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PREFACE.

Tue following work is intended as an introductory text-
book on Solid Geometry, and I have endeavoured to present
the elementary parts of the subject in as simple a manner as
possible. Those who desire fuller information are referred to
the more complete treatises of Dr Salmon and Dr Frost, to
both of which I am largely indebted.

I have discussed the different surfaces which can be
represented by the general equation of the second degree at
an earlier stage than is sometimes adopted. I think that
this arrangement is for many reasons the most satisfactory,
and I do not believe that beginners will find it difficult.

The examples have been principally taken from recent
University and College Examination papers; I have also
included many interesting theorems of M. Chasles.

I am indebted to several of my friends, particularly to
Mr S. L. Loney, B.A., and to Mr R. H. Piggott, B.A., Scholars
of Sidney Sussex College, for their kindness in looking over
the proof sheets, and for valuable suggestions.

CHARLES SMITH.

SioNeEy SusseEx COLLEGE,
April, 1884,
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SOLID GEOMETRY.

CHAPTER 1.

CO-ORDINATES.

1. TuE position of a point in space is usually determined
by referring it to three fixed planes. The point of inter-
section of the planes is called the origin, the fixed planes are
called the co-ordinate planes, and their lines of intersection
the co-ordinate axes. The three co-ordinates of a point are
its distances from each of the three co-ordinate planes,
measured parallel to the lines of intersection of the other
two. When the three co-ordinate planes, and therefore the
three co-ordinate axes, are at right angles to each other, the
axes are said to be rectangular.

2, The position of a point is completely determined when
its co-ordinates are known. For, let Y0Z, Z0X, XOY be
the co-ordinate planes, and X' 0X, Y'OY, Z'OZ be the axes,
and let LP, MP, NP, be the co-ordinates of P. The planes
MPN, NPL, LPM are parallel respectively to YOZ, ZOX,
XO0Y; if therefore they meet the axesin ¢, R, S, as in the
figure, we have a parallelopiped of which OP is a diagonal;
and, since parallel edges of a parallelopiped are equal,

LP=0@Q, MP = OR,and NP = 08S.
Hence, to find a point whose co-ordinates are given, we have
only to take 0Q, OR, OS equal to the given co-ordinates,

S. 8. G. 1



2 CO-ORDINATES.

and draw three planes through @, R, S paral i

¢ , R, S parallel respectivel
to the co-ordinate planes; then the point of inbersgctio; 0);
these planes will be the point required.

A

5 v M

5 D
X7 0 u X
2
2
Y
ZI

If the co-ordinates of P parallel to 0X, OV, 0Z respec-
tively be a, b, ¢, then P is said to be the point (a, b, ¢).

3. To determine the position of any point P it is not
sufficient merely to know the absolute lengths of the lines
LP, MP, NP, we must also know the directions in which
they are drawn. If lines drawn in one direction be con-
sidered as positive, those drawn in the opposite direction
must be considered as negative.

We shall consider that the directions 0X, OY, 0Z are
positive,

The whole of space is divided by the co-ordinate planes
into eight compartments, namely 0XYZ, 0X'YZ, 0XY'Z
0XYZ, 0XY'Z, 0X'YZ, 0X'Y'Z, and 0X'Y'Z.

If P be any point in the first compartment, there is a
point in each of the other compartments whose absolute
distances from the co-ordinate planes are equal to those of I&R
and, if P be (a, b, ¢) the other points are (— a, b, ¢), (¢, — b, ¢),
(@, b,—¢c),(a,—b,—c).(—a, b, —¢),(—a,— b, c)and (— a,—b,—c)
respectively.
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4. 7o find the co-ordinates of the point which divides the
straight line joining two given points tn a given ratio.

Let P, @ be the given points, and R the point which -

divides P in the given ratio m, : m,.

Let Pbe (x,, y,, 2,), @ be (x,, 9,, 2,), and R be (x, y, ).

= Q
I’e
P27
9)
X
b v N—ar

Draw PL, QM, RN parallel to OZ meeting X0 Y in L, M,
N. Then the points P, Q, B, L, M, N are clearly all in one
plane, and a line through P parallel to LM will be in that
plane, and will therefore meet @M, RN, in the points K, H
suppose.

. PR a8y
Then KQ = P—Q—WL—IT_ ”22.
But LP=2, MQ=2, NR=z;

C S m

. e 1 a
e TE

H
Z,— 2% m1+m2

2= ﬂlZQ + mzzl i ?
m, +m,
- ﬂxwa ey m,,

Similarly o
1 2

)

ml-zl2 il mi-zll
m, +m,
When PQ is divided externally, m, is negative.
1—2

and y =



4 CO-ORDINATES.

The most useful case is where the line PQ is bisected : the
co-ordinates of the point of bisection are

@+ x) 1 +m) $(e+2).
The above results are true whatever the angles between
the co-ordinate axes may be.

We shall in future consider the axes to be rectangular in
all cases except when the contrary is expressly stated.

5. To express the distance between two points in terms of
their co-ordinates.

Let P be the point (2, y,, 2,) and @ the point (=,, 7,, 2,).
Draw through P and @ planes parallel to the co-ordinate
planes, forming a parallelopiped whose diagonal is PQ.

N

D 2z

Let the edges PL, LK, KQ be parallel respectively to
0X, 0Y, OZ. Then since P is perpendicular to the plane
QKL, the angle PLQ is a right angle,

S PQP=PLR+ QL
=PI*+ LK*+ K@

Now PL is the difference of the distances of P and Q
from the plane YOZ, so that we have PL=wx,—x, and
similarly for LK and KQ.

Hence PQ'=(z,—x) '+ (y,—y) +(2,—2)...... @).

The distance of P from the origin can be obtained from
the above by putting #,=0, y,=0, z7,=0. The result is

OP*=z+ 1y} +2......(i).
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Ex. 1. The co-ordinates of the centre of gravity of the triangle whose angular
points are (zy, Yy, 21)s (@2 Yoy 2a)s () Y3y 25) 8T § (T +T3+73), § (Y1 +Ya+s)
and § (2, + 29+ 2s).

Ex. 2. Shew that thethree lines joining the middle points of opposite
edges of a tetrahedron meet in & point. Shew also that this point is on the
line joining any angular point to the centre of gravity of the opposite face,
and divides that line in the ratio of 3 : 1.

Ex.3. Find the locus of points which are equidistant from the points
(1, 2, 8) and (3, 2, - 1). Ans. x—22=0.

Ex. 4. Shew that the point (§, 0, §) is the centre of the sphere which
passes through the four points (1, 2, 3), (3, 2,~1), (-1, 1, 2) and (1,-1, - 2).

6. Let a, B, v be the angles which the line PQ makes
with lines through P parallel to the axes of co-ordinates.
Then, since in the figure to Art. 5 the angles PLQ, PMQ, PNQ
are right angles, we have , uy

PQ cos a=PL,
PQcosB=PM,
and PQ cos y= PN.

Square and add, then
P {cos’a+ cos’B + cos’y} = PL* + PM*+ PN*= PQ*.
Hence cos’a + cos’B + cos’y = 1.

The cosines of the angles which a straight line makes
with the positive directions of the co-ordinate axes are called
its direction-cosines, and we shall in future denote these
cosines by the letters I, m, n.

From the above we see that any three direction-cosines
are connected by the relation I+ m’+n*=1 If the
direction-cosines of P@Q be I, m, n, it is easily seen that those
of QP will be —, —m, — n; and it is immaterial whether we
consider I, m, n, or the same quantities with all the signs
changed, as direction-cosines.

If we know that a, b, ¢ are proportional to the direction-
cosines of some line, we can at once find those direction-

cosines. For we have ;li:?“(:: 76—"; hence each is equal to
2 2 2
N +m +27) g 1 Y a

V@ b+ @i @ e ¥
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Ex. The direction-cosines of a line are proportional to 3, — 4, 12, find
their actual values. Ans. o5, —+' 13

7. The projection of a point on any line is the point
where the line is met by a plane through the point per-
pendicular to the line. Thus,n the figure to Art. 2, Q, R, S
are the projections of P on the lines 0X, 0Y, OZ re-
spectively.

The projection of a straight line of limited length on
another straight line is the length intercepted between
the projections of its extremities. If we have any number of
points P, @, R, S... whose projections on a straight line are
P, ¢ 1 S..., then the projections of PQ, QR, RS... on the
line, are pq, gr, 7s....

In estimating these projections we must consider the
same direction as positive throughout, so that we shall
always have pq+qr+rs=ps, that is the projection of
PS on any line is equal to the algebraic sum of the pro-
jections of PQ, QR and RS. This result may be stated in a
more general form as follows:—The algebraic sum of the
projections of any number of sides of a polygon beginning at
P and ending at @ is equal to the projection of Q.

8. If we have any number of parallel straight lines, the
projections of any other line ’Q on them are the intercepts
between planes through £ and @ perpendicular to their
dircctions. These intercepts are clearly all equal ; hence the
projections of any line on a series of parallel straight lines
are all equal. And, since the projection of a straight line on
an intersecting straight line is found by multiplying its
length by the cosine of the angle between the lines, we have
the following proposition :—

The projection of a finite straight line on any other
straight line ts equal to its length multiplied by the cosine of
the angle between the lines.

9. In the figure to Art. 2,let OQ =a, OR=b, OS=c.
Then it is clear that #=a for all points on the plane
PMQN, and that y =0 for all points on the plane PNRL,
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and that z=c for all points on the planc PLSM. Also
along the line NP we have # =qa,and y=0b; and at the
point P we have the three relations x =a, y =b, z=c.

So that a plane is determined by one equation, a straight
line by two equations, and a point by three equations.

In general, any single equation of the form F (z,y, 2) =0,
in which the variables arc the co-ordinates of a point,
represents a surface of some kind ; two equations represent a
curve, and three equations represcnt one or more points, This
we procecd to prove.

10. Let two of the variables be absent, so that the
equation of the surface is of the form /7 (z)=0. Then the
equation is equivalent to (z—a) (z —b) (x—¢) .....=0, where
a, b, c,... are the roots of ¥ (z)=0; hence all the points
whose co-ordinates satisfy the equatlon F(x)=0 are on one
or other of the planes x—a=0,2—-b=0,2—c=0,......

Let one of the variables be absent, so that the equation
is of the form ¥ (x,y) =0. Let P be any point in the plane
2=0 whose co-ordinates satisfy the equation ¥ (x,7)=0
then the co-ordinates of all points in the line through P

parallel to the axis of 2, are the same as those of I’ so far as-

« and y are concerned; it therefore follows that all such
points are on the surface. Hence the surface represented by
the equation ¥ (z,7) =0 is traced out by a line which 1s
always parallel to the axis of 2z and which moves along the
curve in the plane z=0 defined by the cquation #(z, y) =
Such a surface is called a cylindrical surface, or cylinder.

Next let the equation of the surface be F'(x,y,2) = 0.

We have scen that all points for which #=a, and y =10
lic on a straight line parallel to the axis of 2. Hence, if in
the equation F(x ¥, 2)=0, we put #=a, and y =b, the roots
of the resulting equation in z will give the points in which
the locus is met by a line through (a, b, 0) parallel to the axis
of z.

Since the number of roots is finite, the straight line will
meet the locus in a finite number of points, and therefore the
locus, which is the assemblage of all such points for different
values of @ and b, must be a surface and not a solid figure.

v
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11. The points whose co-ordinates satisfy two equations
must be on both the surfaces which those equations represent
and therefore the locus is the curve determined by the intersec-
tion of the two surfaces. When three equations are given, we
have sufficient equations tofind the co-ordinates,although there
may be more than one set of values, so that three equations
represent one or more points.

12. The position of a point in space can be defined by
other methods besides the one described in Art. 1.

Another method is the following: an origin O is taken, a
fixed line 0Z through O, and a fixed plane X0Z The
position of a point P is completely determined when its
distance from the fixed point O, the angle ZOP, and the angle
between the planes X0Z and POZ are given. These co-’
ordinates are called Polar Co-ordinates, and are usually de-
noted by the symbols r, & and ¢, and the point is called the
point (r, 8, ¢). :

If OX be perpendicular to 0Z, and OY be perpendicular
to the plane ZOX, we can express the rectangular co-ordinates
of P in terms of its polar co-ordinates,

N

Draw PN perpendicular to the plane X0V, and NM
perpendicular to OX, and join ON. Then
= 0M = ON cos ¢ = OP sin 0 cos ¢ = r sin @ cos ¢,
y=MN=O0Nsin ¢ = OP sin 0 sin ¢ =rsin @sin ¢,
and z= NP =0P cos § =rcos 6.
We can also express the polar co-ordinates of any point in
terms of the rectangular. The values are,

2 2
i x/___(a: : Y ), and ¢ = tan™

82

r=y/ (2’ + y* +7°), 0 = tan



CHAPTER 11
TrE PLANE.

13.  To shew that the surface represented by the general
equation of the first degree is a plane.
The most general equation of the first degree is
Ax+By+0Cz+ D=0.
If (#, 9, 2,) and (x,, y,, 2,) be any two points on the locus,
we have
Az, + By, + Cz,+ D=0,
and "Ax,+ By, + Cz2,+ D =0.

Multiply these in order by ™s__ and —"1_ and add;
m,+m, m, +m,
then we have
A "lzw1+m1wa_}_Bm2y1+mxy2+ 0m2z1+7nlza+ D=0.
m, +m, m, + m, m, +m,

This shews [Art. 4] that if the points (z,, y,, 2,), (2, ¥, 2,) be
on the locus, any other point in the line joining them is also
on the locus; this shews that the locus satisfies Fuclid’s
definition of a plane.

14. To find the equation of a plane.

Let p be the length of the perpendicular ON from the
origin on the plane, and let [, m, n be the direction-cosines of
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the perpendicular. Let P be any point on the plane, and draw
PL perpendicular on XOY, and LM perpendicular to 0X.

Then the projection of OP on ON is equal to the sum
of the projections of OM, ML and LI’ on ON.
Hence if P be (z, ¥, 2), we have

) Imtmy+nz=p.cccsenccneiinnann.. (1),
the required equation.

By comparing the general equation of the first degree
with (i), we see that the direction-cosines of the normal to the
plane given by the general equation of the first degree are
proportional to 4, B3, C; and thercfore [Art. 6] are equal to

A B C

VT FT0) (@ T TT0) A B0

Also the perpendicular from the origin on the plane is
equal to e

( V(A 4+ B+ O
15. To find where the plane whose equation is
Az+ By+ Cz+ D=0,

meets the axis of « we must put y=2=0; hence if the
intercept on the axis of « be a, we have da+ D = 0.

Similarly if the intercepts on the other axes are b and ¢
we have Bb+ D=0, and Cc+ D =0. Hence the equation
of the plane is

atd

This equation can easily be obtained independently.

+‘E=1.
c
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16.  To find the equation of the plane through three given
pownts.
Let the three points be (x,, y,, 2)), (%,, Yar 2,) (X Ys» 2,)-
The general equation of a plane is
Ax+ By+Cz+ D =0.
If the three given points are on this plane, we have
Awx, + By, + 0z, + D =0,
Az, + By, + Cz,+ D =0,
and Az, + By, + Cz,+ D = 0.
Eliminating 4, B, C, D from these four equations, we
have for the required equation
z, Y, Z,
o5 Uhe il
Lys Yo» s
ws ) :l/,q ’ 33 >
17. If S=0 and 8'=0 be the equations of two planes,
8—=2x 8 =0 will be the general equation of a plane through
their intersection. For, since S and 8’ are both of the first
degree, so also is §—A8’; and hence S —AS' =0 represents
a plane. The plane passes through all points common to
S=0 and 8 =0, for if the co-ordinates of any point satisfy
S=0 and 8" =0, those co-ordinates will also satisfy S =nS".
Hence, since A is arbitrary, S—AS'=0 is the general
equation of a plane through the interscction of the given
planes. i
18, 70 find the conditions that three planes may have a
common line of intersection.
Let the equations of the planes be

=0.

e

ar+by+cz+d=0..cccecunrnenn... (i),
; az+by+dz+d =0 (),
and a'z+b"y+c'z+d" =0.cceeiiininin. (1id).

The equation of any plane through the line of intersection
of (i) and (ii) is of the form
(ax+by+cz+d)+A(az+ by +cz+d)=0...(3v).
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If the three planes have a common line of intersection, we
can, by properly choosing A, make (iv) represent the same
plane as (ii). Hence corresponding coefficients must be
proportional, so that

a+ra’ _b+N _c+N_d4Nd
Bpag i TN e T T
Put each fraction equal to — p, then we have
a+ A + pa” =0,
b+ A + pub” =0,
¢+ N+ uc” =0,
and d+Ad +pd” =0.
Eliminating A and u we have the required conditions,
pamely  n
o M

a, b, ¢, d ||=0

& o) B CLa N

au s b!l , c// e’ dl’

the notation indicating that each of the four determinants, ob- ‘
tained by omitting one of the vertical columns, is zero.*

Mg >
a

19. We can shew, exactly as in Conics, Art. 26, that if
Az 4 By + Cz + D=0 be the equation of a plane, and &', ', 2’
be the co-ordinates of any point, then Ax'+ By + Cz'+ D
will be positive for all points on one side of the plane, and
negative for all points on the other side.

20. To find the perpendicular distance of @ given point
Jfrom a given plane.

Let the equation of the given plane be
lo+ iy Fre=p Wil b (@),
and let 2, 3/, 2 be the co-ordinates of the given point P. The
equation
lz+my+nz=p.occeeeiiiiiiii. (i)
is the equation of a plane parallel to the given plane.
It will pass through the point (2, ¥/, 2) if
I +my +nz'=p'....... N eparpaies (TH1),

* 1t is easy to shew that there are only two independent conditions, as is
geometrically obvious, for if the planes have two points in common they
must have a common line of intersection.
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Now if PL be the perpendicular from P on the plane (i),
and ON, ON’ the perpendiculars from the origin on the planes
(i) and (ii) respectively, then will

LP=NN'

Nt
=z’ + my + nz' —p.

Hence the length of the perpendicular from any point on
the plane lz + my +nz —p = 0 is obtained by substituting the
co-ordinates of the point in the expression lz + my + nz — p.

If the equation of the plane be Az + By + Cz+ D=0, it
may be written

“ B ¢
4/(A2+Bz+c*‘)w+V(A’+B”+O'Z)y+;\/(A"’JEBE+O”)z
D
@y

which is of the same form as (i); therefore the length of the
perpendicular from (2, 3, 2*) on the plane is
Ax’ + By' + C2' + D

Vi&+B+0Yy °

Exz. 1. Find the equation of the plane through (2, 8, — 1) parallel to the
plane 3x -4y +72=0. Ans. 3x—4y +T2+13=0.
Ex. 2. Find the equation of the plane through the origin and through
the intersection of the two planes 5x— 3y +2:+5=0 and 3z, 5y —2z-7=0.
Ans, Qx —23y+22=0.
Ex.3. Shew that the three planes 2z+5y+32=0, x-y+42=2, and
7y — 52+ 4 =0 intersect in a straight line.
Ex. 4. Shew that the four planes2x—3y +22=0,2+y - 32=4,8x -y +2=2,
and 7x - 5y + 62=1 meet in a point. '
«Ex.5. Shew that the four points (0,-1,-1) (4, 5, 1), (3, 9, 4) and
(-4 4,4)lieon a plane. s ;
Ex. 6. Are the points (4, 1, 2) and (2, 3, ~ 1) on the same or on opposite
sides of the plane 5z — Ty — 6z +3=0?
Ex. 7. Shew that the two points (1, -1, 3) and (3, 3, 3) are equidistant
from the plane 5z + 2y — 7z +9=0, and on opposite sides of it.
Ex. 8. Find the equations of the planes which bisect the angles between
the planes dz+ By + Cz+ D=0, and 4’2+ By + 0’2+ D'=0. :
e 4z+ By +Cz+D _ S A'z+ By+C'z+D
V{42+B2+0%) T T J(47+B7+C%)
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Ex, 9. The locus of a point, whose distances from two given planes are
J in a constant ratio, is a plane.

Ex.10. The locus of a point, which moves so that the sum of its distances
from any number of fixed planes is constant, is a plane.

21. The co-ordinates of any point on the line of intersection
of two planes will satisfy the equation of each of the planes.
Hence any two equations of the first degree represent a
straight line. We can find the equations of a straight line in
their simplest form in the following manner.

z

Y

Let PQ be the straight line, pg its projection on the plane
XOY by lines parallel to OZ. Then the co-ordinates z and y
of any point in PQ are the same as the co-ordinates  and y
of its projection in pg.

Hence if Iz +my =1 be the equation of pg, the co-ordi-
nates of any point on 1@ will satisty the equation

la+my=1.

Similarly, if the equation of the projection of PQ on the
plane YOZ be ny + pz =1, the co-ordinates of any point on
PQ will satisfy the equation ny+ pz=1. Hence the equations
of the line may be written

lz+my=1, ny+pz=1.

It should be noticed that the equations of a straight line
contain four independent constants.

The above equations are unsymmetrical and are not so
useful as another form of the equations which we proceed to

find.
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22. Let (o, B, ¢) be any point 4 on a straight line, and

(x, 4, 2z) any other point P on the line, at a distance r from
(a0, B, v); and let [, m, n be the direction-cosines of the line.

Z P

X
%

Draw through 4 and P planes parallel to the co-ordinate
planes so as to make a parallelopiped, and let AL, LM, MP
be edges of this parallelopiped parallel to the axes of z, y, 2
respectively. Then AL is the projection of AP on the axis
of z; therefore

z—a
x—a=1lr, or e
We have similarly
y—B Sk

z
P C=r,and — =7,
m n

Hence the equations of the line are
g—a_y—fB a—y

—_— =T,

! m n

4 Ex. 1. To find in a gymmetrical form the equations of the line of inter-
section of the planes 5z —4y =1, 3y - 52=2.

=5 2
X 5 L % = “—T’. Hence the direction-
cosines are proportional to 4, 5, 3. The actual values of the direction-

cosines are therefore 3 /2, $4/2, %v2.
¥ Ex.2 Findin a symmetrical form the equation of the line z-2y=35,

The equations may be written

3z+y-—"T2=0. Ans. } (x-5)=y=2z-1"%.
Ex. 3. Find the direction-cosines of the line whose equations are
z+y-2+1=0, de+y—22+2=0. A4ns, 4 4

V14’ yie’ yid©

Ex. 4. Write down the equation of the straight line through the point
(2, 8, 4) which is equally inclined to the axes. Ans, x-2=y-3=z-4.
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23. To find the equations of a straight line through two
given points.

Let the co-ordinates of the two given points AB be
@, Y, 2, and x, y,,2,; and let the co-ordinates of any point P
on the line 4 B'be x, y, z. 'Then the ratio of the projections
of APand AP on any axis is equal to AP : AB. Hence
the equations of the line are

ormde QU el o A
o=@ YUy HTH

24. To find the angle between two straight lines whose
direction-cosines are given.

Let I, m, n and I, m’, n’ be the direction-cosines of the
two lines, and let @ be the angle between them.

Let B,Q be any two points on the first line.

Draw planes through P, @ parallel to the co-ordinate
planes, and let PL, LM, MQ be edges of the parallelopiped
so formed. Then the projection of PQ on the second line is
equal1 to the sum of the projections of PL, LM, and MQ on
that line,

Hence PQcosO@=PL.U+LM.m'+ MQ.%',
But PL=1.PQ, LM=m.PQ, and MQ=n.DPQ;
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therefore cos @ = U’ + mm’ + nn'.
If the lines are at right angles we have
W+ mm' + nan =0,
If L, M, N are proportional to the direction-cosines of a
line, the actual direction-cosines will be
L M N
VA M+ N P+ M+ N P+ M LN
Hence the angle between two lines whose direction-cosines
are proportional to L, M, N and I/, M’, N respectively is
At LL + MM' + NN’
NELE+M+N) (L + M2+ N
The condition of perpendicularity is as before
LL' + MM 4+ NN'=0.

R e e L TR e S
Ex. 1. Shew that the lines I_2~1andl (s

Ex. 2. Shew that the line 4x=38y= -z is perpendicular to the line
3x=-y= -4z

are at right angles.

; ines P ¥ f ang T ¥ _1

Ezx. 3. Find the angle between the lines T an% e

"~ Ans. cosT1 fp.

7 Ex.4, Shew that the lines B8z+2y+z-5=0=z+y-2-3, and
8x—4y—42=0="Tx +10y - 8z are at right angles.

"7 Ex. 5. Find the acute angle between the lines whose direction-cosines are

g8 8 - IR V3 Ans. 600,

g3 g ond g

440 g
Ex. 6. Shew that the straight lines whose direction-cosines are given by
the equations 21+ 2m - n=0, and mn+nl+Im=0 are at right angles.
Eliminating I, we have 2mn—(m+n)(2m-n)=0, or 2m?—-mn-n?=0.
Hence, if the direction-cosines of the two lines be I, m;, n; and I, m,, n,, We
have ml—;n2= ~3%. Similarly 1%:%: -4 Hence the condition 04l,+mm,
+n,n,=(§ is satisfied. W%
~/  Ex.7. Find the angle between the two lines whose direction-cosines are

given by the equations I+ m+n=0, 24+ m2-n3=0. Ans. 60°.
Ex. 8. Find the equations of the straight lines which bisect the angles
between the lines S =7 =% and ﬁ:l, = i,
Il m n UV m =

Let P, Q be two points, one on each line, such that OP=0Q=r, Then
the co-ordinates of P are Ir, mr, nr, and of Q are I'r, m'r, n'r; hence the co-
ordinates of the middle point of PQ are §{(I+7)r, § (m+m)r, }(n+n)r. Since

CRRE(C %
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the middle point is on the bisector, the required equations are

T g i Y =l . f ;
P Tt Similarly the equations of the bisector of the

supplementary angle are ~ , = =
PP y ang -l m-w n-n"

25. By the preceding Article
: cos = U +mm' +nn';
therefore sin® =1 — (I +mm’ 4 nn')?
== (l’l+ m2+ nﬂ) (l'2+m’2+nlz)
=~ +mm + an')*;
therefore sin § =4/ { (mn' — m'n)’ + (nl' — n'l)’ + (Im’ — I'm)?}.

26. To find the angle between two planes whose equations
are given.

The angle between two planes is clearly equal to the
angle between two lines perpendicular to them. Now we
have seen [Art. 14] that the direction-cosines of the normal
to the plane

Az 4+ By + Cz+ D =0,

are proportional to 4, B, C. Hence by Article 24 the angle
between the planes whose equations are

Az+By+ Cz + D=0,
Az + By+ Cz+ D'=0,
. AA+BB+0C
A/(A2+B7+ OE)N/(A”'—{-B'?—{- sz)'
Ex.1. Find the equation of the plane containing the line z+y +2=1,
2z + 8y + 42 =5, and perpendicular to the plane z —y+2=0.
Ans. z-2+2=0.
Ex. 2. At what angle do the planes ¢ +y +2z=4, r—2y-2=4 cut? Isthe
origin in the acute angle or in the obtuse? Is the point (1,-8, 1) in the
acute angle or in the obtuse ? Ans. cos~'}4/2, acute, obtuse.

Ex. 3. Find the equation of the plane through (1, 4, 3) perpendicular
to the line of intersection of the planes 3z + 4y + 72+ 4=0,and z -y + 22+ 3=0;
also of the plane through (3, 1, — 1) perpendicular to the line of intersection
of the planes 83z +y —2=0, 5z - 3y + 22=0.

Ans, 16x+y~Tz42=0. Ans. z+11y+142=0.

1s cos

Ex. 4. Shew that the line ‘)-f= % = “’7 is parallel to the plane
le+my +nz+p=0 if IN+ mp +nv =0, the axes being rectangular or oblique.
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27. To find the perpendicular distance of a given point
Sfrom a given straight line.

Let the equations of the line be
r~a_y— B PE il |

l m n °
P P
Q
= Zi
M
/ 5

Va4

Let (£, g, %) be the given point P, and let PQ be the per-
pendicular from P on the line.

Let 4 be the point (a, B, v), and draw through 4 and P
planes parallel to the co-ordinate planes so as to form a
parallelopiped of which AL, LM, MP are edges parallel to
the axes.

Then 4@ is the projection of AP on the given line, and
is equal to the sum of the projections of AL, LM, and MP;
therefore AQ=(f—-a)l+(g—B)m + (h—q)n.

Hence PQ*=AP'—AQ?

=(f=a'+(g =B+ (h-n)’
- (f-a+mg-B +nt-}.

28. To find the condition that two lines ﬂa@;{z’ntersect.w
oo
94

Let the equations of the lines be
z—a_y—B_z—v «_y-B _z-9
l m m’ iR« 7V
If the lincs intersect they will lie on a plane; and, since
the plane passes through (@, B, ¢), we may take for its
equation
A@—a)+p@=-B)+rv(E—9)=0.wnuenee. (@).
2—2

A

, and m—l-,

5 og ¥

1y
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The point (o, B, ') is on the plane, hence we have
M@ —a)+p(B =B +r(y —9)=0.......... (ii).
Also, since the normal to the plane is perpendicular to
both lines, we have
MA4pm+on =0, cciiiiniinninnnn. (i),
and Mt pm +on =00iiiieiiiiiinenenen (iv).
Eliminating A, u, v from the equations (ii), (ii1) and (iv)
we have the required condition, namely
/ d—a,B-B9—-v |=0
Ui m: e

’ ’

V', m', n

If this condition be satisfied, by eliminating N\, g, » from
(1), (iv), (iii), we find for the equation of the plane through the
straight lines

Vv

z—a,y—pB,2—y |=0.
g G s N
BTy
If the equations of the lines be az + by +ee+d =0,
az+by+cz+d,=0 and ax+by+ce+d, =0, aw+by
+ ¢,z + d, =0, the condition of intersection of the lines is the
condition that the four planes may have a common point,
which is found at once by eliminating , ¥, 2.

29. To find the shortest distance between two straight
lines whose equations are given.

Let AKB and OLD be the given straight lines, and let
KL be a line which is perpendicular to both. Then KL is
the shortest distance between the given lines, for it is the
projection of the line joining any other two points on the
given lines™.

Let the equations of the given lines be

e, M R
l m n l m n

1 We can find KL by the following construction :—draw AF through 4
parallel to CD; let AP be perpendicular to the plane EAB, and let the
plane PAB cut CD in L; then if LK be drawn parallel to P4 it will be the
line required.
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Let the equations of the line on which the shortest
distance lies be

z—a y—B z—vy %
X =4 3 e TR @).
Since the line (i) meets the given lines, we have [Art. 28]
a—a, B=5b, y—c |=0 ..........(1I0),
lhigd m, n

A, Mo v

and a—a, B=b, y—¢ [=0........ (iit).
U4s m, n
A, p, v

Since (i) is perpendicular to the given lines, we have
A 4+ pm +vn =0,
and A+ pm o0’ =0;
A 7 v

therefore A = ;
mn' —m'n nl —w'l  Im' —1Im

Hence, from (ii) an& (iii), we see that (a, B, ), which is
an arbitrary point cn the shortest distance, is on the two
planes
‘ x—a, y—b, z—¢ =),

l, ] m, n
mn' —m'n, vl —n'l, lm' —I'm
and " x—a, y-=¥b, z-¢ |=0
"’ ’ ’
iy m n
mn' —m'n, ol —n'l, Ilm' —I'm

These planes therefore intersect in the line on which the
shortest distance lies.

We can find the length of the shortest distance from the
fact that it is the projection of the line joining the points
(a, b, ¢) and (a, V', ¢). Now the projection of this line on the
line whose direction-cosines are A, u, v is

(=) +O0-)p+(c=c)v
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But as above
A e B v 1
mn' —m'n ol =0l lm' —I'm’
therefore each fraction is equal to
1
Vi{(mn' —m'n)* + (nl’ — w'1)* + (Im’ — U'm)*}"
Hence the length of the shortest distance is
(@ —a')(mn’ —m'n) + (b b)Yl —n'l)+ (¢ —)(lm' - I'm)
V{(mn' —m/n)* + (nl’ — n'l)* + (Im’ — U'm)*} J

Ex. 1. Find the perpendicular distance of an angular point of a cube
from a diagonal which does not pass through that angular point.

Ans. a \/ g

Ex. 2. How far is the point (4, 1, 1) from the line of intersection of

r+y+z=4, x~2y-2=4? Ans. g.

Ex. 3. Shew that the two lines 2 -2=2y-6=387, 4r-11=4y-13=32

Tneetﬂm a point, and that the equation of the plane on which they lie is
2z_oy'_;_3_z+14=0.

Ex. 4. Find the tquation of the rlane through the point (o, 8, v), and

x-a y‘-\~£=z-’7

he i i o LA AR
through the line whose equations are 7 = T

2 — 0 lreea, Loy S| S
4ns, |d'—a, B -7 -v|=v
!, m , n
Ex. 5. The shortest distances between the diagonal of a rectangular
parallelopiped and the edges which it does not meet are
be ca ab

(B5e)’ V@+e)' V(@+t)'
where a, b, ¢ are the lengths of the edges.

Ex. 6. Find the shortest distance between the straight lines
i(x-1)=2(y-2)=2-8, and y - mx=2=0. e
m -—

ik A/(Bm*-16m+17)"

Ex. 7. Determine the length of the shortest distance between the lines
dr=3y=—z and 3 (¢-1)=-y-2=-4z+2. Find the equations of the
straight line of which the shortest distance forms a part. Ans. &.

30. If through any number of points, P, @, ... lines be
drawn either all through a fixed point, or all parallel to a
fixed line; and if these lines cut a fixed plane in the points
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P,Q, R...; then P, @, R... are called the projections of
P, @, R... on the plane. If the lines PP, QU, RR' ... are
all perpendicular to the fixed plane, the projection is said to
be orthogonal.

The orthogonal projection of a limited straight line on a
plane is the line joining the projections of its extremities.
It is easily seen that the projection of a line on a plane
is equal to its length multiplied by the cosine of the angle
between the line and the plane.

" 31, The orthogonal projection of amy plane area on
any other plane 1s found by multiplying the area by the
cosine of the angle between the planes.

Divide the given area into a very great number of
rectangles by two sets of lines parallel and perpendicular to
the line of 1intersection of the given plane and the plane of
projection. Then, those lines which are parallel to the line
of intersection are unaltered by projection, and those which
are perpendicular are diminished in the ratio 1 : cos 8, where
0 is the angle between the planes. Hence every rectangle,
and therefore the sum of any number of rectangles, is
diminished by projection in the ratio of 1:cosé. Bat,
when each of the rectangles is made indefinitely small, their
sum is equal to the given area. Hence any area is diminished
by projection in the ratio 1 : cos 6.

32. If we have more than one plane area, we must
make some convention as to the sign of the projection,
and we have the following definition: the algebraic pro-
jection of any face of a polyhedron on a fixed plane is
found by multiplying its area by the cosine of the angle
between the normal to the fixed plane and the normal
to the face, the normals to the faces being all drawn outwards
or all drawn inwards.

33. Let A be the area of any plane surface; [, m, n the
direction-cosines of the normal to the plane; A4, 4, A, the
projections of 4 on the co-ordinate planes. Then we have

A,=1. 4, A, =m. A, 4,=n.4.
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Hence, since Prm*+at=1,
we have AP+ A+ A7 =4"
Also the projection of A on any other plane, the direction-
cosines of whose normals are I, m’, n, is Acosf; and we
have

A cos 0= +mm' +nn) 4

= l’A:c + mIA’ + 'n'.A,.

Hence to find the projection of any plane area, or of the
sum of any plane areas, on any given plane, we may first
find the projections 4,, 4,, 4, on the co-ordinate planes,
and then take the sum of the projections of 4,, 4,, 4, on
the given plane.

34. To find the volume of a tetrahedron in terms of the
co-ordinates of s angular povnts.

Let the co-ordinates of the angular points of the tetra-
hedron ABCD be (z,, y,, 2,), (@, Yy» 2,), (2, Y, 2,), and (w,, y,, 2,).
The volume of a tetrahedron 1s one-third the area of the base
multiplied by the height. Now the equation of the face BUD is

z,y,2z,1|=0

x2 ’ yﬂ’ Z?’ 1

Zys Yss 245 1

w{’ y(’ zi’ 1

The perpendicular p from A on this is found by sub-

stituting the co-ordinates of 4 and dividing by the square
root of the sum of the squares of the coefticients of a, v,
and z.

Now the coefficients of z, y, z are

Yo 25 - Loy 2y 1| Ty Yp» 1
yn’ Zs’ 1 @y, ZS’ 1 ‘Ts’ Ys» 1
Ve 2o 1Y 4y epEa 2y Yo 1

respectively; and these coefficients are respectively equal
to twice the area of the projection of BCD on the planes
=0, y=0 and 2=0. Hence the square root of the sum
of the squares of the coefficients of #, ¥ and z is, by the
preceding Article, equal to 2 A BCD.
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Therefore 2p. ABCD=| @,, v,, 2, 1
‘1:2 ’ yﬁ ) Z? ’
xs k4 yﬂ ’ Z? »
w‘ 14 y-ﬂ > z4 ’

therefore volume of tetrahedron

= % x! ) yl » zl ’
w? P y? ) zﬂ ’
Tyy Ys» 25>
Ty Yur 24

bl

S S

35. The equations of two straight lines can be found in a
very simple form by a proper choice of axes.

Let O be the middle point of CC’, the shortest distance
between the two straight lines CD, C’D’. Through O draw
04, OB parallel to CD, C'D, and let OX, OY bisect
the angle 40B. Take 0X, OY, OC for axes of co-ordinates;
then, if AOD be 24, the equations of 04, OB are y =2 tana
z=0,and y=—atana,z=0.

Hence the equations of the parallel lines CD, C'D’ are
y=ztana,z=c; and y=—xtana, 2=—c.

When it is not of importance that the axes should be
rectangular, we may take Od4, OB, OC for axes: the equa-
tions of 0D, C"D' will thenbe y =0, z=c¢; and 2 =0, z=—c.
Also CC’" may be any straight line which intersects CD and
CD.
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. 86. Four given planes which have a common hne of
intersection cut any straight line in a range of constant cross
ratio. :

Let any two lines meet the planes in the points
P, Q, R, S and P, , R, 8 respectively. Let O, O be
any two points on the line of intersection of the given planes,
and let the line of intersection of the two planes OPQRS,
O P'Q R'S meet the four given planes in P, Q", R”, 8" respec-
tively. Then, from the pencil whose vertex is O, we have
{PQRS}={P"Q"R"S"}; and, from the pencil whose vertex is 0,
we have{P"Q"R"S"}={P'Q'R'S’}. Hence {P QRS}={P'Q RS},
which proves the proposition.

37. Der. Two systems of planes, each of which has
a common line of intersection, are said to be homographic
when every four constituents of the one, and the correspond-
ing four constituents of the other, have equal cross ratios.

An equivalent definition [see Conics, Art. 323] is the
following :—two systems of planes, each of which has a
common line of 1intersection, are said to be homographic
which are so connected that to each plane of the one system
corresponds one plane, and only one, of the other,

OBLIQUE AXES.

38. Some of the preceding investigations apply equally
whether the axes are rectangular or oblique. These may be
easily racognised. We proceed to consider some cases in
which the formulae for oblique and rectangular axes are
different.

39. Let P, Q be two points on a straight line, and
through P, @ draw planes parallel to the co-ordinate planes
so as to form a parallelopiped, and let PL, LK, KQ be
edges parallel to the axes. Then the ratios of PL, LK, KQ
to PQ are called the direction-ratios of the line PQ. It is
clear that the direction of a line is determined by its
direction-ratios.
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40. To find the angles a line makes with the axes of
co-ordinates, in terms of its direction-ratios.

N
@
M K
@] e

Let A, u, v be the angles YOZ, ZOX, XOY respectively.
Let I, m, n be the direction-ratios of the line P@), and let
a, B, v be the angles it makes with the axes. Let PL, LK,
K Q be parallel to the axes so that PL = 1. PQ, LK = m. PQ,
KQ=n.PQ, as in Art. 39. Then, since the projection of
P @ on the axis of « is equal to the projection of PLKQ,
we have

0z

PQcosa =PL+ LKcosv+KQcosp;

therefore cosa =1+ mcosv+ncospu.
Similarly cos B=1lcosv+m+ncos],
and cosy =1lcos u +mcosh + n.

41. To find the relation between the direction-ratios of a
line.

Project PL, LK, KQ on PQ), then we have

PLcosa+ LKcosB+ KQcos y=PQ;
therefore from Art. 40,
I(l+mecosv+ncospu)+m (lcosy+m+ncosh)
+n(lcosp+mecosh+n)=1

or 4 m*+ n® + 2mn cos N + 2nl cos p + 2lm cos v=1...(i),
which is the required relation.
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Let the co-ordinates of the points P, ) be
Ty Yo % and gy Yor 2o

Then  1.PQ=PL==,~z, m.PQ=LK=y,~y,
and n.PQ=KQ=2—2,.

Hence from (i) we have
PQ*= (x, — x1)2+ (yz = y1)2 + (Ze n zx)a +2 <yz o) (ZQ—Z‘)COS A
+2(2,—2,)(x,—z)cospu+2(x, — ) (y,~¥,) cCoS v...... (ii),
which gives the distance between two points in terms of their
oblique co-ordinates.

42. Tbo find the angle between two lines whose direction-
ratios are given.

Let I, m, n and I', @/, ' be the direction-ratios of the
lines P @ and P'Q), and let 8 be the angle between them.
Let PL, LK, K() be parallel to the axes, so that
PL=1.PQ, LK=m.PQ, and KQ=n.PQ.
Project PQ and PLKQ on the line P'Q)’; then
PQcos=1PQ.cosa +m PQ.cos B +nPQ.cosy,
where o, B, ' are the angles the line P'Q’ makes with the
axes. Hence, from Art. 40, we have
cos@=1 (I' +m' cosv +n cos p)
+m (I cosv+m' + n'cos)
+n (U'cosp +m cosh +n')
=U +mm' + an' + (mn'+ m'n) cos A + (nl +n'l) cos p
+ (Im’ -+ Im) cos v.

43. To find the volume of a tetrahedron tn terms of three
edges which meet in a point and of the angles they make with
one another.

Take the axes along the three edges, and let a, b, ¢
be the lengths of the edges, and A, u, v the angles they make
with one another. Then

Volume = } abe sin v cos 8,
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where 0 is the angle between 0Z and the normal to the
plane XOY.

Let the direction-ratios of the normal to the plane X0V
be [, m, n. Then from Art. 40 we have

l+mcosv+4ncosu=0,
lcosv+m+ncosh =0,
lcosp+ mcos A+ n=cos 6.
Multiply by , m, n and add, then, from (i) Art 41,
ncos =1,

The elimination of /, m, » from the above equations gives

1, cosv, cosp, O |=0;
cosv, 1, cosAr, O
cosp, cosh, 1, cosd
0, 0, cosf, 1
therefore sin*vcos’@=| 1, coswv, cospu

cosv, 1, cosAl
cosp, cosr, 1

=1 —cos* A — cos’ uw — cos® v + 2 cos A cos u cos .

Hence the volume required
= }abc 4/ (1 —cos® N — cos” s — cos’ v + 2 cos A cos u cos v).

TRANSFORMATION OF CO-ORDINATES.

44. To change the origin of co-ordinates without changing
the direction of the axes.

Let £, g, kb be the co-ordinates of the new origin referred
to the original axes. Let P be any point whose co-ordinates
referred to the original axes are , ¥, 2, and refex:red to the
new axes «, i/, 2. Let PL be parallel to the axis of and
let it meet YOZ in L, and Y'0Z in L.
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Then LP=g I/'P=4;
therefore e—z' =LL =f.
Similarly y—y =g,
and z—2 =h

Hence, if in the equation of any surface we write 2+ f,
y+g, z+h for x, y, z respectively, we obtain the equation
referred to the point (f; g, k) as origin.

45. To change the direction of the axes without changing
the origin, both systems being rectangular.

Let I, m,, n; 1, m, n,; and l, m, n, be the direction-

cosines of the new axes referred to the old.

Y/

Let P be any point whose co-ordinates in the two systems
are, y,zand &, ¥/, 2.

Draw PL perpendicular to the plane X' OY” and LM per-
pendicular to OX'; then OM =«', ML=y, and LP= 2.

Since the projection of OP on OX is equal to the sum of
the projections of OM, ML and LP, we have
x=la+0y +1,7.
Similarly y=m, & +m,y +m,z,
and z=nx +ny +n,2.
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These are the formulae required.
Since l,, m,, n, ; l,, m,, n,; and I, m,, n, are direction-cosines,
we have
IP4+mp?+n’=1
12:+m2:+ng:=1 .
I 4m)+n'=1
Also, since 0X', 0Y', 0Z are two and two at right
angles, we have
Ll +mm, + nm =0,
Ll +mgm, + np, =0,
and L, + mm,+nmn, =0
The six relations between the nine direction-cosines which
we have found above are equivalent to the following :
I} +1 +1} =1,
m?+m}+mr=1,
n' +n? +a’ =1,
mn, + myn, + mmn, =0,
nl, +nl, +nl =0,
Im, +lm, + lm, =0,
This follows at once from the fact that I, [, I

. . . b 8;
m,, m,, m,; and n, n, n, are the direction-cosines of

0X, 0Y, OZ referred to the rectangular axes 0X’, 0Y’, 0Z.

46. Since
LL+mm, +nn,=0,
and Ll +mm,+nn, =0,
we have

l

1 s m, = n
% e (]
MMy — Mgh, nzla o nsl: lams ni lam‘.'

Hence each fraction is equal to
v +m +n’)

‘\/{(7)@2’17/a - Yl‘tﬂng)2 fe (n’la — nslg)‘l AL (l,ms = lsmg)z} =41 [A!‘t. 25.]
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o
(S

Also Gty )
l? ’ mﬁ’ n2
b, my, n,

=l (mmn,— mmn)+m, (nt, —nd,)+nlm, —lm,)
=k (l12+m12+ 7712) =+1.

47. Ifin Art. 45 the new axes are oblique we still have
the relations
e= 1 + Ly + 12,
y=max +my +mg,
z=nx +ny +ng.
We can deduce the values of &', 4/, 2/ in terms of x, y, 2:
the results are

r 1
21 b, &, L=l b A&
m,, m,, m, my, My, Y|
Do hp @ T o et

and two similar equations.

48. The degree of an equation is unaltered by any trans-
Jformation of awes.

From the preceding Articles we see that, however the
axes may be changed, the new equation is obtained by sub-
stituting for «, y, z expressions of the form lx +my+nz+p.

These expressions are of the first degree, and therefore if
they replace #, ¥, and z in the equation, the degree of the
equation will not be raised. Neither can the degree of the
equation be lowered; for, if it were, by returning to the
original axes, and therefore to the original equation, the
degree would be raised.

49. We shall conclude this chapter by the solution of
some examples.

(1) 4 line of constant length has its extremities on two fized straight lines;
shew that the locus of its middle point is an ellipse.

If we take the axes of co-ordinates as in Art. 35, the equations of the lines
will be y=ma, z=c; and y=-mz, z=—c. Let the co-ordinates of the
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extremities of the line in any one of its possible positions be x;, ¥, 2, and
Xy Yoy %95 and let (z, y, 2) be the co-ordinates of the middle point of the lins,
Then, if 2 be the length of the line, we have
4P = () — 2,)° + (43 - Yo)* + (2, ~ 29)%.
But, since y, =mz, and z;=c, and y,= —max, z,= -, we have
1 .
Ty = Ta=(h+ys)=—,
Y1~ Yg=m () + x5) = 2ma,
2 —2,=2¢, and 2z=2,+2,=0.
Hence the locus of the middle point is the ellipse whose equations are
2
2=0, l2=2§+m‘3x5+cﬂ.
m

(2) 4 line moves so as always to intersect three given straight lines,
which are not all parallel to the same plane; find the equation of the
surface generated by the straight line.

Draw through each of the lines planes parallel to the other two; a
parallelopiped is thus formed of which the given lines are edges. Take the
centre of the parallelopiped for origin, and axes parallel to the edges, then
the equations of the given lines are y=b, 2= —-c¢; z2=c, 2=—a; and z=aq,
y= — b respectively.

Let the equations of the moving line be
z—a_y-8 _z-7
T T m n
Since this meets each of the given lines we have
b-8 -¢-y ¢-y_ -a-a
W D e R

a-a —-b-
) a.nd—l—=» " E

Hence, by multiplying corresponding members of the three equations, we
see that (a, 8, v), an arbitrary point on the moving line, is on the surface
whose equation is i

(a-2)(b-9) (c—2)+(a+2) (b+Y) (c+2)=0,
or Yo B Wageo,
be " ca ab

(8) The lines of intersection of corresponding planes of two homographic
systems describe a surface of the second degree.

We may take y =ma, z=c¢, and y= —mew, 2= —c for the equations of the
lines of intersection of the two systems of planes [see Art. 35.]

Let the equations of corresponding planes of the two systems be
Yy -mz+A(z-c)=0,
and y+mz+N (z24¢)=0.

Since the systems are homographic there is one value of N’ for every value of
A, and one value of  for every value of N'; hence A, N’ must be connected by

a relation of the form
M+ AN+ BX + 0=0.
8. 8. G. 3
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Substitute for A and X’, and we have
y2-maz?— 4 (z+c¢) (y —max) - B (2 —c) (y + mx)+ C (22~ ¢} =0.

Hence the line of intersection of corresponding planes describes a surface of
the second degree.

ExampLes oN Cuaprer IT.

XA 1. Tr P be a fixed point on a straight line through the origin
equally inclined to the three axes of co-ordinates, any plane
through /> will intercept lengths on the co-ordinate axes the sum of
whose reciprocals is constant,

2. Shew that the six planes, each passing through one edge
‘of a tetrahedron and bisecting the opposite edge, meet in a point.

3. Through the middle point of every edge of a tetrahedron
a plane is drawn perpendicular to the opposite edge; shew that
the six planes so drawn will meet in a point such that the
centroid of the tetrahedron is midway between it and the centre
of the circumscribing sphere.

i 7\ 4, The equation of the plane through _“lf = % = %, and which
is perpendicular to the plane containing 2 = %: 7 and $= T fn

isx(m-n)+ym-0)+2(-m)=0.
I 7\5 Shew that the straight lines

oyl ey RN o R o e R

;=B=;/’E—z:x BRIy R T

will lie in one plane, if
/] m n
~(b-c)+ (c—a)+~(a—-0)=0.
o=+ -0+ @

6. Two systems of rectangular axes have the same origin; if
a’plane cut them at distances a, b, ¢, and @, ¥, ¢’ from the origin,
then
| PRVIE R [ )

e
c! a/ﬂ blﬁ 0,24

§N| —
Sl
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7. Determine the locus of a point which moves so as always
to be equally distant from two given straight lines.

v ?é Through two straight lines given in space two planes are
drawn at right angles to one another; find the locus of their line
of intersection,

9. A line of constant length has its extremities on two given
straight lines ; find the equation of the surface generated by it,
and shew that any point in the line describes an ellipse.

10. Shew that the two straight lines represented by the
equations ax + by + ¢z =0, yz + zx + 2y =0 will be perpendicular if

i 1N
E = Z + E =0.
11. Find the plane on which the area of the projection of the
hexagon, formed by six edges of a cube which do not meet a given

diagonal, is a maximum,
; 2{2. Prove that the four planes
my +nz=0, nz+lx=0, lx+my=0, lx+my+nz=p,
3

form a tetrahedron whose volume is —21)— 5
3lmn

13. Find the surface generated by a straight line which is
parallel to a fixed plane and meets two given straight lines.

14. A straight line meets two given straight lines and makes
the same angle with both of them; find the surface which it
generates,

15. Any two finite straight lines are divided in the same
ratio by a straight line ; find the equation of the surface which it
generates,

\1 16. A straight line always parallel to the plane of yz passes
through the curves a*+y°=a’, 2=0, and 2*=az, y=0; prove
that the equation of the surface generated is

'y’ = (of — az)® (o’ — &F).

17. Three straight lines mutually at right angles meet in a
point P, and two of them intersect the axes of x and ¥ respec-
tively, while the third passes through a fixed point (0, 0, ¢) on the
axis of z Shew that the equation of the locus of P is

af +y° +2° = ez

3—2
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18. Find the surface generated by a straight line which meets

y=mx, 2=¢; y=-mx, z=—c¢; and ' +2'=¢", x=0.

19. P, P are points on two fixed non-intersecting straight
lines 4 B, 4B’ such that the rectangle AP, A'P' is constant. Find
the surface generated by the line 2/,

XO. Find the condition that
v ax® + by’ + ¢z’ + 2a’yz + 20’z + 2’xy =0

may represent a pair of planes ; and supposing it satisfied, if 6 be
the angle between the planes, prove that

2Ja" +b2+c*—be—ca—ab
a+b+ec i

tan 0 =

(\ 91. Find the volume of the tetrahedron formed by planes
whose equations are y +2=0, 2 +2=0, x+y=0, and z+y +2= 1k

29. Find the volume of a tetrahedron, having given the
equations of its plane faces.

93, Shew that the sum of the projections of the faces of a
closed polyhedron on any plane is zero.

924. Find the co-ordinates of the centre of the sphere in-
seribed in the tetraliedron formed by the planes whose equations
arex=0,y=0,2z=0ond z+y+2=1

95. Find the co-ordinates of the centre of the sphere in-
seribed in the tetrahedron formed by the planes whose equations
are y +2=0,2+2=0,z+y=0,and z+y +2=a.



CHAPTER 111,
SURFACES OF THE SECOND DEGREE.

50. The most general equation of the second degree, viz.
ax® + by’ + ¢2* + 2fyz + 2927 + 2hwy + 2ux+ 2vy + 2wz + d =0,
contains ten constants. But, since we may multiply or divide
the equation by any constant quantity without altering the
relation between «, y, and z which 1t indicates, there are
really only nine constants which are fixed for any particular
surface, viz. the nine ratios of the ten constants a, b, ¢, &c. to
one another, A surface of the second degree can therefore
be made to satisfy nine conditions and no more. The nine
conditions which a surface of the second degree can satisfy
must be such that each gives rise to one relation among the
constants, as, for instance, the condition of passing through a
given point. Such conditions as give two or more relations.
between the constants must be reckoned as two or more of
the nine.

We shall throughout the present chapter assume that the
equation of the second degree is of the above form, unless it
is otherwise expressed. The left-hand side of the equation
will be sometimes denoted by F (z, vy, 2).

51. 7o find the points where a given straight line cuts
the surface represented by the general equation of the second
degree.
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Let the equations of the straight line be

w—a=y——,8=z—fy

=1
/A m n

To find the points common to this line and the surface,
we have the equation
a (x4 ) +b(B+mr)*+c(y+nr) + 2f (B+ mr)(y +nr)
+29 (v 4 mr)(a+ i) + 2h (a + ) (B + mr) + 2u (2 + Ir)

+ 20 (B+mr) + 2w (y +nr) + d =0,
or

dF dF K dF
2 2 g 2 o A et |
2 (al’+bm’+ on+ 2fmn + 2gnl+ 2hlm) 41 {l da +mdﬂ+nd7 }
+F(a, B v)=0...cc.0n.es ().

Since this is a quadratic equation, any straight line meets
the surface in two points.

Hence all straight lines which lie in any particular plane
meet the surface in two points. So that, all plane sections of
a surface of the second degree are conics.

In what follows surfaces of the second degree will/
generally be called conicoids.

52. To find the equation of the tangent plane at any
point of a conicotd. ‘
If (a; B, v) be a point on F(z, y, 2)=0, one root of
the equation found in the preceding Article will be zero.
Two roots will be zero if [, m, n satisty the relation
@l 1@t sadif s o\
l%'””?z‘é +n o SO St ()L

The line 2% Wt P Ll will in that case be a
{ m n

tangent line to the surface, the point of contact being (a, B, 7).

If we eliminate I, m, n between the equations of the line,
and the equation (i), we see that all the tangent lines lie in
the plane whose equation is

ar ar dF M
(x—-a) ;i:; + (y—B) El?g-i-(z—"y) —L“Z;:O(ll)
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This plane is called the tangent plane at the point (a, B, ¥)-

If we write the equation (ii) in full, we obtain
w(aa+hB+gy+u)+y (ha+bB+fy+v)+z (g2 +fB+ey+w)
= ad® + bB* + ¢y + 2fBry + 29v2 + 2haB + ua +vB + wy.
Add ua + vB +wy+d to both sides, then the right side
becomes F'(a, 3, ), which is zero; we thercfore have for the
equation of the tangent plave at (, 8, )

©x(aa+hB+gy+u)ty (hx+ 0B+ fy+v)+2(ga + /B +cy +w)

+ua + B8 +wy + d = 0...(i1).
* Ex.1. Find the equation of the tangent plane at the point (', 7', Z) on

the surface az?+by®+cz?+d=0. Ans. a/x +by'y +c2'z+d=0.
! Hx, 2. Tind the equation of the tangent plane at the point (', ¥', 2') on
the surface az®+by?+2z=0. Ans. ax'x +by'y +2+2=0.

53. The condition that the tangent plane at (z, 3, )
may pass through a particular point (', ¥/, 2') is
Z (aa+hB +g«y+u)+y'(h1+b,3+fry+v)+z'(ga+fB+cry+w) .
+ur+oB+wy+d=0.
This condition is equivalent to
a(ax’ +hy' +92'+u) +B (ha' + by +1Z +v) + (92 +fy +c+w)
- +ud’ +vy +wd +d=0.
From the last equation we see that all the points, the -
tangent planes at which pass through the particular point
(', y', Z), lie on a plane, namely on the plane whose equation
is
@ (ad’ +hy' + g2’ +u) +y (ha' + by +f7 +v)
+z(gm’+fy'+cz’+w)+uw’+vy’+wz’+d=0.
This plane is called the polar plane of the point (&, ¥, ).
The polar plane of any point P cuts the surface in a conic,
and the line joining P to any point on this conic is a tangent
line. The assemblage of such lines forms a cone, which is
called the tangent cone from P to the conicoid.
The equation of the polar plane of the origin, found by
putting @’ =y’ =2z' =0 in the above, is
ux+ vy + wz+d =0.
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54. The condition that the polar plane of (#, 7/, z) may v
pass through («, 8, ) is as above

a(ax’+hy + 92"+ u) + B (ha’ + by +f2' +v)
' +oy (g2 +fy' +cZ +w)+ur' + vy +w'+d=0.¢
This equation is unaltered if we interchange a and #/,
B and ¥/, and  and 2" ; it therefore follows that if the polar
plane of any point P with respect to a conicoid pass through
a point ¢), then will the polar plane of @ pass through P.

55. Let B be any point on the line of intersection of the
polar planes of P, Q.

Then, since R is on the polar plane of P and also on the
polar plane of @, the polar plane of R will pass through P
and through @), and therefore through the line PQ. Similarly
the polar plane of S, any other point on the line of inter-
section, will pass through the line PQ.

Two lines which are such that the polar plane with
respect to a conicoid of any point on the one passes through
the other, are called polar lines, or conjugate lines.

56. If any chord of a conicord be drawn through a point
O it will be cut harmonically by the surface and the polar
plane of O.

Take the point O for origin, and let the surface be given
by the general equation of the second degree.

Let the equations of any line, which cuts the surface in
L, @ and the polar plane of O in R, be

& Y z

To find the points where the line cuts the surface we have,
as in Art. 51, the quadratic equation
7 (al* 4 bne* + cn® + 2fmn + 2gnl + 2hlm)
+ 2r (ul + vm + wn) + d=0.
il 1
or ™t og”
The equation of the polar plane of O is
uw+ vy +wz+d=0.

Hence - (% (ul +vim + wn).
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1 1
Hence e (wl+vm + wn);
1 1 2
therefore UP+ 00 =0k’

which proves the proposition.

57. To find the condition that a given plane may touch
a conicoid.
Let the equation of the given plane be
lxt+my+nz4+p=0 .ooveeverunna. @. -~
The tangent plane at (¢, ¢/, #) is
z(aa’ + hy + g2’ +u)+ y (ha' + by + 7z + v) ;
+2(92 +fy +cd +w)+ud' vy +wd +d=0......30)."
If the planes represented by (i) and (ii) are the same we

bhave _ .
ax' + hy + 92 +u _ha' +by' +f2 tv_g¥+fy +ci +w
l 2 m it

n
_ud oy +wd+d g
Z .
Put each fraction equal to —\; then we have
ar’ +hy' + gz +u+1 1 =0,
ha! + by +fZ +v+Am=0,
97 +fy + e +w+ A n=0,
ux' +vy +wz'+d+rAp =0.
Also, since (&, ¥/, ) is on the given plane, -
l + my +nd +p=0.
Eliminating «/, 3/, 2, N, we obtain the required condition,
namely -

a, h, g, u, 1l =0

g WIS i vy i

GoR Thod @i

w, v, w, d, p

IR ) ) i
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The determinant when expanded is
AP+ Bm'+ On* + Dp* + 2 Fimn + 2 Gl + 2 Him
+2 Ulp+2Vmp +2Wnp =0,
where 4, B, C, &e. are the co-factors of a, b, ¢, &c. in the
determinant

@, b gt sl
by Wy 15 05
g, [, ¢, w

w, v, w, d
We will give special investigations in the two following
cases which are of great importance:
I. Let the equation of the surface be
‘ ax’+by*+ e +d =0,
The tangent plane at any point (#, ¢/, ") is .
ar'z+by'y+ciz4+d=0. .
Hence, comparing this equation with the given equation
lz+my+nz+p=0,

we have &5 = s : . Each fraction is equal to
l m n P

N(ax® + by + ¢+ d) |

\/(V’“ b2+ +2€z)

hence, since ax® +by* +c*+d=0,
the required condition of tangency is

II. Let the equation of the surface be
az’® +by" + 22 =0.
The tangent plane at any point (¢, ¥/, 2') is
ax'z+by'y +2+2 =0.
Hence, comparing this equation with the given equation
lx+my+nz+p=0,
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we have &% = o filiv L . Each fraction is equal to
I m n p
W (az® +b J" + 22')
ll ,
\/ ( + —b— IS 2np)
hence, since ar’” + by'* + 22 =0,

the required condition of tangency is
2 )
l—+ "lf + 2np =0,
58. If we find, as in Article 51, the quadratic equation
giving the segments of a chord through (=, B, ) the roots of
the equation will be equal and opposite, if

ar  dF dF :
Vgt gt gy = 0 e i)

In this case (a, B, fy) will be the mlddle point of the chord.
Hence an infinite number of chords of the conicoid have the
point (a, B, ) for their middle point.

If we eliminate /, m, n between the equations of the
chord and (i), we see ‘that all such chords are in the plane
whose equation is

(w—a)ag’i‘(ﬂl‘ﬁ)%g#- (z—ry)%g=0 e (i

Hence (a, B3, ) is the centre of the conic in which (ii) meets
the surface.

This result should be compared with that obtained in
Art. 52.

Ex. 1. The locus of the centre of all plane sections of a conicoid which
pass through a fixed point is a conicoid,

The equation of the locus is (f-=) %-i-(g y) +(h z) —_0, where
Jy 9, I are the co-ordinates of the fixed point.

‘/ Ex. 2. The locus of the centre of parallel sections of a conicoid is a
straight line.
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The section whose centre is (a, 8, y) is parallel to the given plane
lz+my+nz=0 if

dF dF dF
da, _d,B_d‘y
T m=

Hence the locus is the straight line whose equations are
1 dF _ 1 dF 1y 1dF

Tde mdy ndz’
The straight lines clearly all pass through the point of intersection of the
dF

59. To find the locus of the middle points of a system of
parallel chords of a conicoid.

As in the preceding Article, (a, B, ) will be the middle
point of the chord whose direction-cosines are I, m, n, if

dr dr  dF
Hence the locus of the middle points of all chords whose
direction-cosines are [, m, n is the plane whose equation is
dr dr  dr
ld~x+ sz —|—1LJ— 0.
Def. The locus of the middle points of a system of parallel
chords of a conicoid is called the diametral plane.
If the plane be perpendicular to the chords it bisects, it is
called a prencipal plane.

60. 7o find the equations of the principal planes of a
conrcord.
The diametral plane of the chords whose direction-cosines
are I, m, n is
ar dF dr v

lgx_i_ + dz =0,

or, writing the equation in full
l(ax+hy+gz+u) +m (he + by + f2 +v)
+n (g2 + fy + cz +w) =0,

or x (al + hm +gn) +y (hl+ bm + fr) + 2 (9L + fin +cn)
+ul+vm +wn =0,
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If this plane be perpendicular to the chords it bisects,
we have
al+hm+gn _ hl+bm+fn _gl+fmten _1\
l % m 7 n ;e

Put A for the common value of these fractions, then

(@a—n)1 + hm +gn =0,
B +(G-N)m+fn =0, puusre o (1):
gl +fm +(c=A)n=0.
Elinrinating I, m, n we have
a—X, k, g =10}
h, b=\, f

9 5 ec—=
or N—(a+b4+c)N+(bet+catab—f—g" =)\
: ~ (abe + 2fgh — c;f *—bg* —ch®) = 0.
This is a cubic equation for determining X ; and when \ is
determined, any two of the three equations (i) will give the
corresponding values of I, m, n.

Since one root of a cubic is always real, it follows that
there is always one principal plane.

. Find the principal planes of the following surfaces:
(i) 234y? - 22+ 29z + 2~ 20y =a?.
ot () 112%+10y2+622—8yz + dzx — 122y =1.
Ans, () z+y+2=0,2-y=0,x+y-22=0. ~
Ans. (ii) z+2y+2:¢=0, 20 +y—2:=0, 202y +2=0. —

61. All parallel plane sections of a conicoid are similar
and ssmilarly situated contcs.

Change the axes of co-ordinates in such a way that the
plane of «y may be one of the system of parallel planes; and
let the equation of the surface be the general equation of the
second degree.

Let the equation of any one of the planes be z=Fk. At
all points of the section of the surface ¥ (w, y, 2) =0, by the

o Rai e
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plane z==% both these relations arc satisfied; we therefore
have :

az® + by’ + ¢k + 2fyk + 29k + 2hzy + 2ux + 20y
+2wk+d=0..cc0c..c... Q).

Now the equation (i) represents a cylinder whose gene-
rating lines are parallel to the axis of z, and which is cut by
the plane z=0 in the curve represented by (i).

Since parallel sections of a cylinder are similar and simi-
larly situated curves, the section of the surface 7'(z, y, 2) = 0
by z=Fk is similar to the conic represented by (i) and z=0;
and all such conics, for different values of %, are clearly
similar and similarly situated : this proves the proposition.

CLASSIFICATION OoF CONICOIDS.

62. We proceed to find the nature of the different
surfaces whose equations are of the second degree ; and we will
first shew that we can always change the directions of the
axes of co-ordinates in such a way that the coefficients of yz,
2z, and @y in the transformed equation are all zero.

63. We have seen [Art. 60] that there is at least one
diametral plane which is perpendicular to the chords it

bisects.
Take this plane for the plane z=0 in a new system of co-

ordinates.
The degree of the equation of the surface will not be altered

by the transformation ; hence the equation will be of the form
az® + by* + c2* + 2fyz + 292@ + 2hay + 2uz + 2vy + 2wz +d = 0.

By supposition the plane z =0 bisects all chords parallel
to the axis of z; therefore if (2, ¥/, 2') be any point on the
surface, the point («, y’,—2) will also be on the surface.

From this we see at once that f=g=w=0.
2R
Now turn the axes through an angle } tan ‘;_-—Z, then

[See Conies, Art. 167] the term involving zy will disappear.
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Hence we have reduced the equation to a form in which the
terms yz, 2z, and ay are all absent.

64. When the terms yz, zz, ay are all absent from the
equation of a conicoid, it follows from Art. 60 that the co-ordi-
nate planes are all parallel to principal planes. Hence by
the preceding article, there are always three principal
planes, which are two and two at right angles. This shews.
that all the roots of the cubic equation found in Art. 60 are real.

For an algebraical proof of this important theorem see
Todhunter’s Theory of Equations.

65. We have seen that the general equation of the second
degree can in all cases be reduced to the form

Az + By*+ 02+ 2Ux+ 2Vy + 2Wz + D =0.

I. Let A4, B, C be all finite.
We can then write the equation

A (w + Q)“+ B(y L K>2+ C'(z 5 V—VY

A B C
v e we ey
Hence, by a change of origin, we have
Ax+ By’ + C2"= D,
If D' be not zero we have
2 2 2
P BEEC
which we can write in the form
mﬁ o z2
"ZQ T %*2 ? = 1 .................. (a),
' @ ¥ 2
or 2T R 3= ) ey Doy R B),
’ 2t
or E“—%:—c—"=l .................. ),
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i D DD it 4
according as A’ B O e all positive, two positive and
one negative, or one positive and two negative. [If all three
are negative the surface is clearly imaginary.]

If D' be zero, we have

A2+ By + C*=0 .......cue.e.n. (3).

II. Let C, any one of the three coefficients 4, B, C, be
Z€ro.

Write the equation in the form

U\* I il
4 (“Z) +B(y+§) +2Ws 4 D=~ =0;
then, if W be not zero, the equation can, by a change of origin
be reduced to

2

Ax*+ By +2Wz=0 ............... ().
If W be zero, we have the form
A+ By +D' =0 ..c.ooveininnn. (&
or, if IV be zero, the form
A F B =0-5i00cneinissenes (n)

ITI. Let B, C, two of the three coefficients, be zero.
We then have

U? U?
4 (x+2) +2Vy+2We+ D =0,

2
J, Now take 2 Vy+2Wz+D-—¥f=O for the plane y =0, and

~ the equation reduces to the form

G0 i acoa0bs0tdanodteonmates @. .
If however V'= W =0, the equation is equivalent to
2 S AP AST oo (¢)

66. We now proceed to consider the nature of the
surfaces whose equations are (a), (8),.....(«) ; to one of which
forms we have seen that the general equation is reducible.
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The surface whose equation is
wﬂ 1 2 Z2
2Tt esl
is called an ellipsoid.

Let a, b, ¢ be in descending order of maguitude; then

(#, y, =) being any point on the surface, we have
£t 2P
etatatl
wz 2 ZZ

and ?+%+E<tl'

So that no point on the surface is at a distance from the
origin greater than a, or less than ¢. The surface is therefore
limited in every direction; and, since all plane sections of a
conicoid are conics, it follows that all plane sections of an
ellipsoid are ellipses.

The surface is clearly symmetrical about each of the co-
ordinate planes.

If » be the length of a semi-diameter whose direction-
cosines are [, m, n, we have the relation

WS

Pt

If two of the coefficients are equal, b and ¢ suppose,
the section by the plane =0, and theréfore [Art. 61]
by any plane parallel to #=0, is a circle. Hence the
surface is that formed by the revolution of the ellipse

2 2
g; + %,= 1 about the axis of &. '

The surface formed by the revolution of an ellipse about
its major axis is called a prolate spheroid ; that formed by
the revolution about the minor axis is called an oblate
spheroid.

If @ =b=c the equation of the surface is 2*+y* + 2* =@’
which from Art. 5 represents a sphere.

S. 8. G. 4
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67. The surface whose equation is
2

&£ p 2
Sf-5-1

is called an hyperboloid of one sheet.
The intercepts on the axes of « and y are real, and those

on the axis of z are imaginary.
The surface is clearly symmetrical about each of the co-

ordinate planes.
The sections by the planes =0 and y = 0 are hyperbolas,

and that by z=0 is an ellipse.

The section by z=Fk is also an ellipse, the projection of
2 2 2

which on 2=0 is Ez-}-%:l +§2 , and the section becomes

greater and greater as k& becomes greater and greater.

§

If @ =10, the section of the surface by any plane parallel
to z = 0 is a circle. Hence the surface is that formed by the
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2 Z2

revolution of the hyperbola '%2—— AT 1 about its conjugate

axis.
The figure shews the nature of the surface,

68. The surface whose equation is

xﬂ yZ 22 ' 1
a2 b2 2 »

is called an hyperboloid of two sheets.

The intercepts on the axis of & are real, those on the othe:
two axes are imaginary.

8 lThe sections by the planes y =0 and z=0 are hyper-
olas.

The section by the plane @ = 0 is imaginary. The parallel
plane @ =k does not meet the surface in real points unless
K >da’ If k*> o’ the section is an ellipse the axes of which
become greater and greater as k becomes greater and greater.
The surface therefore consists of two detached portions as in
the figure,

zZ

If b=c, the section by any plane parallel to =0 is

a circle. Hence the surface is that formed by the revolution
2 2

of the hyperbola g‘* - ‘1{).; =1 about its transverse axis.

69. The surface whose equation is da® + By* + (2'=0 is
a cone.
4—2
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A cone is a surface generated by straight lines which
always pass through a fixed point, and which obey some other
law. The lines are called geucrating lines, and the fixed
point through which they pass is called the vertex of the
cone.

If the vertex of a cone be taken as origin, the equation
of the surface is honogeneous. This follows at once from the
consideration that if (z, y, 2) be any point P on the surface,
any other point (kz, ky, kz) on the line OP is also on the
surface.

Conversely any homogeneous equation represents a cone
whose vertex is the origin of co-ordinates. For, if the values
z, ¥, 2, satisfy a homogeneous equation, so also will kz, ky,
kz, whatever the value of £ may be. Hence the line through
the origin and any point .on the surface lies wholly on the
surface.

The general equation of a cone of the second degree, or
quadric cone, referred to its vertex as origin is therefore

uz® +by® + ¢z’ + 2fyz + 29z + 2hay = 0.

70. If r be the length of the semi-diameter of the
surface ax’ + by’ + ¢2* = 1, we have the relation

}‘5= al> + bm® + en’.

Hence the direction-cosines of the lines which meet the
surface at an infinite distance satisfy the relation
al’ + bm* + en*=0.
Such lines are therefore generating lines of the cone
ax’® + by + ¢ =0.
This cone is called the asymptotic cone of the surface,

71. The equation Az*+ By*+2Wz=0 is equivalent to
v} 2 2 2
?z‘ + El/— =2z, or :cT - ‘%,» = 2z, according as the signs of 4 and B

arc alike or different,
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The surface whose equation is
w’ yZ *
R da 2z,
is called an elliptic paraboloid.

The sections by the planes #=0 and y =0 are parabolas
having a common axis, and whose concavities are in the same
direction.

The section by any plane parallel to z=0 is an ellipse if
the plane be on the positive side of z =0, and is imaginary if
the plane be on the negative side of 2=0. Hence the
surface is entirely on the positive side of the plane z=0, and
extends to an infinite distance.

The surface whose equation is

x‘z ?/2

Ll
is called an hyperbolic paraboloid.
The sections by the planes =0 and y=0 are parabolas
which have a common axis, and whose concavities are in
opposite directions.

= 2z,

The surface is on both sides of the plane z=0, and
extends to an infinite distance in both directions.

S
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The section by the plane z=0 is the two straight lires
2

given by the equation a;T__ %7 =0. The section by any plane

parallel to 2=0 is an hyperbola: on one side of the plane
z=0 the real axis of the hyperbola is parallel to the axis of
z, and on the other side the real axis is parallel to the
axis of .

The figure shews the nature of the surface.

72. Tt is important to notice that the elliptic paraboloid
is a limiting form of the ellipsoid, or of the hyperboloid of
two sheets; and that the hyperbolic paraboloid is a limiting
form of the hyperboloid of one sheet.

This can be shewn in the following manner.

The equation of the ellipsoid referred to (—«, 0, 0) as
o aufr R e P
origin is ~5 + 75+ i E=0' Now suppose that a, 5, ¢ all

e S . :
become infinite, while 4 g remain finite and eqnal respec-

2 2
tively to { and ; then, in the limit, we have < +7

=2z
l )
which is the equation of an elliptic paraboloid.

The other cases can be proved in a similar manner.

73. The equation Aa® + By*+ D=0 represents a cylinder
[Art. 10], being a hyperbolic cylinder if 4 and B have dif-
ferent signs, and an elliptic cylinder if 4 and B have the same
sign. If the signs of 4, B, D are all the same the surface is
imaginary.

The equation A«®+ By*=0 represents two intersecting
planes, which are imaginary or real according as the signs of
A and B are alike or different.

The equation «* = 2ky represents a cylinder whose guiding
curve is a parabola, and which is called a parabolic cylinder.

The equation 2®=/% represents the two parallel planes

1= % vk
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Ex. 1. The sum of the squares ‘of the reciprocals of any three diameters
of an ellipsoid which are mutually at right angles is constant.
If r, be the semi-diameter whose direction-cosines are (I, my, n,) we
2
have l = l— + n;'f + %"‘T , and similarly for the other diameters, By addition
ettt L 1
we have E,+—2 S

AL Tl
Ex. 2. If three fixed points of a straight line are on given planes which
are at right angles to one another, shew that any other point in the line
describes an ellipsoid.
Let 4, B, C be the points which are on the co-ordinate planes, and
P (z, y, ) be any other fixed point whose distances from 4, B, C are q, b, c.

Then —=1, %:m, and -=n, where I, m, n are the direction cosines of the
line, Hence the equation of the locus is = P + ZJ ;2=1.

Ex. 3. Find the equation of the cone whose vertex is at the centre of an
ellipsoid and which passes through all the points of intersection of the
ellipsoid and a given plane.

Let the equations of the ellipsoid and of the plane be @ + g, + —1 and
le+my+nz=1. We have only to make the equatlon of the ellipsoid
homogeneous by means of the equation of the plane: the result is

152 y‘l
a1

For this equation being homogeneous represents a cone whose vertex is
at the origin ; and it is clear that the plane cuts the cone and the ellipsoid in
the same points.

2
+%=(lm+my+nz)3.

L— Ex. 4. Find the general equation of a cone of the second degree referred
to three of its generators as axes of co-ordinates.
The general equation of a quadric cone whose centre is at the origin is

az? + by? + c2® + 2fyz + 2922 + 2hay =0.

If the axis of z be a generating line, then y=0, =0 must satisfy the
oquation for all values of «; this givesa= O Slmllarly, if the axes of y and 2
be generating lines, b=0 and ¢=0. Hence the most general form of the
equation of a quadric cone referred to three generators as axes is

Syz+ gze + hey =0.

Ex. 5. Find the equation of the cone’whose vertex is at the centre of a
given ellipsoid, and which goes through all points common to the ellipsoid
and a concentric sphere.

Y

If the equations of the ellipsoid and sphere be £+b2

=1, and

22+ y2+22 =72 respectively ; the equation of the cone will be

1 1 ' 123
¥ S pif e o4 il slSCR\l 7
z (a" ,,2)+y (1)2 7_2)+z (cz '.2) =0.
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Ex. 6. Find the equation of the cone whose vertex is the point (a, 8, v)
2

y—:l, 2=0,

2
and whose generating lines pass through the conic :—2 & x

Let any generator be x—;f=yiﬁ=z:l7. This meets z=0 where

1 m 1 N m \?
r=a~-- v, and y:ﬁ—ﬁy. Hence P (a—,—z-y) +b-§ (ﬂ-;;,y) =1, or

1 1 .
lﬁ(an—yl)3+b—.‘,(ﬂn—7m)2=n’. Substitute for I, m, n from the equations of

. 1 1
the line, and we have o (az- 'y:zc)?-}-b—2 (B2 —vy)?=(2 —v)*% the required

equation.

74. If the origin be the centre of the surface, it 1s the
middle point of all chords passing through it; hence if
(x,,9,,#,) be any point on the surface, the point (- x,, — y,, — 2,)
will also be on the surface.

Hence we have
az’+ by, + cz” + 2fy,2, + 29z.2, + 2ha,y, + 2uz, + 2vy,

+ 2wz, +d=0,
and ax,® +by," + cz,” + 2fy,2, + 292,, + 2hay, — 2ux, — 20y,
— 2wz, +d=0;

therefore uz, + vy, + w2z, =0.

Since this equation holds for all points («,, ¥,, 2,) on the
surface, we must have u, v, w all zero.

Hence, when the origin is the centre of a conicoid, the
coefficients of #, y and z are all zero.

75.  To find the co-ordinates of the centre of a conicoid.

Let (£, 9, £) be the centre of the surface; then if we take
(£, 9, ) for origin, the coeflicients of #, y, and 2 in the trans-
formed equation will all be zero. The transformed equation
will be [Art. 44]

a@+E+b(y+n)'+e @+ +2f (y+n) (2+)

+29(z+8) @+ E) +2h (@ + ) (y+m) +2u @+ EH+20(y+n)
+2uw(z+8)+d=0.
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Hence the equations giving the centre are

&
af+ b+ gt+u=0Y ¥,
hE+ by + fE+ v:O,}’..:’.fl{..J ...... @)

and gE+fn+ cl+w=0, A
Therefore
£ - Y &
h, g, u @, G T, k. e
b, f, v kLN h, b, v
T G st g9, f, w
K -1

“Ta, b, g

B, b, f

g, f, ¢

The equation of the conicoid when referred to the centre
(& 7, &) as origin is

ax® + by* + ¢z + 2fyz + 2g9zx + 2hay + d' =0...... (i1)

where d' = F (£, 9, §).

Multiply equations (i) in order by £, », { and subtract the
sum from ¥ (£, 7, £); then we have

d=uE+vmtwl+d.cconianinn. (iii).

From (i) and (1i1) we have

e Ao e Yy =0;
[ TSNy A,
Gy Jer Bg
w, v, w,d—d
therefore d'i @ i T S e (0 T e | (e (iv)
NS TS R TR S
19’ f’ ¢ g, K <48 ik
W ARG,
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The determinant on the right side of (iv) is called the
discriminant of the function F (z, y, z), and is denoted by the
symbol A,

The determinant on the left side is the discriminant of
the terms in F'(x, y, z) which are of the second degree; it is
also the minor of d in the determinant A, and, as in Art. 57,
we shall denote it by D. Equation (iv) may therefore be
written

76. The equations for finding the centre can also be
obtained from Art. 58 (i); for (£, #, &) will be the middle
point of every chord which passes through (& %, &), pro-

vided
dF _dF _dF _
de dy  dt
It should be noticed that the co-ordinates of the centre
are given by the equations

Saml e b
u v - w D’
where U, V, W, D have the same meanings as in Art. 57.

0.

77. If, by a change of rectangular axes through the same
origin, az’ + by’ + c2* + 2fyz + 292z + 2hxy
becomes changed into
a’a® + 0y + 2+ 2f Yz + 29/ 2w + 2Ny

then, since «* + 3 + 2° is unaltered by the change of axes,

aa® + by* + ¢2* + 2fyz + 292z + 2hay — N (@* + ¥* + 2°)...(1)
will be changed into

a'a® + by + 2 + 2f 'yz + 29"z + 2h'zy
<ot At 4 2. ... (i)

The expressions (i) and (ii) will therefore be the product
of linear factors for the same values of .,
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The condition that (i) is the product of linear factors is
a—X\, I ) =0,
b, 2% f

0w f , =2

that is
MN—A(@a+b+c)+r(bc+ca+ab— f?—g* )
— (abe + 2fgh — af* — bg® — k) =O.
The condition that (ii) is the product of linear factors is
similarly -
NN @+ +)+ N0+ d’ + b —f7—g"—h")
— @V +2f gl —af*—Vg*~Ch*=0.
Since the roots of the above cubic equations in A are the
same, the coefficients must be equal.

Hence the following expressions are unaltered by any
change of rectangular axes through the same origin, and
are therefore called invariants :

be+ca+ab—fi—g* —1'.......... 11,
abe + 2fgh — af® = bg® — ch® ...... III.

Since the coefficients of the terms of the second degree
are unaltered by a change of origin, the axes being parallel
to their original directions, it follows that the expressions
I, 1T, and III are unaltered by any change of rectangular
axes,

78. We have seen [Art. 63] that by a proper choice of
rectangular axes az® + by’ + ¢z’ + 2fyz + 2922 + 2hay can al-
ways be reduced to the form ax®+ By"+2z"; and this re-
duction can be effected without changing the origin, for the
terms of the second degree are not altered by transforming to
any parallel axes,

Now &* +7* + 2 is unaltered by a change of rectangular
axes through the same origin. Hence, when the axes are so
changed that
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az’ + by + ¢z + 2fyz + 2gzx + 2hzy becomes aa® + By’ 4 27,
ax’ +by* + ¢2® + 2fyz + 292¢ + 2hay — A (2* 4+ 4 + 2°) ...(>0),
will become
02’ + By + 98 =AM+ 1+ 2D (ii).
_ Both these expressions will therefore be the product of
linear factors for the same values of X. The condition that
(i) is the product of linear factors is
a-N, L , g
h,b-N f
a, f ,e=r
But (ii) is the product of linear factors when A is equal to
a, B, or «.
Hence the coeflicients a, 8, v are the three roots of the
equation (iii).
The equation when expanded is
A=A (a+b+c)+N(ab+be+ca—f°—g"—1%)
— (abe + 2fgh — af* — by* — ch*) = 0.
This equation is called the discriminating cubic.

It should be noticed that the equation is the same as that
found in Art. 60.

79. We proceed to shew how to find the nature of a
conicoid whose equation is given.

First write down the equations for finding the centre of
the conicoid ; and from Art. 75 we see that there is a definite
centre at a finite distance, unless the determinant

a, h, g |=D
k, b f
9 S

is zero.
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If D be not zero, change to parallel axes through the

centre, and the equation becomes
az® + by* + ¢z + 2fye + 2922 + 2hay + d' =0,
where d' is found as in Art. 75.

Now, keeping the origin fixed, change the axes in such a

manner that the equation is reduced to the form
az’+ By + 4 + d =0.

Then, by Art. 78, a, B, v will be the three roots of the dis-

criminating cubic.

[When the discriminating cubic cannot be solved, since its
roots are all real [Art. 64], the number of positive and of
negative roots can be found by Descartes’ Rule of Signs.]

Since Dd’' = A, the last equation may be written in the

form Daa + DBy* + Dyz" + A =0,
Da DB Dy
AT A A
the surface is an ellipsoid ; if two of them are negative, the
surface is an hyperboloid of one sheet ; if one is negative, the
surface is an hyperbolotd of two sheets; and if they are all
positive, the surface is an vmaginary ellipsoid.

If A =0, the surface is a cone.

If the three quantities are all negative,

Ex. (i). 112°+10y?+62* - 8yz + 422 — 122y + 722 — 72y + 362+ 150=0.
aF _dF_dr_ -
dz " dy dz
11z - 6y+2z+36=0,
- 6z+10y ~42-36=0,
2z~ 4y+62+18=0.
Therefore the centre is (-2, 2, - 1).
The equation referred to parallel axes through the centre will therefore be
1122 + 10y + 627 — 8yz + 422 — 12xy - 12=0. [Art. 75 (iii).]
The Discriminating Cubic is N — 27A2 + 180\ — 324 =0 ; the roots of which
are 3, 6, 18. Hence the equation represents the ellipsoid 3z2+ 6y2+ 1822=12,
gt
ity =L
We can find the equations of the axes by using the formulae found in
Art. 60. The direction-cosines of the axes are }, %, 2; 2, &, -2;
-2
> %

The equations for finding the centre are —

or

=g %
W
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Ex, (ii). 2?+2y°+322—4az-4day+d=0.

The Discriminating Cubic is A3 - 6A2+3\+14=0. All the roots of the
cubic are real; hence, by Descartes’ Rule of Signs, there are two positive
roots and one negative root, The surface is therefore an hyperboloid of
one sheet,an hyperboloid of two sheets, or a cone, according as d is
negatiV/,/tfyositive, or zero.

V40, Next suppose that D=0. Then the three planes
[Art. 75 (1)] on which the centre lies will not intersect in a
point at a finite distance from the origin, and we shall have
three cases to consider according as the planes meet in a
point at infinity, or have a common line of intersection, or
are all parallel to one another. These three cases we shall
consider in the following Articles.

It should be observed that when D =0 one root of the
discriminating cubic is zero,

81. The conditions that the planes whose equations are
ar+hy+gz+u =0,
hx 4+ by+ fz2 + v =0,
and gr+ fy+cz+w=0,
may be parallel are

These conditions may be written

af=gh, bg=MIf, ch=fg....ccc.......... (A).
Now these are the conditions that the terms of the second
degree should be a perfect square ; and when this is the case
it 1s obvious on inspection.

When the terms of the second degree are a perfect
square, the general equation can be written in the form

2
fgk(§”+g+z>+21‘”+2?}y+2m+d=0 ......... (ii).

If the plane uw 4 vy + wz =0 is parallel to the plane
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the equation (ii) will represent two parallel planes: the con-
ditions for this are

W= Wg=lwhE. A St
If the conditions (iii) are not satistied, the equation (ii) is of
the form Ay’ + Bz =0

which represents a parabolic cylinder whose generating lines
are parallel to =0, z=0.

Hence the general equation of the second degree repre-
sents a parabolic cylinder whose generating lines are parallel
to the line

y ——-O uz + vy +wz =0,

f

provided the condltlons (1) are satisfied, and that (iii) are not
satisfied.

The latus-rectum of the principal parabolic section can be
found by the same method as that employed in Conics,
Art. 172.

Ex. Find the nature of the conicoid whose equation is
4%+ y?+ 42 —dyz + 8zr —dry + 2x -4y + 52+ 1=0.

The equation is
(22 -y +22)*+2x -4y + 52+ 1=0.

This is equivalent to
22—y +2402=x (A -2) -y QA -4) +2 (A =5) -1+ )2
The planes 2z -y + 22 +X=0, and
z(dN-2)-y (2A-4) +2 (A -5) -1+ N =0,
will be perpendicular, if A=1. Hence the equation of the surface may be

written Cz-y+2:+1)2=2x+2y -2z,
- 20-y+2+1\? 1 25+2y-2
3 s 3 k

Hence, taking 2x-y-+2:+1=0, and 2r+2y —2=0 as the planes y=0
and z=0 respectively, the equatlon of the surface will be

13
y'=z2.

Hence the latus-rectum of a principal parabolic section is %
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82. Next suppose that the three plancs on which the
centre lies are not all parallel, but that they have a common
line of intersection.

If we take any point on the line of centres for origin, the
equation will take the form

as® + by + ca* + 2fyz + 29z + 2hay + d' = 0.

Then, keeping the origin fixed, by transformation of axes
the equation will be reduced to the form

ax® + By +d =0....... seralis RN ().

One root of the discriminating cubic is zero, since D=0; '
and the roots a, 8, 0 are given by the equation

N—=N(a+b+c)+M(bo +ca+ab—f*—g*'— 1) =0.
If d’ =0, the surface represented by the equation (i) is
two planes, real or imaginary.
If d’ be not zero, the surface is a cylinder.
The conditions that the three planes
e ar+hy+gz+u=0,
he +by+ fz+v =0,
gz + fy+cz+w=0,
may have a common line of intersection, are given by
a, h, g, ul|=0, [Art. 18]

h, b, f, v
9, f» ¢, w
that is, U=V=W=D=0.

Ex. Find the nature of the conicoid whose equation is
3222+ y?+ 422 — 1622 — 8y + 96x — 20y — 82 +103=0.
The equations giving the centre are
32z — 4y — 82 +48=0,
- 4z+ y  -10=0,
and - 8z +4z2- 4=0.
Hence there is a line of centres. Find one point on the line, for example

(0, 10, 1), and change the origin to the point (0, 10, 1): the equation will
then becowme 3212+ y2 4427 — 162z — 8xy =1.
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The Discriminating Cubic is A% — 37A%+ 84X =0. One root is zero, and the
other two roots are positive; hence the equation is an elliptic cylinder.

The axis of the cylinder is the line of centres; and its equations are
z y-10 2z2-1

83. If the planes on which the centre lies meet at a point
at infinity, we proceed as follows.

Since one root of the discriminating cubic is zero, the
equation can always be solved : let the roots be «, 8, 0.

Find the directions of the principal axes of the surface,
by means of the equations of Art. 60; and take axes parallel
to these principal axes. The equation will then become

ax’ + By’ + 2w’z + 20y + 2w’z +d =0,
or, by a change of origin,
az® + By + 2w’z =0.
Hence the surface is a pa,raboloi’d, thezlatlera. recta of its
and 2%,

B

principal parabolic sections being

Ezx. Find the nature of the surface whose equation is
322 - 6yz — 6zx — Tx— 5y + 62+ 3=0.

The Discriminating Cubic is A~ 32 - 18A=0; the roots of which are 6,
-3, 0

4 3 A 41 1 1 -2
The direction-cosines of the principal axes are 6’ I‘»' Jo
\713, Jlg, 713; and :/1_2' -:-/%, 0. Hence to find the equation referred to

axes parallel to the principal axes, we must substitute
for x, y, z respectively. The equation will then become
6% — 3y? — 4,/62 — 2,/3y - /22 +8=0;
or, by changing the origin 62 =3y%-,/22=0.
Thus the surface is a hyperbolic paraboloid, the latera recta of the principal
parabolas being 3./2 and 1/2.

S. 8. G. S it
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84. It follows from Art. 75 (ii) and (iv) that when D is
not zero, the necessary and sufficient condition that the
surface represented by the general equation of the second
degree may be a cone 1s A = 0.

When A =0 and also D=0, then will U, Vand W be
all zero*: hence [Arts. 81 and 82] the surface must be either
a cylinder or two planes; and cylinders and planes are
limiting forms of cones. Conversely, when the surface re-
presents a cylinder, or two planes, U, V, W and D are all
zero, and therefore also A =0.

Hence A =0 is the necessary and sufficient condition
that the surface represented by the general equation of the
second degree may be a cone.

85. To find the conditions that the surface represented by
the general equation of the second degree may be a surfuce of
revolution.

We require the condition that two of the roots of the dis-
criminating cubic may be equal. In that case

ax’ + by’+ c2® + 2fyz + 2922 + 2hxy
can be transformed into
ax® + ay® + 2
Hence
aa’ + by? + 0" + 2fyz + 2922 + 2hay — N (@ + 4 + 2%)...(0),

* This can be proved as follows:
We have wU+vV+wW+dD=A.

And, since a determinant vanishes when two of its rows are identical, we

have also
aU+hV+gW+uD=0,

rRU+bV+fW+vD=0,
and gU+fV+cW+wD=0,
Hence when A=0 and D=0, unless U, V, W are all zero, we can eliminate

U, V, W from the first equation and any two of the others: we thus
obtain three determinants which are all zero; but these determinants are

U, V,and W,
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can be transformed into v
a+ ayt + 9 =A@+ P+ o). (ii).
Now if we take A =q, (ii) will be a perfect square.
Hence if the surface is a surface of revolution, we can, by
a proper choice of A, make (i) a perfect square; and that
square must be
{zi/(@a=2)+ y«/(b -N) +z)/(c =M}
We therefore have
Vo =MV -N=f
V(c— X) Va=2)=A’ G (iii).
V@=) v N =g) h_
Hence, if f, 9, k be all finite, we have
B h_ . _ 19
a,-—-——-:b—-——:c—-— —:h
A g h
the required conditions.

Let h, any one of the three quantities f, g, h, be zero;
then from (111) we see that A =a or A =b, and therefore also

g=0or f=
Suppose g 0 and A=0; then X =a, and the condition
for a surface of revolution is

G-—a)ylc—a)=J" ccevvivininin. (V).

Exampres oN Cuarrer III.

1. Determine the nature of the surfaces represented by the
followino equations:

(1) =2y + 62"+ 1202+ a*=0."

(u) o+ + 2%+ 4oy - Qaz + dyz= 1 \L&}’S
(ili) * — 2zy - 2yz — 22 = a’. 3

(iv) 322" +y° + 42" — 162 — By = 1,

) Je+ Jy+ Jz=0.

(vi) 22"+ 5y + 2" — 4wy — 2w — 4y - 8=0.
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2. Find the nature of the surfaces represented by the following
equations ;
(i) 2°+2y —382" ~dyz+ 82x—12xy+1=0.
(i) 22®+ 2y° — 42" — 2yz — 22w — By — 20 — 2y +2=0.
(ifi) 5a® — y* + 2° + 6wz + 4wy + 2z + 4y + 62 =8.
(iv) 22° + 3y® + 3yz + 22z + by — 4y + 82— 32 = 0.
Find the equations of the axes of (i), and the latera recta of
the principal parabolas of (ii) and of (iii).
3. Shew that the equation
C+y+tryrraray =1,
represents an ellipsoid the squares of whose semi-axes are 2, 2, L.
Shew also that the equation of its principal axis is x=y =2

4. Shew that, if the axes, supposed rectangular, be turned
round the origin in any manner, »* + v* +w® will be unaltered.

5. Shew that, if three chords of a conicoid have the same
middle point, they all lie in a plane, or intersect in the centre of
the conicoid.

oy Through any point O lines are drawn in fixed directions
which meet a given conicoid in points P, I and @), @’ respectively;
shew that the rectangles 0P, OF and 0@, OQ' are in a constant
ratio,

7. If any three rectangular axes through a fixed point O cut
a given conicoid in P, I”; @, @ and B, B’ ; then will

PP* 0Q* kR
0P OP* T 0¢*. 00" * OF. Ok’
1 1 1

Apd orF.ortog. 0t ok Ok"

be constant.



CHAPTER 1V.

Conrtcoips REFERRED TO THEIR AXFES.

86. IN the present chapter we shall investigate some
properties of conicoids, obtained by taking the equations
of the surfaces in the simplest forms to which they can be
reduced.

We shall begin by considering the Sphere.

THE SPHERE.

87. The equation of the sphere whose centre is (a, b, c)
and radius d is {Art. 5]

@@= af + (g =B + (s — o =
The equation of any sphere is therefore of the form
@+ y'+ 2 +24x+ 2By + 20z + D=0.
Conversely every equation of the above form, that is every
equation in which the coefficients of #*, 3%, and 2 are equal, and

in which the terms yz, 2z, «y do not appear, represents a
sphere.

88. The general equation of a sphere contains four
constants, and therefore a sphere can be made to satisfy four
conditions. We may, for example, find the equation of a
sphere which passes through any four points.
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If (=, y, 2,), (@, Yy 2), (@0 Yy 29, (2, Y 2,) be the four
points the equation of the sphere through them will be.

z®+y®+2% », y, z, 1|=0.
zl+yl+2t x, oy, 7, 1
w: st 3/22 + 292’ Loy Yy 2y 1
TS Y, F 25 Ty Yy Zp 1
m‘2+y42+z42’ “'4, 11/4’ Z" 1

89. The equation of the tangent plane at any point
(@', y', 2') of the sphere whose equation is "+ y* + 2° = d” is
xx’ +yy + 22 =a® [Art. 52, Ex. 1]. This result can be
obtained at once from the fact that the tangent plane at any
point (2, %, #') on a sphere is perpendicular to the line
joining («, ¥, #') to the centre. This gives for the equation
of the plane

@—a)a'+(y—y)y +(—-2)=0,
or xx' +yy + 27 =d’.

The polar plane of any point (#, ¥, ) can be shewn, by

the method of Art. 53, to be
xx +yy +22' =d’.

90. It can be easily shewn, that if S= 0 be the equation
of a sphere (where S is written for shortness instead of
&+ 94"+ 2+ 24z + 2By + 20z + D), and the co-ordinates of
any point be substituted in S, the result will be equal to the
square of the tangent from that point to the sphere.

Hence, if S=0,and 8" =0 be the equations of two spheres
(in each of which the coefficient of &* is unity), S=2S"is the
locus of points, the tangents from which to the two spheres
are equal.

The surface whose equation is § — §' = 0 passes through all
points common to the two spheres S =0, and 8" =0; for, if
the co-ordinates of any point satisfy the equations S =0 and
S'= 0, they will also satisfy the equation § — S = 0.

Now S—8'=0 is of the first degree,and therefore represents
a plane. The plane through the points of intersection of two
spheres is called their radical plane.
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We have seen that the tangents drawn to two spheres
from any point on their radical plane are equal.

The radical planes of four given spheres meet in a point,
viz. in the point given by S, =8, =8,= 5, where § =0,
8,=0,8,=0, S,=0 are the equations of the four spheres,
in each of which the. coefficient of #* is unity.

This point is called the radical centre of the four spheres,

Ex. 1. Find the equation of the sphere which has (z,, ¥;, %) and
(%5, Y, 25) for extremities of a diameter.

If (z, y, 2) be any point on the sphere, the direction-cosines of the lines
joining (x, y, 2) to the two given points are proportional to x—z;, ¥ -1v,
2—2zy, and & — Xy Y — Ygy 2 — 25,

The condition of perpendicularity of these lines gives the required
equation

(2 - ) (T —25) + (U — Y1) Y — Yo + (2 - 7) (2—29)=0.

Ex. 2. The locus of a point, the sum of the squares of whose distances
from any number of given points is constant, is a sphere.

Ex. 3. A point moves so that the sum of the squares of its distances
from the six faces of a cube is constant; shew that its locus is a sphere.

u Ex. 4. 4, B are two fized points, and P moves 8o that PA=nPB ; shew

that the locus of P is a sphere. Shew also that all such spheres, for diffcrent
values of n, have a common radical plane.

Ex. 5. The distances of two points from the centre of & sphere are pro-
portional to the distance of each from the polar of the other,
Ex. 6. Shew that the spheres whose equations are
22+ y2+22+ 242 + 2By +2Cz + D=0,
and 2+ Y2+ 2%+ 2ax + 2by + 2c2+ d=0,
cut one another at right angles, if
24a+2Bb+2C¢~D -d=0.

91. We proceed to prove some properties of the ellipsoid;
and we shall always suppose the equation of the surface to be
w‘l y2 z2
dTEte=h

‘unless it is otherwise expressed.

To obtain the properties of the hyperboloids we shall
only have to make the necessary changes in the signs of
b and ¢
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We have already scen [Art. 52] that the equation of the
tangent plane at any point (&, ¥/, 2) is
ax oy 2R .
AR E (i).
The length of the perpendicular from the origin on the
tangent plane at the point (2, ¥, z') is [Art. 20] given by the
equation

Equation (i) is equivalent to Iz + my + nz = p, where

!

I & m ¢ n 72

p @’p 0 p &
272 2.2 2,,2 /2 /2 2
therfore 20 bdm et @ gt L )
P at b

Hence the plane whose equation is Iz + my +nz = p, will

touch the ellipsoid, if
P =a’l+0m’+ (iit).

92. To find the locus of the point of intersection of three
tangent planes to an ellipsoid which are mutually at right
angles.

Let the equations of the planes be

Letmy+n z=(®+m!+cn’),
la T+m Y +n, = '\/ (a2l22 ot bzm; + 62)1'22)’
Ly +m,y+n, z=4(a’l} 4+ b'm]+ c'n)).
By squaring both sides of these equations and adding, we

have in virtue of the relations between the direction-cosines
of perpendicular lines

Z+y+Lt=a+0"+"
The required locus is therefore a sphere. This sphere is
called the director-sphere of the ellipsoid.

93. The normal to a surface at any point P is the
straight line through P perpendicular to the tangent plane
at .
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The normal to an ellipsoid at the point («/, y, #) is
-therefore

!

z— y—y z2—2

« Yy " e
ot v &
Si o T S Art. 91
ince p(?+—bz+?)= : [Art. 91.]
the direction-cosines of the normal are
e py  p¥
a‘l ? b2 . 02 =

94. If the normal at (#, ¥/, 2') pass through the par-
ticular point (£, g, k) we have

[=% _g=y _h-2¢

@ Y z
w2
Put each fraction equal to )\, then
,_af b c’h

Y T T

Hence, since

mrz 1 2 z!':
5=,
we have
a? 2 6292 Cﬂhﬂ

+ 73 =1.
@ T E ey ey
Since this equation for A is of the sizth degree, it follows
that there are siz points the normals at which pass through a
glven point.
Ex. 1. The normal at any point P of an ellipsoid meets a principal
plane in G. Shew that the locus of the middle point of PG is an ellipsoid.

Ex. 2. The normal at any point P of an ellipsoid meets the principal
planes in Gy, Gy, G;.  Shew that PGy, PG,, PG, are in a constant ratio.

Ex. 8. The normals to an ellipsoid at the points P, P’ meet a principal
plane in G, @'; shew that the plane which bisects PP’ at right angles bisects
GG,
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Ex. 4. If P, Q be any two points on an ellipsoid, the plane through
the centre and the line of intersection of the tangent planes at P, Q, will
bisect PQ.

Ex. 5. P, Q are any two points on an ellipsoid, and planes through the
centre parallel to the tangent planes at P, @ cut the chord PQ in P/, Q'. Shew
that PP'=QQ".

95. The line whose equations are
o I =T
{ m n ’
meets the surface where
2 2 2
(a +?l7‘) i B+ :nr) h (y +2m') -1
a b c

If («, B, v) be the middle point of the chord, the two

values of r given by the above equation must be equal and
opposite ; therefore the coefficient of » is zero, so that we

have
la
4o
Hence the middle points of all chords of the ellipsoid
which are parallel to the line
x Yy _z

- =

Il m n

+27=o.

are on the plane whose equation is
lz i e

+ T ? =0.

This plane is called the diametral plane of the line
e A
I m =n

The diametral plane of lines parallel to the diameter
through the point (&, y’, ') on the surface is

+% __o ............... ();
hence the diametral plane of any dlameter 1s parallel to the
tangent plane at the extremities of that diameter.
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The condition that the point (27, 3", 2”) should be
on the diametral plane (i) is

vy L7 _
a,2+ b* c !

The symmetry of this result shews that if a point @ be on
the diametral plane of OP, then will P be on the diametral
plane of 0Q.

Let OR be the line of intersection of the diametral
planes of OF, OQ; then, since the diametral planes of 0P,
0Q pass through OR, the diametral plane of OR will pass
through P and through @, and will therefore be the plane
PO, so that the plane through any two of the three lines
OP, 0Q, OR is diametral to the third.

Three planes are said to be conjugate when each is dia-
metral to the line of intersection of the other two, and three
diameters are said to be conjugate when the plane of any two
is diametral to the third.

96. If (z, ¥, 2,), (%, ¥, 2,) and (2, ¥,, 2,) be extremities
of conjugate diameters, we have from Art. 95,

S By B=o }
1+«/£f/1 .c_f O L e @i).
G B Mg
Also, since the points are on the surface,
g%%ui{: i o e e (ii)
el .
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Now from equations (ii) we sce that

LoV 5% Yy B T Ys
a’b’c¢c’a’b’c’ a’ b’ ¢’
are direction-cosines of three straight lines, and froimn equations
(1) we see that the straight lines are two and two at right
angles. Hence, as in Art. 45, we have

x]? +w22+ $82=a?
y12+y:+y32=bz ................(iii),
Z‘2+ 222 + 232 = 62

and

wlg/l+w2y?+qus=0
¥4 +y252 +3/st = 0} ............. (iv).
le1+z¢x,+zn$a=0,

We have also from Art. 46,

Y g =Lorx, y, z|=abo.....(v).

a’ b’ c | Ty Ygr 2,

aiq g’ i? x}" :l/a) za

a’ b’ c

Zy Is %

a’ b’ c

From (iif) we see that the sum of the squares of the pro-
jections of three conjugate semi-diameters of an ellipsoid on
any one of its axes is constant.

Also, by addition, we have, the sum of the squares of three
conjugate diameters of an ellipsoid is constant.

From (v) we see that the volume of the parallelopiped
which has three conjugate semi-diameters of an ellipsoid for
conterminous edges 1s constant.

In the above the relations (iii) and (iv) were deduced
from (i) and (i1) by geometrical considerations. They
could however be deduced by the ordinary processes of algebra
without any consideration of the geometrical meaning of the
quantities, and hence the results are true for the hyper-
boloids.
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97. The two propositions (1) that the sum of the squares
of three conjugate semi-diameters is constant, and (2) that
the parallelopiped which has three conjugate semi-diameters
for conterminous edges is of constant volume, are extremely
important. We append other proofs of these propositions.

Since in any conic the sum of the squares of two conjugate
semi-diameters is constant, and also the parallelogram of
which they are adjacent sides, it follows that in any conicoid
no change is made either in the sum of the squares or in the
volume of the parallelopiped, so long as we keep one of the
three conjugate diameters fixed.

We have therefore only to shew that we can pass from
any system of conjugate diameters to the principal axes of
the surface by a series of changes in each of which we keep
one of the conjugate diameters fixed.

This can be proved as follows:—let OP, 0Q, OR, be any
three conjugate semi-diameters, and let the plane  OR cut a
principal plane in the line O, and let OR’ be in the plane
@QOR conjugate to 0@'; then OP, 0@, OR' are three
conjugate semi-diameters.

Again, let the plane POR' meet the principal plane in
which 0@’ lies in the line OP”, and let OR” be conjugate to
OP” and in the plane POR’; then OP”, OQ and OR” are
semi-conjugate diameters. But,since OR”is conjugate to OP”
and to 0, both of which are in a principal plane, it must be
a principal diameter.

Hence, finally, we have only to take the axes of the
section Q'OP” to have the three principal diameters.

98. It is known that any two conjugate diameters of a
conic will both meet the curve in real points when it is an
ellipse ; that one will meet the curve in imaginary points
when it is an hyperbola; and that both will meet the curve
in imaginary points when it is an imaginary ellipse. Hence,
by transforming as in the preceding Article, we see that
three conjugate diameters of a conicoid will all meet the
surface in real points when it is an ellipsoid; that one will
meet the surface in imaginary points when it is an hyper-
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boloid of one sheet; and that two will meet the surface in
imaginary points when it is an hyperboloid of two sheets.

99. To find the equation of an ellipsoid referred to
three conjugate diameters as axes.

Since the origin is unaltered we substitute for #, y and 2z
expressions of the form Iz + my +nz in order to obtain the
transformed equation [Art. 47]. .

The equation of the ellipsoid will therefore be of the form

Az’ + By* + OF° + 2Fyz + 2Gow+ 2y = 1.

By supposition the plane =0 bisects all chords parallel
to the axis of . Therefore if (z,, y,, 2,) be any point on the
surface, (—x,v, 2,) will also be on the surface. Hence
Gzw, + Hry, = 0 for all points on the surface: this requires
that G= H=0.

Similarly, since the plane y = 0 bisects all chords parallel
to the axis of ¥, we have H = F =0,

Hence the equation of the surface is

Ax®+By*+ C =1,
2 2 2

&
& ptptaTl

where &, ', ¢ are the lengths of the semi-diameters,

100. We may obtain the relations between conjugate
diameters of central conicoids by the following method :—
The expression

2 2

2
LT )

is transformed, by taking for axes three cbnjugate diameters
which make angles @, B, v with one another, into the
expression

2 2
g,—;, +%2+c—z,:+7\ (&*+ y* + 2° + 2yz cos a + 2zx cos B+ 2xy cosy).

The two expressions will therefore both split up into
linear factors for the same values of A. Hence the roots of

the cubics :
(%+ ) (bl,+x) (%,+x)=0,
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and a_1'§+)-\" Acosy, Acospf

1
A cosy, IF+7\" Acosa|=0

1
AcosB, Acosa, CTR+>»

are equal to one another.

Hence, by comparing coefficients in the two equations, we
have
B+ +E=a"F b e (1),

b’ + da’ + a’b* = b%¢” sin’a + ¢*a” sin’8 +a”b?sin’y......... (1),
and

7.0 2

abe =a'l’¢’ \/(1 — cos’a — cos’B — cos’y +2 cos acosBcosy)..(iil).

Therefore the sum of the squares of three conjugate
diameters is constant ; the sum of the squares of the areas of
the faces of a parallelopiped having three conjugate radii for
conterminous edges is constant; and the volume of such a
parallelopiped is constant.

J‘i’ﬁ. 1. If a parallelopiped be inscribed in an ellipsoid, its edges will be
péarallel to conjugate diameters.

Ex, 2. Shew that the sum of the squares of the projections of three
conjugate diameters of a conicoid on any line, or on any plane, is constant,.

Ex. 3. The sum of the squares of the distances of a point from the six
ends of any three conjugate diameters is constant ; shew that the locus of the
point is a sphere.

Ex. 4. If (2y9,2), (20%), (T3ys25) be extremities of three conjugate
diameters of an eﬁipsoid, the equation of the plane through them will be

z z
(ra($1+{"2+“’s)+l%(y1+y2+ys) +c—g(7'1+zn+zs)=1-

Ex. 5. Shew that the tangent planes at the extremities of three conju-
gate diameters of an ellipsoid meet on a similar ellipsoid.

Ex. 6. Shew that the locus of the centre of gravity of a triangle whose
angular points are the extremities of three conjugate diameters of an ellipsoid
is a similar ellipsoid.
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THE PARABOLOIDS.

101. We have seen that the paraboloids are particular
cases of the central surfaces; properties of the paraboloids
can therefore be deduced from the corresponding properties of
the central surfaces. We will, however, investigate some of
the properties independently.

We shall always suppose the equation of the surface
to be

2
+3§)—=2z.

z*
a

102. To find the locus of the point of intersection of three
tangent planes to a paraboloid which are mutually at right
angles.

Let I @+ my+nz+p=0 be one of the tangent planes;
then, since the plane touches the surface, we have

al®+bm?=2n p,. [Art. 57, 11.]
Hence we may write the equation in the form
Ine+mny+n’z+3(al?+bdm’)=0.
We have also
Ln,z+mmn,y +n'z+%(al)} +bm,) =0,
and In, o+ mgn,y+n'z 4 1 (al} +dm?) = 0.
Since the planes are at right angles, we have by addition
z+3(@+b)=0;
hence the locus is a plane,

103. The equation of the normal at any point («', ¥, 2')
of the paraboloid is

e—d y—y z-—

—— T ——

v

S

x
a
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The normal at (', ¥, 2/) will pass through the particular

oint (£, g, h), if
point (f, g A v

g e S
a b
Put each fraction equal to A ; then

,_ af by h .
P S T o e
and substituting in

o i
et b s
we have
2 2
& b9 2 (h+).

@+ T oy

The equation in A is of the fifth degree; therefore
five normals can be drawn from any point to a paraboloid.

104. The middle points of all chords of the paraboloid
which are parallel to the line
z_y

z
n

I m
are [Art. 59] on the plane whose equation is

dF | dF _ dF

ldx+m@+n n =0,

d

or l—f+1~rgl/‘—n=0.

Hence all diametral planes are parallel to the axis of the
surface.

It is casy to shew conversely that all planes parallel
to the axis are diametral planes.

A line parallel to the axis of the surface is called a
diameter. Every diameter meets the surface in one point at
a finite distance from the origin; and this point is called the
extremity of the diameter,

SHSHGE 6
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The two diametral planes whose equations are
lz  my

=y T 0,
lw m/
and % —Zy— n' =0,
are such that each is parallel to the chords bisected by the
other, if
w  mm
b

If this condition be satisfied, the planes arc called con-
jugate diametral planes.

The condition shews that conjugate diametral plancs
meet the plane z =0 in lines which are parallel to conjugate
diameters of the conic

=0.

Yy
E+7;—1.

105. If we move the origin to any point (a, 3, ) on the

surface, the equation becomes
2 2

If we take the planes
—0,y= e
z=0,y O,and-a—+ T 0

as co-ordinate planes, and therefore the lines

x z x Yy z z ¥y _z
a=0=2r 55~ ™ 0=0"1
for axes, we must [Art. 47] substitute
ar by aw i By
V@+a) VO +E) J(@ta) SO+
for x, y, z respectively. .
The transformed equation is

+z
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This is the equation to the surface referred to a point
(a, B, ) as origin, two of the co-ordinate planes being parallel
to their original directions, and the third being the tangent
plane at (z, 8, %).

Ex. 1. Shew that the locus of the centres of parallel scctions of a
paraboloid is a diameter.

Ex. 2. Shew that all planes parallel to the axis of a paraboloid cut the
surface in parabolas.

Ex. 3. Shew that the latera recta of all parallel parabolic sections of a
paraboloid are equal.

Ex. 4. Shew that the projections, on a plane perpendicular to the axis
of a paraboloid, of all plane sections which are not parallel to the axis, are

similar conics.

Ex. 5. P, Q are any two points on a paraboloid, and the tangent planes
at P, Q intersect in the line RS; shew that the plane through RS and the
middle point of PQ is parallel to the axis of the paraboloid.

Ex. 6. Shew that two conjugate points on a diameter of a paraboloid
are equidistant from the extremity of that diameter.

Ex. 7. Shew that the sum of the latera recta of the sections of a
paraboloid, made by any two conjugate diametral planes through a fizxed
point on the surface, is constant.

CoNES.

106. The gencral equation of a cone of the second

degree is
ax® + by + ¢’ + 2fyz + 292w + 2hay = 0.

The tangent plane at any point («/, 3, 2’) on the

surface is
(# =) (&' + hy' + 97) + (y = ¥) (b’ + by’ +f2)
+ (2= 2) (9" +fy +¢2) =0,

or
z (a2 + Ly + g2) + y (ha' + by + f2) + 2 (92 + fy + ¢£)=0.

The form of this cquation shews that the tangent plane
at any point on a cone passes through its vertex, as is geo-
metrically evident from the fact that the generating line
through any point is one of the tangent lines at that point,
and therefore lies in the tangent plane.

6—2
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107. To find the condition that the plane lz+my+nz=0
may touch the cone whose equation is

az® + by* & c2* + 2fyz + 292z + 2hay = 0.
Comparing the equation of the tangent plane at the point
(@, ¥/, '), namely
x(az’ +hy +g2) +y (ha' + by + f2) + 2 (95 +fy +¢2') =0,
with the given equation, we have
ax’ +hy +g7 _ha' vy +f7  gr' 4+ fy +cd
l - m N n ’
Put each fraction equal to — A, then
ax' +hy' + g2 +Al =0,
ha + by +f7 +Am=0,
and 9% +fy +cZ +An =0,
Also, since («, 4/, ') is on the plane,
‘ o' +my' +ns' =0,
Eliminating &/, 4/, #, A, we have the required condition
a h, g, U |=0,
h, b, f, m
Tn W 5 w6y R
{, m, n, 0
or Al + Bm*+ Cn* 4+ 2Fmn+ 2Gnl+2HIm =0,

where 4, B, C, &c. are the minors of a, b, ¢, &c. in the deter-
minant

a, h, g].
k, b, J
g, [, ¢

108. If through the vertex of a given cone lines be drawn
perpendicular to its tangent planes, these lines genecrate
another cone called the reciprocal cone.

The line through the origin perpendicular to the plane
Yy 2

.z
le+my+nz=0, is ¥ o=

=—.
n
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Hence, from the result of the last article, the reciprocal of
the cone

az’ + by’ +c¢2* +2fyz +29z2 +2hxy =0,

is Az’ + By’ + Ce* + 2Fyz + 2Gzw + 2Hzy = 0.
Since the minors of 4, B, 0, &c. in the determinant
A, H, @
H, B, F
G, I, ¢

are proportional to a, b, ¢, &c., we see that the relation be-
tween the two cones is a reciprocal one.

As a particular case of the above, the reciprocal of the

cone
2 2 2

.2y g
o+ 0y +ct=0,is = +5-+==0.
ax’+by* + ¢z’ =0, Al Y X
From this we see at once that a cone and tts reciprocal
are co-axial.

109.  To find the condition that a cone may have three
perpendicular generators.

Let the equation of the cone be
ac’ + by’ + ¢z’ + 2fyz + 292z + 2hay = 0...... ().

If the cone have three perpendicular generators, and we
take these for axes of co-ordinates, the equation will [Art. 73,
Ex. 4] take the form

Ayz + Bex + Coy=0 ............... (i1).

Since the sum of the co-efficients of 2%, 4* and 2* is an in-
variant [Art. 79] and in (ii) the sum is zero; therefore the
sum must be zero in (i) also. Therefore a necessary condition
is

a+b+c=0..ccoevvrunn.. (i),

If the condition (iii) is satisfied there are an infinite
number of sets of three perpendicular generators, For take
any generator for the axis of #; then by supposition any
point on the line y =0, 2=0 is on the surface ; therefore the



86 CONE WITH THREE PERPENDICULAR GENERATORS.

co-efficient of #” is zero, so that the transformed equation is of
the form
by* + c2* + 2fyz + 292w + 2hay =0 ...... (iv);

and since the sum of the co-efficients of 2° 3 2* is an in-
variant, we have b+ ¢=0.

Now the section of (iv) by the plane 2 =0 is the two
straight lines

by’ + ¢z +2fyz=0;
and these are at right angles, since b +¢=0.

110. Ifa cone have three perpendicular tangent planes,
the reciprocal cone will have three perpendicular generators.

Hence the necessary and sufficient condition that the
cone
az® + by" + c2* + 2fyz + 2922 + 2hay =0,
'may have three perpendicular tangent planes is
A4+ B+ C=0.

Ex. 1. CP, €Q, CR are three central radii of an ellipsoid which are
mutually at right angles to one another; shew that the plane PQR touches
a sphere.

Let the equation of the plane PQR be lz+my +nz=p. The equation of
the cone whose vertex is the origin, and which passes through the intersection

ot oy g2 Cx? oyt g 1 3
of the plane and the ellipsoid 2‘3 + %ﬂ + Z—“=1’ is z—, + % + z—, = (oe el L)
By supposition the cone has three perpendicular generators; therefore
1
atpta=p

Ex. 2. Any two sets of rectangular axes which meet in a point form six
generators of a cone of the second degree.

Ex. 8. Shew that any two sets of perpendicular planes which meetf in
a point all touch a cone of the second degree.

111. 70 find the equation of the tangent cone from any
point to an ellipsoid.

Let the equation of the ellipsoid be

2 2 2

&£ y-4
atpta=l
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Let the co-ordinates of any two points P, Q be «', v/, 2’
and 2", y”, 2’ respectively.
The co-ordinates of a point which divides PQ in the ratio
m :n are
na +mz’  ny +my” ng 4 ms”’
m+n ' m4+n ’ m+n
If this point be on the ellipsoid, we have

/ 2V ! /7\2 / A5
(n + ma) | oy +my") | (A
a b ¢
or ( +y§‘+——1>+2mn<wm +J7{ +fA—J)
o b’ ¢
112 ] “2
+ m? (.’17 ybz +— 1)=0'

If the line P Q cut the surface in c01nc1dent points, the
above equation, considered as a quadratic in %, must have

equal roots; the condition for this is
.76"2 /2 z'2 lu "2 412
(Er 520G+ 5+5-1)

i 22" )3
-(a +o -
Hence, if the point P (2, v/, 2') be fixed, the co- ordmmtes

of any point ¢), on any tangent line from P to the ellipsoid,
must satlsfy the equatlon

R
( +1/b1f+———1) =0.c0ineen. (i)

ITence (i) is the required equation of the tangent cone
from (z, ¥/, ') to the ellipsoid.

112. 1If we suppose the point («, 3/, ) to move to an
infinite distance; the cone will become a cylinder whose
generating lines are parallel to the line from the centre
of the ellipsoid to the point (', ¥, 2).
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Hence, if in the equation of the enveloping cone we put
& =lr,y =mr,2 =nr,
and then make » infinitely great, we shall obtain the equation
of the enveloping cylinder whose generating lines are
parallel to

Dl =
Il m

SN

'~

Substituting Ir, mr, nr for &', 3/, 2’ respectively in the
equation of the enveloping cone we have
< gy 2 Fmt w1
(;ﬁ#a‘l)(a—ﬁﬁﬁﬁ*ﬁ)
2
Hence, when 7 is infinite,
2 2

AT ) rom al  ym zn)’_
G+H+5 (WF“L?)‘(WN‘"L? =G

113. The equation of the enveloping cylinder can be
found, independently of the enveloping cone, in the following
manner.

The equations of the straight line which is drawn through
any point (2, ', 2') parallel to

r Yy z
I m n’
x—a Y —1 z2—2
are it W 52 ="r.
l He n

The straight line will meet the ellipsoid in two points

whose distances from (z/, ¥/, 2’) are given by the equation
zt oyt 27 le'  my aZ
(et -1) 2 (G + )
r m
+7‘2<&, +—b—2 +Eg> =0.
The straight line will therefore touch the surface, if

Y P omd I my n\?
DR G rs)

bi P a? ‘b?
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Hence the co-ordinates of any point, which is on a
tangent line parallel to

satisfy the equation

2y 2 I m’ ’) lz my nz)’ _
Grits-)GrF+5) -GrF 5 =0
which is the required equation of the enveloping cylinder.

Ex. (1). To find the condition that the enveloping cone may have three
perpendicular generators.

The equation of the enveloping cone whose vertex is (2', y’, 7) is

$§ e y” ze' gy ;
( v+ )( b2+——1) ( e

If this have three perpendicular generators the sum of the coefficients of
2%, 3%, and 22 must be equal to zero [Art. 109]. Hence (2, y/, 2), the vertex
of the cone, is on the surface

1 1 1\ /a2 4% 22 z2 ot 2B
(Wzﬁ*;a) (aa+m+@‘1)=a+z;4+;«-

Ex. (ii). Shew that any two enveloping cones of an ellipsoid intersect in
plane curves.

The equations of the cones whose vertices are ( «, ¥, 2') and (", ", 2") are
2 2 £ g2 g2 vy’
(Eﬁ*lﬁ*ﬁ'l)(ﬁJ'ﬁ“L_ﬂ‘l): +b3+ ‘1)
2 g A Z? g gy’ 2
and (11—2+172+E2_1 (a’+b —2'—1>= +b‘ +62—~1>

respectively,
The surface whose equation is

2 ”2
(“ + +-——1) ( +Jb"+——1)

xx” '_l/?/" 22" :L,a ,y
=(aﬂ+b2+’c'2“"1 b2+ '1)
passes through their common points, and clearly is two planes.

Ex. (iii). Find the equation of the enveloping cone of the paraboloid
ax?+by?+22=0.
Ans, (ax?+by?+22) (ax"+by"? + 22') = (axx’+ byy' + 2 + 2)%

Ex. (iv). Find the locus of a point from which three perpendicular
tangent lines can be drawn to the paraboloid ax?+ by?+ 22=0.
Ans. ab (@®+y*)+2(a+0)z=1.
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ExamprLes ox CHapTERr [V,

1. Find the equation of a sphere which cuts four given spheres
orthogonally.

2. Shew that a sphere which cuts the two spheres S=0 and
§’" =0 at right angles, will cut 48+ S =0 at right angles.

3. OP, 00, OR are three perpendicular lines which meet in
a fixed point O, and cut a given sphere in the points P, Q, R
shew that the locus of the foot of the perpendicular from O on
the plane PQR is a sphere.

4. Through a point O two straight lines are drawn perpen-
dicular to one another and intersecting two given straight lines
at right angles; shew that the locus of O is a conicoid whose
centre is the middle point of the shortest distance between the
given lines, »

5. Shew that the cone dx'+ By’ +C2*+2Fyz+2Gx+ 2 Hxy =0
will have three of its generators coincident with conjugate diameters
2° n
of 5 +I—); +zﬁ—1,ian.’+Bb’+C’c’=O.
6. A plane moves so that the sum of the squares of its

distances from n given points is constant; shew that it always
touches an ellipsoid,

7. The normals to a surface of the second degree, at all
points of a plane section parallel to a principal plane, meet two
fixed straight lines, one in each of the other principal planes.

8. Shew that the plane joining the extremities of three
conjugate diameters of an ellipsoid, touches another ellipsoid.

9. Having given any two systems of conjugate semi-diameters
of an ellipsoid, the parallelopiped which has any three for conter-
minous edges is equal to that which has the other thrce for
conterminous edges.

10. If lines be drawn through the centre of an ellipsoid
parallel to the generating lines of an enveloping cone, the cone so
formed will intersect the ellipsoid in two planes parallel to the
plane of contact.
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11. The enveloping cone from a point £ to an ellipsoid has
three generating lines parallel to conjugate diameters of the
ellipsoid ; find the locus of 2.

12. The plane through the three points in which any three
conjugate diameters of a conicoid meet the director-sphere touches
the conicoid.

13. Shew that any two sets of three conjugate diameters
of a conicoid are generators of a cone of the second degree.

14, Shew that any two sets of three conjugate diametral
planes of a conicoid touch a cone of the second degree.

15. Shew that any one of three equal conjugates of an

ellipsoid is on the cone whose equation is
2

2 2
(@® + U*+ %) (:7 +%’+ %>=3(wﬂ+yﬂ+zn).

16. D, E, Fand P, @, R are the extremities of two sets of
conjugate diameters of an ellipsoid. If p, p,, p,, p, are the per-
pendiculars from the centre and P, ), B respectively on the
plane DEF, prove that

P +P P, =2p (P +p, +py)-

17. The sum of the products of the perpendiculars from the
two extremities of each of three conjugate diameters on any
tangent plane to an ellipsoid is equal to twice the square on the
perpendicular from the centre on that tangent plane.

18. The distance r is measured inwards along the normal to
an ellipsoid at any point P, so that pr=m?®, where p is the per-
pendicular from the centre on the tangent plane at #; shew that
the locus of the point so obtained is

Cb’ mﬂ bQ yﬂ cﬂ z?
(a,i I mﬂ)ﬂ + (bs _mQ)B + (GB i 7"’ﬂ)2 5

19. Through any point P on an ellipsoid chords PQ, PR, PS
are drawn parallel to the axes; find the equation of the plane
QRS, and shew that the locus of X, the point of intersection of
the plane QRS and the normal at P, is another ellipsoid. Shew
also that if the normal at P meet the principal planes in @, @, @,

2 1 1 1
Pk~ PG, 7@, PG,

1.

then will
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20. PK is the perpendicular from any point on its polar
plane with respect to a conicoid and this perpendicular meets a
principal plane in G ; shew that, if PK. PG is constant, the locus
of P is a conicoid.

21. Shew that the cone whose base is the elllpse — %:l
2
2=0, and whose vertex is any point of the hyperbola l;,ﬁ——b—, - %,

=1, y=0, is a right circular cone,

22. A cone, whose equation referred to its principal axes, is
ﬂfﬂ e ﬁﬂ,‘?§=(aﬂ + ﬁ?)?,
2

is thrust into an elliptic hole whose equation is ai + *5=1; shew

b_“*
that when the cone fits the hole its vertex must he on the ellipsoid

oy 1 1
5 +F+z’<? +b_’>:1'
23. In a cone any system of three conjugate diameters meets

any plane section in the angular points of a triangle self polar
with respect to that section.

24, The enveloping cones which have as vertices two points
on the same diameter of a conicoid intersect in two parallel planes
between whose distances from the centre that of the tangent
plane at the end of the diameter is a mean proportional. What
is the corresponding proposition for a paraboloid ?

25. Shew that any two enveloping cones intersect in plane
curves; and that when the planes are at right angles to one
another, the product of the perpendiculars on one of the planes of
contact from the centre of the ellipsoid and the vertex >f the
corresponding cone, is equal to the product of such perpendiculars
on the other plane of contact.

26. If a line through a fixed poiut O be such that its con-
jugate line with respect to a conicoid is perpendicular to it, shew
that the line is a generating line of a quadric cone.

27. The locus of the feet of the perpendiculars let fall from
points on a given diameter of a conicoid on the polar planes of
those points is a rectangular hyperbola.
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28. Prove that the surfaces
'y 2% 2 Y 2 m’+1"f_
al’ bl’l B Cl : a,: bﬂ’ % cﬁ ’ ?w_B‘2 bﬂ’_ 3

Q

2
c ?

will have a common tangent plane if

2 2 2
a’, al, al|=0.

bngi b: , b:

c C, C,

10 2 ! 3 |

29. Prove that an cllipsoid of scmi-axes a, b, ¢ and a concen-
——,——_fbi__—, are so related that an in-
Jb + cfa’ + a'b’

definite number of octahedrons can be inscribed in the ellipsoid,
and at the same time circumscribed to the sphere, the diagonals of
the octahedrons intersecting at right angles in the centre.

tric sphere of radius

2 0 ]
30. TFind the locus of the centre of sections of g, + ‘%5 + z,,=1
2 2 2
which touch ‘%ﬁ ?5/_2 + %=1,

31. Planes are drawn through a given line so as to cut an
ellipsoid ; shew that the centres of the sections so formed all lie on
a conic,

32. TFind the locus of the centres of sections of an ellipsoid
by planes which are at a constant distance from the centre.

33. Shew that the plane sections of an ellipsoid which have
their centres on a fixed straight line are parallel to another straight
line, and touch a parabolic cylinder.

34. The locus of the line of intersection of two perpendicular
tangent planes to ax’ + by* + c2* =0 is

a(d+c)a’ +b(c+a)y’ +c(a+d)2 =0,

35. The points on a conicoid the normals at which intersect
the normal at a fixed point all lie on a cone of the second degree
whose vertex is the fixed point.

36. Normals are drawn to a conicoid at points where it is
met by a cone which has the axes of the conicoid for three of its
generating lines; shew that all the normals intersect a fixed
diameter of the conicoid. 3
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37. Shew that the six normals which can be drawn from
any point to an ellipsoid lie on & cone of the second degree, three
of whose generating lines are parallel to the axes of the ellipsoid.

38. Find the equations of the right circular cylinders which
circumacribe an ellipsoid.

39. If a right circular cone has three generating lines
mutually at right angles, the semi-vertical angle is tan™',/2.

40. If one of the principal axes of a cone which stands
on a given base be always parallel to a given right line, the locus
of the vertex is an equilateral hyperbola or a right line according
as the base is a central conic or a parabola,

41. The axis of the right circular cone, vertex at the origin,
which passes through the three lines, whose direction-cosines are
¢ my, n), (e my, n,), (I, my, n,) is normal to the plane

0, 1, 1, 1 |=0.

x 1, I, [
Y ml’ mg’ "”3
2, N, N, N,

42. The equations of the axes of the four cones of revolution
which can be described touching the co-ordinate planes are
z* I 2?

a, B, y being the angles Y0Z, ZOX, and XOY respectively.

43. Prove that four right cones may be described, passing
through three given straight lines intersecting in the same point,
and that if 2a, 23, 2y be the mutual inclinations of the straight
lines, the equations of the cones referred to the straight lines as
co-ordinate axes will be

s 2 O ) [ ) 1.2 2 g
sSin‘a sin S Sm'a CoSs cos
+__B_+__Y=O’ +__§+._Y=O’

x Y z x y 2

2 22 e 2 ] ]
Cos'a sin COSs cos a COos sin
..~_+._@+__‘.Y:0,______§+ 7:0




EXAMPLES ON CHAPTER IV, 95

44. Shew that, if P, @, B be extremitics of three conjugate
diameters of a conicoid, the conic in which the plane PQA cuts
the surface contains an infinite number of sets of three conjugate
extremities, which are at the angular points of maximum triangles
inscribed in the conic PQR.

45. Shew that, if the feet of three of the six normals drawn
from any point to an ellipsoid lie on the plane I +my + nz+p=0,
the feet of the other three will be on the plane

ax by cz 1
T "™ p
the equation of the ellipsoid being ax® + by" + ¢z’ = 1.

=Y,

46. Prove that the locus of a point with which as a centre of
conical projection, a given conic on a given plane may be projected
into a circle on another given plane, is a plane conic.

47. If C be the centre of a conicoid, and P’ () denote the
perpendicular from /> on the polar plane of @ ; then will

2@ _ 0@
QE) o)y

48. The locus of a point such that the sum of the squares of
its normal distances from a given ellipsoid is constant, is a co-axial
ellipsoid.

49. 1If aline cut two similar and co-axial ellipsoids in P, I”';
@, @'; prove that the tangent plane to the former at P, 7”,
meet those to the latter at @ or ¢ in pairs of parallel lines equi-
distant respectively from @ or ',

50. A chord of a quadric is intersected by the normal at a
given point of the surface, the product of the tangents of the
angles subtended at the point by the two segments of the chord
being invarviable. Prove that, O being the given point and P, 7
the intersections of the normal with two such chords in perpendi-
cular normal planes, the sum of the reciprocals of OF, OF), is
invariable,



CHAPTER V.

PLANE SECTIONS OF CONICOIDS.

114. We have seen [Art. 51] that all plane sections of a
conicoid are conics, and also [Art. 61] that all parallel
sections are similar conics. Since ellipses, parabolas, and
hyperbolas are orthogonally projected into ellipses, parabolas,
and hyperbolas respectively, we can find whether the curve
of intersection of a conicoid and a plane is an ellipse,
parabola, or hyperbola, by finding the equation of the pro-
jection of the section on one of the co-ordinate planes.

For example, to find the nature of plane sections of a
paraboloid.

The plane lz+my+mnz+p=0 cuts the paraboloid
ax’ + by’ + 22 =0, in a curve through which the cylinder

a (my + nz + p)* +bi*y* + 20’2 =

passes. The plane @ =0, which is perpendicular to the
generating lines of the cylinder, cuts it in the conic whose
equations are =0, a (my + nz + p)’ + by + 212 = 0; and
this conic is the projection of the section on the plane #=0.
If n=0, the projection will be a parabola; but, if » be not
zero, the projection will be an ellipse or hyperbola accord-
ing as an® (am® + bI*) — a’m®n® is positive or negative, or abl’n’
positive or negative, that is, according as the surface is an
elliptic or hyperbolic paraboloid.
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Hence all sections of a paraboloid which are parallel
to the axis of the surface are parabolas; all other sections of
an elliptic paraboloid are ellipses, and of a hyperbolic
paraboloid are hyperbolas.

Ex. 1. Find the condition that the section of ax?+ by?+e2%=1 by the
plane e+ my+nz+p=0 may be a parabola.

Ex. 2. Shew that any tangent plane to the asymptotic cone of a conicoid
meets the conicoid in two parallel straight lines.

115. To find the axes and area of any central plane
section of an ellipsoid.

Let the equation of the ellipsoid be
x? 2 zﬂ
a2 + :i, + g, =1,
and let the equation of the plane be
le+my+nz=0.....ouuu......... @i).
Every semi-diameter of the surface whose length is 7 is a
generating line of the cone whose equation is [p. 55, Ex, 5]

1 1 IS 199 i s
x”(;—;‘)+y’(zg—’?>+zg (?—”“2)=0 ...... (11).

This cone will, for all values of , be cut by the plane in two
straight lines which lie along equal diameters of the section 1
and, when 7 is equal to either semi-axis of the section, these
equal diameters will coincide. That is, the plane (i) will
touch the cone (i) when r is equal to either semi-axis of
the section of the ellipsoid by the plane. The condition
of tangency gives

T 1+1 1+1 1=0 ......... (iid).
SR FTR AT
From (iii) we see that
' abe abe :
T, = W e PR (iv),

where 7, 7, are the semi-axes of the section, and p is the
perpendienlar on the parallel tangent plane.

S.S.G. 7
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From (iv) we see that the area of the section is equal to
Trabe
N(@l + '’ + ¢*n’)
116.  To find the area of any plane section of an ellipsoid.

Take for co-ordinate planes three conjugate planes of
which z = 0 is parallel to the given plane; then the equations
of the surface and of the given plane will be respectively
of the forms

2 2 2
@ Yz
49+ 55=1, and z=1.
a* bt ‘

The cylinder whose equation is
& v K
g I‘)/u ey 1,
passes through the curve of intersection of the surface and the
plane ; and the area of the section of this cylinder by 2z =F is

Mo [
7wa'b smy(l ——(—:,—2),
v being the angle XOY. The area of the section of the
ellipsoid by z=0 is 7a’d’ sin ».
Hence, if A be the required area, and 4, be the area of
the parallel central section, we have

A=A0(1—£i:).

Now the tangent plane at (0, 0, ¢') is z = ¢’; therefore the
perpendicular distances of the given plane and of the parallel
tangent plane from the centre are in the ratio of & : ¢'.

p* ;
Hence A=A, ( —52) .................. (i),

0
where p and p, are the perpendicular distances of the given
plane and of the parallel tangent plane from the centre.
This gives the relation between the area of any section
and of the parallel central section; and we have found,
in Art. 115, the area of any central section.
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Hence the area of the section of the ellipsoid whose
equation, referred to its principal axes, is

wﬁ 2 Z2

Stptah
made by the plane whose equation is t

lz + my + nz =p,
is g0 1-— RELY SIS )

V(@0 + Um® + ) ( a’l’ + b'm® + ¢*n*/ °
wabe >
For A, = 7 @+ bt T o) [Art. 115],

and Py =aC+U*m* 4 *n? [Art. 91).

Ex. 1. To find the area of the section of a paraboloid by any plane.

Let the equation of the paraboloid be ax®+by®+2:=0, and let the equa-
tion of the section be lx+my+nz+p=0. The projection of the section on
the plane z=0 is the conic

aa:2+by2-g (lz 4+ my +p)=0,

2 me
or a(a:——) (y—nb) n’( T +2pn)

The area of the projection ig

= ( + m’+ 2 n)
n? J ab ¢
and therefore [Art. 31] the area of the section is
- l2 171.2 5 "g
n3 ~/ ab +p
2 23
+==0 by the

2
Ex. 2. To find the area of the section of the cone % 4 yE

plane lx +my +nz=p.
y?
Tt _k
w Jabck? 1- p?
V (kal? + kbm3 + ken?) kal?+ kbm? + ken®f
If we put k=0 the surface becomes the cone. The required area is therefore
p? A/ abe
(al® + bm?+ tm‘*’)g
Ex. 3. If central plane sections of an ellipsoid be of constant area, their
planes touch a cone of the second degree.
7—2

The area of the section of — =1 by the given plane ig
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Let the arca be i , and let the equation of one of the planes be

d
lo+my +nz=0,
Then we have
wabe __mabc
V@2t e d ?
or all? +02m?+cnt=d2;

(a? —a®) B + (82— d?) m? + (c? — d?) n?=0.
This shews that the plane lz+my+nz=0 always touches the cone
22 92 2
a-atpomtaa"
117. We can find, by the method of Art. 115, the area
of a central plane section of the surface whose equation is
az® + by* + c2* + 2fyz + 2922 + 2hay = 1.
For the semi-diameters of length » are generating lines of
the cone whose equation is

(a—%) x* + (b—%) Y+ (c— -i.—z) 28+ 2fyz + 2922 + 2hay = 0.
When r is equal to either semi-axis of the section of the
surface by the plane
le + my +nz=0,
the plane will be a tangent plane of the cone. The condition
of tangency gives, for the determination of the semi-axes, the
equation

1
a—?z, h, g, ll=0.
1
h, b—?, f, m
1
g9, f) c_;j: n
5y m, n, 0

This result may also be obtained by finding the maxi-
mum value of #*+y*+2"=+", subject to the conditions
ax’ + by’ + c2* + 2fyz + 2922 + 2hxy = 1, and e+ my +nz= 0.
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118. To find the directions of the axes of any central
section of a conicovd.

Let the equation of the surface be
az’® + by* + ¢2* + 2fyz + 29z + 2hay =1,
and let the equation of the plane be
lz+my + nz =0,

Then, if I’ be any point on an axis of the section, the line
joining P to the centre of the section will be perpendicular
to the polar line of P in the plane of the section.

Hence, if P be (£, 5, £), and if the direction-cosines of
the polar line be A, u, v, we have

A+ py +vE=0...... AT @).
Also, since the polar line is on both the planes
w(af+hn+98) +y(RE+by+fE) +2(9E+ fn+c)=1,
and lo+ my+nz=0,
it is perpendicular to the normals to those planes; hence

A (@€ + by +g8) + p (hE+ by + f) + v (9E + fi -+ ¢£) = 0...(ii),

and Mtpm+on=0.ccccceeevevnnnin.. (i11).
Eliminating A, u, v from the equations (i), (ii), (iii), we
have g 7, (@ =0,
af+hn+ gt hE+bn+ fE gE+ fo+cf
l, m, n

Hence the required axes are the lines in which the given
plane cuts the cone whose equation is

z, Y, z =0.
ax + hy + gz, hx + by + fz, gr+ fy +cz
l: m, n

119. To find the angle between the asymptotes of any
plane section of a conicoid.

Let 6 be the angle between the asymptotes of the plane
section, and let the semi-axes of the section be «, 8.
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Then tan ?—'—‘J_——lg;
2 a
202
tan’6 = e 12

(az 1T [){2')2 o
This gives the required angle, since we have found, in the
preceding articles, the axes of any plane section.

Ex. 1. Find the angle between the asymptotes of the section of
ax®+by?+cz?=1 by the plane Iz +my + nz=0.

The semi-axes are the roots of the equation
g m? n?

- £+ SEd + 7 =0;
a— -a T a
B
—4abc(—+_+ -
2y 2
therefore tan29= 4ry’ry AR G

IR M I U E T o e e
Ex. 2. To find the condition that the section of the conicoid
ax? +by? + c2° + 2fyz + 292+ 2hay =1

by the plane lz+my +nz=0 may be a rectangular hyperbola.
The square of the reciproeal of the semi-diameter whose direction-cosines
are A, u, v is given by

1
A= aN? + by + cv? + 2fuw + 2gv\ + 2hAp.

Take any three perpendicular diameters; then we have by addition
11
7?+,?+7?—a+b+c.

Now, if r,, 7, be the lengths of any two perpendicular semi-diameters of a
rectangular hyperbola, r? +r,2=0.

Hence for any semi-diameter of the conicoid which is perpendicular to
the plane of a section which is a rectangular hyperbola, we have

;1-2=a+b+c.

The required condition is therefore
al’+bm? + cn?+ 2fmn+2gnl + 2him=a+b+c=(a+b+c) (12 +m?+ n?).
Ex. 3. Shew that the two lines given by the equations aa?+ by®+ c2*=0,
le+my +nz=0 will be at right angles, if
P(b+c)+m?(c+a)+n?(a+d)=0.
The lines are the asymptotes of the section of the conicoid ax? + by? + cz?=1
by the plane lz +my +nz=0.
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120. If two conicoids have one plane section in common
all their other points of intersection lie on another plane.

Let the equations of the common plane section be
ar® 4 by + 2hay + 2uw + 20y +¢c=0, 2=0.

The most general equations of two conicoids which pass
through this conic are _
aa® + by + 2hey + 2ux + 20y 4 ¢ + 2 (lw + my + nz + p) =0,
and
@it + by? + 2hay + uz + 2wy + ¢+ 2 (Lw +my+n'z +p) = 0.

Tt is clear that all points which are on both surfaces, and
for which z is not zero, are on the plane given by the
equation

o +my+nz+p=la+my+nz+p’;

this proves the proposition.

S
CIRCULAR SECTIONS.

121, To find the circular sectins of an ellipsoid.

Since parallel sections are similar, we need only consider
the sections through the centre.

Now all the semi-diameters of the ellipsoid which are of
length r are generating lines of the cone whose equation is

1 1 1 1 1 1
) 4 2 —- ' 22 -2 =
x (a2 r“) y <b” T"’) ‘ (c" 9‘“) L

If there be a circular section of radius =, an infinite
namber of generating lines of the cone will lie on the plane
of the section; hence the cone must be two planes. This
will only be the case when 7 is equal to a, or b, or c.

If r=a, the two plancs pass through the axis of «, their
equation being

11 11 .
) (Z* _ u2> 42 (5 - w,) = O, (i)
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The equations of the other pairs of planes are respectively

2 (i_ —3) + CL_ —p) = O (i),

0 O SO |
and @ (;—;) +y (5’—5’> =0.eenennn. (1),

Of these three pairs of planes, two are imaginary. For,
if @, b, ¢ be in order of magnitude, l%z—%and %2—%2 have
the same sign, and therefore the planes (i) are imaginary ;
for a similar reason the planes (iii) are imaginary. Hence,
the only real central circular sections of an ellipsoid pass
through the mean axis, and their equations are

w\/({%—-%,):i—zJ(é},—%) ...... (iv).

Since all parallel sections are similar, there are two
systems of planes which cut the ellipsoid in circles, namely
planes parallel to those given by the equation (@iv).

If b=c the two planes which give circular sections are
coincident,

122. If the surface be an hyperboloid of one sheet, we
must change the sign of ¢ in the equations of the last
Article. In this case the planes which give the real circular
sections are those given by equations (i), @ being supposed to
be greater than b.

If the surface be an hyperboloid of two sheets, we must
change the signs of * and ¢, In this case the planes which
give the real circular sections are those given by equation
(i1), b being supposed to be numerically greater than c.

123. If a series of planes be drawn parallel to either
of the central circular sections of an ellipsoid, these planes
will cut the surface in circles which become smaller and
smaller as the planes are drawn farther and farther from
the centre; and, when the plane is drawn so as to touch the
ellipsoid, the circle will be indefinitely small.
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DEr. The point of contact of a tangent plane which cuts
a surface in a point-circle is called an umbilic.

124, Any two circular sections of opposite systems are on
a sphere.

The circular sections of the ellipsoid are parallel to the
planes whose equations are

1 1 1 1
‘”2(5’_6‘2)+22(F_5")_0'
g 1
Hence w\/(gi_l—,lz)'l"z\/(bl—?_(?)'*p:o’
and w\/((—;—%g>—z\/(l—}§—é>+q=0,

are the equations of the planes of any two circular sections of
opposite systems.

The equation
2 \/] i y\/l l)
pe F“+E“"1"7“{w <&2—35)+” (3 =) +2
1 1 1 1
{w «/(az‘zz)‘z«/(zsz‘az%q}: "

is, for all values of A, the equation of a conicoid which passes
through the two circular sections; and, if A = 1, the equation
represents a sphere ; which proves the proposition,

125. We can find the circular sections of the paraboloid

2T
e 2z,
by writing the equation in the form
l 2 2 2 2 1 1) zg—_
a(a; +y 42— 2a2) + y (Z_c—z _J_O‘

It is clear that the two planes given by the equation

2<1_1>_z_”_
Y\o0~a)"a ="

cut the paraboloid where they cut the sphere whose equation
is T+ +2—2az=0;
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and, since the planes must cut the sphere in circles, they will
cut the paraboloid in circles.
We can shew in a similar manner that the planes given

by the equation
2/ 1) oo
w <a 5) "5 ="

will give circular sections of the paraboloid.

Of the two pairs of planes given by the equations

1 1\ 2 1 1\ 2
apfISs A e 2 (2 _ 2V _2 _
oGt = St

one will be real, if @ and b are of the same sign; but both
pairs of planes will be imaginary if @ and b are of different
signs, so that there are no circular sections of a hyperbolic
paraboloid.*

Ex. 1. Shew that the conicoid whose equation is
(A+N) 22+ (B+N) y2+(C+A) s2=1,
has the same cyclic planes for all values of A.
Ex. 2. Shew that no two parallel circular sections of a conicoid, which
is not a surface of revolution, are on a sphere.
Ex. 3. Find the circular sections of the conicoid whose equation is
ax?+by?+ c2? + 2fyz + 2gzx + 2hay =1.
All semi-diameters which are of length 7 are generating lines of the cone
whose equation is

1 1 ’
(a-— ;5) 224 (b - —7—2) ¥+ (c- ;15)2‘3+2fyz+2yz:c+2hxy=0... (i).

If therefore r is the radius of a circular section, the cone must be two
planes, The condition for this is
1

a3 b, gR[E 05 5 (ii).
1
h, b—;g-, f
1
g f’ c",;}f

If we substitute in (i) any one of the roots of the equation (ii), we shall
obtain the equation of the corresponding planes of circular section.

Ex, 4. Tind the real circular sections of the following surfaces
(i) 4x®+2y2+22+3yz +22=1,
(i) 2% +5y? - 822+ day=1.
* This is not strictly true: a section through any generating line by a
plane parallel to the axis of the surface is a circle of infinite radius.
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Ans. (i) planes parallel to
(x+y—2)(z-y+22)=0.
(ii) planes parallel to
(c+ 2y)? — 422=0.
Ex. 5. Find the conditions that the plane

lz+my+nz=0,
may cut the conicoid

az?+by®+cz*+ 2fyz + 2922+ 2hry =1
in a circle.
As in Ex. 3, the equation

(a—’—:—g) 2?2+ (b—_yl,)y2+<c—;:2) 2+ 2fyz +29zx+ 2hay =0

must, for some value of v, be two planes of which the given plane is one.
The equation must therefore be the same as

z 1 y 1 z 1
(lz +my +nz) {7 (a,—;é) +;'-1(b—$) R ("";2’ }:0,

By comparing the coefficients of yz, zx, 2y we have

H(ed) o2 B
and two similar equations.
Hence the required conditions are
bnd+cm? - 2fmn _ cl*+an’-2gnl _am?+ 01 - 2him
m?+n? - ni4 2 = Uym2
126. We will conclude this chapter by the solution of
two examples.

Ex. 1. With a fixed point O on a conicoid as vertex, and plance sections of
the conicoid for bases, cones are described; shew that the cones are cut by any
plane parallel to the tangent plane at O in a system of similar conics.
(Chasles.)

The equation of a conicoid, referred to three conjugate diameters as axes,
is of the form
@ g B
@ttt a=
Hence the equation, referred to parallel axes through the extremity of one of
the diameters, will be

ik

TNz 22
atptat ="
This we will take for the equation of the surface, the common vertex of the
cones being the origin. Let lz+my +nz=1 be the equation of any plane
section ; then the ecorresponding cone will be
& Yy P 2% "
2iptats (I +my +nz)=0.
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The section of this cone by the plane z=F is clearly similar to the conic

22 y?
atp=b
which proves the proposition.

Ex. 2. With a fixed point O on a conicoid for vertex, and a plane section
of the conicoid for base, a cone is described ; shew (i) that if the cone have
three perpendicular generating lines, the plane base will meet the normal at O
in a fized point; and (ii) that if the normal at O be an axis of the cone, the
plane base will meet the tangent plane at O in a fixed straight line.

The most general equation of a conicoid, when the origin is on the
surface and the plane z=0 is the tangent plane at the origin, is

ax® +by? + ez + 2fyz + 2gzx + 2hay + 22=0.

The equation of the cone whose vertex is the origin, and which passes
through the points of intersection of the conicoid and the plane

let+my +nz=1

is az®+ by? + ¢ + 2fyz + 2gzx + 2hay + 2z (le + my +nz) =0,
Now the condition that the cone may have three perpendicular generating
lines is
a+b+c+2n=0 [Art. 109].

This shews that the intercept on the axis of z is constant; which proves
(i). The conditions that the axis of z may be an axis of the cone are
[See Art. 60] g+1=0, and f+m=0. Ience the plane meets the axes of x
and y in fixed points; which proves (ii).

ExampLEs oN CHAPTER V,

1. SmEw that the area of the section of an ellipsoid, by
a plane which passes through the extremities of three conjugate
diameters, is in a constant ratio to the area of the parallel central
section,

2. Given the sum of the squares of the axes of a plane
central section of a conicoid, find the cone generated by a normal
to its plane.

3. Shew that a plane which cuts off a constant volume from
a cone envelopes a conicoid of which the cone is the asymptotic
cone.
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4. Shew that the axes of plane sections of the conicoid

o'y 2
ERE T

which pass through the line

lie on the cone whose equation is

Loy (IR o ol AR ity R
F(y—g (17’ I AACE (c’ @) v, (E’_b’)~ )
5. If through a given point (z, ¥, #,) lines be drawn each
of which is an axis of some plane section of ax®+dy®+¢2*=1,
such lines describe the cone
xﬂ
x—x,

2,

B2,

a(b-c)

0.

+b(c-—a)y‘qf’y +¢(a—0b)
[']

6. If the area of the section of

2
%+%=2m

be constant and equal to a®, the locus of the centre is

g L2 -l 8 3
at l+"y—,+1,> =7r'bc<2x—y——€) P
B ¢ b ¢

7. If a conic section, whose plane is perpendicular to a gene-
rator of a cone, be a circle; the corresponding projection of the
reciprocal cone is a parabola.

8. Shew that the principal semi-axes of the normal section

of the ecylinder which envelopes b%c’a® + c’a’y* + a®b%" = a’b*c?, and

whose generating lines are parallel to

SR
i m n’
are the values of r given by
lﬂ m? n’
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9. Shew that the section of
s

P
¥ ¢

2

a

by the plane lx + my + nz = 0 is a rectangular hyperbola, if
(0 = &) I +mb* —nc* = 0,
10. Shew that all plane sections of

2

Y

o =z
e b

which are rectangular hyperbolas, and which pass through the
point (a, B, y), touch the cone

S )

a

11. Find the locus of the vertices of all parabolic sections
of a paraboloid, whose planes are at the same distance from its
axis.

12. Shew that, if the plane &+ my+nz=p cut the surface
ax®+by® +c2’=1 in a parabola, the co-ordinates of the vertex
of the parabola satisfy the equation

ac (1 1 byl 1\ cz/1 1)
TG uG-a)+5 G5
13.  The area of the section of (abefyhfay y2)* =1 by the plane
which passes through the extremities of its principal axes is

3J3J<a+b+c)

14. A cone is described with vertex (f, g, ) and base the
section of the surface az® + by* + c2*= 1 made by the plane z=0 ;
shew that the equation of the plane in which this cone again meets
the surface is

x (af® + bg® + ch® — 1) = 2f (afe + bgy + chz — 1).
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15, Shew that the foci of all parabolic sections of

2 2
9 2
i
a

b

lie on the surface

o A ATE 5 i’>_%3_/f 2
(” a b)(a+b _4<a’+b2)'

16. Circles are described on a series of parallel chords of a
fixed circle whose planes ave inclined at a constant angle to the
plane of the fixed circle.

Shew that they trace out an ellipsoid, the square on whose
mean axis is an arithmetic mean between the squares on the other
two axes,

17. Shew that if the squares of the axes of an ellipsoid
are in arithmetical progression the umbilici lie on the central
circular sections ; if they are in harmonic progression the circular
sections are at right angles ; if they are in geometrical progression
the tangent planes at the umbilici touch the sphere through the
central circular sections.

18. Points on an ellipsoid such that the product of their
distances from the two central circular sections is constant lie on
the intersection of the ellipsoid with a sphere.

19. If the diameter of the sphere which passes through two
circular sections of an ellipsoid be equal to its mean diameter, the
distances of the planes from the centre are in a constant ratio.

20. A sphere of constant radius cuts an ellipsoid in plane
curves ; find the surface generated by their line of intersection.

21.  The hyperboloid «* + y* — 2° tan® a = &’ is built up of thin
circular discs of cardboard, strung by their centres on a straight
wire. Prove that, if the wire be turned about the origin into the
direction (J, m, m), the planes of the discs being kept parallel
to their original direction, the equation of the surface will be

(n — Iz)’ + (ny — mz)’ = 0’ (2* tan® a + o).

22. If a series of parallel plane sections of an ellipsoid be
taken, and on any sections as base a right cylinder be erected,
shew that the other plane section, in which it meets the ellipsoid,
will meet the plane of the base in a straight line whose locus will
be a diametral plane of the ellipsoid.
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23.  Any number of similar and similarly situated conics,
which are on a plane, are the stereographic projections of plane
sections of some conicoid.

24. The tangent plane at an umbilicus meets any enveloping
cone in a conic of which the umbilicus is a focus and the inter-
section of the plane of contact and the tangent plane a directrix.

25. The quadric az® + by* + ¢z*=1 is turned about its centre
until it touches a'z® + b’y + ¢2* =1 along a plane section. Find
the equation to this plane section referred to the axes of either
of the quadrics, and shew that its area is

\/a-?b?— c—a —b—¢
o~ Ve TN S VRS
abe — a'b’¢’



CHAPTER VI

GENERATING LINES oF CONICOIDS.

127. In cones and cylinders we have met with examples
of curved surfaces on which straight lines can be drawn
which will coincide with the surface throughout their entire
length.

We shall in the present chapter shew that hyperboloids
of one sheet, and hyperbolic paraboloids, can be generated
by the motion of a straight line; and we shall investigate
properties of those surfaces connected with the straight lines
which lie upon them.

Der. A surface through every point of which a straight
line can be drawn so as to lie entirely on the surface, is
called a ruled surface; and the straight lines which lie upon
it are called generating lines.

A ruled surface on which consecutive generating lines
intersect, is called a developable surface.

A ruled surface on which consecutive generating lines do
not intersect, is called a skew surface.

128, To find where the straight line, whose equations are
s—a_y—B_z—y

T T m T m
meets the surface whose equation is ¥ (z, y, 2) = 0, we must
substitute a +r, 8 +mr, and y+nr for z, y, z respectively,

and we obtain the equation F' (« +Ir, 8 + mr, y + nr) = 0.
8. 8. G 8

4
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If the surface is of the %" degree, the equation for finding
r is of the & degree; hence any straight line meets a surface °
of the k'® degree in k points.

If, however, for any particular straight line, all the co-
efficients in the equation for r are zero, that equation will be
satisfied for all values of »; and therefore every point on that
straight line will be on the surface. Since there are 4+ 1
terms in the equation of the A™ degree, it follows that
k+1 conditions must be satisfied in order that a straight line
may lie entirely on a surface of the &™ degree.

Now the general equations of a straight line contain four
independent constants, and therefore a straight line can be
made to satisfy four conditions, and no more.

It follows therefore, that, if the degree of a surface be
higher than the third, no straight line will, in general, lie
altogether on the surface. For special forms of the equations
of the fourth, or higher orders, we may however have
generating lines ; for example, the line whose equations are
y=mz and z =m" will, for all values of m, lie entirely on the
surface whose equation is za® = y°.

If the equation of a surface be of the third degree, the
number of conditions to be satisfied is equal to the number
of constants in the general equations of a straight line,
Hence the conditions can be satisfied, and there will be a
fintte number of solutions. The actual number of straight
lines (real or imaginary) which lie on any cubic surface is 27.
[See Cambridge and Dublin Math. Journal, Vol. 1v.]

The number of conditions to be satisfied, in order that a
straight line may lie entirely on a conicoid, is three. Since
the number of conditions is less than the number of constants
in the general equations of a straight line, the conditions can
be satisfied in an infinite number of ways, so that there are
an nfinite number of generating lines on a conicoid; these
generating lines may however all be imaginary, as is
obviously the case when the surface is an ellipsoid.

129. A generating line on any surface touches the .
surface at any point O of its length, for it passes through a
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_ point of the surface indefinitely near to O; hence the tangent
plane to any surface at a point through which a generating
line passes will contain that generating line.

130. The section of a conicoid by the tangent plane at
any point through which a generating line passes, will be a
conic of which the generator forms a part; the conic must
therefore be two straight lines.

Hence, through any point on a generating line of a
conicoid another generating line passes, and they are both in
the tangent plane at the point.

The two generating lines in which the tangent plane to a
conicoid intersects the surface are coincident when the conicoid
is a cone or a cylinder.

131. Since any plane section of a conicoid is a conic, any
plane which passes through a generating line of a conicoid
will cut the surface in another generating line; and both
generating lines are in the tangent plane at their point of
intersection. Hence, any plane through a generating line of
a_conicoid touches the surface, its point of contact being the
point of intersection of the two generating lines which lie
upon it.

132. To find which of the conicoids are ruled suifaces.

If a conicoid have one generating line upon it, and we
draw a plane through that generating line and any point
P of the surface, this plane will cut the surface in another
generating line, which must pass through P.

Heuce, if there be a single generating line on a conicoid,
there will be one, and therefore by Art. 130, two generating
lines, through every point on the surface.

We can therefore at once determine whether a conicoid
is or is not a ruled susface, by finding the nature of the inter-
section of the surface by the tangent plane at any particular
point.

The equatizon of the tangent plane at the point (a,0, 0) of

" 2 2
'7'2 +7 4 f-‘ =1 is @#=a; this meets the sutface

! icoid & :
the conicox atnts g
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in straight lines whose projection on the plane z =0 are
2 2

given by the equation + ‘%2, + z—,—O. These lines are clearly

real when the surface is an hyperboloid of one sheet, and
imaginary when the surface is an ellipsoid, or an hyperboloid
of two sheets.

Hence the hyperboloid of one sheet is a ruled surface.

The hyperbolic paraboloid is a particular case of the
hyperboloid of one sheet; hence the hyperbolic paraboloid is
also a ruled surface.

This can be proved at once from the equation of the
paraboloid. For, the tangent plane at the origin is 2 =0, and
this meets the paraboloid az®+by’+22=0 in the straight
lines given by the equations ax®+by’=0, 2=0; the lines
are clearly real when a and b have different signs, and are
imaginary when @ and b have the same sign.

Hence an hyperboloid of one sheet (including an hyper-
bolic paraboloid as a particular case) is the only ruled conicoid
in addition to a cone, a cylinder, and a pair of planes.

133. To shew that there are two systems of generating
lines on an hyperbolovd of one sheet.

Since any plane meets any straight line, the tangent
plane at any point P on an hyperboloid of one sheet will
meet all the generating lines of the surface, and the points
of intersection will be on the surface. But the tangent
plane cuts the surface in the two generating lines through
P; hence every generating line of the hyperboloid must
intersect one or other of the two generators P4, PB which
pass through any point P on the surface.

Now no two of the generating lines which meet the same
generator can themselves intersect, for otherwise there would
be three generating lines in a plane, which is impossible,
since every plane section is a conic.

Hence there are two systems of generating lines, which
are such that all the members of one system intersect I’B,
but do not themselves intersect ; and all the members of the
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other system intersect P4, but do not themselves intersect.
Since the position of P is arbitrary it follows that every
member of one of the two systems of generating lines meets
every member of the other system.

134. If a straight line intersect a conicoid in three points,
it will entirely coincide with the surface ; and hence, to have
a generating line of a conicoid given, is equivalent to having
three points given.

To have three non-intersecting generating lines given is
therefore equivalent to having mine points given, so that
[Art. 50] three non-intersecting generators are sufficient to
determine the conicoid on which they lie.

If a line meet three non-intersecting lines, it will meet
the conicoid of which they are generators in three points,
namely in the three points in which it intersects the three
lines; and hence it must itself be a generator of the surface.
Hence, the straight lines which intersect three fixed non-
intersecting straight lines are generators of the same system
of a conicoid, and the three fixed lines are generators of the
opposite system of the same conicoid. [See Art. 49, Ex. 2]

135, Since any line which meets three non-intersecting
straight lines is a generating line of the conicoid on which
they lie, it follows that the only lines which meet the three
lines and which also meet a fourth given straight line are
the generators of the surface, of the system opposite to that
defined by the given lines, which pass through the points
where the conicoid is met by the fourth given straight line.
But the fourth straight line will meet the conicoid in two
points only, unless it be itself a generator of the surface.

Hence two straight lines, and two only, will, in general,
meet each of four given non-intersecting straight lines; but if
the four given straight lines are all generators of the same
system of a conicoid, then an infinite number of straight
lines will meet the four, which will all be generators of the
opposite system of the same conicoid.

Ex. 1. Two planes are drawn, one through each of two intersecting

generating lines of a conicoid; shew that the planes meet the surface in two
other intersecting generating lines.
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Ex. 2. Shew that the plane through the centre of a conicoid and any
generating line, will cut the surface in a parallel generating line, and will
touch the asymptotic cone.

Ex. 3. A conicoid is described to pass through two non-intersecting given
lines and to touch a given plane. Shew that the locus of the point of contact
is a straight line,

Let the given lines meet the given plane in the points 4, B respectively.
Then, the given plane will cut the surface in two generating lines, one
of which will intersect’ both the given lines; hence, since the points of

intersection must be 4 and B, the point of contact must be on the
line 4B.

Ex. 4. The lines through the angular points of a tetrahedron perpen-
dicular to the opposite faces are generators of the same system of a
conicoid.

Let A4', BB', CC', DD’ be the four perpendiculars, and let a, 8, v, 8 be
the orthocentres of the faces opposite to 4, B, C, D respectively. Then, it is
egsy to prove that the lines through a, B, v, & parallel respectively to

A’y BB, CC’, DD' will meet all the four perpendiculars. Since the four
perpendiculars are met by more than two straight lines, they are generators
of the same system of a conicoid; and the four parallel lines through
a, B, v, 8 are generators of the opposite system of the same conicoid.

Ex. 5. If a rectilineal quadrilateral 4BCD be traced on a conicoid, the
centre of the surface is on the straight line which passes through the middle
points of the diagonals 4C, BD.

The planes BAD, BCD are the tangent planes at 4, C respectively, and
BD is their line of intersection; hence the centre of the conicoid is on the
plane through BD and the middle point of AC. Similarly the centre is on the
plane through AC and the middle point of BD.

Ex. 6. If arectilineal hexagon be traced on a conicoid, the three lines
joining opposite vertices will meet in a point, and the three lines of inter-
section of the tangent planes at opposite vertices lie in a plane. [Dandelin.]

Let ABCDEF be the hexagon. Intersecting generators of a conicoid are
of different systems; therefore 4B, CD, EF are of one system, and BC, DE,
F4 of the opposite system; so that opposite sides of the hexagon are of
different systems, and therefore will intersect. Kach of the diagonals
AD, BE, CF is the line of intersection of two of the planes through pairs of
opposite sides ; therefore 4D, BE, CF meet in a point, namely in the point
of intersection of the three planes through pairs of opposite sides.

Let X be the point of intersection of 4B and DE, Y the point of inter-
section of BC and EF, and Z of CD and F4. The tangent planes at 4, D,
namely the planes FAB, CDE, intersect in the line XZ; the tangent planes
at B, E intersect in the line X ¥; and the tangent planes at C, F intersectin
the line YZ. Hence the three lines of intersection of the tangent planes at

. opposite vertices lie in the plane XYZ.

Ex. 7. Four fixed generators of the same system cut all generators
of the opposite system in a range of constant cross-ratio. [Chasles.]
Let any three generators of the opposite system cut the fixed generatorsin
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the points 4, B, C, D; 4', B/, ¢, D' and 4", B", C", D" respectively. Then,
the four planes through A”B”C”D” and the fixed generators cut all other
straight lines in a range of constant cross-ratio [Art. 36]; we therefore have

. {4'B'C'D'} = {4BCD}.

Ex. 8. The lines joining corresponding points of two homographic
systems, on two given straight lines, are generating lines of a conicoid.

136. To find the angle between the two generating lines
through any point of an hyperboloid.

The section of an hyperboloid of one sheet by the
tangent plane at any point is similar and similarly situated to
the parallel central section. Hence the generating lines
through any point are parallel to the asymptotes of the
parallel central section. Let the equation of the surface be

yﬂ 22

wﬂ
stpa=t

and let f, g, b be the co-ordinates of the point P through
which the generating lines pass.

Let o*, B* be the squares of the axes of the central section
which is parallel to the tangent plane at P, and let 6 be the
angle between the generating lines through P,

iy
Then tan~2—=\/—l§,
a
and therefore
—g_ B .
tan0—2ﬁ/—1a—,_r—6~,.
Now the sum of the squares of three conjugate semi-

diameters is constant, and also the parallelopiped of which
they are conterminous edges. Hence

@4 B+ 0P =a* 4+ b*—c?,
and afBp = J—:l . abe.
Hence we have

tan =2 abo

p @+ —-F—-0P)°
137. We can write the equation of an hyperboloid of one
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sheet in such a way as to shew at once the existence of

generating lines. For, the equation
2

a2 Y 7
atEpa b
is equivalent to
¢ _2_ 5y,
a]‘l c‘! b‘} B

and it is evident that all points on the line of intersection of
the planes whose equations are ‘

x z N z,2 1 ( g/)
~—-=A(1-%), c+===(14+%2
(1-§). 5+3=3 (43
are on the surface; and by giving different values to A we
obtain a system of straight lines which lie altogether on the
surface. The generating lines of the other system are
similarly given by the equations

z_z_ Y\ z,2_1l/ ¥
a c—)‘(l-*—b)’ a+c_)\,(1 b>'

‘We can find in a similar manner the equations of the
generating lines of the paraboloid
372 y2
? - I)§ = 22.

The equations of the generators of one system are

i Sl

a b % atb=n
and of the other system

o kg vl

a+b—27w,a b=

138. The equations of the generating lines which pass .
through any point on an hyperboloid of one sheet can be
obtained in the following manner.

The co-ordinates of any point on the surface can be
expressed in terms of two variables 6 and ¢, where

a2 =a cos Osec ¢, y =bsin fsec ¢, and z=ctan ¢
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This is seen at once if we substitute in the equation of
the hyperboloid.

The two generating lines through the point P are the
lines of intersection of the surface and the tangent plane at
P. Now, the equation of the tangent plane at (6, ¢) is

x Y _z —r]
acosﬁseoqb-}-bsmﬁsec(b ctangb 162

hence the tangent plane meets the plane z=0 in the
line whose equations are

20039+%sin0=cos¢,z=0 ......... (@).
If this line meet the section of the surface by z=0 in
the points 4, B, whose eccentric angles are a, 8 respectively,
we have from (i)
B

0= “+B

or a=0+¢,and3=€—-¢ ......... (i1).

Now AP, BP are the generators through P; hence from
(ii), 8 + ¢ is constant for all points on the generator 4P, and
0 — ¢ is constant for all points on the generator BP.

The direction-cosines of AP are proportional to
a (cosa—cos Osec), b(sina—sinfsece), —ctand;
or proportional to
0 &8 @+ ) cos¢—cos€ sm(6+¢) cos¢-—s1n0
sin ¢ e sin ¢> o
or to asin(0+¢), —bcos(@+¢), ¢
hence the equations of 4P are
x#—acosfsecp y—bsinfsecd z—ctand
asin(@+¢)  —bcecos(@+¢) @ 5
Similarly the equations of BP are
# —acosfsecp y—Dbsinfsecp z—ctang

asin(@—¢) —beos(@—¢)  —o¢
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Cor. The equations of the generators, through the point
on the principal elliptic section whose eccentric angle is 6,

are
w—acosﬂ_y—bsiqﬁ_+z
asn 0 —bcosd ¢’

These equations may also be obtained as follows :.

The line whose equations are
z—acosd y—bsind
l S om

=T,

z
n

will meet the surface, where
(acos@+1Ur)  (bsin+mry a%*
gt e L
Hence, in order that the straight line may be a generating

line, we must have
2

 m' n
._.0’

T ¢
and lcos 9+ msmB:O'
a b
! m n

jiiihesice sin@ —cos0 +1

The equations of the generators are therefore

m—aCUsﬁ_y—bsin9_+f
asind — —bcos8 “c

139. To find the equations of the generating lines
through any point of a hyperbolic paraboloid.

Let the equation of the paraboloid be
2 2
'T—z - ‘% = 2z,

a
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Let the equations of any line be

gt 0 ol

! m n

=1
The points of intersection of the line and the surface are
given by the equation

(a +1r)* _(B+mr)’
a’ b

=2 (y +nr).

Hence, in order that the straight line may be a generating
line, we must have

' m
(1;2 7)7 = 0 ................ (l),
g—%’g—?z:() ........... (i1),
2 2
and g—., - % —2y=0.00eeunen (1i1).

The equation (iii) is satisfied if (a, B, ) be any point on the
surface ; from (i) we have(—i= + %; and, substituting in (ii),

we obtain

e-'[?b

Hence the equations of the two generating lines through
the point (a, B ) are

_y=B_ .
p b Z D @ ............... @iv).
%
It is clear from the above that any generator of the
paraboloid is parallel to one or other of the two planes

dgtl el
My 0.
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Ex. 1. Shew that the projections of the generating lines of an hyper-
boloid on its principal planes are tangents to the principal sections.

The tangent plane at any point P on a principal section is perpendicular
to that section. Hence the projection on the principal plane of any line in
the tangent plane at P is the tangent line which is in the principal plane.
This proves the proposition, since the generating lines through P are in the
tangent plane at P.

Ex. 2. Find the locus of the point of intersection of perpendicular
generators of an hyperboloid of one sheet.

If the generating lines at any point P are at right angles, the parallel
central section is a rectangular hyperbola, and therefore the sum of the
squares of its axes is zero. But the sum of the squares of three conjugate
semi-diameters of the hyperboloid is constant and equal to a2+ b?— ¢2, Hence
OP?=a%+b* - ¢?; 50 that the points are all on a sphere.

This is the result we should obtain by putting tan §=w in the result of
Art. 136. We could also find the locus by using the equations of Art. 138.,

Ex. 3. Find the angle between the generating lines at any point of
a hyperbolie paraboloid.

The result is obtained at once from equations (iv), Art. 139, The gene-
rators are at right angles, if
s B 0, or if 2y +a2-0%2=0
a“ - +a—2—7ﬁ= , or if 2y +a-0°=0.
Thus generators which are at right angles meet on the plane 2= (02 -a?).

Ex. 4. A line moves so as always to intersect three given straight lines
which are all parallel to the same plane: shew that it generates a hyperbolic
paraboloid.

Ex. 5. A line moves %o as always to intersect two given straight lines
and to be parallel to a given plane: shew that it generates a hyperbolic
paraboloid.

Ex.6. 4B and CD are two finite non-intersecting straight lines; shew
that the lines which divide 4B and CD in the same ratio are generators of
one system of a hyperbolic paraboloid, and that the lines which divide 4C
and BD in the same ratio are generators of the opposite system of the same
paraboloid,

ExamrLes oN CraprEr VI,

v 1. A straight line revolves about a fixed straight line, find
the surface generated.

/2. If four non-intersecting straight lines be given, shew that
the four hyperboloids which can be described, one through each
set of three, all pass through two other straight lines.



EXAMPLES ON CHAPTER VI. 125

7 3. Find the equation of the conicoid, three of whose generat-
ing lines are =0, y=a; y=0,2=a; 2=0, x=a. Shew that it
is a surface of revolution, and find the eccentricity of its meridian
section.

4. Find all the straight lines which can be drawn entirely
coinciding (i) with the surface y’—2°=3a’; and (ii) with the
surface y'—z'=4a’x.

5. Normals are drawn to an hyperboloid of one sheet at
every point through which the generators are at right angles;
prove that the points, in which the normals intersect any one of
the principal planes, lie in an ellipse.

6. Given any three lines, and a fourth line touching the
hyperboloid through the three lines, then will each one of the four
lines touch the hyperboloid through the other three lines.

7. A line is drawn through the centre of aa’+ by’+cz’=1
perpendicular to two parallel generators. Shew that such lines
generate the cone

8. If two generators of an hyperboloid be taken as two of the
axes of co-ordinates shew that the equation of the surface is
of the form

2" + 2fyz + 292z + 2hay + 2wz =0.

9. The generators through any point £ on a ruled quadric
intersect the generators at a fixed point O in P and @. Shew
that if the ratio OP : 0Q is constant, R lies on a plane section of
the quadric which passes through O.

10. Find the locus of a point on an hyperboloid the genera-
tors through which intercept on two fixed generators portions
whose product is constant,

11. If all the generators to an hyperboloid of one sheet be
projected orthogonally on the tangent plane at any point, their
envelope will be an hyperbola.

12, Find the equation of the locus of the foot of the perpendi-
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cular from the point (a, U, 0) on the different generating lines
of the surface
2 y 2
=l
13. Prove that the product of the sines of the angles that
any generator makes with the planes of the circular sections is

constant.

14. TIf CP, CD be conjugate semi-diameters of the principal
elliptic section, and generators through 7> and 1) meet in 7', prove
that 2’7 =CD* + ¢, I'D*= CP* + ¢',

15. If two generators drawn from O intersect the principal
ellipse in points P, P, at the ends of conjugate diameters, then will

OFP + 0P =a*+b"+ 2¢".

16. The angle between the generating lines through the point

2 2 2 A
(zy2) of the quadric %+ % + % =11is cos™ )\I s i\’, where A}, A,
are the roots of the equation b
z’ Y 7

e =0
a@sn) T EGEN TSN
17. Shew that the shortest distances between generating lines
of the same system drawn at the extremities of diameters of the
principal elliptic section of the hyperboloid, whose equation is
w! ?/Q zl
arpe=h
lie on the surfaces whose equations are
Al .
z+y a’=b
18. Tind the equations of the surfaces of revolution which
pass through the lines y—mr=0=2—c, y+mx=0=2+¢ and
also through the origin.

19. The locus of points on (abefgh) (wyz)'=1 at which the
generators are at right angles is the intersection of the surface
with the sphere

a, h, g
hy b fl@@+y* +2)=bc+ca+ab-f —g°'— I
9 S oe
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20. Having given two generating lines that intersect and two
points on an hyperboloid, shew that the locus of the centre is
another hyperboloid bisecting the straight lines joining the two
points to the intersection of the generators.

21. Shew that the volume of cvery parallelopiped which
can be placed so that six of its edges lie along six of the generators
of a given hyperboloid of one sheet is the same.

22. A solid hyperboloid has its generators marked on it and
is then drawn in perspective : shew that the points of intersection
of the representatives of consecutive generators of the same system
will lie on an hyperbola.

23. If two points P, @ be taken on the surface
9y 1 1y
a7,+ %—z’(d—, +Z§)=1,
such that the tangent planes at those points are at right angles to

one another, then will the two generating lines through P appear
to be at right angles when seen from @.

24. 1If two conicoids have a common generator, two of their
common tangent planes through that generator have the same
point of contact.

26. 1If AOA', BOB, COC' be any three straight lines, the
lines 4B, CA'" B'(C" are generators of one system, and A'F
C’4, BC are generators of the other system, of the same hyper-
boloid.

26. Deduce Pascal’'s Theorem from Dandelin’s Theorem.
[Ex. 6. Art. 135.]

27. If from any point on a hyperbolic paraboloid perpen-
diculars be let fall on all the generators of the surface of the same
system, they will form a cone of the second degree.

28. 1If from any point on the surface of an hyperboloid of one
sheet perpendiculars be drawn to all the generators of the same
system, they will form a cone of the third degree.

29. The normals to a conicoid, at all points of a generating
line, lie on a hyperbolic paraboloid.

30. In every rectilinear octagon ABCDEFGH which is on
a conicoid, the eight lines of intersection of the tangent planes at
A, D; A, F; G, B; G, D; E, H; E,B; C, F; C, H are all
generators of another conicoid, Also the lines 4D, AF, GB, GD,
HE, HC, OF, EB are all generators of another conicoid.
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140. Since the general equation of the second degree
contains nine constants, it follows that a conicoid will pass
through any nine points, and that an infinite number of
conicoids will pass through eight points.

If S=0, and 8"=0 represent any two conicoids which
pass through eight given points, then the equation
S+AS =0 will be of the second degree, and will therefore
represent a conicoid, and it is clear that the conicoid
S+ 8" = 0 will pass through all points common to S = 0 and
S’=0. Also, by giving a suitable value to A, the conicoid
S+ AS"'=0 can be made to pass through any ninth point;
and therefore will represent any conicoid through the eight
given points.

Since the conicoid S+AS'=0 not only passes through
the eight given points, but also through all points on the
curve of intersection of S=0 and S =0, we see that all
conicoids through eight given points have a common curve of
intersection.
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141. Four cones wnll pass through the curve of inter-
section of two conicords.

Let the equations of any two conicoids be F, (z, 7, 2) =0
and F, (z, y,2z) =0. The equation of any conicoid through
their curve of intersection is of the form

F (z,y, 2) + \F, (z, y, 2) = 0.

The above equation will represent a cone, if
a,+Aa,, h+Nh,, g,+Ag,, u, 4+, |=0.
h,+Ahy, b +Ab,, fi+M,, v+,
gl+K92’ ﬁ+xf;, cl+xc2' wl+kw2
w2, v, +AY,, w -+, d+2Ad,

Since the equation for determining A is of the fourth
degree, four cones, real or imaginary, will pass through the
points of intersection of two conicoids.

142. The wvertices of the jour cones through the curve of
tntersection of two conicoids are the anmgular points of a
tetrahedron which vs self-polar with respect to any conicoid
which passes through that curve.

Take the vertex O of one of the cones for origin, and
let F, (z, y, z) =0 and F, (z, y, z) = 0 be the equations of the
two conicoids. Then the equation of the cone will be of the
form F, (z, y, 2) + AF,(x,y, 2) =0. But, since the origin
is at the vertex of the cone, its equation will be homo-
geneous. We therefore have

U+ M, =0, + M, =w, + Aw,=d, +Ad, =0,

o R T O R (i).

Yoo W dz

Now the equation of the polar plane of O with respect to

any conicoid
F,(s,9,2) + pF, (@, 9, 2) =0, is

(,+pu)x+ @ +pv)y + (w,+ pw) z+d, + pd,=0;

and, from (i), it is clear that this polar plane coincides with
ux+vy+wz+d =0
for all values of u. l l ' ;
S. 8. G. 9
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Hence O has the same polar plane with respect to all
conicoids through the curve of intersection of the two given
conicoids.

Now the polar plane of O with respect to any one of the
other cones through the curve of intersection will pass
through the vertex of that cone, and hence the vertices of
the other three cones are on the polar plane of O with respect
to any conicoid through the curve of intersection of the given
conicoids: this proves the theorem.

143. If S=0 be the equation of any conicoid, and
af3 =0 the equation of any two planes, then will S —Ara8 =10
be the general equation of a conicoid which passes through
the two conics in which S=0 is cut by the planes «=0
and 8= 0.

If now the plane a=0 be supposed to move up to and
ultimately coincide with the plane 8 =0, we obtain the form
S —2B*=0, which represents a system of conicoids, all of
which touch §'=0 where it is met by the plane 8=0.

The surfaces S — A28 =0 and S=0 touch one another at
the two points where they are cut by the line whose equa-
tions are a=0, 8=0. For at either of these points the
surfaces have two common tangent lines, namely the tangent
lines to the sections by the planes a =0 and 8 =0.

144. Al conicords which pass through seven given points
pass through another fized povnt.

Let 8,=0, §,=0, S;=0 be the equations of any three
conicoids through the seven given points.

Then the conicoid whose equation is S, +AS, + uS, =0
will clearly pass through all points common to S, =0, S,=0
and S,=0; and S, 4+ A8, +uS, =0 can be made to coincide
with any conicoid through the seven given points, for the
two arbitrary constants A and u can be so chosen that
the surface will pass through any two other points. Now
the three conicoids S, =0, S,=0, S, =0 have eight common
points, all of which are on S, +AS, +uS, =0; this proves
the theorem.

Thus, corresponding to any seven given points there is an
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eighth point associated with them, such that any conicoid
through seven of the points will also pass through the eighth
point ; and it should be remarked that in order that a system
of conicoids may have a common curve of intersection, they
must have eight points in common which are not so associated.

Ex. 1. AU conicoids through the curve of intersection of two rectangular
hyperboloids are rectangular hyperboloids.

[A rectangular hyperboloid is one whose asymptotic cone has three per-
pendicular generating lines.]

The asymptotic cone of a conicoid has three generators at right angles
when the sum of the coefficients of 2% y2?and 2? in the equation of the surface
is zero. Now the sum of the coefficients of %, ? and 22 in S+AS'=0 will be
zero, if that sum is zero in S and also in §’. This proves the proposition.

Ex. 2.  A4ny two plane sections of a conicoid and the poles of those planes
lie on another conicoid.

Let az? + by?+c2? + d=0 be the conicoid, and let (¢, ¥/, ) and (z", y”, 2")
be any two points. The equations of the polar plancs of these points will be
azz’ +byy’ +cz2 +d=0 and azz” + byy” + czz” + d=0.

The conicoid
N (az®+ by? + c2® + d) — (axz’' + byy' + cz2' + d) (axx” + byy" + cz2” + d) =0

is the general equation of a conicoid through the two plane sections, The
conicoid will pass through («, %, #) if A be such that

A {az’?+ by + 2+ d) - (ax' + by'? 4 c22 + d) (ax'z" + by'y" + c2'?' + d) =0,
orif A=ax'z" + by'y" + 2’2" + d.
The symmetry of this result shews that the conicoid will likewige vass
through (z”, y", 2”).

Ex. 8. Through the curve of intersection of a sphere and an ellipsoid four
quadric cones can be drawn; and if diameters of the ellipsoid be drawn
parallel to the generators of one of the cones the diameters are all equal.
Also the continued product of the four values of such diameters is equal to the
continued product of the azes of the ellipsoid and of the diameter of the
sphere.

Let the equations of the ellipsoid and of the sphere be

2 2 2P

atmEtath

and (o= o+ (y =B+ - =r"
The general equation of a conicoid through the curve of intersection is

A (‘gj + %; + Z—: —1) + (@~ a)+(y-B)+(z2-y)-r=0......(3).
9—2
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This conicoid will be a cone, if the co-ordinates of the centre satisfy the

equations
A
l+a—2 z-0=0,
A
(1+52) y—ﬁ:O,
A
(1+c—2> £—v=0,
and —ar—By—vyz+a?+ i+ -2 -A=0,

Eliminating z, y, # we have
ala? bzlgz oyl
antEat o

a? = B2~y + 1+ A=0.........(id).

If, for any particular value of A, the conicoid given by (i) is a cone, the
equation of the cone, when referred to its vertex, takes the form

A A A o
(1+E,)zﬁ+(1 +ﬁ)y’+ (1+C—2>z-:0;

and therefore the direction-cosines of any diameter which is parallel to one
of the generating lines of the cone, satisfy the equation
2 m n? 1

E2tEtas-x
Hence the square of the semi-diameter is constant and equal to —A.

Hence also the continued product of the squares of the four values of
the semi-diameters is equal to the product of the four roots of the equation (ii);
and the product of the roots is easily seen to be a?b%%?2.

Ex. 4. The locus of the centres of all conicoids which pass through seven
given points is a cubic surface, which passes through the middle point of the
line joining any pair of the seven given points.

Let S;=0, S;=0, S3=0 be any three conicoids through the seven given
points; then the general equation of the conicoids is

8; + NSy + pS3=0.
The equations for the centre are
ds. ds,
14235, ds.

do) a8;_
dx+>\d Yz o

as, 48y, dS;_
ay Py Ty
ds as,

ds,
el | 2
S At a__o.
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Hence the equation of the locus of the centres, for different values of A
and p, is

as, as,  as,|_,
dz ’ dz’ de |~
as, as, s,
ay’ ay’ dy
ds, ds, Sy
dz’ dz ’ dz

which is a cubic surface, since ‘—‘11% &ec. are of the first degree.

Now, to have the centre of a conicoid given, is equivalent to having three
conditions given ; hence a conicoid which has a given centre can be made to
pass through any siz points, Hence, if 4, B be any two of the seven given
points, one conicoid whose<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>