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PREFACE.

THE present work is based on a dissertation submitted at

the Fellowship Examination of Trinity College, Cam-
bridge, in the year 1895. Section B of the third chapter is in
the main a reprint, with some serious alterations, of an article
in Mind (New Series, No. 17). The substance of the book has
been given in the form of lectures at the Johns Hopkins
University, Baltimore, and at Bryn Mawr College, Pennsyl-
vania.

My chief obligation is to Professor Klein. Throughout the
first chapter, I have found his “ Lectures on non-Euclidean
Geometry ” an invaluable guide ; I have accepted from him the
division of Metageometry into three periods, and have found
my historical work much lightened by his references to previous
writers. In Logic, I have learnt most from Mr Bradley, and
next to him, from Sigwart and Dr Bosanquet. On several
important points, I have derived useful suggestions from
Professor James’s “ Principles of Psychology.”

My thanks are due to Mr G. F. Stout and Mr A. N.
Whitehead for kindly reading my proofs, and helping me by
many useful criticisms. To Mr Whitehead I owe, also, the
inestimable assistance of constant criticism and suggestion
throughout the course of construction, especially as regards
the philosophical importance of projective Geometry.

HASLEMERE.
May, 1897.
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INTRODUCTION.

OUR PROBLEM DEFINED BY ITS RELATIONS TO LOGIC,
PSYCHOLOGY AND MATHEMATICS.

1. GEOMETRY, throughout the 17th and 18th centuries,
remained, in the war against empiricism, an impregnable
fortress of the idealists. Those who held—as was generally
held on the Continent—that certain knowledge, independent of
experience, was possible about the real world, had only to
point to Geometry: none but a madman, they said, would
throw doubt on its validity, and none but a fool would deny
its objective reference. The English Empiricists, in this
matter, had, therefore, a somewhat difficult task; either they
had to ignore the problem, or if, like Hume and Mill, they
ventured on the assault, they were driven into the apparently
paradoxical assertion that Geometry, at bottom, had no cer-
tainty of a different kind from that of Mechanics—only the
perpetual presence of spatial impressions, they said, made
our experience of the truth of the axioms so wide as to seem
absolute certainty.

Here, however, as in many other instances, merciless logic
drove these philosophers, whether they would or no, into
glaring opposition to the common sense of their day. It was
only through Kant, the creator of modern Epistemology, that
the geometrical problem received a modern form. He reduced
the question to the following hypotheticals: If Geometry has
apodeictic certainty, its matter, i.e. space, must be d priori, and
as such must be purely subjective; and conversely, if space is
purely subjective, Geometry must have apodeictic certainty.
The latter hypothetical has more weight with Kant, indeed it
is ineradicably bound up with his whole Epistemology ; never-
theless it has, I think, much less force than the former. Let us

R. G. 1



) INTRODUCTION.

accept, however, for the moment, the Kantian formulation, and
endeavour to give precision to the terms d prior: and subjective.

2. One of the great difficulties, throughout this contro-
versy, is the extremely variable use to which these words, as
well as the word empirical, are put by different authors. To
Kant, who was nothing of a psychologist, & priori and subjective
were almost interchangeable terms!; in modern usage there is,
on the whole, a tendency to confine the word subjective to
Psychology, leaving d priori to do duty for Epistemology. If
we accept this differentiation, we may set up, corresponding
to the problems of these two sciences, the following provisional
definitions : @ priort applies to any piece of knowledge which,
though perhaps elicited by experience, is logically presupposed
in experience: subjective applies to any mental state whose
immediate cause lies, not in the external world, but within
the limits of the subject. The latter definition, of course, is
framed exclusively for Psychology: from the point of view
of physical Science all mental states are subjective. But for
a Science whose matter, strictly speaking, is only mental states,
we require, if we are to use the word to any purpose, some
differentia among mental states, as a mark of a more special
subjectivity on the part of those to which this term is applied.

Now the only mental states whose immediate causes lie
in the external world are sensations. A pure sensation is, of
course, an impossible abstraction—we are never wholly passive
under the action of an external stimulus—but for the purposes
of Psychology the abstraction is a useful one. Whatever, then,
is not sensation, we shall, in Psychology, call subjective. It
is in sensation alone that we are directly affected by the ex-
ternal world, and only here does it give us direct information
about itself.

3. Let us now consider the epistemological question, as
to the sort of knowledge which can be called @& priori. Here
we have nothing to do—in the first instance, at any rate—
with the cause or genesis of a piece of knowledge; we accept
knowledge as a datum to be analysed and classified. Such
analysis will reveal a formal and a material element in

1 Cf, Erdmann, Axiome der Geometrie, p. 111: * Fiir Kant sind Aprioritit
und ausschliessliche Subjectivitiit allerdings Wechselbegriffe.”
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knowledge. The formal element will consist of postulates which
are required to make knowledge possible at all, and of all
that can be deduced from these postulates; the material ele-
ment, on the other hand, will consist of all that comes to
fill in the form given by the formal postulates—all that is
contingent or dependent on experience, all that might have
been otherwise without rendering knowledge impossible. We
shall then call the formal element & prior:, the material element
empirical.

4 Now what is the connection between the subjective
and the @ priori? It is a connection, obviously—if it exists
at all—from the outside, 7.e. not deducible directly from the
nature of either, but provable—if it can be proved—only by
a general view of the conditions of both. The question, what
knowledge is @ priori, must, on the above definition, depend
on a logical analysis of knowledge, by which the conditions
of possible experience may be revealed; but the question, what
elements of a cognitive state are subjective, is to be inves-
tigated by pure Psychology, which has to determine what, in
our perceptions, belongs to sensation, and what is the work
of thought or of association. Since, then, these two questions
belong to different sciences, and can be settled independently,
will it not be wise to conduct the two investigations separately ?
To decree that the & priori shall always be subjective, seems
dangerous, when we reflect that such a view places our results,
as to the @ priori, at the mercy of empirical psychology. How
serious this danger is, the controversy as to Kant’s pure in-
tuition sufficiently shows.

5. I shall, therefore, throughout the present Essay, use
the word @ priori without any psychological implication. My
test of apriority will be purely logical : Would experience be
impossible, if a certain axiom or postulate were denied? Or,
In a more restricted sense, which gives apriority only within
a particular science : Would experience as to the subject-matter
of that science be impossible, without a certain axiom or pos-
tulate? My results also, therefore, will be purely logical. If
Psychology declares that some things, which I have declared
@ priort, are not subjective, then, failing an error of detail in
my proofs, the connection of the ¢ priori and the subjective,

1-2
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so far as those things are concerned, must be given up. There
will be no discussion, accordingly, throughout this Essay, of
the relation of the & priort to the subjective—a relation which
cannot determine what pieces of knowledge are & priort, but
rather depends on that determination, and belongs, in any
case, rather to Metaphysics than to Epistemology.

6. As I have ventured to use the word & priori in a
slightly unconventional sense, I will give a few elucidatory
remarks of a general nature.

The & priori, since Kant at any rate, has generally stood
for the necessary or apodeictic element in knowledge. But
modern logic has shown that necessary propositions are always,
in one aspect at least, hypothetical. There may be, and usually
is, an implication that the connection, of which necessity is
predicated, has some existence, but still, necessity always points
beyond itself to a ground of necessity, and asserts this ground
rather than the actual connection. As Bradley points out,
“arsenic poisons ” remains true, even if it is poisoning no one.
If, therefore, the d priori in knowledge be primarily the neces-
sary, it must be the necessary on some hypothesis, and the
ground of necessity must be included as @ priori. But the
ground of necessity is, so far as the necessary connection in
question can show, a mere fact, a merely categorical judgment.
Hence necessity alone is an insufficient criterion of apriority.

To supplement this criterion, we must supply the hypothesis
or ground, on which alone the necessity holds, and this ground
will vary from one science to another, and even, with the pro-
gress of knowledge, in the same science at different times.
For as knowledge becomes more developed and articulate, more
and more necessary connections are perceived, and the merely
categorical truths, though they remain the foundation of apo-
deictic judgments, diminish in relative number. Nevertheless,
in a fairly advanced science such as Geometry, we can, I think,
pretty completely supply the appropriate ground, and establish,
within the limits of the isolated science, the distinetion be-
tween the necessary and the merely assertorical.

7. There are two grounds, I think, on which necessity
may be sought within any science. These may be (very
roughly) distinguished as the ground which Kant seeks in the



INTRODUCTION. 5

Prolegomena, and that which he seeks in the Pure Reason.
We may start from the existence of our science as a fact, and
analyse the reasoning employed with a view to discovering
the fundamental postulate on which its logical possibility de-
pends; in this case, the postulate, and all which follows from
it alone, will be @ priori. Or we may accept the existence of
the subject-matter of our science as our basis of fact, and
deduce dogmatically whatever principles we can from: the
essential nature of this subject-matter. In this latter case,
however, it is not the whole empirical nature of the subject-
matter, as revealed by the subsequent researches of our science,
which forms our ground; for if it were, the whole science
would, of course, be @ priori. Rather it is that element, in the
subject-matter, which makes possible the branch of experience
dealt with by the science in question’. The importance of this
distinction will appear more clearly as we proceed?.

8. These two grounds of necessity, in ultimate analysis, fall
together. The methods of investigation in the two cases differ
widely, but the results cannot differ. For in the first case, by
analysis of the science, we discover the postulate on which alone
its reasonings are possible. Now if reasoning in the science
is impossible without some postulate, this postulate must be
essential to experience of the subject-matter of the science,
and thus we get the second ground. Nevertheless, the two
methods are useful as supplementing one another, and the
first, as starting from the actual science, is the safest and
easiest method of investigation, though the second seems the
more convincing for exposition.

9. The course of my argument, therefore, will be as follows:
In the first chapter, as a preliminary to the logical analysis of
Geometry, I shall give a brief history of the rise and development
of non-Euclidean systems. The second chapter will prepare the
ground for a constructive theory of Geometry, by a criticism
of some previous philosophical views; in this chapter, I shall

1 1 use ‘“experience” here in the widest possible sense, the sense in which
the word is used by Bradley.

2 Where the branch of experience in question is essential to all experience,
the resulting apriority may be regarded as absolute; where it is necessary only
to some special science, as relative to that science.
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endeavour to exhibit such views as partly true, partly false,
and so to establish, by preliminary polemics, the truth of such
parts of my own theory as are to be found in former writers.
A large part of this theory, however, cannot be so introduced,
since the whole field of projective Geometry, so far as I am
aware, has been hitherto unknown to philosophers. Passing,
in the third chapter, from ecriticism to construction, I shall
deal first with projective Geometry. This, I shall maintain,
is necessarily true of any form of externality, and is, since
some such form is necessary to experience, completely & priori.
In metrical Geometry, however, which I shall next consider,
the axioms will fall into two classes: (1) Those common to
Euclidean and non-Euclidean spaces. These will be found,
on the one hand, essential to the possibility of measurement
in any continuum, and on the other hand, necessary properties
of any form of externality with more than one dimension.
They will, therefore, be declared & priori. (2) Those axioms
which distinguish Euclidean from non-Euclidean spaces. These
will be regarded as wholly empirical. The axiom that the
number of dimensions is three, however, though empirical,
will be declared, since small errors are here impossible, exactly
and certainly true of our actual world; while the two remaining
axioms, which determine the value of the space-constant, will
be regarded as only approximately known, and certain only
within the errors of observation!. The fourth chapter, finally,
will endeavour to prove, what was assumed in Chapter IIL,
that some form of externality is necessary to experience, and
will conclude by exhibiting the logical impossibility, if know-
ledge of such a form is to be freed from contradictions, of
wholly abstracting this knowledge from all reference to the
matter contained in the form.

I shall hope to have touched, with this discussion, on all
the main points relating to the Foundations of Geometry.

! T have given no account of these empirical proofs, as they seem to be con-
stituted by the whole body of physical science. Everything in physical science,
from the law of gravitation to the building of bridges, from the spectroscope to
the art of navigation, would be profoundly modified by any considerable in-
accuracy in the hypothesis that our actual space is Euclidean. The observed
truth of physical science, therefore, constitutes overwhelming empirical evidence
that this hypothesis is very approximately correct, even if not rigidly true.



CHAPTER L

A SHORT HISTORY OF METAGEOMETRY.

10. WHEN a long established system is attacked, it usually
happens that the attack begins only at a single point, where
the weakness of the established doctrine is peculiarly evident.
But criticism, when once invited, is apt to extend much further
than the most daring, at first, would have wished.

“First cut the liquefaction, what comes last,
But Fichte’s clever cut at God himself?”

So it has been with Geometry. The liquefaction of Euclidean
orthodoxy is the axiom of parallels, and it was by the refusal
to admit this axiom without proof that Metageometry began.
The first effort in this direction, that of Legendre?, was inspired
by the hope of deducing this axiom from the others—a hope
which, as we now know, was doomed to inevitable failure.
Parallels are defined by Legendre as lines in the same plane,
such that, if a third line cut them, it makes the sum of the
interior and opposite angles equal to two right angles. He
proves without difficulty that such lines would not meet, but
is unable to prove that non-parallel lines in a plane must meet.
Similarly he can prove that the sum of the angles of a triangle
cannot exceed two right angles, and that if any one triangle has
a sum equal to two right angles, all triangles have the same
sum; but he is unable to prove the existence of this one
triangle.

11." Thus Legendre’s attempt broke down; but mere failure

1 V. Mémoires de PAcadémie royale des Sciences de I'Institut de France,
T. xm. 1833, for a full statement of his results, with references to former
writings.
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could prove nothing. A bolder method, suggested by Gauss,
was carried out by Lobatchewsky and Bolyail. If the axiom
of parallels is logically deducible from the others, we shall, by
denying it and maintaining the rest, be led to contradictions.
These three mathematicians, accordingly, attacked the problem
indirectly : they denied the axiom of parallels, and yet obtained
a logically consistent Geometry. They inferred that the axiom
was logically independent of the others, and essential to the
Euclidean system. Their works, being all inspired by this
motive, may be distinguished as forming the first period in
the development of Metageometry.

The second period, inaugurated by Riemann, had a much
deeper import: it was largely philosophical in its aims and
constructive in its methods. It aimed at no less than a logical
analysis of all the essential axioms of Geometry, and regarded
space as a particular case of the more general conception of
a manifold. Taking its stand on the methods of analytical
metrical Geometry, it established two non-Euclidean systems,
the first that of Lobatchewsky, the second—in which the axiom
of the straight line, in Euclid’s form, was also denied—a new
variety, by analogy called spherical. The leading conception in
this period is the measure of curvature, a term invented by
Gauss, but applied by him only to surfaces. Gauss had shown
that free mobility on surfaces was only possible when the
measure of curvature was constant; Riemann and Helmholtz
extended this proposition to n dimensions, and made it the
fundamental property of space.

In the third period, which begins with Cayley, the philo-
sophical motive, which had moved the first pioneers, is less
apparent, and is replaced by a more technical and mathematical
spirit. This period is chiefly distinguished from the second, in
a mathematical point of view, by its method, which is projective
instead of metrical. The leading mathematical conception here

1 This bolder method, it appears, had been suggested, nearly a century
earlier, by an Italian, Saccheri. His work, which seems to have remained
completely unknown until Beltrami rediscovered it in 1889, is called ¢ Euclides
ab omni naevo vindicatus, etc.” Mediolani, 1783. (See Veronese, Grundziige
der Geometrie, German translation, Leipzig, 1894, p. 636.) His results

included spherical as well as hyperbolic space; but they alermed him to such
an extent that he devoted the last half of his book to disproving them.
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is the Absolute (Grundgebild), a figure by relation to which all
metrical properties become projective. Cayley's work, which
was very brief, and attracted little attention, has been perfected
and elaborated by F. Klein, and through him has found general
acceptance. Klein has added to the two kinds of non-Euclidean
Geometry already known, a third, which he calls elliptic; this
third kind closely resembles Helmholtz’s spherical Geometry,
but is distinguished by the important difference that, in it,
two straight lines meet in only one point’. The distinctive
mark of the spaces represented by both is that, like the surface
of a sphere, they are finite but unbounded. The reduction of
metrical to projective properties, as will be proved hereafter,
has only a technical importance ; at the same time, projective
Geometry is able to deal directly with those purely descriptive
or qualitative properties of space which are common to Euclid
and Metageometry alike. The third period has, therefore, great
philosophical importance, while its method has, mathematically,
much greater beauty and unity than that of the second; it is
able to treat all kinds of space at once, so that every symbolic
proposition is, according to the meaning given to the symbols,
a proposition in whichever Geometry we choose. This has the
advantage of proving that further research cannot lead to con-
tradictions in non-Euclidean systems, unless it at the same
moment reveals contradictions in Euclid. These systems, there-
fore, are logically as sound as that of Euclid himself.

After this brief sketch of the characteristics of the three
periods, I will proceed to a more detailed account. It will be
my aim to avoid, as far as possible, all technical mathematics,
and bring into relief only those fundamental points in the

1 Klein’s first account of elliptic Geometry, as a result of Cayley’s projective
theory of distance, appeared in two articles entitled ‘¢ Ueber die sogenannte
Nicht-Euklidische Geometrie, I, II,” Math. Annalen 4, 6 (1871—2). It was
afterwards independently discovered by Newcomb, in an article entitled * Ele-
mentary Theorems relating to the geometry of a space of three dimensions, and
of uniform positive curvature in the fourth dimension,” Crelle’s Journal fiir die
reine und angewandte Mathematik, Vol. 83 (1877). For an account of the
mathematical controversies concerning elliptic Geometry, see Klein’s * Vor-
lesungen iiber Nicht-Euklidische Geometrie,” Gottingen 1893, 1. p. 284 ff. A
bibliography of the relevant literature up to the year 1878 was given by Halsted
in the American Journal of Mathematics, Vols, 1, 2.
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mathematical development, which seem of logical or philo-
sophical importance.

First Period.

12. The originator of the whole system, GQauss, does not
appear, as regards strictly non-Euclidean Geometry, in any of
his hitherto published papers, to have given more than results;
his proofs remain unknown to us. Nevertheless he was the
first to investigate the consequences of denying the axiom of
parallels?, and in his letters he communicated these consequences
to some of his friends, among whom was Wolfgang Bolyai. The
first mention of the subject in his letters occurs when he was
only 18; four years later, in 1799, writing to W. Bolyai, he
enunciates the important theorem that, in hyperbolic Geometry,
there is a maximum to the area of a triangle. From later
writings it appears that he had worked out a system nearly, if
not quite, as complete as those of Lobatchewsky and BolyaiZ

It is important to remember, however, that Gauss’s work on
curvature, which was published, laid the foundation for the
whole method of the second period, and was undertaken,
according to Riemann and Helmholtz?, with a view to an
(unpublished) investigation of the foundations of Geometry.
His work in this direction will, owing to its method, be better
treated of under the second period, but it is interesting to
observe that he stood, like many pioneers, at the head of two
tendencies which afterwards diverged.

13. Lobatchewsky, a professor in the University of Kasan,
first published his resnlts, in their native Russian, in the
proceedings of that learned body for the years 1829—1830.
Owing to this double obscurity of language and place, they
attracted little attention, until he translated them into French*

! Veronese (op. cit. p. 638) denies the priority of Gauss in the invention of
a non-Euclidean system, though he admits him to have been the first to
regard the axiom of parallels as indemonstrable. His grounds for the former
assertion seem scarcely adequate : on the evidence against it, see Klein, Nicht-
Euklid, 1. pp. 171-174.

2 V. Briefwechsel mit Schumacher, Bd. 11. p. 268.

3 Cf. Helmholtz, Wiss. Abh. 1. p. 611.

1 Crelle’s Journal, 1837.
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and German': even then, they do not appear to have obtained
the notice they deserved, until, in 1868, Beltrami unearthed
the article in Crelle, and made it the theme of a brilliant
interpretation.

In the introduction to his little German book, Lobatchewsky
laments the slight interest shown in his writings by his com-
patriots, and the inattention of mathematicians, since Legendre’s
abortive attempt, to the difficulties in the theory of parallels.
The body of the work begins with the enunciation of several
important propositions which hold good in the system proposed
as well as in Euclid : of these, some are in any case independent
of the axiom of parallels, while others are rendered so by
substituting, for the word “parallel,” the phrase “not inter-
secting, however far produced.” Then follows a definition,
intentionally framed so as to contradict Euclid’s: With respect
to a given straight line, all others in the same plane may be
divided into two classes, those which cut the given straight line,
and those which do not cut it ; a line which is the limit between
the two classes is called parallel to the given straight line. It
follows that, from any external point, two parallels can be
drawn, one in each direction. From this starting-point, by
the Euclidean synthetic method, a series of propositions are
deduced ; the most important of these is, that in a triangle the
sum of the angles is always less than, or always equal to two
right angles, while in the latter case the whole system becomes
orthodox. A certain analogy with spherical Geometry—whose
meaning and extent will appear later—is also proved, consisting
roughly in the substitution of hyperbolic for circular functions.

14 Very similar is the system of Johann Bolyai, so similar,
indeed, as to make the independence of the two works, though
a well-authenticated fact, seem all but incredible. Johann
Bolyai first published his results in 1832, in an appendix to
a work by his father Wolfgang, entitled ; “ Appendix, scientiam
spatii absolute veram exhibens: a veritate aut falsitate
Axiomatis XI. Euclidei (a priori haud unquam decidenda)
independentem ; adjecta ad casum falsitatis, quadratura circuli
geometrica.” Gauss, whose bosom friend he became at college

! Theorie der Parallellinien, Berlin, 1840. Republished, Berlin, 18S7.
Translated by Halsted, Austin, Texas, U.S.A. 4th edition, 1892.
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and remained through life, was, as we have seen, the inspirer of
Wolfgang Bolyai, and used to say that the latter was the only
man who appreciated his philosophical speculations on the
axioms of Geometry; nevertheless, Wolfgang appears to have
left to his son Johann the detailed working out of the hyper-
bolic system. The works of both the Bolyai are very rare, and
their method and results are known to me only through the
renderings of Frischauf and Halsted. Both as to method and
as to results, the system is very similar to Lobatchewsky’s, so
that neither need detain us here. Only the initial postulates,
which are more explicit than Lobatchewsky’s, demand a brief
attention. Frischauf’s introduction, which has a philosophical
and Newtonian air, begins by setting forth that Geometry deals
with absolute (empty) space, obtained by abstracting from the
bodies in it, that two figures are called congruent when they
differ only in position, and that the axiom of Congruence is
indispensable in all determination of spatial magnitudes. Con-
gruence was to refer to geometrical bodies, with none of the
properties of ordinary bodies except impenetrability (Erdmann,
Axiome der Geometrie, p. 26). A straight line is defined as
determined by two of its points? and a plane as determined by
three. These premisses, with a slight exception as to the straight
line, we shall hereafter find essential to every Geometry. I have
drawn attention to them, as it is often supposed that non-
Euclideans deny the axiom of Congruence, which, here and
elsewhere, is never the case. The stress laid on this axiom by
Bolyai is probably due to the influence of Gauss, whose work on
the curvature of surfaces laid the foundation for the use made
of congruence by Helmholtz.

15. It is important to remember that, throughout the
period we have just reviewed, the purpose of hyperbolic
Geometry is indirect: not the truth of the latter, but the
logical independence of the axiom of parallels from the rest, is

1 Frischauf, Absolute Geometrie, nach Johann Bolyai, Leipzig, 1872. Halsted,
The Science Absolute of Space, translated from the Latin, 4th edition, Austin,
Texas, U.S.A. 1896.

2 Both Lobatchewsky and Bolyai, as Veronese remarks, start rather from
the point-pair than from distance. See Frischauf, Absolute Geometrie,
Anhang.
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the guiding motive of the work. If, by denying the axiom of
parallels while retaining the rest, we can obtain a system free
from logical contradictions, it follows that the axiom of parallels
cannot be implicitly contained in the others. If this be so,
attempts to dispense with the axiom, like Legendre’s, cannot be
successful ; Euclid must stand or fall with the suspected axiom.
Of course, it remained possible that, by further development,
latent contradictions might have been revealed in these systems.
This possibility, however, was removed by the more direct and
constructive work of the second period, to which we must now
turn our attention.

Second Period.

16. The work of Lobatchewsky and Bolyai remained, for
nearly a quarter of a century, without issue—indeed, the
investigations of Riemann and Helmholtz, when they came,
appear to have been inspired, not by these men, but rather by
Gauss' and Herbart. We find, accordingly, very great difference,
both of aim and method, between the first period and the second.
The former, beginning with a criticism of one point in Euclid’s
system, preserved his synthetic method, while it threw over one
of his axioms. The latter, on the contrary, being guided by a
philosophical rather than a mathematical spirit, endeavoured to
classify the conception of space as a species of a more general
conception : it treated space algebraically, and the properties it
gave to space were expressed in terms, not of intuition, but of
algebra. The aim of Riemann and Helmholtz was to show, by
the exhibition of logically possible alternatives, the empirical
nature of the received axioms. For this purpose, they conceived
space as a particular case of a manifold, and showed that various
relations of magnitude (Massverhdltnisse) were mathematically
possible in an extended manifold. Their philosophy, which
seems to me not always irreproachable, will be discussed in
Chapter II ; here, while it is important to remember the
philosophical motive of Riemann and Helmholtz, we shall
confine our attention to the mathematical side of their work.
In so doing, while we shall, I fear, somewhat maim the system
of their thoughts, we shall secure a closer unity of subject, and

1 Compare Stallo, Concepts of Modern Physics, p. 248,
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a more compact account of the purely mathematical develop-
ment. But there is, in my opinion, a further reason for
separating their philosophy from their mathematics. While
their philosophical purpose was, to prove that all the axioms
of Geometry are empirical, and that a different content of our
experience might have changed them all, the unintended result
of their mathematical work was, if I am not mistaken, to afford
material for an @ priors proof of certain axioms. These axioms,
though they believed them to be unnecessary, were always
introduced in their mathematical works, before laying the
foundations of non-Euclidean systems. I shall contend, in
Chapter III., that this retention was logically inevitable, and
was not merely due, as they supposed, to a desire for conformity
with experience. If I am right in this, there is a divergence
between Riemann and Helmholtz the philosophers, and Riemann
and Helmholtz the mathematicians. This divergence makes it
the more desirable to trace the mathematical development
apart from the accompanying philosophy.

17. Riemann’s epoch-making work, “ Ueber die Hypothesen,
welche der Qeometrie zu Grunde liegen'”, was written, and read
to a small circle, in 1854; owing, however, to some changes
which he desired to make in it, it remained unpublished till
1867, when it was published by his executors. The two
fundamental conceptions, on whose invention rests the historic
importance of this dissertation, are that of a manifold, and
that of the measure of curvature of a manifold. The former
conception serves a mainly philosophical purpose, and is de-
signed, principally, to exhibit space as an instance of a more
general conception. On this aspect of the manifold, I shall
have much to say in Chapter IIL; its mathematical aspect,
which alone concerns us here, is less complicated and less
fruitful of controversy. The latter conception also serves a
double purpose, but its mathematical use is the more prominent.
We will consider these two conceptions successively.

18. (1) Conception of a manifold® The general purpose
of Riemann’s dissertation is, to exhibit the axioms as successive

1 Gesammelte Werke, pp. 255-268.

? On the history of this word, see Stallo, Concepts of Modern Physics,
p. 258. It was used by Kant, and adapted by Herbart to almost the same
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steps in the classification of the species space. The axioms of
Geometry, like the marks of a scholastic definition, appear as
successive determinations of class-conceptions, ending with
Euclidean space. We have thus, from the analytical point of
view, about as logical and precise a formulation as can be
desired—a formulation in which, from its classificatory character,
we seem certain of having nothing superfluous or redundant, and
obtain the axioms explicitly in the most desirable form, namely
as adjectives of the conception of space. At the same time, it
is a pity that Riemann, in accordance with the metrical bias
of his time, regarded space as primarily a magnitude?, or
assemblage of magnitudes, in which the main problem consists
in assigning quantities to the different elements or points,
without regard to the qualitative nature of the quantities
assigned. Considerable obscurity thus arises as to the whole
nature of magnitude® This view of Geometry underlies the
definition of the manifold, as the general conception of which
space forms a special case. This definition, which is not very
clear, may be rendered as follows.

19. Conceptions of magnitude, according to Riemann, are
possible there only, where we have a general conception,
capable of various determinations (Bestimmungsweisen). The
various determinations of such a conception together form a
manifold, which is continuous or discrete, according as the pas-
sage from one determination to another is continuous or discrete.
Particular bits of a manifold, or quanta, can be compared by
counting when discrete, and by measurement when continuous.
“ Measurement consists in a superposition of the magnitudes to
be compared. If this be absent, magnitudes can only be
compared when one is part of another, and then only the more
or less, not the how much, can be decided” (p. 256). We thus
reach the general conception of a manifold of several dimensions,
of which space and colours are mentioned as special cases.

meaning as it bears in Riemann. Herbart, however, also uses the word
Reihenform to express & similar idea. See Psychologie als Wissenschaft, 1.
§ 100 and 11. § 139, where Riemann’s analogy with colours is also suggested.

1 Compare Erdmann’s ¢ Grossenbegriff vom Raum.”

2 Compare Veronese, op. cit. p. 642: “Riemann ist in seiner Definition
des Begriffs Grosse dunkel,” See also Veronese’s whole following ciiticism.
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To the absence of this conception Riemann attributes the
“ obscurity” which, on the subject of the axioms, “lasted from
Euclid to Legendre” (p. 254). And Riemann certainly has
succeeded, from an algebraic point of view, in exhibiting, far
more clearly than any of his predecessors, the axioms which
distinguish spatial quantity from other quantities with which
mathematics is conversant. But by the assumption, from the
start, that space can be regarded as a quantity, he has been led
to state the problem as: What sort of magnitude is space ?
rather than: What must space be in order that we may be able
to regard it as a magnitude at all? He does not realise,
either—indeed in his day there were few who realized—that
an elaborate Geometry is possible which does not deal with
space as a quantity at all. His definition of space as a species
of manifold, therefore, though for analytical purposes it defines,
most satisfactorily, the nature of spatial magnitudes, leaves
obscure the true ground for this nature, which lies in the
nature of space as a system of relations, and is anterior to the
possibility of regarding it as a system of magnitudes at all.

But to proceed with the mathematical development of
Riemann’s ideas. We have seen that he declared measurement
to consist in a superposition of the magnitudes to be compared.
But in order that this may be a possible means of determining
magnitudes, he continues, these magnitudes must be inde-
pendent of their position in the manifold (p. 259). This can
occur, he says, in several ways, as the simplest of which, he
assumes that the lengths of lines are independent of their
position. One would be glad to know what other ways are
possible: for my part, I am unable to imagine any other
hypothesis on which magnitude would be independent of place.
Setting this aside, however, the problem, owing to the fact that
measurement consists in superposition, becomes identical with
the determination of the most general manifold in which
magnitudes are independent of place. This brings us to
Riemann’s other fundamental conception, which seems to me
even more fruitful than that of a manifold.

20. (2) Measure of curvature. This conception is due to
Gauss, but was applied by him only to surfaces; the novelty in
Riemann’s dissertation was its extension to a manifold of »
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dimensions. This extension, however, is rather briefly and
obscurely expressed, and has been further obscured by Helm-
holtz’s attempts at popular exposition. The term curvature,
also, is misleading, so that the phrase has been the source of
more misunderstanding, even among mathematicians, than any
other in Pangeometry. It is often forgotten, in spite of
Helmholtz’s explicit statement’, that the “measure of cur-
vature” of an nm-dimensional manifold is a purely analytical
expression, which has only a symbolic affinity to ordinary
curvature. As applied to three-dimensional space, the implica-
tion of a four-dimensional “ plane” space is wholly misleading ;
I shall, therefore, generally use the term space-constant insteadz
Nevertheless, as the conception grew, historically, out of that
of curvature, I will give a very brief exposition of the historical
development of theories of curvature.

Just as the notion of length was originally derived from the
straight line, and extended to other curves by dividing them
into infinitesimal straight lines, so the notion of curvature was
derived from the circle, and extended to other curves by
dividing them into infinitesimal circular arcs. Curvature may
be regarded, originally, as a measure of the amount by which a
curve departs from a straight line; in a circle, which is similar
throughout, this amount is evidently constant, and is measured
by the reciprocal of the radius. But in all other curves, the
amount of curvature varies from point to point, so that it
cannot be measured without infinitesimals. The measure
which at once suggests itself is, the curvature of the circle most
nearly coinciding with the curve at the point considered.
Since a circle is determined by three points, this circle will
pass through three consecutive points of the curve. We have
thus defined the curvature of any curve, plane or tortuous; for,
since any three points lie in a plane, such a circle can always
be described.

If we now pass to a surface, what we want is, by analogy,
a measure of its departure from a plane. The curvature, as
above defined, has become indeterminate, for through any point
of the surface we cah draw an infinite number of arcs, which

1 Vortrige und Reden, Vol. 1. p. 18, 2 Cf. Klein, Nicht-Euklid, 1. p. 160.

R. G. 2
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will not, in general, all have the same curvature. Let us, then,
draw all the geodesics joining the point in question to neigh-
bouring points of the surface in all directions. Since these
arcs form a singly infinite manifold, there will be among
them, if they have not all the same curvature, one arc of
maximum, and one of minimum curvature!. The product of
these maximum and minimum curvatures is called the measure
of curvature of the surface at the point under consideration.
To illustrate by a few simple examples: on a sphere, the
curvatures of all such lines are equal to the reciprocal of the
radius of the sphere, hence the measure of curvature every-
where is the square of the reciprocal of the radius of the sphere.
On any surface, such as a cone or a cylinder, on which straight
lines can be drawn, these have no curvature, so that the
measure of curvature is everywhere zero—this is the case, in
particular, with the plane. In general, however, the measure
of curvature of a surface varies from point to point.

Gauss, the inventor of this conception? proved that, in
order that two surfaces may be developable upon each other
—it.e. may be such that one can be bent into the shape of the
other without stretching or tearing—it is necessary that
the two surfaces should have equal measures of curvature at
corresponding points. When this is the case, every figure
which is possible on the one is, in general, possible on the
other, and the two have practically the same Geometry®. As
a corollary, it follows that a necessary condition, for the free
mobility of figures on any surface, is the constancy of the

1 Since we are considering the curvature at a point, we are only concerned
with the first infinitesimal elements of the geodesics that start from such a
point.

2 Disquisitiones generales circa superficies curvas, Werke, Bd. 1v. SS. 219~
258, 1827.

3 Nevertheless, the Geometries of different surfaces of equal curvature are
liable to important differences. For example, the cylinder is a surface of zero
curvature, but since its lines of curvature in one direction are finite, its
Geometry coincides with that of the plane only for lengths smaller than the
cirecumference of its generating circle (see Veronese, op. cit. p. 644). Two
geodesics on a cylinder may meet in many points. For surfaces of zero
curvature on which this is not possible, the identity with the plane may be
allowed to stand. Otherwise, the identity extends only to the properties of
figures not exceeding a certain size. o
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measure of curvature!. This condition was proved to be
sufficient, as well as necessary, by Minding?

21. So far, all has been plain sailing—we have been dealing
with purely geometrical ideas in a purely geometrical manner
—but we have not, as yet, found any sense of the measure of
curvature, in which it can be extended to space, still less to
an n-dimensional manifold. For this purpose, we must examine
Gauss’s method, which enables us to determine the measure
of curvature of a surface at any point as an inherent property,
quite independent of any reference to the third dimension.

The method of determining the measure of curvature from
within is, briefly, as follows: If any point on the surface be
determined by two coordinates, u, v, then small arcs of the
surface are given by the formula

ds*= Edu?® + 2Fdu dv + Gdv?,

where K, F, @ are, in general, functions of u, v.* From this
formula alone, without reference to any space outside the sur-
face, we can determine the measure of curvature at the point
u, v, as a function of &, F, G and their differentials with respect
tou and v. Thus we may regard the measure of curvature of
a surface as an inherent property, and the above geometrical
definition, which involved a reference to the third dimension,
may be dropped. But at this point a caution is necessary. It
will appear in Chap. III. (§ 176), that it is logically impossible
to set up a precise coordinate system, in which the coordinates
represent spatial magnitudes, without the axiom of Free
Mobility, and this axiom, as we have just seen, holds on sur-
faces only when the measure of curvature is constant. Hence
our definition of the measure of curvature will only be really
free from reference to the third dimension, when we are dealing
with a surface of constant measure of curvature—a point which

1 For we may consider two different parts of the same surface as corre-
sponding parts of different surfaces; the above proposition then shows that a
figure can be reproduced in one part when it has been drawn in another, if the
measures of curvature correspond in the two parts.

2 Crelle, Vols. x1x., xx., 1839-40.

3 In this formula, », v may be the lengths of lines, or the angles between
lines, drawn on the surface, and having thus no necessary reference to a third
dimension,

]
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Riemann entirely overlooks. This caution, however, applies
only in space, and if we take the coordinate system as presup-
posed in the conception of a manifold, we may neglect the
caution altogether—while remembering that the possibility of
a coordinate system in space involves axioms to be investi-
gated later. We can thus see how a meaning might be found,
without reference to any higher dimension, for a constant
measure of curvature of three-dimensional space, or for any
measure of curvature of an n-dimensional manifold in general.

22. Such a meaning is supplied by Riemann’s dissertation,
to which, after this long digression, we can now return. We
may define a continuous manifold as any continuum of elements,
such that a single element is defined by » continuously variable
magnitudes. This definition does not really include space, for
coordinates in space do not define a point, but its relations to
the origin, which is itself arbitrary. It includes, however, the
analytical conception of space with which Riemann deals, and
may, therefore, be allowed to stand for the moment. Riemann
then assumes that the difference—or distance, as it may be
loosely called—between any two elements is comparable, as
regards magnitude, to the difference between any other two.
He assumes further, what it is Helmholtz’s merit to have
proved, that the difference ds between two consecutive elements
can be expressed as the square root of a quadratic function of
the differences of the coordinates : <.e.

. ds®= 21" 21" Ak d-Z’i ” d.Z‘k,

where the coefficients a; are, in general, functions of the coordi-
nates @, #,...x,» The question is: How are we to obtain a
definition of the measure of curvature out of this formula ? It is
noticeable, in the first place, that, just as in a surface we found
an infinite number of radw of curvature at a point, so in a
manifold of three or more dimensions we must find an infinite
number of measures of curvature at a point, one for every two-
dimensional manifold passing through the point, and contained
in the higher manifold. What we have first to do, therefore, is

1 In what follows, I have given rather Klein’s exposition of Riemann, than
Riemann’s own account. The former is much clearer and fuller, and not
substantially different in any way. V. Klein, Nicht-Euklid, 1. pp. 206 ff,
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to define such two-dimensional manifolds. They must consist,
as we saw on the surface, of a singly infinite series of geodesics
through the point. Now a geodesic is completely determined
by one point and its direction at that point, or by one point
and the next consecutive point. Hence a geodesic through
the point considered is determined by the ratios of the in-
crements of coordinates, dz; dz, ... dz,. Suppose we have two
such geodesics, in which the ¢'th increments are respectively
d'x; and d”z;. Then all the geodesics given by

dr;=Nd'z; + N'd"x;

form a singly infinite series, since they contain one para-
meter, namely A’ :\”. Such a series of geodesics, therefore,
must form a two-dimensional mani- !
fold, with a measure of curvature / i
in the ordinary Gaussian sense.

This measure of curvature can be

determined from the above for- SNaz+N'd'z;
mula for the elementary arc, by
the help of Gauss’s general formula
alluded to above. We thus obtain an infinite number of
i\t (nz— ) of these,
the rest can be deduced (Riemann, Gesammelte Werke,
p- 262). When all the measures of curvature at a point are
constaut, and equal to all the measures of curvature at any
other point, we get what Riemann calls a manifold of constant
curvature. In such a manifold free mobility is possible, and
positions do not differ intrinsically from one another. If a
be the measure of curvature, the formula for the arc becomes,
in this case,

1,
d L3

measures of curvature at a point, but from

.
ds=3dot (14§ Zot).

In this case only, as I pointed out above, can the term “measure

of curvature” be properly applied to space without reference

to a higher dimension, since free mobility is logically indis-

pensable to the existence of quantitative or metrical Geometry.

23. The mathematical result of Riemann’s dissertation
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may be summed up as follows. Assuming it possible to apply
magnitude to space, t.e. to determine its elements and figures
by means of algebraical quantities, it follows that space can be
brought under the conception of a manifold, as a system of
quantitatively determinable elements. Owing, however, to the
peculiar nature of spatial measurement, the quantitative deter-
mination of space demands that magnitudes shall be independent
of place—in so far as this is not the case, our measurement will
be necessarily inaccurate. If we now assume, as the quantitative
relation of distance between two elements, the square root of a
quadratic function of the coordinates—a formula subsequently
proved by Helmholtz and Lie—then it follows, since magnitudes
are to be independent of place, that space must, within the
limits of observation, have a constant measure of curvature, or
must, in other words, be homogeneous in all its parts. In the
infinitesimal, Riemann says (p. 267), observation could not
detect a departure from constancy on the part of the measure
of curvature ; but he makes no attempt to show how Geometry
could remain possible under such circumstances, and the only
Geometry he has constructed is based entirely on Free Mobility.
I shall endeavour to prove, in Chapter IIL, that any metrical
Geometry, which should endeavour to dispense with this axiom,
would be logically impossible. At present I will only point out
that Riemann, in spite of his desire to prove that all the axioms
can be dispensed with, has nevertheless, in his mathematical
work, retained three fundamental axioms, namely, Free Mobility,
the finite integral number of dimensions, and the axiom that
two points have a unique relation, namely distance. These, as
we shall see hereafter, are retained, in actual mathematical
work, by all metrical Metageometers, even when they believe,
like Riemann and Helmholtz, that no axioms are philosophically
indispensable.

24. Helmholiz, the historically nearest follower of Riemann,
was guided by a similar empirical philosophy, and arrived
independently at a very similar method of formulating the
axioms. Although Helmholtz published nothing on the subject
until after Riemann’s death, he had then only just seen
Riemann’s dissertation (which was published posthumously),
and had worked out his results, so far as they were then
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completed, in entire independence both of Riemann and of
Lobatchewsky. Helmholtz is by far the most widely read of
all writers on Metageometry, and his writings, almost alone,
represent to philosophers the modern mathematical standpoint
on this subject. But his importance is much greater, in this
domain, as a philosopher than as a mathematician; almost his
only original mathematical result, as regards Geometry, is his
proof of Riemann’s formula for the infinitesimal arc, and even
this proof was far from rigid, until Lie reformed it by his
method of continuous groups. In this chapter, therefore, only
two of his writings need occupy us, namely the two articles
in the Wissenschaftliche Abhandlungen, Vol. 11., entitled respec-
tively « Ueber die thatsidchlichen Grundlagen der Geometrie,”
1866 (p. 610 ff.), and “ Ueber die Thatsachen, die der Geometrie
zum Grunde liegen,” 1868 (p. 618 ff.).

25. In the first of these, which is chiefly philosophical,
Helmbholtz gives hints of his then uncompleted mathematical
work, but in the main contents himself with a statement of
results. He announces that he will prove Riemann’s quadratic
formula for the infinitesimal arc ; but for this purpose, he says,
we have to start with Congruence, since without it spatial
measurement is impossible. Nevertheless, he maintains that
Congruence is proved by experience. How we could, without
the help of measurement, discover lapses from Congruence, is a
point which he leaves undiscussed. He then enunciates the
four axioms which he considers essential to Geometry, as
follows :

(1) As regards continuity and dimensions. In a space of
n dimensions, a point is uniquely determined by the measure-
ment of » continuous variables (coordinates).

(2) As regards the existence of moveable rigid bodies.
Between the 2n coordinates of any point-pair of a rigid body,
there exists an equation which is the same for all congruent
point-pairs. By considering a sufficient number of point-pairs,
we get more equations than unknown quantities: this gives us
a method of determining the form of these equations, so as to
make it possible for them all to be satisfied.

(3) As regards free mobility. Every point can pass freely
and continuously from one position to another. From (2) and
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(3) it follows, that if two systems 4 and B can be brought into
congruence in any one position, this is also possible in every
other position.

(4) As regards independence of rotation in rigid bodies
(Monodromy). If (n —1) points of a body remain fixed, so that
every other point can only describe a certain curve, then that
curve is closed.

These axioms, says Helmholtz, suffice to give, with the
axiom of three dimensions, the Euclidean and non-Euclidean
systems as the only alternatives. That they suffice, mathe-
matically, cannot be denied, but they seem, in some respects,
to go too far. In the first place, there is no necessity to make
the axiom of Congruence apply to actual rigid bodies—on this
subject I have enlarged in Chapter IL.* Again, Free Mobility,
as distinct from Congruence, hardly needs to be specially
formulated : what barrier could empty space offer to a point’s
progress? The axiom is involved in the homogeneity of
space, which is the same thing as the axiom of Congruence.
Monodromy, also, has been severely criticized ; not only is it
evident that it might have been included in Congruence, but
even from the purely analytical point of view, Sophus Lie has
proved it to be superfluous®?. Thus the axiom of Congruence,
rightly formulated, includes Helmholtz's third and fourth
axioms and part of his second axiom. All the four, or rather,
as much of them as is relevant to Geometry, are consequences,
as we shall see hereafter, of the one fundamental principle of
the relativity of position.

26. The sccond article, which is mainly mathematical,
supplies the promised proof of the arc-formula, which is Helm-
holtz’s most important contribution to Geometry. Riemann
had assumed this formula, as the simplest of a number of
alternatives: Helmholtz proved it to be a necessary conse-
quence of his axioms. The present paper begins with a short
repetition of the first, including the statement of the axioms, to
which, at the end of the paper, two more are added, (5) that
space has three dimensions, and (6) that space is infinite. It

1 See §§ 69-73.
2 Grundlagen der Geometrie, 1. and 11., Leipziger Berichte, 1890; v. end of
present chapter, § 45.
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is supposed in the text, as also in the first paper, that the
measure of curvature cannot be negative, and, consequently,
that an infinite space must be Euclidean. This error in both
papers is corrected in notes, added after the appearance of
Beltrami’s paper on negative curvature. It is a sample of
the slightly unprofessional nature of Helmholtz's mathematical
work on this subject, which elicits from Klein the following
remarks’: “Helmholtz is not a mathematician by profession,
but a physicist and physiologist....From this non-mathematical
quality of Helmholtz, it follows naturally that he does not
treat the mathematical portion of his work with the thorough-
ness which one would demand of a mathematician by trade
(von Fach).” He tells us himself that it was the physiological
study of vision which led him to the question of the axioms,
and 1t is as a physicist that he makes his axioms refer to actual
rigid bodies. Accordingly, we find errors in his mathematics,
such as the axiom of Monodromy, and the assumption that the
measure of curvature must be positive. Nevertheless, the
proof of Riemann’s arc-formula is extremely able, and has, on
the whole, been substantiated by Lie’s more thorough investi-
gations.

27. Helmholtz’s other writings on Geometry are almost
wholly philosophical, and will be discussed at length in
Chapter II. For the present, we may pass to the only other
important writer of the second period, Beltrami. As his work is
purely mathematical, and contains few controverted points, it
need not, despite its great importance, detain us long.

The “Saggio di Interpretazione della Geometria non-
Euclidea?” which is principally confined to two dimensions,
interprets Lobatchewsky's results by the characteristic method
of the second period. It shows, by a development of the work
of Gauss and Minding?® that all the propositions in plane
Geometry, which Lobatchewsky had set forth, hold, within
ordinary Euclidean space, on surfaces of constant negative

1 Nicht-Euklid, 1. pp. 258-9.

2 Giornale di Matematiche, Vol. vi., 1868. Translated into French by
J. Hoiiel in the ‘Annales Scientifiques de PEcole Normale Supérieure,”
Vol. v1. 1869.

3 Crelle’s Journal, Vols. x1x. xx., 1839—40.
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curvature. It is strange, as Klein points out?, that this inter-
pretation, which was known to Riemann and perhaps even to
Gauss, should have remained so long without explicit statement.
This is the more strange, as Lobatchewsky’s “Géométrie
Imaginaire ” had . appeared in Crelle, Vol. XvIL? and Minding’s
article, from which the interpretation follows at once, had
appeared in Crelle, Vol. x1Xx. Minding had shewn that the
Geometry of surfaces of constant negative curvature, in par-
ticular as regards geodesic triangles, could be deduced from
that of the sphere by giving the radius a purely imaginary
value 7a®. This result, as we have seen, had also been obtained
by Lobatchewsky for his Geometry, and yet it took thirty years
for the connection to be brought to general notice.

28. In Beltrami’s Saggio, straight lines are, of course,
replaced by geodesics; his coordinates are obtained through
a point-by-point correspondence with an auxiliary plane, in
which straight lines correspond to geodesics on the surface.
Thus geodesics have linear equations, and are always uniquely
determined by two points. Distances on the surface, however,
are not equal to distances on the plane; thus while the surface
is infinite, the corresponding portion of the plane is contained
within a certain finite circle.. The distance of two points on
the surface is a certain function of the coordinates, not the
ordinary function of elementary Geometry. These relations
of plane and surface are important in connection with Cayley’s
theory of distance, which we shall have to consider next. If
we were to define distance on the plane as that function of
the coordinates which gives the corresponding distance on the
surface, we should obtain what Klein calls “a plane with a
hyperbolic system of measurement (Massbestimmung),” in which
Cayley’s theory of distance would hold. It is evident, however,
that the ordinary notion of distance has been presupposed in
setting up the coordinate system, so that we do not really

1 Nicht-Euklid, 1. p. 190.

2 This article is more trigonometrical and analytical than the German book,
and therefore makes the above interpretation peculiarly evident.

3 Such surfaces are by no means particularly remote. One of them, for
example, is formed by the revolution of the common Tractrix

¢

r=asin ¢, y=a (logtan 5 +cos ¢).
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get alternative Geometries on one and the same plane. The
bearing of these remarks will appear more fully when we come
to consider Cayley and Klein.

29. The value of Beltrami’s Saggio, in his own eyes, lies in
the intelligible Euclidean sense which it gives to Lobatchewsky’s
planimetry : the corresponding system of Solid Geometry, since
it has no meaning for Euclidean space, is barely mentioned in
this work. In a second paper', however, almost contemporaneous
with the first, he proceeds to consider the general theory of
n-dimensional manifolds of constant negative curvature. This
paper is greatly influenced by Riemann’s dissertation ; it begins
with the formula for the linear element, and proves from this
first, that Congruence holds for such spaces, and next, that
they have, according to Riemann’s definition, a constant negative
measure of curvature. (It is instructive to observe, that both
in this and in the former Essay, great stress is laid on the
necessity of the Axiom of Congruence.)

This work has less philosophical interest than the former,
since it does little more than repeat, in a general form, the
results which the Saggio had obtained for two dimensions—
results which sink, when extended to = dimensions, to the
level of mere mathematical constructions. Nevertheless, the
paper is important, both as a restoration of negative curvature,
which had been overlooked by Helmholtz, and as an analytical
treatment of Lobatchewsky’s results—a treatment which, to-
gether with the Saggio, at last restored to them the prominence
they deserved.

Third Period.

30. The third period differs radically, alike in its methods
and aims, and in the underlying philosophical ideas, from the
period which it replaced. Whereas everything, in the second
period, turned on measurement, with its apparatus of Con-
gruence, Free Mobility, Rigid Bodies, and the rest, these
vanish completely in the third period, which, swinging to the
opposite extreme, regards quantity as a perfectly irrelevant

1 «Teoria fondamentale degli spazii di curvatura costants,” Annali di
Matematica, 11. Vol. 2, 1868-9. Also translated by J. Hoiiel, loc. cit.
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category in Geometry, and dispenses with congruence and the
method of superposition. The ideas of this period, unfortu-
nately, have found no exponent so philosophical as Riemann
or Helmholtz, but have been set forth only by technical
mathematicians. Moreover the change of fundamental ideas,
which is immense, has not brought about an equally great
change in actual procedure; for though spatial quantity is no
longer a part of projective Geometry, quantity is still employed,
and we still have equations, algebraic transformations, and so
on. This is apt to give rise to confusion, especially in the
mind of the student, who fails to realise that the quantities
used, so far as the propositions are really projective, are mere
names for points, and not, as in metrical Geometry, actual
spatial magnitudes.

Nevertheless, the fundamental difference between this period
and the former must strike any one at once. Whereas Riemann
and Helmholtz dealt with metrical ideas, and took, as their
foundations, the measure of curvature and the formula for the
linear element—both purely metrical—the new method is
erected on the formulae for transformation of coordinates re-
quired to express a given collineation. It begins by reducing
all so-called metrical notions—distance, angle, etc.—to projective
forms, and obtains, from this reduction, a methodological unity
and simplicity before impossible. This reduction depends,
however, except where the space-constant is negative, upon
imaginary figures—in Euclid, the circular points at infinity; it is
moreover purely symbolic and analytical, and must be regarded
as philosophically irrelevant. As the question concerning the
import of this reduction is of fundamental importance to our
theory of Geometry, and as Cayley, in his Presidential Address
to the British Association in 1883, formally challenged philo-
sophers to discuss the use of imaginaries, on which it depends,
I will treat this question at some length. But first let us see
how, as a matter of mathematics, the reduction is effected.

31. We shall find, throughout this period, that almost
every important proposition, though misleading in its obvious
interpretation, has nevertheless, when rightly interpreted, a
wide philosophical bearing. So it is with the work of Cayley,
the pioneer of the projective method.
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The projective formula for angles, in Euclidean Geometry,
was first obtained by Laguerre, in 1853. This formula had,
however, a perfectly Euclidean character, and it was left for
Cayley to generalize it so as to include both angles and
distances in Euclidean and non-Euclidean systems alikel.

Cayley was, to the last, a staunch supporter of Euclidean
space, though he believed that non-Euclidean Geometries could
be applied, within Euclidean space, by a change in the definition
of distance? He has thus, in spite of his Euclidean orthodoxy,
provided the believers in the possibility of non-Euclidean spaces
with one of their most powerful weapons. In his “Sixth
Memoir upon Quantics” (1859), he set himself the task of
“establishing the notion of distance upon purely descriptive
principles” He showed that, with the ordinary notion of
distance, it can be rendered projective by reference to the
circular points and the line at infinity, and that the same is
true of angles®. Not content with this, he suggested a new
definition of distance, as the inverse sine or cosine of a certain
function of the coordinates; with this definition, the properties
usually known as metrical become projective properties, having
reference to a certain conic, called by Cayley the Absolute.
(The circular points are, analytically, a degenerate conic, so
that ordinary Geometry forms a particular case of the above.)
He proves that, when the Absolute is an ¢maginary conic, the
Geometry so obtained for two dimensions 1s spherical Geometry.
The correspondence with Lobatchewsky, in the case where
the Absolute is real, is not worked out: indeed there is,
throughout, no evidence of acquaintance with non-Euclidean
systems. The importance of the memoir, to Cayley, lies
entirely in its proof that metrical is only a branch of de-
scriptive Geometry.

32. The connection of Cayley’s Theory of Distance with
Metageometry was first pointed out by Klein® Klein showed
in detail that, if the Absolute be real, we get Lobatchewsky's

1 See Klein, Nicht-Euklid, 1. p. 47 ff., and the references there given.

2 See quotation below, from his British Association Address.

3 Compare the opening sentence, due to Cayley, of Salmon’s Higher Plane
Curves.

4 V. Nicht-Euklid, 1. Chaps. 1. and 1.
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(hyperbolic) system ; if it be imaginary, we get either spherical
Geometry or a new system, analogous to that of Helmholtz,
called by Klein elliptic; if the Absolute be an imaginary
point-pair, we get parabolic Geometry, and if, in particular,
the point-pair be the circular points, we get ordinary Euclid.
In elliptic Geometry, two straight lines in the same plane meet
in only one point, not two as in Helmholtz’s system. The
distinction between the two kinds of Geometry is difficult,
and will be discussed later.

33. Since these systems are all obtained from a Euclidean
plane, by a mere alteration in the definition of distance, Cayley
and Klein tend to regard the whole question as one, not of
the nature of space, but of the definition of distance. Since
this definition, on their view, is perfectly arbitrary, the phi-
losophical problem vanishes—Kuclidean space is left in un-
disputed possession, and the only problem remaining is one
of convention and mathematical convenience'. This view has
been forcibly expressed by Poincaré: “ What ought one to
think,” he says, “of this question: Is the Euclidean Geometry
true? The question is nonsense.” Geometrical axioms, ac-
cording to him, are mere conventions: they are “definitions
in disguise?” Thus Klein blames Beltrami for regarding his
auxiliary plane as merely auxiliary, and remarks that, if he
had known Cayley’s Memoir, he would have seen the relation
between the plane and the pseudosphere to be far more intimate
than he supposed®. A view which removes the problem entirely
from the arena of philosophy demands, plainly, a full dis-
cussion. To this discussion we will now proceed.

34. The view in question has arisen, it would seem, from
a natural confusion as to the nature of the coordinates em-
ployed. Those who hold the view have not adequately realised,
I believe, that their coordinates are not spatial quantities, as
in metrical Geometry, but mere conventional signs, by which
different points can be distinctly designated. There is no
reason, therefore, until we already have metrical Geometry,

1 See p. 9 of Cayley’s address to the Brit. Ass. 1883. Also a quotation from
Klein in Erdmann’s Axiome der Geometrie, p. 124 note.

2 Nature, Vol. xLv. p. 407.

3 Nicht-Euklid, 1. p. 200.
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for regarding one function of the coordinates as a better ex-
pression of distance than another, so long as the fundamental
addition-equation® is preserved. Hence, if our coordinates are
regarded as adequate for all Geometry, an indeterminateness
arises in the expression of distance, which can only be avoided
by a convention. But projective coordinates—so our argument
will contend—though perfectly adequate for all projective
properties, and entirely free from any metrical presupposition,
are inadequate to express metrical properties, just because they
have no metrical presupposition. Thus where metrical pro-
perties are in question, Beltrami remains justified as against
Klein ; the reduction of metrical to projective properties is
only apparent, though the independence of these last, as against
metrical Geometry, is perfectly real.

35. But what are projective coordinates, and how are they
introduced ? This question was not touched upon in Cayley’s
Memoir, and it seemed, therefore, as if a logical error were
involved in using coordinates to define distance. For coor-
dinates, in all previous systems, had been deduced from dis-
tance ; to use any existing coordinate system in defining distance
was, accordingly, to incur a vicious circle. Cayley mentions
this difficulty in a note, where he only remarks, however,
that he had regarded his coordinates as numbers arbitrarily
assigned, on some system not further investigated, to different
points. The difficulty has been treated at length by Sir R.
Ball (Theory of the Content, Trans. R. I. A. 1889), who urges
that if the values of our coordinates already involve the usual
measure of distance, then to give a new definition, while retain-
ing the usual coordinates, is to incur a contradiction. He says
(op. cit. p. 1): “In the study of non-Euclidean Geometry I have
often felt a difficulty which has, I know, been shared by others.
In that theory it seems as if we try to replace our ordinary
notion of distance between two points by the logarithm of
a certain anharmonic ratio> But this ratio itself involves the
notion of distance measured in the ordinary way. How, then,

1 Ie. the equation 4B + BC = 4C, for three points in one straight line.

2 The formula substituted by Klein for Cayley’s inverse sine or cosine.
The two are equivalent, but Klein’s is mathematically much the more
convenient.
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can we supersede our old notion of distance by the non-
Euclidean notion, inasmuch as the very definition of the latter
involves the former?”

36. This objection is valid, we must admit, so long as
anharmonic ratio is defined in the ordinary metrical manner.
It would be valid, for example, against any attempt to found
a new definition of distance on Cremona’s account of an-
harmonic ratio!, in which it appears as a metrical property
unaltered by projective transformation. If a logical error is
to be avoided, in fact, all reference to spatial magnitude of
any kind must be avoided; for all spatial magnitude, as will
be shown hereafter?®, is logically dependent on the fundamental
magnitude of distance. Anharmonic ratio and coordinates
must alike be defined by purely descriptive properties, if the
use afterwards made of them is to be free from metrical pre-
suppositions, and therefore from the objections of Sir R. Ball.

Such a definition has been satisfactorily given by Klein?,
who appeals, for the purpose, to v. Staudt’s quadrilateral con-
struction®. By this construction, which I have reproduced in
outline in Chapter I11. Section A, § 112 ff,, we obtain a purely de-
seriptive definition of harmonic and anharmonic ratio, and, given
a pair of points, we can obtain the harmonic conjugate to any
third point on the same straight line. On this construction, the
introduction of projective coordinates is based. Starting with
any three points on a straight line, we assign to them arbitrarily
the numbers 0,1, 0. We then find the harmonic conjugate to
the first with respect to 1, o, and assign to it the number 2.
The object of assigning this number rather than any other, is
to obtain the value —1 for the anharmonic ratio of the four
numbers corresponding to the four points®. We then find the
harmonic conjugate to the point 1, with respect to 2, w0, and
assign to it the number 3; and so on. Klein has shown that
by this construction, we can obtain any number of points, and

1 Elements of Projective Geometry, Second Edition, Oxford, 1893,
Chap. 1x.

2 Chap, 111. Section B.

3 See Nicht-Euklid, 1. p. 338 ff.

4 See his Geometrie der Lage, § 8, Harmonische Gebilde.

5 The anharmonic ratio of four numbers, p, ¢, 7, s, is defined as

(p-9)-(r=s)(p-7).-(q-9)
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can construct a point corresponding to any given number,
fractional or negative. Moreover, when two sets of four points
have the same anharmonic ratio, descriptively defined?, the
corresponding numbers also have the same anharmonic ratio.
By introducing such a numerical system on two straight lines,
or on three, we obtain the coordinates of any point in a plane,
or in space. By this construction, which is of fundamental
importance to projective Geometry, the logical error, upon
which Sir R. Ball bases his criticism, is satisfactorily avoided.
Our coordinates are introduced by a purely descriptive method,
and involve no presupposition whatever as to the measurement
of distance.

37. With this coordinate system, then, to define distance
as a certain function of the coordinates is not to be guilty of
a vicious circle. But it by no means follows that the defi-
nition of distance is arbitrary. All reference to distance has
been hitherto excluded, to avoid metrical ideas; but when
distance is introduced, metrical ideas inevitably reappear, and
we have to remember that our coordinates give no information,
primd facie, as to any of these metrical ideas. It is open to
us, of course, if we choose, to continue to exclude distance in
the ordinary sense, as the quantity of a finite straight line,
and to define the word distance in any way we please. But
the conception, for which the word has hitherto stood, will
then require a new name, and the only result will be a con-
fusion between the apparent meaning of our propositions, to
those who retain the associations belonging to the old sense
of the word, and the real meaning, resulting from the new
sense in which the word is used.

This confusion, I believe, has actually occurred, in the case
of those who regard the question between Euclid and Meta-
geometry as one of the definition of distance. Distance is a
quantitative relation, and as such presupposes identity of
quality. But projective Geometry deals only with quality—
for which reason it is called descriptive—and cannot distinguish
between two figures which are qualitatively alike. Now the
meaning of qualitative likeness, in Geometry, is the possibility

1 I.e. as transformable into each other by a collineation. See Chap. ur

Sec. A, §110. -
R. G. 3
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of mutual transformation by a collineation'. Any two pairs of
points on the same straight line, therefore, are qualitatively
alike ; their only qualitative relation is the straight line, which
both pairs have in common; and it is exactly the qualitative
identity of the relations of the two pairs, which enables the
difference of their relations to be exhaustively dealt with by
quantity, as a difference of distance. But where quantity is
excluded, any two pairs of points on the same straight line
appear as alike, and even any two sets of three: for any three
points on a straight line can be projectively transformed into
any other three. It is only with four points in a line that we
acquire a projective property distinguishing them from other
sets of four, and this property is anharmonic ratio, descript-
ively defined. The projective Geometer, therefore, sees no
reason to give a name to the relation between two points, in so
far as this relation is anything over and above the unlimited
straight line on which they lie; and when he introduces the
notion of distance, he defines it, in the only way in which
projective principles allow him to define it, as a relation between
Sour points. As he nevertheless wishes the word to give him
the power of distinguishing between different pairs of points,
he agrees to take two out of the four points as fixed. In this
way, the only variables in distance are the two remaining
points, and distance appears, therefore, as a function of two
variables, namely the coordinates of the two variable points.
When we have further defined our function so that distance
may be additive, we have a function with many of the proper-
ties of distance in the ordinary sense. This function, therefore,
the projective Geometer regards as the only proper definition of
distance.

We can see, in fact, from the manner in which our projective
coordinates were introduced, that some function of these
coordinates must express distance in the ordinary semse. For
they were introduced serially, so that, as we proceeded from the
zero-point towards the infinity-point, our coordinates continually
grew. To every point, a definite coordinate corresponded: to
the distance between two variable points, therefore, as a
function dependent on no other variables, must correspond

1 See Chap. 1. Sec. A.
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some definite function of the coordinates, since these are
themselves functions of their points. The function discussed
above, therefore, must certainly include distance in the ordinary
sense.

But the arbitrary and conventional nature of distance, as
maintained by Poincaré and Klein, arises from the fact that the
two fixed points, required to determine our distance in the
projective sense, may be arbitrarily chosen, and although, when
our choice is once made, any two points have a definite distance,
yet, according as we make that choice, distance will become a
different function of the two variable points. The ambiguity
thus introduced is unavoidable on projective principles; but
are we to conclude, from this, that it is really unavoidable ?
Must we not rather conclude that projective Geometry cannot
adequately deal with distance? If A4, B, C, be three different
points on a line, there must be some difference between the
relation of A to Band of A to C, for otherwise, owing to the
qualitative identity of all points, B and C could not be dis-
tinguished. But such a difference involves a relation, between
4 and B, which is independent of other points on the line;
for unless we have such a relation, the other points cannot be
distinguished as different. Before we can distinguish the two
fixed points, therefore, from which the projective definition
starts, we must already suppose some relation, between any
two points on our line, in which they are independent of other
points; and this relation is distance in the ordinary sense!l,
When we have measured this quantitative relation by the
ordinary methods of metrical Geometry, we can proceed to
decide what base-points must be chosen, on our line, in order
that the projective function discussed above may have the
same value as ordinary distance. But the choice of these base-
points, when we are discussing distance in the ordinary sense,
is not arbitrary, and their introduction is only a technical
device. Distance, in the ordinary sense, remains a relation
between two points, not between four ; and it is the failure to
perceive that the projective sense differs from, and cannot

1 It follows from this, that the reduction of metrical to projective properties,

even when, as in hyperbolic Geometry, the Absolute is real, is only apparent,
and has a merely technical validity.

3—2
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supersede, the ordinary sense, which has given rise to the views
of Klein and Poincaré. The question is not one of convention,
but of the irreducible metrical properties of space. To sum
up: Quantities, as used in projective Geometry, do not stand
for spatial magnitudes, but are conventional symbols for purely
qualitative spatial relations. But distance, qud quantity,
presupposes identity of quality, as the condition of quantitative
comparison. Distance in the ordinary sense is, in short, that
quantitative relation, between two points on a line, by which
their difference from other points can be defined. The pro-
jective definition, however, being unable to distinguish a
collection of less than four points from any other on the same
straight line, makes distance depend on two other points
besides those whose relation it defines. No name remains,
therefore, for distance in the ordinary sense, and many pro-
jective Geometers, having abolished the name, believe the
thing to be abolished also, and are inclined to deny that two
points have a unique relation at all. This confusion, in
projective Geometry, shows the importance of a name, and
should make us chary of allowing new meanings to obscure one
of the fundamental properties of space.

38. It remains to discuss the mauner in which non-
Euclidean Geometries result from the projective definition of
distance, as also the true interpretation to be given to this view
of Metageometry. It is to be observed that the projective
methods which follow Cayley deal throughout with a Euclidean
plane, on which they introduce different measures of distance.
Hence arises, in any interpretation of these methods, an
apparent subordination of the non-Euclidean spaces, as though
these were less self-subsistent than Ruclid’s. This subordi-
nation is not intended in what follows; on the contrary, the
correlation with Euclidean space is regarded as valuable, first,
because Euclidean space has been longer studied and is more
familiar, but secondly, because this correlation proves, when
truly interpreted, that the other spaces are self-subsistent.
We may confine ourselves chiefly, in discussing this inter-
pretation, to distances measured along a single straight line.
But we must be careful to remember that the metrical defi-
nition of distance—which, according to the view here advocated,
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is the only adequate definition—is the same in Euclidean and
in non-Euclidean spaces; to argue in its favour is not, there-
fore, to argue in favour of Euclid.

The projective scheme of coordinates consists of a series of
numbers, of which each represents a certain anharmonic ratio
and denotes one and only one point, and which increase
uniformly with the distance from a fixed origin, until they
become infinite on reaching a certain point. Now Cayley
showed that, in Euclidean Geometry, distance may be ex-
pressed as the limit of the logarithm of the anharmonic
ratio of the two points and the (coincident) points at infinity
on their straight line; while, if we assumed that the points at
infinity were distinct, we obtained the formula for distance in
hyperbolic or spherical Geometry, according as these points
were real or imaginary. Hence it follows that, with the
projective definition of distance, we shall obtain precisely the
formulae of hyperbolic, parabolic or spherical Geometry, accord-
ing as we choose the point, to which the value + o is assigned,
at a finite, infinite or imaginary distance (in the ordinary sense)
from the point to which we assign the value 0. Our straight
line remains, all the while, an ordinary Euclidean straight line.
But we have seen that the projective definition of distance fits
with the true definition only when the two fixed points to
which it refers are suitably chosen. Now the ordinary meaning
of distance is required in non-Euclidean as in Euclidean
Geometries—indeed, it is only in metrical properties that these
Geometries differ. Hence our Kuclidean straight line, though
it may serve to illustrate other Geometries than Euclid’s, can
only be dealt with correctly by Euclid. Where we give a
different definition of distance from Euclid’s, we are still in the
domain of purely projective properties, and derive no information
as to the metrical properties of our straight line. But the
importance, to Metageometry, of this new interpretation, lies in
the fact that, having independently established the metrical
formulae of non-Euclidean spaces, we find, as in Beltrami’s
Saggio, that these spaces can be related, by a homographic
correspondence, with the points of Euclidean space; and that
this can be effected in such a manner as to give, for the
distance between two points of our non-Euclidean space, the



38 FOUNDATIONS OF GEOMETRY.

hyperbolic or spherical measure of distance for the corresponding
points of Euclidean space. :
39. On the whole, then, a modification of Sir R. Ball’s view,
which is practically a generalized statement of Beltrami’s method,
seems the most tenable. He imagines what, with Grassmann, he
calls a Content, 7.e. a perfectly general three-dimensional mani-
fold, and then correlates its elements, one by one, with points
in Euclidean space. Thus every element of the Content ac-
quires, as its coordinates, the ordinary Euclidean coordinates
of the corresponding point in Huclidean space. By means of
this correlation, our calculations, though they refer to the
Content, are carried on, as in Beltrami’s Saggio, in ordinary
Euclidean space. Thus the confusion disappears, but with it,
the supposed Euclidean interpretation also disappears. Sir
R. Ball’s Content, if it is to be a space at all, must be a space
radically different from Euclid’s’; to speak, as Klein does, of
ordinary planes with hyperbolic or elliptic measures of distance,
is either to incur a contradiction, or to forego any metrical
meaning of distance. Instead of ordinary planes, we have sur-
faces like Beltrami’s, of constant measure of curvature ; instead
of Euclid’s space, we have hyperbolic or spherical space. At
the same time, it remains true that we can, by Klein’s method,
give a Buclidean meaning to every symbolic proposition in non-
Euclidean Geometry. For by substituting, for distance, the
logarithm above alluded to, we obtain, from the non-Euclidean
result, a result which follows from the ordinary Euclidean
axioms. This correspondence removes, once for all, the possi-
bility of a lurking contradiction in Metageometry, since, to a
proposition in the one, corresponds one and only one proposition
in the other, and contradictory results in one system, therefore,
would correspond to contradictory results in the other. Hence
Metageometry cannot lead to contradictions, unless Euclidean
Geometry, at the same moment, leads to corresponding contra-
dictions. Thus the Euclidean plane with hyperbolic or elliptic
measure of distance, though either contradictory or not metrical

1 Sir R. Ball does not regard his non-Euclidean content as a possible space
(v. op. cit. p. 151). In this important point I disagree with his interpretation,
holding such a content to be a space as possible, & priori, as Euclid’s, and
perhaps actually true within the margin due to errors of observation.
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as an independent notion, has, as a help in the interpretation of
non-Euclidean results, a very high degree of utility.

40. We have still to discuss Klein’s third kind of non-
Euclidean Geometry, which he calls elliptic. The difference
between this and spherical Geometry is difficult to grasp, but
it may be illustrated by a simpler example. A plane, as every
one knows, can be wrapped, without stretching, on a cylinder,
and straight lines in the plane become, by this operation,
geodesics on the cylinder. The Geometries of the plane and
the cylinder, therefore, have much in common. But since the
generating circle of the cylinder, which is one of its geodesics,
is finite, only a portion of the plane is used up in wrapping it
once round the cylinder. Hence, if we endeavour to establish
a point-to-point correspondence between the plane and the
cylinder, we shall find an infinite series of points on the plane
for a single point on the cylinder. Thus it happens that
geodesics, though on the plane they have only one point in
common, may on the cylinder have an infinite number of inter-
sections. Somewhat similar to this is the relation between the
spherical and elliptic Geometries. To any one point in elliptic
space, two points correspond in spherical space. Thus geodesics,
which in spherical space may have. two points in common, can
never, in elliptic space, have more than one intersection.

But Klein’s method can only prove that elliptic Geometry
holds of the ordinary Euclidean plane with elliptic measure
of distance. Klein has made great endeavours to enforce the
distinction between the spherical and elliptic Geometries?, but
it 1s not immediately evident that the latter, as distinct from
the former, is valid.

In the first place, Klein’s elliptic Geometry, which arises as
one of the alternative metrical systems on a Euclidean plane or
in a Euclidean space, does not by itself suffice, if the above
discussion has been correct, to prove the possibility of an
elliptic space, 7.e. of a space having a point-to-point corre-
spondence with the Euclidean space, and having as the ordinary
distance between two of its points the elliptic definition of the
distance between corresponding points of the Euclidean space.
To prove this possibility, we must adopt the direct method of

1 See Nicht-Euklid, 1. p. 97 ff. and p. 292 ff.
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Newcomb (Crelle’s Journal, Vol. 83). Now in the first place
Newcomb has not proved that his postulates are self-consistent ;
he has only failed to prove that they are contradictory’. This
would leave elliptic space in the same position in which Lobat-
chewsky and Bolyai left hyperbolic space. But further there
seems to be, at first sight, in two-dimensional elliptic space, a
positive contradiction. To explain this, however, some account
of the peculiarities of the elliptic plane will be necessary.

The elliptic plane, regarded as a figure in three-dimensional
elliptic space, 1s what is called a double surface?, i.e. as Newcomb
says (loc. cit. p. 298): “The two sides of a complete plane are
not distinet, as in a Euclidean surface.... If...a being should
travel to distance 2D, he would, on his return, find himself on
the opposite surface to that on which he started, and would
have to repeat his journey in order to return to his original
position without leaving the surface.” Now if we imagine a

1 Newcomb says (loc. cit. p. 293): <“The system here set forth is founded
on the following three postulates.

“1. I assume that space is triply extended, unbounded, without properties
dependent either on position or direction, and possessing such planeness in its
smallest parts that both the postulates of the Euclidean Geometry, and our
common conceptions of the relations of the parts of space are true for every
indefinitely small region in space.

“2. I assume that this space is affected with such curvature that a right
line shall always return into itself at the end of a finite and real distance 2D
without losing, in any part of its course, that symmetry with respect to space
on all sides of it which constitutes the fundamental property of our con-
ception of it.

“3. I assume that if two right lines emanate from the same point, making
the indefinitely small angle a with each other, their distance apart at the
distance » from the point of intersection will be given by the equation

Bl= oct sin /T
T 2D
The right line thus has this property in common with the Euclidean right line
that two such lines intersect only in a single point. It may be that the number
of points in which two such lines can intersect admit of being determined from
the laws of curvature, but not being able so to determine it, I assume as a
postulate the fundamental property of the Euclidean right line.”

It is plain that in the absence of the determination spoken of, the possibility
of elliptic space is not established. It may be possible, for example, to prove
that, in a space where there is a maximum to distance, there must be an infinite
number of straight lines joining two points of maximum distance. In this
event, elliptic space would become impossible.

2 For an elucidation of this term, see Klein, Nicht-Fuklid, 1. p. 99 ff.
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two-dimensional elliptic space, the distinction between the sides
of a plane becomes unmeaning, since it only acquires significance
by reference to the third dimension. Nevertheless, some such
distinetion would be forced upon us. Suppose, for example,
that we took a small circle provided with an arrow,

as in the figure, and moved this circle once round

the universe. Then the sense of the arrow would ©
be reversed. We should thus be forced, either to

regard the new position as distinct from the former, ©
which transforms our plane into a spherical plane,

or to attribute the reversal of the arrow to the action of a
motion which restores our circle to its original place. It is
to be observed that wnothing short of moving round the
universe would suffice to reverse the sense of the arrow. This
reversal seems like an action of empty space, which would force
us to regard the points which, from a three-dimensional point
of view, are coincident though opposite, as really distinet, and
so reduce the elliptic to the spherical plane. But motion, not
space, really causes the change, and the elliptic plane is there-
fore not proved to be impossible. The question is not, however,
of any great philosophic importance.

41. In connection with the reduction of metrical to pro-
jective Geometry, we have one more topic for discussion. This
is the geometrical use of imaginaries, by means of which, except
in the case of hyperbolic space, the reduction is effected. I
have already contended, on other grounds, that this reduction,
in spite of its immense technical importance, and in spite of
the complete logical freedom of projective Geometry from
metrical ideas, is purely technical, and is not philosophically
valid. The same conclusion will appear, if we take up Cayley’s
challenge at the British Association, in his Presidential Address
of 1883.

In this address, Professor Cayley devoted most of his time
to non-Euclidean systems. Non-Euclidean spaces, he declared,
seemed to him mistaken & prior:'; but non-Euclidean Geometries,

L Cf. p. 9 of Report: ‘“My own view is that Euclid’s twelfth axiom, in
Playfair’s form of it, does not need demonstration, but is part of our notion of
space, of the physical space of our experience, but which is the representation
lying at the bottom of all external experience.”
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here as in his mathematical works, were accepted as flowing
from a change in the definition of distance. This view has
been already discussed, and need not, therefore, be further
criticised here. What I wish to speak about, is the question
with which Cayley himself opened his address, namely, the geo-
metrical use and meaning of imaginary quantities. From the
manner in which he spoke of this question, it becomes im-
perative to treat it somewhat at length. For he said (pp. 8-9):

“...The notion which is the really fundamental one (and
I cannot too strongly emphasize the assertion) underlying and
pervading the whole notion of modern analysis and Geometry,
[is] that of imaginary magnitude in analysis, and of imaginary
space (or space as the locus n quo of imaginary points and
figures) in Geometry: I use in each case the word imaginary
as including real.... Say even the conclusion were that the
notion belongs to mere technical mathematics, or has reference
to nonentities in regard to which no science is possible, still
it seems to me that (as a subject of philosophical discussion)
the notion ought not to be thus ignored; it should at least
be shown that there is a right to ignore it.”

42. This right it is now my purpose to demonstrate. But
for fear non-mathematicians should miss the point of Cayley’s
remark (which has sometimes been erroneously supposed to
refer to non-Euclidean spaces), I may as well explain, at the
outset, that this question is radically distinet from, and only
indirectly connected with, the validity or import of Meta-
geometry. An imaginary quantity is one which involves
V=1: its most general form is «+~—1b where @ and b are
real ; Cayley uses the word imaginary so as to include real, in
order to cover the special case where b =0. It will be con-
venient, in what follows, to exclude this wider meaning, and
assume that b is not zero. An imaginary point is one whose
coordinates involve v—1, i.e. whose coordinates are imaginary
quantities. An imaginary curve is one whose points are ima-
ginary—or, in some special uses, one whose equation contains
imaginary coefficients. The mathematical subtleties to which
this notion leads need not be here discussed; the reader who
is interested in them will find an excellent elementary account
of their geometrical uses in Klein’s Nicht-Euklid, 11, pp. 38-46.
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But for our present purpose, we may confine ourselves to
imaginary points. If these are found to have a merely technical
import, and to be destitute of any philosophical meaning, then
the same will hold of any collection of imaginary points, ze.
of any imaginary curve or surface.

That the notion of imaginary points is of supreme im-
portance in Geometry, will be seen by any one who reflects
that the circular points are imaginary, and that the reduction
of metrical to projective Geometry, which is one of Cayley’s
greatest achievements, depends on these points. But to discuss
adequately their philosophical import is difficult to me, since
I am unacquainted with any satisfactory philosophy of ima-
ginaries in pure Algebra. I will therefore adopt the most
favourable hypothesis, and assume that no objection can be
successfully urged against this use. Even on this hypothesis,
I think, no case can be made out for imaginary points in
Geometry.

In the first place, we must exclude, from the imaginary
points considered, those whose coordinates are only imaginary
with certain special systems of coordinates. For example, if
one of a point’s coordinates be the tangent from it to a sphere,
this coordinate will be imaginary for any point inside the
sphere, and yet the point is perfectly real. A point, then, is
only to be called imaginary, when, whatever real system of
coordinates we adopt, one or more of the quantities expressing
these coordinates remains imaginary. For this purpose, it is
mathematically sufficient to suppose our coordinates Cartesian—
a point whose Cartesian coordinates are imaginary, is a true
imaginary point in the above sense.

To discuss the meaning of such a point, it is necessary to
consider briefly the fundamental nature of the correspondence
between a point and its coordinates. Assuming that elementary
Geometry has proved—what I think it does satisfactorily
prove—that spatial relations arc susceptible of quantitative
measurement, then a given point will have, with a suitable
system of coordinates, in a space of n dimensions, n quantitative
relations to the fixed spatial figure forming the axes of co-
ordinates, and these n quantitative relations will, under certain
reservations, be unique—t.e., no other point will have the same
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quantities assigned to it. (With many possible coordinate
systems, this latter condition is not realized: but for that
very reason they are inconvenient, and employed only in special
problems.) Thus given a coordinate system, and given any set
of quantities, these quantities, if they determine a point at all,
determine it uniquely. But, by a natural extension of the
method, the above reservation is dropped, and it is assumed
that to every set of quantities some point must correspond.
For this assumption there seems to me no vestige of evidence.
As well might a postman assume that, because every house in a
street 1s uniquely determined by its number, therefore there
must be a house for every imaginable number. We must
know, in fact, that a given set of quantities can be the co-
ordinates of some point in space, before it is legitimate to give
any spatial significance to these quantities : and this knowledge,
obviously, cannot be derived from operations with coordinates
alone, on pain of a vicious circle. We must, to return to the
above analogy, know the number of houses in Piccadilly, before
we know whether a given number has a corresponding house or
not ; and arithmetic alone, however subtly employed, will never
give us this information.

Thus the distinction which is important is, not the dis-
tinction between real and imaginary quantities, but between
quantities to which points correspond and quantities to which
no points correspond. We can conventionally agree to denote
real points by imaginary coordinates, as in the Gaussian method
of denoting by the single quantity (e 4-v —1 b) the point whose
ordinary coordinates are a, b. But this does not touch Cayley’s
meaning. Cayley means that it is of great utility in mathe-
matics to regard, as points with a real existence in space, the
assumed spatial correlates of quantities which, with the
coordinate system employed, have no correlates in every-day
space; and that this utility is supposed, by many mathema-
ticians, to indicate the validity of so fruitful an assumption.
To tix our ideas, let us consider Cartesian axes in three-
dimensional Euclidean space. Then it appears, by inspection,
that a point may be situated at any distance to right or left of
any of the three coordinate planes; taking this distance as a
coordinate, therefore, it appears that real points correspond to
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all quantities from — to +w. The same appears for the
other two coordinates; and since elementary Geometry proves
their variations mutually independent, we know that one and
only one real point corresponds to any three real quantities.
But we also know, from the exhaustive method pursued, that
all space is covered by the range of these three variable
quantities: a fresh set of quantities, therefore, such as is
introduced by the use of imaginaries, possesses no spatial
correlate, and can be supposed to possess one only by a
convenient fiction.

43. The fact that the fiction s convenient, however, may
be thought to indicate that it is more than a fiction. But this
presumption, I think, can be easily explained away. For all
the fruitful uses of imaginaries, in Geometry, are those which
begin and end with real quantities, and use imaginaries only
for the intermediate steps. Now in all such cases, we have a
real spatial interpretation at the beginning and end of our
argument, where alone the spatial interpretation is important :
in the intermediate links, we are dealing in a purely algebraical
manner with purely algebraical quantities, and may perform
any operations which are algebraically permissible. If the
quantities with which we end are capable of spatial inter-
pretation, then, and only then, our result may be regarded as
geometrical. To use geometrical language, in any other case,
is only a convenient help to the imagination. To speak, for
example, of projective properties which refer to the circular
points, is a mere memoria technica for purely algebraical
properties; the circular points are not to be found in space,
but only in the auxiliary quantities by which geometrical
equations are transformed. That no contradictions arise from
the geometrical interpretation of imaginaries, is not wonderful :
for they are interpreted solely by the rules of Algebra, which
we may admit as valid in their application to imaginaries. The
perception of space being wholly absent, Algebra rules supreme,
and no inconsistency can arise. Wherever, for a moment, we
allow our ordinary spatial notions to intrude, the grossest
absurdities do arise—every one can see that a circle, being a
closed curve, cannot get to infinity. The metaphysician, who
should invent anything so preposterous as the circular points,
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would be hooted from the field. But the mathematician may
steal the horse with impunity.

Finally, then, only a knowledge of space, not a knowledge of
Algebra, can assure us that any given set of quantities will have
a spatial correlate, and in the absence of such a correlate,
operations with these quantities have no geometrical import.
This is the case with imaginaries in Cayley’s sense, and their
use in Geometry, great as are its technical advantages, and
rigid as is its technical validity, is wholly destitute of philo-
sophical importance.

44. We have now, I think, discussed most of the questions
concerning the scope and validity of the projective method. We
have seen that it is independent of all metrical presuppositions,
and that its use of coordinates does not involve the assumption
that spatial magnitudes are measured or expressed by them.
We have seen that it is able to deal, by its own methods alone,
with the question of the qualitative likeness of geometrical
figures, which is logically prior to any comparison as to quantity,
since quantity presupposes qualitative likeness. We have seen
also that, so far as its legitimate use extends, it applies equally
to all homogeneous spaces, and that its criterion of an indepen-
dently possible space—the determination of a straight line by
two points'—is not subject to the qualifications and limitations
which belong, as we have seen in the case of the cylinder, to
the metrical criterion of constant curvature. But we have also
seen that, when projective Geometry endeavours to grapple
with spatial magnitude, and bring distance and the measure-
ment of angles beneath its sway, its success, though technically
valid and important, is philosophically an apparent success only.
Metrical Geometry, therefore, if quantity is to be applied to
space at all, remains a separate, though logically subsequent
branch of Mathematies.

45. It only remains to say a few words about Sophus Lie.
As a mathematician, as the inventor of a new and immensely
powerful method of analysis, he cannot be too highly praised.
Geometry is only one of the numerous subjects to which his

! The exception to this axiom, in spherical space, presupposes metrical

Geometry, and does not destroy the validity of the axiom for projective
Geometry. See Chap. m1. Sec. B, § 171.
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theory of continuous groups applies, but its application to
Geometry has made a revolution in method, and has rendered
possible, in such problems as Helmholtz’s, a treatment infinitely
more precise and exhaustive than any which was possible
before.

The general definition of a group is as follows: If we have
any number of independent variables #, #,...x,, and any series
of transformations of these into new variables—the trans-
formations being defined by equations of specified forms, with
parameters varying from one transformation to another—then
the series of transformations form a group, if the successive
application of any two is equivalent to a single member of the
original series of transformations. The group is continuous,
when we can pass, by infinitesimal gradations within the group,
from any one of the transformations to any other.

Now, in Geometry, the result of two successive motions
or collineations of a figure can always be obtained by a single
motion or collineation, and any motion or collineation can be
built up of a series of infinitesimal motions or collineations.
Moreover the analytical expression of either is a certain trans-
formation of the coordinates of all the points of the figure!.
Hence the transformations determining a motion or a col-
lineation are such as to form a continuous group. But the
question of the projective equivalence of two figures, to which
all projective Geometry i1s reducible, must always be dealt
with by a collineation; and the question of the equality of
two figures, to which all metrical Geometry is reducible, must
always be decided by a motion such as to cause superposition ;
hence the whole subject of Geometry may be regarded as a
theory of the continuous groups which define all possible
collineations and motions.

Now Sophus Lie has developed, at great length, the purely
analytical theory of groups; he has therefore, by this method
of formulating the problem, a very powerful weapon ready for

1 Mathematicians of Lie’s school have a habit, at first somewhat confusing,
of speaking of motions of space instead of motions of bodies, as though space
as a whole could move. All that is meant is, of course, the equivalent
motion of the coordinate axes, i.e. a change of axes in the usual elementary
sense,
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the attack. In two papers “On the foundations of Geometry?,
undertaken at Klein’s urgent request, he takes premisses which
roughly correspond to those of Helmholtz, omitting Mono-
dromy, and applies the theory of groups to the deduction of
their consequences®. Helmholtz’s work, he says, can hardly be
looked upon as proving its conclusions, and indeed the more
searching analysis of the group-theory reveals several possi-
bilities unknown to Helmholtz. Nevertheless, as a pioneer,
devoid of Lie’s machinery, Helmholtz deserves, I think, more
praise than Lie is willing to give hims.

Lie’s method is perfectly exhaustive; omitting the premiss
of Monodromy, the others show that a body has six degrees of
freedom, i.e. that the group giving all possible motions of a
body will have six independent members; if we keep one point
fixed, the number of independent members is reduced to three.
He then, from his general theory, enumerates all the groups
which satisfy this condition. In order that such a group should

1 «Ueber die Grundlagen der (eometrie,” Leipziger Berichte, 1890. The
problem of these two papers is really metrical, since it is concerned, not with
collineations in general, but with motions. The problem, however, is dealt
with by the projective method, motions being regarded as collineations which
leave the Absolute unchanged. It seemed impossible, therefore, to discuss Lie’s
work, until some account had been given of the projective method.

2 Lie’s premisses, to be accurate, are the following :

Let '

o=f(Yy, 2, a1, ay...)

Toa=P (T, Yy 7, Gy, Gy...)

=y (2, Y, 2, a, a,...)
give an infinite family of real transformations of space, as to which we make the
following hypotheses :

A. The functions f, ¢, ¥, are analytical functions of
Ry W R e

B. Two points x,4,2,, Z,9,2, possess an invariant, i.e.

Q (215 Y15 215 %y0 Yos 20 =0 (1), 415 215 T, 9, 22)
where x)’..., «,... are the transformed coordinates of the two points.

C. Free Mobility: i.e., any point can be moved into any other position ;
when one point is fixed, any other point of general position can take up w2
positions; when two points are fixed, any other of general position can take up
o 1 positions ; when three, no motion is possible—these limitations being results
of the equations given by the invariant Q.

3 On this point, cf. Klein, Héhere Geometrie, Gottingen, 1893, 11. pp. 225-
244, especially pp. 230-1.
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give possible motions, it is necessary, by Helmholtz’s second
axiom, that it should leave invariant some function of the
coordinates of any two points. This eliminates several of the
groups previously enumerated, each of which he discusses in
turn. He is thus led to the following results:

L In two dimensions, if free mobility is to hold wuni-
versally, there are no groups satisfying Helmholtz’s first three
axioms, except those which give the ordinary Euclidean and
non-Euclidean motions ; but if it is to hold only within «
certain region, there is also a possible group in which the
curve described by any point in a rotation is not closed, but
an equiangular spiral. To exclude this possibility, Helmholtz’s
axiom of Monodromy is required.

II.  In three dimensions, the results go still more against
Helmholtz. Assuring free mobility only within a certain region,
we have to distinguish two cases: Either free mobility holds,
within that region, absolutely without exception, 7.e. when one
point is held fast, every other point within the region can
move freely over a surface: in this case the axiom of Mo-
nodromy is unnecessary, and the first three axioms suffice to
define our group as that of Euclidean and non-Euclidean mo-
tions. Or free mobility, within the specified region, holds
only of every point of general position, while the points of a
certain line, when one point is fixed, are only able to move
on that line, not on a surface; when this is the case, other
groups are possible, and can only be excluded by Helmholtz’s
fourth axiom.

Having now stated the purely mathematical results of Lie’s
investigations, we may return to philosophical considerations,
by which Helmholtz’s work was mainly motived. It becomes
obvious, not only that exceptions within a certain region, but
also that limitation to a certain region, of the axiom of Free
Mobility, are philosophically quite impossible and inconceivable.
How can a certain line, or a certain surface, form an impassable
barrier in space, or have any mobility different in kind from
that of all other lines or surfaces? The notion cannot, in
philosophy, be permitted for a moment, since it destroys that
most fundamental of all the axioms, the homogeneity of space.
We not only may, therefore, but must take Helmholtz's axiom

R. G. 4
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of Free Mobility in its very strictest sense; the axiom of
Monodromy thus becomes mathematically, as well as philo-
sophically, superfluous. This is, from a philosophical standpoint,
the most important of Lie’s results.

46. I have now come to the end of my history of Meta-
geometry. It has not been my aim to give an exhaustive
account of even the important works on the subject—in the
third period, especially, the names of Poincaré, Pasch, Cremona,
Veronese, and others who might be mentioned, would have
cried shame upon me, had I had any such object. But I have
tried to set forth, as clearly as I could, the principles at work
in the various periods, the motives and results of successive
theories. We have seen how the philosophical motive, at first
predominant, has been gradually extruded by the purely mathe-
matical and technical spirit of most recent Geometers. At
first, to discredit the Transcendental Aesthetic seemed, to Meta-
geometers, as important as to advance their science; but from
the works of Cayley, Klein or Lie, no reader could gather that
Kant had ever lived. We have also seen, however, that as
the interest vn philosophy waned, the interest for philosophy
increased : as the mathematical results shook themselves free
from philosophical controversies, they assumed gradually a
stable form, from which further development, we may reason-
ably hope, will take the form of growth, rather than trans-
formation. The same gradual development out of philosophy
might, I believe, be traced in the infancy of most branches of
mathematics; when philosophical motives cease to operate,
this is, in general, a sign that the stage of uncertainty as to
premisses is past, so that the future belongs entirely to mathe-
matical technique. When this stable stage has been attained,
it is time for Philosophy to borrow of Science, accepting its
final premisses as those imposed by a real necessity of fact
or logic.

47. Now in discussing the systems of Metageometry, we
have found two kinds, radically distinct and subject to different
axioms. The historically prior kind, which deals with metrical
ideas, discusses, to begin with, the conditions of Free Mobility,
which is essential to all measurement of space. It finds the
analytical expression of these conditions in the existence of
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a space-constant, or constant measure of curvature, which is
equivalent to the homogeneity of space. This is its first
axiom.

Its second axiom states that space has a finite integral
number of dimensions, 7.e. in metrical terms, that the position
of a point, relative to any other figure in space, is uniquely
determined by a finite number of spatial magnitudes, called
coordinates.

The third axiom of metrical Geometry may be called, to
distinguish it from the corresponding projective axiom, the
axiom of distance. There exists one relation, it says, between
any two points, which can be preserved unaltered in a combined
motion of both points, and which, in any motion of a system
as one rigid body, is always unaltered. This relation we call
distance.

The above statement of the three essential axioms of
metrical Geometry is taken from Helmholtz as amended by Lie.
Lie’s own statement of the axioms, as quoted above, has been
too much influenced by projective methods to give a historically
correct rendering of the spirit of the second period; Helmholtz's
statement, on the other hand, requires, as Lie has shewn, very
considerable modifications. The above compromise may, there-
fore, I hope be taken as accepting Lie’s corrections while
retaining Helmholtz’s spirit.

48. But metrical Geometry, though it is historically prior,
is logically subsequent to projective Geometry. For projective
Geometry deals directly with that qualitative likeness, which
the judgment of quantitative comparison requires as its basis.
Now the above three axioms of metrical Geometry, as we shall
see in Chapter I Section B, do not presuppose measurement,
but are, on the contrary, the conditions presupposed by
measurement. Without these axioms, which are common to
all three spaces, measurement would be impossible; with them,
so I shall contend, measurement is able, though only empirically,
to decide approximately which of the three spaces is valid of
our actual world. But if these three axioms themselves express,
not results, but conditions, of measurement, must they not be
equivalent to the statement of that qualitative likeness on
which quantitative comparison depends? And if so, must we

4—2
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not expect to find the same axioms, though perhaps under a
different form, in projective Geometry ?

49. This expectation will not be disappointed. The above
three axioms, as we shall see hereafter, are one and all
philosophically equivalent to the homogeneity of space, and
this in turn is equivalent to the axioms of projective Geometry.
The axioms of projective Geometry, in fact, may be roughly
stated thus:

I, Space is continuous and infinitely divisible; the zero of
extension, resulting from infinite division. is called a Point.
All points are qualitatively similar, and distingnished by the
mere fact that they lie outside one another.

II.  Any two points determine a unique figure, the straight
line; two straight lines, like two points, are qualitatively
similar, and distinguished by the mere fact that they are
mutually external.

III. Three points not in one straight line determine a
unique figure, the plane, and four points not in one plane
determine a figure of three dimensions. This process may, so
far as can be seen @ priori, be continued, without in any way
interfering with the possibility of projective Geometry, to five
or to n points. But projective Geometry requires, as an axiom,
that the process should stop with some positive integral number
of points, after which, any fresh point is contained in the
figure determined by those already given. If the process stops
with (n + 1) points, our space is said to have n dimensions.

These three axioms, it will be seen, are the equivalents of
the three axioms of metrical Geometry?, expressed without
reference to quantity. We shall find them to be deducible, as
before, from the homogeneity of space, or, more generally still,
from the possibility of experiencing externality. They will
therefore appear as d priort, as essential to the existence of any
Geometry and to experience of an external world as such.

50. That some logical necessity is involved in these axioms
might, I think, be inferred as probable, from their historical
development alone. For the systems of Metageometry have
not, in general, been set up as more likely to fit facts than the

1 Axiom 11. of the metrical triad corresponds to Axiom 1. of the projective,
and vice versd.
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system of Kuclid; with the exception of Zollner, for example, T
know of no one who has regarded the fourth dimension as
required to explain phenomena. As regards the space-constant
again, though a small space-constant is regarded as empirically
possible, it is not usually regarded as probable; and the finite
space-constants, with which Metageometry is equally con-
versant, are not usually thought even possible, as explanations
of empirical fact'. Thus the motive has been throughout not
one of fact, but one of logic. Does not this give a strong
presumption, that those axioms which are retained, are retained
because they are logically indispensable? If this be so, the
axioms common to Euclid and Metageometry will be d prior,
while those peculiar to Euclid will be empirical. After a
criticism of some differing theories of Geometry, I shall proceed,
in Chapters 1L and 1v., to the proof and consequences of this
thesis, which will form the remainder of the present work.

! Cf. Helmholtz, Wiss. Abh. Vol. m. p. 640, note: “Die Bearbeiter
der Nicht-Euklidischen Geometrie (haben) deren objective Wahrheit nie
behauptet.”



CHAPTER II

CRITICAL ACCOUNT OF SOME PREVIOUS PHILOSOPHICAL
THEORIES OF GEOMETRY.

51. WE have now traced the mathematical development
of the theory of geometrical axioms, from the first revolt against
Euclid to the present day. We may hope, therefore, to have
at our command the technical knowledge required for the
philosophy of the subject. The importance of Geometry, in
the theories of knowledge which have arisen in the past, can
scarcely be exaggerated. In Descartes, we find the whole
theory of method dominated by analytical Geometry, of whose
fruitfulness he was justly proud. In Spinoza, the paramount
influence of Geometry is too obvious to require comment.
Among mathematicians, Newton’s belief in absolute space was
long supreme, and is still responsible for the current formu-
lation of the laws of motion. Against this belief on the one
hand, and against Leibnitz’s theory of space on the other, and
not, as Caird has pointed out?, against Hume’s empiricism,
was directed that keystone of the Critical Philosophy, the
Kantian doctrine of space. Thus Geometry has been, through-
out, of supreme importance in the theory of knowledge.

But in a criticism of representative modern theories of
Geometry, which is designed to be, not a history of the subject,
but an introduction to, and defence of, the views of the author,
1t will not be necessary to discuss any more ancient theory
than that of Kant. Kant’s views on this subject, true or false,
have so dominated subsequent thought, that whether they were

1 The Critical Philosophy of Kant, Vol. 1. p. 287.
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accepted or rejected, they seemed equally potent in forming
the opinions, and the manner of exposition, of almost all later
“writers.

Kant.

52. It is not my purpose, in this chapter, to add to the
voluminous literature of Kantian criticism, but only to discuss
the bearing of Metageometry on the argument of the Tran-
scendental Aesthetic, and the aspect under which this argument
must be viewed in a discussion of Geometry’. On this point
several misunderstandings seem to me to have had wide pre-
valence, both among friends and foes, and these misunder-
standings I shall endeavour, if I can, to remove.

In the first place, what does Kant’s doctrine mean for
Geometry ? Obviously not the aspect of the doctrine which
has been attacked by psychologists, the “Kantian machine-
shop” as James calls it—at any rate, if this can be clearly
separated from the logical aspect. The question whether space
is given in seusation, or whether, as Kant maintained, it is
given by an intuition to which no external matter corresponds,
may for the present be disregarded. If, indeed, we held the
view which seems crudely to sum up the standpoint of the
Critique, the view that all certain knowledge is self-knowledge,
then we should be committed, if we had decided that Geometry
was apodeictic, to the view that space is subjective. But even
then, the psychological question could only arise when the
epistemological question had been solved, and could not, there-
fore, be taken into account in our first investigation. The
question before us is precisely the question whether, or how
far, Geometry is apodeictic, and for the moment we have only
to investigate this question, without fear of psychological con-
sequences.

53. Now on this question, as on almost all questions in the
Aesthetic or the Analytic, Kant’s argument is twofold. On
the one hand, he says, Geometry is known to have apodeictic
certainty : therefore space must be d priori and subjective.
On the other hand, it follows, from grounds independent of

1 For a discussion of Kant from a less purely mathematical standpoint, see
Chap. 1v.
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Geometry, that space is subjective and & priori; therefore
Geometry must have apodeictic certainty. These two argu-
ments are not clearly distinguished in the Aesthetic, but a
little analysis, I think, will disentangle them. Thus in the first
edition, the first two arguments deduce, from non-geometrical
grounds, the apriority of space; the third deduces the apodeictic
certainty of Geometry, and maintains, conversely, that no other
view can account for this certainty®; the last two arguments
only maintain that space is an intuition, not a concept. In
the second edition, the double argument is clearer, the apriority
of space being proved independently of Geometry in the meta-
physical deduction, and deduced from the certainty of Geometry,
as the only possible explanation of this, in the transcendental
deduction. In the Prolegomena, the latter argument alone is
used, but in the Critique both are employed.

54. Now it must be admitted, I think, that Metageometry
has destroyed the-legitimacy of the argument from Geometry
to space; we can no longer affirm, on purely geometrical
grounds, the apodeictic certainty of Euclid. But unless Meta-
geometry has done more than this—unless it has proved, what
I believe it alone cannot prove, that Euclid has not apodeictic
certainty—then Kant’s other line of argument retains what
force it may ever have had. The actual space we know, it may
say, 1s admittedly Euclidean, and is proved, without any reference
to Geometry, to be & priori; hence Euclid has apodeictic
certainty, and non-Euclid stands condemned. To this it is no
answer to urge, with the Metageometers, that nou-Euclidean
systems are logically self-consistent; for Kant is careful to
argue that geometrical reasoning, by virtue of our intuition
of space, is synthetic, and cannot, though @& priori, be upheld
by the principle of contradiction alone® Unless non-Euclideans
can prove, what they have certainly failed to prove up to the
present, that we can frame an wntuition of non-Euclidean spaces,

1 Cf. Vailhinger’'s Commentax, 1r. pp. 202, 265. Also p. 336 ff.

2 H.g. sccond edition, p. 39: “So werden auch alle geometrischen Grund.
sitze, z. B. dass in cinem Triangel zwel Seiten zusammen grosser sind als die
dritte, niemals aus allgemeinen Begriffen von Linie und Triangel, sondern
aus der Anschauung, und zwar @ priori mit apodiktischer Gewissheit
abgeleitet.”
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Kant’s position cannot be upset by Metageometry alone, but
must also be attacked, if it is to be successfully attacked, on
its purely philosophical side.

55. For such an attack, two roads lie open : either we may
disprove the first two arguments of the Aesthetic, or we may
criticize, from the standpoint of general logic, the Kantian doc-
trine of synthetic d priori judgments and their connection with
subjectivity. Both these attacks, I believe, could be conducted
with some success ; but if we are to disprove the apodeictic cer-
tainty of Geometry, one or other is essential, and both, I believe,
will be found only partially successful. It will be my aim to
prove, in discussing these two lines of attack, (1) that the dis-
tinction of synthetic and analytic judgments is untenable, and
further, that the principle of contradiction can only give fruitful
results on the asswnption that experience in general, or, in a
particular science, some special branch of experience, is to be
formally possible ; (2) that the first two arguments of the Tran-
scendental Aesthetic suffice to prove, not Euclidean space,
but some form of externality—which may be sensational or
intuitional, but not merely conceptual—a necessary prerequisite
of experience of an external world. In the third and fourth
chapters, I shall contend, as a result of these conclusions, that
those axioms, which Euclid and Metageometry have in common,
coincide with those properties of any form of externality which
are deducible, by the principle of contradiction, from the possi-
bility of experience of an external world. These properties,
then, may be said, though not quite in the Kantian sense, to be
@ priori properties of space, and as to these, I think, a modified
Kantian position may be maintained. But the question of the
subjective or objective nature of space may be left wholly out
of account during the course of this discussion, which will gain
by dealing exclusively with logical, as opposed to psychological
points of view.

56. (1) Kant's logical position. The doctrine of synthetic
and analytic judgments—at any rate if this is taken as the
corner-stone of Epistemology—has been so completely rejected
by most modern logicians’, that it would demand little attention

1 Cf. Bradley's Logic, Bk. 1. Pt. 1. Chap. vi.; Bosanquet’s Logic, Bk. 1.
Chap. 1. pp. Y7-103.
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here, but for the fact that an enthusiastic French Kantian,
M. Renouvier, has recently appealed to it, with perfect con-
fidence, on the very question of Geometry'. And it must be
owned, with M. Renouvier, that if such judgments existed, in
the Kantian sense, n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>