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AUTHOR’S PREFACE TO THE
FIRST EDITION?®

Amplissima et pulcherrima scientia figurarum. At quam est inepte sortita
nomen Geometrize |—N1coD. FrRISCHLINUS, Dialog. I.

Perspectivee methodus, qua nec inter inventas nec inter inventu possibiles ulla
compendiosior esse videtur . . . —B. PascaL, Lit. ad Acad. Paris., 1654.

Da veniam scriptis, quorum non gloria nobis
Causa, sed utilitas officiumque fuit.—OvID, ex Pont., iii. 9. 55.

TH18 book is not intended for those whose high mission it
is to advance the progress of science; they would find in it
nothing new, neither as regards principles, nor as regards
methods. The propositions are all old; in fact, not a few of
them owe their origin to mathematicians of the most remote
antiquity. They may be traced back to Evcnip (285 B.c.), to
ArorrLontus of Perga (247 B.c.), to PAPPUS of Alexandria (4th
century after Christ); to DEsARGUES of Lyons (1593-1662);
to.PAscAL (1623-1662); to DE LA HIRE (1640-1718); to
NEWTON (1642-1727); to MACLAURIN (1698-1746); to J. H.
LAMBERT (1728-1777), &e. The theories and methods which
make of these propositions a homogeneous and harmonious
whole it is usual to call modern, because they have been dis-
covered or perfected by mathematicians of an age nearer to
ours, such as CARNOT, BRIANCHON, PONCELET, MOB1US, STEINER,
CHASLES, STAUDT, &ec.; whose works were published in the
earlier half of the present century.

Various names have been given to this subject of which we
are about to develop the fundamental principles. I prefer

* With the consent of the Author, only such part of the preface to the original
Ttalian edition (1872) is here reproduced as may be of interest to the English reader.
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not to adopt that of Higher Geometry (Géoméirie supéricure,
hohere Geometrie), because that to which the title ¢ higher’ at
one time seemed appropriate, may to-day have become very
elementary ; nor that of Modern Geomelry (neuere Geometrie),
which in like manner expresses a merely relative idea ; and is
moreover open to the objection that although the methods
may be regarded as modern, yet the matter is to a great extent
old. Nor does the title Geometry of position (Geometrie der Lage)
as used by STAUDT* seem to me a suitable one, since it
excludes the consideration of the metrical properties of figures.
I have chosen the name of Projective Geometry , as expressing
the true nature of the methods, which are based essentially on
central projection or perspective. And one reason which has
determined this choice is that the great PoNCELET, the chief
creator of the modern methods, gave to his immortal book
the title of Traité des propriétés projectives des figures (1822).

In developing the subject I have not followed exclusively
any one author, but have borrowed from all what seemed
useful for my purpose, that namely of writing a book which
should be thoroughly elementary, and accessible even to those
whose knowledge does not extend beyond the mere elements of
ordinary geometry. I might, after the manner of Stavpr,
have taken for granted no previous notions at all ; but in that
case my work would have become too extensive, and would
no longer have been suitable for students who have read the
usual elements of mathematics. Yet the whole of what such
students have probably read is not necessary in order to
understand my book ; it is sufficient that they should know
the chief propositions relating to the circle and to similar
triangles.

It is, I think, desirable that theoretical instruction in

* Equivalent to the Descriptive Geometry of CAYLEY (Sixth memoir on quantics,
Phil. Trans. of the Royal Society of London, 1859; p. go). The name Géométrie
de position as used by CARNOT corresponds to an idea quite different from that
which I wished to express in the title of my book. I leave out of consideration

other names, such as Géométrie segmentaire and Organische Geometrie, as referring
to ideas which are too limited, in my opinion.

1 See KiLeiN, Ucber die sogenannte nicht-Euklidische Geometrie (Gottinger
Nachrichten, Aug. 30, 1871).
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geometry should have the help afforded it by the practical
constructing and drawing of figures. I have accordingly laid
more stress on descriptive properties than on mefrical ones ; and
have followed rather the methods of the Geometrie der Lage of
STAUDT than those of the Géoméirie supérieure of CHASLES *.
It has not however been my wish entirely to exclude metrical
properties, for to do this would have been detrimental to
other practical objects of teaching t. I have therefore intro-
duced into the book the important notion of the antarmonic
ratio, which has enabled me, with the help of the few above-
mentioned propositions of the ordinary geometry, to establish
easily the most useful metrical properties, which are either
consequences of the projective properties, or are closely related
to them.

I have made use of central projection in order to establish
the idea of infinitely distant elements; and,following the example
of STEINER and of StauDT, I have placed the law of duality
quite at the beginning of the book, as being a logical fact
which arises immediately and naturally from the possibility
of constructing space by taking either the point or the plane as
element. The enunciations and proofs which correspond to
one another by virtue of this law have often been placed in
parallel columns; occasionally however this arrangement has
been departed from, in order to give to students the oppor-
tunity of practising themselves in deducing from a theorem
its correlative. Professor REYE remarks, with justice, in the
preface to his book, that Geometry affords nothing so stirring
to a beginner, nothing so likely to stimulate him to original
work, as the principle of duality; and for this reason it is
very important to make him acquainted with it as soon
as possible, and to accustom him to employ it with con-
fidence.

The masterly treatises of PONCELET, STEINER, CHASLES, and

* Cf. REYE, Geometrie der Lage (Hannover, 1866; 2nd edition, 1877), p. xi of
the preface.

+ Of. ZicH, Die hihere Geomelrie in ihrer Anwendung auf Kegelschnitte und
Flichen zweiter Ordnung (Stuttgart, 1857), preface.
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StAUDT * are those to which I must acknowledge myself most
indebted ; not only hecause all who devote themselves to
Geometry commence with the study of these works, but also
because I have taken from them, besides the substance of
the methods, the proofs of many theorems and the solutions of
many problems. But along with these I have had occasion
also to consult the works of AroLLONIUS, PAPPUS, DESARGUES,
DeE 1A Hire, NEwTON, MACLAURIN, Lausert, CARNOT,
Briaxcuon, MOB1us, BELLAVITIS, &c.; and tho later ones of
Zecu, GasgIN, WiTzscHEL, TOWNSEND, REYE, PoUDRA,
FIEDLER, &ec.

In order not to increase the difficulties, already very con-
siderable, of my undertaking, I have relioved myself from the
responsibility of quoting in all cases the sources from which
I have drawn, or the original discoverers of the various pro-
positions or theories. I trust then that I may be excused if
sometimes the source quoted is not the original one 1, or if
occasionally the reference is found to be wanting entirely.
In giving references, my desire has been chiefly to call the
attention of the student to the names of the great geometers
and the titles of their works, which have become classical.
The association with certain great theorems of the illustrious
names of EucLip, AroLLoNIUS, PAPPUS, DESARGUES, PASCAL,
Nrwrox, Caryot, &e. will not be without advantage in assist-
ing the mind to retain the results themselves, and in exciting
that scientific curiosity which so often contributes to enlarge
our knowledge. .

Another object which I have had in view in giving refer-
ences is to correct the first impressions of those to whom the
name Projective Geometry has a suspicious air of novelty. Such

* PoNCELET, Traité des proprictés projectives des figures (Paris, 1822). STEINER,
Systematische Entwickelung der Abhingighkeit geomctrischer Gestalten von einander,
de. (Berlin, 1832). CHASLES, Traité de G éomctrie supérieure (Paris, 1852) ; Traité
des sections coniques (Paris, 1865). STAUDT, Geometrie der Lage (Niwnberg, 1847).

1 In quoting an author I have almost always cited such of his treatises as are
of considerable extent and generally known, although his discoveries may have
been originally announced elsewhere. For example, the rescarches of CHASLES in
the theory of conics date from a period in most cases anterior to the year 1830;
those of STAUDT began in 1831 ; &ec.
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persons I desire to convince that the subjects are to a great
extent of venerable antiquity, matured in the minds of the
greatest thinkers, and now reduced to that form of extreme
simplicity which GERGONNE considered as the mark of perfection
in a scientific theory*. In my analysis I shall follow the
order in which the various subjects are arranged in the book.

The conception of elements lying at an infinite distance is due
to the celebrated mathematician DESARGUES ; who more than
two centuries ago explicitly considered parallel straight lines
as meeting in an infinitely distant point t, and parallel planes
as passing through the same straight line at an infinite
distance f.

The same idea was thrown into full light and made
generally known by PoNCELET, who, starting from the postu-
lates of the Euclidian Geometry, arrived at the conclusion
that the points in space which lie at an infinite distance must
be regarded as all lying in the same plane §.

Desarcurs || and NEwTox 9 considered the asymptotes
of the hyperbola as tangents whose points of contact lie at an
infinite distance.

The name /lomology is due to PoxcErEr. Homology, with
reference to plane figures, is found in some of the earlier
treatises on perspective, for example in LAMBERT ** or per-
haps even in DESARGUES 1, who enunciated and proved the
theorem eoncerning triangles and quadrilaterals in perspective
or homology. This theorem, for the particular case of two
triangles (Art. 17), is however really of much older date, as it

* ¢On ne peut se flatter d’avoir le dernier mot d’une théorie, tant gu’on ne
peut pas lexpliquer en peu de paroles b un passant dans la rue’ (cf. CHASLES,
Apergu historique, p. 115).

t uvres de DESARGUES, réunies et analysées par M. Pounra (Paris, 1864),
tome i. Brouillon-projet d'une atteinte aux événements des rencontres d’un cone -
avee un plan (1639), pp. 104, 105, 205.

1 Loe. cit., pp. 105, 106.

§ Traité des propriétés projectives des figures (Paris, 1822), Arts. 96, 580.

I Loe. eit., p. 210. }

I Philosophiae naturalis principia mathematica (1686), lib. i. prop. 27,
scholium.

** Freie Perspective, 2nd edition (Zurich, 1774).

T4 Loc. cit., pp. 413-416.
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is substantially identical with a celebrated porism of EucLip
(Art. 114), which has been handed down to us by Pappus*.
Homological figures in space were first studied by PONCELET {.

The law of duality, as an independent principle, was enun-
ciated by GERGONNE I ; as a consequence of the theory of
reciprocal polars (under the name principe de réciprocité polaire)
it is due to PONCELET §.

The geometric forms (range of points, flat pencil) are found,
the names excepted, in DESARGUES and the later geometers.
STEINER || has defined them in a more explicit manner than
any previous writer.

The complete quadrilateral was considered by CArnotT ¥ ;
the idea was extended by STEINER** to polygons of any
number of sides and to figures in space.

Harmonic section was known to geometers of the most
remote antiquity; the fundamental properties of it are to be
found for example in ArorroNIUS 1. DELA HIRE [T gave the
construction of the fourth element of a harmonic system by
means of the harmonie property of the quadrilateral, 7.e. by
help of the ruler only.

From 1832 the construction of projective forms was taught
by STEINER §§.

The complete theory of the anharmonic: ratios is due to
Mosrus ||||, but before him EvcLip, Paprus 99, DESARGUES ¥*¥*,
and BriancHoN 111 had demonstrated the fundamental pro-
position of Art. 63. DESARGUES 11 was the author of the theory

* CHASLES, Les trois livres de porismes d’ Euclide, &c. (Par’is, 1860), p. 102.
+ Loe. cit., pp. 369 sqq.

1 Annales de Mathématiques, vol. xvi. (Montpellier, 1826), p. 209.

§ Ibid., vol. viii. (Montpellier, 1818), p. 201.

|| Systematische Entwickelung, pp. xiii, xiv. Collected Works, vol. i. p. 237.
q De la corrélation des figures de Géométrie (Paris, 1801), p. 122.

** Loc. cit., pp. 72, 235; §§ 19, 55.

++ Conicorum lib. i. 34, 36, 37, 38.

13 Sectiones conicae (Parisiis, 1685), 1. 20.

§§ Loc. cit., p. 9I.

lll Der barycentrische Calcul (Leipzig, 1827), chap. v.

19 Mathematicae Collectiones, vii. 129.

*** Loc. cil., p. 425.

t1 Mémoire sur les lignes du second ordre (Paris, 1817), p. 7.

111 Loc. cit., pp. 119, 147, 171, 176,
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of nvolution, of which a few particular cases were already
known to the Greek geometers *.

The generation of conics by means of two projective forms
was set forth, forty years ago, by STEINER and by CHASLES ;
it is based on two fundamental theorems (Arts. 149, 150)
from which the whole theory of these important curves can
be deduced. The same method of generation includes the
organic description of NEwTON { and various theorems of
MACGLAURIN,

But the projectivity of the pencils formed by joining two
fixed points on a conic to a variable point on the same had
already been proved, in other words, by AroLLoNIUS 1.

When only sixteen years old (in 1640) PASCAL discovered
his celebrated theorem of the wmystic hevagram §, and in 1806
BriaxcuoN deduced the correlative theorem (Art. 153) by
means of the theory of pole and polar.

The properties of the quadrilateral formed by four tangents
to a conic and of the quadrangle formed by their points of
contact are to be found in the Latin appendix (De linea-
rum geometricarum proprietatibus generalibus fractatus) to the
Algebra of MACLAURIN, a posthumous work (London, 1748).
He deduced from these properties methods for the con-
struction of a conic by points or by tangents in several cases
where five elements (points or tangents) are given. This
problem, in its full generality, was solved at a later date by
Briaxcuox.

The idea of considering two projective ranges of points on
the same conic was explicitly set forth by BELLAVITIS ||.

To CarxoT § we owe a celebrated theorem (Art. 385) con-
cerning the segments which a conic determines on the sides of

* Pareus, Mathematicae Collectiones, lib. vii. props. 37-56, 127, 128, 130-133.

4+ Loe. cit., lib. i. lemma xxi,

1 Conicorum lib. iii, 54, 55, 56. I owe this remark to Prof. ZEuTHEN (1885).

§ Letter of LEIBNITZ fo M. PERIER in the Fuvres de B. Pascal (Bossur’s
edition, vol. v. p. 459).

Il Saggio di geometria derivata (Nuovi Saggi dell’ Accademia di Padova, vol. iv.
1838), p. 270, note.

9 Géométrie de position (Paris, 1803), Art. 379.
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a triangle. Of this theorem also certain particular cases were
known long before *.

In the Freie Perspective of LAMBERT we meet with elegant
constructions for the solution of several problems of the first
and second degrees by means of the ruler, assuming however
that certain elements arc given; but the possibility of solving
all problems of the second degree by means of the ruler and
a fixed circle was made clear by PONCELET ; afterwards STEINER,
in a most valuable little book, showed the manner of practically
carrying this out (Arts. 238 sqq.).

The theory of pole and polar was already contained, under
various names, in the works already quoted of DESARYUES |
and De 1A HIre}; it was perfected by MoNGE§, BRIAN-
cHON ||, and PoNCELET. The last-mentioned geometer derived
from it the theory of polar reciprocation, which is essentially
the same thing as the law of duality, called by him the ‘ prin-
cipe de réciprocité polaire.’

The principal properties of conjugate diameters were ex-
pounded by APOLLONIUS in books ii and vii of his work on
the Conics.

And lastly, the fundamental theorems concerning foci are to
be found in book iii of ArorLLoNIUS, in book vii of Papprus,
and in book viii of Dt A HIRE.

Those who desire to acquire a more extended and detailed
knowledge of the progress of Geometry from its beginnings
until the year 1830 (which is sufficient for what is contained
in this book) have only to read that classical work, the dper¢u
historique of CHASLES.

* APOLLONIUS, Conicorwm lib. iii, 16-23. IESARGUES, loc. cif., p. 202. DE
LA HiRE, loc. cit., book v, props. 10, 12. NEWTON, Enumeratio linearum tertii
ordinis (Opticks, London, 1704), p. 142.

+ Loe. cit., pp. 164, 186, 190 sqq.

t Loc. cit., i. 21-28; ii. 23-30.

§ Géométrie descriptive (Paris, 1795), Art. 40.

|| Journal de U Ecole Polytechnique, cahier xiii. (Paris, 1806).
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IN April last year, when I was in Edinburgh on the occasion
of the celebration of the tercentenary festival of the University
there, Professor SYLVESTER did me the honour of saying that in
his opinion a translation of my book on the Elements of Projec-
tive Geometry might be useful to students at the English Uni-
versities as an introduction to the modern geometrical methods.
The same favourable judgement was shown to me by other
mathematicians, especially in Oxford, which place I visited in
the followmo‘ month of May at the invitation of Professor SyL-
VESTER. There Professor PrICE proposed to me that I should
assist in an English translation of my book, to be carried out
by Mr. C. LEUDESDORF, Fellow of Pembroke College, and to be
published by the Clarendon Press. I accepted the proposal
with pleasure, and for this reason. In my opinion the English
excel in the art of writing text-books for mathematical teach-
ing; as regards the clear exposition of theories and the
abundance of excellent examples, carefully selected, very few
books exist in other countries which can compete with those
of SALMON and many other distinguished English authors that
could be named. I felt it therefore to be a great honour that
my book should be considered by such competent judges
worthy to be introduced into their colleges.

Unless I am mistaken, the preference given to my Flements
over the many treatises on modern geometry published on the
Continent is to be attributed to the circumstance that in it I
have striven, to the best of my ability, to imitate the English
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models. My intention was not to produce a book of high
theories which should be of interest to the advanced mathe-
matician, but to construct an elementary text-book of modest
dimensions, intelligible to a student whose knowledge need not
extend further than the first books of Euclid. I aimed there-
fore at simplicity and clearness of exposition; and I was
careful to supply an abundance of examples of a kind suitable
to encourage the beginner, to make him seize the spirit of the
methods, and to render him capable of employing them.

My book has, I think, done some service in Italy by helping
to spread a knowledge of projective geometry; and I am
encouraged to believe that it has not been unproductive of
results even elsewhere, since I have had the honour of seeing
it translated into French and into German.

If the present edition be compared with the preceding ones,
it will be seen that the book has been considerably enlarged
and amended. All the improvements which are to be found
in the French and the German editions have been incor-
porated ; a new Chapter, on Foci, has been added ; and every
Chapter has received modifications, additions, and elucidations,
due in part to myself, and in part to the translator.

In conclusion, I beg leave to express my thanks to the
eminent mathematician, the Savilian Professor of Geometry,
who advised this translation; to the Delegates of the
Clarendon Press, who undertook its publication; and to
Mr. Leudesdorf, who has executed it with scrupulous
fidelity.

L.'CREMONA.

Rome, May 1885.
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ELEMENTS OF PROJECTIVE GEOMETRY,

CHAPTER L

DEFINITIONS.

1. By a figure is meant any assemblage of points, straight
lines, and planes; the straight lines and planes are all to be
considered as extending to infinity, without regard to the
limited portions of space which are enclosed by them. By
the word #riangle, for example, is to be understood a system
consisting of three points and three straight lines connecting
these points two and two ; a fefrakedron is a system consisting
of four planes and the four points in which these planes inter-
sect three and three, &e.

In order to secure uniformity of notation, we shall always denote
points by the capital letters 4, B, C, ..., straight lines by the small
lettersa, b, ¢, ..., planes by the Greck lettersa, 8, v, ... . Moreover,
AB will denote that part of the straight line joining 4 and B which
is comprised between the points 4 and B; Aa will denote the plane
which passes through the point 4 and the straight line a; aa the
point common to the straight line a and the plane a; a8 the straight
line formed by the intersection of the planes a, 8; 4BC the plane of
the three points 4, B, C'; aBy the point common to the three planes
a,B,y; a.BC the point common to the plane a and the straight line
BC; A.Bythe plane passing through the point 4 and the straight
line By ; a.Bc the straight line common to the plane a and the plane
Be; A.Bc the straight line joining the point 4 to the point Be, &e.
The notation a.BC = 4’ we shall use to express that the point common
tolfche plane a and the straight line BC coincides with the “point 4”;

B
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u = ABC will express that the straight line » contains the points
4,B,C, &c.

2. To project from a fized point S (the centre of projection) a
figure (4BCD..., aled ...) composed of points and straight
lines, is to construct the straight lines or projecting rays
84,88 ,8C, 8D, ... and the planes (projecting planes)
Sa, 86,8 ,8d,.... We thus obtain a new figure composed of
straight lines and planes which all pass through the centre S.

8. To cut by a fiwed plane o (transversal plane) a figure
(afyd, ... abed ...) made up of planes and straight lines, is to

construct the straight lines or fraces oa,of, oy, ... and the
points or /races oa , ob , oc,.... By this means we obtain a new

figure composed of straight lines and points lying in the
plane o.

4. To project from a fived straight line s (the axis) a figure
ABCD ...composed of points, is to construct the planes s4, sB,
sC, ... . The figure thus obtained is composed of planes which
all pass through the axis 5.

5. 1o cut by a fixed straight line s (a transversal) a figure aBy? ...
composed of planes,is to construct the points sa, s3, sy, .... In
this way a new figure is obtained, composed of points all lying
on the fixed transversal s.

6. If a figure is composed of straight lines «,0,c, ... which all
pass through a fixed point or centre S, it can be projected from
a straight line or axis s passing through § ; the result is a figure
composed of planes sa, s, sc, ... .

7. Ifa figure is composed of straight linesa, 4, ¢, ... all lying
in a fixed plane, it may be cut by a straight line (transversal)
s lying in the same plane; the figure which results is formed
by the points sa,sb, sc, ... *. il

* The operations of projecting and cutting (projection and section) are the two
fundamental ones of the Projective Geometry.



CHAPTER 1II.

CENTRAL PROJECTION ; FIGURES IN PERSPECTIVE.

8. CONSIDER a plane figure made up of points 4, B,C, ... and
straight lines 4B, AC, ..., BC, ... . Project these from a centre
§ not lying in the plane (¢) of the figure, and cut the rays’
84, 8B, 8C, ... and the planes S4B, 84C, ... ,SBC, ... by a trans-
versal plane ¢’ (Fig. 1). The traces on the plane ¢’ of the
projecting rays and planes will
form a second figure, a picture
of the first. When we carry
out the two operations by which
this second figure is derived
from the first, we are said o
project from a centre (or vertex) 8
a given figure o upon a plane of
projection o', The new figure
o’ is called the perspective image
or the central projection of the
original one. Of course, if the second figure be projected
back from the centre § upon the plane o, the first figure will
be formed again ; i.e. the first figure is the projection of the
second from the centre § wpon the picture-plane o. The two
figures o and ¢’ are said to be ix perspective position, or simply
in perspective.

9. If 47, B, C’, ... are the traces of the rays 84,88, 8C, ... on
the plane o/, we may say that to the points 4, B, C, ... of the
first figure correspond the points A’, B’, C’, ... of the second,
with the condition that two corresponding points always lie
on a straight line passing through §. 1f the point 4 describe
a straight line « in the plane o, the ray S4 will describe a
plane Sz ; and therefore 4’ will deseribe a straight line o', the
intersection of the planes Sz and ¢”. The straight lines 2 and «,

B 2

Fig. 1.
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in which the planes ¢ and ¢” are cut by any the same project-
ing plane, may thus be called corresponding lines. It follows
from this that to the straight lines 45,40, ..., BC,... correspond
the straight lines A’B’, 4°C’, ..., B’C’, ... and that to all
straight lines which pass through a given point 4 of the plane o
correspond straight lines which pass through the corresponding
point A4’ of the plane ¢”.

10. If the point 4 describe a curve in the plane o, the
corresponding point 4’ will desceribe another curve in the
plane o', which may be said to correspond to the first curve.
Tangents to the two curves at corresponding points are clearly
corresponding straight lines ; and again, the two curves are cut
by corresponding straight lines in corresponding points. Two
corresponding curves are therefore of the same degree *,

11. The two figures may equally well be generated by the
simultaneous motion of a pair of corresponding straight lines
a,d. If arevolve about a fixed point A, then " will always
pass through the corresponding point 4”.

Similarly, if « envelop a curve, then «” will envelop the
The lines @ and &/, in corresponding
positions, touch the two curves at
j corresponding points; and again, to
the tangents to the first curve from

corresponding curve.

Fig. 2.

apoint 4 correspond the tangents to
the second from the corresponding
point 4”. Two corresponding curves
are therefore of the same class .

12. Consider two straight lines
a and &' which correspond to one
another in the figures o, ¢ (Fig. 2).
Every ray drawn through § in
their plane meets them in two
points, say 4 and 4’, which cor-
respond to one another. If the ray

change its positicn and revolve round &, the points 4 and A
change their positions simultaneously; when the ray is about to

* The degree of a curve is the greatest number of points in which it can be cut

by any arbitrary plane.

In the case of a plane curve, it is the greatest number

of points in which it can be cut by any straight line in the plane.
+ The class of a plane curve is the greatest number of tangents which can be

drawn to it from any arbitrary point in the plane.
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become parallel to @, the point 4” approaches I’ (the point
where &’ is cut by the straight line drawn through § parallel to
) and the point 4 moves away indefinitely. In order that the
property that to one point of ¢’ corresponds one point of «
may hold universally, we say that the line ¢ has a point at
infinity 1, with which the point 4 coincides when 4’ coincides
with ', viz. when the ray, turning about §, becomes parallel
to @. The straight line ¢ has only one point at infinity, it
being assumed that we can draw through § only one ray
parallel to a*.

The point I/, the image of the point at infinity 7, is called
the vanishing point of a’.

Similarly, the straight line " has a point J’ at infinity,
which corresponds to the point J where ¢ is cut by the ray
drawn through § parallel to o’

Two parallel straight lines have the same point at infinity.
All straight lines which are parallel to a given straight line
must be considered as having a common point of intersection
at infinity.

Two straight lines lying in the same plane always intersect
in a point (finite or infinitely distant).

18. If now the straight line @ takes all possible positions in
the plane o, the corresponding straight line ¢” will always be
determined by the intersection of the planes ¢’ and Sz. As «
moves, the ray S/ traces out a plane = parallel to ¢ and the
point I’ describes the straight line wo’, which we may denote
by ¢’.  This straight line ¢’ is then such that to any point lying
on it corresponds a point at infinity in the plane o, which point
belongs also to the plane .

We assume that the locus of these points at infinity in the
plane ¢ is a straight line ¢ because it may be considered as
the intersection of the planes = and ¢. But this locus must
correspond to the straight line ¢/ in the plane ¢’; thus the law
that to every straightline in the plane ¢’ corresponds a straight
line in the plane ¢ holds without exception.

The plane ¢ has only one straight line at infinity, because
through the point § only one plane parallel to ¢ can be drawn.
The straight line ¢’, the image of the straight line at infinity,
is called the vanishing line of o’. It is parallel to od’.

* This is one of the fundamental hypotheses of the Euclidian Geometry.
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In the same way, the plane ¢” has a straight line at infinity
which eorresponds to the intersection of the plane o with the
plane %" drawn through § parallel to o

Two parallel planes have the same straight line at infinity
in common. All planes parallel to a given plane must be
considered as passing through a fixed straight line at infinity.

If a straight line is parallel to a plane, the straight line at
infinity in the plane passes through the point at infinity on
the line. If two straight lines are parallel, they meet in the
same point the straight line at infinity in their plane.

Two planes always cut one another in a straight line (finite
or infinitely distant).

A straight line and a plane (not containing the line) always
intersect in a point (finite or infinitely distant).

Three planes which do not contain the same straight line
have always a common point (finite or infinitely distant).

14. TueoREM. [ftwo plane figures ABC ..., A’B’C’..., (Fig. 1)
lying in different planes o and o, are in perspective, i.e. if' the rays
Ad’, BB, CC’,... meet in a point O, then the corresponding straight
lines AB and A’B’, AC and A°C’, ..., BC and B’C’,... will cut
one another in points lying on the same straight line, viz. the inter-
section of the planes of the two figures.

It is to be shown that if M is a point lying on the
straight line o¢’, and if a straight line 4, lying in the plane o,
passes through 1/, then the corresponding straight line o’ will
also pass through J/. But this is evidently the case, since the
two straight lines @ and ¢” are the intersections of the same
projecting plane with the two planes o and ¢/, and conse-
quently the three straight lines o¢’, @, and «” meet in a point,
viz. that common to the three planes. The straight line
oo’ is the locus of the points which correspond to themselves
in the two figures.

The vanishing line " in the plane o’ is parallel to the straight
line o¢’, since /" and the corresponding straight line 4, which
lies entirely at an infinite distance in the plane o, must inter-
sect one another on oo’. Similarly, the vanishing line j of
the plane ¢ is parallel to oo’

If each of the figures is a triangle, the theorem reads as
follows : —

If two triangles 4 BC and 4’B’C’, lying respectively in the
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planes ¢ and o/, are such that the straight lines 44°, BB, CC’
meet in a point §, then the three pairs of corresponding
sides, BC and B'C’, CA and ('A’, AB and 4’B, intersect in
points lying on the straight line ¢o”.

15. Conversely, if to the points A, B, C, .., and to the straight
lines AB, dC,.., BC,...of a plane figure o correspond severally
the points A’y B, C',. . and the straight lines A'B', 4'C’,.., B'C’,..
of another plane figure o' *, in such a way that the corresponding
lines AB and A'B’, AC and A'C’,..., BC and B'C,... meet in
points Lying on the line of intersection (ao’), of the planes ¢ and o,
then the two figures are in perspective.

For if § be the point which is common to the three
planes 4B . A'B, AC.A'C’, BC.B(, the three edges
Ad’, BB, CC’ of the trihedral angle formed by the same
planes will meet in 8. Similarly, the three planes 4. 47,
AD . A'D, BD.B'D meet in a point which is common to the
edges 44’ BB, DIV, and this point is again §, since the two
straight lines 44’, BB’ suffice to determine it. Therefore all
the straight lines 4d4’, BB, CC’, DI'... pass through the
same point §; that is, the two given figures are in perspective,
and § is their centre of projection.

If each of the figures is a triangle, we have the theorem:
If two triangles 4BC and A’B’C’, lying respectively in the
planes o and o, are such that the sides BC and B'C’, C4
and 0’4", AB and A’B’ intersect one another two and two
in points lying on the straight line o¢’, then the straight lines
A4’, BB, CC’ meet in a point 8.

18. THEOREM. If two triangles 4,B,C, and A B,C,, lying in the
same plane, are sich that the straight lines A Az, B B,, C,C, meet
in the same point O, then the three points of intersection of the sides
B.C, and B,C,, Cid, and C,d,, 4,B, and A4,B, lic on a straight
line. (Fig. 3.)

Through the point O which is common to the straight
lines 4,4,, B, B,, C,C,, draw any straight line outside the plane
o, and in this straight line take two points §; and §,. Project
the triangle 111])’101 from §; and the triangle 4,B,C, from &,.
The points 4,, 4,, 0, §,, §, lie in the same plane; therefore
8,4, and §,4, meet one another (in 4 suppose); similarly
8,B, and 8,8, (in B suppose) and §C; and 8,0, (in C suppose).

* The planes ¢ and 0" are to be regarded as distinct from each other.
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Thus the triangle 4BC is in perspective both with 4, B,C, and
with 4,B,C, The straight lines BC, B,C,, B,C, intersect in
pairs and therefore meet in one and the same point 4 *,
Similarly Cd, Ci4;, and 4,C; meet in a point B,, and 4B,
B4, and 4,B, in a point
C, The three points A,
By, C, lie on the straight
line which is common to
the planes o and ABC.
The theorem is therefore
proved.

17. Conversely, If' two
triangles 4,5, C; and A4,B,C,,
lying in the same plane, are
such that the sides B,C, and
B,C,, C4, and Cyd,, 4,8,
and A4,B, cut one another in
pairs in lhree collinear points Ay By, C,, then the straight lines
dd,, B\B,, C,C,, which join corresponding angular points, will
pass through one and the same point O. (Fig. 3.)

Through the straight line 4,B,C, draw another plane,
and project, from an arbitrary centre S, the triangle 4, B,C,
upon this plane. If 4BC be the projection, the straight lines BC,
B,C, will cut one another in the point 4,, through which B,C,
will also pass; similarly 4C will pass through 5, and 4B
through C,. The straight lines 44,, BB,, CC, intersect in
pairs, without however all three lying in #4e same plane ;
they will therefore all meet in one point S,. The straight
lines 8,8, and 4,4, lie in the same plane, since §,4, and 8,4,
intersect in 4 ; therefore S8, meets the three' straight lines
4,4,, B\B,, C,C,, i.e. 4,4,, B,B,, C;C, all meet in one point O,
viz. that which is common to the plane o and the straight
line §,§,+.

* BC is the intersection of the planes S, B, C, and S,B,C,, which do not coin-
cide; o that the straight lines BC, B,C,, and B,(, do not all three lie in one
plane., The three planes BC . B,Cy, BC. B,C;, and B, C,. B,C; (or ¢) intersect
in the same point 4.

+ PoONCELET, Prop ictis projectives des figures (Paris, 1822), Art. 168, The
theorems of Arte, 11 and 12 are due to DesarGUES (Euvres, ed. Poudra, vol. i.
b 413).



CHAPTER III
HOMOLOGY.

18. CoONSIDER a plane o and another plane ¢’, in which latter
lies any given figure made up of points and straight lines.
Take two points S, and §, lying outside the given planes,
and project from each of them as centre the given figure ¢’ on
to the plane o. In this way two new figures (o; and o, say)
will be formed, which lie in the plane e, and which are the
projections of one and the same figure ¢’ upon one and the
same plane o, but from different centres of projection. Let
two points 4; and 4,, or two straight lines ¢, and a,, in the
figures o, and o, be said to correspond to each other when
they are the images of one and the same point 4" or of
one and the same straight line o’ of the figure ¢’. We have
thus two figures o, and o, lying in the same plane o, and
so related that to the points 4, B, C, ... and the lines
4By, 4,Cy,..., B0y, ..., of the one correspond the points
Ay, By, Cy, ... and the lines 4,B,, 4,C,, ..., B,C,, ..., of the other.
Since any two corresponding straight lines of ¢’ and o intersect
in a point lying on the straight line ¢o’, and again any two
corresponding straight lines of ¢’ and ¢, intersect in a point
lying on the same straight line oo/, it follows that three
corresponding straight lines of o, o, and ¢, meet in one
and the same point, which is determined as the intersection
of the straight line of ¢” with the straight line oo”. That is
to say, two corresponding straight lines of the figures o; and
7, always intersect on a fixed straight line, the trace of ¢’ on o
If moreover 4, and 4, are a pair of corresponding points of o,
and o,, the rays §,4,, 8,4, have a point 4" in common, and
therefore lie in the same plane: consequently 4,4, and §,8,
intersect in a point O. Thus we arrive at the property that
every straight line, such as 4,d4,, which connects a pair of
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corresponding points of the figures o; and o, passes through
a fixed point O, which is the intersection of §,§, and o.
From this we conclude that two figures o, and o, which
are the projections of one and the same figure on one and
the same plane, but from different centres of projection,
possess all the properties of figures in perspective (Art. 8)
although they lie in the same plane. To the points and the
straight lines of the first correspond, each to each, the points
and the straight lines of the second figure ; two corresponding
points always lie on a ray passing through a fixed point O;
and two corresponding straight lines always intersect on a
fixed straight line s. Such figures are said to be 4omological,
or in homology 5 O is termed the centre of homology, and s the
azis of homology*. They may also be said to be in plane
perspective; O being called the centre of perspective, and s the
axis of perspective,

19. THEOREM. In the plane o are given two figures oy and o,
which are suck that to the points 4, , By, C; ,...and to the straight
lines 4, B, , 4,0y, ..., B,C,, ... of the one correspond, each to
each, the points Ay, By, C,, ... and the straight lines 4,B,, 4,C,,
cens ByCyy oo of the other. If the points of intersection of corre-
sponding straight lines lie on a fixed straight line, then the straight
lines whick join corresponding points will all pass through a fixed
point O.

Let 4, and 4,,B, and B,,C, and C, be three pairs
of corresponding points; they form two triangles 4,5,C, and
A,B,C, whose corresponding sides B,C; and B,C,, (14, and
C,4,,4,B, and 4,B, intersect in three collinear points. By
the theorem of Art. 17 the rays 4,4,, B B,, C,C, will there-
fore meet in the same point O; but two rays 4,4, and BB,
suffice to determine this point; in whatever way then the
third pair of points C,, C, may be chosen, the ray C,C, will
always pass through O.

The figures o, , o, are therefore in homology, O being the
centre, and s the axis, of homology.

Corollary.—1t follows that if two figures lying either in the same
or in different planes are in perspective, and if the plane of one
of the figures be made to turn round the axis of perspective,
then corresponding straight lines 4,4,, B\B,, &c., will always be

* PONCELET, Propriétés projectives, Arts. 297 seqq.
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concurrent ; z.e. the two figures will remain always in perspective.
The centre of perspective will of course change its position ; it will be
seen further on (Art. 22) that it describes a certain circle.

20. THEOREM. If to the straight lines a, b, e, ... and to the
points ab, ac, ..., be, ..., of a figure correspond severally the
straight lines o, ¥, ¢,... and the points oa'l/, a'c,..., V¢, ...
of another coplanar figure, so that the pairs of corresponding points
ab and &V, ac and a'd, be and V¢, ... are collinear with a
fixed point O; then the corresponding straight lines a and o,
b and Uy ¢ and &, will intersect in points whick lie on a straight
line. '

Let a and o/, 0 and ¥, ¢ and ¢ be three pairs of corre-
sponding straight lines; since by hypothesis the straight lines
which join the corresponding vertices of the triangles abe,a’t’e
all meet in a point O, it follows (Art. 16) that the correspond-
ing sides @ and &/, & and &, ¢ and ¢ intersect in three points
lying on a straight line. But two points ad’, 40/, suffice to
determine this straight line; it remains therefore the same if
instead of ¢ and ¢ any other two corresponding rays are
considered. Two corresponding straight lines therefore always
intersect on a fixed straight line, which we may call s; thus
the given figures are in homology, O being the centre, and s
the axis, of homology.

21. Consider two homological figures o; and ¢, lying in
the plane o; let O be their centre, s their axis of homology.
Through the point O and outside the plane ¢ draw any
straight line, and on this take a point §,, from which as
centre project the figure o, upon a new plane ¢ drawn in any
way through s. In this manner we construct in the plane ¢” a
figure 4’B’C’... which is in perspective with the given one
o, =4,8,C, .... If we consider two points 4" and 4, of the
figures o’ and o,, which are derived from one and the same
point A, of oy, as corresponding to each other, then to every
point or straight line of " corresponds a single point or straight
line of o,, and wvice versa; and every pair of corresponding
straight lines, such as 4’B’ and 4,B,, intersect on a fixed
straight line oo’ or 5. Consequently (Art. 15) the figures o’
and ¢, are in perspective, and the rays 4’4,, B’B,, ... all
pass through a fixed point §,. Moreover every ray 4’4,
meets the straight line 08, since the points 4’, 4, lie on the
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sides 8,4,, Od, of the triangle 04,8,. The rays 4’4,, B'B,, ...
do not all lie in the same plane, because the points 4,, B,, ...
lie arbitrarily in the plane o ; the point 8, therefore lies on
the straight line OS,.

From this we conclude that two homological figures may
be regarded, in an infinite number of ways, as the projections,
from two distinet points, of one and the same figure; this
figure lying in a plane passing through the axis of homology,
and the two points being collinear with the centre of homology.

22. Consider two figures in perspective, lying in the planes
7, o’ respectively (or two figures in plane perspective in the
same plane o) ; let O (Fig. 4) be the centre and s the axis of
perspective, and let ;j and
i’ be the vanishing lines of
the two figures. If J and
I’ are points lying on these
vanishing lines, the points
J” and 1 which correspond
to cach of them respec-

Fig. 4. tively in the other figure

will be at infinity on the

rays OJ, OI’ respectively. Further, the two corresponding

straight lines 7J, /’J” must meet in some point on s; there are

consequently an infinite number of parallelograms having one

vertex at O, the opposite one on s, and the other two vertices
on j and ¢’ respectively.

Now, supposing the two figures to keep their positions in
their planes unaltered, let the plane ¢” be made to turn round
oo’ or s. Every pair of corresponding straight lines must
always meet on s; consequently the two fighres will always
remain in perspective (Arts. 15, 19), and the point O will
describe some curve in space.

In order to determine this curve, consider any one of the
above-mentioned parallelograms OJS§I’. It remains always
a parallelogram, and the length of /'S is invariable ; therefore
also OJ is of constant length. The locus of the centre of
perspective O is therefore a circle whose centre lies on the
vanishing line 7 and whose plane is perpendicular to this line
and therefore to the axis of perspective s *.

* Mosius, Barycentrische Caleul (Leipzig, 1827), § 230 (note, p. 326).
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28. (1) Given the centre O and the axis s of homology, and two
corresponding points A and A’ (collinear with 0); to construct the
JSigure homological with a given figure.

Take a second point B of the given figure (Fig. 5). To obtain the
corresponding point B’, we notice that the ray BB’ must pass through
O and that the straight lines 4B, 4’B’ which correspond to one
another must intersect on s; thus B’ will be the point where OB
meets the straight line joining 4” to the intersection of 4B with s*.
In the same way we can construct any number of pairs of correspond-
ing points; in order to draw the

straight line #” which corresponds J/Q i
to a given straight line =, we have A
only to find the point B’ which B
corresponds to a peint B lying on ¢ I < 4
the line #, and to join the points 5 VAV AR S - .
B’ and rs. B

In order to find the point 7’ W~ 5
(the vanishing point) which corre- M
sponds to the infinitely distant Fig. 5.

point 7 on a given straight line (a ray O, for example, drawn from
0), we repeat the construction just given for the point B”; i.e. we join
another point 4 of the first figure to the point at infinity 7 on OF
(that is, we draw AT parallel to OI), and then join 4’ to the point
where A7 meets s, and produce the joining line to cut O in 7’.
Then 17 is the required point.

All points analogous to I’ (i.e. those which correspond to the points
at infinity in the given figure) fall on a
straight line ¢, parallel to s; ¢ is the
vanishing line of the second figure. If, in
the preceding construction, we interchange
the points 4 and 4’+, we shall obtain a

3§

point J (a vanishing point) lying on the o4

vanishing line j of the first figure. b 2\ A
(2) Suppose that instead of two corre- NS

sponding points 4, 4” there are given (Fig. 6) ¢ \a'

&

two corresponding straight lines a , a.
Fig. 6.

These will of course intersect on s; and
every ray passing through O will cut them in two corresponding

* This construction shows that if B lies upon 8, then B’ will coincide with B ;
i. e. that every point of s is its own correspondent.

t Otherwise: Draw through A’ any straight line J'4’, then through 4 and
the intersection of J'4’ with s draw a straight line J4, and through O draw 0J’
parallel to 4'J".  Then the intersection of 0J” and J4 is the vanishing point J,

and a straight line j drawn through J parallel to s is the vanishing line of the
first figure.
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points 4, A”. In order to obtain the straight line " which corre-
sponds to any straight line b in the first figure, we have only to join
the point &s to the point of intersection of o’ with the ray passing
through O and ab *,

(3) The data of the problem may also be the centre O, the axis s, and
) ) the vanishing line j of the first figure (Fig. 7).

J .\ In this case, if a straight line e of the first

/ figure cuts j in J and s in P, the point
A\____ '__,,———”'“ J’ corresponding to J will be collinear with
A + / J and O and at an infinite distance from O.
! > And as the straight line a’ corresponding to

@ \ a must pass both through J” and through 2,

5 4 ¢ it is the parallel drawn through 2> to 0J.
= To find the point A’ corresponding to a
ig. 7. . 2 :
given point 4, we must draw the straight
line a’ which corresponds to a straight line a drawn arbitrarily
through 4 ; the intersection of a’ with O4 is the required point A’.

(4) Assuming a knowledge of the constructions just given, let
again O be the centre, s the axis, of homology, and j the vanishing
line of the first figure,

In the first figure let a circle C' be given (Figs. 8, 9, 10); to this
circle will correspond in the second figure a curve ¢’ which we can
construct by determining, according to the method above, the points
and straight lines which correspond to the points and tangents of C.

Two corresponding points will always be collinear with O, and two
corresponding chords (¢.e. straight lines MN, M’N’, where M and M,
N and N7, are two pairs of corresponding points) will always intersect on
s; as a particular case two corresponding tangents m and m’ (i.e. tan-
gents at corresponding points M and M’) will meet in a point lying on s.

Tt follows clearly from this that the curve €'/ possesses, in common
with the circle, the two following properties :

(1) Every straight line in its plane either cuts it in two points, or
is a tangent to it, or has no point in common with it.

(2) Through any point in the plane can be drawn either two
tangents to the curve, or ouly one (if the point is on the curve),

cr none.

Since two homological figures can be considered as arising from the
superposition of two figures in perspective lying in different planes
(Art. 22), the curve C” is simply the plane section of an oblique cone
on a cireular base ; i.e. the cone which ts formed by the straight lines
which run from any point in space to all points of a circle.

* Tt follows from this that if « passes through O, then @’ will coincide with a ;
i. . every straight line passing through O corresponds to itself.
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For this reason the curve C”is called a conic section or simply a
conic; thus the curve which is homological with a circle is a conic.

The points on the straight line j correspond to the points at
infinity in the second figure. Now the circle ¢’ may cut j in two

Fig. 8.

points J, J, (Fig. 8), or it may touch jin a single point J (Fig. g),
or it may have no point in common with j (Fig. 10).

In the first case (Fig. 8) the curve ¢’ will have two points J//, J,’, at
an infinite distance, sitnated in the direction of the straight lines 0.J,
0J, To the two straight lines which touch the circle in J, and J,
will correspond two straight lines (parallel respectively to 0J, and
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0.J,) which must be considered as tangents to the curve €7 at its
points at infinity J', J,. These two tangents, whose points of
contact lie at infinity, are called asymptotes of the curve C’; the
curve itself is called a Ayperbola.

In the second case (Fig. 9) the curve C” has a single point J” at
infinity ; this must be regarded as the point of contact of the straight
line at infinity j°, which is the tangent to C’ corresponding to the

Fig. 10

tangent j at the point J of the circle. This curve C is called a
parabola.

Fig. 11,

In the third case (Fig. 10) the curve has no point at iufinity; it is
called an ellipse.
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In the same way it may be shown that if in the first figure a conic
C is given, the corresponding curve €’ in the second figure will be a
conic also.

(5). The centre of homology is a point which corresponds to itself,
and every ray which passes through it corresponds to itself. If then
a curve (' pass through O, the corresponding curve ¢’ will also pass
through O, and the two curves will have a common tangent at this
point. Fig. 11 shows the case where one of the curves is taken to be
a circle, and the axis of homology s and the point 4 corresponding to
the point 4” of the circle are supposed to be given.

Similarly, every point on the axis of homology corresponds to
itself. If then a curve belonging to the first figure touch s at a
certain point, the corresponding curve in the second figure will touch
s at the same point. In Fig. 12 is shown a circle which is to be
transformed homologically by means of its tangents; moreover it is

Fig. 12.

supposed that the axis of homology touches the circle, that the centre
of homology is any given point, and that the straight line a of the
second figure is given which corresponds to the tangent o’ of the
circle.

(6). Two particular cases may be noticed:

(1) The axis of homology s may lie altogether at infinity ; then two
corresponding straight lines are always parallel, or, what amounts to
the same thing, two corresponding angles are always equal. In this

[o]
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case the two figures are said to be similar and similarly placed, or
homothetic *, and the point O is called the centre of similitude.

Let 3, M, and M,, M, be two pairs of corresponding points
of two homothetic figures, so that M M/, M, M, meet in O, while
M M, MM, are parallel. By similar triangles

OM,: OM)=0M,:0M)= M M,: M/M/,
so that the ratio OM : OM’ is constant for all pairs of corresponding
potnts M and M’. This constant ratio is called the ratio of similitude
of the two figures.

The tangents at two corresponding points 37, M{” must meet on the
axis of homology s, i.e. they are parallel to one another. If then the
tangent at M pass through O, it must coincide with the tangent at
M. Tt follows that if the two figures are such that common tangents
can be drawn to them, every common tangent passes through a centre
of similitude.

Take two points C, €/ collinear with O and such that

oc oM
oc’ — oM’
Then if C3, C’2’ be joined, they will evidently be parallel, and
CM : OM’=ratio of similitude. Therefore if } lie on a circle, centre
C and radius p, M will lie on another circle whose centre is ¢’ and
whose radius p’ is such that p: p’=ratio of similitude. In two homo-

thetic figures then to a circle always corresponds a circle. Further,
if CC” be again divided at (, so that
0'C:0'C’ = 0C: 00" = p: p/ = ratio of similitude,

it is clear that O” will be a second centre of similitude for the two
circles. It can be proved in a similar manner that any two central
conics (see Chap. XXI) which are homothetic, and for which a point
O is the centre of similitude, have a second centre of similitude 0’;
and that 0, 0" are collinear with the centres C, C’ of the two conics,
and divide the segment C'C” internally and externally in the ratio of
similitude. If the conics have real common tangents, O and ¢/ will
be the points of intersection of these taken in pairs—the two external
tangents together, and the two internal tangents together.

(2) The point O, on the other hand, may lie at an infinite distance;
then the straight lines which join pairs of corresponding points are
parallel to a fixed direction. In this case the figures have been termed
homological by affinity t, the straight line s being termed the awxis of

= ratio of similitude.

* Homothetic figures may be regarded as sections of a pyramid or a cone made
by parallel planes; s, the line of intersection of the two planes, lies at an infinite
distance. This is the case in Art. 8 if ¢ and ¢’ are parallel planes.

+ EULER, Introductio ... ii. cap. 18; MOBIUS, Baryc. Calcul, § 144 et seqq.
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affinity *.  To a point at infinity corresponds in this case a point at
infinity, and the straight line at infinity corresponds to itself. Tt
follows from this that to an ellipse corresponds an ellipse, to a hyper-
bola a hyperbola, to a parabola a parabola, to a parallelogram a
parallelogram.

* If two figures are so related, they may be regarded as plane sections of a
prism or of a cylinder. This is the case in Art. 8 if the centre S of projection ix
infinitely distant. The projection is then called parallel projection. 1In the
particular case where the parallels S4 , SB, § C, ... are perpendicular to the plane
of projection it is called orthogonal projection.



CHAPTER 1V.

HOMOLOGICAL FIGURES IN SPACE.

24. Suprose a figure to be given which is made up of points,
planes, and straight lines lying in any manner in space; the relief-
perspective * of this is constructed in the following manner. A point
O in space 1is taken as centre of perspective or homology ; a plane of
homology = is taken, every point of which is to be its own image ;
and in addition to these is taken a point 4” which is to be the image
of a point 4 of the given figure, so that 44" passes through 0. Let
now B be any other point ; in order to obtain its image B’, the plane
OAB is drawn, and we then proceed in this plane as if we had to
construct two homological figures, taking O as the centre and the
intersection of the planes 04 B and = as the axis of homology, and 4, 4”
as two corresponding points. The point B will be the intersection of
OB with the straight line passing through 4’ and the point where the
straight line AB cuts the plane = (Art. 23, Fig. 4). Let C be a third
point ; its image O/ will be the point of intersection of OC with
A’D or with B’E (in =), where D and E are the points in which
the plane = is met by 4 C, BC respectively.

This method will yield, for every point of the given figure, the
corresponding point of the image, and two corresponding points will
always lie on a straight line passing through O. Every plane o
passing through O cuts the two solid figures (the given one and its
image) in two homological figures, for which O is the centre, and the
straight line om the axis, of homology. It follows from this that to
every straight line of the given figure corresponds a straight line in
the image, and that two corresponding straight lines lie always in a
plane passing through O and meet each other in a point lying on the
plane 7.

Further: to every plane a, belonging to the given figure, and not
passing through O, will correspond a plane o’ in the image. For to the
straight lines a, b, ¢,...of the plane a correspond severally the straight

* This problem may present itself in the construction of bas-reliefs and of
theatre decorations (PONCELET, Prop. proj. 584; PoUDRa, Perspective-relirf,
Paris, 1860).
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lines o/, &, ¢, ...; and to the points ab, ac,..., be, ... the points a’t/, a’¢,
. Ve, ... In other words, the straight lines «, ¥/, ¢/, ... are such
that they intersect in pairs, but do not all meet in the same point;
they lie therefore in the same plane o’ *. Two corresponding planes
a, o’ intersect on the plane 7; for all the points and all the straight
lines of this last plane correspond to themselves, and therefore the
straight line o’z coincides with the straight line am.

The two planes a, ’ evidently contain two figures in perspective
(like the planes o, ¢/ of Arts. 12 and 14).

25. In every plane o passing through O lies a vanishing line 7/,
which is the image of the point at infinity in the same plane. "The
vanishing lines of the planes o, ¢, have a common point, which is the
image of the point at infinity on the line ¢,0,. The vanishing lines
of all the planes o are therefore such as to cut each other in pairs;
and as they do not pass all through the same point (since the planes
through O do not pass all through the same straight line), they must
lie in one and the same plane ¢’

This plane ¢/, which may be called the wanishing plane, is parallel
to the plane =, since all the vanishing lines of the planes o are
parallel to the same plane m. The vanishing plane ¢’ is thus the
locus of the straight lines which correspond to the straight lines at
infinity in all the planes of space, and is consequently also the locus
of the points which correspond to the points at infinity in all the
straight lines of space: for the line at infinity in any plane a is the
same thing as the line at infinity in the plane through O parallel to
a; s0 also the point at infinity on any straight line a coincides with
the point at infinity on the straight line drawn through O parallel
to a.

26. The infinitely distant points of all space are then such that
their images are the points of one and the same plane ¢’ (the vanishing
plane). It is therefore natural to consider all the infinitely distant
points in space as lying in one and the same plane ¢ (the plane at
infinity) of which the plane ¢’ is the image .

The idea of the plane at infinity being granted, the point at infinity
on any straight line @ is simply the point a¢, and the straight line at
infinity in any plane a is the straight line a¢. Two straight lines are
parallel if they intersect in a point of the plane ¢; two planes are
parallel if their line of intersection lies in the plane ¢, &e.

* Since ¢’ cuts both ¢’ and b’ without passing through the point @'/, therefore
¢’ has two points in common with the plane a't’, and consequently lies entirely in
the plane «'l’. And similarly for the other straight lines.

+ PoxceLET, Prop. proj. 580.
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GEOMETRIC FORMS.

27. A range or row of pointsis a figure 4, B, C, ... composed
of points lying on a straight line (which is called the Jase of
the range) ; such is, for example, the figure resulting from the
operations of Art. 5 or Art. 7.

An azial pencil is a figure a, 3, y, ... composed of planes all
passing through the same straight line (the awis of the pencil);
such is the figure resulting from the operations of Art. 4 or
Art. 6.

A flat pencil is a figare a, b, c, ... composed of straight lines
lying all in the same plane and radiating from a given point
(the centre or verlex of the pencil); such would be the figure
obtained by applying the operation of Art. 2 to a range, or
that of Art. 3 to an axial pencil.

A sheaf (sheaf of planes, sheaf of lines) is a figure made up of
planes or straight lines, all of which pass through a given
point (the centre of the sheaf); like that which results from
the operation of Art. 2.

A plane figure (plane of points, plane of lines) is a figure which
consists of points or straight lines all of which lie in the same
plane; such is the figure resulting from the operation of
Art. 3.

28. The first three figures can be derived one from the other
by a projection or a section*.

From a range 4, B, C,...is derived an axial peneil
s(d, B,C,...) by projecting the range from an axis s (Art. 4)
and a flat pencil O(4, B, C,...) by projecting it from a centre

* The series of planes s4,sB,sC, ...; of rays 04 ,0B,00C, ...; of points sa,
B, #7,...; and of straight lines ga, B, o7, ... will be denoted by & 4,8,0,..),
0(4,B,0C,....),8(@,B,7,...,),and ¢ (a, B ,7,...) respectively. To denote the

series of points 4, B, C,... the symbols 4, B,(, ... and ABC ... will be used
inditfer ently.
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O (Art.2). From an axial pencil a, 3, y,...is derived a range
s{a,B,7,...) by cutting the pencil by a transversal line ¢
(Art. 5); and a flat pencil o (a, 3, y,...) by cutting it by a
transversal plane o (Art. 3). From a flat pencila, 0, ¢,...is
derived a range o (2, 4, ¢,...) by cutting it by a transversal
plane ¢ (Art. 3); and an axial pencil O (2, 6, ¢,...) by pro-
jecting it from a centre O (Art. 2).

29. In a similar manner the last two figures of Art. 27 can
be derived one from the other by help of one of the operations
of Art. 2 or Art. 3; in fact, if we project from a centre O a
plane of points or lines we obtain a sheaf of lines or planes ;
and reciprocally, if we cut a sheaf of lines or planes by a
transversal plane we obtain a plane of points or lines. Two
plane figures in perspective (Art. 12) are two sections of the
same sheaf.

30. The elements or constituents of the range are the points ;
those of the axial pencil, the planes ; those of the flat pencil,
the straight lines or rays.

In the plane figure either the points or the straight lines
may be regarded as the elements. If the points are considered
as the elements, the straight lines of the figure are so many
ranges ; if, on the other hand, the straight lines or rays are
considered as the elements, the points of the figure are the
centres of so many flat pencils.

The plane of points (i.e. the plane figure in which the ele-
ments are points) contains therefore an infinite number of
ranges*, and the plane of lines (i.e. the plane figure in which
the elements are lines t) contains an infinite number of flat
pencils.

In the sheaf either the planes, or the straight lines or rays,
may be regarded as the elements. If we take the planes as
elements, the rays of the sheaf are the axes of so many
axial pencils; if, on the other hand, the rays are considered
as the elements, the planes of the sheaf are so many flat
pencils.

The sheaf contains therefore an infinite number of axial

* One of these ranges has all its points at an infinite distance; each of the
others has only one point at infinity.

+ The straight line at infinity belongs to an infinite number of flat pencils, each
of which has its centre at infinity, and consequently all its rays parallel.
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pencils or an infinite number of flat pencils, according as its
planes or its straight lines are regarded as its elements.

81. Space may also be considered as a geometrical figure,
whose elements are either points or planes.

Taking the points as elements, the straight lines of space.
are so many ranges, and the planes of space so many planes of
points. If, on the other hand, the planes are considered as
elements, the straight lines of space are the axes of so many
axial pencils, and points of space are the centres of so many
sheaves of planes.

Space contains therefore an infinite number of planes of
points* or an infinite number of sheaves of planes {, according
as we take the point or the plane as the element in order to
construct it.

32. The first three figures, viz. the range, the axial pencil,
and the flat pencil, which possess the property that each can
be derived from the other by help of one of the operations of
Aits. 2, 3,..., are included together under one name, and are
termed the one-dimensional geometric prime~forms.

The fourth and fifth figures, viz. the sheaf of planes or lines
and the plane of points or lines, which may in like manner be
derived one from the other by means of one of the operations
of Arts. 2, 3,..., and which moreover possess the property of
including in themselves an infinite number of one-dimensional
prime-forms, are likewise classed together under one title, as
the two-dimensional geometric prime-forms.

Lastly, space, which includes in itself an infinite number of
two-dimensional prime-forms,is considered as constituting the
three-dimensional geometric prime-form.

There are accordingly six geometric prime-forms ; three of
one dimension, two of two dimensions, and one of three
dimensions I.

Note.—With reference to the use of the word dimension in the
preceding Article, it is clear, from what has been said in Art. 28,
that we are justified in considering the range, the flat pencil, and
the axial pencil, as of the same dimensions, since to every point in

* One of them lies entirely at infinity.

+ Among these, there are an infinite number which have their centre at an
infinite distance, and whose rays are consequently parallel.

+ v. STAUDT, Geomelrie der Lage (Niirnberg, 1847), Arts, 26, 28.
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the first corresponds one ray in the second and one plane in the
third. The number of elements in each of these forms is infinite,
but it is the same in all three.

Similarly we conclude from Art. 29 that we are justified in con-
sidering the plane figure as of the same dimensions with the sheaf.

But the plane of points (lines) contaius (Art. 30) an infinite number
of ranges (flat pencils); and each of these ranges (flat pencils) itself
contains an infinite number of points (rays). Thus the plane figure
contains a number of points (lines) which is an infinity of the second
order compared with the infinity of points in a range, or of rays in a
flat pencil; and must therefore be considered as of two dimensions if
the range and flat pencil are taken to be of one dimension.

So too the sheaf of planes (or lines) contains (Art. 30) an infinite
number of axial pencils (or of flat pencils), and each of these itself
contains an infinite number of planes (or of rays). Therefore also
the sheaf of planes or lines must be of double the dimensions of the -
axial pencil or the flat peneil.

Again, space, considered as made up of points, contains an infinite
number of planes of points, and considered as made up of planes, it
contains an infinite number of sheaves of planes. Space thus contains
an infinite number of forms of two dimensions, which latter, again,
contain each an infinite number of forms of one dimension. Space
must accordingly be regarded as of three dimensions.

We may put the matter thus:

Forms of one dimension are those which contain a simple infinity
() of elements;

Forms of two dimensions are those which contain a double infinity
(0% of elements;

Forms of three dimensions are those which contain a triple infinity
(o0 %) of elements.
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CHAPTER VL
THE PRINCIPLE OF DUALITY ¥,

33. GEOMETRY (speaking gemerally) studies the generation
and the properties of figures lying (1)in space of three dimen-
sions, (2) in a plane, (3) in a sheaf. In each case, any figure
considered is simply an assemblage of elements; or, what
amounts to the same thing, it is the aggregate of the elements
with which a moving or variable element coincides in its
successive positions. The moving element which generates the
figures may be, in the first case, the point or the plane; in the
second case the point or the straight line; in the third case
the plane or the straight line. There are therefore always
two correlative or reciprocal methods by which figures may be
generated and their properties deduced, and it is in this
that geometric Duality consists. By this duality is meant the
co-existence of figures (and consequently of their properties
also) in pairs; two such co-existing (correlative or reciprocal)
figures having the same genesis and only differing from one
another in the nature of the generating element.

In the Geometry of space the range and the axial peneil, the
plane of points and the sheaf of planes, the plane of lines and
the sheaf of lines, are correlative forms. The'flat pencil is a
form which is correlative to itself.

In the Geometry of the plane the range and the flat pencil
are correlative forms.

In the Geometry of the sheaf the axial pencil and the flat
pencil are correlative forms.

The Geometry of the plane and the Geometry of the sheaf,
considered in three-dimensional space, are correlative to each
other.

34. The following are examples of correlative propositions

* v, STAUDT, Geom. der Lage, Art. 66,
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in the Geometry of space.

THE PRINCIPLE OF DUALITY. 7

Two correlative propositions are

deduced one from the other by interchanging the elements

point and plane.

1. Two points 4 , B determine
a straight line (viz. the straight
line 4B which passes through the
given points) which contains an
infinite number of other points.

2. A straight line ¢ and a point
B (not lying on the line) deter-
mine a plane, viz. the plane ¢ B
which connects the line with the
point.

3. Three points 4, B, (' which
are not collinear determine a
plane, viz. the plane ABC which
passes through the three points.

4. Two straight lines which
cut one another lie in the same
plane.

5. Given four points 4, B, C,
D; if the straight lines 4B, CD
meet, the four points will lie in
a plane, and consequently the
straight lines BC and AD, C4
and BD will also meet two and
two.

6. Given any number of straight
lines; if each meets all the others,
while the lines do not all pass
through a point, then they must
lie all in the same plane (and
constitute a plane of lines)*.

1. Two planes a, 83 determine a
straight line (viz. the straight line
aB, the intersection of the given
planes), through which pass an
infinite number of other planes.

2. A straight line ¢ and a plane
B (not passing through the line)
determine a point, viz. the point
af where the line cuts the plane.

3. Three planes a,8,y which
do not pass through the same line
determine a point, viz. the point
aBy where the three planes meet
each other.

4. Two straight lines which lie
in the same plane intersect in a
point.

5. Given four planesa,,y,8;
if the straight lines a8,y meet,
the four planes will meet in
a point, and consequently the
straight lines By and a8, ya and
88, will also meet two and two.

6. Given any number of straight
lines; if each meets all the others,
while the lines do not all lie in
the same plane, then they must
pass all through the same point
(and constitute a sheaf of lines)+t.

7. The following problem admits of two correlative solutions :
‘Given a plane a and a point 4 in it, to draw through 4 a straight
line lying in the plane a which shall cut a given straight line » which
does not lie in « and does not pass through 4.

* See note to Art, 20.

+ For let @, b, ¢, ... be the straight lines; as ab, ac, be ave three planes distinct
from each other, the common point must be the intersection of the straight lines

a, b; C3NYelehe
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Join 4 to the point ra.

8. Problem. Through a given
point 4 to draw a straight line
to cut each of two given straight
lines b and ¢ (which do not lie in
the same plane and do not pass

Construct the line of inter-
section of the plane a with the
plave 74.

8. Problem. In a given plane
a, to draw a straight line to cut
each of two given straight lines b
and ¢ (which do not meet and do
not lie in the plane a).

through 4).

Solution. Construct the line
of intersection of the planes Ab,
Aec.

Solution.
the point ac.

Join the point ab to

35. In the Geometry of Space, the figure correlative to a triangle
(system of three points) is a trihedral angle (system of three planes);
the vertex, the faces, and the edges of the latter are correlative to
the plane, the vertices, and the sides respectively of the triangle;
thus the theorem correlative to that of Arts. 15 and 17 will be the
following :

If two trihkedral angles '8y, ’B"” " are such that the edges B’y
and B"y", y'd and y’a”, /B’ and o’B” lie in three planes ay, By, v,
which pass through the same straight line, then the straight lines
dd”, 8’8", ¥y will lie in the same plane.

The proof is the same as that of Arts. 15 and 17, if the elements
point and plane are interchanged. If, for example, the two trihedral
angles have different vertices S’, S (Art. 15), then the points where
the pairs of edges intersect are the vertices of a triangle whose sides
are o’d’, 8’8", y'y”; these latter straight lines lie therefoxe in the
same plane (that of the triangle).

So also the proof for the case where the two trihedral angles have
the same vertex S will be correlative to that for the analogous case of
two triangles 4’ B’C’ and A” B” " which lie in the same plane (Art.
17). The theorem may also be established by projeéting from a point
S the figure corresponding to the theorem of Art. 16.

The proof of the theorem correlative to that of Arts. 14 and 16 is
left as an exercise for the student. It may be enunciated as follows:

If two trikedral angles o8y, a’8"y” are such that the straight lines
dad’, B /8’ ', 'y lie in the same plane, then the pairs of edges 'y and
87y, v d and y'd”, o' B and «’B" determine three planes which pass
all through the same stmc’ght line.

36. In the Geometry of the plane, two correlative propo-
sitions are deduced one from the other by interchanging the
words point and line, as in the following examples:
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1. Two points 4, B determine
a straight line, viz. the line 4.B.

2. Four points 4, B, €, D (Fig.
13), no three of which are col-
linear, form a figure called a
complete quadrangle®. The four

points are called the wertices, and
the six straight lines joining them
in pairs are called the sides of
the quadrangle.

Two sides which do not meet
in a vertex are termed opposite ;
there are accordingly three pairs
of opposite sides, BC and 4D,
C4 and BD, AB and CD. The

A

A
B
D
A c
B
D c
B
D c
Fig. 135.
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1. Two straight lines «, b de-
termine a point, viz. the point
ab.

2. Four straight lines a,b,¢,d
(Fig. 14), no three of which are
concurrent, form a figure called
complete quadiilateral™. The four

Fig. 14.

straight lines are called the sides
of the quadrilateral, and the six
points in which the sides cut one
another two and two are called
the vertzces.

Two vertices which do not lie
on the same side are termed
oppostte ; there are accordingly
three pairs of opposite vertices, be
and ad, ca and bd, ab and cd.

Fig. 16.

The straight lines e, f, g which
join pairs of opposite vertices are

points E, ¥, @ in which the oppo-
site sides intersect in pairs are

* The complete quadrangle has also been called a tetrastigm, and the complete
quadrilateral a tetragram. TowNSEND, Modern Geometry, ch. vii,
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termed the diagonal points; and
the triangle /G is termed the
diagonal triangle of the complete
quadrangle. The complete quad-
rangle includes three simple
quadrangles, viz. ACBD, ABCD,
and 4 BDC (Fig. 15).

3. And so, in general :

A complete polygon (complete
n-gon, or m-point*) is a system
of m points or wvertices, with the
olp=t) straight lines or sides

which join them two and two.

(36

called the diagonals; and the
triangle efy is termed the diagonal
triangle of the complete quadri-
lateral. The complete quadri-
lateral includes three simple
quadrilaterals, viz. acbd, adcb, and
acbd (Fig. 16).

A complete multilateral (or
n-sidet) is a system of n straight

. . . n(n—1
lines or sides, with the —-L——)

2
points or wertices in which they
intersect ome another two and
two.

4. The theorems of Arts. 16 and 17 are correlative each to the

other.

5. Theorem. If two complete
quadrangles ABCD, A’B'C'D’
are such that five pairs of sides
AB and A’B’, BC and B’C’, CA
and 0’47, AD and 4’D’, BD and
B'D’ cut one another in five
points lying on a straight line s,
then the remaining pair CD and
C’D’ will also intersect one an-
other on s (Fig. 17).

Fig. 17.

Since the triangles ABC,
A’B'C’ are by bhypothesis in

* Or polystigm ; TowNSEND, loe. cit.
potysirg )

Theorem. If two complete
quadrilaterals abed, a'l'¢'d” are
such that five pairs of vertices
ab and a’V’, be and V¢, ca and
dd', ad and o'd’, bd and U'd
lie upon five straight lines which
meet in a point S, then the re-
maining pair ¢d and ¢’d” will also
lie on a straight line through S

(Fig. 18).

Fig. 18.
Since the triangles (tri-
laterals) abe, ab'¢’ are by

+ Or polygram.
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perspective  (Arts. 17, 18),
the straight lines AA’, BB,
CC’ will meet in one point

S. 8o too the triangles 4BD,
A’B'D’ are in perspective ; there-
fore DD’ also will pass through
S, the point common to 44’/
and BB. Tt follows that the
triangles BC'D, B’C’ D’ are also in
perspective : therefore C'D and
C’D’ meet in a point on the
straight line s, which is deter-
mined by the point of intersec-
tion of BC and B'C’ and by that
of BD and B’D’*,

THE PRINCIPLE OF DUALITY. 31

hypothesis in perspective (Art.
18), the points aa’, b, o
will lie on one straight line s.
So too the triangles abd, a’t’d’ are
in perspective; therefore the point
dd’ lies on the straight line s
which passes through the points
aa’, b'. It follows that the
triangles (trilaterals) bed, b'¢’d’
are also in perspective ; therefore
ed and ¢’d’ lie on a straight line
through the point S, which is
determined by the straight lines

(be) (B'¢’) and (bd) (V'd') *.

U 37. In the Geometry of space the following are correlative :

A complete n-gon (in a plane).

A complete multilateral of n
sides, or m-side (in a plane).

A complete nflat (in a sheaf);
t.e. a figure made up of » planes
(or faces) which all pass through
the same point (or wertex), toge-

ther with the n_(nz;r) edges in

which these planes intersect two
and two.

A complete n-edge (in a sheaf);
i.e. a figure made up of » straight
lines radiating from a common
point (or wertex), together with

2

planes (or fuces)

which pass through these straight
lines taken in pairs,

Thus the following theorems are correlative, in the Geometry of
space, to the two theorems above (Art. 36, No. 5), which latter
are themselves correlative to each other in the Geometry of the

plane.

If two complete four-flats in a
sheaf (be their vertices coincident
or not) afByd, «’3'y’8 are such
that five pairs of corresponding

If two complete four-edges in a
sheaf (be their vertices coincident
or not) abed, a’t/c’d’ are such that
five pairs of corresponding faces

* These two theorems hold good equally when the two quadrangles or quadri-
laterals lie in different planes; in fact, the proofs are the same as the above, word

for word,



32 THE PRINCIPLE OF DUALITY. [38

edges lie in five planes which cut one another in five straight
pass all through the same straight  lines which lie all in one plane o,
line s, then the sixth pair of corre-  then the line of intersection of
sponding edges will lie also in a  the sixth pair of corresponding
plane passing through s. faces will lie also in the plane o.

The proofs of these theorems are left as an exercise to the student.
They only differ from those of the theorems No. 5, Art. 36 in the
substitution for each other of the elements point and plane ; and just
as theorems 5, Art. 36 follow from those of Arts. 15 and 16, so the
theorems enunciated above follow from those of Art. 35. When
the two four-flats have the same vertex O, the theorem on the left-
hand side may also be established by projecting from the point O
(Art. 2) the figure corresponding to the right-hand theorem of
No. 5, Art. 36. And in this case we may by the same method
deduce the theorem on the right-hand side above from that on the
left-hand of No. 5, Art. 36.

38. In the Geometry of the sheaf, two correlative theorems are-
derived one from the other by interchanging the elements plane and
straight line. Just as the Geometry of the sheaf is correlative to
that of the plane, with regard to three-dimensional space, so one
of the Gleometries is derived from the other by the interchange of
the elements point and plane. The Geometry of the sheaf may also
be derived from that of the plane by the operation of projection from
a centre (Art. 2).

From the Geometry of the sheaf may be derived that of spherical
figures, by cutting the sheaf by a spheie passing through the centre
of the sheaf.



CHAPTER VIL

PROJECTIVE GEOMETRIC FORMS.

39. By means of projection from a centre we obtain from
a range a flat pencil, from a flat pencil an axial pencil, from a
plane of points or lines a sheaf of lines or planes. Con-
versely, by the operation of section by a transversal plane
we obtain from a flat pencil a range, from an axial pencil a
flat pencil, from a sheaf a plane figure. The two operations,
projection from a point and section by a transversal plane,
may accordingly be regarded as complementary to each other;
and we may say that if one geometric form has been derived
from another by means of one of these operations, we can con-
versely, by means of the complementary operation, derive the
second form from the first. And similarly for the operations:
projection from an axis and section by a transversal line.

Suppose now that by means of a series of operations, each of
which is either a projection or a section, a form f, has been
derived from a given form £}, then another form f; from f;,, and
so on, until by #—1 such operations the form f, has been
arrived at. Conversely, we may return from /£, to /; by means
of another series of z—1 operations which are complementary
respectively to the last, last but one, last but two, &e. of the
operations by which we have passed from f; to f,. The series
of operations which leads from f; to f;, and the series which
leads from f, to f;, may be called complementary, and the
operations of the one series are complementary respectively to
those of the other, taken in the reverse order.

In the above the geometric forms are supposed to lie in
space (Art. 31). If we confine ourselves to plane Geometry, the
complementary operations reduce to projection from a centre and

D
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section by a (ransversal line. In the Geometry of the sheaf,
seetion by a plane and projection from an axis are comple-
mentary operations.

40. Two geometric prime forms of the same dimensions
are said to be projectively related, or simply projective, when one
can be derived from the other by any finite number of projec-
tions and sections (Arts. 2, 3,... 7).

For example, let a range » be given; project it from a
centre O, thus obtaining a flat pencil ; project this flat pencil
from another centre O, by which means an axial pencil with
00’ as axis is produced ; cut this axial pencil by a straight
line #,, thus obtaining a range of points lying on u,; project
this range from an axis, and cut the resulting axial pencil by a
plane, by which means a flat pencil is produced, and so on ; then
any two of the one-dimensional geometric forms which have
been obtained in this manner are projective according to
definition.

When we say that a form 4, B, C, D, ... is projective with
another form 4’, B’, C’, I’, ... we mean that, by help of the
same series of operations, each of which is either a projection
or a section, 4’ is derived from 4, B’ from B, ¢’ from C, &e.
The elements 4 and 4’, B and B’, C and C’, ... are termed
corresponding elements™.

For example, a plane figure is said to be projective with
another plane figure, when from the points 4, B, C, ... and from
the straight lines 4B, AC..., BC, ... of the one are derived
the points 4, B/, C’, ... and the straight lines 4’ B, A4 C ...
B’ C’, ... of the other, by means of a finite number of projections
and sections. )

In two projective plane figures, to a range in the one cor-
responds in the other a range which is projective with the
first range ; and to a flat pencil in the one figure corresponds
in the other a flat pencil which is projective with the first
pencil.

41. From what has been said above it is easy to see
that two geometric forms which are each projective with

* Two projective forms are termed komographic when the elements of which
they are constituted are of the same kind; 4.e. when the elements of both are
points, or lines, or planes. Tt will be seen later on (Art. 67) that this definition of
homography is equivalent to that given by CHASLES (Géomctrie supérieure, Axt. 99)-
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a third are projective with one another. For if we first go
through the operations which lead from the first form to the
third, and then go through those which lead from the third to
the second, we shall have passed from the first form to the
second.

42. Geometric forms in perspective.

The following forms are said to be in perspective :

D AN
A

A B’ o D’ $§ $
Fig. 19. Fig. zo.
(=4 9 D

s

Two ranges (Fig. 19), if they are sections of the same flat
pencil (Art. 12).

Two flat pencils (Fig. 20), if they projeet, from different
centres, one and the same range; or if they are sections of
the same axial pencil.

[Vote.—If we project a range w = A BC ... from two different centres
0 and O not lying in the same plane with it, we obtain two flat
pencils in perspective. These pencils, again, may be regarded as
sections of the same axial pencil made by the transversal planes Ou,
Ou’; the axial pencil namely which is composed of the planes 00’4,
00’B, 0070, ..., and which has for axis the straight line 00’. This
is the general case of two flat pencils in perspective ; they have not the
same centre and they lie in different planes ; at the same time, they
project the same range and are sections of the same axial pencil.
There are two exceptional cases: (1). If we project the row » from
two centres O and O’ lying in the same plane with u, then the
two resulting flat pencils lie in the same plane and are consequently
no longer sections of an axial pencil; (2). If an axial pencil is cut by
two transversal planes which pass through a common point O on the
axis, we obtain two flat pencils which have the same centre 0, and
which consequently no longer project the same range. |

Two axial pencils, if they project, from two different centres,
the same flat pencil. ‘

A range and a flat pencil, a range and an arial pencil, or a Slat
pencil and an axial pencil, if the first is a section of the
second.

D2
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Two plane figures, if they are plane sections of the same
sheaf.

Two sheaves, if they project, from two different centres, the
same plane figure.

A plane figure and a sheaf,if the former is a section of the
latter.

From the definition of Art. 40 it follows at once that two
(one-dimensional) forms which are in perspective are also pro-
jectively related ; but two projective forms are not in general
in perspective position.

43. Two figures in homology are merely two projective
plane figures superposed one upon the other, in a particular
position ; for by Art. 21 two homological figures may always
be regarded (and this in an infinite number of ways) as pro-
jections of one and the same third figure.

If two projective plane figures are superpesed one upon the
other in such a manner that the straight line connecting any
pair of corresponding points may pass through a fixed point ;
or, again, in such a manner that any pair of corresponding
straight lines may intersect on a fixed straight line; then the
two figures are in homology (Arts. 19, 20).

In two homolegical figures, two corresponding ranges are in
perspective (and therefore of course are projectively related);
and the same is the case with regard to two corresponding
pencils,

44, THEOREM. Two one-dimensional geometric forms, eack con-
sisting of three elements, are always projective.

To prove this, we notice in the first place that it is
enough to consider the case of two ranges 4BC, 4’B’C’; for,
if one of the given forms is a pencil, flat or axial, we may
substitute for it one of its sections by a transversal.

(1) If the two straight lines ABC, A’B’C’ lie in different
planes, join 44’, BB’, CC’, and cut these straight lines
by a transversal s* Then the two given forms are seen
to be simply two sections of the axial pencil sdd’, sBB’,
sCC’,

(2) If the two straight lines lie in the same plane (Fig. 21),
join 44’,and take on this straight line any two points, 8, 8”3

* To do this, we have only to draw through any point of 44" a straight line
which meets BB’ and CC’ (Prob. 8, Art. 31).
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draw 85,88’ to cut in B”, and SC, 8’C’ to cut in C”, and join
B"”C”, cutting 88" in 4”. Then 4'B'C’ may be derived from

S

A
/
]
~7
s'

Fig. 21. Fig. 22.

ABC by two projections, viz. we first project 4BC from §
into 4”B”C”, and then A”B”C” from S’ into 4’B’C'.

(3) In the case where the two points 4 and 4’ coincide (Fig.
22), the two given forms are directly in perspective ; the centre
of perspective is the point where BB” and CC’ intersect.

(4) Ifthe twosets of points 4 BC,4"B’C" lie on thesame straight
line (Fig. 23),1it is only necessary
to project one of them 4'5’C’ on s
to another straight line 4,B,C,
(from any centre O); then let
any two centres § and S; be
taken (as in Fig. 21) on 44,
and let the straight line 4”7 B"”C”
be constructed in the manner
already shown in case (2). Then
A'B’C" may be derived from
ABC by three projections, viz.
we first projeet ABC from § Fig. 23.
into 4”B”C”, then A” B”C” from
S, into 4,B,C, ,and lastly 4,B,C, from O into 4’B’C".

(5) If 4 coincides with 4, and B with B’, we may make
use of a centre S and two transversals s, ,s, drawn through 4
in the plane S4BCC’. 1If the triad 4BC be projected from §
upon s, (giving 4,B,C)), and the triad 4"B’C" be projected
from § upon s, (giving 4,B,C;); then the triads 4,5,C; and
A4,B,0, will be in perspective, because 4, coincides with 4, (in
the point 44").

In every case, then, it has been shown that the triads
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ABC ,A’B’C’ can be derived from each other by a finite
number of projections and sections; therefore by Art. 40
they are projective.

As a particular case, 4BC must be projective with BAC, for
example. In order actually to project one of these triads into
the other, take (Fig. 24) any two points Z and N collinear
with C. Join 4L, BN, meeting
in K, and BL, AN, meeting in
M. Then BAC can be derived
from ABC by first projecting
ABC from K into LNC, and then
LNC from M into BAC.

In order to project ABC into
BC4, we might first project

Fig. 24. ABC into BAC, and then BAC
into BOA.

45. THEOREM. Auny one-dimensional geometric jform, consisting
of four elements, is projective with any of the forms derived from it
by interchanging the elements in pairs. For instance, ABCD is
projective with BADC.

Let 4,B5,C,D be four given points (Fig. 25), and let

EFGD beaprojection of these points

A B D c from a centre 1/ on a straight line

TN DF passing through D. If AF,CM

P meet in &, then JNGC will be a

\ projection of EFGD) from centre 4

A\ and B4ADC a projection of WNGC

from centre Z#; therefore (Arts.

40, 41) the form BADC is pro-

jective with 4BCD. In a similar manner it'can be shown
that CDAB and DCBA are projective with 4 BCD *.

From this it follows for example that if a flat pencil abed is
projective with a range ABCD, then it is projective also with
BADC,with CDAB,and with DCBA; i.e.if two geometric forms,
each consisting of four elements, are projectively related, then the
elements of the one can be made to correspond respectively to the
elements of the other in four different ways. i

Fig. 25.

* Staupt, Geometrie der Lage, Art. 59.



CHAPTER VIII.

HARMONIC FORMS.

48. TurorEM™.

Given three points 4, B, C on
a straight line s; if a complete
quadrangle (KLMN) be con-
structed (in any plane through s)
in such a manner that two oppo-
site sides (KL, MN) meet in 4,
twootheropposite sides (XN, ML)
meet in B, and the fifth side (L)
passes through C, then the sixth
side (KM) will cut the straight
line s in a point D which is de-
termined by the three given
points ; <.e. it does not change its
position, in whatever manner the
arbitrary elements of the quad-
rangle are made to vary (Fig. 26).

Given in a plane three straight
lines a, b, ¢ which meet in a point
S; if a complete quadrilateral
(Almn) be constructed in such a
manner that two opposite vertices
(k7 , mn) lie on a, two other oppo-
site vertices (kn , ml) lie on b, and
the fifth vertex (n/) lies on e,
then the sixth vertex (&m) will
lie on a straight line d which
passes through 8, and which is
determinate ; ¢.e. it does not
change its position, in whatever
manner the arbitrary elements of
the quadrilateral are made to

vary (Fig. 27).

For if a second complete
quadrangle (K”Z’M’N’) be con-

complete
quadrilateral (£’1"m’n’) be con-

For if a second

% Sraupr, loc. cit., Art. 93.
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structed (either in the same plane,
or in any other plane through s),
which satisfies the prescribed con-
ditions, then the two quadrangles
will have five pairs of correspond-
ing sides which meet on the given
straight line ; therefore the sixth
pair will also meet on the same
line (Art. 36, No. 5, left).

From this it follows that if the
first quadrangle be kept fixed
while the second is made to vary
in every possible way, the point
D will remain fixed; which
proves the theorem.

The four points ABCD are
called harmonic, or we may say
that the group or the geometric
Jorm constituted by these four
points is a karmonic one, or that
ABCD form a harmonic range.
Or again : Four points ABCD of
a straight line, taken in this order,
are called harmonic, if it is pos-
stble to construct a complete quad-
rangle such that two opposite sides
puss through A, two other opposite
sides through DB, the fifth side
through C, and the sixth through D.
1t follows from the preceding theo-
rem that when such a quadrangle
exists, 7.e. when the form 4BCD
is harmonie, it is possible to con-
struct an infinite number of other
quadrangles satisfying the same
conditions. It further follows that,
given three points ABC of a
range (and also the order in which
they are to be taken), the fourth
point D, which makes with them
a harmonic form, is determinate
and wunique, and is found by the
construction of oue of the quad-
rangles (see below, Art. 58).

l46

structed which satisfies the pre-
scribed conditions, then the two
quadrilaterals will have five pairs
of corresponding vertices collinear
respectively with the given point ;
therefore the sixth pair will also
lie in a straight line passing
through the same point (Art. 36,
No. 5, right).

From this it follows that if the
first quadrilateral be kept fixed
while the second is made to vary
in every possible way, the straight .
line d will remain fixed; which
proves the theorem.

The four straight lines or rays
abed are called harmonic, or we
may say that the group or the
geometric  form constituted by
these four lines is a harmonic
one, or that abed form a karmonic
pencil.  Or again: Four rays
abed of a pencil, taken in this
order, are called harmonic, if it is
possible to construct a complete
quadrilateral such that two oppo-
site wvertices lie on a, two other
opposite wvertices on b, the fifth
vertex on ¢, and the siwth on d. It
follows from the preceding theo-
rem that when such a quadri-
lateral exists, ¢.e. when the form
abed is harmonic, it is possible
to construct an infinite number
of other quadrilaterals satisfying
the same conditions. It further
follows that given three rays abc
of a pencil (and also the order in
which they are to be taken), the
fourth ray d, which makes with
them a harmonic form, is deter-
minate and unigue, and is found
by the construction of one of the
quadrilaterals (see below, Art.58).
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47. If from any point 8 the harmonic range ABCD be projected
upon any other straight line, its projection A’B’C’ D’ will also be a
harmonic range (Fig. 28).

Imagine two planes drawn one through each of the straight
lines 4B, A’B’, and suppose that in the first of these planes
is constructed a complete quadrangle
of which two opposite sides meet in
4, two other opposite sides meet in B,
and a fifth side passes through C;
then the sixth side will pass through
D (Art. 46), since by hypothesis 4 BCD
is a harmonic range. Now project
this quadrangle from the point § on to the second plane ; then
a new quadrangle is obtained of which two opposite sides
meet in 4’, two other opposite sides meet in B’, and whose
fifth and sixth sides pass respectively through €’ and 1’;
therefore 4’B’C’D’ is a harmonic range. _

48. An examination of Fig. 27 will show that the harmonie
pencil aled is cut by any transversal whatever in a har-
monic range. For let § be the centre of the pencil and = be
any transversal; in « take any point R; join Z to D by the
straight line # and to B by the straight line /; and join 4 to
kb or P by the straight line ». As aled is a harmonic pencil
and five vertices of the complete quadrilateral £Zmn lie on a, 4,
and d, the sixth vertex /z or @ must lie on the fourth ray e.
Then from the complete quadrangle PQRS it is clear that
4BCD is a harmonic range.

Conversely, if the harmonic range 48CD (Fig. 27) be given,
and any centre whatever of projection § be taken, then the
four projecting rays 8 (4, B, C, D) will form a harmonic
pencil.

For draw through 4 any straight line to cut SB in P and
8C in @, and join BQ, cutting 48 in R. The quadrangle PQRS
is such that two opposite sides meet in 4, two other opposite
sides in B, and the fifth side passes through C; consequently
the sixth side must pass through D (Art. 46, left), since by
hypothesis the range 4BCD is harmonic. But then we have
a complete quadrilateral A/maz which has two opposite vertices
4 and R lying on 84, two other opposite vertices 5 and £ on
8B, a fifth vertex @ on SC, and the sixth ) on 8D ; therefore

D B ¢ A

Fig. 28.
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(Art. 46, right) the four straight lines which project the range
ABCD from § are harmonic. We may therefore enunciate the
following proposition :

A harmonic pencil is cut by any transversal whatever in a
harmonic range ; and, conversely, the rays whick project a harmonic
range from any centre whatever form a harmonic pencil.

Corollary. In two homological figures, to a range of four harmonic
points corresponds a range of four harmonic points; and to a pencil
of four harmonic rays corresponds a pencil of four harmonic rays.

49. The theorem on the right in Art. 46 is correlative to
that on the left in the same Article. In this latter theorem
all the quadrangles are supposed to lie in the same plane ; but
from the preceding considerations it is clear that the theorem
is still true and may be proved in the same manner, if the
quadrangles are drawn in different planes.

Considering accordingly this latter theorem (Art. 46, left)
as a proposition in the Geometry of space, the theorem corre-
lative to it will be the following :

If three planes a , B,y all pass through one straight line s, and if
a complete four-flat (see Art. 37) xhuv be constructed, of which two
opposite edges kX, uv lie in the plane a, two other opposite edges kv , A
lie in the plane B, and the edge v lies in the planey ; then the sixth
edge kp will always lie in a fived plane § (passing through s), whick
does not change, in whatever manner the arbitrary elements of the
Jour-flat be made to vary.

For if we construct (taking either the same vertex or any
other lying on s) another complete four-flat which satisfies the
prescribed conditions, the two four-flats will have five pairs of
corresponding edges lying in planes which all pass through
the same straight line ¢; therefore (Art. 37, left) the sixth pair
also will lie in a plane which passes through s. The four
planes, a, 3, y,d are termed Zarmonic planes; or we may
say that the group or the geomefric form constituted by
them is Aarmonic; or again that they form a /larmonic (axial)
pencil.

50. If a complete four-flat xAur be cut by any plane not
passing through the vertex of the pencil, a complete quadri-
lateral is obtained ; and the same transversal plane cuts the
planes a, 8, v, d in four rays of a flat pencil of which the first
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two rays contain each a pair of vertices of the quadrilateral
while the other two pass each through one of the remaining
vertices. Consequently (Art. 46, right) an axial pencil of four
harmonic planes is cut by any transversal plane in a flat pencil
of four harmonic rays.

Similarly, if the harmonic axial pencil of four planes
a, B, y,d is cut by any transversal line in four points 4, B, C, D,
these form a harmonic range. For if through the transversal
line a plane be drawn, it will cut the planes a, 8, y, 8 in four
straight lines @, 6, ¢, d. This group of straight lines is har-
monie, by what has just been proved; but 4BCD is a section
of the flat pencil a, d,¢,d; consequently (Art. 48) the four
points 4 , B, C, D are harmonic. Conversely, if four points
forming a harmonic range be projected from an axis, or if four
rays forming a harmonic pencil be projected from a point, the
resulting axial pencil is harmonie.

51. If then we include under the title of Zarmonic form the
group of four harmonic points (the harmonic range), the group
of four harmonic rays (the harmonic flat pencil), and the
group of four harmonic planes (the harmonic axial pencil), we
may enunciate the theorem :

Livery projection or section of a harmonic form is itself a harmonic
Jorm : or,

Every form whick is projective with a harmonic form is itself
harmondie.

Conversely, two harmonic forms are always projective with one
another.

To prove this proposition, it is enough to consider two
groups each of four harmonic points; for if one of the forms
were a pencil we should obtain four harmonic points on
cutting it by a transversal. Let then 4BCD, 4’B’C"D’ be two
harmonic ranges, and project 4BC into 4’5’C” in the manner
explained in Art. 44; the same operations (projections and
sections) which serve to derive 4’B’C’ from 4BC will give for
D a point D, ; from which it follows that the range 4’B°C"D,
will be harmonie, since the range ABCD is harmonic. But
A’B’C’ D’ are also four harmonic points, by hypothesis; there-
fore D, must coincide with 7/, since the three points 4°B’C’
determine uniquely the fourth point which forms with them a
harmonic range (Art. 46, left).
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We may add here a consequence of the definitions given in
Arts. 49 and 50:

The form whick is correlative to a harmonic jform is itself
harmonie.

52. Ifa, 0, c,d are rays of a pencil (Fig. 28), then a and ¢
are said to be separated by ¢ and d, when a straight line pass-
ing through the centre of the pencil, and rotating so as to
come into coincidence with each of the rays in turn, cannot
pass from a to & without coinciding with one and only one of
the two other rays ¢ and ¢*. The same definition applies to
the case of four planes of a pencil, and to that of four points of
a range (Fig. 26); only it must be granted that we may pass
from a point 4 to a point B in two different ways, either by
describing the finite segment 4.5 or the infinite segment which
begins at 4, passes through the point at infinity, and ends at 2.

This definition premised, the follow-
i = B ing property may be enunciated as at
e B<+—  once evident: Four elements of a one-
dimensional geometric form (i.e. four
points of a range, four rays of a
pencil, &ec.) can always be so divided into two pairs that
one pair is separated by the other, and this ean be done in
one way only. In Fig. 26, for example, the two pairs which
separate one another are 48, CD; and if 4’8°C’D’ is a form
projective with 4BCD, the pair 4'B’ will be separated by the
pair C'D’; for the operations of projection and section do not
change the relative position of the elements.

53. Let now 4BCD (Fig. 30) be four harmonic points, 7.c. four
points obtained by the construction of Art. 46, left. This
allows us to draw in an infinite number of ways a complete
quadrangle of which 4 and B are two diagonal points
(Art. 36, No. 2, left), while the other two opposite sides pass
through C and 2. It is only necessary to state this con-
struction in order to see that the two points 4 and B are
precisely similar in their relation to the system, and that the
same is true with regard to C and 2. It follows from this
that if ABCD is a harmonic range, then BACD , ABDC, BADC,
which are obtained by permuting the letters 4 and B or C
and 2, or both at the same time, are harmonic ranges also.

* @ and &, ¢ and d, may also be termed alternate pairs of rays.

Fig. 29.
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Consequently (Art. 51) the harmonic range 4BCD for example
is projective with BACD,i.e. we can pass from one range to the
other by a finite number of projections and sections. In fact
if the range 4BCD be projected from K on CQ, we obtain the
range LNCQ, which when projected from 3/ on 4B gives
BACD.

A [ B b
Fig. 30.

54. If 4, B, C, D are four harmonic points, then 4 and B are
necessarily separated by C and D.

For if (Fig. 30) the group 4BCD be projected on the straight
line KM, first from the centre Z and then from the centre WV,
the projections are KM QD and MKQD respectively. Now, as
already stated in Art. 52, the operations of projection and
section do not change the relative position of the elements of
the group. If therefore K and @ were separated by M and 2,
then also 3/ and @ must be separated by K and 2; which is
impossible. The only possible arrangement is that X and
M should be separated by @ and D, and therefore 4 and B
separated by C and D.

55. Let the straight lines 4@, BQ be drawn (Fig. 31), the
former meeting M5B in U
and NB in §, while the — %
latter meets KZ in 7' and
MN in 7. The complete
quadrangle Z7'Q Uhas two
opposite sides meeting in
4, two other opposite sides
meeting in B, and a fifth
side (L or LN) passes Fig. 31.
through.C; therefore the sixth side UZ will pass through 2)(Art.
46). In like manner the sixth side 7§of the complete quadrangle
NV QS must pass through 7, and the sixth sides of the com-
plete quadrangles KSQ7, MUQV through C. We have thus a
quadrangle S7UV two of whose opposite sides meet in C, two
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other opposite sides in 2, while the fifth and sixth sides pass
respectively through 4 and B. This shows that the relation
to which the points € and D are subject (Art. 53) is the same
as the relation to which the points 4 and B are subject; or,
in other words, that the pair 4 , 5 may be interchanged
with the pair €, D. Accordingly, if 458CD is a harmonie
range, then not only the ranges BACD , ABDC , BADC, but
also CDAB , DCAB , CDBA , DCBA are harmonie *,

The points 4 and B are termed conjugate points, as also are
C and D. Or either pair are said to be karmonic conjugates
with respect to the other. The points 4 and B are said to be
harinonically separated by the points € and J), or the points C
and 2 to be harmonically separated by 4 and B. We may
also say that the segment 45 is divided harmonically by the
segment CJ), or that the segment CJ) is divided harmonically
by 4B. If two points 4 and B (Fig. 30) are separated har-
monically by the points € and D in which the straight line
AB is cut by two straight lines QC and @), we may also say
that the segment 4B is divided harmonically by the straight
lines QC, QD, or by the point C and the straight line Q0, &ec.;
and that the straight lines QC, QD are separated harmonically
by the points 4, B; &e.

Analogous properties and expressions exist in the case of
four harmonie rays or four harmonic planes.

[Note—In future, whenever mention is made of the harmonic
system A BCD, it is always to be understood that 4 and B, ¢'and D, are
conjugate pairs; it being at the same time remembered that (Art. 54)
A4 and B, € and D, are necessarily alternate pairs of points.]

56. The following theorem is another copsequence of the
proposition of Art. 46, left: '

In a complete quadrilateral, each
diagonal is divided harmonically by
the other twot.

Let 4 and 47, B and B, C
and €’ be the pairs of opposite
vertices of a complete quadri-

Fig. 32. lateral (Fig. 32), and let the
diagonal 44’ be cut by the other diagonals BB"and CC” in £

* REYE, Geometrie der Lage (Hanover, 1866), vol. i. p. 34.
+ CARNOT, Géométrie de position (Paris, 1803), Art. 225.
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and £ respectively. Consider now the complete quadrangle
BB’CC’; one pair of its opposite sides meet in 4, another
such pair in 4’, a fifth side passes through F, the sixth
through #. The points 4, 4" are therefore harmonically
separated by # and E. Similarly a consideration of the two
complete quadrangles CC’44” and 44’BB’ will show that
B, B’ are harmonically separated by F and D ; and C, € by
D and £.

57. In the complete quadrangle BB’CC” the diagonal points
are 4, A’,and D; also since the range BB’FD is harmonie, so
too is the pencil of four rays which project it from 4 (Art. 48);
therefore :

In a complete quadrangle, any two sides which meet in a diagonal
point are divided harmonically by the two other diagonal points.

This theorem is however merely the correlative (in accord-
ance with the principle of Duality in plane Geometry) of that
proved in the preceding Article.

58. The theorems of Art. 46 can be at once applied to the
solution, by means of the ruler only, of the following pro-
blems :

Given three points of a har- Given three rays of a har-

monic range, to find the fourth. monic penctl, to construct the
Jfourth.
Solution. Let 4, B, C (Fig. Solution. Let a, b, ¢ (Fig.

33) be the given points (lying
on a given straight line) and let

Fig. 33.
4 and B be conjugate to each
other, Draw any two straight
lines through 4, and a third
through C to cut these in Z and

34) be the given rays (lying in
one plane and passing through a

Fig. 34.
given centre S), and let o and &

be conjugate to each other.
Through any point @ lying on ¢
draw any two straight lines to
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N respectively. Join BL cutting cut @ in 4 and R, and b in P
AN in M, and BN cutting AL in  and B, respectively. Join 4 B and
K ; then if KM be joined it will P ; these will cut in a point D,
cut the given straight line in the the line joining which to S is the
required point 2, conjugate to required ray d, conjugate to c.
C*

59. In the problem of Art. 58, left, let C' lie midway between A
and B. We can, in the solution, so arrange the arbitrary elements
that the points A" and A shall move off
to infinity ; to effect this we must con-
struct (Fig. 35) a parallelogram 4 LBN
on AB as diagonal ; then since the other
diagonal LN passes through C, the point
D will lie at infinity.

If, conversely, the points 4 , B, D are

Fig. 35. given, of which the third point D lies

at infinity, we may again construct a

parallelogram ALBN on AP as diagonal ; then the fourth point C,
the conjugate of D), must be the point where LN meets the given
straight line : that is, it must be the middle point of 4 B. Therefore :

If in @ harmonic range ABCD
the point C lies midway between the
two conjugates A and B, then the fourth
point D lies at an infinite distance;
and conversely, if one of the points D
lles at infinity, its conjugate C is the
point midway between the two others,
4 and B.

60. In the problem of Art. 58,

Fig. 36. right, let ¢ be the bisector of the

angle between ¢ and b (Fig. 36). If

© be taken at infinity on ¢, the segments 4B, PR become equal to

one another and lie Detween the parallels

ﬁJ/ d AP, BR; consequently the ray d will be

- perpendicular to ¢, 7.e. given a harmonic

pencil of four rays, abed; <f one of

2 - them ¢ bisect the anyle between the two

b conjugates a and b, the fourth ray d

Fig. 37. will be at right angles to c.

Conversely: ¢f tn a harmonic pencil abed

(Fig. 37) two conjugate rays c , d are at right angles, then they are the

bisectors, internal and external, of the angle between the other two rays
a, b

* DE LA HIRE, Sectiones Conicae (Parisiis, 1685), 1ib. i, prop. 20.
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For if the pencil be cut by a transversal 4B drawn parallel to d,
the section 4BCD will be a harmonic range (Art. 48); and as /)
lies at infinity, ¢' must lie midway between 4 and B (Art. 59); conse-
quently, if S be the centre of the pencil, 4.SB is an isosceles triangle
and SO the bisector of its vertical angle,



CHAPTER IX.
ANHARMONIC RATIOS.

61. GEOMETRICAL propositions divide themselves into two
classes. Those of the one class are either immediately con-
cerned with the magnitude of figures, as Eue. I. 47, or they
involve more or less directly the idea of quantity or measure-
ment, as e.g. Eue. I 12.  Such propositions are called metrical.
The other class of propositions relate merely to the position
of the figures with which they deal, and the idea of quantity
does not enter into them at all. Such propositions are called
descriptive. Most of the propositions in Euclid’s Elements are
metrical, and it is not easy to find among them an example of
a purely descriptive theorem. Prop. 2, Book XI, may serve
as an instance of one. Projective Geometry on the other
hand, dealing with projective properties (i.e. such as are not
altered by projection), is chiefly concerned with descriptive
properties of figures. In fact, since the magnitude of a geo-
metric figure is altered by projection, metrical properties are
as a rule not projective. But there is one important class of
metrical properties (anharmonic properties) which are pro-
jective, and the discussion of which therefore finds a place in
the Projective Geometry. To these we proceed; but it is
neeessary first to establish certain fundamental notions.

62. Consider a straight line; a point may move along it in
two different directions, one of which is opposite to the other.
Let it be agreed to call one of these the positive direction, and
the other the negative direction. Let 4 and B be two points
on the straight line; and let it be further agreed to represent
by the expression 4B the length of the segment comprised
between 4 and B, taken as a positive or as a negative number
of units according as the direction is positive or negative in
which a point must move in order to describe the segment;
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this point starting from 4 (the first letter of the expression
4B) and ending at B.

In consequence of this convention, which is termed the rule
of signs, the two expressions 4B, B4 are quantities which are
equal in magnitude but opposite in sign, so that B4 = — AB, or

AdB+B4=0. . . . . . . . (1)

Now let 4, B, C be three points lying on a straight line.

If C lies between 4 and B (Fig. 38 a),

(a>A c B
B (o) A
(@) * oc
G B A
(C) (o} A B
B A ¢
Fig. 38.
we have AB = AC+CB;
whence —CB—A4C+ 4B = 0,
or BC+CAd+AB = 0.
Again, if B lies between 4 and C (Fig. 38 4),
_ AC = AB+ BC
whence BC—A4AC+ 4B = 0,
or BC+CA+ 4B = 0.
Lastly, if 4 lies between B and C (Fig. 38 ¢),
CB=CAd+A4B;
whence —CB+CA+ 4B =0,
or BC+CA+ 4B = o.

Accordingly :

If 4, B, Care three collinear points, then whatever their relative
positions may be, the identity

BCO+CAd+dB=0 . . . . . . (2)

always holds good.

From this identity may be deduced an expression for the
distance between two points 4 and B in terms of the distances

E 2
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of these points from an origin O chosen arbitrarily on the
straight line which joins them.

For since O4+AB+ B0 =0,
edB=0B—-04;. . . . . . . (3)
or again, AB = 40+ OB *,

The results (1) and (2) may be extended ; they are in fact
particular cases of the following general proposition:

If Ay, d,,... 4, be n collinear points, then

A g+ dydg+ .o+ 4, A, + 4,4, =0,
the truth of which follows at once from (3), since the expres-
sion on the left hand is equal to
(04, — 04)) +(043— 0dy)+ ... + (04, — 04,),
which vanishes.

Another useful result is that if 4, B, C, D be four collinear
points,

BC.4AD+CA.BD+4B.CD = 0.

This again follows from (3), since the left-hand side

=(DC—DB)AD+...+...
= 0.

Many other relations of a similar kind between segments
might be proved, but they are not necessary for our purpose.
We will give only one more, viz.

If 4,B,C, 0 le any four collinear points, then

04*. BC+ O0DB%.CA+0C* . AB= —BC.CA . AD.

For by (3) the left-hand side is equal to

(04%2— 0C*) BC +(05*— 0C*) Cd
= C4(04+ OC)BC+ CB(0OB+ 00)CA
= BC.C4(04—0B)
= —BC.CA.A4B. !

It may be noticed that this last theorem is true even if O do
not lie on the straight line 4BC, but be any point whatever.
For if a perpendicular O be let fall on 4 BC,

04*, BC+ 052, CAd+ 0C*. AB
= (0072+ 0’4 BC+ ...+ ...
= 0’4* . BC+ 0'B*. CA+ 0'C%. 4B
+ 007 (BC+CA4+ AD)
= —BC.CA. AD,
by what has just been proved.
63. Consider now Fig. 39, which represents the projection

* MoBIUS, Barycentrische Caleul, § 1.
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63]
from a centre § of the points of a straight line @ on to another

straight line o”; let us examine the relation which exists
between the lengths of two corresponding segments 4B, 4'B’.

From the similar triangles S4J , 4'SI”
JA:JS:: I'S: I'd’ ;%

so from the similar triangles 8BJ , B’SI’,
CJIB:JS:: I'S: B’
o Jd . I'A’=JB . I'B'=JS . I'S;
i.e. the rectangle J4.1’4” has a constant value for all pairs

of corresponding points 4 and 4’.
If the constant J§.1’S be denoted by % we have

r 4 k rnr & 0
1I'4 = 7k I'B' = 7B’
therefore by subtraction,
£(J4—JB)

e e

But I'B'—~I'A’=A4"B’,and JA—JB=BAd= —AB;

—k
rnr_
A’B —_——JA.JB'AB'

If we consider four points 4, B, C, D (Fig. 40) of the
straight line @ and their four projections, 4°, B’, C’, D’, we

obtain, in a similar manner,
* We suppose that in all equations involving segments the rule of signs is

observed. See MuBIUS, Barye. Calcul, § 1; TOWNSEND, Modern Geometry,

chapter v,
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—k

AC =m'.AC,

B’C’———é - BC,
~—JB.JC T

rn’ —k

S T e

' —k

G 5

whence by division
A’C" A’D"  AC AD
B'C""B'D’ T BC'BD’

This last equation, which has been proved for the case of
projection from a centre S, holds also for the case where
ABCD and 4’B’C’D’ are the intersections of two transversal
lines s and &’ (not lying in the same plane) with four planes
a, 3,y ,0 which all pass through one straight line #; in other
words, when ’B’C’D’ is a projection of 4ABCD made from an
axis # (Art. 4). For let the four planes a«,s3,y,d be cut in
A7, B”, C”, D" respectively by a straight line s” which meets
s and ¢. The straight lines 44”, BB”, CC”, DD” are the
intersections of the planes a, 3, ,38 respectively by the plane
ss”, and therefore meet in a point §; that namely in which
the plane ss” is cut by the axis ». Soalso 4’4”, B’B”, C'C”,
D’'D” are four straight lines lying in the plane &'s” and
meeting in a point §” of the axis # (that namely in which the
plane &'s” is cut by the axis ). Therefore 4”B”C”D” is a
projection of ABCL from centre § and a projection 4'B'C’ 1)’
from centre §; so that P

A47C” A"D”  AC 4D  A'C" A'D

570" 3D T BOBD~ BC B
AC 4D
BC BD
is called the ankarmonic ratio of the four collinear points
A4,8,C, . The result obtained above may therefore be
expressed as follows:

The anharmonic ratio of four collinear points is unallered by any
projection whatever ¥,

The number

* Parpus, Mathematicae Collectiones, book vii. prop. 129 (ed. Hultsch, Berlin,
1877, vol. ii. p. 871).
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Or again:

If two ranges, each of four poiuts, are projective, they have the
same ankarmonic ratio, or, as we may say, are equianharmonic *.

64. Dividing one by the other the expressions for 4’C” and
B’C’, we have A

4'C°  AC AT

B'C'T BC BI
In this equation the right-hand member is the anharmonic
ratio of the four points 4, B, C,J; consequently the left-hand
member must be the anharmonic ratio of 47, B/, C’, J”; thus
the anharmonic ratio of four points A’y B’, C’, J’, of whick the last
lies at infinity, is merely the simple ratio A’C": B'C".

This may also be seen by observing that if 4" and B’
remain fixed while 2" moves off to infinity on the line 4’7,
then

A'D’

B'D’
limiting value of —A’C—’ il,Df, = 40

° BCBLY T B

Similarly, on the same supposition,
AI-DI ) A’C _ _BIC'/ )
B O T AC
i.e. the anharmonic ratio of the four points A’y B', D’, C’, of whick
the third lies at infinity, is equal to the simple ratio B'C”: A'C".,

65. From this results the solution of the following

ProBLEM.— Given three collinear points A , B, C to find a fouith
D so that the ankarmonic ratio of the range ABCD may be a
wumber N given in sign and magnitude (Fig. 41).

Solution.—Draw any transversal through C, and take on
it two points 4, B” such that the
ratio CA’: CB’ is equal to A: 1, the
given value of the anharmonic >
ratio; the two points 4" and 5’ : B
lying on the same or on opposite
sides of C according as A is positive
or negative. Join 44’, BB’, meeting
in §; the straight line through S parallel to 4’5" will cut 472
in the point D required 1. For if 2’ be the point at infinity on

=il g

limiting value of

limiting value of

A C b B

B
Fig. 41.

* TowNSEND, Modern Geometry, Art. 278.
+ CHASLES, Géométrie supérieure (Paris, 1852), p. 10.
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A'B’, and we consider 4BCD as a projection of 4’B’C’'D’
(¢’ coincides with C) from the centre §, then the anharmonic
ratio of 4BCD is equal to that of 4’B’C’1)’, that is, to the
simple ratio 4'C": B’C’ or A
The above is simply the graphical solution of the equation
a0 A _
BC BD 7
4D _ 4C
BD=Bo" A=p,
or in other words of the problem :

Given two points A and B, to find a point D collinear with them
such that the ratio of the segments AD, BD to one another may be
equal to a number given in sign and magnitude.

As only one such point Z can be found, the proposed
problem admits of only one solution; this is also clear
from the construction given, since only one line can be drawn
through § parallel to 45, Consequently there cannot be
two different points 2 and 2, such that 4BCD and ABCD,
have the same anharmonic ratio. Or:

If the groups ABCD, ABCD, are equiankarmonic, the point D,
st coincide with D.

86. TurorEM. (Converse to that of Art. 63.) If two ranges
ABCD, A’B'C"D’, each of four points, are equiankarmonic, they are
projective with one another.

For (by Art. 44) we can always pass from the triad
ABC to the triad 4’B’C’ by a finite number of projections or
sections ; let D be the point which these operations give as
corresponding to J. Then the anharmonic ratio of 4’B’C’ D"
will he equal to that of 4BCD, and consequently to that of
A’B’C’D’; whence it follows that 2” coincides with 2)’, and that
the ranges ABCD , A’B’C’D’ are projective with one another.

67. It follows then from Arts. 63 and 66 that the necessary
and sufficient condition that two ranges 4BCD , 4’B’C’'D’,
consisting each of four points, should be projective, is the
cquality (in sign and magnitude) of their anharmonic ratios.

The anharmonic ratio of four points 4BCD is denoted by
the symbol (4BCD)*; accordingly the projectivity of two
forms ABCD and A'IYC’T) is expressed by the equation

(AdBCD)y=(d"B'C’D’).
* Momivs, Barycentrische Caleul, § 183.

or
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From what has been proved it is seen that if two pencils
each consisting of four rays or four planes are cut by any two
transversals in ABCD and A’B’C’D’ respectively, the equation
(ABCD)=(4’B’C’D’) is the necessary and sufficient condition
that the two pencils should be projective with one another.

The ankarmonic ratio of a pencil of four rays a,b,c,d or
Jour planes a,B,vy,d may now be defined as the constant
anharmonic ratio of the four points in which the four elements
of the pencil are cut by any transversal, and may be denoted
by (abed) or (aByd).

This done, we can enunciate the general theorem :

If two one-dimensional geometric forms, consisting each of four
elements, are projective, they are equiankarmonic ; and if they are
equianharmonic, they are projective.

68. Since two harmonic forms are always projectively
related (Art. 51), the preceding theorem leads to the con-
clusion that the anharmonie ratio of four harmonic elements
is a constant number. For if ABCD is a harmonic system,
BACD is also a harmonic system (Art. 53), and the two
systems ACBD and BCAD are projectively related*; thus
(4CBD) = (BCAD),

AB AD _ Bd _BD .

b CB'CD~ €4 °CD’
whence —A—O—Q = —1

BC " BD ’
i.e. (4BCD) = —1;

therefore the anlarmonic ratio of four harmonic elements is equal
to — 1.

69. The equation (ABCD) =—1, or
AC  AD
B—a-}-ﬁlj:o,. © o 0 o o o ¢ (1)
which expresses that the range 48CD is harmonic, may be put into
two other remarkable forms.
Since 4D = CD—CA (Art. 62) and BD = CD— (B, the equation
(1) gives
CA(CD—CB)+CB(CD—-C4) =0,
1 1 1
—=3(—=4 -=): - 2
¢p=*(ga * o3 )

* In Fig. 30 ACBD may be projected (from K on NC) into LCN@Q; and then
LCNQ may be projected (from M on 4 D) into BCA D,
+ Mosivs, loc. eit., p. 269,

or
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7.e. CD is the harmonic mean between C'4 and CB; a formula which
determines the point ) when 4 , B, (' are given.
Again, if O is the middle point of the segment C0), so that we have
0D = C0O =—00C, then
AC=00-04; AD =0D—-04 =—(0C+04);
BC = 0C—-0B8; BD =—(0C+0DB).
Substituting these values in (1) or in
A4C  BC _
it Bp=
0C—04 _0B—-0C

o,

e have OC+04 ~ 0B+0C°

00 _ 0B

04~ oc’ .
or 00*=04.0B, . . . . . . . (3)

i.e. half the segment OD is a mean proportional between the distances
of A and B from the middle point of CD.
The equation (3) shows that the segments O4 and OB must have
the same sign, and that O therefore can never lie between 4 and B.
If now a circle be drawn to pass
/ﬂ through 4 and B (Fig. 42), O will lie
—4 G LI n outside the circle, and OC will be the
‘K length of the tangent from O to it*
w (Eue. III. 37). The circle on C'D as
diameter will therefore cut the first
circle (and all circles through 4 and B)
orthogonally. Conversely, if two circles cut each other orthogonally,
they will cut any diameter of one of them in two pairs of barmonic
points t.

Fig. 42.

70. The same formula (3) gives
the solution of the following pro-
blem : o

Given two collinear segments AB
and A’B’; to determine another
segment C'D which shall divide each
of them harmonically (Figs. 43,44)-

Take any point & not lying on
the common base 4B’, and draw the circles GAB , GA’B’ meeting

* If through a point O any chord be drawn to cut a circle in P and Q, the
rectangle OP . OQ is called the power of the point with regard to the circle.
STEINER, Crelle’s Journal, vol i. (Berlin, 1826); Collected Works, vol. i. p. 22.
We may then say that OC? is the power of the point O with regard to the circle
in Fig. 42.

1 PONCELET, Propr. proj. Art. 79.
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again in /1. Join GH *, and produce it to cut the axisin 0. Then
from the first circle
04 .0B = 0G . OH (Eue. III. 36),
and from the second
04’.0B’= 0G . 01/;
s 04.0B=04".0B".
O is therefore the middle point of the segment required; the
points € and D will be the
intersections with the axis

of a circle described from / =
the centre O with radius ci 0} -
equal to the length of the \‘

tangent from O to either of
the circles GAB, G’A’B’. o

The problem admits of a
real solution when the point
O falls outside both the
segments AB, A’B’, and consequently outside both the ecircles GA B,
(A’B’ (Figs. 43, 44). There is no real solution when the segments
AB, A’B’ overlap (Fig. 45); in this case O lies within both segments,

71. Let ABCD be a harmonic
range, and let 4 and B (a pair of
conjugates) approach indefinitely near
to one another and ultimately coin-
cide. If C lie at an infinite distance,
then D must coincide with 4 and B,
siuce it must lie midway between these
two points (Art. 59). If C lie at a
finite distance, and assume any position not coinciding with that of 4
or B, then equation (2) of Art. 69 gives CD=0CA=CDB, i.e. D coincides
with 4 and B.

Again, let 4 and ¢ (two non-conjugate points) coincide, and B
(the conjugate of A) lie at an infinite distance. In this case 4 must
lie midway between C and D, so that D will coincide with 4 and C.
If B lie at a finite distance, and assume any position not coinciding
with that of 4 or C, then equation (1) of Art. 69 gives 4D = 0, 4.e.
the point D) coincides with 4 and €. So that:

If, of four points forming a harmonic range, any two coincide, one
of the other two points will also coincide with them, and the fourth
is indeterminate.

72. The theorem of Art. 45 leads to the following result: given
four elements 4 , B, C', D of a one-dimensional geometric form, the

Fig. 44.

* GH is the radical axis of the two circles, and all points on it are of equal
power with regard to the circles.
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anharmonic ratios (4 BCD), (BADC), (CDAB), (DCBA) are all equal
to one another.

L Four elements of such a form can be permuted in twenty-four
different ways, so as to form the twenty-four different groups

ABCD , BADC , CDAB , DCBA ,
ABDC |, BACD , DCAB , CDBA ,
ACBD , CADB , BDAC , DBCA ,
ACDB , CABD , DBAC , BDCA ,
ADBC , DACB , BCAD , CBDA ,
ADCB |, DABC , CBAD , BCDA ,

here arranged in six lines of four each. The four groups in each
line are projective with one another (Art. 45), and have therefore
the same anharmonic ratio. In order to determine the anharmonic
ratios of all the twenty-four groups, it is only necessary to consider
ong group in each line; for example, the six groups in the first
column. These six groups are so related to each other that when
any one of them is known the other five can be at once determined.

II. Consider the two groups 4 BCD and ABDC, which are derived
one from the other by interchanging the last two elements. Their
anharmonie ratios

AC 4D
(4BCD) or B0 ED
and (4BDC) or sz : %—g
are one the reciprocal of the other; thus
ABODY(4BDCY=1.. . . . . . . (1)
Similarly, (4CBDy(4CDBy=1,. . . . . . . (2
and (DB O R =N N o)

III. Now if 4, B, C, D are four collinear points, it has been seen

(Art. 62) that the identical relation !
EC.AD+CA.BD+A4AB.CD =0

always holds. Dividing by BC . 4 D, we have
AC.BD AB.CD
BC.ap T CB. AD =
AC AD AB AD
BB TR CD T

1

or

1,

that is (Arts. 63, 67),

(ABOD)+(4CBDY=1. . . . . . . (4)
Similarly, (4BDC)+(4DBC)=1, . . . . . . (5)
and (ACDB)4+(4DCB)y=1. . . . . . . (6)
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IV. If X denote the anharmonic ratio of the group ABCD, t.e. if

(4BCD) = A,
the formula (1) gives (4BDC) = )l\, -
and (4) gives (ACBD) = 1—A;
then by (2) (A0DB) = l_ix
1 A

and finally, by (3) or (5)
1 %
(4ppe) ="=L.

V. The six anharmonic ratios may also be expressed in terms of
the angle of intersection 8 of the circles described on the segments
AB, CD as diameters ; it being supposed that 4 and B are separated
by €' and D. It will be found that

(4dBCD) = —-tanzg, (4dBDC) = —cot? g ;
(4CBD) = seczg, (4CDB) = cos"’g,

(ADCB)= sinl,  (ADBO)=cosect3.

VI. If in the group 4BCD two points 4 and B coincide, then
AC = BC, AD = BD, and therefore
(ABCD) = (AACD) = ilg
But if A = 1, the other anharmonic ratios become
(dCADY=1—1=0, and (ACDA) = ;
thus when of four elements two coincide, the anharmonic ratios have
the values 1, 0, co.

If (4BCD) = —1, i.e. if the range 4 BCD is harmonic, the formulae

of (IV) give
(40BD) =2 and (A4CDB)=1};
so that when the anharmonic ratio of four points has the value 2 or
1, these points, taken in another order, form a harmonic range.

VII. Conversely, the anharmonic ratio of a range 4 BCD, none of
whose points lies at infinity, cannot have any of the values 0, 1, o,
without some two of its points coinciding.

o AC AD

For if in (IV) A =0, ZC° BD
vanish ; 7.e. either 4 coincides with C, or B with D.

= 0, and either AC or BD must

* MoB1Us, loc. cit., p. 249.
4 CaSEY, On Cyclides and Sphero-quartics (PLil, Trans. 1871), p. 704.



62 ANHARMONIC RATIOS. (73

IfA=1,(4CBD) = 1—x =0, so that either 4 coincides with B,
or C with D, 1

And if A =, (4BDC) = x = 0, so that either 4 coincides with
D, or B with C.

VIIL By considering the expressions given for the six anharmonic
ratios in (IV) it is clear that whatever be the relative positions of the
points 4 , B, C', D, two of the ratios (and their two reciprocals) are
always positive and a third (and its reciprocal) negative ; and thus we
see that the anharmonic ratios of four points no two of which coincide
may have all values positive or negative except +1, 0, or co.

78. From the theorems of Arts. 63 and 66, which express
the necessary and suflicient condition that two ranges, each
consisting of four elements, should be projectively related, we
conclude that

If two geometric forms of one dimension are projective, then any
two corresponding groups of four elements are equianharmonic *.

As a particular case, to any four harmonic elements of

b the one form correspond four
harmonic clements of the other
(Art. 51).

74. Let 4, 4" and B, B’ be any
two pairs of corresponding points
of two projective ranges (Fig.
46); let I be the point at infinity
belonging to the first range, and 1’ the point corresponding
to it in the second range; similarly let J’ be the point at
infinity belonging to the second range, and J its corre-
spondent in the first range. By Art. 73

(ABI]) = (4’"B'I"T'); ¥
(BATI) = (A'B’I"]") (Art. 72);
from which, since 7 and J” lie at infinity,
BJ: A = A’1": B']” (Art. 64),
and JAd . I'd'=J B.I'D;
i.e. the product JA.I'A" has a constant value for all pairs of
corresponding points .

[This proposition has already been proved in Art. 63 for

the particular case of two ranges in perspective.]

Fig. 46.

* STEINER, Systematische Entwickelung .. (Berlin, 1832), p. 33, § 10; Collected
Works, ed. Weierstrass (Berlin, 1881), vol. i. p. 262.
+ STEINER, loc. cit., p. 40, § 12; Collected Works, vol. i. p. 267.
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75. In two homological figures, four collinear points or
four concurrent straight lines of the one figure form a group
which is equianharmonic with that consisting of the points or
lines corresponding to them in the other figure (Art. 73). Let
O be the centre of homology, #/ and M’ any pair of corre-
sponding points in the two figures, N and N’ another pair of
corresponding points lying on the ray OMM’, and X the
point in which this ray meets the axis of homology. Since
the points OMNX , OM’N'X correspond severally to one
another,

(OXMN) = (OXM'N’),
OM _ON _OM’ ON’ .
o MX  NX ~ WX NX’
oM OM"  ON ON’
MX M'X~ NX NX
and consequently the anharmonic ratio (OXJ/M’)is constant
for all pairs of corresponding points A/ and M’ taken on a ray
OX passing through the centre of homology.

Next let L and L’ be another pair of corresponding points,
and Y the point in which the ray OLZL’ cuts the axis of
homology. Since the straight lines ZJ/, L’M’ must meet in
some point Z of the axis XY, it follows that OYLL’ is a pro-
jection of OXMM’ from Z as centre, and therefore

(OYLIL') = (OXMM');
consequently the anharmonic ratio (OXMAI") is constant for
all pairs of corresponding points in the plane.

Consider now a pair of corresponding straight lines ¢ and
@', the axis of homology s, and the ray o joining the centre of
homology O to the point «a’. The pencil osaa” is cut by
every straight line through O in a range of four points
analogous to OXMA'; consequently the anharmonic ratio
(0sad’) is constant for all pairs of corresponding straight
lines ¢ and &/, and is equal to the anharmonic ratio
(OXMII).

This anharmonic ratio is called the coefficient or parameter
of the homology. It is clear that two figures in homology
can be constructed when, in addition to the centre and axis,
we are given the parameter of the homology.

76. When the parameter of the homology is equal to — 1,
all ranges and pencils similar to OXM M, osaa’, are harmonic.
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In this case the homology is called Zarmonic* or involutorial,
and two corlesponding points (or lines) correspond to one
another doubly ; that is to say, every point (or line) has the
same correspondent whether it be regarded as belonging to
the first or the second figure. (See below, Arts. 122, 123.)

Harmonic homology presents two cases which deserve special
notice : (1) when the centre of homology is at an infinite distance, in
the direction perpendicular to the axis of homology; (2) when the
axis of homology is at an infinite distance. In the first case we have
what is called symmetry with respect to an axis; the axis of homology
(in this case called also the axis of symmetry) bisects orthogonally
the straight line joining any pair of corresponding points, and bisects
also the angle included by any pair of corresponding straight lines.
The second case is called symmetry with respect to a centre. The
centre of homology (in this case called also the centre of symmetry)
bisects the distance between any pair of corresponding points, and
two corresponding straight lines are always parallel. In each of
these two cases the two figures are equal and similar (congruent)t;
oppositely equal in the first case, and directly equal in the second.

77. Considering again the general case of two homological
figures, let @, 4 ,m ,n be four rays of a pencil in the first
figure, and o, %", w/, n’ the straight lines corresponding to
them in the second. Then

(mnah) = (w'nw V).

Now let an arbitrary transversal be drawn to cut maab in
MNAB, and draw the corresponding (or another) transversal
to cut w'n'a’l’ in M’N’A’B’; then

(MNAB) = (M'N'A'B’),
MA MN'A” NdA N'A g
o MB ' M'B~ NB'N'B
MA M4’
B W'
straight lines a/ (and a’/’), and not at all on the straight line
m (or m').

The ratio Md:NA is equal to that of the distances of the
points M, N from the straight line ¢, which distances we may
denote by (I, a), (V,a); thus

* BELLAVITIS, Saggio di Geometria derivata (Nuovi Saggi of the Academy of
Padua, vol. iv. 1838), § 50.

+ Two figures are said to be congruent when the one may be superposed upon
the other so as exactly to coincide with it.

Consequently, the ratio depends only on the
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(M,a) (M) _

(L, 1) (M’ 7) = constant,

that is to say *

In two homological figures (or, move generally, in two projectively
related figures) the ratio of the distances of a variable point M from
two fized straight lines a | b in the first figure bears a constant ratio
to the analogous ratio of the distances of the corresponding poini
M from the corresponding straight lines ' | Y in the other figure.

Suppose 4 to pass through the centre of homology O; then
M and M’ are collinear with O and # coincides with 4, so that

(M, 0): (M, V)= OM: OM’;
and therefore
OM (11, a)

o' (0, ) = constant.
If N and N are another pair of corresponding points, we
have then
OM (M, a) (N, a)
oM " (M, a) OV’ (N, )’
Now suppose the straight line &’ to move away indefinitely ;
then « becomes the vanishing line in the first figure ; the ratio
(M',a)

will in the limit become equal to unity, and thus

V', @)
oM ON .
0]!["(2,[ )= oV (&, a)
= constant ;

in other words 1 :

In two komological figures, the ratio of the distances of any polnt
in the first figure from the centre of homology and from the vanishing
line respectively, varies directly as the distance of the correspondiny
point in the second figure from the centre of homology.

* CHASLES, Gdométrie supérieure, Art. 512,
+ CHASLES, Sections coniques, Art. 267.



CHAPTER X.
CONSTRUCTION OF PROJECTIVE FORMS.

78. LET ABC and 4’B’C’ be two triads of corresponding
elements of two projective forms of one dimension (Fig. 47),
and imagine any series of operations (of projection and section)
by which we may have
passed from ABC to
A’'B’C’. Then whatever
this series be*, it will
also lead from any other
element 2 of the first
form to the element 2’
which corresponds to it
in the second. For if D
could give, as the result
of these operations, an
clement D" different from 1), then the anharmonic ratios
(ABCD) and (4'B'C’D") would be equal; but by hypothesis
(ABCD) = (4’'B'C'D’); therefore (4'B’C'D’) = (4’B’'C’D"),
which is impossible unless 2” coincide with 2’ (Art. 65).

79. THEOREM (converse to that of Art. 73):

Given two forms of one dimension ; if to the elements A4,B,C, D, ...
of the one correspond respectively the elements A B0 D ..
of the other in such a manner that any four elements of the first form
are equianharmonic with the four corresponding elements of the second,
then the two forms are projective.

For every series of operations (of projection or section),
which leads from the triad 4BC to the triad 4’B’C’, leads at
the same time from the element D to another element /)" such
that (ABCD) = (4’B'C’D"). But (4BCD)=(4'B'C'D’) by
hypothesis ; therefore (4"5’C’D’) = (4 ’B'C’D”), and D” must
coincide with D’ (Art, 65). And since the same conclusion is

* In Fig. 47 the series of operationsis: a projection from S, a section by «”,
a projection from &', and a section by «’.
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true for any other pair whatever of corresponding elements, it
follows that the two forms are projective (Art. 40).

80. From Art. 78 the following may be deduced as a par-
ticular case:

If among the elements of two projective forms of one dimension
there are two corresponding triads ABC and A'B’C’ which are in
perspective, then the two forms themselves are in perspective,

(1). If, for-example, the forms are two ranges ABCD ... and
A’B’C’D’...; then if the three straight lines A4’, BB’, CC’
meet in a point &, the other analogous lines DD, ... will all
pass through § (Figs. 19, 40).

Suppose, as a particular case, that the points 4, 4" coincide
(Fig. 22), so that the two ranges have a pair of corresponding
points 4 and 4" united in the point of intersection of their
bases¥. The triads 4BC, 4’B’C’ are in perspective, their centre
of perspective being the point where BB’ and CC’ meet ;
accordingly :

1If two projective ranges have a self-corresponding point, they are in
perspective.

Conversely it is evident that Zwo ranges which are in pers
spective have always a self-corresponding point.

(2). Again, if the two forms are two flat pencils ated ... and
a’t/¢’d’... lying in the same plane; then if the three points
ad’, U/, cc’ lie on one straight line s, the analogous points dd’...
will all lie on the same straight line (Fig. 20). If the line s
lie altogether at infinity, we have the following property :

I, in two projective flat pencils,
three pairs of corresponding rays
are parallel to one another, then
every pair of corresponding rays are
parallel to one another,

The hypothesis is satisfied
in the particular case where the
rays « and a’ coincide (Fig. 48),
so that the two pencils have a self-corresponding ray in the
straight line which joins their centres ; then s is the straight
line joining 46" and ¢¢’. Accordingly:

* In the case of two projective forms we shall in future employ the term
self-corresponding to denote an element which is such that it coincides with its
correspondent ; thus 4 or 4’ above may be called a self-corresponding point of the
two ranges.

F 2
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When two projective flat pencils (lying in the same plane) have a
self-corresponding ray, they are in perspective.

Conversely, two coplanar flat pencils which are in perspective
have always a self-corresponding ray.

(3). If one of the systems is a range ABCD ... and the other
a flat pencil aled ... (Fig. 28), the hypothesis amounts to
assuming that the rays a , &, ¢ pass respectively through the
points 4, B, C; then we conclude that also 4, ... will pass
through 2, ... &e.

81. Two ranges may be superposed one upon the other, so as
to lie upon the same straight line or base, in which case they
may be said to be collinear. For example, if two pencils (in
the same plane) § = abe ... and 0 = o't .., (Fig. 49) are cut
by the same transversal, they will
determine upon it two ranges
ABC ..., 4’B’C’ ... which will be
projectively related if the two
pencils are so. The question arises
2 whether there exist in this case

any self-corresponding points, 7.c.
whether two corresponding points of the two ranges coineide
in any point of the transversal.

If, for instance, the transversal s be drawn so as to pass
through the points aa’ and 4, then 4 will coincide with 47,

s and 3 with B’; in this case
consequently there are fwo
self-corresponding points.

Again, if a range u be
projected (Fig. 50) from two
centres § and O (lying in
the same plane with u),
two flat pencils abe ... and
2’V ... will be formed, which
have a pair of corresponding rays a, @’ united in the line SO.
And if a transversal s be drawn through the point in which
this line cuts #, we shall obtain two projective ranges ABC...,
A’B’C’ ... lying on a common base s, and such that they have
oue self-corresponding point 44". '

And lastly, we shall see hereafter (Art. 109) that it is possible

Fig. 49.

Fig. s0.
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for two collinear projective ranges to be such as to have zo
self-corresponding point.

So also two flat pencils (in the same plane) may have a
common centre, in which case they may be termed concentric ;
such pencils are formed when two different ranges are pro-
jected from the same centre (Fig. 51). And two axial pencils
may have a common axis ; such pencils
are formed when we project two dif-
ferent ranges from the same axis, or
the same flat pencil from different
centres. Again, if two sheaves are cut
by the same plane, two plane figures
are obtained ; if, on the other hand,
two plane figures are projected from
the same centre, two concentric sheaves are formed. In all
these cases the forms in question may be said to be superposed
one upon the other; and the investigation of their se//-
corresponding elements, when the two forms are projectively
related, is of great importance. The complete investigation
will be given later on, in Chapter XVIII; at present we can
only prove the following Theorem.

82. THEOREM. Two superposed projective * (one-dimensional)
Jorms either have at most two self-corresponding elements, or else
every element coincides with its correspondent.

For if there could be three self-corresponding elements
A4, B, C suppose ; then if D and D’ are any other pair of cor-
responding points, we should have (Art. 73) (A BCD)=(4BCD’),
and consequently (Art. 65) D would coincide with D’. Unless
then the two forms are identical, they cannot have more than
two self-corresponding elements.

83. THEOREM (converse to that of Art.53). If a one-dimen-
sional form consisting of four elements 4 ,B,C, Dis projective with
a second form deduced from it by interchanging two of the elements
(e.9. BACD), then the form will be a harmonic one, and the two
interchanged elements will be conjugate to eack other.

First Proof. If (4BCD) = (BACD), then (Art. 72. IV)A =

. A?=1, and since we cannot take A = + 1 (Art. 72. VI
we must have A = — 1, 7. e. the form is a harmonic one.
Second Progf. Suppose, for example, that 4, B, C, D are four

Fig. 51.

b

1y

= o>
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collinear points (Fig. 52). Let K, ,Q,D be a projection of
these points on any straight line through 2, made from an
arbitrary centre L. Since ABCD is projective with KW QD
and also (by hyp.) with BACD, the forms KM QD and BACD
are projective with one another.
And they have a self-corre-
sponding point J); consequently
they are in perspective (Art. 80),
and KB, M4, QC will meet in
one point N. But this being
the case, we have a complete
quadrangle KZMN, of which one pair of opposite sides meet
in 4, another such pair in B, while the fifth and sixth sides
pass respectively through C and D. Accordingly (Art. 46)
ABCD is a harmonic range.

84. Let there be given two projectively related geometric
forms of one dimension. Any series of operations which suf-
fices to derive three elements of the one from the three corre-
sponding elements of the other will enable us to pass from
the one form to the other (Art. 78); and any two given triads
of elements are always projective, i.e. can be derived one from
the other by means of a certain number of projections and
sections. Hence we conclude that :

Given three pairs of corresponding elements of twe projective forms
of one dimension, any number of other pairs of corresponding elements
can be constructed.

We proceed to illustrate this by two examples, taking
(1) two ranges and (2) two flat pencils; the forms being
in each case supposed to lie in one plane. o

c B
Fig. 52.

Given (Fig. 53) three pairs of
corresponding points 4 and 4’,
B and B’, (' and C’, of the pro-
jective ranges w and w'; to con-
struct these ranges.

We proceed as in Art. 44. On
the straight line which joins any
two of the corresponding points,
say A and 47, take two arbitrary
points & and $’. Join SB, S’B’
cutting one another in B”, and
SC', S’C” cutting one another in

Given (Fig. 54) three pairs
of corresponding rays a and o,
b and V', ¢ and ¢, of the projec-
tive pencils U and U’; to con-
struct these pencils.

Through the point of inter-
section of any two of the cor-
responding rays, say « and o/,
draw two arbitrary transversals
sand ¢, Join the points sb and
s't’ by the straight line ”, and
the points sc¢ and s'¢” by the
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C”; join B”C”, and let it cut
AA4’in A”. The operations which
enable us to pass from ABC to
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straight line ¢”’; and let a’ be the
straight line joining the points
b”¢” and aa’. The operations

Fig. 54.

A’B’C’ are: 1. a projection from
S; 2. a section by »” (the line on
which lie the points 47, B”, C”);
3. a projection from S’; 4. a
section by «’. The same opera-
tions lead from any other given
point D on u to the correspond-
ing point D’ on «/, so that the
rays D and S’D’ must intersect
in a point D’ of the fixed straight
line w”.

In this manner a range
u//: A//BIIC/ID/I.
is obtained which is in perspec-
tive both with » and with «".

which enable us to pass from abe
to ab’¢’ are: 1.a section by s;
2. a projection from the point
U” where o/, b, ¢/ meet; 3. a
section by s’; 4. a projection
from U’. The same operations
lead from any other given ray d
of the pencil U to the correspond-
ing ray d’ of the pencil U’; so that
the points sd and ¢’d’ must lie on
a straight line d” which passes
through the fixed point U”.

In this manner a pencil

U”Ea,’b’,‘;//d,/. ..

is obtained which is in perspec-
tive both with U and with U”.

In the preceding construction (left), D is any arbitrary point on .
If D be taken to be the point at infinity on w, then (Fig. 53) SD
will be parallel to »; in order therefore to find the point on o’
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which corresponds to the point at infinity on w, draw S77 parallel to
% to cut »” in I”; then join S’I”, which will cut « in the required

point 7’.

Similarly, if the ray through S’ parallel to %’ cuts »” in

J”, and SJ” be joined, this will cut u in J, the point on % which
corresponds to the point at infinity on «’.

If D be taken at P, the point
where % and «” meet, then D"
also coincides with P, and the
point P’ on «  corresponding to
the point 2 on % is found as the
intersection of S’P with «”.

Similarly, if ' be the point of
intersection of % and w«”, the
point on = corresponding to Q'
on v’ is @, where SQ’ cuts u.

85. The only condition to
which the centres S and S’ are
subject is that they are to lie
upon the straight line which joins
a pair of corresponding points;
in other respects their position is
arbitrary, 'We may then for in-
stance take S at 4’ and S” at 4
(Fig. 55). Then the ray S’P co-
incides with w, and P’is accord-
ingly the point of intersection of
w and «’. So too the ray SQ’
coincides with », and @ also lies
at the point wu’,

If then we take the points 4’
and 4 as the centres S and 8
respectively, the straight line «”
will cut the bases % and u’ re-
spectively in P and ', the points
which correspond to the point
un’ regarded in the first instance
as the point P’ of the line «’ and
in the second instance as the
point @ of the line u.

Now in the construction of
the preceding Art., the straight
line «” was found at the locus of

In the preceding construction
(right), d is any arbitrary ray
passing through U. If it be taken
to be p, the line joining U to U”,
then the corresponding ray p’ of
the pencil U’ is the line joining
the point U’ to the point s'p.

Similarly, if ¢/ be the ray
U'U” of the pencil U’, the ray ¢
corresponding to it in the pencil
U is that which joins the points
U and sq’.

The only condition to which
the transversals s and s’ are sub-
ject is that they are to pass
through the point of intersection
of a pair of corresponding rays ;
in other respects their position is
arbitrary. We may then for in-
stance take o’ for s and & for &
(Fig. 56). Then the point s’p
coincides with U, and p’ is ac-
cordingly the straight line UU”.
So too the point sg” coincides
with U’, and ¢ also must be the
straight line UU”,

If then we take the rays o’
and @ as the transversals s and
s’ respectively, the point U’ will
be the intersection of the rays p
and ¢" which correspond to the
straight line UU’, regarded in
the first instance as the ray p’ of
the pencil U’, and in the second
instance as the ray ¢ of the
pencil U.

Now in the construction of the
preceding Art., the point U was
found as the centre of perspective
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the points of intersection of pairs
of corresponding rays of the
pencils in perspective
S (ABCD..) and 8’ (4’B’C’D"..).
The straight line " obtained by
the construction of the present Art.
is in like manner the locus of the
points of intersection of pairs of
corresponding rays of the pencils
A’ (ABCD.)and 4 (A’B'C’'D".)),
i.e. the locus of the points in
which the pairs of lines 4’B and
AB’, A’C and AC’, 4A’D and
AD’, ... intersect.

Fig. 55.

If in place of 4’ and 4 any
other pair of points B” and B, or
¢’ and C, ... be taken as centres
of the auxiliary pencils S and S/,
the straight line «” must still
cut the two bases # and v/ in the
points P and @’ ; ¢.e. the straight
line #” remains the same.

If then ABC ... MN ... and
A’B’C" ... M’N’ ... are two pro-
jective ranges (in the same plane),
every pair of straight lines such
as MN’ and M’N intersect in
points lying on a fixed straight
line. This straight line passes
through those points which cor-
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of the ranges in perspective
s(abed .. .) and & (a’b'cd’ .. .).

The point U” obtained by the
construction of the present Art.
is in like manner the centre of
perspective of the ranges
o (abed...)and a (a’V'c'd ...),

i.e. the point in which the lines
joining the pairs of corresponding
points a’b and aé’, a’c and ac/,
a’d and ad/, ... meet.

Fig. 56.

If in place of &’ and a any
other pair of rays " and b, or ¢’
and ¢, ... be taken as transversals,
the point U” must still be the
intersection of p and ¢”; 7.e. the
point U” remains the same.

If then abc ... and
a’t’e ... m'n ... are two projec-
tive pencils (in the same plane)
every straight line which joins a
pair of points such as mn’ and
m’n passes through a fixed point.
This point is the intersection of
those rays which correspond in

mn ...
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respond in each range to the
point of intersection of their bases
when regarded as a point of the
other range.

86. If the two ranges » and w’
are in perspective (Fig. 57) the
points P and @’ will coincide
with the point O in which the
bases % and %’ meet; and since
the straight line which is the
locus of the points (4.B’, 4’B),
(4C’, 4°C), (4D’, 4’D), ... and
the straight line which is the
locus of the points (BA’, B’4),
(BC’, B'C), (BD’, B’D), ... have
two points in common, viz. O and
(4B’, A’B), these straight lines
must coincide altogether. This
being so, AA’BB’ is a com-
plete quadrangle, whose diagonal
points are O, § (the point where
AA4’, BB, ... meet), and M (the
point of intersection of 4B’ and
A'B) ; consequently (Art. 57) the
straight lines % and « are har-
monic conjugates with regard to
the straight lines «” and 0S. If
therefore two transversals « and
w cut a flat pencil (a,b,¢,...)in the
points (4, 47),(B, B’),(C, (") ...,
then the points of intersection of
the pairs of straight lines 4 2’ and
A’B, AC” and A'C , BC’ and
B0, ... lie on one and the same
straight line «”, which passes
through the point wu’; and the
straight line joining ww’ to the
centre of the pencil is the har-
monic conjugate of «” with re-
spect to « and o/,

From this follows the solution
of the problem :

To draw the straight line con-
necting a given point M with the

(86

each pencil to the straight line
Joining the centres of the pencils
when regarded as a ray of the
other pencil.

If the two pencils U and U’
are in perspective (Fig. 59) the
rays p and ¢’ will coincide with
the straight line U'U’”; and since
through the point of intersection
of the rays (ab’, a'b), (ad’, a’c),
(ad’, a’d), ... and through the
point of intersection of the rays
(b, Va), (b, Ve), (bd’, Vd), ...
pass two different straight lines,
viz. UU’ and (ab/, a’b), these
points must coincide. This being
s0, aa’bd’ is a complete quadri-
lateral, whose diagonals are U1,
s (the straight line on which
aa/, b, ... intersect), and m (the
straight line which joing @b’ and
a’b); consequently (Art. 56) the
points U and U’ are harmonic
conjugates with regard to U’/ and
the point in which s meets U U".
If therefore a range be projected
from two points U and U’ by the
rays (a,a’), (b,8"),(c,¢’) ..., then
the straight lines which join the
pairs of points (al’, a’b), (ac’, a’c),
(b, ¥e), ... meet in one and the
same point U/, which lies on the
line UU”; and the point where
the straight line U U’ cuts the base
of the range is the harmonic con-
Jjugate of U with respect to U
and U,

From this follows the solution
of the problem :

To construct the point where a
given straight line m would be in-
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inaccessible point of intersection of
two given straight lines w and ',
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tersected by a straight line (UU’)
which cannot be drawn, but which
18 determined by its passing
through two given points U and

Through M (Figs. 57 and 58)
draw two straight lines to cut
in 4 and B, and " in B’ and 4’

Fig. 58.

respectively ; join 4/, BB’ meet-
ing in S. Through S draw any
straight line to cut » in ¢ and
»’ in C’, and join BC’, B’C,
intersecting in . The straight
line joining M and N will be the
line «”” required.

Onm (Fig. 59) take two points,
and join them to U by the
straight lines a and b, and to U’

by the straight lines & and a’;
let s be the straight line joining
the points of intersection of a , ¢’
and b, 5. On s take any other
point and join it to U, U’ by the
straight lines ¢, ¢/ respectively.
The straight line n which joins
the points b¢” and b’c will cut m
in the point U”’ required.

If the straight lines » and «” are parallel to one another (Fig. 58)
the preceding construction gives the solution of the problem: given
two parallel straight lines, to draw through a given point a straight
line parallel to them, making use of the ruler only.

+ 87. If in the- theorem of the
preceding article the flat pencil

If in the theorem of the pre-
ceding article the range consist
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consist of only three rays, the
theorem may be enunciated as
follows, with reference to the
three pairs of points 44, BF,
ce’:

If a hexagon (six-point)
AB’C A’BC’ (Fig. 60) has its ver-
tices of odd order (1st, 3rd,and 5th)

Fig. 6o.

on one straight line , and its ver-
tices of even order (2nd, 4th, and
6th) on another straight line 4/,
then the three pai,rs of opposite
sides (4B’ and ABY, B’C and
BC’, 04’ and C’4) meet in three
points lying on one and the same
straight line »” *.

of only three points, the theorem
may be enunciated as follows
with reference to the three pairs
of rays ad’, bb’, c¢’:

If a hexagon (six-side) ab’ca’bc’
(Fig. 61) be such that its sides of
odd order (1st, 3rd, and gth)

Fig. 61.

meet in one point U, and its sides
of even order (2nd, 4th, and
6th) meet in another point U’
then the three straight lines
which join the pairs of opposite
vertices (ab’ and a’b, b’c and bc/,
ca’ and ¢’a) pass through one and
the same point U”.

88. Returning to the con-
struction of Art. 84 (left), let the

Returning to the construction
of Art. 84 (right), let the straight

* Pappus, loe. cit., Book vii. prop. 139.
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centre S be taken at the point
where 44’ meets BB’, and the
centre S at the point where 44’
meets CC” (Fig. 62). Then since
SB, 8’B’ meet in B’, and SC,
S’C’ in O, therefore B’C is the
straight line «”. Consequently
any other pair of corresponding
points D and D’ are constructed
by observing that the straight
lines 8D, S’ D’ must meet on B’C.

From a consideration of the
figure SS’CDD’B] which is a
hexagon, we derive the theorem :

In a hexagon, of which two
sides are segments of the bases of
two projective ranges, and the four
others are the straight lines con-
necting four pairs of correspond-
ing points, the straight lines which
join the three pairs of opposite
vertices are concurrent.

89. If in the problem of Art.
84 (left) the three straight lines
Ad’, BB, CC’ passed through the
same point S (if, for example, 4
and 4’ coincided), then the two
ranges would be in perspective ;
we should therefore only have to
draw rays through .S in order to
obtain any number of pairs of cor-
responding points (Fig. 19).
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line joining the points ad’, ¢¢’ be
taken as the transversal s, and
that joining the points ada’, 50’
as the transversal s (Fig. 63).
Then since the line joining the
points sb , '’ is b, and the line
joining the points sc, ¢’ is ¢,
therefore b¢’ is the point U”.
Consequently any other pair of
corresponding rays d and d’ are
constructed by observing that the
points sd , §'d’ must be collinear
with b¢’.

From a consideration of the
figure ss’edd’b, which is a hexa-
gon (six - side) we derive the
theorem :

In a hexagon, of which two ver-
tices are the centres of two pro-
Jective pencils, and the four others
are the points of intersection of
four pairs of corresponding rays,
the three points in which the pairs
of oppostte sides meet one another
are collinear.

If the three points ad’, bV, ec’
in Art. 84 (vight) lay on the
same straight line s (if, for ex-
ample, ¢ and a’ coincided), then
the two pencils would be in per-
spective ; we should therefore
only have to connect the two
centres of the pencils with every
point of s in order to obtain any
number of pairs of corresponding
rays (Fig. 20).

90. If the two ranges u and u’ (Art. 84, left) are superposed one
upon the other, i.e. if the six given points A4’BB’CC’ lie on the
same straight line (Fig. 64), we first project «’ from an arbitrary
centre S’ on an arbitrary straight line w,, and then proceed to make
the construction for the case of the ranges w=(4B(...) and
w,= (4,B,C; ...), i.e. to construct with regard to the pairs of points

(44)), (BB),(CC)) in the way shown in Art. 84.

A vpair of corre-

sponding points D and D, of the ranges » and w, having beén found,
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the ray S’D; determines upon »’ the point D’ which corresponds
to .

The construction is simpler in the case where two corresponding
points 4 and 4’ coincide (Fig. 65).
When this is so, if w, he drawn
through 4, the range u, will be in per-
spective with « ; thus, after having
projected »” upon u, from an arbi-
trary centre S, if .S be the point
where BB’ and CC; meet, it is
only necessary further to project u
from S upon u,, and then w, from
S’ upon <.

The two collinear ranges w and
«” have in general two self-corre-
sponding points ; one at 44’, and
a second at the point of inter-
section of their common base line

Fig. 64.

with the straight line 8.7,

Ifthen 5" passes through the point uu,, the two ranges » and u’
have only ome self-corresponding point. If it were desired to con-
struct upon a given straight line two collinear ranges having
A and 4 for a pair of corresponding points, and a single self-corre-
sponding point at M (Fig. 66), we should procced as follows. Take

Fig. 65. Fig. 66.

any point S/, and draw any straight line , through 3 ; project 4” from
S’ on u, ; join the point 4, so found to 4, and let 44, meet S"M in S.
Then to find the point on / which corresponds to any point B on u,
project B from S into B,, and then B, from S into B’; this last is
the point required.

If the two pencils U, U” (Art. 84, right) are concentric, ¢.e. if the
six rays aa’bb’cc’ pass all through one point, we first cut a’d’¢’ by
a transversal and then project the points of intersection from an
arbitrary centre U,. If abc, are the projecting rays, we have then
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only to consider the non-concentric pencils U and U,=(a,b,c,). Or
we may cut abc by a transversal in the points 4 BC, and a’¥’c” by
another transversal in 4’B°C”, and then proceed with the two ranges
ABC ..., A’B’C’ ... in the manner explained above.

The figures corresponding to these constructions are not given;
the student is left to draw them for himself. He will see that in
these cases also the constructions admit of considerable simplification
if, among the given rays, there be one which is self-corresponding ; if,
for example, a and o’ coalesce and form a single ray, &e.

791, Consider two projective (homographic) plane figures = and
a’; as has already been seen (Art. 40), any two corresponding straight
lines are the bases of two projective ranges, and any two correspond-
ing points are the centres of two projective pencils.

If the two figures have three self-corresponding points lying in a
straight line, this straight line s will correspond to itself; for it will
contain two projective ranges which have three self-corresponding
points, and every point of the straight line s will therefore (Art. 82)
be a self-corresponding point. Consequently every pair of corresponding
straight lines of 7 and #” will meet in some point on s, and therefore
the two figures are in perspective (or in homology in the case where
they are coplanar).

92. If two projective plane figures which are coplanar have three
self-corresponding rays all meeting in a point O, this point will be
the centre of two corresponding (and therefore projective) pencils
which have three self-corresponding rays; therefore (Art. 82) every
ray through O will be a self-corresponding one. Hence it follows
that every pair of corresponding points will be collinear with O;
therefore the two figures are in homology.

93. If two projective plane figures which are coplanar have four
self-corresponding points A , B, C, D, no three of wlich are collinear,
then will every point coincide with its correspondent.

For the straight lines 4B, AC, AD, BC, BD, CD are all self-
corresponding ; therefore the points of intersection of 45 and CD,
AC and BD, BC and 4 D, i.e. the diagonal points of the quadrangle
ABCD, are all self-corresponding. Since the three points 4 , B, and
(4B) (OD) are self-corresponding, every point on the straight line
A B coincides with its correspondent ; and the same may be proved true
for the other five sides of the quadrangle. If now a straight line be
drawn arbitrarily in the plane, there w’ill be six points on it which
are self-corresponding, those namely in which it is cut by the six
sides of the quadrangle; and therefore every point on the straight
line is a self-corresponding one ; which proves the proposition.

In a similar manner it may be shown that if two coplanar pro-
Jjective figures have four self-corresponding straight lines a, b, ¢, d,
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Jorming a complete quadrilateral (i.e. such that no three of them are con-
current), then every straight line will coincide with its correspondent.

94. TueorEM. Two plane quadrangles ABCD , A’B’C’D’ are
always projective.

(1). Suppose the two quadrangles to lie in different planes = , .
Join 44’, and on it take an arbitrary point § (different from 4’), and
through A4 draw an arbitrary plane #”” (distinct from #); then from
S as centre project A”,B’,C’, D’ upon " and let 4”7, B”, C”, D"
be their respective projections (4" therefore coinciding with 4).

In the plane 7 join 4B, CD, and let them meet in £; so too in
the plane @ join A”B”, C”’D”, and let these meet in £”/, The
straight lines ABE , A”B”E” lie in one plane since they meet each
other in the point 4 = 4”; therefore BB” and EZE” will meet one
another in some point S

Now let a new plane #”” (distinct from =) be drawn through the
straight line 4 BE, and let the points 4”7, B, C”’, D”, K" be pro-
jected from S, as centre upon =””/. Let 4™, B, C"’, D", E"”
be their respective projections, where 4", B"’, E”” are collinear and
coincide with 4, B, £ respectively, and C””, D", E’” are collinear
also, since their correspondents C”/, D", E” are collinear. The straight
lines CDE , C’”D’”E’” lie in one plane since they meet each other
in the point £ = E”; therefore CC”” and DD”” will meet one
another in some point S,. If now the points 4”7, B”/, 0”7, D" be
projected from S, as centre upon the plane m, their projections will
evidently be 4 , B, U, D.

The quadrangle 4 BCD may therefore be derived from the quad-
rangle 4’B’C’D’ by first projecting the latter from S as centre upon
the plane #”/, then projecting the new quadrangle so formed in the
plane #” from S, upon =/, and lastly projecting the quadrangle so
formed in the plane #”” from S, upon = ; that is to say, by means
of three projections and three sections .

(2). The case of two quadrangles lying in the same plane reduces
to the preceding one, if we begin by projecting one of the quadrangles
upon another plane.

(3). If the two quadrangles (lying in different planes) have a pair
of their vertices coincident, say D and D', then two projections will
suffice to enable us to pass from the one to the other; or, what
amounts to the same thing, a third quadrangle can be constructed
which is in perspective with each of the given omnes ABCD,
A’B’C’'D".

For let there be drawn through D two straight lines s and &', one
in each of the planes; let s cut the sides of the triangle 4BC in
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