Greenhouse Effect

The greenhouse effect, is a warming of the Earth's surface and lower atmosphere that tends to intensify with an increase in atmospheric carbon dioxide.

The atmosphere allows a large percentage of the rays of visible light from the Sun to reach the Earth's surface and heat it.

A part of this energy is reradiated by the Earth's surface in the form of long-wave infrared radiation, much of which is absorbed by molecules of carbon dioxide and water vapour in the atmosphere and which is reflected back to the surface as heat.

This is roughly analogous to the effect produced by the glass panes of a greenhouse, which transmit sunlight in the visible range but hold in heat.

The trapping of this infrared radiation causes the Earth's surface and lower atmospheric layers to warm to a higher temperature than would otherwise be the case.

Without this greenhouse heating, the Earth's average temperature would be only about -73 C (-100 F); even the oceans would be frozen under such conditions.

Alternatively, a "runaway" greenhouse effect like that found on the planet Venus would result in surface temperatures as high as 500 C (932 F).

Owing to the rise in atmospheric carbon dioxide caused by modern industrial societies' widespread combustion of fossil fuels (coal, oil, and natural gas), the greenhouse effect on Earth may be intensified and long-term climatic changes may result.

An increase in atmospheric concentrations of other trace gases such as chlorofluorocarbons (Freons), nitrous oxide, and methane, due again largely to human activity, may also aggravate greenhouse conditions.

A growing number of scientists have predicted that significant alterations in climate patterns will be seen by the turn of the century.

They estimate that global average temperatures could increase by as much as 5 C (9 F) by the middle of the 21st century.

Such global warming would cause the polar ice caps and mountain glaciers to melt rapidly and result in appreciably higher coastal waters.

The rise in global temperature would also produce new patterns and extremes of drought and rainfall, seriously disrupting food production in certain regions.

Other scientists involved in climatic research maintain that such predictions are overstated, however.

Global Warming - Greenhouse Effect

From NASA News

The atmosphere of the earth acts in a very similar way to a greenhouse. Sunlight penetrates through the transparent air and causes the ground to warm.

The atmosphere then acts as a blanket, keeping the warmth of the Earth from escaping back into space.

This effect is due to certain gases in the atmosphere which are very good at absorbing the heat energy before it is lost to space.

These gases, called "greenhouse gases" include carbon dioxide, water vapor, and methane. Without the greenhouse effect, the entire planet would be much colder, by about 63 degrees Fahrenheit (35 degrees Celsius), than it presently is.

The prediction of climate change due to human activities began with a prediction made by the Swedish chemist, Svante Arrhenius, in 1896. Arrhenius took note of the industrial revolution then getting underway and realized that the amount of carbon dioxide being released into the atmosphere was increasing.

Moreover, he believed carbon dioxide concentrations would continue to increase as the world's consumption of fossil fuels, particularly coal, increased ever more rapidly.

His understanding of the role of carbon dioxide in heating Earth, even at that early date, led him to predict that if atmospheric carbon dioxide doubled, Earth would become several degrees warmer.

However, little attention was paid to what must have been seen to be a rather far-out prediction that had no apparent consequence for people living at that time.

Arrhenius was referring to a potential modification of what we now call the greenhouse effect. A simplified explanation of this is as follows.

Shortwave solar radiation can pass through the clear atmosphere relatively unimpeded, but longwave infrared radiation emitted by the warm surface of the Earth is absorbed partially and then re-emitted by a number of trace gases--particularly water vapor and carbon dioxide--in the cooler atmosphere above.

Because, on average, the outgoing infrared radiation balances the incoming solar radiation, both the atmosphere and the surface will be warmer than they would be without the greenhouse gases. One should distinguish between the "natural" and a possible "enhanced" greenhouse effect.

The natural greenhouse effect causes the mean temperature of the Earth's surface to be about 33 degrees C warmer than it would be if natural greenhouse gases were not present.

This is fortunate for the natural greenhouse effect creates a climate in which life can thrive and man can live under relatively benign conditions.

Otherwise, the Earth would be a very frigid and inhospitable place. On the other hand, an enhanced greenhouse effect refers to the possible raising of the mean temperature of the Earth's surface above that occurring due to the natural greenhouse effect because of an increase in the concentrations of greenhouse gases due to human activities.

Such a global warming would probably bring other, sometimes deleterious, changes in climate; for example, changes in precipitation, storm patterns, and the level of the oceans.

The word "enhanced" is usually omitted, but it should not be forgotten in discussions of the greenhouse effect.

Nearly 100 years after the Arrhenius prediction, we are now aware that carbon dioxide in the atmosphere is increasing, with the likelihood that it will double by the middle of the next century from the levels at the time of Arrhenius. Post-World War II industrialization has caused a dramatic jump in the amount of carbon dioxide in the atmosphere.

As the prospect of considerable change in the atmosphere becomes more real and threatening, new computer models are being applied to the problem. These models take into account the natural processes that must be part of the whole picture to understand what could happen to Earth's climate as carbon dioxide increases.

An important aspect of the newer models is their treatment of the "amplifier" or feedback effect, in which further changes in the atmosphere occur in response to the warming initiated by the change in carbon dioxide.

In addition to moisture and cloud processes, the newer models are beginning to take into account the role of vegetation, forests, grasslands, and crops in controlling the amount of carbon dioxide that actually will be in the atmosphere.

Along with their role as "sinks" for carbon dioxide, the various types of vegetation in the biosphere have further effects on climate. Plants heat or cool the air around them (through the reflection and absorption of solar radiation and the evaporation process), remove momentum from surface winds, and take up and release moisture into the air (thus contributing to alterations in the hydrologic cycle). In turn, changes in climate will affect the patterns of vegetation growth. For instance, forest stands that require relatively cool conditions may not be able to adjust to the relatively rapid warming that is being predicted for the interiors of climates.

With slow warming, scientists expect that the northern edges of North American forests would creep slowly forward to more-favorable conditions, while the southern edges would give way to grasslands that are better suited to the warmer conditions.

With overly rapid warming rates, however, the loss at the southern edge would be more extreme, and the migration at the northern edges would not be able to make up for the loss at the southern edge.

Other feedback effects at work also must be considered. In normal conditions, plant leaves take in carbon dioxide from the air and release moisture to the air as part of the photosynthesis process.

The release of moisture through evapotranspiration causes the air to cool. With increasing atmospheric carbon dioxide, one can expect to see a change in plant carbon exchange rates and water relations.

This may result in reduced evaporation rates, thus amplifying the summer continental warming. Without plants, the ground and air would become warmer, exacerbating the problem.

Greenhouse Gases

To predict climate change, one must model the climate. One test of the validity of predictions is the ability of the climate models to reproduce the climate as we see it today.

Elements of the models such as the physics and chemistry of the processes that we know--or think we know--are essential to represent in the models. Therefore, the models have to embody the characteristics of the land and the oceans that serve as boundaries of the atmosphere represented in the models.

Models also have to take into account the radiative characteristics of the gases that make up the atmosphere, including the key radiative gas, water vapor, that is so variable throughout the atmosphere.

Global records of surface temperature over the last 100 years show a rise in global temperatures (about 0.5 degrees C overall), but the rise is marked by periods when the temperature has dropped as well. If the models cannot explain these marked variations from the trend, then we cannot be completely certain that we can believe in their predictions of changes to come.

For example, in the early 1970's, because temperatures had been decreasing for about 25 to 30 years, people began predicting the approach of an ice age! For the last 15 to 20 years, we have been seeing a fairly steady rise in temperatures, giving some assurance that we are now in a global warming phase.

The major gases in the atmosphere, nitrogen and oxygen, are transparent to both the radiation incoming from the sun and the radiation outgoing from the Earth, so they have little or no effect on the greenhouse warming.

The gases that are not transparent are water vapor, ozone, carbon dioxide, methane, nitrous oxide, and the chlorofluorocarbons (CFCs). These are the greenhouse gases.

There has been about a 25% increase in carbon dioxide in the atmosphere from 270 or 280 parts per million 250 years ago, to approximately 350 parts per million today.

The record of carbon dioxide in the atmosphere shows a variation as seasons change.

This variation is more pronounced in the northern hemisphere, with its greater land area, than in the southern hemisphere because of interactions in the atmosphere caused by vegetation.

In the growing season, during daylight vegetation takes in carbon dioxide; at night and in the senescent season, vegetation releases carbon dioxide.

The effect is more pronounced in the northern hemisphere because most of the land on Earth is located there.


To understand and predict climate change, the following types of models are needed: