text{Var}(A_1) \leq \text{Var}(P) \leq n_1 \cdot \text{Var}(A_1)$$
$$m_2 \cdot \text{Var}(A_2) \leq \text{Var}(P) \leq n_2 \cdot \text{Var}(A_2)$$

1 \mathcal{ALNI} is the description logic obtained by extending \mathcal{ALN} (cf. Chapter 2) with inverse roles.
where we denote by \(\text{Var}(A) \) and \(\text{Var}(P) \) the unknowns, ranging over the non-negative integers, corresponding to the atomic concept \(A \) and the atomic role \(P \) respectively.

It can be shown that, if the only axioms in \(T \) are those mentioned above, then certain non-negative integer solutions of \(\Psi_T \) (called acceptable solutions) can be put into correspondence with finite models of \(T \). More precisely, for each acceptable solution \(S \), one can construct a model of \(T \) in which the cardinality of each concept or role \(X \) is equal to the value assigned by \(S \) to \(\text{Var}(X) \) [Lenzerini and Nobili, 1990; Calvanese et al., 1994; Calvanese, 1996c]. Moreover, given \(\Psi_T \), it is possible to verify in time polynomial in its size, whether it admits an acceptable solution.

This property can be exploited to check finite satisfiability of an atomic concept \(A \) w.r.t. a TBox \(T \) as follows:

(i) Construct the system \(\Psi_T \) of inequalities corresponding to \(T \).
(ii) Add to \(\Psi_T \) the inequality \(\text{Var}(A) > 0 \), which enforces that the solutions correspond to models in which the cardinality of the extension of \(A \) is positive.
(iii) Check whether \(\Psi_T \) admits an acceptable solution.

Observe that for simple TBoxes of the form described above, this method works in polynomial time, since (i) \(\Psi_T \) is of size polynomial in the size of \(T \), and can also be constructed in polynomial time, and (ii) checking the existence of acceptable solutions of \(\Psi_T \) can be done in time polynomial in its size. Notice also that the applicability of the technique heavily relies on conditions \(P_1 \) and \(P_2 \), which ensure that, from an acceptable solution of \(\Psi_T \), a model of \(T \) can be constructed.

5.8.2 Finite model reasoning in expressive description logics

The method we have presented above is not directly applicable to more complex languages or TBoxes not respecting the particular form above. In order to extend it to more general cases we make use of the following observation: Linear inequalities capture global constraints on the total number of instances of concepts and roles. So we have to represent local constraints expressed by number restrictions by means of global constraints. This can be done only if \(P_1 \) and the following generalization of \(P_2 \) hold:

\[P'_2: \text{For each atomic role } P \text{ and each concept expression } C \text{ appearing in } T, \text{ the domain of } P \text{ is either included in the extension of } C \text{ or disjoint from it. Similarly for the codomain of } P. \]

This condition guarantees that, in a model, all instances of a concept “behave” in the same way, and thus the local constraints represented by number restrictions are
indeed correctly captured by the global constraints represented by the system of inequalities.

It is possible to enforce conditions P_1 and P'_2 for expressive description logics, by first transforming the TBox, and then deriving the system of inequalities from the transformed version. We briefly sketch the technique to decide finite concept satisfiability in $ALUNI$ TBoxes consisting of specializations, i.e., inclusion axioms in which the concept on the left hand side is atomic. A detailed account of the technique and an analysis of its computational complexity has been presented by Calvanese [1996c].

First of all, it is easy to see that, by introducing at most a linear number of new atomic concepts and TBox axioms, we can transform the TBox into an equivalent one in which the nesting of constructs is eliminated. Specifically, in such a TBox the concept on the right hand side of an inclusion axiom is of the form $L, L_1 \sqcup L_2, \forall R.L, \geq n R$, or $\leq n R$, where L is an atomic or negated atomic concept. For example, given the axiom

$$A \sqsubseteq C_1 \sqcup C_2$$

where C_1 and C_2 do not have the form above, we introduce two new atomic concepts A_{C_1} and A_{C_2}, and replace the axiom above by the following ones

$$A \sqsubseteq A_{C_1} \sqcup A_{C_2}$$
$$A_{C_1} \sqsubseteq C_1$$
$$A_{C_2} \sqsubseteq C_2$$

Then, to ensure that conditions P_1 and P'_2 are satisfied, we use instead of atomic concepts, sets of atomic concepts, called compound concepts\footnote{A similar technique, called atomic decomposition there, was used by Ohlbach and Koehler [1999].} and instead of atomic roles, so called compound roles. Each compound role is a triple $(P, \hat{C}_1, \hat{C}_2)$ consisting of an atomic role P and two compound concepts \hat{C}_1 and \hat{C}_2. Intuitively, the instances of a compound concept \hat{C} are all those individuals of the domain that are instances of all concepts in \hat{C} and are not instances of any concept not in \hat{C}. A compound role $(P, \hat{C}_1, \hat{C}_2)$ is interpreted as the restriction of role P to the pairs whose first component is an instance of \hat{C}_1 and whose second component is an instance of \hat{C}_2.

This ensures that two different compound concepts have necessarily disjoint extensions, and hence that the property corresponding to P_1 holds. The same observation holds for two different compound roles $(P, \hat{C}_1, \hat{C}_2)$ and $(P, \hat{C}'_1, \hat{C}'_2)$ that correspond to the same role P. Moreover, for compound roles, the property corresponding to property P_2 holds by definition, and, considering that the TBox contains only specializations and that nesting of constructs has been eliminated, also P'_2 holds.
We first consider the set T' of axioms in the TBox that do not involve number restrictions. Such axioms force certain compound concepts and compound roles to be inconsistent, i.e., have an empty extension in all interpretations that satisfy T'. For example, the axiom $A_1 \sqsubseteq \neg A_2$ makes all compound concepts that contain both A_1 and A_2 inconsistent. Similarly, the axiom $A_1 \sqsubseteq \forall P.A_2$ makes all compound roles $(P, \hat{C}_1, \hat{C}_2)$ such that \hat{C}_1 contains A_1 and \hat{C}_2 does not contain A_2 inconsistent.

Checking whether a given compound concept is inconsistent essentially amounts to evaluating a propositional formula in a given propositional model (the one corresponding to the compound concept), and hence can be done in time polynomial in the size of the TBox. Similarly, one can check in time polynomial in the size of the TBox whether a given compound role is inconsistent. Observe however, that since the total number of compound concepts and roles is exponential in the number of atomic concepts in the TBox, doing the check for all compound concepts and roles takes in general exponential time.

Once the consistent compound concepts and roles have been determined, we can introduce for each of them an unknown in the system of inequalities (the inconsistent compound concepts and roles are discarded). The axioms in the TBox involving number restrictions are taken into account by encoding them into suitable linear inequalities. Such inequalities are derived in a way similar to inequalities 5.1, except that now each inequality involves one unknown corresponding to a compound concept and a sum of unknowns corresponding to compound roles.

Then, to check finite satisfiability of an atomic concept A, we can add to the system the inequality

$$\sum_{\hat{C} \subseteq 2^A \mid A \in \hat{C}} \text{Var}(\hat{C}) \geq 1$$

which forces the extension of A to be nonempty. Again, if the system admits an acceptable solution, then we can construct from such a solution a finite model of the TBox in which A is satisfied; if no such solution exists, then A is not finitely satisfiable. To check finite satisfiability of an arbitrary concept C, we can introduce a new concept name A, add to the TBox the axiom $A \sqsubseteq C$, and then check the satisfiability of A. Indeed, if A is finitely satisfiable, then so is C. Conversely, if the original TBox admits a finite model I in which C has a nonempty extension, then we can simply extend I to A by interpreting A as C^I, thus obtaining a finite model of the TBox plus the additional axiom in which A is satisfied.

The system of inequalities can be effectively constructed in time exponential in the size of the TBox, and checking for the existence of acceptable solutions is polynomial in the size of the system [Calvanese et al., 1994]. Moreover, since verifying concept satisfiability is already ExpTime-hard for TBoxes consisting of specializations only
and expressed in the much simpler language \mathcal{ALU} [Calvanese, 1996b], the above method provides a computationally optimal reasoning procedure.

Theorem 5.25 Finite concept satisfiability in \mathcal{ALUNI} TBoxes consisting of specializations only is ExpTime-complete.

The method can be extended to decide finite concept satisfiability also for a wider class of TBoxes, in which a negated atomic concept and, more in general, an arbitrary Boolean combination of atomic concepts may appear on the left hand side of axioms. In particular, this makes it possible to deal also with knowledge bases containing definitions of concepts that are Boolean combinations of atomic concepts, and reason on such knowledge bases in deterministic exponential time. Since \mathcal{ALUNI} is not closed under negation, we cannot immediately reduce logical implication to concept satisfiability. However, the technique presented above can be adapted to decide in deterministic exponential time also finite logical implication in specific cases [Calvanese, 1996c].

A further extension of the above method can be used to decide logical implication in \mathcal{ALCQI}. The technique uses two successive transformations on the TBox, each of which introduces a worst case exponential blow up, and a final polynomial encoding into a system of linear inequalities [Calvanese, 1996c; 1996a].

Theorem 5.26 Logical implication w.r.t. finite models in \mathcal{ALCQI} can be decided in worst case deterministic double exponential time.

For more expressive description logics, and in particular for all those description logics containing the construct for reflexive-transitive closure of roles, the decidability of finite model reasoning is still an open problem. Decidability of finite model reasoning for \mathcal{C}^2, i.e., first order logic with two variables and counting quantifiers (see also Chapter 4, Section 4.2) was shown recently [Grädel et al., 1997b]. \mathcal{C}^2 is a logic that is strictly more expressive than \mathcal{ALCQI} TBoxes, since it allows, for example, to impose cardinality restrictions on concepts [Baader et al., 1996] or to use the full negation of a role. However, apart from decidability, no complexity bound is known for finite model reasoning in \mathcal{C}^2.

Techniques for finite model reasoning have also been studied in databases. In the relational model, the interaction between inclusion dependencies and functional dependencies causes the loss of the finite model property, and finite implication of dependencies under various assumptions has been investigated by Cosmadakis et al. [1990]. A method for finite model reasoning has been presented by Calvanese and Lenzerini [1994b; 1994a] in the context of a semantic and an object-oriented database model, respectively. The reasoning procedure, which represents a direct generalization of the one discussed above to relations of arbitrary arity, does not
exploit reification to handle relations (see Section 5.7) but encodes directly the constraints on them into a system of linear inequalities.

5.9 Undecidability results

Several additional description logic constructs besides those discussed in the previous sections have been proposed in the literature. In this section we present the most important of these extensions, discussing how they influence decidability, and what modifications to the reasoning procedures are needed to take them into account. In particular, we discuss Boolean constructs on roles, variants of role-value-maps or role agreements, and number restrictions on complex roles. Most of these constructs lead to undecidability of reasoning, if used in an unrestricted way. Roughly speaking, this is mainly due to the fact that the tree model property is lost [Vardi, 1997].

5.9.1 Boolean constructs on complex roles

In those description logics that include regular expressions over roles, such as \mathcal{ALCQI}_{reg}, since regular languages are closed under intersection and complementation, the intersection of roles and the complement of a role are already expressible, if we consider them applied to the set of role expressions. Here we consider the more common approach in PDLs, namely to regard Boolean operators as applied to the binary relations denoted by complex roles. The logics thus obtained are more expressive than traditional PDL [Harel, 1984] and reasoning is usually harder. We notice that the semantics immediately implies that intersection of roles can be expressed by means of union and complementation.

Satisfiability in PDL augmented with intersection of arbitrary programs is decidable in deterministic double exponential time [Danecki, 1984], and thus is satisfiability in \mathcal{ALC}_{reg} augmented with intersection of complex roles, even though these logics have neither the tree nor the finite model property. On the other hand, satisfiability in PDL augmented with complementation of programs is undecidable [Harel, 1984], and so is reasoning in \mathcal{ALC}_{reg} augmented with complementation of complex roles. Also, \mathcal{DPDL} augmented with intersection of complex roles is highly undecidable [Harel, 1985; 1986], and since global functionality of roles (which corresponds to determinism of programs) can be expressed by means of local functionality, the undecidability carries over to \mathcal{ALCF}_{reg} augmented with intersection of roles.

These proofs of undecidability make use of a general technique based on the reduction from the unbounded tiling (or domino) problem [Berger, 1966; Robinson, 1971], which is the problem of checking whether a quadrant of the integer plane can be tiled using a finite set of tile types—i.e., square tiles with a color on each
side—in such a way that adjacent tiles have the same color on the sides that touch. We sketch the idea of the proof using the terminology of description logics, instead of that of PDLs. The reduction uses two roles right and up which are globally functional (i.e., ≤ 1 right, ≤ 1 up) and denote pairs of tiles that are adjacent in the x and y directions, respectively. By means of intersection of roles, right and up are constrained to effectively define a two-dimensional grid. This is achieved by imposing for each point of the grid (i.e., reachable through right and up) that by following right \circ up one reaches a point reached also by following up \circ right:

$$\forall (\text{right} \sqcup \text{up})^*.\exists((\text{right} \circ \text{up}) \cap (\text{up} \circ \text{right}))$$

To enforce this condition, the use of intersection of compositions of atomic roles is essential. Reflexive-transitive closure (i.e., $\forall (\text{right} \sqcup \text{up})^*$.C) is then also exploited to impose the required constraints on all tiles of the grid. Observe that, in the above reduction, one can use TBox axioms instead of reflexive-transitive closure to enforce the necessary conditions in every point of the grid.

The question arises if decidability can be preserved if one restricts Boolean operations to basic roles, i.e., atomic roles and their inverse. This is indeed the case if complementation of basic roles is used only to express difference of roles, as demonstrated by the ExpTime decidability of DLR and its extensions, in which intersection and difference of relations are allowed (see Section 5.7).

5.9.2 Role-value-maps

Another construct, which stems from frame-systems, and which provides additional useful means to specify structural properties of concepts, is the so called role-value-map [Brachman and Schmolze, 1985], which comes in two forms: An equality role-value-map, denoted $R_1 = R_2$, represents the individuals o such that the set of individuals that are connected to o via role R_1 equals the set of individuals connected to o via role R_2. The second form of role-value-map is containment role-value-map, denoted $R_1 \subseteq R_2$, whose semantics is defined analogously, using set inclusion instead of set equality. Using these constructs, one can denote, for example, by means of owns \circ made in \subseteq lives in the set of all persons that own only products manufactured in the country they live in.

When role-value-maps are added, the logic loses the tree model property, and this construct leads immediately to undecidability of reasoning when applied to role chains (i.e., compositions of atomic roles). For $\mathcal{ALC}_{\text{reg}}$, this can be shown by a reduction from the tiling problem in a similar way as to what is done in [Harel, 1985] for DPDL with intersection of roles. In this case, the concept right \circ up =

1 In fact the reduction is from the Π_1^1-complete—and thus highly undecidable—recurring tiling problem [Harel, 1986], where one additionally requires that a certain tile occurs infinitely often on the x-axis.
up ◦ right involving role-value-map can be used instead of role intersection to define the constraints on the grid. The proof is slightly more involved than that for DPDL, since one needs to take into account that the roles right and up are not functional (while in DPDL all programs/roles are functional). However, undecidability holds already for concept subsumption (with respect to an empty TBox) in \mathcal{AL} (in fact \mathcal{FL}^-) augmented with role-value-maps, where the involved roles are compositions of atomic roles [Schmidt-Schauß, 1989]—see Chapter 3 for the details of the proof.

As for role intersection, in order to show undecidability, it is necessary to apply role-value-maps to compositions of roles. Indeed, if the application of role-value-maps is restricted to Boolean combinations of basic roles, it can be added to \mathcal{ALCQI}_{reg} without influencing decidability and worst case complexity of reasoning. This follows directly from the decidability results for the extension with Boolean constructs on atomic and inverse atomic roles (captured by \mathcal{DLCR}). Indeed, $R_1 \subseteq R_2$ is equivalent to $\forall (R_1 \cap –R_2)_\bot$, and thus can be expressed using difference of roles. We observe also that universal and existential role agreements introduced in [Hanschke, 1992], which allow one to define concepts by posing various types of constraints that relate the sets of fillers of two roles, can be expressed by means of intersection and difference of roles. Thus reasoning in the presence of role agreements is decidable, provided these constructs are applied only to basic roles.

5.9.3 Number restrictions on complex roles

In \mathcal{ALCFL}_{reg}, the use of (qualified) number restrictions is restricted to atomic and inverse atomic roles, which guarantees that the logic has the tree model property. This property is lost, together with decidability, if functional restrictions may be imposed on arbitrary roles. The reduction to show undecidability is analogous to the one used for intersection of roles, except that now functionality of a complex role (i.e., ≤ 1 (right \circ up) \sqcap (up \circ right)) is used instead of role intersection to define the grid.

An example of decidable logic that does not have the tree model property is obtained by allowing the use of role composition (but not transitive closure) inside number restrictions. Let us denote with $\mathcal{N}(X)$, where X is a subset of $\{\sqcap, \sqcap, \circ, –\}$, unqualified number restrictions on roles that are obtained by applying the role constructs in X to atomic roles. Let us denote with $\mathcal{ALCN}(X)$ the description logic obtained by extending \mathcal{ALC} (cf. Chapter 2) with number restrictions in $\mathcal{N}(X)$. As shown by Baader and Sattler [1999], concept satisfiability is decidable for the logic $\mathcal{ALCN}(\circ)$, even when extended with number restrictions on union and intersection of role chains of the same length. Notice that, decidability for $\mathcal{ALCN}(\circ)$ holds only for reasoning on concept expressions and is lost if one considers reasoning with respect to a TBox (or alternatively adds transitive closure of roles) [Baader
Reasoning even with respect to the empty TBox is undecidable if one adds to \mathcal{ALCN} number restrictions on more complex roles. In particular, this holds for $\mathcal{ALCN}(\sqcap, \circ)$ (if no constraints on the lengths of the role chains are imposed) and for $\mathcal{ALCN}(\sqcup, \circ, ^-)$ [Baader and Sattler, 1999]. The reductions exploit again the tiling problem, and make use of number restrictions on complex roles to simulate a universal role that is used for imposing local conditions on all points of the grid.

Summing up we can state that the borderline between decidability and undecidability of reasoning in the presence of number restrictions on complex roles has been traced quite precisely, although there are still some open problems. E.g., it is not known whether concept satisfiability in $\mathcal{ALCN}(\sqcup, \circ)$ is decidable (although logical implication is undecidable) [Baader and Sattler, 1999].
6

Extensions to Description Logics
Franz Baader
Ralf Küsters
Frank Wolter

Abstract
This chapter considers, on the one hand, extensions of Description Logics by features not available in the basic framework, but considered important for using Description Logics as a modeling language. In particular, it addresses the extensions concerning: concrete domain constraints; modal, epistemic, and temporal operators; probabilities and fuzzy logic; and defaults.

On the other hand, it considers non-standard inference problems for Description Logics, i.e., inference problems that—unlike subsumption or instance checking—are not available in all systems, but have turned out to be useful in applications. In particular, it addresses the non-standard inference problems: least common subsumer and most specific concept; unification and matching of concepts; and rewriting.

6.1 Introduction
Chapter 2 introduces the language $ALCN$ as a prototypical Description Logic, defines the most important reasoning tasks (like subsumption, instance checking, etc.), and shows how these tasks can be realized with the help of tableau-based algorithms. For many applications, the expressive power of $ALCN$ is not sufficient to express the relevant terminological knowledge of the application domain. Some of the most important extensions of $ALCN$ by concept and role constructs have already been briefly introduced in Chapter 2; these and other extensions have then been treated in more detail in Chapter 5. All these extensions are “classical” in the sense that their semantics can easily be defined within the model-theoretic framework introduced in Chapter 2. Although combinations of these constructs may lead to very expressive DLs (the unrestricted combination even to undecidable ones), all the DLs obtained this way can only be used to represent time-independent, objective, and certain knowledge. In addition, they do not allow for “built-in data structures” like numerical domains.
The “nonclassical” language extensions considered in the first part of this chapter try to overcome some of these deficiencies. The extension by concrete domains allows us to integrate numerical and other domains in a schematic way into Description Logics. The extension of DLs by modal operators allows for the representation of time-dependent and subjective knowledge (e.g., knowledge about knowledge and belief of intelligent agents). DLs that can explicitly represent time have also been introduced outside the modal framework. The extension by epistemic operators provides a model-theoretic semantics for rules, it can be used to impose “local” closed world assumptions, and to integrate integrity constraints into DLs. In order to represent vague and uncertain knowledge, different approaches based on probabilistic, possibilistic, and fuzzy logics have been proposed. Finally, non-monotonic Description Logics are obtained by the integration of defaults into DLs.

When building and maintaining large DL knowledge bases, inference services like subsumption and satisfiability are very helpful, but in general not quite sufficient for an adequate support of the knowledge engineer. For this reason, some DLs systems (e.g., Classic) provide their users with additional system services, which can formally be reconstructed as new types of inference problems. In the second part of this chapter we will motivate and introduce the most prominent of these “non-standard” inference problems, and try to give an intuition on how they can be solved.

6.2 Language extensions

The extensions introduced in this section are “nonclassical” in the sense that defining their semantics is not obvious and requires an extension of the model-theoretic framework considered until now; for many (but not all) of these extensions, non-classical logics (such as modal and non-monotonic logics) are employed to provide the right framework.

6.2.1 Concrete domains

A drawback that all Description Logics introduced until now share is that all the knowledge must be represented on the abstract logical level. In many applications, one would like to be able to refer to concrete domains and predefined predicates on these domains when defining concepts. An example for such a concrete domain could be the set of nonnegative integers, with predicates such as \geq (greater-or-equal) or $<$ (less-than). For example, assume that we want to give an adequate definition of the concept Woman. The first idea could be to use the concept description $\text{Human} \sqcap \text{Female}$ for this purpose. However, a newborn female baby would probably not be called a woman, and neither would a three-year old toddler. Thus, as an
additional property, one could require that a female human-being should be old enough (e.g., at least 18) to be called a woman. In order to express this property, one would like to introduce a new (functional) role has-age, and define Woman by an expression of the form $\text{Human} \sqcap \text{Female} \sqcap \exists \text{has-age}. \geq 18$. Here ≥ 18 stands for the unary predicate $\{n \mid n \geq 18\}$ of all nonnegative integers greater than or equal to 18.

Stating such properties directly with reference to a given numerical domain seems to be easier and more natural than encoding them somehow into abstract concept expressions. In addition, such a direct representation makes it possible to use existing reasoners for the concrete domain. For example, we could have also decided to introduce a new atomic concept AtLeast18 to express the property of being at least 18 years old. However, if for some reason we also need the property of being at least 21 years old, we must make sure that the appropriate subsumption relationship between AtLeast18 and AtLeast21 is asserted as well. While this could still be done by adding appropriate inclusion axioms, it does not appear to be an elegant solution, and it would still not take care of other relationships, e.g., the fact that $\text{AtLeast18} \sqcap \text{AtMost16}$ is unsatisfiable. In contrast, an appropriate reasoner for intervals of nonnegative integers would automatically take care of these relationships.

The need for such a language extension was already evident to the designers of early DL systems such as MESON [Edelmann and Owsnicki, 1986; Patel-Schneider et al., 1990], K-REP [Mays et al., 1988; 1991a], and CLASSIC [Brachman et al., 1991; Borgida and Patel-Schneider, 1994]: in addition to abstract individuals, these systems also allow one to refer to “concrete” individuals such as numbers and strings. Both the CLASSIC and the K-REP reasoner can deal correctly with intervals, whereas in MESON the user had to supply the adequate relationships between the concrete predicates in a separate hierarchy. All these approaches are, however, ad hoc in the sense that they are restricted to a specific collection of concrete objects.

In contrast, Baader and Hanschke [1991a] propose a scheme for integrating (almost) arbitrary concrete domains into Description Logics. This extension was designed such that

- it still has a formal declarative semantics that is very close to the usual semantics employed for DLs;
- it is possible to combine the tableau-based algorithms available for DLs with existing reasoning algorithms in the concrete domain in order to obtain the appropriate algorithms for the extension;
- it provides a scheme for extending DLs by various concrete domains rather than constructing a single ad hoc extension for a specific concrete domain.

In the following, we will first introduce the original proposal by Baader and
Hanschke, and then describe two extensions of this proposal [Hanschke, 1992; Haarslev et al., 1999].

6.2.1.1 The family of Description Logics \(\text{ALC}(\mathcal{D})\)

Before we can define the members of this family of DLs, we must formalize the notion of a concrete domain.

Definition 6.1 A concrete domain \(\mathcal{D}\) consists of a set \(\Delta^\mathcal{D}\), the domain of \(\mathcal{D}\), and a set \(\text{pred}(\mathcal{D})\), the predicate names of \(\mathcal{D}\). Each predicate name \(P \in \text{pred}(\mathcal{D})\) is associated with an arity \(n\), and an \(n\)-ary predicate \(P^\mathcal{D} \subseteq (\Delta^\mathcal{D})^n\).

Let us illustrate this definition by examples of interesting concrete domains. Let us start with some numerical ones:

- The concrete domain \(\mathcal{N}\), which we have employed in our introductory example, has the set \(\mathbb{N}\) of all nonnegative integers as its domain, and \(\text{pred}(\mathcal{N})\) consists of the binary predicate names \(<, \leq, \geq, >\) as well as the unary predicate names \(<_n, \leq_n, \geq_n, >_n\) for \(n \in \mathbb{N}\), which are interpreted by predicates on \(\mathbb{N}\) in the obvious way.

- The concrete domain \(\mathcal{R}\) has the set \(\mathbb{R}\) of all real numbers as its domain, and the predicates of \(\mathcal{R}\) are given by formulae that are built by first-order means (i.e., by using Boolean connectives and quantifiers) from equalities and inequalities between integer polynomials in several indeterminates. For example, \(x + z^2 = y\) is an equality between the polynomials \(p(x, z) = x + z^2\) and \(q(y) = y\); and \(x > y\) is an inequality between very simple polynomials. From these equalities and inequalities one can for instance build the formulae \(\exists z. (x + z^2 = y)\) and \(\exists z. (x + z^2 = y) \lor (x > y)\). The first formula yields a predicate name of arity 2 (since it has two free variables), and it is easy to see that the associated predicate is \(\{(r, s) \mid r \text{ and } s \text{ are real numbers and } r \leq s\}\). Consequently, the predicate associated to the second formula is \(\{(r, s) \mid r \text{ and } s \text{ are real numbers}\} = \mathbb{R} \times \mathbb{R}\).

- The concrete domain \(\mathcal{Z}\) is defined just like \(\mathcal{R}\), with the only difference that \(\Delta^\mathcal{Z}\) is the set of all integers instead of all real numbers.

In addition to numerical domains, Definition 6.1 also captures more abstract domains:

- A given (fixed) relational database \(\text{DB}\) can be seen as a concrete domain \(\mathcal{DB}\), whose domain is the set of atomic values occurring in DB, and whose predicates are the relations that can be defined over DB using a query language (such as SQL).
One can also consider Allen’s interval calculus [Allen, 1983] as concrete domain IC. Here Δ^{IC} consists of time intervals, and the predicates are built from Allen’s basic interval relations (such as before, after, . . .) with the help of Boolean connectives.

Instead of time intervals one can also consider spatial regions (e.g., in $\mathbb{R} \times \mathbb{R}$), and use Boolean combinations of the basic RCC-8 relations as predicates [Randell et al., 1992; Bennett, 1997].

Although syntax and semantics of DLs extended by concrete domains could be defined with the general notion of a concrete domain introduced in Definition 6.1, the requirement that the extended language should still have decidable reasoning problems adds some additional restrictions.

To be able to compute the negation normal form of concepts in the extended language, we must require that the set of predicate names of the concrete domain is closed under negation, i.e., if P is an n-ary predicate name in $\text{pred}(\mathcal{D})$ then there has to exist a predicate name Q in $\text{pred}(\mathcal{D})$ such that $Q^D = (\Delta^D)^n \setminus P^D$. We will refer to this predicate name by \overline{P}. In addition, we need a unary predicate name that denotes the predicate Δ^D. The domain \mathcal{N} from above satisfies these two properties since, e.g., $\overline{\geq n} = \geq n$ and $(\geq 0)^\mathcal{N} = \mathbb{N}$.

Let us now clarify what kind of reasoning mechanisms are required in the concrete domain. Let P_1,\ldots,P_k be k (not necessarily different) predicate names in $\text{pred}(\mathcal{D})$ of arities n_1,\ldots,n_k. We consider the conjunction

$$\bigwedge_{i=1}^k P_i(\overline{x}^{(i)}).$$

Here $\overline{x}^{(i)}$ stands for an n_i-tuple $(x_1^{(i)},\ldots,x_{n_i}^{(i)})$ of variables. It is important to note that neither all variables in one tuple nor those in different tuples are assumed to be distinct. Such a conjunction is said to be satisfiable iff there exists an assignment of elements of Δ^D to the variables such that the conjunction becomes true in \mathcal{D}. We will call the problem of deciding satisfiability of finite conjunctions of this form the satisfiability problem for \mathcal{D}.

Definition 6.2 The concrete domain \mathcal{D} is called admissible iff (i) the set of its predicate names is closed under negation and contains a name $\top_\mathcal{D}$ for Δ^D, and (ii) the satisfiability problem for \mathcal{D} is decidable.

With the exception of \mathcal{Z}, all the concrete domains introduced above are admissible. For example, decidability of the satisfiability problem for \mathcal{R} is a consequence of Tarski’s decidability result for real arithmetic [Tarski, 1951; Collins,
1975]. In contrast, undecidability of the satisfiability problem for \mathcal{Z} is a consequence of the undecidability of Hilbert’s 10th problem [Matiyasevich, 1971; Davis, 1973].

In the following, we will take the language \mathcal{ALC} as the (prototypical) starting point of our extension.¹ In the following, let \mathcal{D} be an arbitrary (but fixed) concrete domain. The interface between \mathcal{ALC} and the concrete domain is inspired by the agreement construct between chains of functional roles (see Chapter 2, Subsection 2.4.3). With this construct one can, for example, express the concept of all women whose father and husband are of the same age by the expression $\text{Woman} \sqcap \text{has-father} \circ \text{has-age} = \text{has-husband} \circ \text{has-age}$. However, one cannot express that the husband is even older than the father. This becomes possible if we take the concrete domain \mathcal{N}. Then we can simply write

$$\text{Woman} \sqcap \exists\left(\text{has-father} \circ \text{has-age}, \text{has-husband} \circ \text{has-age}\right).$$

More generally, our extension, called $\mathcal{ALC}(\mathcal{D})$, will allow to state that a tuple of chains of functional roles satisfies a (not necessarily binary) predicate, which is provided by the concrete domain in question.

Thus, $\mathcal{ALC}(\mathcal{D})$ extends \mathcal{ALC} in two respects. First, the set of role names is now assumed to be partitioned into a set of functional roles and a set of ordinary roles. Both types of roles are allowed to occur in value restrictions and in the existential quantification construct. In addition, there is a new constructor, called existential predicate restriction, which is defined by adding to the syntax rules for \mathcal{ALC} the rule

$$C, D \rightarrow \exists(u_1, \ldots, u_n).P,$$

where P is an n-ary predicate of \mathcal{D} and u_1, \ldots, u_n are chains of functional roles. When considering $\mathcal{ALC}(\mathcal{D})$-ABoxes, one must distinguish between names for abstract and for concrete individuals. Concrete predicates $P \in \text{pred}(\mathcal{D})$ give rise to additional ABox assertions of the form $P(x_1, \ldots, x_n)$, where x_1, \ldots, x_n are names for concrete individuals.

Definition 6.3 An interpretation \mathcal{I} for $\mathcal{ALC}(\mathcal{D})$ consists of a set Δ^I, the abstract domain of the interpretation, and an interpretation function. The abstract domain and the given concrete domain must be disjoint, i.e., $\Delta^D \cap \Delta^I = \emptyset$. As before, the interpretation function associates with each concept name a subset of Δ^I and with each ordinary role name a binary relation on Δ^I. The new feature is that the functional roles are now interpreted by partial functions from Δ^I into $\Delta^I \cup \Delta^D$. If $u = f_1 \circ \cdots \circ f_n$ is a chain of functional roles, then u^I denotes the composition $f_1^I \circ \cdots \circ f_n^I$ of the partial functions f_1^I, \ldots, f_n^I.

¹ All the definitions would, of course, also work for any other concept description language. The approach for combining the reasoning algorithms will work for many other languages, but not for all of them.
The semantics of the usual \mathcal{ALC}-constructors is defined as before. In particular, this means that complex concept descriptions are always interpreted as subsets of the abstract domain Δ^I. The existential predicate restriction is interpreted as follows:

$$(\exists (u_1, \ldots, u_n). P)^I = \{ x \in \Delta^I \mid \text{there exist } r_1, \ldots, r_n \in \Delta^D \text{ such that } u_1^I(x) = r_1, \ldots, u_n^I(x) = r_n \text{ and } (r_1, \ldots, r_n) \in P^D \}.$$

Above, we have already seen two examples of concepts of $\mathcal{ALC}(N)$. The following $\mathcal{ALC}(R)$-concepts describe rectangles and squares in the $\mathbb{R} \times \mathbb{R}$:

- **Rectangle** = $\exists (x, y, b, h). \text{rectangle-cond}$,
- **Square** = $\text{Rectangle} \cap \exists (b, h). \text{equal}$,

where the concrete predicates rectangle-cond and equal are defined as $\text{equal}(x, y) \iff x = y$ and $\text{rectangle-cond}(x, y, b, h) \iff b > 0 \land h > 0$. In rectangle-cond, the first two arguments are assumed to express the x- and y- coordinate of the lower left corner of the rectangle, whereas the third and fourth argument express the breadth and height of the rectangle. We leave it to the reader to define the concept “pairs of rectangles” where the first component is a square that is contained in the second component.

A tableau-based algorithm for deciding consistency of $\mathcal{ALC}(D)$-ABoxes for admissible D was introduced in [Baader and Hanschke, 1991b]. The algorithm has an additional rule that treats existential predicate restrictions according to their semantics. The main new feature is that, in addition to the usual “abstract” clashes, there may be concrete ones, i.e., one must test whether the given combination of concrete predicate assertions is non-contradictory. This is the reason why we must require that the satisfiability problem for D is decidable. As described in [Baader and Hanschke, 1991b], the algorithm is not in PSPACE. Using techniques similar to the ones employed for \mathcal{ALC} it can be shown, however, that the algorithm can be modified such that it needs only polynomial space [Lutz, 1999b], provided that the satisfiability procedure for D is in PSPACE. In the presence of acyclic TBoxes, reasoning in $\mathcal{ALC}(D)$ may become NExpTime-hard even for rather simple concrete domains with a polynomial satisfiability problem [Lutz, 2001b].

This technique of combining a tableau-based algorithm for the description logics with a satisfiability procedure for the concrete domain can be extended to more expressive DLs (e.g., \mathcal{ALCN} and \mathcal{ALCN} with agreements and disagreements). However, this is not true for arbitrary DLs with tableau-based decision procedures. For example, the technique does not work if the tableau-based algorithm requires some sort of blocking (see Chapter 2, Subsection 2.3.2.4) to ensure termination. Tech-
nically, the problem is that concrete predicates can be used to state properties concerning different individuals in the ABox, and that blocking, which is concerned only with the properties of a single individual, cannot take this into account. The main idea underlying an undecidability proof for such a logic is that elements of the concrete domain (e.g., \mathcal{R}) can encode configurations of a Turing machine and that one can define a concrete predicate stating that one configuration is a direct successor of the other. Finally, the DL must provide some means of representing sequences of configurations of arbitrary length, which is usually the case for DLs requiring blocking. More concretely, it was shown in [Baader and Hanschke, 1992] (by reduction from Post’s correspondence problem) that satisfiability of concepts becomes undecidable if transitive closure (of a single functional role) is added to $\mathcal{ALC}(\mathcal{R})$. Post’s correspondence problem can also be used to show undecidability of $\mathcal{ALC}(\mathcal{R})$ with general inclusion axioms, although one cannot use exactly the same reduction as for transitive closure (see [Haarslev et al., 1998] for a similar reduction). A notable exception to the rule of thumb that concrete domains together with general inclusion axioms lead to undecidability has recently been shown by Lutz [2001a], who combines \mathcal{ALC} with the concrete domain of rational numbers with equality and inequality predicates.

6.2.1.2 Predicate restrictions on role chains

The role chains occurring in predicate restrictions of $\mathcal{ALC}(\mathcal{D})$ are restricted to chains of functional roles. In [Hanschke, 1992] this restriction was removed. To be more precise, the syntax rules for \mathcal{ALC} are extended by the two rules

$$C, D \rightarrow \exists(u_1, \ldots, u_n).P \mid \forall(u_1, \ldots, u_n).P,$$

where P is an n-ary predicate of \mathcal{D} and u_1, \ldots, u_n are chains of (not necessarily functional) roles.

In this setting, ordinary roles are also allowed to have fillers in the concrete domain, i.e., both functional and ordinary roles are interpreted as subsets of $\Delta^I \times (\Delta^I \cup \Delta^D)$. Of course, functional roles must still be be interpreted as partial functions. The extension of the predicate restrictions is defined as

$$(\exists(u_1, \ldots, u_n).P)^I = \{ x \in \Delta^I \mid \text{there exist } r_1, \ldots, r_n \in \Delta^D \text{ such that } (x, r_1) \in u_1^I, \ldots, (x, r_n) \in u_n^I \text{ and } (r_1, \ldots, r_n) \in P^D \},$$

$$(\forall(u_1, \ldots, u_n).P)^I = \{ x \in \Delta^I \mid \text{for all } r_1, \ldots, r_n: (x, r_1) \in u_1^I, \ldots, (x, r_n) \in u_n^I \text{ implies } (r_1, \ldots, r_n) \in P^D \}.$$

Using the universal predicate restriction one can, for example, define the concept of parents all of whose children are younger than 4 by the description

$$\text{Parent} \sqcap \forall\text{has-child} \circ \text{has-age.} \leq 4.$$
Hanschke [1992] shows that an extension of the DL we have just introduced still
has a decidable ABox consistency problem, provided that the concrete domain \(\mathcal{D} \) is
admissible.

6.2.1.3 Predicate restrictions defining roles

In [Haarslev et al., 1998; 1999], \(\mathcal{ALC}(\mathcal{D}) \) was extended in a different direction:
predicate restrictions can now also be used to define new roles. To be more precise,
if \(P \) is a predicate of \(\mathcal{D} \) of arity \(n + m \) and \(u_1, \ldots, u_n, v_1, \ldots, v_m \) are chains of
functional roles, then

\[
\exists (u_1, \ldots, u_n)(v_1, \ldots, v_m).P
\]

is a complex role. These complex roles may be used both in value restrictions and in
the existential quantification construct. The semantics of complex roles is defined
as

\[
(\exists(u_1, \ldots, u_n)(v_1, \ldots, v_m).P)^I = \{(x, y) \in \Delta^I \times \Delta^I \mid \text{there exist } r_1, \ldots, r_n, s_1, \ldots, s_m \in \Delta^D \text{ such that }
\]
\[
u^I_1(x) = r_1, \ldots, u^I_n(x) = r_n, v^I_1(y) = s_1, \ldots, v^I_m(y) = s_m
\]
\[
\text{and } (r_1, \ldots, r_n, s_1, \ldots, s_m) \in P^D\}.
\]

For example, the complex role \(\exists(\text{has-age})(\text{has-age}).> \) consists of all pairs of individuals having an age such that the first is older than the second.

Unfortunately, it has turned out that the full logic obtained by this extension
has an undecidable satisfiability problem [Haarslev et al., 1998]. To overcome this
problem, Haarslev et al. [1999] define syntactic restrictions on concepts such that the
restricted language (i) is closed under negation, and (ii) has a decidable ABox
consistency problem. Consequently, the subsumption and the instance problem are
also decidable. The complexity of reasoning in this DL is investigated in [Lutz,
2001b]. Similar to the case of acyclic TBoxes, rather simple concrete domains can
already make reasoning \(\text{NExpTime}- \) hard.

An approach for integrating arithmetic reasoning into Description Logics that
considerable differs from the concrete domain approach described above was proposed by Ohlbach and Koehler [1999].

6.2.2 Modal extensions

Although the DLs discussed so far provide a wide choice of constructors, usually they
are intended to represent only static knowledge and are not able to express various
dynamic aspects such as time-dependence, beliefs of different agents, obligations,
etc. For example, in every standard description language we can define a concept
“good car” as, say, a car with an air-conditioner:

\[
\text{GoodCar} \equiv \text{Car} \cap \exists \text{part.Airconditioner}.
\]

(6.1)

However, we have no means to represent the subtler knowledge that only John believes (6.1) to be the case, while Mary does not think so:

\[
[\text{John believes}(6.1) \land \neg [\text{Mary believes}(6.1)]].
\]

Nor can we express the fact that (6.1) holds now, but in the future the notion of a good car may change (since, for instance, all cars will have air conditioners):

\[
(6.1) \land (\text{eventually}) \neg (6.1).
\]

A way to bridge this gap seems quite clear and will be discussed in this and the next section: one can simply combine a DL with a suitable modal language treating belief, temporal, deontic or some other intensional operators. However, there are a number of parameters that determine the design of a modal extension of a given DL.

(I) First, modal operators can be applied to different kinds of well-formed expressions of the DL.

One may apply them only to conceptual and assertional axioms thereby forming new axioms of the form:

\[
[\text{John believes}(\text{GoodCar} \equiv \text{Car} \cap \exists \text{part.Airconditioner})],
\]

\[
[\text{Mary believes}(\text{eventually}) (\text{Rich}(\text{JOHN}))].
\]

Modal operators may also be applied to concepts in order to form new ones:

\[
[\text{John believes}]\text{expensive}
\]

i.e., the concept of all objects John believes to be expensive, or

\[
\text{HumanBeing} \cap \exists \text{child.}[\text{Mary believes}(\text{eventually}) \text{GoodStudent}]
\]

i.e., the concept of all human beings with a child that Mary believes to be eventually a good student. By allowing applications of modal operators to both concepts and axioms we obtain expressions of the form

\[
[\text{John believes}](\text{GoodCar} \equiv [\text{Mary believes}]\text{GoodCar})
\]

i.e., John believes that a car is good if and only if Mary thinks so.

Finally, one can supplement the options above with modal operators applicable to roles. For example, using the temporal operator \([always]\) (in future) and the role
loves, we can form the new role \([always]loves\) (which is understood as a relation between objects \(x\) and \(y\) that holds if and only if \(x\) will always love \(y\)) to say

\[(\exists [always]loves.Woman)(JOHN)\]

i.e., John will always love the very same woman (but perhaps not only her), which is not the same as \(([always]\exists loves.Woman)(JOHN)\).

(II) All these languages are interpreted with the help of the possible worlds semantics, in which the accessibility relations between worlds (or points in time, . . .) treat the modal operators, and the worlds themselves are DL interpretations.

The properties of the modal operators are determined by the conditions we impose on the corresponding accessibility relations. For example, by imposing no condition at all we obtain what is known as the minimal normal modal logic \(K\)—although of definite theoretical interest, it does not have the properties required to model operators like \([agent A knows]\), \(⟨eventually⟩\), etc. In the temporal case, depending on the application domain we may assume time to be linear and discrete (for example, the usual strict ordering of the natural numbers), or branching, or dense, etc. (see [Gabbay et al., 1994; van Benthem, 1996]). Moreover, we have the possibility to work with intervals instead of points in time (see Section 6.2.4). In epistemic logic, transitivity of the accessibility relation for agent \(A\)’s knowledge means what is called positive introspection (\(A\) knows what she knows), euclideannes corresponds to negative introspection (\(A\) knows what she does not know), and reflexivity means that everything known by \(A\) is true; see Section 6.2.3 for a formulation of these principles in terms of Description Logics. For more information and further references consult [Fagin et al., 1995; Meyer and van der Hoek, 1995].

(III) When connecting worlds—that is, ordinary interpretations of the pure description language—by accessibility relations, we are facing the problem of connecting their objects. Depending on the particular application, we may assume worlds to have arbitrary domains (the varying domain assumption), or we may assume that the domain of a world accessible from a world \(w\) contains the domain of \(w\) (the expanding domain assumption), or that all the worlds share the same domain (the constant domain assumption); see [van Benthem, 1996] for a discussion in the context of first-order temporal logic. Consider, for instance, the following axioms:

\[
\neg [agent A knows](Unicorn \equiv \bot),
\]

\[
([agent A knows]\neg Unicorn) \equiv \top.
\]

The former means that agent \(A\) does not know that unicorns do not exist, while according to the latter, for every existing object, \(A\) knows that it is not a unicorn. Such a situation can be modeled under the expanding domain assumption, but these two formulas cannot be simultaneously satisfied in a model with constant domains.
Finally, one should take into account the difference between \textit{global} (or \textit{rigid}) and \textit{local} (or \textit{flexible}) symbols. In our context, the former are the symbols which have the same extension in every world in the model under consideration, while the latter are those whose interpretation is not fixed. Again the choice between these depends on the application domain: if the knowledge base is talking about employees of a company then the name \textit{John Smith} should probably denote the same person no matter what world we consider, while \textit{President of the company} may refer to different persons in different worlds. For a more detailed discussion consult, e.g., [Fitting, 1993; Kripke, 1980].

To describe the syntax and semantics more precisely we briefly introduce the modal extension L_{ALC}^n of ALC with n unary modal operators \Box_1, \ldots, \Box_n, and their duals $\Diamond_1, \ldots, \Diamond_n$.

\textbf{Definition 6.4 (Concepts, roles, axioms)} Concepts and roles of L_{ALC}^n are defined inductively as follows: all concept names are concepts, and if C, D are concepts, R is a role, and \Diamond_i is a modal operator, then $C \sqcap D$, $\neg C$, $\Diamond_i C$, and $\exists R.C$ are concepts.1 All role names are roles, and if R is a role, then $\Box_i R$ and $\Diamond_i R$ are roles.

Let C and D be concepts, R a role, and a, b object names. Then expressions of the form $C \equiv D$, $R(a, b)$, and $C(a)$ are axioms. If φ and ψ are axioms then so are $\Diamond_i \varphi$, $\neg \varphi$, and $\varphi \land \psi$.

We remind the reader that models of a propositional modal language are based on Kripke frames, i.e., structures of the form $\mathfrak{F} = \langle W, <_1, \ldots, <_n \rangle$ in which each $<_i$ is a binary (accessibility) relation on the set of worlds W. What is going on inside the worlds is of no importance in the propositional framework (see, e.g., [Chagrov and Zakharyaschev, 1997] for more information on propositional modal logics). Models of L_{ALC}^n are also constructed on Kripke frames; however, in this case their worlds come equipped with interpretations of ALC.

\textbf{Definition 6.5 (model)} A model of L_{ALC}^n based on a frame $\mathfrak{F} = \langle W, <_1, \ldots, <_n \rangle$ is a pair $\mathfrak{M} = \langle \mathfrak{F}, I \rangle$ in which I is a function associating with each $w \in W$ an ALC-interpretation

$I(w) = \langle \Delta^{I,w}, I, w \rangle$.

\mathfrak{M} has constant domain iff $\Delta^{I(v)} = \Delta^{I(w)}$, for all $v, w \in W$. \mathfrak{M} has expanding domains iff $\Delta^{I(v)} \subseteq \Delta^{I(w)}$ whenever $v <^i w$, for some i.

\textbf{Definition 6.6} For a model $\mathfrak{M} = \langle \mathfrak{F}, I \rangle$ and a world w in it, the \textit{extensions} $C^{I,w}$

1 Note that value restrictions (the modal box operators \Box_i) need not explicitly be included here since they can be expressed using negation and existential restrictions (the modal diamond operators \Diamond_i).
and $R^{I,w}$, and the satisfaction relation $w \models \varphi$ (φ an axiom) are defined inductively. The interesting new steps of the definition are:

(i) $x \in (\Diamond_i C)^{I,w}$ iff $\exists v. \ v \models_i w$ and $x \in C^{I,v}$;
(ii) $(x, y) \in (\Diamond_i R)^{I,w}$ iff $\exists v. \ v \models_i w$ and $(x, y) \in R^{I,v}$;
(iii) $w \models_i \Diamond_\varphi$ iff $\exists v. \ v \models_i w$ and $v \models \varphi$.

An axiom φ (a concept C) is satisfiable in a class of models \mathcal{M} if there is a model $\mathfrak{M} \in \mathcal{M}$ and a world w in \mathfrak{M} such that $w \models \varphi$ ($C^{I,w} \neq \emptyset$).

Given a class of frames \mathcal{K}, the satisfiability problems for axioms and concepts in \mathcal{K} are the most important reasoning tasks; others are reducible to them (see [Wolter and Zakharyaschev, 1998; 1999b]). Notice that the satisfiability problem for concepts is reducible to that for axioms since $\neg(C \equiv \bot)$ is satisfiable iff C is satisfiable. Also, the satisfiability problem for models with expanding or varying domain is reducible to that for models with constant domain (see [Wolter and Zakharyaschev, 1998]).

We are now going to survey briefly the state of the art in the field. We will restrict ourselves first to modal description logics which are not temporal logics. The latter will be considered in Section 6.2.4. Chronologically, the first investigations of modal description logics are [Laux, 1994; Gräber et al., 1995; Baader and Laux, 1995; Baader and Ohlbach, 1993; 1995]. The papers [Laux, 1994; Gräber et al., 1995] construct multi-agent epistemic description logics in which the belief operators apply only to axioms; the accessibility relations are transitive, serial, and euclidean. The decidability of the satisfiability problem for axioms follows immediately from the decidability of both, the propositional fragment of the logic and ALC, because in languages without modalized concepts and roles there is no interaction between the modal operators and role quantification (see [Finger and Gabbay, 1992]). Baader and Laux [1995] introduce a DL in which modal operators can be applied to both axioms and concepts (but not to roles); it is interpreted in models with arbitrary accessibility relations under the expanding domain assumption. The decidability of the satisfiability problem for axioms is proved by constructing a complete tableau calculus. This tableau calculus was modified and extended for checking satisfiability in models with constant domain in [Lutz et al., 2002]. It decides satisfiability in constant domain models in NExpTime, which matches the lower bound established in [Mosurovic and Zakharyaschev, 1999] (see also [Gabbay et al., 2002]).

The papers [Wolter and Zakharyaschev, 1998; 1999a; 1999c; 1999b; Wolter, 2000; Mosurovic and Zakharyaschev, 1999] investigate the decision problem for various families of modal description logics in detail. For example, in [Wolter and Zakharyaschev, 1999c; 1999b] it is shown that the satisfiability problem for arbitrary axioms (possibly containing modalized roles) is decidable in the class of all frames.
and in the class of polymodal $\textbf{S5}$-frames—frames in which all accessibility relations are equivalence relations—based on constant, expanding, and varying domains. It becomes undecidable, however, if common knowledge epistemic operators (in the sense of [Fagin et al., 1995]) are added to the language or if the class of frames consists of the flow of time $\langle \mathbb{N}, < \rangle$. In [Wolter and Zakharyaschev, 1999a; 1998] it is shown that for expressive modal languages—like logics with common knowledge operators or Propositional Dynamic Logics—the satisfiability problem for axioms becomes decidable when modalized roles are not included. Wolter [2000] shows that the satisfiability problem for concepts interpreted in frames with global (i.e., world-independent) roles is decidable for expressive modal logics based on \textbf{ALC} while the satisfiability problem for axioms is undecidable for them. However, even the complexity of the satisfiability problem for concepts becomes non-elementary for these logics [Gabbay et al., 2002]. In fact, for various decidable modal description logics only computationally non-elementary decision procedures are known and the precise complexity has not yet been determined (consult [Gabbay et al., 2002] for further results).

The papers [Baader and Ohlbach, 1993; 1995] introduce a multi-dimensional description language that is even more expressive than $\mathcal{L}^n_{\textbf{ALC}}$ (but without object names). Roughly, in this approach each dimension (object, time, belief, etc.) is represented by a set D_i (of objects, moments of time, possible worlds, etc.), concepts are interpreted as subsets of the cartesian product $\prod_{i=1}^n D_i$, and roles of dimension i as binary relations between n-tuples that may differ only in the ith coordinate. One can quantify over both, roles and concepts, in any dimension. Thus, in contrast to $\mathcal{L}^n_{\textbf{ALC}}$ arbitrarily many dimensions are considered and no dimension is labelled as the “modal” or “\textbf{ALC}”-one. This language has turned out to be extremely expressive. The satisfiability problem for the full language is known to be undecidable and even for natural fragments no sound and complete reasoning procedures have appeared. Baader and Ohlbach [1995] provide only a sound satisfiability checking algorithm for such a fragment.

6.2.3 Epistemic operators

The systems CLASSIC and LOOM provide their users with the possibility to include procedural rules into knowledge bases (see also Chapter 2, Section 2.2.5). Such rules take the form

$$C \Rightarrow D,$$

where C and D are concepts. The meaning of a procedural rule is different from the meaning of an inclusion axiom: while $C \sqsubseteq D$ represents conceptual knowledge and says that—no matter what is known about individuals—the concept D subsumes
the rule \(C \Rightarrow D \) represents the incidental fact that “if an individual is known to be an instance of \(C \), then we can conclude that it is an instance of \(D \)”. Consider the following example: suppose a knowledge base \(\Phi \) consists of

\[
\text{GreatLogician} \sqsubseteq \text{Professor}, \quad \neg \text{Professor}(a).
\]

Obviously we can derive \(\neg \text{GreatLogician}(a) \) from \(\Phi \). In this representation we assume a conceptual relation between the terms ‘professor’ and ‘great logician’. More appropriate, however, seems to be the weaker claim that people who are known to be great logicians are professors: let \(\Phi' \) be the knowledge base which results from \(\Phi \) when \(\text{GreatLogician} \sqsubseteq \text{Professor} \) is replaced with

\[
\text{GreatLogician} \Rightarrow \text{Professor}.
\]

The assertion \(\neg \text{GreatLogician}(a) \) turns out to be not derivable from \(\Phi' \). The procedural explanation for this phenomenon is this: in the knowledge base \(\Phi' \) we do not find an individual belonging to the concept \(\text{GreatLogician} \). Therefore the rule \(\text{GreatLogician} \Rightarrow \text{Professor} \) does not “fire” and nothing new about the world is derivable by using it. However, Description Logic is aiming at an extensional semantics for frame-based systems, hence it would be desirable to have a precise model-theoretic explanation of the behavior of procedural rules as well.

It turns out that adding an epistemic operator together with a possible worlds semantics interpreting it provides us with the required models. Integrating the operator \(K \) —‘the knowledge base knows that’—into \(\text{ALC} \) will allow us to rephrase the rule \(\text{GreatLogician} \Rightarrow \text{Professor} \) by the inclusion axiom \(K\text{GreatLogician} \sqsubseteq \text{Professor} \), which says that all objects that are known to be great logicians are professors. Actually, it will turn out that extensions of Description Logics by means of epistemic operators are useful in other contexts as well. We postpone their discussion until we have introduced some technical prerequisites. We will follow [Donini et al., 1992b; 1998a], where the extension of \(\text{ALC} \) by epistemic operators was introduced and investigated.

Formulated in terms of Section 6.2.2, we consider the language \(\mathcal{L}^4_{\text{ALC}} \) in which the modal operator \(\Box_1 \) (now denoted by \(K \)) can be applied to concepts and roles but not to axioms. Following [Donini et al., 1998a] we call this language \(\text{ALCK} \). The following principles are assumed to govern the epistemic operator (we formulate them here for \(K \) applied to concepts; the formulation for roles is similar):

- \(KC \subseteq C \) (only true facts are known: if an object is known to be an instance of \(C \), then it is an instance of \(C \));
- \(KC \subseteq KK'C \) (positive introspection: if it is known that an object is an instance of \(C \), then this is known);
Extensions to Description Logics

- \(\neg K C \sqsubseteq K \neg K C \) (negative introspection: if it is not known whether an object is an instance of \(C \), then this is known).

These principles are valid in all models based on a Kripke frame \(\mathcal{F} = (W, \prec) \) iff \(\mathcal{F} \) is an \(S5 \)-frame, or, equivalently, if \(\prec \) is the universal relation on \(W \), i.e., \(\prec = W \times W \). So, we consider frames of the form \(\langle W, W \times W \rangle \) only.

We assume also that:

- it is known which object an object name denotes (so, object names are assumed to be global (or rigid) designators),
- the set of existing objects \(\Delta \) is known and countably infinite (so, we adopt the constant domain assumption).

These assumptions together allow us to simplify the possible worlds semantics considerably: we can identify the set of worlds \(W \) with a set of interpretations \(\mathcal{M} \) (all having the same countably infinite domain \(\Delta \) and the same interpretation of the object names) and the accessibility relation is implicitly given as the universal relation on \(\mathcal{M} \). Hence, we call any set of interpretations \(\mathcal{M} \) satisfying these constraints a model (for \(\mathcal{ALCK} \)) and can define the extensions \(C^\mathcal{I},\mathcal{M} \) and \(R^\mathcal{I},\mathcal{M} \) of a concept \(C \) and a role \(R \) in an interpretation \(\mathcal{I} \) in \(\mathcal{M} \) as follows:

- \(A^{\mathcal{I},\mathcal{M}} = A^{\mathcal{I}} \) for atomic concepts \(A \)
- \(P^{\mathcal{I},\mathcal{M}} = P^{\mathcal{I}} \) for atomic roles \(P \)
- \(-C^{\mathcal{I},\mathcal{M}} = \Delta \setminus C^{\mathcal{I},\mathcal{M}} \)
- \((C_1 \sqcap C_2)^{\mathcal{I},\mathcal{M}} = C_1^{\mathcal{I},\mathcal{M}} \cap C_2^{\mathcal{I},\mathcal{M}} \)
- \((\exists R.C)^{\mathcal{I},\mathcal{M}} = \{ a \in \Delta \mid \exists b. (a, b) \in R^{\mathcal{I},\mathcal{M}} \land b \in C^{\mathcal{I},\mathcal{M}} \} \)
- \((K C)^{\mathcal{I},\mathcal{M}} = \bigcap_{\mathcal{J} \in \mathcal{M}} C^{\mathcal{J},\mathcal{M}} \) (\(= \{ a \in \Delta \mid \forall \mathcal{J} \in \mathcal{M}. a \in C^{\mathcal{J},\mathcal{M}} \} \))
- \((K R)^{\mathcal{I},\mathcal{M}} = \bigcap_{\mathcal{J} \in \mathcal{M}} R^{\mathcal{J},\mathcal{M}} \) (\(= \{ (a, b) \in \Delta \mid \forall \mathcal{J} \in \mathcal{M}. (a, b) \in R^{\mathcal{J},\mathcal{M}} \} \))

So, \(KC \) comprises the set of all objects that are instances of \(C \) in every world regarded as possible.

An \(\mathcal{ALCK} \)-knowledge base \(\Phi \) consists of a set of inclusion axioms and ABox assertions whose concepts and roles are in \(\mathcal{ALCK} \). A model \(\mathcal{M} \) satisfies \(\Phi \) (is a \(\Phi \)-model) iff all inclusion and membership assertions of \(\Phi \) are true in every \(\mathcal{I} \in \mathcal{M} \).

So far, we have introduced a rather simple version of the epistemic extensions of \(\mathcal{ALC} \) discussed in Section 6.2.2. In the present section, however, we are not interested in the satisfiability of epistemic knowledge bases, but in a relation \(\models \) between knowledge bases and assertions such that \(\Phi \models \varphi \) iff a knowledge base knows \(\varphi \) under the assumption that "all the knowledge base knows is \(\Phi \)". For example, if \(\Phi \) is empty (the knowledge base knows nothing), then \(\neg KC(a) \) as well as \(\neg K \neg C(a) \)
should be derivable, since the knowledge base does not know whether \(a \) is an instance of \(C \) or not. On the semantic level this means that we are not interested in arbitrary models satisfying \(\Phi \) but only in those \(\Phi \)-models that refute as many \(\mathcal{ALC} \)-assertions as possible. In other words, we consider \(\Phi \)-models only with as many worlds as possible (corresponding to the intuition that more worlds are regarded as possible if less is known). For example, if \(\Phi \) is empty, then the intended models comprise all interpretations (with a fixed domain and interpretation of the object names), since all interpretations are regarded as possible by an empty knowledge base. Here are the precise definitions:

Definition 6.7 An epistemic model for \(\Phi \) is a maximal non-empty set of interpretations \(\mathcal{M} \) satisfying \(\Phi \). The knowledge base \(\Phi \) logically implies an assertion \(\varphi \), written \(\Phi \models \varphi \), if every epistemic model \(\mathcal{M} \) for \(\Phi \) satisfies \(\varphi \).

Consequently, \(\models \) is a non-monotonic consequence relation: while \(\emptyset \models (\neg \mathcal{K}C \land \neg \mathcal{K}\neg C)(a) \), we have \(C(a) \models \mathcal{K}C(a) \). On the propositional level, this type of reasoning is known as ground non-monotonic S5 (see [Donini et al., 1995; 1997c; Nardi and Rosati, 1995]).

Reasoning with arbitrary \(\mathcal{ALCK} \)-knowledge bases has not been investigated. In fact, all applications considered in the literature require only very small fragments of \(\mathcal{ALCK} \). In what follows, we shall briefly introduce two such fragments and some of their applications.

6.2.3.1 \(\mathcal{ALCK} \) as a query language

We first confine ourselves to knowledge bases that are ordinary \(\mathcal{ALC} \)-ABoxes. Hence, the epistemic operator \(\mathcal{K} \) can be used only in queries. Recall that concept languages can be applied as query languages in a straightforward manner: the answer set of a query consisting of a concept \(C \) to a knowledge base \(\Phi \) comprises the set of individuals \(a \) with \(\Phi \models C(a) \). Queries with epistemic operators enable us to extract the knowledge which the knowledge base has about its own knowledge. Consider, for example, the knowledge base \(\Phi = \{ \exists \text{friend.} \text{Male}(\text{SUSAN}) \} \), which contains incomplete information about Susan. Applications of \(\mathcal{K} \) to different concepts and roles in \(\exists \text{friend.} \text{Male} \) enable us to form a variety of different queries:

- \(\exists \text{friend.} \text{Male} \); clearly, the answer to this query is \(\{ \text{SUSAN} \} \).
- \(\exists \text{friend.} \mathcal{K} \text{Male} \); the answer set is empty, since no known male is a friend of Susan.
- \(\exists \mathcal{K} \text{friend.} \text{Male} \); the answer set is empty since we do not find a male individual that is known to be a friend of Susan.
- \(\mathcal{K} \exists \text{friend.} \text{Male} \); the answer set is \(\{ \text{SUSAN} \} \) since the knowledge base knows that Susan has a friend who is male.
Observe that, for $\Phi' = \Phi \cup \{ \text{friend(SUSAN, BOB), Male(BOB)} \}$, the answer set would consist of SUSAN in all four cases. We refer the reader to [Donini et al., 1992b; 1998a] for more examples.

Epistemic queries can also be used to formulate integrity constraints. Recall that integrity constraints can be viewed as epistemic sentences that state what a knowledge base must know about the world [Reiter, 1990]. For example, suppose that we want to rule out those knowledge bases that are uncertain about whether a given course is a course for undergraduates or graduates. This can be expressed using the query

$$\neg \text{KCourse} \sqcup (\text{KUndergraduate} \sqcup \text{KGraduate}).$$ \hspace{1cm} (6.2)

A knowledge base satisfies the integrity constraint iff it logically implies the assertion (6.2)(a), for every object name a appearing in it. Observe, by the way, that the query $\neg \text{Course} \sqcup (\text{Undergraduate} \sqcup \text{Graduate})$ has a different meaning: while $\emptyset \models (6.2)(a)$, for all a (corresponding to the intention), $\emptyset \not\models (\neg \text{Course} \sqcup (\text{Undergraduate} \sqcup \text{Graduate}))(a)$. We refer the reader to [Levesque, 1984; Lifschitz, 1991; Reiter, 1990] for a discussion of the use of epistemic queries in general.

What is the computational complexity of querying \mathcal{ALC}-ABoxes by means of \mathcal{ALCK}-concepts? The following result is proved in [Donini et al., 1992b; 1998a]:

Theorem 6.8 There is an algorithm for deciding, given an \mathcal{ALC}-ABox Σ, an object name a, and an \mathcal{ALCK}-concept C, whether $\Sigma \models C(a)$. More precisely, the problem $\Sigma \models C(a)$ is PSPACE-complete (w.r.t. the size of C and Σ).

Recall that querying \mathcal{ALC}-ABoxes with \mathcal{ALC}-concepts is PSPACE-complete as well [Hollunder, 1996]. Thus, the additional epistemic operators in queries do not cause any increase of the computational complexity.

6.2.3.2 Semantics for procedural rules

To capture the meaning of procedural rules as discussed above (and in Chapter 2, Section 2.2.5), we must admit assertions of the form $\text{KC} \sqsubseteq D$ in the knowledge base. A rule ABox consists of an \mathcal{ALC}-ABox and a set of sentences of the form

$$\text{KC} \sqsubseteq D,$$

where C, D are \mathcal{ALC}-concepts and C is not equivalent to \top (the reason for this technical condition will be discussed below).

Fortunately, the additional inclusion axioms again do not lead to any increase of the complexity [Donini et al., 1992b; 1998a].

Theorem 6.9 There is an algorithm for deciding, given a rule \mathcal{ALC}-ABox Σ, an
object name a, and an \mathcal{ALCK}-concept C, whether $\Sigma \models C(a)$. More precisely, the problem $\Sigma \models C(a)$ is PSPACE-complete (w.r.t. the size of C and Σ).

Observe that this result does not extend to the language with inclusion axioms of the form $KC \subseteq D$, where C is equivalent to \top. In this case KC would be equivalent to \top as well, and so $KC \subseteq D$ would be equivalent to $D \equiv \top$. However, for knowledge bases with axioms of this type instance checking is known to be ExpTime-complete [Schild, 1994]. Notice that in applications a rule of the form $\top \Rightarrow C$ does not make sense.

6.2.3.3 An extension of \mathcal{ALCK}

The non-monotonic logic $MKNF$ is an expressive extension of ground non-monotonic $\mathbf{S5}$, which can simulate in a natural manner Default Logic, Autoepistemic Logic, and Circumscription (see [Lifschitz, 1994]). This is achieved by adding to classical logic not only the operator K (of ground non-monotonic $\mathbf{S5}$) but also a second epistemic operator A, which is interpreted in terms of autoepistemic assumption. The papers [Donini et al., 1997b; Rosati, 1998] study the corresponding bimodal extension of \mathcal{ALC} by means of K and A, called \mathcal{ALCB} in what follows.

We first consider the two operators K and A separately: the consequence relation \models for assertions containing K only is still the one introduced above. On the other side, for assertions containing A ("it is assumed that") only we are interested in a consequence relation \models^{AE} such that $\Phi \models^{AE} \varphi^1$ iff φ belongs to every stable expansion of Φ, i.e., iff φ belongs to every reasonable theory2 about the world which a rational agent who assumes only the assertions in Φ can have. In particular, it is assumed that agents are capable of introspection. Consider, for example, an agent assuming precisely $\Phi = \{ AC \equiv \top \}$ ("the set of all objects I assume to be in C comprises all existing objects"). We still assume that agents know which objects exist (the constant domain assumption). Hence Φ can be rephrased as "I assume that all objects belong to C". Now, according to the autoepistemic approach such an agent cannot have a coherent theory about the world because if she would have one then she should assume as well that $C \equiv \top$ from the very beginning.

From the “possible worlds” viewpoint the relation \models^{AE} can be captured as follows. Firstly, the extension of \mathcal{ALC} by A is interpreted in pairs (I, M) in precisely the same manner as \mathcal{ALCK}. However, now we allow that the actual world I is not in M—corresponding to the idea that assumptions (in contrast to known assertions) are not always true. Thus we may have $(AC)^{I,M} = \top$ but $C^{I,M} \not\equiv \top$, which is not possible for K. The intended models are called AE-models in what follows.

1 AE indicates that autoepistemic propositional logic in the sense of [Moore, 1985] is extended here to \mathcal{ALC}.

2 In terms of propositional logic a theory T is called reasonable iff the following conditions hold: (0) T is closed under classical reasoning, (1) if $P \in T$, then $AP \in T$, (2) if $P \not\in T$, then $\neg AP \in T$.
Definition 6.10 An AE-model for a set of assertions Φ is a set of interpretations M that satisfies Φ and such that, for every interpretation $I \notin M$, Φ is refuted in (I, M). Now put $\Phi \models^{AE} \varphi$ iff φ is satisfied in all AE-models for Φ.

So, we do not maximize the set of possible worlds, but we exclude the case that Φ is true in an actual world that is not regarded possible (i.e., is not a member of M). The consequence relation \models^{AE} is also non-monotonic since $\emptyset \models^{AE} \neg AC(a)$ but $C(a) \models AC(a)$. Observe that \models and \models^{AE} are different: while $AC \equiv \top$ has no AE-models, $KC \equiv \top$ has the epistemic model consisting of all interpretations in which $C \equiv \top$.

How to interpret the combined language $ALCB$ and define a consequence relation? Following Lifschitz [1994], the intended models (called $ALCB$-models) are defined as follows.

Definition 6.11 The $ALCB$-models for a set of $ALCB$-assertions Φ are those models M satisfying Φ and the following maximality condition: if a non-empty set of new worlds N is added to M, K is interpreted in the model $M \cup N$, and A is interpreted in the old model M, then Φ is refuted in some interpretation from N. Now Φ logically implies φ, in symbols $\Phi \models \varphi$, iff φ is satisfied in every $ALCB$-model satisfying Φ.

Thus, roughly speaking, we still maximize the set of worlds, but now we require that any larger set of possible worlds contains a world at which Φ is refuted under the interpretation of A by means of the original set of possible worlds. But this corresponds, for the operator A, to the definition of AE-models. Clearly, the new consequence relation is a conservative extension of the one defined for $ALCK$ above (and of \models^{AE} as well). Hence using the same symbol for both does not cause any ambiguity.

The new logic is considerably more expressive than $ALCK$. Donini et al. [1997b] show that Default Logic can be embedded into $ALCB$ more naturally than into $ALCK$. They also consider the formalization of integrity constraints in knowledge bases, which cannot be expressed in $ALCK$, and they discuss how role and concept closure can be formalized in $ALCB$. Here we confine ourselves to a brief discussion of the formalization of integrity constraints in $ALCB$. Above we have seen that the query (6.2) can be used to express the constraint that every course known to the knowledge base should be known to be for undergraduates or graduates. Sometimes it is more useful not to formalize integrity constraints as queries, but as part of the knowledge base (see [Donini et al., 1997b]). However, the addition of constraints should not change the content of the knowledge base, but just force the knowledge base to be inconsistent iff the constraint is violated. How can this be achieved in
The naive idea is to add the assertion \((6.2) \equiv \top\) to the knowledge base in order to express the constraint. Unfortunately, this does not work: consider the knowledge base \(\Phi\) consisting of \(\text{Course}(a)\), which does not satisfy the integrity constraint. However, the knowledge base obtained from \(\Phi\) by adding \((6.2) \equiv \top\) does not tell us that the constraint is violated in \(\Phi\) since the extended knowledge base is still consistent: the set \(M\) consisting of all interpretations \(J\) (with a fixed domain and interpretation of \(a\)) satisfying \(a^J \in \text{Course}^J \cap \text{Graduate}^J\) is an epistemic model for the extended knowledge base. In fact, there is no way to formulate the required constraint within \(\ALCK\). On the other hand, by adding the \(\ALCB\)-assertion
\[
\text{KCourse} \sqsubseteq \text{AGraduate} \sqcup \text{AUndergraduate}
\]
to \(\Phi\), we obtain a knowledge base without \(\ALCB\)-models, as required. Note, for example, that the model \(M\) introduced above is not an \(\ALCB\)-model for this knowledge base because any set of worlds \(\mathcal{N} = \{I\}\) with \(I \not\in M\) and \(a^I \in \text{Course}^I\) refutes the maximality condition.

Donini et al. [1997b] present a number of decidability results for reasoning with \(\ALCB\) knowledge bases.

6.2.4 Temporal extensions

Temporal extensions are a special form of modal extensions of description logics. However, because of the intended interpretation in flows of time they have a specific flavour, which is slightly different from general modal logic. Chronologically, the first example of a “modalized” description logic was the temporal description logic of Schmiedel [1990]. The papers [Bettini, 1997; Artale and Franconi, 1994; 1998] introduce and investigate variants of Schmiedel’s formalism. The papers mentioned so far employ an interval-based approach to the semantics of temporal operators. Point-based temporal description logics have been introduced by Schild [1993] and further investigated by Wolter and Zakharyaschev [1999e].

For simplicity, let us first consider propositional temporal logic and then see how it can be extended to temporal description logic. In what follows we assume that a flow of time \(\mathcal{T} = (T, <)\) consists of a set of points in time \(T\) and a precedence relation \(<\) between points in time which is assumed to be a strict linear order. This corresponds to the intuition that, for any two moments \(t_1, t_2 \in T\), either \(t_1\) precedes \(t_2\), \(t_2\) precedes \(t_1\), or \(t_1\) equals \(t_2\).

How to define a satisfiability relation \(|=|\) between entities in a flow of time and formulas? There exist (at least) two different possibilities to select the entities at which formulas are evaluated: points in time and intervals. While in the first case we are considering a relation \(t |= \varphi\) between time-points \(t\) and formulas \(\varphi\), in the second case we have a relation \([u, v] |= \varphi\) between intervals \([u, v] = \{z \in T \mid u \leq z \leq v\}\),...
where $u \leq v$, in \mathcal{I} and formulas φ. Denote by \mathcal{I}^* the set of all intervals in \mathcal{I}. Both, point- and interval-based temporal logics, are special instances of modal logics: in the former the worlds of Kripke frames are interpreted as time-points while in the latter they are interpreted as intervals. Point- as well as interval-based temporal models are easily extended to temporal \mathcal{ALC}-models:

Definition 6.12 A point-based temporal \mathcal{ALC}-model $\mathcal{M} = (\mathcal{I}, I)$ consists of a flow of time \mathcal{I} and a function I which associates with every $t \in T$ an interpretation

$$I(t) = \langle \Delta^t, I^t \rangle.$$

An interval-based temporal \mathcal{ALC}-model $\mathcal{M} = (\mathcal{I}, I)$ consists of a flow of time \mathcal{I} and a function I which associates with every interval $i \in \mathcal{I}^*$ an interpretation

$$I(i) = \langle \Delta^i, I^i \rangle.$$

We can now evaluate \mathcal{ALC}-concepts and axioms in point- and interval-based temporal models. For example,

- $(\mathcal{M}, t) \models \text{Alive}(a)$ iff $a \in I^t$, i.e., a is alive at moment t,
- $(\mathcal{M}, i) \models \text{Sleep}(a)$ iff $a \in I^i$, i.e., a is sleeping in the interval i.

We now add temporal operators and quantifiers to \mathcal{ALC}, which enable us to relate different moments and intervals to each other.

For the point-based approach we have discussed appropriate operators already: we can form the language $\mathcal{L}_{\mathcal{ALC}}^1$ and interpret the operator $\Box = \Box_1$ as ‘always in the future’. Thus, $t \models \Box(C \equiv D)$ iff $t' \models C \equiv D$ for all $t' > t$, (always in the future of t, C and D are interpreted as the same set), and $x \in (\langle C \rangle)^{t,t'}$ iff there exists $t' > t$ such that $x \in C^{t,t'}$ (eventually x is an instance of C). Often, however, more expressive temporal operators are required. The operator \mathcal{U} (until), for example, is a binary temporal operator with the following truth-conditions, for all concepts C, D and axioms φ, ψ:

(i) $x \in (C \mathcal{U} D)^{t,t'}$ iff there exists $t' > t$ such that $x \in D^{t,t'}$ and, for all t'' with $t < t'' < t'$, $x \in C^{t,t''}$,

(ii) $t \models \Box \mathcal{U} \psi$ iff there exists $t' > t$ such that $t' \models \psi$ and, for all t'' with $t < t'' < t'$, $t'' \models \varphi$.

In this language we can define a mortal as, say, a living being that is alive until it dies:

$$\text{Mortal} \equiv \text{LivingBeing} \cap (\text{LivingBeing} \mathcal{U} \Box \neg \text{LivingBeing}).$$

This language, interpreted in the flow of time $\langle \mathbb{N}, \prec \rangle$, was first considered by Schild [1993], who showed that the satisfiability problem for concepts (without
modalized or global roles) is decidable. Wolter [2000] proves the decidability for concepts with global roles (but without modalized roles). However, the complexity of the decision problem for this language is non-elementary [Gabbay et al., 2002]. Wolter and Zakharyaschev [1999e] prove that even for axioms the satisfiability problem is decidable, provided that they do not contain modalized or global roles. Tableau calculi (running in double-exponential time) for the case of expanding and constant domains were developed in [Sturm and Wolter, 2002; Lutz et al., 2001b]. The satisfiability problem for axioms in the full language with the flow of time \((\mathbb{N}, <) \) is undecidable.

For the interval-based approach we find both languages that extend \(\mathcal{ALC} \) by means of temporal operators which are interpreted by accessibility relations between intervals [Bettini, 1997] and languages that allow for explicit quantification over intervals [Schmiedel, 1990; Artale and Franconi, 1994; 1998].

We start the discussion with the temporal operators approach. Bettini [1997] extends the propositional interval-based temporal logic of [Halpern and Shoham, 1991] to \(\mathcal{ALC} \) (and weaker description logics). Thus, given a concept \(C \), we can now form new concepts like \(\langle \text{starts} \rangle C \) and \(\langle \text{finishes} \rangle C \). They are interpreted in interval-based models \((\mathcal{T}, I) \) as follows:

- \(x \in \langle \text{starts} \rangle C \) \(I, [u,v] \) iff \(\exists t \in T. u < t < v \land x \in C \) \(I, [u,t] \)

 \(x \) is an instance of \(\langle \text{starts} \rangle C \) in the interval \([u, v] \) iff \(x \) is an instance of \(C \) in some interval starting \([u, v] \),

- \(x \in \langle \text{finishes} \rangle C \) \(I, [u,v] \) iff \(\exists t \in T. u < t < v \land x \in C \) \(I, [t,v] \).

In other words, the modal operators \(\langle \text{starts} \rangle \) and \(\langle \text{finishes} \rangle \) are interpreted in the standard “possible worlds manner” by means of the accessibility relations ‘starts’ and ‘finishes’, respectively, where \((i, j) \in \text{starts} \) iff \(j \) starts \(i \) and \((i, j) \in \text{finishes} \) if \(j \) finishes \(i \). By adding the converse operators of \(\langle \text{starts} \rangle \) and \(\langle \text{finishes} \rangle \) to the language, we obtain a language that can express all the thirteen Allen relations between intervals [Allen, 1983]. Here is a definition of \text{Mortal} in this language:

\[
\text{Mortal} \equiv \text{LivingBeing} \land \langle \text{after} \rangle \neg \text{LivingBeing}.
\]

Unfortunately, for the full language based on \(\mathcal{ALC} \) the satisfiability problem for concepts is undecidable in all interesting flows of time. This follows from the fact that propositional interval-based temporal logic is undecidable already in \((\mathbb{R}, <) \), \((\mathbb{Q}, <) \), \((\mathbb{N}, <) \), etc. (see [Halpern and Shoham, 1991]). However, there are numerous open decision problems when description logics weaker than \(\mathcal{ALC} \) and different notions of intervals are considered (see [Bettini, 1997; Artale and Franconi, 2000; 2001]).

Now, let us consider interval-based temporal extensions of description logics that
allow for explicit quantification over intervals. Schmiedel [1990] develops an expressive formalism in which we have two quantifiers $\square(i)$ (‘for all intervals i’) and $\Diamond(i)$ (‘there exists an interval i’), where i is a variable ranging over intervals. The language does not contain negation so that the quantifiers are not mutually definable. The quantifiers are relativized (alias bounded or guarded) by so called time nets, which can, for example, be some relations like starts or finishes between intervals (metric and granularity constraints are admitted as well). An operator @ specifies the interval at which a concept applies to an object and ♯ denotes a reference interval. The following concept can be regarded as a definition of the concept Mortal in Schmiedel’s language:

$\text{LivingBeing} \sqcap (\Diamond(i)(\text{after} \ i \ ♯)(\neg \text{LivingBeing} @ i))$.

Here (after $i ♯$) is the time net which relativizes the quantifier $\Diamond(i)$ by means of the constraint expressing that i must be after the reference interval denoted by ♯.

According to this definition, an object x is an instance of Mortal at the reference interval ♯ iff x is living at ♯ and there exists an interval i that is after ♯, and at which x is not living.

Schmiedel [1990] does not address computational problems for his language. However, it is not difficult to see that, in the presence of negation, this language is more expressive than the one of Bettini [1997] considered above—and thus subsumption is undecidable for all interesting flows of time. The decision problem for the language without negation appears to be open.

A brief remark concerning the relation between interval-based temporal logic with and without explicit quantification over intervals is in order. Of course, explicit quantification provides more expressive power. Using the temporal operators introduced above, it is not possible to represent relations between more than two intervals because reference to a fixed reference interval is impossible.

On the other hand, variable-free languages are much closer in spirit to pure description logics and therefore seem to be more natural candidates for temporalizations of description logics; we refer the reader to [Artale and Franconi, 2000; 2001] for a detailed discussion.

The papers [Artale and Franconi, 1994; 1998] present a number of languages weaker than Schmiedel’s with a decidable subsumption problem. Among others, they define a temporal extension of a description logic extending \mathcal{ALC} with functional roles. They show decidability of concept subsumption and PSPACE-completeness of satisfiability w.r.t. an empty KB in an unbounded and dense flow of time. The main reason for the decidability is that the language does not admit universal quantification over intervals and that the constructors of the underlying

1 Here and in what follows we use the notation of [Artale and Franconi, 1998].
description logic cannot be applied to the temporalized part of the language. In particular, the negation of the underlying DL cannot be used to define the universal quantifier by means of the existential one. The authors show by means of a number of examples that their formalism still has enough expressive power to represent non-trivial actions and plans.

An interesting feature of the subsumption algorithm presented by Artale and Franconi [1998] is that it consists of two parts: firstly, a normalization procedure is employed to reduce the subsumption problem for the temporalized DL to that problem for the pure DL, which can then be solved with known algorithms [Hollunder and Nutt, 1990].

For a more detailed survey of the state of art in temporal description logic we refer the reader to [Artale and Franconi, 2000; 2001], where one can also find an introduction to the work of Weida and Litman [1992], who propose a loose hybrid integration between description logics and constraint networks with the aim of reasoning about plans.

6.2.5 Representing uncertain and vague knowledge

Description Logics whose semantics is based on classical first-order logic cannot express vague or uncertain knowledge. To overcome this deficiency, approaches for integrating probabilistic logic and fuzzy logic into Description Logics have been proposed. Although both types of approaches assign numerical values to entries in the knowledge base, they are quite different, not only from a technical point of view, but also w.r.t. the basic phenomena they are trying to model. We talk about uncertainty if we deal with propositions that are either true or false, but due to a lack of information we do not know for certain which is the case. This gives rise to statements about the probability with which a proposition is assumed to be true. In contrast, vagueness means that the propositions themselves are only true to a certain degree. This vagueness is not caused by incomplete knowledge; it is due to the fact that fuzzy notions, i.e., notions without crisp boundaries (e.g., tall person) are modeled.

In the following, we will restrict our attention to the probabilistic extensions of DLs introduced in [Heinsohn, 1994; Jaeger, 1994; Koller et al., 1997; Yelland, 2000] and the fuzzy extensions of DLs introduced in [Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998; 2001]. The possibilistic extension by Hollunder [1994b] can be viewed as lying between these two approaches: possibilistic logic is mainly used to model uncertainty, but its formal semantics is defined in terms of fuzzy sets of interpretations.
6.2.5.1 Probabilistic extensions

Let us first concentrate on how to extend the terminological (TBox) formalism. In classical Description Logics, one has very restricted means of expressing (and testing for) relationships between concepts. Given two concepts \(C \) and \(D \), subsumption tells us whether \(C \) is contained in \(D \), and the satisfiability test (applied to \(C \land D \)) tells us whether \(C \) and \(D \) are disjoint. Relationships that are in-between (e.g., 90% of all \(C \)s are \(D \)s) can neither be expressed nor be derived.

This deficiency is overcome in [Heinsohn, 1994; Jaeger, 1994] by allowing for probabilistic terminological axioms of the form\(^1\)

\[
P(C|D) = p,
\]

where \(C, D \) are concept descriptions and \(0 < p < 1 \) is a real number. Such an axiom states that the conditional probability for an object known to be in \(D \) to belong to \(C \) is \(p \). A given finite interpretation \(\mathcal{I} \) satisfies \(P(C|D) = p \) iff

\[
\frac{|(C \land D)\mathcal{I}|}{|D\mathcal{I}|} = p.
\]

More generally, the formal semantics of the extended language is defined in terms of probability measures on the set of all concept descriptions (modulo equivalence).

Given a knowledge base \(\mathcal{P} \) consisting of probabilistic terminological axioms, the main inference task is then to derive optimal bounds for additional conditional probabilities. Intuitively,

\[
\mathcal{P} \models P(C|D) \in [p, q]
\]

iff in all probability measures satisfying \(\mathcal{P} \) the conditional probability \(P(C|D) \) belongs to the interval \([p, q]\). Given \(\mathcal{P}, C, D \), one is interested in finding the maximal \(p \) and minimal \(q \) such that \(\mathcal{P} \models P(C|D) \in [p, q] \) is true.

Heinsohn [1994] introduces local inference rules that can be used to derive bounds for conditional probabilities, but these rules are not complete, that is, in general they are not sufficient to derive the optimal bounds.

Jaeger [1994] only describes a naive method for computing optimal bounds. A more sophisticated version of that method reduces the inference problem to a linear optimization problem. In the following, we will sketch the main idea underlying this reduction. Assume that \(C_1, \ldots, C_m \) are the concept descriptions occurring in \(\mathcal{P} \) and \(P(C|D) \), and consider all conjunctions \(D_1 \land \cdots \land D_m \), where \(D_i \) is either \(C_i \) or \(\neg C_i \). Let \(\mathfrak{A} \) be the set of those conjunctions that are satisfiable. Given a probability measure on all concept descriptions, the values of this measure on \(C_1, \ldots, C_m \) is uniquely determined by the values on \(\mathfrak{A} \). To be more precise, its value for \(C_i \) can

\(^1\) Actually, Heinsohn uses a different notation and allows for more expressive axioms stating that \(P(C|D) \) belongs to an interval \([p_l, p_u]\), where \(0 \leq p_l \leq p_u \leq 1 \).
be obtained as the sum of the values for those elements of \mathcal{A} that are subsumed by C_i (i.e., the ones where C_i occurs positively). The idea is to introduce a numerical variable x_t (ranging over the real interval $(0,1)$) for each element $t \in \mathcal{A}$. For example, if C_1, C_2 are two concept names, then \mathcal{A} consists of the four elements $t_0 = \neg C_1 \sqcap \neg C_2$, $t_1 = \neg C_1 \sqcap C_2$, $t_2 = C_1 \sqcap \neg C_2$, and $t_3 = C_1 \sqcap C_2$, for which we introduce the variables x_0, x_1, x_2, x_3, respectively. Thus, the probability associated with $C_1 \sqcap C_2$ is x_3 and the one for C_2 is $x_1 + x_3$. Consequently, the probabilistic terminological axiom $P(C_1|C_2) = 0.7$ can be represented by the (linear) constraint $x_3 = 0.7(x_1 + x_3)$.

We have to find the maximal and minimal values that $P(C|D)$ attains on the set of values (x_0, \ldots, x_n) satisfying the linear constraints induced by P. The value of the function $P(C|D)$ (in terms of the variables x_t) is given by

$$\frac{\sum \{x_t \mid t \in \mathcal{A} \land t \sqsubseteq C \sqcap D\}}{\sum \{x_t \mid t \in \mathcal{A} \land t \sqsubseteq D\}}.$$

By a simple transformation, this fractional optimization problem can be transformed into a linear optimization problem [Amarger et al., 1991].

Jaeger [1994] also extends the assertional formalism by allowing for probabilistic assertions of the form

$$P(C(a)) = p,$$

where C is a concept description, a an individual name, and p a real number between 0 and 1. It should be noted that this kind of probabilistic statement is quite different from the one introduced by the terminological formalism. Whereas probabilistic terminological axioms state statistical information, which is usually obtained by observing a large number of objects, probabilistic assertions express a degree of belief in assertions for specific individuals. The formal semantics of probabilistic assertions is again defined with the help of probability measures on the set of all concept descriptions, one for each individual name. Intuitively, the measure for a tells us for each concept C how likely it is (believed to be) that a belongs to C.

Given a knowledge base P consisting of probabilistic terminological axioms and assertions, the main inference task is now to derive optimal bounds for additional probabilistic assertions. However, if the probabilistic terminological axioms are supposed to have an impact on this inference problem, the semantics as sketched until now is not sufficient. In fact, until now there is no connection between the probability measure used for the terminological part and the measures for the assertional part. Intuitively, one wants that the measures for the assertional part “most closely resemble” the measure for the terminological part, while not violating the probabilistic assertions. Jaeger [1994] uses cross entropy minimization in order to give a formal meaning to this intuition. Until now, there is no algorithm for comput-
ing optimal bounds for $P(C(a))$, given a knowledge base consisting of probabilistic terminological axioms and assertions.

The work reported in [Koller et al., 1997], which is restricted to the terminological component, has a focus that is quite different from the one in [Heinsohn, 1994; Jaeger, 1994]. In the latter work, the probabilistic terminological axioms provide constraints on the set of admissible probability measures. However, these constraints may still be satisfied by a large set of distributions, and hence the optimal interval entailed for the probabilities of interest can be fairly large. In contrast, Koller et al. [1997] present a framework for the specification of a unique probability distribution on the set of all concept descriptions (modulo equivalence). Since there are infinitely many such descriptions, providing such a (finite) specification is a nontrivial task. The basic idea is to specify a distribution on concepts of role-depth 0, and then to specify how to extend a distribution on concepts of role-depth n to one on concepts of role-depth $n + 1$. Koller et al. [1997] employ Bayesian networks as the basic representation language for the required probabilistic specifications. The probability $P(C)$ of a concept description C can then be computed by using inference algorithms developed for Bayesian networks. The complexity of this computation is linear in the length of C. Under certain restrictions on the Bayesian networks used in the specification, it is polynomial in the size of that specification.

Yelland [2000] also combines Bayesian networks and Description Logics. In contrast to [Koller et al., 1997], this work extends Bayesian networks by Description Logic features rather than the other way round. The Description Logic used in [Yelland, 2000] is rather inexpressive, but this allows the author to avoid restrictions on the network that had to be imposed by Koller et al. [1997].

6.2.5.2 Fuzzy extensions

The concepts in Description Logics are interpreted as crisp sets, i.e., an individual either belongs to the set or not. However, many “real-life” concepts are vague in the sense that they do not have precisely defined membership criteria. Consider, for example, the concept of a tall person. It does not make sense to fix an exact boundary such that persons of height larger than this boundary are tall and others are not. In fact, what about a person whose height is 1 millimeter below the boundary? It is more sensible to say that an individual belongs to the concept “tall person” only to a certain degree $n \in [0, 1]$, which depends on the height of the individual. This is exactly what fuzzy logic allows one to do.

The main idea underlying the fuzzy extensions of Description Logics proposed in [Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998; 2001] is to leave the syntax as it is, but to use fuzzy logic for defining the semantics. Thus, an interpretation now assigns fuzzy sets to concepts and roles, i.e., concept names A are in-
The interpretation of the Boolean operators and the quantifiers must then be extended from \(\{0, 1\} \) to the interval \([0, 1]\). Fuzzy logics provides different options for such an extension. In [Yen, 1991; Tresp and Molitor, 1998; Straccia, 1998; 2001], the usual interpretation of conjunction as minimum, disjunction as maximum, negation as \(\lambda x.(1 - x) \), universal quantifier as infimum, and existential quantifier as supremum is considered. For example,

\[
(\forall R.C)^I(d) = \inf \{\max\{1 - R^I(d, e), C^I(d, e)\} \mid e \in \Delta^I\},
\]

since \(\forall R.C \) corresponds to the formula \(\forall x.(-R(x, y) \lor C(y)) \).

Tresp and Molitor [1998] also propose an extension of the syntax by so-called manipulators, which are unary operators that can be applied to concepts. Examples of manipulators could be “mostly”, “more or less”, or “very”. For example, if Tall is a concept (standing for the fuzzy set of all tall persons), then VeryTall, which is obtained by applying the manipulator Very to the concept Tall, is a new concept (standing for the fuzzy set of all very tall persons). Intuitively, the manipulators modify the membership degree functions of the concepts they are applied to appropriately. In our example, the membership function for VeryTall should have its largest values at larger heights than the membership function for Tall. Formally, the semantics of a manipulators is defined by a function that maps membership degree functions to membership degree functions. The manipulators considered in [Tresp and Molitor, 1998] are, however, of a very restricted form.

Let us now consider what kind of inference problems are of interest in this context. Yen [1991] considers crisp subsumption of fuzzy concepts, i.e., given two concepts \(C, D \) defined in the fuzzy DL, he is interested in the question whether \(C^I(d) \leq D^I(d) \) for all fuzzy interpretations \(I \) and \(d \in \Delta^I \). Thus, the subsumption relationship itself is not fuzzified. He describes a structural subsumption algorithm for a rather small fuzzy DL, which is almost identical to the subsumption algorithm for the corresponding classical DL. In contrast, Tresp and Molitor [1998] are interested in determining fuzzy subsumption between fuzzy concepts, i.e., given concepts \(C, D \), they want to know to which degree \(C \) is a subset of \(D \). In [Straccia, 1998; 2001] and [Molitor and Tresp, 2000], also ABoxes are considered, where the ABox assertions are equipped with a degree. In this context one wants to find out to which degree other assertions follow from the ABox.

Both [Straccia, 1998; 2001] and [Tresp and Molitor, 1998] contain complete algorithms for solving these inference problems in the respective fuzzy extension of \(ALC \). Although both algorithms are extensions of the usual tableau-based algorithm for \(ALC \), they differ considerably. For example, the algorithm in [Tresp and Molitor, 1998] introduces numerical variables for the degrees, and produces a lin-
ear optimization problem, which must be solved in place of the usual clash test. In contrast, Straccia deals with the membership degrees within his tableau-based algorithm.

6.2.6 Extensions by default rules

In Description Logics, inclusion axioms of the form $C \subseteq D$ are interpreted as universal statement, i.e., all instances of C also belong to D. The same is true for inferred subsumption relationships. In commonsense reasoning, however, one often wants to state and infer relationships that are only "normally" true, but may have exceptions. The most prominent example from the non-monotonic reasoning community is the statement that all birds fly; but of course penguins and other non-flying birds are exceptions. Allowing for such default statements has a strong impact both on the semantics and the reasoning capabilities of Description Logics. Instead of basing the semantics on classical first-order logic, one must employ a non-monotonic logic [Ginsberg, 1987]. In fact, conclusions drawn from a given knowledge base with defaults may ultimately turn out to be false when additional knowledge is added, and thus must be withdrawn.

Since most of the classical Description Logics can be seen as fragments of first-order predicate logic, an obvious approach for extending DLs by non-monotonic reasoning capabilities is to take one of the well-known non-monotonic logics, and restrict the first-order version of this logic to the DL in question. This approach was employed in [Baader and Hollunder, 1995a], where Reiter’s default logic [Reiter, 1980] is integrated into DLs. In addition to terminological axioms in the TBox and assertions in the ABox, Baader and Hollunder allow for terminological defaults of the form

$$\frac{C(x) : D(x)}{E(x)},$$

where C, D, E are concept descriptions (viewed as first-order formulae with one free variable x). Intuitively, such a default rule can be applied to an ABox individual a, i.e., $E(a)$ is added to the current set of beliefs, if its prerequisite $C(a)$ is already believed for this individual and its justification $D(a)$ is consistent with the set of beliefs. Formally, the consequences of a terminological default theory (consisting of a TBox, ABox, and a set of terminological defaults) are defined with reference to the notion of an extension, which is a set of deductively closed first-order formulae defined by a fixpoint construction (see [Reiter, 1980], p.89). In general, a default theory may have more than one extension, or even no extension. Depending on whether one wants to employ skeptical or credulous reasoning, an assertion $F(a)$ is a consequence of a default theory iff it is in all extensions or if it is in at least one extension of the theory.
It should be noted that in this setting the application of default rules is restricted to individuals explicitly present in the ABox.¹ For example, assume that the ABox consists of the fact that Tom has a child that is a doctor, i.e., $\mathcal{A} = \{(\exists \text{has-child. Doctor})(\text{TOM})\}$, and that by default we assume that doctors are usually rich:

$$\text{Doctor}(x) : \text{Rich}(x) \quad \frac{}{\text{Rich}(x)}.$$

Intuitively, one might expect that $(\exists \text{has-child. Rich})(\text{TOM})$ is a default consequence of this terminological default theory. However, since the ABox does not contain a name for Tom’s child, the default cannot be applied to this “implicit” individual, and thus one cannot conclude that Tom has a rich child by default. Baader and Hollunder [1995a] give two reasons that justify restricting the application of defaults to explicit individuals. From a semantic point of view, adapting Reiter’s treatment of implicit individuals via Skolemization is quite unsatisfactory, since semantically equivalent (but syntactically different) ABoxes may lead to different default consequences. From the algorithmic point of view, the application of defaults to implicit individuals is problematic since it may lead to an undecidable default consequence relation, even though the employed DL is decidable. In contrast, the restriction of default application to explicit individuals ensures that reasoning in terminological default theories stays decidable whenever reasoning in the underlying DL is decidable.

A major drawback, which terminological default logic inherits from general default logic, is that it does not take precedence of more specific defaults over more general ones into account. For example, assume that we have a default that says that doctors are usually rich, and another one that says that general practitioners are usually not rich, and that classification shows that general practitioners are doctors. Intuitively, for any general practitioner the more specific second default should be preferred, which means that there should be only one default extension in which the general practitioner is not rich. However, in default logic the second default has no priority over the first one, which means that one also gets a second extension where the general practitioner is rich. This behaviour has already been criticized in the general context of default logic, but it is all the more problematic in the terminological case where the emphasis lies on the hierarchical organization of concepts. To overcome this problem, Baader and Hollunder [1995b] first define a prioritized version of Reiter’s default logic, where priorities are given by an arbitrary partial order on defaults. In the terminological case, the priority is induced by the subsumption relationship between prerequisities of defaults. A similar approach is

¹ This agrees with the semantics given to (monotonic) rules in DLs (see Subsection 6.2.3 and Chapter 2, Subsection 2.2.5).
proposed in [Straccia, 1993], with the main difference that in that paper the defaults also influence the priority order. In addition, Straccia also allows for defaults of the form

$$A(x) \land r(x, y) : C(y) \quad C(y)$$

where A is an atomic concept, r a role name, and C a concept description. Such a default can, for example, be used to say that usually a child of a doctor is again a doctor.

A quite different proposal for how to treat defaults in Description Logics can be found in [Quantz and Royer, 1992]. There, preference semantics [Shoham, 1987] is employed to define the semantics of default assertions $C \rightsquigarrow D$, which are intuitively interpreted as saying: “whenever an object is an instance of C, it is also an instance of D, unless this is in conflict with other knowledge”. Though on this intuitive level the meaning of the default $C \rightsquigarrow D$ coincides with that of the terminological default $C(x) : D(x)/D(x)$, the formal semantics (and thus also the default consequences) differ significantly. The semantics proposed by Quantz and Royer is based on a preference relation on models, which tries to minimize the exceptions to defaults while maximizing the number of defaults that have been fired. In contrast to the work mentioned above, Quantz and Royer restrict reasoning with defaults not only to the derivation of concept assertions of the form $C(a)$. They also consider default subsumption between concepts. However, default subsumption is reduced to reasoning about individuals. The subsumption relationship $C \sqsubseteq D$ follows by default from the knowledge base iff the knowledge base extended by $C(a)$ implies $D(a)$ by default, where a is a new individual name. Designing reasoning methods for such a model-based approach to non-monotonic reasoning is rather hard. Quantz and Royer only provide some ideas for how to obtain a sound but incomplete procedure.

Default subsumption is also considered in [Padgham and Zhang, 1993], where non-monotonic inheritance networks [Horty et al., 1987] are extended in the direction of DLs, though the DL employed is of a very limited expressive power.

6.3 Non-standard inference problems

All DL systems provide their users with standard inference services like computing the subsumption hierarchy and testing ABox consistency. In some applications it has turned out, however, that these services are not quite sufficient for providing an optimal support when building and maintaining large DL knowledge bases. For this reason, some DL systems (e.g., CLASSIC) provide their users with additional system services, which can formally be reconstructed as new types of inference problems.

First, the standard inferences can be applied after a new concept has been defined to find out whether the concept is non-contradictory or whether its place in the
taxonomy coincides with the intuition of the knowledge engineer; however, these inferences do not directly support the process of actually defining the new concept. To overcome this problem, the non-standard inference services of computing the least common subsumer and the most specific concept have been proposed.

Second, if a knowledge base is maintained by different knowledge engineers, one needs support for detecting multiple definitions of the same intuitive concept. Since different knowledge engineers might use different names for the “same” primitive concept, the standard equivalence test may not be adequate to check whether different descriptions refer to the same notion. The non-standard inference service unification of concept descriptions tackles this problem by allowing to replace concept names by appropriate concept descriptions before testing for equivalence. Matching is a special case of unification, which has, for example, been used for pruning irrelevant parts of large concept descriptions before displaying them to the user.

Third, and very abstractly speaking, rewriting of concept descriptions allows one to transform a given concept description C into a “better” description D, which satisfies certain optimality criteria (e.g., small size) and is in a certain relationship (e.g., equivalence or subsumption) with the original description C.

Before describing the different non-standard inferences in more detail, we start with some general remarks on how these new problems have until now been tackled in the literature. An overview of the state of the art in this field and detailed proofs of several of the results mentioned below can be found in [Küsters, 2001].

6.3.1 Techniques for solving non-standard inferences—a general remark

Approaches for solving the new inference problems are usually based on an appropriate characterization of subsumption, which can be used to obtain a structural subsumption algorithm. First, the concept descriptions are turned into a certain normal form, in which implicit facts have been made explicit. Second, the structure of the normal forms is compared appropriately. This is one of the reasons why most of the results on non-standard inferences are restricted to languages that can be treated by structural subsumption algorithms.

One can distinguish two kinds of normal forms proposed in the literature. In one approach, called language-based approach in the sequel, the normal form of a concept description is given in terms of certain finite or regular sets of words over the alphabet of all role names. Then, subsumption can be characterized via the inclusion of these sets (see Chapter 2, Section 2.3.3.2). The second approach, called graph-based in the following, turns concept descriptions into so-called description graphs. Here, subsumption of concept descriptions is characterized via the existence of certain homomorphisms between the corresponding description graphs.
The structural subsumption algorithm introduced in Chapter 2, Subsection 2.3.1, can be represented in this way (although this was not explicitly done in Chapter 2).

For the sublanguage \(\mathcal{ALN} \) of \textsc{Classic}, the graph-based approach can be seen as special implementation of the language-based approach [Baader et al., 1998a]. In general, however, either the language-based or the graph-based approach may turn out to be more appropriate, depending on the DL under consideration. On the one hand, the language-based approach is particularly useful for characterizing subsumption between cyclic concept descriptions, i.e., descriptions defined by means of cyclic terminologies in \(\mathcal{FL}_0 \) and \(\mathcal{ALN} \) [Baader, 1996b; Küsters, 1998]. On the other hand, the graph-based approach can be employed to handle full \textsc{Classic} [Borgida and Patel-Schneider, 1994] as well as \(\mathcal{ALE} \) [Baader et al., 1999b], which extends \(\mathcal{FL}_0 \) by primitive negation and existential restrictions. Although Borgida and Patel-Schneider did not explicitly characterize subsumption in terms of homomorphisms between description graphs, their subsumption algorithm does in fact check for the existence of an appropriate homomorphism.

The known approaches for solving non-standard inference problems are usually based on one of the two approaches for characterizing subsumption, depending on the DL of choice. In the sequel, we will give an idea of how to solve the inference problems by mainly looking at the language-based approach for the DL \(\mathcal{FL}_0 \). We will also briefly comment on how to treat extensions of \(\mathcal{FL}_0 \).

6.3.2 Least common subsumer and most specific concept

Intuitively, the least common subsumer of a given collection of concept descriptions is a description that represents the properties that all the elements of the collection have in common. More formally, it is the most specific concept description that subsumes the given descriptions:

Definition 6.13 Let \(\mathcal{L} \) be a description language. A concept description \(E \) of \(\mathcal{L} \) is the least common subsumer (lcs) of the concept descriptions \(C_1, \ldots, C_n \) in \(\mathcal{L} \) (\(\text{lcs}(C_1, \ldots, C_n) \) for short) iff it satisfies

1. \(C_i \sqsubseteq E \) for all \(i = 1, \ldots, n \), and
2. \(E \) is the least \(\mathcal{L} \)-concept description satisfying (i), i.e., if \(E' \) is an \(\mathcal{L} \)-concept description satisfying \(C_i \sqsubseteq E' \) for all \(i = 1, \ldots, n \), then \(E \sqsubseteq E' \).

As an easy consequence of this definition, the lcs is unique up to equivalence. In fact, if \(E_1 \) and \(E_2 \) are both least common subsumers of the same collection of concepts, then \(E_1 \sqsubseteq E_2 \) (since \(E_2 \) satisfies (i) and \(E_1 \) is the least concept description satisfying (i))). The subsumption relationship \(E_2 \sqsubseteq E_1 \) can be derived analogously. It should be noted, however, that the lcs need not always exist. This can have
two different reasons: (a) there may be several subsumption incomparable minimal concept descriptions satisfying (i) of the definition; (b) there may be an infinite chain of more and more specific descriptions satisfying (i). It is easy to see, however, that for DLs allowing for conjunction of descriptions (a) cannot occur.

The lcs has first been introduced by Cohen et al. [1992] as a new inference task that is useful for a number of different reasons. First, finding the most specific concept that generalizes a set of examples is a common operation in inductive learning, called learning from examples. Cohen and Hirsh [1994a] as well as Frazier and Pitt [1994] investigate the learnability of sublanguages of Classic with regard to the PAC learning model proposed by Valiant [1984]. The lcs-computation is used as a subprocedure in their learning algorithms. Experimental results concerning the learnability of concepts based on computing the lcs can be found in [Cohen and Hirsh, 1994b].

Another motivation for considering the lcs is to use it as an alternative to disjunction. The idea is to replace disjunctions like $C_1 \sqcup \cdots \sqcup C_n$ by the lcs of C_1, \ldots, C_n. In [Cohen et al., 1992; Borgida and Etherington, 1989], this operation is called knowledge base vivification. Although, in general, the lcs is not equivalent to the corresponding disjunction, it is the best approximation of the disjunctive concept within the available DL. Using such an approximation is motivated by the fact that, in many cases, adding disjunction would increase the complexity of reasoning. Observe that, if the DL already allows for disjunction, we have $\text{lcs}(C_1, \ldots, C_n) \equiv C_1 \sqcup \cdots \sqcup C_n$. In particular, this means that, for such DLs, the lcs is not really of interest.

Finally, as proposed in [Baader and Küsters, 1998; Baader et al., 1999b], the lcs operation can be used to support the “bottom-up” construction of DL knowledge bases. In contrast to the usual “top-down” approach, where the knowledge engineers first define the terminology of the application domain in the TBox and then uses this terminology when describing individuals in the ABox, the “bottom-up” approach proceeds as follows. The knowledge engineer first specifies some “typical” examples of a concept to be defined using individuals in the ABox. Then, in a second step, these individuals are generalized to their most specific concept, i.e., a concept description that (i) has all the individuals as instances, and (ii) is the most specific description satisfying property (i). Finally, the knowledge engineers inspects and possibly modifies the concept description obtained this way.

Let us now define the most specific concept of an ABox individual in more detail.

Definition 6.14 A concept description E in some description language \mathcal{L} is the *most specific concept* (msc) of the individuals a_1, \ldots, a_n defined in an ABox \mathcal{A} ($\text{msc}(a_1, \ldots, a_n)$ for short) iff

(i) $\mathcal{A} \models E(a_i)$ for all $i = 1, \ldots, n$, and
(ii) E is the least concept satisfying (i), i.e., if E' is an L-concept description satisfying $A \models E'(a_i)$ for all $i = 1, \ldots, n$, then $E \subseteq E'$.

The task of computing the msc can be split into two subtasks: computing the most specific concept of a single individual, and computing the least common subsumer of a given finite number of concepts. In fact, it is easy to see that $\text{msc}(a_1, \ldots, a_n) \equiv \text{lcs}(\text{msc}(a_1), \ldots, \text{msc}(a_n))$.

6.3.2.1 Computing the lcs and the msc

We will now give an intuition on how to compute the lcs for the DL \mathcal{FL}_0 and an extension, and briefly comment on the problems that arise when considering the msc. As mentioned above, the first step towards an algorithm for computing the lcs is to characterize subsumption of concept descriptions. For the DL \mathcal{FL}_0, we will present such a characterization using the language-based approach.

The normal form of \mathcal{FL}_0-concept descriptions employed in the language-based approach is the so-called concept-centered normal form (CCNF), which has already been introduced in Chapter 2, Section 2.3.3.2. For example, using the equivalence $\forall R.(C \sqcap D) \equiv \forall R.C \sqcap \forall R.D$ as well as commutativity of concept conjunction, the \mathcal{FL}_0-concept description $C = \forall R.(\forall S.A \sqcap \forall R.B) \sqcap \forall S.\forall S.A$ can be transformed into CCNF as follows:

$$C \equiv \forall R.\forall S.A \sqcap \forall S.\forall S.A \sqcap \forall R.\forall R.B$$

Recall that $\forall \emptyset.A$ represents the universal concept \top, and $\forall \{\varepsilon\}.A$ for the empty word ε is equivalent to A.

In general, if N_C is a finite set of atomic concepts and N_R is a finite set of role names, then the CCNF of a concept C built using only these names is of the form

$$C \equiv \bigcap_{A \in N_C} \forall U_A.A,$$

where U_A is a finite set of words over the alphabet of role names, i.e., $U_A \subseteq N_R^*$. Note that $\forall \emptyset.A$ represents the universal concept \top, and $\forall \{\varepsilon\}.A$ for the empty word ε is equivalent to A.

If the CCNF of D is $\bigcap_{A \in N_C} \forall V_A.A$, then subsumption of C by D can be characterized as follows:

Proposition 6.15 $C \subseteq D$ iff $V_A \subseteq U_A$ for all $A \in N_C$.

As an easy consequence, we obtain

Corollary 6.16 $\text{lcs}(C, D) \equiv \bigcap_{A \in N_C} \forall (U_A \cap V_A).A$.

By Proposition 6.15, this concept description obviously subsumes C and D. Moreover, $U_A \cap V_A$ is the largest set contained in both U_A and V_A, and thus $\sqcap \forall \in N, \forall (U_A \cap V_A).A$ is in fact the least concept subsuming both C and D.

As an example consider the concept C specified above and $D \equiv \forall \{RS, RR\}.A \sqcap \forall \{RR, SR\}.B$. Then, $\text{lcs}(C, D) \equiv \forall \{RS\}.A \sqcap \forall \{RR\}.B$.

For DLs extending \mathcal{FL}_0 by constructs that can express unsatisfiable concepts, like \bot, the language-based approach can still be applied. However, in order to characterize subsumption, we need to consider certain infinite regular languages instead of finite ones. The reason is that \bot is subsumed by an infinite number of concept descriptions. For example, although $\forall \{R, RSR\}.\bot \sqsubseteq \forall \{RR\}.\bot$, we do not have $V_\bot = \{RR\} \subseteq \{R, RSR\} =: U_\bot$. However, we know that $\forall \{R\}.\bot$ is subsumed by $\forall \{Rw\}.\bot$ for any word w of the alphabet N_R. Consequently, we must use $U_\bot \cdot N_R^* = \{vw \mid v \in U_\bot \text{ and } w \in N_R^*\}$ in place of U_\bot in the inclusion test.

For this reason, the lcs must also be described in terms of possibly infinite regular languages. As a simple example, consider the concept descriptions $C \equiv \forall \{R, SR\}.\bot$ and $D \equiv \forall \{RS, S\}.\bot$. Then,

$$\text{lcs}(C, D) \equiv \forall (\{R, SR\} \cdot N_R^* \cap \{RS, S\} \cdot N_R^*).\bot$$

A detailed description of how to compute the lcs in \mathcal{ALN}, which extends \mathcal{FL}_0 by \bot, atomic complement, and number restrictions, is given in [Baader and Küsters, 1998]. Moreover, Baader and Küsters investigate cyclic \mathcal{ALN}-concept descriptions, which are defined in terms of cyclic terminologies with greatest fixpoint semantics. In this context, the languages U_A introduced above can be arbitrary regular languages (see also Chapter 2, Section 2.3.3.2).

Cyclic descriptions become necessary if one wants to guarantee the existence of the msc. Consider, for example, the ABox consisting only of the assertion $R(a, a)$. Then, we know that $\text{msc}(a) \subseteq \forall R. \cdots \forall R.(\leq 1 R)$ for arbitrarily deep nesting of value restrictions. Baader and Küsters show that there does not exist an acyclic \mathcal{ALN}-concept description presenting the msc of a. However, the msc of individuals described in \mathcal{ALN}-ABoxes can always be represented by a cyclic \mathcal{ALN}-concept description. In our example, $\text{msc}(a)$ can be represented by the concept A defined by $A \equiv (= 1 R) \sqcap \forall R.A$, if this definition is interpreted with greatest fixpoint semantics.

Using the graph-based approach, the lcs can be computed for the DL that extends \mathcal{FL}_0 by the same-as construct [Cohen and Hirsch, 1994a; Frazier and Pitt, 1994; Küsters and Borgida, 2001], for the language \mathcal{ALC}, which extends \mathcal{FL}_0 by full existential quantification as well as primitive negation [Baader et al., 1999b], and for the language \mathcal{ALEN}, which extends \mathcal{ALC} by number restrictions [Küsters and Molitor, 2001].
On the one hand, it is not clear how to handle these languages with the language-based approach. On the other hand, up to now the graph-based approach cannot deal with cyclic concept descriptions, which are needed for computing the msc. Consequently, for the extensions of FL_0 treated with the help of the graph-based approach, the msc can currently only be approximated [Cohen and Hirsh, 1994b; Küsters and Molitor, 2001a].

6.3.3 Unification and matching

Unification and matching are non-standard inferences that allow us to replace certain concept names by concept descriptions before testing for equivalence or subsumption. This capability turns out to be useful when maintaining (large) knowledge bases. In this subsection, we will first introduce unification and matching and mention the main motivations for considering these new inference tasks. We will then review the results available in the literature, and give an intuition on how unification problems in the small language FL_0 can be solved.

6.3.3.1 Unification

Unification of concepts has first been introduced by Baader and Narendran [1998], motivated by the following application problem. If several knowledge engineers are involved in defining new concepts, and if this knowledge acquisition process takes rather long (several years), it happens that the same (intuitive) concept is introduced several times, often with slightly differing descriptions. Testing for equivalence of concepts is not always sufficient to find out whether, for a given concept description, there already exists another concept description in the knowledge base describing the same notion. As an example, let us ask whether the following two FL_0-concept descriptions might denote the same (intuitive) concept?

\[
\forall \text{has-child} . \forall \text{has-child}. \text{Rich} \sqcap \forall \text{has-child}. \text{Rmr},
\]

\[
\text{Acr} \sqcap \forall \text{has-child}. \text{Acr} \sqcap \forall \text{has-child}. \forall \text{has-spouse}. \text{Rich}.
\]

The answer is yes, since replacing the concept name Rmr by the description $\text{Rich} \sqcap \forall \text{has-spouse}. \text{Rich}$ and Acr by $\forall \text{has-child}. \text{Rich}$ yields the descriptions

\[
\forall \text{has-child} . \forall \text{has-child}. \text{Rich} \sqcap \forall \text{has-child}. (\text{Rich} \sqcap \forall \text{has-spouse}. \text{Rich}),
\]

\[
\forall \text{has-child}. \text{Rich} \sqcap \forall \text{has-child}. \forall \text{has-child}. \text{Rich} \sqcap \forall \text{has-child}. \forall \text{has-spouse}. \text{Rich},
\]

which are obviously equivalent. Thus, under the assumption that Rmr stands for “Rich and married rich” and Acr for “All children are rich”, we can conclude that both descriptions are meant to express the concept “All grandchildren are rich and all children are rich and married rich”.

A substitution of concept descriptions for concept names that makes two concept
descriptions C, D equivalent is called a unifier of C and D. Of course, before testing for unifiability, one must decide which of the concept names the unifier is allowed to replace. These names are then called concept variables to distinguish them from the usual concept names, which cannot be replaced. In the above example, the strange acronyms Acr and Rmr were considered to be variables, whereas Rich was treated as a (non-replaceable) concept name. Concept descriptions containing variables are called concept patterns. More precisely, \mathcal{FL}_0-concept patterns are defined by means of the following syntax rules:

$$C, D \rightarrow X \mid A \mid \forall R.C \mid C \cap D$$

where X stands for concept variables.

Now, a substitution in \mathcal{FL}_0 is a mapping from the concept variables into the set of \mathcal{FL}_0-concept descriptions. An example is the substitution $\{\text{Rmr} \mapsto \text{Rich} \cap \forall \text{has-spouse}.\text{Rich}, \text{Acr} \mapsto \forall \text{has-child}.\text{Rich}\}$ used in our example. The application of a substitution can be extended from variables to \mathcal{FL}_0-concept patterns in the usual way (as exemplified above).

Definition 6.17 Let C, D be \mathcal{FL}_0-concept patterns. Then, a substitution σ is a unifier of the unification problem $C \equiv ? D$ iff $\sigma(C) \equiv \sigma(D)$.

Of course, it is not necessarily the case that concept descriptions that are unifiable in this way are really meant to represent the same notion. A unifiability test can, however, suggest to the knowledge engineer possible candidate descriptions.

6.3.3.2 Matching

Matching can be seen as a special case of unification, where one of the two expressions to be unified do not contain variables [Baader and Narendran, 1998; 2001]. Thus, a matching problem is of the form $C \equiv ? D$ where C is a concept description and D a concept pattern. A substitution σ is a matcher of this problem iff $C \equiv \sigma(D)$.

Borgida and McGuinness [1996] have introduced a different notion of matching, which we call matching modulo subsumption to distinguish it from matching modulo equivalence, as introduced above. A matching problem modulo subsumption is of the form $C \sqsubseteq ? D$, where C is a concept description and D is a concept pattern. Such a problem asks for a substitution σ such that $C \sqsubseteq \sigma(D)$.

Since σ is a solution of $C \sqsubseteq ? D$ iff σ solves $C \equiv ? C \cap D$, matching modulo subsumption can be reduced to matching modulo equivalence, and thus to unification. However, in the context of matching modulo subsumption, one is interested in finding “minimal” solutions of $C \sqsubseteq ? D$, i.e., σ should satisfy the property that there does not exist another substitution δ such that $C \sqsubseteq \delta(D) \sqsubseteq \sigma(D)$. In addition,
Baader *et al.* [1999a] introduce side conditions of the form $X \sqsubseteq E$ and $X \sqsubset E$, with X a variable and E a concept pattern, to further restrict possible substitutions for the variables occurring in the matching problem.

The original reason for introducing matching modulo equivalence was (i) to help filter out unimportant aspects of complicated concepts appearing in large knowledge bases, and (ii) to specify patterns for explaining proofs carried out by DL systems [McGuinness and Borgida, 1995]. For example, matching the concept pattern

$$D = \forall \text{research-interests}.X$$

against the description

$$C = \forall \text{pets.Cat} \sqcap \forall \text{research-interests.AI} \sqcap \forall \text{hobbies.Gardening}$$

yields the minimal matcher $\sigma = \{X \mapsto \text{AI}\}$, and thus finds the scientific interest described in the concept, filtering out the other aspects described by C.

Another motivation for matching as well as unification can be found in the area of integrating data or knowledge base schemata represented in some DL. An integrated schema can be viewed as the union of the local schemata along with some interschema assertions satisfying certain conditions. Finding such interschema assertions can be supported by solving matching or unification problems. Borgida and Küsters [2000] propose a formal framework for schema integration, and provide initial theoretical as well as experimental results concerning this application of unification and matching.

6.3.3.3 Results on matching and unification

As with computing the lcs, the algorithms for matching that can be found in the literature follow either the language-based or the graph-based approach. Matching modulo subsumption for a description language containing most of the constructs available in *CLASSIC* has been considered in [Borgida and McGuinness, 1996]. Borgida and McGuinness describe a polynomial-time matching algorithm, which follows the graph-based approach. However, this algorithm cannot be applied to arbitrary patterns, and it is not complete. Using the language-based approach, complete and polynomial-time algorithms for matching modulo equivalence and matching modulo subsumption in \mathcal{FL}_0 were presented in [Baader and Narendran, 1998; 2001]. This result was extended to the language \mathcal{ALN} by Baader *et al.* [1999a] and its extension \mathcal{ALN}_{reg} by the role constructors union, composition, and transitive closure by Küsters [2001]. Baader *et al.* [2001] consider matching under side conditions in more detail. Basically, subsumption conditions of the form $X \sqsubseteq E$ leave the complexity of matching in \mathcal{ALN} polynomial, whereas strict subsumption conditions $X \sqsubset E$ cause NP-hardness. Matching in \mathcal{ALE} based on the characterization of subsumption by homomorphism between graphs has been investigated in [Baader and
It is shown that matching modulo equivalence is \(\text{NP}\)-complete, and that appropriate matchers can be computed in exponential time. Finally, complete algorithms for matching in \textsc{Classic} are provided by Küsters [2001].

For unification, the only results available until now are for the small DL \(\mathcal{FL}_0 \) and its extension \(\mathcal{FL}_{\text{reg}} \) by the role constructors union, composition, and transitive closure. In [Baader and Narendran, 1998; 2001] it is shown that deciding unifiability of \(\mathcal{FL}_0 \)-patterns is an \(\text{ExpTime} \)-complete problem, and in [Baader and Küsters, 2001] this result is extended to \(\mathcal{FL}_{\text{reg}} \). In the remainder of this subsection, we will try to give a flavor of how to solve unification problems in \(\mathcal{FL}_0 \).

As an immediate consequence of Proposition 6.15, equivalence of \(\mathcal{FL}_0 \)-concept descriptions \(C = \bigcap_{A \in N_C} \forall A. A \) and \(D = \bigcap_{A \in N_C} \forall A. A \) in CCNF can be characterized as follows:

\[
C \equiv D \iff U_A = V_A \text{ for all } A \in N_C. \tag{6.3}
\]

This fact can be used to turn \(\mathcal{FL}_0 \)-unification problems into certain formal language equations, which then can be solved using tree automata.

Let us illustrate this on the example from Subsection 6.3.3.1. There, we considered the unification problem

\[
\forall \{cc\}. R \cap \forall \{c\}. X \equiv \forall \{c\}. Y \cap \forall \{cs\}. R.
\]

As an easy consequence of (6.3), a substitution \(\sigma \) of the form

\[
\{X \mapsto \forall U_X. R, \ Y \mapsto \forall U_Y. R\},
\]

where \(U_X, U_Y \) are sets of words over the alphabet \(\{c, s\} \), is a unifier of this problem iff the assignment \(X = U_X \) and \(Y = U_Y \) solves the formal language equation

\[
\{cc\} \cup \{c\}. X = \{cs\} \cup \{\varepsilon, c\}. Y.
\]

For example, the unifier \(\{X \mapsto R \cap \forall s. R, \ Y \mapsto \forall c. R\} \) corresponds to the solution \(X = \{\varepsilon, s\}, \ Y = \{c\} \) of the above formal language equation. In general, unification problems correspond to systems of formal language equations of the form

\[
S_0 \cup S_1. X_1 \cup \cdots \cup S_n. X_n = T_0 \cup T_1. X_1 \cup \cdots \cup T_n. X_n,
\]

where the \(S_i, T_i \) are given finite sets of words and the \(X_i \) are variables ranging over finite sets of words. In [Baader and Narendran, 1998; 2001] it is shown that solvability of such a system of equations can be reduced (in exponential time) to the emptiness problem for automata on finite trees. This yields an \(\text{ExpTime} \)-decision procedure for unification in \(\mathcal{FL}_0 \). For unification in \(\mathcal{FL}_{\text{reg}} \), the \(S_i, T_i \) are

\footnote{To increase readability, \texttt{has-spouse} is replaced by \texttt{s}, \texttt{has-child} by \texttt{c}, \texttt{Rich} by \texttt{R}, and \texttt{Rmr,Acr} by the variables \(X, Y \). In addition, we have already transformed the patterns into their CCNF.}
regular languages, and to test the equation for solvability one must employ automata working on infinite trees.

6.3.4 Concept rewriting

A general framework for rewriting concepts using terminologies has been proposed in Baader et al. [2000]. Assume that $\mathcal{L}_1, \mathcal{L}_2,$ and \mathcal{L}_3 are three description languages, and let C be an \mathcal{L}_1-concept description and T an \mathcal{L}_2-TBox. We are interested in rewriting (i.e., transforming) C into an \mathcal{L}_3-concept description D such that C and D are in a certain relationship (e.g., equivalence, subsumption w.r.t. T) and such that D satisfies certain optimality criteria (e.g., being of minimal size).

This very general framework has several interesting instances. In the following, we will discuss the three most promising ones.

The first instance is the translation of concept descriptions from one DL into another. Here, we assume that \mathcal{L}_1 and \mathcal{L}_3 are different description languages, and that the TBox T is empty. By trying to rewrite an \mathcal{L}_1-concept C into an equivalent \mathcal{L}_3-concept D, one can find out whether C is expressible in \mathcal{L}_3. In many cases, such an exact rewriting may not exist. In this case, one can try to approximate C by an \mathcal{L}_3-concept from above (below), i.e., find a minimal (maximal) concept description D in \mathcal{L}_3 such $C \sqsubseteq D$ ($D \sqsubseteq C$). An inference service that can compute such rewritings could, for example, support the transfer of knowledge bases between different systems. First results in this direction for the case where \mathcal{L}_1 is ALC and \mathcal{L}_3 is ALE can be found in [Brandt et al., 2001].

The second instance comes from the database area, where the problem of rewriting queries using views is a well-known research topic [Beeri et al., 1997]. The aim is to optimize the runtime of queries by using cached views, which allows one to minimize the (more expensive) access to source relations. In the context of the above framework, views can be regarded as TBox definitions and queries as concept descriptions. Beeri et al. [1997] investigate the instance where $\mathcal{L}_1 = \mathcal{L}_2 = \text{ALCN}\neg\text{R}$ and $\mathcal{L}_3 = \{\cap, \sqcup\}$. More precisely, they are interested in maximally contained total rewritings, i.e., D should be subsumed by C, contain only concept names defined in the TBox, and be a maximal concept (w.r.t. subsumption) satisfying these properties. They show that such a rewriting is computable (whenever it exists).

The third instance of the general framework, which was first proposed in [Baader and Molitor, 1999], tries to increase the readability of large concept descriptions by using concepts defined in a TBox. The motivation comes from the experiences made with non-standard inferences (like lcs, msc and matching) in applications. The concept descriptions produced by these services are usually unfolded (i.e., do not use defined names), and are thus often very large and hard to read and comprehend. Therefore, one is interested in automatically generat-
ing an equivalent concept description of minimal length that employs the concept names defined in the underlying terminology. Referring to the framework, one thus considers the case where $\mathcal{L} = \mathcal{L}_1 = \mathcal{L}_2 = \mathcal{L}_3$ and the TBox is non-empty. For a given concept description C and a TBox T in \mathcal{L} one is interested in an \mathcal{L}-concept description D (containing concept names defined in T) such that $C \equiv_T D$ and the size of D is minimal. Rewriting in this sense has been investigated for the languages \mathcal{ALN} and \mathcal{ALE} [Baader and Molitor, 1999; Baader et al., 2000]. Rewritings can be computed by a nondeterministic polynomial algorithm that uses an oracle for deciding subsumption. The corresponding decision problem (i.e., the question whether there exists a rewriting of size $\leq k$ for a given number k) is NP-hard for both languages.

Acknowledgement

We would like to thank Jochen Heinsohn and Manfred Jaeger for helpful discussions regarding the treatment of uncertain and vague knowledge and Riccardo Rosati regarding the treatment of epistemic operators.
Abstract
A description-logic based knowledge representation system is more than an inference engine for a particular description logic. A knowledge representation system must provide a number of services to human users, including presentation of the information stored in the system in a manner palatable to users and justification of the inferences performed by the system. If human users cannot understand what the system is doing, then the development of knowledge bases is made much more difficult or even impossible. A knowledge representation system must also provide a number of services to application programs, including access to the basic information stored in the system but also including access to the machinations of the system. If programs cannot easily access and manipulate the information stored in the system, then the development of applications is made much more difficult or even impossible.

7.1 Introduction
A description logic-based knowledge representation system does not live in a vacuum. It has to be prepared to interact with several sorts of other entities. One class of entities consists of human users who develop knowledge bases using the system. If the system cannot effectively interact with these users then it will be difficult to create knowledge bases in the system, and the system will not be used. Another class of entities consists of programs that use the services of the system to provide information to support applications. If the system cannot effectively interact with these programs then it will be difficult to create applications using the system, and the system will not be used.

However, before one can talk about effective interaction, there has to be basic interaction between the knowledge representation system and applications or users. This basic interaction has to do with the mechanics of telling information to the...
D. L. McGuinness, P. F. Patel-Schneider

system and retrieving information from it. At this level the system just maintains what is was told and responds to the queries by running an inference procedure for the logic it implements.

The basic interface is not sufficient for effective access to the system. On the application side there is need for a treatment of exceptional conditions, wider interface to applications, remote interfaces, and concurrent access, among others. There is also need for responsive reaction by the system. On the human side there is need for better presentation of the results of queries, particularly the suppression of irrelevant detail; explanation of the inferences performed by the system; better support for the creation of large description logic knowledge bases, particularly by several people working in collaboration.

Even if all the above are present in a system, it will still not be complete. There is also a need to have effective information about the system widely available. This information has to be in various forms, including the obvious user manuals, but also including interactive tutorials and demonstration system.

A system that does not include all of the above services is not a complete knowledge representation system.

Our discussion of the services that need to be provided will mostly be described in terms of an arbitrary description logic knowledge representation system. However, some of our examples will be given in the context of the Classic family of knowledge representation systems developed at AT&T [Borgida et al., 1989; Brachman et al., 1991; Patel-Schneider et al., 1991], as Classic has had the longest lived and most extensive industrial application history of any description logic knowledge representation system. The Classic application that we will refer to the most is the configuration of transmissions equipment—an application developed within AT&T [Wright et al., 1993; McGuinness et al., 1995; McGuinness and Wright, 1998b; McGuinness et al., 1998].

In a typical configuration problem, a user is interested in entering a small number of constraints and obtaining a complete, correct, and consistent parts list. Given a configuration application’s domain knowledge and the base description logic inference system, the application can determine if the user’s constraints are consistent. It can then calculate the deductive closure of the user-stated knowledge and the background domain knowledge to generate a more complete description of the final parts list. For example, in a home theater demonstration configuration system [McGuinness et al., 1995], user input is solicited on the quality a user is willing to pay for and the typical use (audio only, home theater only, or combination), and then the application deduces all applicable consequences. This typically generates descriptions for 6–20 subcomponents which restrict properties such as price range, television diagonal, power rating, etc. A user might then inspect any of the individ-
ual components possibly adding further requirements to it which may, in turn, cause further constraints to appear on other components of the system. Also, a user may ask the system to “complete” the configuration task, completely specifying each component so that a parts list is generated and an order may be completed.

This home theater configurator example is fairly simple but it is motivated by real world application uses in configuring very large pieces of transmission equipment where objects may have thousands of parts and subparts and one decision can easily have hundreds of ramifications. It was complicated applications such as these that drove our work on information. More information can be found on description logics for configuration in in this book in Chapter 12. Another example application that drove our work on information access and presentation needs was a simple description logic backend system supporting knowledge-enhanced search for the web called FindUR [McGuinness, 1998; McGuinness et al., 1997] which is also described in Chapter 14.

7.2 Basic access

Basic access to a description logic knowledge base consists of simple mechanisms to create description logic knowledge bases and to query them. The foundational aspects of this basic interaction have been well-studied. For example, Levesque [1984] proposed that the basic interface to any knowledge representation system consist of two kinds of interactions—one to tell information to the system and one to ask whether information follows from what was previously told to the system.

Many frame-oriented knowledge representation systems embody such distinctions, such as the Generic Frame Protocol [Chaudhri et al., 1997], and OKBC (Open Knowledge Base Connectivity) [Chaudhri et al., 1998a]. In the description logic community, this basic interaction was standardized into an interface specification that defined a number of tell and ask operations that a description logic knowledge representation system should implement [Patel-Schneider and Swartout, 1993]. This specification is commonly known as the KRSS specification. The description of a minimal description logic knowledge representation system interface given here will generally follow this KRSS specification. The KRSS specification incorporates the DFKI standardized syntax and semantics [Baader et al., 1991]. Examples given here follow the syntax of Chapter 2, for the abstract syntax, and the syntax of KRSS for a Lisp-like syntax that can actually be used from within a computer.

One problem with defining a tell-and-ask interface for a description logic knowledge representation system is that even a minimal interface depends on the expres-

1 The KRSS specification also incorporates a number of operations that fall under the advanced interface that will be discussed later.
Table 7.1. Syntax and semantics of making definitions.

<table>
<thead>
<tr>
<th>Program Syntax</th>
<th>Abstract Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(define-concept CN C)</td>
<td>CN ≡ C</td>
<td>$CN^I = C^I$</td>
</tr>
<tr>
<td>(define-primitive-concept CN C)</td>
<td>CN ⊑ C</td>
<td>$CN^I ⊆ C^I$</td>
</tr>
<tr>
<td>(define-role RN R)</td>
<td>RN ≡ R</td>
<td>$RN^I = R^I$</td>
</tr>
<tr>
<td>(define-primitive-role RN R)</td>
<td>RN ⊑ R</td>
<td>$RN^I ⊆ R^I$</td>
</tr>
<tr>
<td>(define-attribute AN A)</td>
<td>AN ≡ A</td>
<td>$AN^I = A^I$</td>
</tr>
<tr>
<td>(define-primitive-attribute AN R)</td>
<td>AN ⊑ R</td>
<td>$AN^I ⊆ R^I$</td>
</tr>
</tbody>
</table>

Table 7.2. Inclusion syntax and semantics.

<table>
<thead>
<tr>
<th>Program Syntax</th>
<th>Abstract Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(included C D)</td>
<td>C ⊑ D</td>
<td>$C^I ⊆ D^I$</td>
</tr>
</tbody>
</table>

sive power of the logic. As an example, if the description logic implemented by the system does not include individuals then of course there is no need to include any facilities for making statements about individuals. To overcome this difficulty this chapter will describe the interfaces required for a system that implements a typical description logic with both concepts and individuals.

Such a system has to have a method for creating a terminology of concepts. A syntax for creating such a terminology, taken directly from the Krss specification, is given in Table 7.1. A terminological knowledge base, or TBox, is then a set of such definitions perhaps with the condition that every concept, role, and attribute name has at most one definition. There may also be the side condition that there are no recursive definitions.

Some representation systems may have other definitions allowable or other restrictions. For example, some systems allow the definition of transitive roles, via a define-transitive-role definition. Other systems prohibit non-primitive roles.

If the underlying description logic allows for recursive definitions, then it may be easier to provide an even more basic interface to define concepts. Table 7.2 shows a minimal interface for a system that employs arbitrary concept inclusions as its means of defining concepts.

If the system incorporates individual reasoning, then it has to have a mechanism for adding information about these individuals. One such method is via the assertions in Table 7.3. An assertional knowledge base, or ABox, is then a set of such assertions.

Once information has been told to the system, there has to be a mechanism for
determining what follows from this information. A minimal mechanism for this is via a set of queries, such as those given in Table 7.4. A query is answered by the system by determining if the meaning of the query is implied by the information that has been told to the system.

The interface described above is sufficient for determining the contents of a knowledge base but only in the theoretical sense. For reasonable access to the information in a knowledge base a richer interface is required. One part of this richer access even really belongs in the basic interface, namely retrievals of taxonomy information. The interface in Table 7.5 provides a simple interface to the taxonomy information implicit in a description logic knowledge base. The meaning of the calls should be obvious from their description, except perhaps the “direct-” versions, which

Table 7.3. Assertion syntax and semantics.

<table>
<thead>
<tr>
<th>Program Syntax</th>
<th>Abstract Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(instance IN C)</td>
<td>(IN \in C)</td>
<td>(IN^I \subseteq C^I)</td>
</tr>
<tr>
<td>(related IN I R)</td>
<td>(\langle IN, I \rangle \in R)</td>
<td>(\langle IN^I, I^I \rangle \in R^I)</td>
</tr>
</tbody>
</table>

Table 7.4. Query syntax and semantics.

<table>
<thead>
<tr>
<th>Query</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(concept-subsumes? C1 C2)</td>
<td>(C_1 \subseteq C_2)</td>
</tr>
<tr>
<td>(role-subsumes? R1 R2)</td>
<td>(R_1 \subseteq R_2)</td>
</tr>
<tr>
<td>(individual-instance? IN C)</td>
<td>(IN \in C)</td>
</tr>
<tr>
<td>(individual-related? IN I R)</td>
<td>(\langle IN, I \rangle \in R)</td>
</tr>
</tbody>
</table>

Table 7.5. Taxonomy retrieval syntax.

- (concept-descendants C)
- (concept-offspring C)
- (concept-ancestors C)
- (concept-parents C)
- (concept-instances C)
- (concept-direct-instances C)
- (role-descendants R)
- (role-offspring R)
- (role-ancestors R)
- (role-parents R)
- (individual-types IN)
- (individual-direct-types IN)
- (individual-fillers IN R)
Table 7.6. UnTell syntax.

(undefine-concept CN)
(undefine-role RN)
(undefine-attribute AN)
(un-tell-instance IN C)
(un-tell-related IN I R)

return the concepts, individuals, or roles that are directly related to the query, i.e., that have no intervening concept or role.

Another basic service that is missing from above interface is the ability to remove information from the knowledge base. This is not the ability to perform arbitrary changes to the implicit information represented by the knowledge base. Instead it is just the ability to “un-tell” information that had been previously told to the system. A basic interface for this purpose is given in Table 7.6. There may be restrictions on what can be un-told, such as requiring that concepts that are currently mentioned in the definition of other concepts cannot be removed from the knowledge base.

7.3 Advanced application access

The basic interface described above provides only minimal access to a description logic knowledge base. Effective access requires a number of augmentations to the basic interface.

One of the most important augmentations has to do with defining a complete application programming interface. The basic interface assumes that the system is implemented in a language like LISP, where there is a simple way of creating descriptions and other values for the various operations and there is a mechanism for returning values of any type. This was acceptable when systems and applications were all implemented in LISP, but this is no longer the case.

A complete application programming interface must then provide a syntax for creating all the types of values that need to be passed to the representation system. Further, it needs to provide or define mechanisms for returning values, particularly compound values such as the sets of concepts that are returned by the taxonomic retrieval operations.

7.3.1 Efficiency

Because the operations of the representation system may represent the largest resource consumption of an application, it is often necessary to know how expensive various operations of the system may be. For example, it is often necessary to know the usual resource consumption of the most-frequently called operations of
the knowledge representation system or those operations that are called at critical
time in the operation of the whole system.

The CLASSIC family has been particularly aggressive in ensuring that queries to
the system are fast, working under the assumption that the most-common opera-
tions are queries. Most queries in CLASSIC are simply retrievals of data stored by
the system, as CLASSIC responds to the addition of knowledge by computing most
of its consequences. Further, the performance of the addition of knowledge to the
system is optimized over the retraction or change of knowledge.

CLASSIC achieves these characteristics of fastest queries, fast additions, and slower
retractions and changes by retaining data structures that record the current set of
consequences and also record, on a fairly granular level, which knowledge affects
other knowledge. This is not full truth-maintenance data, which would be pro-
hibitively expensive to compute (and store), but is just enough to make additions
cheap. It also serves to make retractions and changes somewhat cheaper than they
otherwise would be, but this effect is much less than the change in the speed up
additions of knowledge.

7.3.2 Wide application programming interface

In the vast majority of applications, the knowledge representation system has to
serve as a tightly integrated component of a much larger overall system. For this
to be workable, the knowledge representation system must provide a full-featured
interface for the use of the rest of the system.

The NeoCLASSIC system, which is programmed in C++, and is designed to be part
of a larger C++ program, provides a very wide application programming interface.
In addition to the above interface, there is a large interface that lets the rest of the
system receive and process the actual data structures used inside NeoCLASSIC to
represent knowledge, but without allowing these structures to be modified outside
of NeoCLASSIC.\(^1\) This interface allows for much faster access to the knowledge
stored by NeoCLASSIC, as many accesses just retrieve fields from a data structure.
Further, direct access to data structures allows the rest of the system to keep track
of knowledge from NeoCLASSIC without having to keep track of a “name” for the
knowledge querying using this name. (In fact, it is in this way possible to dispense
with any notion of querying by name.)

There are also ways to obtain the data structures that are used by NeoCLASSIC for other purposes, including explanation. We have used this facility to write
graphical user interfaces to present explanations and other information.

An additional interface that is provided by both LISP CLASSIC and NeoCLASSIC

\(^1\) Of course, as C++ does not have an inviolable type system, there are mechanisms to modify these structures. It is just that any well-typed access cannot.
is a notification mechanism, or hooks. This mechanism allows programmers to write functions that are called when particular changes are made in the knowledge stored in the system or when the system infers new knowledge from other knowledge. Hooks for the retraction of knowledge from the system are also provided. These hooks allow, among other things, the creation of a graphical user interface that mirrors (some portion or view of) the knowledge stored in the representation system.

Others in the knowledge representation community have recognized the need for common APIs, (e.g., the Generic Frame Protocol [Chaudhri et al., 1997] and the Open Knowledge Base Connectivity [Chaudhri et al., 1998a]). Some systems embrace the notion of loading many different forms of knowledge bases and accept wrapper specifications for other source formats and APIs. For example, ONTOLINGUA has implemented capability for loading a number of formats including CLASSIC, OKBC, ANSI KIF, KIF 3.0, CML, CLIPS, ONTOLINGUA, PROTÉGÉ, SNARK, and DAML+OIL. It also provides the ability to dump frames in multiple formats such as OKBC, CLASSIC, CLOS, CML, ONTOLINGUA, and DAML+OIL and it has also been made interoperable with at least two reasoners including one in lisp and one in java.

7.3.3 Remote and concurrent access

The standard computing environment is becoming more and more distributed. If a description logic knowledge representation system is to be part of this environment it must allow effective remote access. There are several mechanisms for allowing remote access, including applications that run on the same machine as the description logic knowledge representation system but themselves provide a remote access mechanism. Examples of such applications are the wines [Brachman et al., 1991] and stereo configuration demonstration systems [McGuinness et al., 1995] mentioned later in this chapter.

The description logic knowledge representation system itself can also directly provide a remote access mechanism. This can be as simple as providing the system with a pipe-like interface where clients can send a sequence of commands to the system from remote machines, and receive responses via the same pipe. NEOCLASSIC provides this sort of simple remote access mechanism.

A more complicated remote access mechanism would be to provide a CORBA interface to the system. This kind of access was proposed by Bechhofer et al. [1999]. Their interface gives a CORBA layering around a tell-and-ask interface. Providing a wider CORBA access to description logic knowledge representation systems, such as providing CORBA access to the actual data structures of the system, is more difficult, as the CORBA mechanism for dealing with recursive objects is annoy-
ing. Nevertheless, an effective remote access mechanism should provide the same functionality as is desired for local access.

If remote access to a description logic knowledge representation system is provided, then the issue of concurrent access becomes vital. (This is not to say that concurrent access is not of interest if the system does not allow remote access.) The interesting issues with respect to concurrent access involve simultaneous access to the same repository of knowledge. Most of the issues with respect to concurrent access are the same as concurrent access to databases, including locking and providing transactions. In fact, there have been informal proposals to use a database system to store the information in a description logic knowledge representation system like CLASSIC just so as to piggyback on the facilities for concurrent access provided by the database system.

The remote interface proposal mentioned above provides a limited form of transactions, basically allowing clients to batch up a collection of updates to a knowledge base and apply them all at once as an atomic transaction. This interface, however, does not provide any mechanism to abort transactions or to provide a local view of the knowledge base during the execution of a transaction.

At least one other knowledge representation system has dealt with the notion of concurrent access by leveraging the notion of sessions. ONTOLINGUA allows users to log in to a particular session that may already be opened by a previous user. All users logged into the same session see the same version of the knowledge base. A more sophisticated approach to concurrent access and knowledge base editing is embodied in ONTOBUILDER [Das et al., 2001]. In this system, users can not only do something similar to sharing a session, but the implementation also facilitates collaboration through dialogue with other users currently signed on to the same ontology and allows locking of concepts for updates.

7.3.4 Platforms

Another important access aspect concerns the platforms on which the knowledge representation system runs. This encompasses not only the machines and operating systems, but also the language in which the system is written (if it is visible), the version of the libraries that the system uses, and the mechanism for linking to the system. Many applications have needs for a particular operating system or language, and cannot utilize tools not available in this context.

Some description logics like CLASSIC have been made available on a reasonable number of platforms. The underlying language of a member of the CLASSIC family is visible, not just because of the application programming interface which is, of necessity, language-specific, but also because programmers can write functions to
extended the expressive power of the system, and these functions have to be written in the underlying language of the system.

Classic is currently available in two different languages: Lisp and C++. The C++ member is the more recent, and the reimplementation used C++ precisely to make Classic available for a larger number of applications. This was done even though C++ is not the ideal language in which to write a representation system.

The members of the Classic family have also been written in a platform-independent manner. This has required not using some of the nicer capabilities of the underlying language or of particular operating systems. For example, NeoClassic does not use C++ exceptions, partly because few C++ compilers supported this extension to the language. LispClassic runs on various Lisp implementations and on various operating systems, including most versions of Unix, MacOS, and Windows. NeoClassic runs under four C++ compilers and on both Unix and Windows NT.

With the influence of the web and more distributed development environments, it may be expected that more description logics may be made available on multiple platforms and may be integrated into more hybrid environments. One example of another knowledge representation system that found a need to do this is the Chimera Ontology Evolution Environment [McGuinness et al., 2000b]. This system has been connected to Ontolingua for ontology editing and simple inference, a Lisp-based reasoner for some diagnostics, and a hybrid Java-based reasoning environment that supports both first order logic reasoning as well as special purpose reasoning for the DAML+OIL description logic.

7.4 Advanced human access

7.4.1 Explanation

Many research areas which focus on deductive systems (such as expert systems and theorem proving) have determined that explanation modules are required for even simple deductive systems to be usable by people other than their designers. Description Logics have at least as great a need for explanation as other deductive systems since they typically provide similar inferences to those found in other fields and also support added inferences particular to description logics. They provide a wide array of inferences [Borgida, 1992b] which can be strung together to provide complicated chains of inferences. Thus conclusions may be puzzling even to experts in description logics when application domains are unfamiliar or when chains of inference are long. Additionally, naive users may require explanations for deductions which may appear simple to knowledgeable users. Both sets of needs became evident in work on a family of configuration applications and necessitated an automatic explanation facility.
The main inference in description logics is subsumption—determining when membership in one class necessitates membership in another class. For example, Person is subsumed by Mammal since anything that is a member of the class Person must be a member of the class Mammal. Almost every inference in description logics can be rewritten using subsumption relationships and thus subsumption explanation forms the foundation of an explanation module [McGuinness and Borgida, 1995].

Although subsumption in most implemented description logics is calculated procedurally, it is preferable to provide a declarative presentation of the deductions because a procedural trace typically is very long and is littered with details of the implementation. A declarative explanation mechanism which relies on a proof theoretic representation of deductions may be used as a framework. Such a mechanism has been specified [McGuinness, 1996] and implemented for CLASSIC and later specified for \(\mathcal{ALC} \) [Baader et al., 1999a].

All the inferences in a description logic system can be represented declaratively by a proof rules which state some (optional) antecedent conditions and deduce some consequent relationship. The subsumption rules may be written so that they have a single subsumption relationship in the denominator. For example, if Person is subsumed by Mammal, then it follows that something that has all of its children restricted to be Persons must be subsumed by something that has all of its children restricted to be Mammals. This can be written more generally (with \(C \) representing Person, \(D \) representing Mammal, and \(R \) representing child) as the \(\forall \) restriction rule below:

\[
\begin{align*}
\text{All restriction} & \quad \vdash C \subseteq D \\
\vdash & \ \forall R. C \subseteq \forall R. D
\end{align*}
\]

Using a set of proof rules that represent description logic inferences, it is possible to give a declarative explanation of subsumption conclusions in terms of proof rule applications and appropriate antecedent conditions. This basic foundation can be applied to all of the inferences in description logics, including all of the inferences for handling constraint propagation and other individual inferences. There is a wealth of techniques that one can employ to make this basic approach more manageable and meaningful for users [McGuinness and Borgida, 1995; McGuinness, 1996].

Expressive description logic-based systems may require a large number of proof rules. If one is interested in limiting both explanation implementation work and also limiting the size of explanations, it is be beneficial to prune the number of inferences to be explained. In one configuration family of applications [McGuinness and Wright, 1998b] the help desk logs were logged and analyzed to determine the most questions that related to explanation. These inferences included inheritance (if \(A \) is an instance of \(B \) and \(B \) is a subclass of \(C \), then \(A \) “inherits” all the properties of \(C \)), propagation (if \(A \) fills a role \(R \) on \(B \), and \(B \) is an instance of something which
is known to restrict all of its fillers for the R role to be instances of D, then A is an instance of D), rule firing (if a is an instance of E and E has a rule associated with it that says that anything that is an E must also be an F, then a is an instance of F), and contradiction detection (e.g., I can not be an instance of something that has at least 3 children and at most 2 children). In the initial development version, explanation was only provided for these inferences in an effort to minimize development costs, resulting in a quite useful explanation mechanism with much less effort than a full explanation system. (The two current implementations of explanation in CLASSIC contain complete explanation.) One demonstration system [McGuinness et al., 1995] incorporates special handling for the most heavily used inferences providing natural language templates for presentations of explanations aimed at lay people.

7.4.2 Error handling

Since one common usage of deductive systems is for contradiction detection, handling error reporting and explanation is critical to usability. This usage is common in applications where object descriptions can easily become over-constrained. For example, in the home theater system application, one could generate a non-contradictory request for a high quality stereo system that costs under a certain amount. The description could later become inconsistent as more information is added. For example, a required high-quality, expensive speaker set could violate a low total price constraint. Understanding evolving contradictions such as this challenges many users and leads them to request special error explanation support. Informal studies with internal users and external academic users indicate that adequate error support is crucial to the usability of the system.

Error handling could be viewed simply as a special case of inference where the conclusion is that some object is found to be described by the a special concept typically called bottom or nothing. For example, a concept is incoherent if it has conflicting bounds on some role:

\[
\text{Bounds Conflict} \quad \vdash C \subseteq (\geq m r) \quad \vdash C \subseteq (\leq n r) \quad n < m
\]

If an explanation system is already implemented to explain proof theoretic inference rules, then explaining error conditions is almost a special case of explaining any inference. There are two issues that are worth noting, however. The first is that information added to one object in the knowledge base may cause another object to become inconsistent. In fact, information about one object may impact another series of objects before a contradiction is discovered at some distant point along an inference chain. Typical description logic systems require consistent knowledge
bases, thus whenever they discover a contradiction, they use some form of truth maintenance to revert to a consistent state of knowledge, removing conclusions that depend on the information removed from the knowledge base. Thus, it is possible, if not typical, for an error condition to depend upon some conclusion that was later removed. A simple minded explanation based solely on information that is currently in the knowledge base would not be able to refer to these removed conclusions. Thus, any explanation system capable of explaining errors will need access to the current state of the knowledge base as well as to its inconsistent state.

Because of the added complexity resulting from the distinction between the current (consistent) state and the inconsistent state of the knowledge base and because of the importance of error explanation, we believe system designers will want to support special handling of error conditions. For example, in a number of situations surveyed, users typically asked for explanations of a particular object property or relationships between objects. Under error conditions, users had more trouble identifying an appropriate query to ask. This suggests that special error support should be introduced. In CLASSIC, for example, an automatic error explanation option is generated upon contradiction detection. This way the user requires no knowledge (other than the explanation error command name) in order to ask for help.

Another issue of importance to error handling is the completeness or incompleteness of the system. If a system is incomplete then it may miss deductions. Thus, it is possible for an object to be inconsistent if all of the logically implied deductions were to be made but, because the system was incomplete, it missed some of these deductions and thus the object remains consistent in the knowledge base. In order for users to be able to use a system that is incomplete, they may need to be able to explain not only error deductions but deductions that were missed because of incomplete reasoning. An approach that completes the reasoning with respect to a particular aspect of an object is described in [McGuinness, 1996, Chapter 5]. Given the completed information, the system can then explain missed deductions.

7.4.3 Pruning

If a knowledge representation system makes it easy to generate and reason with complicated objects, users may find naive object presentations to be much too complex to handle. In order to make a system more usable, there needs to be some way of limiting the amount of information presented about complicated objects. For example, in the stereo demonstration application, a typical stereo system description may generate four pages of printout. The information contained in the description may be clearly meaningful information such as price ranges and model numbers for components but it may also contain descriptions of where the component might be
displayed in the rack and which superconcepts are related to the object. In certain contexts it is desirable to print just model numbers and prices, and in other contexts it is desirable to print price ranges of components. We believe it is critical to provide support for encoding domain independent and domain dependent information which can be used along with contextual information to determine what information to print or explain. As one example, we consider some of the knowledge bases written for the DARPA High Performance Knowledge Base project. This project includes a very general upper level ontology with many slots defined on many of the classes. Most objects in the system inherit a large number of slots from upper ontology classes and it is not uncommon for normalized objects to have hundreds of slots associated with them even though they only have a couple of properties defined on them in the local knowledge bases.

Knowledge representation systems faced with information overload need to take some approach to filtering. One of the simplest approaches allows a specification on roles concerning whether they should be displayed on objects or not. This may work for homogeneous knowledge bases where role information is uniformly interesting or uninteresting. Our experience is however, that context needs to be taken into account in more heterogeneous knowledge base applications. One example implementation that allows context and domain dependent information to be considered along with domain independent information is implemented in CLASSIC. A meta language is defined for describing what is interesting to either print or explain on a class by class basis. Any subclass or instance of the class will then inherit the meta description and thus will inherit “interestingness” properties from its parent classes. The meta language essentially captures the expressive power of the base description logic with some carefully chosen epistemic operators to allow contextual information (such as known fillers or closed roles) to impact decisions on what to print.

The meta language has been used to reduce object presentation and explanation by an order of magnitude in at least one application [McGuinness et al., 1995]. This reduction was required for the application to be able to include object presentation. The algorithms of the basic approach are included in [McGuinness, 1996], the theory of a generalized approach are presented in [Borgida and McGuinness, 1996] and further analyzed in [Baader et al., 1999a].

7.4.4 Knowledge acquisition

If an application is expected to have a long life-cycle, then acquisition and maintenance of knowledge become major issues for usability. There are two kinds of knowledge acquisition which are worth considering: (i) acquisition of additional knowledge once a knowledge base is in place, and (ii) acquisition of original do-
main knowledge. A complete environment will address both concerns, however the
original acquisition of knowledge is a much more general and difficult problem and
conveniently enough, is not the activity that many users will find themselves doing
repeatedly while maintaining a project.

We observe that with knowledge of the domain and appropriate analysis of evo-
lution, it is possible to build a knowledge evolution environment suitable for non-
experts to use for extending knowledge bases. One such project considered the
evolution support environment for configurators. The specific domain and usage
patterns were analyzed, and it was found that only certain classes had new sub-
classes added to them as product knowledge evolved. It was also found that in-
stances were typically populated in particular patterns. A special purpose interface
was developed for a family of configurators that exploited these findings and sup-
ported new configurator application development by non-experts [McGuinness and
Wright, 1998b]. Also, in related work, Gil and Melz [1996] have analyzed planning-
based uses of another description logic-based system that systematically supports
knowledge base evolution with respect to the known plan usage.

A more general problem that does not rely on domain or reasoning knowledge has
been addressed in the editor work [Paley et al., 1997] for the general frame protocol
and also in editor work for collaborative generation and maintenance of ontologies
by non experts in the Collaborative Topic Builder component of FINDUR [McGuin-
ness, 1998] and recently in CHIMAERA work [McGuinness et al., 2000b] for merging,
analyzing, and maintaining ontologies. The general work, of course, is broader
yet shallower with respect to reasoning implications. In the FINDUR collaborative
topic builder environment, simple hierarchies of node names (with role filler and
value restriction information) is used to support query expansion to provide more
intelligent web searching. In order to deploy this broadly, a web-based distributed
ontoloty editor was required to allow non-experts to input, modify, and maintain
background ontologies. The basic functionality for this interface follows the same re-
quirements specified in Section 7.2 although this particular implementation limited
some of the interface specifications according to expected usage patterns. For ex-
ample, in the medical deployments [McGuinness, 1999] of FINDUR, it was expected
that all of the roles that were to be used had been defined and thus pull down
lists of these roles were hardcoded into the interface and new role specification was
not one of the exposed functionalities in the GUI. It also allows importing of seed
ontologies and supports contradiction detection from ontology input. CHIMAERA’s
environment takes the analysis task to a much more detailed level and it provides
a number of different ways of not only detecting explicit contradictions but also
possible contradictions and possible term merges.
7.5 Other technical concerns

The computer science concerns that affect the suitability of a knowledge representation system have to do with the behavior of the system as a computer program or routine, ignoring its status as a representer of knowledge. The most-studied aspect of this collection of concerns has to do with the computational analysis of the basic algorithms embodied in the system, in particular their worst-case complexity. Because this worst-case complexity has been so well studied, we will not say anything about it further, except to state that it is important in determining the suitability of a knowledge representation system for particular tasks, notably tasks that need a performance guarantee.

7.6 Public relations concerns

Researchers sometimes underestimate the varied public relations aspects involved with making a system usable. Barriers to usability come in many forms: potential users who are unaware of a system’s existence will not use it; potential users who do not understand how a system can meet the users needs are unlikely to use it; potential users who do not have enough understanding to visualize an abstract solution to their problem using a new system are unlikely to depend on the new system over tools they understand and can predict; and finally potential users who have a limited set of approved tools which does not include the new system are unlikely go to the effort of getting the new system approved for their internal use. In order to address these issues, description logic system designers need to devise ways to make their systems known to likely users, educate those users about the possible uses, provide support for teaching users how to use them for some standard and leverageable uses, and either obtain approval for their systems or provide ammunition for users to gain approval.

In experiences with CLASSIC, the following tools have been employed to overcome the above stated barriers to usability.

Beyond the standard research papers, users demand usage guidelines aimed at non-PhD researchers. A paper that provides a running (executable) example on how to use the system is most desirable, such as [Brachman et al., 1991]. This paper also tries to provide guidance on when a description logic-based system might be useful, what its limitations are, and how one might go about using one in a simple application. A take off of that paper was done as the basis of a tutorial on building ontologies in other knowledge representation systems including PROTEGE and ONTOLINGUA [Noy and McGuinness, 2000].

A demonstration system is also of great utility as it helps users understand a simple reasoning paradigm and provides a prototyping domain for showing off novel functionality which exploits the strengths of the underlying system. In the CLASSIC
project a number of demonstration systems were developed, including a simple application that captures “typical” reasoning patterns in an accessible domain. This one system has been used in dozens of universities as a pedagogical tool and test system. While this application was appropriate for many students, an application more closely resembling some actual applications was needed to (i) give more meaningful demonstrations internally and to (ii) provide concrete suggestions of new functionality that developers might consider using in their applications. This led to a more complex application with a fairly serious graphical interface [McGuinness et al., 1995]. Both of these applications have been adapted for the web.⁷ It was only when a demonstration system that was clearly isomorphic to the developer’s applications was available that there could be effective providing of clear descriptions and implemented examples of the functionality that we believed should be incorporated into development applications.

Interactive courses are also of benefit in training potential users in how to use a description-logic based knowledge representation system. Several courses [McGuinness et al., 1994; Abrahams et al., 1996] on how to use Classic have been developed, including one from a university for course use, which includes a set of five running assignments to help students gain experience using the system. Other general description logic courses can be found on the Description Logic web site at http://www.dl.kr.org/.

For a system to be used in the business community, it has to satisfy their demand for common standard implementation languages, reasonable support, and standard platform toolkits. Some description logic implementations, such as Classic, attempted to meet this need by providing an implementation in C while still maintaining the lisp research version. This later proved problematic to maintain and the decision was made to provide an implementation in C++ that was to meet both developers and implementers needs. Interestingly enough, years later though the lisp version is the one that appears to be most heavily used. More details of the evolution of that of usability of that system can be found in [Brachman et al., 1999].

7.7 Summary

Although a knowledge representation system must have sufficient expressive power and appropriate computational complexity to be considered for use in applications, there are many other issues that also determine whether it will be used. These issues involve access to the knowledge stored in the system, such as explanation and presentation of the knowledge, other technical issues, such as efficiency and

¹ The web version of the wines demonstration system was provided by Chris Welty and is available at http://untangle.cs.vassar.edu/wine-demo/index.html.
programming interfaces, and non-technical issues, such as publicity and demos. If these issues are not addressed appropriately, a knowledge representation system will not be used in real applications.
Abstract

This chapter discusses implemented description logic systems that have played or play an important role in the field. It first presents several earlier systems that, although not based on description logics, have provided important ideas. These systems include KL-ONE, KRYPTON, NIKL, and KANDOR. Then, successor systems are described by classifying them along the characteristics discussed in the previous chapters, addressing the following systems: CLASSIC (“almost” complete, fast); BACK, LOOM (expressive, incomplete); KRIS, CRACK (expressive, complete). At last, a new optimized generation of very expressive but sound and complete DL systems is also introduced. In particular, we focus on the systems DLP, FACT, and RACER and explain what they can and cannot do.

8.1 New light through old windows?

In this chapter a description of the goals behind the development of different DL systems is given from a historical perspective. The description of DL systems allows important insights into the development of the knowledge representation research field as a whole. The design decisions behind the well-known systems which we discuss in this chapter do not only reflect the trends in different knowledge representation research areas but also characterize the point of view on knowledge representation that different researchers advocate. The chapter discusses general capabilities of the systems and gives an analysis of the main language features and design decisions behind system architectures. The analysis of current systems in the light of a historical perspective might lead to new ideas for the development of even more powerful description logic systems in the future. References to previous descriptions of DL systems (e.g., in [MacGregor, 1991a; Woods and Schmolze, 1990; Horrocks, 1997a]) or publications on DL theory that also contain discussions about description logic systems (e.g., [Patel-Schneider, 1987a;
Nebel, 1990a; Schmidt, 1991]) are included where appropriate. For references to other systems not mentioned here see also [Woods and Schmolze, 1990] and [Nebel, 1990b, p. 46f., p. 63f.].

In Chapter 2 basic concept and role constructors were already introduced (see also the appendix for a summary of syntax and semantics of DL constructors). However, before starting the discussion about DL systems it is appropriate to introduce some notation for language constructors in order to keep this chapter self-contained. It is assumed that the reader is familiar with the basic description logics \mathcal{AL} and \mathcal{ALC}. In a similar way as in Chapter 2, further language features are indicated by different letters. The letter \mathcal{N} is used for simple number restrictions and the letter \mathcal{Q} is used for qualified number restrictions. \mathcal{H} is used for role hierarchies with multiple parents whereas \mathcal{h} is used for role hierarchies with single inheritance only. In some languages, no role hierarchies but role conjunctions are provided. Role conjunctions are indicated with the letter \mathcal{R} in the following. In addition, the abbreviations \mathcal{F} and \mathcal{f} are used for features with and without equality for feature chains (i.e., agreements), respectively. The index R^+ is used to indicate support for transitive roles. Language constructors for an extensional specification of concepts using nominals (or individuals) are denoted by the letters \mathcal{O} and \mathcal{B} (see Chapter 2 or the appendix for details). If inverse roles are supported by a DL system, this is indicated either with a superscript $^{-1}$ or with the letter \mathcal{I}. The latter variant is used in order to allow for a convenient pronunciation of the DL language.

8.2 The first generation

Inspired by research on human cognitive behavior, proposals for knowledge representation languages were first discussed in the late sixties. E.g., [Quillian, 1967] is one of the first publications of these languages called “semantic networks” (see also [Quillian, 1968]). Originally, semantic network formalisms were seen as alternatives to first-order logic. In a similar spirit, [Minsky, 1981] introduced the initial notion of a frame system. The motivation of these representation formalisms was to mimic human reasoning in the sense of achieving “cognitive adequacy”. Thus, the idea was to support problem solving with appropriate representation structures that somehow “resemble” representation structures assumed in human information processing. The exploitation of inheritance was a predominant idea in frame systems. The specification of knowledge bases should be simple and the use of the representation structures should be intuitive (“epistemological adequacy”). However, as pointed out by [Woods, 1975], it was not at all simple to specify what an inference system was supposed to actually compute. The late seventies saw initial research on the relation of frame systems and first-order logic [Hayes, 1977; 1979] which revealed that some aspects of frame-based systems can be considered
as special “instantiations” of first-order reasoning. Hayes argued that frame-based reasoning was not an entirely new way of knowledge representation with particular advantages over first-order reasoning. Specific features of frame systems beyond first-order reasoning (e.g., defaults) were not very well understood at that time. The consequence of these publications was that many researchers did not consider frame systems and semantic network systems as possible alternatives to logic-based approaches any more.

The criticisms of early frame systems and semantic network formalisms stimulated research on the development of mathematical structures and techniques for defining the semantics of representational constructs supported by different representation languages. For instance, in early frame systems there was no clear distinction between constructs for representing “generic” knowledge about sets of individuals and knowledge about “specific” individuals. Furthermore, frames were often used as data structures in procedural programs. For these programs a formal specification of what they were expected to compute was rarely provided. Rather than interpreting frame structures as data structures, [Woods, 1975] suggested to use a formal semantics to clearly specify what is to be computed by inference algorithms.

KL-ONE

Inspired by critics such as [Woods, 1975], Brachman started to develop a new representation system (called KL-ONE) that inherently included the notion of inferring implicit knowledge from given declarations [Brachman, 1977b; 1979]. Although the initial approach was not logic-based, KL-ONE started the era of logic-based representation systems which can be used to formalize application problems as inference problems over the constructs supported by the representation language. One of the prevailing inference patterns is centered around inheritance [Brachman, 1983]. The final report on the KL-ONE language is published in [Brachman and Schmolze, 1985].

One of the core ideas behind KL-ONE as a representation language for the “epistemological level” resulted from problems with languages offering built-in primitives for general representation purposes (e.g., CD theory [Schank, 1975]). Rather than providing general built-in primitives, in KL-ONE, for a specific representation problem a set of adequate primitives was defined by the user. The primitives were denoted by so-called *concept names*. The next idea was to use *concept-forming operators* to build new concepts from basic concepts. These compound concepts were also referred to as “concepts”, “concept terms” or “concept descriptions”. *Generic concepts* were intended to denote classes of individuals and *individual concepts* were intended to denote individuals (see also [Nebel, 1990a, p. 42]). Individuals were re-
lated by so-called roles which, in turn, could be primitive roles (role names) or roles described with role constructors [Brachman and Schmolze, 1985].

In KL-ONE, concepts and roles are the building blocks for representational purposes. The main idea behind concepts and concept constructors in KL-ONE is that the meaning of a concept is derived only from the meaning of its superconcepts and other restrictions associated with a concept [Brachman and Schmolze, 1985]. A KL-ONE generic concept consists of a set of superconcept names, a set of role descriptions, and a set of structural descriptions [Patel-Schneider, 1987a, p. 58f.].

Roles can be viewed as potential relationships between an individual of a certain class and other individuals in the world [Nebel, 1990a, p. 42].

Role descriptions could be either restrictions or differentiations. The former restricted the class of permitted fillers (value restrictions) or the number of fillers (number restrictions). Role differentiations were used to describe a subrole with possible value or number restrictions. So-called structural descriptions were used to state relationships between the fillers of roles (see also [Patel-Schneider, 1987a, p. 58f.]). Descriptions for individual concepts consisted simply of a set of values for roles plus a set of generic concepts. Individual concepts were seen as instances of these generic concepts, i.e., an individual concept had to satisfy all restrictions (and differentiations) inherited by the generic concepts. On the other hand, individual concepts were also subsumed by their generic concepts. However, the semantics of individuals was never completely worked out (see [Schmolze and Brachman, 1982, p. 23–31] cited after [Nebel, 1990a, p. 64]).

The representation structures offered by KL-ONE were similar to those offered by semantic networks or frames. Although, initially, the structures offered by KL-ONE were called “structural inheritance networks” [Brachman, 1977b; 1979], in [Brachman and Levesque, 1984] the authors talk of “frame structures”. In accordance with [Nebel, 1990a, p. 45] we argue that in contrast to, e.g., CD theory [Schank, 1975], providing a (large) set of primitive representation structures (names) for all kinds of representation purposes was not the development goal of KL-ONE. As Nebel points out [Nebel, 1990a, p. 45], more important and unique for KL-ONE is the core idea of proving ways to specify concept definitions, i.e., the possibility to let a knowledge engineer declare the relation of “high-level concepts” to “lower-level primitives”.

A concept definition was an assignment of a (unique) name to a concept term. In KL-ONE the well known distinction between the two kinds of concept definitions,

1 Note that, in KL-ONE-like languages, there are specific syntactic constructs for specifying superconcepts. These specific constructs are no longer present in logic-based concept languages of the nineties.

2 There are large differences between frame systems and description logic systems: if for i the restriction $\forall R.C$ holds, and we set i into relation to j via the role r, then every KL-ONE-based system concludes that j is an instance of C. In standard frame-based systems, j can only be set into relation to i via R if it is already known that j is an instance of C. Otherwise, in frame systems at least a warning is issued or even an error is signalled.
definitions with necessary and sufficient conditions and definitions with only necessary conditions (so-called primitive definitions), was investigated for knowledge representation purposes for the first time.\(^3\) In the original approach no cycles were allowed in the set of concept definitions.\(^4\) The most important consequence of the introduction of concept definitions with necessary and sufficient conditions was that reasoning about the relationships between concepts became important. In KL-ONE there is still the notion of a “told subsumer” syntactically being explicitly mentioned in a list of so-called superconcepts but, according to the semantics, there are also additional computed superconcepts which are concept names (direct subsumers or direct superconcepts). Note that inferences in KL-ONE were based on the open-world assumption. Hence, rather than with frame systems where the names as superconcepts are always given explicitly, KL-ONE introduced the idea that the set of direct superconcepts (i.e., concept names) for a given concept must be inferred.

Direct superconcept/subconcept relationships (also called parent/children relationships) are dependent on the concept terms used in the definitions of a TBox. In particular, the notion of defined concepts (with necessary and sufficient conditions) led to the idea of classifying a TBox. The idea was to compute the subsumption hierarchy (sometimes also called “inheritance hierarchy”) of parents and children for each concept name mentioned in a TBox during a so-called classification process. The intention was that a model for a specific application domain could be verified by a knowledge engineer based on the subsumption hierarchy. Considering the subsumption hierarchy, i.e., the lattice of direct superconcepts, the idea was also that concept terms could be automatically “inserted” between named concepts in the hierarchy. Hence, concept terms could be set into relation to “predefined” concept names (and, indirectly, other concept terms). This feature has been used in many projects for implementing application functionality.

The first development of an algorithm for computing the subsumption hierarchy of a TBox (the “classifier”) is described in [Schmolze and Lipkis, 1983]. Another inference component called “realizer” computes for each individual mentioned in an ABox the most-specific atomic concepts (or concept names) of which the individual is an instance. One of the first algorithms for computing the realization of an ABox is described in [Mark, 1982]. Initial KL-ONE systems were implemented in INTERLISP [Lipkis, 1982] and Smalltalk [Fikes, 1982]. The Consul project [Kaczmarek et al.,

\(^3\) In the literature, some authors use the word “definition” as a synonym for concept terms themselves (e.g., [Schmidt, 1991], see also [Woods, 1991, p. 65]). In this case, “primitive” concepts with only necessary conditions were introduced with a specific marker to be used in concept terms.

\(^4\) The semantics of cycles was analyzed in [Baader, 1990b; 1991; Nebel, 1990a; 1991]. The so-called descriptive semantics provided many advantages compared to so-called fixed point semantics. For details see [Nebel, 1990a]. One of the first publications of an expressive description logic supporting cyclic axioms with a descriptive semantics and a sound and complete calculus is [Buchheit et al., 1993a]. Cyclic axioms are usually not considered as concept definitions.
1986] was one first projects in which classifier and realizer inference services were first exploited.

First investigations about defaults and exceptions were published in [Brachman, 1985]. Nowadays, the semantical theory of defaults in description logics is much clearer, see [Baader and Hollunder, 1992; 1993; Baader and Schlechta, 1993; Padgham and Zhang, 1993; Padgham and Nebel, 1993; Baader and Hollunder, 1995a; 1995b; Donini et al., 1997b].

At the first KL-ONE workshop [Schmolze and Brachman, 1982] it became clear that the informal specification of the semantics of KL-ONE concept and role constructors led to serious problems. The development of the classifier [Schmolze and Lipkis, 1983] was based on the intuitive meaning of the KL-ONE formalism [Nebel, 1990a, p. 46]. Attempts to logically reconstruct the representation constructs, e.g., [Schmolze and Israel, 1983; Israel and Brachman, 1984], resulted in a deeper understanding of the formalism. Given the formal semantics, implemented algorithms for classification and realization were shown to be incomplete. Later investigations revealed that KL-ONE (with the formal semantics given in the logical reconstruction approaches) is undecidable (e.g., this holds for the combination of conjunction, value restrictions and role-value-maps [Schmidt-Schauß, 1989]). In [Brachman and Levesque, 1984] the first thoughts about tractability of subsumption for sublanguages are discussed. Terminological reasoning with concept definitions even for sublanguages with low expressiveness were shown to be inherently intractable in the worst case [Nebel, 1990b, p. 28, p. 71f.]. Proposals for a semantics based on many-valued logics (e.g., [Patel-Schneider, 1986; 1987a; 1987b; 1989a]) ensure tractable algorithms concerning concept consistency reasoning but also result in a weak expressiveness: many intuitive inferences are not sanctioned by this semantics (see also [Nebel, 1990a]).

Another result of [Schmolze and Brachman, 1982] was that the semantics of individual concepts was not quite clear (e.g., concerning coreference and unique name assumption, see above). Thus, at the first KL-ONE workshop [Schmolze and Brachman, 1982], the notions of a hybrid reasoning system consisting of a TBox (a set of concept definitions) and an ABox (a set of assertions concerning individuals) were made more precise. The change of the view on KL-ONE spelled out in [Schmolze and Brachman, 1982, pp. 8–17] (see also [Nebel, 1990a, p. 46]) can be summarized as follows: It is not the names of representation structures that are important but the functionality, i.e., the declaration and inference services which the system provided. It was first pointed out that inferences have to be formally defined based on the semantics of the representation formalism. This view led to the development of the functional view of knowledge representation as pursued with the development of the system KRYPTON.
KRYPTON

The knowledge representation system KRYPTON [Brachman et al., 1983b; 1983b; 1985] can be seen as the first approach to define a new language of the KL-ONE family with a formal, Tarskian semantics. Furthermore, the goal was to overcome the problems with individual concepts in KL-ONE [Nebel, 1990a, p. 63]. The hybrid representation approach with a TBox and an ABox was first implemented in the KRYPTON system (see also [MacGregor, 1991a, p. 391]). Similar to KL-ONE the distinction between primitive and defined concepts and the computation of the most-specific atomic concepts which instantiate individuals is one of the core ideas of KRYPTON.

KRYPTON offered a concept language with low expressiveness. While the initial approach [Brachman et al., 1983b] was too expressive to be tractable (see also [MacGregor, 1991a, p. 390]), in a revised version [Brachman et al., 1985] the concept constructors of KRYPTON were defined as conjunction, value restrictions and role chains. Thus, subsumption checking was polynomial [Patel-Schneider, 1987a, p. 75]. For the ABox a full-fledged resolution-based FOPL theorem prover [Stickel, 1982] was proposed, i.e., the ABox reasoner of KRYPTON was incomplete. Another perspective is that KRYPTON started with a first-order logic theorem prover and augmented it with a special-purpose inference system for terminological reasoning to cut out some of the combinatorial search [Vilain, 1985]. KRYPTON can be regarded as one of the first efforts in combining knowledge representation and theorem proving techniques but was not used for industrial applications [Nebel, 1990a, p. 63f].

Rather than dealing with specific representation structures and operations on them, KRYPTON offers a so-called “functional approach”. Using the interface functions “tell” and “ask”, a knowledge base can be defined and queries can be answered about it. In this sense, a “functional approach” means that a formal representation system does not necessarily have to maintain, for instance, frame structures, the subsumption hierarchy, or even an ABox as a graph structure. If, for the internal implementation purposes, graph structures are indeed used, they are nevertheless hidden from the user in order to avoid “procedural” operations to be carried out with internal record structures. Arbitrary procedural operations are usually not related to the semantics of the representation formalism such that, in this case, it is hard to characterize what is actually represented and what is computed as solutions to inference problems. Thus, the focus of KRYPTON was not on the structures to be maintained by the system but was centered around the question about what should the system do for the user, i.e., what services should be made available. In other publications this idea was described as the “knowledge level” [Newell, 1982]. In KRYPTON, inference services for concept terms are checks for concept consis-
tency, disjointness, and subsumption. For a TBox, the most-specific subsumers (parent/children relation) can be computed, whereas for an ABox, consistency, instance checking, realization (direct types) and instance retrieval are offered as inference services. **Krypton** pioneered the idea that the user should only know, at some level not dependent on implementation details, what questions the system is capable of answering and what operations are permitted that allow new information to be provided to it. For instance, it is not important how the association between an individual and a certain role filler is actually represented in terms of memory arrangements (called the symbol level). What counted for the underlying implementation was what operations must be supported in order to answer queries at the semantical level. This view about **Kl-One**-based representation systems was one of the major achievements of the **Krypton** project.

Nikl, **Penni**, **Kl-Two**

At the same time as **Krypton**, the knowledge representation system **Nikl** was developed as a successor of **Kl-One**. **Nikl** was a New Implementation of **Kl-One** [Schmolze and Israel, 1983; Schmolze, 1985; Schmolze and Mark, 1991]. As discussed in [Kaczmarek et al., 1986] in **Nikl**, roles are also ordered with respect to subsumption (see also [Schmidt, 1991, p. 13]).

The assertional components of **Kl-One** were initially discarded in the **Nikl** system (see the **Nikl** user guide [Robins, 1986]). Compared to the initial **Kl-One** implementation, the algorithms in the **Nikl** classifier were faster in the average case because “obvious” information was exploited to a larger degree (see [MacGregor, 1988, p. 405] or [MacGregor, 1991a, p. 392]). However, the subsumption algorithm of **Nikl** was incomplete and it was hard to characterize which inferences are omitted [Schmolze and Israel, 1983] (see also [Patel-Schneider, 1987a, p. 74]).

Later, an assertional reasoning component was added with the system **Penni** which is based on RUP [McAllester, 1982]. The resulting system was called **Kl-Two** [Vilain, 1985] (see also [Schmidt, 1991, p. 15]). In **Kl-Two** a propositional reasoner with equality (the **Penni** subsystem) was augmented with a so-called quantificational reasoning component (the **Nikl** subsystem). For the propositional part in the **Penni** component, incremental additions and retractions were supported due to the facilities provided by RUP. However, as shown in [Patel-Schneider, 1989b] the concept language of **Nikl** contained concept and role constructs that render the satisfiability problem for **Nikl** concept terms undecidable (see also [Schmidt-Schauß, 1989]).

Concerning hybrid reasoning, i.e., the systematic integration of TBox and ABox reasoning, there were shortcomings as well. Because in RUP different constants do not necessarily denote different objects, the unique name assumption was not
built into the assertional component Penni. Thus, number restrictions imposed by Nikl concepts often did not have the intended effects concerning hybrid reasoning. Other sources of incompleteness were pointed out (see also the analysis of "inferential gaps" in [Nebel, 1990a, p. 63f.]). The research on the Kl-Two system demonstrated that hybrid reasoning is not just a matter of integrating reasoning subsystems at the software level. Hybrid reasoning requires a dedicated architecture implementing a sound and complete calculus which, in turn, can be developed only after a deep analysis of the semantics of the representation constructs. Nevertheless, the principle idea of exploiting subsumption information for resolution-based first-order reasoning has been integrated in many theorem proving systems.

KANDOR
Research on KANDOR [Patel-Schneider, 1984] was influenced by the KRYPTON architecture and the performance problems of the Nikl approach. The goal of KANDOR was to increase the expressive power of the terminological representation component in such a way that an efficient subsumption algorithm could be developed. Basically, KANDOR supported conjunction, value restriction and number restrictions as concept-forming operators. In minimum number restrictions, range-restricted roles could be used (hence, qualified minimum number restrictions are allowed, see also [Patel-Schneider, 1987a, p. 76]). In order to provide effective inference algorithms (e.g., for information retrieval scenarios) in the KANDOR approach the expressiveness of the assertional component was cut down to a representation system comparable to a database (without revision mechanisms). Subsumption in KANDOR was shown to be coNP-complete (see [Nebel, 1988], and [Nebel, 1990a, p. 90] for details). The initially proposed subsumption algorithm with polynomial runtime must have been incomplete.

KANDOR was called a frame-based system (which might be reasonable because of the expressiveness offered by the ABox language). A frame in KANDOR was essentially a specification of conditions for describing how an individual can be an instance of it (in terms of superframes and restrictions). KANDOR supported defined frames and primitive frames in the spirit of Kl-One. The system adopted the “small interfaces” approach of KRYPTON, i.e., models were built using the declaration interface (tell interface), and application services were realized with the query interface (ask interface). Although called a frame system, frames were not treated as record structures to be manipulated by procedural programs. The authors of KANDOR argued for a small knowledge representation system that could be used as part of larger systems with different subcomponents. The main achievement of KANDOR was the introduction of a small-can-be-beautiful approach which, finally,
led to the design of the system CLASSIC which will be discussed in detail in the next section.

8.3 Second generation Description Logics systems

Whereas the prototypical implementations of first generation systems were used to study knowledge representation problems, second generation DL systems have been more extensively used in serious applications. The implementations discussed in this section are not only prototypes but were much more stable. In addition, since the beginning of the nineties, the systems have been called description logic systems. We first discuss systems for (almost) tractable languages based on (almost) complete algorithms and investigate systems for expressive description logics afterwards.

CLASSIC

The basic CLASSIC system supported the logic $\mathcal{ALN}\mathcal{F}h^{-1}$ with TBoxes and ABoxes plus facilities for dealing with numbers [Borgida et al., 1989]. We use the lowercase letter h to indicate that CLASSIC supports only role inclusion but no role conjunction, i.e., CLASSIC supports “single-inheritance” role hierarchies. CLASSIC is available for research purposes. Implementation languages for CLASSIC are COMMONLISP [Steele, 1990] and C. The interfaces are described in [Resnick et al., 1995]. Full CLASSIC also contained the concept constructors \mathcal{O} and \mathcal{B} for referring to individuals in concept terms.

Subsumption in full CLASSIC was initially assumed to be polynomial [Borgida et al., 1989]. Problems with individuals in full CLASSIC were recognized in [Patel-Schneider et al., 1991]. At the same time, subsumption in CLASSIC was shown to be coNP complete [Lenzerini and Schaerf, 1991]. In the modified semantics for the concept constructors \mathcal{O} and \mathcal{B} (see [Borgida and Patel-Schneider, 1994]) the interpretation function maps individuals in concept terms to disjoint sets of domain objects. With this semantics concerning individuals the inference algorithms of the CLASSIC system could be shown to be complete [Borgida and Patel-Schneider, 1994]. However, given the non-standard semantics for the concept constructors \mathcal{O} and \mathcal{B}, the same effect can be achieved with existential quantifications and disjunctions w.r.t. atomic concepts:\footnote{Note that these concept constructors are not directly provided by CLASSIC.} For each individual I a new atomic concept A_I can be introduced. Note that atomic concepts are also mapped to sets of individuals. Additionally, since CLASSIC imposes the unique name assumption, a set of axioms ensures that the new atomic concepts are disjoint. Now every term of the form $\exists R.I$ can be replaced by $\exists R.A_I$. Terms of the form $\{I_1, \ldots, I_n\}$ can be replaced by $A_{I_1} \sqcup \ldots \sqcup A_{I_n}$. In an ABox, for each individual I a concept assertion is added to

Note that these concept constructors are not directly provided by CLASSIC.
ensure that the individual is an instance of the associated atomic concept A_I. Thus, only in an ABox, a real coreference between roles can be enforced. On the one hand, we can call the CLASSIC system “almost” complete. “Almost” refers to non-standard semantics w.r.t. individuals being supported by current system implementations. On the other hand, the transformation makes clear that in CLASSIC nevertheless a limited kind of disjunction (with concept names for which no definitions exist) can be expressed while retaining polynomial inference algorithms.

The recommended techniques for knowledge-based system development with CLASSIC are outlined in [Brachman et al., 1991]. As Brachman [Brachman, 1992, p. 256] points out, a tractable description logic does not guarantee that a system is useful in practice. Therefore, the CLASSIC system was also carefully designed to meet practical requirements and to guarantee predictable system behavior. The context in which the system was expected to be used required that many queries were given to knowledge bases which rarely change. The architectural design of CLASSIC supported a precomputation of index structures such that queries can be answered quickly (mostly by simple storage retrieval). The architecture is made possible by a careful selection of the concept and role constructors for the description logic language. Inference services for the description logic supported by CLASSIC can be implemented by transforming concept expressions into a normal form (“structural subsumption”). Once the normal form is computed, queries can be answered by inspecting the data structures used to encode the normal form. It should be noted that, in CLASSIC, retraction of told information is possible but not optimized.

Another facility offered by CLASSIC is a rule system. Rules are applied to individuals explicitly named in the ABox. Furthermore, rules are applied in a forward-chaining way. Basically, a rule has a precondition (a concept) and a conclusion (also a concept). If it can be shown that an individual mentioned in the ABox is an instance of the precondition concept, a concept assertion for stating the membership of the individual in the conclusion concept is added to the ABox. In order to provide support for modeling, the rule base is statically checked for inconsistencies. For instance, if there are two rules whose preconditions subsume each other, the conclusions must not be disjoint.

Furthermore, CLASSIC provides simple support for closed-world reasoning ([Resnick et al., 1995], see also [Weida, 1996]). Closing a role for an individual means adding an appropriate maximum number restriction for the role. The maximum number of fillers is restricted to the largest integer such that the minimum number restriction with this integer (and the corresponding role) is entailed by the knowledge base. The problem with role closing is that in combination with rules, the exact sequence of several closing operations determines what actually holds in the resulting ABox. These and other problems concerning different closing operations have to be considered with default reasoning as theoretical background [Baader and Hollun-
der, 1995a; 1995b; Donini et al., 1997b; Rosati, 1998]. For a specific approach concerning the integration of defaults into the CLASSIC system see also [Wahlöf, 1996; Lambrix et al., 1998].

CLASSIC is one of the first systems that provided support for incorporating inferences over other domains. Consistency and subsumption checking for expressions of another domain (e.g., the reals) can be integrated into the CLASSIC system via an extension interface [Borgida et al., 1996]. CLASSIC was one of the first description logic systems designed with respect to users which are non-experts in description logic theory. An important lesson learned by the CLASSIC approach and its applications was the importance of explanation and output pruning facilities [McGuinness and Borgida, 1995; McGuinness, 1996; Borgida and McGuinness, 1996]. Moreover, CLASSIC was the first system capable of supporting some reasonable form of error reporting [Brachman, 1992]. However, at the current state of the art there is hardly an adequate measure for the quality of these indispensable services [Brachman, 1992, p. 253].

Although CLASSIC was a very successful description logic modeling environment, the low expressiveness of the CLASSIC description logic made it hard to use the system in many kinds of applications. In many cases, users wanted more expressiveness [Patel-Schneider et al., 1990]. In the following sections we discuss systems for (more) expressive description logics. As can be expected, increases in expressiveness came at a certain price. The predictability of the behavior of CLASSIC in terms of performance could not be reached by systems implementing complete algorithms for more expressive DLs. On the other hand, incomplete algorithms have the problem that results computed by a system cannot be trusted in general. Thus, the complete-incomplete debate for expressive description logic systems started at the end of the eighties and the beginning of the nineties. First, we describe the systems LOOM and BACK, which are based on incomplete algorithms. Afterwards, initial research on description logic systems based on complete algorithms is summarized with a discussion of the systems KRIS and CRACK.

LOOM

The LOOM architecture [MacGregor and Bates, 1987; MacGregor, 1991b] offers TBox and ABox reasoning facilities for a description logic that can be characterized by the name ALCQRIFO plus additional constructs for dealing with real numbers (see also [Brill, 1994] or [Horrocks, 1997a, p. 43]). LOOM is based on KL-ONE, i.e., concept definitions with necessary or with necessary and sufficient conditions play an important role in domain modeling with LOOM. It should be emphasized that truth maintenance facilities for revision were built into the LOOM architecture right from the beginning and have influenced the design of the whole system [MacGregor, 1988;
MacGregor and Brill, 1992]. While first LOOM versions were based on description logics [MacGregor and Brill, 1992] in later versions an attempt was made to develop a “description classifier for the Predicate Calculus” [MacGregor, 1994]. For instance, facilities for dealing with definitions for relations were added. The current version of LOOM is implemented in COMMONLISP and is available for research purposes. A new system (called POWERLOOM) for COMMONLISP as well as C and Java-based platforms can be licensed as well.

A distinguishing design goal of LOOM was the incorporation of an expressive query language for retrieving ABox individuals. Another design goal of LOOM was to support rule-based programming [Yen et al., 1991b; 1991a; MacGregor and Burstein, 1991]. Based on the rule system, it is possible to specify additional necessary conditions for individuals which (i) are explicitly mentioned in the ABox and (ii) are derived to be instances of a certain defined concept. The additional necessary conditions are called “implications” in LOOM [MacGregor, 1988]. The additional necessary conditions specified by rules are not exploited, for instance, for TBox reasoning. Note that an “implication” \(A \rightarrow B \) stated by a LOOM rule does not mean that \(\neg B \rightarrow \neg A \) holds, i.e., rule-based “implications” are not to be confused with true logical implications as provided by generalized concept inclusions that are now standard in newer systems (see below).

In order to meet the performance requirements of the applications for which LOOM was developed (e.g., natural language and image interpretation), incomplete algorithms for concept consistency and subsumption are implemented. Concerning ABox reasoning, LOOM applications required specific strategies to avoid the computation of unused results. Rather than employing the usual forward-chaining strategy of computing the most-specific atomic concepts of which the ABox individuals are instances, LOOM uses a scheme that considers the queries being posed to the system. Thus, backward-chaining strategies for query answering are used in the implementation [MacGregor and Brill, 1992]. However, for the rule system, it is important to detect whether an individual is an instance of a concept that is used as a precondition of a rule. In this case, forward-chaining techniques are exploited [MacGregor, 1991b; MacGregor and Brill, 1992]. The combination of forward-chaining and backward-chaining inferences can be specified for a certain application problem by “marking” concepts accordingly. The user can control the inference process by these means but is also responsible for estimating the effects of these declarations.

The arguments for the LOOM approach can be summarized as follows: The intractability of the representation language can hardly be avoided to fulfill the requirements of users. Therefore, the idea is to support the features in one system rather than as a set of application-specific ad hoc supplements (“Where resides the scruffiness?” [MacGregor, 1991a, p. 396]). Obviously, incompleteness is no problem as long as the answers of the inference system are interpreted in the right way (i.e.,
“no” answers should not be trusted). Several researchers argued that there is always the inherent danger that non-expert users either do not know this or might not recognize this as a potential danger (cf. the work on complete systems [Baader and Hollunder, 1991a; 1991b] discussed below). However, if a combinatorial explosion occurs in a complete algorithm, in practice, no result is available as well. Concerning incomplete algorithms for decidable description logics, similar arguments as for other modeling environments based on first-order logic can be mentioned: If, in a certain application, concept terms are checked for consistency and a combinatorial explosions occur in complete algorithms, incomplete algorithms at least might provide some support, e.g., for building a TBox. Just signalling a timeout during the execution of a complete algorithm that runs into a combinatorial explosion might result in less information. In this case, an incomplete algorithm might succeed in finding at least some inconsistencies. Note however, that in modern inference system technologies supporting complete reasoning, incomplete reasoners are used as “preprocessors” in order to speed up inferences (see the next chapter).

LOOM supports different kinds of individuals (classified instances, light instances, CLOS instances). For different kinds of instances different levels of inference services are supported, e.g., for classified instances, the set of most specific atomic concepts of which the classified individual is an instance is computed once new assertions are specified. Thus, for classified instances, the rule-based forward chaining engine is triggered and possibly new assertions are automatically added to an ABox (for details see [MacGregor and Brill, 1992]).

A problem with the LOOM approach is that from a user perspective it is hard to characterize the source of the incompleteness of the LOOM reasoning algorithms (see the discussion in [Horrocks, 1997a, p. 42]). Although the inference techniques used in LOOM are characterized in [MacGregor, 1991b, p. 90], once a system is incomplete, there is no adequate measure for the “quality of service” in terms of an implementation-independent characterization. For instance, in CLASSIC the characterization of the incompleteness of the inference system concerning individual reasoning was given in terms of a weak semantics for the offered representation constructs (see above). It should be noted that specifying the incompleteness on the semantical level is by no means a trivial task. Not only incompleteness issues are important in this context. For instance, the theoretical background for giving a semantics for rule-based computations was only investigated recently [Donini et al., 1992b; 1994a; 1998a].

Incomplete reasoning facilities might lead to unexpected behavior. We demonstrate with an example that incomplete inference algorithms can have effects in situations a user might not be aware of. LOOM also supports closed-world reasoning. The strategy for closing a role for an individual is to count the number of known role fillers. However, in addition to the individuals explicitly mentioned in
the ABox, existential quantifications and minimum number restrictions have to be considered. Assuming too few of these individuals might result in an inconsistency. This is demonstrated with a simple knowledge base example with the following ABox \{(∃R.A ∩ ∃R.B ∩ ∃R.C)(i), R(i,j)\}. Let us assume, in the TBox there exist axioms such that A is implicitly declared as disjoint from both concepts, B and C. In the LOOM system, specific reasoning techniques (e.g., a technique called “conditioning” [MacGregor, 1991b]) are implemented to compute the number of necessary fillers. Closing the role R for i by adding \((≤ 1 R)(i)\) makes the ABox inconsistent. However, since LOOM is incomplete, it might be the case that the disjointness of A and B as well as A and C is not detected and, therefore, too few fillers are assumed to exist in the closing process. Thus, the added maximum number restriction might be too restrictive, i.e., the system is unsound if closed-world reasoning is employed.

Note that the semantic basis of automatic closing of roles as offered by LOOM is hard to characterize for expressive representation languages. Obviously, closing the role R for i with \((≤ 2 R)(i)\) might be a candidate. However, closing the role R for i with \((≤ 3 R)(i)\) might also be possible. In this case we have more individuals but with less specific constraints.

Back and Flex

Research on BACK (Berlin Advanced Computational Knowledge representation system) started in 1985, approximately at the same time as work on the LOOM system was initiated. BACK was also called a knowledge representation environment [Quanz and Kindermann, 1990; Peltason, 1991; Hoppe et al., 1993].

The description logic of the initial BACK system can be called \(\mathcal{ALQR}^{-1}\). There was also support for reasoning with numbers and attribute sets. Research on the inference algorithms for the basic BACK language stimulated the development of theoretical results on the complexity of concept consistency reasoning (e.g., [Nebel, 1988; 1990a]) as well as the semantics of cycles [Nebel, 1991]. Additionally, not only terminological reasoning was considered but an investigation was made on the development of a hybrid architecture consisting of a TBox and an ABox. Issues of integration and balancing in hybrid knowledge representation systems, namely balanced expressiveness and tight coupling in hybrid systems, were analyzed in [Nebel and von Luck, 1987; 1988]. Research on the BACK system helped to shape the current view on balanced representation schemes with TBox and ABox. In order to provide an hybrid representation language, BACK was one of the first systems, in which TBox concept terms could also be used in an ABox to assert, e.g., disjunctive information about individuals. In addition, distinct individuals were assumed to denote distinct objects. Hence, the number of role fillers could be counted and compared against number restrictions (this was also done in KRYPTON as pointed
out by [Woods and Schmolze, 1990, p. 165]). The algorithms used in BACK for instance checking and instance retrieval are described in [Nebel and von Luck, 1987; 1988; Kindermann and Randi, 1990]. In general, the discussion of the problems of incomplete algorithms that was sketched in the previous section also applies to the BACK system because the inference algorithms used in BACK are also known to be incomplete.

In order to provide a knowledge representation environment, the BACK architecture was designed to support incremental additions to the ABox. BACK was one of the first attempts to implement algorithms for reasoning about retraction of ABox assertions. BACK supported retraction of told information, also called literal retraction [Nebel, 1990a; Kindermann, 1992]. This is also supported in the LOOM system. ABox assertions can be retrieved from a database by automatically computing SQL queries [Schmiedel, 1993]. For the applications considered in the BACK project, reasoning about time was important. Therefore, an integration of temporal reasoning and terminological reasoning was investigated by several project members. Investigations about how to incorporate temporal reasoning into terminological reasoning are reported in [Schmiedel, 1988; 1990; Schild, 1993; Fischer, 1992; Neuwirth, 1993].

In the successor system FLEX [Quanz et al., 1995], incomplete algorithms were implemented for the description logic \textit{ALCQRI.FO}. Additionally, reasoning about equations and inequations concerning integers was supported. Furthermore, the FLEX system served as a testbed for investigating so-called weighted defaults [Quanz and Royer, 1992]. The initial implementation of FLEX was developed in Prolog. FLEX++ was a reimplementation in C++. The implementation was faster, but for application knowledge bases the performance was not sufficient. Appropriate optimization techniques (see the next chapter) had not been investigated in the context of description logics at the time of the development of the FLEX implementation.

In general, it is quite difficult to compare different systems and knowledge representation environments because the services being offered and the representation languages are not standardized (see [Patel-Schneider and Swartout, 1993] for a proposal on standardizing representation languages and inference services). Experiences with system implementations indicated that either limited expressiveness or incompleteness of reasoning could possibly lead to problems in applications. Therefore, other researchers investigated the implementation of systems based on sound and complete algorithms (published at the end of the eighties and beginning of the nineties). One can consider [Schmidt-Schauß and Smolka, 1991] as a starting point of this development (see also [Donini et al., 1991a]). Based on tableaux calculi, practical description logic implementations were developed. We discuss the architectures of the systems KRIS and CRACK.
Kris

The development of sound and complete reasoning systems for more expressive description logics started at the end of the eighties. One of the main developments in this direction was the system Kris. The approach of Kris was to implement sound and complete algorithms for an expressive description logic and to develop optimization techniques for TBox reasoning so that, in practice, reasonable performance could be expected. The description logic of Kris is \mathcal{ALCNF} [Baader and Hollunder, 1991a; 1991b]. As an addition, Kris provides enumerated types (\mathcal{O} operator) and an experimental interface for reasoning about so-called concrete domains [Baader and Hanschke, 1991a; 1991b; 1992] (e.g., linear inequations over the reals). Role conjunctions were supported with a prototype implementation. The focus of the work in the Kris project was on TBox-classification. Nevertheless, Kris was one of the first systems also supporting sound and complete ABox reasoning in expressive description logics. Even multiple ABoxes could be handled. The implementation language of Kris was COMMONLISP (see [Hollunder et al., 1991] for a User’s Guide and [Achilles et al., 1991] for a description of the graphical user interface).

The idea behind optimizing TBox classification was to exploit “obvious” information concerning “told” superconcepts and primitive concepts. In many concept definitions of application knowledge bases the right-hand side is a conjunction with concept names and concept terms. The conjuncts which are concept names on the right-hand side are defined as the “told” subsumers. Another important point was to avoid recomputation of subsumption relations found in preceding computation steps. Thus, caching and propagation techniques were implemented. The idea was that information can be propagated in the subsumption lattice such that expensive subsumption tests can be avoided where possible. Kris was the first system for which systematic empirical tests were carried out. The algorithms evaluated in [Baader et al., 1992a; 1994] are still in use in modern description logic systems (see below). Extensions such as defaults were investigated as well (see also [Baader and Hollunder, 1992; 1993; Hollunder, 1994a]) but have not been implemented in Kris.

Although the benchmarks considered in [Baader et al., 1994] revealed that the performance of Kris for TBox reasoning was comparable to that of other systems of that time, the more or less direct implementation of nondeterministic tableaux algorithms that were developed for proving the decidability of problems in the field of theoretical computer science with chronological backtracking as in Kris led to performance problems for many applications. One of the main results of the Kris project was that sound and complete inference algorithms are an important starting
point for research on optimized sound and complete algorithms for practical system development.

Crack

One of the main research goals of the system Crack was to implement sound and complete algorithms for dealing with inferences about individuals in concept terms. Rather than providing a non-standard semantics as in Classic (individuals are mapped onto sets of domain objects), in Crack, individuals are mapped to elements of the domain. Thus, coreferences also have to be considered in concept terms. Crack supports the description logic ALCRIFO [Bresciani et al., 1995]. The implementation of Crack is based on CommonLisp. Crack provided a web interface.

In a similar way as in Kris, obvious information is exploited in the architecture to some extent but, nevertheless, Crack is a direct implementation of the tableaux rules of the underlying calculus. In the middle of the nineties it became clear that sound and complete reasoning is needed for many applications but the employed inference techniques which had been developed for (manually) deriving decidability results, e.g., with tableaux algorithms, were not suited for direct implementation. Thus, at the beginning of the nineties it became clear that there is a long way to go from a decidability proof to a working system, which has good performance in the average case.

Other systems

The list of systems we have discussed in this chapter is certainly incomplete. The large number of projects involved in the development of knowledge representation systems shows the importance of this area. Usually description logic systems are built around a core engine which is a consistency checker. However, there are other services to be supplied which are also important to make the systems usable in larger application projects. We present an overview of some additional systems with interesting features developed at the beginning of the nineties.

Among other points, the graphical manipulation of representations was investigated in the Sb-One project [Allgayer, 1990; Kobsa, 1991b; 1991a]. The implementation language was CommonLisp. Techniques for graphical interfaces to support knowledge base development with Sb-One are described in [Kalmes, 1988; 1990] (see also [Abrett and Burstein, 1987] for a description of the Kreme system). Furthermore, in Sb-One the use of contexts (also called partitions) was explored for user modeling applications in natural language generation.

Another important point for DL inference systems is persistence and transaction
management. We have already discussed the BACK approach [Schmiedel, 1993] (see also [Borgida, 1995]). Additional investigations were also made with the K-REP system [Mays et al., 1991a; 1991b].

Summary: standard inference services of Description Logics systems

Before discussing successors of the second generation systems presented in this section it is appropriate to summarize the main inference problems that are now assumed as standard for DL systems. The inference services provided by DL systems for concept consistency and TBox reasoning can be summarized as follows.

- **Concept consistency** (w.r.t. a TBox)
- **Concept subsumption** (w.r.t. a TBox)
- Another important inference service for practical knowledge representation is to check whether a certain concept name is inconsistent w.r.t. a TBox. Usually, inconsistent concept names are the consequence of modeling errors. Checking the consistency of all concept names mentioned in a TBox without computing the parents and children is called a TBox coherence check.
- The problem of computing the most-specific concept names mentioned in a TBox that subsume a certain concept is known as computing the parents of a concept. The children are the most-general concept names mentioned in a TBox that are subsumed by a certain concept. We use the name concept ancestors (concept descendants) for the transitive closure of the parents (children) relation. The computation of the parents and children of every concept name is also called classification of the TBox. This inference is needed to build a hierarchy of concept names w.r.t. specificity and is known as TBox classification.

If a system supports ABox reasoning, the following inference services are provided:

- **ABox consistency** (w.r.t. a TBox)
- **Instance test** w.r.t. a TBox and an ABox
- The most-specific concept names mentioned in a TBox T of which an individual is an instance are called the direct types of the individual w.r.t. a TBox and an ABox.
- The retrieval inference problem is to find all individuals mentioned in an ABox that are an instance of a given concept C w.r.t. a TBox.
- The set of fillers of a role R for an individual i w.r.t. a TBox T and an ABox A is defined as $\{x \mid (T, A) \models (i, x) : R\}$ where $(T, A) \models ax$ means that all models of T and A are also models of ax.
- The set of roles between two individuals i and j w.r.t. a knowledge base (T, A) is defined as $\{R \mid (T, A) \models (i, x) : R\}$.
In many DL systems, there are some auxiliary queries supported: retrieval of the concept names or individuals mentioned in a knowledge base, retrieval of the set of roles, retrieval of the role parents and children (defined analogously to the concept parents and children, see above), retrieval of the set of individuals in the domain and in the range of a role, etc. As we have discussed in this section, DL systems of the second generation offer more or less all or these inference services. An exception is a language for specifying retrieval queries that goes beyond the simple retrieval inference problem mentioned above (see e.g., the discussion about LOOM).

8.4 The next generation: \textsc{Fact}, \textsc{Dlp} and \textsc{Racer}

The declarative nature of description logic modeling is even more important when problems are treated for which languages are required that are no longer tractable. Inspired by theoretical advances, e.g., for handling number restrictions, role conjunctions, generalized concept inclusions as well as cyclic axioms with descriptive semantics (ALCNR [Buchheit \textit{et al.}, 1993a]), transitive roles (ALC_R^+ [Sattler, 1996]), role hierarchies and features (ALCH_f^+ [Horrocks, 1998b]), as well as inverse roles, qualified number restrictions, and role hierarchies (SHI_Q [Horrocks \textit{et al.}, 1999] also called ALCQHIL_R^+, pronounced ALC-choir), the development of another generation of sound and complete description logic systems was started at the end of the nineties.

\textsc{Fact}

Initially, research on practical implementations of description logic systems for expressive description logics started with a focus on concept and TBox reasoning. However, rather than directly implementing the tableaux calculus used for the theoretical decidability proofs and complexity analyses, a rigorous investigation into methods for informed search was made for developing the next generation of description logic systems. In particular, average-case optimization techniques have been investigated with the system \textsc{Fact} ([Horrocks, 1997a; 1998b; Horrocks and Patel-Schneider, 1999] see also the subsequent chapter for details). At the time of this writing, two versions of \textsc{Fact} are available. One version supports TBox reasoning for the description logic ALCH_f^+ [Horrocks, 1997a; 1998b]. Furthermore, a newer version of \textsc{Fact} also supports TBox reasoning with inverse roles and qualified number restrictions (SHI_Q [Horrocks, 1999; Horrocks \textit{et al.}, 1999]). At the time of this writing, \textsc{Fact} does not support ABoxes.

It was the \textsc{Fact} system that first demonstrated the usefulness of expressive description logics for developing practical applications. It was shown that, although runtime behavior can be exponential in the worst case, in practical contexts, op-
timization techniques can be found that prevent a DL system from running into combinatorial explosion. Nevertheless, the algorithms are still sound and complete. Indeed, after several years of experiences with less expressive systems such as Classic, research on FaCT stimulated many research activities for developing optimized DL system implementations for expressive description logics.

The system FaCT is implemented in COMMONLISP and can be downloaded with source code for research purposes. A CORBA interface guarantees seamless integration into network-aware applications. Various input formats are supported by FaCT (e.g., for XML-based notations of TBoxes). The graphical interface OilEd for developing TBoxes in the spirit of frame systems is described in [Bechhofer et al., 2001b].

DLP

Based on similar techniques as FaCT, the system DLP utilizes extended techniques for optimizations [Horrocks and Patel-Schneider, 1998c; 1998d; Patel-Schneider, 1999]. DLP supports concept consistency reasoning for the description logic \(\mathcal{ALCN} \). From a modal logic perspective, \(\mathcal{ALCN} \) can also be called Propositional Dynamic Logic (PDL) with a restricted form of graded modalities, i.e., simple number restrictions.

DLP has succeeded in many performance competitions [Horrocks, 1998a; Horrocks and Patel-Schneider, 1998c; Patel-Schneider, 1999]. It was shown that tableau-based approaches can be implemented such that the performance for satisfiability testing for \(\mathcal{ALC} \) or modal logic \(\mathcal{K}_m \) is comparable to traditional approaches used in the community [Giunchiglia and Sebastiani, 1996b; Giunchiglia et al., 1999].

However, in the current version of DLP TBox classification is not provided as an inference service. In particular, no generalized concept inclusions and no TBoxes with forward references are supported (i.e., algorithms for dealing with generalized concept inclusions are not implemented in DLP). ABoxes are not supported as well. DLP is implemented in SML.

RACER

For many applications, besides concept consistency and TBox reasoning, ABox reasoning is also important. Calculi for ABox consistency have been presented for the above-mentioned representation constructs: \(\mathcal{ALCN} \) [Buchheit et al., 1993b], \(\mathcal{ALCN} \mathcal{H}_{R^+} \) [Haarslev and Möller, 2000], \(\mathcal{ALCQHI}_{R^+} \) \(\mathcal{SHIQ} \) [Horrocks et al., 2000c]. Based on theoretical results, a practical implementation of ABox calculi was developed with the full TBox and ABox description logic system RACER [Haarslev and Möller, 1999; 2001e]. RACER supports all optimization techniques that are
incorporated into Fact. Some new optimization techniques investigated with the RACER system (e.g., for dealing with number restrictions and ABoxes) are mentioned in the next chapter. In RACER, the unique name assumption for ABox individuals is imposed. In order to demonstrate the usefulness of DL systems for practical applications, high performance reasoning for large TBoxes is discussed in [Haarslev and Möller, 2001c].

Initial versions of the RACER system supported the logic $\mathcal{ALCN}^R_{\mathcal{H}}$. In later versions reasoning was extended to ABox reasoning with the logic $\mathcal{ALCQI}^R_{\mathcal{H}}$ (\mathcal{SHIQ}). In addition, RACER supports concrete domains without so-called feature chains (see [Baader and Hanschke, 1991a] and the discussion of the KRIS system). In particular, predicates representing linear inequalities about the reals are handled by RACER (see [Haarslev et al., 2001; Haarslev and Möller, 2001b] for details).

RACER dynamically selects appropriate optimization techniques due to a static analysis of input TBoxes, ABoxes and queries. As a distinguishing feature, which is important for many applications, it should also be mentioned that RACER supports multiple TBoxes and ABoxes (see also the KRIS system). Assertions can be added to ABoxes after queries have been answered. In addition, for instance, RACER also provides support for retraction of assertions from ABoxes.

RACER can be downloaded for research purposes as a server program for standard operating systems with no additional licenses. A socket-based network version with Java interface is available. The implementation language of RACER is COMMON-LISP.

8.5 Lessons learned

Considering the evolving technology of description logic systems it becomes clear that at the end of the nineties there is an enormous interest in description logic reasoning systems. This is demonstrated by the quite large number of system implementations. Currently, all modern DL systems are based on sound and complete algorithms. Thus, system developers can really rely on all answers computed by a DL system. This positive trend has been initiated by the development of optimization techniques that ensure stable runtimes for average-case inputs for real-world problems even if the worst-case complexity is exponential (see also below). The trend has been initiated by the landmark system Fact.

The original idea of the tell and ask interface of KRYPTON is still realized in modern systems. However, at the time of this writing, the systems support only some kind of batch-oriented behavior. A knowledge base (TBox and ABox) is passed to the systems (tell interface). Afterwards, queries can be answered (ask interface). But, no incremental additions to the knowledge base are possible after the first query is answered. The difficulty is that complex transformations on the knowledge
bases are necessary in order to compute an internal representation that can be used for relatively fast query answering (see the discussion on optimization techniques in subsequent chapters). The price to pay is that algorithms for appropriately handling incremental additions to a knowledge base are not yet known. Other features, e.g., explanation facilities, retraction, etc. still have to be developed for expressive DLs as well.

As a second and quite important lesson one can see that description logics with more expressiveness and sound and complete algorithms impose a different view in modeling. Concept definitions as known from, for instance, CLASSIC are no longer the central modeling device if generalized concept inclusions (representing cyclic implications or equalities) are available.\(^1\)

A third lesson we can learn from considering description logic systems and their development is that the implementation language is hardly important for the magnitude of speed (compared to the expressiveness of the description logic). What really counts is the set of optimization strategies, the implementation of index data structures and the selection of clever heuristics. There are first attempts to provide a distributed implementation of a description logic system. However, performance problems in network communication lead to server-based solutions, i.e., a knowledge base is being processed at a single workstation computer (but may be accessed from different clients). Benchmark generators and standardized application knowledge bases are used for metering system performance. Thus, different system implementations can be compared.

With RACER we have discussed a state-of-the-art description logic system that also supports ABoxes and concrete domains. However, only simple query languages are currently available. For description logics without inverse roles and number restrictions (i.e., \(\mathcal{ALCH}_{R^+}\)), [Tessaris, 2001] developed the theoretical basis for supporting so-called conjunctive in DL systems. However, for DLs as expressive as \(\mathcal{SHIQ}\) much less is known.

Another lesson is that the development of techniques for practically incorporating facilities for the representation of space and time into description logics is still an open issue. The necessity of a semantics-based integration of temporal and terminological reasoning has been emphasized in first investigations in the BACK project. However, early approaches (e.g., [Schmiedel, 1990]) have been shown to be undecidable [Halpern and Shoham, 1991; Schild, 1993]. In the context of planning, the opportunities of an integrated environment combining temporal and terminological reasoning were clearly demonstrated with the RHET system [Allen, 1991]. It has been shown that spatial reasoning (e.g., about topological relations) induces non-obvious subsumption relationships between concepts [Haarslev et al., 1998;\(^1\)

\(^1\) Nevertheless, description logics can still be called object-based representation formalisms, although there are some approaches to deal with n-ary relations [Schmolze, 1989; Calvanese et al., 1998d] as well.
The work presented in [Artale et al., 2001] demonstrates that the decidability barrier is achieved if temporal operators are integrated into expressive description logics. Nevertheless, [Artale et al., 2001] identify a fragment that allows for a limited kind of practical modeling. Initial experiments concerning an implementation of a description logic that supports operator for linear time temporal reasoning are discussed in [Günsel and Wittmann, 2001].
Implementation and Optimisation Techniques
Ian Horrocks

Abstract
This chapter will discuss the implementation of the reasoning services which form the core of Description Logic based Knowledge Representation Systems. To be useful in realistic applications, such systems need both expressive logics and fast reasoners. As expressive logics inevitably have high worst-case complexities, this can only be achieved by employing highly optimised implementations of suitable reasoning algorithms. Systems based on such implementations have demonstrated that they can perform well with problems that occur in realistic applications, including problems where unoptimised reasoning is hopelessly intractable.

9.1 Introduction
The usefulness of Description Logics (DLs) in applications has been hindered by the basic conflict between expressiveness and tractability. Realistic applications typically require both expressive logics, with inevitably high worst-case complexities for their decision procedures, and acceptable performance from the reasoning services. Although the definition of acceptable may vary widely from application to application, early experiments with DLs indicated that, in practice, performance was a serious problem, even for logics with relatively limited expressive powers [Heinsohn et al., 1992].

On the other hand, theoretical work has continued to extend our understanding of the boundaries of decidability in DLs, and has led to the development of sound and complete reasoning algorithms for much more expressive logics. The expressive power of these logics goes a long way towards addressing the criticisms levelled at DLs in traditional applications such as ontological engineering [Doyle and Patil, 1991] and is sufficient to suggest that they could be useful in several exciting new application domains, for example reasoning about DataBase schemata and queries [Calvanese et al., 1998f; 1998a] and providing reasoning support for the so-called
Semantic Web [Decker et al., 2000; Bechhofer et al., 2001b]. However, the worst case complexity of their decision procedures is invariably (at least) exponential with respect to problem size.

This high worst case complexity initially led to the conjecture that expressive DLs might be of limited practical applicability [Buchheit et al., 1993c]. However, although the theoretical complexity results are discouraging, empirical analyses of real applications have shown that the kinds of construct which lead to worst case intractability rarely occur in practice [Nebel, 1990b; Heinsohn et al., 1994; Speel et al., 1995], and experiments with the KRIS system showed that applying some simple optimisation techniques could lead to a significant improvement in the empirical performance of a DL system [Baader et al., 1992a]. More recently the Fact, DLP and RACER systems have demonstrated that, even with very expressive logics, highly optimised implementations can provide acceptable performance in realistic applications [Horrocks and Patel-Schneider, 1999; Haarslev and Møller, 2001c].

In this chapter we will study the implementation of DL systems, examining in detail the wide range of optimisation techniques that can be used to improve performance. Some of the techniques that will be discussed are completely independent of the logical language supported by the DL and the kind of algorithm used for reasoning; many others would be applicable to a wide range of languages and implementation styles, particularly those using search based algorithms. However, the detailed descriptions of implementation and optimisation techniques will assume, for the most part, reasoning in an expressive DL based on a sound and complete tableaux algorithm.

9.1.1 Performance analysis

Before designing and implementing a DL based Knowledge Representation System, the implementor should be clear about the goals that they are trying to meet and against which the performance of the system will ultimately be measured. In this chapter it will be assumed that the primary goal is utility in realistic applications, and that this will normally be assessed by empirical analysis.

Unfortunately, as DL systems with very expressive logics have only recently become available [Horrocks, 1998a; Patel-Schneider, 1998; Haarslev and Møller, 2001e], there are very few applications that can be used as a source for test data.\(^2\) One application that has been able to provide such data is the European GALEN project, part of which has involved the construction of a large DL Knowledge Base describing

1 It should be pointed out that experience in this area is still relatively limited.

2 This situation is changing rapidly, however, with the increasing use of DLs in DataBase and ontology applications.
medical terminology [Rector et al., 1993]. Reasoning performance with respect to this knowledge base has been used for comparing DL systems [Horrocks and Patel-Schneider, 1998b], and we will often refer to it when assessing the effectiveness of optimisation techniques.

As few other suitable knowledge bases are available, the testing of DL systems has often been supplemented with the use of randomly generated or hand crafted test data [Giunchiglia and Sebastiani, 1996b; Heuerding and Schwendimann, 1996; Horrocks and Patel-Schneider, 1998b; Massacci, 1999; Donini and Massacci, 2000]. In many cases the data was originally developed for testing propositional modal logics, and has been adapted for use with DLs by taking advantage of the well know correspondence between the two formalisms [Schild, 1991]. Tests using this kind of data, in particular the test suites from the Tableaux’98 comparison of modal logic theorem provers [Balsiger and Heuerding, 1998] and the DL’98 comparison of DL systems [Horrocks and Patel-Schneider, 1998b], will also be referred to in assessments of optimisation techniques.

9.2 Preliminaries

This section will introduce the syntax and semantics of DLs (full details of which can be found in Chapter 2) and discuss the reasoning services which would form the core of a Description Logic based Knowledge Representation System. It will also discuss how, through the use of unfolding and internalisation, these reasoning services can often be reduced to the problem of determining the satisfiability of a single concept.

9.2.1 Syntax and semantics

DLs are formalisms that support the logical description of concepts and roles. Arbitrary concept and role descriptions (from now on referred to simply as concepts and roles) are constructed from atomic concept and role names using a variety of concept and role forming operators, the range of which is dependent on the particular logic. In the following discussion we will use C and D to denote arbitrary concepts, R and S to denote arbitrary roles, A and P to denote atomic concept and role names, and n to denote a nonnegative integer.

For concepts, the available operators usually include some or all of the standard logical connectives, conjunction (denoted \land), disjunction (denoted \lor) and negation (denoted \neg). In addition, the universal concept top (denoted \top, and equivalent to $A\lor\neg A$) and the incoherent concept bottom (denoted \bot, and equivalent to $A\land\neg A$) are often predefined. Other commonly supported operators include restricted forms of quantification called existential role restrictions (denoted $\exists R.C$) and universal role
restrictions (denoted \(\forall R.C\)). Some DLs also support qualified number restrictions (denoted \(\leq n.PC\) and \(\geq n.PC\)), operators that place cardinality restrictions on the roles relating instances of a concept to instances of some other concept. Cardinality restrictions are often limited to the forms \(\leq n.P\top\) and \(\geq n.P\top\), when they are called unqualified number restrictions, or simply number restrictions, and are often abbreviated to \(\leq nP\) and \(\geq nP\). The roles that can appear in cardinality restriction concepts are usually restricted to being atomic, as allowing arbitrary roles in such concepts is known no lead to undecidability [Baader and Sattler, 1996b].

Role forming operators may also be supported, and in some very expressive logics roles can be regular expressions formed using union (denoted \(\sqcup\)), composition (denoted \(\circ\)), reflexive-transitive closure (denoted \(\ast\)) and identity operators (denoted \(id\)), possibly augmented with the inverse (also known as converse) operator (denoted \(\sim\)) [De Giacomo and Lenzerini, 1996]. In most implemented systems, however, roles are restricted to being atomic names.

Concepts and roles are given a standard Tarski style model theoretic semantics, their meaning being given by an interpretation \(I = (\Delta^I, \tau^I)\), where \(\Delta^I\) is the domain (a set) and \(\tau^I\) is an interpretation function. Full details of both syntax and semantics can be found in Chapter 2.

In general, a DL knowledge base (KB) consists of a set \(T\) of terminological axioms, and a set \(A\) of assertional axioms. The axioms in \(T\) state facts about concepts and roles while those in \(A\) state facts about individual instances of concepts and roles. As in this chapter we will mostly be concerned with terminological reasoning, that is reasoning about concepts and roles, a KB will usually be taken to consist only of the terminological component \(T\).

A terminological KB \(T\) usually consists of a set of axioms of the form \(C \subseteq D\) and \(C \equiv D\), where \(C\) and \(D\) are concepts. An interpretation \(I\) satisfies \(T\) if for every axiom \((C \subseteq D) \in T\), \(C^I \subseteq D^I\), and for every axiom \((C \equiv D) \in T\), \(C^I = D^I\); \(T\) is satisfiable if there exists some non empty interpretation that satisfies it. Note that \(T\) can, without loss of generality, be restricted to contain only inclusion axioms or only equality axioms, as the two forms can be reduced one to the other using the following equivalences:

\[
C \subseteq D \iff \top \equiv D \sqcup \neg C
\]

\[
C \equiv D \iff C \subseteq D \text{ and } D \subseteq C
\]

A concept \(C\) is subsumed by a concept \(D\) with respect to \(T\) (written \(T \models C \subseteq D\)) if \(C^T \subseteq D^T\) in every interpretation \(I\) that satisfies \(T\), a concept \(C\) is satisfiable with respect to \(T\) (written \(T \models C \not\subseteq \bot\)) if \(C^T \neq \emptyset\) in some \(I\) that satisfies \(T\), and a concept \(C\) is unsatisfiable (not satisfiable) with respect to \(T\) (written \(T \models \neg C\)) if \(C^T = \emptyset\) in every \(I\) that satisfies \(T\). Subsumption and (un)satisfiability are closely
related. If $T \models C \subseteq D$, then in all interpretations \mathcal{I} that satisfy T, $C^\mathcal{I} \subseteq D^\mathcal{I}$ and so $C^\mathcal{I} \cap (\neg D)^\mathcal{I} = \emptyset$. Conversely, if C is not satisfiable with respect to T, then in all \mathcal{I} that satisfy T, $C^\mathcal{I} = \emptyset$ and so $C^\mathcal{I} \subseteq \bot^\mathcal{I}$. Subsumption and (un)satisfiability can thus be reduced one to the other using the following equivalences:

$$
T \models C \subseteq D \iff T \models \neg(C \cap \neg D)
$$

$$
T \models \neg C \iff T \models C \subseteq \bot
$$

In some DLs T can also contain axioms that define a set of transitive roles R_+ and/or a subsumption partial ordering on roles [Horrocks and Sattler, 1999]. An axiom $R \in R_+$ states that R is a transitive role while an axiom $R \subseteq S$ states that R is subsumed by S. An interpretation \mathcal{I} satisfies the axiom $R \in R_+$ if $R^\mathcal{I}$ is transitively closed (i.e, $(R^\mathcal{I})^+ = R^\mathcal{I}$), and it satisfies the axiom $R \subseteq S$ if $R^\mathcal{I} \subseteq S^\mathcal{I}$.

9.2.2 Reasoning services

Terminological reasoning in a DL based Knowledge Representation System is based on determining subsumption relationships with respect to the axioms in a KB. As well as answering specific subsumption and satisfiability queries, it is often useful to compute and store (usually in the form of a directed acyclic graph) the subsumption partial ordering of all the concept names appearing in the KB, a procedure known as classifying the KB [Patel-Schneider and Swartout, 1993]. Some systems may also be capable of dealing with assertional axioms, those concerning instances of concepts and roles, and performing reasoning tasks such as realisation (determining the concepts instantiated by a given individual) and retrieval (determining the set of individuals that instantiate a given concept) [Baader et al., 1991]. However, we will mostly concentrate on terminological reasoning as it has been more widely used in DL applications. Moreover, given a sufficiently expressive DL, assertional reasoning can be reduced to terminological reasoning [De Giacomo and Lenzerini, 1996].

In practice, many systems use subsumption testing algorithms that are not capable of determining subsumption relationships with respect to an arbitrary KB. Instead, they restrict the kinds of axiom that can appear in the KB so that dependency eliminating substitutions (known as unfolding) can be performed prior to evaluating subsumption relationships. These restrictions require that all axioms are unique, acyclic definitions. An axiom is called a definition of A if it is of the form $A \subseteq D$ or $A \equiv D$, where A is an atomic name, it is unique if the KB contains no other definition of A, and it is acyclic if D does not refer either directly or indirectly (via other axioms) to A. A KB that satisfies these restrictions will be called an unfoldable KB.

Definitions of the form $A \subseteq D$ are sometimes called primitive or necessary, as
I. Horrocks

\(D\) specifies a necessary condition for instances of \(A\), while those of the form \(A \equiv D\) are sometimes called non-primitive or necessary and sufficient as \(D\) specifies conditions that are both necessary and sufficient for instances of \(A\). In order to distinguish non-definitional axioms, they are often called general axioms [Buchheit et al., 1993a]. Restricting the KB to definition axioms makes reasoning much easier, but significantly reduces the expressive power of the DL. However, even with an unrestricted (or general) KB, definition axioms and unfolding are still useful ideas, as they can be used to optimise the reasoning procedures (see Section 9.4.3).

9.2.3 Unfolding

Given an unfoldable KB \(T\), and a concept \(C\) whose satisfiability is to be tested with respect to \(T\), it is possible to eliminate from \(C\) all concept names occurring in \(T\) using a recursive substitution procedure called unfolding. The satisfiability of the resulting concept is independent of the axioms in \(T\) and can therefore be tested using a decision procedure that is only capable of determining the satisfiability of a single concept (or equivalently, the satisfiability of a concept with respect to an empty KB).

For a non-primitive concept name \(A\), defined in \(T\) by an axiom \(A \equiv D\), the procedure is simply to substitute \(A\) with \(D\) wherever it occurs in \(C\), and then to recursively unfold \(D\). For a primitive concept name \(A\), defined in \(T\) by an axiom \(A \subseteq D\), the procedure is slightly more complex. Wherever \(A\) occurs in \(C\) it is substituted with the concept \(A' \cap D\), where \(A'\) is a new concept name not occurring in \(T\) or \(C\), and \(D\) is then recursively unfolded. The concept \(A'\) represents the “primitiveness” of \(A\)—the unspecified characteristics that differentiate it from \(D\).

We will use \(\text{Unfold}(C, T)\) to denote the concept \(C\) unfolded with respect to a KB \(T\).

A decision procedure that tries to find a satisfying interpretation \(I\) for the unfolded concept can now be used, as any such interpretation will also satisfy \(T\). This can easily be shown by applying the unfolding procedure to all of the concepts forming the right hand side of axioms in \(T\), so that they are constructed entirely from concept names that are not defined in \(T\), and are thus independent of the other axioms in \(T\). The interpretation of each defined concept in \(T\) can then be taken to be the interpretation of the unfolded right hand side concept, as given by \(I\) and the semantics of the concept and role forming operators.

Subsumption reasoning can be made independent of \(T\) using the same technique. Given two concepts \(C\) and \(D\), determining if \(C\) is subsumed by \(D\) with respect to \(T\) is the same as determining if \(\text{Unfold}(C, T)\) is subsumed by \(\text{Unfold}(D, T)\) with
respect to an empty KB:

\[T \models C \sqsubseteq D \iff \emptyset \models \text{Unfold}(C, T) \sqsubseteq \text{Unfold}(D, T) \]

Unfolding would not be possible, in general, if the axioms in \(T \) were not unique acyclic definitions. If \(T \) contained multiple definition axioms for some concept \(A \), for example \(\{(A \equiv C), (A \equiv D)\} \subseteq T \), then it would not be possible to make a substitution for \(A \) that preserved the meaning of both axioms. If \(T \) contained cyclical axioms, for example \((A \sqsubseteq \exists R.A) \in T \), then trying to unfold \(A \) would lead to non-termination. If \(T \) contained general axioms, for example \(\exists R.C \sqsubseteq D \), then it could not be guaranteed that an interpretation satisfying the unfolded concept would also satisfy these axioms.

9.2.4 Internalisation

While it is possible to design an algorithm capable of reasoning with respect to a general KB [Buchheit et al., 1993a], with more expressive logics, in particular those allowing the definition of a universal role, a procedure called internalisation can be used to reduce the problem to that of determining the satisfiability of a single concept [Baader, 1991]. A truly universal role is one whose interpretation includes every pair of elements in the domain of interpretation (i.e., \(\Delta^I \times \Delta^I \)). However, a role \(U \) is universal w.r.t. a terminology \(T \) if it is defined such that \(U \) is transitively closed and \(P \sqsubseteq U \) for all role names \(P \) occurring in \(T \). For a logic that supports the union and transitive reflexive closure role forming operators, this can be achieved simply by taking \(U \) to be

\((P_1 \sqcup \ldots \sqcup P_n \sqcup P^-_1 \sqcup \ldots \sqcup P^-_n)^* \),

where \(P_1, \ldots, P_n \) are all the roles names occurring in \(T \). For a logic that supports transitively closed roles and role inclusion axioms, this can be achieved by adding the axioms

\((U \in R_+), (P_1 \sqsubseteq U), \ldots, (P_n \sqsubseteq U), (P^-_1 \sqsubseteq U), \ldots, (P^-_n \sqsubseteq U) \)

to \(T \), where \(P_1, \ldots, P_n \) are all the roles names occurring in \(T \) and \(U \) is a new role name not occurring in \(T \). Note that in either case, the inverse role components are only required if the logic supports the inverse role operator.

The concept axioms in \(T \) can be reduced to axioms of the form \(\top \sqsubseteq C \) using the equivalences:

\[A \equiv B \iff \top \sqsubseteq (A \sqcup \neg B) \cap (\neg A \sqcup B) \]
\[A \sqsubseteq B \iff \top \sqsubseteq \neg A \sqcup B \]
These axioms can then be conjoined to give a single axiom $\top \sqsubseteq C$, where

$$
C = \bigcap_{(A_i \sqcup B_i) \in T} ((A_i \sqcup \neg B_i) \sqcap (\neg A_i \sqcup B_i)) \sqcap \bigcap_{(A_j \sqsubseteq B_j) \in T} (\neg A_j \sqcup B_j)
$$

Because the interpretation of \top is equal to the domain ($\top^I = \Delta^I$), this axiom states that every element in the domain must satisfy C. When testing the satisfiability of a concept D with respect to T, this constraint on possible interpretations can be imposed by testing the satisfiability of $D \sqcap C \sqcap \forall U.C$ (or simply $D \sqcap \forall U.C$ in the case where U is transitively reflexively closed). This relies on the fact that satisfiable DL concepts always have an interpretation in which every element is connected to every other element by some sequence of roles (the collapsed model property) [Schild, 1991].

9.3 Subsumption testing algorithms

The use of unfolding and internalisation means that, in most cases, terminological reasoning in a Description Logic based Knowledge Representation System can be reduced to subsumption or satisfiability reasoning. There are several algorithmic techniques for computing subsumption relationships, but they divide into two main families: structural and logical.

9.3.1 Structural subsumption algorithms

Structural algorithms were used in early DL system such as KL-ONE [Brachman and Schmolze, 1985], NIKL [Kaczmarek et al., 1986] and KRYPTON [Brachman et al., 1983a], and are still used in systems such as CLASSIC [Patel-Schneider et al., 1991], LOOM [MacGregor, 1991b] and GRAIL [Rector et al., 1997]. To determine if one concept subsumes another, structural algorithms simply compare the (normalised) syntactic structure of the two concepts (see Chapter 2).

Although such algorithms can be quite efficient [Borgida and Patel-Schneider, 1994; Heinsohn et al., 1994], they have several disadvantages.

- Perhaps the most important disadvantage of this type of algorithm is that while it is generally easy to demonstrate the soundness of the structural inference rules (they will never infer an invalid subsumption relationship), they are usually incomplete (they may fail to infer all valid subsumption relationships).
- It is difficult to extend structural algorithms in order to deal with more expressive logics, in particular those supporting general negation, or to reason with respect to an arbitrary KB. This lack of expressive power makes the DL system of limited value in traditional ontological engineering applications [Doyle and
Implementation and Optimisation Techniques

Patil, 1991, and completely useless in DataBase schema reasoning applications [Calvanese et al., 1998f].

• Although accepting some degree of incompleteness is one way of improving the performance of a DL reasoner, the performance of incomplete reasoners is highly dependent on the degree of incompleteness, and this is notoriously difficult to quantify [Borgida, 1992a].

9.3.2 Logical algorithms

These kinds of algorithm use a refutation style proof: C is subsumed by D if it can be shown that the existence of an individual x that is in the extension of C ($x \in C^I$) but not in the extension of D ($x \notin D^I$) is logically inconsistent. As we have seen in Section 9.2.2, this corresponds to testing the logical (un)satisfiability of the concept $C \sqcap \neg D$ (i.e., $C \sqsubseteq D$ iff $C \sqcap \neg D$ is not satisfiable). Note that forming this concept obviously relies on having full negation in the logic.

Various techniques can be used to test the logical satisfiability of a concept. One obvious possibility is to exploit an existing reasoner. For example, the LOGICSWORKBENCH [Balsiger et al., 1996], a general purpose proposition modal logic reasoning system, could be used simply by exploiting the well known correspondences between description and modal logics [Schild, 1991]. First order logic theorem provers can also be used via appropriate translations of DLs into first order logic. Examples of this approach can be seen in systems developed by Hustadt and Schmidt [1997], using the SPASS theorem prover, and Paramasivam and Plaisted [1998], using the CLIN-S theorem prover. An existing reasoner could also be used as a component of a more powerful system, as in KSAT/*SAT [Giunchiglia and Sebastiani, 1996a; Giunchiglia et al., 2001a], where a propositional satisfiability (SAT) tester is used as the key component of a propositional modal satisfiability reasoner.

There are advantages and disadvantages to the “re-use” approach. On the positive side, it should be much easier to build a system based on an existing reasoner, and performance can be maximised by using a state of the art implementation such as SPASS (a highly optimised first order theorem prover) or the highly optimised SAT testing algorithms used in KSAT and *SAT (the use of a specialised SAT tester allows *SAT to outperform other systems on classes of problem that emphasise propositional reasoning). The translation (into first order logic) approach has also been shown to be able to deal with a wide range of expressive DLs, in particular those with complex role forming operators such as negation or identity [Hustadt and Schmidt, 2000].

On the negative side, it may be difficult to extend the reasoner to deal with more expressive logics, or to add optimisations that take advantage of specific features
of the DL, without reimplementing the reasoner (as has been done, for example, in more recent versions of the *SAT system).

Most, if not all, implemented DL systems based on logical reasoning have used custom designed tableaux decision procedures. These algorithms try to prove that D subsumes C by starting with a single individual satisfying $C \cap \neg D$, and demonstrating that any attempt to extend this into a complete interpretation (using a set of tableaux expansion rules) will lead to a logical contradiction. If a complete and non-contradictory interpretation is found, then this represents a counter example (an interpretation in which some element of the domain is in C^I but not in D^I) that disproves the conjectured subsumption relationship.

This approach has many advantages and has dominated recent DL research:

- it has a sound theoretical basis in first order logic [Hollunder et al., 1990];
- it can be relatively easily adapted to allow for a range of logical languages by changing the set of tableaux expansion rules [Hollunder et al., 1990; Bresciani et al., 1995];
- it can be adapted to deal with very expressive logics, and to reason with respect to an arbitrary KB, by using more sophisticated control mechanisms to ensure termination [Baader, 1991; Buchheit et al., 1993c; Sattler, 1996];
- it has been shown to be optimal for a number of DL languages, in the sense that the worst case complexity of the algorithm is no worse than the known complexity of the satisfiability problem for the logic [Hollunder et al., 1990].

In the remainder of this chapter, detailed descriptions of implementation and optimisation techniques will assume the use of a tableaux decision procedure. However, many of the techniques are independent of the subsumption testing algorithm or could easily be adapted to most logic based methods. The reverse is also true, and several of the described techniques have been adapted from other logical decision procedures, in particular those that try to optimise the search used to deal with non-determinism.

9.3.2.1 Tableaux algorithms

Tableaux algorithms try to prove the satisfiability of a concept D by constructing a model, an interpretation I in which D^I is not empty. A tableau is a graph which represents such a model, with nodes corresponding to individuals (elements of Δ^I) and edges corresponding to relationships between individuals (elements of $\Delta^I \times \Delta^I$).

A typical algorithm will start with a single individual satisfying D and try to construct a tableau, or some structure from which a tableau can be constructed, by inferring the existence of additional individuals or of additional constraints on individuals. The inference mechanism consists of applying a set of expansion rules
which correspond to the logical constructs of the language, and the algorithm terminates either when the structure is complete (no further inferences are possible) or obvious contradictions have been revealed. Non-determinism is dealt with by searching different possible expansions: the concept is unsatisfiable if every expansion leads to a contradiction and is satisfiable if any possible expansion leads to the discovery of a complete non-contradictory structure.

Theoretical presentations of tableaux algorithms use a variety of notational styles including constraints [Hollunder et al., 1990], prefixes [De Giacomo and Massacci, 1996] and labelled graphs [Sattler, 1996]. We will use the labelled graph notation as it has an obvious correspondence with standard implementation techniques. In its basic form, this notation describes the construction of a directed graph (usually a tree) in which each node \(x \) is labelled with a set of concepts \(\mathcal{L}(x) = \{C_1, \ldots, C_n\} \), and each edge \(\langle x, y \rangle \) is labelled with a role \(\mathcal{L}(\langle x, y \rangle) = R \). When a concept \(C \) is in the label of a node \(x \) \((C \in \mathcal{L}(x))\), it represents a model in which the individual corresponding with \(x \) is in the interpretation of \(C \). When an edge \(\langle x, y \rangle \) is labelled \(R \), it represents a model in which the tuple corresponding with \((x, y) \) is in the interpretation of \(R \). A node \(y \) is called an \(R \)-successor of a node \(x \) if there is an edge \(\langle x, y \rangle \) labelled \(R \), \(x \) is called the predecessor of \(y \) if \(y \) is an \(R \)-successor of \(x \), and \(x \) is called an ancestor of \(y \) if \(x \) is the predecessor of \(y \) or there exists some node \(z \) such that \(z \) is the predecessor of \(y \) and \(x \) is an ancestor of \(z \). A contradiction or clash is detected when \(\{C, \neg C\} \subseteq \mathcal{L}(x) \) for some concept \(C \) and some node \(x \).

To test the satisfiability of a concept \(D \), a basic algorithm initialises a tree to contain a single node \(x \) (called the root node) with \(\mathcal{L}(x) = \{D\} \), and then expands the tree by applying rules that either extend node labels or add new leaf nodes. A set of expansion rules for the \(\mathcal{ALC} \) description logic is shown in Figure 9.1, where \(C \) and \(D \) are concepts, and \(R \) is a role. Note that:

- Concepts are assumed to be in negation normal form, that is with negations only applying to concept names. Arbitrary \(\mathcal{ALC} \) concepts can be converted to negation normal form by pushing negations inwards using a combination of DeMorgan’s laws and the equivalences \(\neg(\exists R.C) \iff (\forall R.\neg C) \) and \(\neg(\forall R.C) \iff (\exists R.\neg C) \). This procedure can be extended to more expressive logics using additional equivalences such as \(\neg(\leq n R) \iff (\geq (n + 1)R) \).

- Disjunctive concepts \((C \sqcup D) \in \mathcal{L}(x)\) give rise to non-deterministic expansion. In practice this is usually dealt with by search: trying each possible expansion in turn until a fully expanded and clash free tree is found, or all possibilities have been shown to lead to contradictions. In more expressive logics other constructs, such as maximum number restrictions \((\leq n R)\), also lead to non-deterministic expansion. Searching non-deterministic expansions is the main cause of intractability in tableaux subsumption testing algorithms.
\(\Box \)-rule if 1. \((C \cap D) \in \mathcal{L}(x)\)
2. \(\{C, D\} \notin \mathcal{L}(x)\)
then \(\mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{C, D\}\)

\(\sqcup\)-rule if 1. \((C \cup D) \in \mathcal{L}(x)\)
2. \(\{C, D\} \cap \mathcal{L}(x) = \emptyset\)
then either \(\mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{C\}\)
or \(\mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{D\}\)

\(\exists\)-rule if 1. \(\exists R.C \in \mathcal{L}(x)\)
2. there is no \(y\) s.t. \(\mathcal{L}(x, y) = R\) and \(C \in \mathcal{L}(y)\)
then create a new node \(y\) and edge \(x, y\)
with \(\mathcal{L}(y) = \{C\}\) and \(\mathcal{L}(x, y) = R\)

\(\forall\)-rule if 1. \(\forall R.C \in \mathcal{L}(x)\)
2. there is some \(y\) s.t. \(\mathcal{L}(x, y) = R\) and \(C \notin \mathcal{L}(y)\)
then \(\mathcal{L}(y) \rightarrow \mathcal{L}(y) \cup \{C\}\)

Fig. 9.1. Tableaux expansion rules for ALC.

- Existential role restriction concepts \(\exists R.C \in \mathcal{L}(x)\) cause the creation of new \(R\)-successor nodes, and universal role restriction concepts \(\forall R.C \in \mathcal{L}(x)\) extend the labels of \(R\)-successor nodes.

The tree is fully expanded when none of the expansion rules can be applied. If a fully expanded and clash-free tree can be found, then the algorithm returns satisfiable; otherwise it returns unsatisfiable.

More expressive logics may require several extensions to this basic formalism. For example, with logics that include both role inclusion axioms and some form of cardinality restriction, it may be necessary to label edges with sets of role names instead of a single role name [Horrocks, 1998b]. It may also be necessary to add cycle detection (often called blocking) to the preconditions of some of the inference rules in order to guarantee termination [Buchheit et al., 1993a; Baader et al., 1996], the general idea being to stop the expansion of a branch whenever the same node label recurs in the branch. Blocking can also lead to a more complex correspondence between the structure created by the algorithm and a model of a satisfiable concept, as the model may contain cycles or even be non-finite [Horrocks and Sattler, 1999].

9.4 Theory versus practice

So far, what we have seen is typical of theoretical presentations of tableaux based decision procedures. Such a presentation is sufficient for soundness and completeness proofs, and is an essential starting point for the implementation of a reliable subsumption testing algorithm. However, there often remains a considerable gap between the theoretical algorithm and an actual implementation. Additional points which may need to be considered are:
the efficiency of the algorithm, in the theoretical (worst case) sense;
• the efficiency of the algorithm, in a practical (typical case) sense;
• how to use the algorithm for reasoning with unfoldable, general and cyclical KBs;
• optimising the (implementation of the) algorithm to improve the typical case performance.

In the remainder of this Section we will consider the first three points, while in the following section we will consider implementation and optimisation techniques in detail.

9.4.1 Worst case complexity

When considering an implementation, it is sensible to start with an algorithm that is known to be theoretically efficient, even if the implementation subsequently departs from the theory to some extent. Theoretically efficient is taken to mean that the complexity of the algorithm is equal to the complexity of the satisfiability problem for the logic, where this is known, or at least that consideration has been given to the worst case complexity of the algorithm. This is not always the case, as the algorithm may have been designed to facilitate a soundness and completeness proof, with little consideration having been given to worst case complexity, much less implementation.

Apart from establishing an upper bound for the “hardness” of the problem, studies of theoretical complexity can suggest useful implementation techniques. For example, a study of the complexity of the satisfiability problem for \(\mathcal{ALC} \) concepts with respect to a general KB has demonstrated that caching of intermediate results is required in order to stay in \(\text{ExpTime} \) [Donini et al., 1996a], while studying the complexity of the satisfiability problem for \(\mathcal{SIN} \) concepts has shown that a more sophisticated labelling and blocking strategy can be used in order to stay in \(\text{PSpace} \) [Horrocks et al., 1999].

One theoretically derived technique that is widely used in practice is the trace technique. This is a method for minimising the amount of space used by the algorithm to store the tableaux expansion tree. The idea is to impose an ordering on the application of expansion rules so that local propositional reasoning (finding a clash-free expansion of conjunctions and disjunctions using the \(\cap \)-rule and \(\cup \)-rule) is completed before new nodes are created using the \(\exists \)-rule. A successor created by an application of the \(\exists \)-rule, and any possible applications of the \(\forall \)-rule, can then be treated as an independent sub-problem that returns either satisfiable or unsatisfiable, and the space used to solve it can be reused in solving the next sub-problem. A node \(x \) returns satisfiable if there is a clash-free propositional solution for which any and all sub-problems return satisfiable; otherwise it returns unsatisfiable. In
\[\exists \forall \text{-rule if } \exists R.C \in L(x)
\]

1. there is no \(y\) s.t. \(L((x, y)) = R\) and \(C \in L(y)\)
2. neither the \(\cap\)-rule nor the \(\cup\)-rule is applicable to \(L(x)\)
3. then create a new node \(y\) and edge \((x, y)\)

with \(L(y) = \{C\} \cup \{D \mid \forall R.D \in L(x)\}\) and \(L((x, y)) = R\)

Fig. 9.2. Combined \(\exists \forall\)-rule for \(\mathcal{ALC}\).

algorithms where the trace technique can be used, the \(\forall\)-rule is often incorporated in the \(\exists\)-rule, giving a single rule as shown in Figure 9.2.

Apart from minimising space usage the trace technique is generally viewed as a sensible way of organising the expansion and the flow of control within the algorithm. Ordering the expansion in this way may also be required by some blocking strategies [Buchheit et al., 1993a], although in some cases it is possible to use a more efficient subset blocking technique that is independent of the ordering [Baader et al., 1996].

The trace technique relies on the fact that node labels are not affected by the expansion of their successors. This is no longer true when the logic includes inverse roles, because universal value restrictions in the label of a successor of a node \(x\) can augment \(L(x)\). This could invalidate the existing propositional solution for \(L(x)\), or invalidate previously computed solutions to sub-problems in other successor nodes. For example, if

\[L(x) = \{\exists R.C, \exists S.(\forall S^-. (\forall R.\neg C))\},\]

then \(x\) is obviously unsatisfiable as expanding \(\exists S.(\forall S^-.(\forall R.\neg C))\) will add \(\forall R.\neg C\) to \(L(x)\), meaning that \(x\) must have an \(R\)-successor whose label contains both \(C\) and \(\neg C\). The contradiction would not be discovered if the \(R\)-successor required by \(\exists R.C \in L(x)\) were generated first, found to be satisfiable and then deleted from the tree in order to save space.

The development of a \(\text{PSpace}\) algorithm for the \(\mathcal{STN}\) logic has shown that a modified version of the trace technique can still be used with logics that include inverse roles [Horrocks et al., 1999]. However, the modification requires that the propositional solution and all sub-problems are re-computed whenever the label of a node is augmented by the expansion of a universal value restriction in the label of one of its successors.

9.4.2 Typical case complexity

Although useful practical techniques can be derived from the study of theoretical algorithms, it should be borne in mind that minimising worst case complexity may require the use of techniques that clearly would not be sensible in typical cases. This is because the kinds of pathological problem that would lead to worst case
behaviour do not seem to occur in realistic applications. In particular, the amount of space used by algorithms does not seem to be a practical problem, whereas the time taken for the computation certainly is. For example, in experiments with the Fact system using the DL’98 test suite, available memory (200Mb) was never exhausted in spite of the fact that some single computations required hundreds of seconds of CPU time [Horrocks and Patel-Schneider, 1998b]. In other experiments using the Galen KB, computations were run for tens of thousands of seconds of CPU time without exhausting available memory.

In view of these considerations, techniques that save space by recomputing are unlikely to be of practical value. The modified trace technique used in the PSPACE SIN algorithm (see Section 9.4.1), for example, is probably not of practical value. However, the more sophisticated labelling and blocking strategy, which allows the establishment a polynomial bound on the length of branches, could be used not only in an implementation of the SIN algorithm, but also in implementations of more expressive logics where other considerations mean that the PSPACE result no longer holds [Horrocks et al., 1999].

In practice, the poor performance of tableaux algorithms is due to non-determinism in the expansion rules (for example the \sqcup-rule), and the resulting search of different possible expansions. This is often treated in a very cursory manner in theoretical presentations. For soundness and completeness it is enough to prove that the search will always find a solution if one exists, and that it will always terminate. For worst case complexity, an upper bound on the size of the search space is all that is required. As this upper bound is invariably exponential with respect to the size of the problem, exploring the whole search space would inevitably lead to intractability for all but the smallest problems. When implementing an algorithm it is therefore vital to give much more careful consideration to non-deterministic expansion, in particular how to reduce the size of the search space and how to explore it in an efficient manner. Many of the optimisations discussed in subsequent sections will be aimed at doing this, for example by using absorption to localise non-determinism in the KB, dependency directed backtracking to prune the search tree, heuristics to guide the search, and caching to avoid repetitive search.

9.4.3 Reasoning with a knowledge base

One area in which the theory and practice diverge significantly is that of reasoning with respect to the axioms in a KB. This problem is rarely considered in detail: with less expressive logics the KB is usually restricted to being unfoldable, while with more expressive logics, all axioms can be treated as general axioms and dealt with via internalisation. In either case it is sufficient to consider an algorithm that tests the satisfiability of a single concept, usually in negation normal form.
In practice, it is much more efficient to retain the structure of the KB for as long as possible, and to take advantage of it during subsumption/satisfiability testing. One way in which this can be done is to use lazy unfolding—only unfolding concepts as required by the progress of the subsumption or satisfiability testing algorithm [Baader et al., 1992a]. With a tableaux algorithm, this means that a defined concept A is only unfolded when it occurs in a node label. For example, if T contains the non-primitive definition axiom $A \equiv C$, and the \sqcap-rule is applied to a concept $(A \sqcap D) \in \mathcal{L}(x)$ so that A and D are added to $\mathcal{L}(x)$, then at this point A can be unfolded by substituting it with C.

Used in this way, lazy unfolding already has the advantage that it avoids unnecessary unfolding of irrelevant sub-concepts, either because a contradiction is discovered without fully expanding the tree, or because a non-deterministic expansion choice leads to a complete and clash free tree. However, a much greater increase in efficiency can be achieved if, instead of substituting concept names with their definitions, names are retained when their definitions are added. This is because the discovery of a clash between concept names can avoid expansion of their definitions [Baader et al., 1992a].

In general, lazy unfolding can be described as additional tableaux expansion rules, defined as follows.

\begin{align*}
U_1\text{-rule} & \text{ if } 1. \ A \in \mathcal{L}(x) \text{ and } (A \equiv C) \in T \\
& 2. \ C \notin \mathcal{L}(x) \\
& \text{ then } \mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{C\} \\
U_2\text{-rule} & \text{ if } 1. \ \neg A \in \mathcal{L}(x) \text{ and } (A \equiv C) \in T \\
& 2. \ \neg C \notin \mathcal{L}(x) \\
& \text{ then } \mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \\{\neg C\} \\
U_3\text{-rule} & \text{ if } 1. \ A \in \mathcal{L}(x) \text{ and } (A \sqsubseteq C) \in T \\
& 2. \ C \notin \mathcal{L}(x) \\
& \text{ then } \mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{C\}
\end{align*}

The U_1-rule and U_2-rule reflect the symmetry of the equality relation in the non-primitive definition $A \equiv C$, which is equivalent to $A \sqsubseteq C$ and $\neg A \sqsubseteq \neg C$. The U_3-rule on the other hand reflects the asymmetry of the subsumption relation in the primitive definition $A \sqsubseteq C$.

Treating all the axioms in the KB as general axioms, and dealing with them via internalisation, is also highly inefficient. For example, if T contains an axiom $A \sqsubseteq C$, where A is a concept name not appearing on the left hand side of any other axiom, then it is easy to deal with the axiom using the lazy unfolding technique, simply adding C to the label of any node in which A appears. Treating all axioms
as general axioms would be equivalent to applying the following additional tableaux expansion rules:

\[I_1 \text{-rule if } \begin{align*}
1. & \ (C \equiv D) \in T \\
2. & \ (D \cup \neg C) \notin \mathcal{L}(x) \\
\end{align*} \]

\[\mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{(D \cup \neg C)\} \]

\[I_2 \text{-rule if } \begin{align*}
1. & \ (C \equiv D) \in T \\
2. & \ (\neg D \cup C) \notin \mathcal{L}(x) \\
\end{align*} \]

\[\mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{\neg (D \cup C)\} \]

\[I_3 \text{-rule if } \begin{align*}
1. & \ (C \subseteq D) \in T \\
2. & \ (D \cup \neg C) \notin \mathcal{L}(x) \\
\end{align*} \]

\[\mathcal{L}(x) \rightarrow \mathcal{L}(x) \cup \{(D \cup \neg C)\} \]

With \((A \sqsubseteq C) \in T\), this would result in the disjunction \((C \sqcup \neg A)\) being added to the label of every node, leading to non-deterministic expansion and search, the main cause of empirical intractability.

The solution to this problem is to divide the KB into two components, an unfoldable part \(T_u\) and a general part \(T_g\), such that \(T_g = T \setminus T_u\), and \(T_u\) contains unique, acyclical, definition axioms. This is easily achieved, e.g., by initialising \(T_u\) to \(\emptyset\) (which is obviously unfoldable), then for each axiom \(X\) in \(T\), adding \(X\) to \(T_u\) if \(T_u \cup X\) is still unfoldable, and adding \(X\) to \(T_g\) otherwise.\(^1\) It is then possible to use lazy unfolding to deal with \(T_u\), and internalisation to deal with \(T_g\).

Given that the satisfiability testing algorithm includes some sort of cycle checking, such as blocking, then it is even possible to be a little less conservative with respect to the definition of \(T_u\) by allowing it to contain cyclical primitive definition axioms, for example axioms of the form \(A \sqsubseteq \exists R.A\). Lazy unfolding will ensure that \(A^T \subseteq \exists R.A^T\) by adding \(\exists R.A\) to every node containing \(A\), while blocking will take care of the non-termination problem that such an axiom would otherwise cause [Horrocks, 1997b]. Moreover, multiple primitive definitions for a single name can be added to \(T_u\), or equivalently merged into a single definition using the equivalence

\[(A \sqsubseteq C_1), \ldots, (A \sqsubseteq C_n) \iff A \sqsubseteq (C_1 \sqcap \ldots \sqcap C_n)\]

However, if \(T_u\) contains a non-primitive definition axiom \(A \equiv C\), then it cannot contain any other definitions for \(A\), because this would be equivalent to allowing general axioms in \(T_u\). For example, given a general axiom \(C \sqsubseteq D\), this could be added to \(T_u\) as \(A \sqsubseteq D\) and \(A \equiv C\), where \(A\) is a new name not appearing in \(T\). Moreover, certain kinds of non-primitive cycles cannot be allowed as they can be used to constrain possible models a way that would not be reflected by unfolding. For example, if \((A \equiv \neg A) \in T\) for some concept name \(A\), then the domain of all

\(^1\) Note that the result may depend on the order in which the axioms in \(T\) are processed.
valid interpretations of T must be empty, and $T \models C \subseteq D$ for all concepts C and D [Horrocks and Tobies, 2000].

9.5 Optimisation techniques

The Kris system demonstrated that by taking a well designed tableaux algorithm, and applying some reasonable implementation and optimisation techniques (such as lazy expansion), it is possible to obtain a tableaux based DL system that behaves reasonably well in typical cases, and compares favourably with systems based on structural algorithms [Baader et al., 1992a]. However, this kind of system is still much too slow to be usable in many realistic applications. Fortunately, it is possible to achieve dramatic improvements in typical case performance by using a wider range of optimisation techniques.

As DL systems are often used to classify a KB, a hierarchy of optimisation techniques is naturally suggested based on the stage of the classification process at which they can be applied.

(i) Preprocessing optimisations that try to modify the KB so that classification and subsumption testing are easier.
(ii) Partial ordering optimisations that try to minimise the number of subsumption tests required in order to classify the KB
(iii) Subsumption optimisations that try to avoid performing a potentially expensive satisfiability test, usually by substituting a cheaper test.
(iv) Satisfiability optimisations that try to improve the typical case performance of the underlying satisfiability tester.

9.5.1 Preprocessing optimisations

The axioms that constitute a DL KB may have been generated by a human knowledge engineer, as is typically the case in ontological engineering applications, or be the result of some automated mapping from another formalism, as is typically the case in DB schema and query reasoning applications. In either case it is unlikely that a great deal of consideration was given to facilitating the subsequent reasoning procedures; the KB may, for example, contain considerable redundancy and may make unnecessary use of general axioms. As we have seen, general axioms are costly to reason with due to the high degree of non-determinism that they introduce.

It is, therefore, useful to preprocess the KB, applying a range of syntactic simplifications and manipulations. The first of these, normalisation, tries to simplify the KB by identifying syntactic equivalences, contradictions and tautologies. The second, absorption, tries to eliminate general axioms by augmenting definition axioms.
9.5.1.1 Normalisation

In realistic KBs, at least those manually constructed, large and complex concepts are seldom described monolithically, but are built up from a hierarchy of named concepts whose descriptions are less complex. The lazy unfolding technique described above can use this structure to provide more rapid detection of contradictions.

The effectiveness of lazy unfolding is greatly increased if a contradiction between two concepts can be detected whenever one is syntactically equivalent to the negation of the other; for example, we would like to discover a direct contradiction between \((C \cap D)\) and \((-D \cup -C)\). This can be achieved by transforming all concepts into a syntactic normal form, and by directly detecting contradictions caused by non-atomic concepts as well as those caused by concept names.

In DLs there is often redundancy in the set of concept forming operators. In particular, logics with full negation often provide pairs of operators, either one of which can be eliminated in favour of the other by using negation. Conjunction and disjunction operators are an example of such a pair, and one can be eliminated in favour of the other using DeMorgan’s laws. In syntactic normal form, all concepts are transformed so that only one of each such pair appears in the KB (it does not matter which of the two is chosen, the important thing is uniformity). In ALC, for example, all concepts could be transformed into (possibly negated) value restrictions, conjunctions and atomic concept names, with \((-D \cup -C)\) being transformed into \((-C \cap D)\). An important refinement is to treat conjunctions as sets (written \(\cap\{C_1, \ldots, C_n\}\)) so that reordering or repeating the conjuncts does not effect equivalence; for example, \((D \cap C)\) would be normalised as \(\cap\{C, D\}\). Normalisation can also include a range of simplifications so that syntactically obvious contradictions and tautologies are detected; for example, \(\exists R.\bot\) could be simplified to \(\bot\).

Figure 9.3 describes normalisation and simplification functions Norm and Simp for ALC. These can be extended to deal with more expressive logics by adding appropriate normalisations (and possibly additional simplifications). For example, number restrictions can be dealt with by adding the normalisations \(\text{Norm}(\leq n R) = \neg \geq (n + 1) R\) and \(\text{Norm}(\geq n R) = \geq n R\), and the simplification \(\text{Simp}(\geq 0 R) = \top\).

Normalised and simplified concepts may not be in negation normal form, but they can be dealt with by treating them exactly like their non-negated counterparts. For example, \(\neg \cap\{C, D\}\) can be treated as \((-C \cup -D)\) and \(\neg \forall R.C\) can be treated as \(\exists R.\neg C\). In the remainder of this chapter we will use both forms interchangeably, choosing whichever is most convenient.

Additional simplifications would clearly be possible. For example, \(\forall R.C \cap \forall R.D\) could be simplified to \(\forall R.\text{Norm}(C \cap D)\). Which simplifications it is sensible to perform is an implementation decision that may depend on a cost-benefit analysis.

\(^1\) Sorting the elements in conjunctions, and eliminating duplicates, achieves the same result.
with respect to some particular application. Empirically, simplification seems to be more effective with mechanically generated KBs and satisfiability problems, in particular those where the number of different roles is very small. With this kind of problem it is quite common for satisfiability tests to be greatly simplified, or even completely avoided, by simplifying part or all of the concept to either \top or \bot. In the benchmark tests used for the Tableaux’98 comparison of modal logic theorem provers, for example, some classes of problem can be completely solved via this mechanism [Heuerding and Schwendimann, 1996; Balsiger and Heuerding, 1998].

If the subsumption testing algorithm is to derive maximum benefit from normalisation, it is important that it directly detect contradictions caused by non-atomic concepts as well as those caused by concept names; for example the occurrence of both $\cap\{C, D\}$ and $\neg\cap\{C, D\}$ in a node label should be detected as a contradiction without the need for further expansion. This can be achieved by replacing all equivalent (identically encoded) non-atomic concepts C in the KB with a new atomic concept name A, and adding the axiom $A \equiv C$ to the KB. For example, all occurrences of $\cap\{C, D\}$ in a KB could be replaced with CD, and the axiom $CD \equiv \cap\{C, D\}$ added to the KB.
Implementation and Optimisation Techniques

It is necessary to distinguish these newly introduced system names from user names appearing in the original KB, as system names need not be classified (indeed, it would be very confusing for the user if they were). In practice, it is often more convenient to avoid this problem by using pointer or object identifiers to refer to concepts, with the same identifier always being associated with equivalent concepts. A contradiction is then detected whenever a pointer/identifier and its negation occur in a node label.

The advantages of the normalisation and simplification procedure are:

- It is easy to implement and could be used with most logics and algorithms.
- Subsumption/satisfiability problems can often be simplified, and sometimes even completely avoided, by detecting syntactically obvious satisfiability and unsatisfiability.
- It complements lazy unfolding and improves early clash detection.
- The elimination of redundancies and the sharing of syntactically equivalent structures may lead to the KB being more compactly stored.

The disadvantages are:

- The overhead involved in the procedure, although this is relatively small.
- For very unstructured KBs there may be no benefit, and it might even slightly increase size of KB.

9.5.1.2 Absorption

As we have seen in Section 9.4.3, general axioms are costly to reason with due to the high degree of non-determinism that they introduce. With a tableaux algorithm, a disjunction is added to the label of each node for each general axiom in the KB. This leads to an exponential increase in the search space as the number of nodes and axioms increases. For example, with 10 nodes and a KB containing 10 general axioms there are already 100 disjunctions, and they can be non-deterministically expanded in 2^{100} different ways. For a KB containing large numbers of general axioms (there are 1,214 in the GALEN medical terminology KB) this can degrade performance to the extent that subsumption testing is effectively non-terminating.

It therefore makes sense to eliminate general axioms from the KB whenever possible. Absorption is a technique that tries to do this by absorbing them into primitive definition axioms. The basic idea is that a general axiom of the form $C \sqsubseteq D$, where C may be a non-atomic concept, is manipulated (using the equivalences in Figure 9.4) so that it has the form of a primitive definition $A \sqsubseteq D'$, where A is an atomic concept name. This axiom can then be merged into an existing primitive definition $A \sqsubseteq C'$ to give $A \sqsubseteq C' \sqcap D'$. For example, an axiom stating that all three
sided geometric figures (i.e., triangles) also have three angles

\[\text{geometric-figure} \sqcap \exists \text{angles.three} \sqsubseteq \exists \text{sides.three} \]

could be transformed into an axiom stating that all geometric figures either have three sides or do not have three angles

\[\text{geometric-figure} \sqsubseteq \exists \text{sides.three} \sqcup \neg \exists \text{angles.three} \]

and then absorbed into the primitive definition of geometric figure (\(\text{geometric-figure} \sqsubseteq \text{figure} \)) to give

\[\text{geometric-figure} \sqsubseteq \text{figure} \sqcap (\exists \text{sides.three} \sqcup \neg \exists \text{angles.three}). \]

Given a KB divided into an unfoldable part \(T_u \) and a general part \(T_g \), the following procedure can be used to try to absorb the axioms from \(T_g \) into primitive definitions in \(T_u \). First a set \(T'_g \) is initialised to be empty, and any axioms \((C \equiv D) \in T_g\) are replaced with an equivalent pair of axioms \(C \sqsubseteq D \) and \(\neg C \sqsubseteq \neg D \). Then for each axiom \((C \sqsubseteq D) \in T_g\):

(i) Initialise a set \(G = \{-D, C\} \), representing the axiom in the form \(\top \sqsubseteq \neg \neg \{-D, C\} \) (i.e. \(\top \sqsubseteq D \sqcup \neg C \)).
(ii) If for some \(A \in G \) there is a primitive definition axiom \((A \sqsubseteq C) \in T_u\), then absorb the general axiom into the primitive definition axiom so that it becomes

\[A \sqsubseteq \cap\{C, \neg \cap(G \setminus \{A\})\}, \]

and exit.
(iii) If for some \(A \in G \) there is an axiom \((A \equiv D) \in T_u\), then substitute \(A \in G \) with \(D \)

\[G \longrightarrow \{D\} \cup G \setminus \{A\}, \]

and return to step (ii).
(iv) If for some \(\neg A \in G \) there is an axiom \((A \equiv D) \in T_u\), then substitute \(\neg A \in G \) with \(\neg D \)

\[G \longrightarrow \{-D\} \cup G \setminus \{-A\}, \]

and return to step (ii).
(v) If there is some $C \in G$ such that C is of the form $\cap S$, then use associativity to simplify G
\[G \rightarrow S \cup G \setminus \{\cap S\}, \]
and return to step (ii).

(vi) If there is some $C \in G$ such that C is of the form $\neg \cap S$, then for every $D \in S$ try to absorb (recursively)
\[\{\neg D\} \cup G \setminus \{\neg S\}, \]
and exit.

(vii) Otherwise, the axiom could not be absorbed, so add $\neg \cap G$ to T'_g
\[T'_g \rightarrow T'_g \cup \neg \cap G, \]
and exit.

Note that this procedure allows parts of axioms to be absorbed. For example, given axioms $(A \sqsubseteq D_1) \in T_u$ and $(A \sqcup \exists R.C \sqsubseteq D_2) \in T_g$, then the general axiom would be partly absorbed into the definition axiom to give $(A \sqsubseteq (D_1 \cap D_2)) \in T_u$, leaving a smaller general axiom $(\neg \cap \{\neg D_2, \exists R.C\}) \in T_g$.

When this procedure has been applied to all the axioms in T_g, then T'_g represents those (parts of) axioms that could not be absorbed. The axioms in T'_g are already in the form $\top \sqsubseteq C$, so that $\cap T'_g$ is the concept that must be added to every node in the tableaux expansion. This can be done using a universal role, as describe in Section 9.2.4, although in practice it may be simpler just to add the concept to the label of each newly created node.

The absorption process is clearly non-deterministic. In the first place, there may be more than one way to divide T into unfoldable and general parts. For example, if T contains multiple non-primitive definitions for some concept A, then one of them must be selected as a definition in T_u while the rest are treated as general axioms in T_g. Moreover, the absorption procedure itself is non-deterministic as G may contain more than one primitive concept name into which the axiom could be absorbed. For example, in the case where $\{A_1, A_2\} = G$, and there are two primitive definition axioms $A_1 \sqsubseteq C$ and $A_2 \sqsubseteq D$ in T_u, then the axiom could be absorbed either into the definition of A_1 to give $A_1 \sqsubseteq C \cap \neg \cap \{A_2\}$ (equivalent to $A_1 \sqsubseteq C \cap \neg A_2$) or into the definition of A_2 to give $A_2 \sqsubseteq C \cap \neg \cap \{A_1\}$ (equivalent to $A_2 \sqsubseteq C \cap \neg A_1$).

It would obviously be sensible to choose the “best” absorption (the one that maximised empirical tractability), but it is not clear how to do this—in fact it is not even clear how to define “best” in this context [Horrocks and Tobies, 2000]. If T contains more than one definition axiom for a given concept name, then empirical evidence suggests that efficiency is improved by retaining as many non-primitive definition
axioms in T_u as possible. Another intuitively obvious possibility is to preferentially absorb into the definition axiom of the most specific primitive concept, although this only helps in the case that $A_1 \sqsubseteq A_2$ or $A_2 \sqsubseteq A_1$. Other more sophisticated schemes might be possible, but have yet to be investigated.

The advantages of absorption are:

- It can lead to a dramatic improvement in performance. For example, without absorption, satisfiability of the Galen KB (i.e., the satisfiability of \top) could not be proved by either Fact or DLP, even after several weeks of CPU time. After absorption, the problem becomes so trivial that the CPU time required is hard to measure.
- It is logic and algorithm independent.

The disadvantage is the overhead required for the pre-processing, although this is generally small compared to classification times. However, the procedure described is almost certainly sub-optimal, and trying to find an optimal absorption may be much more costly.

9.5.2 Optimising classification

DL systems are often used to classify a KB, that is to compute a partial ordering or hierarchy of named concepts in the KB based on the subsumption relationship. As subsumption testing is always potentially costly, it is important to ensure that the classification process uses the smallest possible number of tests. Minimising the number of subsumption tests required to classify a concept in the concept hierarchy can be treated as an abstract order-theoretic problem which is independent of the ordering relation. However, some additional optimisation can be achieved by using the structure of concepts to reveal obvious subsumption relationships and to control the order in which concepts are added to the hierarchy (where this is possible).

The concept hierarchy is usually represented by a directed acyclic graph where nodes are labelled with sets of concept names (because multiple concept names may be logically equivalent), and edges correspond with subsumption relationships. The subsumption relation is both transitive and reflexive, so a classified concept A subsumes a classified concept B if either:

(i) both A and B are in the label of some node x, or
(ii) A is in the label of some node x, there is an edge (x, y) in the graph, and the concept(s) in the label of node y subsume B.

It will be assumed that the hierarchy always contains a top node (a node whose label includes \top) and a bottom node (a node whose label includes \bot) such that the
top node subsumes the bottom node. If the KB is unsatisfiable then the hierarchy will consist of a single node whose label includes both \(\top \) and \(\bot \).

Algorithms based on traversal of the concept hierarchy can be used to minimise the number of tests required in order to add a new concept [Baader et al., 1992a]. The idea is to compute a concept’s subsumers by searching down the hierarchy from the top node (the top search phase) and its subsumees by searching up the hierarchy from the bottom node (the bottom search phase).

When classifying a concept \(A \), the top search takes advantage of the transitivity of the subsumption relation by propagating failed results down the hierarchy. It concludes, without performing a subsumption test, that if \(A \) is not subsumed by \(B \), then it cannot be subsumed by any other concept that is subsumed by \(B \):

\[
T \not\models A \sqsubseteq B \quad \text{and} \quad T \models B' \sqsubseteq B \quad \text{implies} \quad T \not\models A \sqsubseteq B'
\]

To maximise the effect of this strategy, a modified breadth first search is used [Ellis, 1992] which ensures that a test to discover if \(B \) subsumes \(A \) is never performed until it has been established that \(A \) is subsumed by all of the concepts known to subsume \(B \).

The bottom search uses a corresponding technique, testing if \(A \) subsumes \(B \) only when \(A \) is already known to subsume all those concepts that are subsumed by \(B \). Information from the top search is also used by confining the bottom search to those concepts which are subsumed by all of \(A \)'s subsumers.

This abstract partial ordering technique can be enhanced by taking advantage of the structure of concepts and the axioms in the KB. If the KB contains an axiom \(A \sqsubseteq C \) or \(A \equiv C \), then \(C \) is said to be a told subsumer of \(A \). If \(C \) is a conjunctive concept \((C_1 \land \cdots \land C_n) \), then from the structural subsumption relationship

\[
D \sqsubseteq (C_1 \land \cdots \land C_n) \quad \text{implies} \quad D \sqsubseteq C_1 \quad \text{and} \quad \cdots \quad \text{and} \quad D \sqsubseteq C_n
\]

it is possible to conclude that \(C_1, \ldots, C_n \) are also told subsumers of \(A \). Moreover, due to the transitivity of the subsumption relation, any told subsumers of \(C_1, \ldots, C_n \) are also told subsumers of \(A \). Before classifying \(A \), all of its told subsumers which have already been classified, and all their subsumers, can be marked as subsumers of \(A \); subsumption tests with respect to these concepts are therefore rendered unnecessary. This idea can be extended in the obvious way to take advantage of a structural subsumption relationship with respect to disjunctive concepts,

\[
(C_1 \lor \cdots \lor C_n) \sqsubseteq D \quad \text{implies} \quad C_1 \sqsubseteq D \quad \text{and} \quad \cdots \quad \text{and} \quad C_n \sqsubseteq D.
\]

If the KB contains an axiom \(A \equiv C \) and \(C \) is a disjunctive concept \((C_1 \lor \cdots \lor C_n) \), then \(A \) is a told subsumer of \(C_1, \ldots, C_n \).

To maximise the effect of the told subsumer optimisation, concepts should be classified in definition order. This means that a concept \(A \) is not classified until all
of its told subsumers have been classified. When classifying an unfoldable KB, this ordering can be exploited by omitting the bottom search phase for primitive concept names and assuming that they only subsume (concepts equivalent to) \(\bot \). This is possible because, with an unfoldable KB, a primitive concept can only subsume concepts for which it is a told subsumer. Therefore, as concepts are classified in definition order, a primitive concept will always be classified before any of the concepts that it subsumes. This additional optimisation cannot be used with a general KB because, in the presence of general axioms, it can no longer be guaranteed that a primitive concept will only subsume concepts for which it is a told subsumer. For example, given a KB \(T \) such that

\[
T = \{ A \sqsubseteq \exists R.C, \ \exists R.C \sqsubseteq B \},
\]

then \(B \) is not a told subsumer of \(A \), and \(A \) may be classified first. However, when \(B \) is classified the bottom search phase will discover that it subsumes \(A \) due to the axiom \(\exists R.C \sqsubseteq B \).

The advantages of the enhanced traversal classification method are:

- It can significantly reduce the number of subsumption tests required in order to classify a KB [Baader et al., 1992a].
- It is logic and (subsumption) algorithm independent.

There appear to be few disadvantages to this method, and it is used (in some form) in most implemented DL systems.

9.5.3 Optimising subsumption testing

The classification optimisations described in Section 9.5.2 help to reduce the number of subsumption tests that are performed when classifying a KB, and the combination of normalisation, simplification and lazy unfolding facilitates the detection of “obvious” subsumption relationships by allowing unsatisfiability to be rapidly demonstrated. However, detecting “obvious” non-subsumption (satisfiability) is more difficult for tableaux algorithms. This is unfortunate as concept hierarchies from realistic applications are typically broad, shallow and tree-like. The top search phase of classifying a new concept \(A \) in such a hierarchy will therefore result in several subsumption tests being performed at each node, most of which are likely to fail. These failed tests could be very costly (if, for example, proving the satisfiability of \(A \) is a hard problem), and they could also be very repetitive.

This problem can be tackled by trying to use cached results from previous tableaux tests to prove non-subsumption without performing a new satisfiability
Implementation and Optimisation Techniques

{A, C, ∃R_1.C_1, ∃R_2.C_2} {~B, D, ∃R_3.C_3}

\[
\begin{array}{c}
R_1 \\
\{C_1\}
\end{array} \quad \begin{array}{c}
R_2 \\
\{C_2\}
\end{array} \quad \begin{array}{c}
R_3 \\
\{C_3\}
\end{array}
\]

{A, ~B, C, D, ∃R_1.C_1, ∃R_2.C_2, ∃R_3.C_3}

\[
\begin{array}{c}
R_1 \\
\{C_1\}
\end{array} \quad \begin{array}{c}
R_2 \\
\{C_2\}
\end{array} \quad \begin{array}{c}
R_3 \\
\{C_3\}
\end{array}
\]

Fig. 9.5. Joining expansion trees for A and ~B.

test. For example, given two concepts A and B defined by the axioms

\[
A \equiv C \cap ∃R_1.C_1 \cap ∃R_2.C_2, \quad \text{and} \quad B \equiv ~D \cup ∀R_3.~C_3,
\]

then A is not subsumed by B if the concept A \cap ~B is satisfiable. If tableaux expansion trees for A and ~B have already been cached, then the satisfiability of the conjunction can be demonstrated by a tree consisting of the trees for A and ~B joined at their root nodes, as shown in Figure 9.5 (note that ~B \equiv D \cap ∃R_3.C_3).

Given two fully expanded and clash free tableaux expansion trees T_1 and T_2 representing models of (satisfiable) concepts A and ~B respectively, the tree created by joining T_1 and T_2 at their root nodes is a fully expanded and clash free tree representing a model of A \cap ~B provided that the union of the root node labels does not contain a clash and that no tableaux expansion rules are applicable to the new tree. For most logics, this can be ascertained by examining the labels of the root nodes and the labels of the edges connection them with their successors. With the ALC logic for example, if x_1 and x_2 are the two root nodes, then the new tree will be fully expanded and clash free provided that

(i) the union of the root node labels does not contain an immediate contradiction, i.e., there is no C such that \{C, ~C\} \subseteq L(x_1) \cup L(x_2), and
(ii) there is no interaction between value restrictions in the label of one root node and edges connecting the other root node with its successors that might make the ∀-rule applicable to the joined tree, i.e., there is no R such that ∀R.C \in L(x_1) and T_2 has an edge ⟨x_2, y⟩ with L(⟨x_2, y⟩) = R, or ∀R.C \in L(x_2) and T_1 has an edge ⟨x_1, y⟩ with L(⟨x_1, y⟩) = R.
With more expressive logics it may be necessary to consider other interactions that could lead to the application of tableaux expansion rules. With a logic that included number restrictions, for example, it would be necessary to check that these could not be violated by the root node successors in the joined tree.

It would be possible to join trees in a wider range of cases by examining the potential interactions in more detail. For example, a value restriction could lead to the application of tableaux expansion rules. With a logic that included

\(L \) are the set of (possibly negated) atomic concept names in the root node label

the relevant components from a tree demonstrating the satisfiability of a concept. In the case of \(ALC \), the relevant components from a tree demonstrating the satisfiability of a concept \(A \) are the set of (possibly negated) atomic concept names in the root node label (denoted \(L(A) \)), the set of role names in value restrictions in the root node label (denoted \(L_V(A) \)), and the set of role names labelling edges connecting the root node with its successors (denoted \(L_\preceq(A) \)).\(^1\) These components can be cached as a triple \((L_c(A), L_V(A), L_\preceq(A))\).

When testing if \(A \) is subsumed by \(B \), the algorithm can now proceed as follows.

(i) If any of \((L_c(A), L_V(A), L_\preceq(A))\), \((L_c(¬A), L_V(¬A), L_\preceq(¬A))\), \((L_c(B), L_V(B), L_\preceq(B))\) or \((L_c(¬B), L_V(¬B), L_\preceq(¬B))\) are not in the cache, then perform the appropriate satisfiability tests and update the cache accordingly. In the case where a concept \(C \) is unsatisfiable, \(L_c(C) = \{⊥\} \) and \(L_c(¬C) = \{⊤\} \).

(ii) Conclude that \(A \sqsubseteq B \) (\(A \sqcap ¬B \) is not satisfiable) if \(L_c(A) = \{⊥\} \) or \(L_c(B) = \{⊤\} \).

(iii) Conclude that \(A \nsubseteq B \) (\(A \sqcap ¬B \) is satisfiable) if

(a) \(L_c(A) = \{⊤\} \) and \(L_c(B) \neq \{⊥\} \), or
(b) \(L_c(A) \neq \{⊥\} \) and \(L_c(B) = \{⊥\} \), or
(c) \(L_V(A) \cap L_\preceq(B) = \emptyset \), \(L_V(B) \cap L_\preceq(A) = \emptyset \), \(⊥ \notin L_c(A) \cup L_c(B) \), and there is no \(C \) such that \(\{C, ¬C\} \subseteq L_c(A) \cup L_c(B) \).

(iv) Otherwise perform a satisfiability test on \(A \sqcap ¬B \), concluding that \(A \sqsubseteq B \) if it is not satisfiable and that \(A \nsubseteq B \) if it is satisfiable.

When a concept \(A \) is added to the hierarchy, this procedure will result in satisfiability tests immediately being performed for both \(A \) and \(¬A \). During the subsequent top search phase, at each node \(x \) in the hierarchy such that some \(C \in L(x) \) subsumes \(A \), it will be necessary to perform a subsumption test for each subsume

\(^1\) Consideration can be limited to atomic concept names because expanded conjunction and disjunction concepts are no longer relevant to the validity of the tree, and are only retained in order to facilitate early clash detection.
node y (unless some of them can be avoided by the classification optimisations discussed in Section 9.5.2). Typically only one of these subsumption tests will lead to a full satisfiability test being performed, the rest being shown to be obvious non-subsumptions using the cached partial trees. Moreover, the satisfiability test that is performed will often be an “obvious” subsumption, and unsatisfiability will rapidly be demonstrated.

The optimisation is less useful during the bottom search phase as nodes in the concept hierarchy are typically connected to only one subsuming node. The exception to this is the bottom (\bot) node, which may be connected to a very large number of subsuming nodes. Again, most of the subsumption tests that would be required by these nodes can be avoided by demonstrating non-subsumption using cached partial trees.

The caching technique can be extended in order to avoid the construction of obviously satisfiable and unsatisfiable sub-trees during tableaux expansion. For example, if some leaf node x is about to be expanded, and $\mathcal{L}(x) = \{A\}$, unfolding and expanding $\mathcal{L}(x)$ is clearly unnecessary if A is already known to be either satisfiable (i.e., $(\mathcal{L}_c(A), \mathcal{L}_\forall(A), \mathcal{L}_\exists(A))$ is in the cache and $\mathcal{L}_c(A) \neq \{\bot\}$) or unsatisfiable (i.e., $(\mathcal{L}_c(A), \mathcal{L}_\forall(A), \mathcal{L}_\exists(A))$ is in the cache and $\mathcal{L}_c(A) = \{\bot\}$).

This idea can be further extended by caching (when required) partial trees for all the syntactically distinct concepts discovered by the normalisation and simplification process, and trying to join cached partial trees for all the concepts in a leaf node’s label before starting the expansion process. For example, with the logic \mathcal{ALC} and a node x such that

$$\mathcal{L}(x) = \{C_1, \ldots, C_n\},$$

x is unsatisfiable if for some $1 \leq i \leq n$, $\mathcal{L}_c(C_i) = \{\bot\}$, and x is satisfiable if for all $1 \leq i \leq n$ and $1 < j \leq n$,

(i) $\mathcal{L}_\forall(C_i) \cap \mathcal{L}_\exists(C_j) = \emptyset$,
(ii) $\mathcal{L}_\exists(C_i) \cap \mathcal{L}_\forall(C_j) = \emptyset$, and
(iii) there is no C such that $\{C, \neg C\} \subseteq \mathcal{L}_c(C_i) \cup \mathcal{L}_c(C_j)$.

As before, additional interactions may need to be considered with more expressive logics. Moreover, with logics that support inverse roles, the effect that the sub-tree might have on its predecessor must also be considered. For example, if x is an R-successor of some node y, and $R^- \in \mathcal{L}_\forall(C_i)$ for one of the $C_i \in \mathcal{L}(x)$, then the expanded $\mathcal{L}(x)$ represented by the cached partial trees would contain a value restriction of the form $\forall R^-.D$ that could augment $\mathcal{L}(y)$.

The advantages of caching partial tableaux expansion trees are:

- When classifying a realistic KB, most satisfiability tests can be avoided. For
example, the number of satisfiability tests performed by the Fact system when classify the Galen KB is reduced from 122,695 to 23,492, a factor of over 80%.

- Without caching, some of the most costly satisfiability tests are repeated (with minor variations) many times. The time saving due to caching is therefore even greater than the saving in satisfiability tests.

The disadvantages are:

- The overhead of performing satisfiability tests on individual concepts and their negations in order to generate the partial trees that are cached.
- The overhead of storing the partial trees. This is not too serious a problem as the number of trees cached is equal to the number of named concepts in the KB (or the number of syntactically distinct concepts if caching is used in sub-problems).
- The overhead of determining if the cached partial trees can be merged, which is wasted if they cannot be.
- Its main use is when classifying a KB, or otherwise performing many similar satisfiability tests. It is of limited value when performing single tests.

9.5.4 Optimising satisfiability testing

In spite of the various techniques outlined in the preceding sections, at some point the DL system will be forced to perform a “real” subsumption test, which for a tableaux based system means testing the satisfiability of a concept. For expressive logics, such tests can be very costly. However, a range of optimisations can be applied that dramatically improve performance in typical cases. Most of these are aimed at reducing the size of the search space explored by the algorithm as a result of applying non-deterministic tableaux expansion rules.

9.5.4.1 Semantic branching search

Standard tableaux algorithms use a search technique based on syntactic branching. When expanding the label of a node x, syntactic branching works by choosing an unexpanded disjunction $(C_1 \sqcup \ldots \sqcup C_n)$ in $L(x)$ and searching the different models obtained by adding each of the disjuncts C_1, \ldots, C_n to $L(x)$ [Giunchiglia and Sebastiani, 1996b]. As the alternative branches of the search tree are not disjoint, there is nothing to prevent the recurrence of an unsatisfiable disjunct in different branches. The resulting wasted expansion could be costly if discovering the unsatisfiability requires the solution of a complex sub-problem. For example, tableau expansion of a node x, where $\{(A \sqcup B), (A \sqcup C)\} \subseteq L(x)$ and A is an unsatisfiable concept, could lead to the search pattern shown in Figure 9.6, in which the unsatisfiability of $L(x) \cup A$ must be demonstrated twice.

This problem can be dealt with by using a semantic branching technique adapted
from the Davis-Putnam-Logemann-Loveland procedure (DPLL) commonly used to solve propositional satisfiability (SAT) problems [Davis and Putnam, 1960; Davis et al., 1962; Freeman, 1996]. Instead of choosing an unexpanded disjunction in $L(x)$, a single disjunct D is chosen from one of the unexpanded disjunctions in $L(x)$. The two possible sub-trees obtained by adding either D or $\neg D$ to $L(x)$ are then searched. Because the two sub-trees are strictly disjoint, there is no possibility of wasted search as in syntactic branching. Note that the order in which the two branches are explored is irrelevant from a theoretical viewpoint, but may offer further optimisation possibilities (see Section 9.5.4.4).

The advantages of semantic branching search are:

- A great deal is known about the implementation and optimisation of the DPLL algorithm. In particular, both local simplification (see Section 9.5.4.2) and heuristic guided search (see Section 9.5.4.4) can be used to try to minimise the size of the search tree (although it should be noted that both these techniques can also be adapted for use with syntactic branching search).
- It can be highly effective with some problems, particularly randomly generated problems [Horrocks and Patel-Schneider, 1999].

The disadvantages are:

- It is possible that performance could be degraded by adding the negated disjunct in the second branch of the search tree, for example if the disjunct is a very large or complex concept. However this does not seem to be a serious problem in practice, with semantic branching rarely exhibiting significantly worse performance than syntactic branching.
- Its effectiveness is problem dependent. It is most effective with randomly generated problems, particularly those that are over-constrained (likely to be unsatisfiable). It is also effective with some of the hand crafted problems from the Tableaux'98 benchmark suite. However, it appears to be of little benefit when classifying realistic KBs [Horrocks and Patel-Schneider, 1998a].

1 An alternative solution is to enhance syntactic branching with “no-good” lists in order to avoid reselecting a known unsatisfiable disjunct [Donini and Massacci, 2000].
9.5.4.2 Local simplification

Local simplification is another technique used to reduce the size of the search space resulting from the application of non-deterministic expansion rules. Before any non-deterministic expansion of a node label $\mathcal{L}(x)$ is performed, disjunctions in $\mathcal{L}(x)$ are examined, and if possible simplified. The simplification most commonly used (although by no means the only one possible) is to deterministically expand disjunctions in $\mathcal{L}(x)$ that present only one expansion possibility and to detect a clash when a disjunction in $\mathcal{L}(x)$ has no expansion possibilities. This simplification has been called Boolean constraint propagation (BCP) [Freeman, 1995]. In effect, the inference rules

\[
\neg C_1, \ldots, \neg C_n, C_1 \sqcup \ldots \sqcup C_n \sqcup D \\
\frac{}{D} \quad \text{and} \quad C_1, \ldots, C_n, \neg C_1 \sqcup \ldots \sqcup \neg C_n \sqcup D \\
\frac{}{\neg D
\]

are being used to simplify the conjunctive concept represented by $\mathcal{L}(x)$.

For example, given a node x such that

\[
\{(C \sqcup (D_1 \sqcap D_2)), (\neg D_1 \sqcup \neg D_2 \sqcup C), \neg C\} \subseteq \mathcal{L}(x),
\]

BCP deterministically expands the disjunction $(C \sqcup (D_1 \sqcap D_2))$, adding $(D_1 \sqcap D_2)$ to $\mathcal{L}(x)$, because $\neg C \in \mathcal{L}(x)$. The deterministic expansion of $(D_1 \sqcap D_2)$ adds both D_1 and D_2 to $\mathcal{L}(x)$, allowing BCP to identify $(\neg D_1 \sqcup \neg D_2 \sqcup C)$ as a clash (without any branching having occurred), because \{D_1, D_2, $\neg C$\} $\subseteq \mathcal{L}(x)$.

BCP simplification is usually described as an integral part of SAT based algorithms [Giunchiglia and Sebastiani, 1996a], but it can also be used with syntactic branching. However, it is more effective with semantic branching as the negated concepts introduced by failed branches can result in additional simplifications. Taking the above example of \{(A \sqcup B), (A \sqcup C)\} $\subseteq \mathcal{L}(x)$, adding $\neg A$ to $\mathcal{L}(x)$ allows BCP to deterministically expand both of the disjunctions using the simplifications $(A \sqcup B)$ and $\neg A$ implies B and $(A \sqcup C)$ and $\neg A$ implies C. The reduced search space resulting from the combination of semantic branching and BCP is shown in Figure 9.7.

The advantages of local simplification are:

- It is applicable to a wide range of logics and algorithms.
- It can never increase the size of the search space.
The disadvantages are:

- It may be costly to perform without using complex data structures [Freeman, 1995].
- Its effectiveness is relatively limited and problem dependant. It is most effective with randomly generated problems, particularly those that are over-constrained [Horrocks and Patel-Schneider, 1998a].

9.5.4.3 Dependency directed backtracking

Inherent unsatisfiability concealed in sub-problems can lead to large amounts of unproductive backtracking search, sometimes called thrashing. The problem is exacerbated when blocking is used to guarantee termination, because blocking may require that sub-problems only be explored after all other forms of expansion have been performed. For example, expanding a node \(x \) (using semantic branching), where

\[
\mathcal{L}(x) = \{(C_1 \cup D_1), \ldots, (C_n \cup D_n), \exists R.(A \cap B), \forall R.\neg A\},
\]

could lead to the fruitless exploration of \(2^n \) possible \(R \)-successors of \(x \) before the inherent unsatisfiability is discovered (note that if \(\mathcal{L}(x) \) simply included \(\exists R.A \) instead of \(\exists R.(A \cap B) \), then the inherent unsatisfiability would have been detected immediately due to the normalisation of \(\exists R.A \) as \(\neg \forall R.\neg A \)). The search tree resulting from the tableaux expansion is illustrated in Figure 9.8.

This problem can be addressed by identifying the causes of clashes, and using this information to prune or restructure the search space—a technique known as dependency directed backtracking. The form most commonly used in practice, called backjumping, is adapted from a technique that has been used in solving constraint...
satisfiability problems [Baker, 1995] (a similar technique was also used in the HARP theorem prover [Oppacher and Suen, 1988]). Backjumping works by labelling each concept in a node label and each role in an edge label with a dependency set indicating the branching points on which it depends. A concept \(C \in \mathcal{L}(x) \) depends on a branching point if \(C \) was added to \(\mathcal{L}(x) \) at the branching point or if \(C \) depends on another concept \(D \) (or role \(R \)), and \(D \) (or \(R \)) depends on the branching point.

A concept \(C \in \mathcal{L}(x) \) depends on a concept \(D \) (or role \(R \)) when \(C \) was added to \(\mathcal{L}(y) \) by the application of a deterministic expansion rule that used \(D \) (or \(R \)); a role \(R = \mathcal{L}(\langle x, y \rangle) \) depends on a concept \(D \) when \(\langle x, y \rangle \) was labelled \(R \) by the application of a deterministic expansion rule that used \(D \). For example, if \(A \in \mathcal{L}(y) \) was derived from the expansion of \(\forall R.A \in \mathcal{L}(x) \), then \(A \in \mathcal{L}(y) \) depends on both \(\forall R.A \in \mathcal{L}(x) \) and \(\neg C_1, \ldots, \neg C_{n-1} \).

When a clash is discovered, the dependency sets of the clashing concepts can be used to identify the most recent branching point where exploring the other branch might alleviate the cause of the clash. It is then possible to jump back over intervening branching points without exploring any alternative branches. Again, more complex algorithms and optimisations may lead to more complex dependencies. For example, if the clash results from a BCP simplification of \(\{ (C_1 \sqcup \ldots \sqcup C_n), -C_1, \ldots, -C_{n-1} \} \subseteq \mathcal{L}(x) \), then it depends on the disjunction \((C_1 \sqcup \ldots \sqcup C_n) \) and all of \(-C_1, \ldots, -C_{n-1} \).

When testing the satisfiability of a concept \(C \), the dependency set of \(C \in \mathcal{L}(x) \) is initialised to \(\emptyset \) (the empty set) and a branching depth counter \(b \) is initialised to 1. The search algorithm then proceeds as follows:

(i) Perform deterministic expansion, setting the dependency set of each concept added to a node label and each role assigned to an edge label to the union of the dependency sets of the concepts and roles on which they depend.

 (a) If a clash is discovered, then return the union of the dependency sets of the clashing concepts.

 (b) If a clash free expansion is discovered, then return \(\{0\} \).

(ii) Branch on a concept \(D \in \mathcal{L}(y) \), trying first \(\mathcal{L}(y) \cup \{D\} \) and then \(\mathcal{L}(y) \cup \{\neg D\} \).

 (a) Add \(D \) to \(\mathcal{L}(y) \) with a dependency set \(\{b\} \), and increment \(b \).
(b) Set D_1 to the dependency set returned by a recursive call to the search algorithm, and decrement b.

(c) If $b \notin D_1$, then return D_1 without exploring the second branch.

(d) If $b \in D_1$, then add $\neg D$ to $L(y)$ with a dependency set $D_1 \cup \{b\}$ and return to step (i).

If the search returns $\{0\}$, then a successful expansion was discovered and the algorithm returns “satisfiable”, otherwise all possible expansions led to a clash and “unsatisfiable” is returned.

Let us consider the earlier example and suppose that $\exists R. (A \land B)$ has a dependency set D_i, $\forall R. \neg A$ has a dependency set D_j and $b = k$ (meaning that there had already been $k - 1$ branching points in the search tree). Note that the largest values in D_i and D_j must be less than k, as neither concept can depend on a branching point that has not yet been reached.

At the kth branching point, C_1 is added to $L(x)$ with a dependency set $\{k\}$ and b is incremented. The search continues in the same way until the $(k+n-1)$th branching point, when C_n is added to $L(x)$ with a dependency set $\{k+n-1\}$. Next, $\exists R. (A \land B)$ is deterministically expanded, generating an R-successor y with $R = \langle x, y \rangle$ labelled D_i and $(A \land B) \in L(y)$ labelled D_i. Finally, $\forall R. \neg A$ is deterministically expanded, adding $\neg A$ to $L(y)$ with a label $D_i \cup D_j$ (because it depends on both $\forall R. \neg A \in L(x)$ and $R = \langle x, y \rangle$).

The expansion now continues with $L(y)$, and $(A \land B)$ is deterministically expanded, adding A and B to $L(y)$, both labelled D_i. This results in a clash as $\{A, \neg A\} \subseteq L(y)$, and the set $D_i \cup D_i \cup D_j = D_i \cup D_j$ (the union of the dependency sets from the two clashing concepts) is returned. The algorithm will then backtrack through each of the preceding n branching points without exploring the second branches, because in each case $b \notin D_i \cup D_j$ (remember that the largest values in D_i and D_j are less than k), and will continue to backtrack until it reaches the branching point equal to the maximum value in $D_i \cup D_j$ (if $D_i = D_j = \emptyset$, then the algorithm will backtrack through all branching points and return “unsatisfiable”). Figure 9.9 illustrates the pruned search tree, with the number of R-successors explored being reduced by $2^n - 1$.

Backjumping can also be used with syntactic branching, but the procedure is slightly more complex as there may be more than two possible choices at a given branching point, and the dependency set of the disjunction being expanded must also be taken into account. When expanding a disjunction of size n with a dependency set D_d, the first $n - 1$ disjuncts are treated like the first branch in the semantic branching algorithm, an immediate backtrack occurring if the recursive search discovers a clash that does not depend on b. If each of these branches re-
turns a dependency set D_i such that $b \in D_i$, then the nth disjunct is added with a dependency set $(D_1 \cup \ldots \cup D_{n-1} \cup D_d) \setminus b$.

The advantages of backjumping are

- It can lead to a dramatic reduction in the size of the search tree and thus a huge performance improvement. For example, when trying to classify the GALEN model using either Fact or DLP with backjumping disabled, single satisfiability tests were encountered that could not be solved even after several weeks of CPU time.
- The size of the search space can never be increased.

The disadvantage is the overhead of propagating and storing the dependency sets. The storage overhead can be alleviated to some extent by using a pointer based implementation so that propagating a dependency set only requires the copying of a pointer. A simpler scheme using single maximal dependency values instead of sets would also be possible, but some dependency information would be lost and this could lead to less efficient pruning of the search tree.

9.5.4.4 Heuristic guided search

Heuristic techniques can be used to guide the search in a way that tries to minimise the size of the search tree. A method that is widely used in DPLL SAT algorithms is to branch on the disjunct that has the Maximum number of Occurrences in disjunctions of Minimum Size—the well known MOMS heuristic [Freeman, 1995]. By choosing a disjunct that occurs frequently in small disjunctions, the MOMS heuristic tries to maximise the effect of BCP. For example, if the label of a node x contains the unexpanded disjunctions $C \sqcup D_1, \ldots, C \sqcup D_n$, then branching on C
leads to their deterministic expansion in a single step: when \(C \) is added to \(\mathcal{L}(x) \), all of the disjunctions are fully expanded and when \(\neg C \) is added to \(\mathcal{L}(x) \), BCP will expand all of the disjunctions, causing \(D_1, \ldots, D_n \) to be added to \(\mathcal{L}(x) \). Branching first on any of \(D_1, \ldots, D_n \), on the other hand, would only cause a single disjunction to be expanded.

The MOMS value for a candidate concept \(C \) is computed simply by counting the number of times \(C \) or its negation occur in minimally sized disjunctions. There are several variants of this heuristic, including the heuristic from Jeroslow and Wang [Jeroslow and Wang, 1990]. The Jeroslow and Wang heuristic considers all occurrences of a disjunct, weighting them according to the size of the disjunction in which they occur. The heuristic then selects the disjunct with the highest overall weighting, again with the objective of maximising the effect of BCP and reducing the size of the search tree.

When a disjunct \(C \) has been selected from the disjunctions in \(\mathcal{L}(x) \), a BCP maximising heuristic can also be used to determine the order in which the two possible branches, \(\mathcal{L}(x) \cup \{ C \} \) and \(\mathcal{L}(x) \cup \{ \neg C \} \), are explored. This is done by separating the two components of the heuristic weighting contributed by occurrences of \(C \) and \(\neg C \), trying \(\mathcal{L}(x) \cup \{ C \} \) first if \(C \) made the smallest contribution, and trying \(\mathcal{L}(x) \cup \{ \neg C \} \) first otherwise. The intention is to prune the search tree by maximising BCP in the first branch.

Unfortunately, MOMS-style heuristics can interact adversely with the backjumping optimisation because they do not take dependency information into account. This was first discovered in the FaCT system, when it was noticed that using MOMS heuristic often led to much worse performance. The cause of this phenomenon turned out to be the fact that, without the heuristic, the data structures used in the implementation naturally led to “older” disjunctions (those dependent on earlier branching points) being expanded before “newer” ones, and this led to more effective pruning if a clash was discovered. Using the heuristic disturbed this ordering and reduced the effectiveness of backjumping [Horrocks, 1997b].

Moreover, MOMS-style heuristics are of little value themselves in description logic systems because they rely for their effectiveness on finding the same disjuncts recurring in multiple unexpanded disjunctions: this is likely in hard propositional problems, where the disjuncts are propositional variables, and where the number of different variables is usually small compared to the number of disjunctive clauses (otherwise problems would, in general, be trivially satisfiable); it is unlikely in concept satisfiability problems, where the disjuncts are (possibly non-atomic) concepts, and where the number of different concepts is usually large compared to the number of disjunctive clauses. As a result, these heuristics will often discover that all disjuncts have similar or equal priorities, and the guidance they provide is not particularly useful.
An alternative strategy is to employ an *oldest-first* heuristic that tries to maximise the effectiveness of backjumping by using dependency sets to guide the expansion [Horrocks and Patel-Schneider, 1999]. When choosing a disjunct on which to branch, the heuristic first selects those disjunctions that depend on the least recent branching points (i.e., those with minimal maximum values in their dependency sets), and then selects a disjunct from one of these disjunctions. This can be combined with the use of a BCP maximising heuristic, such as the Jeroslow and Wang heuristic, to select the disjunct from amongst the selected disjunctions.

Although the BCP and backjumping maximising heuristics described above have been designed with semantic branching in mind they can also be used with syntactic branching. The oldest first heuristic actually selects disjunctions rather than disjuncts, and is thus a natural candidate for a syntactic branching heuristic. BCP maximising heuristics could also be adapted for use with syntactic branching, for example by first evaluating the weighting of each disjunct and then selecting the disjunction whose disjuncts have the highest average, median or maximum weightings.

The oldest first heuristic can also be used to advantage when selecting the order in which existential role restrictions, and the labels of the R-successors which they generate, are expanded. One possible technique is to use the heuristic to select an unexpanded existential role restriction $\exists R.C$ from the label of a node x, apply the \exists-rule and the \forall-rule as necessary, and expand the label of resulting R-successor. If the expansion results in a clash, then the algorithm will backtrack; if it does not, then continue selecting and expanding existential role restrictions from $\mathcal{L}(x)$ until it is fully expanded. A better technique is to first apply the \exists-rule and the \forall-rule exhaustively, creating a set of successor nodes. The order in which to expand these successors can then be based on the minimal maximum values in the dependency sets of all the concepts in their label, some of which may be due to universal role restrictions in $\mathcal{L}(x)$.

The advantages of using heuristics are

- They can be used to complement other optimisations. The MOMS and Jeroslow and Wang heuristics, for example, are designed to increase the effectiveness of BCP while the oldest first heuristic is designed to increase the effectiveness of backjumping.
- They can be selected and tuned to take advantage of the kinds of problem that are to be solved (if this is known). The BCP maximisation heuristics, for example, are generally quite effective with large randomly generated and hand crafted problems, whereas the oldest first heuristic seems to be more effective when classifying realistic KBs.
The disadvantages are

- They can add a significant overhead as the heuristic function may be expensive to evaluate and may need to be reevaluated at each branching point.
- They may not improve performance, and may significantly degrade it.
 - Heuristics can interact adversely with other optimisations, as was the case with the MOMS heuristic and backjumping in the Fact system.
 - When they work badly, heuristics can increase the frequency with which pathological worst cases can be expected to occur. For example, with problems that are highly disjunctive but relatively under-constrained, using a BCP maximising heuristic to select highly constraining disjuncts can force backtracking search to be performed when most random branching choices would lead rapidly to a clash free expansion.
 - The cost of computing the heuristic function can outweigh the benefit (if any).
- Heuristics designed to work well with purely proposition reasoning, such as the BCP maximising heuristics, may not be particularly effective with DLs, where much of the reasoning is modal (it involves roles and sub-problems). There has been little work on finding good heuristics for modal reasoning problems.

9.5.4.5 Caching satisfiability status

During a satisfiability check there may be many successor nodes created. Some of these nodes can be very similar, particularly as the labels of the R-successors for a node x each contain the same concepts derived from the universal role restrictions in $L(x)$. Considerable time can thus be spent re-computing the satisfiability of nodes that have the same label. As the satisfiability algorithm only needs to know whether a node is satisfiable or not, this time is wasted. Moreover, when classifying a KB, similar satisfiability tests may be performed many times, and may provide further opportunities for the re-use of satisfiability results for node labels if these are retained across multiple concept satisfiability tests.

If the expansion of existential value restrictions in the label of a node x is delayed until all other expansion possibilities have been exhausted (as in the trace technique), then as each existential role restriction $\exists R.C$ is expanded it is possible to generate the complete set of concepts that constitute the initial label of the R-successor; this will consist of C plus all the concepts derived from universal role restrictions in $L(x)$.\footnote{This ordering is used in the trace technique to minimise space usage, and may by useful or even required for effective blocking.} If there exists another node with the same set of initial concepts, then the two nodes will have the same satisfiability status. Work need be done only on one of the two nodes, potentially saving a considerable amount of
processing, as not only is the work at one of the nodes saved, but also the work at any of the successors of this node.

Care must be taken when using caching in conjunction with blocking as the satisfiability status of blocked nodes is not completely determined but is simply taken to be equal to that of the blocking node. Another problem with caching is that the dependency information required for backjumping cannot be effectively calculated for nodes that are found to be unsatisfiable as a result of a cache lookup. Although the set of concepts in the initial label of such a node is the same as that of the expanded node whose (un)satisfiability status has been cached, the dependency sets attached to the concepts that made up the two labels may not be the same. However, a weaker form of backjumping can still be performed by taking the dependency set of the unsatisfiable node to be the union of the dependency sets from the concepts in its label.

A general procedure for using caching when expanding a node x can be described as follows.

(i) Exhaustively perform all local expansions, backtracking as required, until only existential value restrictions (if any) remain to be expanded.

(ii) If there are no unexpanded existential value restrictions in $\mathcal{L}(x)$, then return the satisfiability status satisfiable to the predecessor node.

(iii) Select (heuristically) an unexpanded existential role restriction from $\mathcal{L}(x)$, expanding it and any applicable universal role restrictions to create a new node y with an initial label $\mathcal{L}(y)$ (or create all such nodes and heuristically select the order in which they are to be examined).

(iv) If y is blocked, then its satisfiability status S is directly determined by the algorithm (normally satisfiable, but may depend on the kind of cycle that has been detected [Baader, 1991]).

 (a) If $S = \text{satisfiable}$, then return to step (ii) without expanding $\mathcal{L}(y)$.

 (b) If $S = \text{unsatisfiable}$, then backtrack without expanding $\mathcal{L}(y)$. The dependency set will need to be determined by the blocking algorithm.

(v) If a set equal to $\mathcal{L}(y)$ is found in the cache, then retrieve the associated satisfiability status S (this is called a cache “hit”).

 (a) If $S = \text{satisfiable}$, then return to step (ii) without expanding $\mathcal{L}(y)$.

 (b) If $S = \text{unsatisfiable}$, then backtrack without expanding $\mathcal{L}(y)$, taking the dependency set to be the union of the dependency sets attached to the concepts in $\mathcal{L}(y)$.

(vi) If a set equal to $\mathcal{L}(y)$ is not found in the cache, then set $L = \mathcal{L}(y)$ and expand $\mathcal{L}(y)$ in order to determine its satisfiability status S.
Implementation and Optimisation Techniques

(a) If \(S = \text{satisfiable} \) and there is no descendent \(z \) of \(y \) that is blocked by an ancestor \(x' \) of \(y \), then add \(L \) to the cache with satisfiability status \(S \) and return to step (ii).

(b) If \(S = \text{satisfiable} \) and there is a descendent \(z \) of \(y \) that is blocked by an ancestor \(x' \) of \(y \), then return to step (ii) without updating the cache.

(c) If \(S = \text{unsatisfiable} \), then add \(L \) to the cache with satisfiability status \(S \) and backtrack, taking the dependency set to be the one returned by the expansion of \(L(y) \).

The problem of combining caching and blocking can be dealt with in a more sophisticated way by allowing the cached satisfiability status of a node to assume values such as “unknown”. These values can be updated as the expansion progresses and the satisfiability status of blocking nodes is determined. Such a strategy is implemented in the DLP system.

A further refinement is to use subset and superset instead of equality when retrieving satisfiability status from the cache: if \(L(x) \) is satisfiable, then clearly any \(L(y) \subseteq L(x) \) is also satisfiable, and if \(L(x) \) is unsatisfiable, then clearly any \(L(y) \supseteq L(x) \) is also unsatisfiable [Hoffmann and Koehler, 1999; Giunchiglia and Tacchella, 2000]. However, using sub and supersets significantly increases the complexity of the cache, and it is not yet clear if the performance cost of this added complexity will be justified by the possible increase in cache hits.

The advantages of caching the satisfiability status are:

- It can be highly effective with some problems, particularly those with a repetitive structure. For example, the DLP system has been used to demonstrate that some of the problem sets from the Tableaux’98 benchmark suite are trivial when caching is used (all problems were solved in less than 0.1s and there was little evidence of increasing difficulty with increasing problem size). Without caching, the same problems demonstrate a clearly exponential growth in solution time with increasing problem size, and the system was unable to solve the larger problems within the 100s time limit imposed in the test [Horrocks and Patel-Schneider, 1999].
- It can be effective with both single satisfiability tests and across multiple tests (as in KB classification).
- It can be effective with both satisfiable and unsatisfiable problems, unlike many other optimisation techniques that are primarily aimed at speeding up the detection of unsatisfiability.

The disadvantages are:

- Retaining node labels and their satisfiability status throughout a satisfiability
test (or longer, if the results are to be used in later satisfiability tests) involves a storage overhead. As the maximum number of different possible node labels is exponential in the number of different concepts, this overhead could be prohibitive, and it may be necessary to implement a mechanism for clearing some or all of the cache. However, experiments with caching in the DLP system suggest that this is unlikely to be a problem in realistic applications [Horrocks and Patel-Schneider, 1999].

- The adverse interaction with dependency directed backtracking can degrade performance in some circumstances.
- Its effectiveness is problem dependent, and (as might be expected) is most evident with artificial problems having a repetitive structure. It is highly effective with some of the hand crafted problems from the Tableaux’98 benchmark suite, it is less effective with realistic classification problems, and it is almost completely ineffective with randomly generated problems [Horrocks and Patel-Schneider, 1999].
- The technique described depends on the logic having the property that the satisfiability of a node is completely determined by its initial label set. Extend the technique to logics that do not have this property, for example those which support inverse roles, may involve a considerable increase in both complexity and storage requirements.

9.6 Discussion

To be useful in realistic applications, DL systems need both expressive logics and fast reasoners. Procedures for deciding subsumption (or equivalently satisfiability) in such logics have discouragingly high worst-case complexities, normally exponential with respect to problem size. In spite of this, implemented DL systems have demonstrated that acceptable performance can be achieved with the kinds of problem that typically occur in realistic applications.

This performance has been achieved through the use of optimisation techniques, a wide variety of which have been studied in this chapter. These techniques can operate at every level of a DL system; they can simplify the KB, reduce the number of subsumption tests required to classify it, substitute tableaux subsumption tests with less costly tests, and reduce the size of the search space resulting from non-deterministic tableaux expansion. Amongst the most effective of these optimisations are absorption and backjumping; both have the desirable properties that they impose a very small additional overhead, can dramatically improve typical case performance, and hardly ever degrade performance (to any significant extent). Other widely applicable optimisations include enhanced traversal, normalisation, lazy unfolding, semantic branching and local simplification; their effects are less general and less dramatic, but they too impose low overheads and rarely degrade
performance. Various forms of caching can also be highly effective, but they do impose a significant additional overhead in terms of memory usage, and can sometimes degrade performance. Finally, heuristic techniques, at least those currently available, are not particularly effective and can often degrade performance.

Several exciting new application areas are opening up for very expressive DLs, in particular reasoning about DataBase schemata and queries, and providing reasoning support for the Semantic Web. These applications require logics even more expressive than those implemented in existing systems, in particular logics that include both inverse roles and number restrictions, as well as reasoning with general axioms. The challenge for DL implementors is to demonstrate that highly optimised reasoners can provide acceptable performance even for these logics. This may require the extension and refinement of existing techniques, or even the development of completely new ones.

One promising possibility is to use a more sophisticated form of dependency directed backtracking, called dynamic backtracking [Ginsberg, 1993], that preserves as much work as possible while backtracking to the source of a contradiction. Another useful approach, indicative of the increasing maturity of existing implementations, is to focus on problematical constructors and devise methods for dealing with them more efficiently. Good examples of this can be seen in the RACER system, where significant improvements in performance have been achieved by using more sophisticated techniques to deal with domain and range constraints on roles (see Chapter 2 for an explanation of these constructs) and qualified number restrictions [Haarslev and Möller, 2001c; 2001d; 2001a].

Finally, it should be reemphasised that, given the immutability of theoretical complexity, no (complete) implementation can guarantee to provide good performance in all cases. The objective of optimised implementations is to provide acceptable performance in typical applications and, as the definition of “acceptable” and “typical” will always be application dependent, their effectiveness can only be assessed by empirical testing. Hopefully, the new generation of highly optimised DL systems will demonstrate their effectiveness by finding more widespread use in applications than did their predecessors.
Abstract
The purpose of the chapter is to help someone familiar with DLs to understand the issues involved in developing an ontology for some universe of discourse, which is to become a conceptual model or knowledge base represented and reasoned with using Description Logics.

We briefly review the purposes and history of conceptual modeling, and then use the domain of a university library to illustrate an approach to conceptual modeling that combines general ideas of object-centered modeling with a look at special modeling/ontological problems, and DL-specific solutions to them.

Among the ontological issues considered are the nature of individuals, concept specialization, non-binary relationships, materialization, aspects of part-whole relationships, and epistemic aspects of individual knowledge.

10.1 Background
Information modeling is concerned with the construction of computer-based symbol structures that model some part of the real world. We refer to such symbol structures as information bases, generalizing the term from related terms in Computer Science, such as databases and knowledge bases. Moreover, we shall refer to the part of a real world being modeled by an information base as its universe of discourse (UofD). The information base is checked for consistency, and sometimes queried and updated through special-purpose languages. As with all models, the advantage of information models is that they abstract away irrelevant details, and allow more efficient examination of both the current, as well as past and projected future states of the UofD.

An information model is built up using some language, and this language influences (more or less subtly) the kinds of details that are considered. For example, early information models (e.g., relational data model) were built on conventional
programming notions such as records, and as a result focused on the implementation aspects of the information being captured, as opposed to the representational aspects. Conceptual models offer more expressive facilities for modeling applications directly and naturally [Hammer and McLeod, 1981], and for structuring information bases. These languages provide semantic terms for modeling an application, such as entity and relationship (or even activity, agent and goal), as well as means for organizing information.

Conceptual models play an important part in a variety of areas. The following is a brief summary of these areas, as reviewed in [Mylopoulos, 1998]:

- Artificial intelligence programs turned out to require the representation of a great deal of human knowledge in order to act “intelligently.” As a result, they relied on conceptual models built up using knowledge representation languages, such as semantic networks—directed graphs labeled with natural language identifiers. DLs are the historical descendants of attempts to formalize semantic networks.
- The design of database systems was seen to have as an important initial phase the construction of a “conceptual level schema,” which determined the information needs of the users, and which was eventually converted to a physical implementation schema. Chen’s Entity-Relationship model [Chen, 1976], and later semantic data models [Hull and King, 1987] were the result of efforts in this direction.
- More generally, the development of all software has an initial requirements acquisition stage, which nowadays is seen to consist of a requirements model that describes the relationship of the proposed system and its environment. The environment in this case is likely to be a conceptual model.
- Independently, the object-oriented software community has also proposed viewing software components (classes/objects) as models of real-world entities. This was evident in the features of Simula, the first object-oriented programming language, and became a cornerstone of most object-oriented techniques, including the current leader, UML [Rumbaugh et al., 1998].

One interesting aspect of conceptual modeling in the database context has been the identification of a number of abstraction mechanisms that support the development of large models by abstracting details initially, and then introducing them in a step-wise and systematic manner. Among the important abstractions are the following:

- thinking of objects as wholes, not just a collection of their attributes/components (“aggregation”);
- abstracting away the detailed differences between individuals, so that a class can represent the commonalities (“classification”\(^1\));

\(^1\) This term is used in a completely different way than in DL terminology, where it refers to the DL-KBMS service of finding the lowest subsumers of a concept or individual.
• abstracting the commonalities of several classes into a superclass ("generalization").

An important claim regarding the benefits of abstraction in conceptual modeling is that it results in a structured information model, which is easier to build and maintain. Interestingly, DLs further this goal by supporting the automatic classification of concepts with respect to others, thereby revealing generalizations that may not have been recognized by the modeler.

10.2 Elementary Description Logics modeling

Most conceptual models, including DLs, subscribe to an object-centered view of the world. Thus, their ontology includes notions like individual objects, which are associated with each other through (usually binary) relationships, and which are grouped into classes. In this chapter we use freely the notation and concrete syntax of Description Logics (see Appendix), and extend it with additional constructs that make it more suitable for modeling.

In the domain of a university library, we might encounter a particular person, GIANNI, or a particular book, BOOK23. Most of the information about the state of the world is captured by the inter-relationships between individuals, such as GIANNI having borrowed BOOK23. Binary relationships are modeled directly in DLs using roles and attributes: either GIANNI is a filler of the lentTo role for BOOK23, or BOOK23 is the filler of the hasBorrowed role for GIANNI. Note that lentTo and hasBorrowed are converse relationships, and this should be captured in a model, since frequently one wants to access information about associations in either direction. In DLs, this is accomplished using the role constructor inverse:

\[
\text{hasBorrowed} \equiv (\text{inverse} \ \text{lentTo})
\]

Note that in order to avoid inadvertent errors during modeling due to confusion between a role and its converse, or between a role and the kind of values filling it, one heuristic is to use a natural language name that is asymmetric, and adopt the convention that the relationship \(R(a, b) \) should be read as "a \(R \) b"; therefore in the above case lentTo(BOOK23,GIANNI) reads "BOOK23 lentTo GIANNI," while lentTo(GIANNI,BOOK23) reads "GIANNI lentTo BOOK23," which makes it clear that the first but not the second is the proper way to use the role lentTo in the model. On the other hand, loan would be a poor choice of a role identifier because one could equally well imagine loan as a role of books or of persons, so that neither loan(GIANNI,BOOK23) nor loan(BOOK23,GIANNI) "read" properly.

In addition, it is always important to distinguish functional relationships, like lentTo (a book can be loaned to at most one borrower at any time) from non-functional ones, like hasBorrowed. This is done most cleanly if the particular DL
being used allows the declaration of functional relationships, sometimes called “attributes” or “features.” Attributes themselves come in two flavors: total and partial. Thus \texttt{lentTo} is a partial attribute because a book can only be loaned to one person, but may not be on loan at some point of time; on the other hand, every book has to have an \texttt{ISBN-Nr}. It is important to check which interpretation of attributes is offered by the particular DL being used. In the rest of this chapter we assume that attributes are total, and the concept constructor \texttt{the} will be used as an abbreviation, so that \texttt{(the p C)} is equivalent to the conjunction of \texttt{(all p C)}, \texttt{(at-most 1 p)} and \texttt{(at-least 1 p)}.

Individuals are grouped into classes; for example, \texttt{Book} might be a natural class in our domain. Classes usually abstract out common properties of their instances, e.g., every book in the library has a call number. Classes are modeled by concepts in DLs, and usually the common properties are expressed as subsumption axioms about the concept. These conditions usually involve super-concepts, as well as the kinds of values that can fill roles, and limits on the number of (various kinds of) role fillers. By design, these are exactly the kinds of things that can be expressed using DL constructors:

/* Books are materials, whose callNr is an integer */
\texttt{Book} ⊑ (\texttt{and Material}
\hspace{1em} (\texttt{the callNr Integer})
\hspace{2em} ...)

As mentioned in earlier chapters, one of the fundamental properties of DLs is support for the distinction between primitive/atomic concepts—for which instances can only be declared explicitly—and defined concepts—which offer necessary and sufficient conditions for membership. So, for example, we can distinguish between the notion of “borrower” as someone who \texttt{can} borrow a book (an approved customer of the library)

/* Borrower is previously declared as a primitive concept. */
Here it is indicated what restrictions on borrowing are in force for this concept */
\texttt{Borrower} ⊑ (\texttt{all hasBorrowed Book})

from the notion of “borrower” as someone who has actually borrowed a book from the library

/* Borrower is defined as someone who has borrowed books */
\texttt{Borrower} ≡ (\texttt{and (all hasBorrowed Book)}
\hspace{1em} (\texttt{at-least 1 hasBorrowed}))

We now turn to considering a variety of more subtle issues that arise when model-
10.3 Individuals in the world

Some individuals are quite concrete, like a particular person, Gianni, or a particular copy of a book. Some are more abstract, like the subject matter covered by a book. The important property of most individuals is that they have an identity, which allows them to be distinguished from one another and to be counted.

Modeling of individuals is therefore made easier if they have unique identifiers. Unfortunately, this may not always be the case. For example, if one sees on a bookshelf two brand new copies of a book, which may not be distinguishable by any property known to us, one can still say that they are different copies of the book. In information management systems, and sometimes in the real world, this leads us to devise some kind of “extrinsic” identification scheme. For example, books on the library shelf are assigned a copy number. In this paper, as in object-oriented software systems, we will tend to assign arbitrary internal identifiers to objects, such as GIANNI or BOOK23.

The following examples concerning books show that what constitutes a relevant individual in a UoD depends very much on what we want to do with the information. In a domain concerning literature courses, one might consider something like Dickens’ HARD-TIMES as the kind of individual appearing on an assigned reading list. For an Internet book-seller interface, it is necessary to consider a more concrete level of modeling—that of book editions, since, these may have different prices. Finally, in a library, we need to keep track of actual physical book copies.

In the last two cases, one must then decide whether to model books (as opposed to editions or copies) as individuals, or as concepts that have the other kinds of individuals as instances. A general heuristic is that if we expect certain notions to be counted, then they must be modeled as individuals. Another heuristic is that notions that do not have an inception time are usually modeled as concepts.

Modeling of the particular kind of relationship that exists, for example, between a book and its editions is further examined in Section 10.7.2.

10.3.1 Values vs. objects

It is important to distinguish what we may call individual objects, such as GIANNI, from values, such as integers, strings, lists, tuples, etc. The former have an associated intrinsic and immutable identity, and need to be created in the knowledge base. The latter are “eternal” mathematical abstractions, whose identity is determined by some procedure usually involving the structure of the individual. For example, the
two strings “abc” and “abc” are the same individual value because they have the same sequence of characters; similarly for dates, such as 1925/12/20, which can be considered as 3-tuples.

Many DLs only support reasoning with objects, in which case composite values such as dates need to be modeled as objects with attributes for day, month and year. The danger here is that, for example, multiple date individuals can be created with the same attribute values, in which case they are treated as distinct for the purposes of counting and identity checking, resulting in reasoning anomalies. Implemented DLs such as CLASSIC support values from the underlying programming language (so-called “host values”), and relatively simple concept hierarchies over them. Others, such as ALC(\(D\)) [Baader and Hanschke, 1991a] and SHOQ(\(D\)) [Horrocks and Sattler, 2001] allow attributes to have values from so-called “concrete domains,” which can contain entirely new kinds of values. These concrete domains are required to have their own, independent reasoners, which are then coupled with the DL reasoner.

Equally desirable would be mathematical types such as sets, bags, sequences, and tuples, as supported by modern programming languages and certain semantic data models.

Currently, only the highly expressive DCR languages support notions such as \(n\)-tuples and recursive fixed-point structures, from which one can build lists, trees, etc. Even here, one can only provide the description of concepts (“list of Persons”), as opposed to the specification of individuals (“the list [GIANNI, ANNA]”).

10.3.2 Individuals vs. references to them

It is important to distinguish an individual from various references to it: Gianni vs. “the person whose first name is the 5 letter string “Gianni” vs. “the borrower with library card number 32245” vs. “the chairman of the Psychology Department.” This distinction becomes crucial when we express relationships: there is a difference between relating two objects and relating their names, because we usually want objects to remain related, even if names are changed. Thus “GIANNI hasBorrowed BOOK25” is different from “card-holder number 32245 hasBorrowed BOOK25,” because if Gianni gets a new card (after losing his old one, say), then the relationship between Gianni and the book is lost. So, in general, one should always deal with the individual objects, unless there is a bijection between a class of objects and a class of referents to them, and this bijection is universal (it always exists) and is unchanging\(^1\). Kent [Kent, 1979] has eloquently argued the importance of these issues in record-based database systems, and shows that in the real world such bijections are much rarer than assumed. For example, Neumann [Neumann, 1992]

\(^1\) Such bijections are exactly the “keys” used in the database context.
reports that the same US social security number (the prototypical identifier for persons in the USA) has been issued to two people, who even have the same name and birth-date!

Conversely, in some cases one wants to state relationships between intensional references, rather than specific objects. For example, we might want to say that, in general, the director of the library is the head of the book selection committee (COMMITTEE3). If Gianni happens to be the current director of the NBU library, then asserting headOf(GIANNI,COMMITTEE3) is improper because, among others, if Gianni steps down as director, according to the above model he would still be committee chair. One needs the ability to use unnamed expressions as arguments of relationships, along the lines of the predicate logic expression headOf(directorOf(NBU-LIBRARY),COMMITTEE3).

In DLs, intensional referents can be expressed as roles that are applied to individuals. (The roles may often be complex chains, resulting from the composition of atomic roles, as in “the zipCode of the address of the lentTo.”) Assuming that we use the notation NBU-LIBRARY.director to refer to the filler of the director role for the NBU-LIBRARY individual, the above relationship is actually stated as “NBU-LIBRARY.director is identical to COMMITTEE3.head.” The concept constructor same-as, indicating that two chains of roles have the same value, is used to express exactly such relationships, so the above situation might be modeled, naively, using the concept (same-as director head). The problem is that we need a single individual of which to assert this property, yet it is libraries that have directors while committees have heads. In such situations, in DLs one must find or create some chain of attributes relating the two individuals NBU-LIBRARY and COMMITTEE3. The natural relationship in this case is the attribute hasBookSelectionCommittee. Therefore the appropriate way of modeling this situation is

/* NBU-LIBRARY has book selection committee COMMITTEE3 */
hasBookSelectionCommittee(NBU-LIBRARY, COMMITTEE3)

/* NBU-LIBRARY.director equals
 NBU-LIBRARY.hasBookSelectionCommittee.head */
(same-as director (hasBookSelectionCommittee ◦ head))(NBU-LIBRARY)

10.4 Concepts

For the university library, some obvious classes of individuals include people, institutions, the material that can be loaned by the library, the staff, dates, library cards, and fines. These classes are normally modeled using atomic/primitive concepts in DLs.
It may be worth noting that in DLs the same individual may be an instance of multiple classes, without one being necessarily a subclass of another: some book might be an instance of both hard-cover and science books. This is in contrast with many other object-oriented software systems, where one is forced to create a special subclass for this notion, in order to guarantee a unique “minimal” class for every individual. However, this is not a modeling principle—it is an implementation obstacle.

10.4.1 Essential vs. incidental properties of concepts

As explained in the earlier example involving the two possible meanings for the term “borrower,” an important feature of DLs is the ability to distinguish primitive from defined concepts, where the latter have necessary and sufficient conditions for concept membership.

For example, \texttt{BookOnLoan} might naturally be defined as

/* A book is on loan if it is borrowed by someone */
\texttt{BookOnLoan} \equiv (\texttt{and Book (at-least 1 lentTo)})

Suppose that we also want to require that only hard-cover books can be loaned out. There seem to be two options for modeling this:

/* Option 1 — being hardcover is part of the definition */
\texttt{BookOnLoan} \equiv (\texttt{and Book}

\hspace{1cm} (\texttt{at-least 1 lentTo})

\hspace{1cm} (\texttt{fills binding ’hardcover}))

/* Option 2 — being hardcover is an additional necessary condition */
\texttt{BookOnLoan} \equiv (\texttt{and Book (at-least 1 lentTo)})
\texttt{BookOnLoan} \sqsubseteq (\texttt{fills binding ’hardcover})

The first approach is not quite right because being hardcover is an incidental property of books on loan, albeit one universally shared by all such objects. Among other things, this means that if the system is to recognize some individual book as being on loan, it is enough to know that it has been lent to someone—one does not also need to know it is hardcover. Hence the second modeling option is the right one, since, one can actually deduce that a book on loan is hardcover, if this was not known ahead of time.

The distinction between definitional and incidental properties is also important if we consider the task of classifying concepts into a taxonomy, since it has been argued that the taxonomy should not depend on contingent facts. This suggests that incidental properties, even universal inclusion assertions like the one for hardcover
books in Option 2 above, should appear in the ABox, not the TBox defining the terminology.

Another subtle problem arises when there are multiple sufficient conditions for a concept. For example, suppose we associated a due date with books on loan (in the physical world, this might be recorded as a date stamped in the back of the book). Then encountering a book with a due date in the future would rightly classify it as a book on loan. If we model the due date as an attribute of books, which has a value only as long as the date is in the future, then we would represent this situation as

\[(\text{and } \text{Book} \ (\text{at-least} \ 1 \ \text{dueDate})) \sqsubseteq \text{BookOnLoan}\]

and, of course, requiring books on loan to have a due date would lead to

\[\text{BookOnLoan} \sqsubseteq (\text{at-least} \ 1 \ \text{dueDate})\]

We thus have multiple sufficient conditions for being a book on loan, although one of them appears to be the primary definition.

10.4.2 Reified concepts and meta-roles

In some cases it seems natural to associate information with an entire concept, rather than with each of its individual instances. One situation where this arises is in capturing aggregate information, such as the count of current individual instances of the concept, or the average value of their attributes. In the library example, attributes such as \text{numberOfBooks} and \text{mostRequestedBooks} would fall into this category.

In some object-oriented systems this can be modeled directly because classes are themselves objects, and as such are instances of meta-classes and have meta-properties. Currently, DLs do not have a facility to treat classes as objects. One must therefore create a separate “meta-individual” that is related to the concept by some naming convention, for example. In our example, we would create the individual \text{BOOK-CLASS-OBJECT}, and then attach the information regarding \text{numberOfBooks}, \text{mostRequestedBooks}, etc., as roles of this individual. In the CLASSIC system, given a named concept, this meta-individual can be retrieved using a special, new knowledge base operation.

10.4.3 Concepts dependent on relationships

The following interesting modeling problem arises in many situations: some concepts, such as \text{Book}, stand on their own. Others, such as \text{Borrower}, rely on the implied existence of some relation/event (e.g., lending), which has a second argument, and from which their meaning is derived. It is important to discern this
second category of concepts, and explicitly introduce the corresponding binary relationship in the model. In the data modeling literature (e.g., [Albano et al., 1993]) categories of this second type, such as Borrower, are called “roles,” but to avoid confusion with DL roles, we will call them “relationship-roles.” The modeling of these will be considered further in Section 10.7.1.

10.5 Subconcepts

For many of the above concepts, there are specialized subconcepts representing subsets of individuals that are also of interest. For example, the concept Material (referring to the holdings of libraries) could be Book, Journal, Videotape, etc. In turn, Book may have subconcepts Monograph, EditedCollection, Proceedings, etc.¹ And Borrowers may be Institutions or Individuals, with the latter being divided into Faculty, Student, Staff.

There are a number of special aspects of the subclass relationship that should be modeled in order to properly capture the semantics of the UoD.

10.5.1 Disjointness of subconcepts

In many cases, subclasses are disjoint from each other. For example, Book and Journal are disjoint subclasses of Material. In DLs that support negation, this is modeled by adding the complement of one concept to the necessary properties of the other concept:

\[
\text{Book} \sqsubseteq \neg \text{Journal}
\]

Often, entire collections of subclasses are disjoint². For this purpose, some DLs provide the ability to describe disjointness by naming a discriminator, and a special declaration operation for primitive subclasses. For example, one might discriminate between various kinds of material on the basis of the medium as follows:

\[
\begin{align*}
\text{Print} & \sqsubseteq (\text{disjointPrim Material in group medium with discriminant paper}); \\
\text{Video} & \sqsubseteq (\text{disjointPrim Material in group medium with discriminant light}); \\
\text{Audio} & \sqsubseteq (\text{disjointPrim Material in group medium with discriminant sound});
\end{align*}
\]

At the same time, one might discriminate between different kinds of material on the basis of the format:

\[
\begin{align*}
\text{Book} & \sqsubseteq (\text{disjointPrim Material in group format with discriminant book}); \\
\text{Journal} & \sqsubseteq (\text{disjointPrim Material in group format with discriminant journal});
\end{align*}
\]

¹ For this section, we will think of the material to be loaned as physical individuals that can be carried out the door of the library, so to speak.

² This is especially the case at the top of the subclass hierarchy: Person, Material, etc.
Two points are worth making here: (i) the advantage of a syntax based on discriminators is that it avoids the multiplicative effect of having to state disjointness for every pair of disjoint concepts; (ii) as in the above example, it is important to allow during modeling for multiple groups of disjoint subconcepts for the same concept.

10.5.2 Covering by subconcepts

In addition to disjointness, it is natural to consider whether some set of subclasses fully covers the superclass. For example, we might want to say that Circulating material must be either short-term or long-term.

For DLs that support concept disjunction, this is easy:

\[\text{Circulating} \sqsubseteq (\text{or ShortTerm LongTerm}) \]

Note that since ShortTerm, in turn, has Circulating as a superclass, the possibility arises of modeling Circulating as a definition:

\[\text{Circulating} \equiv (\text{or ShortTerm LongTerm}) \]

However, this approach is not available for languages like CLASSIC, which avoid disjunction in order to gain tractable reasoning. We discuss in the next section an approach to the problem based on subconcept definitions and enumerated values.

10.5.3 Defined vs. primitive subconcepts

In the case of material that is either circulating or non-circulating, the name of the second class provides a hint: after introducing Material and Circulating as primitives, NonCirculating should be defined:

\[\text{Circulating} \sqsubseteq \text{Material} \]
\[\text{NonCirculating} \equiv (\text{and Material (not Circulating)}) \]

In this case, the DL can deduce both the disjointness of Circulating and NonCirculating, and the fact that Material is the union of Circulating and NonCirculating, without having stated anything explicitly about either. This shows clearly the power of a reasoning system that is capable of supporting definitions.

By joining covering and disjointness one gets the partitioning of a class by some group of subclasses. In some DLs—those supporting the constructor one-of—it is possible to simulate the effect of declaring concepts as partitioned into subconcepts through the use of a special attribute. For example, we could add the attribute format to Books, with an enumerated set of possible values:

\[\text{Book} \sqsubseteq (\text{the format (one-of 'monograph 'journal 'editedCollection)}) \]
and then define the corresponding subclasses:

\[
\begin{align*}
\text{Monograph} & \equiv (\text{and Book (fills format 'monograph)}) \\
\text{Journal} & \equiv (\text{and Book (fills format 'journal)}) \\
\text{EditedCollection} & \equiv (\text{and Book (fills format 'editedCollection)})
\end{align*}
\]

These concepts will be disjoint because format can have at most one value, and they cover the original class Book, because format must have (at least) one value from among the set enumerated.

10.5.4 Dynamics of (sub)concept membership

When changes in the model are allowed, there is a distinction between concepts that represent inherent properties of objects that do not change over time (called “rigid” in [Guarino and Welty, 2000]) such as Book, and concepts that represent more transient properties, such as MisplacedBook. Note that while it is possible for a transient property to be a subconcept of rigid one, the converse does not make sense.

Standard DLs have not developed modeling tools for issues involving the dynamics of the world, and hence usually cannot represent such distinctions. DLs extended with the notion of time, such as [Artale and Franconi, 1998], are of course well suited to express them.

10.5.5 The structure of the subconcept hierarchy

Recent work by Guarino and Welty (e.g., [Guarino and Welty, 2000]) has presented several interesting ontological dimensions along which a concept can be positioned.

The dimensions are related to many of the topics we discuss elsewhere in this chapter, including the existence or absence of criteria for identifying individuals (viz. Section 10.3), the rigid vs. non-rigid nature of concept membership (viz. Section 10.5.4), the nature of the part-whole relationship (viz. Section 10.7.3), and aspects resembling relationship-roles (viz. Section 10.7.1).

The significance of these dimensions is that they can be used to both clarify the intended meaning of concepts in an ontology, and to better organize the taxonomy of primitive concepts. The conditions for proper taxonomies are based on observations such as “a concept some of whose current instances may cease to be instances at some point in the future (e.g., Student) cannot subsume a concept whose membership cannot change (e.g., Person).”

We refer the reader to the original paper for further details.
10.6 Modeling relationships

As mentioned earlier, binary relationships are modeled in DLs using roles and attributes. Just as with subclasses, there are a number of special constraints that are frequently expressed about relationships: cardinality constraints state the minimum and maximum number of objects that can be related via a role; domain constraints state the kinds of objects that can be related via a role; and inverse relationships between roles need to be recorded. For example, a book has exactly one title, which is a string, and exactly one call number, which is some value that depends on the cataloging technique used. On the other hand, there may be zero or more authors for a book:

\[
\text{Book} \sqsubseteq \text{(and (the title String) (the callNr MaterialIdentifier) (all author Person))}
\]

As mentioned in Section 10.2, we can use the attribute \text{lentTo} to model when someone borrows a book:

\[
\text{Book} \sqsubseteq \text{(all lentTo Borrower)}
\]

Suppose we also want to record that the material in the library may be on loan, available or missing. This can be modeled by adding appropriate roles to the library:

\[
\text{Library} \sqsubseteq \text{(and (all hasOnLoan Material) (all hasAvailable Material) (all hasMissing Material))}
\]

In such a case we would like to say that these roles are non-overlapping. This could be accomplished through the use of a concept constructor \text{non-overlapping}, syntactically similar to \text{same-as}: \text{(non-overlapping hasOnLoan hasAvailable)}. However, if only one library is involved, it would be better to model the situation using an appropriate subclass of \text{Material}, such as \text{MissingMaterial}, because we already have tools for modeling disjointness of subclasses, and reasoning with them is not inherently hard as is the case of general constructors such as \text{same-as} and \text{non-overlapping}.

10.6.1 Reified relationships

It is sometimes useful to be able to give “properties of properties.” For example, when some material is lent to a borrower, it is useful to record on what date the loan took place and when the material is due back. In the Entity-Relationship approach this would be modeled by the creation of a relationship class, called \text{Loan}, which would have attributes \text{onLoan}, \text{lentTo}, as well as \text{lentOn} and \text{dueOn}, describing the
loan. This can be thought of as the reification of the relationship, and results in the following DL class specification:

\[
\text{Loan} \sqsubseteq (\text{and} (\text{the} \ \text{lentTo} \ \text{Borrower}) \\
(\text{the} \ \text{onLoan} \ \text{Material}) \\
(\text{the} \ \text{lentOn} \ \text{Date}) \\
(\text{the} \ \text{dueOn} \ \text{Date}) \\
(\text{the} \ \text{NrOfRenewals} (\text{max} \ 3)))
\]

Unless the DL supports \(n\)-ary relations, reified relationships become essential when modeling associations that involve more than two objects, as would be the case, for example, if we had several libraries (or branches), and we wanted to record from which library the loan was made.

Reified relationships have the disadvantage of requiring the modeler to distinguish somehow the subset of attributes determining the relationship \(R(a, b, \ldots)\), from those qualifying it. In the above case, we may imagine that \(\text{Loan}\) represents a binary relationship \(\text{Loan(}\text{Borrower}, \text{Material})\) between \(\text{lentTo}\) and \(\text{onLoan}\) (in which case \(\text{lentOn}\) is there just to qualify the relation); alternatively, we may interpret \(\text{Loan}\) as a ternary relationship \(\text{Loan(}\text{Borrower}, \text{Material}, \text{Date})\) between \(\text{lentTo}, \ \text{onLoan}\) and \(\text{lentOn}\). The former records loans (a borrower may have a book at most once) while the latter records the history of loans. The notion of “keys/unique identifiers” from databases, as adapted to DLs [Borgida and Weddell, 1997] can be used for this task, by marking the collection of attributes that describe the relationship as a key.

We remark that the \(\text{DLR}\) description logic can express \(n\)-ary relationships directly, so it does not require reification for this purpose.

10.6.2 Role hierarchies

In many applications, two roles on the same concept may be related by the constraint that every filler of the first role must be a filler of the second role. For example, in the library domain, the fillers of the role \(\text{hasOnShortTermLoan}\), recording a borrower’s materials that need to be returned within a week, are also fillers of \(\text{hasBorrowed}\), recording all the materials borrowed (this would be true by definition). Similarly, the \text{editorInChief} of a journal would be included in its \text{editorialStaff}.

One of the important features of frame knowledge representation schemes, and DLs in particular, is that they encourage the modeler to think of roles as first class citizens. This includes support for the notion of a role taxonomy (subroles). This is all the more reasonable, since once we reify a relationship, we would be allowed to create subconcepts of it at will.

As a result, the above kinds of constraints on the containment of role fillers can
be modeled through the use of role hierarchies—a notion supported by most DLs, at least for primitive roles:

\[
\text{hasOnShortTermLoan} \sqsubseteq \text{hasBorrowed}
\]

10.7 Modeling ontological aspects of relationships

The material in this section deals with some special kinds of relationships and approaches to modeling them. The cognoscenti will recognize these as issues related to the ontological aspects of a UoD (constructs relating to the essence of objects), as opposed to epistemological aspects (constructs relating to the structure of objects), which are captured by notions such as InstanceOf and IS-A. The kinds of relationships to be discussed below do however occur relatively frequently, and pose difficulties to the uninitiated.

10.7.1 Relationship-roles

A subtle, but important distinction can be drawn between objects that may participate in a relationship (the domain restrictions on the role) and the objects that actually do take part in one or more relationships. For example, the objects participating in a lending relationship can be said to be playing certain “roles”:

- **LentObject**
- **Borrower**

It was exactly this second meaning of borrower—as a relationship-role—that was contrasted with the original meaning of “potential borrower” in our example of Section 10.2.

DLs allow one to define the relationship-roles associated with a relationship. In the case when the relationship is modeled by a regular DL role, such as borrowedBy, we can define lent objects as ones that are being borrowed, and borrowers, as objects that are the values of borrowedBy:

\[
\begin{align*}
\text{LentObject} & \equiv (\text{at-least } 1 \text{ borrowedBy}) \\
\text{Borrower} & \equiv (\text{at-least } 1 (\text{inverse} \text{ borrowedBy}))
\end{align*}
\]

In the case of the reified Loan relationship, the definition of these classes would be

\[
\begin{align*}
\text{LentObject} & \equiv (\text{at-least } 1 (\text{inverse} \text{ onLoan})) \\
\text{Borrower} & \equiv (\text{at-least } 1 (\text{inverse} \text{ lentTo}))
\end{align*}
\]

10.7.2 Materialization

There is a family of situations whose modeling is complicated by the fact that several concepts can be referred to by the same natural language term. For example, one might say “Shakespeare wrote ‘Hamlet’,” “The ‘Hamlet’ in London this season is a success,” and “‘Hamlet’ was cancelled tonight.” But there is a difference between
the abstract notion of the play ‘Hamlet’, various stagings of the play, and particular performances. Other familiar distinctions of this kind include the difference between an airline flight (“Air France flight 25 from Paris to London”) and a particular “instance” of it—the one that will leave on May 24, 2002. Failure to model such differences can result in the same kind of problem that arises with any other form of ambiguity—inappropriate use in a context. So one can only buy tickets to play performances, but theatrical awards are given to stagings.

In each of these cases there is a relationship between a general notion (e.g., play staging) and 0-to-N more specific notions (e.g., performance of that play staging), which has been called materialization, and was investigated in [Pirotte et al., 1994].

Let us first model some information that we would like to capture in the library domain:

/* Books have information about authors, etc. */
Book ⊑ (and . . .
 (all hasAuthors Person)
 (the hasTitle String))

/* Editions of books are related to the book (in a way yet to be specified)
but have their own roles too */
BookEdition ⊑ (and . . .
 (the publishedBy PublishingCompany)
 (the isbnNr IsbnNumber)
 (the format (one-of 'printed 'audio)))

/* Book copies are related to book editions, and in turn have their own roles */
BookCopy ⊑ (and . . .
 (the callNr CallNumber)
 (the atBranch LibraryBranch))

There are several alternative ways of proceeding with the modeling of such a UoD.

Since objects in each of these classes are seen to naturally have attributes like hasTitle, it is tempting to think of BookCopy as being a subclass of BookEdition so that this attribute is inherited. However, this would mean that each individual instance of BookCopy is a separate BookEdition, which seems wrong.

If we are not committed to modeling separate individual instances of each of these concepts, it is possible to combine their description into a single concept that records all the relevant information. So, for example, we could define Books to have all the attributes of the three concepts above, and thus really refer to book copies. (But see below.)

Finally, according to the results in [Pirotte et al., 1994], a more appropriate
approach is to view each edition of a book as determining a subclass of BookCopy. Each of these subclasses can then be viewed as an instance of BookEdition, for which it provides so-called “meta-roles.” Materialization is the combination of these ideas.

The materialization relationship can be modeled in DLs by a role materializationOf, connecting in our case book editions and books, and book copies and book editions. However, this sounds very unnatural when read out loud, so a better approach may be to create subroles of the general role materializationOf. This means that the above model would be completed by adding the following assertions

```plaintext
/* editionOf is a kind of materialization relationship */
editionOf ⊑ materializationOf

/* Book editions are materializations of books */
BookEdition ⊑ (the editionOf Book)

/* copyOf is a kind of materialization relationship */
copyOf ⊑ materializationOf

/* Book copies are materializations of book editions */
BookCopy ⊑ (the copyOf BookEdition)
```

Often, the properties of the more abstract concept are inherited by the materialization. For example, the book edition, and then the book copy, has the same title and author as the book. In DLs, this relationships can be expressed by identifying the appropriate attribute values on the general and the materialized object:

```plaintext
BookEdition ⊑ (same-as hasTitle (editionOf ◦ hasTitle))
```

Several additional kinds of relationships between attributes of an object and its materialization are identified in [Pirotte et al., 1994], but they are rather unclear and cannot be represented in DLs. Probably the most interesting is the case when an attribute of the more general concept has no correspondent on materialized individuals. For example, though a book edition may reasonably record the date when it was first and last printed, it seems very questionable to say that a book copy has a last printing date.

This looks like a case of meta-roles of the kind mentioned earlier. The main importance is that if one wants to have in the model attributes such as firstPrinting, then one cannot “melt” objects (book editions) into their various materializations (book copies), and is forced to model them separately.
10.7.3 Part-whole aggregation

The part-whole relationship distinguishes roles of a book such as its chapters, from others such as its publisher. There is a long history of discussions concerning this topic, with [Artale et al., 1996b] being an excellent and comprehensive survey that considers, among other things, a variety of DL solutions to the problem. We present here some interesting observations.

Cognitive scientists have distinguished a variety of part-whole relationships, whose mixture has caused apparent paradoxes; according to one hypothesis these can be distinguished by differentiating three kinds of wholes—complexes, collections and masses—with parts called components, members and quantities respectively; furthermore parts can be portions (sharing intrinsic properties with the whole) and segments. Most physical objects, like book copies, are complexes of their parts (e.g., pages), but in the book domain we also find uses for collections in modeling books that are anthologies of other literary pieces.

In addition, one can qualify the nature of two aspects of the relationship between parts and wholes:

- Existence: A whole may depend on particular individual(s) for its continued existence and identity, as in the case when the part is irreplaceable (e.g., a book must have an author); or it may depend generically on a class of parts (e.g., a book copy must have a cover). Conversely, the part may depend on the whole for its existence (e.g., the chapter of a book). Finally, a part may belong exclusively to only one whole or it might be shared.

- Properties: Properties may be “inherited” from the whole to the part (e.g., ownedBy) or from the part to the whole (e.g., isDefective).

At the very least, the above provides a checklist of issues to consider whenever a part-whole relationship is encountered during modeling.

In the realm of Description Logics, Sattler [1995] offers an approach to dealing with these topics, exploiting various role-forming operators such as role hierarchies, role inverse, and transitive closure to capture the semantics of aggregation.

Specifically, special roles are introduced for the different kinds of part-whole relationships mentioned above: hasDComponent, hasDMember, hasDSegment, hasDQuantity, hasDStuff, hasDIngredient, where “D” stands for “direct.” One then defines more complex relationships from these primitives:

\[
\begin{align*}
\text{hasComponent} & \equiv (\text{transitive-closure} \\
& \quad (\text{or}_\text{role} \ \text{hasDComponent} (\text{hasDMember} \circ \text{hasDComponent}))) \\
\text{hasPart} & \equiv (\text{or}_\text{role} \ \text{hasComponent} \ \text{hasMember} \cdots)
\end{align*}
\]

indicating that members of collections of components are also components, and that hasPart is the union of the various sub-kinds of relationships.
Let us concentrate here on the component-of relationship, which is probably the one most frequently encountered in practical applications. We shall consider the table of contents of a book as an exemplar of a component attribute.

One idea is to declare attributes and roles that represent components (e.g., `table-OfContents`) as specializations of `hasDComponent`. This allows us to distinguish such component roles from other roles, like `lentTo` and `publisher`.

Obviously, the inverses of such roles provide access from a part to its containing whole:

\[
\begin{align*}
\text{isDComponentOf} & \equiv (\text{inverse hasDComponent}) \\
\text{hasTableOfContents} & \equiv (\text{inverse contentsOf})
\end{align*}
\]

Turning to “existence” constraints, a book (but not a *copy* of a book!) depends on the existence of its specific table of contents, and conversely. Although we can specify that a book must have table of contents, as with earlier “dynamic” aspects (such as (im)mutable class membership) standard DLs are not currently equipped to express constraints stating that an attribute value cannot change.

To model the fact that each table of contents belongs exclusively to one book, we can use qualified number restrictions:

\[
\text{TableOfContents} \sqsubseteq (\text{the contentsOf Book})
\]

Finally, the inheritance of properties (e.g., `isDefective`) across component-like attributes is modeled using constructs such as `same-as`, which relate attribute/role chains set-theoretically, in the same manner as shown with materialization:

\[
\text{Book} \sqsubseteq (\text{same-as isDefective (hasTableOfContents } \circ \text{ isDefective)})
\]

Note however that several of these representations require quite expressive language constructs, whose combination may result in a language for which subsumption is undecidable.

10.7.4 General constraints

In many modeling exercises one will encounter general constraints that characterize valid states of the world. For example, the `dueDate` of a book must be later than the `lentOn` date.

Except for a few cases involving identity of attribute paths, these constraints will not be expressible in standard DLs, due to their limited expressive power. Several widely distributed systems, such as CLASSIC and LOOM, offer “escape hatches”—concept constructors that allow one to describe sets of individuals using some very powerful language, such as a programming language (CLASSIC’s test-concepts) or some variant of first-order logic (LOOM’s assertions). These concept definitions are
usually opaque as far as concept-level reasoning is concerned, because the system cannot guarantee correctness for such an expressive formalism. However, these concepts can have an impact as far as the ABox reasoning is concerned, since the latter resembles a logical model, and therefore we can do relatively simple “evaluation” as a way of recognizing individuals. Thus, in CLASSIC, the test-concept \texttt{(test date-after (dueDate lentOn))} would invoke the \texttt{date-after} function on the \texttt{dueDate} and \texttt{lentOn} attributes of an individual object, and check that the first is temporally after the second, thus classifying individuals, or detecting errors in the ABox.

More general than these procedural extensions are DL systems that are \textit{extensible} in the sense that a “knowledge language engineer” can add new concept constructors, and extend the implementation in a principled way. For example, if we wanted to deal with dates and durations (clearly a desirable feature for libraries), we would want to be able to compare dates, add durations to dates, etc. General approaches to extending DLs have been described, among others, in [Baader and Hanschke, 1991b; Borgida, 1999; Horrocks and Sattler, 2001].

\section*{10.7.5 Views and contexts}

Although the initial goal is usually to provide a single model of the UofD, it turns out to be very important to preserve the various “views” of the information seen by different stake-holders and participants. For example, a book that is in the library (and by definition, this would mean that it has no value for the \texttt{lentTo} role) is of interest to the staff, for example to help find it; for this, it may have a role \texttt{location}, which might specify some shelf or sorting area; this attribute may be attached to the \texttt{MaterialInLibrary} concept.

On the other hand, a view of \texttt{Material} called \texttt{MaterialOnLoan} (which \textit{requires} a \texttt{lentTo} role value), would be a natural place to keep information about \texttt{dueDate} and \texttt{nrOfRenewals}—attributes that would normally appear on the relationship itself. This view is of particular interest to the borrower, but also the staff in charge of sending overdue notices.

Incidentally, the above pattern of replacing a binary relationship having attributes by two views can be applied any time one of the participants in the relationship is restricted to appear in at most one tuple (e.g., every book can be loaned to at most one borrower).

\section*{10.8 A conceptual modeling methodology}

The world of object-oriented software development has produced a vast literature on methodologies (e.g., [Shlaer and Mellor, 1988]) for identifying objects, classes, methods, etc., for a particular application. Instead of considering this voluminous
material here, we will recapitulate some of the issues raised above by extending
the outline of a simple DL knowledge engineering methodology first presented in
[Brachman et al., 1991]. The reader is referred to that article for more details,
including a long worked-out example.

We present the main steps of modeling, with suggestions for refinements to be
accomplished in later passes; this is in order to avoid the modeler becoming over-
whelmed by details:

• Identify the individuals one can encounter in the UofD. Revisit this later consid-
ering issues such as materialization and values.
• Enumerate concepts that group these values.
• Distinguish independent concepts from relationship-roles.
• Develop a taxonomy of concepts. Revisit this later considering issues such as
disjointness and covering for subconcepts.
• Identify any individuals (usually enumerated values) that are of interest in all
states of the world in this UofD.
• Systematically search for part-whole relationships between objects, creating roles
for them. Later, make them sub-roles of the categories of roles mentioned in
Section 10.7.3.
• Identify other ‘properties’ of objects, and then general relationships in which
objects participate.
• Determine local constraints involving roles such as cardinality limits and value
restrictions. Elaborate any concepts introduced as value restrictions.
• Determine more general constraints on relationships, such as those that can be
modeled by subroles or \textit{same-as}. (The latter often correspond to “inheritance”
across some relationship other than IS-A, and have been mentioned in several
places earlier.)
• Distinguish essential from incidental properties of concepts, as well as primitive
from defined concepts.
• Consider properties of concepts such as rigidity, identifiers, etc., and use the
techniques of [Guarino and Welty, 2000] to simplify and realign the taxonomy of
primitive concepts.

10.9 The ABox: modeling specific states of the world
So far, we have concentrated on describing the conceptual model at the level of
concepts. In some applications we may want to use our system to keep models of
specific states of the world—somewhat like a database. As discussed in Chapter 2,
this involves stating for each specific individual zero or more fillers for its attributes
A. Borgida, R. J. Brachman

and roles, and asserting membership in zero or more concepts (primitive, but also possibly defined).

One of the challenging aspects of modeling the state of the world with DLs is remembering that unlike databases, DL systems do not make the closed-world assumption. Thus, in contrast with standard databases, if some relationship is not known to hold, it is not assumed to be false.

One consequence of this is that any question about the membership of an individual in a concept, or its relationship to another individual, has three possible answers: definitely yes, definitely no, or unknown. The positive side of this is that it allows the modeling of states with partial information: one can model that BOOK22 is an instance of Book, and hence has exactly one filler for isbnNr, yet not know what that value is. Chapter 12 shows how this feature has been exploited in developing a family of DL applications for configuring various devices.

Another consequence of the above stance is that in some cases individuals are not recognized as satisfying definitions when one might expect them to. For example, suppose we only know that hasAuthor relates BOOK22 to SHAKESPEARE, who in turn is known to be an instance of Englishman. This, by itself, is not enough to classify BOOK22 as an instance of concept (all hasAuthor Englishman); we must also know that there are no other possible fillers for BOOK22’s hasAuthor role—i.e., that BOOK22 is an instance of (at-most 1 hasAuthor)—before we can try to answer definitively whether BOOK22 is an instance of (all hasAuthor Englishman). Even in this case, if the answer is not ‘yes’, we may get ‘no’ or ‘maybe.’

A final consequence of not making the closed-world assumption is that there is a clear distinction between the state of the world (out there) and our (system’s) knowledge of it. This is reflected by the terminology used above (e.g., “we must also know there are no other possible fillers”). As a result, in modeling a domain one may find it necessary to specify concepts that involve the state of our knowledge base, rather than the state of the world. For example, we might want to find out exactly which books in the KB are not known to have a ISBN number. The description (and Book (at-most 0 isbnNr)) will not do the job, because the second constraint would conflict with one of the the necessary conditions of Book, which is that it must have have exactly one isbnNr. What is happening here is that the at-most 1 constraint concerns the state of the world, while the at-most 0 condition involves the KB’s knowledge of the world. To deal with this, we need some form of epistemic operator, so we can define the concept

$$\text{UnknownIsbnBook} \equiv (\text{and Book (at-most 0 (known isbnNr)))}$$

The general problem of adding an epistemic operator to DLs is considered in [Donini et al., 1998a], but this is not available in currently implemented DLs. A “hack”
would be to introduce for such roles a subrole, whose identifier indicates its epistemic nature:

\[
\text{knownToHaveAuthor} \sqsubseteq \text{hasAuthor}
\]

and then be sure to assert fillers only about the “known” variant. Unfortunately, there is no way to tell a DL that such roles automatically have the “closed-world assumption.”

10.10 Conclusions

There are a wide variety of sources that discuss the application of object-oriented approaches to modeling a domain. The same principles apply to conceptual modeling in general. For this reason, we have concentrated here on some of the more subtle issues and ontological issues that arise during modeling, and the different ways in which these can be encoded in DLs. In some cases the issues examined were suggested by features of DLs themselves.

In the process, we covered most of the kinds of questions that would have to be addressed while modeling something like the library domain, and uncovered some of the strengths and also some of the weaknesses of DLs in representing this conceptual model. The latter include difficulty in representing (structured) values, constraints related to the dynamic aspects of the domain, certain forms of “inheritance” (e.g., for materialization), and meta-information. These were balanced by the multitude of features dealing with primitive and defined concepts, necessary and sufficient conditions for concept specification, and the treatment of roles as first-class citizens in subclasses and composition.

Probably the biggest problem in developing an appropriate conceptual model for a domain is that of testing it for correctness and completeness. The former is supported by the reasoning and explanation facilities provided by DLs. The latter, as usual, is much more difficult to achieve.
Abstract

This chapter reviews the application of description logics to Software Engineering, following a steady evolution of description-logic based systems used to support the program understanding process for programmers involved in software maintenance.

11.1 Introduction

One of the first large applications of description logics was in the area of software engineering. In software, programmers and maintainers of large systems are plagued with information overload. These systems are typically over a million lines of code, some approach fifty million. The size of the workforce dedicated to maintaining these enormous systems is often over a thousand. In addition, turnover is quite high, as is the training investment required to make someone a productive member of the team. This seems, on the surface, to be a problem crying out for a knowledge-based solution, but understanding precisely how description logics can play a role requires understanding the basic problems of software engineering “in the large.”

11.2 Background

The three principal software maintenance tasks are pro-active (testing), reactive (debugging), and enhancement. Central to effective performance of these tasks is understanding the software. In the 1980s, cognitive studies of programmers involved in program understanding [Soloway et al., 1987] revealed two things:

(i) Programmers typically solve problems by realizing “plans” in their programs. This seems to tie the notion of program understanding to plan recognition [Soloway et al., 1986].

(ii) Delocalized plans (plans which are not implemented in localized regions of
code) are a serious impediment to plan recognition, both for humans and automated methods [Soloway and Letovsky, 1986].

While these observations were interesting, the studies from which they were derived were slightly flawed from the industrial perspective described above: the subjects of these studies were almost exclusively students working alone with small domain-independent programs (i.e., sorting, searching, etc.). It was not clear how these results applied to experienced programmers working in teams with huge domain-specific programs.

An ambitious effort launched by AT&T [Brachman et al., 1990] attempted to address this problem by studying maintainers of a large software system, and measuring the time they spent performing different categories of tasks. What they found was a bit startling: up to 60% of the time was spent performing simple searches across the entire software system. A part of what was termed discovery, and as pointed out later in [Welty, 1997], the need for these searches was the result of the delocalization not only of plans in software, but of information in general; information a maintainer needs to understand a section of code is frequently not found in the vicinity of that section of code, but may be before or after in the file, in a different file, in a different directory, etc. For a large software system whose source code is spread out over a large number of files in a deep and complex directory structure, finding something as simple as, e.g., the definition of a data-type, with tools such as find (the Unix program that runs another program on all files recursively down a directory structure) and grep (the Unix program that searches files for strings) was both difficult and time-consuming.

Another more comprehensive study was performed by MCC around the same time [Curtis et al., 1988], which concluded, among other things, that prerequisite to understanding the software is understanding the domain in which the software operates and is a part—if you don’t know what a “dial-tone” is, you can’t be expected to debug the code that generates a dial-tone.

11.3 Lassie

In an attempt to have a direct impact on the maintenance group, the researchers at AT&T developed the notion of a Software Information System (SIS) [Brachman et al., 1990]. An SIS is basically an information system which treats the software system source code itself as data, and stores relationships that can provide the information maintainers frequently search for during discovery.

The first SIS, Lassie [Devambu et al., 1991], was developed to assist the understanding of AT&T’s Definity 75/85 software system. Influenced by their own study and that of MCC, it contained two components: a domain model and a code model.
The code model was implemented with a simple ontology of source code elements, shown in Figure 11.1, which was derived empirically from the basic kinds of searches maintainers performed. The knowledge-base (the actual assertions about individual functions, files, data-types, etc.) was populated automatically from the source code.

The domain model was reverse engineered from the code and contact with the domain experts, it contained knowledge about the telephony domain, i.e. the things
the software system dealt with. These included entities such as telephones, microphones, cables, cable-trunks, etc. A sample of the ontology is shown in Figure 11.2.

One of the most interesting aspects of this work, and perhaps the most significant from the perspective of exploring description logics, is an analysis of the differences between these two models. The code-model was founded on a very simple ontology, containing perhaps twenty concepts, and was populated with a large number of individuals, on the order of thousands (at least one for each file, data type, function, and variable in the system). The domain model had a large and complex ontology, containing perhaps two hundred concepts, but very few individuals.

The reason for this difference was that the trivial searches that characterized software discovery were performed for two reasons:

(i) Discovering specific information about the software, e.g., what is the data-type of the variable dial-tone?
(ii) Discovering specific information about the domain, e.g., what is a dial-tone?

In case (i), the maintainer requires specific information about the software, and thus raw data that represents that information is required. For example, by far the most common question asked during discovery is, “Where is this variable used?” [Welty, 1997]. Normally, a maintainer would `grep` for the variable in the rest of the code to find the answers to this question, and as if this didn’t take enough time and effort, the results would have to be pruned by hand to remove various kinds of “semantic noise” such as:

(i) variables with longer names that include the desired variable name
(ii) names of functions that include the desired variable name
(iii) comments that include the variable name
(iv) other non-variable string matches

In this particular case, the amount of semantic noise was quite high as a result of mandated naming conventions whose intent was to make the source code easier to understand (semantic noise, also known as false positives is a general problem with string-based search methods, and will be discussed further in Chapter 14).

The SIS code model immediately solved these problems by identifying “variable” as a semantic category (as well as file, function, etc. See Figure 11.1). This meant, quite simply, that where a string search for places in which e.g., the variable `error-value` was used might yield such unwanted results as: `compute-error-value`, `display-error-value-result-code`, `error-value-lookup-table`, etc., limiting the search to variables would remove up to 80% of the noise.

In addition to trivially being able to restrict searches to specific categories, other
information that could be extracted automatically was mined from the code. For variables, it is simple to automatically determine:

- The file it was defined in.
- Each function in which the variable was used.

In addition, for each function, information was extracted regarding the file it was defined in. From this, a simple inference could be made as follows:

\[
\text{Variable} \subseteq \forall \text{usedInFile}.\text{File} \cap \forall \text{usedInFunction}.\text{Function} \cap \\
\text{usedInFile} = \text{usedInFunction} \circ \text{definedInFile}
\]

In other words, if a function uses a variable then the variable is used in the file that function is defined in; this produces all the locations where the variable is used. In this manner, the Lassie system augmented the basic data in a number of ways through inference.

A similar and nearly as common maintenance task was, e.g., after modifying a function, searching for all the places that function is used to see if the changes affect other sections of the code. Information about what functions call others (i.e., the call graph) was also kept in the code model, and an expression similar to the one in the example above can be used to derive all the files in which a function is called.

The code model alone was able to simplify several of the common discovery tasks maintainers experienced during code modification, but as suggested in case (ii) of the reasons for engaging in discovery listed above, there are other reasons for a maintainer to be searching through the code. For these cases, in which domain information is the desired result of a search, a robust description of the domain is required, and was provided by the domain model (see Figure 11.2).

For example, a maintainer may want to know what kinds of actions a user of the system can take by themselves. To answer this question from the code—the usual approach before Lassie—would be quite difficult. One method might be to *grep* through the code for the string “user”—hoping of course that the documentation is up to date or consistent with respect to user actions. Clearly the semantic noise would be quite high in such a case.

Another approach might be to start with a piece of code the maintainer is familiar with, and draw some clues from that for where to look next. The point here is that, whereas for code-model queries the goal is quite specific, domain-oriented queries are not, and imply a lot of time browsing, searching for new ideas, etc. The code is organized around specific functions, not around specific domain concepts, and of course multiple “views” of the code is not supported.

To address this type of need, the Lassie domain model expressed knowledge about the domain of telephony. It presented numerous key concepts that let maintainers view the knowledge in the code in a variety of different ways. The domain model
was mostly terminological, since it was a description of the things that the software could do. An action concept, such as “generating a dial tone” was a description of the action, whereas an individual would be an actual action of generating a dial tone at some fixed time. These individuals did not normally exist in the domain model, except as examples. The concept would roughly be:

\[
\text{GenerateDialToneAction} \sqsubseteq \text{Action} \land \forall \text{initiatedBy}.\text{LatBox} \land \forall \text{follows}.\text{OffHookAction} \land \\
\forall \text{recipient}.\text{LocalPhone} \land \geq 1 \text{hasConnection}
\]

In other words, a “generate dial tone action” is an action that is initiated by a local telephone service following an “off hook action.” The recipient of the product of the action (the dial tone) is a phone for which a connection has been allocated.

Other domain concepts described things that the software reacted to, such as:

\[
\text{OffHookAction} \sqsubseteq \text{Action} \land \forall \text{initiatedBy}.\text{User} \land \leq 0 \text{follows} \land \\
\forall \text{recipient}.\text{LatBox} \land \forall \text{activates}.\text{AllocateConnectionAction}
\]

In other words, an “off hook action” is an action that is initiated by a user (more commonly the result of pressing a button these days than lifting the receiver off the hook). It follows no previous action, and the recipient of the product of the action is the local telephone service (on which the software is running). The action activates a search for a connection.

Returning to the randomly chosen example above, the maintainer looking for all actions that can be initiated by a user would simply enter a query such as

\[
\text{Action} \land \forall \text{initiatedBy}.\text{User}
\]

and the system would find all the concepts subsumed by that expression. Lassie contained a facility for defining new domain concepts identified by maintainers during discovery, and adding them to the domain model by simply assigning them a name (e.g., USER-ACTION in this example).

While these two models independently solved existing problems, it soon became clear that integrating the two models was an important requirement. Using the tool exposed the fact that most domain queries were followed by code-queries. For example, after exploring the domain model to discover the significance of a “connect action”, the maintainer will typically ask, “What are the functions that implement it?” In addition, classifying software components by their relevance in the domain was viewed to be a very significant bit of functionality, as this permitted components to be found and retrieved with this information—something that was not previously possible.

This integration between the two models made it possible to use subsumption to find different software objects. For example, all functions that implement connect

"Software Engineering" 387
actions would be:

\[\text{Function} \sqcap \text{ConnectAction} \]

Variables used in functions that implement user actions would be:

\[\text{Variable} \sqcap \forall \text{usedInFunction.UserAction} \]

The LaSSIE system underwent steady development for several years at AT&T, and was shown to cut down on the time maintainers spent in discovery. In order to further improve the process, it was observed that:

- The connection between the domain and code models needed to be made by hand. This was time-consuming to create, and difficult to maintain since the domain model changed over time as new features were added to the software system. Maintainers began to lose faith in the domain model, as a result, and usage deteriorated.
- The code model, though incredibly simple, was used far more frequently than the domain model, and became an important part of every maintainer’s tool set. It did not, however eliminate the searches maintainers made, and therefore did not completely replace `find` and `grep`.

11.4 CodeBase

Because the code model proved quite useful and easy to maintain, the demand for it began to increase. This introduced two problems for the LaSSIE SIS:

- Like all description logic systems, it was main memory based. The software contained many thousands of functions, variables, and files. More importantly, the complexity of the function call graph, variable usage graph, and location maps, exceeded one million. It was not possible to store this amount of information in main memory of any computer at that time.
- The natural language interface, while simple and easy to understand, did not facilitate using the system quickly. One still had to compose a proper query and type it in. If the result of one query were to be used in another, the maintainer had to re-type the name(s) of the concepts or individuals involved. Increased usage demanded a better user interface.

The CodeBase system [Selfridge and Heineman, 1994] offered solutions to both of these problems. Perhaps the most significant achievement was the development of a system for off-line storage of individuals. The relatively small code-model TBox was always kept in memory, but individuals were kept on a disk, in a technique similar to virtual memory. The difference was in the heuristics used for predicting what portions of the ABox to pre-load.
Whereas a virtual memory system normally uses heuristics based on temporal or spatial proximity, for a knowledge base like Lassie, this was not relevant. The location of an individual in physical memory was no indication of its relevance to other individuals near it in physical memory.

The heuristics for virtual memory are based on the empirical observation that when one location is accessed, it is probable that the next access will be to a nearby location in memory. The Lassie developers observed that, in a description logic ABox, when an individual is accessed it is probable that the next access will be to one of its role fillers, or to objects along some role path from the accessed individual. Because a role may have many fillers, and because an individual may have many roles, there is no way to arrange the individuals in memory so that the normal virtual memory heuristics will be efficient.

CODEBase also provided numerous graphical tools for viewing and browsing the information in the knowledge base. While this is less significant from the general perspective of description logics, it is important from the standpoint of developing knowledge-based systems. One must never forget that these systems interact with people, and can not be considered as viable systems unless the human is “in the loop.”

11.5 CSIS and CBMS

Development of Lassie was eventually halted by the trivestiture of AT&T in 1995. Research into software information systems did not stop, however, and description logics have played an important role in this continued development.

Two issues were brought to light by the Lassie system:

- The deterioration of the domain model over time was another manifestation of the classic software documentation problem: the same information being stored in different ways. The code model stayed relevant because it was automatically generated from the only thing that had to be maintained: the software. It did not, therefore, need to be maintained separately to remain accurate. The documentation and the domain model were different representations of the knowledge that was, perhaps implicitly, in the code. These representations always lagged the “real” one, since they had to be maintained independently.

- The delocalization of information in software, which is the central obstacle to code understanding, required new ways of viewing the code. Looking at code on the screen, analogously to the heuristics for operating system virtual memories, is inherently two-dimensional. It does not allow for relationships between code-level entities to be viewed, or localized.

The first step in determining how to address these problems was to perform
further studies of programmers involved in discovery to gain more detailed insight into specifically what they were doing. One such study, in this case of programmers maintaining a moderate-sized object-oriented software system, found that the most common high level queries were:

(i) Where is this variable modified?
(ii) What are the available slots and methods on this instance?
(iii) What is the data-type of this variable or function?
(iv) What are the superclasses of this class?
(v) What does this function return?
(vi) Does this function have side-effects?
(vii) Is this data-type used?

Clearly, to provide answers to questions like these requires far more fine-grained information about the software than simply the locations of the definitions. Furthermore, this study confirmed that object-oriented languages actually increase understanding problems by delocalizing much more information than their imperative predecessors [Huitt and Wilde, 1992]. Inheritance, in particular, spreads method and slot (instance variable) declarations up the class hierarchy, making it harder to find answers to questions about class composition, among other things.

These issues spurred research into Comprehensive Software Information Systems [Welty, 1995], which soon became Code-Based Management Systems. The idea of CBMS was to define the most precise level of granularity of representation needed to have complete knowledge of the software system in the knowledge-base. In other words, to have the knowledge-based representation be the artifact that is maintained.

From a description logics perspective, such a comprehensive representation of software in a knowledge base required the ability to deal with large amounts of information efficiently. In addition, such a deep representation made it possible for a wide range of inferences that were well-suited for subsumption reasoning.

A CBMS is based on a full-scale parse of the code to construct an abstract syntax tree (AST), which is basically the parse tree. The AST has all the information of the source code, such that the source code can be completely generated from the AST. The AST is augmented with semantic information that can be derived automatically from the syntax. In C++, for example, we know that the left side of an assignment operator is the variable to be changed, and the right side is the new value.

The ability to represent everything in the code requires a deeper ontology of code-level software elements than the original LASSIE ontology, that includes statements, blocks, conditions, etc. In fact, every syntactic element of the programming lan-
language is in the ontology. A simplified ontology for an object-oriented language is shown in Figure 11.3.

In addition to these concepts representing the syntactic elements of the source language, roles were used to relate instances of these concepts to each other for control flow, data flow, call-graphs, etc. For example, take the following C++ code fragment:

```cpp
void group_deliver (  
    MAIL_MESSAGE message,  
    GROUP group)  
{ LIST members;

    members = get_members(group);  
    while (! empty(members)) {
        ind_deliver(message,car(members));  
        members = cdr(members);
    }
```
The CBMS representation of that fragment is shown in Figure 11.4. Note that Figure 11.4 shows only the ABox corresponding to the small code fragment, and that role fillers are shown as binary relations.

With an interface that showed individuals in the code representation with role fillers displayed as hypertext links (see [Welty, 1996a]), this ontology alone localizes far more information than the standard text view of software displayed in an editor window. Again, an editor window localizes only the control flow information; a maintainer looking e.g., at the code fragment shown above, only sees the text. The lines are arranged in roughly control-flow order.

Using a CBMS representation, a maintainer's view is focused on a particular object, such as the assignment statement on the first line of the function. This view would be:

ASSIGNMENT-STATEMENT-23:
In this kind of view, anything in {...} is a hypertext link to a similar description of the individual named in the link, and localization takes on a new meaning: the number of hypertext links a desired piece of information is from the current context (individual being viewed). For example, information about control flow is accessible through a chain of next links, but in addition, information about data flow is accessible through the new-value link, about the function being implemented, about the variable being used, etc.

Another advantage of the CBMS approach is that reasoning can be employed to augment the data and automate the localization of even more information. In existing work in Classic, three types of reasoning were employed:

Role inverses. Every role in the ontology has an inverse, and this provides a tremendous amount of simple bookkeeping information useful to maintainers. In the example above, the changes role is filled through parsing with members, and the inverse relationship, that the variable members is changedBy ASSIGNMENT-STATEMENT-23 is added as well. The power of this simple inference can not be under-stated. Studies showed that this was the most useful kind of information the system provided, as it answered the most common question asked by maintainers.

Path tracing. Many useful pieces of information were a few clicks away, but would be more useful if brought within one click (i.e., one link). A simple set of forward chaining “filler” rules in Classic are capable of handling this. For example, it is also useful to know within which functions a variable is changed. Without inference, the maintainer must click on the changedBy role for a variable to get to the statement that changes it (or statements), and then must click on the implementationOf role for the statement to get to the function. Instead, with “path tracing rules,” we can fill the changedInFunction role automatically with all the values from the path (changedBy implementationOf). Thus in our example we can conclude that members is changedInFunction group_deliver.

Subsumption. With subsumption reasoning, membership in a number of useful classes can be inferred for individuals representing pieces of the code. For example, the concept GlobalAssignmentStatement is defined:

\[
\text{GlobalAssignmentStatement} \sqsubseteq \text{AssignmentStatement} \sqcap \forall \text{changes.} \text{GlobalVariable}
\]
The most compelling result that came out of the CBMS work so far has been the automatic detection of side effects, answering the sixth most commonly asked question. This detection was not originally believed to be possible. To simplify the discussion, we assume a pure object-oriented language without pointers or call-by-reference parameters. The latter can be handled in a similar way, the former is still believed to be undecidable.

There can be two kinds of direct side effects in a method: a change to a global variable, and any sort of output. A third kind of side-effect is a call to a method that has a side effect. In this case, the side effect does not actually occur within the calling method, yet a side effect will occur when the calling method itself is invoked, so it can be important to discover it. A change to a global variable occurs whenever that variable appears in an assignment statement as the variable to be changed.

The CBMS ontology contains a fairly simple extension which can automatically detect global variable change side effects and calls to methods with side effects. Output methods must be specifically identified as such in order that calls to them may be recognized. This is not really a problem, since output functions are generally part of a support library which would be provided to any developer. The extension begins with a new part of the code-level taxonomy, shown in Figure 11.5. This new taxonomy of primitive concepts fits under the SoftwareThing concept. Next,
any individual of GlobalAssignmentStatement (defined above) is a side effect—an AssignmentSideEffect.

In order to put individuals of AssignmentSideEffect into the side effects taxonomy shown in Figure 11.5, a forward chaining rule is added:

\[
\text{AssignmentSideEffect} \Rightarrow \text{DirectSideEffect}
\]

This rule is required because if the relationship it specifies were part of the defined concept, being a direct-side-effect would become a sufficient condition for recognizing assignment side effects, and they would never be found automatically. In other words, the rule says "once an assignment side effect is recognized, it should be also be classified as a direct side effect", whereas putting direct-side-effect after assignment in the defined concept definition would say, “An assignment side effect must already be known to be a direct side effect to be recognized.” The latter is not productive.

At this point we can classify all assignments that change global variables as assignment side effects and direct side effects. The next addition is a set of roles that will help identify the methods that contain these side effects: hasDirectSideEffect, its inverse directSideEffectOf, and their role parents hasSideEffect and SideEffectOf. With these roles defined, a path tracing rule is added for DirectSideEffect that says directSideEffectOf = implementationOf. In other words, the directSideEffectOf role should be filled with the value in the implementationOf role of the assignment. Through the role hierarchy, this also adds the SideEffectOf role, and through the inverse, the individual of Method that fills this role gets the hasDirectSideEffect and hasSideEffect roles pointing back to the assignment.

With these inverse roles filled in, we can create a new defined concept to recognize methods with side effects:

\[
\text{MethodWithSideEffects} \equiv \text{Method} \cap \exists^1 \text{hasSideEffects}
\]

and a more specific one for methods with direct side effects:

\[
\text{MethodWithDirectSideEffects} \equiv \text{Method} \cap \exists^1 \text{hasDirectSideEffects}
\]

Note that the second concept will automatically be classified under the first. Now, as a result of the rules that added the hasSideEffect links, every method that has in its implementation a slot assignment side effect will have at least one filler in its hasDirectSideEffects role, and will be classified as a method with direct side effects.

The next case is detecting indirect side effects, which first requires recognizing invocations of methods that have side-effects (in OO terms, a method invocation is a message):

\[
\text{MessageSideEffect} \equiv \text{Message} \cap \forall \text{callMethod} \text{.MethodWithSideEffects}
\]
Individuals of this new concept can be recognized since *all methods with side effects have been found with the previous two defined concepts*. A simple forward chaining rule then links these message side effects back into the side effect taxonomy:

\[\text{MessageSideEffect} \Rightarrow \text{IndirectSideEffect} \]

Next we define two more roles: \(\text{hasIndirectSideEffect} \) and its inverse \(\text{indirectSideEffectOf} \), and make them children of \(\text{hasSideEffect} \) and \(\text{SideEffectOf} \), respectively. Once these roles have been defined, and the message side effects have been found, we can identify all the methods that have them in a similar manner to assignment side effects. First, create a path tracing rule for \(\text{IndirectSideEffect} \):

\[\text{indirectSideEffectOf} = \text{implementationOf} \]

which will fill in roles. Now we identify all these methods with indirect side-effects with the concept:

\[\text{MethodWithIndirectSideEffects} \equiv \text{Method} \sqcap \geq 1 \text{hasIndirectSideEffects} \]

The final step is simply to link methods with side effects into the side effect taxonomy with one last forward chaining rule:

\[\text{MethodWithSideEffects} \Rightarrow \text{SideEffectThing} \]

The addition of this rule basically creates the side effect taxonomy shown in Figure 11.5.

Not only do these definitions identify functions with side-effects, but they also lead a maintainer directly to the side-effect itself. The point here, from a software understanding perspective, is that subsumption makes it possible to *localize* information that otherwise would be difficult (or at least time consuming) to discover.

The inferences for finding side effects are clearly very deep, yet the developer or maintainer need not be aware of them. All these side effect inferences come with no extra work by the developer or maintainer at all. In fact, answers to *all* of the top questions asked by maintainers during discovery can be localized to within one link, therefore one mouse click in the simple hypertext interface described.
Abstract
Description logics are used to solve a wide variety of problems with configuration applications being some of the largest and longest-lived. There is concrete, commercial evidence that shows that description logic-based configurators have been successfully fielded for over a decade. Additionally, it appears that configuration applications have a number of characteristics that make them well-suited to description logic-based solutions. This chapter will introduce the problem of configuration, describe some requirements of configuration applications that make them candidates for description logic-based solutions, show examples of these requirements in a configuration example, and introduce the largest and longest lived family of description logic-based configurators.

12.1 Introduction
In order to solve a configuration problem, a configurator (human or machine) must find a set of components that fit together to solve the problem specification. Typically, that means the answer will be a parts list that contains a set of components that work together and that the system comprised of the components meets the specification. This task can be relatively simple, such as choosing stereo components in order to create a home stereo system. The problem can also be extremely complex such as choosing the thousands of components that must work together in order to build complicated telecommunications equipment such as cross-connect devices or switches.

One important factor that makes configuration challenging is that making a choice for one component typically generates constraints on other components as well. For example, if a customer chooses a receiver that only supports up to four speakers, then she may not conveniently support a surround sound system with a subwoofer (since this would require more than four speakers).
Configuration continues to have strong interest in the academic and commercial communities. It has been a prominent area in artificial intelligence at least since the R1/XCON [McDermott, 1982] work on configuring computer systems. Since then, many configuration systems have been built in domains including communication networks, trucks, cars, operating systems, buildings, furniture layout, and even wine properties to match a meal description. Today, there are active mailing lists, workshops and conferences (such as the configuration workshops at IJCAI 2001 [Soininen et al., 2001], AAAI’99 [Faltings et al., 1999], and the Fall Symposium Workshop on Configuration [Faltings and Freuder, 1996]), special issues of journals (such as IEEE Intelligent Systems [Faltings and Freuder, 1998] and Artificial Intelligence for Engineering Design, Analysis and Manufacturing [Darr et al., 1998]), and research groups at a number of universities and companies. Approaches include constraints, expert systems, model-based reasoning, and case-based reasoning as well as description logics.

Configuration is an important and growing commercial concern. There are a number of companies dedicated to configuration such as Trilogy, Calico, etc. Other companies in broader markets such as the enterprise integration software companies, Baan and SAP, have a major emphasis in configuration. Companies that sell complicated products, such as computers, are providing their own configurators (e.g., the Dell personal computer online configurators). There are spin off companies of general configuration companies that are aiming at particular domain areas, such as PCOrder (a spinoff of Trilogy focusing on personal computer configuration). There are also some domain-oriented companies that include configuration as a major component such as CarsDirect’s configuration of United States consumer car orders.

Although the commercial configuration market may appear to be a recent event since it has been exploding recently, it does have at least a decade of history. Trilogy, for example, one of the earlier companies focusing primarily on configuration, was founded in 1989. Forrester research reports that the configuration market was valued at eight billion dollars in 1997 and it predicts that the market will grow to 327 billion in 2002. Configuration is also seen as important by companies not originally classifying themselves as "configuration companies". In a study of fifty eCommerce executives from top firms in the business to business and business to consumer space, Forrester Research found that search and configurators were considered the two tools most critical for customer support [Koetzle et al., 2001].

The description logic community has been addressing configuration needs for over a decade as well. Owssnicki-Klewe [1988] presented a view of configuration as a consistency maintenance task for description logics and AT&T independently began work in 1988 on its family of configurators for telecommunications equipment [Wright et al., 1993; McGuinness et al., 1995; McGuinness and Wright, 1998b;
Similarly Ford Motor Company has had a description logic-based configurator [Rychtyckyj, 1996] in the field for over 10 years. Others in the description logic area have explored description logics for configuration as well, e.g., [Buchheit et al., 1994c; Kessel et al., 1995].

12.2 Configuration description and requirements

In this chapter, we will be considering large scale configuration problems. If one only has a small number of constraints to satisfy and a small number of possible component choices, then any somewhat reasonable solution will work. If however, the final product is complicated and there are thousands of choices and constraints, then there is more need for a well suited solution. We will consider the generic configuration problem where there is a complex artifact being assembled from components. Potentially the components have subcomponents, thus the artifact may be modular or hierarchical in nature. Also, each of the components typically has a number of properties, such as power restrictions, connections to other components, etc., thus components may be tightly interconnected. If one looks at modern configuration descriptions [Fleischanderl et al., 1998; Juengst and Heinrich, 1998], one can see only large, interconnected, tightly constrained, complex systems.

The input description for the configuration problems we will consider will be a specification of a complex, probably highly interconnected system. The input should be able to be input incrementally by a user as well as being able to be uploaded from sales programs. The input specification may be:

- incomplete
- ambiguous
- incrementally evolving
- granular to different levels of specificity
- inconsistent
- entered in any arbitrary order
- interconnected
- nested with complex structure

The output for the system, in its simplest form, will be some kind of parts list. The parts list may be organized hierarchically so that there is a parts list of high level components (such as bays in switching systems or speaker sets in home theatre systems) as well as a detailed parts list of the individual components. In this chapter, we will only address configuration and not the related area of parts layout.

The output of the system should be:

- correct
The configurator needs to accept the problem input along with any previously entered domain information concerning valid configurations. It must then check the constraints it has (calculating the constraints that are implicit in the input data from the input and background information) in order to start building a parts list. It may find that a complete and correct parts list may not be built from the given input. In actuality, it is common for the problem specification to be either over-constrained (i.e., contain a contradiction such as “I want a pair of speakers that is of the highest quality available yet I do not want to pay more than fifty dollars for them”) or underconstrained (i.e., “I want to buy a high quality stereo system”).

In the first case, the configurator needs to identify the source of the conflicting information and determine (probably along with user input) which conflicting constraint(s) to relax. In the second case, the configurator needs either to solicit more specific information from the user, or to generate a list of possible configurations, or both. If the configurator makes arbitrary choices for the user (e.g., it chooses some receiver for the stereo system yet there were many possible choices), then it needs to make it possible for the user to change the arbitrary choices and also to find out which choices were arbitrary and which choices were mandated by constraints. Additionally it needs to let the user input partial additional input that would further constrain the choices.

The configurator also needs to accept information from multiple data sources. There will be a number of databases with which a configurator may need to interact. Typically, there will be databases of parts and prices, other databases of parts and availability, and possibly many other databases with user information or just information about different product families. It is likely that information (such as pricing and availability) will change frequently. Also, there will be information concerning what parts are compatible together and how the choice of one part constrains the choices of other parts. These might be considered the configuration rules. These rules might not change on a frequent basis, however modifications are typically necessary. The rules may come from multiple sources as well. They may need to be imported from many different source languages and they may need to be input by people who have no training in computer science, let alone knowledge representation systems.
Finally, the system may be long-lived and thus require support and maintenance. It may be necessary to staff a help desk to help users of the system. The customer service representatives may know very little about any one individual product for which they are answering questions (because they are supporting a large number of products). The technical staff maintaining the individual configurator may not include people who originally built the system, and over time, it may not even include people who know much about the product (although they may be quite capable of researching the product if necessary). Also, the technical staff may need to generate new configurators for updated or similar products.

We might summarize the requirements from the input, output, and core configurator requirements starting from the requirements presented in one configurator family of applications [McGuinness and Wright, 1998b] and augmenting them slightly here. A solution methodology should have the following properties:

- object-oriented modeling;
- rule representation, organization, and triggering;
- active inference and knowledge completion;
- explanation, product training, and help desk support;
- ability to handle incrementally evolving specifications;
- extensible schemas;
- reasoning mechanisms that handle incomplete or ambiguous information;
- inconsistency detection, error handling, and retraction;
- modularity;
- maintainability.

This list of needs represents those in many complicated reasoning tasks. Although we could argue that this general architecture and approach is more broadly applicable, we will limit our discussion to configuration applications. In the next set of subsections, we will describe each of these needs with respect to the task of configuring a stereo system (based on the configurator demo by AT&T [McGuinness et al., 1995; 1998] and mention how the description logic-based solution met the need. When useful or necessary, we will mention how the need was addressed in the larger PROSE configurator family.

In the stereo configuration application, the goal was to require the user to enter a small number of constraints concerning the end system and generate a complete, correct, and consistent parts list. The system would accept a large set of constraints as input as well, however the goal was to reduce the user’s task and thus require minimal input. The system used the user input along with its extensive domain knowledge and parts information to determine if the user’s input specification was consistent. It used the underlying theorem prover within the description logic system to compute the deductive closure of the input and generated
a more complete input description. User input was solicited on the system quality (high, medium, or low with associated price ranges) and the typical use (audio only, home theater only, or combination), and then the application deduced applicable consequences. This typically generated descriptions for 6–20 subcomponents which restrict properties such as price range, television diagonal, power rating, etc. A user might then inspect any of the individual components possibly adding further requirements to it which may, in turn, cause further constraints to appear on other components of the system. Also, a user may ask the system to “complete” the configuration task (even if the user specification was incomplete), completely specifying each component so that a parts list is generated and an order may be completed. An online demonstration of the web configurator application is available at Vassar (http://taylor.cs.vassar.edu/stereo-demo/) and a number of examples are available in the extended online version of the IJCAI paper [McGuinness et al., 1995] available at: http://www.research.att.com/sw/tools/classic/tm/ijcai-95-with-scenario.html.

This application is convenient for illustrating our points since it is small and in a broadly understandable domain. It is potentially more interesting than some simple pedagogical examples since it was developed as an application that had representation and reasoning requirements that were isomorphic to the needs observed in the PROSE family [Wright et al., 1993; McGuinness and Wright, 1998b] of configurators. The examples in this paper can be seen in more detail in [McGuinness et al., 1995; 1998]

12.2.1 Object-oriented modeling
A system that is being configured may be viewed as a structured object composed of smaller objects. Even our simple example domain of stereo equipment presents a natural hierarchy of concept descriptions and instances that have a number of properties. We have a top level node like ElectricalThing and then have subclasses of that node such as HomeTheatreSystem and StereoOrVideoComponent. Further, subclasses of StereoOrVideoEquipment might include Receiver, Speaker, and Television. Any particular term may have properties associated with it. For example, a Television might have a property called diagonal (that must be filled with a positive integer), another called price (that must be filled with a monetary value), a repairHistory (that must be filled with one of the following values: {BAD, OK, GOOD}), a manufacturer (that must be filled with a company), and a height, width, and depth (all of which must be filled with a positive number). All of the properties might have cardinality requirements on them. For example, there must be at least one manufacturer (although possibly more than one manufacturer), there must be exactly one filler for the diagonal role, etc.
In the simple examples so far, we have seen a need for number (cardinality) restrictions, value restrictions (choosing the type of a filler for a role), roles, and class hierarchies. Further we should note in the description that the objects are compositional. The value restriction on the manufacturer role is naturally determined to be a company. Companies themselves might have further properties like headquarters, CEOs, etc. A user might subsequently want to choose speakers made by companies in the United States and televisions made by companies headquartered in Japan.

It is argued more extensively elsewhere [McGuinness and Wright, 1998a] and in this book in Chapter 10 that description logics are convenient modeling tools for such objects. We can show a simple example of this diagrammatically where a HomeTheatreSystem inherits a price role with a value restriction of MonetaryUnit. We might also have a particular HomeTheatreSystem named MY-HTS that is the system we will be building through the example. It will also have a price role with some unknown value at the moment. We might also have a subclass of HomeTheatreSystem called HighQualSystem. In our simple example, this might be defined simply as a home theatre system that costs at least 6000 dollars. In a description logic system, once MY-HTS contains either a price that is over 6000, or contains a partial description such as “a minimum price of 8000 dollars” that restricts the price to be greater than 6000, then it can be recognized to be an instance of a HighQualSystem. This kind of automatic recognition and organization of terms based on their definitions is a convenience for organizing and maintaining partial descriptions and is arguably one reason that description logics are thought to be particularly useful for modeling and maintenance of applications that require object-oriented models.

12.2.2 Rule representation

A knowledge base that contains information about active deductions will contain some sort of rules. Typical large configuration systems will contain many rules. Also, these rules may change frequently. It is reported that 40% of the rules in R1 changed yearly. Thus, support for modeling, organizing, and later, maintaining the rules will be important in large configuration systems. A simple rule may take the form of “If something is an A, then it is a B”. For example, if something is a HighQualSystem, then its television is a HighQualTelevision (which has a minimum price and diagonal value), its speakers are HighQualSpeakers (which have minimum price restrictions), etc. In fact, in our stereo demo, there are dozens of rules that fire once a system is determined to be a HighQualSystem. If the minimum price restriction were ever removed from the specification requirement, we would want the results of those rules retracted automatically (unless the same results could be deduced in other ways as well).
A description logic-based system can support modeling of rules described above in a hierarchical fashion. Rules can be associated at whatever level of the hierarchy is appropriate. Thus, we might associate minimum price and diagonal for televisions at the level of a HighQualSystem and we might associate repair-history restrictions with another concept such as HighReliabilitySystem. If we just wanted to have this kind of simple rule encoding, one would not have needed to use a separate mechanism. If one has an encoding scheme that includes negation and disjunction (or some other way of encoding an “if-then” rule), as do most of the modern description logic languages, then one does not need to introduce a separate rule notion. For example, one might encode a simple if-then relationship such as (or (not HighReliabilitySystem) GoodRepairHistory). This states that either something is not a high reliability system or it has a good repair history, which is typically viewed as equivalent to "if something is a high reliability system, then it has a good repair history".

The description logic that this example was encoded in (CLASSIC [Borgida et al., 1989; Brachman et al., 1991; Patel-Schneider et al., 1991; McGuinness and Patel-Schneider, 1998]) had a rather limited set of constructors and also had the simple rules introduced above and also more sophisticated rules such as those which compute role values based on context. In some configuration applications of this description logic, the more sophisticated rules in combination with other constructors have encoded expressive rule-based reasoning, and in fact many of the rules in those configuration system required CLASSIC’s more sophisticated rule representation system. The examples we have seen in this chapter only use a simple form of if-then rules. For a more detailed discussion of how powerful these rules can be in practice, see [Borgida et al., 1996].

Description logics are not required of course in order to capture rule representation and reasoning, this example simply shows that they can be a convenient technique for capturing rules and reasoning with them.

12.2.3 Active inference

Description logics deduce logical consequences of information and are thus said to provide active inference. In fact, one of the typical patterns of inference observed in many description logic-based configuration systems includes

- Asserting new information about an existing term
- Recognizing that the updated term is an instance of a class
- Firing a rule on the term that is associated with the class
- Propagating information from the updated term to related terms
For example, let's consider MY-HTS again. Let it have a `hasTelevision` slot filled with a particular television TV-11. Once it is asserted that the user is willing to pay more than 8000 dollars for this system, it is recognized to be an instance of the `HighQualSystem`. The rules associated with that concept fire and now it becomes an instance of something that has a television diagonal minimum of 50 inches (or possibly a high definition television with a smaller diagonal) and a television price of a minimum of 1000 dollars. These restrictions are propagated onto TV-11.

This kind of deduction chain comprises over 50% of the inferences that are done in the stereo configurator example. In this manner, users only need to specify a small number of restrictions on their system and they can have a large number of deductions performed for them.

It should be noted that this particular example configurator was built on a description logic that did not contain default reasoning. Some description logics have been expanded to include default reasoning (i.e., if it is not known to be otherwise, use the default rule) [Padgham and Zhang, 1993; Baader and Hollunder, 1995a; Quantz and Royer, 1992]. For example, if a manufacturer has not been specified for a television, use Sony as the manufacturer. If the underlying formalism had a default representation, this would have been used.

As the demonstration system was encoded, the stereo configurator used two sets of concepts on which to hang rules - a concept for all provably correct rules (such as power compatibility) and another concept for the default rules, called a “guidance” concept (for more subjective rules such as minimum prices). The deployed configurators on which this system was based actually used defaults as completion—at a particular point in the specification input process, if information is unknown, then “complete” it using the “default” or subjective rules [McGuinness and Wright, 1998b]. This provided one very simple method of implementing a kind of “default” as completion that can be viewed as one of the simplest forms of default reasoning.

12.2.4 Explanation

Customer help desk staff need to be able to help users understand potentially everything about a configuration specification and the final parts list. In fact, the PROSE family of configurators faced extinction had it not been able to respond with a full explanation capability. It was evident that consumers needed to be able to find out why some particular part was in their final system, why it had the particular value restrictions it did, what the possible alternatives were, and from what portion of the specification this information had been derived. In this simple example, a customer might want to find out why the television in her final system costs over 1000 dollars or why it has a particular minimum diagonal requirement. The explanation would be that a high quality system was requested and high quality systems
include a suggested minimum diagonal size and a minimum price on their television components.

The demonstration system allows customers to point to particular components and ask questions about everything that has been deduced about them. It also anticipated the most common explanation questions that users asked and provided pull down menu items that were dynamically generated based on the item a user was pointing to to generate explanation questions that a user could just click on to ask quickly. An extensive explanation foundation was designed for the underlying description logic-based system in order to support that [McGuinness, 1996; McGuinness and Borgida, 1995]. The explanation system provides a proof theoretic foundation for explaining any deduction in terms of proof rules and arguments. It also provides an automatic followup capability that generates the questions that would lead to this inference being deducible. The followup question generation was found to be needed since user studies showed that users wanted fairly simple explanations along with the capability to ask followup questions. Further studies found that users appreciated help in generating syntactically correct followup questions that made sense given the previous question that was just asked. The followup questions were automatically generated from the model-theoretic form of the explanation.

The basic explanation structure was originally done for a normalize-compare description logic-based system but has since been used as the foundation for a tableaux-based description logic [Borgida et al., 1999] and also a model-elimination theorem prover in an implementation of ATP at Stanford University.

Explanation in general is one of the strengths of description logics as opposed to some of the other configuration approaches. It may be much more difficult to explain a line of reasoning in a typical constraint-based approach than it is to filter and prune an inference rule based theorem prover such as a description logic prover. Filtering object presentations and explanations in description logics has also been addressed in [McGuinness, 1996; Borgida and McGuinness, 1996; Baader et al., 1999a]. Also, it has been argued elsewhere [McGuinness and Patel-Schneider, 1998; Brachman et al., 1999] that explanation is a requirement for many kinds of applications, but is particularly important for configuration systems [McGuinness and Wright, 1998a].

Recent work has been done in constraint-based approaches that starts to address explanation in constraint-based configurators. While progress is being made, the more interesting constraint-based explanation systems [Freuder et al., 2001] utilize extensive domain specific information and are not generic solutions to the problem of understanding explanations.
12.2.5 Evolving specifications

In many common configuration scenarios, a user begins with an incomplete set of specifications for an end product. Configuration applications built to support users should take input of the known specifications (in an order that is convenient for the user and not just an order convenient for the program), and then solicit remaining required input.

A configurator system should allow mixed initiative input - where the user may input the specifications the user is aware of at a particular time and the system should request input that it needs to meet a task. Description logics can allow users to input descriptions of end products or individual components at any time. For example, in the home theatre system, a user could specify information about the entire system—such as a requirement for the entire system to be high quality—and also could specify information about any of the particular components that she knew about at a particular time. The user might, for example, prefer to buy a particular model television or might want to set a diagonal size and a number of other constraints on the television however may not know anything at the moment about the restrictions on the DVD player.

A user interface, such as the one depicted in the stereo example, allowed a user to choose components from drop down menus. The drop down menus were generated on the fly in order to take into account all of the information that the system currently had about a component. This was used as a query to the database of all components that met that specification. Thus, the user was kept from choosing many components that would be incompatible with the system that was configured to date.

The user could also browse the current configuration and delete any requirements that were stated. (The user was not allowed to delete requirements that were inferred, however the user was allowed to ask how a particular requirement was deduced, thereby discovering the source of that requirement.) Once a requirement was deleted, then new drop down menus were generated to include components that met the current set of specifications instead of the previous set.

This architecture provides a great deal of flexibility for incrementally evolving (sometimes non-monotonically evolving) specifications. It worked well to provide users with menus of choices that were recalculated on an as needed basis with updated component lists that meet the current specifications that were stated or implied about any component.

For example, if a user stated that she wanted a high quality stereo system and then decided to choose an amplifier for the system, the configurator would only present options for amplifiers that had been determined to be high quality. Description logics are not the only modeling scheme that support evolving specifications, but
this section attempts to point out that they can be used rather easily to support evolving configuration specifications.

12.2.6 Extensible schemas

Many configuration applications find that information about components is continually updated. It is not always the case that simple data about components is updated but sometimes properties of the components change or new properties are discovered after an application has been encoded. Thus, it becomes important to work with a schema or a description of a component that can be updated. For example, in our home theatre application, when we began development, DVD players were not in the consumer market. It later became common for home theatre systems to include DVD players, thus our schema needed to be extended with the new class - DVDPlayer - as well as with roles that were appropriate for DVD players.

This need for updatable and configurable schemas is sometimes a requirement for design. For example, in AT&T evaluation of software, one criteria is extensible schemas. Our experience in the deployed PROSE and QUESTAR configurator family was that products were extended often in practice.

12.2.7 Reasoning for incomplete information

Many configuration specifications are almost by necessity incomplete when input initially. In large systems, it may be common for one person who may be an expert in one area to input specifications for that area while another person who is an expert in another area may update the specification later. For example, in a two person household, one person may be much more literate in audio quality and thus that person may input the requirements for speakers and another person may have more interest and knowledge in video displays, thus that person may input specifications for the television (along with its input and output requirements). It may be important to allow specification to be done across multiple sessions as well.

One would not want a configurator that could not make deductions until all of the input requirements have been presented. For example, in the stereo system, one would want a configurator that could infer the implications of the speaker restrictions on say minimum power requirements for the amplifier, even though the television specifications have not been input yet.

Description logics have been demonstrated to be useful at determining logical consequences of information even when it is incomplete. They can also be used to determine information that is still required. For example, they can determine that two speakers need to be input as parts in the parts list before the configuration can be considered complete. Thus, it is not enough to say that two high quality main
speakers are required but the parts list actually needs to have the actual speakers chosen before the job is considered complete.

In the home theatre application, there was a one-pane display dedicated to showing which final component choices still remained before a configuration could be considered completed. The display could be used to view the current parts already implied and/or chosen along with the other components yet to be chosen. The other components could be clicked on to obtain the current description of the component so that a user could view what had been derived to date about that component. The application allowed a user to save a partial specification of a configuration for further requirements to be input at another point. The application also allowed a user to “complete” the configuration at any point which would force the system to make consistent decisions for remaining underconstrained components. The user could also inspect individual component choices and click on them and see a pull down menu list of alternative choices that the system could have made. The user could also click on the component and view a description of the constraints that the application had determined must hold of that component. The description of the component was what was used to query the knowledge base about components that would fit the characteristics. The description could also be passed along to another user (or another application) so that it could see what constraints had been deduced so far and then have that other user (or application) either add new constraints or make the ultimate product choice, thereby facilitating collaborative configuration.

12.2.8 Inconsistency detection

Configuration applications should minimize the chances for users to generate inconsistent specifications. The stereo configurator, for example, uses the information that can be deduced about any particular component in order to form a query to the database about possible components. This greatly limits the chances that a user may choose a component in their system that will cause an inconsistent specification to result. The deployed application did not take a greater step however before choosing to put a component on a pull down list. It did not make the hypothetical choice of the component for the user and then check to see if the remaining components that were still unspecified could be completed with a component in the database. (Of course, this would be an exponential search with the remaining components yet to be specified.) Thus, the deployed example, could still allow a user to generate an inconsistent specification—the application just made it more difficult for this to happen. The back end reasoning system was required to determine when an incremental specification became inconsistent.

Sometimes users of other deployed configurators generate a large set of constraints and want to input them into other (connected) configuration applications. Thus one
additional requirement on a user friendly configurator (that is expected to interact with other configuration applications) is for the reasoner to take input constraints and determine if they are inconsistent.

Reasoners may choose different methods of handling inconsistencies. A requirement for a configuration system is that the underlying reasoner must be able to identify the inconsistency and notify the user. A helpful reasoner will also support the user by allowing her to ask how the inconsistency was deduced. The reasoner could also give the user the option to "roll-back" the specification to the last consistent state. For example, the CLASSIC knowledge representation system required its information to be consistent, thus once an inconsistency was detected, it disallowed the last statement that generated the inconsistency (maintaining a separate error state for debugging support) and then rolled-back to the last consistent state. This was common for early description logic-based systems. Today however, description logics do not necessarily require consistent axioms to function. They may allow a set of inconsistent axioms to be input and then configurators can be built that utilize the description logic to identify if a description is satisfiable. This model of allowing inconsistent input with a user-identified check point may be a model that supports collaboration and web-oriented development most naturally.

12.2.9 Modularity

In large systems, it is important to allow multiple people to work on specifications in what appears to be a simultaneous environment. In PROSE for example, care was taken to design a set of classes and roles that a number of developers could use. Multiple users were then allowed to work on specifications of different portions of the configuration information simultaneously with previously defined upper level classes and roles for their use in specifying more specific classes. When the users were finished with their particular component descriptions, loads were done to see if the two portions interacted. This model of individual users being in charge of specific portions of the ontology while possibly one chief ontologist is in charge of the upper level ontology is not uncommon. Cycorp, for example, publishes its upper level ontology which is maintained by a core Cycorp group while many other people develop more specialized mid-level ontologies. VerticalNet also has a number of ontologies with many different authors of specific ontologies that use an upper level ontology that was maintained by a core ontology team. Description logics can be used to support such modeling with PROSE being an example of one such development.

Another notion of modularity support can be considered with environmental support features. Some systems such as ONTOBUILDER [Das et al., 2001] at VerticalNet have been built to support multiple users working on the same portion of an ontol-
ogy in a more integrated manner. VerticalNet’s system allows users to be notified if someone is modifying a portion of the ontology that they are using. While ONTOBUILDER does not have a description logic back end, its input language is quite similar to OIL [Fensel et al., 2001] and thus it is not a hard task to imagine that an ONTOBUILDER-like system could be integrated with today’s description logic systems.

12.2.10 Maintainability

Once systems are used for a long time period or are used enough so that they require support from someone other than their original author, maintainability becomes an issue. We have used examples from the stereo configurator for all of the other sections but in this section, we will draw from our experience with the PROSE/QUESTAR family of configurators. The stereo configurator has been up on the web for some years yet it has not had many maintenance requirements because it is a demonstration system that is not updated when new stereo information becomes available. However, deployed configurators typically have help desk support and require data (and sometimes schema) updates.

There are at least three components of maintenance that require some thought when planning a configurator:

- product data updates
- product specification updates
- help desk support

The first is the simplest. Typically product data requires updates over time. Simple things like prices and availability need updating and sometimes small updates are made with revisions. Typically, this kind of information is not hard to update - someone who does not know much about the encoding can typically find a way to do things such as updating price fields in many applications - whether they are description logic-based or not. Description logics may help support this requirement more than some since they are aimed at working with incomplete information (e.g., Section 12.2.7), thus updates from incomplete to more complete information are natural for DL-based systems to handle. Similarly, an object-oriented modeling scheme may make updates simpler, but this area alone would not be enough to drive a potential user to a description logic-based approach.

The second issue of updates to product specification might be viewed by a database designer as a schema update. This kind of information is typically more challenging to update in applications since it requires product specification descriptions and not just simple data changes. It could be simple requiring say a change to the range of a field, for example, possibly an age range may move from 18–65
to 18–70. Similarly, a business that used to accept only US currency may now accept other currencies, such as Euros, thereby requiring price fields to require value restriction updates. More complicated product specification updates may be done when new components become available (thus requiring someone to model the new components and their features). These types of specification updates are facilitated in description logics by the kinds of features that we noted in Sections 12.2.6, 12.2.5, 12.2.1, and 12.2.9.

The third issue of help desk support has been noted as a strength of description logic-based systems. One of the goals with the Prose configurator systems was to allow the help desk personnel to appear to perform at a level above the amount of training they had on individual products. The enabling infrastructure toolset was to provide information to the help desk staff at the time they needed it in real time (instead of requiring them to have been previously trained on products so that they could answer questions from knowledge that they had learned instead of from knowledge that they could look up on demand).

The tools were to allow them to explain any of the deductions that the system made when customers called in asking why something was (or was not) in their configuration and also allowed them to answer questions about why configurations were (or were not) valid. This was most facilitated by the functionality described in Section 12.2.4 but also by others such as Section 12.2.8. Similarly, they could answer hypothetical questions aimed at answering questions such as “what would happen if I chose component X instead of component Y in my configuration”. The goal was to meet individual customer needs without requiring engineering support to answer such questions. Our claim is that it is a combination of the strengths of description logics as discussed in the previous sections that help support maintainability of the applications and in fact, help support maintainability by people who have not taken classes in description logics or knowledge representation.

12.3 The Prose and Questar family of configurators

The longest-lived and most prolific family of description logic-based configurators has been the Prose and Questar product line [Wright et al., 1993; McGuinness and Wright, 1998b]. AT&T began development on configuration problems in 1988 in response to business requests for help in the streamlining of the Engineer, Furnish, and Install process. The goal in the process is to solicit a specification request from the customer through the sales process, and then engineer a solution that can be “furnished” and of course manufactured and delivered to the customer in a timely and cost effective manner. The initial goals of the project were to decrease the time from specification to installation and to minimize the impact of contradictions in the specifications and mistakes in the engineering. The initial configurator was
built for a fiber optic transmission system (the FT Series G) although the initial deployment was for a digital cross-connect system (the DACS IV-2000).

The initial configurator was successful enough that a family of configurators was built around it. The history of development proceeded moving from more research involvement to more development involvement. AT&T’s research division collaborated with developers in order to build the initial system. Researchers helped generate and critique the initial conceptual models and programming effort. Developers generated the initial system but with the help of interactive assistance from research. As the product evolved, project needs emerged for developer independence and an environment was produced that allowed domain knowledgeable people to input configuration rules in a language that was comfortable to them. Developers had the lead responsibility in the initial deployment with the assistance of research but in the second through seventeenth system, developers had the lead and required little assistance from research for either generation or maintenance of individual configurators. As the development environment evolved, the developers saw much less of the description logic back end—essentially the description logic back end verified input and deduced conclusions and was otherwise hidden behind the interface of the system.

There are a few points worth noting about this family of applications. First, the configurator family has shown longevity with some configurators deployed a decade after work began. Second, the majority of the generation and maintenance of the configurators was done by people who knew very little about description logics (thus showing empirical evidence that applications do not require PhDs in description logics to build and maintain them). An evolution interface was developed by domain literate developers aimed at users who knew the products but did not know description logics or sometimes computer science at all. This interface allowed users to both maintain configurators and also to generate new configurators in the same product family. Third, there is a consensus that the description logic-based approach both facilitates conceptual modeling (e.g., [McGuinness and Wright, 1998b]), and also makes maintenance much easier. Ford Motor company has also stated similar findings with its long-lived description logic-based configurator applications.

12.4 Summary

We have introduced the problem of configuration, describing briefly the nature of the problem and why many communities consider it important. We have described properties inherent in the problem that make it an area for which one might consider description logic-based approaches. We have provided examples of all of properties in the setting of a stereo configurator, mentioning how a description logic-based
approach was used to solve the problem. We made parallel connections to the much larger configurators used for telecommunications equipment that also included the same issues and had description logic-based solutions.

We have also introduced the largest family of description logic-based configurators—the PROSE/QUESTAR family of systems (noting also that at least one other commercial configurator at Ford Motor company also has a similar life-span and a similar description logic-based approach). We observe that the PROSE/QUESTAR configurator family has been in continuous use for over a decade and has configured billions of dollars of equipment. We finally note that the commercial configuration examples with long histories state the the description logic approach has made the problems of conceptual modeling and configurator maintenance less problematic. Additionally, we speculate that this general architecture that meets the list of configuration needs might also be used in problem areas with similar needs.

Acknowledgements
While of course all errors in the chapter are the responsibility of the author, the chapter has been enhanced due to contributions from a number of people. Much of the discussion has been in the setting of either PROSE/QUESTAR or CLASSIC work that has been done in conjunction with Jon Wright, Lori Alperin Resnick, Peter Patel-Schneider, Ron Brachman, Alex Borgida, Charles Isbell, Elia Weixelbaum, Gregg Vesonder, Harry Moore, Pat Saleh, Charlie Foster, Chris Welty, Matt Parker, and a number of other important contributors. Also, Nestor Rychtyckyj provided many valuable comments on a previous version of this paper.
Abstract

Description logics and related formalisms are being applied in at least five applications in medical informatics—terminology, intelligent user interfaces, decision support and semantic indexing, language technology, and systems integration. Important issues include size, complexity, connectivity, and the wide range of granularity required—medical terminologies require on the order of 250,000 concepts, some involving a dozen or more conjuncts with deep nesting; the nature of anatomy and physiology is that everything connects to everything else; and notions to be represented range from psychology to molecular biology. Technical issues for expressivity have focused on problems of part-whole relations and the need to provide “frame-like” functionality—i.e., the ability to determine efficiently what can sensibly be said about any particular concept and means of handling at least limited cases of defaults with exceptions. There are also significant problems with “semantic normalisation” and “clinical pragmatics” because understanding medical notions often depends on implicit knowledge and some notions defy easy logical formulation. The two best known efforts—OpenGalen and SNOMED-RT—both use idiosyncratic description logics with generally limited expressivity but specialised extensions to cope with issues around part-whole and other transitive relations. There is also a conflict between the needs for re-use and the requirement for easy understandability by domain expert authors. OpenGalen has coped with this conflict by introducing a layered architecture with a high level “Intermediate Representation” which insulates authors from the details of the description logic which is treated as an “assembly language” rather than the primary medium for expressing the ontology.
13.1 Background and history

13.1.1 Knowledge representation in medical applications

Description logics (DLs) and related frame-based and conceptual graph formalisms are being applied in at least five applications in Medical Informatics:

- Terminology development and, more broadly, the representation of information in health records.
- Intelligent user interfaces.
- Decision support and semantic indexing.
- Semantics oriented natural language processing.
- Semantic integration of information systems.

The seminal early work in the use of description logics in medical applications focused on the dilemma between expressiveness and tractability. Doyle and Patil [1991] attempted to apply NIKL to medical vocabulary and came to the firm conclusion that the NIKL TBox language was too restrictive to be useful for this purpose. More explicitly they despaired of users accepting the restrictions of minimally expressive TBox languages and predicted that users would find “work-arounds” which defeated the logical rigour which was their raison d’être. A first attempt at a more appropriate representation was made by Jang and Patil [1989].

However, as providing a standard controlled medical vocabulary came to be seen as one of the central issues of medical informatics, some researchers saw “compositional systems” as the only plausible route forward. The perceived urgency of the task motivated “pragmatic” approaches. Masarie et al. [1991] used a large frame based AI environment to produce an “interlingua” linking three of the then current terminologies in one of the exploratory projects to what became the Unified Medical Language System [Evans, 1987].

Although the National Library of Medicine chose to use lexical methods to cross map existing terminologies rather than to develop Masarie’s approach to a logical interlingua, the project gave rise indirectly to the CANON group which became strong advocates of formal representations in medical terminologies [Cimino, 1994; Evans et al., 1994]. A special issue of the American Journal of Medical Informatics (Volume 1, issue 3) summarised the material from its seminal workshop.

The CANON group brought together several other strands of then current work:

- The Medical Entities Dictionary developed by Cimino et al. [1989] as a large semantic network.
A series of projects on the use of Sowa’s conceptual graphs for representing medical vocabularies, of which the best known is the one by Campbell et al. [1994] but includes also work by Bell et al. [1994].

In addition, the group interacted with more linguistic work by Friedman et al. [1994] and Sager et al. [1994] which, along with Tuttle [1994], served as a contrast and a reality check.

There have been two large scale outcomes of this work:

- The SNOMED-Reference Terminology (SNOMED-rt) and SNOMED-Clinical Terms (SNOMED-ct) projects under the College of American Pathologists,¹ which seeks to produce a terminology, all of whose concepts are represented in a subset of KRSS and formally classified, which was released at the end of 2000 [Spackman et al., 1997]. A further cooperation with the UK Clinical Terms project is to produce an international version to be released in 2002.²

- OpenGalen, which seeks to produce a reference ontology in a specialised description logic for use in developing and managing other terminologies and indexing knowledge required for decision support, user interfaces and other knowledge management tasks.³

In addition there have been a number of projects on language processing in medicine which have included significant work on formal knowledge representation, particularly the work by Hahn using LOOM [Hahn et al., 1999a; 1999c], which has produced a range of large scale results in both language engineering and ontologies proper, and by Zweigenbaum using a specially restricted frame representation in a similar way [Zweigenbaum et al., 1995]. Another important task is the indexing and retrieval of medical literature which has been addressed by McGuinness [1999].

Applications of ontologies within medicine, not based on description logics, include the work by Musen [1998] on re-usable problem solving methods and ontology driven knowledge acquisition in the PROTÉGÉ project which, at least so far, has specifically not used a description logic or other formal basis for its ontology, but rather based its ontologies around the OKBC and DAML standards. As these standards are converging with description logics in OIL and DAML+OIL [Fensel et al., 2001; Horrocks and Patel-Schneider, 2001], convergence with PROTÉGÉ is under active discussion.

Stefannelli and Schreiber likewise have produced a body of work based around adaptations of the KADS architecture using ontologies as the basis for intelligent

¹ http://www.snomed.org/
² http://www.coding.nhsia.nhs.uk/
³ http://www.opengalen.org
systems and agent architectures [Schreiber et al., 1993; Vanheijst et al., 1995; Falasconi et al., 1997].

Another major effort on knowledge representation in medicine is the Digital Anatomist project [Rosse et al., 1998; Agoncillo et al., 1999; Mejino and Rosse, 1999], which currently does not use a description logic but which represents a benchmark for a comprehensive, carefully curated and validated knowledge base based on carefully analysed ontological commitments and distinctions manifest in a meticulously defined hierarchy of high level concepts such as “organ”, “tissue”, etc. It poses a challenge to any system purporting to a comprehensive representation of medical knowledge.

13.1.2 The medical environment

Behind most of these applications is the aspiration to re-use clinical data—either to integrate systems, to link patient records to decision support and knowledge management, or to re-use information collected in the course of patient care for management, remuneration, quality assurance or research.

There has been a widespread move to greater integration and to “Electronic Patient Records” (EPRs), also known variously as “Computer based Patient Records” (CPRs) or (CBPRs). The goal behind these moves is three-fold:

- To improve patient care through providing better information on current patients, warnings, and decision support to healthcare professionals—e.g., to be able to identify patients’ known problems and treatments, warn of potential drug interactions and contraindications, or suggest management based on established guidelines.
- To capture improved information for planning and management within healthcare institutions by re-using information collected at the point of care for all secondary functions—e.g., to re-use diagnosis and treatment information collected during patient care for statistical reporting, quality assurance, and remuneration.
- To integrate the disparate information systems typical of most healthcare institutions.

Major reports justifying electronic patient records have been issued, amongst others, by the Institute of Medicine [Dick and Steen, 1991], the Computer based Patient Record Institute (CPRI), and the UK National Health Service [NHS National Health Service Executive, 1998]. This pressure is increasing with moves to greater clinical accountability and concern with clinical errors [Kohn et al., 2000]. That every patient should have an electronic medical record is now government policy in a number of western countries including, the UK and US.

Despite the widespread use of management, billing, and laboratory systems in
medicine, the vast majority of the information required for such medical records currently exists only as unstructured narrative text. Capturing more of this information in structured form is a central task of medical informatics. The absence of a standard “controlled vocabulary” or “coding system” is seen as a major barrier to this task [Sittig, 1994] and a key to its success [Rossi Mori and Consorti, 1999]. Hence several countries have mandated, or will soon mandate, standard terminologies for use in medical records.

However, most existing terminologies or “coding systems” are mono-hierarchical classifications developed either for public health reporting (the International Classification of Diseases “ICD”) or bibliographic retrieval (the Medical Subject Headings—MeSH). They are much too coarse grained for recording care of individual patients. Attempts to extend them to make them finer grained have run into combinatorial explosions with some systems now running to over 250,000 “terms” which are beyond manual maintenance. Their structure is largely implicit, and writing software to use them is therefore problematic. An alternative faceted system, SNOMED-International, has existed for some time, but has no strong semantics defining the relationships amongst the facets and has always been considered difficult to use outside its origin in Pathology—both because of its unfamiliar structure and an organisation which reflects its origins in pathology and often does not cater for the needs of other medical specialities.

The US National Library of Medicine has mounted a major programme to tame this chaos in its Unified Medical Language System (UMLS) which cross maps, insofar as possible, all of the general and special purpose vocabularies [Lindberg et al., 1993]. It has developed into a massive (15 Gbyte) cross reference and cataloguing system.\(^1\) However, although cross referenced, the Unified Medical Language System is fundamentally limited by the nature of the underlying systems which it cross maps. It itself provides only a minimal amount of additional semantic information—less than 200 categories in a loose semantic network.

Hence the hope by various researchers that description logic based ontologies can provide a better solution for at least some of the problems of terminology, decision support, language processing and integration.

13.2 Example applications

13.2.1 Description Logics in terminology development and “coding”

13.2.1.1 SNOMED-RT : tightly coupled development and pre-coordination

SNOMED-RT is a cooperative enterprise between the College of American Pathologists and Kaiser Permanente, a large health maintenance organisation. It has

\(^1\) http://umlsks.nlm.nih.gov/
re-represented in a subset of KRSS the information in the SNOMED-International. In a first approximation, the SNOMED facets for anatomy, morphology, function, etc. have been turned into roles, hasTopography, hasMorphology, etc. [Campbell et al., 1998]. The initial mechanical translation has then been re-modelled in place by domain experts using a set of tools with a highly developed change management mechanism [Campbell, 1998]. The development methodology has placed a high emphasis on achieving repeatability of domain experts’ results, and made extensive use of lexical tools to suggest additional relationships which are implied by the rubrics but may not be explicitly present in the faceted representation, for example the term “retinal vasculitis” was correctly related to “eye” but not to “vasculitis” (inflammation of the blood vessels) in early versions of SNOMED-International [Campbell et al., 1996].

The first released version consists of a pre-enumerated set of 180,000 or more disease and procedure codes, each defined in an ontology represented in KRSS and classified accordingly into an acyclic directed graph. The intention appears to be a standard pre-coordinated (i.e., pre-defined) set of concepts and associated terms to be presented and used in a form analogous that of traditional hierarchical coding schemes.

Recently a collaboration has been formed between SNOMED-RT and the UK Clinical Terms (Read Codes) project to produce a combined product which is aimed at being a standard English controlled vocabulary for medicine. Details have not yet been announced, but it is assumed that the form will be closely related to that of SNOMED-RT.

The ontology used is relatively shallow, including under ten roles in its pre-release version, and avoiding embedded expressions wherever possible. However, the standard semantics of KRSS have been enhanced by the inclusion of right-identities to cater for part-whole relations (see Section 13.3.2).

SNOMED-RT itself includes no tools or transformations for data entry or for other applications involving dynamic post-coordination. However, a range of tools based on SNOMED-RT, including the authoring suite, is available from the company that supplies the development tools (Apelon,1), which are descended in part from K-Rep, a DL style KR system used in many of the early experiments which led up to the project [Mays et al., 1991a; 1996].

13.2.1.2 GALEN: loosely coupled development and post-coordination

GALEN is the result of a series of European Commission funded projects and its ontologies and specifications as well as some of the tools are available in open source form from http://www.opengalen.org/.

1 http://www.apelon.com/
The GALEN tools are designed for loosely coupled development, and the ontology is aimed primarily at post-coordinated applications such as, intelligent user interfaces, and tools to empower users to adapt core terminologies to their specific needs. It is based around the idea of a dynamic “terminology server” rather than enumerated table of pre-coordinated terms [Nowlan et al., 1994; Rector et al., 1995a], although there is a limited set of common concepts predefined.

An important feature of GALEN is the clean separation of functions within the server architecture:

- logical representation in the description logic;
- language generation and text recognition;
- mapping to and from existing coding systems;
- indexing of non-terminological information;
- additional calculations such as unit and coordinate transformations.

GALEN’s ontology was created de novo but with close reference to the standard classifications particularly the International Classification of Diseases. It uses the GRAIL description logic [Rector et al., 1997] whose core includes the subset of operations of the KRSS used by SNOMED-RT including transitive roles, with the addition of inverse roles and role subsumption. (See Section 13.3.2.2 for a further discussion of transitive roles and related issues.) In addition GRAIL provides an additional construct, “sanctioning”, analogous to slot definitions in frame systems or function signatures in object oriented systems, which supports answering queries of the form “what can be said about this”. GRAIL is implemented using a graph comparison algorithm which, although known to be incomplete, has still proved to be extremely useful in practice.

GALEN’s most distinctive feature is the use in authoring tools for domain experts of a much simplified “intermediate representation” which is then translated into the description logic which is relegated to the status of an “assembly language” (see Section 13.5.1 below).

The GALEN project has also devoted much effort to mapping to existing coding systems—a more complex task than is at first apparent because of the idiosyncratic construction of the target schemes. Each code in such schemes is mapped to the disjunction of one or more GALEN concepts. A GALEN concept is taken as being mapped to the most specific code mapped to a subsuming concept, and conversely, a code is mapped to all those GALEN concepts subsumed by its mapping except those subsumed by a more specific mapping. This mechanism deals with almost all of the complex sets of exclusions and inclusions in the International Classification of Diseases (ICD)—e.g., “Hypertension excluding hypertension in pregnancy” is coped
with automatically simply by mapping to the general concept “Hypertension”, because there is a mapping to a specific concept “Hypertension in pregnancy” which will cause it, and its descendants, to be excluded automatically. In the very few cases where conflicts occur they are resolved by separate exception handling tables.

A similar mechanism provides a surrogate for inheritance with exceptions as a means of indexing information ranging from triggers for decision support rules to data entry forms and user interface specifications. Any information may be labelled and attached to the ontology, and the server provides operations to retrieve the set of all the values “inherited”. The GALEN server makes no attempt to reduce the set to a single value; if required this is a matter for the client application.

13.2.2 Description Logics and language processing

13.2.2.1 Language analysis and information extraction

Most medical information originates and is stored as natural language text. Medical texts present classic “sublanguages” with peculiarities of vocabulary and syntax. Many utterances are telegraphic or highly elliptical which cannot be easily parsed without semantic knowledge. These features seem natural to combine with lexicalised grammars in which most or all syntactic information is stored with the lexical item rather than in a separate grammar, e.g., Tree-Adjoining Grammars (TAG) [Joshi, 1994], Lexical-Functional Grammar, and Combinatory Categorical Grammar (CCG) [Steedman, 1996].

Hahn’s work on medSyndicate [Hahn et al., 1999a], provides a detailed example using a specially constructed ontology in LOOM. The medSyndicate architecture features close coupling of the ontology (“Domain knowledge base”) with the parser and extensive use of learning techniques to deepen and extend both the ontology and the grammar. It uses the integrity conditions, and conceptual constraints, and cardinality restrictions in the ontology to reduce ambiguity and select plausible interpretations. It makes use of knowledge within the ontology to complete ellipses within the original text—e.g., to know that the connection between a gland and its product is “secretes”. It also makes extensive use of partonomic information using a unique approach discussed in Section 13.3.2.3 below.

Rassinoux and Baud have used the GALEN ontology to augment a strongly semantic approach likewise to constrain ambiguous or incomplete parsings [Baud et al., 1993; Rassinoux, 1998]. Zweigenbaum has used a restricted application specific ontology to similar purpose [Zweigenbaum et al., 1995].

Ceusters, by contrast, attempted to use natural language processing to under-

\[^1\] However, it should be noted that the classic medical natural language work, the Linguistic String Project [Sager et al., 1987; 1994], while it makes extensive use of semantics, makes no use of ontologies or related mechanisms.
stand the text attached to codes (the “rubrics”) to build and make mappings to the GALEN ontology. Ceusters’ work was based on a range of pre-existing tools and experienced significant difficulty because of serious differences in the information processing oriented ontology developed by GALEN and the language oriented ontologies which underlay his tools. For example, the distinctions between location and part-whole relations and the distinctions amongst different part-whole relations have no direct linguistic counterpart. An adaptation of the GALEN Intermediate representation was used to bridge this gap, but with only partial success [Ceusters and Spyns, 1997; Ceusters, 1998; Ceusters et al. 1999].

13.2.2.2 Language generation, user interfaces, and quality assurance

Any ontology intended for use by domain experts presents a problem quality assurance, or curation, by those experts. Any post-coordinated use of an ontology also presents a serious problem for the user interface—standard DL expressions are not acceptable for most uses by most domain experts. Even if they are simplified to an “intermediate representation” or transformed to conceptual graphs, the complexity is too great for most domain experts to take in quickly.

One way to make such expressions accessible to users is to generate language expressions from them. Not only are the language expressions more readable, they are usually much more compact. GALEN has found language generation to be essential in virtually all applications involving post-coordination including most approaches to independent quality assurance of the ontology.

Curiously, one of the major applications of GALEN technology has been by the French government to produce unambiguous definitions for their new national classification of surgical procedures. Curiously, in this application, the usual language generation goals of concise idiomatic expression do not apply. The value of the technique is its pedantic, but completely unambiguous, presentation of the underlying formal definitions. Once the definitions are agreed and quality assured, idiomatic “preferred terms” can be composed manually where required [Baud et al., 1997; Rodrigues et al., 1997].

13.2.3 Decision support, indexing, and re-usable ontologies for problem solving

Many decision support methodologies, notably Musen’s PROTEGE and AEON [Tu et al., 1995; Musen et al., 1996; Musen, 1998; Grosso et al., 1999] and Stefanelli’s GAMES [Schreiber et al., 1993; Vanheijst et al., 1995; Falasconi et al., 1997], are based around the existence of a domain ontology, but in general the ontologies are constructed specifically for one application and have proved less re-usable than the
A. Rector

problem solving methods they support. Both use ontologies primarily as frame systems.

A more specific use of the classification reasoning in description logics is provided by GALEN’s work on drug ontologies carried out in collaboration with the PRODIGY project on computerised guidelines for prescribing in UK general practice [Johnson et al., 2000]. Traditional classifications for diseases and drugs have only a single axis of generalisation which conflates several different criteria. For example, standard drug classifications conflate indication (e.g., for “treatment of asthma”), molecular-effects (e.g., “stimulates alpha adrenergic receptors”), physiological effect (e.g., “dilates the airways”) and chemical structure. As result, even simple generalisations such as “steroids reduce inflammation” are difficult to operationalise using the classification because various steroids may be classified in many different ways—under antiasthmatic drugs, topical skin preparations, anti-rheumatic drugs, etc.

Separating the conflated axes and then using them as the basis of formal descriptions which can be classified by a DL offers a potential solution. After early prototype demonstrations [Solomon and Heathfield, 1994], GALEN is now being used to construct an ontology of drugs and related conditions to be used as part of the PRODIGY project, a system of protocols for prescribing for patients with chronic diseases which being developed by the UK Department of Health [Solomon et al., 1999; Wroe et al., 2000]. Experience to date suggests that the ontology provides efficiently precise indexing at the varying levels of granularity required and can provide a framework for the necessary default reasoning via the mechanisms described in Section 13.2.1.1 for coding. Further evaluation awaits the next phase of the project.

13.2.4 Intelligent data entry

Data capture is the largest single barrier to greater information use in healthcare. GALEN developed from a project in user centred design to improve user interfaces for health care professionals with particular emphasis on data entry, PEN&PAD [Nowlan et al., 1991a; 1991b], i.e., to construct forms which would capture most, if not all, of the information currently recorded as narrative text.

The ontology provides two services in PEN&PAD—both related to the question “What can be sensibly said in this situation?”:

• Indicating how a given concept could be refined by modifiers.
• Indexing the form associated with each starting concept—often a disease or a symptom. Each such form may contain numerous subforms allowing further refinement of a concept or inclusion of further less common signs and symptoms.

The total number of forms required to provide a clinical interface is very large—certainly hundreds of thousands and possibly more. The goal of the system is
to assemble forms dynamically from the indexed “recipes” in such a way that it
would fail soft—i.e., that forms for important frequently encountered situations
could be highly tailored at a very fine granularity whereas rarely encountered areas
could be served by a form related only to the broad class of condition. In its
commercial version, ClinergyTM, a knowledge base of under 10,000 concepts and a
similar number of auxiliary facts and forms specifications covered essentially all data
entry for British general practice—a task requiring several hundreds of thousands
of forms.\footnote{See \url{http://www.galen-organisation.com/furthertut.html} for further information.}

Related systems were developed by Poon and Fagan [1994] and Lussier \textit{et al.} [1992]
using conceptual graph representations of SNOMED-International.

13.2.5 Integration

A major ostensible goal for common terminologies in medicine is system integration
[Evans \textit{et al.}, 1994; Rector \textit{et al.}, 1995b; Spackman \textit{et al.}, 1997]. While specialised
terminology systems are being used in a few places as part of an enterprise wide
effort at integration [Rocha \textit{et al.}, 1993; 1994; Cimino \textit{et al.}, 1998], ontologies based
on description logics have yet to be demonstrated convincingly in this context. Much
of the reason for this is the sheer scale and coverage required for such mediation
tasks.

13.3 Technical issues in medical ontologies

13.3.1 Issues of scaling

13.3.1.1 Size

The fundamental issue in any medical ontology intended to capture clinical termin-
ology is scale. The smallest useful medical terminologies contain on the order of
10,000 concepts; “comprehensive” terminologies require on the order of 250,000 or
more concepts. The \textit{OpenGalen} model of basic anatomy alone contains over 5000
concepts, the model of surgical procedures some 15,000. SNOMED-RT currently has
some 180,000 concepts, and the combined Clinical Terms (Read Codes) SNOMED-
\textit{CT} expects to have substantially more. The Unified Medical Language System has
issued nearly a million “Unique Concept Identifiers” (UCDs) with over a million
lexical variants.

13.3.1.2 Connectivity

Medical ontologies are notoriously highly connected. Most medical concepts de-
pend on anatomy, and every anatomical structure is ultimately connected to every
other, at least trivially, by virtue of being part of the body. The causal and functional interrelationships are of similar density. SNOMED-RT reduces connectivity by omitting inverses. GRAIL supports role inverses and transitive roles, but GALEN’s ontology explicitly avoids expressions of the form “A which is part of B which has part C”, for which the classifier is known to be incomplete. It is not known whether complete and decidable reasoning for a DL including role transitivity and inverses is practical for a large scale comprehensive medical ontology: some form of heuristic constraint on the depth or computational resources used for individual inferences may prove necessary.

13.3.1.3 Range of granularity or organisation

Common medical notions span the range from the molecular to the physiological to the behavioural. To form a truly re-usable skeleton for medical knowledge representation, the ontology needs to encompass concepts such as “substances which cause mood change and tremor by binding to specific receptor sites”. If the promise of “genomics” is to be realised, this may soon need to be extended to include concepts which add “…by stimulating the expression of a genetic sequence homologous to some specified allele in some reference source”.

13.3.1.4 Complexity of concepts to be represented

The areas of medicine most resistant to traditional manual terminologies and therefore most ripe for formal representation tend to include very complicated concepts. For example, a not untypical surgical procedure rubric to be represented might be “Removal of the gall bladder using an endoscope inserted via an abdominal incision” or “Fixation of fracture of the femur by means of insertion of pins” More complex rubrics may go on for several lines in their natural language formulation. The full expansion in a description logic may include several dozen conjuncts nested five or six levels deep. This complexity is not an academic artifact; these are the categories used to determine payment, quality of outcome, and prognosis.

13.3.1.5 How much to represent—detail of the ontology

SNOMED-RT has a relatively simple ontology with less than ten roles. The GALEN ontology is relatively complex, with some fifty roles, including seven different partonomic roles, and sharp distinctions between two-dimensional and three-dimensional objects. The Digital Anatomist appears to be a representation of similar complexity to GALEN’s anatomical representation. At the extreme, Gangemi et al. [1996] have produced a high level ontology which claims strong philosophical grounding but is yet more elaborate. How much of this complexity is required for which purposes is still not established.
13.3.2 Issues of expressivity: part-whole relations

13.3.2.1 Transitivity and anatomy

A large fraction of all medical terminology is based on anatomy and dependent on part-whole relations. “Fracture of foot” must be classified as “Trauma to lower extremity”, “Repair of the aortic valve” must be classified as an “Operation on heart”, etc.

Conflation of part-whole and IS-A relations is ubiquitous in informal clinical classifications and thesauri [Rector, 1998]. In general this works because for the key locative attributes it is, in general true, that a disease of the part is a disease of the whole and a procedure on a part is a procedure on the whole. This is closely related to CYC’s TRANSFERS-THRO notion and to some frame systems notion of inheritance of certain slots via relations other than IS-A.

13.3.2.2 Galen’s specialisedBy axioms and SNOMED-RT’s right identity axioms

All medical ontologies must face this problem in one way or another. Galen allows axioms equivalent to $R \circ S \sqsubseteq R$ (R specialisedBy S in GRAIL notation). SNOMED-RT allows the declaration that S is a right identity for R, which appears to be equivalent [Spackman, 2000].

Hence if R is hasLocation and S is isPartOf, then

$$\exists \text{hasLocation.}(\exists \text{isPartOf.Heart}) \sqsubseteq \exists \text{hasLocation.Heart}$$

where hasLocation is the relation used to link lesions and diseases to anatomy. Given axioms such as that

$$\text{AorticValve} \sqsubseteq \exists \text{isPartOf.Heart},$$

the required inferences that lesions of the aortic valve are lesions of the heart follows, i.e., it can be inferred that

$$\exists \text{hasLocation.AorticValve} \sqsubseteq \exists \text{hasLocation.Heart}.$$

There are, in practice, a variety of other situations in which this construct seems essential, for example to say that the “risk of a syndrome involving a disease” is subsumed by a “risk of the disease itself”.

Galen also makes extensive use of the implication of such axioms for the inverse roles, i.e., $S^- \circ R^- \sqsubseteq R^-$. For example, let S be isSubProcessOf and R be isActedOnBy, then S^- and R^- are hasSubprocess and actsOn respectively. The implication of such an axiom for the inverse roles then allows us to express the rule that surgical procedures can be said to act on all those structures acted on by their subprocedures, e.g.:

$$\exists \text{hasSubprocess.}(\exists \text{actsOn.FemoralArtery}) \sqsubseteq \exists \text{actsOn.FemoralArtery}.$$
This is a practical example. The Femoral Artery is the usual route by which the heart is catheterised. Without such inferred subsumptions, cardiac catheterisation would not be found as a target for the procedure—e.g., by a decision support system seeking to identify possible causes of damage to the femoral artery. Numerous parts of the classification of surgical procedures depend on such inferences.

The GRAIL language allows chains of such axioms which can imply complex paths. Such axioms also interact strongly with the role hierarchy. Re-representing these paths as regular expressions of roles taking into account the role hierarchy is a current topic of research.

13.3.2.3 The “triples” approach

Hahn et al. [1999c; 1999b] have developed an alternative representation for partonomic relations based on what they have termed “SEP-triples,” which captures much partonomic reasoning within a framework compatible with the standard \mathcal{ALC} description logic. In the SEP triple formulation, each anatomic part X is represented by a parent concept X_s, and two subsumed concepts X_e and X_p. X_e represents the entity as a whole, and X_p the concept of its parts. For all parts Y of X, X_p subsumes Y_s, and since Y_s subsumes both Y_e and Y_p, both the entire part Y_e and all of its parts Y_p are subsumed by the parts of X.

\[
Y_p \sqsubseteq Y_s \sqsubseteq X_p \sqsubseteq X_s \\
X_p \sqsubseteq \exists \text{anatomicalPartOf}.X_e
\]

This captures the transitive relation, i.e., that any part of Y is a part of X.

For invariant anatomic relations, a separate existentially qualified role called hasAnatomicalPart links X_e to Y_e.

\[
X_e \sqsubseteq \exists \text{hasAnatomicalPart}.Y_e
\]

This scheme allows Hahn to capture the notion that something is always part of the whole if it is present, but that it may not necessarily be present (e.g., that it may have been removed or be congenitally absent)—this is achieved by omitting the third axiom.

This allows inferences such as that a diseases of a part must be a disease of the whole structure (s) node, but not of the whole taken as in its entirety (e) node. By careful selection of which of the three members of an SEP triplet is used in an assertion, it appears to be possible to be selective about which properties are “inherited”. For example: “diseases of parts are diseases of the whole”, but “surfaces of parts are not surfaces of the whole”. Hence in Hahn’s schema, “surface of” should always refer to an entity (e) node representing the entire object, whereas diseases should refer to the structure (s) node representing the complex of the entire object and all of its parts.
Detailed comparison of the expressiveness of SEP triples with SNOMED-RT’s right identities and GALEN’s specialisedBy axioms is not yet known. However, the scheme presents a number of advantages and is relatively easy to implement with existing classifier technology.

13.3.2.4 Construct not implemented in any major medical ontology

Padgham and Lambrix [1994] point out a number of other potential patterns for relationships between parts and wholes of which at least one is potentially important for anatomical reasoning but not implemented in any current DL. This formalises the pattern that from “the hand is part of the arm” we may infer that “the skin of the hand is a part of the skin of the arm”. One way to capture the essence of this notion formally would be to allow axioms of the form, $R \circ S \sqsubseteq S \circ R$ so that we have:

$$\text{isLayerOf} \circ \text{isPartOf} \sqsubseteq \text{isPartOf} \circ \text{isLayerOf},$$

from which may be inferred, for example,

$$\exists \text{isLayerOf}. (\exists \text{isPartOf}. \text{Arm}) \sqsubseteq \exists \text{isPartOf}. (\exists \text{isLayerOf}. \text{Arm}).$$

The GALEN ontology makes the necessary distinctions between different partonomic relations but the GRAIL language does not implement this inference.

13.3.3 Other issues of expressivity

Both GALEN and SNOMED-RT use description logics with a very limited range of core constructors—usually only existential quantification and conjunction. Both even exclude conjunctions of primitives. Neither uses universal quantification in its constructors, although GRAIL’s “sanctioning” mechanism provides constraints which serve some of the same functions [Rector et al., 1997]. (Hahn uses LOOM, but exploits only a limited subset of the concept language.) On the other hand, both include constructs for transitive relations as described above. Two other issues deserve mention.

13.3.3.1 Negation

Neither GALEN nor SNOMED-RT use negation, at least in the subset of the DL used in the ontology itself. This reflects real questions about the appropriate interpretation of negative statements in clinical records. In the context of medical records, there needs to be a clear differentiation at all levels between “false” and “not done” or “unknown”. GALEN simulates some of the effects in the ontology by the use of “modalities” such as “presence/absence” and “done/not-done” [Rector and Rogers, 2000; Rector et al., 2000].
13.3.3.2 General inclusion axioms

Galen makes extensive use of a subset of general inclusion axioms—i.e., axioms which state that one defined concept is classified under another concept. In Galen the subsuming term is restricted to be a conjunction of existentially qualified constructed concepts. Galen uses such expressions for two purposes:

- To indicate which structures, states and processes are normal, abnormal but harmless, or pathological, i.e., to be treated as “diseases”. In many cases it is the presence of specific modifiers which implies that a structure of process is “pathological”.
- To bridge levels of granularity and add implied meaning, e.g., to indicate that “ulcer of stomach” really occurs in the “lining of the stomach” or to cope with normalisation as discussed in Section 13.4.2.2.

Many DLs have explicitly disallowed general inclusion axioms because of the difficulty of devising suitable algorithms and worries about intractability. However, motivated by Galen, Horrocks has shown effective optimisations for DLs including general inclusion axioms. Furthermore, he has shown that all such axioms in Galen are of a particular form which can be transformed so as to be “absorbed” within term definitions, and therefore reasoned with relatively efficiently [Horrocks and Rector, 1996; Horrocks et al., 1996; Horrocks, 1997b; 1998b].

13.3.4 Frame-like behaviour

The use of description logics in both decision support and data entry systems stemmed from the use of frame systems to manage default inheritance and identify the slots relevant to a particular object. Neither are easy to implement directly in description logics. Both are particularly important in medical applications. Because of their size and variability, exhaustive manual enumeration of cases is neither practical initially nor maintainable.

13.3.4.1 Defaults and indexing

A major function of an ontology in a decision support system is to index information. However, the natural representation for a domain expert of this indexing is usually in terms of generalisations with exceptions. For examples drug indications, interactions, and side effects are all almost invariably expressed as general principles plus exceptions (chemical structure, biochemical and physiological actions can usually be treated as being indefeasible). To require all statements to be indefeasible in the domain users’ environment drastically limits its usability and usefulness.

Galen’s approach is to attach “extrinsic” statements to the ontology and provide operations in the server which deliver all potential most specific candidates
as described in Section 13.2.1.2. Experience has shown that if the ontology is well constructed, the incidence of conflict is small and almost always represents a real requirement for additional information. Often this information is application specific—how seriously a drug’s side effects should be viewed in a given situation, for example, or which of several minor variant codes matches the World Health Organisation’s detailed coding criteria—and not appropriate to a re-usable ontology.

It has been suggested that similar behaviour could be achieved by “compiling” all defaults at the user level to explicit exclusions in the underlying description logic. A practical demonstration of this approach on a large scale in the medical field has yet to be demonstrated.

13.3.4.2 Available “slots”: “what is it reasonable to say?”

GALEN’s original approach was to represent “all and only what it is medically sensible to say”. PEN&PAD (as well as non-medical uses of GRAIL such as the BioInformatics project TAMBIS [Baker et al., 1998]), depends on assembling data entry forms and queries dynamically. The total number of potential forms is vastly greater than could be enumerated individually. Both applications depend on being able to determine which roles are “sensibly” applicable to a particular concept. GRAIL’s sanctioning mechanism provides this information directly, but there is no direct way to form such a query within a standard DL framework. How best to address this issue remains an issue for research.

A key part of the GALEN experience in this regard is that only part of this “sanctioning” information is re-usable. In the original PEN&PAD application, changes to the user interface were made by changing the underlying ontology. In GALEN, and in the commercial version of PEN&PAD, Clinergy™ changing the re-usable ontology to fit an application specific requirement was unacceptable, so an additional layer of “perspectives” was interposed between the ontology itself and applications. This layered architecture now seems essential to many applications of ontologies which aspire to be re-usable.

13.4 Ontological issues in medical ontologies

13.4.1 Normative statements and abnormalities

Congenital and other deformities present a major difficulty to clinical knowledge representations, because they require that statements which would otherwise be absolute be made somehow contingent and that an extremely wide variety of statements be permitted in exceptional circumstances. They also require drawing distinctions that seem odd. Even in a Thalidomide patient with an absent left arm, we still need to be able to make statements about the left arm. Hence physical and potential presence must somehow be distinguished.
Likewise, in determining what it is “sensible” to say, congenital anomalies make a nonsense of the usual constraints. For example, most patients have their heart on their left side, three lobes to their right lung, and two lobes to their left. Most patients have a “right middle lobe” but no “left middle lobe” of the lung. However, a small percentage of patients reverse the pattern. The anomaly is not always complete, so many combinations of abnormalities are possible. Doctors tend to be highly intolerant of being presented with options such as “left middle lobe” in normal circumstances. Unfortunately, they are equally intolerant of the inability to express the notion of a “left middle lobe” in that small number (≪1%) of cases where it is needed. Taken individually, such anomalies are rare. Taken collectively, they are surprisingly common, i.e., a significant percentage of all patients are atypical in one respect or another.

13.4.2 Clinical pragmatics

13.4.2.1 Conventional idioms

As in any language, many terms or phrases have conventional meanings different from their literal interpretation. Such differences are not always immediately obvious. A typical example is “endocrine surgery” which it might seem natural to define as “surgery on an endocrine organ”. However, procedures on both the male and female reproductive organs are normally excluded, even though no doctor would dispute that they are endocrine organs. Similarly, “Heart valve”, might naively be defined as a “structure in the heart with valvular function”, but this includes numerous embryonic and sometimes congenitally deformed structures as well as the four “major valves” which serve the four “great vessels” entering and leaving the heart. Much of the effort of formulating a satisfactory medical ontology goes into reconciling such conventional usages with their apparent meaning.

13.4.2.2 Normalisation and implied information

Many medical notions, particularly of actions and procedures, carry strong implications about their purpose. O’Neil’s classic example illustrates this problem [O’Neil et al., 1995; Brown et al., 1998]. A common procedure to treat hip fractures is “Insertion of pins in the femur”. The only reason to insert pins in the femur is to “fixate” a fracture, and the operation is expected to be classified under both “insertion of pins” and “procedures to fixate fractures of long bones”. Should the ontology contain axioms to extend the procedure definition automatically by adding “… to fixate fracture of femur”? If so, should the procedure be “Fixation of fracture of femur by means of insertion of pins in the femur” or “Insertion of pins in order to fixate fracture of femur”. Ordinarily such “qua-induced” duals are distinct—e.g., the “infection caused by a virus” is very different from the “virus caused by an
infection”. In these cases, at least two or more logically distinct possible representations are clinically equivalent. Most systems cope with this situation by imposing external “guidelines” on domain expert authors to normalise such expressions to one form or the other, but the problem is far from solved.

13.4.3 Semantic normalisation and level of intent

Consider the problem of what constitutes a “surgical procedure”. It is easy to agree that all surgical procedure are constituted by an “act” on some “thing” which either is, or is located in, an anatomical structure. It is less easy to agree on what constitutes an “act” when there is a hierarchy of motivations: for example, “inserting pins to fixate a fracture of a long bone” or “destruction of a polyp by cauterization” or “removal of a polyp (by excision)”. Furthermore, important classifications hang on notions of motivation such as “palliative surgery” versus “corrective surgery”. In addition, some systems wish to be able to record operations just as “correction of X” without describing the exact “act”, while others wish to record “insertion of pins in fractured bone” without recording that the purpose is fixation. To address this problem within GALEN, Rossi Mori et al. [1997] proposed a classification into four levels:

- **L4** clinical goal (palliation, cure);
- **L3** physiologic goal: (correction, destruction, ...);
- **L2** primary surgical method (excision, insertion, lysis, ...);
- **L1** low level surgical act (cutting, cauterization, ...).

It is tempting to believe that a list of concepts in each category could be agreed, so that resolution could be done automatically. However, at least within the GALEN project, intuitions and requirements clashed sufficiently to make this difficult. For example, “cauterization” can sometimes be a low level act or sometimes a primary method. This ambiguity is dealt with in the formal ontology by having separate concepts for “simple cauterization” and “removal by cauterization”, and by care in formulating the intermediate representation (see Section 13.5.1). However, achieving consistent usage amongst a range of authors with different applications requires vigilance and careful quality assurance.
13.5 Architectures: terminology servers, views, and change management

13.5.1 Intermediate representations and views: Galen’s layered architecture

There is an inevitable conflict between the need for an ontology to be re-usable and the requirement that it be easily understood by the domain experts who must author and maintain it. SNOMED-RT addresses this problem by keeping the ontology relatively simple. GALEN addresses these problems by placing an “intermediate representation” and views (“perspectives”) between the re-usable ontology and users oriented applications [Rector et al., 1999; 2001]. The intermediate representation and perspective layers in the architecture hide complexities irrelevant to the current application from domain experts and other users. It also allows for variations amongst domain experts in the vocabulary, structure, and—critically for an international project—language. In this layered architecture, the description logic ontology is effectively reduced to a role analogous to that of an assembly language program. Using an intermediate representation both allows loose coupling amongst authors and simplifies the authoring task.

Within the GALEN project, use of an intermediate representation reduced training time for new authors from months to days. It also drastically reduced the time required centrally to harmonise the work of different authors so that the resulting classification would pass an agreed quality assurance. Prior to the introduction of the intermediate representation, central harmonisation had consumed over fifty percent of the effort; following introduction of the intermediate representation this dropped to less than ten percent. This is a major saving given that the knowledge engineers required for central harmonisation take a year or more to train fully. The experience of developing the drug ontology in Prodigy (See Section 13.2.3) has been roughly comparable. In addition, in the drug ontology, the use of the intermediate representation has allowed the quality assurance experts to participate directly in correcting the authored ontology—something which would be entirely impractical in its expanded formulation in the description logic.

13.5.2 Learning versus building

Given the scale of medical ontologies, it would obviously be attractive to use learning techniques for at least some of their construction. Hahn et al. [1999a] are focusing on using language plus the structure of the Unified Medical Language System as a major source for inducing their ontology. Campbell et al. [1998] have outlined a strategy which makes use of lexical “suggestions” to guide manual modelling as part
of the SNOMED-RT methodology. Galen has experimented with various linguistic techniques but so far with limited success [Ceusters et al., 1999].

13.5.3 Version and change management
Any medical ontology for general use must be a living developing structure. There are both clinical and technical issues to be dealt with. Campbell et al. [1996] have developed a tightly coupled methodology for change management in conjunction with SNOMED-RT, while Oliver et al. [1999] and Cimino [1996] have discussed the issues of changes in medical vocabulary.

13.6 Discussion: key lessons from medical ontologies
Medicine is big and complicated. It has a long tradition of controlled vocabularies and coding systems. Developing re-usable medical ontologies presents at least three major classes of issue to the description logic community:

- Developing implementations which scale.
- Developing architectures which reconcile the needs of users for simplicity with the formal constraints required for tractability and the ontological richness required for re-use.
- Developing formalisms expressive enough to cope with constructs of particular concern to medicine, particularly part-whole relations but also other spatio-temporal constructs such as adjacency.

Perhaps most critically, medicine presents the challenge of presenting description logic notations in forms which users can use to meet real problems—whether in representation of medical records, indexing of information for decision support, or supporting user interfaces and natural language processing.
Abstract

It has long been realised that the web could benefit from having its content understandable and available in a machine processable form, and it is widely agreed that ontologies will play a key role in providing much enabling infrastructure to support this goal. In this chapter we review briefly a selected history of description logics in web-based information systems, and the more recent developments related to OIL, DAML+OIL and the semantic web. OIL and DAML+OIL are ontology languages specifically designed for use on the web; they exploit existing web standards (XML, RDF and RDFS), adding the formal rigor of a description logic and the ontological primitives of object oriented and frame based systems.

14.1 Background and history

The research world as well as the general public are unified in their agreement that the web would benefit from some structure and explicit semantics for at least some of its content. Numerous companies exist today whose entire business model is based on providing some semblance of structure and conceptual search (i.e., yellow pages and search).

To paraphrase Milne [1928], “Providing structure is one of the things description logics do best!” In this chapter we review briefly the history of description logics in web-based information systems, and the more recent developments related to OIL (the Ontology Inference Layer), DAML (the DARPA Agent Markup Language), DAML+OIL and the “semantic web.”

The web has been a compelling place for research activity in the last few years, and as we can not cover all the many efforts we will choose a few exemplar efforts that illustrate some of the key issues related to description logics on the web.
14.1.1 Untangle

The relationship between hypertext and semantic networks has long been realized, but one of the earliest description logic systems to realize this relationship was the Untangle system [Welty and Jenkins, 2000], a description-logic system for representing bibliographic (card-catalog) information. The Untangle Project began as a bit of exploratory research in using description logics for digital libraries [Welty, 1994], but out of sheer temporal coincidence with the rise of the web, a web interface was added and the first web-based description logic system was born.

The original Untangle web interface was developed in 1994 [Welty, 1996a], and combined Lisp-Classic and the CommonLisp Hypermedia Server (CL-HTTP) [Mallery, 1994] to implement a hypertext view of the ABox and TBox semantic networks, and used nested bullet lists to view the concept taxonomy, with in-page cross references for concepts having multiple parents. The interface was interesting in some respects as a tool to visualize description logic and semantic network information, though this aspect was never fully developed.

The research in the Untangle project was to apply description logics to problems in digital libraries, specifically the classification and retrieval of card catalog information. In the early days of description logic applications, researchers scoured the world for taxonomies. One place with well-developed taxonomies are library subject classifications schemes, such as the Dewey Decimal System. The Untangle project sought to utilize description logics to formally represent the established and well-documented processes by which books are classified by subject, with the goal of providing a tool to improve accuracy and increase the throughput of classification. The promise of digital libraries clearly seemed to imply that the entirely human-based system of subject classification would become backlogged and a hindrance to publication.

While the main contribution of the work was actually in the area of digital library ontologies, it had several useful implications for description logics. For conceptual modeling, the system made clear the very practical uses for primitive and defined concepts as basic ontological notions. Primitive concepts can be used in a model to represent classes of individuals that users are expected to be able to classify naturally. Defined concepts can be used in a model to represent subclasses of the primitive ones that the system will be able to classify if needed. For example, in libraries we expect a librarian to be responsible for recognizing the difference between a book and a journal. Such a distinction is trivial. On the other hand, they are not responsible for classifying a biography (though they can, of course): a biography is simply a book whose subject is a person.

As the World Wide Web (WWW) became the primary means of dissemination of computer science research, the goals of the Untangle project shifted in 1995
to cataloging and classifying pages on the web [Welty, 1996b], which was viewed as
a massive and unstructured digital library [Welty, 1998]. A similar project began
at roughly that time at AT&T, whose goal was to utilize CLASSIC to represent a
taxonomy of web bookmarks. While never published, this early work by Tom Kirk
was part of the information manifold project [Levy et al., 1995]. Kirk’s visualisation
tools were also used internally to provide additional visualisation support to the
CLASSIC system.

This new work exposed some of the limitations of using description logics for mod-
eling [Welty, 1998]. One must trade-off utilizing automated support for subsumption
with the need to reify the concepts themselves. For example, the work started with
the motivation that library classification schemes were well-developed taxonomies
that would be appropriate for use in description logics. To utilize the power of
subsumption reasoning, the elements of the subject taxonomy must obviously be
concepts. Some subjects, however, are also useful to consider as individuals. For
example, Ernest Hemingway is a person, an author of several books, and therefore
best represented as an individual. Hemingway is also, however, the subject of his
(many) biographies, and therefore he must be represented as a concept in the sub-
ject taxonomy. This is a simple example of precisely the kind of representation that
is difficult for a description logic, without inventing some special purpose “hack”.
Similar notions have also been reported in the knowledge engineering community
[Wielinga et al., 2001].

14.1.2 FindUR

Another early project using description logics for the web was the FindUR system
at AT&T. FindUR [McGuinness, 1998; McGuinness et al., 1997] was an excellent
example of picking “low hanging fruit” for description logic applications. The basic
notion of FindUR was query expansion,1 that is, taking synonyms or hyponyms
(more specific terms) and including them in the input terms, thereby expanding the
query.

Information retrieval, especially as it is available on the web, rates itself by two
independent criteria, precision and recall. Precision refers to the ratio of desired to
undesired pages returned by a search, and recall refers to the ratio of desired pages
missed to the total number of desired pages. Alternate terms for these notions are
false-positives and false-negatives.

One of the main causes of false negatives in statistically-based keyword searches

1 Sometimes other correlated terms are also used in query expansion. In a later piece of work [Rousset,
1999b], similar because it considered a description logic-based approach for query expansion, more of the
formal issues are addressed in evaluating the soundness and completeness of a particular approach. There
have also been others who have considered description-logic approaches (or dl-inspired approaches) to
retrieval, for example [Meghini et al., 1997].
is the use of synonymous or hyponymous search terms. For example, on the (then) AT&T Bell Labs research site, short project descriptions existed about description logics. These never referred to the phrase “artificial intelligence”. Thus, a search for the general topic “artificial intelligence” would miss the description logic project pages even though description logics is a sub-area of artificial intelligence. If the page referred to “AI” instead of “artificial intelligence” precisely, a keyword search would also miss this clear reference to the same thing. This is a well recognized failure of shallow surface search techniques that significantly impacts recall.

The FindUR system represented a simple background knowledge base containing mostly thesaurus information built in a description logic (Classic) using the most basic notions of Wordnet (synsets and hyper/hyponyms) [Miller, 1995]. Concepts corresponding to sets of synonyms (synsets) were arranged in a taxonomy. These synsets also contained an informal list of related terms. Site specific search engines (built on Verity—a commercial search engine) were hooked up to the knowledge base. Any search term would first be checked in the knowledge base, and if contained in any synset, a new query would be constructed consisting of the disjunction of all the synonymous terms, as well as all the more specific terms (hyponyms).

The background knowledge was represented in Classic, however the description logic was not itself part of the on-line system. Instead, the information used by the search engine was statically generated on a regular basis and used to populate the search engine. The true power of using a description logic as the underlying substrate for the knowledge base was realized mainly in the maintenance task. The DL allowed the maintainer of the knowledge base to maintain some amount of consistency, such as discovering cycles in the taxonomy and disjoint synsets. These simple constraints proved effective tools for maintaining the knowledge since the knowledge itself was very simple.

The FindUR system was deployed on the web to support the AT&T research web site and a number of other application areas. Although the initial deployments were as very simple query expansion, some later deployments included more structure. For example, the FindUR applications on newspaper sites and calendar applications (such as the Summit calendar\(^1\)) included searches that could specify a date range, date ordered returns, and a few other search areas including region or topic area. These searches included use of metatagging information on dates, location, topics, sometimes author, etc. This functioned as a structured search similar in nature to the later developed SHOE Search [Heflin and Hendler, 2001] for the semantic web, and was also similar to what Forrester reported as being required for search that would support eCommerce [Hagen et al., 1999]. The FindUR applications for medical information retrieval [McGuinness, 1999] also included more sophisticated

\(^1\) http://www.quintillion.com/summit/calendar/
mechanisms that allowed users to search in order of quality of study method used (such as randomized control trial study). Applications of FindUR ranged in the end to include very simple query expansion, such as those deployed on WorldNet and Quintillion (see Directory Westfield\(^2\)), as well as more complicated markup search such as those on the AT&T competitive intelligence site and the P-CHIP primary care literature search.

14.1.3 From SGML to the Semantic Web

Independent of description logics, and dating back to the mid 1980s, researchers in other areas of digital libraries were using SGML\(^1\) (Standard Generalized Markup Language) as a tool to mark up a variety of elements of electronic texts, such as identifying the characters in novels, cities, etc., in order to differentiate them in search. For example, a reference to Washington the person in some text may appear as `<person>Washington</person>` whereas a reference to the U.S. State may be `<state>Washington</state>` . See, for example, the 1986 Text Encoding Initiative [Mylonas and Renear, 1999]. Clearly, a search tool capable of recognizing these tags would be more precise when searching for “Washington the person”. This work may be viewed as establishing some of the ground work for the vision of the semantic-web that Tim Berners-Lee and colleagues have more recently popularized.

As the SGML communities proceeded in their efforts to create large repositories of “semantically” marked-up electronic documents, research in using these growing resources sprang up the database and description logics communities, with some early results making it clear that description logics were powerful tools for handling semi-structured data [Calvanese et al., 1998c; 1999d].

In the mid 1990s, work in SGML gained some attention mainly because HTML\(^2\) (HyperText Markup Language) was an SGML technology, and it became clear that the same sort of “semantic” markup (as opposed to “rendering” markup) could be applied to web pages, with the same potential gains. The main syntax specification properties of SGML were combined with the text rendering properties of HTML to generate XML\(^3\) (Extensible Markup Language), and with it came the promise of a new sort of web, a web in which “meta data” would become the primary consumer of bandwidth. These connections made it reasonable to consider the existing work on semi-structured data in description logics a web application.

In an attempt to prevent the web community from repeating the same mistakes made in knowledge representation in the 1970s, in particular using informal “picture” systems with no understood semantics and without decidable reasoning, the

\(^1\) http://www.w3.org/MarkUp/SGML/

\(^2\) http://www.w3.org/MarkUp/

\(^3\) http://www.w3.org/XML/
description logics community became very active in offering languages for the new semantic web. The community was already well-positioned to influence the future of semantic web standards, due in part to (a) the strong history that description logics bring, with well researched and articulated languages providing clear semantics (as well as complexity analyses), (b) the existing work on the web described here, including web applications like Untangle and FindUR, and (c) description logic languages designed for web use such as OIL.

14.2 Enabling the Semantic Web: DAML

The web, while wildly successful in growth, may be viewed as being limited by its reliance on languages like HTML that are focused on presentation of information (i.e., text formatting). Languages such as XML do add some support for capturing the meaning of terms (instead of simply how to render a term in a browser), however it is widely perceived that more is needed. The DARPA Agent Markup Language (DAML) program\(^1\) was one of the programs initiated in order to provide the foundation for the next generation of the web which, it is anticipated, will increasingly utilize agents and programs rather than relying so heavily on human interpretation of web information [Hendler and McGuinness, 2000]. In order for this evolution to occur, agents and programs must understand how to interact with information and services available on the web. They must understand what the information means that they are manipulating and also must understand what services can be provided from applications. Thus, meaning of information and services must be captured. Languages and environments existing today are making a start at providing the required infrastructure. The DAML program exists in order to provide funding for research on languages, tools, and techniques for making the web machine understandable.

The groundwork for the DAML program was being laid in 1999 with the approval for the broad area announcement in November and a web semantics language workshop in December 1999. A strawman language proposal effort was begun out of that work and the major initial emphasis began with a web-centric view. A web-oriented strawman proposal was worked on but not widely announced. One of the early widely-distributed contributions of the DAML program was DAML-ONT\(^2\)—a proposal for an ontology language for the web [Hendler and McGuinness, 2000; McGuinness et al., 2002]. This language began with the requirement to build on the best practice in web languages of the time and took the strawman proposal as the motivating starting point. That meant beginning with XML, RDF\(^3\) (Re-

\(^1\) http://www.daml.org/
\(^2\) http://www.daml.org/2000/10/daml-ont.html
\(^3\) http://www.w3.org/RDF/
source Description Framework), and RDFS \(^4\) (RDF Schema). These languages were not expressive enough to capture the meaning required to support machine understandability, however, so one requirement was additional expressive power. The goal in choosing the language elements was to include the commonly used modeling primitives from object-oriented systems and frame-based systems. Finally, the community recognized the importance of a strong formal foundation for the language. Description logics as a field has had a long history of providing a formal foundation for a family of frame languages. Description logic languages add constructors into a language only after researchers specify and analyze the meaning of the terms and their computational effect on systems built to reason with them. The DAML community wanted to include the strong formal foundations of description logics in order to provide a web language that could be understood and extended.

The initial DAML web ontology language (DAML-ONT) was released publicly in October 2000. While the language design attempted to meet all of the design goals, beginning with the web-centric vision and later incorporating some description logic aspects, the decision was made that a timely release of the initial language was more critical than a timely integration of a description logic language with the web language. Thus the initial release focused more on the goals of web language compatibility and mainstream object-oriented and frame system constructor inclusion. Although some notions of description logic languages and systems were integrated, the major integration happened in the next language release (DAML+OIL).

Another important effort began at about the same time (in 1999) and produced a distributed language specification prior\(^1\) to DAML-ONT called OIL. The aims of OIL’s developers were similar to those of the DAML group, i.e., to provide a foundation for the next generation of the web. Their initial objective was to create a web ontology language that combined the formal rigor of a description logic with the ontological primitives of object oriented and frame based systems. Like DAML-ONT, OIL had an RDFS based syntax (as well as an XML syntax). However, the developers of OIL placed a stronger emphasis on formal foundations, and the language was explicitly designed so that its semantics could be specified via a mapping to the description logic \(SHIQ\) [Fensel et al., 2001; Horrocks et al., 1999].

It became obvious to both groups that their objectives could best be served by combining their efforts, the result being the merging of DAML-ONT and OIL to produce DAML+OIL. The merged language has a formal (model theoretic) seman-

\(^4\) http://www.w3.org/TR/2000/CR-rdf-schema-20000327/

\(^1\) Presentations of the language were made, for example, at the Dagstuhl Seminar on Semantics for the Web—see http://www.semanticweb.org/events/dagstuhl2000/.
tics that provides machine and human understandability, an axiomatization [Fikes and McGuinness, 2001] that provides machine operationalization with a specification of valid inference “rules” in the form of axioms, and a reconciliation of the language constructors from the two languages.

14.3 OIL and DAML+OIL

14.3.1 OIL

The OIL language is designed to combine frame-like modelling primitives with the increased (in some respects) expressive power, formal rigor and automated reasoning services of an expressive description logic [Fensel et al., 2000]. OIL also comes “web enabled” by having both XML and RDFS based serialisations (as well as a formally specified “human readable” form, which we will use here). The frame structure of OIL is based on XOL [Karp et al., 1999], an XML serialisation of the OKBC-lite knowledge model [Chaudhri et al., 1998b]. In these languages classes (concepts) are described by frames, whose main components consist of a list of super-classes and a list of slot-filler pairs. A slot corresponds to a role in a DL, and a slot-filler pair corresponds to either a value restriction (a concept of the form $\forall R.C$) or an existential quantification (a concept of the form $\exists R.C$)—one of the criticisms leveled at frame languages is that they are often unclear as to exactly which of these is intended by a slot-filler pair.

OIL extends this basic frame syntax so that it can capture the full power of an expressive description logic. These extensions include:

- Arbitrary Boolean combinations of classes (called class expressions) can be formed, and used anywhere that a class name can be used. In particular, class expressions can be used as slot fillers, whereas in typical frame languages slot fillers are restricted to being class (or individual) names.
- A slot-filler pair (called a slot constraint) can itself be treated as a class: it can be used anywhere that a class name can be used, and can be combined with other classes in class expressions.
- Class definitions (frames) have an (optional) additional field that specifies whether the class definition is primitive (a subsumption axiom) or non-primitive (an equivalence axiom). If omitted, this defaults to primitive.
- Different types of slot constraint are provided, specifying value restriction, existential quantification and various kinds of cardinality constraint.1
- Global slot definitions are extended to allow the specification of superslots (subsuming slots) and of properties such as transitive and symmetrical.

1 Some frame languages also provide this feature, referring to such slot constraints as facets [Chaudhri et al., 1998b; Grosso et al., 1999].
Unlike many frame languages, there is no restriction on the ordering of class and slot definitions, so classes and slots can be used before they are “defined”. This means that OIL ontologies can contain cycles.

In addition to standard class definitions (frames), which can be seen as DL axioms of the form $CN \sqsubseteq C$ and $CN \equiv C$ where CN is a concept name, OIL also provides axioms for asserting disjointness, equivalence and coverings with respect to class expressions. This is equivalent to providing general inclusion (or equivalence) axioms, i.e., axioms of the form $C \sqsubseteq D$ ($C \equiv D$), where both C and D may be non-atomic concepts.

Many of these points are standard for a DL (i.e., treating $\forall R.C$ and $\exists R.C$ as classes), but are novel for a frame language.

OIL is also more restrictive than typical frame languages in some respects. In particular, it does not support collection types other than sets (e.g., lists or bags), and it does not support the specification of default fillers. These restrictions are necessary in order to maintain the formal properties of the language (e.g., monotonicity) and the correspondence with description logics (see Chapter 2).

In order to allow users to choose the expressive power appropriate to their application, and to allow for future extensions, a layered family of OIL languages has been described. The base layer, called “Core OIL” [Bechhofer et al., 2000], is a cut down version of the language that closely corresponds with RDFS (i.e., it includes only class and slot inclusion axioms, and slot range and domain constraints\(^1\)). The standard language, as described here, is called “Standard OIL”, and when extended with ABox axioms (i.e., the ability to assert that individuals and tuples are, respectively, instances of classes and slots), is called “Instance OIL”. Finally, “Heavy OIL” is the name given to a further layer that will include as yet unspecified language extensions.

We will only consider Standard OIL in this chapter: Core OIL is too weak to be of much interest, Heavy OIL has yet to be specified, and Instance OIL adds nothing but ABox axioms. Moreover, it is unclear if adding ABox axioms to OIL would be particularly useful as RDF already provides the means to assert relationships between (pairs of) web resources and the slots and classes defined in OIL ontologies.

Figure 14.1 illustrates an OIL ontology (using the human readable serialisation) corresponding to an example terminology from Chapter 2. The structure of the language will be described in detail in Section 14.3.1.1. A full specification of OIL, including DTDs for the XML and RDFS serialisations, can be found in [Horrocks et al., 2000a] and on the OIL web site.\(^2\)

\(^1\) Constraining the range (respectively domain) of a slot SN to class C is equivalent to a DL axiom of the form $\top \sqsubseteq \forall SN.C$ (respectively $\exists SN.\top \sqsubseteq C$).

\(^2\) http://www.ontoknowledge.org/oil/
name “Family”
documentation “Example ontology describing family relationships”
definitions
 slot-def hasChild
 inverse isChildOf
 class-def defined Woman
 subclass-of Person Female
 class-def defined Man
 subclass-of Person not Woman
 class-def defined Mother
 subclass-of Woman
 slot-constraint hasChild
 has-value Person
 class-def defined Father
 subclass-of Man
 slot-constraint hasChild
 has-value Person
 class-def defined Parent
 subclass-of or Father Mother
 class-def defined Grandmother
 subclass-of Mother
 slot-constraint hasChild
 has-value Parent
 class-def defined MotherWithManyChildren
 subclass-of Mother
 slot-constraint hasChild
 min-cardinality 3
 class-def defined MotherWithoutDaughter
 subclass-of Mother
 slot-constraint hasChild
 value-type not Woman

Fig. 14.1. OIL “family” ontology.

14.3.1.1 OIL syntax and semantics

OIL can be seen as a syntactic variant of the description logic $SHIQ$ [Horrocks et al., 1999] extended with simple concrete datatypes [Baader and Hanschke, 1991a; Horrocks and Sattler, 2001]; we will call this DL $SHIQ(D)$. Rather than providing the usual model theoretic semantics, OIL defines a translation $\sigma(\cdot)$ that maps an OIL ontology into an equivalent $SHIQ(D)$ terminology. From this mapping, OIL derives both a clear semantics and a means to exploit the reasoning services of DL systems such as FaCT [Horrocks, 1998b] and RACER [Haarslev and Möller, 2001e] that implement (most of) $SHIQ(D)$.

The translation is quite straightforward and follows directly from the syntax and
informal specification of OIL. The single exception is in the treatment of OIL’s one-of constructor. This is not treated like the DL one-of constructor described in Chapter 2, but is mapped to a disjunction of specially introduced disjoint primitive concepts corresponding to the individual names in the one-of construct, i.e., individuals are treated as primitive concepts, and there is an implicit unique name assumption. This was a pragmatic decision based on the fact that reasoning with individuals in concept descriptions is known to be of very high complexity (for a DL as expressive as OIL), and is beyond the scope of any implemented DL system—in fact a practical algorithm for such a DL has yet to be described [Horrocks and Sattler, 2001]. This treatment of the one-of constructor is not without precedent in DL systems: a similar approach was taken in the Classic system [Borgida and Patel-Schneider, 1994].

An OIL ontology consists of a container followed by a list of definitions. The container consists of Dublin Core compliant documentation fields specifying, e.g., the title and subject of the ontology. It is ignored by the translation, and won’t be considered here. Definitions can be either class definitions, axioms, slot definitions or import statements, the latter simply specifying (by URI) other ontologies whose definitions should be treated as being lexically included in the current one. We will, therefore, treat an OIL ontology as a list A_1, \ldots, A_n, where each A_i is either a class definition, an axiom or a slot definition. This list of definitions/axioms is translated into a $\mathcal{SHIQ}(D)$ terminology T (a set of axioms) as follows:

$$
\sigma(A_1, \ldots, A_n) = \{\sigma(A_1), \ldots, \sigma(A_1)\} \cup \bigcup_{1 \leq j < n} \bigcup_{j < k \leq n} \{P_j \sqsubseteq \neg P_k\}
$$

where i_1, \ldots, i_n are the individuals used in the ontology, and P_i is the $\mathcal{SHIQ}(D)$ primitive concept used to represent i.

Class definitions An OIL class definition (class-def) consists of an optional keyword K followed by a class name CN, an optional documentation string, and a class description D. If $K = \text{primitive}$, or if K is omitted, then the class definition corresponds to a DL axiom of the form $CN \sqsubseteq D$. If $K = \text{defined}$, then the class definition corresponds to a DL axiom of the form $CN \equiv D$.

A class description consists of an optional subclass-of component, with a list of one or more class expressions, followed by a list of zero or more slot-constraints. Each slot constraint can specify a list of constraints that apply to the given slot, e.g., value restrictions and existential quantifications. The set of class expressions and slot constraints is treated as an implicit conjunction.

The complete mapping from OIL class definitions to $\mathcal{SHIQ}(D)$ axioms is given in Figure 14.2, where CN is a class or concept name and C is a class expression.
Slot constraints A slot-constraint consists of a slot name followed by a list of one or more constraints that apply to the slot. A constraint can be either:

- A has-value constraint with a list of one or more class-expressions or datatype expressions.
- A value-type constraint with a list of one or more class-expressions or datatype expressions.
- A max-cardinality, min-cardinality or cardinality constraint with a non-negative integer followed (optionally) by either a class expression or a datatype expression.
- A has-filler constraint with a list of one or more individual names or data values.

OIL has-value and value-type constraints correspond to DL existential quantifications and value restrictions respectively. OIL cardinality constraints correspond to DL qualified number restrictions, where the qualifying concept is taken to be \(\top \) if the class expression is omitted. In order to maintain the decidability of the language, cardinality constraints can only be applied to simple slots, a simple slot being one that is neither transitive nor has any transitive subslots [Horrocks et al., 1999] (note that the transitivity of a slot can be inferred, e.g., from the fact that the inverse of the slot is a transitive slot). An OIL has-filler constraint is equivalent to a set of has-value constraints where each individual \(i \) is transformed into a class expression of the form one-of \(i \) and each data value \(d \) is transformed into a datatype of the form equal \(d \).

The complete mapping from OIL slot constraints to \(\mathcal{SHIQ}(\mathcal{D}) \) concepts is given in Figure 14.3, where \(SN \) is a slot or role name, \(C \) is a class expression or datatype, \(i \) is an individual and \(d \) is a data value (i.e., a string or an integer).

Class expressions One of the key features of OIL is that, in contrast to standard frame languages, class expressions are used instead of class names, e.g., in the list of super-classes, or in slot constraints. A class-expression is either a class name \(CN \), an enumerated-class, a slot-constraint, a conjunction of class expressions

```
<table>
<thead>
<tr>
<th>OIL</th>
<th>( \mathcal{SHIQ}(\mathcal{D}) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>class-def ((\text{primitive} \mid \text{defined})) ( CN )</td>
<td>( CN \ (\in \mid \equiv) \top )</td>
</tr>
<tr>
<td>subclass-of ( C_1 \ldots C_n )</td>
<td>( \sqcap \sigma(C_1) \sqcap \ldots \sqcap \sigma(C_n) )</td>
</tr>
<tr>
<td>slot-constraint_1</td>
<td>( \sqcap \sigma(\text{slot-constraint}_1) )</td>
</tr>
<tr>
<td>\ldots</td>
<td>( \vdots )</td>
</tr>
<tr>
<td>slot-constraint_m</td>
<td>( \sqcap \sigma(\text{slot-constraint}_m) )</td>
</tr>
</tbody>
</table>
```

Fig. 14.2. OIL to \(\mathcal{SHIQ}(\mathcal{D}) \) mapping (class definitions).
\(OIL \quad SIHQ(D) \)

\[
\begin{align*}
\text{slot-constraint} & \quad SN & \top \\
\text{has-value} & \quad C_1 \ldots C_n & \quad \neg \exists SN.\sigma(C_1) \cap \ldots \cap \exists SN.\sigma(C_n) \\
\text{value-type} & \quad C_1 \ldots C_n & \quad \forall SN.\sigma(C_1) \cap \ldots \cap \forall SN.\sigma(C_n) \\
\text{max-cardinality} & \quad n \quad C & \quad \leq n \quad SN.\sigma(C) \\
\text{min-cardinality} & \quad n \quad C & \quad \geq n \quad SN.\sigma(C) \\
\text{cardinality} & \quad n \quad C & \quad \geq n \quad SN.\sigma(C) \cap \leq n \quad SN.\sigma(C) \\
\text{has-filler} & \quad i_1 \ldots d_n & \quad \exists SN.\sigma(\text{one-of } i_1) \cap \ldots \cap \exists SN.\sigma(\text{equal } d_n)
\end{align*}
\]

Fig. 14.3. OIL to SIHQ(D) mapping (slot constraints).

\[
\begin{align*}
\text{OIL} & \quad SIHQ(D) \\
\top & \quad \top \\
\text{thing} & \quad \top \\
\bot & \quad \bot \\
\text{and} & \quad C_1 \ldots C_n & \quad \sigma(C_1) \cap \ldots \cap \sigma(C_n) \\
\text{or} & \quad C_1 \ldots C_n & \quad \sigma(C_1) \cup \ldots \cup \sigma(C_n) \\
\text{not} & \quad C & \quad \neg \sigma(C) \\
\text{one-of} & \quad i_1 \ldots i_n & \quad P_i \cup \ldots \cup P_n
\end{align*}
\]

Fig. 14.4. OIL to SIHQ(D) mapping (class expressions).

(written \text{and } C_1 \ldots C_n), a disjunction of class expressions (written \text{or } C_1 \ldots C_n) or a negated class expression (written \text{not } C).

The class names \text{top}, \text{thing} and \text{bottom} have pre-defined interpretations: \text{top} and \text{thing} are interpreted as the most general class (\(\top \)), while \text{bottom} is interpreted as the inconsistent class (\(\bot \)). Note that \text{top} and \text{bottom} can just be considered as abbreviations for the class expressions (\text{or } C (\text{not } C)) and (\text{and } (C \text{ not } C)) respectively (for some arbitrary class \(C \)).

An enumerated-class consists of a list of individual names, written \text{one-of } C_1 \ldots C_n. As already noted, this is not treated like the DL \text{one-of} constructor described in Chapter 2, but is mapped to a disjunction of disjoint primitive concepts corresponding to the individual names.

The complete mapping from OIL class expressions to SIHQ(D) concepts is given in Figure 14.4, where \(C \) is a class expression, \(i \) is an individual and \(P_i \) is the primitive concept corresponding to the individual \(i \).

\textbf{Datatypes} In OIL slot constraints, datatypes and values can be used as well as or instead of class expressions and individuals. Datatypes can be either \text{integer} (i.e., the entire range of integer values), \text{string} (i.e., the entire range of string values), a subrange defined by a unary predicate such as \text{less-than} 10 or a Boolean combination of datatypes [Horrocks and Sattler, 2001].

The complete mapping from OIL datatypes to SIHQ(D) concepts is given in Figure 14.5, where \(d \) is a data value (an integer or a string), \(C \) is a datatype and
\(d\) is a unary predicate that returns true for all integers greater than or equal to (respectively less than or equal to, greater than, less than) \(d\).

Axioms In addition to class definitions, OIL includes four kinds of axiom:

- **Disjoint** \(C_1 \ldots C_n\) asserts that the class expressions \(C_1 \ldots C_n\) are pairwise disjoint.
- **Covered by** \(C_1 \ldots C_n\) asserts that the class expression \(C\) is covered (subsumed) by the union of class expressions \(C_1 \ldots C_n\).
- **Disjoint-covered by** \(C_1 \ldots C_n\) asserts that the class expression \(C\) is covered (subsumed) by the union of class expressions \(C_1 \ldots C_n\), and that \(C_1 \ldots C_n\) are pairwise disjoint.
- **Equivalent** \(C_1 \ldots C_n\) asserts that the class expressions \(C_1 \ldots C_n\) are equivalent.

The complete mapping from OIL axioms to \(\mathcal{SHIQ}(D)\) axioms is given in Figure 14.6, where \(C\) is a class expression.

Slot definitions An OIL slot definition (\texttt{slot-def}) consists of a slot name \texttt{SN} followed by an optional documentation string and a slot description. A slot descrip-
The complete mapping from OIL class definitions to SHIQ(D) axioms is given in Figure 14.7, where SN and RN are slot or role names, C is a class expression and R^+ is the set of SHIQ(D) transitive role names.

The mapping from OIL to SHIQ(D) has now been fully specified and we can illustrate, in Figure 14.8, the SHIQ(D) ontology corresponding to the OIL ontology from Figure 14.1.

14.3.1.2 XML and RDFS serialisations for OIL

The above language description uses OIL’s “human readable” serialisation. This aids readability, but is not suitable for publishing ontologies on the web. For this purpose OIL is also provided with both XML and RDFS serialisations.

OIL’s XML serialisation directly corresponds with the human readable form:
Figure 14.9 illustrates the XML serialisation of a fragment of the “family” ontology. A full specification and XML DTD can be found in [Horrocks et al., 2000a].

The RDFS serialisation is more interesting as it uses the features of RDFS both to capture as much as possible of OIL ontologies and to define a “meta-ontology”
I. Horrocks, D. L. McGuinness, C. Welty

describing the structure of the OIL language itself. Figure 14.10 shows part of the RDFS description of OIL. The second and third lines contain XML namespace definitions that make the external RDF and RDFS definitions available for local use by preceding them with rdf: and rdfs: respectively. There then follows a “meta-ontology” describing (part of) the structure of OIL slot constraints.

The “meta-ontology” defines hasPropertyRestriction as an instance of RDFS ConstraintProperty\(^1\) that connects an RDFS class (the property’s domain) to an OIL property restriction (the property’s range). A PropertyRestriction (slot constraint) is then defined as a kind of ClassExpression, with HasValue (an existential quantification) being a kind of PropertyRestriction. Properties onProperty and toClass are then defined as “meta-slots” of PropertyRestriction whose fillers will be the name of the property (slot) to be restricted and the restriction class expression. The complete description of OIL in RDFS, as well as a more detailed description of RDF and RDFS, can be found in [Horrocks et al., 2000a].

Figure 14.11 illustrates the RDFS serialisation of a fragment of the “family” ontology. Note that most of the ontology consists of standard RDFS. For example, in the definition of Woman RDFS is used to specify that it is a subClassOf both Person and Female. Additional OIL specific vocabulary is only used where necessary, e.g., to specify that Woman is a defined class. The advantage of this is that much of the ontology’s meaning would still be accessible to software that was “RDFS aware” but not “OIL aware”.

14.3.2 DAML+OIL

DAML+OIL is similar to OIL in many respects, but is more tightly integrated with RDFS, which provides the only specification of the language and its only serialisation. While the dependence on RDFS has some advantages in terms of the re-use of existing RDFS infrastructure and the portability of DAML+OIL ontologies, using RDFS to completely define the structure of DAML+OIL is quite difficult as, unlike XML, RDFS is not designed for the precise specification of syntactic structure. For example, there is no way in RDFS to state that a restriction (slot constraint) should consist of exactly one property (slot) and one class.

The solution to this problem adopted by DAML+OIL is to define the semantics of the language in such a way that they give a meaning to any (parts of) ontologies that conform to the RDFS specification, including “strange” constructs such as slot constraints with multiple slots and classes. This is made easier by the fact that, unlike OIL, the semantics of DAML+OIL are directly defined in both a model theoretic and an axiomatic form (using KIF [Genesereth and Fikes, 1992]). The meaning given to strange constructs may, however, include strange “side effects”.

\(^1\) Property is the RDF name for a binary relation like a slot or role.
For example, in the case of a slot constraint with multiple slots and classes, the semantics interpret this in the same way as a conjunction of all the constraints that would result from taking the cross product of the specified slots and classes, but with the added (and possibly unexpected) effect that all these slot constraints must have the same interpretation (i.e., are equivalent). Although OIL’s RDFS based syntax would seem to be susceptible to the same difficulties, in the case of OIL there does not seem to be an assumption that any ontology conforming to the RDFS meta-description would be a valid OIL ontology—presumably ontologies containing unexpected usages of the meta-properties would be rejected by OIL processors as the semantics do not specify how these could be translated into SHIQ(D).

DAML+OIL’s dependence on RDFS also has consequences for the decidability of the language. In OIL, the language specification states that the slots used in cardinality constraints can only be applied to simple slots (slots that are neither
transitive nor have transitive subslots). There is no way to capture this constraint in RDFS (although the language specification does include a warning about the problem), so DAML+OIL is theoretically undecidable. In practice, however, this may not be a very serious problem as it would be easy for a DAML+OIL processor to detect the occurrence of such a constraint and warn the user of the consequences.

Another effect of DAML+OIL’s tight integration with RDFS is that the frame
structure of OIL’s syntax is much less evident: a DAML+OIL ontology is more DL-like in that it consists largely of a relatively unstructured collection of subsumption and equality axioms. This can make it more difficult to use DAML+OIL with frame based tools such as PROTEGE [Grosso et al., 1999] or OilEd [Bechhofer et al., 2001b] because the axioms may be susceptible to many different frame-like groupings [Bechhofer et al., 2001a].

From the point of view of language constructs, the differences between OIL and DAML+OIL are relatively trivial. Although there is some difference in “keyword” vocabulary, there is usually a one to one mapping of constructors, and in the cases where the constructors are not completely equivalent, simple translations are possible. For example, DAML+OIL restrictions (slot constraints) use has-class and to-class where OIL uses ValueType and HasValue, and while DAML+OIL has no direct equivalent to OIL’s covering axioms, the same effects can be achieved using a combination of (disjoint) union and subClass. The similarities can clearly be seen in Figure 14.12, which illustrates the DAML+OIL version of the “family” ontology fragment from Figure 14.9.

The treatment of individuals in DAML+OIL is, however, very different from that
in OIL. In the first place, DAML+OIL relies wholly on RDF for ABox assertions, i.e., axioms asserting the type (class) of an individual or a relationship between a pair of individuals. In the second place, DAML+OIL treats individuals occurring in the ontology (in oneOf constructs or hasValue restrictions) as true individuals (i.e., interpreted as single elements in the domain of discourse) and not as primitive concepts as is the case in OIL (see Chapter 2). Moreover, there is no unique name assumption: in DAML+OIL it is possible to explicitly assert that two individuals are the same or different, or to leave their relationship unspecified.

This treatment of individuals is very powerful, and justifies intuitive inferences that would not be valid for OIL, e.g., that persons all of whose countries of residence are Italy are kinds of person that have at most one country of residence:

\[\text{Person} \sqcap \forall \text{residence.}\{\text{Italy}\} \subseteq \leq 1 \text{residence} \]

Unfortunately, the combination of individuals with inverse roles is so powerful that no “practical” decision procedure (for satisfiability/subsumption) is currently known, and there is no implemented system that can provide sound and complete reasoning for the whole DAML+OIL language. In the absence of inverse roles, however, a tableaux algorithm has been devised [Horrocks and Sattler, 2001], and in the absence of individuals DAML+OIL ontologies can exploit implemented DL systems via a translation into SHIQ similar to the one described for OIL. It would, of course, also be possible to translate DAML+OIL ontologies into SHIQ using the disjoint primitive concept interpretation of individuals adopted by OIL, but in this case reasoning with individuals would not be sound and complete with respect to the semantics of the language.

14.3.2.1 DAML+OIL datatypes

The initial release of DAML+OIL did not include any specification of datatypes. However, in the March 2001 release, the language was extended with arbitrary datatypes from the XML Schema type system, which can be used in restrictions (slot constraints) and range constraints. As in SHIQ(D) [Horrocks and Sattler, 2001], a clean separation is maintained between instances of “object” classes (defined using the ontology language) and instances of datatypes (defined using the XML Schema type system). In particular, it is assumed that the domain of interpretation of object classes is disjoint from the domain of interpretation of datatypes, so that an instance of an object class (e.g., the individual Italy) can never have the same interpretation as a value of a datatype (e.g., the integer 5), and that the set of object properties (which map individuals to individuals) is disjoint from the set of datatype properties (which map individuals to datatype values).

1 http://www.daml.org/2001/03/daml+oil-index.html
2 http://www.w3.org/TR/xmlschema-2/#typesystem
The disjointness of object and datatype domains was motivated by both philosophical and pragmatic considerations:

- Datatypes are considered to be already sufficiently structured by the built-in predicates, and it is, therefore, not appropriate to form new classes of datatype values using the ontology language [Hollunder and Baader, 1991b].
- The simplicity and compactness of the ontology language are not compromised—even enumerating all the XML Schema datatypes would add greatly to its complexity, while adding a theory for each datatype, even if it were possible, would lead to a language of monumental proportions.
- The semantic integrity of the language is not compromised—defining theories for all the XML Schema datatypes would be difficult or impossible without extending the language in directions whose semantics may be difficult to capture in the existing framework.
- The “implementability” of the language is not compromised—a hybrid reasoner can easily be implemented by combining a reasoner for the “object” language with one capable of deciding satisfiability questions with respect to conjunctions of (possibly negated) datatypes [Horrocks and Sattler, 2001].

From a theoretical point of view, this design means that the ontology language can specify constraints on data values, but as data values can never be instances of object classes they cannot apply additional constraints to elements of the object domain. This allows the type system to be extended without having any impact on the object class (ontology) language, and vice versa. Similarly, reasoning components can be independently developed and trivially combined to give a hybrid reasoner whose properties are determined by those of the two components; in particular, the combined reasoner will be sound and complete if both components are sound and complete.

From a practical point of view, DAML+OIL implementations can choose to support some or all of the XML Schema datatypes. For supported data types, they can either implement their own type checker/validator or rely on some external component (non-supported data types could either be trapped as an error or ignored). The job of a type checker/validator is simply to take zero or more data values and one or more datatypes, and determine if there exists any data value that is equal to every one of the specified data values and is an instance of every one of the specified data types.

14.4 Summary

It has long been realised that the web would benefit from more structure, and it is widely agreed that ontologies will play a key role in providing this structure. De-
scription logics have made important contributions to research in this area, ranging from formal foundations and early web applications through to the development of description logic based languages designed to facilitate the development and deployment of web ontologies. OIL and its successor DAML+OIL are two such ontology languages, specifically designed for use on the web; they exploit existing web standards (XML, RDF and RDFS), adding the formal rigor of a description logic and the ontological primitives of object oriented and frame based systems.

This combination of features has proved very attractive, and DAML+OIL has already been widely adopted. At the time of writing, the DAML ontology library contains over 175 ontologies, and DAML crawlers have found millions of DAML+OIL markup statements in documents. Possibly more important, however, is that some major efforts have committed to encoding their ontologies in DAML+OIL. This has been particularly evident in the bio-ontology domain, where the Bio-Ontology Consortium has specified DAML+OIL as their ontology exchange language, and the Gene Ontology [The Gene Ontology Consortium, 2000] is being migrated to DAML+OIL in a project partially funded by GlaxoSmithKline Pharmaceuticals in cooperation with the Gene Ontology Consortium.

There has also been significant progress in the development of tools supporting DAML+OIL. Several DAML+OIL ontology editors are now available including Manchester University’s OilEd (which incorporates reasoning support from the Fact system) [Bechhofer et al., 2001b], PROTÉGÉ [Grosso et al., 1999] and OntoEdit [Staab and Maedche, 2000]. At Stanford University, a combination of Ontolingua, Chimaera and JTP (Java Theorem Prover) are being used to provide editing, evolution, maintenance, and reasoning services for DAML+OIL ontologies [McGuinness et al., 2000b; 2000a]. Commercial endeavors are also supporting DAML+OIL. Network Inference Limited, for example, have developed a DAML+OIL reasoning engine based on their own implementation of a DL reasoner.

What of the future? The development of the semantic web, and of web ontology languages, presents many opportunities and challenges for description logic research. A “practical” (satisfiability/subsumption) algorithm for the full DAML+OIL language has yet to be developed, and even for OIL, it is not yet clear that sound and complete DL reasoners can provide adequate performance for typical web applications. It is also unclear how a DL system would cope with the very large ABoxes that could result from the use of ontologies to add semantic markup to (large numbers of) web pages. DL researchers are also beginning to address new inference problems that may be important in providing reasoning services for the semantic web, e.g., querying [Rousset, 1999a; Calvanese et al., 1999a; Horrocks and Tessaris, 2000], matching [Baader et al., 1999a] and comput-
ing least common subsumers and most specific concepts [Cohen et al., 1992; Baader and Küsters, 1998; Baader et al., 1999b].

Finally, the developers of both OIL and DAML+OIL always understood that a single language would not be adequate for all semantic web applications—OIL even gave a name (Heavy OIL) to an as yet undefined extension of the language—and extensions up to (at least) full first order logic are already being discussed. Clearly, most of these extended languages will be undecidable. Description Logics research can, however, still make important contributions, e.g., by investigating the boundaries of decidability, identifying decidable subsets of extended languages and developing decision procedures. DL implementations can also play a key role, both as reasoning engines for the core language and as efficient components of hybrid reasoners dealing with a variety of language extensions.

Acknowledgements

We would like to thank Jérôme Euzenat and Frank van Harmelen for their insightful comments on a previous version of the paper. All remaining errors are, of course, our own.
Abstract

In most natural language processing applications, Description Logics have been used to encode in a knowledge base some syntactic, semantic, and pragmatic elements needed to drive the semantic interpretation and the natural language generation processes. More recently, Description Logics have been used to fully characterise the semantic issues involved in the interpretation phase. In this Chapter the various proposals appeared in the literature about the use of Description Logics for natural language processing will be analysed.

15.1 Introduction

Since the early days of the KL-ONE system, one of the main applications of Description Logics has been for semantic interpretation in Natural Language Processing [Brachman et al., 1979]. Semantic interpretation is the derivation process from the syntactic analysis of an utterance to its logical form—intended here as the representation of its literal deep and context-dependent meaning. Typically, Description Logics have been used to encode in a knowledge base both syntactic and semantic elements needed to drive the semantic interpretation process. A part of the knowledge base constitutes the lexical semantics knowledge, relating words and their syntactic properties to concept structures, while the other part describes the contextual and domain knowledge, giving a deep meaning to concepts. By developing this idea further, a relevant part of the research effort has been devoted to the development of linguistically motivated ontologies, i.e., large knowledge bases where both concepts closely related to lexemes and domain concepts coexist together. Logical forms and various kinds of internal semantics representations based on Description Logics may also provide the basis for further computational processing such as representing common meanings in Machine Translation applications, generating
coherent text starting from its semantic content, answering database queries, and for dialogue management.

After a big success in the eighties and in the beginning of the nineties (see, e.g., the paper collection in [Sowa, 1991]), the interest of the applied computational linguistic community towards Description Logics began to drop, as well as its interest in well founded theories on syntax or semantics. At the time of writing this chapter, there is no major applied project in Natural Language Processing making use of Description Logics. This is due to the positive achievements in real applications of the systems based on shallow analysis and statistical approaches to semantics, initiated by the applications in the message understanding area.

In this Chapter the basic uses of Description Logics for Natural Language Processing will be analysed, together with a little bit of history, and the role of Description Logics in the current state of the art in computational linguistics will be pointed out. Obviously, space constraints will lead to several omissions and over-simplifications.

15.2 Semantic interpretation

In order to understand the role of Description Logics for semantic interpretation, let us first introduce a general setting for the process of deriving a logical form of an utterance.

A basic property of a logical form as a semantic representation of a natural language constituent—such as a noun phrase (NP) or a verb phrase (VP)—is compositionality, i.e., the semantic representation of a constituent is a function of the semantic interpretation of its sub-constituents. Thus, a close correspondence between syntactic structure and logical form is allowed. In this way, a parser working according to some grammar rules can incrementally build up the semantic interpretation of an utterance using the corresponding lexical semantic rules of logical composition—specifying how the logical terms associated to the sub-constituents are to be combined in order to give the formula for the constituent. Thus, each lexeme has associated a (possibly complex) logical term, which forms its contribution to the meaning of the utterance it is part of.

In the context of such a formalism, an effective semantic lexical discrimination process could be carried on during parsing, by cutting out the exponential factor due to the explicit treatment all the possible derivations. Semantically un-plausible interpretations can be discarded, by checking—whenever the parser tries to build a constituent—the inconsistency of the logical form compositionally obtained at that stage. This leaves out many syntactically plausible but semantically implausible interpretations. Such a discrimination step is highly effective in restricted domain applications, where the world knowledge considerably reduces the number of possible models. Clearly, the more the contextual and domain knowledge is taken into
consideration when evaluating a logical form, the more effective is the discrimination process. Thus, consistency checking of logical forms plays the role of a generalised selectional restrictions mechanism.

But which is the relationship between a syntactic constituent and its range of possible lexical semantic contributions? The conceptual content of a lexeme should convey both the lexical relations—such as, for example, synonymy, hyponymy, incompatibility—and the sub-categorisation information about the expected arguments (aka complements) of the lexical entry. For example the verb *paint* may be conceptualised as an event having an *agent* thematic role corresponding to the *subject* syntactic argument with a specified selectional restriction being the concept *animate*. It is important to distinguish the syntactic information—such as the lexical relations and the sub-categorisation frame constraining the complements to have specific syntactic structures—from the semantic information—such as the thematic roles and their selectional restrictions. A semantic lexical entry will specify the appropriate mappings between the syntactic structure of the lexeme and the conceptual information.

The situation is, of course, a bit more complex, since, for example, there is no direct obvious conceptual content to lexemes belonging to particular syntactic categories like adjectives or adverbs. Moreover there is a distinction between complements (which are considered as internal arguments) and *adjuncts* (which are considered as modifiers). It is outside the scope of this chapter to analyse the correspondence between syntax and semantics and its compositional nature (see, e.g., [Jackendoff, 1990; Pustejovsky, 1988]).

For example, the sentence “A painter paints a fresco”, involves the concepts *Painter, Fresco,* and *Paint*, where the concept *Paint* has two thematic roles associated to it, an *agent* and a *goal*, with the concepts *Animate* and *Inanimate* as respective selectional restrictions. Moreover, the conceptualisations should include the facts that a *Painter* is a sub-concept of *Animate*, a *Fresco* is a sub-concept of *Inanimate*, and the concepts *Animate* and *Inanimate* are disjoint. This information is enough, for example, to validate the above sentence, while it would discard as semantically implausible the sentence “A fresco paints a painter”. This conceptualisation and its relationship with the lexical knowledge can be encoded in a Description Logics knowledge base.

Many studies have been done about building a good Description Logics knowledge base for natural language processing (also called *ontology*) [Bateman, 1990; Hovy and Knight, 1993; Knight and Luk, 1994; Bateman et al., 1995]—see also Chapter 14. A good linguistically motivated ontology ought to be partitioned into a language-dependent but domain-independent part (the *upper model*) and a language-independent but domain-dependent part (the *domain model*)—but this result is theoretically very hard to achieve [Bateman, 1990; Lang, 1991]. A good
linguistically motivated ontology should be used both for semantic interpretation and for natural language generation (see Section 15.4). The conceptualisation in the ontology should be at a level of granularity which may depend on the application: if selectional restrictions are too specific, disambiguation is achieved, but probably many correct sentences will be discriminated (e.g., the sentences involving some form of metaphor, type shifting, or metonymy); if selectional restrictions are too general, the opposite problem may appear. In principle, a good linguistically motivated ontology should be abstract, large-scale, reusable. However, these goals are very hard to achieve since they conflict with the practical need to implement effective and discriminating ontologies in specialised domains.

The ideas just sketched form the theoretical background of any application of Description Logics for semantic interpretation, since the early works where K-L-One was involved [Bobrow and Webber, 1980; Sondheimer et al., 1984; Brachman and Schmolze, 1985; Jacobs, 1991]. Every realised system relies on the so called multilevel semantics architecture [Lavelli et al., 1992], where a sequence of processing phases is distinguished:

- Lexical discrimination: whenever the parser tries to build a constituent, the consistency of the semantic part of such a constituent is checked. In parallel, a first logical form is built up—where references and quantifiers scoping are still ambiguous—expressing the meaning of the sentence in the most specialised way with respect to the semantic lexicon and the background knowledge. Heuristics is applied to the minimal form in order to obtain a preferential ordering of the semantically consistent but still lexically ambiguous interpretations.

- Anaphora and quantifier scoping resolution: the semantically plausible referents for linguistic expressions such as definite NPs, pronouns and deictic references are identified, and the scope of quantifiers is resolved by making explicit the different unambiguous interpretations. Syntactic-based heuristics are used to cut down the various derivations to a unique unambiguous one.

- Contextual interpretation: decides how to react in a given dialogic situation, considering the type of request, the context, the model of the interest of the user. It makes use of knowledge about the speech acts, the dialogue and the user model.

It has to be emphasised the fact that all the approaches aim at deriving a unique unambiguous logical form. For this purpose, the logical form is treated as a mere compositionally-obtained data structure on which to operate ad-hoc algorithms for solving ambiguities, with the support of the information represented in the knowledge base. There is no attempt to give a logic-based semantics to the “logical form” during the disambiguation phases. The role of Description Logics is thus limited to serve a lexically motivated knowledge base, which is used for building the logical
form. Some approaches pretend to represent the logical form itself as Description Logics assertions, but in fact they use it just as a support for somehow computing the real logical form. Section 15.3 will discuss the few Description Logics based well founded approaches, where the whole semantic interpretation process has been given a logical foundation.

A number of recent important projects involving Description Logics for semantic interpretation are listed below.

- The JANUS system [Weischedel, 1989], where the consistency check of the selectional restrictions was implemented as double up-and-down subsumption check.
- The XTRA system [Allgayer et al., 1989], proposing a clear distinction between the domain independent linguistically motivated part of the knowledge base (called Functional-Semantic Structure, FSS), and the domain dependent part (called Conceptual Knowledge Base, CKB) modelling the knowledge of an underlying expert system.
- The PRACMA project [Fehr et al., 1994], in which an expressive Description Logic has been studied to support special inferences such as probabilistic reasoning, non-monotonic reasoning, and abductive reasoning.
- The LILOG project [Herzog and Rollinger, 1991], funded by IBM, a very ambitious research project for studying the logical foundations of the semantics of natural language, with an emphasis to computational aspects. The project belongs to the category of projects where the whole semantic interpretation process has been given a logical foundation—by means of a sorted first order logic. However, the role of Description Logics is again just as a knowledge server during the various interpretation and disambiguation phases.
- The ALFRESCO system, a multi-modal dialogue prototype for the exploration of Italian fourteenth century painters and frescoes [Stock et al., 1991; 1993], and the natural language interface for the concierge of the system MAIA, a mobile robot with intelligent capabilities in the domain of office activities [Samek-Lodovici and Strapparava, 1990; Lavelli et al., 1992; Franconi, 1994]. These systems are characterised by the presence of natural language dialogues, so that logical form becomes central to convey the meaning for the evolving behaviour of the system.
- The VERBMOBIL project [Wahlster, 2000], a large speech-to-speech translation project, with translations in German, English, and Japanese. In VERBMOBIL, the role of Description Logics is limited to the off-line pre-computation of a taxonomy of concepts with thematic roles and selectional restrictions, which are then used by ad-hoc rules during the run-time disambiguation phase.
- The Ford’s Direct Labor Management System (DLMS) [Rychtickyj, 1996; 1999] is one of the few industrial level examples of a Description Logic based application involving natural language. DLMS utilises in a pretty standard way
a Description Logic knowledge base to build the semantic interpretation of process sheets—natural language documents containing specific information about work instructions—and to generate from them structured descriptions of the parts and the tools required for allocating labour at the car plant floor.

15.3 Reasoning with the logical form

Traditionally, the logical form has been considered in computational linguistics as only representing the literal—i.e., context independent—meaning of an utterance, as clearly distinguished from the representation of the surface syntactical constituent structure, and from a deeper semantic representation—function of discourse context and world knowledge. Thus, the logical form plays in these cases an intermediate role between syntax and the deep semantics, and it is therefore not intended to fully contain the meaning in context of the utterance. Moreover, quite often a further distinction is introduced among quasi logical forms—i.e., literal under-specified semantic representations—and proper logical forms—i.e., literal unambiguous derivations.

The reasons for having separated the literal under-specified, the literal unambiguous, and the deep meaning representations are mainly pragmatic rather than theoretical. Pure linguists would say that any sentence has just one unambiguous meaning, being the possible ambiguity introduced by under-constraining the interpretation process—e.g., by not adequately considering the context knowledge. In such a case, they would speak of different possible ending paths in the derivation (i.e., interpretation) process, each one of them being again unambiguous. Clearly, this approach is infeasible from a computational point of view: first, because the number of derivations might combinatorially increase; and secondly because the interdependencies among the derivations are lost.

On the other hand, computational linguists consider ambiguities as part of the meaning of utterances, with the ultimate goal of being able to reason with such under-specified expressions, in order to increase compactness in the representation and efficiency in the processing. Allen [1993] argues that

... one of the crucial issues facing future natural language systems is the development of knowledge representation formalisms that can effectively handle ambiguity.

We can identify two main approaches. The classical computational approaches—like the ones described above—rely on the modularity of the semantic analysis process—the multilevel semantics architecture—starting from the under-specified representation and ending up with an unambiguous and context-dependent representation. The semantic-oriented approaches usually propose a very expressive logical language—possibly with an expressivity greater than FOL—with the goal of
giving a clear semantics to many NL phenomena, and in particular to ambiguities and under-specification. Ambiguities can be roughly classified as follows: lexical ambiguities introduced by, e.g., prepositions, nouns, and verbs; structural ambiguities such as PP-attachment ambiguities; referential ambiguities such as quantification scoping and anaphora.

A disadvantage of the first approach is that there are no solid formal grounds for the proper use of the logical form, and in particular for the treatment of ambiguity, so that operations on the logical form are often based on heuristics and ad-hoc procedures. This can be justified by the fact that reasoning on logical forms including—among other things—domain knowledge, incomplete and ambiguous terms, unsolved references, under-specified quantifications, is considered a hard computational task. Computational linguists have devised structural processing techniques based on syntax, selectional restrictions, case grammars, and structured information such as frames and type hierarchies—carefully trying to avoid or to drastically reduce the inclusion in the computational machinery of logical inference mechanisms for treating ambiguities. Of course, these techniques often need ad-hoc mechanisms when such ambiguities come into play. The computational approach is an example of “knowledge representation as engineering”.

On the other hand, a number of recent works in applying Description Logics to Natural Language Processing ([Quantz, 1995; Franconi, 1996; Ludwig et al., 2000]) are getting closer to a semantic-oriented approach, but they follow a minimalist conceptualisation, and they emphasise the computational aspects. Instead of trying to solve sophisticated semantic problems of natural language, they try to logically reconstruct some basic issues in a general way, which is compositional, homogeneous, principled, and interesting from an applicative point of view. The main idea of these approaches is to take logical forms seriously: they do not only represent the literal meaning of the fragment, but also lexical ambiguities, represent unresolved referents via variables and equality, interpret plural entities and (generalised) quantifiers, and are linked to a rich theory of the domain. To that purpose, an expressive logical language should have a proper reasoning mechanism, and nonetheless be compositional.

In this Section an abstract overview will be given by means of examples, in a way that, we believe, common ideas will be captured.

Let us first try to understand how a logical form can be characterised in terms of proper logical constructs. It is observed that, assuming the widely accepted Davidsonian view on eventualities, natural language phrases—such as a NP or a VP—explicitly introduce discourse referents stating the existence of individuals or events of the domain model. Introduced referents are represented as existentially quantified variables. The possibility of having variables and constants allows for the
representation of referential ambiguities. This is the basis of most works on logical formalisations of the logical form.

For example, the NP *A fresco of Giotto* might be given the following logical form

\[\exists b. \text{Fresco}(b) \land \text{of}(b, \text{GIOTTO}) \]

while the NP *A fresco painted by Giotto* might be given the logical form

\[\exists b, e. \text{Fresco}(b) \land \text{Paint}(e) \land \text{agent}(e, \text{GIOTTO}) \land \text{goal}(e, b). \quad (15.1) \]

As we have pointed out above, consistency checking of a (partial) logical form corresponding to a constituent may help in the semantic discrimination process. Thus, in a restricted application domain, we would like to discard a sentence like *A fresco paints Giotto*, since its logical form

\[\exists b, e. \text{Fresco}(b) \land \text{Paint}(e) \land \text{agent}(e, \text{GIOTTO}) \land \text{goal}(e, \text{GIOTTO}) \]

would be inconsistent with respect to a general domain theory of frescoes and animate things that we could attach to the lexicon:

\[\forall x, y. \text{Paint}(x) \rightarrow (\text{agent}(x, y) \rightarrow \text{Animate}(y)) \]
\[\forall x. \text{Animate}(x) \rightarrow \neg \text{Inanimate}(x) \]
\[\forall x. \text{Fresco}(x) \rightarrow \text{Inanimate}(x). \]

Such an axiomatic theory plays the role of meaning postulates for the predicates appearing in the logical form; they can be also considered as a set of predicate level axioms. Using a Description Logics based formalism, this will be written as the following theory:

\[
\begin{align*}
\text{Paint} \subseteq \forall \text{agent.Animate} \\
\text{Animate} \subseteq \neg \text{Inanimate} \\
\text{Fresco} \subseteq \text{Inanimate}.
\end{align*}
\]

This is the place where Description Logics play a formal role as general domain theories representing the basic ontological properties of common-sense domain Knowledge.

Let us consider the deep meaning of *A fresco of Giotto*. The NP is ambiguous (at least) with respect to the two readings *A fresco painted by Giotto* and *A fresco owned by Giotto*. We could reformulate the ambiguous logical form, by enumerating the non ambiguous derivations, i.e., by disjoining the logical forms of the two readings. However, it is infeasible to explicitly enumerate all the (exponentially large) number of readings; moreover, this would not add any information to the logical form. Note however that traditional computational approaches pretend to always find a unique non ambiguous representation for the final logical form, based on syntactically and
contextually motivated heuristics; in this case, the enumeration will be the basis for an ad-hoc preferential ordering. If the logical form is written instead as

\[\exists b. \text{Fresco}(b) \land (\text{paintedBy} \sqcup \text{ownedBy})(b, \text{GIOTTO}) \] \hspace{1cm} (15.2)

then each of the two readings clearly entails this ambiguous (or, better, under-specified) representation. Of course, the use of an explicit disjunction to encode the ambiguity requires a particular treatment of the natural language negation, which can not be represented as a classical negation in the logical form. In fact, derivations from the ambiguous content are independent traces and, for example, de Morgan’s law would not hold anymore. The treatment of natural language negation has never been considered in description logic based approaches. So, we assume the logical form to be always positive; of course, this is not necessary for the description logic based domain theory.

In this way, the lexicon—which can be considered as an associated theory—may contain a meaning postulate for the relation of:

\[\forall x, y. \text{of}(x, y) \leftrightarrow \text{paintedBy}(x, y) \lor \text{ownedBy}(x, y) \]

which can be rewritten using Description Logics as

\[\text{of} \equiv \text{paintedBy} \sqcup \text{ownedBy}. \]

Moreover, by writing reification axioms (see [Franconi and Rabito, 1994]) of the kind

\[\forall x, y. \text{paintedBy}(y, x) \leftrightarrow \exists z. \text{Paint}(z) \land \text{agent}(z, x) \land \text{goal}(z, y) \]

then, the logical form (15.1) with the explicit event also entails the ambiguous representation (15.2). In Description Logics, this would be written as

\[\text{paintedBy} \equiv \text{goal}^-|_{\text{Paint} \circ \text{agent}}. \]

The ambiguity of A fresco of Giotto can be monotonically refined later on in the dialog by uttering, e.g., either Giotto painted the fresco in Siena or Giotto sold his fresco. The refinement process is monotonic, since it is not necessary to revise the knowledge asserted by means of the logical form (15.2).

Lexical ambiguities of nouns can also be represented, as in the example The pilot was out—where pilot can be a small flame used to start a furnace, or a person who flies airplanes. The sentence He was on the toilet monotonically refines the previous one, because the pronoun he may refer just to a person, thus leaving out the reading with flame. Of course, in order to make possible such a reasoning by cases, axioms at the predicate level having negation and, more generally, partitioning capabilities
have to be added to the theory—specifying and reducing the possible models:

\[
\begin{align*}
\text{Pilot} & \equiv \text{Flame} \sqcup \text{Aviator} \\
\text{Flame} & \sqsubseteq \text{Process} \\
\text{Aviator} & \sqsubseteq \text{Human} \\
\text{Human} & \sqsubseteq \text{Animate} \\
\text{Animate} \cap \text{Process} & \sqsubseteq \bot.
\end{align*}
\]

Verb ambiguity is also captured in the same manner. For example, it is possible to rule out the sentence \textit{The door opens the door}, given the two senses of \textit{open} as “cause to open”—transitive, with an animate agent—and “become open”—intransitive. According to these two senses, both the constituents “\textit{The door opens}” and “\textit{opens the door}” are consistent, but the whole sentence is inconsistent.

Talking briefly about structural ambiguities, a general theory of common-sense knowledge will allow only for one interpretation of \textit{Giotto paints the fresco with a brush} where the PP attaches to the painting event—“\textit{paints with a brush}”—ruling out the interpretation “\textit{the fresco representing a brush}”. An early detection of the semantic inconsistency solving the PP-attachment problem is very important in practical applications, since the non-deterministic choice among the different interpretations is usually left to the parser. Thus, the parser does not need to compute a combinatorial number of derivations. Clearly, any metaphoric aspect of language is excluded in these approaches.

Following a semantic-oriented approach as sketched in this Section, Quantz [1993; 1995] proposes a preferential Description Logic based approach to disambiguation in Natural Language Processing. He gives a particular emphasis to the problem of anaphora resolution, showing that an adequate disambiguation strategy has to be based on factors which take globally into account heterogeneous information (e.g., from syntax, semantics, domain knowledge) and yield preferences with varying degree of relevance. For this purpose, Quantz introduced and developed a sound and complete proof theory for a \textit{preferential Description Logic}, including a non-monotonic extension with weighted defaults. In his approach, a Description Logics theory comprises syntactic, semantics, domain, and pragmatic knowledge, which globally contributes to the preferential disambiguation process, following the proposal by [Hobbs \textit{et al.}, 1993].

Franconi [1996] proposes a formalism based on an expressive Description Logics complemented with the ability to express logical forms as \textit{conjunctive queries} [Calvanese \textit{et al.}, 1998a], i.e., formulas in the conjunctive existential fragment of FOL. The formalism allows for both under-specified semantic representations and encapsulation of contextual and domain knowledge in the form of meaning postulates. In particular, lexical ambiguities, structural ambiguities, and quantification
scoping ambiguities [Franconi, 1993] are considered, and an account to the structure of events and processes in terms of tense and aspect is given [Franconi et al., 1993; 1994]. It is shown how to apply this logic for lexical discrimination based on semantic knowledge.

Ludwig et al. [2000] present a modified version of Discourse Representation Theory (DRT) and show that its Discourse Representation Structures (DRS) may be expressed as assertional statements in a Description Logic. This allows for lexical discrimination during the parsing process based on the domain model. In order to capture situations where the available information is incomplete to characterise the meaning of an utterance, a partial logic (called first order ionic logic) is introduced to represent and reason with the logical form. The approach combines in an elegant way linguistic and contextual semantics—both represented in the Description Logic domain model.

15.4 Knowledge-based natural language generation

In the previous Sections an architecture for semantic interpretation was introduced, where Description Logics were used to build a knowledge base with lexical and conceptual information. The knowledge base encodes the necessary data for building the logical form from the analysis of some natural language text. In this Section we mention another task which makes use of the same body of knowledge expressed in a Description Logics based ontology, but with the dual goal of generating a coherent (multi-sentential) natural language text, starting from an abstract non-linguistic specification of its meaning. Examples are in the context of dialogues (see, e.g., [Stock et al., 1991; 1993]), of natural language instructions (see, e.g., [Moore and Paris, 1993; Di Eugenio, 1994; 1998; Paris and Vander Linden, 1996a; 1996b]), of language translation (see, e.g., [Dorr, 1992; Dorr and Voss, 1993; 1995; Knight et al., 1995; Quantz and Schmitz, 1994; Wahlster, 2000]), or of multimedia presentations (see, e.g.,[Wahlster et al., 1993; André and Rist, 1995; André et al., 1996]).

The lexical and conceptual knowledge base classifier is the main driving component for the algorithms used to solve the problem of lexical choice, i.e., the task of choosing an appropriate target language term in generating text from an underlying logical form [Dorr et al., 1994; Stede, 1999]. The lexicalisation problem is a non-trivial one, since it is possible to have alternative lexical choices covering various (overlapping) parts of the content representation—a translation divergence—or it may be necessary to change the information content to convey in order to find a viable lexical choice—a translation mismatch. The problem is usually solved by using ad-hoc algorithms which make use of the classifier for determining which lexical
units can potentially be used to express parts of the logical form representing the content.

The choice and the realisation of the most appropriate verbalisation should be made in the context of the previous utterances (in the case of a dialogue), of the surrounding environment (in the case of multimedia presentation), and of the overall goal of the ongoing communicative act. For these tasks, it is not enough to have an underlying representation of the content of the text to be generated, but a *pragmatic* aspect has to be considered as well. The pragmatic knowledge about the *rhetorical* interrelationships which occur among the various parts of the broader communication linguistic and extra-linguistic context is needed to generate a coherent presentation in agreement with its communicative goals. In other words, on the one hand there is the content to be presented, on the other hand there is the style of its presentation which should use the most appropriate linguistic expressions to convey the message.

In order to generate a text satisfying the communicative goals and the coherence requirements, a planning algorithm is used to generate an overall structured text (or discourse) strategy, giving the general shape of the text. Using the lexical and conceptual information in the knowledge base, the planner converts the text plans into a specialised non ambiguous representation of the semantic and syntactic information—by taking into account the grammar of the target language—necessary to select the appropriate target language terms [Moore and Paris, 1993; Paris and Vander Linden, 1996b].
Description Logics for Data Bases
Alex Borgida
Maurizio Lenzerini
Riccardo Rosati

Abstract
In contrast to the relatively complex information that can be expressed in DL ABoxes (which we might call knowledge/information), databases and other sources such as files, semi-structured data, and the World Wide Web provide rather simpler data, which must however be managed effectively. This chapter surveys the major classes of application of Description Logics and their reasoning facilities to the issues of data management, including: (i) expressing the conceptual domain model/ontology of the data source, (ii) integrating multiple data sources, and (iii) expressing and evaluating queries. In each case we utilize the standard properties of DLs, such as the ability to express ontologies at a level closer to that of human conceptualization (e.g., representing conceptual schemas), determining consistency of descriptions (e.g., determining if a query or the integration of some schemas is consistent), and automatically classifying descriptions that are definitions (e.g., queries are really definitions, so we can classify them and determine subsumption between them).

16.1 Introduction
According to [ElMasri and Navathe, 1994], a database is a coherent collection of related data, which have some “inherent meaning”. Databases are similar to knowledge bases because they are usually used to maintain models of some domain of discourse (UofD). Of course, the purpose of such computer models is to support end-users in finding out things about the world, and therefore it is important to maintain an up-to-date and error-free model. The main difference between data and knowledge bases is that while the former concentrate on manipulating large and persistent models of relatively simple data, the latter provide more support for inference—finding answers about the model which had not been explicitly told to it—and involve fewer but more complex data.
Following the functional view of Knowledge Bases advocated by Levesque, we expect a number of operations that can be applied to the KB, such as define, tell, and ask. Each of these operations involves one or more languages, such as the schema/constraint language, the update language, the query language and the answer language. In an earlier paper surveying the application of DLs to data management [Borgida, 1995], it has been argued that DLs offer advantages for each of these languages, as well as the internal processing of queries.

We begin by providing a review of the important notions involving databases, their development and use, as preparation for examining the application of DLs in these tasks.

First, one needs to describe the UofD about which the database will be knowledgeable. This is a form of requirements specification, which is normally undertaken using some high-level language, because the requirements will have to be understandable both to end-users and implementors, so they can agree on the goals. In databases, the best known such language is the Entity-Relationship (ER) data model, but many other so-called semantic modeling languages have been proposed [Hull and King, 1987]. The ER data model will be described in considerable detail and precision in Section 16.2; for now, suffice it to say that it views the world as populated by entities, which are related to each other by n-ary relationships, and are described by attributes having atomic values. Note that a semantic model may be concerned with the universe of discourse as well as the data to be stored in the computer, and consists of mostly time-invariant generic information (e.g., “every department has exactly one manager”) as opposed to specific facts (e.g., “Edna manages the shipping department.”) The semantic model introduces the terms to be used in talking about the domain, and captures their meaning by their inter-relationships and constraints on them.

From this generic description of the UofD, the database designer develops a logical schema, describing the structure of data stored in the database, including the data types, interconnections, and constraints that must hold. Different data models are used for this purpose, but the relational data model has become the logical model of choice. While in the semantic modeling phase the emphasis was on a natural and direct mapping to the UofD, in this case the driving force is the existence of large software systems called Database Management Systems (DBMS), which support the management of the data in the model. For example, the relational data model views data as being stored in the form of tables/relations, with rows/tuples containing primitive data types (e.g., integers, strings). In this case, the schema contains, among others, the name of each table, with its columns and their datatype. For example, table Supplies may have columns for the material, the supplier, the recip-

1 The term “data model” refers to a language or set of concepts for describing a class of databases.
ient, as well as the shipment date and the amount of material supplied. Relational DBMS require that each table be given a subset of attributes (called a “key”) which uniquely identifies each tuple. DBMS may offer additional ways to capture integrity constraints—assertions distinguishing valid from invalid states of the data.

More recently, Object Oriented DBMS have been developed. These support the management of persistent objects with intrinsic identity, which can be related to (collections of) other objects, not just atomic values. Such OO-DBMS can be used, among others, for providing persistence for object-oriented languages. Object-oriented languages and databases also support the notion of “method”/procedure attached to a class, as well as implementation encapsulation, but these aspects will not be considered in this chapter.

The database is used of course to store facts about the (current) state of the world. Databases make the so-called “closed world assumption”, which states that a fact is false unless it has been explicitly stated as true. This assumption works well with the restriction that the database represents only a very limited form of partial information. In particular, databases do not allow the representation of disjunctive information, and support only a very limited form of existential quantification: if there is no information about an attribute, it is given the null value.

In order to provide access to the data stored in databases, DBMS support a variety of query languages—languages for specifying declaratively what data is to be retrieved. For relational databases, SQL is the practical query language of choice. However, from the theoretical point of view, First Order Logic formulas with free variables are a much more elegant form, based on the observation that tables can be viewed as predicates. For example,

\[\exists m, d_1, d_2. \text{supplies}'intel', r, m, d_1) \land \text{supplies}'intel', r, m, d_2) \land (d_2 \neq d_1) \]

would be asking for recipients (values of the free variable \(r \)), who had received from 'intel' shipments of the same material (\(m \)) on different dates (\(d_1, d_2 \)).

Query languages of varying expressive power can be obtained by restricting or extending the above “standard”. For example, the so-called “conjunctive” or “select-join-project” queries only allow formulas with existential quantifiers and conjunction, while Datalog is a query language that permits the use of intermediate tables derived using Horn rules, and thereby supports recursion [Ullman, 1988]. For example, if we want to describe when one company depends on another through a chain of suppliers, we could state the rules\(^1\)

\[
\text{dependsOn}(x, y) \leftarrow \text{supplies}(x, y, m, d).
\]
\[
\text{dependsOn}(x, y) \leftarrow \text{supplies}(x, z, m, d, a) \land \text{dependsOn}(z, y, m_2, d_2, a_2).
\]

\(^1\) Variables appearing only on the right hand side of “\(\leftarrow \)” are assumed to be existentially quantified.
In many DBMS, the result of a query is another structure of the kind found in the schema (e.g., relational queries return as answer tables). In some situations, either because a query is asked frequently or because we want to restrict the access of some users to a subset of the database, a query can be named, in which case it is called a view. If a view is materialized, then its value is stored rather than recomputed on demand, and it is kept correct after every update to the basic database.

The DBMS performs a number of hidden functions, insulating users from the considerable details of the physical level. For example, the DBMS places physically the incoming data onto storage media, and provides data structures and other information that permits efficient access of certain data at some later point of time. In particular, given a query, the DBMS attempts to optimize the time in which it is answered by looking at access structures available, statistical information and using the ability to reformulate queries into other, equivalent ones.

Over time, additional, more complex kinds of databases and DBMS have appeared. For example, distributed databases keep information at a variety of sites connected by networks (e.g., so that data might be closer to where it is used most frequently). Note however that the user is unaware of this detail, and perceives a single database. Heterogeneous and federated databases are collections of independent databases which choose to share information but are maintained autonomously. In the extreme, users may be interested in obtaining information from all kinds of sources, including non-databases such as files, etc. In such situations, a significant problem is relating the logical schemas at the various sites in order to provide a schema that can be presented to the user. The rest of the chapter is devoted to showing a variety of roles that DLs (and reasoning with them) can play in database management. In particular, in Section 16.2 we take a detailed look at their use in semantic/conceptual modeling. We then examine the possible uses of DLs in querying and query processing in Section 16.3, while in Section 16.4 we will consider the utility of DLs in providing integrated access to multiple information sources. We summarize the material in Section 16.5.

16.2 Data models and Description Logics

Recall that a “data model” is essentially a language or set of concepts for describing a class of certain kinds of databases. This section attempts to answer some questions about the relationship between data models and DLs:

What are some examples of such relationships? First, we will consider in detail the translation of Entity-Relationship models into knowledge bases expressed in the \mathcal{DCLR} description logic. In Section 16.2.5, we will consider
more cursorily several other data models, such as OODB and semistructured data.

How are relationships established? The answer is (i) formalizing the data model (ER in this case), (ii) choosing an appropriate DL (DLR in this case), (iii) defining a translation function from the former to the latter, and (iv) proving that this translation is “information preserving” (not done here, but detailed in [Calvanese et al., 1999e]).

What benefits can be derived from having established relationships?
Most significant is the use of automated DL reasoning services to support the development and maintenance of correct models (Section 16.2.4). In addition, since DLs are often more expressive, it is possible to suggest extensions to database data models that allow further information about the structure of the data to be captured (Section 16.2.3).

16.2.1 The Entity-Relationship model

In order to talk about the relationship between the Entity-Relationship (ER) model and DLs, it is necessary first to introduce the reader to the ER data model (see also Chapter 10). ER is the most widespread semantic data model, and it has become a standard, extensively used in the design phase of commercial applications. The ER Model was introduced in [Chen, 1976], with minor variants and extensions proposed over the years (e.g., [Teorey, 1989; Batini et al., 1992; Thalheim, 1992; 1993]).

The basic elements of the ER Model are entities, relationships, and attributes. An _entity set_ (or simply _entity_) denotes a set of objects, called its _instances_, that have common properties. Elementary properties are modeled through _attributes_, whose values belong to one of several predefined domains, such as _Integer_, _String_, or _Boolean_. Properties that are due to relations to other entities are modeled through the participation of the entity in relationships. A _relationship set_ (or simply _relation_) denotes a set of tuples (also called its instances), each of which represents an association among a different combination of instances of the entities that participate in the relationship. Since each entity can participate in a relationship more than once (e.g., a company can be the recipient or sender in a “supply” relationship), the notion of _ER-role_ is introduced to represent such a participation, and to which a distinguishing identifier within the relationship is assigned. The _arity_ of a relationship is the number of its ER-roles. We assume that, for each relationship of arity _n_, the identifiers _1, ..., n_ are assigned to the roles of the relationship.

An entity _B_ is said to be a specialization/IS-A of another entity _A_, if all the instances of _B_ are also instances of _A_. Relationships can be similarly related by IS-A. This induces an inheritance of the attributes of an entity to its sub-entities,
and of the roles of a relationship to its sub-roles. The ER schema produced as a result of ER modeling is usually represented in a graphical notation, which is particularly useful for an easy visualization of the data dependencies. In the commonly accepted notation, entities are represented as boxes, whereas relationships are represented as diamonds. An attribute is shown as a circle attached to the entity for which it is defined. ER-roles are graphically depicted by connecting the relationship to the participating entities, and labeling the edges with the corresponding role identifier. An IS-A relation between two entities is denoted by an arrow from the more specific to the more general entity (analogously for IS-A relations between two relationships). Cardinality constraints can be attached to an ER-role in order to restrict the number of times each instance of an entity is allowed to participate via that ER-role in instances of the relationship.

Such constraints can be used to specify both existence dependencies and functionality of relations [Cosmadakis and Kanellakis, 1986]. They are often used only in a restricted form, where the minimum cardinality is either 0 or 1 and the maximum cardinality is either 1 or ∞. Cardinality constraints in the form considered here have been introduced already in [Abrial, 1974], and subsequently studied in [Grant and Minker, 1984; Lenzerini and Nobili, 1990; Ferg, 1991; Ye et al., 1994; Thalheim, 1992; Calvanese and Lenzerini, 1994b].

An example of an ER schema is reported in Figure 16.1. Such a schema models information, handled by an enterprise, about contracts between customers and departments for services, and about registration of customers at departments. Some customers may be registered at “promotion departments”.

For the purpose of relating the ER Model to DLs it is better to have a more formal description, which also abstracts out the most important common characteristics present in the different variants.
An ER schema S is constructed starting from pairwise disjoint sets of entity symbols, relationship symbols, ER-role symbols, attribute symbols, and domain symbols. Each domain symbol D has an associated predefined basic domain D^{BD}, and we assume the basic domains to be pairwise disjoint. For each entity symbol, a set of attribute symbols is defined, and to each such attribute a unique domain symbol is associated. A relationship symbol of arity n has n associated ER-role symbols, each with an associated entity symbol, and defines a relationship between these entities. We assume that each ER-role symbol belongs to a unique relationship, thus determining also a unique entity. The cardinality constraints are represented by two functions $cmin_S$, from ER-role symbols to nonnegative integers, and $cmax_S$, from ER-role symbols to positive integers union the special symbol ∞. IS-A relations between entities and between relationships are modeled by means of a binary relation \preceq_S. We do not need to make any special assumption on the form of \preceq_S, such as acyclicity or injectivity.

The semantics of an ER schema can be given by specifying which database states are consistent with the information structure represented by the schema. Formally, a database state B corresponding to an ER schema S is constituted by a nonempty finite set Δ^B, assumed to be disjoint from all basic domains, and a function \cdot^B that maps

- every domain symbol D to the corresponding basic domain D^{BD},
- every entity E to a subset E^B of Δ^B, and
- every attribute A to a set $A^B \subseteq \Delta^B \times \bigcup_{D \in D_S} D^{BD}$, and
- every relationship R to a set R^B of labeled tuples over Δ^B.

A labeled tuple over a domain Δ^B is a function from a set of ER-roles to Δ^B. The labeled tuple T that maps ER-role U_i to o_i, for $i \in \{1, \ldots, n\}$, is denoted $\langle U_1; o_1, \ldots, U_n; o_n \rangle$. We also write $T[U_i]$ to denote o_i, and call it the U_i-component of T. The elements of E^B, A^B, and R^B are called instances of E, A, and R respectively.

A database state is considered acceptable if it satisfies all integrity constraints that are part of the schema. This is captured by the notion of legal database state. A database state B is legal for an ER schema S, if it satisfies the following conditions:

- For each pair of entities E_1, E_2 with $E_1 \preceq_S E_2$, it holds that $E_1^B \subseteq E_2^B$.
- For each pair of relationships R_1, R_2 with $R_1 \preceq_S R_2$, it holds that $R_1^B \subseteq R_2^B$.
- For each entity E, if E has an attribute A with domain D, then for each instance $e \in E^B$ there is exactly one element $a \in A^B$ with e as first component, and the second component of a is an element of D^{BD}.
- For each relationship R of arity n between entities E_1, \ldots, E_n, to which R is connected by means of ER-roles U_1, \ldots, U_n respectively, all instances of R are of the form $\langle U_1; e_1, \ldots, U_n; e_n \rangle$, where $e_i \in E_i^B$, $i \in \{1, \ldots, n\}$.
For each ER-role U of relationship R associated with entity E, and for each instance e of E, it holds that
\[c_{min}(U) \leq |\{ r \in R^B \mid r[U] = e \}| \leq c_{max}(U). \]

16.2.2 Transforming Entity-Relationship schemas into DLR knowledge bases

In order to represent ER Schemas in terms of Description Logics knowledge bases, we make use of the DL DLR, which has been formally introduced in Chapter 5. We recall here the syntax of DLR, which is a natural generalization of Description Logics towards n-ary relations: in particular, atomic relations, of given arity between 2 and n_{max}, belong to the basic elements of DLR, and, besides concept expressions, arbitrary relation expressions can be formed, according to the following syntax:

- $R := \top_n \mid P \mid (\langle i/n : C \rangle) \mid \neg R \mid R_1 \sqcap R_2$
- $C := \top_1 \mid A \mid \neg C \mid C_1 \sqcap C_2 \mid \exists[i]R \mid \leq k \langle i \rangle R$

where P and R denote respectively atomic and arbitrary relations, i and j denote components of relations, i.e., integers between 1 and n_{max}, n denotes the arity of a relation, i.e., an integer between 2 and n_{max}, and k denotes a nonnegative integer. In what follows, we abbreviate $(\langle i/n : C \rangle)$ with $(\langle i : C \rangle)$ when n is clear from the context.

Moreover, we use the following abbreviations:

\[\forall[i]R \text{ for } \neg \exists[i]\neg R, \]
\[\geq (k + 1) \langle i \rangle R \text{ for } \neg (\leq k \langle i \rangle R), \]
\[= k \langle i \rangle R \text{ for } (\leq (k + 1) \langle i \rangle R) \sqcap (\geq k \langle i \rangle R). \]

In DLR, n-ary relations are interpreted as sets of tuples of arity n, and the DLR constructs generalize those of traditional DLs. In particular, besides the Boolean constructs on concepts and relations, the construct $(\langle i/n : C \rangle)$ denotes all tuples of arity n in which the i-th component is an instance of concept C, and thus represents a unary selection. The construct $\exists[i]R$, denotes all objects that participate as i-th component in an tuple of relation R, and thus represents a unary projection. Finally, $\leq k \langle i \rangle R$ is a generalization of number restrictions to n-ary relations. We refer to Chapter 5, Section 5.7, for the formal semantics of the DLR constructs.

We now show that the semantics of the ER Model can be captured in DLR by defining a translation ϕ from ER schemas to DLR knowledge bases, and then establishing a correspondence between legal database states and models of the derived knowledge base. In the following, for each relationship R of arity n in S, we denote with μ_R a mapping from the set of ER-roles associated with R to the integers $1, \ldots, n$.

\[\forall[i]R \text{ for } \neg \exists[i]\neg R, \]
\[\geq (k + 1) \langle i \rangle R \text{ for } \neg (\leq k \langle i \rangle R), \]
\[= k \langle i \rangle R \text{ for } (\leq (k + 1) \langle i \rangle R) \sqcap (\geq k \langle i \rangle R). \]
The knowledge base $\phi(S)$ derived from an ER schema S is defined as follows:

- The set of atomic concepts of $\phi(S)$ consists of the set of entity and domain symbols in S.
- The set of atomic relations of $\phi(S)$ is obtained from the set of relationship and attribute symbols in S. More specifically:
 - each symbol R in S, denoting a relationship of arity n, is mapped into a symbol P_R in $\phi(S)$, denoting a relation of arity n.
 - each attribute symbol A in S is mapped into a symbol P_A in $\phi(S)$, denoting a relation of arity 2. Thus, each instance of the relation P_A is a tuple such that its first component corresponds to an entity, while the second component denotes an element of the concept corresponding to the attribute domain.
- The set of inclusion axioms of $\phi(S)$ consists of the following elements:
 - For each pair of entities E_1, E_2 such that $E_1 \leq_S E_2$, the inclusion axiom $E_1 \sqsubseteq E_2$
 - For each pair of relationships R_1, R_2 such that $R_1 \leq_S R_2$, the inclusion axiom $P_{R_1} \sqsubseteq P_{R_2}$
 - For each attribute A with domain D of an entity E, the inclusion axiom $E \sqsubseteq (\forall \mu_R(U_1) \cap (\forall 2 : D)) \cap = 1 [\mu_R] P_A$
 - For each relationship R of arity n with ER-roles U_1, \ldots, U_n in which each U_i is associated with the entity E_i, the inclusion axiom $P_R \sqsubseteq (\forall \mu_R(U_1) : E_1) \cap \cdots \cap (\forall \mu_R(U_n) : E_n)$
 - For each ER-role U of relationship R associated with entity E, with cardinality constraints $m = \text{cmin}_S(U)$ and $n = \text{cmax}_S(U)$,
 - if $m \neq 0$, the inclusion axiom $E \sqsubseteq \geq m [\forall \mu_R(U)] P_R$
 - if $n \neq \infty$, the inclusion axiom $E \sqsubseteq \leq n [\forall \mu_R(U)] P_R$

Based on the results presented in [Calvanese et al., 1999e], the correctness of the translation presented above can be formally proved. More specifically, let S be an ER schema. Then, there is a one-to-one correspondence between legal database states of S and models of the \mathcal{DLR} knowledge base $\phi(S)$. For example, an entity
E can be populated in a legal database state for S if and only if $\phi(S)$ admits a model in which E has a non-empty extension. This allows us to exploit reasoning techniques developed for the logic \mathcal{DLR} in order to reason on ER schemas.

For example, by applying the translation presented above to the ER schema in Figure 16.1, presented earlier, we obtain the following \mathcal{DLR} knowledge base:

\[
\begin{align*}
\text{CONTRACT} & \sqsubseteq (\$1: \text{Client}) \sqcap (\$2: \text{Service}) \sqcap (\$3: \text{Department}) \\
\text{REG-AT} & \sqsubseteq (\$1: \text{Client}) \sqcap (\$2: \text{Department}) \\
\text{PROMOTION} & \sqsubseteq \text{REG-AT} \sqcap (\$2: \text{PrDept}) \\
\text{Department} & \sqsubseteq \forall [\$1](\text{LOCATION} \sqcap (\$2: \text{String})) \sqcap 1 [\$1] \text{LOCATION} \\
\text{PrDept} & \sqsubseteq \text{Department}
\end{align*}
\]

16.2.3 Additions to the Entity-Relationship model

The ER Model does not provide several features which would prove useful in order to represent complex dependencies between data. On the other hand, the richness of constructs that is typical of Description Logics, and the correspondence between the two formalisms established in the previous section, makes it possible to add such constructs to the basic model and take them fully into account when reasoning on a schema. We provide several examples of useful additions to the basic ER Model that arise as a natural consequence of the correspondence with the Description Logic \mathcal{DLR}. We also consider a feature of the original ER Model that appears to force \mathcal{DLR} itself to be extended.

- **Arbitrary Boolean constructs on entities.** The only direct relationship between entities that can be expressed in the basic ER Model is the IS-A relation. A common extension is by so called generalization hierarchies (see e.g., [Batini et al., 1992]), which allow one to express that the extension of an entity should be the disjoint union of the extensions of other entities. Such construct can easily be translated by making use of union and negation of \mathcal{DLR}.

- **Refinement of properties along an IS-A hierarchy.** Another important extension that should be considered is the possibility to specify more complex forms of refinement of properties of entities along IS-A hierarchies, than the mere addition of attributes. This is already an essential feature of the more recent object-oriented models. In particular, cardinality constraints could be refined by restricting the range of values, and the participation in relationships can be restricted. One may require for specific instances of an entity that the objects they are related to via a certain relationship belong to a more specific entity than the one directly associated to the ER-role. Such forms of constraints can be naturally expressed in \mathcal{DLR} by making use of universal quantification over relations.
• Definitions of classes by means of complex properties. In the ER Model (and more generally in Semantic Data Models) one can specify only necessary conditions that the instances of entities (or more generally classes) must satisfy. This means that in a database that conforms to the schema one cannot deduce that a certain object is an instance of an entity unless this fact is explicitly stated. When modeling a complex domain, however, in order to capture more precisely the intended semantics, one would like to be able to define classes of objects through necessary and sufficient conditions, or even to state just sufficient conditions for an object to be an instance of a class. The former correspond in fact to views, which are important parts of database schemas. By using the different types of axioms of DLR, necessary and sufficient (and even just sufficient) conditions can be easily imposed and become part of the schema.

• Key constraints. Because of their utility in physical database design, even the original ER Model allowed the specification of key attributes/roles. Extending DLs with key constraints (roles which uniquely identify objects) has been the subject of several investigations [Borgida and Weddell, 1997]. In particular, Calvanese et al. [2000b] have shown that reasoning about DLR augmented by key constraints can be performed without increasing the worst-case computational complexity.

• Temporal constraints. Recent efforts in the Conceptual Modeling community have been devoted to properly capturing time-varying information, and several proposals of temporally enhanced Entity-Relationship (ER) exist. [Artale and Franconi, 1999; 2001; Artale et al., 2001] provide a DL-based logical formalization of the various properties that characterize and extend different temporal ER models which are found in literature. In particular, [Artale et al., 2001] define the DL DLRus, an extension of DLR with temporal constructs, and study decidability and complexity of reasoning in such a logic.

16.2.4 Reasoning about Entity-Relationship schemas

Providing a formalization of the ER schema in terms of the logic DLR allows for supporting several forms of reasoning on the ER schema. Typical reasoning tasks at the conceptual level supporting the designer of an ER schema S (see [Calvanese et al., 1998c]) include:

• Entity satisfiability, i.e., whether for every concept C, S admits a model in which it has a nonempty extension. If C must always have an empty extension then there is an inconsistency in its specification, or at the very least the concept is inappropriately named since it is a synonym for “EmptyEntity”.

• **Relation satisfiability**, i.e., whether \(S \) admits a model in which a certain relation has a nonempty extension. (Similar to the above.)

• **Consistency of the ER schema**, i.e., whether \(S \) admits a finite model. Without this, there is no database that satisfies the schema, which indicates that the totality of the definitions is inconsistent or requires an infinite model, which is a clear sign of incorrectness. Ideally, the reasoning system could provide *explanations* [McGuinness and Borgida, 1995; Borgida et al., 2000] for the source of inconsistencies, which could focus the search for modifications.

• **Redundancy of the ER schema**. Various forms of redundancy in the ER schema can be detected: e.g., if \(A, B \) are entities and both \(A \subseteq B \) and \(B \subseteq A \) hold, we can conclude that one of the entities is redundant.

• **Stronger constraints on relationship roles**. The concept and relationship specifications may combine to yield stronger cardinality or domain constraints than those explicitly specified by the designer. (The simplest example is when we permit (multiple) inheritance.)

• **Entity subsumption**, i.e., whether the extension of one concept \(B \) is a subset of the extension of another concept \(A \) in every model of \(S \). This property suggests that the designer check for the possible omission of an explicit IS-A relationship between \(B \) and \(A \). Alternatively, if conceptually all \(B \)'s are not supposed to be \(A \)'s, then something is wrong in the rest of the schema, since it is forcing an undesired conclusion.

• **Relation subsumption**, i.e., whether the extension of one relation is a subset of the extension of another relation in every model of \(S \). (Similar to the above.)

Ideas such as the ones above have been been pursued, for example, within the DWQ European Project [Bouzeghoub et al., 1999], where the DL system FaCT [Horrocks, 1998b] has been successfully used as reasoning tool supporting the analysis and the integration of diverse database conceptual schemas [Franconi and Ng, 2000].

16.2.5 Description Logics and other data models

Several other investigations have been carried out on the relationships between DLs and database models:

• [Bergamaschi and Nebel, 1994; Artale et al., 1996a; Calvanese et al., 1999e] provide formal models of object-oriented DBMSs using DLs.

• [Borgida et al., 1989; Beck et al., 1989; Bergamaschi and Sartori, 1992] introduce semantic data models based directly on DLs, which are different from ER and previous database semantic data models.
More generally, class-based knowledge representation schemes, such as semantic networks, conceptual structures and frames [Lehmann, 1992; Sowa, 1991] have been considered as database models, or as ways to enrich the deductive capabilities of data models. These are related to DLs as suggested in Chapter 4.

A recent important development in the field of data management has been the need to represent data whose structure is less rigid and strict than that held in conventional databases. Such semistructured data are important in many application areas, such as web information systems, biological databases, and digital libraries. Semistructured data is neither raw text, nor strictly typed as in conventional database systems [Abiteboul, 1997]. In many recent formalisms, semistructured data is modeled by graphs with labeled edges, where the label keeps information on both the values and the schema of the data. Many authors have noticed that this model coincides with the ontology of DLs, where roles correspond to edges. In [Calvanese et al., 1998c] it is shown that expressive DLs can not only capture semistructured data schemas, but can also add the ability to express several new kinds of constraints. The same kind of investigation has been carried out in [Calvanese et al., 1999d] for the case of the XML language, which is currently a very popular formalism for semistructured data on the web (see Chapter 4, Section 4.3.3 for more details).

16.3 Description Logics and database querying

We have seen that descriptions can be used to present the schema of a database. For example, to emulate object-oriented databases, classes are equated with primitive concepts, while type restrictions on attributes are presented as necessary conditions that apply to these primitive classes in the form of role restrictions. In addition, certain integrity constraints can be expressed as rules of the form “if C then D”, or axioms $C \sqsubseteq D$. On the other hand, since a concept description provides necessary and sufficient conditions for objects to satisfy it, it is natural to treat it as a query. So, in systems like CLASSIC [Borgida et al., 1989] and CANDIDE [Beck et al., 1989], we have a unification of two traditionally distinct languages: the data definition and data manipulation languages.

16.3.1 Description Logics as query languages

Once the query is viewed as a concept description, we can perform the standard operations on it. For example, the query description can be compared to the inconsistent description. If they are equivalent, this is almost surely a mistake on the part of the user—who would want to ask a query that never returns an object? The most likely reason for this is that the person asking the query is un-
familiar with the application domain. Since the query can be quite complex, and the schema quite large, a really helpful system would then assist the user in understanding the problem by isolating the specific parts of the query and of the schema that are responsible for the contradiction. Such a tool can be built on top of explanation facilities available for certain DLs [McGuinness and Borgida, 1995; Borgida et al., 2000].

More generally, in situations where the query returns no individuals in the current database, it has been argued that the query is “not interesting”, and should be generalized until a non-empty answer set is returned. As suggested by Anwar et al. [1992], this relaxation can be performed using the semi-lattice of descriptions provided by the subsumption relationship, which can guide the systematic weakening of terms in the query.

The query can be classified with respect to the concepts in the schema. This can be used to help users pose queries in an unfamiliar domain, as follows: if the answer set contains unwanted values, the immediate subsumers and subsumees of the query reveal other potentially relevant concepts, and through subsumption assertions in the schema, roles as well, which the user may want to restrict in stating the query. The result is a process of query specification by iterative refinement introduced by Tou et al. [1982].

Queries can also be classified with respect to each other into a subsumption hierarchy. In an environment where several people are asking exploratory questions about the data over a long period of time (e.g., data mining by humans), it is very useful to have the questions organized so that the results of previous related queries can be reviewed [Brachman et al., 1992]. This prevents duplication of effort and, again, helps the user to pose queries that are more precise.

Unfortunately, in exchange for a more expressive description of the schema, DLs pay the price of a weaker than usual query language: queries can only return subsets of existing objects, rather than creating new objects (as in standard SQL databases); furthermore, the selection conditions are rather limited. In fact, it has been shown [Borgida, 1996] that even the most expressive DLs discussed in the literature until recently, could only express a variant of the “3-variable” subset of formulas of First Order Logic—i.e., formulas that only use 3 variables, although allowing numeric quantifiers, like “exists at least n”.

Given the expressive limitations of DL concepts alone as queries, it is reasonable to consider extending standard queries (in Datalog) with DLs. Two different approaches have been pursued: In one, inspired by the work of Ait-Kaci and Nasr [1986] on LOGIN, and exemplified by the AL-log language [Donini et al., 1998b], descriptions are used essentially as type constraints on variables appearing in Horn clauses. In this case, a crucial condition is that concept and
role names form a disjoint set from the relations used in expressing rules. The second approach, exemplified by the Carin language [Levy and Rousset, 1996; 1998], treats concepts and roles as ordinary unary and binary predicates that can also appear in query atoms. This is significant because it allows for the first time conjunctive queries to be expressed over DL databases/Aboxes.

A second important distinction is between recursive and non-recursive Datalog queries. For the non-recursive case (which covers a large portion of practically useful queries), it seems possible to combine some expressive decidable DLs with Datalog, while keeping query answering and even reasoning on queries decidable (see Section 16.4). For the recursive case, undecidability arises sooner, but some studies have identified suitable restrictions on the DL language and/or on the form of Datalog rules, for preserving decidability of query answering.

Consider first \mathcal{AL}-log. In the rule

$$
happy(x) \leftarrow \text{marriedTo}(x, y) \land \text{employedBy}(y, z) \\
& \land \text{Person}(x) \land \text{Person}(y) \land \text{StartUp}(z)
$$

the tests after the ampersand $\&$ are for concept membership, while those before it, are for n-ary relations, as in relational databases. The processing of such queries is complicated by the fact that the DL “type database” may contain disjunction or be otherwise incomplete. Instead of the standard answers, one gets a “conditional result”, with a side condition c describing necessary DL constraints on the variables in the query. For example, for the above query one might get as answer

$$
happy(ANNA) \text{ if Person}(ANNA)
$$
in a database containing

$$
\text{marriedTo}(ANNA, JOE), \text{employedBy}(JOE, IBM), \text{Person}(JOE), \text{StartUp}(IBM).
$$

Donini et al. [1998b] establish that answering queries in recursive \mathcal{AL}-log is decidable in the case when the DL used is \mathcal{ALC}. The framework of \mathcal{AL}-log is further extended in [Rosati, 1999] to the case of disjunctive Datalog, i.e., Datalog with negation as failure in rule bodies and disjunction in the head of rules.

The Carin approach is more general, but this increase in expressive power comes at a price: for general Datalog rules, the query answering problem is now undecidable as soon as one allows $\forall R.C$ or $\leq n R$ as concept constructors. (These appear in most DLs.) However, if Datalog rules are restricted to avoid recursion, then query answering is decidable even for the \mathcal{ALCNR} DL. Numerous other results circumscibing the cases when query processing is decidable may be found in [Levy and Rousset, 1998].
16.3.2 Query optimization

In the case when queries can be classified (as when they are descriptions or when the query implication problem is decidable), classification of queries has been proposed as a technique for *query processing and optimization*. In [Beck et al., 1989], among others, queries are classified with respect to schema concepts; if the query concept \(Q \) is classified below concept \(C \), then only instances of \(C \) need to be checked if they satisfy the full query. Of course, in this classification process one uses the axioms describing the schema of the database.

If the answers to previous queries are cached, then the query concepts can be left in the classification hierarchy, together with the other concepts in the schema. The result is a simple form of the query optimization technique known as “query answering using cached views”: find the most specific views \(V \) that subsume the query \(Q \); check only the individual instances of \(V \) (which, recall, are locally available) to see if they satisfy the query. Potentially, this could provide considerable savings, especially when gathering information from multiple sites, for example.

Buchheit *et al.* [1994b] elaborate on this by using a more powerful query language. In particular, in order to achieve the expressiveness of full FOL, expressing a query is viewed as a two phase process: as much of the query as possible is written in the “query DL” (yielding the so-called “structural part”), and the remainder of the query is written as a constraint in a first order logic notation (yielding the so-called “dirty part”). For example, the following query asks for students, whose advisor is the same as their committee chair, and the advisor is at least 5 years older:

```
QueryClass QueryStudent isa Student with derived
  I1 : advisor: Prof
  I2 : committee.(chair: Thing)
where I1 = I2 constraint forall s/QueryStudent (s.age + 5 < s.advisor.age)
```

In this case, assuming that cached views only have structural conditions, the query is classified using only its own structural conditions. Thereafter, only the instances of the view are tested using both the structural and dirty parts of the query.

Finally, Bergamaschi *et al.* [1997] have investigated the use of DLs in optimizing query evaluation in object-oriented DBMS by eliminating redundant terms, among others. This is accomplished by first expanding the query as much as possible using the information in the schema; for example, subsumption is used to test when the antecedent of a rule can be applied to the query (subsumes it) so that its consequent can be added to it. By repeatedly applying this process, an expanded query is obtained. Then, all the query subterms that subsume the rest of the query (and are therefore redundant) are eliminated one by one. The result is a semantically equivalent description/query which may be more concise than the original one;
A. Borgida, M. Lenzerini, R. Rosati

hence it may have fewer tests to evaluate. Furthermore, the new expanded query may be classified further down the pre-existing class/view hierarchy, providing more efficient query evaluation, using the query classification technique described earlier. These are forms of so-called “semantic query optimization”.

An issue related to efficient processing of large numbers of individuals, is the situation where the user needs to query the conceptual model for DL instances, while the data is presented in a relational database, say. In other words, we need to obtain the proper ABox instances of the DL query (which involves concepts and roles) from the database. The main problem is that processing hundreds of thousands of individuals is not feasible with DL technology because in each case we try to perform complex inferences. However, most of the data in the database is very straightforward, and the corresponding individuals do not generate new inferences. The solution proposed in [Borgida and Brachman, 1993], is to associate with the primitive concepts (resp. roles) of the DL knowledge base unary (resp. binary) view tables defined over the DBMS. One can then translate automatically complex descriptions into complex SQL queries over these views. The important effect is that one gets the full benefit of DBMS optimization for the SQL query, and if only a few values satisfy the query, then only a few DL individuals need to be created. For example, for a primitive DL class Student, we might take the values appearing in the enrollee column of relational table Enrollment, and use this subset of the Person table to generate appropriate individuals in a special view Student, which has only one column. (The generation of unique identifiers for these individuals is in itself a research issue.) Similarly, for example, one would generate a two-column view visitor corresponding to the role visitor. Complex descriptions over Student and visitor are then translated algorithmically into SQL queries over the corresponding views. Additional optimizations turn out to be necessary to deal properly with multiple queries and functional roles [Borgida and Brachman, 1993].

16.4 Data integration

Integrating different data sources is one of the fundamental problems faced in the last decades by the database community [Batini et al., 1986]. Generally speaking, the goal of a data integration system is to provide a uniform interface to various data sources [Levy, 2000], so as to enable users to focus on specifying what they want. As a result, the data integration system frees the users from tasks such as finding the relevant data sources, interacting with each source in isolation, and selecting, cleaning, and combining data from multiple sources.

The design of a data integration system is a very complex task, which comprises several different aspects. Our goal in this chapter is to discuss the use of DLs in two important aspects, namely:
• The specification of the content of the various data sources.
• The process of computing the answer to queries posed to the data integration system, based on the specification of the sources.

16.4.1 Specifying the content of data sources
The typical architecture of a data integration system allows one to explicitly model data and information needs—i.e., a specification of the data that the system provides to the user—at various levels:

• The **conceptual level** contains a conceptual representation of the sources and of the reconciled integrated data, together with an explicit declarative account of the relationships among their components.
• The **logical level** contains a representation of the sources in terms of a logical data model.

The conceptual level
As we have seen before, the conceptual level contains a formal description of the concepts, the relationships between concepts, and the information requirements that the integration application has to deal with. The key feature of this level is that such a description is independent from any system consideration, and is oriented towards the goal of expressing the semantics of the application. In particular, we distinguish among the following elements:

• The **Enterprise Conceptual Schema** is a representation of the global concepts and relationships that are of interest to the application. It corresponds roughly to the notion of global conceptual schema in the traditional approaches to schema integration and to the notion of **world view**, as introduced in [Levy et al., 1995; Kirk et al., 1995].
• For an information source S, the **Source Conceptual Schema** of S is a conceptual representation of the data residing in S.
• The term **Domain Conceptual Schema** is used to denote the union of both the Enterprise Conceptual Schema and the various Source Conceptual Schemas, plus possible inter-schema relationships [Catarci and Lenzerini, 1993].

We have seen in Section 16.2 that DLs are very well suited for data modeling at the conceptual level, so it comes as no surprise that DLs have also been used in data integration projects to represent Source and Enterprise Conceptual Schemas [Catarci and Lenzerini, 1993; Arens et al., 1993; 1996; Levy et al., 1995; Goasdoue et al., 2000]. In this section, following [Calvanese et al., 1998e], we will continue to use the \mathcal{DLR} DL for specifying these conceptual schemas.

As stated above, the Domain Conceptual Schema contains **inter-schema relationships**. In particular, since the sources are of interest in the system, integration does
not simply mean producing the Enterprise Conceptual Schema, but rather being able to establish the correct interdependencies both between the Source Conceptual Schemas and the Enterprise Conceptual Schema, and between the various Source Conceptual Schema.

To specify inter-schema relationships, we make use of the special kinds of assertions available in DL reasoning. In particular, following [Catarci and Lenzerini, 1993], one can use assertions of the following forms:

\[L_i \sqsubseteq_{\text{ext}} L_j \]
\[L_i \sqsubseteq_{\text{int}} L_j \]

where \(L_i \) and \(L_j \) are expressions of different schemas. In particular, \(L_i \) and \(L_j \) are either two relation expressions of the same arity, or two concept expressions. Intuitively, the first assertion states that \(L_i \) is extensionally included in \(L_j \), which means that every object that satisfies the expression \(L_i \) in source \(i \) also satisfies the expression \(L_j \) in source \(j \). For example, if the designer knows that the set of students stored in source 1 is a subset of those stored in source 2, then this knowledge is captured by the inter-schema assertion

\[\text{Student}_1 \sqsubseteq_{\text{ext}} \text{Student}_2 \]

The second assertion states that the concept denoted by the expression \(L_i \) in source \(i \) is a subconcept of the one denoted by the expression \(L_j \) in source \(j \), which means that every object in source \(i \) satisfying \(L_i \) also satisfies \(L_j \) in source \(j \), provided that it does appear in source \(j \). For example, if the designer knows that the concept of student in source 1 is a subconcept of person in source 2, then s/he can use the inter-schema assertion

\[\text{Student}_1 \sqsubseteq_{\text{int}} \text{Person}_2 \]

It is worth noting that the possibility of reasoning about \(\mathcal{DLR} \) schemas allows for sophisticated forms of reasoning on inter-schema assertions, e.g., for inferring those extensional relationships between concepts that are implied by the knowledge on the intensional interdependencies. More details about these forms of reasoning can be found in [Catarci and Lenzerini, 1993; Calvanese et al., 1998e].

The logical level The logical level provides a description of the logical content of each source, called the Source Schema. Typically, a Source Schema is provided in terms of a set of relations using the relational logical model of data. So called wrappers can be used to hide how the source actually stores its data, the data model it adopts, etc., and presents the source as a set of relations.

The link between the logical representation of a source and the Domain Conceptual Schema can be specified in two different ways.
• According to the so-called *global-as-view approach*, a query over the source relations is associated to each concept in the Domain Conceptual Schema. Every such concept is thus seen as a view over the sources.

• In the alternative *local-as-view approach*, one associates with each source relation a query that describes its content in terms of the Domain Conceptual Schema. In other words, the logical content of a source relation is described in terms of a view over the Domain Conceptual Schema.

In [Levy, 2000], it is argued that the local-as-view approach has several advantages, and we will follow this approach in the rest of the chapter.

To describe the content of the sources through views, one needs a notion of query such as the union of conjunctive queries over the Domain Conceptual Schema. Specifically, a source relation is described in terms of a query of the form

\[q(\vec{x}) \leftarrow \text{conj}_1(\vec{x}, \vec{y}_1) \lor \cdots \lor \text{conj}_m(\vec{x}, \vec{y}_m) \]

where:

- The *head* \(q(\vec{x}) \) defines the schema of the relation in terms of a name, and the number of columns.
- The *body* describes the content of the relation in terms of the Domain Conceptual Schema.

In [Calvanese et al., 2001c], \(\text{conj}(\vec{x}, \vec{y}_i) \) is a conjunction of *atoms*, and \(\vec{x}, \vec{y}_i \) are all the variables appearing in the conjunct (we use \(\vec{x} \) to denote a tuple of variables \(x_1, \ldots, x_n \), for some \(n \)). Each atom is of the form \(E(t), R(\vec{t}), \) or \(A(t, t') \), where \(\vec{t}, t, \) and \(t' \) are variables in \(\vec{x}, \vec{y}_i \) or constants, and \(E, R, \) and \(A \) are respectively entities, relationships, and attributes appearing in the Domain Conceptual Schema.

The semantics of queries is as follows. Given a database that satisfies the Domain Conceptual Schema, a query \(q \) of arity \(n \) is interpreted as the set of \(n \)-tuples \((d_1, \ldots, d_n) \), with each \(d_i \) an object of the database, such that, when substituting each \(d_i \) for \(x_i \), the formula

\[\exists \vec{y}_1. \text{conj}_1(\vec{x}, \vec{y}_1) \lor \cdots \lor \exists \vec{y}_m. \text{conj}_m(\vec{x}, \vec{y}_m) \]

evaluates to true.

Analogously to the case of the conceptual level, it is interesting to perform several reasoning tasks on the DL representation of the sources, for example for inferring redundancies and/or inconsistencies among data stored in different sources. Since queries that include atoms from the Conceptual Schema are more expressive, new algorithms are required to answer the following problems:

- *Query containment*. Given two queries \(q_1 \) and \(q_2 \) (of the same arity \(n \)), check whether \(q_1 \) is *contained in* \(q_2 \), i.e., check if the set of tuples denoted by \(q_1 \) is
contained in the set of tuples denoted by \(q_2 \) in every database satisfying the Conceptual Schema. Papers that contain results relating to this question include [Levy and Rousset, 1998; Calvanese et al., 1998a; Goasdoue and Rousset, 2000].

- **Query consistency.** Check if a query \(q \) over the Conceptual Schema is consistent, i.e., check if there exists a database satisfying the Conceptual Schema in which the set of tuples denoted by \(q \) is not empty.

- **Query disjointness.** Check whether two queries \(q_1 \) and \(q_2 \) (of the same arity) over the Conceptual Schema are disjoint, i.e., check if the intersection of the set of tuples denoted by \(q_1 \) and the set of tuples denoted by \(q_2 \) is empty, in every database satisfying the Conceptual Schema.

16.4.2 Query answering

The ultimate goal of a data integration system is to allow the user to pose queries over the global view, and to answer the queries by accessing the sources in a transparent way. The mechanism for answering queries differs depending on the approach adopted for specifying the sources. The possibility of reasoning about queries can provide useful support in both the global-as-view and the local-as-view approaches. As in the previous section, here we focus on the local-as-view approach, that is the one in which query answering is most complex.

In the local-as-view approach, relations at the sources are modeled as views over the virtual database represented by the Domain Conceptual Schema. Since the database is virtual, in order to answer a query \(Q \) formulated over the Domain Conceptual Schema, we can only use the source views. In other words, query processing cannot simply be done by looking at a set of relations, as in traditional databases, but requires reasoning on both the form of the query, and the content of the source views. This motivates the idea that query answering in data integration becomes the problem of **view-based query processing.** There are two approaches to view-based query processing, called **query rewriting** and **query answering,** respectively.

In the former approach, we are given a query \(Q \) and a set of view definitions, and the goal is to reformulate the query into an equivalent expression that refers only to the views available, and provides the answer to \(Q \).

In the latter approach, besides \(Q \) and the view definitions, we also take into account the extensions of the views, and the goal is to compute the set of tuples that are implied by these extensions, i.e., the set of tuples \(t \) such that \(t \) satisfies \(Q \) in all the databases that are consistent with the views.

Notice the difference between the two approaches. In query rewriting, query processing is divided in two steps, where the first re-expresses the query in terms of a given query language over the alphabet of the view names, and the second step evaluates the rewriting over the view extensions. In query answering, we do
not pose any limit on query processing, and the only goal is to exploit all possible information, including view extensions, to compute the answer to the query.

View-based query processing has been extensively investigated by the database community [Levy, 2000]. Only recently has the problem been studied for the case where the Domain Conceptual Schema is expressed in DLs. For example, [Baader et al., 2000] addresses the problem of rewriting queries that are concepts in terms of concepts in the conceptual schema. Query rewriting for more general queries (e.g., ones involving conjunctions of atoms) has been studied in [Beeri et al., 1997; Levy and Rousslet, 1998; Goasdoue et al., 2000; Calvanese et al., 2001c], in some cases taking into consideration complex constraints expressed in DL as part of the Conceptual Schema. One issue that must be addressed here is that the original query \(Q \) may not be rewritable as an expression over the views because of limitations of the language for combining views. In this case, one must find heuristic best-effort approximations. Another issue is finding a minimum-cost rewriting (e.g., by eliminating unnecessary look-ups in some of the views).

Finally, we mention that Goasdoue et al. [2000] describe an implemented information integration system, which uses a combination of global-as-view and limited local-as-view approach applied to the \(\mathcal{ALN} \) DL and non-recursive Horn rules.

Among the pioneering attempts at solving the query answering problem is the Information Manifold system [Levy et al., 1996; 1995], which has detailed algorithms for query rewriting. In the context of heterogeneous databases, Mena et al. [2000] propose that each source has its own conceptual schema/ontology expressed in a DL, and these are inter-related by adding “hyponym” (subsumption) relationships between concepts in each. (This is reminiscent of the approach in [Catarci and Lenzerini, 1993].) One of the interesting features of this system is that it takes seriously the approximations resulting from the fact that some queries may not be expressible in terms of the combined ontologies. Among others, they study the notions of “precision” and “accuracy” of recall to quantify this approximation. A solution to the query answering approach is presented in [Calvanese et al., 2000a], which, among others, illustrates the relationship between view-based query answering and ABox reasoning in DLs.

16.5 Conclusions
We have reviewed a number of ways in which DLs can be useful in the development and utilization of databases.

Probably the most successful applications are in areas where the conceptual model of the UoID is required. This includes the initial development stage, as well as access to heterogeneous data sources.

Concerning the initial conceptual modeling: First, DLs are powerful enough to
capture the domain semantics represented by various entity-relationship data models, as well as other data models introduced in the database literature. In fact, with most DLs, one can represent additional constraints. Second, because DLs have a clear semantics, the meaning of the DL model is unambiguous and precise. Third, not only can information be represented, but it can also be reasoned with: one can look for inconsistent class/entity definitions (ones that cannot have any individual instances) and more generally, one can check for the consistency of the entire model. Both of these are signs to the developer that there are modeling errors. Arguably, it is this third aspect, concerning reasoning with the model, that is the greatest advantage of DL models.

DL descriptions can be viewed as necessary and sufficient conditions, and hence as queries (or views!) for a database. DLs are somewhat less successful in this regard (at least in their pure form), because they have limited expressive power compared to the standard calculi known from relational databases, and because they cannot generate new objects—only select subsets of existing objects.

However, if one accepts a DL as a data model, then DL queries can be classified with respect to schema concepts and previous queries, supporting query by refinement and data exploration. The subsumption relationship can also be used for semantic query optimization.

Combining DLs with Datalog rules, or at least supporting conjunctive queries from concepts, is a promising way to obtain a more expressive query language. The evaluation of the resulting queries appears to be decidable with a wide range of DLs if the rules are not recursive. The addition of recursion appears to lead to undecidability relatively quickly. However, full recursion is not an necessity for practical applications, such as information integration, so further research in the possible combinations of DLs and Datalog restrictions is warranted.

The ability to represent the semantics of a UofD is also the reason why DLs are useful in situations where information is to be integrated from various sources, such as heterogeneous or federated databases. It is widely agreed that the integration needs to be achieved at the conceptual level. The DL can be used to define the ontology of each site, and then these ontologies are inter-related; alternatively, a global ontology is specified, and then the sites are described as views over it.
Appendix 1

Description Logic Terminology

Franz Baader

Abstract

The purpose of this appendix is to introduce (in a compact manner) the syntax and semantics of the most prominent DLs occurring in this handbook. More information and explanations as well as some less familiar DLs can be found in the respective chapters. For DL constructors whose semantics cannot be described in a compact manner, we will only introduce the syntax and refer the reader to the respective chapter for the semantics. Following Chapter 2 on Basic Description Logics, we will first introduce the basic DL \mathcal{AL}, and then describe several of its extensions. Thereby, we will also fix the notation employed in this handbook. Finally, we will comment on the naming schemes for DLs that are employed in the literature and in this handbook.

A1.1 Notational conventions

Before starting with the definitions, let us introduce some notational conventions. The letters A, B will often be used for atomic concepts, and C, D for concept descriptions. For roles, we often use the letters R, S, and for functional roles (features, attributes) the letters f, g. Nonnegative integers (in number restrictions) are often denoted by n, m, and individuals by a, b. In all cases, we may also use subscripts. This convention is followed when defining syntax and semantics and in abstract examples. In concrete examples, the following conventions are used: concept names start with an uppercase letter followed by lowercase letters (e.g., Human, Male), role names (also functional ones) start with a lowercase letter (e.g., hasChild, marriedTo), and individual names are all uppercase (e.g., CHARLES, MARY).
A1.2 Syntax and semantics of common Description Logics

In this section, we introduce the standard concept and role constructors as well as knowledge bases. For more information see Chapter 2.

A1.2.1 Concept and role descriptions

Elementary descriptions are atomic concepts and atomic roles (also called concept names and role names). Complex descriptions can be built from them inductively with concept constructors and role constructors. Concept descriptions in \mathcal{AL} are formed according to the following syntax rule:

$$C, D \rightarrow A \mid \top \mid \bot \mid \neg A \mid C \cap D \mid \forall R.C \mid \exists R.\top$$

Following our convention, A denotes an atomic concept and C, D denote concept descriptions. The role R is atomic since \mathcal{AL} does not provide for role constructors.

An interpretation I consist of a non-empty set Δ^I (the domain of the interpretation) and an interpretation function, which assigns to every atomic concept A a set $A^I \subseteq \Delta^I$ and to every atomic role R a binary relation $R^I \subseteq \Delta^I \times \Delta^I$. The interpretation function is extended to concept descriptions by the following inductive definitions:

$$\top^I = \Delta^I$$
$$\bot^I = \emptyset$$
$$\neg A^I = \Delta^I \setminus A^I$$
$$(C \cap D)^I = C^I \cap D^I$$
$$(\forall R.C)^I = \{a \in \Delta^I \mid \forall b. (a, b) \in R^I \rightarrow b \in C^I\}$$
$$(\exists R.\top)^I = \{a \in \Delta^I \mid \exists b. (a, b) \in R^I\}.$$

There are several possibilities for extending \mathcal{AL} in order to obtain a more expressive DL. The three most prominent are adding additional concept constructors, adding role constructors, and formulating restrictions on role interpretations. Below, we start with the third possibility, since we need to refer to restrictions on roles when defining certain concept constructors. For these extensions, we also introduce a naming scheme. Basically, each extension is assigned a letter or symbol. For concept constructors, the letters/symbols are written after the starting \mathcal{AL}, for role
Table A1.1. Some Description Logic concept constructors.

<table>
<thead>
<tr>
<th>Name</th>
<th>Syntax</th>
<th>Semantics</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>⊤</td>
<td>(\Delta^I)</td>
<td>(\mathcal{AL})</td>
</tr>
<tr>
<td>Bottom</td>
<td>⊥</td>
<td>(\emptyset)</td>
<td>(\mathcal{AL})</td>
</tr>
<tr>
<td>Intersection</td>
<td>(C \cap D)</td>
<td>(C^I \cap D^I)</td>
<td>(\mathcal{AL})</td>
</tr>
<tr>
<td>Union</td>
<td>(C \cup D)</td>
<td>(C^I \cup D^I)</td>
<td>(\mathcal{AL})</td>
</tr>
<tr>
<td>Negation</td>
<td>(\neg C)</td>
<td>(\Delta^I \setminus C^I)</td>
<td>(\mathcal{C})</td>
</tr>
<tr>
<td>Value restriction</td>
<td>(\forall R.C)</td>
<td>({ a \in \Delta^I \mid \forall b. (a,b) \in R^I \rightarrow b \in C^I })</td>
<td>(\mathcal{AL})</td>
</tr>
<tr>
<td>Existential quant.</td>
<td>(\exists R.C)</td>
<td>({ a \in \Delta^I \mid \exists b. (a,b) \in R^I \land b \in C^I })</td>
<td>(\mathcal{E})</td>
</tr>
<tr>
<td>Unqualified number</td>
<td>(\geq n R)</td>
<td>({ a \in \Delta^I \mid { b \in \Delta^I \mid (a,b) \in R^I } \geq n })</td>
<td>(\mathcal{N})</td>
</tr>
<tr>
<td>Unqualified restriction</td>
<td>(\leq n R)</td>
<td>({ a \in \Delta^I \mid { b \in \Delta^I \mid (a,b) \in R^I } \leq n })</td>
<td>(\mathcal{N})</td>
</tr>
<tr>
<td>Qualified number</td>
<td>(\geq n R.C)</td>
<td>({ a \in \Delta^I \mid { b \in \Delta^I \mid (a,b) \in R^I \land b \in C^I } \geq n })</td>
<td>(\mathcal{Q})</td>
</tr>
<tr>
<td>Qualified restriction</td>
<td>(\leq n R.C)</td>
<td>({ a \in \Delta^I \mid { b \in \Delta^I \mid (a,b) \in R^I \land b \in C^I } \leq n })</td>
<td>(\mathcal{Q})</td>
</tr>
<tr>
<td>Role-value-map</td>
<td>(R \subseteq S)</td>
<td>({ a \in \Delta^I \mid \forall b. (a,b) \in R^I \rightarrow (a,b) \in S^I })</td>
<td>(\mathcal{F})</td>
</tr>
<tr>
<td>Agreement</td>
<td>(u_1 \equiv u_2)</td>
<td>({ a \in \Delta^I \mid \exists b \in \Delta^I. u_1^I(a) = b = u_2^I(a) })</td>
<td>(\mathcal{F})</td>
</tr>
<tr>
<td>Disagreement</td>
<td>(u_1 \neq u_2)</td>
<td>({ a \in \Delta^I \mid \exists b_1, b_2 \in \Delta^I. u_1^I(a) = b_1 \neq b_2 = u_2^I(a) })</td>
<td>(\mathcal{F})</td>
</tr>
<tr>
<td>Nominal</td>
<td>(I)</td>
<td>(I^I \subseteq \Delta^I) with (</td>
<td>I^I</td>
</tr>
</tbody>
</table>

Constructors, we write the letters/symbols as superscripts, and for restrictions on the interpretation of roles as subscripts. As an example, the DL \(\mathcal{ALCQ}^{-1}_{R^+} \) extends \(\mathcal{ALC} \) with the concept constructors negation \((\mathcal{C}) \) and qualified number restrictions \((\mathcal{Q}) \), the role constructor inverse \((^{-1}) \), and the restriction that some roles are transitive \((R^+) \).

Restrictions on role interpretations

These restrictions enforce the interpretations of roles to satisfy certain properties, such as functionality and transitivity. We consider these two prominent examples in more detail. Others would be symmetry or connections between different roles.\(^1\)

(i) **Functional roles.** Here one considers a subset \(N_F \) of the set of role names \(N_R \), whose elements are called *features*. An interpretation must map features

\(^1\) One could also count role hierarchies as imposing such restrictions. Here we will, however, treat role hierarchies in the context of knowledge bases.
Table A1.2. Concrete syntax of concept constructors.

<table>
<thead>
<tr>
<th>Name</th>
<th>Concrete syntax</th>
<th>Abstract syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top</td>
<td>TOP</td>
<td>⊤</td>
</tr>
<tr>
<td>Bottom</td>
<td>BOTTOM</td>
<td>⊥</td>
</tr>
<tr>
<td>Intersection</td>
<td>(and C₁ · · · Cₙ)</td>
<td>C₁ ∩ · · · ∩ Cₙ</td>
</tr>
<tr>
<td>Union</td>
<td>(or C₁ · · · Cₙ)</td>
<td>C₁ ∪ · · · ∪ Cₙ</td>
</tr>
<tr>
<td>Negation</td>
<td>(not C)</td>
<td>¬C</td>
</tr>
<tr>
<td>Value restriction</td>
<td>(all R C)</td>
<td>∀R.C</td>
</tr>
<tr>
<td>Limited existential quantification</td>
<td>(some R)</td>
<td>∃R.⊤</td>
</tr>
<tr>
<td>Existential quantification</td>
<td>(some R C)</td>
<td>∃R.C</td>
</tr>
<tr>
<td>At-least number restriction</td>
<td>(at-least n R)</td>
<td>≥ n R</td>
</tr>
<tr>
<td>At-most number restriction</td>
<td>(at-most n R)</td>
<td>≤ n R</td>
</tr>
<tr>
<td>Exact number restriction</td>
<td>(exactly n R)</td>
<td>= n R</td>
</tr>
<tr>
<td>Qualified at-least restriction</td>
<td>(at-least n R C)</td>
<td>≥ n R.C</td>
</tr>
<tr>
<td>Qualified at-most restriction</td>
<td>(at-most n R C)</td>
<td>≤ n R.C</td>
</tr>
<tr>
<td>Qualified exact restriction</td>
<td>(exactly n R C)</td>
<td>= n R.C</td>
</tr>
<tr>
<td>Same-as, agreement</td>
<td>(same-as u₁ u₂)</td>
<td>u₁ ≡ u₂</td>
</tr>
<tr>
<td>Role-value-map</td>
<td>(subset R₁ R₂)</td>
<td>R₁ ⊆ R₂</td>
</tr>
<tr>
<td>Role fillers</td>
<td>(fillers R I₁ · · · Iₙ)</td>
<td>∃R.I₁ ⊓ · · · ⊓ ∃R.Iₙ</td>
</tr>
<tr>
<td>One-of</td>
<td>(one-of I₁ · · · Iₙ)</td>
<td>I₁ ⊓ · · · ⊓ Iₙ</td>
</tr>
</tbody>
</table>

\(f \) to functional binary relations \(f^I \subseteq \Delta^I \times \Delta^I \), i.e., relations satisfying \(\forall a, b, c. f^I(a, b) \wedge f^I(a, c) \rightarrow b = c \). Sometimes functional relations are viewed as partial function, and thus one writes \(f^I(a) = b \) rather than \(f^I(a, b) \). \(\mathcal{AL} \) extended with features is denoted by \(\mathcal{AL}_f \).

(ii) **Transitive roles.** Here one considers a subset \(N_{R^+} \) of \(N_R \). Role names \(R \in N_{R^+} \) are called transitive roles. An interpretation must map transitive roles \(R \in N_{R^+} \) to transitive binary relations \(R^I \subseteq \Delta^I \times \Delta^I \). \(\mathcal{AL} \) extended with transitive roles is denoted by \(\mathcal{AL}_{R^+} \).

Concept constructors

Concept constructors take concept and/or role descriptions and transform them into more complex concept descriptions. Table A1.1 shows the syntax and semantics of common concept constructors. In order to have them all in one place, we also repeat
the ones from \mathcal{AL}, minus atomic negation and limited existential quantification since they are special cases of negation and existential quantification.

Some explanatory remarks are in order. The symbols u_1, u_2 in the agreement constructor stand for chains of functional roles, i.e., $u_1 = f_1 \cdots f_m$ and $u_2 = g_1 \cdots g_n$ where $n, m \geq 0$ and the f_i, g_j are features. The semantics of such a chain is given by the composition of the partial functions interpreting its components, i.e., $u^I_1(a) = f^I_n(\cdots f^I_1(a) \cdots)$. Nominals (or individuals) in concept expression are interpreted as singleton sets, consisting of one element of the domain. We assume that names for individuals come from a name space disjoint from the set of concept and role names. Since role-value-maps cause undecidability and thus are no longer used in DL systems, there is no special symbol for them in the last column of Table A1.1.

Many DL systems employ a Lisp-like concrete syntax. Table A1.2 introduces this syntax and gives a translation into the abstract syntax introduced in Table A1.1.

Role constructors

Role constructors take role and/or concept descriptions and transform them into more complex role descriptions. Table A1.3 shows the syntax and semantics of common role constructors.

The symbol \circ denotes the usual composition of binary relations, i.e.,

$$ R^I \circ S^I = \{(a, c) \mid \exists b. (a, b) \in R^I \land (b, c) \in S^I\}. $$
Table A1.4. *Concrete syntax of role constructors.*

<table>
<thead>
<tr>
<th>Name</th>
<th>Concrete syntax</th>
<th>Abstract syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal role</td>
<td>top</td>
<td>U</td>
</tr>
<tr>
<td>Intersection</td>
<td>(and R₁ ⋯ Rₙ)</td>
<td>(R₁ □ ⋯ □ Rₙ)</td>
</tr>
<tr>
<td>Union</td>
<td>(or R₁ ⋯ Rₙ)</td>
<td>(R₁ △ ⋯ △ Rₙ)</td>
</tr>
<tr>
<td>Complement</td>
<td>(not R)</td>
<td>(\neg R)</td>
</tr>
<tr>
<td>Inverse</td>
<td>(inverse R)</td>
<td>(R^-)</td>
</tr>
<tr>
<td>Composition</td>
<td>(compose R₁ ⋯ Rₙ)</td>
<td>(R₁○⋯○Rₙ)</td>
</tr>
<tr>
<td>Transitive closure</td>
<td>(transitive-closure R)</td>
<td>(R^+)</td>
</tr>
<tr>
<td>Reflexive-transitive closure</td>
<td>(transitive-reflexive-closure R)</td>
<td>(R^*)</td>
</tr>
<tr>
<td>Role restriction</td>
<td>(restrict R C)</td>
<td>(R</td>
</tr>
<tr>
<td>Identity</td>
<td>(identity C)</td>
<td>(id(C))</td>
</tr>
</tbody>
</table>

Iterated composition is denoted in the form \((R^I)^n\). To be more precise,

\[(R^I)^0 = \{(d, d) \mid d \in \Delta^I\} \quad \text{and} \quad (R^I)^{n+1} = (R^I)^n \circ R^I.\]

Transitive and reflexive-transitive closure are the only constructors among the ones introduced until now that cannot be expressed in first-order predicate logic.

The Lisp-like concrete syntax for role constructors can be found in Table A1.4.

A1.2.2 Knowledge bases

A DL knowledge base usually consists of a set of terminological axioms (often called TBox) and a set of assertional axioms or assertions (often called ABox). Syntax and semantics of these axioms can be found in Table A1.5. An interpretation \(I\) is called a *model* of an axiom if it satisfies the statement in the last column of the table.

An equality whose left-hand side is an atomic concept (role) is called concept (role) *definition*. A finite set of definitions is called a *terminology* or *TBox* if the definitions are unambiguous, i.e., no atomic concept occurs more than once as left-hand side. Axioms of the form \(C \sqsubseteq D\) for a complex description \(C\) are often called *general inclusion axioms*. A set of axioms of the form \(R \sqsubseteq S\) where both \(R\) and \(S\) are atomic is called *role hierarchy*. Such a hierarchy obviously imposes restrictions on the interpretation of roles. Thus, the fact that the knowledge base may contain a role hierarchy is sometimes indicated by appending a subscript \(\mathcal{H}\) to the name of the DL (see “Restrictions on role interpretations” above).
Table A1.5. Terminological and assertional axioms.

<table>
<thead>
<tr>
<th>Name</th>
<th>Syntax</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept inclusion</td>
<td>$C \sqsubseteq D$</td>
<td>$C^I \subseteq D^I$</td>
</tr>
<tr>
<td>Role inclusion</td>
<td>$R \sqsubseteq S$</td>
<td>$R^I \subseteq S^I$</td>
</tr>
<tr>
<td>Concept equality</td>
<td>$C \equiv D$</td>
<td>$C^I = D^I$</td>
</tr>
<tr>
<td>Role equality</td>
<td>$R \equiv S$</td>
<td>$R^I = S^I$</td>
</tr>
<tr>
<td>Concept assertion</td>
<td>$C(a)$</td>
<td>$a^I \in C^I$</td>
</tr>
<tr>
<td>Role assertion</td>
<td>$R(a,b)$</td>
<td>$(a^I,b^I) \in R^I$</td>
</tr>
</tbody>
</table>

Table A1.6. Concrete syntax of axioms.

<table>
<thead>
<tr>
<th>Name</th>
<th>Concrete syntax</th>
<th>Abstract syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept definition</td>
<td>(define-concept A C)</td>
<td>$A \equiv C$</td>
</tr>
<tr>
<td>Primitive concept introduction</td>
<td>(define-primitive-concept A C)</td>
<td>$A \sqsubseteq C$</td>
</tr>
<tr>
<td>General inclusion axiom</td>
<td>(implies C D)</td>
<td>$C \subseteq D$</td>
</tr>
<tr>
<td>Role definition</td>
<td>(define-role R S)</td>
<td>$R \equiv S$</td>
</tr>
<tr>
<td>Primitive role introduction</td>
<td>(define-primitive-role R S)</td>
<td>$R \subseteq S$</td>
</tr>
<tr>
<td>Concept assertion</td>
<td>(instance a C)</td>
<td>$C(a)$</td>
</tr>
<tr>
<td>Role assertion</td>
<td>(related a b R)</td>
<td>$R(a,b)$</td>
</tr>
</tbody>
</table>

The concrete Lisp-like syntax distinguishes between terminological axioms with atomic concepts as left-hand sides and the more general ones. Following the convention mentioned at the beginning of this appendix, A denotes an atomic concept. In the table, R is also meant to denote an atomic role.

A1.3 Additional constructors

Here we mention some of the additional constructors that occur somewhere in the handbook. For most of them, the semantics cannot be described in a compact manner, and thus we refer to the respective chapter for details.

A1.3.1 Concept and role constructors

Many additional constructors are introduced in Chapter 6. In DLs with concrete domains one can use concrete predicates to constrain fillers of feature chains, similarly to the use of the equality predicate in feature agreements. For example, if hasAge is
a feature and \(\geq_{18} \) the unary concrete predicate consisting of all nonnegative integers greater than or equal to 18, then \(\exists \text{hasAge} \geq_{18} \) describes the individuals whose age is greater than or equal to 18. In general, an existential predicate restriction is of the form
\[
\exists(u_1, \ldots, u_n).P,
\]
where \(P \) is an \(n \)-ary predicate of the underlying concrete domain and \(u_1, \ldots, u_n \) are feature chains. One can also use concrete domain predicates to define new roles. For example, \(\exists(\text{hasAge})(\text{hasAge}).> \) consists of all pairs of individuals having an age such that the first individual is older than the second one. The general form of such a complex role is
\[
\exists(u_1, \ldots, u_n)(v_1, \ldots, v_m).P,
\]
where \(P \) is an \((n + m)\)-ary predicate of the underlying concrete domain and \(u_1, \ldots, u_n, v_1, \ldots, v_m \) are feature chains.

In modal extensions of description logics, one can apply modal operators to concepts and/or roles, i.e., if \(\Box \) is such a modal operator, \(C \) is a concept, and \(R \) is a role, then
\[
\Box C \quad \text{and} \quad \Box R
\]
is a concept and a role, respectively. Similarly, one can also use diamond operators \(\Diamond \) to obtain new concepts and roles. A special such modal operator is the epistemic operator \(K \), which can be used to talk about things that are known to the knowledge base.

Chapter 5 introduces several additional constructors. Least and greatest fixpoint semantics for cyclic terminologies (see Chapter 2) can be generalized by introducing fixpoint constructors directly into the description language. Let \(X \) be a concept name and \(C \) a concept description containing the name \(X \). Then
\[
\mu X.C \quad \text{and} \quad \nu X.C
\]
is a new concept description respectively obtained by applying the least and the greatest fixpoint constructor to \(C \). To ensure that the least and the greatest fixpoint exist, one must restrict \(C \) to be syntactically monotonic, i.e., every occurrence of \(X \) in \(C \) must be in the scope of an even number of complement operators. For example, given an interpretation \(\text{Man}^I \) of \(\text{Man} \) and \(\text{hasChild}^I \) of \(\text{hasChild} \), the concept
\[
\nu \text{Momo}.(\text{Man} \cap \forall \text{hasChild}.\text{Momo})
\]
looks for the greatest interpretation \(\text{Momo}^I \) of \(\text{Momo} \) such that \(\text{Momo}^I = (\text{Man} \cap \forall \text{hasChild}.\text{Momo})^I \). It is easy to see that this is the set of all men having only male offspring (see Chapter 2 for the corresponding example with a cyclic TBox).

Chapter 5 also considers the DL \(\mathcal{DLR} \), in which the restriction to at most binary
predicates is no longer enforced. If R is an n-ary predicate, $i \in \{1, \ldots, n\}$, and k is a nonnegative integer, then

$$\exists[^i]R$$

denotes the concept collecting those individuals that occur as ith component in some tuple of R, and

$$\leq k[^i]R$$

denotes the concept collecting those individuals d for which the predicate R contains at most k tuples whose ith component is d. Conversely, if C is a concept, n a nonnegative integer, and $i \in \{1, \ldots, n\}$, then

$$(^i/n : C)$$

denotes the n-ary predicate consisting of the tuples whose ith component belongs to C. The DL \mathcal{DLR} also allows for Boolean operators on both concepts and predicates.\footnote{Note, however, that negation on predicates has a non-standard semantics (see Chapter 5 for details).}

A1.3.2 Axioms

In addition to the semantics for terminological axioms introduced above, Chapter 2 also considers fixpoint semantics for cyclic TBoxes.

Chapter 6 introduces several ways of extending the terminological and the assertional component of a DL system. In DLs with concrete domains one can use concrete predicates also in the ABox in assertions of the form

$$P(x_1, \ldots, x_n),$$

where P is an n-ary predicate of the underlying concrete domain and x_1, \ldots, x_n are names for concrete individuals.

In some modal extensions of description logics, one can apply modal and Boolean operators also to terminological and assertional axioms: if φ, ψ are axioms, then so are

$$\varphi \land \psi, \ \neg \varphi, \ \Box \varphi.$$

In probabilistic extensions of description logics, one can use probabilistic terminological axioms of the form

$$P(C|D) = p,$$

which state that the conditional probability for an object known to be in D to belong to C is p.\footnote{Note, however, that negation on predicates has a non-standard semantics (see Chapter 5 for details).}
The integration of Reiter’s default logic into DLs yields terminological defaults of the form
\[
\frac{C(x) : D(x)}{E(x)},
\]
where \(C, D, E\) are concept descriptions (viewed as first-order formulae with one free variable \(x\)). Intuitively, such a default rule can be applied to an ABox individual \(a\), i.e., \(E(a)\) is added to the current set of beliefs, if its prerequisite \(C(a)\) is already believed for this individual and its justification \(D(a)\) is consistent with the set of beliefs.

Rules of the form
\[C \Rightarrow E\]
(as introduced in Chapter 2) can be seen as a special case of terminological defaults where the justification is empty. Their intuitive meaning is: “if an individual is known to be an instance of \(C\), then add the information that it is also an instance of \(E\).”

A1.4 A note on the naming scheme for Description Logics

In Section A1.2 we have introduced a naming scheme for DLs, which extends the naming scheme for the \(\mathcal{AL}\)-family introduced in Chapter 2 by writing letters/symbols for role constructors as superscripts, and for restrictions on the interpretation of roles as subscripts. The reason was that this yields a consistent naming scheme, which distinguishes typographically between the three different possibilities for extending the expressive power of \(\mathcal{AL}\).

In the literature, and also in this handbook, other naming schemes are employed as well. One reason for this, in addition to the fact that such schemes have evolved over time, is that it is very hard to pronounce a name like \(\mathcal{ALCQ}^{-1}_{R_+}\). We will here point out the most prominent such naming schemes.

The historically first scheme is the one for the \(\mathcal{AL}\)-family introduced in Chapter 2, and extended in this appendix. However, in the literature the typographical distinction between role constructors, concept constructors, and restrictions on the interpretation of roles is usually not made. For example, many papers use \(I\) to denote inverse of roles, \(R\) to denote intersection of roles, and \(H\) to denote role hierarchies. Thus, \(\mathcal{ALCRI}\) denotes the extension of \(\mathcal{ALC}\) by intersection and inverse of roles, and \(\mathcal{ALCH}\) denotes the extension of \(\mathcal{ALC}\) by role hierarchies. In some cases, the letter \(F\), which we employed to express the presence of feature agreements and disagreements, is used with a different meaning. Its presence states that number restrictions of the form \(\leq 1 R\) can be used to express functionality of roles.\(^1\) The

\(^1\)Unlike the restriction of \(R\) to be functional, which we express with a subscript \(f\), this allows for local
subscript “trans” (or “reg”) is often employed to express the presence of union, composition, and transitive closure of roles (sometimes also including the identity role). The Greek letter \(\mu\) in front of a language name, like in \(\mu\text{ALC}\), usually indicates the extension of this DL by fixpoint operators.

All members of the \(\mathcal{AL}\)-family include \(\mathcal{AL}\) as a sublanguage. In some cases one does not want all the constructors of \(\mathcal{AL}\) to be present in the language. The DL \(\mathcal{FL}^-\) is obtained from \(\mathcal{AL}\) by disallowing atomic negation, and \(\mathcal{FL}_0\) is obtained from \(\mathcal{FL}^-\) by, additionally, disallowing limited existential quantification. If these languages are extended by other constructors, one can indicate this in a way analogous to extensions of \(\mathcal{AL}\). For example, \(\mathcal{FL}^-U\) denotes the extension of \(\mathcal{FL}^-\) by union of concepts.

All the DLs mentioned until now contain the concept constructors intersection and value restriction as a common core. DLs that allow for intersection of concepts and existential quantification (but not value restriction) are collected in the \(\mathcal{EL}\)-family. The only constructors available in \(\mathcal{EL}\) are intersection of concepts and existential quantification. Extensions of \(\mathcal{EL}\) are again obtained by adding appropriate letters/symbols.

In order to avoid very long names for expressive DLs, the abbreviation \(S\) was introduced for \(\text{ALC}_{R^+}\), i.e., the DL that extends \(\text{ALC}\) by transitive roles. Prominent members of the \(S\)-family are \(\text{SIN}'\) (which extends \(\text{ALC}_{R^+}\) with number restrictions and inverse roles), \(\text{SHIF}\) (which extends \(\text{ALC}_{R^+}\) with role hierarchies, inverse roles, and number restrictions of the form \(\leq 1\ R\)), and \(\text{SHIQ}\) (which extends \(\text{ALC}_{R^+}\) with role hierarchies, inverse roles, and qualified number restrictions). Actually, the DLs \(\text{SIN}', \text{SHIF}, \) and \(\text{SHIQ}\) are somewhat less expressive than indicated by their name since the use of roles in number restrictions is restricted: roles that have a transitive subrole must not occur in number restrictions.

The DL \(\text{DLR}\) mentioned in the previous section also gives rise to a family of DLs, with members like \(\text{DLR}_{\text{reg}}\), which extends \(\text{DLR}\) with union, composition, and transitive closure of binary relations obtained as projections of \(n\)-ary predicates onto two of their components.

functionality statements, i.e., \(R\) is functional at a certain place, but may be non-functional at other places.