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" PREFACE

EVERY beginner in the science of geometry knows that the
circle and the sphere have always played a central rdle, yet
few people realize that the reasons for this are many and
various. Attention was first called to these figures by their
mechanical simplicity and importance, and the fortunate
position thus won was further strengthened by the Euclidean
tradition of limiting geometry, on the constructive side, to
those operations which can be carried out with the aid of
naught but ruler and compass. Yet these facts are far from
sufficient to account for the commanding position which the
circle and the sphere occupy to-day.

To begin with, there would seem no a priori reason why
those curves which are the simplest from’the mechanical point
of view should have the greatest wealth of beautiful properties.
Had Euclid started, not with the usual parallel postulate,
but with the different assumption either of Lobachevski or
Riemann, he would have been unable to prove that all angles
inseribed in the same circular arc are equal, and a large
proportion of our best elementary theorems about the circle
would have been lacking. Again, there is no a priori reason
why a curve with attractive geometric properties should be
blessed with a peculiarly simple cartesian equation; the
cycloid is particularly unmanageable in pure cartesian form.
The circle and sphere have simple equations and depend
respectively on four and five independent homogeneous para-
meters. Thus, the geometry of circles is closely related to
the projective geometry of three-dimensional space, while the
totality of spheres gives our best example of a four-dimensional
projective continuum. Still further, who could have predicted
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4 PREFACE

that cireles would play a central role in the theory of linear
functions of a complex variable, or that every conformal
transformation of space would carry spheres into spheres?
These are but examples of the way in which circles and spheres
force themselves upon our notice in all parts of geometrical
science.

The result of all this is that there is a colossal mass of
literature dealing with circles and spheres, the various parts
of which have been developed with little reference to one
another. The elementary geometry of the circle was carried
to a high degree of perfection by the ancient Greeks, but by
no means completed, for in comparatively recent times there
have been notable contributions from mathematicians of no
mean standing, Steiner and Feuerbach, Chasles and Lemoine,
Casey and Neuberg, and a countless following host. The
relation between circle geometry and projective geometry has
been thoroughly studied by Reye, Fiedler, Loria, and their
pupils. Every text-book of the theory of functions of a com-
plex variable discusses the relation of circles to the linear
function, while the general theory of circle transformations
has had such distinguished exponents as Mobius and von
Weber. The circle and sphere with positive or negative
radius have been the subject of admirable studies by Laguerre
and Lie, algebraic systems of circles in space have been studied
by Stephanos, Koenigs, Castelnuovo, and Cosserat, while circle
congruences in general have received no little attention from
recent writers on differential geometry, notably Ribaucour,
Darboux, and Guichard.

The present work is an attempt, perhaps the first, to present
a consistent and systematic account of these various theories.
The greatest difficulty in any such undertaking is obviously
that of selection. This is particularly the case in the early
part of the subject. A complete account of all known elemen-
tary theorems regarding the circle would be far beyond the
strength of any writer, or reader. The natural temptation



PREFACE 5

is to go to the other extreme, and omit entirely the elementary
portions ; yet this would be equally fatal. How could one
write at length on the geometry of the circle without dis-
cussing the Apollonian problem and the nine-point circle ?
But if we include the circle of Feuerbach, why should we
exclude the circles of Lemoine, Tucker, and Brocard ? Where
does the geometry of the circle end, and that of the triangle
begin? Clearly any principle of choice must be largely
arbitrary and illogical.

In the present treatise preference is shown to those theorems
which are unaltered by inversion, and to those which are as
general as possible in their scope. The author has tried to
say something about every eircle that is known by a recog-
nized name, but the vast subject of the geometry of the
triangle is treated only in a superficial manner. Similarly,
only a small number of the most famous problems in con-
struction have been discussed, but these have been treated
at some length.

When we pass from the elementary to the more advanced
portions of the subject, we find a tolerably clear line of
demarcation running through the geometry of the circle and
the sphere, namely, the separation of those theorems which
involve the centre or radius from those which do not. Other-
wise stated, we have those theorems which are invariant
under the group of conformal collineations, and those which
are invariant for inversion. An attempt is made to keep
these two classes as far separate as practicable. For this
reason, distinction is drawn between cartesian space which
is supposed to have been rendered a perfect continuum by
the adjunction of a plane at infinity, and pentaspherical
space where the finite region is defined, in the real domain,
as a single point. Among the cartesian theorems there is
a sharp sub-division between those where the radius is looked
upon as essentially signless and those where a positive or
negative radius is allowable. The circle and the oriented
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circle should be considered as essentially dissimilar figures ;
the former is a locus of points, the latter, in the plane, is best
handled as an envelope of oriented lines, and considered under
a totally different group. In the present work the oriented
circle and sphere are discussed in three chapters entirely
devoted to them.

Every writer knows that the pleasantest part of his task
congists in writing the preface, for here he has a chance to
express his gratitude to the generous friends who have helped
him with suggestion and counsel. The present author would
especially mention his colleague Professor Maxime Bocher,
who kindly read the proof of Ch. VIII, and his former pupil
Dr. David Barrow, who not only supplied much of the
material in Ch. XIV but also did yeoman service in unearth-
ing mistakes in various parts of the work. Another pupil,
Dr. Roger Johnson, has kindly suggested a number of minor
corrections, mostly of a bibliographical nature. Yet the
greatest debt is not to any one of these.

The present work went to press in the spring of 1914.
During the two years which have intervened, the Delegates
of the Clarendon Press, despite the fact that their country
was passing through the most severe trial in her history,
have yet seen fit to continue the publication of a book which
dealt with a subject utterly remote from all that occupied
men’s thoughts, and which was not even written by one of
their countrymen. TLet the author’s last word be one of
gratitude to them for this great kindness, as signal as it
is undeserved.

CAMBRIDGE, U.S.A.
July, 1916.
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CHAPTER 1

THE CIRCLE IN ELEMENTARY PLANE
GEOMETRY

§ 1. Fundamental Definitions and Notation.

ALL figures discussed in the present chapter are supposed
to exist in the real and finite domain of the Euclidean plane;
the domain of elementary plane geometry. As fundamental
objects, we shall take points, lines, and circles. We shall
make no attempt to define a point. By line we shall mean
a straight line; a class of points uniquely determined by any
two of its members. It extends to an infinite distance on
either side of any of its points. That portion of a line which
is on either side of any point shall be called a half-line; the
portion which includes two points and all between them shall
-be a segment. If two half-lines be given which are not
collinear, but are bounded by a common point, that portion
of the plane which includes all segments whose cxtremities
are on the given half-lines shall be called their interior angle,
or, more shortly, their angle. The remainder of the plane
shall be their exterior angle. These definitions may be easily
extended to include null and straight angles. Three non-
collinear points will determine three segments forming
together a triangle. The given points and segments are
the vertices and sides respectively, the lines whereon the
segments lie shall be called the side-lines.* The three angles,
each of which is bounded by two half-lines including two
sides of the triangle, shall be called the angles of the triangle,

* This term suggests football rather than geometry. It is, however,

proper to distinguish between the side of a triangle, and the line whereon
that side lies.

B2



20 THE CIRCLE IN CH.

their supplements its exterior angles. A line through a vertex
perpendicular to the opposite side-line shall be called an
altitude line, its intersection with the side-line its foof, and
the segment bounded by the foot and the opposite vertex,
the altitude.

We shall mean by a circle the locus of points at a given
distance from a fixed point called the centre. A segment
bounded by two points of a circle shall be called a chord,
its line a secant. The limiting position of a secant as the two
points of the cirele approach one another shall be a tangent.
A segment bounded by the centre and a point of the circle
is a radius, that which is made up of two collinear radii
a diameter.

Let us pass from these definitions to establishing certain
conventions as to notations. Points shall be denoted by large
italic letters as A B P;. 'The segment bounded by 4 and B,
or the distance of these points, shall be written (AB). When
a question of algebraic sign arises, or a segment is looked
upon as measured in a particular sense, we shall superpose
an arrow pointing to the right, to indicate that the segment
is measured from the point denoted by the first letter to that
denoted by the second, thus

— s

(AB) = —(BA).
The line determined by the points 4 and B shall be indicated
AB. Tt is often convenient to indicate a line by a single
small <talic letter as a, ;. The angle of the half-lines which
include the segments (A B)(AC), when considered as a quantity
bereft of sign, shall be indicated X BAC. When the sense
of description is essential we shall introduce a right-pointing
arrow, as

B ——

¥ BAC = -4 CAB.

When we wish one of the lesser angles determined by two
lines, including its sense of description,* we shall use the
notation ZBAC or £1,l,. Parallelism shall be denoted by |,
perpendicularity by L. The distinction in meaning between

* There is, of course, a slight ambiguity when the lines are mutually
perpendicular ; it does not, however, cause any practical inconvenience.
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our various symbols will appear from the following familiar
equations :
If 4, |1/ and 4,2/, then 411, = L1/l
If , 11/ and I, L1, then 201, =1/, .
If ABCD be concyelic,
LABC = £ ADC,
Y- ABC =% ADC or n—) ADC,

—_— C— e
Y ABC =Y ADC or +(n+X.ADC).
If ABCD be any four coplanar points,
LADB+ /. BDC+ £LCDA = ¢ (mod =),

X ADB+X BDC+ ¥ CDA =0 (mod 27).

A triangle where vertices are ABC shall be indicated
A ABC.

It is useful to make certain further conventions for the
study of a single triangle. The vertices shall be 4,4,4,,
this order of letters corresponding to a circuit of the triangle
in a counter-clockwise or positive sense. If the letters ¢, j, k
indicate a circular permutation of the numbers 1, 2, 3,

Y A; A, =4 A4 A A, =X A; (4;4;)=a; Za;=2s

If P be any other point of the plane, the line A;P shall
meet 4;4; in P;; a line through P L A;4; shall meet 4,4,
in Pa;. The middle point of 4;4, shall be M;; the centre of
gravity of the triangle is thus M. The centre of the cir-
cumscribed circle shall be O, the orthocentre, the point of
concurrence of the altitude lines, shall be /. We have thus,
incidentally, H; = Ha,;. The area of this triangle shall be A,
the radius of the circumsecribed circle shall have the length 7.
A theorem shall be referred to as ] or y] while an equation

is (p) or (g).

§ 2. Inversion.

A truce to these preliminaries! Suppose that we have
given a circle whose centre is O and radius has the length
7% 0. Let P and P’ be any two points collinear with O
such that

(OP)x (0F) = . )



20 THE CIRCLE IN CH.

The relation between the two is perfectly symmetrical, each
is said to be the inwverse of the other with regard to that circle,
and the transformation from one to the other is called an
tnversion. The point O is called the centre of inversion, the
given circle the circle of inversion, and its radius the radius
of inversion.*

Theorem 1.] Every point other than the centre of inversion
has a single inverse.

Theorem 2.] The circle of imversion is the locus of points
which are their own inverses.

Theorem 3.] Points within the cirele of inversion other
than the centre will invert into points without, points withowt
will always invert into points within.

Another transformation similar to inversion is found by
taking S and S’ collinear with O so that

(O8) x (O8") = —1

This is seen immediately to be the product of an inversion
and a reflection in the centre, though algebraically it is an
inversion in a circle of imaginary radius. We shall make
but little use of this transformation in the present chapter.
Returning to the direct study of inversion, let the reader
show that if P be without the circle, P’ is the intersection
of OP with the chord of contact of tangents from P to this
circle, i.e. with the polar of P. We notice further that if OP
meet the circle in H and K, H lying between O and £,

(HP) _ <0H>—<0P> (KP <0K> <0P>
@7 (Oh)-0F) (KP) (0R)—0P)

* This transformation is usually credited to Pliicker. See his Analytisch-
geomelrische Aphorismen, Crelle, vol. xi, 1836, It was rediscovered a decade
later by Sir William Thompson, Principe des images électriques, Liouville,
vol. x, 1845, The most recent view, however, seems to beé that the method
was found some time previous by Steiner, Cf. Biitzberger, Ueber bizentrische
Polygone, Leipzig, 1913, pp. 50-5. The inversion of a small region can be
effected mechanically by link works invented by Peaucellier, Hart, Kempe,
and others.
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(HP) (EP) _ —rt++*~[OF) OF)+(OP)(OR)] _ _,
(HP)(KP) —1*+12—[(OP) (0H)+(0P) (OK)]

We thus reach a theorem slightly beyond the limits of elemen-
tary geometry strictly construed.

Theorem 4.] Mutually inverse points are harmonically
separated by the intersections of their line with the circle of
nversion.

If P’ and @’ be the inverses of £ and @ respectively, we have

0P (0B = (00) (00, (0B) _ (0F)
A OPQ and A OQ'P’ are similar.
PQ) = PO~ (P T . ®)
0Q) (OP) (0Q)

If PQRS be four points whose inverse are P'Q'R’S’,
PONRS PO (P&
(L) E'S’) _ (PQ) (RS)
(SP)(@R) (SP)(QR)

We shall make great use of this equation subsequently. For

the moment we merely draw therefrom an extension of the
previous proposition.

#)

Theorem 5.) The cross ratio of four points collinear with
the centre of inversion, but distinct therefrom, is equal to that
of their imverses.

We now assume specifically that P and @ are not collinear
with 0. We see from (2) that A OPQ and A OQ'F are similar,

hence X 0PQ =X 0QP.
If R be a fourth point in general position,
X OPR =X OR'P.
We substitute for each angle on the right its equivalent in

terms of the other two angles of the triangle whose vertices
are thereby designated, then subtract ;

L RPQ+ 4§ RPQ=§ ROQ = § ROQ.
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Theorem 6.] The algebraic sum of the corresponding angles
of two mutually inverse triangles is equal to the angle sub-
tended at the centre of inversion by the sides opposite these
angles.

Theorem 7.] If two opposite angles of a quadrilateral be
measured in such a way that the two initial sides and the two
terminal sides meet respectively in vertices of the quadrilateral,
their algebraic difference is numerically equal to the corre-
sponding difference for the inverse quadrilateral.

Of course, when we say that two triangles or quadrilaterals
are mutually inverse, we merely mean that this is true of their
corresponding vertices. We next let @ approach P as a limit,
so that PQ and P’Q’ approach tangency in two mutually
inverse curves.

Theorem 8.] The angle made at any point by a curve with
a lime from there to the centre of inversion is nwmerically the
supplement of the corresponding angle for the imverse curve
at the inverse point.

Theorem 9.] An angle at which two curves intersect at any
point other than the centre of inversion is the negative of the
corresponding angle made by the inverse curves at the imverse
point.

Theorem 10.] Curves which intersect at right angles not at
the centre of imwversion will invert into cwrves intersecting
at right angles.

Any curve which is its own inverse is said to be anallag-
matic*

Theorem 11.] If the circle of inversion intersect an anallag-
matic curve at any point which is a simple point for the
latter, the two will intersect at right angles.

Theorem 12.] A line through the centre of inversion is
anallagmatic.

Theorem 13.] A circle through a pair of inverse points is
anallagmatic.

* This curious word seems to be due to Moutard.
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We see, in fact, that if we consider any pair of points on
such a circle collinear with the centre of inversion, the
product of their distances therefrom is the square of the
radius of inversion. Let the reader show that

Theorem 14.] A circle which cuts the circle of imversion
at right angles is anallagmatic.

Theorem 15.] If two dntersecting cirvcles cut a third at
right angles, their intersections are inverse in the third circle.

This last theorem leads to another way of looking at
anallagmatic curves. If we have a system of circles moving
continuously yet always orthogonal to a fixed circle, we see
that the intersections of infinitely near circles are inverse in
the fixed circle, i. e. the envelope is anallagmatic. Conversely,
if an anallagmatic curve be given, a circle through two
inverse points and tangent at one, will be tangent at the
other ; the curve is the envelope of circles orthogonal to the
circle of inversion. The locus of the centres of the moving
circles shall be called the deferrent.

If a circle orthogonal to the circle of inversion be anallag-
matic, what is the inverse of a circle in general position ?

Fia. 1.
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Let € be the centre of such a circle, p the length of the
radius ; PQ shall be two points of the circle collinear with O
the centre of inversion, P’ and @’ their inverses. We assume
for the moment that our given circle does not pass through
the centre of inversion. A line through P’ | QC shall meet

0C in ¢". Now (0P)x (0Q) and (OP)x (0F’) have constant
values, hence

@_—_{):_consh = @: —-O_——_J;—Z .
(0Q) o0y (CQ)
The locus of P’ is thus a circle of centre €’ and radius
. (00)
P=p—-
(00)

Theorem 16.] The inverse of a circle not passing through
the centre of inversion is a circle of the same sort.

The reasoning above is inapplicable when the given circle
passes through the centre of inversion. In this case @
coincides with O. Let R be diametrically opposed to this
point, R’ its inverse. Then since A OPR is similar to A OR'F

LOR’P’:%-

Theorem 17.] The inverse of a circle passing through the
centre of inversion is a line not passing through that centre.

Theorem 18.] The inverse of a line not passing through
the centre of inversion is a circle through that point.

Theorem 19.] Parallel lines invert into circles tangent to
one another at the centre of inversion.

Theorem 20.] If two figures be mutually inverse with
regard to a circle, their inverses in a second circle whose
centre does mot lie on the first are mutually inverse in the
inwerse of the first circle with regard to the second. '

Suppose, in fact, that P and P’ are inverse in a circle C;.
Every circle through them will, by 13], cut C, at right angles.
The inverses of these circles with regard to a second circle C,
will cut the inverse of C; at right angles, and the two points
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common to them will be mutually inverse in that inverse
of C,.

Theorem 21.] If a circle be inverted into a straight line,
@ pair of points inverse with regard to the circle will become
« point and its reflection in the line.

Theorem 22.] If a curve be anallagmatic with regard to
two circles, it is anallagmatic with regard to every circle that
can be obtained by successively inverting one circle of inver-
sion in another.®

We saw in the reasoning which led up to 16] that mutually
inverse circles are similar figures radially situated. If two
figures be similar we may clearly adjoin to the one and the
other as many points as we please, getting more comprehensive
figures which are still similar with the same ratio of similitude,
and include the originals as parts of themselves. If there be
a point which corresponds to itself in two such similar figures,
it is called a double or self-corresponding point. When the
figures are radially situated, corresponding points are collinear
with the double point, and their distances therefrom bear to
one another a ratio fixed in magnitude and sign. The double
point is called the centre of similitude, and the fixed ratio the
ratio of similitude.

Theorem 23.] If two circles be mutually inverse, the centre
of inversion is a centre of similitude for them while the ratio
of similitude is numerically that of their radii. If this centre
lie outside of one circle it is outside of the other, and is the
point of intersection of their direct common tangents.

Suppose, conversely, that we have two circles which are
neither concentric nor of equal radius. Let us divide the
segment bounded by their centres in two parts proportional
to the radii, and find the harmonic conjugate of this point
with regard to those centres (loosely called dividing the

* Cf. Mobius, Collected Works, vol. ii, p. 610 ; also Finsterbusch, Die Geomelrie
ebener Kreissysteme, Werdau, 1893, p, 68. For the conditions that an algebraic
curve should be anallagmatic see Picquet, Sur les courbes et surfaces anallagma-
tiques, Comptes rendus de D’Association francaise pour I’avancement des
sciences, Session of 1878 at Paris.
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segment externally in that ratio). These points are the in-
ternal and external centres of similitude respectively, and are
the points of intersection of such common tangents as the
circles may have. Let O be one of these points and let a line
through it meet one circle in PQ and the other in Q'P’. Then

—_— -
©OP) _ 09 _
P —_— T =
(0¢) (0F)
— —> — —>
(OP)x (OF) = (0Q)x (0Q') = L.
We easily find that £ will be positive in the case of one
point when the circles do not intersect, and in the case of both

when they do. They are thus certainly mutually inverse in
one circle of radius V/%.

9

R

Theorem 24.] Any two circles of different centres and
wnequal radii are mutually inverse in at least one circle
whose centre is one of their centres of similitude.

The cirele or circles in which the given circles are mutually
inverse are called their circles of antisimilitude; that on the
segment bounded by the centres of similitude as diameter is
their circle of stmilitude.

Theorem 25.] If two circles of unequal radius lie outside
of one another, their common tangents intersect at their centres
of similitude and at fowr points of the cirvcle whose diameter
is the segment bounded by their centres.

Let us define as a tangential segment of a point with regard
to a circle a segment bounded by that point and the point of
contact of a tangent to the circle which passes through the
point. The common tangential segments of two circles will
be segments lying on common tangents and bounded by the
points of contact. Let us find the locus of a point whose
tangential segments to two circles are proportional to their
radii. The circles being c,c,, their centres C,C,, while the
radii have the lengths #,7,, if P be a point of the locus while ¢;
is the tangential segment from there to ¢;

g2t _ti+n? (PO (PC) _m
G RE T L PO By
We have, thus, by a familiar theorem of elementary geometry,
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Theorem 26.] The locus of points whence the tangential
segments to two mon-concentric circles of unequal radius are
proportional to the radiv is so much of the circle of simili-
tude as lies without the circles.

Theorem 27.] The distances from a point of the circle of
similitude of two given circles to their centres are proportional
to the respective radii.

Theorem 28.] The circle of similitude of two given circles
includes all points whereat equal angles are determined by
the pairs of tangents to the two.

We find at once from Menelaus’s theorem

Theorem 29.] If three circles be given, no two concentric
nor of equal radius, & line connecting o centre of similitude
of one pair with a centre of similitude of a second pair will
pass through a centre of similitude of the third pair.

If two circles touch one another, their point of contact is
a centre of similitude.

Theorem 30.] If a circle towch two others of wnequal
radius, the line connecting the points of contact will pass
through a centre of similitude of the two.

Theorem 31.] The centres of similitude determined by three
circles whereof no two are concentric or of equal radius lie by
threes on the sides of a complete quadrilateral, whose diagonal
limes conmect the pairs of centres of the circles.*

We find at once from the theorem of Ceva

Theorem 32.] If three circles be given, no two being con-
centric or of equal radius, the lines connecting each centre
with the centres of similitude of the other two are the side-
limes of a complete quadrangle whose diagonal points are the
centres of the given circles.

Let us return to the point of view where we regarded the
two circles as inverse in a circle of antisimilitude. If their
radii be p and p’, the radius of inversion

L __ (OP) ’ (OQ,)P s (5)

7=

¢ 40y L.~ OP) " L{oP){(0Q)°

* Chasles, Traité de géométrie supérieure, Paris, 1852, p. 539.
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If we define as the power of a point with regard to a circle
the product of its oriented distances to any two points of the
circle collinear with it (the square of the tangential segment
when the point lies without) we have

Theorem 33.] The radius of the inverse of a given circle
not through the centre of inversion is equal to the radius of
the given circle multiplied by the square of the length of the
radius of inversion, and divided by the absolute value of
the power of the centre of inversion with regard to the given
circle.

Let us next follow the fate of the centre of the given circle.
This point has the property that all straight lines through it cut
the given circle at right angles. These lines invert into circles
through the centre of inversion, whence by 15]

Theorem 34.] The inverse of the centre of a circle which
does mot pass through the centre of inversion is the inverse
of that centre in the inverse of the given circle. The inverse
of the centre of « circle through the centre of inversion s the
reflection of that centre in the line which is the inverse of the
given circle.

If two circles be given which do not intersect, either they
lie outside of one another, or the one includes the other. In
the first case we may easily find a point of the segment
bounded by their centres which has the same positive power
with regard to the two. This will be the centre of a circle
cutting the two at right angles, and intersecting the line of
centres in two points inverse in both circles. In the second
case, if a point move off indefinitely on the line of centres
from that intersection with the outer circle which is nearer to
the centre of the inner one, its inverse in the outer circle will
trace a segment which includes in itself the segment which is
the locus of its inverse in the inner circle. In each case we
can find a pair of points which are inverse in both circles. If
we take either as centre of inversion we find :

Theorem 35.] Any two circles which do not intersect may
be inverted into concentric circles.
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§ 8. Mutually Tangent Circles.

The last theorem enables us to solve a problem very dear to
Jakob Steiner.* Suppose that we have given two non-inter-
secting circles. What relations must exist between their radii
and the distances of their centres in order that there should be
a finite succession of circles all tangent to the given two,
and each tangent to its two neighbours in the ring? Let us
imagine that there are m circles in the ring, and that they
make m complete circuits. These numbers will be invariant
when we invert the given circles into two concentric circles of
radii », and », respectively. If the common radius of circles
of the new ring be 7,

2mm n
tan 1 = —
z( n ) «/(11+7'1)"——r2,

T4 = § (1479,

2
tanzm —_ I._...
a0 5Pty
Next, let any line through the common centre of the two
meet them in P/Q,” and P, Q,".

Fre. 2.

* See his Collected Works, vol. i, pp. 43 and 185. The resulting
systems of circles are described by English writers as °poristic’. See
H. M. Taylor, ¢ Porism on the ring of circles touching two circles’, Messenger
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To be definite, we assume that the former pair includes the
latter, and that PP, are on one side of the centre while
Q,’Q,” are on the other side. Then

(. =Tt (P/P,)X(Qz Q)

" (PIQY) % (PQy)
We saw, however, in equation (4) that the right-hand side
of this is invariant for inversion, the centre of inversion being

on the line of centres of the given circles. If, thus, this line
meet the original circles in P,Q, and P,Q,

mw _ (PP x (@) :
(PR x (P,Q)

This equation has a simple geometric meaning. Reverting
to the concentric case, let us construct circles on (P,’Q,’) and
(P, Q) as diameters. The distance from the common centre
to their centres will be 2 (r,—,), their common radius
3 (r;+7). To find the angles at which they intersect, we
have

tan?

~(ry—1r)?+ 3 (ry+m)° i ; (T2+r1)2—4"'2’

cos 6 = =
5 (ry+m)? 3 (ry+m)?
2
tan?if = — = tan? —~. (6)
Bl n

We thus get, recalling 9],

Theorem 36.] Let two mon-intersecting circles be given,
and let the line of centres meet the first in P,Q, and the second
in P,Q,; the points P,Q, separating the points P,Q,. A
necessary and sufficient condition that it should be possible
to construct a finite succession of circles tangent to the given
ones and successively tangent to one another is that the circles
constructed on the segments (P,Q,) and (P,Q,) as diameters

of Mathematics, vol, vii, 1878, and his brother W. W. Taylor, ‘On the Ring
of Circles touching two Circles’, ibid. See also Lachlan, ‘On Poristic
Systems of Circles’, ibid., vol. xvi, 1887. Our present treatment follows
Vahlen, ¢ Ueber Steinersche Kugelketten’, Zeitschrift fiir Mathematik und Physik,
vol. xli, 1896. For an interesting generalization see Emch, ¢ An Application
of Elliptic Functions’, Annals of Mathematics, Series 2, vol. ii, 1901.
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should intersect at an angle commensurable with =, The
denominator of the measure of such an angle when expressed
in terms of 27 and reduced to its lowest terms will give the
number of circles in the succession and the numerator the
number of complete circuits formed by them. If one such
circuit ewist, there will be an infinite number of them, one
circle being perfectly arbitrary except for the types of contact
with the given cirvcles. The points of contact of successive
circles in all of these circuits lie on one circle,

We may pursue this subject further. If we take as a
circle of inversion any circle orthogonal to the two given
ones, they are, by 24], anallagmatic therein, the Iine of
centres becomes a circle orthogonal to the two given circles,
the circles on (P,Q,) and (P,Q,) as diameters, become circles
tangent to the original circles, and orthogonal to a circle
orthogonal to them. We may thus state our condition in
slightly more general terms by means of the angle of these
last two circles. Suppose, then, that we have a ring of
circles, and that two circles of the ring touch the given circles
at four points of one same circle orthogonal to the original
ones. By two successive inversions we may go back to the
concentric case where, in our previous notations two circles
of the ring have (P, P,) and (Q,Q,) as diameters. The con-
centric circles will be two out of a ring tangent to the circles
on (P, P;) and (Q,Q,) and to one another in turn, and the
circles on (P,Q,) and (P,Q,) as diameters play the same role
with regard to both rings. If, then, m n, be the numbers
for the new ring, we have

m m m m

27—!=27— orelse 27—t =7—27 — .
ny 7 Ny n

The decision hetween these two possibilities requires delicate

bandling* Let us first remark that, % being given, these two

. . . m . i
. equations give different values for%-1 except in the case where
1

* Vahlen, loe, cit., overlooks the necessity for making both assumptions.
1702 (o]
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9=2. As 6 changes continuously the correct value for e

1y
cannot leap from being a root of one equation to being the

root of the other, except, perhaps, when 6 passes through
the value 2_2‘—1 First take r, = 0,
=1 =025 L 0E=Rar iy s — B == 0l
since the circles on (P, I%,) and (Q,Q,) can be simultaneously
inverted into parallel lines. Here, surely,
m oy -1

= -

o ALY 2
and this will hold for 6 > 7—; - On the other hand, if we take

r =17y,
m =1, m=®,

To find %—Ll notice that if two extremely small circles lie
1
without one another and be inverted into concentrie cireles,

the one becomes tiny, and m; = 1, n, = 2.

Theorem 37.] Given two mon-interseting circles which
possess the property that a ring of n circles may be constructed
all tangent to them and successively tangent to one another
making m complete circuits, and if two cireles of the ring
touch the original ones at points on one circle orthogonal to
these two, then the original circles arve members of « ring of n,
circles making m; complete cirewits, all tangent to the two
of the first ring, where

m o my 1

4 (7)

n ooy 2

This theorem so far astonished Steiner that he called it one
of the most remarkable in all geometry.*

We know that two mutually tangent circles can be inverted
into parallel lines. Let us do so for two internally tangent
circles ¢, ¢. The circles tangent to these two lines will all
have the same radius ;'; let ¢,/ be that circle of the system
whose centre lies on the perpendicular on the lines from the

* Coliected Works, vol. i, p. 136.
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centre of inversion, the circles of a system of successively
tangent circles, which touch the parallel lines shall be
¢ ¢ ¢y ...c;/, their eentres CyC/...C, . Inverting back
we get our original circles with the system of circles ¢, ¢; ... ¢;,
tangent to them and to one another in succession. The centre

F1c. 3.

of ¢, shall be (,, the perpendicular thence to the line of
centres of the original circles shall meet the latter in D,.
Since 0, and €, are collinear with O the centre of inversion
C,D,) 20y
(OOn) a (()C’ﬂ,)
But since O is a centre of similitude for €, and C,’
7% (Oon)’
S (AN
Theorem 38.] Given two circles ¢y and ¢ externally tangent
to ome another and « third circle ¢ having us diameter the
sum of their collinear diameters. Then if « series of circles
CoCy...cp be all drawn tangent to @ and ¢, and successively to
one another, the distance from the centre of c, to the line of
centres of ¢, ¢’ is n times the diameter of ¢,,.
This theorem is sometimes called the ¢ Ancient Theorem’
of Pappus. Steiner deduces a number of rather dull corrol-
laries therefrom.

C,D, = 2np,. (8)

& 19
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The figure bounded by the halves of ¢, ¢, ¢, which lie on one
side of the line of centres was first studied by Archimedes
and named by him ‘The Shoemaker’s knife’* TLet A be the
point of contact of ¢ and ¢, B that of ¢ and ¢,, while D is
the point of contact of ¢ and ¢;. A perpendicular to AB
at D shall meet ¢ again in E. The following theorems are
then easily proved.t

Theorem 39.] The' area of the knife is equal to that of the
circle on (DE) as diameter.

Theorem 40.] The perimeter of the knife vs equal to the
circwmference of c.

Theorem 41.] The point A has the same power with regard
to all circles which touch ¢ internally and DE on the same
side as ¢;.

Theorem 42.] The two circles which touch c imternally
and DE on opposite sides while one is externally tangent to
¢, and the other to ¢ are equal.

Theorem 43.] The common tangent to the first of these
and to ¢, passes through A.

Theorem 44.] Thecircle on (DE) as diameter passes through
the points where ¢, and ¢ touch a common tangent, while its
centre is the intersection of this tangent with DE.

We next pass to an invariant of two cireles. Let them be
¢,¢, with centres C,C, and radii p,p,. The centre and radius
of inversion being O and 7,

0Cy) = (0C)EL (0Cy) = (002,
P Po
(C/C)* = 00,2+ 00,2~ 2(0C,) (0C) cos {0, 0C,

= (0037 400 F P[00y 1+ (062) — (C,C,)7];
= (0012, + 001" 7 B2 100+ (06 - 0,07);

* Cf, Heath, The Works of Archimedes, Cambridge, 1897, pp. 304 ff.

+ For an account of the authorship of the theorems concerning the knife,
see Simon, Ueber die Entwickelung der Elementar-Geomelrie im X 1X{en Jahrhundert,
Leipzig, 1906, pp. 87, 88.
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from these and formula (5) we find
(€Y 0 —(p,—p/)? LN (CiC9)? —(p—p)”,

¢l

4p,)py == 4py 1
¢/ 02,)2 = (le +0)* = = (CiC)*—(p, + p)* .
4p,py N 4pyp;

The numerators of the left-hand sides of these equations are
the squares of the direct and transverse common tangential
segments, when these exist. Suppose that we have four
mutually external circles ¢, ¢,, ¢;, ¢, tangent to a fifth.
Either all are on one side thereof, or two on one and two on
the other, or three on one and one on the other. We may
invert them into four mutually external cireles ¢/, ¢;, ¢, ¢/
tangent to a line. Let them touch it at points P, P,
P/, P/, which will be connected by the identity

(PYP)) (P PY)+ (P By) (P By)) + (P P[) (P Py) = 0.
If t,, indicate a common tangential segment of ¢, and c,,
we may write this

the by bty 21 Ly’ = 0.
Here ¢;;” must indicate a direct common tangential segment
if ¢/ and ¢; touch the line on the same side, otherwise a trans-
verse one. Dividing through by the square root of the product
of the diameters we get a form invariant for inversion, hence

dropping the primes and multiplying the diameters out again,
we get Casey’s condition for four circles tangent to a fifth.*

Theorem 45.] Four mutually ewternal circles tangent to
a fifth are connected by a relation

bigtas  tiglyy Fty4tay = 0. 9)

Here all the t;;'s denote common direct tangential segments, or

those connecting two pairs with no common member denote

direct tangents and the other four transverse, or those which

lack one subscript denote direct, and those which include it
transverse tangential segments.*

* See his greatly overrated Sequel fo Euclid, London, 1881, p. 101. The

ingenious writer makes two characteristic mistakes. He assumes that in
proving the theorem he has also proved the converse. Secondly, he omits
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Theorem 46.] If « conver quadrilateral be inscribed in
« cirele, the swm of the products of the opposite sides is equal to
the product of the diagonals.

This is Ptolemy’s famous theorem. Let us proceed to the
converse of 45]. We assume that we have four mutually
external eircles connected by that relation. We shall call
them ¢, ¢y, ¢;, ¢, and suppose that p, is the smallest radius.
We shrink the radius of ¢; by p, and shrink by that same
amount the radius of each of the given circles whose common
tangential segment with ¢; is direct, but increase the radius
by p, if the tangential segment be transverse. We thus get
four cireles ¢,’,¢;, ¢,/ ¢/, whereof ¢, is a point-circle €’ con-
nected by

t12’ t34, i t13, t42’ * tul t23l = 0.

These circles are still mutually external. Let us next invert
with 0" as a centre, we get three new circles ¢,”, ¢,”, ¢,”,

; /ff‘)’ﬁ 7
t”:t,\/—us t”:?‘ —2’
“ N P3/P4/ i Pll

tay 1+t = 0.

Let us show that these three cireles, which are also external
to one another, will touch a line. Once more shrink the
smallest circle until it becomes a point shrinking or increasing
the radii of the other two as before. We have a point so
related to two mutually external circles that the sum of its
tangential segments with them is equal to a common tangential
segment of theirs. If the point lie on a common tangent to
the two cireles such a condition will be fulfilled, and if it
move off on a circle concentric with the one, the condition will
be unfulfilled until it fall again on the like common tangent.
Hence the point lies on a common tangent to the two circles;
hence ¢,”, ¢, ¢,” touch a line, ¢, ¢/, ¢, touch a circle
through €/, and ¢, ¢,, ¢;, ¢, touch one circle.

to require his circles to be mutually external. But in that case it is easy
to find four circles tangent to a fifth whereof one surrounds the three others
and has no common tangential segments with them, in the real domain.
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Theorem 47.] If there exist among the common tangential
segments of four mulually external circles an equation of the
type (9) with the same requirements as to direct and transverse
tangents «s there obtuined, then these four circles ure tangent
to a fifth.*

Theorem 48.] If the sum of the products of the opposite
sides of a convex quadrilateral be equul to the product of the
diagonals, the vertices are concyclic.

As a second application of our formula (9) let us prove the
justly celebrated theorem of Feuerbach.f

We start with a triangle with the standard notation ex-
plained on p. 21. Construct the three altitude lines, and let
A;H meet the circumscribed circle again at B;. We have
then

§ B;id; Ay =L B;didy = g —L A =4 B;jd;4,.

This shows that Ha; is mid-way between H and B;. If we
take H as a centre of similitude and a ratio %, the given
triangle becomes that whose vertices are half-way from I to
the given vertices, and the circumseribed circle is transformed
into the circle through these three half-way points, and also
through the feet of the altitudes. These six points are thus
concyelie. Again, if we take the A HA; Ay the orthocentre
is 4;; the feet of the altitudes are the same points as before,
the points M;, M; are half-way from the new orthocentre to
two of the vertices. We thus get the first part of our theorem,
namely, the feet of the altitudes of a triangle, the middle
points of the sides, and the points half-way from the ortho-
centre to the vertices lie on one circle. We next construct
the escribed cirele ¢; tangent to (4;4;) and to the prolonga-

* This proof is substantially taken from Lachlan, Treatise on Pure Geomelry,
London, 1893, pp. 245 ff. See also Allardice, ‘ Note on Four Circles Tangent
to a Fifth’, Proceedings Edinburgh Mathematical Society, vol. xix, 1901, Neither
writer takes the pains to require the circles to be mutually exterpal. It
might thus happen that ¢, surrounded ¢, and the proof would break down.

F First published in 1822. The number of proofs in existence is almost
transfinite, a recent writer adding nine. Swayama, ‘ Nouvelles démonstra-
tions d’un théoréeme relatif au cercle de neuf points’, L’'Enseignement
mathématique, vol, xiii, 1911.
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tions of (4;4;) and (4;4,) beyond 4; and 4, respectively.
Let 2 be the tangential segment from A4; to this circle. The
equality of the two tangential segments to this cirele from A4;
gives

ak+w = aj+a,-—m,

T = 8—dy, ai—CU:S—ij.

Let us take this as our circle ¢,, while the middle points of the
sides shall be the point-circles ¢, ¢,, ¢,

— 35 —T =il
by =% tg=13%q;, tg=3a,

= 23 (0 —ap), Gy=d(ai+ay), t= 5 (e;+ay),
tutk4_tlktj4¢t’l4t]7u = 0
A similar relation will be found connecting the new circle

with the inseribed circle; we thus get the theorem in its
entirety. ‘

Theorem 49.] The middle points of the sides of a triangle,
the feet of the altitudes and the points half-way from the
orthocentre to the vertices lie on a circle which is tangent to
the inscribed and the three escribed circles.

This circle is, for obvious reasons, called the mine-point

A v

A,

Fic 4.
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circle. Let us give another proof that it touches the inseribed
and escribed circles.*

Let the circles ¢, and ¢, be escribed to the given triangle
and touch the line 4,4, in the points P, and P, respectively.
Let S be the point of concurrence of c,cg (the line of centres),
4,4, and the fourth common tangent to ¢, and ¢;. A4, and S
are thus the centres of similitude of ¢, and ¢;. Moreover, if we
recall the original definition of centres of similitude, we see
that 4, and S are harmonically separated by C, and C,, or
Ha, and S are harmonically separated by P, and P,. The
tangent at M, to the nine-point circle makes with M, M, and
so with 4, 4,, an angle equal 4.4, and so is parallel to the
fourth common tangent. The nine-point circle is thus the
inverse of the fourth common tangent in a circle whose centre
is M, and radius is equal to (M P,) = (M, P;). The nine-
point circle must thus touch the escribed circles ¢,, ¢,, which
are anallagmatic in this last circle. By similar means we
show that it touches the inscribed cirele also.

If a triangle have an obtuse angle, the orthocentre lies
without it. The feet of the altitudes lie in pairs on the three
circles on the sides of the given triangle as diameters. The
orthocentre has the same positive power with regard to these
three, so that the product of the distances from the ortho-
centre to each vertex and the foot of the corresponding
altitude is a constant positive number. '

Theorem 50.] The circumscribed and nine-point circles
of an obtuse-angled triangle are mutwally inverse in a circle
whose centre is the orthocentre.

It is to be noted that this is the only circle with regard
to which the given triangle is self-conjugate in the sense of
modern geometry.

Feuerbach’s theorem may be extended in a number of
ways. The second part states that the inseribed and eseribed
circles of a triangle touch another circle. By inversion this

* Fontené, ¢ Sur le Théoréme de Feuerbach’, Nouvelles Annales de Mathé-
matiques, Series 4, vol. viii, 1907. This proof possesses the advantage over
the other of showing where the points of contact are.
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will hold if we replace the triangle by a curvilinear one
formed by concurrent circles. Let us try to remove the
restriction that the three original cireles should be concurrent.
We start with three inter-
secting circles ¢, ¢, ¢;, the
intersections of c;c; being
points A4;4/. Eight circular
triangles are thus formed
whose angles are connected
in simple ways. It is in-
tuitively evident that a
circle may be inscribed in
each of these triangles. In
particular let us take the
triangle A, A4, A, which we
assume to be convex, and
thethree triangles 4, 4 » A,
which we shall call asso-
ciated with it. The four
inseribed cireles shall be ¢, ¢/, ¢, ¢, If we write ¢;/
to indicate a direct common tangential segment and ﬁ-j’ a
transverse one, we have three equations of the type

t_o;'l jh,i toj/‘gi, = toklzi-j, =0

Let us determine the signs more specifically. In the arcual
triangle 4,, 4,, 4, two of our circles ¢,, ¢; touch the circle of
each side between the vertices, but with opposite contacts.
Suppose, to fix our ideas, that in making the circuit of the
triangle we meet the vertices and points of contact with the
tangent cireles in the following order

Al o darraf waole s
We have the following orders on our original three circles :
on ¢, e R L
GIFI) (B o o e

’ . 7
on ¢y, el oy A ey
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These will yield the following equations :
toy 75:1/= t;’t%’ + g5 t;’,
tos b’ = b Lo + Yo tar's '
02/t S tOl,t23 +t03,t12,'
Henee o 5 ol
tog the' = oy oy + gty
We thus get Hart's theorem.*

Theorem 51.] The inscribed circle of a convex circular
triangle and those of three associated triangles are touched by
a circle which has contact of one sort with the first, and of the
opposite sort with the other three.

This new ecircle is ealled a Hart circle of the first three.
It may coineide with one of the four inscribed eircles. It will
exist even when the given triangle is not convex; our proof is
not, however, necessarily valid in that case, for the four may
not lie external to one another. These delicate considerations
are usually ignored in the geometrical treatment of this
subject. ‘

Let the Hart cirele be called ¢,. The following will give
the system of contacts.

& g b
¢, touches ¢, ¢y, 5, ¢, internally.

( - - >t oy

¢,/ , €y ¢y internally ¢, ¢, externally.
{

Co » €3, €y » Cgy Cy 3
’ 0

Cy ” 1 Cg ) C3s Cy )

The essential thing to notice is that ¢; has an opposite sort of
coutact with ¢; from what it has with ¢/, ¢/, ¢/,

Theorem 52.] If four circles be given whereof one is the
Hart circle for o convex circulur triangle formed by the
other three, then each of the four is « Hart circle for the
remainder.t

* ¢On the extension of Terquem’s Theorem ’, Quarterly Journal of Mathematics,
vol. iv, 1860. For a much simpler proof see p. 165, foot-note.

+ For an elaborate treatment of this and similar theorems see an unusually
badly written article by Orr, ‘The Contact Relations of Certain Systems
of Cireles’, Transactions Cambridge Philosophical Society, vol, xvi, 1898.



44 THE CIRCLE IN CH.

§&. Circles related to a Triangle,

Suppose that two circles are so related that a triangle can
be inscribed to the one and circumseribed to the other. Their
radii shall be » and p respectively, while the distance of their
centres O and 0" is d. Let OO’ meet the circumscribed circle

Fre. 6.

in BC. Let 4; 4y, touch the inscribed cirele in 4;/, while 0’4,
meets A;4;" in 4;” the middle point of (4, 4,;/) and the
inverse of A; in the inscribed cirele.

Theorem 53.] If two circles be so related that a triangle
inseribed in the one is circwmscribed to the other, then the
SJormer is the inverse in the latter of the nine-point circle of
the triangle whose vertices are the points of contact.*

The nine-point circle is circumscribed to a similar triangle
of one-half the size of the original, so that its radius is one-half
that of the circumscribed circle. If the inverses of B and ¢
be B” and C” respectively,

2 2 2
‘B = _:l_’ = KL e Oy — Mz
© (0'B) r—d OIET r+d

THEIIPN i yias s P2 P2 2
S )_p_—fr+d+ r—d

* The treatment of this and the four following theorems is taken direct
from Casey, loc. cit., Book VI.
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Theorem 54.] The radii of the circles circwmscribed and
inseribed to a triangle are connected by the equation

1 1 1
=34 = M 10
r+d " r=d _ p’ (10)

where d is the distance of their centres.

This necessary condition is also sufficient if » be greater
than p, for the inverse of the nine-point circle of the triangle
whose vertices are the points of contact with the smaller circle
of a triangle circumscribed thereto and having two vertices in
the larger circle will be that larger circle which thus goes
through the third vertex. Let us pursue our inquiry further
and find a necessary and sufficient condition that it should
be possible to inscribe a quadrilateral to one circle which is
circumseribed to the other. We need two preliminary
theorems.

Theorem 55.] If a wvariable chord of a circle subtend a
right angle at a fixed point not on the civcle, the locus of the
intersection of the tangents at its extremities is a circle.

This locus is, in faet, the inverse of that of the middle
points of the chord. The sum of the squares of the distances
of this middle point from the fixed point and from the centre
of the circle is easily seen to be constant, so that it traces
a circle about the point half way between the centre of the
given circle and the given point.

Suppose, now, that we have indeed a quadrilateral inscribed
in one circle and circumsecribed to the other. The sum of
the opposite angles is =, double the angle formed by the lines
connecting opposite points of contact.

Theorem 56.] If a quadrilateral be inscribed in one circle
and circumscribed to another, the lines connecting the points
of contact of opposite sides are mutually perpendicular.

Theorem 57.] If two circles be so related that a triangle
or quadrilateral may be inscribed in the one and circum-
scribed to the other, then an infinite number of such triangles
or quadrilaterals may be found, one vertex being taken at
random on the other circle.
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Let us take this random vertex on the line of centres: call
it A,; the opposite vertex A, will clearly be on this line also.
The pairs of sides which do not meet in these vertices and are
not opposite to one another are mutually perpendicular, as
are the radii of the inner circle to their points of contact.
If thus A, and 4,” be the intersections of the line of centres

Fre. 7.

with the chords of contact to the inner circlo of the tangents
from A4, and 4,, i.e. the inverses of these points
(0A))+(045) = p’,
1 1 1
(r—d)? + (r+d) p2
As before, we have no difficulty in showing that thls necessary
condition is also sufficient, hence
Theorem 58.] If » and p be the radii of two circles, the
former surrounding the latter, while d is the distance of their
centres, a mnecessary and suffictent condition that it should
be possible to construct a quadrilateral inscribed in the one
and circumscribed to the other is that *
1 1 1
(5*7+7d) (r=d) p*’ i)
* There is a considerable body of literaturo connected with equations 10
and 11; see Simon, loc. cit., pp. 108, 109. They are originally due to Euler,
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Continuing with the inscribed quadrilateral of vertices
4., 4,, 4,, A,, let P be any point of the circumseribed cirele.

As

Az

Fra. 8.

If p;; indicate the distance from P to the side-line 4;4;,
we have

PiePsu _ Sin X PA A, sinf PA A,

PP SmL PA,A, smi PAA,~ "

Theorem 59.] The product of the distances from a point on
a circle to one pair of opposite side-lines of an inscribed
quadrilateral is equal to the product of the distances to the
other pair of side-lines, and to the product of the distances
to the diagonal lines.

If a polygon of an even number of sides be inseribed in
a circle, it may be divided into one or two less sides and
an insceribed quadrilateral. We thus get by mathematical
induction
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Theorem 60.] If a polygon of an even number of sides be
inscribed in a circle, the product of the distances of any point
of the circle to the even nmumbered side-lines is equul to the
product of its distances to the odd numbered ones.

Theorem 61.] If a polygon be inscribed in a circle and
tangents be drawn at all of its wvertices, the product of the
distances of any point of the circle from these tangents is
equal to the product of its distances from the side-lines.

The cirele circumsecribed to a triangle is, on the whole,

Ay

Az

Az
Fic. 9.

more interesting than the inseribed one. Let us take a
triangle in standard notation and consider the pedal triangle
Pa, Pa, Pa, of a point P. Let PA; meet the circumseribed
circle again in B;. To fix our ideas we shall take P outside
the triangle, near 4,,

Y. Pa,Pa,Pa, = % Pa, PPa,+) Pa,Pa, P+ ) Pa,Pa,P.

Since, however, the quadrilateral P Pa, Pa, 4, is cyclic, i.e.
inscriptible in a circle,

Y Pa,PasPa;=n—4 A, +45 A4, P+ A AP,
=7n—4 PA, B,
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A Pa, Po, Pa, = § (Pa,Pa,) (Pay,Pa,) sin - PA, B,
(PajPay)=(PA;)sin XA (PA;)sin { PA,B = (PB,)sinf 4,

t=3
APa, Pa,Pa; = 3(PA)(PB) | | sin 44,

f=1
=13

= +3[*= (0P [ [sin L 4,.
i=1
Theorem 62.] The locus of the points whose pedal triangles
with regard to a given triangle have a given area is a circle
concentric with the circumseribed circle.
Theorem 68.] The locus of the points so situated that the
feet of the perpendiculars from them to the side-lines of a triangle
are collinear is the circumseribed circle to the given triangle.
This line is called the pedal or Simson line of the givin
point.
—_—
Let the value of XA, A, P be «;, while
L 4,4, =4,
i=3
2
Conversely, if three lines be drawn through the three vertices
of a triangle in such a way that this cquation is satisfied,
these lices will be concurrent or parallel. If, then, starting
with P we take the reflection of A4,P in the bisector of
§-4;A;4;, we get three other lines concurrent in a point P’
called the isogonal conjugate of P with regard to the given
triangle, or else three parallel lines.

sin o
sin oy

= —1. (12)

Theorem 64.] Every point not on the circumscribed circle
to a triangle has a single definite isogonal conjugate. The
relation between the two is symmetrical.

Let us consider the pedal circles of two isogonally conjugate
points, i.e. the circumseribed circles of their pedal triangles.

e >
(AjPa.i') CO8 O(j (A’-Pak)
——— o T e L0
(4;Pay)) °®%  (4,Pa)
(AjPa@-) X (Aj-P(‘i’) = (Aj])ak) X ('AjPak/.)'

1702 D
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The points Pa;, Pa;, Pa;,, Pa;’ are thus concyclic. The six
points Pa;, Pa; could not lie by fours on three circles, for the
common chords of these circles would be the side-lines of

Fie. 10,

the triangle, instead of being concurrent. Hence the six
points are concyclic. We thus get a generalization of the
first part of Feuerbach’s theorem.

Theorem 6.5.] Two isogonally conjugate points have the
same pedal cirele.

Theorem 66.] If from the foot of each altitude of a triangle
a perpendicular be dropped on the remaining side-lines, the
six points so determined are concyclic.

A generalization of 65] is found as follows. It is not
necessary in the above proof to assume zf_PPa.jAkzg;
we merely need X PPa;4; = P'Pa/ A4, = 6.

The AA;PPua; is thus similar to A 4; P’ Pay/

(4;Pa) x (A;Pa}) = (4;Pa) x (4, Pdy).

Hence Pu,, Pa;, Pa;,, Pa;’ are concyclie, and, as before,
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Theorem 67.] If through a chosen point not on the circum-
seribed civcle of a triangle three lines be drawn each making
a fiwed angle with one side-line of the triangle so oriented as
to trace the whole circuit in one sense, and if through the
isogonally conjugate point three others be drawn making
the supplementary angles with their oriented side-lines, the
siz points where the lines of the two concurrent triads meet
the corresponding side-lines are concyclic.*

Let us see where the pedal circle of a point P meets the
nine-point circle. The intersection of the lines Pa;Pa; and
M; M, shall be 4;. We intend to show that the three lines
A;Pa,; are concurrent in a point L of the nine-point circle.

As

Fie. 11.

Construct the circle A;M;M,. It will contain O which,
parenthetically, is the orthocentre of the A M, M,M,, and
is diametrically opposite to A,. Let PO meet this ecirecle
again in L;. The points L;Pa;Pa; are the vertices of three
right triangles on (A4;F) as common hypotenuse, and so are
concyelic with 4;and P. This cirele will also contain Pa/,
the reflection of Pa; in M; M;,. Moreover, the points 4;L; Pa/

* Cf. Barrow, ‘A Theorem about Isogonal Conjugates’, dmerican Mathe-
matical Monthly, vol. xx, 1913, p. 25.

D2
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are collinear. For L; lies on the circles 4, M; My, A;Pa, i Pag;
hence the feet of the perpendiculars thence to the four lines

A My, A My, MMy, Pa; Pay, are collinear by 63], so that Z;
lies on the clrcle A, MkPak

LA,L;Pay, = L A; M, Pa,.
The pentagon A;PPay, Pa; L; is inscriptible, as we have just
seen, and
=<4 PayL;Paj=—LPay,A;Pa/=LPajPPoy = L A; M, Pay,
the sides being perpendicular each to each.
—£ A;L;Pay = L Pay, L;Pa,.
Hence A;L;Pa; are collinear. Now let the reflection of L,

in M. Mk be L. Tt lies on the line A ;Pa; and also on the nine-
pomt circle. Also

—_— o g —_—— ——
(4;L) (A;Pay) = (4;L;) (A;Paf) = (4;Pay) (4; Pay,).
Hence L is the intersection of the nine-point and pedal circles.

If P move along a fixed line through O the points Z; L remain
fixed, whence *

Theorem 68.] If a point move along a fixzed line through
the centre of the circumscribed circle, its pedal circle will
contain a fized point of the nine-point circle.

The other intersection of the nine-point and pedal circles
will be similarly obtained from the isogonal conjugate of P,
whence

Theorem 69.] A necessary and sufficient condition that the
pedal circle of a point should touch the nine-point circle is
that the point and its isogonal conjugate should be collinear
with the centre of the circumscribed circle.

We deduce Feuerbach’s theorem, second part, at once from
this by noticing that the centres of the inscribed and escribed
circles are their own isogonal conjugate.

* This theorem and the next are due to Fontené, ¢ Extension du théoréme
de Feuerbach’, Nouvelles Annales de Mathématiques, Series 4, vol. v, 1905. The
proof here given is that of Bricard, under the initials R. B., and inserted in
the next volume of the same journal.
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We have already noticed that the orthocentre of a triangle
is one centre of similitude for the nine-point and eircumseribed
circles. The other centre of similitude will be the harmonic
conjugate of the orthocentre with regard to the centre of the
nine-point circle and the point 0. This must be the centre
of gravity, since the foot of the perpendicular from there on
A; Ay divides (4;A;) in the ratio 1:2.

Az

Fic. 12.

Theorem 70.] The orthocentre and the centre of gravity are
centres of svmilitude for the nine-point and circwmscribed
cireles, the ratios of similitude being 1:2 and —1: 2 respec-
tively.

There is another circle much less well known than the nine-
point eircle but possessing a number of analogous properties.
Let the inscribed circle touch (4;4;) in 4, while the eseribed
circle corresponding to this side touches it in 4;”.

(4;4{) =s—a;, (434])=(~qa), (4;4])=s-ay,
(A 4]") = s—a;.

The lines 4;A;” are thus concurrent in a point N.1 J shall

* Spieker, ‘Ein merkwiirdiger Kreis um den Schwerpunkt des Perimeters
des geradlinigen Dreiecks als Analogon des Kreises der neun Punkte’,
Grunert’s Archiv, vol. 1i, 1870,

+ This is Nagel’s point: Unfersuchungen iiber die wichtigsten zum Dreiecke
gehdrigen Kreise, 1836 (inaccessible to present author). It corresponds to
Gergonne’s point where meet lines from the vertices to the points of contact
of the opposite sides with the inscribed cirecle.



54 THE CIRCLE IN CH.

be the centre of the inseribed cirele. Applying Menelaus’s
theorem to A;4; 4", and the line 4;.4,”.

Ay

Fig. 13.

(FAJ) (4:4,") (44 |
(V4y) (4;4;7) (474~ 7
(NVA) _ s—a;
(Ndy-7 Fag
(N4) _a;

(474) " s

We have further

2A i/ AN
(4iHa)) = ——, (JA4{)=—

’
8 §
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(4;Ha;) = ajeos L4,

(fjaiAi,/) = (S - ((k) et ((‘k cos 4_ AJ = ZS [%(li ad (S -~ ((j)],
1

(Ha, A{) _(4;Ha;)
(A/My) — (J4{)

(A 1112)—‘2 1 (S )9

The triangles A;Ha;4;” and JA;M; are thus similar.

TM) o« NA,
(A A 1/ ?ls‘ = %ClliAf//‘) 5 (Jﬂ[w) = %(lVAl)
[}

Hence (JN) meets (4;M;) in M, and is divided internally
thereby in the ratio 1:2. We see also by 70] that OJHN
are the vertices of a trapezoid whose diagonals meet in J/,

(JO) = L(HN).

Now let P be the middle point of (J¥). Join A, with J
and M; with P, and draw 4,1,

(JP) = L(JN), (JM)=3(IN).

It then appears that if we take the centre of gravity as centre
of similitude, a ratio of —1:2, the following are interchanged

ﬂfi"‘Ai, O~.H, J~N.

Theorem 71.] The centre of the imscribed circle is the
Nagel point of the triangle whose vertices arve the middle
points of the sides.

We have further

(JM) _(A;M) 2
’(M’P} MMy~ 1’

Hence AJ is parallel to M P, or M;P bisects X M;M;M,
so that P is the centre of the circle mscnbed in the tnangle
M, M,M,. Its radius is one-half that of the inscribed circle,
and N is a centre of similitude. ~We shall call this the
P circle, and exhibit its analogies to the nine-point circle
as follows:
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Nime-point circle.

Circumscribed to the tri-
angle whose vertices are the
middle points of the sides.

Radius one-half that of
circumseribed cirele.

Centre of gravity and
orthocentre are internal and
external centres of similitude
for nine-point and ecircum-
scribed eircles, ratios being
—1:2 and 1:2 respectively.

Nine-point circle passes
through points half-way from
orthocentre to the vertices of
the triangle.

Nine-point ecircle cuts the
sides of triangle where they
meet the corresponding alti-
tudes.

THE CIRCLE IN

CH.

P circle.

Inscribed in the triangle
whose vertices are the middle
points of the sides.

Radius one-half that of
inseribed circle.
« Centre of gravity and

Nagel point are internal and
external centres of similitude
for P circle and inscribed
circle, ratios being —1:2 and
1:2 respectively.

P circle touches the sides
of the triangle whose vertices
lie half-way between the
Nagel point and the vertices
of the given triangle.

P circle touches the sides
of the middle point triangle
where they meet the lines
from the Nagel point to the
corresponding vertices of the
given triangle.

To prove the last statement on the right let us suppose that
NV is the point of contact of (M;M;) with the P circle. Let

JA@'/ meet A{N in M’i’i

(A{ M) = 30, —(s—a;) = $(a—ay),
(A7 A{7) = (@ —a;) = 2(A{ ).

Hence, since JM; is parallel to 4;4;”, J is the middle point

of (47 M}),

(M) = (4J) = p= 2(PN}), PN/|JM.

N, is thus the middle point of (VM) and on M M,
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Nine-point circle.

Meets the lines through the
points mid-way from the
orthocentre to the given ver-
tices parallel to the corre-
sponding side-lines where they
meet the perpendicular bi-
sectors of the given sides.

P circle.

- Touches the sides of the
triangle whose vertices are
balf-way from the Nagel point
to the given vertices at the
points where each meets the
line from the centre of the in-
scribed eircle to the middle

point of the corresponding
sides of the original triangle.

The last statement is at once proved by noticing that JM;
bisects (NA;).

Theorem 72.] The nine-point circle passes through twelve
notable points, the P circle touches six notable lines at notable
points. Euch is obtained from a notable civcle by either of
two similarity trunsformations, the ratios being —1:2 and

- 1:2, while the centres of similitude are notable points whereof
the centre of gravity is one.

Returning to the Nagel point we saw that

(.ZV ,Q_S—ai (.N-Ai) _(i.
(NA-) - a; 2 (A.”A.’)_S

The altitude (A4;Ha;) has the lenguh —.

gonal projection of (4;N) thereon has the length 2p. Again,.
if A" A,”” A" be the vertices of the triangle whose side-lines
each pass through one of the original vertices parallel to the
opposite side-line, we see that XV is the centre of the inscribed
circle to A A, A4,”A4,". Since A;J passes through the
middle point of the arc A/71k of the circumseribed circle,
A{” N passes through the reflection of this point in 4;4;.
Call this 4;/; the points 4 " A;, HA; 4, are concyclic, smce
the 1eﬁectlon of Hin A;4, is on the circumseribed circle, and
HA;/” is a diameter sinco H and 4;” are at the same distance

from the diameter L to 4;4;, £ HA/N =4 HA/4/"=

Hence the ortho-
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Hence

Theorem 73.] The circle on the segment from the Nagel
point to the orthocentre as diameter pusses through those three
points on the altitudes whose distances from the corresponding
vertices ure equal to the diameter of the inscribed circle, and
the reflections in the side-lines of the given triangle of the
middle points of the corresponding ares of the circumscribed
circle.

This circle is known as Fuhrmann’s circle.*

Fre. 14.

Let us continue to study the relations of a triangle to the
circumseribed circle. Let 4;H meet the circle again in A4, so
that (HHa;) = (Ha;A;). Let B be any other point of the cir-
cumscribed circle; BA; shall meet 4;4; in R. Draw HR. The
Simson line Ba; Bay, of B shall meet BH in B’, while it meets
BA; in B”. Let RBa; meet HR in B”. We see from the
eyclic quadrilateral BBa;Ba, A,

£ Bay Ba;B = £ Ba;, A;B,
LB’"Ba;B=LA;A;B = / Ba;BB".
* Synthetische Beweise planimetrischer Sitze, Berlin, 1890. This and the
Brocard circle presently to be discussed are special cases of a more general

eircle discovered by Hagge, ‘ Der Fuhrmannsche Kreis und der Brocardsche
Kreis’, Zeitschrift fiir mathematischen Unlerricht, vol. xxxviii, 1907,
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The triangles HRA,;, Ba;B”B are similar isosceles triangles.
¥ Ba,B”"B = ¥ B"RBa;+ ¥ 1"Ba;R,
=Y HRA, = 2 Ba;RB,
X Ba;RB’= ¥ B"Ba;R
(BB") = (Ba;B") = (BR)
Ba,;B"” || HR.

Theorem 74.] The middle point of « segment bounded by
a point of the circumseribed circle and the orthocentre lies on
the corresponding Simson line and the nine-point circle.

If we drop a perpendicular from A4; on the Simson line of B
its lesser angle with 4;4; will be equal to

L BBakBai =N/ B‘A"iAk'

Theorem 75.] The isogonal conjugate with reguard to an
angle of a triangle of « line through the vertex of that angle is
perpendicular to the Simson line of the second intersection of
the given line with the circumscribed civcle.

Let us next take a fourth point A4, on the circumseribed cirele,
let 17, be the orthocentre of the A4; 4, 4;. Theline from 3 to
the middle point of (H;4,) bisects (H;0), being a diameter of the
pine-point cirele, and (4;H) = 2 (0OM;). Hence, in our present
case, (4;11;) = (4; H,), and their lines are parallel. We assume
that 4; and 4; are on the same side of A 4;.

Theorem 77.] If four points be taken upon a civele, the
wine-point circles of the four triangles which they determine
three by three are concurrent in a point common to the Simson
line of each point with regard to the triangle of the others.*®

Let us for the moment call this the point S.

Theovem 78.] The perpendicular from the middle point of
A, A on A; A, passes through S, and the distunce from S to
=] D g

* Lachlan, loc. cit., p. 69, assigns the credit of this theorem to the Cam-
bridge Tripos of 1886. It will be found much earlier in rather a clumsy
article by Greiner, ¢ Ueber das Kreisviereck’, Grunerts Archiv, vol. lx, 1877,
For this, and the five following without proof, see Kantor, ‘ Ueber das
Kreisviereck und Kreisvierzeit’, Wiener Akademie, Sitzungsberichte, vol. 1xxvi,
section v, 1877,
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the middle point of (4;4;) is equal to the distance from O
to AkAl' f
Since the diagonals of a parallelogram bisect one another,

Theorem 79.] The segments connecting the middle points of
the pairs of seqgments (A;4;) (A4 bisect one another in the
maddle point of (08).

Theorem 80.] The four orthocentres are the vertices of @ quad-
rilateral congruent to that with the vertices A, A, A; 4, and
having the same point S. Each is a reflection of the other in
this point.

Theorem 81.] The centres of the four wine-point cirvcles are
vertices of a quadrilateral similar to that with vertices 4;,
and bearing thereto a ratio 1:2. It is inseribed in a circle of
centre S.

We see, in fact, that the distance of each nine-point centre
from S is 3. Remembering the relations of O.M; H developed
in the study of the P circle,

Theorem 82.] The centres of gravity of the four triangles
are veriices of a quadrilateral similar to that having the vertices
A, and bearing thereto the ratio 1: 3.

§ 5. The Brocard Figures.

Besides the inscribed, eircumseribed, nine-point, and P eircles
there are many others which bear simple and striking relations
to the triangle. For example, let us construct three circles
through the pairs of points 4;4; tangent respectively to 4;4,.
If Q be the intersection of two of these,

Y A QA = A,; Y 4,04, =n—-) 4,;
hence A,Q4,=n—-4 A,
It thus appears that the three are concurrent in Q, which is
called the positive Brocard point of the triangle. Had we
constructed circles through A4;4; tangent to 4;A4; we should
have had three concurrent in the negative Brocard point & ¥

* In the study of the Brocard figures which follows we shall lean heavily
on an admirable little book by Emmerich, Die Brocardschen Gebilde, Berlin, 1891,
This gives not only proofs, but bibliography and historical notices. The
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The distinguishing characteristic of these points is ex-
hibited by the equations

L DA A =304,4, =4 Q4, 4, =0;
LA =104 4,= Bl A =,

Conversely, it is easily seen that if we seek a construction

Fra. 15.

for points to satisfy these equations we shall fall back upon
the Brocard points. To calculate o
(QA,):ay=sinw:sinf_A,, (24y):a;=sin{ (4d;—w):sin)f 4,
sinf 4, sinf (d;—w)sinf 4,
gimgeeds s | sinwsind A,
2 sinf_ A4, et
ctnow = Goid,sn i 2, +etnf A4, —’zctn X A; (13)
The symmetry of this expression shows that » = o’ It is
called the Brocard angle.

Brocardian geometry, like the study of nine-point and P circles, is part of the
modern ¢ Geometry of the Triangle’. This subject has attained colossal pro-
portions almost over night. Vigarié, ‘La bibliographie de la géométrie du
triangle’, Mathésis, Series 2, vol. vi, 1896, estimates that, up to 1895,
603 articles had been written dealing therewith, The subject was only
started in the seventies.
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Theorem 83.] The two Brocard points are isogonal con-

Jugates of one another.

csc’w = ese? A, +etn? A, +etn?f A, 425 ctn)f 4, ctn A,

l—ctn) A etni 4,

But ctnf 4, = Y W BTN
i1=3
eselw —Ecsczzf_A
=1
£1=3
Isinyg 4,
) 3= LA 4A2
SIN“w = =

k

3

[\

k

it

1
16 A% = 168 T (s —q,)
= % Ea-"’aj?—Eai‘*,
1—3
i=1

2y, e )
(3OSuu—k=3 J

2 2
S afa;
K=l

=3

> sin?y A
From (13) ctn —-'.Ti———,
211 sin 4_ A,
t=1
=g
2 af
e 2
ctnw = >
sinfw

~(QQ(JL,‘) (@4 sinw = a; Sepriy

&
(QQa;) = Zo'bin%oa'l, (2'Qay) = 2rsine

1

=3 3
sinf A;sin?f 4, kz aifa?
=1

(15)

(16)

(17)

(18)
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sin({ A, —w) sin“)LAk : (19)
sin o ~ sin¥ Ad;sin) A4;
(Ajgi) = aki
a;—(4;9Q,) o
v WL M)
(4;2) o @
sin (¥~ 4; + o) _ % %
sin o ar a;

sin (. 4;+ ) > 2sino.
sine < .
Theorem 84.] The Brocard angle is not greater than one-
third of a right angle.
(.AiQ) o sin @ i (Aiﬂ') :

(lj sin).f_Ai S ak

Theorem 85.] The distances from each vertex to the two
Brocard points are proportional to the two sides including
that vertex.

The three triangles into which the original one is divided
by connecting the vertices with the positive Brocard point
are similar to those obtained by connecting them with the
negative one,

The area of A4;Q4; is

X a;?sin (. 4;,~w) . o o
3(4;Q) apsine =% B AE ) sinw = rsine L —

sinf_ 4, P

Theorem 86.] 7he triangles into which the given triangle
ts divided by connecting its vertices with the positive Brocard
point are equal to those obtained by connecting them with the
negative one.

As the Brocard points are isogonal conjugates they have
the same pedal circle by 65], and so by 62] are at equal
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distances from O. Let 4;Q2 mecet the circumscribed circle
again at A,

Fre, 16,

L A, =4 A; A A, +4 AkaJj,
—X—A 7.¥ Ak"'zf—Ak W _;’
= Zf_A ;—0+ o= Zf_.A
We have thus two similar triangles inseribed in the same
cirele, i e,

Theorem 87.] The points where the lines from a Brocard
point to the vertices of a triangle meet the circumseribed circle
again are vertices of an equal tv'ia'ngle

]

Since {434, A = w, zf_Ak =

We may pass f10m AA 4,4, to A4 ﬁ E by a rotation
about O through an angle whose measure is 2w Moreover,
since zf_A 4,0 = o,

Theorem 88.] Q is the mnegative Brocard point for the
B A

Theorem 89.] The siw triangles A,QA;, 4,04, are
similar to the given triangles.

We have but to compare the various base angles.

(Q4;):(4;4;) = (4;4;) :(4;Q),

—> —
(Q4) x (Q4;) = —4r?sin o,
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Theorem 90.] The power of a Brocard point with regard
to the circumscribed circle is minus the square of the chord
determined by a central angle equal to the Brocard angle.

72 —(0Q)? = 47r%sino,

0Q = r+v/1—4sin‘o,

I blys RSO0 S (20)
COS w

3
(QQ)) = 27sin w\/cos = (21)

Cos w
We have here a second proof of 84].

There is another notable point of the triangle which bears
the closest relation to the Brocard points. We reach it as
follows. Let a transversal meet 4;4; and 4;4; in two such
points By, and B; respectively that

ByBid;=4 A;, Y BB A;=4 A

Such a line is said to be antiparallel to A4;4;.* The
distances from the middle point of (B;B;) to (4;4;) and
(4;4;) are proportional to a;: ay,.

The locus of the points is thus a line, called a symmedian.
Incidentally, the tangent to the circumseribed circle at 4;
is antiparallel to 4;4,,.

The three symmedians of a triangle meet in a point called
the symmedian point,t and indicated in our present scheme
by the letter K. It is the isogonal conjugate of the centre
of gravity, and its distances from the side-lines are propor-
tional to the lengths of the corresponding sides. Three anti-
parallels pass through this point, and it is the centre of the
three equal segments determined by each two sides on the
antiparallel to the third.

Theorem 91.| The symmedian point is the centre of a circle
meeting each side of the triangle where the latter meets the two

* This term is said to be due to Leibnitz.

+ In German works this is referred to as Grebe’s, and in French ones as
Lemoine’s point. We are not in a position to decide the question of
priority, so use the usual English term.

1702 o}
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antiparallels to the other side which pass through this sym-
median point.

This circle is called Lemoine’s second circle.

Having premised this account of K, let us draw through Q;
a line | 4, A; and let it meet 4;4; in K’. The distances
from Q; to A ;4 and A;A4; are proportional to sino,
sin (),(_A —w); K’ is at the same distance from 4;4; as is Q;;
its dlstance from A; 4, is (Q;K') sin)¥_ A4;, and so bears to the
distance from Q; to 4,4, the ratio a;: aj =sin) Ay,sinf A4,
The ratio of the dlstances flom K'to A;A; and 4;4, is thus
by (18), a; 1ay. K'=

Theorem 92.] Q;K; is parallel to A;4;

We have already seen that
—_— R —>
(4;2) a2 (4K _ap M4y

)

— 2 =i 2 ==
Qidy) " KAy TF O (4;0)

AL
A
Theorem 93.] The line from A; to the positive Brocard

point, the symmedian through A;, and the median through A,
are concurrent.

F1e. 17.

Let the point of the circumscribed circle diametrically
opposite to A; be B;, and let A;B; meet A4;B; in L;. We pro-
ceed to prove
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Theorem 94.] The triangles A, A,A,, L,L L, are similar
JSigures with the double point Q
The quadrilateral Q 4;L; A, is inscriptible, since
Hence © is the positive Brocard point for the triangle
L;L L,. To find the ratio of similarity we have

LiLy) : (4;45) = (QLy) : (@4)),
= sin (g ~w):sino,

= ctn .

Since 4;B; is antiparallel to L;L;, we have

Theorem 95.] The centre of the circumscribed circle is the
symmedian point for AL,L, L,.

Let us next notice that we pass from 4, 4,4, to L,L, L, by
rotating through an angle —g about Q, and altering radii

vectores (distances from Q) in the ratio ctn w:1. It is evident
that we might have reached a similar triangle L,/L/L, by
rotating about Q' through an angle 721 This yields the im-

portant result

Theorem 96.] The centre of the circumscribed circle and
the symmedian point subtend right angles at the Brocard
points.

We have from our previous formula (20)

(09) = (09') = r v/ 1—4sine. (20)
(KQ) = (KQ') = rtanw v'1—4sin . (22)
(2) = 2rsinw v/1— 4 sin’w. (21)

(OK) = 2rsecw+/1 —4sin*w = 27+/1 =3 tan‘w.  (23)

The Brocard points play an important role in the problem
ER
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of inseribing in a given triangle a second similar thereto.
Let P; be such.a point of (4;4;) that L 4;0P; =o.

(OPj) = (Q‘Q“i) es¢ (w + 0),

T sin o
e (0+06)
The A P,P, P, is thus similar to A A 4,4, and has Q
as its positive Brocard
point. Conversely, if the
AP;P P, be similar to
the given triangle, P;
lying on A4;4;, then the
three circles A;P; P will
be seen to pass through
such a point that the angle

subtended there by P;P;

will be 7—4_ A4,, and this

is easily found to be the
common positive Brocard
- point for both triangles.

In like manner from the

negative Brocard point and
the angle —60 we get another inseribed similar triangle
P{/P/P,. The six points P;P; are concyclic by 67]. Let
0, be the centre of this circle

(QP)): (Q4y) = (20,):(Q0).

(QP;):(20,) is a ratio independent of 6, and since
L P;90,= ¥ 4,90 the locus of 0, is a straight line. This
line goes through O corresponding to ¢ = O, and through the

w

middle point of (') corresponding to 0:—2-—a). It is
therefore the line OK.

Theorem 97.] The six points P;P; lie on a circle whose
centre 18 on OK.
Such a circle is called a Tucker circle.
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Theorem 98.] The line PP} is parallel to 4;4;.

Theorem 99.]  The line P/ P; is antiparallel to 4;4;.

The proofs of these latter theorems come immediately from
the definition of the Tucker circle. They also give a means
for constructing a Tucker circle.

Theorem 100.] The three segments (P{P;) are equal to
one another.

We see, in fact, that the lines of any two are equally
inclined to one side-line of the triangle, and the segments are
comprehended between parallel lines.

Theorem 101.] The triangle formed by the three lines
PP/ is similar to the original triangle, the double point
being a symmedian point for each.

We see, in fact, that the sides of the two are parallel in
pairs, and in the parallelogram having as three vertices
Ay, P;, P{ a diagonal goes from 4, to a vertex of the second
triangle and, being a symmedian, passes through K.

Theorem 102.] The triangle formed by the three lines
P/ P; bears such a relation to the original triangle that lines
connecting corresponding vertices are concurrent in K.,

We have but to find the ratio of the distances of a vertex
of the first triangle from two sides of the second.

Theorem 103.] The perpendiculars on the side-lines of the
given triangle from the corresponding vertices of that triangle
whose side-lines are P/ P; are concurrent in the centre of the
Tucker circle.

Let us take up certain special cases of the Tucker circle
obtained by giving to 6 special values.

0 = 0. The Tucker circle is the circumseribed cirele.
Bii= 7—2r—m. The Tucker circle is the pedal circle of the

Brocard points.

= g Here, by theorem 96], the centre of the Tucker

circle is the symmedian point. Moreover, we shall have
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P{P/ | P;P,. Hence the lines P/P; are concurrent in the
centre of the Tucker circle. But these are also antiparallels
to the side-lines of the original triangle, whence,

Theorem 104.] The Tucker circle where = ;—T is the second
Lemoine circle.

The segments which this circle cuts on the sides of the
triangle will be bases of isosceles triangles whose base angles
are equal to the angles of the original triangle.

Theorem 105.] Lemoine’s second circle cuts on each side
of the triangle a segment proportional to the cosine of the
opposite angle.

For this reason Lemoine’s second circle is sometimes called
the Cosine Circle. The perpendicular from Ka; on (P;Py)
bisects the latter at a point of A4,M;, and the symmedian

point is half-way from there to Ka;. Hence M;K bisects
(.A.iHai).

Theorem 106.] The lines connecting the middle points of
the sides of a triangle with the middle points of the corre-
sponding altitudes are concurrent tn the symmedian point.

0 = w. Here P; is equidistant from 4; and , and P/
is equidistant from 4, and Q', P;P, || 4;4,. Moreover,
X 000,=0=3f 000, and the centre of this ecircle,
called Lemoine’s first circle, is the middle point of (0OK).
The three lines P;P; must be concurrent in the second
Brocard point of A P;P; P, or the first Brocard point of
AP/P/P,/. Thisis K since { KOQ' = o.

Theorem 107.] In the case of Lemoines first circle the
segments (P; Py) are bisected at the symmedian point, and
the centre of the circle is half-way from there to the centre of
the circumseribed circle. The symmedian point is a Brocard
point for each of the triangles.

This circle is easily obtained by drawing through the
symmedian point parallels to the side-lines of the triangle.

(PP oy = (KKay) : (A;Ha;) = (KKa,;) x .2a_zA ]
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But, by the fundamental symmedian property, (KKa;) is
proportional to a; and

Theorem 108.] The segments which Lemoine’s first circle
cuts on the sides of the triangle are proportional to the cubes
on those sides.

For this reason this circle is sometimes called the triplicate
ratio circle.

There is one more Tucker circle which merits special
attention ; it is, however, more easily approached from another
point of view.

As

Fic. 19.

Let G; be the middle point of HajHak, and let GiGj meet,
A;4; in P;, and 4;4, in P/. It is easy to see that the
length of our segment (P;P;) is equal to the semi-perimeter
of the pedal triangle of H

LPkPk,Pi': LAk

K"‘Pk'Pi/"Pi = LA’I:—{-Z{“'PL‘P’I:,GJ = X—'Ai"-g—‘Pi,Pij’
i = 4_ ‘Aj Q- 4_ Ai‘

Since
Hence the four points P;, P/, P;, P}/ are concyclic, and so
all six points P,, P,’ lie on one circle. This circle is called
Taylor's circle. Since the A G; P, P/ is isosceles, the perpen-
dicular bisector of (P;,P’/) bisects also ¥~ G;.
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Theorem 109.] Taylor's circle is concentric with the circle
tnseribed in the triangle whose vertices lie midway between
the feet of the altitudes.

Let us show that Taylor’s circle is a Tucker circle. The
three lines 4;G; are concurrent in the symmedian point.
PrP/ || A; Ay since f P P; 4;= 77—-4’_11@-—-2;_11]-.
The triangles Bl By Py P{P/ are equal by three sides, and
I PPl s R P 7 el
Hence these equal triangles are similar to the original one, and

Theorem 110.] Taylor's circle is a Tucker circle.

The process of finding the corresponding value of  is a bit
difficult. TLet ©; be the foot of the perpendicular from 0,
on G; Gy,

Zf_.PkOoQi == LPk.Pij/=7T—6,
(Pk®@)=—;—(PkPJ’)=%2(HaiHaJ), J
=33a;co8f A;=rIlsinf 4,.
0,0; is, by 109], the radius of the inseribed circle in a
triangle whose sides are }a;cosy_4;
(0,0,) = rilcosf 4,;,
tanf = —Itan J 4, _
(GjHay) = (G; ) = (G; 1)) = (G Ha).

The circle on (Ha; Hay,) as diameter passes through P/, P;.

Theorem 111.] Taylor's circle contains the intersections of
each side-line with the perpendiculars Jrom the feet of the
altitudes on the other two.*

(Ajp,/) = (AjHak) CcoS LAJ' = a; 00324_ AJ’
(4 P) = a;cos?) 4,
(P P)) = a; (1 —cos?)_ A;—cos’y Ay),
= a;(sin®f A4;sin* X A4; —cos?§ A;cos?f A).

Theorem 112.] The segment cut by Taylor’s circle on the

side (A ;A3) has the value
a;cos X A, cos (¥- d,—% A4.)

* Cf. Theorem 66.
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The centre of the circumscribed cirvele is the orthocentre
of the AM,M,M,. Hence, by 74], the Simson line of Ha;
with regard to this triangle passes through the middle point
of (H«;0). The segment (4;Ha,) is bisected perpendicularly
by M; M), so that the before-mentioned Simson line of Ha;
is || OA The A @;G0, is similar to the triangle Whose
vertices are HwkHCL and the orthocentre of A A;Ha; Hay,
the ratio of simila,rity being 1:2, while Ia; is the centre of
similitude. Hence O, is the middle point of the segment from

Ha; to the orthocentre of the A A;Huy Hay, which point lies
on AiO.

Theorem 113.] The centre of Taylor’s cirvcle lies on the
Simson line of the foot of each altitude with regard to the
triangle whose vertices are the middle points of the sides of
the given triangle.

The perpendicular from M; on Ha;Ha;, biseets (Ha;Hay)
since (M;Ha;) = (M;Hay). The perpendiculars from 3/ on
Ha;Ha; and Ha ¢Ha;, make equal angles with A;4,;. Hence
the Simson line of M; with regard to A Hu, Ha jHay, is the

perpendicular on A] Ak or on P ; Py from the mldd}e point of
Ha; Hay, and so is the line G; 0

Theorem 114.] The centre of Taylor’s circle lies on the
Simson line of the middle point of each side with regard to
the triangle whose vertices are the feet of the altitudes.

(A P)x(A /) = a;*cos® A cos? Y A,

This last expression is equal to the square of the distance from
A; to Ha;Hay. But A; is the centre of a circle eseribed to
the AHaiHajHak.

Theorem 115.] Taylor's circle cuts at right angles the
circles escribed to the triangle whose vertices are the feet of
the altitudes.

Enough has now been said about the Tucker circles.
Returning to the figures more nearly associated with the
name of Brocard, we remember that we originally found
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the Brocard points by constructing circles through 4,4 j
tangent to 4,4, for Q or to 4,4, for Q". The centre of the
first of these circles shall be called X, that of the second X

Theorem 116.] The triangles X, X, X, and X/X,/X. are
similar to the original triangle, the double points being the
positive and megative Brocard points respectively, and the
ratio of similitude being 1:2 sin w.

Theorem 117.] The centre of the circumscribed civcle is the
negative Brocard point for A X, X,X, and the positive
Brocard point for A X,/X, X,

We see, in fact, that X; lies on the perpendicular from O on
A A;, while X; X, is the perpendicular bisector of (Q4,).
Hence ¥ QX X; =Y Q4 4;= o.

We have already seen that

1009 =20, 00K = g .
Hence, if Z be the middle point of (0K),
(LK)
s A ol .
(ZQ) = (ZK) = L (0K) = =

Theorem 118.] The centre of the first Lemoine circle is the

common symmedian point for A X, X, X, and A X/X, X,

Frg¢. 20.
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Let the circles whose centres are X; and X intersect, not
only at 4;, but againat 4,”. AA,”A,” A, is called Brocard’s
second triangle.

X—Aj'Ai//Ak = X_..A.,i-*'g_ Ai”.Ain"l'z{_.Ai”.AkAi = 2&‘Ai'
Theorem 119.] The points A4; A, 0A" are concyclic.

Theorem 120.] A, lies on the symmedian through A;.

We see, in fact, that the triangles A;4.4,7, A, 4,4, are
similar; hence the altitudes from A’ have the ratio az:a;.
We notice also, since ;4,04 are concyclic,

LOA/A; = LOAkA- =Z—14,
But LAAVA; = (n—A;) LA;.
Theorem 121.] A;” is the projection of O on 4;K.

Theorem 122.] The three points A’ lie on the circle on
(OK) as diameter.

We have thus, remembering 96], seven points on this
important circle, which is called Brocard’s circle. We find
three more as follows. Let A4, be the intersection of A Q
with A4,Q. The AA/A ’A / is called Brocard’s ﬁrst
triangle.

Theorem 123.] The three triangles A/ A, j4r are stmilar
isosceles triangles.

The distance from A/ to A;4; is ja;tanw, and this is
also the distance from the symmedian point to that line
by (17).

Theorem 124.] Thethreelines through the points 4/ par allel
to the corresponding side-lines A;4; are concuwent in the
symmedian point.

Since ¥ QA/Q'=20

Theorem 125.] The vertices of Brocard’s first triangle lie on
Brocard’s circle.

Since (4,4,) subtends at 4;” and at K an angle = ¥ 4,
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Theorem 1R6.] Brocard's first triangle is similar to the
given triangle.

We get from formula (23)

Theorem 127.] The ratio of similitude of Brocard’s first
triangle and the given triangle is

V/1—3tan?e: 1.

Ay

Al
Fie. 21.
Let 4/ be the reflection of 4, in 4. Ay, so that
(47M) = (4; ’M
Connect 4; with 4; and 4, also connect 4; and 4, with
Aj and 4; ’ Then A A4, ’AkA is similar to A 4; 44, since
LA' ,AkA = X—'Ak_w-l'w =1 K—Aha
Ak'A ) (AkA )_ @y 2 e
Hence also 4,4, A/ is similar to A 4,4, 4y, and as
(A;4)) = (4, 4)); A4 pdi A= AA’Ak’A
(47 4]) = (4/4) = (4,/4,).
Similarly (4;/4;) = (4;4;) and 4,4, JA/4, are the vertices
of a parallelogram. Hence the medlan from 47 in AA/A/ 4y
is the median from A4, in A A/4,4;. A second medlan of

this triangleis A, M,. The medlan of A A7A/ A} through 4/
divides (4;M;) in the ratio 2:1, i.e. goes thlouch M.
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Theorem 128.] Brocard’s first triangle has the same centre
of gravity as the given triangle.

The quadrilaterals A4,4;4,74;/, A, A;A"A; are equi-
angular and similar, so that

(4 A7) (A7 A) = ay 2 a; = (4 4]): (4] 4y)
= sinf A AJAL :sind AAJAL

Hence 4/A4;” is a median of the A A4/A/A;/.

Theorem 129.] The lines connecting the corresponding
vertices of Brocard’s two triangles are concwrrent in the
common centre of gravity of the first Brocard and the given
triangle.

The triangles 4,/4,/4,’, 4, 4,4, are similar, but arc easily
seen to be arranged in opposite order. It is easy to see that
under the similarity transformation of the plane thus defined,
a line through 4;| 44, will pass into one through
A | 4;4;.

Theorem 130.] The lines through the vertices of a triangle
parallel to the corresponding side-lines of Brocard’s first
triangle are concurrent on the circumscribed circle.

This point of concurrence is called Steiner's point. That
diametrically opposite is Tarry’s point.

Theorem 131.] The lines through the vertices of a triangle
perpendicular to the corresponding side-lines of Brocard’s
Jirst triangle are concwrrent in Tarry’s point.

Suppose that 4;0 meets the Brocard circle again in 7.
Let us find the magnitude of X T;04/.

OA@" 4 AjAk 5 X_ OA,,;H(I,L- = X—Ak_K—A' )
4_ TiAj/A'i/ = X—AR_L'A‘]' H 4_ T‘iA'j/'A'h/ = K_Ak/.

Theorem 132.] The angle between A;A; and A A;" is
equal to X KOA;.

It appears at once from the construction of Fig. 14 that
the Simson line of any point P makes with 4;4; an angle



78 THE CIRCLE IN CH.
equal to the angle formed therewith hy P4, and this is equal

™

to 5 — (- 4;,—% PA;4;). The angle which 4,0 makes

with 4,4, is X_4, + (g—zf_Aj)-

Fra. 22.

Hence the angle which the Simson line makes with 04, is
Y Ay—4 PA;A;, and this is the angle of P4; with 4;4,.
The Simson line of Steiner's point and OK are equally
inclined to OA4;. They must, thus, be parallel, or make with
0OA4; an angle whose algebraic sum is zero. But two lines
cannot simultaneously make with the three concurrent lines
pairs of angles differing only in sign.

Theorem 133.] The Simson line of Steiner’s point is
parallel to the line from the centre of the circwmscribed circle
to the symmedian point, while the Simson line of Tarrys
point is perpendicular thereto.

Suppose that we have given the side (4;4;) of our original
triangle, and the Brocard angle, what will be the locus of the
opposite vertex? Restricting ourselves to one side of A4,
we construct an arc at whose points (4;4;) subtends an
angle equal to w. Suppose that A; has been found, and that
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A;A; meets this arc again at Y;. Draw Y, 4;, and 4;Q
which is || Y3, 4; and meets 4;4; in Q;.
- —
2 (Aid) % (4;)) = —ad.

A; has thus a constant power with regard to a given circle;
its locus is the arc of a second circle concentric therewith.

(4;92)): (Qidy) = a5’ 0

Theorem 184.] The locus of the vertex of a triangle whose
opposite side and Brocard angle are given is formed by the
arcs of two circles concentric with those containing all points
whereat the given side subtends the given Brocard angle.

These circles are called Neuberg circles and have many
interesting properties whereof we shall give but a few.* If
the original triangle be given there are three pairs of Neuberg
circles ; let us restrict ourselves to those three whose centres
lie on the same sides of the side-lines as the opposite vertices
of the original triangle, and call these the Neuberg circles
of the given triangle. Let the centre of the Neuberg circle

corresponding to A4;4; be N;. Then Z{_NiAjAk=1—2r—w.
The distances from N; to 4;4; and 4;4; are in the ratio
cos (Y- Ay +w):cos (f-4;+w). Now if a point lie on the
perpendicular from A4; on 4;4,/, i.e. on the line from 4,
to Tarry’s point, the ratio of its distances from 4;4; and
cos KOA; :cos ¥ KOA/ =siny OKA,; :sinf OKA/.
The sine of the angle of OK and 4;4;, or of OK and K4/,
is, by (23),
(KKa;)—(OM;) _ sin 4; tan o —cos 4,
(OK) v//1—3tan‘e

Hence
sin OKA, : sinA'_OKAj'z cos (-~ A + ) : cos (X_Aj+¢o).

Theorem 185.] 7'he lines connecting the vertices of a triangle
with the centres of the corresponding Neuberg circles are con-
current in Tarry's point.

* Emmerich, loe, ¢it., pp. 1338 ff.
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We see that if one angle and the Brocard angle of a triangle
be given, the other angles are determined by symmetrical

B
2 ey

Bs/ \Cs

A, A3
Fra. 23.

equations. Hence the various possible triangles with these
data are similar.

Theorem 136.] If 4; A; and A; Ay meet the corresponding
Neuberg circle again in B and By, respectively, then DA;B; 4,
and A A; B Ay are swmlm to AA;A; Ay,

Theorem 137.] The power of 4; or Ay with regard to the
corresponding Neuberg circle is a; 2

If the points 4; and A; be given, there will be o circles
with regard to which each has the power (4;4;)% and these
will all be Neuberg circles. Let 4;B; meet such a Neuberg
circle again at Cj, whlle A B; meet it at Cj. Then, by the
precedlng, 4,0, and 4;0; w111 1nte1 sect on the Neuberg circle,
which gives the cu110us bheorem

Theorem 138.] If a circle bear such a relation to two points
that the power of each with regard to it is the square of the
distance of the points, then ®! re-entrant hexagons may be
inseribed im the circle such that alternate side-lines pass
through the one or the other given point.

We obtain an interesting sidelight on the Brocard con-
figuration by a study of three similar figures to which we now
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turn our attention* Two figures are directly similar if
corresponding distances be proportional and corresponding
angles equal in magnitude and sense; when the signs of
corresponding angles are opposite, the figures are inversely
similar. A relation of direct similarity will be determined
as soon as we know the two points 4;'4;” which correspond
to two given points 4.4;. The locus of the points whose
distances from 4; and A bear the ratio (4;4;):(4;4;) is
a circle, and a similar circle may be found for A4, and 4,
These circles intersect in two points which are the double
points of the similarity transformations determined by the
corresponding segments.

Suppose that we have three similar figures £, f,, ;. The
double point of f; and f, shall be .S;, the three ratios of simili-
tude r,:7y:75. Let Dy, D,, D; be the vertices of a triangle
whose sides lie along three corresponding lines. The distances
from S; to D; D;, and D; D; are proportional to #;: 7. Hence,
by Ceva’s theorem,

Theorem 139.] If three similar figures be given, the three
lines connecting each double point to the corresponding vertex
of a triangle whose side-lines correspond in the three figures
are concurrent.

Let us call this point of concurrence . Notice that if not
only the side-line but the actual sides are corresponding, it
will be the symmedian point. The angles of A D, D,D,
depend merely on the transformation, as do the angles which
S;D; make with D;D; and D;Dj, since their sum and the
ratio of their sines are constant. Hence the angles £8;08;
are constant in size.

Theorem 140.] The locus of the points of concurrence of lines
Jrom each double point to the corresponding vertex of a triangle
whose side-lines correspond s the circle through the three
double points.

If we draw through C three lines parallel to the three lines
D;D; they will intersect this circle again in points R;. They
will also be three corresponding lines as their angles are those

* McCleland, 4 Treatise on the Geometry of the Circle, London, 1891, ch. ix.
1702 F
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of any three corresponding lines, and the distances from S; to
CR; and CR;, are in the ratio 75 : 7;. Also the points £; are
fixed, since ZR;CS; has a constant value. Conversely, if
three corresponding lines be concurrent, the locus of their
point of concurrence is, by 140], this circle.

Theorem 141.] The locus of points where three corresponding
lines are concurrent is the circle through the three double
points; the three corresponding lines must pass through fixed
points of this circle.

These fixed points on the concurrent lines are called in-
variable points.

Theorem 142.] The lines connecting the double points to
the corresponding tnvariable points are concurrent.
We see, in fact, that the invariable points are surely corre-
sponding.
7y = (S B;) : (S;Ry)
_smzf_S B R sm)j._SRRk
= sin . S;R; R :sin XS,

Hence the three lines S; R, meet in a pomt M

Suppose that we have P,, P,, P, three corresponding points
which are collinear. The angles of A 8;P; Py, are constant in
magnitude, hence £.S;,P;S; has a constant value, or the locus
of P;is a circle through §; and §,. If S/ be the point which
corresponds to S; in f;, the line S;S; must correspond to two
other lines through S;, namely S; R and S; Ry, so that §; is
on S;R;. Again, /S, P.P; is constant so that P;P; meets
the P clrcle in a fixed pomt namely M, and this is common
to all three circles. Conversely, there are surely oo! sets of
corresponding collinear triads, generating three circles which
correspond, and if we take P,, P,, P, three corresponding
points on them .5, P;P; has a fixed value, so that P;P; goes
through a fixed point, namely M, and P}, lies on P, P;.

Theorem 148.] The loci of three collinear points in three
directly similar figures are three circles each through two
double points. There is one point common to all three circles,
and sets of three collinear corresponding points are collinear
with this.
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Theorem 144.] If three directly similar figures be con-
structed on the three sides of a triangle following one another
i cyclic order,

(@) The vertices of the second Brocard triangle will be the
double points.

(b) The vertices of the first Brocard triangle will be the
invariable points.

(¢) The limes connecting corresponding vertices of the
original and second Brocard triangle will be concurrent in
the symmedian point of the former which lies on the Brocard
circle.

(d) The lines connecting corresponding vertices of the two
Brocard triangles are concurrent in the common centre of
gravity of the given and first Brocard triangle.

(e) The symmedian point of every triangle formed by three
corresponding segments in cyclic order will lie on the Brocard
circle.

(f) If three corresponding lines be concurrent they pass
through the vertices of the first Brocard triangle, and their
point of concurrence is on the Brocard circle.

(9) The loci of three corresponding collinear points are the
three circles through two vertices of Brocard’s second triangle
and the centre of gravity of the given triangle.

The three circles mentioned in (g) are called MacKay circles
and deserve some further notice. The three lines 4;/4,” pass
through M, which lies between 4" and 4,”.

Theorem 145.] The MacKay circles are the reflections in the
centre of gravity of the given triangle of the inverses of the
sides of the first Brocard triangle in a fixed circle whose centre
18 that centre of gravity.

Theorem 146.] The MacKay circles intersect at angles equal
to those of the given triangle.

As M is the centre of gravity of the first Brocard triangle,
it is the middle point of three segments each on a line parallel
to one side-line of this triangle and terminated by the
other two.

F2
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Theorem 147.] The centre of gravity of the given triangle
is the middle point of the three segments which each two
MacKay circles cut on the tangent to the third at that point.

C, .

Aj

Cs C,
Fia. 24.

As

Starting with our original triangle, we may construct three
others similar to it as follows:
C, shall be such a point on the same side of 4,4, as 4, that

1.0 A, 4, =% A, LO0iA 8 =% A
C, shall be such a point on 4,4, that
XaC A, Ay =3 Ao
C, shall be such a point on 4,4, that
04,4, =% 4,
The centres of gravity of our three triangles C,4,4,,
A,C,A,, A,4,C, lie on the line through M || 4,4, and are
corresponding points. The centre of gravity of A (4,4, is

thus on the MacKay cirele through 4,”4,” and is the reflection
of M in the perpendicular bisector of (4,4.,).

Theorem 148.] The centre of each MacKay circle lies on the
perpendicular bisector of the corresponding side of the original
triangle.

We shall show in the next chapter that M; is a centre
of similitude for the corresponding MacKay and Neuberg
circles. The geometric proof seems to be, however, decidedly
intricate.*

* MecCleland, loc, cit., pp. 213 ff.
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§ 8. Concurrent Circles and Concyclic Points.

We have so far had certain examples of circles through
a number of notable points: the nine-point circle passed
through twelve, the Brocard circle through ten. We shall
next proceed to find, by induction, circles which contain
notable points ad libitum. Suppose that on each side-line
A;A; of our typical triangle we take a random point B;.
It P be the intersection of the circles A4,B,B,, 4,B,B,,

BE P = LA 4.4, LB, PB4 diA, 4
hence LB, PB, = £ dy A, 44

and our three circles are concurrent,

Theorem 149.] If a point be marked on each side-line of
a triangle, the three circles each through a wvertexr and the
adjacent marked points are concurrent.®

The number of corollaries which flow from this truly
admirable theorem is almost transfinite. Suppose that P lies
within the triangle, the most important case,

A similar result is easily found when P is not within. It

appears also that if the angles of the A B, B,B; be known
the point P is also known.

Theorem 150.] If a triangle with known angles have its
vertices anywhere on specified side-lines of a given triangle,
the three circles each through one vertex of the fixed triangle
and two adjacent ones of the variable triangle are concurrent
in a fixed point.

The most interesting case is where the two triangles are
similar. If X A; = X B; we may take for B; the point /.

* The earliest proof of this theoremm known to the author is that of
Miquel, ‘Théorémes de géométrie’, Liouville'’s Jowrnal, vol. iii, 1838.
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If X A;=% B, we take By infinitely near to 4; on 4;4;,
and similarly if X 4, = B,.

Theorem 151.] If three points be so taken on the side-lines
of a triangle that they are vertices of a triangle similar to the
given one, then the three circles each through a vertex of the
given triangle, and the two adjacent vertices of the mew
triangle are concurrent either im the centre of the circum-
scribed cirvcle of the given triangle or in one of the Brocard
points.F

Let the reader prove:

Theorem 152.] The only case where the lines A;B; are
concurrent in the point P is where they are the altitude lines
of the triangle.

We easily find from 67]:

Theorem 153.] If the intersections of a circle with the
side-lines of a triangle be divided into two groups of three,
each group containing one point on each side-line, then the
point of concurrence of the three circles each through one
vertex and the adjacent points of the first group, and that of
circles through each vertex and the adjacent poimts of the
second group, are isogonal conjugates.t

It is immediately evident by inversion that our funda-
mental theorem 149] holds equally well when the side-lines
of the triangle are replaced by concurrent circles. It may
then be reworded as follows:

Theorem 154.] If four points on a circle or line be taken
i sequence and if each successive pair be connected by a circle,
the remaining intersections of successive pairs of circles are
concyelic or collinear.

Still another form for the theorem is as follows:

Theorem 155.] If four circles be arranged in sequence,
each two successive circles intersecting, and « circle pass

* MecCleland, loe. cit., ch. iii, takes this as the basis of the whole Brocard
theory.
+ This excellent theorem is due to Barrow, loe. cit., p. 252.
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through one point of each such pair of intersections, then the
remaining intersections lie on another circle or a line*
Let us give another proof of this theorem depending on
different considerations. If a triangle be formed by the arcs
< .
of three circles ¢, ¢,, ¢;, and if X c¢,c, mean the oriented
angle of the half-tangents to two circles at a vertex of the
triangle, those halves being taken which correspond to the
positive orientation of the circle, then, if the three circles be
concurrent, we have

— - >
X cico+K-coes+A-cycp = 0.
Conversely, if this equation holds, it is easy to see that the
circles are concurrent. Suppose now that we have a sequence
of four circles ¢, ¢,, ¢s, ¢, and that one intersection of each
two successive lines lies on ¢,

—> —_ — — — —
Loy +4cico+ i coe =4 coy+ X epe,+ 4 cye
— —_ — —_— — —
=X ccg+ Y cye,+%c.c = §coy+ X c 0+ %-cye= 0.

— —_— e —_—
e+ X cyes+ ez, + 4 en0; = 0.
Conversely, when this equation holds, the circle through three

properly chosen interseetions passes through the fourth. But
when we move from one intersection on ¢, and ¢, to the other

we have merely to reverse the sign of 2$_cl_c>2; the theorem is
thus proved.

Let us next suppose that we have given not three lines
but four, no two being parallel nor any three concurrent.
Let each line be used to determine the marked points on the
other three; we thus get

Theorem 156.] If four lines be given, whereof no two are
parallel nor any three concurrent, the circumseribing circles
of the triangles which they form three by three are concurrent.

Let us call this the Miquel point of the four lines. If we
invert with this as centre we get a second figure entirely
analogous to the given one, but the present circles become

* Miquel, ¢ Mémoire de géométrie’, Liouville’s Journal, vol. ix, 1844, p. 23.
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lines and the present lines become circles. The feet of the
perpendiculars on the four new lines from the Miquel point
are on the Simson line of the four new triangles for this
point; the four reflections of the Miquel point in the four
new lines are also collinear; hence, inverting back and
remembering 34],

Theorem 157.] The centres of the circles which circum-

scribe the triangle formed by four lines lie on a circle through
the Miquel point.*

The following theorem is interesting in this connexion,
though the proof is based upon different considerations which
we leave to the reader.

Theorem 158.] The centres of the circles which touch sets
of three out of four given lines, whereof no three are concurrent
or parallel, lie by fours on four circles.

Fie. 25,

* Cf. Steiner, Collected Works, vol. i, p. 223.
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The circle in theorem 157] seems to contain five notable
points; we may easily find five others thereon. Let the
original lines be /;, l,, l;, {,. The lines /; and /; shall inter-
sect in A, while the circle about the triangle formed by
L;l;ly, shall be ¢;, its centre Cf, the Miquel point M.

We shall temporarily use | ZXYZ| for the positive value
of LXYZ.

| LA M0; | =3 — | LAz Ap I |,

| LAZMCy, | = g —| 2434,

Let Ale’i meet A,l-lC'k in S,
| £OSCy | = | LAjAdpC| —| £LA;Ag0Cy |

™

™
—2—|4Ajk[—(‘2'-|144ij|)
=| L4y

Theorem 159.] Given four lines in « plane,no two parallel
and mo three concurrent. The lines connecting each vertex of
a triangle formed by three of the lines with centre of the circle
circumscribed to the triangle formed by the two lines meeting
in this vertex and the fourth line, are concurrent on the circle
through the centres of the four circumseribing circles.

Suppose that five lines are given 4;, l,, I3, {;, [;. Omitting
each in turn, we have five Miquel points. Consider the circles
circumscribing the triangles with /; as a common side-line.
Successive circles intersect on [, ; hence, by 154], their other
intersections, which are Miquel points, are concyelic.

Theorem 160.] If five lines be given, no two parallel and
no three concwrrent, the five Miquel points which they determine
Sfour by four are concyclic or collinear.

Theorem 161.] If a pentagon be given, and five triangles
be constructed each having as vertices two adjacent vertices of
the pentagon and the intersection of the remaining side-lines
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through them, then, if circles be circumscribed to these five
triangles, the remaining intersection of pairs of successive
circles are concyclic or collinear.®

Let us tabulate the results so far attained.

One line may be associated with a cirele of infinite radius,
the line itself.

Two lines may be associated with their point of inter-
section.

Three lines may be associated with the circle circumseribed
to their triangle.

Four lines may be associated with their Miquel point.

Five lines may be associated with a circle or line through
the five Miquel points which they determine four by four.

We are thus led by analogy to announce the following
theorem :

Theorem 162.] Given n lines in a plane, no two parallel
and no three concurrent. If n be odd there is associated there-
with a circle, and if n be even a point. The circle will contain
the m points associated with the m sets of lines obtained by
neglecting each of the given lines in turn ; the point will lie on
each of the m-circles obtained by meglecting each of the lines
n twrn.t

It is to be understood for the purposes of this theorem that
a line is considered as a special form of circle. Let us begin
with the case where n is even. We take the three sets of
lines (Iyly...0), (40s...0,), (4 41,...0,). The associated
circles shall be ¢, ¢,, ¢;, and, in general, the circle associated
with the system obtained by omitting the line /; shall be ¢;.
If lines [;/; be omitted, the point associated with the others
shall be P;;, and so on.

* Tt is to this theorem alone that the name of Miquel is usually attached.

+ This theorem is due to Clifford, ¢ A Synthetic Proof of Miquel's Theorem’,
Messenger of Mathematics, vol. v, 1870. Independently given by Fuortes,
¢ Ricerche geometriche’, Battaglini’s Journal, vol. xvi, 1878, and Kantor,
¢ Ueber den Zusammenhang von »n Geraden in der Ebene’, Wicner Berichte,
vol. 1xxvi, section v, 1877. Recently given without demonstration and in
incorrect form by Hagge, ¢ Ueber Umkreise und Transversalen des vollstin-
digen n-seits’, Zeitschrift fiir mathematischen Unferricki, vol, xxxvi, 1905.
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Circle ¢,y contains Py, P,,, Py, Pigoy.

Cirele ¢,y, contains Py, P,,, Py, Py,

Circle ¢y, contains Py, P,,, P,,, P,.,.

We have thus exactly the figure of three concurrent circles

corresponding to 149] generalized by inversion.

Points P,,, P,,, Py, lie on ¢;.

Points P,,, P,,, P,, lie on c,.

Points P,,, P,,, P,, lie on ¢.

Hence these three circles are concurrent, and as they are
any three of our system the theorem is proved for n even,
provided it holds for n—1. We now imagine that we have
an odd number « of lines; let us show that any four of the
points P, P,, P, P, are concyclic or collinear.

The circles ¢;, and ¢,; meet in P, and P,,,.

The circles ¢y, and ¢,, meet in P, and P,,,.

The circles ¢,, and ¢,; meet in P, and P,,,.

The circles ¢, and ¢;, meet in P, and P,,.

But the four points Py, P,,,, Py, P,,, are on the circle
Cig343 hence the four points P, Py, P,, P, are concyclic or
collinear, and so all of our points are on a circle or line.

Let us try another method of generalizing 149]. We start
with four lines /,, /,,7;, /,, and on each line {; mark a point
P;. If these four be concyeclic or collinear, then, by 154], the
six circles each of which passes through the intersection of
two lines and the marked points thereon will pass by threes
through four points on one circle or line. Suppose, next,
that we have five lines /,, /,, I;, [,, I;, and five concyclic
marked points thereon. The point marked on 7; shall be P;.
The point obtained by omitting /; and /; shall be P;. The
circle obtained from what immediately precedes by neglecting
l; shall be ¢;; that which contains P; P; Py; shall be ¢;;.

Seermising P, P, P, P,.

¢, contains P,, P,,, P,,, P,,.

g genbaing P, Iy, Py, Py,
€ containg P, P,,, P,,.

Cg5 contains Py, P,,, P,,.
¢y5 contains Py, P,,, P,,.
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But the circles ¢y, c,5, €55 are concurrent in Pg; hence the
circles ¢, ¢,, ¢, are concurrent, and so all five are. The
extension to m is as before, and, as before, we define a line
as & special case of a circle.

Theorem 163.] Let n concyclic or collinear points be marked
on n lines whereof no two are parallel and no three concurrent.
If m be even there is associated therewith a circle, and if n be
odd a point; the circle will contain the n points associated
with the n sets of n—1 limes obtained by meglecting each of the
given lines tn turn; the point will lie on each of the circles
obtained by neglecting each of the lines in turn.*

In these two generalizations there is a distinction between
n even and n odd. In the remarkable one which follows this
disgppears. Four coplanar lines are given, no two parallel and
no three concurrent. Each line is associated with the circle
circumscribing the triangle formed by the other three. The
centres of these four circles are concyclic, and the circles
themselves pass through the Miquel point.

Theorem 164.] Given n lines whereof no two are parallel
and no three concurrent. Each set of n—1 will be associated
with a circle in such a way that all n circles pass through
a point, and their centres lie on a circle which is associated
with the n given lines.}

We shall assume that the theorem has been proven for n—1
lines. We use the previous notation for the circle associated
with certain lines, its centre being indicated conformably,
while the point associated with certain lines shall be in-
dicated by the letter M with suitable subseript. We shall
also assume that

this equation being certainly true in the case n = 4, if Cj;

* Due to Grace, ‘Circles, Spheres, and Linear Complexes’, Cambridge
Philosophical Transactions, vol. xvi, 1898.

+ Pesci, ‘Dei cercoli circonscritti ai triangoli formati di n rette in un
piano’, Periodico di Muatematica, vol. v, 1891. The case n = 5 was given by
Kantor, ¢ Ueber das vollstindige Vierseit ', Wiener Berichte, 1xxviii, section 2,
1878. -
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indicate the intersection of /,/;. Suppose that ¢, and ¢, inter-
sect in M,
¢, contains Cy,, Oy, Oy, M.
¢, contains Cyy, Oy, Cyp, M.
LCuMCy, = L0500 = L5
L0y MGy = £, 0, Co = i1
LO; MO, = L1,
But L0 00y = LU,
Hence M lies on ¢; and the circles are concurrent. Again,
¢, and ¢; meet in C}; and M.
¢; and ¢, meet in C,; and M.
L0,C;C, = LC;MCy; = L1,1,.
Hence all points C; are concyclic, and the theorem is
proved.
The following corollary is rather curious.

Theorem 165.] If w be greater than four, M will not
lie on c. ;

Suppose, on the contrary, £C,C,M = 2C,C; M,

(Cjz M) is the common chord of ¢, and ¢,,

L0300 = LU0 M
LOC,M = £ O ,Cpu M.
Hence GO M = £0,,0. M,
L0300 = 0.
But C,Cp L O M, and C,,C, L Clpp M,
LM, Cps My = 0.

This, however, is impossible since these three points lie on
Cy5. Hence, if C,, exist or n > 4, the point M cannot be
concyeclic with all C’s.

In the theorem last given we associated n lines with
a circle and a point, the cirele being the locus of the centres
of n others. In the theorem before we associated n circles or

points with « lines and n concyelic points. Here is another
form of association akin to both,
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Theorem 166.] Given m points on a fixed circle n = 4.
We may associate with them a point and a circle in the
Jollowing manner :

(@) The point is the centre of the circle.
(b) The radius of the circle is one-half that of the fixed

circle.
(¢) The point lies on the n circles each associated with n—1
points obtained by omitting each of the given points in turn.
(d) The circle contains the centres of these circles.*

Let us call the radius of the fixed circle 2, for convenience.
When n = 2 we shall associate with two points the point
midway between them. When n = 3 we associate the nine-
point circle whose radius is here unity. When n = 4 we
have, by 77], four nine-point circles passing through a common
point. Their centres lie, therefore, on a circle of radius 1
about that point as centre. The theorem thus holds when
n =4. To prove it in the case where » =5 we proceed,
exactly as in the case of 162], to prove that the circles are
concurrent. P will be the centre of the nine-point circle
of the AP, P P,. c, will be the circle through the centres
of the three nine-point circles associated with P; and P, i.e.
the locus of points at a unit distance from the middle point of
(PyPy).  Pypq will be the point midway between P, and
the centre of the fixed circle, which is at a unit’s distance
from the middle point of each of the chords (P;P,), (P;Py),
(PrP,), (PiP,), and so on all three circles Cjkls Cril> Cij1e We
may thus repeat our previous reasoning word for word; the
five cireles ¢, ¢,, ¢;, ¢;, ¢; are concurrent, and as all have
a unit radius their centres lie on a unit circle about the point
of concurrence as centre. For m > 5 we proceed in exactly
the same way.

Here is a second proof of the foregoing that has the advan-
tage of being easily extended to the analogous case in three
dimensions, while our first proof cannot be so enlarged.
Take nm = 4, the centre of gravity of the four points will be

* See the Author’s ¢ Circles Associated with Concyclic Points’, 4Annals of
Mathematics, Series 2, vol, xii, 1910,
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the point of concurrence of the segments, each bounded by
one given point and the centre of gravity of the other three,
and will divide these segments in the ratio 1:3. The centres
of gravity of the four triangles will thus lie on a circle whose
radius is one-third the radius of the given circle ; hence, by
what precedes 72], the centres of the four nine-point circles lie
on a circle of half the radius of the circumscribed circle, and

whose distance from the fixed centre is g the distance to the

centre of gravity. The theorem thus holds for n=4. Assume
that it is true for n—1 points, and that the centre of their
circle is collinear with the centre of the fixed circle, and the
centre of gravity of the m—1 points, but the distances from
the centre of the fixed circle to these points is in the ratio
'n,_g_l_. If n points be given, we have n centres of gravity
of groups of n—1 points. These lie on a circle whose radius
bears to that of the fixed cirele the ratio 1:n—1. Hence the
7 points lie on a circle whose radius is one-half that of
the fixed circle, and the m associated circles pass through
a fixed point at the proper distance from the fixed centre.

§ 7. Coaxal Circles.

We have defined the power of a point with regard to
a circle as the product of its oriented distances to any two
points of the circle collinear with it. When the point is
outside the circle this is the square of the length of the
tangential segment. The sum of the power and the square
of the radius is seen to be the square of the distance from
the point to the centre. We see, thus, that if a point move
along a line perpendicular to the line of centres of two non-
concentric circles, the difference of its powers with regard to
the two is constant.

Theorem 167.] The locus of points having like powers
with regard to two mon-concentric circles is a line perpen-
dicular to the line of centres.
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This line is called the radical awmis. It is the common
secant when the circles intersect, the common tangent when
they touch.

Theorem 168.] The radical axes formed by the pairs of
three given circles whereof no two are concentric, are concurrent
or parallel.

The point of concurrence, when it exists, is called the
radical centre of the three. It is the only point having
equal powers with regard to all three, and when these powers
are all positive it is the centre of a circle whose radius is the
square root of this power, and which cuts the three given
circles at right angles.

Let us calculate the difference of the powers of a point with
regard to two given circles. When the circles are concentric,
it is the difference of the squares of the radii. Suppose them
non-concentriec. Their centres shall be C'C”, their radii »+/,
while the distance of their centres shall be d. Let ¥ be the
intersection of the radical axis with the line of centres

((JT])f’)z—((}’_I?)')2 = ri—r"?
(CF)—("F) = +d

2 — "2 + 2
Now let P be any point, H the foot of the perpendicular
from there on the line of centres, its powers with regard to the
two circles p and p’.  We easily find

p—p'= 2(ﬁ)d. (25)

Theorem 169.] The numerical value of the difference of
the powers of a point with regard to two non-concentric circles
s twice the product of its distance from the radical axes
multiplied by the distance between the centres. *

If a point be taken upon the circle of similitude of two
circles, outside of both, and a tangent be drawn thence to each
circle, the two not separated by the centres, it will be found at
once from 26] that the chords which the circles determine on
the line connecting the points of contact are equal, so that the



I ELEMENTARY PLANE GEOMETRY 97

power of each point of contact with regard to the other circle
is the same; the converse will also hold, hence

Theorem 170.] If two points be taken on two unequal and
non-concentric cireles in such a way that each has the swme
power with regard to the other circle, and the tangents at these
points are not separated by the centres of the circles, then the
intersection of these tangents is on the circle of similitude of
the two.

Let the distance from C to a point of CC” be , this point
being the centre of a circle of radius p. If

P22 4 2 _ r—ptta?
2d % 2@
(12— "2+ d2)
d
then each two of our three circles have the same radical axis.
Let us put p= 0, and consider the discriminant of the resulting
quadratic in z ; we assume 72 = %

(7.2_7.'2 +d2)2 %
N
Assume, first, (r—d)?—7"?>o0.
The two original cireles did not intersect; there are two real
values of 2 for which p = 0, i.e. two points which may be
looked upon as limiting circles of radius zero. These shall
be called the limiting points of the system of circles. The
power of a point with regard to a point circle shall, naturally,
be defined as the square of its distance from the point to
which the circle has shrunk. Any point outside the segment
of these limiting points may be taken as the centre of a cirele
having with either of the original circles the same radical
axis as they have with one another.

w?__ m_l_,).z — pz,

472

Suppose, secondly, (r—d)?—+"%2= 0.

Here the original circles are tangent to one another. Their
point of contact is the single limiting point of the system,
every other point of the line of centres in the centre of
a circle touching the two at the limiting point.

Lastly, let (r—d)?—+"? < 0.

1702 G
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Here the given circles intersect in real points. Any point
on their line may be taken as the centre of a circle through
their intersections; the least possible radius for such a circle
will be one-half the distance between these two common
points, and there are no limiting points in the system.

If a system of circles be so related that each two have the
same radical axis, they are said to be coaxal circles. Circles
through two common points or touching the same line at the
same point are examples of such systems.

A system of circles through two points will cut interesting
ranges on any line through either point.* Let two such
points be A and B, and let two lines through B meet the
various circles in the ranges P, P,...P, and Q,0Q,...Q,
respectively.

Since AAPij and AAQ;Q;, are similar,

(P;P)): (Q:Q)) = (AP;): (4Q) = (P; Py) : (Q; Qp),
(PiP)): (P Pr): (PP = (@:Q)) : (@ Q1) : (@1 Q)

Theorem 171.] A system of circles through two points cut
such ranges on any two lines through one of the points that
corresponding distances are proportional, and, conversely, if
two ranges be given on intersecting lines in such a way that
corresponding distances are proportional and the point of
intersection does mot correspond to itself, then the lines con-
necting corresponding points in the two ranges are concurrent
in « point common to all circles containing a pair of corre-
sponding points and the point of intersection of the two lines.

Since the Simson line of A is the same for all triangles

Theorem 172.] If a system of circles through two points cut
ranges on two lines through one of these points, then the feet of
the perpendiculars from the other point on all lines connecting
corresponding pairs of points of the two ranges are collinear.

Theorem 178.] If two circles cut a third either orthogonally
or in two pairs of diametrically opposite points of the latter,

* Casey, loc. cit., ch. v.
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then the centre of the third circleis on the radical axis of the two,
and every point of the radical azis not between the intersections
of the circles, when such exist, is the centre of a circle cut by
hoth at right angles, while every point between such intersections
is the centre of @ cirvcle cut by both in pairs of diametrically
opposite points.

We see, in fact, that if a point have the same positive power
with regard to two cireles it is the centre of a circle cutting
both orthogonally, while if it have the same negative power
with regard to both it is the centre of one cut by both in
pairs of diametrically opposite points, the radius being in the
first case the square root of the power, and in the second the
square root of the negative of the power.

Theorem 174.] If two circles intersect two others ortho-
gonally, then every circle coaxal with (orthogonal to) one pair
48 orthogonal to (coaxal with) the other. The radical axis of
each system is the line of centres of the other.

We see that the plane is thus covered with a double net-
work of circles in such a way that every point not on either
radical axis is the intersection of two ecircles, one of each
net-work, and these circles cut orthogonally. Remembering
that the limiting points of a coaxal system are point circles of
the system,

Theorem 175.] If two cireles intersect, the coaxal system of
circles cutting them orthogonally will have their points of in-
tersection as limiting points; if two non-concentric circles do
not intersect, the limiting points of their coaxal system are
common to all circles orthogonal to them.

Theorem 176.] If a system of circles be tangent to one
another at any point, they are orthogonal to @ second system
tangent at this point.

Two coaxal systems of mutually orthogonal circles are sald
to be conjugate.

Theorem 177.] The limiting points of @ coaxal system of
circles are mutually inverse with regard to every circle of the
system.

G 2
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Theorem 178.] The inverse of a coaxal system is either
@ coaxal or concentric system, or a pencil of concurrent or
parallel lines.

Theorem 179.] If three non-coaxal circles be given, no two
concentric or intersecting, the three pairs of limiting points
which they determine two by two are concyclic or collinear.

Theorem 180.] Two mutually inverse civcles are coaxal
with the circle of inversion.

Theorem 181.] If two points A and C lie on a circle ortho-
gonal to all circles through B and D, then B and D lie on
@ cirele orthogonal to all cirveles through A and C.

Two such pairs of points are said to be orthocyclic.

It is perfeetly clear that the cireles of a coaxal system with
two common points may be inverted into a system of con-
current lines. A system with no common point, being the
orthogonal trajectories of a system with two such points,
may be inverted into a concentric system. A system all
tangent at one point may be inverted into parallel lines.
The following theorem has already been suggested.

Theorem 182.] If the radical centre of three circles lie
without one, and, hence. without all of them, it is the centre
of a circle cutting all three orthogonally, and they may be
inverted into three civeles with collinear centres; if it lie
within one, and, hence, within «ll three, it is the centre of
a circle eut by all three in pairs of diametrically opposite
points.

Suppose that we have a triangle with our usual notation,
a point P not on any side-line, and let P;P; meet 4,4,
in B;. Applymﬂ Desargues’ triangle theo1em to A A4, A b,
and A I8 P , Py, since the three lines 4;P; are concurrent the
points B;, B;, By, are collinear. If, in par ticulax P be the ortho-
centle, we qee H, H), is anti-parallel to 4;A4;, and the points
5o Ay, H Hk are concyclie, i.e. B; has the same power with
regard to the nine-point and circumseribed cireles.
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Theorem 183.] The radical axis of the nine-point wnd
cirewmscribed circles contains the intersections of corresponding
side-lines of the given triangle and the pedal triangle of the
orthocentre.

Theorem 184.] Z'he orthocentre of a triangle is the radical
centre of any three circles euch of which has a diameter whose
extremities are a vertex and a point of the opposite side-line,
but no two pussing through the same vertezx.

We see, in fact, that, since the orthocentre is a centre of
similitude for the circumscribed and nine-point circles, the
product of its distances from each vertex and the foot of
the corresponding altitude is constant. Suppose next that
we have a complete quadrilateral®* The orthocentres of the
triangles formed by the given side-lines three by three will,
apparently, all be radical centres for the three circles whose
diameters are the three diagonals of the complete quadri-
lateral. 'This apparent contradiction leads to the Gauss-
Bodenmiller theorem.

" Theorem 185.] The three civcles on the diagonals of a
complete quadrilateral as diameters are coaxal.t

We get from 74] and 156]

Theorem 186.] The radical axis of the three civcles on the
diagonals of « complete quadrilateral as diameters contains
the orthocentres of the four triangles determined three by three
by the side-lines of the quadrilateral, and is parallel to the
Simson line of the Miquel point, but twice as far from this
point as is the Simson line.

Theorem 187.] Two pairs of circles c,c; and cyey are euch
coaxal with « given civcle; then if ¢, intersect ¢, and c,
intersect ¢, the four points so determined are concyclic.}

Suppose that we have three segments each bounded by onc
vertex of a triangle and a point of the opposite side-line, and

* Cf. McCleland, loe. cit., p. 189. Not a little of the remainder of the
present chapter is taken from this source.

+ Bodenmiller, Analytische Sphirik, Cologue, 1830, p. 188,
% Chasles, loc. cit., p. 540,
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all having in common a point 8. Let the perpendiculars on
the lines of these segments from the orthocentre meet the
circles having the segments as diameters in the three pairs
of points B;B;. Let us first show that these six points are
coneyclic. We see, in fact, since I is the radical centre of
the three circles with diameters (4;5;), (4;5;), (4;,5),

—> > = - > s>

(HB)) x (HB)') = (HB,) x (IB,)) = (HB,) x (HB,).
On the other hand, the perpendicular bisectors of the segments
(B;B;) pass through S, hence S is the centre of a ecirele
through all six. We next notice that H has the same power
with regard to the three circles on diameters (4,8;) as with
regard to those with diameters (4;4,;). If we take M as
a centre of similitude, and a ratio —1: 2, we change 4,4,4,
into M, M,M,. Let 1" be transformed into S.

Let 0;C{ be the points where the line through I7 174,
meets the circle whose diameter is (4;4;). Once more

—> > - —
(HC,) x (HCY) = (HC,)x (C).

The perpendicular bisectors of the segments (C;C;) pass
through the points 3/; and are parallel to the lines 4,7, and
correspond to them in the similarity transformation. They
arc thus concurrent in S. Lastly, since [ has like powers
with regard to all six circles,

Theorem 188.] If S be any point, and T the point which
bears to the original triangle the same relation that S bears to
the middle point triangle My M, My, then the intersections of
the circles on segments (4;S;) as diameters with the perpen-
diculars from the orthocenire on these segments, and of the
circles on the segments (A;4;) as diameters with the corre-
sponding perpendiculars from the orthocentre on the lines T4,
lie on a circle with centre S.*

Let us return to our theorem 169] from which flow a great
wealth of interesting results. If a circle of radius p have
contact of a specified kind with two others, the difference of
the powers of its centre with regard to these two will be
2p (r7).

* Hagge, ‘Ein merkwirdiger Kreis des Dreiecks’, Zeilschrift fir mathe-
matischen Unlerricht, vol. xxxix, 1908.
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Theorem 189.] If « variable circle huve contact of « fixed
type with each of two given non-concentric circles, or have just
the reverse contact with each, then its radius will bear o fixed
ratio to the distance of its centre from the radical axis.

If we call the distance to the radical axis &, the fixed ratio ¢,
and take a line parallel to the radical axis at a distanceg
therefrom and on the proper side thereof, the distance of the
centre of the variable circle therefrom is %times its distance

from the centre of the circle of radius ». We see, also, that
the sum or difference of the distances from the variable eentre
to the fixed centres is constant. We thus reach the fundamental
theorem for central conics.

Theorem 190.] If a point so move that the sum or differeice
of its distances from two fixed points is constant, its distance
Jrom either fixed point bears o constant ratio to its distance
Jrom a corresponding fized line perpendicular to that which
connects the fized points.

The power of a point with regard to any circle of a coaxal
system is by 169] twice the produect of its distance from the
radical axis multiplied by the distance from the centre of
the circle to that of the circle of the coaxal system through
the given point. The point is supposed, of course, not to be
on the radical axis.

Theorem 191,] If there be any points whose powers with
regard to two non-concentric circles bear « fixed given ratio
different from wwity, they all lie on one circle coaxal with the
two given ones.

The necessity of the proviso that such points should exist
is apparent when we reflect that if, for instance, the circles
were very small and far apart there could be no point corre-
sponding to such a ratio as —1.

Theorem 192.] If a wvariable chord of o circle subtend a
right angle at a fized point, the foot of the perpendicular from
the fixed point on the line of the chord und the point of inter-
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sections of the tangents at its extremities trace coaxal or
concentric circles.

We see, in fact, that if we treat the given point as a cirele of
radius zero, the foot of the perpendicular on the line of the
chord and the middle point of that chord trace the same
circle, since the power of each with regard to the given circle
is the negative of the square of its distance from the fixed
point. We have then but to apply 180].

Suppose that a variable line meets one circle in points S, 1,
and makes therewith an angle a;, while its intersections and
angle with a second circle are S, T, and «,. If we find a point
where a tangent at S or 7', meets one at S, or T),, we see that
the tangential segments thence to the two circles bear the
ratio sin o, :sin ;.

Theorem 198.] If a pair of tangents be drawn to each of
two circles, the points of contact being collinear, then the
intersections of the tangents to one civcle with the tangents
to the other will lie on « circle concentric or couxal with the
given cireles, or on their radical axis.

Theorem 194.] If a variable line move in such a way that
the segments cut thereon by two fixed civcles have a constant
ratio, then the locus of the intersections of the tangents to the
Jirst circle where it meets this line, with the corresponding
tangents to the second, is a circle concentric or counxal with the
given circles or their radical awxis.

Suppose that we have a quadrilateral inscribed in a circle.
If a transversal be so drawn that it makes an isosceles triangle
with one pair of side-lines, or with the diagonal lines, then it
will do so with the remaining side-lines or diagonal ones.
Let us also momentarily extend our concept of the isosceles
triangle so as to say that a line perpendicular to two parallel
lines makes an isosceles triangle with them.

Theorem 195.] If a quadrilateral be inscribed in a circle,
then we may, in an infinite number of ways, find three other
circles concentric or coaxal with the original circle and with
one another such that each is tangent to a pair of opposite
side-lines or diagonal lines of the quadrilateral.
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Theorem 196.] If a wvariable triangle be imscribed in
« circle, and if two of its side-lines continually touch two
circles concentric or coaxal with the given circle, the sume is
true of the third side-line.

A rigorous proof of this is not difficult, but a little delicate.
Let us take two positions of our triangle 4,4,4,, A'A4,/A;.
Suppose that 4,4, and A4,/A, touch a certain cirele, while
A4/, A,A,) touch another concentric or coaxal with this
and with the given circle. In the same way 4,4/, 4,4/
will touch a third circle of the coaxal system. Now it is
conceivable that the circle touched by 4,4, 4,4, should
be different from that touched by A;4,, 4,4/, for two
circles of the coaxal system might well both touch A4 4.
If, however, we can show in a particular case that one of the
circles of the coaxal system tangent to 4,4, is extraneous
to the discussion, we shall know that in general both circles
will not appear. The particular case is when A4, is infinitely
near A4, the circle tangent to 4,4, is the original circle, the
other coaxal circle tangent to this is distinet from this and
not connected with the discussion. Hence 4,4/, 4,4,
A, A/ all touch opne circle of the coaxal system, and
A,A4,, A/A, also touch one of these cireles.

Theorem 197.] Pouncelel’'s theorem. If a polygon of any
number of sides be inscribed in « circle, and all of its side-
lines but one each touch « fized circle of a system concentric
or coaxal with the given one, then the sume is true of the
remaining side-line.*

Theorem 198.] The problem of inscribing a polygon of
any given nwmber of sides in a given circle so that its side-
lines shall also touch a second given circle has an infinite
number of solutions if it have any at all.

There are certain special cases coming under our theorem 191]
which deserve particular notice. If the fixed ratio be unity
we do not get a circle, but the radical axis. Let us rather
look at the case where the ratio is —1. The locus is in this

* For the most full discussion of this and allied questions see Weill, ‘Sur

les polygones inscrits et circonscrits & la fois b deux cercles?, Liouville's
Journal, Series 8, vol. iv, 1878 ; also Biitzberger, loc. cit., pp. 7-32.
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case called the radical circle of the two original ones* Tt
will actually exist if the circles intersect, or if, not inter-
secting, they lie on the same side of their radical axis, or if
they be concentric. The centre will be half-way between
their centres. We leave the verification of these statements
to the reader.

Theorem 199.] Two intersecting or tangent circles, or two
non-intersecting circles which are concentric or else lie on the
sume side of their radical axis, have a radical circle which
is the circle coumal with them whose centre is mid-way between
their centres.

The slight modification needed in the case of concentric
cireles is easily made. J

Theorem 200.] If three circles be given whereof no two are
concentric, the radical circle of each puwir is identical with that
of the radical circles determined by the circles of the pair
severally with the third circle.

The truth of this theorem is, of course, contingent on the
existence of all the radical circles in question. We see, more-
over, that the radical axes of both pairs of circles are parallel,
for ome is orthogonal to a side-line of a triangle while the
other is perpendicular to the line connecting the middle points
of the other two sides, Moreover, the radical centre of three
original circles is easily seen to be the radical centre of the
radical cireles which they determine two by two. The theorem
is thus proved.

If a circle be cut by a second orthogonally, while it is cut by
a third in a pair of diametrically opposite points, its centre
has powers with regard to the other two circles which differ
only in sign.

Theorem 201.] ZT'he radical circle of two given circles is the
locus of the centres of circles cut by the one orthogonally, and by
the other in diametrically opposite points.

* Cf. Duran-Loriga, ¢ Ueber Radicalkreise’, Grunerts Archiv, Series 2, vol, xv,
1896.
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Theorem 202,] The pedal circle of two isogonally conjugate
points is the radical cirele of any pair of circles whose centres
are these points, and each of which cuts orthogonally the three
circles whose diameters are the segments cut by the other on the
side-lines of the triangle* -

Theorem 203.] The wine-point circle of an cobtuse-angled
triangle is the radicul circle of the circumscribed circle and
a circle of anti-similitude of this and the pedal circle of the
orthocentre.

Theorem 204.] ZThe circles on two sides of a triangle us
diameters have the circle whose diameter is the included median
as their radical circle.

Besides the radical eircle there is one other circle of the
coaxal family that is interesting. We see at once from 27]

Theorem 205,] The circle of similitude of two given circles
is coawal with them.

Consider, now, three circles with non-collinear centres. The
three circles of similitude which then determine two by two
cut orthogonally the common orthogonal circle of the original
three, when that exists, and the circle through the centres
of the original three by 13]. This latter will be the radical
circle of the common orthogonal circle and the circle cutting
each of the original three in a pair of diametrically opposite
points.

Theorem 206.] If three civcles have non-collinear centres,
and their radical centre lies outside of them, then the circle
througlh their three centres is the radical circle of their common
orthogonal circle and that circle, when it exists, which cuts
cach of the three in a pair of diwmetrically opposite points.
The coaxal system conjugate to that determined by these new
circles contains the circles of similitude determined two by two
by the given circles.

¥ Roberts, ‘On the Analogues of the Nine-point Circle in the Space of
Three Dimensions’, Proccedings London Mathematical Sociely, vol. xix, 1878,



108 THE CIRCLE IN CH.

Theorem 207.] If a circle move so that each of two given
points has @ constant power with regard to it, it will trace
o coaxal system.

The line connecting the points is a radical axis for any two
positions of the circle.

Theorem 208.] If « circle so move that it culs two others
in diametrically opposite points, or cuts one in diametrically
opposite points and the other orthogonally, it will generate
o coaxal system.

Theorem R09.] If three mutually external circles be given,
their centres being non-collinear, three other circles may be
Jound each cutting two of them orthogonally and the third in
diametrically opposite points, and three each cutting two
in diametrically opposite points and the third orthogonally.® -

Theorem 210.] Given two non-concentric circles. If there
be a cirvcle coawal with them whose centre is the reflexion of
the centre of the first cirvcle in that of the second, then this
third circle will cut in diametrically opposite points all
circles orthogonal to the first circle whose centres lie on the
second.

Theorem 211.] Given two non-concentric circles. If there
be a circle coawal with them whose centre is the reflexion of
the centre of the first civcle in that of the second, then this
circle will cut orthogonally all circles cut by the first in
diametrically opposite points, and having their centres on the
second.

Let us start with two fixed circles. These may be inverted
into concentric circles or into two lines. We thus get

Theorem 212.] If a variable circle cut two fixed circles at
given angles, it will cut every circle coaxal with them either
at a fixed angle or at the supplementary angle.

It is clear that there would be advantage in sharpening
our idea of the angle of two circles in such a way as to
remove the ambiguity in this statement. We do so as follows,
Let each circle be looked upon as generated by a point

* For the three theorems which follow see Affolter, ‘Zur Geometrie des
Kreises und der Kugel’, Grunerts Archiv, vol. lvii, 1875.
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tracing its circumference in a positive or counter-clockwise
sensc. At a point of intersection draw the half-tangents
which lie on the same sides of their respective diameters
as near by-points of the circle traced subsequent to the point
of contact. At each intersection these half-tangents will
make the same angle, except for algebraic sign, and this shall
be defined as the angle of the two circles.* Analytically it is
the angle 6, where Nt
e et
s e (24)

Theorem 218.] If a variable circle cut two fixed circles at
given angles, it will cut at a given angle every civcle con-
centric or coaxal with them.

Suppose that we have a circle cutting three given circles
at chosen angles. If we simplify the figure by inversion, we
see that there will be a second circle cutting them at the same
angles or cutting all three at just the supplementary angles;
the two are mutually inverse in the common orthogonal circle
of the first three, when this circle exists. The problem of
finding a circle cutting three given circles at assigned angles
or at exactly the supplementary angles has thus, usually,
more than one solution. The cireles will be orthogonal to
three circles each coaxal with two of the given circles. These
three new circles must be coaxal, as otherwise they would
have but one common orthogonal circle. The circles sought
will thus belong to a coaxal system, and touch six given
cireles, but every circle of the system touching one of the six
will touch the other five,

cosf =

Theorem 214.1 The problem of constructing a circle to cut
three non-concentric and mnon-coaxal circles at preassigned
angles or at just the supplements of these angles has, at most,
two solutions. The construction may be effected by the aid of
ruler and compass.

We shall postpone to a subsequent chapter the explanatidn
of the actual construction to be employed. For the moment

* The angle, so defined, will be transformed into its supplement by
inversion if one circle surrounds the centre of inversion, and the other
does not.
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let us consider the problem of constructing a circle to meet
certain given circles at equal angles. We easily see by
inverting two circles into concentric circles or into two lines
that a circle cutting them at equal angles will be orthogonal
to one particular circle of anti-similitude, when such exists,
and, conversely, every circle orthogonal to this circle of
anti-similitude will cut them at equal angles, while a circle
orthogonal to the other circle of anti-similitude will cut them
at supplementary angles. To be more specific, we see that
if two circles intersect, both cireles, of anti-similitude, exist ;
the circles which cut them at equal angles are orthogonal
to the external circle of anti-similitude, i.e. to that whose
centre is the external centre of similitude ; a circle cutting
them at supplementary angles will be orthogonal to the
internal ecircle of anti-similitude. If two circles lie outside
one another, there is no internal circle of anti-similitude, and
circles cutting them at equal angles are orthogonal to the
external circle of anti-similitude, or to the radical axis when
the radii are equal. When one circle surrounds the other
there is no external circle of anti-similitude, and the internal
one is orthogonal to those circles which cut the two at
supplementary angles.

Theorem 215.] If a circle cut two others at equal angles
it s orthogonal to their external civcle of anti-similitude
when this civele exists, and every such circle cuts them at equal
angles if at all. If a cirvcle cut two others at supplementary
angles it will be orthogonal to their internal circle of anti-
simalitude when such a circle exists, and every circle orthogonal
to an internal circle of anti-similitude will cut the given
cireles at supplementary angles if it cut them at all.

If a circle cut two others and be orthogonal to a circle of
anti-similitude, it is anallagmatie with regard to the inversion
in that latter circle (which interchanges the original circles).
The intersections with the original circles are thus collinear
in pairs with the centre of this circle of anti-similitude. If
the circle of anti-similitude do not exist, and be not replaced
by the radical axis, the given circles are interchanged by the



I ELEMENTARY PLANE GEOMETRY 111

product of a reflexion in the centre of similitude, and an
inversion in a circle with this as centre, and every circle
invariant for such a transformation will cut the original
circles in equal or supplementary angles. Conversely, if
a circle cut two others at equal or supplementary angles, yet
be not orthogonal to a circle of anti-similitude or radical axis,
it is easily seen to be carried into itself by such a trans-
formation.

Theorem 216.] If a circle intersect two other non-concentric
circles of unequal radius at equal angles, the points of inter-
section are collinear two by two with the external centre of
simalitude; of it intersect two others at supplementary angles,
the points of intersection are collinear in pairs with the
anternal centre of similitude.

Theorem 217.] If each of two mon-concentric circles cut
two other mon-concentric ones at one same angle, then the
radical axis of euch pair passes through the external centre
of similitude of the other pair or is parallel to their line of
centres when the circles of the second pair have equal radii.
If each of two momn-concentric circles make supplementary
angles with each of two other non-concentric circles, and each
cirvcle of the second pair make supplementary angles with
each of the first, then the internal centre of similitude of each
pair lies on the radical axis of the other.

The radical axis of two circles will replace the external
circle of similitude when, and only when, they have equal
radii, whence

Theorem 218.] If a centre of inversion be taken on a circle
of anti-similitude, the inverses of two given circles will have
equal radii.

Suppose next that we have three circles. A line connecting
two external centres of similitude will pass through the third,
when the latter exists; a line connecting two internal centres
of similitude will pass through an external centre.

Theorem 219.] If three civcles be given with non-collinear
centres, the circles cutting them at equal angles form a coazal
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or concentric system, as do those which cut one at angles
supplementary to those cut on the other three. The locus of the
centres is the perpendicular from the radical centre of the
original three on « line containing three of the centres of
similitude which they determine two by two.

Theorem 220.] If four circles be given, mo three having
collinear centres, there is at most one circle cutting all at
equal angles, four cutting one in angles supplementary to the
angles cut in the other three, and three cutting one pair in
angles supplementary to those cut in the other pair.

Theorem 221.] A necessary and sufficient condition that it
should be possible to invert three circles simultaneously into
three circles with equal radii is that « civele of anti-similitude
of one pair should intersect such a circle of another pair in
a point outside all three given circles.

It is a parlous undertaking to suggest possible lines of
further advance in the subject of plane geometry. On the
one hand, the subject has shown itself inexhaustibly fertile,
new discoveries have come in such numbers at times when
a superficial observer would have felt sure that the last word
had been said, that it would be highly unwise to assert that
with a little patience one might not strike oil by working in
any portion of the subject. On the other hand, the existing
literature is so vast that there is a large antecedent probability
that any new seeming result may have been discovered decades
if not centuries before.

It seems likely that there are other simple criteria for
various systems of tangent circles like Casey’s condition for
four eircles tangent to a fifth, Vahlen’s criterion for poristic
systems, or the Euler conditions that there may be a triangle
or quadrilateral inseribed in one circle which is circumseribed
to the other. There seem to be limitless possibilities for
finding circles through notable points or tangent to notable
lines. There must be other circles analogous to the P circle.
It seems likely also that there are other special cases of Tucker
circles which are worthy of attention. Moreover, it may be
possible to generalize the Tucker systems in interesting ways
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as suggested by 67]. It seems likely that there are other
chains of concurrent circles and concyclic points besides those
noticed in theorems 162-6. The Brocard figures seem to offer
an inexhaustible store of theorems. It is quite likely also that
in coaxal systems of circles there may be other interesting
circles besides the special ones which we have discussed. For
instance, the following theorem came to our notice too late
to be inserted in its proper place.

Theorem 222.]1 If a transversal through the centre of the
circumseribed civcle meet the sides of a triangle in the points
B,, B,, B,, the circles on (4;B,) as diameters are concurrent
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